Social Networks: Analyzing Social Information in Deep Convolutional Neural Networks Trained for Face Identification

Connor J. Parde1, Ying Hu2, Carlos Castillo2, Swami Sankaranarayanan1, and Alice J. O'Toole1

1The University of Texas at Dallas, 2University of Maryland

Social Networks

Analyzing Social Information in Deep Convolutional Neural Networks Trained for Face Identification

Human ratings of social traits for faces

- 280 face images
- Ratings collected for Caucasian 204 females, 76 males

Mean age = 80 (60 females)

Social Traits

- Humans make social trait inferences from faces readily [1] and rapidly [2]
- Trait inferences predict important decisions (e.g., voting preferences) [3]
- Social traits can be generated from models of face structure and reflectance [5, 6]

Goal 1: Measure similarity between human and computer-trait predictions from identity-train DCNN

Goal 2: Measure accuracy of trait predictions using DCNN features from non-frontal images

Goal 3: Predict individual social trait inferences from top-level DCNN features

Social Trait Ratings

DCNNs for Face Identification

- State-of-the-art for face identification [7] and generalizable over viewpoint, illumination, etc.
- "Top-level" DCNN features retain non-identity information (e.g., pose, image quality) [8]
- Do face-identification features also retain social information?

DCNNs modeled after primate visual cortex

- Early layers model VS/VI, final layers model IT cortex
- For face identification, final DCNN stores abstract identity code <face representation>

Identity Descriptors

- Human ratings of social traits for faces
 - 30 trait inferences
 - Ratings collected from 30 raters for 200 image pairs, first 150 full-face, last 50 frontal

Verify Structure of Face Trait Space (e.g. [5])

- N x K "feature matrix" obtained from DCNN
 - N = n x K "trait sets" obtained from averaged participant responses
 - Estimate of final trait predictions from feature matrix using linear regression

Individual Trait Predictions

- Error between human ratings and predicted traits, plotted against a null distribution
 - All traits predicted significantly above chance

Conclusions

Conclusion 1

- Human trait inferences can be predicted from the top-level features of a DCNN trained for face identification

Conclusion 2

- Trait inferences assigned to frontal faces can be predicted from DCNN features generated for both frontal and non-frontal faces

Conclusion 3

- Top-level DCNN features for face identification retain robust trait representation – each individual trait predicted above chance

References

Acknowledgements

This research was supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via AFRL/RI/EMR Contract No. FA8750-16-C-0031. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright annotation thereon.