Comet Calendar Event Details

Mathematical Sciences Colloquium by Distinguished Lecturer Karen Willcox
Friday, Mar. 29
11 a.m. - noon Location: FN 2.102

We invite you to join us for the 2019 UTD/SMU SIAM (Society for Industrial and Applied Mathematics) Student Chapter Distinguished Lecture


Karen Willcox

Director, Oden Institute for Computational Engineering and Sciences,

Professor of Aerospace Engineering and Engineering Mechanics,

W. A. “Tex” Moncrief, Jr. Chair in Simulation-Based Engineering and Sciences

Peter O'Donnell, Jr. Centennial Chair in Computing Systems

University of Texas at Austin


Projection-based Model Reduction: Formulations for Scientific Machine Learning


The field of model reduction encompasses a broad range of methods that seek efficient low-dimensional representations of an underlying high-fidelity model. A large class of model reduction methods are projection-based; that is, they derive the low-dimensional approximation by projection of the original large-scale model onto a low-dimensional subspace. Model reduction has clear connections to machine learning. The difference in fields is perhaps largely one of history and perspective: model reduction methods have grown from the scientific computing community, with a focus on reducing high-dimensional models that arise from physics-based modeling, whereas machine learning has grown from the computer science community, with a focus on creating low-dimensional models from black-box data streams. This talk will describe an approach that blends the two perspectives and provide advances towards achieving the goals of Scientific Machine Learning. We combine lifting--the introduction of auxiliary variables to transform a general nonlinear model to a model with polynomial nonlinearities--with proper orthogonal decomposition (POD) and operator inference. The result is a data-driven formulation to learn the low-dimensional model directly from data, but a key aspect of the approach is that the lifted state-space in which the learning is achieved is derived using the problem physics. Case studies demonstrate the importance of embedding physical constraints within learned models, and also highlight the important point that the amount of model training data available in an engineering setting is often much less than it is in other machine learning applications, making it essential to incorporate knowledge from physical models.

Lunch to follow 12:00-2:00pm in the Founders' 1st Floor Atrium.

Informal discussion with Dr. Willcox, 2:00-3:00pm FO 2.404

 

All are welcome!

Sponsored by SIAM, the Department of Mathematical Sciences at UTD, and the Department of Mathematics at SMU.

 

Contact Info:
Yifei Lou, 972-883-6445
Questions? Email me.

Tagged as Lectures/Seminars, Professional Dev.
See more events from Natural Sciences & Mathematics
View other events on the Comet Calendar