Dependence of Drag Over Super Hydrophobic and Liquid Infused Surfaces on Substrate Asperities

Jaehyeong An
2019 Jonsson School UG Research Award Recipient

Project Goal:
- Advance flow physics understanding
- Quantify drag penalty due to surface’s roughness
- Provide manufacturing design criteria

The Navier Stokes equations were solved using in-house CFD code for two fluid configuration:
- Finite difference method
- Level Set method
- Runge-Kutta method

Results:

- **DR = Drag Reduction**
 \[DR = 1 - \frac{\tau}{\tau_{\text{smooth}}} \]
- **\(\tau \) = Shear Stress**
- **\(\tau_{\text{smooth}} \) = Smooth Wall Shear Stress**

Dependence of Drag Over Super Hydrophobic and Liquid Infused Surfaces on Substrate Asperities

Why we care:
- Ships transport 90% of world goods
- Ships produce 3% of world pollution
- Friction causes 80% of ship resistance

Super-hydrophobic (gas-based) and liquid infused (lubricant-based) surfaces reduce drag

Acknowledgments:
- Special thanks to non-faculty advisor Ph.D Edgardo Garcia
- These results are under review for publication

References: