Additive Manufacturing of Polymer Derived Ceramics

Samantha Smith & Scott Burlison
Mechanical Engineering: Ses170130@utdallas.edu ; Srb160630@utdallas.edu
Faculty Mentor: Prof. Majid Minary ; Program: Mechanical Engineering

2019 Jonsson School UG Research Award Recipient

Research Project Goals:
- The goal of this project is to, for the first time, enable 3D printing of ceramics from thermally cross-linked preceramic polymers.

Research Project Overview:
- Motivation:
 - Revolutionize ceramic applications
 - Faster and cheaper ceramic manufacturing
 - New complex shapes
- Polyramic SPR 036 [3]
 - Vinyl substituted polycarbosiloxane resin
 - Cured with dicumyl peroxide
 - High ceramic yield, low viscosity, excellent oxidation resistance
 - Pyrolyzed to yield Silicon Oxycarbide

<table>
<thead>
<tr>
<th>State</th>
<th>Mass (g)</th>
<th>Length (mm)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Pyrolysis</td>
<td>0.4838</td>
<td>23.42</td>
<td>4.92</td>
</tr>
<tr>
<td>After Pyrolysis</td>
<td>0.2610</td>
<td>17.32</td>
<td>1.01</td>
</tr>
</tbody>
</table>

- Successful suspended resin solution
- Pyrolyzed state:
 - 60% mass lost
 - 30% smaller

Project Conclusions/Outcomes/Next Steps:
- Crosslinked precursor to ceramic SiOC
- Next Steps:
 - More complicated shapes
 - Coil, Lego
 - Polymer Precursor for SiC
 - Reduce product size
 - To micro, then nano
 - CMCs
 - Particles, Fibers

References
3. Starfire Systems, “Polyramic Resins Brochure”
4. RunTide. “Production Process of industrial ceramics”