Incentives for Efficiency and Equity in the School System

Eric A. Hanushek
Hoover Institution
Stanford University

October 2007
Education around the world has gotten increased attention over the past few decades. It takes little to convince most policy makers, whether in developed or developing countries, that investments in education are worthwhile. As a result, education occupies a substantial portion of public budgets everywhere. Yet, even as this conviction about the value of schooling grows, a dissatisfaction with one’s own schools is growing alongside in a wide range of countries. Perhaps no place is this clearer than in Germany, where the PISA results provoked a broad reconsideration of many long-held beliefs about the success of German schools. But it also exists in many other countries. At the heart of the issue, countries want to ensure that their investments actually pay off as they expect. The theme of his paper is that making this happen will require some substantial changes in approaches and policies. At the same time, it is important to be clear about the existing information and its implications for policy decisions.

The Economic Impact of Schooling and Cognitive Skills

An important starting point is understanding just what everybody knows – that educational investments have a high return. The research on this issue, investments in “human capital,” has been extensive, touching virtually every country of the world and falling across a range of subdisciplines in economics including labor economics, public finance, macroeconomics, growth, and international. The research is so broad that it would be easy to fill a normal survey article with the work found in any of those subareas.

Yet, what we know may be misleading. Economists have devoted considerable attention to understanding how human capital affects a variety of economic outcomes. The underlying conceptual notion is now very familiar: individuals make investment decisions in themselves through schooling and other routes. The accumulated skills that are relevant for the labor market from these investments over time represent the human capital of an individual. The conceptual model is clear and elegant, but a central question has been how to measure human capital investments.

Much of the empirical work on human capital quite naturally has concentrated on the role of school attainment, that is, the quantity of schooling. This focus is natural. Policy, particularly in earlier stages of development, frequently focuses on access and attainment. The quantity of schooling is easily measured, and data on years attained, both over time and across individuals, are readily available. These arguments have been so pervasive that school attainment and human capital have virtually become synonyms, and no explanation of this measure is even required. As a result, much of what is commonly known about human capital investments flows directly from this work on how school attainment relates to individual and aggregate economic outcomes.

This focus stands in sharp contrast to policy concerns that revolve much more around issues of quality than issues of quantity, at least in developed countries. Moreover, the evidence suggests that, where quality is ignored, it is a mistake. Part of the neglect is simply due to past lack of measurement of anything but quantity and the commensurate lack of research. However, as Ludger Wößmann and I document, research is becoming more available, and it consistently points toward a redirection of attention to cognitive skills (Hanushek and Wößmann (2006)).

A key question is whether what we know from investigations of quantity of schooling about policy implications carries over to the consideration of quality, or cognitive skills. There are two primary places to consider in answering this question about the returns to education and
One of the challenges in understanding the impact of quality differences in human capital has been simply knowing how to measure quality. Much of the discussion of quality—in part related to new efforts to provide better accountability—has identified cognitive skills as the important dimension. And, while there is ongoing debate about the testing and measurement of these skills, most parents and policy makers alike accept the notion that cognitive skills are a key dimension of schooling outcomes.

The beginning point for this discussion is whether this proxy for school quality—students’ performance on standardized tests—is correlated with individuals’ performance in the labor market and the economy’s ability to grow. Until recently, little comprehensive data have been available to show any relationship between differences in cognitive skills and any related economic outcomes. Such data are now available.

Individual Productivity and Incomes

The extensive estimates of returns to years of schooling have been reviewed and critiqued frequently. The basic approach, following the early developments by Jacob Mincer (1970, 1974), considers the impact on years of schooling on the log of earnings (holding constant experience and possibly other things). The schooling coefficient is frequently interpreted as the rate of return on schooling, although this requires a number of assumptions. These studies generally assume that quality differences among schools are unimportant, or at least that neglecting this does not bias the estimated returns to schooling.

The one exception is a long standing parallel line of research that is concerned with “ability bias” in the estimation of the returns to schooling. This fits into the work by economists on determining the average labor market returns to additional schooling. In this, a general concern has been that higher-ability students are more likely to continue in schooling. Therefore, part of the higher earnings observed for those with additional schooling may really reflect pay for added ability and not for the additional schooling. Economists have pursued a variety of analytical approaches for dealing with this, including adjusting for measured cognitive test scores, but this work generally focuses on ability as a predetermined factor, and the cognitive tests are taken simply as a readily available measure of this fixed factor. It almost completely ignores issues of variation in school quality, and seeing no obvious way around the problems, most analyses tend simply to ignore the issue. But, this is obviously important for both interpretation and policy.

1 These topics neglect a variety of details for both macro and microeconomic investigations, such as unemployment rates, diffusion of new technology, and income distribution at the aggregate level or health, individual employment rates, or firm demand for labor at the more micro level. Nonetheless, the two themes of individual earnings and economic growth capture the primary ideas that are important for policy.

4 See, for example, Griliches (1977).

5 The common tests of cognitive skills are sometimes labeled “ability” tests and other times “achievement” tests, in part to distinguish how sensitive they might be over time to various influences. Nonetheless, both typically vary significantly over time with schooling and family circumstances. At times, efforts have been made to isolate these effects in the estimation of returns to years of schooling (e.g., {Griliches, 1972 #110}).

6 The approaches have included looking for circumstances where the amount of schooling is affected by things other than the student’s valuation of continuing and considering the income differences among twins (see Card (1999)).
Before thinking about the interpretation, we start with the evidence. Direct investigations of cognitive achievement suggest generally large labor market returns to measured individual differences in cognitive skills. A variety of researchers document that the earnings advantages to higher achievement on standardized tests are quite substantial. These analyses typically find that measured achievement has a direct impact on earnings after allowing for differences in the quantity of schooling, the experiences of workers, and other factors that might also influence earnings. In other words, greater knowledge, as measured by tests similar to those currently being used in accountability systems in many countries, is closely related to individual productivity and earnings.

Three recent U.S. studies provide direct and quite consistent estimates of the impact of test performance on earnings [Mulligan (1999), Murnane Willett, Duhaldeborde, & Tyler (2000); Lazear (2003)]. These studies employ different nationally representative data sets that follow students after they leave schooling and enter the labor force. When scores are standardized, they suggest that one standard deviation increase in mathematics performance at the end of high schools translates into 12 percent higher annual earnings.

Moreover, an additional part of the return to school quality comes through continuation in school. There is substantial U.S. evidence that students who do better in school, either through grades or scores on standardized achievement tests, tend to go farther in school. It is almost certainly even more important in countries with test-based sorting of students into different educational opportunities. Each of the available investigations highlights the independent role of achievement in affecting the schooling choices and investment decisions of individuals.

The role of schooling and human capital in altering the distribution of incomes in society has also received considerable separate attention. The idea of relating distributional outcomes to school quality is important in the social programs of many countries. It is hoped that through schooling family poverty would not be transferred to the next generation—specifically, that high-quality school investments could overcome deficits originating in the home. Researchers have focused on skill differences as being important in, for example, explaining the patterns of racial earnings differences in the U.S. or the expansion of earnings differences among people.

The various adjustments for ability differences typically make small differences on the estimates of the value of schooling, and Heckman and Vytlacil (2001) argue that it is not possible to separate the effects of ability and schooling. The only explicit consideration of school quality typically investigates expenditure and resource differences across schools, but these are known to be poor measures of school quality differences (Hanushek (2002b)).

These results are derived from quite different approaches. The clearest analyses are found in the following references (which are analyzed in Hanushek (2002b)). See Bishop (1989, (1991); O'Neill (1990); Grogger and Eide (1993); Blackburn and Neumark (1993, (1995); Murnane, Willett, and Levy (1995); Neal and Johnson (1996); Murnane, Willett, Duhaldeborde, and Tyler (2000); Altonji and Pierret (2001); and Murnane, Willett, Braatz, and Duhaldeborde (2001).

See, for example, Dugan (1976); Manski and Wise (1983)). Rivkin (1995) finds that variations in test scores capture a considerable proportion of the systematic variation in high school completion and in college continuation, so that test score differences can fully explain black-white differences in schooling. Bishop (1991) and Hanushek, Rivkin, and Taylor (1996), in considering the factors that influence school attainment, find that individual achievement scores are highly correlated with continued school attendance. Neal and Johnson (1996) in part use the impact of achievement differences of blacks and whites on school attainment to explain racial differences in incomes. Behrman, Kletzer, McPherson, and Schapiro (1998) find strong achievement effects on both continuation into college and quality of college; moreover, the effects are larger when proper account is taken of the various determinants of achievement. Hanushek and Pace (1995) find that college completion is significantly related to higher test scores at the end of high school.
with the same levels of schooling. A number of analyses have further emphasized the growing rewards to skills and have developed the implications of this for wage inequality. Owing to lack of sufficient data over time, they have mostly not looked directly at measured cognitive skills. Nonetheless, building on the findings about individual earnings, it is reasonable to conclude that variations in cognitive skills have a direct impact on variations in the distribution of incomes. Additionally, variations in the skills of those with similar amounts of schooling—say, completing four years of college—may actually be growing over time and may reinforce income differences that come from increased rewards to skills.

The simple summary is that cognitive skills are highly related to earnings. The remaining issue, discussed below, is then what determines cognitive skills and are they malleable.

Economic Growth

The relationship between measured labor force quality and economic growth is perhaps even more important than the impact of human capital and school quality on individual productivity and incomes. Economic growth determines how much improvement will occur in the overall standard of living of society. Moreover, the education of each individual has the possibility of making others better off (in addition to the individual benefits just discussed). Specifically, a more educated society may lead to higher rates of invention; may make everybody more productive through the ability of firms to introduce new and better production methods; and may lead to more rapid introduction of new technologies. These “externalities”—influences on others of individual education outcomes—provide extra reason for being concerned about the quality of schooling. Because this is so important and because it has received little attention, we give this feature of the economy the most attention here.

While a variety of models and ideas have been developed to explain differences in growth rates across countries, they invariably include (but are not limited to) the importance of human capital. The empirical work supporting growth analyses has emphasized school attainment differences across countries. Again, this is natural because, while compiling comparable data on many things for different countries is difficult, assessing quantity of schooling is more straightforward.

The typical study finds that quantity of schooling is highly related to economic growth rates. But, again, quantity of schooling is a very crude measure of the knowledge and cognitive skills of people. Few people would be willing to assume the amount learned during the sixth grade in a rural hut in a developing country equals that learned in a German sixth grade. Yet that is what is implicitly assumed when empirical analyses focus exclusively on differences in average years of schooling across countries.

9 See, for example, O'Neill (1990); Juhn, Murphy, and Pierce (1991, (1993); Murphy and Welch (1992); Pierce and Welch (1996).

10 Identifying the changing impact of measured ability on the distribution of outcomes over time is also a very difficult problem, particularly given the structure of available data (see Cawley, Heckman, Lochner, and Vytlacil (2000); Heckman and Vytlacil (2001).

11 Barro and Sala-i-Martin (1995) review recent analyses. Some have questioned the precise role of schooling in growth. Easterly (2001), for example, notes that education without other facilitating factors such as functioning institutions for markets and legal systems may not have much impact. He argues that World Bank investments in schooling for less developed countries that do not ensure that the other attributes of modern economies are in place have been quite unproductive. As discussed below, schooling clearly interacts with other factors, and these other factors have been important in supporting U.S. growth.
Recent work, beginning with efforts by Dennis Kimko and me and extended by others, delves into cognitive skills and the quality of education (as measured by cognitive achievement scores). These analyses incorporate information about international differences in mathematics and science knowledge that has been developed through testing over the past four decades. They find a remarkable impact of differences in school quality on economic growth.

While there are different variants, the analysis by Hanushek and Kimko (2000) is very straightforward, and it provides the essential features and results. They combine all of the available earlier test scores (through 1990) into a single composite measure of quality and consider statistical models that explain differences in growth rates across nations during the period 1960 to 1990. The basic statistical models, which include the initial level of income, the quantity of schooling, and population growth rates, explain a substantial portion of the variation in economic growth across countries. Adding the measure of cognitive skills to the basic equation more than doubles the amount of explained variance in growth rates, with the R^2 going from 0.33 to 0.73.

Most important, the quality of the labor force as measured by math and science scores is extremely important in a quantitative sense. One standard deviation difference on test performance is related to 1 percent difference in annual growth rates of gross domestic product (GDP) per capita. Moreover, adding other factors potentially related to growth, including aspects of international trade, private and public investment, and political instability, leaves the effects of labor force quality measured by the international tests unchanged.

One common concern in analysis such as this is of course that schooling might not be the actual cause of growth but, in fact, may just reflect other attributes of the economy that are beneficial to growth. For example, the East Asian countries consistently score very highly on the international tests, and they also had extraordinarily high growth over the 1960–1990 period. It may be that other aspects of these East Asian economies have driven their growth and that the statistical analysis of labor force quality simply is picking out these countries. But in fact, even if the East Asian countries are excluded from the analysis, a strong—albeit slightly smaller—relationship is still observed with test performance.

Another concern might be that other factors that affect growth, such as efficient market organizations, are also associated with efficient and productive schools—so that, again, the test measures are really a proxy for other attributes of the country. In order to investigate this, Hanushek and Kimko concentrate on immigrants to the United States who received their education in their home countries. The analysis shows that immigrants who were schooled in countries that have higher scores on the international math and science examinations earn more in the United States, but earnings of immigrants schooled in the U.S. are unrelated to the cognitive skills of their home country. This analysis makes allowance for any differences in school attainment, labor market experience, or being native English-language speakers. In other words, skill differences as measured by the international tests are clearly rewarded in the United States labor market, reinforcing the validity of the tests as a measure of individual skills and productivity.

Finally, the observed relationships could simply reflect reverse causality, that is, that countries that are growing rapidly have the resources necessary to improve their schools and that

better student performance is the result of growth, not the cause of growth. As a simple test of
this, Hanushek and Kimko investigated whether the international math and science test scores
were systematically related to the resources devoted to the schools in the years prior to the tests.
They were not. If anything, we found relatively better performance in those countries spending
less on their schools.

These results, including the sensitivity analyses, have been extended to 2000 by
Hanushek and Wößmann (2006). This extension both allows for possible influence of the
international instability of the 1990s and permits an expansion of the country database (because
of additional international testing). The estimated impact of cognitive skills on growth is
remarkably stable.

Importantly, when cognitive skills are added to the basic growth model, the role of
quantity of schooling falls dramatically and becomes statistically insignificant. In other words,
once knowledge is included, just measuring how long people attend formal schooling is no
longer a useful predictor.

In sum, the relationship between math and science skills on the one hand and productivity
and growth on the other comes through clearly when investigated in a systematic manner across
countries. The importance of cognitive skills reinforces the attention that nations today are giving
to school quality.

Changing Cognitive Outcomes

As noted, early analyses of “ability bias” in earnings assumed that cognitive skills were
essentially fixed. Analyses of achievement outcomes for students shows, however, that this is
clearly not the case. Yet, a key question remaining is whether these skills are amenable to
government policies that might improve them?

When we turn to what countries can do if they want to change cognitive skills, we find
quite a challenge. Even though a wide range of factors are known to influence student
achievement – including family, peers, and schools – policy attention generally concentrates on
the role of schools and school quality. This focus is quite natural, because governments typically
are reluctant to be too actively involved in the family but do have significant control over the
schools.\footnote{Virtually all research into student achievement finds that families are very important. The evidence on the role of
peers is considerably less clear. See Hanushek (2002b).}

The research over the past four decades has returned a somewhat surprising set of results
about the influence of schools. Specifically, hundreds of estimates of the impact of school
resources on performance suggest that basic resources have no consistent on student
performance.

Research has not shown any clear causal relationship between the amount that schools
spend and student achievement.\footnote{Hanushek (1986, 2003, 2006). This line of research was begun by the Coleman Report (Coleman et al. (1966)),
which early suggested that school resources were not a very important determinant of student achievement, and has
grown into a vast set of statistical studies.} Although there has been considerable debate on aspects of the
research, it is now generally recognized that within broad ranges how money is spent is much
more important than how much is spent. This finding is particularly important in considering
aggregate governmental actions including those related to the financing of schools. Is it possible
to control effectively how any new moneys are spent so that added funds would consistently lead
to improved student outcomes?
Specifically, a vast literature has looked at class size, teacher experience, and teacher education effects on achievement. The results are very clear on each. With pupil-teacher ratios, almost three-quarters of all studies find no significant relationship with achievement, and the statistically significant estimates are evenly divided between those showing the expected negative impact of a higher pupil-teacher ratio and those showing a positive impact on achievement.15 With teacher education, less than 10 percent of estimates indicate a statistically significant positive impact of more education on student achievement. Again, there is not support for any consistent relationship between teacher education and student achievement. In overall terms, teacher experience has historically shown a stronger relationship with performance, but recent studies have consistently shown that the impact of experience is concentrated in the first year or two of teaching with little impact of any additional experience.16

Not surprisingly, since the primary components of teacher salary determination – experience and education levels – do not have any consistent link with achievement, teacher salary differences themselves also show little consistent relationship with achievement. A good teacher is as likely to have a low salary as a high salary.17 Further, since salaries and pupil-teacher ratios are the largest determinants of variations in instructional expenditures, the level of spending also has little consistent relationship with achievement.18

The studies on student achievement vary in a variety of ways including, importantly, quality of the study. Yet, after adjusting for quality of the study in a variety of ways, the lack of systematic relationship of resources and achievement becomes even more evident (Hanushek (2003, (2006)).

The most intense discussions of resource effects come in terms class size effects. Although the vast majority of econometric studies show little impact of class size reduction on achievement, the now-famous STAR study from Tennessee found positive impacts in a random assignment experimental study during the 1980s.19 These debates have generally focused on the simple issue of whether there is a small effect of lower class sizes versus no effect. At the same time, because class size reduction is so expensive, there is much less debate on whether class size reduction is a good policy or not, because the expense swamps the small achievement impacts that might be expected even under optimistic interpretations of the estimates in the achievement literature.

15 The results of prior studies can be found in Hanushek (2003, (2006), and Hanushek and Rivkin (2006). Note that some studies use teacher-pupil ratios while others use actual class sizes. The results for studies of actual class sizes if anything show a weaker relationship of class size and achievement than those for studies involving pupil-teacher ratios.

16 For further discussion of teacher experience, see Hanushek and Rivkin (2007) and Murnane and Steele (2007). The analysis of experience is also complicated because more senior teachers often have more chances to move among schools. At least in the U.S., teachers tend to seek out schools with higher achieving students, thus entering questions about the direction of causation; see Greenberg and McCall (1974), Murnane (1981), and Hanushek, Kain, and Rivkin (2004).

17 Hanushek and Rivkin (2006).

18 In all cases, some studies have found statistically significant positive effects of school spending, and people who wish to advocate for more spending tend to cite just these. Nonetheless, particularly with the spending studies, the ones finding a positive relationship with achievement prove to be the lowest quality studies; Hanushek (2003).

19 The debates on the subject can be found in Word et al. (1990), Hanushek (1999a, (1999b, (2002a), and Krueger (2002). For discussion of the international evidence, see \{Wößmann, 2007 #4737\}
A simplistic view of this general argument about resources—conveniently raised as a straw man to be beaten down—is that “money never matters.” The research, of course, does not say that. Nor does it say that “money cannot matter.” It simply underscores the fact that historically a set of decisions and incentives existing in schools have blunted any impacts of added funds, leading to inconsistent outcomes. That is, more spending on schools has not led reliably to substantially better results on the tests that states use to determine whether students are proficient—the same kinds of tests currently used in accountability systems and that plaintiffs use to document inadequacy in a state’s educational system when entering into court debates.

Research into student achievement has also not ended at this point of “no effects.” In particularly, this is mounting evidence that teacher quality is extraordinarily important. Specifically, analysis of student performance shows that achievement gains in the classes of some teachers consistently outstrip the gains of other teachers. But this research at the same time reinforces the prior analyses of resources. The best teachers are not the ones with the most education or experience. In fact, there is no consistent relationship between teacher quality – measured by student achievement growth – and the characteristics of teachers (except, again, for the effect of the first year of teaching experience).

This research as a whole begins to fill in the details of what has been seen about resources and achievement overall. The strategy of pumping more resources into the current system has not led to any overall improvements in student outcomes. To be sure, sometimes schools use resources effectively to enhance student performance. But as often as not, other schools do not use resources effectively.

This situation with respect to the impact of resources on achievement is partly surprising and partly not. The unsurprising part is that a government run program with virtual local monopolies does not appear to be particularly efficient. Our normal presumption in market situations is that we can use measures of resources to provide an index of quality, but this clearly does not hold in the case of schools. The surprising part is that a number of analyses indicate that it is more than just inefficiency. At various times, it appears that more resources are actually associated with lower outcomes. It is not just a matter of inefficiency, or failing to get as much as possible from added resources, but of resources possibly lowering outcomes.

The idea of negative resource effects is of course difficult to believe, suggesting that it might simply reflect analytical problems. For example, if extra resources are typically supplied in a compensatory manner when performance is low, higher resources would appear to be related to lower performance. Nonetheless, the general nature of the findings holds for the best studies. More particularly, a variety of analytical strategies have been devised to obtain causal impacts of resources, and these have failed to show consistent positive impacts of resources (Hanushek (2006)).

In response, one common policy approach has been regulatory in nature. Starting with the findings that teacher quality is important, the idea has been to define more precisely what qualifications a teacher should have. These qualifications, part of the requirements for

20 At least outside of courtrooms in school finance court cases (see below), most discussion of the “money never matters” debate, a controversy of a decade ago, has subsided. For the historical framing of the question, see the following exchange: Hedges, Laine, and Greenwald (1994) and Hanushek (1994).

21 A variety of studies have pursued this general approach over the past four decades; see, Hanushek (1971, 1992), Armor et al. (1976), Murnane (1975; Murnane and Phillips (1981), Aaronson, Barrow, and Sander (2007), Rockoff (2004), Rivkin, Hanushek, and Kain (2005), and Hanushek, Kain, O'Brien, and Rivkin (2005)).
certification, have, however, been generally ineffective, because the research has been unable to pinpoint particular characteristics of teachers that are important (Hanushek and Rivkin (2006)). Similar results hold for other regulatory approaches to school policy, such as dictating lower class sizes or instituting other specific broad-scale programs. Even if these policies are truly effective in some environments, they generally fail to improve outcomes when implanted into very heterogeneous school settings. Thus, we are back to looking for other approaches to improve schools and to raise student achievement.

Institutions and Incentives

The desire to improve student outcomes, combined with the dismal results of the regulatory approach, has led to a variety of calls for an alternative – changing the incentives that are operating across schools. The fundamental concern is that the incentives currently operating do not point systematically toward higher student achievement.

A variety of policy prescriptions have been proposed. The most frequently discussed include introducing standards and accountability, greater school autonomy, and expanded school choice. Standards and accountability begins with a comprehensive specification of what content knowledge students should have in each subject and at each grade level; this clear statement of objectives forms the basis for assessment that are both made public and form the basis for rewards and punishments to schools. School autonomy, which can be defined along various dimensions including fiscal autonomy, curricular autonomy, and local hiring authority, posits that performance of schools can be improved if local officials have greater latitude in making school decisions. Finally, expanded choice holds that allowing students to choose what school they attend will set up incentives for schools to design programs that attract students, and that this will in turn lead to better outcomes.

Some evidence suggests that each of these has positive impacts on student outcomes. Each is difficult at times to evaluate because the policies tend to be introduced on a broad scale – either across a nation or across a state or province. As a result, it is difficult to develop a suitable control situation to the use of these major institutions/incentives. Furthermore, these innovations have generally been introduced on a limited scale, and frequently only recently. Nonetheless, the available evidence fairly consistently indicates that these incentives have desirable effects on outcomes.\(^{22}\) The alternative incentives lay a strong groundwork for a different perspective on policy – and surely not one that would surprise economists.

The primary focus of these incentive approaches has been on the operations of schools – namely, supply side incentives.\(^{23}\) And, the conceptual properties of these incentives are well known, even if some uncertainty exists about the empirical evidence on effects.

The more novel approach comes from “demand-side” incentives. These are sets of incentives designed to work primarily through students and their families, as opposed through

\(^{23}\) Expanded choice might be thought of as combining supply-side and demand-side incentives, although the reform portion clearly comes from ideas of impacts on schools through their desire to attract students.
their impact on the schools themselves. These are interesting because of their potential impacts. As seen in early work. But, perhaps more important, they are also a timely reminder about being clear on the objectives and measurement of success.

Demand side incentives are more commonly, but not exclusively, used in developing countries. In more developed countries it is often believed that the high rates of return to educational investments identified previously are sufficient to motivate students and their parents. On the other hand, because of lack of information, competing pressures, credit constraints and the like may be more important, such general market incentives may be muted in developing countries.

Before moving to developing countries, however, it is useful to note the clearest exception with demand side incentives being found exclusively in developed countries. This exception is the role of centralized examination systems. Many countries link various educational decisions, particularly involving continuation to various tertiary schooling, to performance on a common examination. Consequential central examinations, by providing different incentives to students to perform well than classroom or school based exams, encourage students both to work together and to perform better. And this appears to be borne out in international evidence.24 This work is especially interesting since students are obviously a key part of learning, but they are most often essentially ignored from any policy standpoint. These analyses show a generally positive impact of exams on cognitive achievement and thus luck like a potentially useful institutional policy tool.

The more specific demand side incentives that have received considerable attention in developing countries involve monetary incentives (fee reduction and conditional cash transfers) and food and nutrition programs.

These programs are interesting in their focus but also because they have been subjected to especially intense analyses. Because these treatments

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Background</th>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fee Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparrow (2007)</td>
<td>Indonesia</td>
<td>Evaluates scholarship for primary-secondary schooling in Indonesia targeted at poor.</td>
<td>IV exploiting decentralized targeting design of program</td>
<td>10% increase in enrollment for primary school; lower but substantial for secondary. Substantial decrease in child labor.</td>
</tr>
<tr>
<td>Spohr (2003)</td>
<td>Taiwan</td>
<td>Evaluates Taiwan's extension of tuition-free education from 6-9 years.</td>
<td>Regression discontinuity type IV for labor market models</td>
<td>Average impact of .4 yr increase in schooling for males and .25 yrs for females; larger effect for females in labor market.</td>
</tr>
</tbody>
</table>

Table 1. High Quality Studies of Fee Reduction in Developing Countries
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Background</th>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attanasio et al. (2006)</td>
<td>Colombia</td>
<td>Evaluates Colombian Fianilias in Accion program (Similar to Progresa)</td>
<td>Non-Random assignment at village level - Dif in dif w/well constructed control groups.</td>
<td>5-7% increase school participation for 14-17 yr old - 2.5% for younger children. Decreased domestic work by 10-12% for young children</td>
</tr>
<tr>
<td>Maluccio and Flores (2005)</td>
<td>Nicaragua</td>
<td>Evaluates Nicaraguan Red de Proteccion Social (Similar to Progresa)</td>
<td>Randomized village-level implementation</td>
<td>Strong and Favorable impacts on household expenditure, schooling, child labor and child health.</td>
</tr>
<tr>
<td>Cardoso and Souza (2004)</td>
<td>Brazil</td>
<td>Evaluates Brazil's "Bolsa Escola" Program (similar to Progresa).</td>
<td>Non-random and poor at implementation requires post implementation matching method.</td>
<td>No significant impact on child labor but positive and highly significant effect on school attendance.</td>
</tr>
</tbody>
</table>

Table 2. High Quality Studies of Conditional Cash Transfers in Developing Countries
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Background</th>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food and Nutrition Supplements</td>
<td>Bangladesh</td>
<td>Evaluates Bangladeshi Food for Education Program</td>
<td>Propensity Score Matching - selection only on observables.</td>
<td>Program estimated to increase school participation rates by 20-30% and educational attainment by .5-2.0 yrs.</td>
</tr>
<tr>
<td>Bobonis, Miguel, and Puri-Sharma (2006)</td>
<td>India</td>
<td>Evaluates randomized intervention delivering iron supplements and deworming drugs to children in slums of Delhi, India.</td>
<td>Randomization</td>
<td>69% anemic and 30% underweight at baseline. Program increased weight and preschool participation rates increased by 5.8%. Absenteeism decreased 20%.</td>
</tr>
<tr>
<td>Vermeersch and Kremer (2005)</td>
<td>Kenya</td>
<td>Evaluates randomized intervention providing school meals to preschools in Kenya.</td>
<td>Randomization</td>
<td>School participation increased by 30% and higher scores on exams, but only when students had experienced teachers. Caused school to increase fees and pupil-teacher ratios</td>
</tr>
</tbody>
</table>

Table 3. High Quality Studies of Food and Nutritional Supplements in Developing Countries
References

Attanasio, Orazio, Emla Fitzsimons, Ana Gomez, Diana Lopez, Costas Meghir, and Alice Mesnard. 2006. "Child education and work choices in the presence of a conditional cash transfer programme in rural Colombia." W06/01, Institute for Fiscal Studies

Cardoso, Eliana, and Andrea Souza. 2004. "The Impact of Cash Transfers on Child Labor and School Attendance in Brazil." 0407, Department of Economics, Vanderbilt University

———. 1999b. "Some findings from an independent investigation of the Tennessee STAR experiment and from other investigations of class size effects." Educational Evaluation and Policy Analysis 21, no.2 (Summer):143-163.

Meng, Xin, and Jim Ryan. 2003. "Evaluating the Food for Education Program in Bangladesh." Australia South Asia Research Centre, Australian National University

Schady, Norbert, and Deon Filmer. 2006. "Getting girls into school: evidence from a scholarship program in Cambodia." No. 3910, World Bank

