Investigating the Causal Impacts of the Gates Millennium Scholars & Washington State Achievers Programs

Stephen L. DesJardins & Brian P. McCall

University of Michigan Center for the Study of Higher and Postsecondary Education

Presented at the Texas Schools Project Luncheon

November 20, 2009 Dallas, TX
The Gates Millennium Scholarship (GMS) Program

• Established in 1999 by Bill & Melinda Gates Foundation
• Will Provide $1 Billion in Scholarships Over 20 Year Period
• Goals
 – Improve Access for High Achieving, Low-Income Students of Color
 – Create a Cadre of Future Leaders
The GMS Program (cont’d)

• Covers Full Tuition at Any Institution of Higher Learning in the U.S.
 – GMS is a “last dollar” award. On average, scholars get approximately $6,000 more than non-scholars in grants and scholarships

• NORC (at U of Chicago) Surveys and Tracks GMS Scholars & Non-Recipients
GMS Selection Criteria

- High school GPA (3.3 minimum)
- Pell eligible, citizens, must complete app
- Score on Non-Cognitive Test
 - Apps answer questions developed to measure non-cognitive abilities
 - Answers scored by trained raters score assigned to each applicant
GMS Selection Criteria (cont’d)

• Applicants unlikely to be aware of cut pts. because unaware of # apps at test time
• Raters unlikely to know the cut pts. as they are unaware of the # of qualified apps
• If raters aware of # of apps at review time many apps are later disqualified because don’t meet other criteria
• Of 3,000-4,000 apps in year about 1,000 are selected
The Surveys

• Prepared by RAC & NORC
• Admin. to all Scholars & Random Sample of Non-Recipients
• Very extensive surveys in spring of freshman (baseline) & junior years (F1), then 2 yrs. later (F2)
 – Track demographic, HS/college academics, enrollment/graduation, student/parent finance, family, extra-curricular, perceptions of school & self, racial issues, issues about GMS administration, post-collegiate occupation
Data

• Had Info on Colleges Attended So Merged to IPEDS to Get IHE Characteristics

• F2 Asked Info About Undergrad Degree, Post-Grad Study & Labor Market Experience

 – But these were only measured at 5 years after entry
Possible Impacts of Scholarship

• Increase Chances of Attendance/Completion

• Lower Debt Levels of Recipients
 – Increased debt may reduce likelihood of attending graduate school (Millett, 2003)

• Change Aspirations for Graduate School

• Change Parental Contributions

• Reduce Work Hours While Enrolled
 – May increase time for studying, taking more credits, leisure, extra-curricular activities
 – Work may increase dropout & time to degree (Ehrenberg and Sherman, 1987)
Determining Causal Effects of Program

• Difficult Because Classic Selection Problem
 – Students not randomly assigned to program
• Overcome by Employing Regression Discontinuity (RD) Method
 – Originally used to study effects of National Merit Scholarship award (Thistlethwaite & Campbell, 1960)
 – Also used to study effects of financial aid on college acceptance and enrollment (van der Klaauw, W., 2002; Kane, 2003)
Outcomes Analyzed

• Variety of Them by Race/Ethnicity
• Estimated Differences Among GMS & Non-Scholars at End of Frosh/Jr Years for:
 – Retention, debt levels, hours worked/earnings, parents’ contributions, community involvement
 – Time spent studying, leisure activities frosh year only
 – Differences in 4 yr graduation rates & grad school aspirations
• Will Only Report on Selected Results
GMS Sample

• Two Cohorts Used (2001 & 2002)
• 3,200 Undergrads Who Matriculated in Fall
• Evenly Split Between GMS & Non-GMS
 – 42% African American
 – 35% Latino
 – 23% Asian American

• Note: American Indians not included because score on non-cognitive tests not a factor in selection (they accepted all who met the other criteria)
Observable Differences

• Overall sample includes more (fewer) Latino/a (Asian American) students receiving (not receiving) scholarships than in the non-recipient group

• Parents of GMS recipients have lower incomes and lower levels of education compared to non-recipients

• SAT scores and % with < 4 yrs of HS math about equal

• Nearly all students still enrolled at F1
 – Recipients enrollment rate is 3 percentage points higher than for non-scholars (98% vs. 95%)
Loan Amount Differences

• Avg. loan in frosh yr. is $2,140 for full sample
 – Recipients $975; $3,200 for non-recipients

• Full sample cumulative loan thru junior year about $6,800
 – GMS recipients $3,300; non-recipients about $10,000
Hours Worked

- Avg. number hours worked in frosh yr smaller (=13.5) than national averages
- GMS participants work 11 hours during work-week, non-recipients 15 hours
- Avg. number in junior year is 16 hours with difference between recipients/non-recipients about 4 hours
Estimation Strategy

• Baseline Model: controls for race, cohort, test score & square, and all possible 2 and 3 way interactions between race and cohort and test score and its square

• Add. Controls Model: Include gender, mother/father ed., family size, HS type, yrs of HS math & science, SAT, parental income

• Also estimated models with linear, quadratic, & cubic polynomial test score specifications
 – Results reported are from the quadratic model
Results

• Net impact of GMS on total scholarship money received is positive & sign. for all waves

• Impact on college enrollment is small & not statistically significant in any wave
 – App pool consists of higher ability minority students who would probably attend anyway

• Yearly loans reduced by 69%, 61%, and 44% of the estimated increase in scholarship money in the baseline, F1, and F2
Accumulated Debt from Student Loans: Junior Year

Cohort III

African Americans

Estimated Impact of GMS

- $7,537

Cut point = 72

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
2. Non-cognitive essay score measured as deviation from cut point.
Results

• Overall, evidence parental support reduced, at least for jr. year (27%)

• GMS reduces hours worked/week & avg. weekly earnings for baseline and F1; F2 negative but not significant

• Probability of being Social Science, STEM, Humanities, Education, business or journalism major no different (at F1)
Parental Contribution: Junior Year
Cohort III

Latinos

Estimated Impact of GMS
-$2,012

Cut point = 69

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
2. Non-cognitive essay score measured as deviation from cut point.
Results

• Overall, evidence parental support reduced, at least for jr. year (27%)

• GMS reduces hours worked/week & avg. weekly earnings for baseline and F1; F2 negative but not significant

• Probability of being Social Science, STEM, Humanities, Education, business or journalism major no different (at F1)
Results

• No evidence of higher 4 yr. grad rates among GMS recipients
• Conditional on completing college by F2, no difference in grad school attendance
• Among F2 completers not already enrolled in grad school, GMS raised probability of applying to grad school
 – By about 30 percentage points or 150%
Results

• Prob. of working in Educational Services industry was positive and statistically significant
 – Finding similar to results by Rothstein and Rouse (2007) for when lower student debt

• Among employed non-ed grads, 10% of GMS & 6% of non-recipients were teaching
 – Suggests GMS may induce some non-education majors to become teachers
Additional Results

• Evidence that PhD Aspirations of Asian Americans & Latinos raised

• Have Measures of Time Spent Studying, Relaxing, in Extracurricular Activities for Freshman Year
 – No effect of GMS on any of these variables

• Some Evidence of Increases in Community Service for Some Racial/Ethnic Groups in Frosh & Junior Years
Participates in Community Service Often or Very Often: Junior Year

Cohort III

Latinos

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
2. Non-cognitive essay score measured as deviation from cut point.

Estimated Impact of GMS 0.11

Cut point = 69
Subgroup Differences

• Also Examined Outcomes Differences by Gender, Parental Education, Type of Institution Attended
 – No differences in retention/work/parent contributions
• Loan Debt Reduced More for Private College Attendees Than Public College Attendees
• Scholarship Amts Higher for Men Than Women
• Some Evidence That “Treatment” (scholarship amount) Larger for Private College Attendees
Conclusions & Policy Implications

• Scholarship Has Little Effect on Retention Through the Junior Year
 – Ceiling effects?

• Scholarship Substantially Reduces Debt Load of Recipients
 – Remains to be seen how this change affects behavior with respect to career choice

• GMS Scholarship Lowers Time Spent Working & Increases Involvement in Community Service
 – No evidence that they spend more time studying or more time relaxing though
Conclusions & Policy Implications

• GMS Reduces Amount Parents Contribute to College Education (esp. for Asian Americans).
 – If parents expected this scholarship would they reduce their savings behavior?
 – Does the scholarship increase parental support for other children in the family?

• Aspirations for PhD’s Increased for Recipients

• Bachelor’s Degree Attainment
 – Some students get GMS in 5th year, may change incentives about 4 yr completion, lengthening time to degree
Initial Results of Washington State Achievers Scholarship Program

• Established in Washington in 2001 by Bill and Melinda Gates Foundation
• Part of initiative is to support 16 high schools as they redesign themselves
• In addition to school support, scholarships given to some students from each HS
 – 500 low-income students per year at each school
• Goals: Increase academic achievement for students thereby promoting college attendance and success
The WSA Program (cont’d)

- 1st students selected in spring 2001 & matriculated to college that fall
- Subsequent cohorts have/will begin college each fall through 2010
- Holistic program that involves, among other things, high school reform
Program Selection

- Students chosen in junior year of HS
- Must graduate, have need, & apply for need-based aid
- Family income < 35% of WA state average
 - Assets must be below a specified threshold
- Scholarships also (partially) allocated on basis of the score on non-cognitive test
Scholarship Details

• Pay tuition/fees for set of IHEs in WA state for up to five years
• “Top up” program: Funds cover differences in COA after other aid taken into account
• Students also provided mentors in high school and for first two years of college
• NORC Tracks WSA Scholars & Non-Recipients
Outcomes Analyzed

• Estimate differences in outcomes of scholars/non-scholars during freshman year
 – College enrollment, loan amounts, credits taken, hours worked, and weekly earnings while enrolled in college
 – Also time spent in extra-curricular activities, relaxing, and sleeping

• In the interest of time we will only report on selected results
Evidence of Discontinuity

Local Polynomial Estimates of Probability of WSA Scholar

At score of 20, \(\text{pr(WSA)} = .18 \)

At score of 30, \(\text{pr(WSA)} = .94 \)
Regressions

- Controls include: Demographic & student characteristics, characteristics of HS, non-cognitive test score
- TSLS when outcome is continuous (credits, work); probit w/endogenous regressor when outcome is dichotomous (enrollment)
- “Treatment” dummy provides evidence of net effect of WSA on outcome of interest
- Conducted many robustness checks; results qualitatively similar
WSA Sample

- WSA scholarship average is $5,853 in frosh year of college
- Total aid received by WSA scholars is $11,369, avg. for non-WSA is $2,419
- However, WSA scholars attend colleges with tuition costs about $5,800 higher than non-scholars ($13,398 vs. $7,602)
WSA Sample

- Total sample with applicable cut point is 498; 231 received scholarships (“treated”)
- HS give 55-65% of apps scholarship, fractions not different across schools
- Scholars take more AP/IB courses, more likely to take Algebra II & physics
- Observable characteristics do not differ substantially just above/below cut point
Compared to Non-Scholars, Receipt of WSA Award…

• …increases college enrollment by as much as .42 (in probability points); large effect
• …lowers average loan amounts in freshman year by $4,500 compared to non-WSA
• …overall, no differences in hours worked or weekly earnings during freshman year
 – Does increase probability of working while in college, but decreases average hours worked among those who work
Subgroup Differences

- Asian & Blacks higher enrollment rates (14 and 13 pct. points) vs. Whites
- Asian American students work less and earn less than white students
- Students taking AP/IB courses in HS less likely to attend 2-year colleges
- Black, Asian, & Latinos get fewer hours of sleep/week than white students
- Males report more hours per week relaxing than females
Limitations

- Only Cohort IV could be used as no evidence of discontinuity in prob(scholarship) for Cohort III
 - Relatively small sample size results in more imprecise estimates than would otherwise be

- Effect of WSA on enrollment is probably picking up effect of other services scholars receive (mentoring while in high school, and for their first two years of college)
 - Nearly 70% stated that hometown mentor was helpful/very helpful during college choice process, so assistance also related to college outcomes (e.g., enrollment, credits taken, etc.) we examined
Conclusions

• Large positive impact on the probability of college enrollment in the year after high school

• Scholarship lowers student debt; sub-group differences in the effect of the program on multiple outcomes

• Increases chances that recipient will work while in college, but average hours worked per week < non-recipients who work
A Final Word…

DISCLAIMER: The Views Contained Herein are Not Necessarily Those of the Bill & Melinda Gates Foundation

• For More Information About the GMS Program visit: www.gatesfoundation.org/Education/ResearchAndEvaluation/

• Copy of our paper can be obtained at:
 – URL HERE
Background Material
Variables Used in Analysis

- Debt levels (totloans; loancury), hours worked (wkhrweek); earnings, parents’ contributions (parconstr), community involvement (ucommuni)
- Time spent studying, leisure activities frosh year only
Non-Cognitive Questionnaire

- Developed by William Sedlacek (U of Maryland)
- 29 questions, eight scales
 - Self-concept
 - Realistic Self Appraisal
 - Understanding Racism
 - Long Range Goals
 - Leadership
 - Strong Support Person
 - Community Involvement
 - Non-traditional Knowledge
Response Rates

- Survey response rates 69% for Cohort II & 81% for Cohort III
- Higher for recipients than for non-recipients in both cohorts
 - 83% versus 58% in Cohort II and 90% versus 75% in Cohort III
- Among non-recipient responders in II 25% were apps who were disqualified because of low score; 74% of non-scholars in Cohort III were disqualified because of score below cut
Financial Aid

• **Rationale for government intervention**

 – Credit market constraints faced by students.

 • Keane & Wolpin (2001): Credit constraints are “tight” but no impact on enrollment behavior.

 – Public good aspect of education (spillover effects)

 • Moretti (2004) using NLSY found higher wages among those without college education in cities with larger fraction of college graduates.

 • Milligan, Moretti & Oreopoulos (2003) found evidence in the U.S. that increased education increased the likelihood of becoming politically involved.
Tuition + Fees and Net Price for Low Income Students 2003-2004

Source: CollegeBoard Trends in College Pricing 2006
Notes: Net Price = Tuition + Fees – Grants – Education Tax Benefits.
Low income defined as family income less than $35,000.
GMS Scholars by Ethnic Group: Cohorts II & III

Sample (Population)

<table>
<thead>
<tr>
<th>Ethnic Group</th>
<th>Non-scholar</th>
<th>GMS Scholar</th>
</tr>
</thead>
<tbody>
<tr>
<td>African Americans</td>
<td>699 (2,164)</td>
<td>625 (710)</td>
</tr>
<tr>
<td>American Indians</td>
<td>128 (237)</td>
<td>192 (258)</td>
</tr>
<tr>
<td>Asian Pacific Islander</td>
<td>453 (1,425)</td>
<td>289 (312)</td>
</tr>
<tr>
<td>Hispanic Americans</td>
<td>495 (1,241)</td>
<td>621 (718)</td>
</tr>
<tr>
<td>Total</td>
<td>1,775 (5,067)</td>
<td>1,727 (1,999)</td>
</tr>
</tbody>
</table>
Table 1
Sample Means and Means Just Above and Below the "Cut Points" for Background Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Full Sample</th>
<th>Cut Score + 1</th>
<th>Cut Score - 1 or Full</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT Composite Score</td>
<td>23.7</td>
<td>23.58</td>
<td>24.12</td>
<td>0.28</td>
</tr>
<tr>
<td>SAT Verbal + Math Score</td>
<td>1123.92</td>
<td>1110.76</td>
<td>1124.86</td>
<td>0.35</td>
</tr>
<tr>
<td>Attended Religious High School</td>
<td>0.06</td>
<td>0.06</td>
<td>0.04</td>
<td>0.25</td>
</tr>
<tr>
<td>Attended Private High School</td>
<td>0.07</td>
<td>0.08</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>Years of High School Math</td>
<td>3.87</td>
<td>3.88</td>
<td>3.86</td>
<td>0.37</td>
</tr>
<tr>
<td>Years of High School Science</td>
<td>3.66</td>
<td>3.63</td>
<td>3.69</td>
<td>0.22</td>
</tr>
<tr>
<td>Family Size</td>
<td>3.69</td>
<td>3.65</td>
<td>3.66</td>
<td>0.96</td>
</tr>
<tr>
<td>Born in U.S.</td>
<td>0.61</td>
<td>0.61</td>
<td>0.58</td>
<td>0.57</td>
</tr>
<tr>
<td>Family Owns Home</td>
<td>0.51</td>
<td>0.47</td>
<td>0.50</td>
<td>0.47</td>
</tr>
<tr>
<td>Female</td>
<td>0.61</td>
<td>0.66</td>
<td>0.61</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Father's education

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Than High school</td>
<td>0.20</td>
<td>0.19</td>
<td>0.22</td>
<td>0.50</td>
</tr>
<tr>
<td>High School</td>
<td>0.27</td>
<td>0.27</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Some College</td>
<td>0.21</td>
<td>0.20</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>BA/BS Degree</td>
<td></td>
<td>0.15</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Post BA/BS Degree</td>
<td>0.10</td>
<td>0.10</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

Mother's education

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Than High school</td>
<td>0.19</td>
<td>0.21</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Some College</td>
<td>0.28</td>
<td>0.26</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>BA/BS Degree</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Post BA/BS Degree</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Ethnic Group</td>
<td>Cohort II</td>
<td>Cohort III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African Americans</td>
<td>71</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian Americans</td>
<td>72</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latinos</td>
<td>68</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enrollment</td>
<td>Total Loans</td>
<td>Hours of Work</td>
<td>Weekly Earnings</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Combined</td>
<td>0.013</td>
<td>-$2,201</td>
<td>-4.14</td>
<td>-$18</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.349)</td>
</tr>
<tr>
<td>African Americans</td>
<td>0.018</td>
<td>-$1,936</td>
<td>-5.42</td>
<td>-$5</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.891)</td>
</tr>
<tr>
<td>Asian Americans</td>
<td>0.011</td>
<td>-$2,166</td>
<td>-5.93</td>
<td>-$25</td>
</tr>
<tr>
<td></td>
<td>(0.256)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.279)</td>
</tr>
<tr>
<td>Latinos</td>
<td>0.007</td>
<td>-$2,577</td>
<td>-2.55</td>
<td>-$30</td>
</tr>
<tr>
<td></td>
<td>(0.243)</td>
<td>(0.000)</td>
<td>(0.004)</td>
<td>(0.245)</td>
</tr>
</tbody>
</table>

Controls for total non-cognitive score using a quadratic function. Standard errors in parentheses.
<table>
<thead>
<tr>
<th></th>
<th>Enrollment</th>
<th>Total Loans</th>
<th>Hours of Work</th>
<th>Weekly Earnings</th>
<th>Parental Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>0.013</td>
<td>-$6,915</td>
<td>-5.28</td>
<td>-$25</td>
<td>-$1,404</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.004)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>African Americans</td>
<td>0.014</td>
<td>-$6,833</td>
<td>-5.08</td>
<td>-$28</td>
<td>-$1,084</td>
</tr>
<tr>
<td></td>
<td>(0.165)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.021)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Asian Americans</td>
<td>0.023</td>
<td>-$7,436</td>
<td>-4.98</td>
<td>-$45</td>
<td>-$1,998</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.009)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Latinos</td>
<td>0.006</td>
<td>-$6,444</td>
<td>-6.07</td>
<td>-$14</td>
<td>-$1,182</td>
</tr>
<tr>
<td></td>
<td>(0.656)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.416)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Controls for total non-cognitive score using a quadratic function. Standard errors in parentheses.
RD Estimated Impact of GMS on Outcome Variables at End of Freshman Year of College

Table 3(a) No Additional Controls

<table>
<thead>
<tr>
<th></th>
<th>Enrollment</th>
<th>Total Loans</th>
<th>Hours of Work</th>
<th>Weekly Earnings</th>
<th>Parental Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>-0.003</td>
<td>-$1,916</td>
<td>-4.07</td>
<td>-$62</td>
<td>-$957</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>($567)</td>
<td>(1.85)</td>
<td>($26)</td>
<td>($333)</td>
</tr>
<tr>
<td>African Americans</td>
<td>-0.013</td>
<td>-$1,256</td>
<td>-3.62</td>
<td>-$53</td>
<td>-$726</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>($425)</td>
<td>(1.86)</td>
<td>($43)</td>
<td>($374)</td>
</tr>
<tr>
<td>Asian Americans</td>
<td>0.019</td>
<td>-$1,585</td>
<td>-12.00</td>
<td>-$149</td>
<td>-$2,139</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>($1,246)</td>
<td>(3.71)</td>
<td>($53)</td>
<td>($1,025)</td>
</tr>
<tr>
<td>Latinos</td>
<td>-0.005</td>
<td>-$2,839</td>
<td>-0.28</td>
<td>-$24</td>
<td>-$575</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>($1,379)</td>
<td>(2.89)</td>
<td>($28)</td>
<td>($495)</td>
</tr>
</tbody>
</table>

Controls for total non-cognitive score using a quadratic function. Standard errors in parentheses.
Table 3(b) Additional Controls: Parents’ Education, Family Size, SAT score, Parents’ Income, High School Type & Gender

<table>
<thead>
<tr>
<th>Estimated Impact of GMS on Outcome Variables at End of Freshman Year of College</th>
<th>Enrollment</th>
<th>Total Loans</th>
<th>Hours of Work</th>
<th>Weekly Earnings</th>
<th>Parental Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>0.003</td>
<td>-$1,842</td>
<td>-5.28</td>
<td>-$71</td>
<td>-$653</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>($648)</td>
<td>(1.90)</td>
<td>($30)</td>
<td>($383)</td>
</tr>
<tr>
<td>African Americans</td>
<td>-0.005</td>
<td>-$1,524</td>
<td>-5.10</td>
<td>-$83</td>
<td>-$796</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>($514)</td>
<td>(2.30)</td>
<td>($63)</td>
<td>($365)</td>
</tr>
<tr>
<td>Asian Americans</td>
<td>0.025</td>
<td>-$1,199</td>
<td>-11.44</td>
<td>-$171</td>
<td>-$2,179</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>($1,279)</td>
<td>(3.48)</td>
<td>($63)</td>
<td>($1,191)</td>
</tr>
<tr>
<td>Latinos</td>
<td>0.000</td>
<td>-$2,766</td>
<td>-1.64</td>
<td>-$27</td>
<td>$377</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>($1,726)</td>
<td>(2.98)</td>
<td>($23)</td>
<td>($670)</td>
</tr>
</tbody>
</table>

Controls for total non-cognitive score using a quadratic function. Standard errors in parentheses.
controls for total non-cognitive score using a quadratic function. Standard errors in parentheses.

Table 4(a) No Additional Controls

<table>
<thead>
<tr>
<th></th>
<th>Enrollment</th>
<th>Total Loans</th>
<th>Hours of Work</th>
<th>Weekly Earnings</th>
<th>Parental Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>0.006</td>
<td>-$6,915</td>
<td>-5.36</td>
<td>-$53</td>
<td>-$1,554</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>($994)</td>
<td>(1.52)</td>
<td>($20)</td>
<td>($356)</td>
</tr>
<tr>
<td>African Americans</td>
<td>0.000</td>
<td>-$6,231</td>
<td>-6.61</td>
<td>-$67</td>
<td>-$435</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>($1,466)</td>
<td>(2.49)</td>
<td>($30)</td>
<td>($292)</td>
</tr>
<tr>
<td>Asian Americans</td>
<td>0.083</td>
<td>-$7,270</td>
<td>-8.70</td>
<td>-$92</td>
<td>-$5,167</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>($2,710)</td>
<td>(3.56)</td>
<td>($40)</td>
<td>($1,356)</td>
</tr>
<tr>
<td>Latinos</td>
<td>-0.032</td>
<td>-$7,480</td>
<td>-1.79</td>
<td>-13</td>
<td>-$721</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>($1,299)</td>
<td>(2.76)</td>
<td>($35)</td>
<td>($448)</td>
</tr>
</tbody>
</table>
Table 4(b) Additional Controls: Parents’ Education, Family Size, SAT score, Parents’ Income, High School Type & Gender

<table>
<thead>
<tr>
<th></th>
<th>Enrollment</th>
<th>Total Loans</th>
<th>Hours of Work</th>
<th>Weekly Earnings</th>
<th>Parental Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>0.004</td>
<td>-$6,376</td>
<td>-5.18</td>
<td>-$47</td>
<td>-$1386</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>($1,218)</td>
<td>(1.82)</td>
<td>($23)</td>
<td>($411)</td>
</tr>
<tr>
<td>African Americans</td>
<td>0.015</td>
<td>-$5,606</td>
<td>-6.48</td>
<td>-51</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>($1,579)</td>
<td>(2.92)</td>
<td>($30)</td>
<td>($387)</td>
</tr>
<tr>
<td>Asian Americans</td>
<td>0.050</td>
<td>-$7,373</td>
<td>-7.56</td>
<td>-87</td>
<td>-$5,545</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>($2,751)</td>
<td>(3.92)</td>
<td>($43)</td>
<td>($1,602)</td>
</tr>
<tr>
<td>Latinos</td>
<td>-0.023</td>
<td>-$6,949</td>
<td>-3.12</td>
<td>-30</td>
<td>-$551</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>($1,899)</td>
<td>(3.16)</td>
<td>($45)</td>
<td>($438)</td>
</tr>
</tbody>
</table>

Controls for total non-cognitive score using a quadratic function. Standard errors in parentheses.
RD Estimated Impact of GMS on Participation in Community Service

<table>
<thead>
<tr>
<th></th>
<th>End of Freshman Year</th>
<th>End of Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Controls (1)</td>
<td>Controls (2)</td>
</tr>
<tr>
<td>Combined</td>
<td>0.122 (0.041)</td>
<td>0.095 (0.040)</td>
</tr>
<tr>
<td></td>
<td>0.131 (0.045)</td>
<td>0.118 (0.048)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African Americans</td>
<td>0.146 (0.052)</td>
<td>0.126 (0.057)</td>
</tr>
<tr>
<td></td>
<td>0.103 (0.074)</td>
<td>0.070 (0.075)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian Americans</td>
<td>0.082 (0.095)</td>
<td>-0.010 (0.119)</td>
</tr>
<tr>
<td></td>
<td>0.207 (0.120)</td>
<td>0.169 (0.133)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latinos</td>
<td>0.117 (0.073)</td>
<td>0.093 (0.079)</td>
</tr>
<tr>
<td></td>
<td>0.128 (0.054)</td>
<td>0.142 (0.067)</td>
</tr>
</tbody>
</table>

Controls for total non-cognitive score using a quadratic function. Standard errors in parentheses. In columns (2) and (4) controls for Parent's Education, Family Size, SAT score, Parents Income, High School Type & Gender are added.
Estimated Impact of GMS on Outcome Variables at End of Junior Year in College by Subgroup on Educational Aspirations

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>African Americans</th>
<th>Asian Americans</th>
<th>Latinos</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA/Professional Degree</td>
<td>0.055</td>
<td>0.053</td>
<td>0.035</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.068)</td>
<td>(0.11)</td>
<td>(0.084)</td>
</tr>
<tr>
<td>PhD</td>
<td>0.123</td>
<td>0.009</td>
<td>0.264</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.06)</td>
<td>(0.088)</td>
<td>(0.045)</td>
</tr>
</tbody>
</table>
End of Jr Yr Results by Sub Group

<table>
<thead>
<tr>
<th>Sub Group</th>
<th>Retention</th>
<th>Scholarship Support</th>
<th>Total Loans</th>
<th>Hours of Work</th>
<th>Earnings</th>
<th>Parental Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>-0.014</td>
<td>$11,955</td>
<td>-$8,812</td>
<td>-3.88</td>
<td>-$45.71</td>
<td>-$1,254</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(691)</td>
<td>(1866)</td>
<td>(2.78)</td>
<td>(19.53)</td>
<td>(691)</td>
</tr>
<tr>
<td>Women</td>
<td>0.015</td>
<td>$5,093</td>
<td>-$6,081</td>
<td>-5.65</td>
<td>-$54.12</td>
<td>-$1,632</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(1082)</td>
<td>(1051)</td>
<td>(1.72)</td>
<td>(23.31)</td>
<td>(512)</td>
</tr>
<tr>
<td>College Degreed Parent</td>
<td>-0.007</td>
<td>$9,274</td>
<td>-$9,827</td>
<td>-4.16</td>
<td>-$29.47</td>
<td>-$3,451</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(1930)</td>
<td>(1997)</td>
<td>(2.99)</td>
<td>(39.79)</td>
<td>(952)</td>
</tr>
<tr>
<td>No College Degreed Parent</td>
<td>0.020</td>
<td>$6,897</td>
<td>-$5,430</td>
<td>-6.22</td>
<td>-$63.48</td>
<td>-$722</td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td>(1083)</td>
<td>(1300)</td>
<td>(2.17)</td>
<td>(18.85)</td>
<td>(1959)</td>
</tr>
<tr>
<td>Public 4-year</td>
<td>0.004</td>
<td>$5,818</td>
<td>-$4,002</td>
<td>-4.64</td>
<td>-$34.13</td>
<td>-$794</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(832)</td>
<td>(898)</td>
<td>(2.00)</td>
<td>(23.34)</td>
<td>(373)</td>
</tr>
<tr>
<td>Private 4-Year</td>
<td>0.043</td>
<td>$8,633</td>
<td>-$12,609</td>
<td>-6.08</td>
<td>-$68.04</td>
<td>-$2,749</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(1794)</td>
<td>(2253)</td>
<td>(3.04)</td>
<td>36.18</td>
<td>(1169)</td>
</tr>
</tbody>
</table>
Predicted Probability of Enrollment by Total Non-cognitive Score

Figure 3
Predicted Probability of Enrollment in Follow-up Survey by Total Non-Cognitive Score
Cohort III

African Americans

Asian Americans

Latinos

Source: Gates Millennium Scholar Surveys; Cohort III.
Notes: The vertical lines indicate the respective cut points for each ethnic group for the Gates Millennium Scholarship program.
Predicted Total Loans by Total Non-Cognitive Score

Source: Gates Millennium Scholar Surveys: Cohort III.
Notes: The vertical lines indicate the respective cut points for each ethnic group for the Gates Millennium Scholarship program.
Predicted Hours of Work by Total Non Cognitive Score

Figure 5
Predicted Hours of Work in Follow-up Survey by Total Non-Cognitive Score
Cohort III

African Americans

Asian Americans

Latinos

Source: Gates Millennium Scholar Surveys Cohort III.
Notes: The vertical lines indicate the respective cut points for each ethnic group for the Gates Millennium Scholarship program.
Test for Manipulation of Test Score: Expect Jump if So

Figure 1
Distribution of Total Non-Cognitive Score by Race/Ethnicity: Cohort II

African Americans

Asian Americans

Latinos

Source: Gates Millennium Scholar Surveys: Cohort II
Test for Manipulation of Test Score: Expect Jump if So

Figure 2
Distribution of Total Non-Cognitive Score by Race/Ethnicity: Cohort III

African Americans

Asian Americans

Latinos

Source: Gates Millennium Scholar Surveys: Cohort III
Predicted Hours of Work by Total Non-Cognitive Score

Figure 5
Predicted Hours of Work in Follow-up Survey by Total Non-Cognitive Score
Cohort III

Source: Gates Millennium Scholar Surveys Cohort III.
Notes: The vertical lines indicate the respective cut points for each ethnic group for the Gates Millennium Scholarship program.
Figure 7
Fraction Enrolled in College: Fall 2004
Cohort III

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
2. Non-cognitive essay score measured as deviation from cut point.
Fraction of Gates Millennium Scholars

Source: Gates Millennium Scholar Surveys; Cohort III
Note: 1. Estimates based on local linear regression using optimal bandwidths.
 2. Non-cognitive essay score measured as deviation from cut point.
Accumulated Debt through Junior Year

Figure 9
Accumulated Debt from Student Loans: Junior Year
Cohort III

African Americans

Asian Americans

Latinos

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
2. Non-cognitive essay score measured as deviation from cut point.
Figure 10
Hours Worked per Week: Junior Year
Cohort III

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
 2. Non-cognitive essay score measured as deviation from cut point.
Figure 11
Parental Contribution: Junior Year
Cohort III

African Americans

Asian Americans

Latinos

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
2. Non-cognitive essay score measured as deviation from cut point.
Figure 12
Total Dollar Amount of Scholarships: Junior Year
Cohort III

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
2. Non-cognitive essay score measured as deviation from cut point.
Participates in Community Service Often or Very Often: Junior Year
Cohort III

African Americans

Asian Americans

Latinos

Source: Gates Millennium Scholar Surveys: Cohort III
Notes: 1. Estimates based on local linear regression using optimal bandwidths.
2. Non-cognitive essay score measured as deviation from cut point.