High School Degrees and College Outcomes

Paco Martorell
UTD Texas Schools Project
January 14, 2011
Motivation

• Return to college
 – Large (Kane and Rouse, 1995; Card (1995)
 – Increasing (Goldin and Katz, 2008)

• But college attainment rates have stagnated over the last 40 years
 – Enrollment has gone up
 – Offset by reductions in completion rates
Motivation

• Inadequate preparation in high school is one possible reason for slow growth in college attainment
• This perception has motivated high school reforms aimed at increasing “standards”
 – Strengthening graduation requirements
 – High school exit exams (or harder HSEE)
Motivation

• High school reforms have ambiguous effects on college outcomes
• Positive effects if they improve academic preparation
• Negative effect for students who do not graduate from HS because of reform
 – Depends on college admissions policies
 – Depends on college outcomes of “marginal” HS graduates
Motivation

• These considerations apply more generally to interventions aimed at improving college outcomes

• Enrollment could be an inadequate outcome measure
 – Likely to be most relevant for marginal students affected by interventions
This Paper

• **Goal**: estimate the causal effect of a HS diploma on college outcomes

• **Data**: TSP administrative data with information on enrollment and attainment

• **Research Design**: “Fuzzy” RDD based on high school exit exams
This Paper

• Strong effect of HSD on $P(\text{ever enroll})$
 – About 10 ppts (or about 22% of the mean)
 – Concentrated almost entirely in 2-Yr. colleges

• No effect on college credits

• No effect on receipt of a college degree
This Paper

• Strong effect of HSD on $P(\text{ever enroll})$
 – About 10 ppts (or about 22% of the mean)
 – Concentrated almost entirely in 2-Yr. colleges

• No effect on college credits

• No effect on receipt of a college degree

-> HSD’s affect enrollment, but for students who have very low college persistence
Outline

• Background
• Research Design
• Data
• Results
• Interpretation
• Conclusion
Background: Prior Literature

• Effect of HSEE on HS outcomes (Dee & Jacob, 2007; Warren et al., 2007; Reardon et al., 2009; Warren & Jenkins, 2005; Martorell, 2005; Papay et al., 2010; Ou, 2010)
 – Results are inconclusive and sensitive to empirical approach and data
• Effect of HSEE on post-HS outcomes
 – Dee & Jacob (2007) find little effect on college enrollment
 – Martorell & Clark (2010) find HSD status affected by exit exam has little effect on earnings
• Effect of GED on college enrollment
 – Tyler and Lofstrom (2010) find GED recipients less likely to enroll in college than comparable HS grads
 – Jepsen et al. (2010) use RD design and find GED increases college enrollment
• Many studies of programs aimed at college outcomes find enrollment effects but do not examine attainment outcomes
 – Kane (2003); Bettinger et al. (2009); Dynarski (2000); Cunha & Miller (2010); Jepsen et al (2010)
Background: College Admissions Standards in TX

- 4-Yr. colleges and universities require HSD or an equivalent credential (e.g., GED)
- Some 2-Yr. colleges also require HSD or GED
- Other 2-Yr. colleges admit non-graduates who score well on a placement test or who petition for admission
- Other 2-Yr. colleges admit all applicants
 - But informational barriers may prevent non-graduates from applying
Background: High School Exit Exams

• Standardized tests taken in HS

• Students must pass in order to graduate from HS

• Used in TX since the 1980’s, now in about 50% of U.S. states
Outline

• Background
• Research Design
• Data
• Results
• Interpretation
• Conclusion
Research Design

• **Challenge**: HSD recipients would have better outcomes than non-HSD recipients irrespective of HSD status

• **Solution**: Regression discontinuity
 – Compare students “close” to exit exam passing cutoff
Research Design: High School Exit Exams

HS Exit Exams: stylized description

Single test taken by everyone at end of grade 12, perfect compliance

\[P(\text{HSD}) \]

\[\begin{align*}
0 & \quad \text{Fail (No diploma)} \\
1 & \quad \text{Pass (Diploma)}
\end{align*} \]

Test Score
Research Design: High School Exit Exams

- HS exit exams in practice
 1. Multiple tests: math, reading, writing (must pass all 3 sections)
 2. Retaking: Initially taken in G10 or G11, multiple retake opportunities
 3. Imperfect compliance: can graduate if fail, not graduate if pass
Research Design: High School Exit Exams

• HS exit exams in practice

 1. Multiple tests: math, reading, writing (must pass all 3 sections) with different scales
 - Recenter each score at passing cutoff
 - Redefine test score as min(M,R,W)
 - Fail if and only if min(M,R,W) < 0
Research Design: High School Exit Exams

• HS exit exams in practice

 2. Retaking: Initially taken in G10 or G11, multiple retake opportunities
 • Focus on students taking final test at end of G12 ("last-chance sample")
 • Estimates specific to students in last-chance sample (policy relevant)
Variation in HSD status that identifies effect of HSD.
Research Design

- Exit exam passing status close to random near passing cutoff
 - Variation in HSD status near passing cutoff unrelated to other determinants of college outcomes
Cannot reject continuous density using McCrary (2008) test
Average Initial Attempt Math z-score
Research Design

\[Y_i = \beta_0 + \beta_1 \text{HSD}_i + \beta_2 X_i^s + \epsilon_i \]
[Structural Eqn, CONSTANT Effects]

\[Y_i = \theta_0 + \theta_1 \text{PASS}_i + f(p_i) + u_i \] [REDUCED-FORM]

\[D_i = \kappa_0 + \kappa_1 \text{PASS}_i + g(p_i) + v_i \] [FIRST-STAGE]

\[\hat{\beta}_1 = \frac{\hat{\theta}_1}{\hat{\kappa}_1} \]

Standard RD (Imbens and Lemieux (2008), Lee and Lemieux (2009))
Outline

• Background
• Research Design
• Data
• Results
• Interpretation
• Conclusion
Data: Sources

- Administrative data from TSP
- High school (TEA)
 - Exit exam scores (all attempts)
 - HS graduation status
 - Baseline covariates
 - GED
- Post-secondary (THECB)
 - THECB data on public 2yr and 4yr colleges through 2005
 - 8 Year follow up for all cohorts
 - Enrollment
 - Credits (attempted academic, total enrolled)
 - Degree completion (BA, AA)
Data: Sample

• Analysis sample
 – Students who took the “last-chance” test (final 12th grade retest)
 – Took exam for the first time with their cohort (i.e., fall 11th grade for first 2 cohorts; spring 10th grade for last 3 cohorts)
 – N=37,571
Data: Descriptive Statistics

Distribution of initial scores (full and last-chance samples)
Data: Descriptive Statistics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Full Sample</th>
<th>All</th>
<th>Fail</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.487</td>
<td>0.421</td>
<td>0.416</td>
<td>0.430</td>
</tr>
<tr>
<td>Black</td>
<td>0.117</td>
<td>0.246</td>
<td>0.256</td>
<td>0.230</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.289</td>
<td>0.478</td>
<td>0.505</td>
<td>0.434</td>
</tr>
<tr>
<td>Econ. Disadvantaged</td>
<td>0.213</td>
<td>0.409</td>
<td>0.442</td>
<td>0.354</td>
</tr>
<tr>
<td>Special Education</td>
<td>0.034</td>
<td>0.034</td>
<td>0.040</td>
<td>0.024</td>
</tr>
<tr>
<td>Limited English proficient</td>
<td>0.040</td>
<td>0.147</td>
<td>0.177</td>
<td>0.099</td>
</tr>
<tr>
<td>At grade level (initial attempt)</td>
<td>0.770</td>
<td>0.541</td>
<td>0.494</td>
<td>0.617</td>
</tr>
<tr>
<td>Cohort 1</td>
<td>0.177</td>
<td>0.356</td>
<td>0.296</td>
<td>0.453</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>0.174</td>
<td>0.156</td>
<td>0.179</td>
<td>0.120</td>
</tr>
<tr>
<td>Cohort 3</td>
<td>0.214</td>
<td>0.185</td>
<td>0.189</td>
<td>0.179</td>
</tr>
<tr>
<td>Cohort 4</td>
<td>0.211</td>
<td>0.157</td>
<td>0.180</td>
<td>0.120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Exam</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Took all Sections</td>
<td>0.949</td>
<td>0.956</td>
<td>0.956</td>
<td>0.955</td>
</tr>
<tr>
<td>Math (mean, sd)</td>
<td>0.9 (11.7)</td>
<td>-14.9 (7.9)</td>
<td>-16.4 (7.7)</td>
<td>-12.4 (7.4)</td>
</tr>
<tr>
<td>Reading (mean, sd)</td>
<td>3.8 (7.5)</td>
<td>-5.7 (6.8)</td>
<td>-7.0 (6.9)</td>
<td>-3.7 (6.2)</td>
</tr>
<tr>
<td>Writing (mean, sd)</td>
<td>9.0 (13.6)</td>
<td>-2.7 (11.4)</td>
<td>-4.4 (11.4)</td>
<td>-0.0 (10.8)</td>
</tr>
<tr>
<td>Pass all sections (%)</td>
<td>0.514</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total exam attempts in HS
- 2.05 (1.54)
- 5.7 (1.3)
- 5.8 (1.2)
- 5.6 (1.3)

Number of Observations
- 777892
- 37571
- 0.051
- 0.220
Outline

• Background
• Research Design
• Data
• Results
• Interpretation
• Conclusion
Results: First Stage

<table>
<thead>
<tr>
<th>Reduced Form</th>
<th>0.444**</th>
<th>0.415**</th>
<th>0.419**</th>
<th>0.417**</th>
<th>0.417**</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.012)</td>
<td>(0.016)</td>
<td>(0.009)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline X's?</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>Y</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Test score specification</th>
<th>Local</th>
<th>Linear</th>
<th>Quad.</th>
<th>Cubic</th>
<th>Quartic</th>
<th>Quad.</th>
</tr>
</thead>
</table>
Results: College Enrollment

Fraction Ever Enrolled in College
Results: College Enrollment

Fraction Ever Enrolled, by 2yr/4yr

diamond Ever enrolled in 2-Yr. College
bullet Ever enrolled in 4-Yr. College
Results: Enrollment Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Reduced Form</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever enroll</td>
<td>0.059**</td>
<td>0.103**</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Ever enroll - 4yr</td>
<td>0.015**</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Ever enroll - 2yr</td>
<td>0.049**</td>
<td>0.083**</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Attempt any acad cred</td>
<td>0.056**</td>
<td>0.105**</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Baseline X's?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Test score specification</td>
<td>Linear</td>
<td>Local</td>
</tr>
<tr>
<td></td>
<td>Quad.</td>
<td>Cubic</td>
</tr>
<tr>
<td></td>
<td>Quartic</td>
<td>Quad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quad</td>
</tr>
</tbody>
</table>
Results: Attainment Outcomes

College Credits

Diamonds: Total Enrolled Credits
Black Circles: Attempted Academic Credits
Results: Attainment Outcomes

College Credits

4 Yr. Acad. Credits
2 Yr. Acad. Credits
Results: Attainment Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Reduced Form</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total credits enrolled</td>
<td>2.563**</td>
<td>3.301</td>
</tr>
<tr>
<td></td>
<td>(0.751)</td>
<td>(2.175)</td>
</tr>
<tr>
<td>Acad Credits</td>
<td>1.398*</td>
<td>1.016</td>
</tr>
<tr>
<td></td>
<td>(0.546)</td>
<td>(1.593)</td>
</tr>
<tr>
<td>Earn BA or AA</td>
<td>-0.001</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Earn BA</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Earn AA</td>
<td>-0.003</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Baseline X's?</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Local</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Quad.</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Cubic</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Quartic</td>
<td>Quadratic</td>
<td></td>
</tr>
</tbody>
</table>
Results: Enrollment Effects Over Time
Results: Subgroups

<table>
<thead>
<tr>
<th>Enrollment Outcomes</th>
<th>Men</th>
<th>Women</th>
<th>p-value for Men = Women</th>
<th>Whites</th>
<th>Nonwhite</th>
<th>p-value for Whites = Nonwhites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever enrolled in college</td>
<td>0.051</td>
<td>0.140**</td>
<td>0.120</td>
<td>0.070</td>
<td>0.113**</td>
<td>0.485</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.034)</td>
<td></td>
<td>(0.052)</td>
<td>(0.032)</td>
<td></td>
</tr>
<tr>
<td>Ever enrolled in 4yr college</td>
<td>0.022</td>
<td>0.020</td>
<td>0.938</td>
<td>-0.006</td>
<td>0.030</td>
<td>0.252</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.019)</td>
<td></td>
<td>(0.025)</td>
<td>(0.019)</td>
<td></td>
</tr>
<tr>
<td>Ever enrolled in 2yr college</td>
<td>0.019</td>
<td>0.127**</td>
<td>0.058</td>
<td>0.054</td>
<td>0.091**</td>
<td>0.551</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.034)</td>
<td></td>
<td>(0.052)</td>
<td>(0.032)</td>
<td></td>
</tr>
</tbody>
</table>

Attainment Outcomes						

Total credits enrolled	3.580	3.262	0.943	0.914	4.195	0.486
	(3.387)	(2.827)		(3.935)	(2.592)	
Attempted academic credits	2.516	0.133	0.463	-0.337	1.486	0.601
	(2.512)	(2.052)		(2.936)	(1.888)	
Earn BA or AA	0.015	-0.017	0.076	-0.012	-0.003	0.656
	(0.013)	(0.012)		(0.018)	(0.011)	
Earn BA	0.004	0.006	0.903	-0.000	0.007	0.626
	(0.008)	(0.010)		(0.013)	(0.008)	
Earn AA	0.011	-0.025**	0.008	-0.014	-0.011	0.829
	(0.010)	(0.009)		(0.013)	(0.008)	
Outline

- Background
- Research Design
- Data
- Results
- Interpretation
- Conclusion
Interpretation: Why are Attainment Effects Small?

- College going in the last-chance sample low across the board
- “LATE” might be unusually small relative to other students in last-chance sample
- Data issues (no private, out of state schools)
- GED replaces regular high school diploma
Interpretation: Policy Implications

• Policies that affect HS graduation unlikely to directly affect college attainment
 – HSEE, course completion requirements, etc. may reduce graduation, but probably not college attainment
 – Potential positive effects on college outcomes if quality of high school instruction improves
Interpretation: Policy Implications

• Examining attainment effects critical for evaluations of programs that seek to improve college outcomes
 – Interventions have largest effects on “marginal” students; persistence might be lowest among these students

• Relevant for evaluations of
 – Scholarships (Kane, 2003; Dynarski, 2000)
 – Financial aid information (Bettinger et al., 2009)
 – General college informational campaign (Cunha & Miller, 2010)
Conclusion

• High school diplomas “matter” for college enrollment but not attainment
 – Enrollment effects large, but short-lived
 – Persistence among “marginal” students very low

• Policies that change HS graduation rates unlikely to have large effects on college outcomes

• Evaluations of programs that target college outcomes need to consider attainment and not just enrollment