March 10, 2014

TO: Academic Senate Members

FROM: Office of Academic Governance
Chris McGowan, Academic Governance Secretary

RE: Academic Senate Meeting

The Academic Senate will meet on Wednesday, March 19, 2014 at 2:00 p.m. in the TI Auditorium, ECS South 2.102.

Please bring the agenda packet with you to this meeting. If you cannot attend, please notify me at x4791.

xc: David Daniel Hobson Wildenthal Andrew Blanchard Serenity King
 John Wiorkowski Calvin Jamison Inga Musselman Larry Redlinger
 Darrelene Rachavong Abby Kratz Chief Larry Zacharias Deans
 Paula Austell, SC President Liza Liberman, SG President

<table>
<thead>
<tr>
<th>2013-2014 ACADEMIC SENATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackerman, Robert Dragovic, Vladimir Namgoong, Won</td>
</tr>
<tr>
<td>Al-Dhahir, Naofal Fass, Simon Nielsen, Steve</td>
</tr>
<tr>
<td>Alborz, Shawn Ferguson, John Ntafis, Simeon</td>
</tr>
<tr>
<td>Assmann, Peter Gans, Nicholas Prakash, Ravi</td>
</tr>
<tr>
<td>Balsara, Poras Geissman, John Ramakrishna, Viswanath</td>
</tr>
<tr>
<td>Beren, Kurt Gelb, Lev Rebello, Michael</td>
</tr>
<tr>
<td>Bhatia, Dinesh Hagge, Tobias Redman, Tim</td>
</tr>
<tr>
<td>Bradbury, Judd Holmes, Jennifer Rodrigues, Fabiano</td>
</tr>
<tr>
<td>Breen, Gail Huynh, Dung Salamasick, Mark</td>
</tr>
<tr>
<td>Brown, Matthew Ishak-Boushaki, M. Salter, Liz</td>
</tr>
<tr>
<td>Burnham, Gerald Kiasaleh, Kamran Scotch, Richard</td>
</tr>
<tr>
<td>Burr, John *Leaf, Murray Serfling, Robert</td>
</tr>
<tr>
<td>Chandrasekaran, R Linsteadt, Chris Thompson, Tres</td>
</tr>
<tr>
<td>Choudhary, Pankaj Liu, Jin Venkatesan, Subbarayan</td>
</tr>
<tr>
<td>**Cordell, David Manton, William Zheng, Si</td>
</tr>
<tr>
<td>Daescum Ovidiu Menon, Syam Zheng, Zhiqiang</td>
</tr>
<tr>
<td>Dai, Zhonglan Miller, Dennis</td>
</tr>
<tr>
<td>Dieckmann, Gregg</td>
</tr>
</tbody>
</table>

*Speaker **Secretary

AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION UNIVERSITY
AGENDA
ACADEMIC SENATE MEETING
March 19, 2014

1. Call to Order, Announcements & Questions Dr. Daniel

2. Approval of the Agenda Dr. Leaf

3. Approval of Minutes Dr. Leaf
 January 15, 2014 Meeting

4. Upward Evaluation of Administrators Dr. Wildenthal

5. Speaker’s Report Dr. Leaf

6. FAC Report Dr. Leaf

7. Student Government Liaison Report

8. CEP Proposals Dr. Radhakrishnan
 A. Undergraduate Catalog
 a) 1st 40 policies
 b) Degree Plans
 c) Addendum to Undergraduate Courses
 B. Graduate Catalog
 a) 1st 40 policies
 b) Degree Programs
 c) Graduate Courses
 C. UTDPP1001- Academic Certificate Programs

9. Resolution for the creation of a committee to investigate breaches in school bylaws Dr. Leaf

10. Annual Report from Effective Teaching Committee Dr. Leaf

11. Adjournment Dr. Daniel
UNAPPROVED AND UNCORRECTED MINUTES

These minutes are disseminated to provide timely information to the Academic Senate. They have not been approved by the body in question, and, therefore, they are not the official minutes.

ACADEMIC SENATE MEETING
February 19, 2014

Visitors: Abby Kratz, Conor Wakeman, Rafael Martin

1. Call to Order, Announcements and Questions
 The meeting was called to order by President Daniel at 2:03 PM. There were no announcements.

2. Approval of the Agenda
 Tim Redman moved to accept the agenda. Richard Scotch seconded. The motion carried.

3. Approval of Minutes
 Matthew Brown moved to approve the minutes. Kurt Beron seconded. The motion carried.

4. UTS175/180 Hybrid Policy
 Speaker Leaf turned the floor over to Rafael Martin who presented a plan on the university’s implementation plan for UTS175/180 Hybrid policy. He provided a brief background on the conflict of interest/ conflict of commitment policies. In 2012 the Faculty Senate voted to defer the implementation of UTS 175. Since then the university has been working under a historical policy which was less stringent that was required. Rafael Martin noted that the university is fully compliant with Federal regulations in regards to conflict of commitment and conflict of interest.
 Conor Wakeman provided a brief presentation of a draft of a training module, see Appendix B, used to implement these policies. They then opened the floor to questions and discussion.
During discussion the following concerns were raised. There will be no other way to disclose without using the compliance module. Graduate students would be required to take the training module and discloses their conflicts of interest if they are assisting faculty with research, including their dissertation research. The only information that will be publicly disclosed under UTS180 will be that a management plan has been created. Rafael Martin assured the faculty that information that would be released would only be by written request, and would be as limited as possible.

Tim Redman moved to accept the resolution of disapproval on the UTS175/180 Hybrid policy with suggested amendments (Appendix C). R. Chandrasekaran seconded. The motion passed unanimously via a show of hands, 29/0

5. Speaker’s Report – Murray Leaf
 1. The CEP has discussed writing bylaws and decided that they do not need them. Their charge is sufficient. I have responded by suggesting topics that bylaws might cover that their charge does not, but the question is up to them.
 2. Speaker Leaf noted that we need additional member for the committee on intellectual property, to replace Stan Leibowitz, who is unavailable to serve. He asked for volunteers or suggestions. No one volunteered; no one suggested anyone.

6. FAC Report
 The Faculty Advisory Council met on Jan 23 and 24. Some of the main points were:

 1. Thursday morning, we met with Regent Ernest Aliseda. He started off by saying that he was there to hear what the FAC had to say. The FAC wanted to hear what he had to say. It was a bit of a slow start until each had said enough for the other to begin to respond to. In the course of the ensuing discussion Regent Aliseda noted that he had promised the legislature that he would act as though SB 15 had been passed, and said he intended to do so. Then it got more interesting. On the whole, the FAC was impressed with his judicial demeanor, evident thoughtfulness, and clear recognition of the importance of higher education.
 2. Steven Mintz Executive Director of the Institute for Transformative Learning, explained what the Institute is doing. My sense was that he was clearly responding to constraints imposed from above. I assume above means one or a few regents, but he did not say this. Their main project is not MOOCS, but an online certificate program in biostatistics. This has substantial support from the health campuses. They are not doing anything directly to identify ways new technologies can improve what is going on in classrooms on our campuses.
 3. We had what turned out to be a very interesting session with Stephen Harris and Chris Macon. The FAC’s initial concern in asking them to come was to ask about the source and purpose of the way space allocation on campuses has recently been driven by what seem to be rather foolish measures of efficiency, based only on the relationship between room capacity and the number of students in the class. They agreed, and had even more stories. The foolish measures originate with the coordinating board. But there
was also the very real problem that there were no good alternative measures, or additional measures, that could get at actual demand. The upshot was that we agreed to work with them to produce such measures. As a foundation for the effort, the FAC decided to recommend that there should be a facilities oversight committee on each campus, with a majority of its members from the faculty, who make recommends for that campus.

We discussed these recommendations with the Provost in the academic council. Our conclusion was that it is more likely that the system is responding primarily to the demands of a particular regent, and that the FAC recommendations would not help.

4. The FAC passed a number of resolutions, most of which also bear on UTD.

These included:

1. A resolution on the kinds of information that should be on encrypted media on faculty computers. This was intended to implement the Chancellor's statement that the only such information would be what the university was required to protect by HIPAA, FERPA, or contract. The resolution included clear language about what this should mean. I attach this resolution as an appendix.

2. A resolution to enforce regent's rules on upward evaluation of administrators, and to assure faculty participation in searches for department heads and deans.

3. A resolution that peer observation of teaching should be used for improvement of teaching, and separate from evaluation.

5. We discussed revising Regents Rules 90101, 90102, and 90103, on intellectual property rights with Dan Sharphorn and Vice Chancellor Reyes. We agreed to propose changes. The most important change concerns section 9 of Rule 90101, which reads:

Sec. 9 Use of Research Data. Research data or results created by an employee are owned by the Board of Regents and, except to the extent that rights to such research data are contractually assigned or licensed to another by the Board of Regents, the creator shall have a nonexclusive license to use such data for nonprofit educational, research, and scholarly purposes within the scope of the employee's employment, subject to adherence to other provisions of this Rule.

I asked Mr. Sharphorn what he thought it was intended to accomplish. He did not know. I asked if anyone on FAC saw a purpose in it. No one did. My recommendation, therefore, is that it should be removed. There are other changes but they are relatively minor. The FAC did not make these recommendations, however, because Dr. Reyes advised us that the Chancellor would soon appoint a task force to review the rules for system, which would have representation from the FAC. The FAC therefore agreed instead to endorse this plan and offer to recommend faculty members.

7. Student Government Liaison Report

No report was given.
8. **Resolution to create a Committee to Research Salary Compression**
 Since the February 5 Academic Council meeting, President Daniel has acted upon this resolution. The committee is made up of three members provided by the Provost, the Advisory Committee on the University Budget will provide three members, and Professor John Geissman has volunteered to serve on the committee.

9. **MOOC Overview and Recommendations**
 The Academic Senate had asked the distance learning committee to write a report on MOOCs. They submitted their report for Senate review and approval. Ravi Prakash moved to accept the report. Viswanath Ramakrishna seconded the motion. The motion carried.

 Speaker Leaf turned the floor over to Secretary David Cordell. Nominations for the FY15 Faculty Senate will open February 24, and close March 7. Should it be needed, elections for senators will begin March 17 and go through March 28. The Joint FY14 and FY15 Senate Caucus will be at 1 pm April 16 in the TI Auditorium before the April Senate meeting.

There being no further business, President Daniel adjourned the meeting at 3:32 PM.

APPROVED: ___________________________ DATE: _____________
Murray J. Leaf
Speaker of the Academic Senate
Appendix A:

University of Texas System Faculty Advisory Council

Recommended Language Describing Information that Requires Encryption.

Considering that UT System policy will be to require encryption only to protect information that is confidential under FERPA and HIPAA or under contract, we recommend the following language for an appropriate policy.

The purpose of this policy is to describe the kinds of information the institutions within the University of Texas System may protect by requiring encryption\(^1\) of computers or other devices on which the information resides. Information that should be on encrypted devices is of the following three types:

A) information the university administration creates and uses for its administrative purposes

B) information the university is legally obligated to protect by FERPA and HIPAA

C) information that the university is bound to protect by contract.

The obligation to protect information does not imply ownership of that information.

Other work-related information is owned by faculty individually (D), and does not require encryption. It is the policy of the university to provide support and software to assist faculty who wish to protect this information as well.

A. Information the university owns for its internal business purposes. This information cannot be construed as owned by faculty although faculty may have access to it. If a faculty member retains any of this information, it should be on encrypted media. This information may be of the following kinds:

 A.1. Business records maintained by any office under the Vice President for Business Affairs unless deemed public information.
 A.2. Student records maintained by the University Registrar.
 A.3. Records maintained by the Office of the President unless deemed public information.
 A.4. Records maintained by the Office of the Provost. These records include those reported by the vice-provosts and academic deans to the Provost, and department chairs or others to the academic deans. Examples include personnel recommendations and upward evaluation of administrators. Exemptions include all information that must be made public under HB 2504 of 2009 and all information defined as

\(^{1}\) The purpose of encryption is to protect information on encrypted media or devices.
public information in the Texas Government Code, 5.A.552. These records include faculty salary information, teaching load information, and course evaluations.

A.5. Information on students, staff, or faculty that could be used for identity theft, impersonation, or embezzlement. Examples are university computer account net-ids and passwords, social security numbers, Medicare numbers, bank account numbers and information, credit/debit card numbers and information, taxpayer numbers, or copies of identifying documents.

B. Information that the university is legally obligated to protect by HIPAA and FERPA.

B.1. Medical records with personally identifiable information as defined in Health Insurance Portability and Accountability Act of 1996 (HIPAA).

B.2. Education records as defined in the Family Education Rights to Privacy Act (FERPA). Using the subdivisions of the Act itself, these are defined in the Act as meaning:

(a)… those records that are:

(1) Directly related to a student; and

(2) Maintained by an educational agency or institution or by a party acting for the agency or institution.

(b) The term does not include:

(1) Records that are kept in the sole possession of the maker, are used only as a personal memory aid, and are not accessible or revealed to any other person except a temporary substitute for the maker of the record.

(2) Records of the law enforcement unit of an educational agency or institution, subject to the provisions of § 99.8.

(3) (i) Records relating to an individual who is employed by an educational agency or institution, that:

(A) Are made and maintained in the normal course of business;

(B) Relate exclusively to the individual in that individual's capacity as an employee; and

(C) Are not available for use for any other purpose.

(ii) Records relating to an individual in attendance at the agency or institution who is employed as a result of his or her status as a student are education records and not excepted under paragraph (b)(3)(i) of this definition.

(4) Records on a student who is 18 years of age or older, or is attending an institution of postsecondary education, that are:

(i) Made or maintained by a physician, psychiatrist, psychologist, or other recognized professional or paraprofessional acting in his or her professional capacity or assisting in a paraprofessional capacity;

(ii) Made, maintained, or used only in connection with treatment of the student; and
(iii) Disclosed only to individuals providing the treatment. For the purpose of this definition, “treatment” does not include remedial educational activities or activities that are part of the program of instruction at the agency or institution; and

(5) Records created or received by an educational agency or institution after an individual is no longer a student in attendance and that are not directly related to the individual's attendance as a student.

(6) Grades on peer-graded papers before they are collected and recorded by a teacher.

[Authority: 20 U.S.C. 1232g(a)(4)]

http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=11975031b82001bed902b3e73f33e604&rgn=div5&view=text&node=34:1.1.1.1.33&idno=34

The implication of (a) is that all records maintained by the registrar are covered under FERPA. Federal courts have construed this as including disciplinary records. The clear sense of (b) (1), however, is that records maintained by individual faculty members for their own purposes and not intended to be communicated to others are not covered under FERPA and are therefore not confidential.

The implication of (b)(3)(i) is that records kept by faculty of their student employees, including Teaching and Research Assistants, are also not included, and that the university similarly has no obligation to assure that computers or media with these records should be encrypted under FERPA. It is desirable, however, to secure them as business records.

B.3. Research information that the university is required to protect as an explicit condition of the grant or contract that is providing funding for the research.

C. Information that the university has a proprietary interest in, and that it may protect.

C.1. Patentable discoveries or inventions in which the university has a proprietary interest, until such time as that patent is applied for or the invention is placed in the public domain, or the university expressly abandons its proprietary interest in accordance with Regents Rule 90101.

C.2. Information and documents that the university has contracted with faculty to produce, when retaining the information in a secure form is explicitly required in the contract. Examples are consulting contracts that faculty members may agree to, or on-line course material they may contract to create.

D. Work-related information that the faculty member owns and the university does not have an obligation to control includes the following:

D.1. All texts or other documents authored by faculty and subject to copyright, beginning with the author's copyright that applies at the time of creation. This includes all notes, drafts, data, and compilations of relevant material that may be used in the creative process, whether exclusively authored by the faculty member or in the form of annotations and notes on material the faculty member has collected through the internet or by any other means.
D.2. Teaching materials such as course notes, syllabi, and web-site files created by the faculty member. The exception is if these materials were developed under written contract to the university in which the contract specifies that they belong to the university.

D.3. Letters of recommendation written by faculty in response to requests by students are not prohibited by FERPA and are not educational records maintained by the institution.

D.4. A note or an email from one faculty member to another about a student is not an “educational record” in the meaning of FERPA because it is not a record maintained by the institution. According to the court, “FERPA implies that education records are institutional records kept by a single central custodian, such as a registrar” (Owasso Independent School Dist. v. Falvo, 534 U.S. at 433-45).

D.5. Direct communications with students. Examples include exchanges of emails regarding course assignments or academic progress, appointments, or general advice and counseling.

D.6. Professional correspondence not subject to copyright, such as correspondence with colleagues; artistic, literary, scholarly and scientific societies; publishers; potential publishers; funding sources; and professional associations such as faculty unions and the American Association of University Professors.

D.7. Private non-professional correspondence through university provided emails or other information services.

D.8. All communications with federal agencies protected by the Privacy Act of 1974.
Conflicts of Interest and Commitment for Faculty and Researchers

UT Dallas Compliance Training Modules
Policy Terms

• What is a Conflict of Interest?
 – UT Dallas defines a Conflict of Interest as a situation in which a significant financial interest could **directly and significantly affect** the performance of an employee’s institutional responsibilities.

• What is a Conflict of Commitment?
 – UT Dallas defines a Conflict of Commitment as a situation in which:
 • An outside commitment could directly and significantly interfere with the performance of an employee’s institutional responsibilities; or,
 • An employee uses UT Dallas resources without authority or approval in connection with an outside commitment.

• What are Institutional Responsibilities?
 – Institutional Responsibilities are the work you perform for UT Dallas, including research, research consultation, professional practice, teaching, educational activities, administrative duties, and committee membership.
What is the intent of conflict of interest and commitment policy at UT Dallas?

- To ensure compliance with federal regulations and UT System Regents Rules and Regulations;
- To protect the integrity of research and scholarship conducted at UT Dallas; and,
- To prevent the negative impact of perceived or actual conflicts on:
 - the reputation and credibility of UT Dallas; and,
 - the ability of UT Dallas faculty and staff to attract funding and new faculty and students.
Who is expected to comply with the policy?

The policy applies to:

- **all UT Dallas faculty**; and,
- any staff member or student at UT Dallas who is **responsible for the design, conduct or reporting of research**, including but not limited to:
 - research staff;
 - postdoctoral trainees; and,
 - graduate students.

If you are unsure whether you need to comply, please contact the Office of Research Compliance (ORC) by phone (972-883-4718) or email (conor.wakeman@utdallas.edu).
Will this training help me determine if I have anything to disclose?

- This training module will inform you of the policy requirements and help you determine if you have a financial interest or outside commitment that needs to be disclosed.
- If at the end of this training module you determine you have nothing to disclose, you will certify this fact, and this certification will meet your annual disclosure requirement.
- If you determine you have financial interests or outside commitments that require disclosure, you will be directed to an online disclosure tool where you can provide details of potential conflicts.
How do I comply with the policy?

- You can comply using an online disclosure tool provided by the ORC.
 - You must **disclose financial interests and outside commitments** that reasonably appear to be **related to your institutional responsibilities**.
 - You are entrusted to determine whether an interest or commitment is related.
- What is **related**?
 - An interest or commitment is related if your performance of your institutional responsibilities at UT Dallas **appears to directly and significantly affect** either your financial interest in an outside entity, or the financial interest of such an entity.
Do all related financial interests require a disclosure?

• No. A disclosure is triggered by **related financial interests** that fall into the following categories:
 – Compensation of **more than $5,000 per year** from a single entity;
 – Equity interests that represent more than $5,000 fair market value;
 – Equity interests held in private companies; or,
 – Gift of more than $250 in value.

• A disclosure is also needed for **related fiduciary interests** you hold in for-profit and non-profit entities.
 – A **fiduciary interest** is a position which an entity has authorized to manage and protect property, money, and other assets.
Are there any exclusions?

Yes. The following financial interests do not trigger the need for a disclosure:

• Compensation or reimbursements you receive from UT Dallas, UT System, or another UT institution.
• Interests in and income from investment vehicles, such as mutual funds and retirement accounts.
• Gifts received from family members.
• Travel reimbursements you receive from a government agency, higher education institution or affiliated research institute.
• Assets (e.g., rental properties) that do not reasonably appear to be related to your institutional responsibilities.
Do all outside commitments need prior approval?

• No. You are expected to request prior approval for certain outside commitments. These include:
 – Compensated commitments with business entities that are related to your institutional responsibilities (e.g. consulting in your field of expertise).
 – Uncompensated commitments with business entities that are related to a conflict of interest.
 – Uncompensated commitments on a board of directors that are related to your institutional responsibilities.

• Outside commitments may not exceed more than one day per week, averaged over the current semester.
Are there any exclusions?

- Commitments performed by faculty members appointed on a 9-month basis during those months in which they are not working for UT Dallas, unless the commitment is related to a conflict of interest.

- Commitments performed for local municipal, social and religious organizations that are not related to your institutional responsibilities.

- Commitments for professional journals and societies, colloquia and conferences, and advisory committees and review panels.
What happens to my disclosure?

• **Financial Interests**
 – Your **financial interests** are reviewed by a Conflict of Interest Specialist in the Office of Research Compliance (ORC) to ensure your disclosure is complete and accurate.
 – If it is determined that a potential conflict of interest exists, ORC will work with you to develop a Conflict of Interest Management Plan.
 – Most disclosures do not present the possibility for a conflict of interest.

• **Outside Commitments**
 – Your **requests for prior approval** are reviewed by your organizational or department head or dean, as determined by your school.
 – Most requests do not present the possibility for a conflict of commitment and are approved.
Public Accessibility

• UT Dallas
 – In accordance with federal and state law, UT Dallas is obligated to make public specific information regarding managed conflicts of interest related to sponsored research conducted at UT Dallas.
 – UT Dallas will provide information required upon request under the Texas Public Information Act.

• UT System
 – UT System has developed an electronic database that will make publicly available information regarding managed conflicts of interest at all UT System branches.
 – UT Dallas will provide information regarding managed conflicts of interest on an annual basis for the UT System database.
Applicable Rules and Regulations

- US Public Health Service (including the National Institutes of Health)
 (42 CFR Part 50 Subpart F, 45 CFR Part 94)
- National Science Foundation Grantee Standards
- UT Systemwide Policy 175
- UT System Board of Regents Rule 30104
What if I have questions?

Please direct all questions to the Conflict of Interest program in the Office of Research Compliance:

Sanaz Okhovat, Senior Director
972-883-4579
sanaz.okhovat@utdallas.edu

Conor Wakeman, Conflict of Interest Specialist
972-883-4718
conor.wakeman@utdallas.edu
Case Study #1

- Dr. Green, assistant professor of Economics
- Philately
 - Dr. Green collects and studies stamps as a personal hobby. His collection has a value in the tens of thousands.
 - Dr. Green spends several weekends each year organizing and expanding his stamp collection, including attending events of the American Philatelic Society.
- American Economic Association
 - Dr. Green serves as a committee member for the AEA, and he travels several times each year to Nashville to participate in AEA committee meetings and conferences.
 - Dr. Green receives reimbursement of travel expenses from the AEA.
Response to Case Study #1

- Dr. Green, assistant professor of Economics
- **Philately**
 - Even though Dr. Green’s collection has a value in the tens of thousands, he does not disclose the financial interest because it is not related to his institutional responsibilities.
 - Dr. Green does not request approval for the time he spends on his stamp collection because the activity is personal in nature and not related to his institutional responsibilities.
- **American Economic Association**
 - Because the AEA is a non-profit, professional society and Dr. Green volunteers for the position, he does not disclose the travel reimbursement and does not request approval for the time commitment.
Quiz for Case Study #1

- Question #1: TBD
- Question #2: TBD
- Question #3: TBD
Case Study #2

• Dr. Orange, senior lecturer and research scientist, Chemistry
• Middle County Community College
 – Dr. Orange teaches a summer course on organic chemistry for MCCC.
 – Dr. Orange has a 9-month appointment at UT Dallas, and he teaches the course during the summer months when he is not on UT Dallas payroll.
• Super Chemical Products Corporation
 – Dr. Orange provides technical advice for Super Chemical on the development of products that use technology similar to Dr. Orange’s research at UT Dallas.
 – Dr. Orange plans to commit 16 days per semester of his appointment to his consulting work for Super Chemical.
Response to Case Study #2

- **Dr. Orange, senior lecturer and research scientist, Chemistry**
- **Middle County Community College**
 - Because Dr. Orange has a 9-month appointment, he does not request prior approval for his commitment to MCCC because he teaches the course when he is not on UT Dallas payroll.
 - Dr. Orange discloses his compensation from MCCC because he is compensated more than $5,000 for the course.

- **Super Chemical Products Corporation**
 - Dr. Orange requests prior approval for his time commitment to Super Chemical because he is being compensated by a company that manufactures products in the same area as his research at UT Dallas.
 - Dr. Orange discloses his consulting fee from Super Chemical because he receives more than $5,000.
Quiz for Case Study #2

- Question #1: TBD
- Question #2: TBD
- Question #3: TBD
Case Study #3

• **Dr. Comet, professor of Materials Science and Engineering**

• **National Science Foundation**
 – Dr. Comet reviews grant proposals for the National Science Foundation, and she travels to Washington, D.C. three days per year to participate in the review panel.
 – The NSF sponsors Dr. Comet’s travel expenses for the panel.

• **Harmonic Materials, LLC**
 – Dr. Comet co-owns and serves as Chief Technology Officer for Harmonic Materials, which she founded to commercialize technology she invented. The company sponsors Dr. Comet’s research at UT Dallas to further develop the technology.
 – Dr. Comet plans to commit 17 days per semester of her appointment to Harmonic Materials.
Response to Case Study #3

- Dr. Comet, professor of Materials Science and Engineering
- National Science Foundation
 - Because the NSF is a government agency, and Dr. Comet volunteers for
 the position, she does not disclose the travel reimbursement and does
 not request approval for the time commitment.
- Harmonic Materials, LLC
 - Dr. Comet requests prior approval for her time commitment to
 Harmonic Materials because she is being compensated by, and owns
 part of, a company that could benefit from the results of her research at
 UT Dallas.
 - Dr. Comet discloses her ownership stake in Harmonic Materials
 because the company is privately held. She discloses her salary from
 Harmonic Materials because she receives more than $5,000 per year.
 She discloses the fiduciary interest she holds in Harmonic Materials as
 CTO.
Quiz for Case Study #3

- Question #1: TBD
- Question #2: TBD
- Question #3: TBD
- Question #4: TBD
Resolution as amended and approved:

The Academic Senate of the University of Texas at Dallas does not approve the draft policy titled "Conflict of Interest and Commitment for Faculty and Researchers." The Senate further recommends that the UT System and UT Regents rescind the revised policy UT System Policy 175 (UTSP 175).

The Academic Senate of the University of Texas at Dallas recognizes that the draft policy is required in order to implement UTSP 175. The Senate further recognizes that it has been constrained by a requirement that the standards and procedures imposed by the National Institutes of Health on research that they fund should be imposed on all research whatever, funded or unfunded. We understand that this requirement originated with the UT Regents.

The Academic Senate considers this requirement impractical, burdensome, intrusive and perhaps illegal. Regents have neither the authority nor the expertise to override the federal regulations.

The theory justifying the Regents' demand is that the difference between NIH requirements and other requirements is only a matter of degree. The NIH requirements are "more strict." If this were so, it would follow that in meeting NIH requirements the university would also be meeting all other requirements. This is false for three main reasons.

First, it is inconsistent with missions of these funding agencies, and all others. The purpose of the NSF is not only to fund research; it is to encourage it. The purpose of the NIH is parallel. The purposes of other funding agencies are similar. The manifest consequence of the Regental requirement is to discourage research and encumber the university's efforts to support it.

Second, the regulations are designed for different contexts. NIH requirements must guard against their funds being used to support research for very large and wealthy international corporations, including tobacco companies, pharmaceutical companies, and producers of medical technology. There are fewer or no such interests to guard against in fields supported by other agencies, public and private. Applying NIH regulations in non-biomedical fields distorts their meaning in all fields. Insisting that the regulations of the NSF or other agencies cannot be applied to activities that those agencies are responsible for is probably illegal.

Third, applying the policy to unfunded research amounts to applying it to thinking as such. Federal regulations do not apply to unfunded research because it would be clearly unconstitutional to attempt to regulate it. It is equally unconstitutional for the Regents, or the UT System, to attempt to do so.

The Senate therefore recommends that:
1. Conflict of interest policies for research should apply only to funded research.
2. Conflict of interest in research should be addressed only under an appropriately revised UTSP 175.
3. Research conflict of interest policies should be consistent with the requirements of the funding agencies.
4. Conflict of commitment questions should be addressed only under UTSP 180.
5. University policies implementing UTSP 175 and UTSP 180 should be separate, although the disclosures may be done through a single website.
Office of Undergraduate Education
2014-15 Undergraduate Catalog – First 40 Policies

Overview of changes

- Verified Texas Education Codes and Texas Administrative Codes
- Mission statement
- Admissions and transfer admissions criteria
- Special admissions: High school concurrent enrollment and second baccalaureate degree
- Minors GPA
- Curriculum: academic degree requirements, core curriculum, and other degree requirements
- Excessive undergraduate hours
- Final Exams
- TSI requirements
- Creative writing courses added to no audit list (auditing courses)
- Guidelines for Course Numbering
- Readmission in conjunction with academic probation and warning
- Commencement Ceremonies

Meets Office of General Counsel’s Catalog Checklist

- Making a False Alarm or Report Involving a Public or Private Institution of Higher Education
- Tuition and Fee Exemptions/Waivers
- Free Parking for Disabled Veterans

Updated March 2014
2014-2015 Undergraduate Catalog

About the Undergraduate Catalog

The University of Texas at Dallas Undergraduate Online Catalog is a general information publication only. The catalog intends to reflect current academic policies, procedures, degree offerings, course descriptions, and other information pertinent to undergraduate study at the University of Texas at Dallas. It is not intended to nor does it contain all regulations that relate to students. The provisions of this catalog do not constitute a contract, express or implied, between any applicant, student, or faculty member and The University of Texas at Dallas or The University of Texas System.

The University of Texas at Dallas reserves the right to change the provisions of this catalog at any time, including, but not limited to: withdraw courses at any time, to change fees or tuition, calendar, curriculum, course offerings, degree requirements, graduation procedures, and any other requirements affecting students as necessitated by legislative or regental action. Changes will become effective whenever the proper authorities so determine and will apply to both prospective students and those already enrolled.

The online version of The University of Texas at Dallas Undergraduate Catalog is the official version. The online catalog will be updated periodically and will contain all major policy changes that occur during the 2014-15 catalog cycle. The official publication date of this catalog is August 2014.

Although this catalog was prepared on the basis of the best information available at the time, and the information is updated regularly, users are cautioned about the following:

• Editorial, clerical, and programming errors may have occurred in the publication of this website, and The University of Texas at Dallas assumes no responsibility for such errors.
• There is a lag time between approved changes and their publication on this website.
• Students normally are entitled to graduate under the degree provisions of the catalog in effect at the time of their first completed semester of enrollment.

Students are held individually responsible for complying with all requirements of the rules and regulations of the University and the Board of Regents of The University of Texas System. Failure to read and comply with policies, regulations, and procedures will not exempt a student from whatever penalties the student may incur.

Sections within the Catalog

The catalog is arranged into sections as they appear in the catalog. Within each section, the topics are arranged alphabetically. The sections are titled:
Accreditation

The University of Texas at Dallas is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award baccalaureate, masters, and doctoral degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097 or call (404) 679-4500 for questions about the accreditation of The University of Texas at Dallas.

Equal Educational Opportunity Statement

The University is committed to a policy of nondiscrimination, on the basis of sex, race, color, religion, age, sexual orientation, national origin, disability, or veteran status in its provision of services, activities, and programs, and in its treatment of students. Students seeking further information about this policy, or related complaint procedures for alleged discrimination or sexual harassment should contact the Dean of Students.

Catalog Publish Date: August 2014
About UT Dallas

Historical Sketch

Prior to World War II, Eugene McDermott, Cecil Green, and J. Erik Jonsson, the founders of Geophysical Services, Inc., were in the business of searching for natural resources. The war changed the focus of the company from searching for natural resources to creating instruments that aided in finding enemy planes and submarines. GSI spawned Texas Instruments and in 1958, TI employee Jack Kilby invented the integrated circuit that launched a new era for the company, for North Texas, and for the world.

During the expansion of Texas Instruments, the founders were forced to import engineering talent from outside the state, while the region's bright young adults pursued education elsewhere. McDermott, Green, and Jonsson saw that Texas needed highly educated minds if the state were to remain competitive in the decades to come. They noted that in 1959 alone, Columbia University conferred 560 doctoral degrees - more than the entire Southwest region. They wrote at the time, "To grow industrially, the region must grow academically; it must provide the intellectual atmosphere, which will allow it to compete in the new industries dependent on highly trained and creative minds."

Therefore, they established the Graduate Research Center of the Southwest (later renamed the Southwest Center for Advanced Studies) in 1961. The center recruited some of the best scientific talent in the nation. The Texas Legislature concurred with the vision of the Founders and mandated in 1967 that science and technology educational opportunities needed to exist in North Texas. McDermott, Green, and Jonsson decided to donate SCAS and its lands to The University of Texas System, and on June 13, 1969, Governor Preston Smith signed the bill creating The University of Texas at Dallas. The SCAS scientists formed the core of UT Dallas' educational infrastructure.

By terms of its enabling legislation, UT Dallas offered only graduate degrees until 1975 when the addition of juniors and seniors increased enrollment from 408 in 1974 to more than 3,300 students. By the fall of 1977, the enrollment reached over 5,300. In 1986, UT Dallas established the Erik Jonsson School of Engineering and Computer Science. Today the Jonsson School plays a critical role in providing a highly educated work force for the advanced technology industry.

The Rise to National Prominence

In 1990, the Texas Legislature authorized UT Dallas to admit lower division students. UT Dallas' first freshman class consisted of only 100 students. Despite its small size, this cohort's achievements set the standard for future classes. Since then, freshman classes have grown in size while the University has maintained high enrollment standards. Nationally published data indicate that UT Dallas' freshman class compares extremely well with those from many
prominent national universities. UT Dallas consistently has three-fourths of its entering freshmen in the top twenty-five percent of their graduating class with many coming from the state's most competitive high schools.

The University's ability to attract and retain these students has propelled The University of Texas at Dallas into national prominence within a few short years. US News and World Report ranks UT Dallas as one of the three best public universities in the state along with UT Austin and Texas A&M. Kiplinger's Personal Finance Magazine, in its February 2014 article "[Top 100] Best Values in Public Colleges, 2014," ranked UT Dallas 29th among all public universities nationally, gaining 21 spots from 60th last year. The quality of the students who attend UT Dallas has remained consistently high. Thirty-eight percent of the incoming freshmen are in the top 10% of their high school graduating class and their average SAT scores place them in the top twenty percent of all college-bound students. In recent years, UT Dallas has ranked among the top 100 American universities in terms of the number of National Merit Scholars enrolled.

The addition of freshmen has accelerated the rise in the percentage of full-time undergraduates from 31% in 1986 to 81% in 2013. Masters, doctoral and post-baccalaureate students currently comprise 38% of the student body. Given its location and mission, UT Dallas will continue to have significant numbers of professionals attending undergraduate or master's courses part-time.

The transition of the University from a part-time upper division school to a four-year university with an emphasis on engineering, mathematics, the sciences and the management of new technologies has been greatly facilitated by the University's faculty. By retaining key faculty members and attracting more nationally and internationally prominent researchers and instructors, UT Dallas has enabled its faculty to provide quality instruction to an increasingly diverse student population while sustaining the University's longstanding research tradition. In the past decade, the faculty has increased the level of external research funds substantially. During this same period, the University expanded its teaching mission, enhanced its areas of focused excellence and became independently recognized as one of the top public universities in the nation.

Mission

The University of Texas at Dallas provides the State of Texas and the nation with excellent, innovative education and research. The University is committed to graduating well-rounded citizens whose education has prepared them for rewarding lives and productive careers in a constantly changing world; to continually improving educational and research programs in the arts and sciences, engineering, and management; and to assisting the commercialization of intellectual capital generated by students, staff, and faculty.

Organization

The University of Texas at Dallas is one of nine universities and six health institutions governed by The University of Texas System's nine regents, who are nominated by the governor, selected from different areas of the state, and appointed with the advice and consent of the Texas senate.
UT Dallas consists of seven schools, each headed by a dean: School of Arts and Humanities, School of Behavioral and Brain Sciences, Erik Jonsson School of Engineering and Computer Science, School of Economic, Political and Policy Sciences, School of Interdisciplinary Studies, Naveen Jindal School of Management, and School of Natural Sciences and Mathematics. The schools, in turn, consist of teaching and research programs that provide the disciplinary foundations of the University. In addition to the usual disciplinary approaches, the University has a strong commitment to interdisciplinary study at both the graduate and undergraduate levels. Most faculty members teach in both graduate and undergraduate areas so that the character of their instruction is informed by critical examination of the most recent developments in their fields.

Each of the University's schools contains an undergraduate college, headed by an Associate Dean of Undergraduate Education (ADU) who coordinates the undergraduate programs and academic advising within the college. These colleges of The University of Texas at Dallas provide undergraduate students with a personalized setting in which they may pursue their academic careers. Each college offers an intellectual and social home for undergraduates within the larger university.

The Office of Undergraduate Education coordinates undergraduate education across the seven schools. The Council for Undergraduate Education (CUE), chaired by the Dean of Undergraduate Education, oversees academic advising and degree requirements, and develops and implements educational policy.
University Officers

President's Cabinet

President

David E. Daniel, PhD

Executive Vice President and Provost

B. Hobson Wildenthal, PhD

Vice President for Administration

Calvin Jamison, EdD

Vice President for Budget and Finance

Terry Pankratz, MBA, CPA

Vice President for Student Affairs

N. Darrelene Rachavong, EdD

Vice President for Research

Bruce E. Gnade, PhD

Vice President for Public Affairs

Amanda Oneacre Rockow, MA

Vice President for Development and Alumni Relations

Aaron Conley, EdD

Vice President for Communications

Susan Rogers, BJ

Vice President and Chief Information Officer
Andrew J. Blanchard, PhD

Vice President of Diversity and Community Engagement

Magaly Spector, PhD

Administrative Officers / Deans

Vice Provosts

James W. Marquart, PhD
Emily A. Tobey, PhD
John J. Wiorkowski, PhD

Dean of Undergraduate Education

Andrew J. Blanchard, PhD

Dean of Graduate Studies

Austin J. Cunningham, PhD

Dean of Students

Gene Fitch, EdD

University Registrar

Jennifer M. McDowell, MPA

Academic Deans of Academic Units

School of Arts and Humanities

Dean

Dennis M. Kratz, PhD

Associate Dean of Graduate Studies

Michael L. Wilson, PhD
Associate Dean of Undergraduate Studies
 Shelley D. Lane, PhD

School of Behavioral and Brain Sciences

Dean
 Bert S. Moore, PhD

Associate Dean, Graduate Studies
 Robert D. Stillman, PhD

Associate Dean, Undergraduate Studies
 Melanie J. Spence, PhD

School of Economic, Political and Policy Sciences

Dean
 Denis J. Dean, PhD

Associate Dean for Graduate Education
 Nicole Leeper Piquero, PhD

Associate Dean of Undergraduate Studies
 Euel W. Elliott, PhD

Erik Jonsson School of Engineering and Computer Science

Dean
 Mark W. Spong, PhD

Associate Dean of Academic Affairs
 Poras T. Balsara, PhD

Associate Dean for Undergraduate Education
 Simeon Ntafos, PhD
School of Interdisciplinary Studies

Dean

George W. Fair, PhD

Associate Dean for Undergraduate Studies

Dachang Cong, PhD

Naveen Jindal School of Management

Dean

Hasan Pirkul, PhD

Senior Associate Dean

Varghese S. Jacob, PhD

Associate Dean, Executive Education

Gerald (Jerry) Hoag, MBA

Associate Dean, Graduate Programs

Monica Powell, PhD

Associate Dean, Undergraduate Programs

Marilyn Kaplan, PhD

Associate Dean, Undergraduate Programs

Matt Polze, JD

School of Natural Sciences and Mathematics

Dean

Bruce M. Novak, PhD

Associate Dean for Graduate Studies

Juan E. González, PhD
Associate Dean for Undergraduate Studies

Dennis L. Miller, PhD
The University of Texas System Board of Regents

Officers

Paul L. Foster, Chairman
R. Steven "Steve" Hicks, Vice Chairman
Wm. Eugene "Gene" Powell, Vice Chairman
Francie A. Frederick, General Counsel

Members

Terms Scheduled to Expire February 1, 2015

Vice Chairman R. Steven "Steve" Hicks
Vice Chairman Wm. Eugene "Gene" Powell
Regent Robert L. Stillwell

Terms Scheduled to Expire February 1, 2017

Regent Alex M. Cranberg
Regent Wallace L. Hall, Jr.
Regent Brenda Pejovich

Terms Scheduled to Expire February 1, 2019

Chairman Paul L. Foster
Regent Ernest Aliseda
Regent Jeffrey D. Hildebrand

1. The actual expiration date of the term depends on the date the successor is appointed, qualified, and takes the oath of office.
Undergraduate Admission

About Undergraduate Admission

The University of Texas at Dallas is a comprehensive, state supported institution of higher learning, offering a variety of programs at the undergraduate, masters, and doctoral levels. UT Dallas is committed to providing quality education to a diverse student body and offers programs designed for both full-time and part-time students. The University of Texas at Dallas accepts applications for admission from freshmen and transfer students at all levels for the fall, spring and summer semesters.

The Office of Admission and Enrollment Services is the gateway to the University for prospective undergraduate students. Professional admission counselors provide information regarding the college selection process through mailings, school visits, college fairs, campus tours, the Internet (www.utdallas.edu/enroll), and a variety of other special events. Campus tours are provided weekdays at 10:00 a.m. and 2:00 p.m. In addition, The Office of Admission and Enrollment Services provides pre-admission counseling sessions for both freshmen and transfer students regarding eligibility for admission and transferability of coursework.

Admission to UT Dallas is open to all candidates on the basis of academic preparation, ability, and availability of space without regard to race, color, religion, national origin, gender, age, disability, citizenship, veteran status, or sexual orientation.

Questions related to undergraduate admissions should be addressed to:

Office of Admission and Enrollment Services
The University of Texas at Dallas
800 West Campbell Road
Richardson, Texas 75080-3021
Telephone: 972-883-2270
Toll Free Telephone: 800-889-2443
Fax: 972-883-2599
Email: interest@utdallas.edu

The Office of Admission and Enrollment Services is located in the Student Services Building.

As with all state institutions of higher education, the procedures and criteria for admission used by UT Dallas are effective as of the publication date of this catalog but are subject to change by actions of the Texas Legislature or the Board of Regents.

Applying for Admission
To apply to UT Dallas, all students should submit an application for admission, which is available through Apply Texas. Applicants are required to submit official copies of all past academic transcripts, test scores, and other degree specific documentation by the appropriate application deadlines to be considered for admission to The University of Texas at Dallas.

Official transcripts in envelopes sealed by the issuing institution may be delivered to the Office of Admission and Enrollment Services, or may be mailed directly from the educational institution. Official transcripts may also be emailed to interest@utdallas.edu. If your documents are issued in your country’s official language, you must submit an English translation of your academic documents. The translations must be from either the academic institution or from a certified translation company. All materials submitted towards an application file become the property of the University and will not be returned to the applicant.
Undergraduate Admission

Application Fees and Deadlines

All fees are non-refundable.

• The application fee is $50 if your application is submitted on or before the regular application deadline.

• If you submit your application after the application deadline but prior to the completed application deadline (application and all required documents) the application fee is $125 in order to process your application for decision in time to register for classes.

• Applicants with international academic documents will be assessed an additional foreign credential evaluation fee of $50.

• All supporting documents and transcripts, with the exception of courses in progress, must be received in the Office of Admissions and Enrollment Services by the completed application deadline (see Deadlines for U.S. Citizens and Residents chart below).

• A new application must be completed and submitted for consideration for any subsequent semester for all incomplete applications after the documentation deadline.

<table>
<thead>
<tr>
<th>Term</th>
<th>Application Deadline</th>
<th>Completed Application Deadline (application and all required documents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Full-Term</td>
<td>July 1</td>
<td>August 1</td>
</tr>
<tr>
<td>Spring Full-Term</td>
<td>November 1</td>
<td>December 1</td>
</tr>
<tr>
<td>Summer Sessions</td>
<td>April 1</td>
<td>May 1</td>
</tr>
</tbody>
</table>

International Student Application Fees and Deadlines

All fees are non-refundable.
• The application fee is $50 if your application is submitted on or before the regular application deadline.

• If you submit your application after the deadline but prior to the completed application deadline, the application fee is $125 in order to process your application in time to register for classes.

• Applicants with international academic documents will be assessed an additional foreign credential evaluation fee of $50.

• All supporting documents and transcripts, with the exception of courses in progress, must be received in the Office of Admissions and Enrollment Services by the Completed Application Deadline (see chart below).

• A new application must be completed and submitted for consideration for any subsequent semester for all incomplete applications after the documentation deadline.

Deadlines for International Applicants

<table>
<thead>
<tr>
<th>Term</th>
<th>Application Deadline</th>
<th>Completed Application Deadline (application and all required documents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Full-Term</td>
<td>May 1*</td>
<td>June 1*</td>
</tr>
<tr>
<td>Spring Full-Term</td>
<td>September 1*</td>
<td>October 1*</td>
</tr>
<tr>
<td>Summer Sessions</td>
<td>March 1*</td>
<td>April 1*</td>
</tr>
</tbody>
</table>

Note: International Students requesting an I-20 (F1) or a DS-2019 (J1) are not eligible to begin their study at UT Dallas during a 2nd 8-week session.

Contact the International Student Services Office at 972-883-4189 for more information.

*International applicants with visa types other than F1 or J1 visas may adhere to the domestic application deadlines and dates, but still will be assessed late fees according to the international deadline dates.

UT Dallas encourages all students to submit their application as early as possible, as it can take from 4 to 6 weeks to process a completed application. Applications submitted after the application deadline and before the completed application deadline (application and all required documents) deadline will still be processed; however, a decision may not be reached in time for a student to avoid late registration.

After receiving an application acknowledgement, students may check their status in
Galaxy, to determine the status of their application and whether all required documents have been received.

Comment [12]: This is now an email which includes the student ID number with instructions on how to obtain a netID and login to Galaxy.

Comment [13]: Is this necessary.

Comment [14]: I don’t think this sentence is necessary.

Deleted: Undergraduate students can also call the Office of Admission and Enrollment Services at 972-883-2270 to check the status of their application. Graduate students should contact the program to which they applied for more information.
Undergraduate Admission

First Time Freshman Admissions

A "first time freshman" is an applicant to UT Dallas, who has not enrolled in another institution of higher education after their high school graduation. Applicants are still considered "first time freshmen" if they earn college credit before high school graduation. If an applicant has earned college credit after high school graduation, he or she is not considered a "first-time freshman" and should consult admission requirements for a transfer student (see "Transfer Admission Criteria" at catalog.utdallas.edu/2013/undergraduate/admission/transfer-student-admissions#criteria).

The University's policy is to admit applicants who are most able to benefit from and contribute to the University's academic and research mission. The high academic expectations and complex educational curricula at UT Dallas require that first time freshmen have successfully completed a full college-track high school curriculum and have demonstrated strong general verbal and quantitative aptitudes as measured on national standardized tests.

Automatic Admission

In accord with Chapter 51 of the Texas Education Code, students are automatically admitted to the University as first time freshmen if they graduate in the top 10% of their class from an accredited Texas high school and successfully complete the Recommended or Distinguished Program or earn a Distinguished Level of Achievement. Applicants must have graduated from high school during one of the two school years preceding the academic year for which they seek admission as first-time freshmen and have not attempted any higher education credits since graduation from high school. Applicants admitted because they are in the top 10% of their high school class may be required to complete additional preparatory work before enrolling in the University or complete developmental coursework to remove any deficiencies in their readiness to successfully complete college-level work prior to University graduation.

Admission Criteria

Most freshman applicants who are admitted to the University have met the following admission criteria:

- Graduate in good standing from an accredited high school
- Complete the full Texas recommended college-track high school curriculum
- Have academic records meeting one of the following:

Mary Jo Venetis 12/9/13 8:38 AM
Deleted: -
Sanchez, Matthew 1/17/14 10:25 AM
Comment [15]: I may be reading this incorrectly but should the word "preceding" be changed to "after" or "following"?
Mary Jo Venetis 1/20/14 2:17 PM
Deleted: preceding
Mary Jo Venetis 1/20/14 2:23 PM
Deleted: -

McDowell, Jennifer 12/11/13 2:52 PM
Comment [16]: Why not use same language "first time freshmen"
Mary Jo Venetis 12/8/13 4:38 PM
Deleted: entering
McDowell, Jennifer 10/21/13 5:23 PM
Deleted: students

Mary Jo Venetis 12/9/13 8:40 AM
Deleted: -
Sanchez, Matthew 2/14/14 2:53 PM
Comment [17]: Add "and successfully complete the Recommended or Distinguished Program or earn a Distinguished Level of Achievement.
Mary Jo Venetis 2/26/14 3:27 PM
Deleted: . They may also be required to remove any deficiencies in their high school coursework before graduating from the University.

Mary Jo Venetis 2/23/14 12:16 PM
Comment [18]: Link back to Admissions and Enrollment Services web page at http://www.utdallas.edu/enroll/apply/fprocess.php
Mary Jo Venetis 2/23/14 12:21 PM
Deleted: qualifications that
Mary Jo Venetis 2/23/14 12:14 PM
Deleted: met
Mary Jo Venetis 2/23/14 12:14 PM
Deleted: of
Mary Jo Venetis 2/23/14 12:14 PM
Deleted: ion
Mary Jo Venetis 2/24/14 10:09 AM
Deleted: of
• An SAT score of 1200 (combined math and critical reading) or higher
or
• A composite ACT score of 26 or greater
or
• A class rank in the top 15% of their high school class

Students may be required to complete additional preparatory work before enrolling in the University to remove any deficiencies in their high school coursework before graduating from the University.

First time freshmen should have successfully completed a full, college-track high school curriculum, including English language arts (4 units), mathematics (4 units), science (4 units of laboratory science), social sciences (4 units), foreign language (2 units in a single foreign language), and fine arts (1 unit in music, art, or drama).

Students from private schools and those outside the State of Texas will be considered for admission based on the same academic benchmarks listed above and a comparable high school curriculum.

Children of Public Servants Killed or Fatally Injured in the Line of Duty

Children of public servants designated by statute are assured freshman admission if they meet the minimum requirements for high school or prior college-level grade point average and standardized test scores. This policy is in accordance with Section 51.803 of the Texas Education Code.

Reviewed Admission

All applications that do not meet the Admission Criteria will be reviewed. Applicants must have graduated from an accredited high school or satisfied the equivalent requirements, and should have completed the high school unit requirements listed below (see item 9). Admission decisions are based on the applicant's composite achievement profile, including:

1. High school class rank
2. Strength of academic preparation including the number and complexity of courses taken (Honors, AP, IB, etc.)
3. SAT-I or ACT scores
4. Record of achievements, honors, and awards
5. Special accomplishments, work, and community service, both in and out of school
6. Essays
7. Special circumstances that put academic achievements in context
8. Recommendations (suggested but not required)
9. Successful completion of a high school curriculum that includes:
 - Four units of **English** Language Arts, including at least one unit of writing skills
 - Two units of a single foreign language (three units recommended)
 - **Four units of Mathematics**, including Algebra II, and including a course dealing with trigonometry, such as pre-calculus
 - Three units of laboratory science, not including Physical Science (four units recommended)
 - Three units of Social Sciences, not including work-study (four units recommended)
 - One-half unit of Fine Arts (one unit recommended)
 - The University also recommends one unit of Computer Science, one-half unit of Health, and one unit of Physical Education

10. For Texas residents, consideration may be given to socioeconomic and geographic information.

In addition to current University requirements for admission, applicants must also have either:

- successfully completed the curriculum requirements for the **Recommended** or **Distinguished Program** or earn a **Distinguished Level of Achievement** or its equivalent, or

- satisfied ACT’s College Readiness Benchmarks on the ACT assessment applicable to the applicant or earned on the SAT assessment a score of at least 1500 out of 2400 or the equivalent

The above requirement may be satisfied if the applicant's official high school transcript or diploma states that the applicant completed the portion of the recommended or advanced curriculum or its equivalent that was available to the applicant, but was unable to complete the remainder of the curriculum solely because courses necessary to complete the remainder were unavailable to the applicant at the appropriate times in the applicant's high school career as a result of course scheduling, lack of enrollment capacity, or another cause not within the applicant's control.
Undergraduate Admission

International Student Admissions (Students on Nonimmigrant Visas)

In addition to satisfying admissions criteria outlined in the catalog, international applicants from non-English-speaking countries must demonstrate English proficiency. English proficiency requirements can be met by:

- Achieving a minimum score of 550 on the TOEFL IBT (paper-based test),
- A minimum score of 80 on the TOEFL IBT (Internet-based test),
- A minimum score of 6.5 on the International English Language Testing System (IELTS) test,
- A minimum score of 67 on the Pearson’s Test of English Academic (PTE), or
- A passing grade in level 112 of English from the ELS Language Centers.

Students must have taken the test within two years of the date of admission. Admitted international students must meet the requirements of the Texas Higher Education Assessment prior to enrolling in classes (see Texas Success Initiative).

Deadlines

International applicants are strongly urged to meet all published deadlines and submit the application and supporting material six months ahead of the intended date of enrollment.

Applicants providing foreign credentials/documents should send all materials to the following address:

Office of Admission and Enrollment Services
The University of Texas at Dallas
800 West Campbell Road
Richardson, TX 75080-3021
Telephone: 972-883-2270
Toll Free Telephone: 800-889-2443
Fax: 972-883-6803
Email: interest@utdallas.edu

Fees

Certified English translations are required for documents prepared in a language other than English. There is an additional foreign credential evaluation fee for any student who has been
educated outside of the United States. These processing fees are required of all international students applying for admission to The University of Texas at Dallas.

Financial Responsibility

International students who plan to study with an F or J visa status must also provide evidence of financial support in order to obtain an I-20 or IAP-66 document.

Student Health Insurance and Documentation

International students are required to maintain approved comprehensive health insurance while enrolled at The University of Texas at Dallas. At registration, international students will be assessed a fee for the purchase of the UT System Student Health Insurance Plan. If there is evidence of continuing coverage under the UT System Employee Health Plan, a comparable mandatory employee plan, continuing mandatory coverage through a government sponsored health plan, or continuing coverage that satisfies the requirements of USIA regulations with regard to J1 and J2 visa holders, the student can request that the health insurance charge be waived. See the UT Dallas Student Health Insurance website for more detailed information.

• TB Screening Required for International Students

International students are required to have an Interferon Gamma Release Assay (IGRA) blood test (T-Spot) and a bacterial meningitis vaccination prior to registration. Screening for TB must be administered, regardless of prior BCG vaccination, no more than (6) months prior to the first day of class.

The only acceptable TB screening option is the Interferon Gamma Release Assay (IGRA) blood test (T-Spot). The mantoux tuberculin skin test is not acceptable.

The T-Spot test must be administered and interpreted in the United States by a licensed medical provider.

International students who do not complete a TB screening or who do not submit the appropriate documentation will NOT be allowed to register for classes.

Appropriate documentation secured from a U.S. licensed medical provider may be sent to the following address:

Student Health Center, SSB 43
The University of Texas at Dallas
800 West Campbell Road
Richardson, TX 75080-3021

See the UT Dallas Student Health Center website for more detailed information.

• Bacterial Meningitis Vaccine
Beginning January 1, 2022, state law requires that all entering Texas college students, who are under the age of 22, must receive a vaccination or booster (if the vaccination is five years old) against bacterial meningitis before enrollment.

Mail proof of bacterial meningitis vaccination and form to the following address:

Office of the Registrar, SSB 13
The University of Texas at Dallas
800 West Campbell Road
Richardson, TX 75080-3021

OR email bacterial meningitis vaccination documentation to the Office of the Registrar.

See the UT Dallas website for more information. International students will not be permitted to register until these requirements are met.

Orientation and Registration

In addition to the requirements listed above, UT Dallas holds a mandatory orientation session for new F and J visa status international students. Students will not be allowed to register without a permit showing that they have attended orientation.
Undergraduate Admission

Readmission of Former UT Dallas Students

Students who were previously enrolled at The University of Texas at Dallas, may return to the University by following the re-entry process through the Office of the Registrar if they meet the following criteria:

• Left in good standing from The University of Texas at Dallas;
• Left in good standing from all other former institutions attended; and
• previously were undergraduate, degree-seeking students and now return as undergraduate, degree-seeking students or
• previously were undergraduate, non-degree seeking students and now return as undergraduate, non-degree seeking students

Upon re-entry, students must meet the requirements of the catalog in effect for the term of re-entry and, if accepted, will be bound by that catalog. Upon re-entry, the student's tuition residency status will be re-determined in accordance with Texas law.

Students who have attended another college or university since they last enrolled at UT Dallas must submit official transcripts of all such work to the following address:

Office of Admission and Enrollment Services
The University of Texas at Dallas
800 West Campbell Road
Richardson, TX 75080-3021
Telephone: 972-883-2270
Toll Free Telephone: 800-889-2443
Fax: 972-883-6803
Email: interest@utdallas.edu

See "Academic Suspension" in the Academic Policies and Procedures section for more information regarding students returning to the University following academic suspension (catalog.utdallas.edu/2013/undergraduate/policies/disciplinary-actions#suspension).
Undergraduate Admission

Special Admissions

Academic Fresh Start

An applicant for admission who is a Texas resident may seek to enter this institution pursuant to the "academic fresh start" statute, Texas Education Code, Section 51.931. An applicant must make this request in writing to the Office of Admission and Enrollment Services before the student is admitted. After the applicant submits this request, UT Dallas will not consider in its admissions decision any academic course credits or grades earned by the applicant 10 or more years before the starting date of the semester in which the applicant seeks to enroll. In addition, an applicant admitted under Academic Fresh Start will not receive any course credit for courses taken 10 or more years before enrollment. The granting of Academic Fresh Start will neither affect TSI status nor remove the applicant's responsibility to meet other conditions for admission.

High School Concurrent Enrollment

The Dean of Undergraduate Education will consider the co-enrollment of highly qualified high school students in specific UT Dallas mathematics courses only on an individual basis. Permission for enrollment in particular mathematics courses will be granted at the discretion of the Dean of Undergraduate Education.

Co-enrollment decisions will be based on the academic credentials of the applicant, including the applicant’s completion of all calculus courses at the student’s local community college, the scholastic rigor of the requested classes, the course prerequisites, and the demand for the class on the part of ongoing UT Dallas students. Only the Dean of Undergraduate Education may admit a co-enrolled student to the University.

To request co-enrollment, a prospective student must complete an application for admission and submit a copy of his/her high school transcript, community college transcript, and all standardized test results. In addition, a letter must accompany the application from the student’s high school counselor endorsing the student’s enrollment in a particular course. The counselor must also assure the University that the requested course(s) represent instruction unavailable and/or advanced beyond that offered at the student's high school and the local community college.

High school students will not be considered for co-enrollment until they pass all sections of the TSI Assessment, or meet one of the following criteria which exempt them from the TSI Assessment requirements:
• Earn a composite score of 23 or higher on the ACT, with individual math, reading and English scores of no less than 19.

• Earn a composite score of 1070 or higher on the SAT, with 500 critical reading (formerly "verbal") and 500 math.

Non-Degree Seeking Students

Students who hold an undergraduate degree or higher and wish to take undergraduate courses for credit without seeking a degree may enroll as a non-degree seeking student. Up to 15 semester credit hours of such course credit may be transferred to any degree program at the University; acceptance of any of these semester credit hours is at the discretion of the Undergraduate Associate Dean of the School into which the student wishes to be accepted.

To continue enrollment beyond one semester, non-degree students will be bound by the same scholastic standards that apply to regularly enrolled degree-seeking students.

A non-degree seeking student whose work is unsatisfactory and who has been suspended from the University for academic reasons may not re-enroll without permission of the Dean of Undergraduate Education.

Non-degree seeking students may not be eligible for financial aid. It is recommended that applicants contact the UT Dallas Financial Aid Office for more information at 972-883-2941.

NOTE: International students may not enroll as non-degree seeking students; exceptions may be made for the summer session for those international students enrolled in a degree program elsewhere.

Second Baccalaureate Degrees

Before applying, students seeking a second baccalaureate degree should contact the department to which they are applying for more information. Upon acknowledgement from the school, students who earned an undergraduate degree at UT Dallas or another institution of higher education should apply for admission through Apply Texas, submit official transcripts from all non-UT Dallas college coursework, pay the non-refundable application fee(s), and be reviewed for admission. Such students often earn admission through individual review established by the school’s internal admissions process for this type of degree.

Transient Students

Students pursuing degrees at four-year colleges and universities other than UT Dallas and who desire to transfer semester credit hours taken at UT Dallas to the degree granting institution should apply for admission as transient students. Students will be admitted based on evidence of good academic standing at their home institution. In addition, students who have previously attended Texas state-supported institutions must provide evidence of their current TSI status.
Transient admissions are valid for a single semester. While UT Dallas credits are generally transferable to other institutions, the student is urged to seek prior approval of coursework to be completed at UT Dallas from the institution to which it is to be transferred.
Undergraduate Admission

Transfer Student Admissions

The University of Texas at Dallas accepts applications for admission from transfer students for the fall, spring, and summer semesters. UT Dallas welcomes applications from students who have begun their college work and are in good standing at other institutions of higher education.

Automatic Admission for Eligible Transfer Students

Section 51.8035 of the Texas Education Code establishes criteria for automatic admission to the University of Texas at Dallas for eligible transfer students who began their studies at a Texas institution of higher education following high school graduation.

To be eligible for automatic transfer admission under section 51.8035, a prospective transfer student must have:

1. Qualified for automatic admission to a Texas institution of higher education at the time he or she graduated from high school, or was previously offered admission under this provision.
2. First enrolled in a public junior college or other public or private lower-division institution of higher education not earlier than the third academic year before the academic year for which he or she is seeking admission to the University.
3. Completed the core curriculum at a public junior college or other public or private lower-division institution of higher education with a cumulative grade point average (GPA) of at least 2.500 on a 4.000 point scale, or the equivalent.
4. Submitted a complete application for transfer admission by the deadline.

To take advantage of the automatic admission option, the applicant must submit to UT Dallas, by the deadline, information that “expressly and clearly” claims entitlement to admission under this provision.

The University may accept transfer credit only for academic post-secondary coursework completed with a grade of C (2.000 on a 4.000 point scale) or higher. The University of Texas at Dallas does not offer credit for nonacademic coursework such as vocational, developmental or remedial studies, nor does it grant credit for prior experiential learning. Coursework that is accepted for transfer credit is applicable toward satisfying requirements for a specific UT Dallas major according to the same criteria as those used for equivalent UT Dallas courses.
Prospective transfer students from Dallas area community colleges should refer to the UT Dallas Transfer Guides, available at the UT Dallas Office of Admission and Enrollment Services, online at www.utdallas.edu/enroll/apply/tguides.php, and at the community college academic advising offices to learn more about curricula appropriate to the various UT Dallas majors.

As soon as an application for admission, transcripts and any required test scores have been received, the Office of the Registrar will evaluate the student's record to determine which credits earned at another college or university will transfer to UT Dallas.

Transfer students who begin their semester with 45 or more semester credit hours are required to file a degree plan with UT Dallas no later than the end of the student's regular semester in accordance with [Texas Education Code, Section 51.9685, subsection C.](http://www.utdallas.edu/enroll/apply/tguides.php)

Applicants seeking admission to UT Dallas should be aware that they will need at least 51 upper-division semester credit hours to graduate (see "Graduation Requirements" located at catalog.utdallas.edu/2013/undergraduate/policies/graduation#graduation-requirements).

Transfer Admission Criteria

Applicants to UT Dallas who have previously taken college credit courses, beyond high school graduation (excluding the summer following high school graduation), at other institutions of higher education will be reviewed for admission as transfer students. Transfer applicants with a [freshman classification](http://catalog.utdallas.edu/2013/undergraduate/policies/admission-policies#tsi) may be required to submit official high school transcripts and SAT/ACT scores as well as all college level coursework. Transfer applicants, with a higher classification, will be reviewed on their cumulative transfer GPA of post-secondary academic coursework and a review of specific college courses only.

Additionally, they are subject to compliance to the Texas Success Initiative (TSI) at catalog.utdallas.edu/2013/undergraduate/policies/admission-policies#tsi.

Assured Transfer Admission

Applicants with 42 or more transferable semester credit hours must meet the following criteria:

- A minimum cumulative transferable GPA of 2.700 on a 4.000 point scale
Applicants with 30-41 transferable semester credit hours must meet the following criteria:

• A minimum cumulative transferable GPA of 2.2700 on a 4.000 point scale
• Completion of certain coursework with a B or better (see additional details on coursework)
• Be in good standing from the last college or university attended

Students admitted on probation must earn a GPA of at least 2.00 for the first semester of enrollment.

Follow other conditions prescribed by the admitting associate dean.

May not drop from any class

May not register for more than 15 semester credit hours

See an academic advisor before registering

If admitted on probation, student must:

• See an academic advisor before registering
• May not register for more than 15 semester credit hours
• May not drop from any classes
• Must earn a grade of ‘C’ or better in classes
• Follow other conditions as prescribed by the admitting associate dean

Students admitted on probation must earn a GPA of at least 2.200 for the first semester of enrollment. Failure to meet these conditions will result in suspension. Students admitted on probation who are subsequently suspended from the University may be readmitted only by the

Admission Committee (7) if good standing is maintained and if all other conditions are met.
The Comet Connection Program

Many UT Dallas students transfer from a Texas two-year community college. The Comet Connection Program was specifically created to enable community college transfer students from Texas community colleges to blend their college experiences seamlessly - and without financial penalty. Members of the Comet Connection Program are also offered a Guaranteed Tuition Program and may defer admission up to 12 months after admission. For more information or to receive an updated list of participating community colleges, contact one of our admissions counselors at the Welcome Center at 972-883-2270 or visit www.utdallas.edu/connect.

Comet Connection members
Must satisfy Assured Transfer Admission criteria for transfer students or the following criteria:

- Associate’s Degree
- A GPA of 2.500 on a 4.000 point scale
Curriculum

Academic Degree Requirements

An undergraduate education at The University of Texas at Dallas is designed with several goals in mind. First, students will acquire a foundation of knowledge to support the development of expertise in the humanities, social sciences, the physical and natural world, and innovative, high-quality science, engineering, and business education and research. Therefore, all students are required to complete a Core Curriculum consisting of 42 semester credit hours. Secondly, students are expected to acquire depth in a field of study. To this end, students must fulfill the major and related requirements of a specified number of semester credit hours for their major. Thirdly, students are encouraged to take courses outside of their major and related field and beyond the Core Curriculum to explore intellectual domains beyond their area of specialization and beyond the core requirements.

In order to graduate with a baccalaureate degree from UT Dallas, students must complete and receive credit for all graduation requirements stated in Graduation Requirements.

Students are responsible for fulfilling their degree requirements and enrolling in courses appropriate to their degree programs. Students should, at the lower division, complete all freshman and sophomore prerequisites for the degree program. These requirements are set by the degree program and are listed under the program heading in the catalog; the number of semester credit hours may vary according to degree program. Students who are Texas residents should be aware that state law limits the number of semester credit hours that an undergraduate Texas resident may complete while paying tuition at the rate provided for Texas residents. The State of Texas limits the number of semester credit hours and course attempts. See additional information in the following policies: Excessive Undergraduate Hours (http://catalog.utdallas.edu/2013/undergraduate/tuition-and-financial-aid/excessive-hours), Dropping and Withdrawing Limitations (http://catalog.utdallas.edu/2013/undergraduate/policies/registration#limitations), and Repeating Course Work (http://catalog.utdallas.edu/2013/undergraduate/policies/course-policies#repeat).

Field of Study

If a student successfully completes a field of study curriculum approved by The Texas Higher Education Coordinating Board, that block of courses may be transferred to The University of Texas at Dallas and substituted for appropriate lower-division requirements of the appropriate

Mary Jo Venetis 1/7/14 11:34 AM
Comment [53]: Language added during CUE meeting. Approved by CUE, 1-7-14.

Mary Jo Venetis 12/9/13 9:00 AM
Deleted: First, the purpose of an undergraduate education is to acquaint students with ways of knowing the world of the natural sciences, mathematics, arts, humanities, and social and behavioral sciences.

Mary Jo Venetis 1/7/14 11:33 AM
Comment [54]: Language added; approved by CUE 1-7-14.

Mary Jo Venetis 1/7/14 11:31 AM
Deleted:

Mary Jo Venetis 1/7/14 11:28 AM
Formatted: Font:12 pt

McDowell, Jennifer 10/22/13 9:03 AM
Deleted: (UT Dallas)
degree. Following receipt of credit for these courses, students may be required to satisfy further requirements in the field of study curriculum for that degree at UT Dallas.

Major and Related Areas of Study

Courses taken to satisfy requirements for the student's major field of study may include major and related courses. Some of these may be outside the courses with the major's designation; such courses are related to the major and required for its satisfaction. Other requirements may be satisfied by courses from lists of guided electives within the major and related courses. Finally, some requirements may be courses preparatory to the major; they are not considered major-core or major-related courses.

Electives

The degree requirements of every major include the opportunity for elective courses, that is, courses exploring subjects not directly related to a student's major.

Minors

Some academic units designate a set of classes that constitute a minor in that academic unit. The requirements of the minor are set by the faculty of the academic unit offering the minor, not by the academic unit of the student's major field of study. When an academic unit offers a minor in a field of study, it is open to all students in the University regardless of school of origin. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.000 scale (C average) in courses making up the minor. Minors consist of a minimum of 18 semester credit hours, of which at least 12 must be upper-division semester credit hours, although individual academic units may require more semester credit hours at their sole discretion. Semester credit hours may not be used to satisfy both the major and minor requirements; however, elective semester credit hours or major preparatory classes may be used to satisfy the minor. At least one-third of the semester credit hours for a minor must be taken at The University of Texas at Dallas. Students should consult with an advisor in their major field of study as they select and plan minors.
The University of Texas at Dallas requires that all students complete a general education Core Curriculum of 42 semester credit hours that serves as a broad foundation for the undergraduate degree. [Through the Texas Core Curriculum] students will gain a foundation of knowledge of human cultures and the physical and natural world, develop principles of personal and social responsibility for living in a diverse world, and advance intellectual and practical skills that are essential for all learning in accordance with Texas Administrative Code, chapter 4, subchapter B, sections 4.28-4.31. These requirements must be met by every student pursuing a baccalaureate degree at The University of Texas at Dallas, regardless of their major. Specific approved courses must be used to satisfy each Core requirement listed in each category. In accordance with the Texas Education Code, Chapter 61, Subchapter S, a student who successfully completes the entirety of a Core Curriculum at another Texas public institution of higher education before matriculating at UT Dallas may transfer that block of courses to UT Dallas where it will be substituted for the UT Dallas Core Curriculum. If a student does not complete all of the Core Curriculum at another Texas public institution of higher education before matriculating at UT Dallas, the student will receive credit for the portion completed and then may be required to complete additional courses from the UT Dallas Core Curriculum.

010 Communication (6 semester credit hours)

Courses in this category focus on developing ideas and expressing them clearly, considering the effect of the message, fostering understanding, and building the skills needed to communicate persuasively. Courses involve the command of oral, aural, written, and visual literacy skills that enable people to exchange messages appropriate to the subject, occasion, and audience.

Critical Thinking (CT)–to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information

Communication (COM)–to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Teamwork (TW)–to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal

Personal Responsibility (PR)–to include the ability to connect choices, actions, and consequences to ethical decision-making

Courses:

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric
ECS 3390 Professional and Technical Communication

020 Mathematics (3 semester credit hours)

Courses in this category focus on quantitative literacy in logic, patterns, and relationships. Courses involve the understanding of key mathematical concepts and the application of appropriate quantitative tools to everyday experience.

Critical Thinking (CT)—to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information

Communication (COM)—to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Empirical and Quantitative Skills (EQS)—to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

Courses:

MATH 1306 College Algebra for the Non-Scientist*
MATH 1314 College Algebra *
MATH 1316 Trigonometry *
MATH 1325 Applied Calculus I *
MATH 2312 Precalculus *
MATH 2413 Differential Calculus *
MATH 2414 Integral Calculus
MATH 2415 Calculus of Several Variables *
MATH 2417 Calculus I *
MATH 2419 Calculus II *
PSY 2317 Statistics for Psychology *
STAT 1342 Statistical Decision Making *
STAT 2332 Statistics for Life Sciences *

030 Life and Physical Sciences (6 semester credit hours)

Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.

Critical Thinking (CT)—to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information

Communication (COM)—to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Courses with asterisks will be referred back to the CAO section.
Empirical and Quantitative Skills (EQS)-to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

Teamwork (TW)-to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal

Courses:

BIOL 1300 Body Systems with Lab *
BIOL 1318 Human Genetics *
BIOL 2311 Introduction to Modern Biology I *
BIOL 2312 Introduction to Modern Biology II *
BIOL 2350 Biological Basis of Health and Disease *
CGS 2301 Cognitive Science *
CHEM 1311 General Chemistry I *
CHEM 1312 General Chemistry II *
CHEM 1315 Honors Freshman Chemistry I *
CHEM 1316 Honors Freshman Chemistry II *
ENVR 2302 The Global Environment *
GEOG 2302 The Global Environment *
GEOS 1303 Physical Geology *
GEOS 1304 History of Earth and Life *
GEOS 2302 The Global Environment *
GEOS 2310 Environmental Geology *
GEOS 2321 Geology, Resources, and Environment of Latin America *
GEOS 2322 Age of Dinosaurs *
GEOS 2333 Introduction to Fossils *
GEOS 2409 Rocks and Minerals *
ISIS 2305 Humans: Our Place in Nature
ISIS 2308 Bones, Bodies, and Disease
ISNS 2359 Earthquakes and Volcanoes *
ISNS 2367 The Oceans *
NATS 1311 From the Cosmos to Earth *
NATS 2333 Energy, Water, and the Environment *
PHYS 1301 College Physics I *
PHYS 1302 College Physics II *
PHYS 2125 Physics Laboratory I *
PHYS 2325 Mechanics *
PHYS 2326 Electromagnetism and Waves *
PHYS 2421 Honors Physics I - Mechanics and Heat *
PHYS 2422 Honors Physics II - Electromagnetism and Waves *
PSY 2364 Animal Communication *
040 Language, Philosophy and Culture (3 semester credit hours)

Courses in this category focus on how ideas, values, beliefs, and other aspects of culture express and affect human experience. Courses involve the exploration of ideas that foster aesthetic and intellectual creation in order to understand the human condition across cultures.

Critical Thinking (CT)–to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information

Communication (COM)–to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Social Responsibility (SR)–to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities

Personal Responsibility (PR)–to include the ability to connect choices, actions, and consequences to ethical decision-making

Courses:

AMS 2300 American Popular Culture
AMS 2341 American Studies for the Twenty-First Century
HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II

050 Creative Arts (3 semester credit hours)

Courses in this category focus on the appreciation and analysis of creative artifacts and works of the human imagination. Courses involve the synthesis and interpretation of artistic expression and enable critical, creative, and innovative communication about works of art.

Critical Thinking (CT)–to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information

Communication (COM)–to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Teamwork (TW)–to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal

Social Responsibility (SR)–to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities
Courses:

AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
ARTS 1301 Exploration of the Arts
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

060 American History (6 semester credit hours)

Courses in this category focus on the consideration of past events and ideas relative to the United States, with the option of including Texas History for a portion of this component area. Courses involve the interaction among individuals, communities, states, the nation, and the world, considering how these interactions have contributed to the development of the United States and its global role.

Critical Thinking (CT)– to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information

Communication (COM)– to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Social Responsibility (SR)– to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities

Personal Responsibility (PR)– to include the ability to connect choices, actions, and consequences to ethical decision-making

Courses:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction

070 Government/Political Science (6 semester credit hours)

Courses in this category focus on consideration of the Constitution of the United States and the constitutions of the states, with special emphasis on that of Texas. Courses involve the analysis of governmental institutions, political behavior, civic engagement, and their political and philosophical foundations.
Critical Thinking (CT)—to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information

Communication (COM)—to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Social Responsibility (SR)—to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities

Personal Responsibility (PR)—to include the ability to connect choices, actions, and consequences to ethical decision-making

Courses:

GOVT 2107 Federal and Texas Constitutions
GOVT 2305 American National Government
GOVT 2306 State and Local Government

The University of Texas at Dallas is transitioning its core Government offerings to comply with State of Texas requirements. UT Dallas will be phasing out its Government 2301 and 2302 sequence. UT Dallas has added the Government 2305 and 2306 sequence. To assist students with the transition UT Dallas will temporarily teach both sets of Government offerings through the spring 2015 semester. The 2301 and 2302 sequence is now only open to students who have taken one or the other of 2301 and 2302. Students who have not taken any government course should only take the 2305 and 2306 sequence. After the spring 2015 semester UT Dallas will only teach 2305 and 2306. Students should follow the below guidelines when selecting a Government course:

I have not taken any Government (GOVT) courses:

* Take GOVT 2305 and GOVT 2306

I have taken GOVT 2305:

* Take GOVT 2306

I have taken GOVT 2306:

* Take GOVT 2305

I have taken GOVT 2301:

* Take GOVT 2302 or GOVT 2305 or GOVT 2306
I have taken **GOVT 2302**:

• Take **GOVT 2301** no later than the spring 2015 semester

• Otherwise you must take both **GOVT 2305** and **GOVT 2306**

080 Social and Behavior Sciences (3 semester credit hours)

Courses in this category focus on the application of empirical and scientific methods that contribute to the understanding of what makes us human. Courses involve the exploration of behavior and interactions among individuals, groups, institutions, and events, examining their impact on the individual, society, and culture.

Critical Thinking (CT) - to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information

Communication (COM) - to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Empirical and Quantitative Skills (EQS) - to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

Social Responsibility (SR) - to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities

Courses:

- CLDP 2314 Lifespan Development *
- CRIM 1301 Introduction to Criminal Justice
- CRIM 1307 Introduction to Crime and Criminology
- ECON 2301 Principles of Macroeconomics *
- ECON 2302 Principles of Microeconomics *
- ECS 3361 Social Issues and Ethics in Computer Science and Engineering
- GEOG 2303 People and Place: An Introduction to World Geographic Regions
- GST 2300 Introduction to Gender Studies
- PA 2325 Introduction to Public Service
- PSY 2301 Introduction to Psychology *
- PSY 2314 Lifespan Development *
- SOC 1301 Introduction to Sociology
- SOC 2320 Contemporary Social Issues

090 Component Area Option (6 semester credit hours)

a. A minimum of 3 SCH must meet the definition and corresponding Core Objectives specified in one of the foundational component areas.
b. As an option for up to 3 semester credit hours of the Component Area Option, an institution may select course(s) that:
 i. Meet(s) the definition specified for one or more of the foundation component areas; and
 ii. Include(s) a minimum of three Core Objectives, including Critical Thinking Skills, Communication Skills, and one of the remaining Core Objectives.

 - Critical Thinking (CT) – to include creative thinking, innovation, inquiry, and analysis, evaluation, and synthesis of information
 - Communication (COM) – to include effective development, interpretation, and expression of ideas through written, oral, and visual communication
 - Option of Empirical and Quantitative Skills, Teamwork, Social Responsibility, or Personal Responsibility

Courses:

ARHM 2340 Creativity
ARHM 2341 Global Media
ARHM 2342 Connections in the Arts and Humanities
ARHM 2343 Science and the Humanities
EPPS 2301 Research Design in the Social and Policy Sciences
EPPS 2302 Methods of Quantitative Analysis in the Social and Policy Sciences
EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences
MATH 1326 Applied Calculus II
MATH 2419 Calculus II
Honors Programs

Collegium V

Collegium V is a four-year, interdisciplinary honors program available to students in all majors. This selective academic program encourages intellectually creative, inquisitive, and highly motivated students to extend their educational experience beyond the scope of the traditional undergraduate curriculum. Students benefit from the small classes, innovative instruction, world-class faculty and bright, inquisitive colleagues. Collegium V coursework overlaps with standard degree requirements and is designed to be completed on schedule.

Membership in Collegium V is limited. Interested students must apply directly to the program at:

Collegium V
The University of Texas at Dallas
800 West Campbell Road - GC 10
Richardson TX 75080-3021
972-883-4297
collegiumv@utdallas.edu

Honors in the Major

Each school offers qualified students the opportunity to participate in an honors program within the school’s discipline. Each program may provide two levels of recognition, Honors and Distinction. All students must have completed a minimum of 30 graded semester credit hours to qualify for major honors. The requirements for major honor’s recognition vary across schools. Students should review the descriptions within the school section of the catalog.
Curriculum

Other Degree Requirements

Incoming Freshmen

All incoming first-time freshmen enrolling in The University of Texas at Dallas must complete and pass UNIV 1010, Freshman Seminar, during their first semester in attendance. UNIV 1010 is a graduation requirement for all first-time freshmen. This course is designed to introduce incoming freshmen to the intellectual and cultural environment of the university and the impacts it will have on their lives as students. The course incorporates presentations by leading UT Dallas faculty members on research developments of major current interest, small section meetings to discuss these presentations and matters of general concern to UT Dallas freshmen, and a substantial component of online learning focused on developing the strategies and tactics that will lead to successful careers at UT Dallas and beyond.

Incoming first-time freshmen pursuing a major in the Erik Jonsson School of Engineering and Computer Science must enroll and get credit for ECS 1200. They will satisfy the UNIV 1010 graduation requirement through ECS 1200 since ECS 1200 includes appropriate coverage of the UNIV 1010 content as specified by the Undergraduate Dean.

ECS 1200 may be substituted for UNIV 1010, provided students attend the large faculty lectures and complete the online learning focused on developing the strategies and tactics that will lead to successful careers at UT Dallas and beyond.

Double Degree

To qualify for double degrees at UT Dallas, students must complete all of the following requirements:

- 51 semester credit hours of upper division
- additional 30 semester credit hours of upper division
- 45 semester credit hours must be taken at UT Dallas
- meet all degree requirements for both degrees
- meet all graduation requirements
Double Major

Students may earn a baccalaureate degree with two majors (double major) when the baccalaureate degree is the same. For example, a student may earn Bachelors of Science in Biology and Business Administration when the degrees are Bachelor of Science in Biology and Bachelor of Science in Business Administration.

With the approval of the relevant Associate Dean, students may complete a double major by satisfying all the following requirements:

• 51 semester credit hours of upper division
• 45 semester credit hours must be taken at UT Dallas
• meet all degree requirements
• meet all graduation requirements

Students pursuing a double major must identify one of their two majors as a primary major to establish an academic home of record.

The University of Texas at Dallas offers the following prescribed double majors:

• Biology (BA) and Criminology (BA)
• Business Administration (BS) and Biology (BS)
• Economics (BS) and Finance (BS)
• Molecular Biology (BS) and Business Administration (BS)

Double majors in Interdisciplinary Studies are not available.

Second Baccalaureate Degree

Incoming students who already hold a baccalaureate degree from another institution and have been admitted to UT Dallas to obtain a second baccalaureate degree at UT Dallas must complete all of the following requirements:

• 30 semester credit hours of upper division at UT Dallas
• 51 total upper division semester credit hours (can be combined from UT Dallas and transferred semester credit hours)
• 45 semester credit hours must be taken at UT Dallas
• meet all degree requirements
• meet all graduation requirements

A student may earn a double major or a second baccalaureate degree but not both.

Diploma and Transcription for Double Major and Double Degree

When applying for graduation, a student should communicate with his/her advisor that he/she will be completing a double major or double degree.

The University transcripts both the double major or the double degree onto the official transcript. The University issues one diploma for double majors based on the student-chosen primary major's degree. For double degree, the University issues two diplomas.
Tuition and Financial Aid

About Tuition and Financial Aid

As a state supported institution of higher education, The University of Texas at Dallas is required to comply with all state laws in the assessment and collection of tuition, fees, and deposits. The tuition, fees, and deposits listed herein are subject to change by legislative or regental action and changes become effective on the date enacted. Pursuant to Chapter 54, Texas Education Code, each student who registers is required to pay tuition and fees appropriate to the student's residence classification and according to the number of semester credit hours for which he or she has registered.

In accordance with state laws, a student is not entitled to enter a class or laboratory until registered and all tuition, fees, and deposits have been paid.

The University of Texas at Dallas utilizes a consolidated tuition rate, which is capped at 15 semester credit hours for all students. The consolidated tuition and fee rates cover all academic program costs, including tuition, mandatory fees, and most of the college and course incidental fees. Additional fees that will be charged separately are: field trip fees, supplemental designated tuition fees and distance education fees. The Tuition and Fee Tables can be found on the Bursar Office website.

Residency Classification for Tuition Purposes

Residency classification for tuition purposes at Texas colleges or universities is in accordance with Title 19, Part 1, Chapter 21, Subchapter B of the Texas Administrative Code and the rules of the Texas Higher Education Coordinating Board for determining residence status. A person classified as a nonresident for tuition purposes may qualify, under certain exceptions specified in the rules, for resident tuition rates and other charges, while he or she continues to be classified as a nonresident for tuition purposes. Two helpful websites concerning residency classification for tuition purposes provided by the State are Texas Administrative Code website and www.collegeforalltexans.com. Please consult The University of Texas at Dallas' website for residency information and procedures, www.utdallas.edu/residency.

It is the student's responsibility to establish, prior to registration, the correct residence classification through the Office of the Registrar. Likewise, any student wishing to request a change of residence status for tuition purposes should do so through the Office of the Registrar. This will require completion of a residency questionnaire and the provision of documents to support the claim of Texas residency. Rules and regulations for determining residency, or for obtaining a waiver to pay resident tuition even if one is a non-resident, are found at www.utdallas.edu/residency. Final authority of appeal for review of residence decisions rests with the Office of the Registrar.
For residents of Oklahoma, tuition is the Texas resident rate shown plus thirty dollars ($30.00) per semester credit hour. Oklahoma residents must apply for this tuition waiver each semester through the Office of Financial Aid.

Guaranteed Tuition Plan

Beginning fall 2007, The University of Texas at Dallas introduced the Guaranteed Tuition Plan. The Guaranteed Tuition Plan is designed to help new students and their families better plan for the cost of a college education, while allowing the University to maintain the quality of its academic programs. Under the terms of the plan, undergraduate students enrolling at UT Dallas for the first time for the fall 2014, spring 2015 and summer 2015 semesters are charged for tuition and mandatory fees fixed at the fall 2014 rates for all succeeding semesters through the summer of 2018. The charges per semester credit hour for tuition and mandatory fees at UT Dallas depend on the number of semester credit hours for which a student enrolls. Other user fees for courses and services including, for example, parking, and housing fees, are subject to change. More information on the Guaranteed Tuition Plan can be found at www.utdallas.edu/tuition.

In the event a student is unable to complete their degree requirements in four years, that student will be advanced to the subsequent Guaranteed Tuition rate. Students enrolling after three consecutive semesters have elapsed will be placed in the Guaranteed Tuition Rate plan applicable to all new incoming students.

Those who begin their college careers at a community college will also be able to take advantage of UT Dallas' Guaranteed Tuition Plan under a program called the Comet Connection. As Comet Connection members, students can lock in their tuition rate. Students may contact UT Dallas' Office of Admission and Enrollment Services Advisors at 972-883-2270 or go to www.utdallas.edu/connect for more information.

Students who graduate from UT Dallas before their rate plan expires may retain their current Guaranteed Tuition Rate as a graduate student. Additionally, if the student maintains consecutive enrollment and reaches the end of their Guaranteed Tuition Rate period, they will be moved to the next subsequent Guaranteed Tuition Rate plan. Students enrolling after three consecutive semesters have elapsed will be placed in the Guaranteed Tuition Rate plan applicable to all new incoming students.

Tuition Installment Payments

Students may elect an installment plan to pay tuition and fees for the full term fall, spring, and eleven week summer semesters. The installment payment plan, authorized under Section 54.007,
Texas Education Code, allows the student to pay their tuition and fee balance in three equal payments. A $25.00 fee per semester will be assessed each student who elects to pay by installments. Additionally, a late payment fee of $30.00 for delinquent payment will be assessed each time an installment is not paid by the date it is due. If the installment is not paid in full by the third due date, it begins accruing interest at the rate of 10% per year until it is paid in full.

Nonpayment of Debt

Students must pay by the published deadline to avoid late fees and/or possible dropping of classes. Students should NOT expect classes to be automatically dropped for nonpayment. Please be advised it is the student's responsibility to confirm that he/she has been dropped from all classes for nonpayment to avoid being assessed late fees or penalties.

Students who have not paid in full or enrolled in a payment plan by the posted payment deadline may have their registration cancelled. If a student's registration is canceled for nonpayment, and that student wishes to re-register, a reinstatement fee in addition to any late fees and tuition and fees will be charged. See the online fee schedules at www.utdallas.edu/bursar/tuition/fees for fees associated with course reinstatement. No student will be reinstated in a closed course.

A student who fails to provide full payment of loans, tuition, and fees, including late fees assessed, to the University when the payments are due is subject to one or more of the following actions at the University's option:

- Classes may be cancelled;
- Bar against registration and/or readmission to the institution;
- Withholding of grades, diploma, and official transcript; and
- All penalties and collection actions authorized by law.

Students may refer to the Academic Calendar or the Tuition and Fees Schedule for information regarding payment and refund deadlines.

Tuition and Fee Exemptions/Waivers

As a state-sponsored institution of higher education in Texas, The University of Texas at Dallas is authorized to award tuition and fee exemptions and/or waivers to a student who qualifies based on statutory criteria. Effective Fall 2014, in order to continue to qualify for many of the tuition and fee exemptions or waivers, a student must maintain a grade point average for making satisfactory academic progress at The University of Texas at Dallas. In addition, in order to continue to qualify for most tuition and fee exemptions, undergraduate students must not complete an excessive number of credit hours (Texas Education Code, Sections 54.2001 and
See http://www.utdallas.edu/student/finaid/SAP.htm for details regarding the satisfactory academic progress criteria and policies. Exemptions are available to:

- entering undergraduate students who are the highest ranking graduates of accredited Texas high schools,
- certain students who were adopted and subject to an adoption assistance agreement,
- certain students who have been under the conservatorship of the Department of Protective and Regulatory Services,
- blind or deaf students,
- students from other nations of the western hemisphere,
- certain students who are enrolled only in distance/off campus learning courses,
- certain students taking courses at an institution under an inter-institutional academic program agreement, but who are enrolled primarily at another institution,
- senior citizens who are 65 years or older,
- certain residents of Texas who served in the armed forces of the United States and their dependents,
- Texas residents classified by the U.S. Department of Defense as prisoners of war on or after January 1, 1999,
- children of POWs/MIA,
- children and spouses of disabled/deceased MIA Texas veterans,
- certain residents of Texas who were permanently disabled when performing duties as Texas peace officers,
- firefighters enrolled in Fire Science classes,
- peace officers enrolled in law enforcement or criminal justice courses as undergraduate students,
- children and spouses of disabled/deceased firefighters and peace officers,
- surviving spouses and minor children of certain police, security or emergency personnel killed in the line of duty,
- undergraduate students who are children of professional nursing program faculty.

Senior citizens who are age 65 or older as of Census Day may be exempted from tuition for up to six semester credit hours each semester or summer term if space is available.

For additional information, please see the College for All Texans website regarding exemptions. Individuals who feel they may qualify under this section are requested to contact the Office of Financial Aid at 972-883-2941.

Freshman Exemption

The highest-ranking graduate of any accredited high school in Texas is entitled to a tuition exemption. The exemption pays tuition for a period of two long semesters of academic work. Eligible students must present the Texas Education Agency eligibility certificate or a letter from the student's high school principal or superintendent, to the Office of Financial Aid in order to claim the exemption.
Rebate of Tuition for Timely Graduation

Section 54.0065 of the Texas Education Code authorizes a tuition rebate of $1,000 for certain students who are receiving their first bachelor's degree from a public institution in Texas. Students may be eligible if they enrolled for the first time in an institution of higher education in the fall 1997 semester or later, are Texas residents, have been eligible for resident tuition in Texas at all times while pursuing their bachelor's degree, and have attempted no more than three semester credit hours in excess of the minimum number required to complete the degree under the catalog under which he/she is graduating may be eligible. Students who enrolled for the first time at UT Dallas or any other institution of higher education in or after fall 2005 must also graduate within four calendar years of their first enrollment in order to qualify.

Attempted semester credit hours include all earned semester credit hours, unearned semester credit hours (completed courses with non-passing grades), all attempted transfer courses, academic credit earned by examination, courses dropped after an official census date, for credit developmental courses, vocational/technical courses taken at other schools, optional internships or cooperative education courses, and repeated coursework.

Students must submit an application for the rebate to the Office of the Registrar by the last day of class for the semester he/she plans to graduate. Students will receive an official notification of their approval or denial within 4 weeks of their graduation. Students who qualify and have loans with the State of Texas will have the rebate applied toward their outstanding loan debt. All other approved students will receive a rebate check via mail. Students wishing additional information about the Texas Tuition Rebate should visit the following website: http://www.utdallas.edu/student/registrar/forms/tuitionrebate.pdf.

Tuition Tables

Tuition and fees are subject to change by legislative action. Changes in tuition or fees will be effective upon date of enactment and will be reflected in fees and tuition charged. Specific tuition and fees for each term can be found at www.utdallas.edu/bursar/ tuition/tables.

Please note that the Texas Legislature does not set the specific amount for any particular student fee. The student fees assessed above are authorized by the state statute; however, the specific fee amounts and the determination to increase fees are made by the University administration and The University of Texas System Board of Regents. Students taking courses in the School of Behavioral and Brain Sciences may be required to purchase professional liability insurance if they are in certain clinical experiences.

Students will be given notice on their tuition bill, tuition receipt or an email in connection with tuition charges, of the amount of his/her tuition payment that is required to be set aside to provide financial assistance for students enrolled at the institution per the Texas Education Code, Section 56.014.
Tuition and Financial Aid

Excessive Undergraduate Hours

Section 54.014, Texas Education Code, authorizes Texas public institutions of higher education to charge resident undergraduate students at a higher rate not to exceed the nonresident tuition rate if they exceed the maximum number of semester credit hours attempted to complete their degree programs. Attempted semester credit hours include all semester credit hours taken at a Texas public institution of higher education for which a student was registered as of Census Day, including, but not limited to, courses that have been repeated, failed, and courses from which the student withdrew.

Undergraduate resident students who enrolled for the first time in fall 1999 through summer 2006, the maximum is 45 semester credit hours beyond the minimum number of semester credit hours required for completion of the degree program in which the student is enrolled, or 120 semester credit hours for a student who is not enrolled in a degree program.

Undergraduate resident students who enrolled for the first time in fall 2006 and subsequent semesters, the maximum is 30 semester credit hours beyond the minimum number of semester credit hours required for completion of the degree program in which the student is enrolled, or 120 semester credit hours for a student who is not enrolled in a degree program.

Undergraduate Texas resident students who exceed the maximum semester credit hours towards completion of the primary degree program will be charged the non-resident tuition rate. Students already holding one baccalaureate degree are exempt from the non-resident tuition rate or the maximum number of semester credit hours when enrolled in a second baccalaureate degree program.

Students may be exempted from the payment of the excessive hours charge if the payment of the non-resident tuition rate would result in an economic hardship for the student. A student with an economic hardship is defined as someone who, at the time of registration, is documented with the Office of Financial Aid as being eligible for a Federal Pell Grant, regardless of whether they actually receive the funding due to enrollment status, non-satisfactory academic progress, or other reasons. Students seeking an exemption are encouraged to contact the Office of the Registrar to verify eligibility prior to Census Day for the term. Excessive tuition charges will not be removed retroactively.

For more information regarding excessive semester credit hours, please visit the Office of the Registrar's website.
Tuition and Financial Aid

Refund of Tuition and Fees

It is the student's responsibility to know and understand the state mandated refund policy. Upon notification from the Office of the Registrar of official withdrawal, the Bursar Office shall reimburse the applicable portion of tuition and fees (unless otherwise noted) in accordance with the following schedule:

If the student withdraws during a fall or spring semester or a summer term of 10 weeks or longer:

- Prior to the first class day of a given semester, 100 percent reimbursement
- During the first five class days, 80 percent of the applicable portion of the tuition and applicable fees reimbursement
- During the second five class days, 70 percent reimbursement
- During the third five class days, 50 percent reimbursement
- During the fourth five class days, 25 percent reimbursement
- After the fourth five class days, no reimbursement

If the student withdraws during a term or session of more than five weeks but less than 10 weeks (five- and eight-week summer sessions):

- Prior to the first class day of a given term, 100 percent reimbursement
- During the first, second, and third class day, 80 percent reimbursement
- During the fourth, fifth, and sixth class day, 50 percent reimbursement
- Seventh class day and thereafter, no reimbursement

Separate withdrawal refund schedules may be established for other fees and charges. Refer to the "Other User Fees for Courses and Services" section at catalog.utdallas.edu/2013/undergraduate/tuition-and-financial-aid/other-fees for refund information.

Cash refunds will not be made to students. Refund checks will be mailed to the student's address listed on their Student Center in Orion three business days after the refund is requested unless the student has opted for direct deposit through EZPAY. Direct deposit refunds are normally available 3 to 5 business days from the date they were requested.

All policies regarding the payment or refunding of tuition, fees, and charges are approved by the Board of Regents of The University of Texas System and are in compliance with the Texas Education Code, Section 54.006 of the Texas Statutes. If a person desires clarification of any matter relating to payment or refund of such charges, he or she should contact the office or administrative unit from which the charge or refund originated.
Refunding Students in Title IV Programs

As an institution participating in programs under Title IV of the Higher Education Act of 1965 as amended ("Act"), The University of Texas at Dallas is required to refund unearned tuition, fees, room and board, and other charges to certain students attending who have received a grant, a loan, or work assistance under Title IV of the Act, or whose parents have received a loan on their behalf under 20 U.S.C. Section 1087-2. The refund is required if the student does not register for, withdraws from, or otherwise fails to complete the period of enrollment for which the financial assistance was intended. No refund is required if the student withdraws after a point in time that is sixty percent of the period of enrollment for which the charges were assessed. A student who withdraws prior to that time is entitled to a refund of tuition, fees, room and board, and other charges that is the larger of the amount provided for in Section 54.006, Texas Education Code, or a pro rata refund calculated pursuant to Section 484B of the Act, reduced by the amount of any unpaid charges and a reasonable administrative fee not to exceed the lesser of five percent of the tuition, fees, room and board, and other charges that were assessed for the enrollment period, or one hundred dollars. If the student's charges were paid by Title IV funds, a portion or all of the refund will be returned to these programs.
Tuition and Financial Aid

Other User Fees for Courses and Services*

* The following information is not intended to be comprehensive and is subject to change. Tuition and fees are subject to change by legislative or regental action, and changes become effective on the date of enactment. The Texas Legislature does not set the specific amount for any particular student fee. The student fees assessed below are authorized by state statute; however, the specific fee amounts and the determination to increase fees are made by the University administration and The University of Texas System Board of Regents. Fees can be found on the Bursar Office website for each term.

Application Fee: A nonrefundable application fee of $50.00 is required of all students applying for admission to The University of Texas at Dallas during the regular application period. If a student submits an application after the application deadline but prior to the documentation deadline, the application fee is $125.00 in order to process the application for a decision in time to register for classes. An additional $50.00 international document evaluation fee is required for those who have educational documents from countries other than the United States. Please refer to the Office of Admission and Enrollment Services website for application deadlines.

Audit Fee: Students at The University of Texas at Dallas may, with the approval of the instructor and of the Office of the Registrar, audit courses. Auditing grants only the privilege of hearing and observing and does not grant credit. When approval has been granted, the applicant pays a fee of $100.00 per course. A student may withdraw from an audit course, but the fee will not be refunded. Persons 65 or over are permitted to audit without paying a fee. They must, however, qualify otherwise (see "Auditing Courses" at catalog.utdallas.edu/2013/undergraduate/policies/course-policies#auditing), complete the audit form, and have the consent of the instructor. Audit registration is permitted only during the late registration period of each semester or term.

Change of Major Fee: There is a $50.00 fee for students changing majors more than two times in an academic career. Exception: There is no charge to move from the "undeclared major" category. See "Change of Major" located at catalog.utdallas.edu/2013/undergraduate/policies/degree-plans#change-major).

Collin Higher Education Center Fee: Courses offered at Collin Higher Education Center are charged a $80.00 fee per semester credit hour.

Comet Camp Fee: A $150.00 per student fee is required to defray the costs of materials, food, and field trip for freshmen who attend Comet Camp.
Diploma Replacement or Duplicate Fee: A $10.00 fee is required to defray costs of preparing replacement or duplicate diplomas. An additional $25.00 will be charged to mail a diploma to a foreign address.

Distance Learning Fee: A fee per semester credit hour to enroll in distance education courses offered over the Internet. Please check the online fee schedules at www.utdallas.edu/bursar/tuition/tables for fees rate. The rate varies based on the specific tuition plan.

Emergency Transcript (same day): A $10.00 processing fee in addition to the Transcript Request Fee [see below for fee] for expedited service of the official transcript.

Field Trip Fee: This fee is assessed to cover the costs of transportation, food, and/or lodging associated with a field trip. The amount of the fee varies depending on the destination and duration of the field trip. Every effort will be made to advise students of the field trip costs associated with a particular course at the time of registration, and the appropriate fee will be assessed at that time. Refund provisions do not apply to this fee.

In Absentia Registration Fee: A student who registers in absentia shall pay a nonrefundable/nontransferable registration fee of $100.00. (See definition of in absentia at catalog.utdallas.edu/2013/undergraduate/policies/registration#inabsentia).

Installment Payment Plan Fee: A $25.00 fee to cover the costs of providing a payment option for students in full term fall or spring semester courses. The plan is also available for students enrolled in the 11-week summer semester.

Installment Plan Late Fee: A late payment fee of $30.00 for delinquent payment will be assessed if the second or third tuition installment is not paid by the published due date. In the event of non-payment, the total amount due shall accrue interest from the third payment deadline at the rate of ten percent (10%) per year until the note is paid in full.

Institutional Loan Delinquency Fee: A late charge of $30.00 per month ($90.00 maximum per note) will be assessed to students who do not repay their loans in accordance with the terms of the note.

Institutional Loan Origination Fee: A loan origination/administration fee of 1.25% of the total loan balance will be assessed and must be paid by the due date.

International Student Special Services Fee: The International Student Special Services Fee supports the ongoing success of non-immigrant students enrolled at UT Dallas. This fee supports the programs and services of the International Student Services Office (ISSO), including: immigration advising, certification of immigration benefits, cultural/social events, and educational/transitional programs. In addition, the fee supports federal reporting and certification of international student data in accord with federal regulations.
The mandatory $100.00 International Student Special Service fee is assessed at the time of registration each semester. Immigrant categories that are fee-exempt include: U.S. citizen, U.S. Permanent Resident, Temporary Protected Status, Refugee, Asylee, Public Interest Parolee, Temporary Residence-Amnesty and undocumented aliens. Any student whose status changes officially to one of the exempt classifications is required to submit proof of that change to the UT Dallas Registrar's Office and International Student Services Office and will not, subsequently, be assessed the fee. If the appropriate documentation is submitted prior to Census Day of a semester, the fee for that semester will be refunded based on the tuition refund schedule as published in the UT Dallas Academic Calendar.

Late Course Add Fee: A $100.00 per course fee is assessed when a registered student adds a course after Census Day.

Late Graduation Fee: A $100.00 non-refundable, non-transferable fee is assessed when an approved application for graduation is received after the deadline.

Late Registration/Late Payment Fee: A nonrefundable charge of $100.00 with additional increments of $50.00 based on the number of days past the regular registration/payment deadline is required to defray costs associated with extending registration times.

Library Fines and Charges: Fines and fees for overdue library items are available at the Eugene McDermott Library's circulation policies: www.utdallas.edu/library/about/policies/circpolicy.html. Copies of the fine schedule can also be obtained at the McDermott Library Circulation/Reserve Desk.

Orientation Fees: Students attending Freshman Orientation will be charged $100.00. Transfer students will be charged the Transfer Student Orientation Fee of $25.00. International students will be assessed the International Student Orientation Fee of $50.00.

Parking Fees: A parking permit is required to park any motorized vehicle on campus. Any vehicle parked on campus that does not display a current parking permit will be subject to a parking citation. In compliance with the [Texas Education Code 51.207](https://www.texas律.org/statutes/chapter_51.htm), The University of Texas at Dallas has procedures for enforcing State of Texas vehicle inspection laws for vehicles parking or driving on the campus of the institution. The law is as follows:

51.207 (b) This subsection applies only to a public institution of higher education campus that is located in whole or part in an area in which a motor vehicle registered in the area is required to undergo a vehicle emissions inspection under Subchapter F, Chapter 548, Transportation Code. The institution may not issue a permit to a student enrolled at the institution to park or drive a motor vehicle that is not registered in this state on institutional property unless the institution has provided written notice to the student concerning requirements for vehicle emissions inspections pursuant to Subchapter F, Chapter 548, Transportation Code.

Information regarding parking regulations and permit fees may be found at the Parking and
Transportation website under permits at www.utdallas.edu/parking/regulations.html or www.utdallas.edu/parking/permits.html. Students may purchase the following permits online through the UT Dallas Online Store and mailed to the shipping address provided or purchase them in person at the Bursar Office:

- E-Parking: Allows students to park in extended parking spaces in lots A and B only.
- Green: Allows students to park in campus green and extended parking spaces.
- Gold: Allows students to park in campus gold, green, or extended parking spaces.
- Evening Orange: Allows students to park in orange marked spaces after 5 p.m. or gold, green, and extended parking spaces anytime.
- Housing Only: A parking permit is required for all residents of the University Village apartments. Allows students to park in residential lots or green parking at WSTC, ROC, and Callier-Dallas only.

Note: Only one housing permit may be sold per student residing in the on campus apartments or resident hall. Housing permits are non-refundable.

Parking permits are purchased for the academic year and are refundable on a prorated basis with the exception of the housing only permit.

Parking is free for disabled veterans that have a state handicap placard and/or plates in accordance with Texas Education Code, section 681.008. The disabled veterans must register with Parking and Transportation Services to receive a UT Dallas handicap parking permit and may park in any parking space on campus that is not reserved. A UT Dallas handicap parking permit is necessary to park in handicap designated spaces.

The Dallas Area Rapid Transit System (DART) provides bus service to the campus from the Richardson transfer terminal. Contact DART for schedule information. Students are eligible for a free transit pass from DART, which is available through the Comet Center, located on the second floor of the Student Union.

Physical Instruction Fee: A $25.00 per course fee will be charged for all Physical Instruction (PHIN) courses.

Practical Training Fee: A $100.00 per semester fee is charged to assist in funding the administrative and clerical expenses required to review records and process the forms required by the United States Citizenship and Immigration Service to certify international students for placement in curricular or optional practical training assignments.

Recreational Sports Group Exercise / Non-credit Course Fee: A group exercise pass can be purchased for $50.00 granting access to all group exercise classes for the semester. Non-credit courses are $50.00 for each individual class a student chooses to participate in.

Recreational Sports Locker Rental Fee: An optional locker rental fee (based on the size of the locker rented) of $5.00 - $15.00 per semester.
Recreational Sports Towel Service Fee: An optional towel service of $10.00 per semester.

Reinstatement Fee (Prior to Census Day): After the payment deadline for each semester, all registration for which tuition and fee payments have not been received may be canceled. If a student requests that the courses be reinstated before Census Day, a $25.00 reinstatement fee will be charged in addition to the graduated late registration fee. No student will be reinstated into a class that has been closed.

Reinstatement Fee (After Census Day): A $300.00 fee will be charged, in addition to tuition and required fees, to enroll a student after Census Day.

Returned Check Fee: Students will be assessed a $25.00 fee for each returned check unless their bank provides written notification it was at fault. Students who write bad checks to the University for tuition and fees will have their registration canceled unless full payment is made by the census day listed in the Academic Calendar.

Student Documents/Records Fee: Students may obtain a copy of International Transcripts by making a written request to the Office of the Registrar and paying a fee of $10.00 per document copy at the Bursar Office. Processing of these requests for copies will generally take four to five work days. Students should be aware, however, that transcripts of other schools received by the University are used as working documents, frequently carry written marks and notations, and may not be considered viable transcripts by other agencies.

Student Health Insurance Fee: A variable fee to pay the student’s premium for the approved UT Dallas student health insurance plan available to all students and required for international students (students who are not US citizens, US Permanent Residents, Asylees, Refugees or undocumented aliens). (See catalog.utdallas.edu/2013/undergraduate/resources#student-health-insurance).

Student Health Insurance Fee, Dependents and Extra Coverage: A variable fee to pay the premium for expanded coverage within the approved UT Dallas student health insurance plan. These insurance fees are optional and available upon request to students who wish to add dependents or extra coverage to their enrollment in the UT Dallas student health insurance plan.

Student Identification Card Replacement Fee: A $25.00 fee is required to defray the costs of reissuing a student ID card.

Student Teaching Supervisory Fee: A $250.00 per field experience fee is required to defray the costs of providing University supervisors and travel for University supervisors of student teachers.

Supplemental Designated Tuition: An extra fee per semester credit hour will be assessed for students enrolled in any School of Management course, School of Engineering and Computer Science course, School of Arts and Humanities ATEC course, Economic, Political and Policy Sciences graduate Public Affairs course, or School of Behavioral and Brain Sciences graduate Speech Language or Audiology (COMD or AUD) course. These fees are assessed to defray the
higher costs associated with instruction in these schools. Please check the online fee schedules at www.utdallas.edu/bursar/tuition/tables for fees rate. The rate varies based on the specific tuition plan.

Transcript Request Fee: A $10.00 processing fee for each official University transcript requested.

Universities Center at Dallas Fee: A $15.00 fee per semester credit hour is required to defray the costs of courses taken at the Universities Center at Dallas.
Tuition and Financial Aid

Financial Aid

The Office of Financial Aid is available to assist students in obtaining funds to attend the University. Aid is available in the form of grants, loans, and part-time employment or any combination of those programs. Limited numbers of scholarships are available. The total amount of aid a student receives depends on the student's cost of attendance, expected family contribution, meeting application deadlines, outside resources, academic history, and the availability of funds.

Students are encouraged to contact the Office of Financial Aid to obtain appropriate application materials and to determine eligibility for the various forms of aid available. Students may view the Office of Financial Aid website for up-to-date information. The Office of Financial Aid is located in the Student Services Building, 972-883-2941.

Changes in regulations or policy on a federal, state, university, private lending, or donor level could affect the types of programs, amounts available, and/or program requirements. A complete overview of the estimated cost of attending the University is available on our website at www.utdallas.edu/student/finaid/Estimated_Costs.htm.

Eligibility

Most of the aid listed in this catalog is awarded on the basis of financial need. Students are encouraged to determine the amount of resources they can provide toward their education and to compare it with the average cost of attending the University. UT Dallas' estimated cost of attendance budgets are reviewed annually in accordance with federal and state guidelines. Federal guidelines outline what can be included in student budgets. The costs of tuition and fees, books and supplies, an average room and board cost, transportation, and a limited amount for other personal expenses are the basic components of student budgets. Unusual expenses, such as childcare costs or educational costs related to the student's medical disability, may be considered when they have been properly documented.

Financial need is the difference between the cost of attending the University and the amount a student and family can reasonably provide. The amount of the expected family contribution is based on a federal formula reflecting total family income, assets, household size, and the number of family members currently attending post-secondary educational institutions. Parents are expected to provide financial support to their children to the extent they are able unless it is clearly established that the student is independent of any family support.

In determining whether a student is considered independent or self-supporting, the Office of Financial Aid adheres to the standards set by the U.S. Department of Education to establish an applicant's dependency status. Students 24 years or older are considered financially independent. Students under the age of 24 are considered financially dependent unless they are orphans, wards...
of the court, emancipated minors, verifiable unaccompanied homeless youths, veterans, active
duty military, graduate students, married, or unmarried but with legal dependents.

Applying for Financial Aid

Students must complete a new Free Application for Federal Student Aid (FAFSA) each
academic year. Any additional required supporting documents must also be submitted for each
academic year. The FAFSA is available January 1st of each year for the subsequent academic
year. The awarding of need based financial aid is based on the results of each year's FAFSA.

Required Course Load

The course load requirement for students receiving each type of aid, with the exception of the
Federal Pell Grant, is at least one-half the normal course load. Undergraduate students must
maintain no fewer than 6 semester credit hours for each term of enrollment to be considered half
time for financial aid purposes. There is no distinction between a regular, long semester and a
short summer term when determining the required course load. Students should contact the
Office of Financial Aid before they reduce their course load to determine what effect the reduced
course load will have on current and future financial aid eligibility.

Renewal of Financial Aid

For a student to be considered for a renewal of financial aid, a new Free Application for Federal
Student Aid (FAFSA) and supporting documents must be submitted for each academic year. If
you do not meet federal eligibility requirements to be considered a citizen or eligible non-citizen,
but have been classified as a Texas resident and are therefore eligible to pay the Texas in-state
tuition rate, you must complete a paper version of the Texas Application for Student Financial
Aid (TASFA) available to be downloaded and printed at www.collegeforalltexans.com. This
must be submitted directly to the Office of Financial Aid.

Revocation of Financial Aid

The University reserves the right to adjust or cancel awarded financial aid when the information
used to make the award changes. Partial or full repayment of awards may be required.

Any change in a recipient's financial situation, such as additional grants, scholarships, or private
student loans, must be reported to the Office of Financial Aid. Federal law governing the
administration of financial aid requires UT Dallas to consider most forms of grants, scholarships,
and private loans as a resource, without regard to the source or how the aid is disbursed, when
awarding federal student financial aid.

Information concerning student financial aid is accurate at the time of printing. Changes in
regulations or policy on a federal, state, university, private lending, or donor level could affect
the type and amount of programs available and/or program requirements. The Office of Financial
Aid has detailed information available upon request.
Satisfactory Academic Progress Policy for Financial Aid

The University of Texas at Dallas has a Satisfactory Academic Progress (SAP) policy for a student receiving federal and University student financial assistance.

Generally, students are expected to remain in good standing by the satisfactory completion of a minimum number of semester credit hours, based on a percentage of the semester credit hours attempted and completed for each term of enrollment. In addition, undergraduate students must maintain a term and cumulative GPA of 2.000 or higher on a 4.000 scale on coursework completed at the University.

For more detailed information the student should contact the Office of Financial Aid. This information is also available online at the Office of Financial Aid website at www.utdallas.edu/student/finaid/SAP.htm. A link to the website is provided on award notifications.

Selective Service

Male students between the ages of 18 and 26 must register with Selective Service to qualify for federal and Texas student loans or grant programs. Students may register with Selective Service by visiting their local post office or online; they can also verify their registration at www.sss.gov.

Effective January 1, 1998, the selective service requirement is also applicable to students applying for financial assistance funded by State revenue.
Tuition and Financial Aid

Types of Financial Aid

Basis for the Type of Financial Aid

The aid awarded to a student may consist of a loan, grant, scholarship, part-time job, or any combination of these programs. The total amount of aid the student receives depends on the student's cost of attendance, expected family contribution, meeting application deadlines, outside resources, academic history, and the availability of funds.

The following is a summary of the types of assistance that are available to students at The University of Texas at Dallas. The student should be aware that many of the programs are subject to change without notice by the state or federal government. Information on all programs may be obtained from the Office of Financial Aid unless otherwise noted.

Federal Pell Grant

The Federal Pell Grant program provides funds to students demonstrating financial need. Students should submit the Free Application for Federal Student Aid (FAFSA) through the Internet at www.fafsa.ed.gov to apply for this program. This grant is available to undergraduate students who are pursuing their first baccalaureate degree.

Federal Supplemental Educational Opportunity Grant (FSEOG)

This federally funded program provides grants to undergraduate students with exceptional financial need. Students completing a FAFSA will automatically be considered for this grant. Awards are based on availability of funds and the student's financial need.

Toward Excellence, Access and Success Grant (TEXAS Grant)

This program provides grants to enable academically prepared eligible students to attend public and private nonprofit institutions of higher education in Texas. An undergraduate student is eligible who:

• is a Texas resident;
• has graduated from a public or accredited private high school in Texas no earlier than fall 1998. There is a time limit of 16 months after graduating from high school to be eligible;
• completed the Recommended High School Program, or Distinguished Achievement Program or its equivalent in high school;
• has financial need, with an expected family contribution (EFC) of 4,000 or less for the academic year;

• has accumulated no more than 30 semester credit hours, excluding those earned for dual or concurrent courses or awarded for credit by examination (AP, IB, or CLEP);

• completes FAFSA or TAFSA (if applicable) and enrolls at least 3/4 time in an undergraduate degree program;

• has not been convicted of a felony or a crime involving a controlled substance; and

• has registered for the Selective Service or is exempt from doing so;

OR

• has earned an associate degree from a public technical, state, or community college in Texas; and

• enrolls in any public university in Texas no later than 12 months after receiving the associate’s degree.

The amount of the grant is based on the average tuition and fees charged at 4-year public institutions. Students who continue in college and who meet program academic standards can receive awards for up to 150 semester credit hours or for six years, whichever occurs first. Requirements for continued funding are completion of at least 75 percent of the semester credit hours taken in the prior year and completion of at least 24 credits in the prior year. Additionally, students must maintain an overall grade point average of at least 2.500 on a 4.000 scale. Awards are made through the Office of Financial Aid. Students completing a FAFSA or TAFSA will automatically be considered for this grant. Students must submit the FAFSA or TAFSA before the deadline to be considered as on-time. The deadline is set annually and can be found online at www.collegeforalltexans.com. There is limited funding available.

Top 10% Scholarship Program

The 80th Texas Legislature created the Top 10 Percent Scholarship to encourage students who graduate in the top 10 percent of their high school class to attend a Texas public institution of higher education. Qualifying students who submit the Free Application for Federal Student Aid (FAFSA) or Texas Application for State Financial Aid (TASFA) by the deadline and have financial need may be eligible to receive up to $1,500 if they enroll full-time in a Texas public college or university in the fall semester immediately following graduation from high school. The deadline is set annually and can be found online at www.collegeforalltexans.com. Students who submit their FAFSA or TASFA after the published deadline will be awarded on a funds available basis. Please see www.utdallas.edu/student/finaid/Programs/programs.htm for additional eligibility requirements.

Eligibility Requirements

Initial Eligibility Requirements:
• Be a Texas resident
• Demonstrate financial need (to be determined by the college or university financial aid office)
• Complete FAFSA (or TAFSA if applicable) and file by the published deadline
• Completed Recommended or Distinguished Achievement High School curriculum
• Rank in the top 10 percent (as of his/her 7th semester, or 6th if the college uses that semester for admissions decisions)
• Graduate from an accredited high school in Texas
• Enroll full-time in a Texas public 2-year or 4-year college or university in the fall semester immediately following high school graduation

Renewal Requirements (contingent upon available funding):

• Complete 30 semester credit hours in the previous year
• Maintain cumulative 3.250 GPA
• Complete at least 75% of semester credit hours attempted
• Complete FAFSA (or TAFSA if applicable) by the published deadline

Texas Public Educational Grant

An act of the 64th Texas Legislature established a grant program to provide financial assistance to students. The program is funded through appropriation of a portion of the tuition charges for resident and non-resident students. Students completing a FAFSA or TASFA will automatically be considered for this grant. Awards are based on availability of funds and the student’s financial need.

Educational Assistance Grant

This program was established to provide financial assistance to students by an act of the Texas Legislature. The program is funded through appropriation of a portion of the designated tuition charge for resident and non-resident students. Students completing a FAFSA will automatically be considered for this grant. Awards are based on availability of funds and the student’s financial need.

General/Endowment Scholarship Programs

The University of Texas at Dallas offers a number of endowed scholarships that are administered by a school or program. Students are encouraged to contact their school dean or program office
to obtain information about eligibility criteria and scholarships awarded in the student's area of study.

The Texas Education Code contains specific requirements for a scholarship to be considered competitive:

Sec. 54.213. SCHOLARSHIP STUDENT

(a) An institution of higher education may charge a nonresident student who holds a competitive scholarship of at least $1,000 for the academic year or summer term for which the student is enrolled resident tuition and fees without regard to the length of time the student has resided in Texas. The student must compete with other students, including Texas residents, for the scholarship and the scholarship must be awarded by a scholarship committee officially recognized by the administration and be approved by the Texas Higher Education Coordinating Board under criteria developed by the coordinating board.

(b) The total number of students at an institution paying resident tuition under this section for a particular semester may not exceed five percent of the total number of students registered at the institution for the same semester of the preceding academic year.

(c) A student who would be entitled to pay resident tuition in the 2009-2010 academic year under this section as this section existed on January 1, 2009, because the student is awarded a competitive scholarship for that academic year in the amount prescribed by Subsection (a) before the beginning of the 2009 fall semester is entitled to continue to pay resident tuition under this section as this section existed on January 1, 2009, in each semester or other term in which the student is awarded such a scholarship, as long as the student remains enrolled in the same certificate or degree program. This subsection expires August 1, 2014.

(d) The difference between tuition charged to the student under this section and the tuition the student would be charged if this section did not apply to the student shall not be accounted for in such a way as to reduce the general revenue appropriation to an institution of higher education that charges a nonresident student resident tuition and fees under this section.

Transferred and redesignated from Education Code, Section 54.064 by Acts 2011, 82nd Leg., R.S., Ch. 359, Sec. 1, eff. January 1, 2012.

In addition to any specific criteria governing awards of competitive scholarships (e.g., major field of study) the committee responsible for such awards will give primary consideration to the applicant's academic records, both evaluating the type and nature of courses taken and the grades achieved in specific courses. The committee may also consider and give positive weight to such factors as the following in designating recipients:
Scholarships typically are awarded in the spring semester for disbursement during the following academic year.

Federal Work-Study Program

Federal Work-Study employment is available to students on the basis of demonstrated financial need and is counted as a form of need-based financial aid. Funds from this program are received as a result of working part-time at a position either on or off campus. The wages of students participating in this program are subsidized with federal funds, making it easier to find a part-time job. The student is paid directly. Students completing a FAFSA will automatically be considered for this program. Awards are based on availability of funds and the student's financial need.

The rate of compensation depends on the type of job, qualifications, and classification. The number of semester credit hours and work schedule will vary depending on the position. For information on job availability, students who have been awarded Federal-Work Study as part of their financial aid package should contact the Career Center at 972-883-2943 or go to their website at www.utdallas.edu/career to access the CometCareers system.

Other On-Campus Employment

Various programs and schools of the University employ students in positions that are not Federal Work-Study positions and are not based on need. In accordance with appropriate guidelines, pay scales depend on the type of job, qualifications, and classification. Normally, students will be employed for a maximum of 19 1/2 semester credit hours per week. Students interested in these positions should contact the Career Center at 972-883-2943 or go to their website at www.utdallas.edu/career to access the CometCareers system.

Federal Direct Stafford Loan

Also called a Direct Loan, funds from this program are made available to students from the U.S. Department of Education. The loan can be either subsidized or unsubsidized, or a combination of both. The maximum amount a student can borrow from this program in an academic year...
depends on the student's year in school (i.e. freshman, sophomore, etc.); whether the student is considered to be dependent or independent for the purposes of financial aid; the student's total cost of education as determined by the school; and what other forms of financial aid the student is receiving. To qualify for a subsidized Stafford Loan the student must demonstrate financial need. The U.S. Government pays the interest on a subsidized Stafford Loan as long as the student remains enrolled in school at least half-time. The unsubsidized Stafford Loan is available for students who do not demonstrate financial need and for students who need more funding than is available with the subsidized Stafford Loan. Students who borrow an unsubsidized Stafford Loan are charged interest while they are enrolled in school. Students completing a FAFSA will automatically be considered for this program.

Information regarding this program, including the promissory note and the Entrance Counseling, is available at www.studentloans.gov.

Federal Perkins Loan Program

This loan program provides a combination of federal and institutional funds to students who qualify on the basis of financial need. Priority is given to those students who demonstrate exceptional need. Students completing a FAFSA are considered for this program. Funding for this program is limited.

An undergraduate student may borrow up to a maximum amount of $5,500 per academic year with an aggregate undergraduate loan limit of $27,500. Graduate students may borrow up to $8,000 in a year with a total aggregate borrowing of $60,000. Current funding levels for this program do not allow UT Dallas to offer eligible students the maximum annual amount.

A Federal Perkins loan bears a modest interest rate. Borrowers are required to begin repayment of principal and interest nine months after they cease to be at least half-time students. Repayment may extend over a ten-year period; however, there is a minimum monthly payment of $40.00 a month.

Hazlewood Veteran Tuition Exemption

The Hazlewood Exemption Act provides an education benefit to honorably discharged or separated Texas veterans and to eligible dependent children and spouses of Texas veterans. Eligible students may receive an exemption from the payment of all tuition and most fees at Texas public institutions for up to 150 credit hours. Information on the Hazlewood Act and eligibility requirements are available at the Texas Veterans Commission website. Additional information can be found in the Office of Financial Aid Hazlewood Exemption website.

Texas Education Coordinating Board

The Texas Education Coordinating Board administers various tuition assistance programs including programs for teachers and vocational nursing students. Further information about these programs may be obtained by contacting The Office of Financial Aid.
TEACH Grant Program

The College Cost Reduction and Access Act of 2007 created the Teacher Education Assistance for College and Higher Education (TEACH) Grant Program that provides up to $4,000 per year ($16,000 total for four-year programs) in grants to students who intend to teach full-time in high-need subject areas for at least four years at schools that serve students from low-income families.

Eligible students must be enrolled in coursework that is necessary to begin a career in teaching or plan to complete such coursework. Coursework that will prepare a student to teach in a high-need subject area (e.g., math courses for a student who intends to be a math teacher) is acceptable.

Eligible students must meet the following academic achievement requirements of either scoring above the 75th percentile on either the SAT or the ACT, or graduate from high school with a cumulative GPA of at least 3.250 on a 4.000 scale, or maintain a cumulative GPA of at least 3.250 throughout the academic program for which they receive a TEACH Grant.

Eligible students must complete TEACH Grant counseling and sign a "TEACH Grant Agreement to Serve." The TEACH Grant service agreement specifies the conditions under which the grant will be awarded, the teaching service requirements, and includes an acknowledgement by the student that if the required teaching service obligation is not met, TEACH Grant funds will be converted to a Federal Direct Unsubsidized Stafford Loan that must be repaid, the interest charged from the date of each TEACH Grant disbursement.

Teaching Obligation

To avoid repaying the TEACH Grant as a loan with interest, a student must be a highly-qualified, full-time teacher in a high-need subject area at a school serving low-income students for at least four years within eight years of completing or withdrawing from the academic program for which the grant was received.
List of Academic Policies and Procedures

Academic

Academic Advising
Academic Grievances
Academic Progress
Dean's List
Final Examinations
Grade Changes
Grade Point Average
Grading Scale
Incomplete Grades (I)
Mid-Term Grades
Non-attending Failure Grades (NF)
Scholastic Status
Transcripts
Transfer Credit
Reverse Transfer Transcripts

Admission Policies

Credit by Examination (AP-CLEP-IB-SAT)
Criminal Background Check
Texas Success Initiative (TSI)
TSI Texas Legislative Requirements
TSI Transfer Student Provisions

Graduation

Application for Graduation
Graduation Ceremonies
Graduation with Honors
Graduation Under a Particular Catalog
Graduation Requirements

International Education

International Education
Study Abroad
Exchange Program
Independent Studies
Internships
Faculty Led Programs
Eligibility and Conditions
Financial Assistance
Grades/Credits
Official Transcripts
Programs
Travel Warnings
International Education Non-Credit Programs

Registration
<table>
<thead>
<tr>
<th>Course Policies</th>
<th>Course Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI Exemptions</td>
<td>TSI Exemptions</td>
</tr>
<tr>
<td>Enrollment into Developmental Education</td>
<td>Enrollment into Developmental Education</td>
</tr>
<tr>
<td>Placement into Developmental Education Courses</td>
<td>Placement into Developmental Education Courses</td>
</tr>
<tr>
<td>Participation and Attendance in Developmental Education</td>
<td>Participation and Attendance in Developmental Education</td>
</tr>
<tr>
<td>Auditing Courses</td>
<td>Auditing Courses</td>
</tr>
<tr>
<td>Course Load</td>
<td>Course Load</td>
</tr>
<tr>
<td>Guidelines for Course Numbering</td>
<td>Guidelines for Course Numbering</td>
</tr>
<tr>
<td>Course Numbering System</td>
<td>Course Numbering System</td>
</tr>
<tr>
<td>Credit/No Credit Classes</td>
<td>Credit/No Credit Classes</td>
</tr>
<tr>
<td>Independent Study</td>
<td>Independent Study</td>
</tr>
<tr>
<td>Internship Program</td>
<td>Internship Program</td>
</tr>
<tr>
<td>Repeating Course Work</td>
<td>Repeating Course Work</td>
</tr>
<tr>
<td>Degree Plans</td>
<td>Degree Plans</td>
</tr>
<tr>
<td>Change of Major</td>
<td>Change of Major</td>
</tr>
<tr>
<td>Deadlines and Fees</td>
<td>Deadlines and Fees</td>
</tr>
<tr>
<td>Declaring a Major</td>
<td>Declaring a Major</td>
</tr>
<tr>
<td>Double Major and Double Degree</td>
<td>Double Major and Double Degree</td>
</tr>
<tr>
<td>Disciplinary Actions</td>
<td>Disciplinary Actions</td>
</tr>
<tr>
<td>Associated with Academic Standing</td>
<td>Associated with Academic Standing</td>
</tr>
<tr>
<td>Academic Good Standing</td>
<td>Academic Good Standing</td>
</tr>
<tr>
<td>Disciplinary Status Overview</td>
<td>Disciplinary Status Overview</td>
</tr>
<tr>
<td>Academic Probation</td>
<td>Academic Probation</td>
</tr>
<tr>
<td>Registrar</td>
<td>Registrar</td>
</tr>
<tr>
<td>Administrative Drop</td>
<td>Administrative Drop</td>
</tr>
<tr>
<td>Auditing a Class</td>
<td>Auditing a Class</td>
</tr>
<tr>
<td>Classification of Students</td>
<td>Classification of Students</td>
</tr>
<tr>
<td>Concurrent Enrollment Tuition</td>
<td>Concurrent Enrollment Tuition</td>
</tr>
<tr>
<td>Dates for Registration</td>
<td>Dates for Registration</td>
</tr>
<tr>
<td>Deadlines for Adding or Dropping a Class</td>
<td>Deadlines for Adding or Dropping a Class</td>
</tr>
<tr>
<td>Dropping and Withdrawing</td>
<td>Dropping and Withdrawing</td>
</tr>
<tr>
<td>Drop Appeal Procedures</td>
<td>Drop Appeal Procedures</td>
</tr>
<tr>
<td>In Absentia Registration</td>
<td>In Absentia Registration</td>
</tr>
<tr>
<td>Non-academic Withdrawals</td>
<td>Non-academic Withdrawals</td>
</tr>
<tr>
<td>Medical Withdrawal</td>
<td>Medical Withdrawal</td>
</tr>
<tr>
<td>Withdrawal Refund</td>
<td>Withdrawal Refund</td>
</tr>
<tr>
<td>Appeal of a Denied Petition for Non-Academic Withdrawal</td>
<td>Appeal of a Denied Petition for Non-Academic Withdrawal</td>
</tr>
<tr>
<td>Return after Medical Withdrawal</td>
<td>Return after Medical Withdrawal</td>
</tr>
<tr>
<td>Visiting UT System Students Program</td>
<td>Visiting UT System Students Program</td>
</tr>
<tr>
<td>Withdrawal/Resignation from the University</td>
<td>Withdrawal/Resignation from the University</td>
</tr>
<tr>
<td>Military</td>
<td>Military</td>
</tr>
<tr>
<td>Military Service Activation Interruption of Education</td>
<td>Military Service Activation Interruption of Education</td>
</tr>
<tr>
<td>Military Training Awarded as Academic Course Credit</td>
<td>Military Training Awarded as Academic Course Credit</td>
</tr>
<tr>
<td>Option to Remain Enrolled and Complete Coursework Following Brief Military Service</td>
<td>Option to Remain Enrolled and Complete Coursework Following Brief Military Service</td>
</tr>
<tr>
<td>Option to Withdraw, Receive Incomplete</td>
<td>Option to Withdraw, Receive Incomplete</td>
</tr>
<tr>
<td>Academic Warning</td>
<td>Grade, or Receive Final Grade</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Academic Departure</td>
<td>Option for Automatic Readmission Following Military Service</td>
</tr>
<tr>
<td>Academic Suspension</td>
<td></td>
</tr>
<tr>
<td>Readmission</td>
<td></td>
</tr>
<tr>
<td>Changing Majors</td>
<td></td>
</tr>
<tr>
<td>Graduate Courses</td>
<td></td>
</tr>
<tr>
<td>Graduate Courses</td>
<td></td>
</tr>
<tr>
<td>Graduate Courses Applied Toward an Undergraduate Degree</td>
<td></td>
</tr>
<tr>
<td>Graduate Courses for Possible Future Use as Graduate Credit</td>
<td></td>
</tr>
<tr>
<td>Graduate Courses Taken in Fast Track Options</td>
<td></td>
</tr>
<tr>
<td>Other Policies</td>
<td></td>
</tr>
<tr>
<td>Change of Address, Email or Name</td>
<td></td>
</tr>
<tr>
<td>Correspondence - Email</td>
<td></td>
</tr>
<tr>
<td>FERPA</td>
<td></td>
</tr>
<tr>
<td>Making a False Alarm or Report Involving a Public or Private Institution of Higher Education</td>
<td></td>
</tr>
<tr>
<td>Religious Holy Days</td>
<td></td>
</tr>
<tr>
<td>Student Travel Policy</td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Policies and Procedures

Academic

Academic Advising

The University of Texas at Dallas values its students and is committed to the success of each and every one. Professional academic advising is an important tool to help our students reach their goals. School advisors guide students through an impressive offering of degree plans. These advisors are familiar with the specific departmental emphases and faculty research interests. They help students access and communicate with faculty and instructors. Advisors assist students on issues including class suitability, degree requirements, university policies and procedures, study skills, time management, campus involvement and limited personal issues. Students will learn about required and elective options. Advisors apply credit by examination and transfer credits and assist students in ensuring their degree and graduation requirements are met. Students have access to advisors at any time but should plan to visit with them at least once each semester. UT Dallas Professional Academic Advising is an outstanding resource to help our students achieve their goals.

In addition to School based advising, the Student Outreach and Academic Retention (SOAR) office is dedicated to providing academic advising to students who are at-risk for Academic Suspension. Students not in good standing are required to meet with a SOAR advisor and follow a prescribed advising plan. The individualized plan will be designed to help each student improve their academic standing by addressing their specific needs including but not limited to study skills, time management skills, personal issues, and appropriate campus office referrals. SOAR office advising is available to all students though not required of students in good standing.

While advisors confer with students about courses and educational experiences, students themselves are responsible for defining the content of their academic program and making progress toward an academic degree. Advisors will assist students in designing an appropriate course of study that will satisfy requirements for graduation (see "Academic Degree Requirements," located at catalog.utdallas.edu/2013/undergraduate/curriculum) as well as offer information on particular courses and university rules and procedures. All students must verify their class schedule each semester, must see that necessary transactions are completed, and are responsible for all documentation related to schedule changes and other transactions.

Students who have chosen a major should meet with an academic advisor in the appropriate school regularly and in a timely manner prior to semester drop deadlines and course registration. All freshmen are required to meet with their advisor in order to register for classes (see "Registration" at catalog.utdallas.edu/2013/undergraduate/policies/registration). Students
admitted to UT Dallas as freshmen or as sophomores who have not declared a major are advised by the Undergraduate Student Advising Office, an integral part of the Office of Undergraduate Education. Students remain the responsibility of Undergraduate Education until they declare a major, at which time advising will be undertaken by an advisor in the student's program. Students must declare a major by the time they become juniors in order to have their program advising conducted by the advisors in the school in which they are registered.

All students admitted to UT Dallas as freshmen, effective fall semester 2012, are required to file degree plans no later than the end of the second semester following the semester in which the student earned 45 or more semester credit hours in accordance with Texas Education Code, Section 51.9685.

Students are strongly encouraged to meet with their academic advisor, especially when they have earned 75 semester credit hours to establish and/or review their degree plan.

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#grievances

Academic Grievances

A student having a grievance regarding academic concerns may have the issue considered. Procedures for appeals of academic decisions can be found at catalog.utdallas.edu/2013/undergraduate/policies/appendices/appendix1#academic-grievances.

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#progress

Academic Progress

A student is considered to be making satisfactory scholastic progress when he or she is carrying an approved schedule of classes, is not on probation, and has a GPA of at least 2.000 (C average) in the major and overall. Students who habitually drop a significant fraction of their schedule may lose the right to drop or may be dismissed from the University for failure to make adequate academic progress.

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#deans-list

Dean's List

The Dean's List recognizes students whose grades for the fall or spring semester represent the top ten percent of all students within each school who complete 12 or more UT Dallas semester credit hours within that semester. These students will be recognized as members of the Dean's List of their respective schools. Students without a declared major are eligible for the Office of
Final Examinations

Final exams are integral components of the curriculum for all courses and must be given at the places and times for such exams published by the Office of the Registrar in each semester’s official listing of class schedules. When a final exam is given in a course, it must be given at the time scheduled by the Office of the Registrar during the final examination period. Final exams will not be scheduled during reading days. A final exam must not last more than 2 hours and 45 minutes. Students for whom three or more final exams are scheduled in one day may petition to take the additional final exams on different days.

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#grade-changes

Grade Changes

Faculty Initiated

After a final grade has been recorded by the Office of the Registrar, faculty may change grades only to correct a clerical error or replace a grade of "incomplete." A faculty initiated change of a final grade requires the written approval of the instructor, the department or program head, Associate Dean of Undergraduate Education, and the School Dean. Grade changes must be submitted by the end of the eighth week of the following long semester after the grade was awarded. Any grade change initiated after the eighth week of the long semester requires the written approval of the instructor, the department or program head, Associate Dean of Undergraduate Education, the School Dean, and the Dean of Undergraduate Education.

Student Request

A student has the right to request a review of the grades received in any class.

The only grounds for considering a grade to be incorrect are either clerical error or that the grade is arbitrary or capricious. Examples of clerical error would include, but are not limited to, a mistake in adding component grades, a mistake in recording grades, or attributing a paper or examination to the wrong student. "Arbitrary or capricious" means that the grade cannot be considered reasonable given the material of the course, the overall performance of the class, and the individual performance of the student. The University assumes that coursework is best evaluated by the instructor in the immediate context of the course activity. Requests for reconsideration must show with clear and convincing evidence why this assumption should be set aside.
If a student believes he or she has been assigned a grade on the basis of a clerical error or that the grade is arbitrary or capricious, the student should first seek to discuss the grade with the instructor. If this does not lead to satisfactory understanding, the student may file a formal appeal following the procedures described for academic grievances in the Rules, Regulations, and Statutory Requirements Section C. (See "Academic Grievances" in Appendix I).

Students must petition for a grade review by the end of the eighth week of the following long semester after the grade was received. The request must be submitted in writing to the appropriate faculty member who then has the remainder of that semester to take action.

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#gpa

Grade Point Average

Grade points are computed by multiplying the points for each grade by the number of semester credit hours; for example, 4.000 (A) x 3 (semester credit hours) = 12 grade points. A student's grade point average (GPA) is determined by dividing the total number of grade points earned by the number of semester credit hours for which a grade other than I, NC, or CR is received. All GPAs, term and cumulative, are rounded from the fourth to the third digit, and three decimal places are displayed in this catalog, Orion, unofficial and official transcripts.

NOTE: Only grades earned at The University of Texas at Dallas are used in calculating the student's GPA.

An undergraduate student is limited to three grade-bearing enrollment attempts for any specific class. With regard to repeats, the grade from the first repeat will substitute for the original grade to determine a student's grade point average and to satisfy degree requirements. A second repeat will result in both repeats being included when computing the student's cumulative grade point average. (See "Repeating Course Work" at catalog.utdallas.edu/2013/undergraduate/policies/course-policies#repeat).

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#grading-scale

Grading Scale

UT Dallas uses the following grade scale for all undergraduate students.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Grade Points per Semester Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td></td>
<td>4.000</td>
</tr>
<tr>
<td>Grade</td>
<td>Description</td>
<td>GPA</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>Excellent</td>
<td>4.000</td>
</tr>
<tr>
<td>A-</td>
<td></td>
<td>3.670</td>
</tr>
<tr>
<td>B+</td>
<td></td>
<td>3.330</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
<td>3.000</td>
</tr>
<tr>
<td>B-</td>
<td></td>
<td>2.670</td>
</tr>
<tr>
<td>C+</td>
<td></td>
<td>2.330</td>
</tr>
<tr>
<td>C</td>
<td>Fair</td>
<td>2.000</td>
</tr>
<tr>
<td>C-</td>
<td></td>
<td>1.670</td>
</tr>
<tr>
<td>D+</td>
<td></td>
<td>1.330</td>
</tr>
<tr>
<td>D</td>
<td>Poor</td>
<td>1.000</td>
</tr>
<tr>
<td>D-</td>
<td></td>
<td>0.670</td>
</tr>
<tr>
<td>F</td>
<td>Failure</td>
<td>0.000</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>Credit</td>
<td></td>
</tr>
<tr>
<td>MN</td>
<td>Midterm Grade: not enough information to provide a grade</td>
<td></td>
</tr>
<tr>
<td>NF</td>
<td>Failure</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>No Credit</td>
<td></td>
</tr>
</tbody>
</table>

Academic Withdrawal

- W: Withdrawn
- WL: Withdraw Late

Non-academic Withdrawal
A grade of Incomplete may be given, at the discretion of the instructor of record for a course, when a student has completed at least 70% of the required course material but cannot complete all requirements by the end of the semester. An incomplete course grade (grade of 'I') must be completed within the time period specified by the instructor, not to exceed eight weeks from the first day of the subsequent long semester. Upon completion of the required work, the symbol 'I' may be converted into a letter grade (A through F) by the instructor. If the grade of Incomplete is not removed by the end of the specified period, it will automatically be changed to F.

Extension beyond the specified limit can be made only with the permission of the instructor, the student's Associate Dean and the Undergraduate Dean. A student may not re-enroll in a course in which a grade of 'I' remains.

Students may obtain a petition/documentation form for an Incomplete in the office of the student's Undergraduate Associate Dean. The form is to be submitted to the instructor from whom the Incomplete is sought. If a significant fraction of a semester is missed with cause, see the section on "Dropping and Withdrawing" at catalog.utdallas.edu/2013/undergraduate/policies/registration#dropadd.

An instructor assigning an Incomplete ('I') must submit the petition/documentation form containing a description of the work required to complete the course to the Undergraduate Associate Dean of the school offering the course. Upon approval, a copy of the petition will be forwarded to the student's Undergraduate Associate Dean to be retained with the student's academic record. The instructor alone will be responsible for determining whether the requirements for completion are met and for assigning a grade in the course.

However, if the instructor who has signed the Incomplete ('I') is no longer associated with UT Dallas and the work is completed within the time allowed before the Incomplete lapses to an F, the Associate Dean of the instructor's college may assign a committee of appropriate faculty to
evaluate the material and/or obtain any other information that may be required to assign a grade in the course.

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#midterm-grades

Mid-Term Grades

Students are issued mid-term grades to apprise them of their progress within the semester. Mid-term grades are important for advising and retention purposes, therefore it is vital that the grades accurately reflect academic progress. These grades are not a part of the permanent record and will not appear on academic transcripts. Some classes will only issue a grade of credit or no credit at mid-term.

'MN' grade is used for midterm grading only. It signifies that the instructor does not have enough information on a particular student to determine a midterm grade. It may not be used for final grading purposes.

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#nfgrade

Non-attending Failure Grades (NF)

It is the responsibility of each student to register for and drop a course if necessary. The 'NF' grade is an indication that a student never attended or participated in a course for the semester in question. If an 'NF' grade is used, its grade point value equals zero (0), and it will be calculated into the GPA in the same manner as a grade of 'F.'

http://catalog.utdallas.edu/2013/undergraduate/policies/academic#scholastic-status

Scholastic Status

A student is required to maintain a minimum cumulative grade point average (GPA) as specified for the student's major to remain academically eligible to enroll for subsequent semesters. Only grades received in UT Dallas classes are used to compute the GPA while transfer credit from other institutions accepted by the University is calculated in the number of semester credit hours required for graduation. Scholastic status is determined at the end of each academic semester. While grade point averages may change within a semester (such as when a student completes a class that previously had a grade of incomplete), scholastic status remains the same until the next grade reporting period.
Transcripts

Students may request copies of their official transcripts from The Office of the Registrar online via Galaxy or through www.utdallas.edu/student/registrar/transcript. All University holds must be cleared before requesting a transcript. Transcripts will reflect the individual's complete academic record. Undergraduate and graduate transcripts are issued together. Given seasonal time constraints, it is important that students request official transcripts in an appropriate time period to allow for processing and mailing. Please see www.utdallas.edu/student/registrar/transcript for further details.

Falsifying or omitting information may result in withdrawal of any offer of admission, in cancellation of enrollment, and/or in disciplinary action.

Transfer Credit

Although UT Dallas normally accepts credit from academic courses taken at other institutions of higher education which a grade of ‘C’ (2.000 on a 4.000 scale) or higher has been earned, specific course and degree requirements must be met in order for these courses to be included in the student's degree plan.

The Office of the Registrar evaluates an applicant's completed file to determine which credits earned at another college or university will transfer to UT Dallas. Once a student is admitted the student's record will be articulated for all transfer work and will reflect those credits that have been accepted by UT Dallas. An undergraduate advisor in the student's major, in consultation with the Associate Dean for Undergraduate Education, will determine how the transfer credits apply to UT Dallas degree requirements. The faculty, acting through the Associate Dean of Undergraduate Education, has the ultimate responsibility for applying transfer credit to their specific major requirements. Students may request an articulation appeal through the Associate Dean of Undergraduate Education in their school within the first semester of attendance.

Students may not transfer to UT Dallas more than six of the final thirty (30) semester credit hours required for their degree.

To ensure that credit earned elsewhere will be accepted, continuing UT Dallas students who wish to take courses elsewhere must meet with their academic advisor for approval. Failure to receive approval from your academic advisor may result in the denial of credit.

Reverse Transfer Transcripts

Pursuant to the "credit transfer for associate degree" statute, Texas Education Code, Section 61.833, when a transfer student completes at least 90 semester credit hours at UT Dallas, and 30
of these semester credit hours were taken at a Texas community college, UT Dallas will review the student’s record and request the transcript to be sent to the Texas community college. Upon authorization from the student, UT Dallas will release the transcript to the community college. The Texas community college will review the UT Dallas transcript for possible completion of associate degree.
Credit by Examination (AP-CLEP-IB)

Examination credit is evaluated only at the student's request. Students wishing to receive examination credit must first meet with an academic advisor to complete a request form that is then submitted to the Office of the Registrar.

Documentation of any lower-division credit established by examination through such programs as the AP (Advanced Placement Program) that the student wishes to apply toward college credit should be received by the University prior to registration. Academic semester credit hours awarded through credit by examination become a permanent part of the student's official UT Dallas transcript.

Credit by examination may be established through such testing programs as the Advanced Placement Program (AP), the College Level Examination Program (CLEP), and the International Baccalaureate (IB). Guidelines for credit by examinations are available on the UT Dallas website at oue.utdallas.edu and/or at the UT Dallas Admission and Enrollment Services website (www.utdallas.edu/enroll/apply/exam.php). Exams ten years and older will not be considered for credit. Test scores not appearing on official transcripts must be submitted directly from the testing agency. UT Dallas will provide college credit to those who present an International Baccalaureate Diploma in accordance with Texas State law.

No more than six semester credit hours of extension or credit by examination may be applied toward upper-division requirements and must be upper-division credit earned at an appropriate institution or through acceptable scores on approved tests. The University does not offer correspondence courses.

Criminal Background Check

Certain programs require students to submit to and satisfactorily complete a background check review as a condition of admission and/or participation in education experiences. Students who refuse to submit to a background check or who do not pass the background check may be
dismissed from the program. The student is responsible for the costs associated with the criminal
background check.

http://catalog.utdallas.edu/2013/undergraduate/policies/admission-policies#tsi

Texas Success Initiative (TSI)

The Texas Success Initiative (TSI) is a state mandate that requires students to be assessed in
reading, writing and math skills prior to enrolling in college, and to be advised based on the
results of that assessment (See [TSI Rules](http://catalog.utdallas.edu/2013/undergraduate/policies/admission-policies#tsi)). For students enrolling without a TSI Exemption, they will be required to take the TSI Assessment, to measure student proficiency in the basic
areas of study for fulfillment of the TSI requirement. Each Texas institution determines an
individualized education plan to encourage academic success for those students who score below
the deviation standard (or do not pass the THEA test). Students are required to either enroll in development coursework if they do not pass the initial test and are granted unlimited opportunities to take the TSI Assessment.

Students required to take the TSI Assessment are subject to the following standards to be
considered college-ready:

- Reading - 351
- Math - 350
- Writing - Essay score of 5 -or- 4 and a multiple choice score of 363

Note: If you are a student with a TSI Hold on your record, you must contact your academic
advisor regarding registration options and policies. Proof of a TSI Exemption or enrollment in development coursework may be required.

Texas Success Initiative State Regulations - Texas Legislative Requirements

[Title 19, Part 1, Chapter 4 of the Texas Administrative Code](http://catalog.utdallas.edu/2013/undergraduate/policies/admission-policies#transferring-provisions) describes in detail the Texas Success Initiative (TSI) for Texas public institutions of higher education.

http://catalog.utdallas.edu/2013/undergraduate/policies/admission-policies#transferring-provisions

Texas Success Initiative Transfer Student Provisions

Students transferring to UT Dallas from private or out-of-state institutions must meet TSI
requirements (be tested or exempted) prior to being allowed to enroll in any college-level work. Students who transfer accumulated semester credit hours to UT Dallas from a private or out-of-
state United States institution may use certain transferred courses which are given common
course numbers corresponding to courses approved by UT Dallas to satisfy TSI requirements. Students must have earned a course grade of C (2.00 on a 4.00 scale) or better in the
corresponding courses to meet TSI requirements. If coursework does not satisfy exemption requirements, students must be tested for the remaining skill areas and must comply with all other TSI requirements. Students transferring from other Texas public institutions of higher education must be TSI exempted or comply with the UT Dallas policies for Developmental Education.

Students entering UT Dallas are permitted to enroll in upper division (3000 and 4000 level) courses for which they have completed the prerequisites while completing the TSI requirements. However no student with 60 or more earned credit hours and having attempted any credit hours at UT Dallas shall be permitted to register for upper division courses without having satisfied all TSI requirements.

Texas Success Initiative (TSI) Exemptions

Pending institutional verification of the following situations, TSI exemptions apply to:

- Students who are non-degree seeking or non-certificate-seeking.
- For a period of five (5) years from the date of testing, a student who is tested and performs at or above the following standards on the following tests:
 - ACT – Composite score of 23 or higher, with individual math, reading and English scores of no less than 19.
 - SAT – Composite score of 1070 or higher, with 500 critical reading (formally “verbal”) and 500 math.
 - Texas Assessment of Knowledge and Skills (TAKS) – 11th grade exit-level TAKS with a minimum scale score of 2200 on the math section and/or a minimum scale score of 2200 on the English Language Arts section and a writing subsection score of at least 3, are TSI exempt for the corresponding sections. (Note: The writing subsection score is often not printed on high school transcripts, but can usually be found on the exit level TAKS score report.)
 - STAAR end-of-course (EOC) – A minimum score of Level 2 on the English III shall be exempt from the TSI Assessment required under this title for both reading and writing, and a minimum score of Level 2 on the Algebra II EOC shall be exempt from the TSI Assessment required under this title for the mathematics section.
- Students who have graduated with an associate or baccalaureate degree from an accredited institution of higher education. Transcripts must be filed with Enrollment Services for verification purposes.
- Students who have previously attended any Texas public institution and have been determined to have met TSI requirements by that institution.
- A student who is enrolled in a certificate program of one year or less (Level-One certificates, 42 or fewer semester credit hours or the equivalent) at a public junior college, a public technical institute, or a public state college.
- A student who is serving on active duty as a member of the armed forces of the United States, the Texas National Guard, or as a member of a reserve component of the armed forces of the United States and has been serving for at least three years preceding enrollment. Students must file a Verification of Active Duty form each semester with Enrollment Services
Services.

- A student who on or after August 1, 1990, was honorably discharged, retired, or released from active duty as a member of the armed forces of the United States or the Texas National Guard or service as a member of a reserve component of the armed forces of the United States. A copy of the DD214 form showing this status is required and must be filed with Enrollment Services.
- A private or out-of-state college or university and who have satisfactorily completed college-level coursework as determined by a grade of C or better in courses that are recognized as requiring college-level reading, writing and/or mathematical skills as approved by UT Dallas.

Note: Official transcripts should be submitted to UT Dallas Enrollment Services as soon as possible. Official evaluation must be completed to determine course equivalencies before a TSI waiver will be granted. If you are a student with a TSI Hold on your record, it must be removed prior to registering for courses. Contact an academic advisor in your program for more information. If you have any questions regarding TSI exemptions, please contact the TSI Coordinator at UT Dallas.

http://catalog.utdallas.edu/2013/undergraduate/policies/admission-policies#developmental-education-enrollment

Developmental Education at UT Dallas

Students who are required to take the TSI Assessment and do not score at the college readiness levels will be required to register for Developmental Education courses for all areas in which they did not achieve the stated cut-score. Their enrollment in Developmental Education is required during the first semester of attendance. If UT Dallas does not offer Developmental Education courses in the semester the student registers then the student is required to register for Developmental Education at a local community college. Students must work with their UT Dallas School academic advisor and the UT Dallas TSI coordinator to ensure they are properly enrolled in courses at UT Dallas as well as Developmental Education courses at a local community college. If at any time during the semester a student is in violation of this policy, the student may be dropped from their UTD course(s).

http://catalog.utdallas.edu/2013/undergraduate/policies/admission-policies#developmental-education-placement

Placement and Enrollment into Developmental Education

UT Dallas recommends that students enroll in Developmental Education courses at Richland College, with whom UT Dallas has a collaborative relationship. UT Dallas has an information sharing agreement with Richland College that makes it easier to track and verify student enrollment and course completion. However, students may enroll in Developmental Education courses at another local community college. Students should discuss this with their UT Dallas School academic advisor and the UT Dallas TSI coordinator. Students are required to
successfully complete the developmental coursework sequence at the community college to become TSI complete. A student can only become TSI complete if they have completed the highest level of the developmental education coursework at the community college or until they reach the college-ready standard on the TSI Assessment.

Participation and Attendance in Developmental Education

For students attending Richland College, attendance and continuing registration information is provided to UT Dallas by Richland College. For students attending other local community colleges, the student is responsible for regularly providing the UT Dallas TSI Coordinator proof of continued enrollment throughout the semester. Students must adhere to the policies and the procedures of the community college in regards to registration, attendance, course requirements, etc. Students who are required to be in Developmental Education for TSI purposes may not drop a developmental course unless they reach a college-ready score on the TSI Assessment, examination, become TSI exempt through alternative means, or withdraw from all university courses for the semester. All drop forms are to be signed by the Office of Undergraduate Education.
Undergraduate Policies and Procedures

Courses

Auditing Courses

Auditing allows a student to observe the instruction of a course without earning credit. The following courses may not be audited: Computer Science and Engineering courses, Geoscience courses, Physical Education courses, Creative Writing courses, Foreign Language courses, Studio/Ensemble courses, online courses, and any courses for which there is a lab fee. Participation and discussion in the course are at the discretion of the instructor. Auditing grants the privilege of hearing and observing course information and does not grant credit or access to online course tools such as eLearning.

Beginning the first day of classes through Census Day, a student may obtain an audit form at The Office of the Registrar in the Student Services Building, first floor customer service area. Please consult www.utdallas.edu/student/registrar/faq.html for more detailed audit procedures and associated non-refundable fees.

Course Load

The standard course load is 15 semester credit hours for a long semester and 12 semester credit hours in the summer.

Students wishing to register for more than 18 semester credit hours in a long semester or 15 semester credit hours in the summer must have the permission of the Associate Dean of their school; undergraduates with an undeclared major may seek that permission from the Dean of Undergraduate Education. Students authorized to enroll in more than 18 semester credit hours in a long semester or 15 semester credit hours in the summer may not withdraw from any class without permission of the Associate Dean of their school or the Dean of Undergraduate Education for those students without declared majors. Failure to secure that permission before withdrawing from a class will limit the student to a maximum of 18 semester credit hours in future semesters.

In considering course load, students must be sensitive to special considerations such as degree requirements, financial aid, visa status, and family health insurance, which typically require registration in a minimum number of semester credit hours per term in order to maintain eligibility.

For certification purposes, UT Dallas uses the following criteria for undergraduate students:

- Full-time status - 12 semester credit hours
- Three quarter-time status - 9 semester credit hours
- Half-time status - 6 semester credit hours
Summer semester status is determined by total official enrolled semester credit hours for all the summer sessions.

Guidelines for Course Numbering

To guide students in the selection of courses and proper sequencing over their college career, the following guidelines should be considered:

- **Lower-division undergraduate courses**
 - 1xxx courses are considered to be primarily taken in the freshman year, and are introductory courses. These courses may generally be taken by any student.
 - 2xxx courses are considered to be primarily taken in the sophomore year, and provide a foundation in a discipline area. Some courses are major specific, though most can be taken by any student.

- **Upper-division undergraduate courses**
 - Upper-division courses may require prerequisites, recommended course sequencing, and/or faculty or department permissions. The university and some majors have minimum requirements for the number of upper-division credit hours. Programs may require major prep course completion prior to taking upper level courses. Programs and instructors will assure that the content and prerequisites of independent study, research, topics classes are appropriate for the level of the class.
 - 3xxx courses are considered to be taken in the junior year. These courses are designed to refine the skills and knowledge gained in the lower level courses, and are generally specific to a major field of study. Some courses may be restricted to specific majors and/or to junior level standing.
 - 4xxx courses are considered to be taken primarily in the senior year. These courses are designed to provide mastery in the field of study and more depth and specificity than the 3xxx courses. Some courses may be restricted to specific majors and/or to senior level standing.

Programs and instructors will assure that the content and prerequisites of independent study, research, and topics classes are appropriate for the level of the class.

http://catalog.utdallas.edu/2013/undergraduate/policies/course-policies#numbering

Course Numbering System

UT Dallas courses are assigned an abbreviation of the name of the subject area followed by a four-digit course number. The first digit of the course number defines the general level of the
course, i.e., a 1 or 2 indicates that the course is of undergraduate freshman or sophomore level respectively, and a 3 or 4 indicates that the course is of undergraduate junior or senior level, respectively. Graduate courses begin with the digits 5 through 8.

The second digit of the course number indicates the semester credit hour value of the course. A course is given semester credit hour values according to the number of semester credit hours per week the course meets; the typical course is three semester credit hours. The type of course (for example, lecture, laboratory, or seminar) and its meeting times determine the number of meetings per week and the length of each meeting. For additional information on semester credit hours, see policy.utdallas.edu/utdpp1090.

A "V" in the second position of the course number denotes a variable semester credit hour course. The online class schedule may specify the semester credit hours available for a variable course during any given semester.

The final two digits give the course a unique number within a subject area.

In some instances of undergraduate course descriptions, a second course prefix and number in parentheses follows the first. The second course prefix and number designate the State of Texas Common Course Numbering System (TCCNS) equivalents when available. TCCNS is a standard set of designations for academic courses. Most Texas community colleges and universities have adopted this system to facilitate the transfer of academic credit from one institution to another. Wherever possible, UT Dallas course numbers match the TCCNS number, although the subject designation may differ (for example, BA versus BUSI for the Business Administration prefix).

In all cases, the course description is followed by an indication of the approximate number of contact hours per week in a semester for any lecture and/or laboratory components of the course; for example, (2-4) indicates 2 contact hours of lecture and 4 contact hours of laboratory per week.

At the end of each course description, a frequency of course offering code is available:

- **S** = Course is offered at least once each long semester.
- **Y** = Course is offered at least once a year.
- **T** = Course is offered at least once every two years.
- **R** = Course is offered based on student interest and instructor availability.

http://catalog.utdallas.edu/2013/undergraduate/policies/course-policies#credit-no-credit-classes

Credit/No Credit Classes

The credit/no credit option is intended to encourage students to take courses in topics outside of their major area. The credit/no credit option gives students the opportunity to broaden their education with less emphasis on grade points. A course may be designated by the instructor as
unavailable to students on a credit/no credit basis. Conversely, some courses may only be available for credit/no credit.

A student will receive credit for C (2.000 on a 4.000 scale) work or better. No credit will be given for work that is below C (2.000 on a 4.000 scale). A grade of 'CR' denotes credit earned. A grade of 'NC' denotes no credit earned. Courses taken on a credit/no credit basis will not be used in the calculation of a student's GPA. Students should select courses for the credit/no credit option carefully, as this option may affect eligibility for honors. (See "Graduation with Honors" located at catalog.utdallas.edu/2013/undergraduate/policies/graduation#honors.)

For baccalaureate degree requirements, the credit/no credit option is limited to 12 semester credit hours or 20% of UT Dallas upper-division coursework, whichever is smaller. Courses in a student's major that are designated as credit/no credit are not included in this limit. A student must submit the completed credit/no credit form in person to The Office of the Registrar in the Student Services Building, first floor customer service area no later than Census Day for the semester. A student cannot repeat a letter grade course using the credit/no credit grading option.

A student may not take any course used to satisfy a Core Curriculum requirement, any course in the major or minor that is listed as a major and related course on the student's degree plan, or major prerequisite, on a credit/no credit basis if a letter grade is normally awarded in those courses. Students in the Interdisciplinary Studies program may not exercise a credit/no credit option in their foundations or concentration.

http://catalog.utdallas.edu/2013/undergraduate/policies/course-policies#independent-study

Independent Study

A student may take a maximum of 20 percent of the total semester credit hours of coursework undertaken at UT Dallas as Independent Study.

http://catalog.utdallas.edu/2013/undergraduate/policies/course-policies#internship

Internship Program

The Internship Program provides students with opportunities to work in assignments related directly to their fields of study. The experience provides students with the opportunity to apply what they learn in the classroom to practical settings. The primary focus of internships is educational in nature. In addition, students are able to stay in school and possibly earn money to defray college expenses, while clarifying academic interests, and targeting specific job markets.

The University of Texas at Dallas has a flexible internship program and arrangements include the following:
• Parallel: full-time or part-time internship and full-time or part-time school.

• Summer: full-time or part-time internship.

• Alternating Semesters: full-time internship alternating with semesters of full-time school.

For more information about the program, contact the Career Center.
Telephone: 972-883-2943
Email: Career Center
Website: www.utdallas.edu/career

http://catalog.utdallas.edu/2013/undergraduate/policies/course-policies#repeat

Repeating Course Work

An undergraduate student is limited to three grade-bearing enrollment attempts for any specific class. An enrollment is considered grade bearing if a student receives a distributed grade (i.e., A through F) or a mark of 'W', 'NC', 'CR', 'NF', 'WL' or the historical marks of 'WP' or 'WF'. Non-academic withdrawals are not considered enrollment attempts. Courses cross-listed under more than one course prefix are considered the same course. A student attempting the same class for the third time may be charged a penalty fee equivalent to the out-of-state tuition for the same number of semester credit hours. Courses cross-listed under more than one course prefix are considered the same course.

NOTE: Students who are Texas residents should be aware that state law limits the number of semester credit hours an undergraduate Texas resident may attempt while paying tuition at the rate provided for Texas residents. See Excessive Undergraduate Hours.

Regardless of the number of times a course is repeated, any single course can contribute only once to the number of semester credit hours required for graduation. A limited number of courses, such as independent study courses, may be repeated for credit. Students should contact their academic advisor to determine the application of such course credit toward graduation.

The grade from the first attempt will not be used in computing a student's grade point average. All further repeats will be used in computing the student's cumulative grade point average. See Grade Point Average and Transfer Credit. All grades will appear on the student's transcript. A notation beside the first grade will indicate that the course has been repeated. Courses that were originally taken for a letter grade may not be repeated for credit/no credit in lieu of a letter grade.

When a student repeats a course at UT Dallas, the student must complete a "Repeated Course Adjustment" form available at www.utdallas.edu/student/registrar/forms. The student submits, in person, the completed form to The Office of the Registrar in the Student Services Building, first floor customer service area.
Courses transferred for credit to UT Dallas from another institution of higher education may not be repeated for additional credit.

Students who fail a course in residence at UT Dallas may repeat the course at another institution of higher education. A student may not transfer an equivalent course if that course was taken at UT Dallas with a passing grade (D's included). Upon successful completion of the repeated course with a grade of at least 'C' (2.000 on a 4.000 scale), the course may be transferred to UT Dallas where it will meet the content requirements of the course failed in residence and contribute semester credit hours toward graduation. However, the grade of 'F' earned at UT Dallas will remain a part of the student's academic record and will be computed as a part of the cumulative grade point average (GPA).
Undergraduate Policies and Procedures

Degree Plans

A degree plan is a definition of the course of study necessary to fulfill the requirement for graduation. A degree plan is "major specific" and is established through collaboration between the student and the academic advisor for the student's major. Course changes within university sanctioned degree plans may be made with the approval of the Associate Dean of Undergraduate Education (ADU) or his or her designee. An initial degree plan must be filed as soon as possible after entering the major. Per State legislation effective fall semester 2012, all entering freshman students must file a degree plan no later than the end of the second regular semester following the semester in which the student earned 45 or more semester credit hours in accordance with Texas Education Code, Section 51.9685. The initial degree plan will be kept in the office of the academic advisor, ADU, or program head and will form the basis of the student's advisement.

In the semester preceding that in which a student plans to graduate the student is required to meet with her/his academic advisor to prepare a final degree plan along with the student's application for graduation (See "Graduation Requirements," located at catalog.utdallas.edu/2013/undergraduate/policies/graduation#requirements).

NOTE: A change of major requires preparation of a new degree plan.

Change of Major

Students wishing to change majors should complete an "Undergraduate Change of Major Request Form" (located at www.utdallas.edu/student/registrar/forms) in their academic advisor's office before registration and no later than the first day of classes of a semester/term. Students with 54 or more semester credit hours must seek approval of the Associate Dean for Undergraduate Education in the school of the intended major.

Students with a cumulative GPA below 2.000 may only change their major with permission from the Associate Dean of their current major and the Associate Dean of their intended major. Both Associate Deans' signatures are required on the "Undergraduate Change of Major Request Form" prior to its submission to the Office of the Registrar in the Student Services Building, first floor customer service area.

If the change of major is approved, the student will then be responsible for meeting all program requirements and course prerequisites of the catalog in effect at the time of the change. The Core Curriculum requirements, however, remain those of the catalog in force at the time of
matriculation unless the student specifically chooses those of a more recent catalog. In the first semester of change to a new major, the student must meet with an academic advisor to prepare a degree plan.

http://catalog.utdallas.edu/2013/undergraduate/policies/degree-plans#deadline-fees

Deadlines and Fees

The Office of the Registrar will accept "Undergraduate Change of Major" forms for processing up to the close of business on the first day of classes of each semester. Forms received after the first day of classes will be processed effective for the following semester.

All students are allowed to modify their major twice during their academic career at no charge. A modification is defined as a change, addition, or deletion of a major to a student's academic plan. A student's academic career begins the first class day of the first semester of enrollment at UT Dallas.

If a student elects to modify his/her major more than two times during an academic career, the third modification requires a $50.00 fee. EXCEPTION: There is no charge to move from the "undeclared major" category.

http://catalog.utdallas.edu/2013/undergraduate/policies/degree-plans#declaring-a-major

Declaring a Major

Undergraduate students must declare an academic course of study or major by the time they have earned 54 semester credit hours in order to continue enrollment. These semester credit hours include UT Dallas credits, credit transferred from other institutions, and semester credit hours awarded through credit by examination (AP, CLEP, IB, SAT, and so on).

Transfer students who have earned 54 semester credit hours at the time they apply for admission to UT Dallas may be undeclared for one semester. These students will be advised in their first semester by the Student Outreach and Academic Retention (SOAR) advising office. After the initial semester these students must then declare a major to be allowed to register for a subsequent semester.

Continuing students on academic probation who pass the 54-semester credit hour benchmark without declaring a major have a maximum of two long semesters to regain good academic standing. During this period students will remain undeclared. A student who fails to regain good standing within two long-semesters will be suspended from the University.
Double Major and Double Degree

Students should consult their advisors and/or primary school to learn more about double majors or double degrees. Additional information can be found at "Other Degree Requirements" at catalog.utdallas.edu/2013/undergraduate/curriculum/other-degree-requirements.

A student may earn a double major or a double degree but not both. A student may earn a double major or a second baccalaureate degree but not both.
Undergraduate Policies and Procedures

Disciplinary Actions Associated with Academic Standing

Academic Good Standing

Students at UT Dallas are expected to maintain a grade point average (“GPA”) of at least 2.000 on a 4.000 scale, which equates to a C average. Additionally, students are expected to maintain a GPA of 2.000 in their major-related courses to remain in Academic Good Standing.

Disciplinary Status Overview

UT Dallas maintains academic disciplinary policies to encourage students to make the necessary academic and life changes to succeed. Students (including those who seek second baccalaureate degrees or post-baccalaureate non-degrees) who fail to meet the minimum expectations of Academic Good Standing must meet more stringent standards and regularly consult with academic advisors.

a. Disciplinary Policy for First-Degree Seeking Students

The disciplinary policy provides a student with several opportunities to make the necessary adjustments prior to a final dismissal from UT Dallas.

UT Dallas Disciplinary Status:

• Academic Probation
• Academic Warning
• First Academic Suspension (One Semester)
• Second Academic Suspension (One Year)
• Final Dismissal

b. Disciplinary Policy for Second Baccalaureate Degrees or Post-Baccalaureate Non-Degree Seeking Students
Students who earned an undergraduate degree at UT Dallas or another institution of higher education and are enrolled at UT Dallas are subject to the provisions of this policy, except that they may only be placed on the following disciplinary statuses:

• Academic Probation
• Academic Warning
• Final Dismissal

Each Disciplinary Status will be indicated on the student's academic record.

http://catalog.utdallas.edu/2013/undergraduate/policies/disciplinary-actions#probation

Academic Probation

If a student's cumulative GPA falls below a 2.000, the student will be placed on Academic Probation. Academic Probation will be indicated on the student's academic record.

Academic Probation is designed to help students make the required adjustments to achieve success and a degree at UT Dallas. These adjustments will vary based upon the individual circumstances of each student, but should be taken seriously.

If a student is placed on Academic Probation, the student will be required to follow certain protocols and meet higher academic standards. These protocols and standards are designed to bring the student back to Academic Good Standing and allow the student to meet graduation requirements.

A student on Academic Probation is required to meet the following Academic Probation Requirements for the semester:

Academic Probation Requirements:

• Earn a minimum semester GPA of 2.200.
• May not withdraw or request an incomplete from a class.
• Meet with your School academic advisor prior to registration.
• Retake all required Major and University Core Courses failed the previous semester.
• Register for a maximum of 15 semester credit hours in a long semester or 9 semester credit hours in a summer semester.
• Maintain satisfactory progress towards graduation.
• For students with less than 60 UT Dallas earned semester credit hours:
 (a) Meet with a Student Outreach and Academic Retention (SOAR) office advisor.
 (b) Follow the SOAR advising plan developed with the advisor.

If a student on Academic Probation meets the Academic Probation Requirements but fails to achieve a cumulative GPA of 2.000, the student will remain on Academic Probation and must continue to comply with all Academic Probation Requirements.
If at any time, a student's cumulative GPA meets the minimum requirements of 2.000 overall the student will regain Academic Good Standing. A student's cumulative GPA is only affected by UT Dallas coursework. Coursework at another institution cannot be used to return a student to Academic Good Standing.

1. The Associate Dean of the student's school reserves the right to alter this requirement on a case-by-case basis.
2. The Associate Dean of the student's school reserves the right to alter this requirement on a case-by-case basis. If a student has registered for more than 15 semester credit hours prior to his or her placement on Academic Probation, the student's schedule must be reduced to a maximum of 15 semester credit hours. The student is required to meet with his or her School academic advisor to find an appropriate adjustment to the student's academic schedule.

http://catalog.utdallas.edu/2013/undergraduate/policies/disciplinary-actions#warning

Academic Warning

A student will be placed on Academic Warning for failure to meet the Academic Probation Requirements. A student on Academic Warning is also required to meet the Academic Probation Requirements as listed below:

Academic Warning Requirements:

- Earn a minimum semester GPA of 2.200.
- May not withdraw or request an incomplete from a class.
- Meet with your School academic advisor prior to registration.
- Retake all required Major and University Core Courses failed the previous semester.
- Register for a maximum of 15 semester credit hours in a long semester or 9 semester credit hours in a summer semester.
- Maintain satisfactory progress towards graduation.
- For students with less than 60 UT Dallas earned semester credit hours: (a) Meet with a Student Outreach and Academic Retention (SOAR) office advisor. (b) Follow the SOAR advising plan developed with the advisor.

Academic Warning should be a wake-up call for students who have not been able to make the adjustments required of students on Academic Probation. If a student is placed on Academic Warning, the student should consider dramatic alterations in all of the circumstances that affect his or her academic progress. The student should increase the volume of work with the SOAR advisor and meet with his or her Faculty Mentors or Associate Dean to determine an academic path to success.

If the student meets the Academic Warning Requirements, the student will return to Academic Probation. If the student again fails to meet the Academic Probation Requirements while on Academic Warning, the student will be suspended.
When placed on suspension, it is the student's responsibility to submit required documents to meet the readmission requirements for re-entry. Readmission is not guaranteed.

If at any time, a student's cumulative GPA meets the minimum requirements of 2.000 overall the student will regain Academic Good Standing. A student's cumulative GPA is only affected by UT Dallas coursework. Coursework at another institution cannot be used to return a student to Academic Good Standing.

3. The Associate Dean of the student's school reserves the right to alter this requirement on a case-by-case basis.
4. The Associate Dean of the student's school reserves the right to alter this requirement on a case-by-case basis. If a student has registered for more than 15 semester credit hours prior to his or her placement on Academic Probation, the student's schedule must be reduced to a maximum of 15 semester credit hours. The student is required to meet with his or her School academic advisor to find an appropriate adjustment to the student's academic schedule.

http://catalog.utdallas.edu/2013/undergraduate/policies/disciplinary-actions#departure

Academic Departure

First-degree seeking students who leave the University on Academic Probation or Academic Warning may be readmitted with the same status, even if they have attended another institution in the interim. Performance at another institution will be a factor in the readmission decision.

http://catalog.utdallas.edu/2013/undergraduate/policies/disciplinary-actions#suspension

Academic Suspension

First-degree seeking students are automatically placed on Academic Suspension for failure to meet the Academic Probation Requirements while on Academic Warning. Second baccalaureate degree-seeking or post-baccalaureate non-degree seeking students shall be subject to final dismissal for failure to meet the Academic Probation Requirements while on Academic Warning.

First-degree seeking students on Academic Suspension may not enroll in, audit, or visit a class unless readmitted as described below. Students who have already pre-registered for classes will automatically be dropped from all classes. Notice of Academic Suspension will show on the student's academic record.

Length of Academic Suspension

- A student's First Academic Suspension will be for a period of one long semester.
- A student's Second Academic Suspension will be for a period of one year (12 months).
- A student's third Academic Suspension is Final Dismissal from UT Dallas without a possible readmission.
Readmission

A student, who has been placed on suspension, must complete and submit for approval the Undergraduate Academic Suspension Readmission Petition Form for readmission. It is the student's responsibility to submit required documents to meet the readmission requirements for re-entry. Readmission is based on academic work elsewhere that indicates good prospects of success at UT Dallas (as determined by his or her Associate Dean). The student should meet with his/her UT Dallas academic advisor about appropriate coursework prior to enrolling in courses at another institution. Readmission is not guaranteed.

A student placed on One Long Semester Academic Suspension must petition to his or her Associate Dean for readmission. If the student has not declared a major or is a non-degree-seeking student, the student must petition the Dean of Undergraduate Education.

A student placed on One Year Academic Suspension must petition to his or her Associate Dean for readmission. The Dean of Undergraduate Education must approve the readmission of all students placed on One Year Academic Suspension.

A student that is readmitted may be subject to additional probationary conditions placed upon them by the Associate Dean or Dean of Undergraduate Education. Such additional probationary conditions may be individual to the student and his or her academic circumstances, but will be designed to encourage the student to reach Academic Good Standing and be eligible for Graduation.

A student who reenters the University after Academic Suspension will reenter on Academic Warning. The student should follow the requirements as outlined in the Academic Warning section as cited on http://catalog.utdallas.edu/2013/undergraduate/policies/disciplinary-actions#warning.

Changing Majors

A student may find that his or her interests and skills are better suited to a different academic discipline. If a student has been placed on Academic Suspension and wishes to select a different academic discipline, the student must first complete the "Undergraduate Change of Major Form" prior to petitioning for readmission. If the Change of Major is approved, the student must petition to the new Associate Dean for readmission.
Undergraduate Policies and Procedures

Graduate Courses

Upper-division undergraduates who are classified as seniors may petition their Associate Dean to take graduate courses by completing the appropriate form available in the student's academic advising office. If approved, these graduate courses can be applied toward satisfying undergraduate degree requirements or can be designated for future application toward a graduate degree requirement at UT Dallas. The student must declare at the time of registration for the course, on a form provided by the Undergraduate Associate Dean, how each approved course is to be applied. Once applied, the options cannot be changed. Approvals will be subject to the conditions outlined in the following sections.

Graduate Courses Applied Toward an Undergraduate Degree

With the approval of the student's Undergraduate Associate Dean, up to 12 semester credit hours of graduate work taken as an undergraduate may be used for completing any baccalaureate degree at The University of Texas at Dallas. Pass/Fail grading for graduate courses will be permitted only in this category but must be approved by the instructor prior to the start of class.

Graduate Courses for Possible Future Use as Graduate Credit

Undergraduates may take up to 12 semester credit hours of graduate courses to reserve for possible application toward a graduate degree. To register, undergraduate students must obtain permission from the course instructor and from the graduate advisor of the program in which the course is offered. Such courses with an earned grade of 'B' or better will be eligible for application to the student's graduate record when the student is admitted to a graduate program. These courses will not apply to the student's undergraduate degree and will not affect the student's undergraduate GPA.

Graduate Courses Taken in Fast Track Options

A number of programs at The University of Texas at Dallas offer an accelerated Fast Track option that allows qualified senior level undergraduate students to take specified masters level
coursework. Specific admission requirements for Fast Track programs can be found within the descriptions of majors. Undergraduate students at UT Dallas who have been admitted to Fast Track programs leading to baccalaureate/master's degrees may, with the permission of the student's Undergraduate Associate Dean and the graduate advisor of the intended graduate program, take a maximum of 15 specified semester credit hours of graduate work, as a Fast Track student. The graduate semester credit hours may be used to complete the baccalaureate degree and also to satisfy requirements for the master's degree. The grade earned in the graduate coursework must be a 'B' (3.000) or better to be applied to the master's degree requirements. A student may only Fast Track into ONE graduate program.

Graduate programs at UT Dallas may accept admission to a Fast Track program as satisfying Graduate Record Exam (GRE) criteria for admission to the graduate program. The Naveen Jindal School of Management requires students to meet its graduate admission requirements including completion of the Graduate Management Admissions Test (GMAT) prior to receiving the baccalaureate degree.

A student must be classified as a senior in order to eligible for Fast Track. Associate Deans of Undergraduate Education (ADU) determine specific eligibility to take graduate courses as evidenced by the attachment of a degree plan to the application form. The student must declare at the time of graduation on a form provided by the Undergraduate Associate Dean, how each approved graduate course is to be applied (either Fast Track or towards undergraduate degree). Once applied, the options cannot be changed.
Undergraduate Policies and Procedures

Graduation

Application for Graduation

Students must complete the online application for graduation after meeting with their academic advisor. The procedures and deadlines for submitting this application are listed in the online Comet Calendar and Academic Calendar. Students are encouraged to apply for graduation prior to registering for their last semester. Students who apply after the posted deadline will be required to pay a non-refundable late fee. Completion of the graduation application is an acknowledgement upon completion of all degree requirements, the student will graduate at the end of the semester. Students cannot withdraw the online application for graduation once it has been submitted. The University reserves the right to graduate any student who has satisfactorily met all requirements for graduation. All in-progress courses on the academic record must contain final grades prior to certification and posting of final graduation status. Once the graduation grade point average (GPA) is set, any change of grades or repeat of coursework only affect the overall GPA.

Graduation Commencement Ceremonies

Commencement ceremonies are held at the conclusion of each spring and fall semester. There is no summer graduation ceremony.

Students scheduled to graduate following a summer semester may petition to take part in the following fall ceremony. Students who graduate at the conclusion of the fall or spring semester may only graduate in the respective graduation ceremony.

Any questions regarding the commencement ceremonies should be directed to the Office of the Registrar.
Graduation with Honors

Students who show particular distinction in scholarship at the University are afforded the opportunity of graduating with Collegium V Honors, Latin Honors and/or Major Honors. Only grades earned at The University of Texas at Dallas are used in determining grade point average (GPA) for graduation with honors.

Collegium V Honors Program

Students graduating with Collegium V Honors must complete at least 24 semester credit hours within the Honors Program and maintain a 3.500 cumulative grade point average on at least 45 semester credit hours of graded credit. In their senior year, students must complete a senior thesis or senior project. They also must participate in a select number of extra-curricular events over the course of their academic career.

Latin Honors

Graduates may earn one of three degrees of Latin Honors: summa cum laude, magna cum laude, or cum laude. Requirements for graduation with Latin Honors are as follows:

A minimum of 45 UT Dallas graded semester credit hours are required. Each Latin Honors level requires a minimum GPA to be attained over all coursework taken at The University of Texas at Dallas. In the case of a student with a double major who wishes to graduate with Latin Honors, a single honors designation will be awarded in the primary major. Students graduating with double degrees who wish to receive honors for both degrees must complete separate honors requirements for each degree.

The grade point requirements for Latin Honors are issued by the University in the summer of each academic year and apply to graduates in the following academic year. The thresholds for each level of honors are determined from a rolling average of the grades of all graduates for the previous six long semesters. Averages are computed separately for each school within the University. The GPA that represents the top five percent of all graduates in a particular school will be considered the threshold for awarding summa cum laude honors. The GPA that defines the next 10 percent in each school will be the lower limit for magna cum laude. The average grade that defines the next 15 percent in each school will be considered the benchmark for awarding cum laude honors. A minimum GPA of 3.400 is required for any Latin Honors.

Major Honors

Students may graduate with honors from their individual school based on participation in their school's Honors Program as applicable. The school's Honors Program may provide two levels of recognition, Honors and Distinction. All students must have completed a minimum of 30 graded semester credit hours to qualify for Major Honors.
The requirements for school honor's recognition vary across schools. Students should review the descriptions within the school section of the catalog. To graduate with school distinction honors, students must complete an undergraduate thesis judged by faculty to be of exemplary quality.

Collegium V, Latin and Major Honors are reported on students' transcripts and diplomas.

http://catalog.utdallas.edu/2013/undergraduate/policies/graduation#catalog

Graduation Under a Particular Catalog

Provided the requisite courses continue to be offered, and given continuous enrollment, students are bound by the Core Curriculum requirements of the catalog in force at the time of admission, within that catalog's six-year limit. For students who change their major, the graduation requirements for that major will be those stated in the catalog in force at the time of the change. The Core Curriculum requirements, however, remain those of the catalog in force at the time of matriculation unless the student specifically chooses those of a more recent catalog or the catalog in force at the time matriculation expires. Should any requisite major courses cease to be offered, substitutions would be made by the Associate Dean of Undergraduate Education.

Should any requisite Core Curriculum courses cease to be offered, substitutions will be made by the Office of Undergraduate Education. Core Curriculum requirements must be met by all students pursuing a baccalaureate degree at The University of Texas at Dallas, regardless of their major. A specific course may be used to satisfy only one core requirement. Individual academic programs may require courses contained in parts of the University Core Curriculum to satisfy particular degree requirements. Students may be required to take extra courses if they fail to select these courses.

Administrative requirements such as minimum grade point requirements may change for all students with the issuance of a new catalog.

http://catalog.utdallas.edu/2013/undergraduate/policies/graduation#graduation-requirements

Graduation Requirements

Each candidate for a baccalaureate degree must complete a minimum of 120 semester credit hours of coursework. Some degree programs require more than 120 semester credit hours. Within this requirement, students must complete the following:

• At least 51 semester credit hours of upper-division (3000/4000 level) coursework, to include a minimum of 12 semester credit hours of advanced courses in the major subject.

• At least 45 semester credit hours must be taken at The University of Texas at Dallas.
• At least 24 of the last 30 semester credit hours needed for a baccalaureate degree must be taken at The University of Texas at Dallas.

• No coursework may be taken off campus in a student's final graduating semester.

• All transfer credit must be submitted with official transcripts prior to a student's final graduating semester.

• All in-progress coursework must be completed in order to graduate.

• A maximum of three semester credit hours of physical education activity can be applied toward degree requirements.

• A minimum GPA of 2.000 on a 4.000 scale (C average) is required in the major and related courses, in any declared minor, and overall. Major preparatory classes are not included in the calculation of the major GPA. Only grades earned at The University of Texas at Dallas are used in calculating this GPA.

• Students must satisfactorily complete all degree requirements specified by the school or college in which the degree is offered. (See "Academic Degree Requirements" at catalog.utdallas.edu/2013/undergraduate/curriculum#academic-degree-requirements.) In many instances, the college/school/department academic program requirements may exceed the University core requirements.

• Students must satisfy the Core Curriculum which is described in full at catalog.utdallas.edu/2013/undergraduate/curriculum/core-curriculum.

• Students who complete their core curriculum at UT Dallas must take UNIV 2020.

• A candidate for a degree must be enrolled at UT Dallas during the semester in which The Office of the Registrar confirms completion of degree requirements. Students may register in absentia if enrollment in a course is not required. (In-absentia registration is explained at catalog.utdallas.edu/2013/undergraduate/policies/registration#inabsentia.)

• Students must complete an official degree plan prepared by the academic unit, pursuant to the required filing of degree plan, Texas Education Code, Section 51.9685. The degree plan must be on file no later than the completion of 45 or more earned semester credit hours. The degree plan will be reviewed at the completion of 75 semester credit hours.

• Students will be notified by the University that filing a degree plan is required by state law and prevent students from obtaining official transcripts until the degree plan is filed.

• To qualify for a double degree or a double major from The University of Texas at Dallas, please review "Other Degree Requirements" at catalog.utdallas.edu/2013/undergraduate/curriculum/other-degree-requirements.
Note: General and specific requirements for degrees in undergraduate programs may be altered in subsequent catalogs.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education

Undergraduate Policies and Procedures

International Education

Information about international educational opportunities is available at the Office of International Education (OIE), Green Center (GC) 2.216. Students are required to satisfy the institutional protocol for international mobility under the guidance of OIE advisors to select the program most appropriate to their individual needs and interests. The advising process includes University policies governing international education, application, selection procedures, funding sources, international health insurance, emergency procedures, and liability issues, among other aspects. Information is also disseminated through special events, group meetings, individual appointments, reference materials and at the OIE website.

Students may participate in international educational programs through five types of mobility:

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#study-abroad

• **Study Abroad:** Students are registered for study abroad courses after they complete the institutional protocol, which includes the approval of the Associate Dean of the appropriate academic department, the approval of the Office of the Registrar, and the endorsement of OIE. Study Abroad programs are offered by organizations and institutions specialized in designing academic courses in foreign destinations for U.S. students (3rd party programs). Credits are awarded as transfer credits. Students are responsible for paying program fees directly to the selected study abroad provider. Therefore, students are not assessed UT Dallas' tuition and fees. Student may not apply their Academic Excellence Scholarships toward these programs.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#exchange-program

• **Exchange Program:** Students are registered full time at UT Dallas, but pursue the academic program in a foreign university with which UT Dallas has an active Exchange Program Agreement. Students may select from a large portfolio of exchange programs with the academic guidance of the Associate Dean from the appropriate academic department, who assesses the academic content of the program for UT Dallas credit equivalency purposes. Students earn resident credit. Students are assessed the normal UT Dallas' tuition and fees. Students may apply their Academic Excellence Scholarships toward these programs.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#independent-studies
• **Independent Studies:** For independent studies, students are registered for academic work designed to be pursued in a foreign destination under UT Dallas' faculty supervision and with the approval of the appropriate department. Students are assessed normal tuition and fees for the number of semester credit hours they undertake as independent studies.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#internships

• **Internships:** For internships, students register a work assignment related directly to their field of study in a foreign destination under UT Dallas' faculty supervision. Students are assessed normal tuition and fees for the number of semester credit hours they undertake as an internship. Students should visit the internship coordinator in the Career Center to go over departmental guidelines.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#faculty-led-programs

• **Faculty-led Programs:** Academic units may offer courses taught abroad as part of their regular curriculum. Students who take these courses follow normal registration procedures and are assessed normal tuition and fees for the number of semester credit hours they undertake. Additional fees are charged to cover program costs.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#eligibility-and-conditions

Eligibility and Conditions

Students are subject to the successful satisfaction of UT Dallas’ OIE Protocol according to the deadlines published in OIE web page. Students may pursue international education programs for a maximum of two semesters.

A student must have a minimum of 2.000 GPA to participate in study abroad programs, independent studies, or internships. A student must have a minimum of 3.000 GPA to participate in exchange programs. GPA requirements for faculty-led programs are determined by the academic unit offering the program.

Undergraduates must earn a minimum of 30 semester credit hours at UT Dallas (resident semester credit hours) prior to participating in study abroad programs, exchange programs, independent studies or internships. Upper division transfer undergraduate students must successfully complete a minimum of 15 semester credit hours at UT Dallas (resident semester credit hours) prior to participating in study abroad programs, exchange programs, independent studies, or internships. Lower division transfer undergraduate students must successfully complete a minimum of 30 semester credit hours at UT Dallas (resident semester credit hours) prior to participating in study abroad programs, exchange programs, independent studies, or internships.

The 24/30 rule states that students must complete at least 24 of their last 30 semester credit hours at UT Dallas. Students who are within the jurisdiction of the 24/30 rule and plan to graduate must obtain a waiver from the Dean of Undergraduate Education to be eligible for international education. Students may obtain guidance from OIE or their academic advisors to submit their
waiver petition to the Dean of Undergraduate Education. Students should provide a copy of the approved 24/30 waiver to OIE.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#financial-assistance

Financial Assistance

Students may apply for the UT Dallas' International Education Fund Scholarship (IEFS) to obtain complementary financial support for study abroad programs. Information about the IEFS, including eligibility requirements and deadlines, is available at the OIE website.

In addition to the Office of International Education, students may consult with the Office of Financial Aid for other funding opportunities for international education.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#grades

Grades/Credits

Credits earned in study abroad programs, exchange programs, independent studies, internships, and/or faculty-led programs translate directly onto UT Dallas' transcript.

Core Curriculum courses taken while studying abroad must be taken for a grade. A minimum of 2.000 on a scale of 4.000 must be earned to transfer credits to UT Dallas.

The Office of the Registrar will review transcripts and assign credit(s).

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#transcripts

Official Transcripts

Transcripts must be mailed to the Office of International Education. Transcripts received from foreign institutions in a language other than English must be translated by a professional translation service for official posting of transfer credit. The use of a professional translation service ensures the authenticity, consistency, and accuracy of transferring credits. It is the responsibility of the student to provide an English translation of the transcript and pay any associated costs. Transcript translation services are not provided by the University.

http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#programs

Programs

The Associate Deans in each school determine how general courses and Core Curriculum courses apply to UT Dallas' degree plan. Pre-approval may be required by more than one Associate Dean for courses outside the student's major. All courses must be pre-approved by the Associate Dean from the appropriate academic department, the Office of the Registrar, and the
Office of International Education. Ultimately, final application of transfer credit is determined upon receipt of the official transcript submitted after completion of the classes abroad. http://catalog.utdallas.edu/2013/undergraduate/policies/international-education#travel-warnings

Travel Warnings

The University of Texas at Dallas does not recommend nor support study abroad programs in regions of the world for which the U.S. State Department has issued a "Travel Warning." Students considering study in regions with Travel Warnings must submit their cases to the Secretary of the UT Dallas Advisory Council on International Education (ACIE), OIE Director, for further evaluation (www.utdallas.edu/oie/acie.htm). A Travel Warning is the federal government’s recommendation to avoid or consider the risk of travel to a specific foreign destination.

International Education Non-Credit Programs

Undergraduate students representing UT Dallas in an international conference, workshop, sport competition, and/or fully or partially sponsored by UT Dallas, i.e. air ticket, hotel, conference registration, etc., are required to complete the OIE Protocol at least three weeks before departure. For more information, please consult http://www.utdallas.edu/oie/seo.htm.
Undergraduate Policies and Procedures

Registration

Before registering for classes, all students entering a Texas university must receive a vaccination or booster (if the vaccination is five years old) against bacterial meningitis before enrollment in accordance with Texas Education Code, Section 51.9192 as of January 1, 2012. **Entering students who are 22 years of age or older are exempt.** Please contact the Office of the Registrar, 972-883-2342 or go to www.utdallas.edu/student/registrar for additional information.

Students may participate in a course only after officially registering and paying through the proper procedures. The Office of the Registrar officially notifies an instructor of the names of the students enrolled in a course utilizing the Orion class roster. Students will not receive credit for courses for which they are not registered.

Administrative Drop

An administrative drop may occur due to the following reasons:

- The student has not satisfied the pre-requisites for the course.
- The student has not satisfied probationary requirements resulting in suspension.
- Judicial affairs request.
- The student has not made appropriate tuition and fee payments.
- The student’s enrollment is in violation of academic policy.
- The student was not admitted for the term in which they registered.

Auditing a Class

See the "Auditing Courses" section at catalog.utdallas.edu/2013/undergraduate/policies/course-policies#auditing.
Classification of Students

Freshmen and sophomores are lower-division students. Juniors and seniors are upper-division students.

• Freshman: A student who has successfully completed fewer than 30 semester credit hours.

• Sophomore: A student who has successfully completed 30-53 semester credit hours.

• Junior: A student who has successfully completed 54-89 semester credit hours.

• Senior: A student who has successfully completed 90 or more semester credit hours.

Concurrent Enrollment Tuition

A concurrent enrollment agreement is in place between The University of Texas at Dallas, The University of Texas at Arlington, and The University of Texas Southwestern Medical Branch. This agreement allows any student enrolled concurrently between these institutions to receive a waiver of certain fees per Texas Education Code 54.011. Students must be enrolled in at least one semester credit hour at their home institution to be considered concurrently enrolled. Students must apply for concurrent enrollment with The Office of the Registrar in the Student Services Building, first floor customer service area.

Dates for Registration

Registration dates are listed online in the Academic Calendar or Comet Calendar. All dates and formal procedures for registration and late registration are listed: www.utdallas.edu/student/registrar/lookup/dropadd.html.

Continuing students will receive an enrollment appointment to register during the early registration period. Early registration helps to ensure enrollment in classes needed to fulfill degree requirements. All freshmen, undeclared continuing students, and students who changed their major must meet with their academic advisor prior to registering for classes.

Newly admitted students for the semester will have an opportunity to register at orientation. All newly admitted students must meet with their academic advisor prior to registering for classes.
Deadlines for Adding or Dropping a Class

NOTE: Students should retain copies of all add and drop forms for at least one year following the end of the semester in which the student initiates a drop or add course action.

Deadlines vary during the shorter summer sessions. It is the student's responsibility to review the Comet Calendar or the online Academic Calendar for specific summer deadlines.

Deadlines for dropping a course are based upon the course and not the student. For example, when an undergraduate student takes a graduate course, the drop procedures for graduate courses take effect.

Add

Beginning the first (1st) day of class through the sixth (6th) class day, students may add a class without the instructor's or advisor's signature. However, students in the following categories must still meet with an academic advisor before adding classes:

• Students newly admitted to The University of Texas at Dallas (including transfer students and freshmen),
• Students without declared majors and those students who are not in good academic standing. Please see the Comet Calendar's academic section for specific deadlines.

Drop

Courses dropped on or before Census Day will not appear on the student's transcript.

Students may drop a class without any permission required until the end of business on Census Day.

After Census Day, permissions to drop are required from the school or college in which the student is admitted.

W Period

Through the sixth (6th) class week of a long semester, students may withdraw from courses by completing a drop form and having it signed by their academic advisor and course instructor. A grade of 'W' (withdrawn from course) will appear on the student's transcript.
WL Period

During the seventh (7th) through ninth (9th) class weeks of a long semester, students who submit a completed drop form will receive a grade of 'WL' (withdrawn late). The student must obtain the instructor's and advisor's signatures on the form.

After the ninth (9th) class week of a long semester, a student may only withdraw from a class for non-academic reasons.

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#dropadd

Dropping and Withdrawing

The University makes a distinction between dropping a class prior to the 12th class day (Census Day - Fall/Spring), an academic action that is not posted to the student's permanent record, and withdrawing from a class (following Census Day) at which point the academic action becomes a part of the student's transcript.

Limitations

Texas law mandates that a student who enrolls in a Texas public institution as a first-time freshman in fall 2007 or later, not be allowed to withdraw from more than six courses over his or her entire undergraduate career including all courses taken at any Texas public institution of higher education. Legislatively-mandated reasons for withdrawing from a class that do not count toward the six-class limit include, among others, a severe illness or other debilitating condition that affects the student's ability to complete the course; the student's need to care for a sick, injured, or needy person if the care affects the student's ability to complete the course; the death of the student's family member or of a person considered to have a sufficiently close relationship to the student; the active duty service as a member of the Texas National Guard or the armed forces of the United States of the student, a family member, or a person considered to have a sufficiently close relationship to the student; or a change in the student's work schedule that is beyond the control of the student and that affects the student's ability to complete the course.

The University has an appeal process by which students can request exemption for a specific withdraw (See "Non-academic Withdrawals" at catalog.utdallas.edu/2013/undergraduate/policies/registration#nonacademic-withdrawal. Students should contact the Office of Undergraduate Education for more information.

As always, students may drop classes without penalty prior to the 12th class day (Census Day) in any semester.
Students who drop all courses in a given semester must officially withdraw from the University. (See "Withdrawal/Resignation from the University" at catalog.utdallas.edu/2013/undergraduate/policies/registration#university-withdrawal).

Students who habitually drop a significant fraction of their schedules may lose the right to drop or may be dismissed from the University for failure to make adequate academic progress (See "Academic Progress" at catalog.utdallas.edu/2013/undergraduate/policies/academic#progress).

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#dropappeal

Drop Appeal Procedures

Students, who believe they have dropped a course, but receive a grade for that course at the end of the semester, have one calendar year in which to provide documented proof of the processed drop to the Dean of Undergraduate Education to appeal the posted grade.

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#inabsentia

In Absentia Registration

In absentia registration provides an opportunity for a degree candidate to register for the semester in which the degree is to be completed without taking formal coursework. In absentia registration is permissible for a degree candidate who is removing an incomplete grade (I) or for a degree candidate who has left the University and is transferring authorized and approved credit to qualify for completion of a degree. In absentia registration requires a nonrefundable/nontransferable fee.

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#nonacademic-withdrawal

Non-academic Withdrawals

To withdraw from a course for non-academic reasons, students must complete a written petition detailing the nature of the request and include supporting documentation. Grounds on which such requests may be granted include but are not limited to documented serious medical conditions and exigent family circumstances.

Non-academic withdrawal petitions may be submitted at any time during the semester. Non-academic withdrawal petitions are to be obtained from the Undergraduate Student Advising Office. The Director of Academic Advising will distribute the petition to a committee whose members will independently review the petition and either approve or deny the request to
withdraw. The committee consists of three academic advisors, none of whom is from the school of the student petitioning. The Assistant Dean of Undergraduate Education will inform the student of the outcome. Special procedures apply to non-academic withdrawals for medical/mental health issues, as detailed more fully below.

NOTE: It is extremely important that students petitioning to withdraw from a class for non-academic reasons continue to attend and participate in the class, if possible, until the petition request is resolved. If the petition is approved, the student will receive a withdrawal designation commensurate with the request (see "Grading Scale" in "Academic Policies and Procedures") for the course. If the petition is denied, the student will receive the grade earned in the course.

In general, a request for non-academic withdrawal must apply to all courses in which a student is enrolled. Selective withdrawal will be permitted only under exceptional circumstances and by appeal to the Dean of Undergraduate Education. Petition for selective withdrawal can only be submitted after a request for non-academic withdrawal has been approved by the committee.

Medical and/or Mental Health Withdrawal from the University

Students experiencing a significant and unforeseeable medical or mental health condition, compromising the student's ability to effectively participate in their educational program, may request withdrawal from classes or, in rare circumstances, reduce their course loads at the University, without unnecessary academic penalty.

A medical withdrawal from the University can be granted only for the current or immediately preceding semester. Only in rare cases may students petition for a medical withdrawal for an earlier semester.

Students should refer to the [Academic Calendar](http://catalog.utdallas.edu/2013/undergraduate/policies/registration#medical-withdrawal) for the established withdrawal and drop dates. A student granted medical withdrawal or course load reduction will be assigned a grade of 'WI' for the affected courses. Students will be limited to one medical withdrawal during their academic career at UT Dallas, unless given special permission by the Dean of Undergraduate Education.

Medical Withdrawal requests must be submitted in writing using the same petition as the request for non-academic withdrawal referenced in the first paragraph of this policy. Such requests must be accompanied by a recent evaluation supported through documentation from a licensed doctor, other licensed medical provider (e.g. physician's assistant), or mental health professional. Hospitalization records from a recent admission, if relevant, should also accompany any application. The committee will review the request and any supporting documentation provided by the student, to determine whether the medical or mental health issues adversely affecting the student's ability to function academically are/were substantial enough to warrant the student's withdrawal under this policy. Upon that review, and not later than one month after receiving a completed petition, the committee will provide a written decision. The student will be notified of
the final determination in writing in a manner consistent with the policies and procedures established by the Office of Undergraduate Education.

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#withdrawal-refund

Refunds following Withdrawal

Any refund of tuition and/or fees will follow the University's Refund Policy for Withdrawal or Dropped Courses (see catalog.utdallas.edu/2013/undergraduate/tuition-and-financial-aid/tuition-refund) at the time of the effective date of the withdrawal. The Dean of Undergraduate Education will determine the effective date of the withdrawal.

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#appeal-denied

Appeal of a Denied Petition for Non-Academic Withdrawal

Students whose non-academic withdrawal petitions are denied may appeal in writing to the Office of Undergraduate Education. All appeals will go to the Dean of Undergraduate Education for review. The Dean's decision shall be final.

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#return-after-medical-withdrawal

Request to Return Following a Medical/Mental Health Withdrawal

Students who are granted medical withdrawals and wish to return to UT Dallas must submit their request for re-enrollment in writing to the Dean of Undergraduate Education or designee. The Medical Readmission Committee (Associate Dean of Students, Director of Counseling Center, Director of Student Health Center, and Assistant Dean of Undergraduate Education) via the Office for Undergraduate Education will assess the information provided by the student and render a decision regarding readmission. Such requests must be supported by a current release of information form from the licensed doctor, other licensed medical provider (e.g. physician's assistant), or mental health professional providing their care. The committee will evaluate the information provided by the primary provider to ensure that it supports the student's re-enrollment, and will forward a written decision to the Dean of Undergraduate Education and/or their designee. The Dean and/or their designee will inform the student, in writing, of the committee's decision as to whether the student's return is appropriate. In addition, before being allowed to re-enroll, students may be required to correspond with the Director of the respective service in order to forecast any possible needs and to facilitate maximizing the student's potential for a successful return.

In the event of denial of readmission, the student may appeal to the Dean of Undergraduate Education. A written appeal (a letter from the student explaining the circumstances) must be
received in the Office of Undergraduate Education within 10 working days of receipt of notification of denial of readmission. The Dean's (or designee's) decision is final.

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#visit

Visiting UT System Students Program

The Visiting UT System Students Program is designed to allow upper-level and graduate or professional students enrolled in an institution of the UT System to take courses or engage in research at another institution within the UT System during a regular semester or summer session. Each campus must appoint an individual designated to coordinate the visiting student program at both the home and host institution. Every campus has the responsibility to determine the academic qualifications necessary for their students to participate in the visiting program. Approval of a student's proposed visitation will be contingent upon space and desired courses being readily available in the proposed visitation program and, for participation in a research laboratory, upon approval of the director of the laboratory (Regent's Rules 50701).

http://catalog.utdallas.edu/2013/undergraduate/policies/registration#university-withdrawal

Withdrawal/Resignation from the University

A student who wishes to withdraw entirely from the University must obtain a "Registration, Drop/Add and Withdrawal Form" at www.utdallas.edu/student/registrar/forms. The student must complete the appropriate section of the form to withdraw from the University. The student submits the completed "Registration, Drop/Add and Withdrawal Form" in person to The Office of the Registrar in the Student Services Building, first floor customer service area. Students must withdraw on or before the last "WL" withdrawal day for that semester.
Undergraduate Policies and Procedures

Military

Military Service Activation Interruption of Education

From time to time, students who are reservists or members of the National Guard may be called to active duty in the U.S. military after a semester has begun. These students have several options for the treatment of their enrollment and tuition.

College Credit for Military Service

Military veterans who enroll at UT Dallas and meet certain requirements are eligible to receive undergraduate college credit for the time they spent in the service. Eligible veterans who enroll at the University receive college credit for up to twelve semester credit hours of lower division elective coursework. Eligibility requirements are defined in section 51.3042 of the Texas Education Code.

To be eligible to receive credit for military service, a veteran must:

- Have graduated from a public or private high school accredited by a generally recognized accrediting organization or from a high school operated by the United States Department of Defense;
- Have completed at least two years of service in the armed services (or have been discharged because of a disability); and
- Have been honorably discharged from the armed forces.

Credit for military service is available to all entering undergraduates - those applying for transfer admission, freshman admission, or re-admission. The credit is awarded for having served, not for any college-level courses that the veteran may have taken while in the military. Admitted students who may qualify for credit for military service should speak with a representative of the Office of the Registrar upon enrollment at the University. The University of Texas at Dallas will consider whether to award lower-division (1000 or 2000 level) academic course credit toward a
degree to admitted students when a student has provided the following documentation to the Office of the Registrar:

• An official ACE military transcript submitted by the student to the Institution that describes the substance of the training completed by the student and verifies the student's successful completion of that training, as well as the recommended ACE credit to be awarded.

• An official high school transcript from an accredited public or private high school or high school operated by the U.S. Department of Defense submitted by the student to the Institution indicating the student's official graduation.

• The student's DD214 indicating that the student was honorably discharged AND completed at least two (2) years of military service OR was discharged because of disability.

All documentation must be submitted to The Office of the Registrar. The Office of the Registrar will notify the student regarding any approved credit prior to registration for the following semester. All decisions are final.

http://catalog.utdallas.edu/2013/undergraduate/policies/military#stay-enrolled

Option to Remain Enrolled and Complete Coursework Following Brief Military Service

Under certain circumstances, a student who is required to participate in active military service is excused from scheduled classes or other required activities and will be allowed to complete an assignment or exam within a reasonable time after the absence. The excused absence is permitted only if the student will miss no more than 25% of the total number of class meetings or the contact hour equivalent (not including the final examination period) for the specific course or courses in which the student is enrolled at the beginning of the period of active military service.

http://catalog.utdallas.edu/2013/undergraduate/policies/military#withdrawal

Option to Withdraw, Receive Incomplete Grade, or Receive Final Grade

A reservist or member of the National Guard called to active duty in the U.S. military who receives activation orders after the start of a semester has four other options for the treatment of tuition and fees paid to The University of Texas at Dallas and transcript notation. In accordance with Texas statutes and Coordinating Board rules, the student may request any one of the following:

• The Office of the Registrar will process the withdrawal of the student from all classes and record "Withdrawn-Called to Military Duty" (WM) on the student's transcript and the Bursar Office shall refund the tuition and fees paid by the student for the semester in which the student withdraws; or
The Office of the Registrar may grant a student who is eligible under UT Dallas guidelines an incomplete grade (See "Incomplete Grades" section of the catalog for eligibility) in all courses by designating "Incomplete-Called to Military Duty" (XM) on the student's transcript. Please note: XM grades must be resolved within one year from the "release from active duty" date on military orders; or

- The student may petition the instructor to assign an appropriate final grade or credit for the course after successfully completing a substantial amount of coursework and having demonstrated sufficient mastery of the course material; or

- If the student withdraws before the Census Day of the semester in which the student is called to active military duty and the student requests Military Leave, courses will be dropped. Courses dropped on or before Census Day will not appear on the student's transcript.

NOTE: There are no provisions for refunds for active duty service members who are deployed as a result of military orders or for individuals who choose to enter the service. The provisions listed above apply only to reservists or members of the National Guard called to active duty.

http://catalog.utdallas.edu/2013/undergraduate/policies/military#return

Option for Automatic Readmission Following Military Service

A reservist or member of the National Guard called to active duty (not including routine National Guard training) may be readmitted without application or payment of additional application fees within one year of the "release from active duty" date on military orders. Applicable students will retain academic standing and financial eligibility if they meet current eligibility requirements other than continuous enrollment or other timing requirements.
Undergraduate Policies and Procedures

Change of Address, Email or Name

Students may complete a change of address online through Galaxy. Students must maintain home and mail addresses and telephone numbers using Galaxy. Although the UT Dallas administration and faculty primarily utilize UT Dallas email for communications, UT Dallas sends certain academic and financial communications through the mail. Therefore, if a student fails to maintain a current address, the student will be responsible for correspondence that is undeliverable.

Students may complete a change of personal email online through Galaxy. A student's UT Dallas email address is the official method of communication between faculty, administration and the student. A UT Dallas student must maintain his/her UT Dallas email account at all times. Therefore, if a student fails to maintain their UT Dallas email account, the student will be responsible for correspondence that is undeliverable.

Students may complete a "Name Change Request" form at www.utdallas.edu/student/registrar/forms and submit in person to The Office of the Registrar in the Student Services Building, first floor customer service area. A copy of the student's driver's license, a marriage certificate, or court order used as proof of the name change must accompany the name change request.
Undergraduate Policies and Procedures

Correspondence - Email

The University of Texas at Dallas recognizes the value and efficiency of communication between faculty/staff and students through electronic mail. At the same time, email raises some issues concerning security and the identity of each individual in an email exchange.

All official student email correspondence will be sent only to a student's UT Dallas email address and UT Dallas will only consider email requests originating from an official UT Dallas student email account. This allows the University to maintain a high degree of confidence in the identity of each individual's corresponding via email and the security of the transmitted information.

The University of Texas at Dallas furnishes each student with a free email account that is to be used in all communication with university personnel. The Department of Information Resources provides a method for students to have their UT Dallas mail forwarded to other email accounts. To activate a student UT Dallas computer account and forward email to another account, go to netid.utdallas.edu.

http://catalog.utdallas.edu/2013/undergraduate/policies/correspondence
Undergraduate Policies and Procedures

Family Educational Rights and Privacy Act (FERPA)

The Family Educational Rights and Privacy Act (FERPA) is a federal law enacted in 1974 to protect the privacy of student education records. The law applies to those institutions that regularly receive federal funding from the Department of Education and is enforced by the Family Policy Compliance Office of the U.S. Department of Education.

FERPA forms for students can be found at [www.utdallas.edu/student/registrar/forms](http://catalog.utdallas.edu/2013/undergraduate/policies/ferpa) (click on "FERPA packet").

Complaints of alleged violations may be addressed to

Family Policy Compliance Office
U.S. Department of Education
400 Maryland Avenue SW
Washington, D.C. 20202-5920

The UT Dallas FERPA violation link is located at [www.utdallas.edu/legal/ferpa](http://catalog.utdallas.edu/2013/undergraduate/policies/ferpa).

FERPA defines an eligible student as a student who has reached 18 years of age or is attending an institution of postsecondary education.

Students have four primary rights under FERPA:

• To inspect and review their education records

• To seek to amend those education records they believe to be inaccurate or misleading

• To have some control over the disclosure of information from those education records

• To file a complaint concerning alleged failures by an institution to comply with FERPA regulations within 180 days

More information regarding education records and the procedure for amending records can be found at [www.utdallas.edu/student/registrar/faq.html#FERPA](http://catalog.utdallas.edu/2013/undergraduate/policies/ferpa).

Directory or public information is information that is not generally considered harmful or an invasion of privacy if released. Directory information includes student's full name, local and permanent address, email address, phone numbers, date and place of birth, major field of study, dates of attendance, degrees/awards/honors received, most recent previous educational agency or institution attended, enrollment status (classification, under/grad, part/full-time), participation in
officially recognized activities and sports, weight/height of members of athletic team, expected
date of graduation, and photographs.

Non-directory information is information that is not considered to be directory information, such
as enrollment records, grades, and schedules.

Student may choose to withhold release of directory information. A student may do so by
completing the "Request for Confidentiality of Directory Information" form at
www.utdallas.edu/student/registrar/forms (click on "FERPA packet").

More information regarding FERPA can be found at www2.ed.gov/policy/gen/guid/fpco/ferpa.
Undergraduate Policies and Procedures

Making a False Alarm or Report Involving a Public or Private Institution of Higher Education

A person commits an offense under Section 42.06, Texas Penal Code, if he or she knowingly initiates, communicates or circulates a report of a present, past, or future bombing, fire, offense, or other emergency that he knows is false or baseless and that would ordinarily: (1) cause action by an official or volunteer agency organized to deal with emergencies; (2) place a person in fear of imminent serious bodily injury; or (3) prevent or interrupt the occupation of a building, room, place of assembly, place to which the public has access, or aircraft, automobile, or other mode of conveyance. The offense under Section 42.06, Texas Penal Code, of making such a false alarm or report involving a public or private institution of higher education is a state jail felony. An individual adjudged guilty of a state jail felony shall be punished by confinement in a state jail for any term of not more than two years or less than 180 days and, in addition to confinement, an individual adjudged guilty of a state jail felony may be punished by a fine not to exceed $10,000.
Undergraduate Policies and Procedures

Religious Holy Days

The University of Texas at Dallas will excuse a student from class or other required activities for the observance of a religious holy day (including travel time) for a religion whose places of worship are exempt from property tax under Section 11.20, of the Texas Tax Code.

Students are encouraged to notify the instructor or activity sponsor as soon as possible regarding the absence, preferably in advance of the assignment.

Excused students will be allowed to take missed exams or complete assignments within a reasonable time after the absence: a period equal to the length of the absence, up to a maximum of one week. A student who notifies the instructor and completes any missed exam or assignment may not be penalized for the absence. A student who fails to complete the exam or assignment within the prescribed period may receive a failing grade for that exam or assignment.

If a student or an instructor disagrees about the nature of the absence [i.e., for the purpose of observing a religious holy day] or if there is similar disagreement about whether the student has been given a reasonable time to complete any missed assignments or examinations, either the student or the instructor may request a ruling from the President of UT Dallas or from the President's designee. The chief executive officer or designee must take into account the legislative intent of TEC 51.911(b), and the student and instructor will abide by the decision of the chief executive officer or designee.
Undergraduate Policies and Procedures

Student Travel Policy

The University of Texas at Dallas promotes safe travel by students to and from activities or events within the scope of the University's mission. Before traveling, it is beneficial to review the travel policy about domestic and foreign travel, emergency procedures, insurance, and liability; and to obtain authorization by completing travel authorization forms and other related forms at least 5 working days prior to travel. Procedures also apply to faculty, staff, and students who transport students off campus on any university-organized and university-sponsored travel business or related travel activities for student organizations.

Detailed information regarding this policy, in accordance to Texas Education Code, Section 51.950, can be accessed at the UT Dallas Policy Navigator, policy.utdallas.edu/utdbp3023, and at www.utdallas.edu/administration/insurance/travel.
Resources for Study and Campus Life

General Resources

- Callier Center for Communication Disorders
- Career Center
- Carolyn Lipshy Galerstein Women's Center
- Child Care Center
- Comet Card
- Comet Center
- Comet Families
- Computer Facilities
- CourseBook Tool
- Dean of Students
- Distance Education
- Financial Literacy Training
- Fraternity and Sorority Life
- Intercollegiate Athletics
- International Student Services
- Judicial Affairs
- Leadership Education and Development
- Living Learning Communities
- Multicultural Center
- New Student Programs

Student Organizations

- Student Outreach and Academic Retention (SOAR)
- Student Success Center
- Student Union
- Student Union and Activities Advisory Board (SUAAB)
- Student Volunteerism
- Student Wellness Center
- Study Abroad

Textbooks

- Transfer Student Services
- University Housing Information
- University Libraries
- Veteran Services Center

Health Resources

- Student Health Center
- Bacterial Meningitis Vaccination Requirement
- Hepatitis B Vaccination Requirement
- Mandatory Tuberculosis (TB) Skin Test for International Students
- Recommended Immunizations
- Student Health Insurance
Recreational Sports
Residential Life
ROTC Programs
Spirit Squads
Student AccessAbility
Student Affairs
Student Counseling Center
Student Exchange Program - UT System
Student Government
Student Media
Student Organization Center

Professional Resources
Professional Preparation
Health Related Professions
Law Professions
Teacher Certification

Student Complaint Resources
Student Complaint Resources
Resources for Study and Campus Life

Callier Center for Communication Disorders

The Callier Center is an internationally recognized institution that offers services to people who have any type of communication disorder. Acknowledged for meeting the assessment, treatment, education, and social service needs of children and adults with communication disorders, the Center has programs in preschool education, parent education, and child development. Its clinical services include pediatric and adult services in audiology, speech pathology, and language development; its research activities include psychoacoustics, auditory neurophysiology, speech science, and audiology. Graduate classes are conducted at the Callier Center-Dallas facility, adjacent to The UT Southwestern Medical Center and at the Callier Center-Richardson facility on the main UT Dallas campus.

Career Center

The Career Center offers a full range of services to help students prepare for their careers. Services include career counseling and interest assessments, resume and job search document critiques, internships and externships, mock interviews, and more. In-depth information is available on the Career Center's website. A variety of seminars on such topics as resume writing, cover letter writing, interviewing, networking, and conducting an effective job search are offered on a regular basis. The Career Center offers a credential file service to assist PhD students applying for academic positions after graduation.

Representatives of business, government, industry, education, and social agencies recruit UT Dallas students and alumni through career expos and on-campus interviews. The Career Center manages the internship program for all majors, except EE/CS majors. Most on-campus student employment is listed through the Career Center, with the exception of TA and RA positions.

Part-time jobs, both on- and off-campus, full-time jobs, and on-campus interview schedules are posted through CometCareers. All students have a CometCareers account - they just need to log in and complete their profile. Students upload a resume into the system in order to apply for qualified positions or to make it available for employer referrals. Employers may have access to candidate resumes via various web resume books set up in the CometCareers system.

For more information, contact the Career Center in the Student Services Building room 3.300, telephone: 972-883-2943, web: www.utdallas.edu/career, email: Career Center.

Carolyn Lipshy Galerstein Women’s Center

The Women's Center works with organizations in the University and the Dallas communities to provide resources and services that enhance the experience of all campus women by contributing to an academic atmosphere in which positive role models are highly visible and gender bias and
inequities can be addressed. The Center acts as a central coordinating agency for campus and community groups, and offers opportunities and events that promote a broader understanding of the diverse experiences and ideas of women. The Center offers dynamic programs, and provides resources and services that will help the women of our community to grow and develop personally and professionally.

How can I use the Women's Center?

• Meet new people, network with other professionals, socialize, talk to someone who's willing to listen;
• Take a break, study, use the computer, read or rent a book, video, or magazine from our library;
• Learn about resources on campus and in the community that address your specific needs;
• Use the Center as a meeting place for your organization;
• Volunteer at the Women's Center, or find out about volunteer opportunities in the community;
• Stay current on upcoming events and important issues;
• Find out about scholarships offered in the community and nationally.

The Women's Center is located in the Student Services Building, room SSB 4.300, 972-883-6555.

Child Care Center

The Dallas International School (DIS) and UT Dallas jointly provide evening child care. Parents who attend classes are eligible for child care services during their evening class hours for children ages 4 to 11. Child care hours are from 3:30 p.m. to 10:30 p.m., Monday-Thursday. To register your child/children for the child care program please complete each of the forms in the enrollment packet. Call 972-883-6391 to have a packet sent to you, or pick one up in the Student Services Building, 4.400.

Comet Card

The Comet Card is the official University identification card for all students, faculty, and staff. The Comet Card allows the use of campus facilities and services and offers an optional campus account for on-campus purchases and payments. The card can also be linked to a Wells Fargo checking account and used as an ATM/PIN-debit card. Cards are issued through the Comet Center located in the Student Union. Call 972-883-2495 or go to www.utdallas.edu/cometcard for information.

Comet Center

The Comet Center, located on the second floor of the Student Union, is the UT Dallas information hub. Students can pick up Comet Cards and DART passes or purchase postage
stamps and discount tickets to movies, museums and other local attractions. See www.utdallas.edu/cometcenter for more information.

Comet Families

Comet Families is an avenue for family members and parents of UT Dallas students to get information about the campus and be involved in their student's campus experience. For more information call 972-883-6395 or go to www.utdallas.edu/family.

Computer Facilities

The Office of Information Resources provides computing facilities for student, faculty, and staff use in instruction and research. General access computer labs are located on the first floors of the Founders Building and the McDermott Library Building. The labs provide a modern, networked computing environment with Windows-based and Macintosh computers, scanners, and more.

Dedicated systems are also available to support such functions as campus information services, programming, research-related activities, and computationally intensive applications. A sophisticated campus-wide network permits offices and laboratories direct access to extensive computing resources both on- and off-campus. The university maintains high bandwidth connections to the commodity Internet as well as appropriate research and education networks, such as Internet 2.

Remote administrative services are provided through the Galaxy portal (galaxy.utdallas.edu), and remote access to the campus network and computing resources is provided through VPN (Virtual Private Networking) services. The University provides wireless LAN access to the campus community across most of the institution. Currently enrolled UT Dallas students and employed faculty and staff may utilize the campus network using devices with the appropriate wireless network interface. Guest wireless access is also provided on request. The latest information regarding computing services can be found at the Information Resources website at www.utdallas.edu/ir.

Many of the schools, programs, and research centers operate their own computing facilities that are available to students as appropriate.

CourseBook Tool

CourseBook is a tool to search for and obtain information related to course scheduling, course descriptions, and course location. CourseBook also contains course syllabi (syllabus), textbook information, course evaluations, and instructor curriculum vitae within one web portal. Go to coursebook.utdallas.edu.
Dean of Students

The Dean of Students provides leadership in the development, overall management, and supervision of organizations and activities and serves as an information/referral source for students needing assistance in any situation. The Dean of Students Office is in the Student Services Building, 4.400, and can be contacted at 972-883-6391 or on the web at www.utdallas.edu/deanofstudents.

Distance Education

Education opportunities at the University include courses and entire programs taught online via the Internet. UT Dallas currently offers courses in a number of areas from across the campus, including courses in teacher education and the natural sciences. Furthermore, distance learning opportunities at The University of Texas at Dallas now utilize e-learning technologies to provide students the opportunity to engage in coursework from remote locations and without the time constraints of the traditional face-to-face classes.

Blended (or hybrid) courses that utilize both on- and off-campus presentation, providing students an opportunity to maximize their learning by collaborative learning experiences are also available. UT Dallas also works with a number of partner institutions to provide students additional learning opportunities through exchange programs and other collaborative programs both nationally and internationally.

More information about specific distance learning programs or courses at The University of Texas at Dallas and registration procedures can be found in the Class Schedule or on the distance learning website at www.utdallas.edu/elearning/online-programs.

Financial Literacy Training

In accordance with Texas Education Code, Section 51.305, the University provides students information and resources to acquire financial literacy skills through a series of lectures and/or online courses. By accessing these resources at the Financial Literacy website, students learn how to budget, to build and maintain credit, and to develop skills in managing their personal finances, including health care and other benefits, investing for the future, loans and repayments, retirement planning, saving accounts, and taxes.

Fraternity and Sorority Life

UT Dallas is home to 20 national Greek fraternity and sorority organizations that provide students with opportunities for friendship, guidance, service and leadership. For more information call 972-883-6523 or go to www.utdallas.edu/gogreek.

Intercollegiate Athletics

UT Dallas is a member of the NCAA Division III American Southwest Conference. The UT Dallas athletic program includes men's and women's soccer, golf, basketball, tennis, and cross
country, men's baseball, women's softball, and women's volleyball teams. Graduate students are able to participate only if their undergraduate degree is from UT Dallas and they still have NCAA eligibility remaining. Administrative offices are located in the Activity Center. For additional information call 972-883-4490 or go to cometsports.utdallas.edu.

International Student Services

The International Student Services Office (ISSO) houses International Student Programs and International Student Advising for the international student population at UT Dallas. ISSO organizes on- and off-campus programs which allow international students to be a part of a variety of US cultural experiences, as well as educational events for US students wanting to participate in multicultural activities. ISSO also provides immigration information for F and J students through seminars, individual student appointments, and other outreach activities to provide students with information affecting their status. International Student Services is located in the Student Services Building, 3.400, and may be contacted by calling 972-883-4189. More information can be found at www.utdallas.edu/ isso.

Judicial Affairs

A part of the Dean of Students Office, the Office of Judicial Affairs promotes academic integrity and is responsible for investigating allegations of scholastic dishonesty and implementing the discipline process. More information can be found at www.utdallas.edu/deanofstudents or by calling 972-883-6391.

Leadership Education and Development

Non-credit leadership classes, offered through Student Development, help students to develop and enhance competence and self-knowledge as it pertains to leadership in a global society. For more information call 972-883-2242 or go to www.utdallas.edu/leadership.

Living Learning Communities

Living Learning Communities allow small groups of freshmen who share common academic objectives, goals, and interests to develop a support network with other students, peer advisors, and faculty/staff members. Communities are built around academic interests with a faculty or staff advisor who facilitates distinctive academic and social opportunities that help students extend their learning beyond the classroom. For more information call 972)-883-7348 or go to www.utdallas.edu/livinglearning.

Multicultural Center

The Multicultural Center (MC) provides cultural programs, support services, resources and cultural education programs. The MC is a place for students, faculty and staff to gather and relax. The MC has a comfortable lounge area with a television, videos, computer lab, work station, and a meeting room. Traditional events hosted by the MC are Hispanic Heritage Month, Black History Month, MLK Jr. Breakfast, Asian-American Heritage Celebration, Native American
Heritage program and the Diversity Dinner Dialogues. The MC is home to the Multicultural Peer Advocates (MPA's). The MPA's are student peer advocates that are available for personal, social or academic assistance.

Office hours are Monday through Thursday 8:30 a.m. - 6:00 p.m., Friday 8:30 a.m. - 5:00 p.m. Location: Student Services Building. Email: Multicultural Center. Telephone: 972-883-6390. Website: www.utdallas.edu/multicultural. Director: Arthur Gregg.

New Student Programs

New Student Programs offers orientations, advising, peer support and other resources to get new students off to a strong start at UT Dallas. For more information call 972-883-6171 or go to www.utdallas.edu/newstudents.

Professional Preparation

Students at the University who wish to prepare for a career in teaching, law, medicine, or a paramedical field should make every effort to ensure that their coursework at the upper division is in keeping with particular requirements of that chosen profession.

Health Related Professions

Healthcare professional programs do not state a preference about an undergraduate major field, thus permitting students to choose degree programs that correspond to their special abilities and interests. Students interested in the health professions may choose any major as long as they meet the minimum requirements stated by the professional school in question. Students who wish to continue their education in any professional program of study should contact the Health Professions Advising Center (HPAC) during their first semester at UT Dallas. The advisors may be reached by calling 972-883-6767 or by visiting their office at FO 2.210. More information may be found on their website at www.utdallas.edu/pre-health.

Law Professions

Law school admission committees do not normally state a preference regarding an undergraduate major field of study, thus permitting students to choose degree programs that correspond to their special abilities and interests. Pre-law internships, moot court, mock trial, and mediation are available for students from across the University who plan to practice law. Students interested in a career in law should contact the Pre-Law Advising and Resource Center (PLARC) in the Office of Undergraduate Education, FO 2.704, or by calling 972-883-6712. The PLARC website is located at www.utdallas.edu/pre-law.

Teacher Certification

Students who wish to gain certification to teach in Texas schools may do so at UT Dallas through one of its two separate teacher preparation programs - the Teacher Development Center in the School of Interdisciplinary Studies (972-883-2730) and UTeach Dallas in the School of
Natural Sciences & Mathematics (972-883-2496). Students must first be admitted individually to the academic program of their choice. They must also seek admission through either the Teacher Development Center or UTeach Dallas as early as possible. The Teacher Certification website is located at www.utdallas.edu/teach; the UTeach website is at www.utdallas.edu/uteach.

Professional education courses, including student teaching, of at least 18 semester credit hours are prescribed to meet state certification regulations. Certification requirements may increase the number of semester credit hours normally required for graduation. Careful planning and utilization of electives for fulfillment of professional requirements may allow the student to avoid such an increase.

The Teacher Development Center supports all of the following certifications while UTeach Dallas supports only the secondary mathematics and science certifications (4-8 and 8-12). Teaching fields in which certification for Grades 8-12 may be earned are English Language Arts and Reading, Social Studies, Computer Science, History, Life Sciences, Physical Science, Science, Chemistry, and Mathematics. Teaching fields in which certification for Grades 4-8 may be earned are Science, Mathematics, Social Studies, English Language Arts and Reading, and Generalist 4-8. The Generalist Certificate is the only teaching field available at UT Dallas for Early Childhood (EC)-6 certification.

All students interested in Teacher Certification should consult the section on Teacher Education Certification Programs in the catalog, as well as the appropriate subject area.

Recreational Sports

Recreational Sports provides UT Dallas students with diverse recreational programs to enhance their overall educational experience. Recreational facilities include a state-of-the-art fitness center, racquetball courts, squash courts, basketball courts, a multi-purpose room, an indoor swimming pool, sand volleyball courts, soccer fields, tennis courts, softball and baseball fields, and a rock climbing wall. Recreational Sports also offers students opportunities to participate in a variety of intramural and club sports, group exercise and non-credit courses. For additional information call 972-883-2096 or go to www.utdallas.edu/recsports.

Residential Life

Residential Life and its student-support team of Peer Advisors are committed to seeing that every resident student has a safe, comfortable and welcoming environment in which to live and learn. For more information call 972-883-5561 or go to www.utdallas.edu/housing.

ROTC Programs

Students at The University of Texas at Dallas may participate in the Air Force ROTC program at The University of North Texas, or in the Army ROTC program at The University of Texas at Arlington.
Students register for the ROTC courses by contacting the Office of the Registrar at the time they register for other UT Dallas courses. Payment for the courses is through the UT Dallas Bursar Office by the published payment deadlines. The ROTC courses are used as elective courses. Successful completion of degree requirements and the respective ROTC program can lead to a commission as a second lieutenant in the United States Air Force or the United States Army.

For further information and application procedures, contact:

AIR FORCE ROTC
Detachment 835
The University of North Texas
P.O. Box 305400
Denton, Texas 76203-5400
Telephone: 940-565-2074

or **ARMY ROTC**, Enrollment Officer
The University of Texas at Arlington
P.O. Box 19188
Arlington, Texas 76019
Telephone: 817-272-3281 (metro)

Spirit Squads

Temoc is the official mascot of UT Dallas and works with the UT Dallas Cheerleaders, Power Dancers, Crush Crew, and Pep Band to build school spirit, promote community and cheer the Comets on to victory (www.utdallas.edu/spirit).

Student AccessAbility

Student AccessAbility ensures that qualified students with documented disabilities have an equal opportunity to participate in educational, recreational, and social activities at UT Dallas. Students with disabilities are urged to contact Student AccessAbility as soon as they are admitted to the University. Student AccessAbility is located in the Student Services Building, 3.200, and can be contacted at 972-883-2098 or on the web at www.utdallas.edu/studentaccess.

Student Affairs

The Division of Student Affairs, under the direction of the Vice President for Student Affairs, offers a variety of student services and programs to enhance the educational experience of all enrolled students.

Student Counseling Center

The Student Counseling Center is staffed by a licensed psychiatrist, as well as licensed psychologists, and counselors, who are available to help students with personal and interpersonal problems. Services include individual counseling for personal or educational concerns,
marital/family counseling, group counseling, crisis counseling and stress reduction, and special workshops/programs relevant to student needs. In addition, a personal development book and tape library is available and materials may be checked out.

All counseling services and records are held confidential to the extent permitted by law and are governed by the Family Educational Rights and Privacy Act, the Texas Open Records Act, and Article 5561(h), Vernon's Annotated Texas Civil Statutes. The Student Counseling Center is located in the Student Services Building, SSB 4.600.

For more information call 972-883-2575 or go to www.utdallas.edu/counseling.

Student Exchange Program - UT System

The UT System Student Exchange program is designed to allow upper-division students enrolled in an institution of the UT System to take courses or engage in research at another institution within the System during a regular semester or summer session.

A UT Dallas student in good standing who has completed at least 60 semester credit hours is eligible to participate in the exchange program. Approval by the student's Associate Dean of Undergraduate Education is also required. Visiting students register and pay tuition and required fees at their home institutions and are given normal privileges associated with available student services at the exchange institution. Visiting students are subject to the rules and regulations of both institutions.

Each UT System institution has designated an individual to coordinate and approve undergraduate student exchanges. Interested UT Dallas students should contact the Office of the Dean of Undergraduate Education for additional information: call 972-883-6706 or email the Office of the Dean of Undergraduate Education.

Students at other UT System schools wishing to take courses at The University of Texas at Dallas under this exchange program should contact and work through the office designated by their home institution.

Student Government

Student Government is the official representative body and voice of UT Dallas students. Students have the opportunity to participate through serving on committees, running for office, or voting in elections. Student Government provides many free services for students, including attorney services, the Comet Discount Program and free bluebooks. Further information may be obtained from the Student Government Offices in the Student Union (SU Suite 2.4), by calling 972-883-2284, or by going to www.utdallas.edu/student/sg.

Student Health Center

The Student Health Center offers routine medical services and treatment to all currently enrolled students who have paid the medical services fee and are attending classes. Services include
physicals, diagnosis and treatment of acute illnesses and injuries, general medical problems, gynecological problems, treatment of stabilized chronic illnesses, allergy injections, and limited immunizations. Care providers include Nurse Practitioners and a Staff Physician. While there is no out-of-pocket cost for most services, there are charges for laboratory services, medication, and specific procedures provided for individual students. All services or treatment obtained from facilities other than the Student Health Center are the responsibility of the individual student. The staff at the Student Health Center can make referrals as appropriate.

The Student Health Center provides information on the prevention and transmission of HIV infection and AIDS, and offers HIV and AIDS education programs and testing.

All medical services and records are held confidential to the extent permitted by law and are governed by the Family Educational Rights and Privacy Act, the Texas Open Records Act, and Article 5561(h), *Vernon's Annotated Texas Civil Statutes*. The Student Health Center is located in the Student Services Building, SSB 4.700. Call 972-883-2747 for more information or go to www.utdallas.edu/healthcenter.

We encourage all students to be current on their immunizations.

Bacterial Meningitis Vaccination Requirement

Per State legislation effective January 1, 2012, all entering Texas college students must receive a vaccination or booster (if the vaccination is five years old) against bacterial meningitis before enrollment in accordance with *Texas Education Code*, Section 51.9192.

The vaccine or booster is required for entering students at Texas public and private colleges, living both on- and off-campus.

- An entering student is a new student or a student who has had a break of enrollment for one or more fall or spring semesters. Summer semester is not included as a break in enrollment.

- Transfer students are considered entering students. Transfer students may request an official memo stating proof of vaccination (within the last five years) from their previous institution and submit with the vaccination requirement form.

- Students who are enrolled only in online courses are exempt if they supply an online exemption form.

- Entering students 22 years of age or older are exempt.

The student, or parent or guardian of the student, must provide a meningococcal meningitis vaccine requirement form with an official immunization record or other required documentation listed on the form, showing the student has received the bacterial meningitis vaccination or booster during the five-year period prior to enrollment, and not less than 10 days before the first day of classes.
Students opting to decline the vaccination for bacterial meningitis for reason of conscience, including religious belief, should request an affidavit through the Texas Department of State Health Services. Entering students will be unable to register until the paperwork is received and reviewed. The Office of the Registrar sends electronic notifications to students about the vaccination or booster requirement until the paperwork is received.

Questions concerning the bacterial meningitis requirement and forms should be directed to the Office of the Registrar, 972-883-2342 or go to www.utdallas.edu/student/registrar.

Hepatitis B Vaccination Requirement

A Hepatitis B vaccination is required for students enrolled in a course of study that involves potential exposure to human or animal blood or bodily fluids in accordance with Texas Education Code, Section 51.933.

Mandatory Tuberculosis Screening for International Students

- Tuberculosis (TB) screening is required for all persons born outside the United States, regardless of the status of their application, prior to registering for their first semester at UT Dallas. (Note: Being granted the resident tuition rate does NOT exempt an international student from this requirement.)
- Screening for TB must be administered, regardless of prior BCG vaccination, no more than (6) months prior to the first day of class.
- The only acceptable TB screening option is the Interferon Gamma Release Assay (IGRA) blood test (T-Spot). A TB skin test will NOT be accepted.
- The T-Spot test must be administered and interpreted in the United States by a licensed medical provider.
- International students who do not complete a TB screening or who do not submit the appropriate documentation will NOT be allowed to register for classes.
- The T-Spot test is available through the on-campus Student Health Center for a fee.

Recommended Immunizations

The following vaccines are recommended but not required:

- Hepatitis A and B
- Human Papillomavirus (HPV)
- Influenza (flu)
- Measles, mumps, rubella (MMR) - 2 doses (required for international students)
- Tetanus, diphtheria, pertussis (Tdap)
- Varicella (chicken pox)
For more information, please visit www.utdallas.edu/healthcenter/immunizations.

Student Health Insurance

The University of Texas at Dallas Student Health Insurance Office, under the direction of the Student Health Center, provides unique and confidential health insurance advising services for UT Dallas students. Health insurance is available to all students at UT Dallas and is required of all international students (students who are not US Citizens, US Permanent Residents, Asylees, Refugees or undocumented aliens). All international students are assessed the Student Health Insurance (SHI) fee at the time of registration for classes. International students are responsible to pay the fee unless they apply for and are granted a waiver based on documentation of other comparable insurance coverage. Contact the Student Health Insurance Office for more information at 972-883-2747 or on the web at www.utdallas.edu/healthcenter/insurance.

Student Media

The award-winning student newspaper of UT Dallas, The Mercury, publishes biweekly on Mondays throughout the school year. The newspaper offers paid positions for writers, editors, page designers and photographers.

Radio UT Dallas, the student-run Internet radio station, features an eclectic and freeform mix of music and original programming including talk, poetry and live coverage of UT Dallas sports. College Music Journal nominated Radio UT Dallas as one of the best internet radio stations in the United States.

A Modest Proposal, a student publication that focuses on student life, global politics, arts, events, and social commentary, publishes eight editions during the fall and spring semesters each year.

UT Dallas TV, a web-based television station provides a medium for broadcasting news, entertainment shows and other content produced by students, staff and faculty.

Student Organization Center

The Student Organization Center (SOC) helps UT Dallas students become more connected to campus life. SOC provides programming and services for student organizations and for students interested in participating in the many activities at UT Dallas. Visit us in the Student Union (SU 2.416) or go to www.utdallas.edu/sof.

Student Organizations

Registered student organizations provide the major means by which students can contribute to campus life while developing friendships, interests, talents, and leadership skills. There are over 150 student organizations at UT Dallas that cater to a variety of interests, such as academic and honor groups, service clubs, religious groups, ethnic groups, and special interest groups. Detailed information on the groups and guidelines for forming new organizations is available in the
Student Organization Center (Student Union, 2.416). For additional information call 972-883-6551 or go to www.utdallas.edu/sof.

Student Outreach and Academic Retention (SOAR)

In addition to School based advising, the Student Outreach and Academic Retention (SOAR) office is dedicated to providing academic advising to students who are at-risk for Academic Suspension and students who have not met the Academic Excellence Scholarship (AES) requirements. Students not in good academic standing or have not met their AES scholarship requirements are required to meet with a SOAR advisor and follow a prescribed advising plan. The individualized plan will be designed to help each student improve their academic standing by addressing their specific needs including but not limited to study skills, time management skills, personal issues, and appropriate campus office referrals. SOAR office advising is available to all students though not required of students in good standing.

Student Success Center

The Office of Student Success operates the Student Success Center, which offers assistance to students in the areas of writing, mathematics, communication, multiple science fields, reading, study skills, and other academic disciplines. These services are available through individual and small group appointments, workshops, short courses, and a variety of online and instructional technologies. All students enrolled at UT Dallas are eligible for these services.

The Math Lab gives short-term and semester long support for a variety of introductory and advanced mathematics courses. Students may drop in to visit with a math tutor on a regular basis. Comet card is required.

The Writing Center offers one-to-one and small group assistance with general and advanced writing assignments and overall writing skills. Scheduling an appointment is strongly recommended. Drop in appointments are granted if a tutor is available.

The Peer Tutoring program offers free tutoring each semester to UT Dallas undergraduates who are currently enrolled. Students meet with peer tutors in the Student Success Center tutoring rooms. Students should check the SSC website for subject and session times.

The Peer-Led Team Learning (PLTL) program provides an active, engaged learning experience for students who meet in small groups once a week with a Peer Leader who helps guide them through potentially difficult gateway course. Students that attend sessions regularly typically earn a half to a whole letter grade higher than students that do not participate in the PLTL program.

Supplemental Instruction (SI) is an academic support program that provides academic assistance to students in historically difficult classes. The SI sessions help with content mastery.
and with learning and study strategies that are applicable to all subject areas. Students should check the SSC website for subject and session times.

The **Communication Lab (CommLab)** offers one-on-one and group consultations where you will gain practical feedback for improving oral and group presentations.

Success Coaches are available for individual student appointments to discuss study skills, time management, note taking, test taking and preparation, and other success strategies.

The Student Success Center's main office is located in the McDermott Library Building and can be contacted by calling 972-883-6707 or by sending an email to the Center.

Student Union

The **Student Union** is a place for students to hang out, grab a bite to eat and just relax. Open seven days a week, it includes a TV lounge, study lounges, pool tables, ping-pong tables, a video arcade, the Comet Café, The Pub, and a number of meeting rooms that can be reserved for organization meetings.

Student Union and Activities Advisory Board (SUAAB)

SUAAB is a group of student leaders dedicated to programming diverse social and educational events to enhance the student experience. Events coordinated by SUAAB include the annual Homecoming Dance, Casino Night, Springapalooza, movies, comedians, concerts, pep rallies, and more (www.utdallas.edu/suaab or 972-883-6438).

Student Volunteerism

The **Student Volunteerism Program** offers students a variety of opportunities to lend their time and talents in service to the communities of UT Dallas, North Central Texas, and beyond. Programs include Alternative Spring Break, Service Saturdays and Viva! Volunteer among others. The Office of Student Volunteerism is located in the Student Services Building (SSB 3.600) and can be contacted at 972-883-6393 or on the web at www.utdallas.edu/volunteer.

Student Wellness Center

The Student Wellness Center promotes health, fitness, and responsible personal choices among UT Dallas students through educational programs, resources and individual consultations. Programs include alcohol and other drug awareness, sexual responsibility, suicide awareness, nutrition and fitness, and men's and women's health. The Student Wellness Center is located in the Student Services Building, SSB 4.500, and can be contacted at 972-883-4275 or on the web at www.utdallas.edu/studentwellness.
Study Abroad

Information about educational opportunities in other countries, including study abroad, international internships, international research opportunities, and international scholarship programs, is available at the Office of International Education (OIE), located in Green Center (GC), 2.126. Students are required to review an OIE presentation before seeking staff assistance in selecting the program most appropriate to their individual needs and interests. The OIE presentation includes University policies governing international education, program options, eligibility requirements, basic preparation, types of mobility, institutional protocol, and international fund scholarship. Information is also disseminated through special events, group meetings, individual appointments, reference materials, and at the OIE website, www.utdallas.edu/oie. (See "International Education" located in the Academic Policies and Procedures section of the catalog for more details).

Textbooks

The University Bookstore stocks all required textbooks and software. Textbook information for specific courses is available within the CourseBook web portal at coursebook.utdallas.edu. Textbook information includes International Standard Book Number (ISBN) and retail price information; data is collected from the campus bookstore on a regular basis. For additional assistance, click on the help tab within coursebook.utdallas.edu.

The University of Texas at Dallas advises students that they are not under any obligation to purchase a textbook from a university-affiliated bookstore. The same textbook may also be available from an independent retailer, including an online retailer. (Texas Education Code 51.9705; 19 TAC 4.215)

Transfer Student Services

The Transfer Student Services Office provides support to new and returning transfer students to ensure their successful transition into UT Dallas. The Transfer Student Services Office is located in the Student Services Building, 3.600, and can be contacted at 972-883-6147 or on the web at www.utdallas.edu/transferservices.

University Housing Information

Students are provided several affordable on-campus housing options. All on-campus housing is reserved for UT Dallas students.

Locations include University Village apartments and University Commons residence halls, a community owned by UT Dallas and managed by American Campus Communities.

In accordance with University policy, all freshmen who choose to live on campus are required to live in University Commons residence halls.

For more information please go to www.utdallas.edu/housing or www.utdallas.edu/reslife.
Contact Information:

Residential Life Office
Telephone: 972-883-5561

Residential Life Office

University Village Apartments Leasing Office
2800 Waterview Parkway Suite #200
Richardson, TX 75080
Telephone: 972-792-9100
Fax: 972-792-9101

General Information

University Libraries

The Eugene McDermott Library and the Callier Library support the research, instruction, and community service programs of the University by providing access to information in both print and electronic forms. The libraries consist of over two and a half million items, including over 65,000 electronic journals, 1,000,000 electronic books, federal and Texas government documents, media, microforms, and maps.

The McDermott Library is a U.S. government document depository. Special collections include the Jaffe Holocaust Collection, the Wineburgh Philatelic Research Library, the Louise B. Belsterling Collection, the History of Aviation Collection, and the UT Dallas Archives. The Library also has a rare books collection. The libraries provide an ever-expanding digital collection that is available to distance learners. Users connect to these resources through the library portal at www.utdallas.edu/library. Current students have unlimited access to the digital library. The Library is also developing Treasures, a digital institutional repository to showcase the research and scholarship conducted at the University.

The librarians and staff provide competent and cordial interactions with the people they serve. Librarians provide class and individual instruction on the use of the library.

The library collections are enhanced by the Interlibrary Loan Service, which provides students with books or articles from a network of major libraries. Student research is facilitated by copiers available to duplicate from paper, microfilm, or microfiche. The McDermott Library Information Commons provides connections to our electronic material. The libraries offer students with disabilities a range of services to encourage their independent research.

Veteran Services Center

The UT Dallas Veteran Services Center is a resource center for veterans, reservists, eligible dependents, and active duty military students attending UT Dallas. The center helps students access information about VA benefits, financial aid, scholarship opportunities, and on- and off-
campus veteran support services. The center's lounge allows students to meet and greet other veterans, and the office of the UT Dallas VA certifying official is also located in the center.
Student Complaint Resources

The University of Texas at Dallas Undergraduate Online Catalog includes procedures to assist students in expressing and resolving complaints, issues, and questions that may arise during their academic careers. This web page provides information about specific procedures and their respective web links.

- **Nondiscrimination Policy**
 - Nondiscrimination Policy Statement
 - Equal Educational Opportunity Statement

- **Student Conduct**
 - Student Conduct and Appeals

- **Academic Grievances and Procedures**
 - Student Grievances Policy
 - Rules, Regulations, and Statutory Requirements: Grievance Procedures
 - Procedures to Appeal Academic Decisions

- **Grades**
 - Changing Grades
 - Incomplete Grades

- **Disciplinary Actions and Procedures**
 - Academic Disciplinary Policies

- **Class Registration and Withdrawals**
 - Adding or Dropping a Class
 - Drop Appeal Procedures
 - Medical Withdrawals
 - Non-Academic Withdrawals
 - Appeal of a Denied Petition for Non-Academic Withdrawal

- **Transfer Credits**
 - Resolution of Transfer Disputes for Lower-Division Courses
Tuition and Financial Aid (including Residency Classification)
• Tuition and Financial Aid Policies and Procedures
• Refund of Tuition and Fees
• Other User Fees (including Parking Regulations)

Military Service
• Option to Withdraw, Receive Incomplete Grade or Receive Final Grade

Religious Holy Days
• Disagreements About Religious Holy Days Absences

Family Educational Rights and Privacy Act (FERPA) and Student Records
• Handling Alleged Violations of FERPA Policy
• Handling of Student Records

Resources for Students to Obtain Assistance and/or Additional Information
• Dean of Students
• Judicial Affairs
Appendix I

Rules, Regulations, and Statutory Requirements

A. Student Conduct and Discipline

The University of Texas System and The University of Texas at Dallas have rules and regulations for the orderly and efficient conduct of their business. It is the responsibility of each student and each student organization to be knowledgeable about the rules and regulations which govern student conduct and activities. The University of Texas at Dallas administers student discipline within the procedures of recognized and established due process. Procedures are defined and described in Student Discipline and Conduct, UTSP5003. Copies of these rules and regulations are available to students in the Office of the Dean of Students where staff are available to assist students in interpreting the rules and regulations (SSB 4.400, 972-883-6391).

A student at the university neither loses the rights nor escapes the responsibilities of citizenship. He or she is expected to obey federal, state, and local laws as well as the Regents' Rules, university regulations, and administrative rules. Students are subject to discipline for violating its standards of conduct whether such conduct takes place on or off campus or whether civil or criminal penalties are also imposed for such conduct.

1. Academic Dishonesty. The faculty expects from its students a high level of responsibility and academic honesty. Because the value of an academic degree depends upon the absolute integrity of the work done by the student for that degree, it is imperative that a student demonstrates a high standard of individual honor in his or her scholastic work. Academic dishonesty includes, but is not limited to, statements, acts or omissions related to applications for enrollment or the awarding of a degree, and/or the submission of work for academic credit that is not properly cited. As a general rule, academic dishonesty involves one of the following acts: cheating, plagiarism, collusion and/or falsifying academic records. Students suspected of academic dishonesty are subject to disciplinary proceedings.

2. Campus and Residence Hall Solicitations. "Solicitations," as defined by the Rules and Regulations of the Board of Regents of The University of Texas System, means the sale, lease, rental of any property product, merchandise, publication, or service, whether for immediate or future delivery; an oral statement or the distribution or display of printed material, merchandise or product that is designed to encourage the purchase, use or rental of any property, product, merchandise, publication, or service; the oral or written appeal or request to join an organization other than a registered student, faculty or staff organization; the receipt of or request for any gift or contribution; and/or the request to support or oppose or to vote for or against a candidate, issue, or proposition appearing on...
the ballot at any election pursuant to state or federal law or local ordinances. All solicitations on the UT Dallas campus must conform to the Regents' Rules, copies of which are available in the offices of the President, Executive Vice President and Provost, Vice Presidents, and Deans and in numerous other administrative offices and the library.

3. **Hazing.** Hazing, submission to hazing, or failure to report first-hand knowledge of the planning or occurrence of specific hazing incidents is prohibited by state law and, in addition to disciplinary actions, is punishable by fines up to $10,000 and confinement in county jail for up to two years. Moreover, any hazing offense that causes the death of another person is a state jail felony. Hazing is defined by state law as, "... any intentional, knowing, or reckless act, occurring on or off the campus of an educational institution, by one person alone or acting with others, directed against a student, that endangers the mental or physical health or safety of a student for the purpose of pledging, being initiated into, affiliating with, holding office in, or maintaining membership in an organization." Any person who reports a specific hazing incident involving a student to the Dean of Students is immune from civil or criminal liability that he/she might otherwise incur as a result of the report. Any persons who have further questions about hazing or activities that may be considered hazing should call the Dean of Students' office at (972) 883-6391.

4. **Copyrighted Material.** Unauthorized distribution of copyrighted material may subject students to civil and criminal penalties. All UT Dallas syllabi are required to include, whether in text or a hyperlink, student conduct policies including a copyright notice. This notice directs students to UT Dallas' Policy Regarding Photocopying Copyrighted Materials (UTDPP1043) and UT System's copyright website. Further, the Director of Information Security is identified as the University's contact for copyright questions or concerns. See www.utdallas.edu/copyright.

5. **Other Disciplinary Situations.** Any student organization is subject to disciplinary action or revocation of registration as a student organization for violation of a rule or regulation of The University of Texas System or The University of Texas at Dallas.

B. Grievance Procedures

The University of Texas at Dallas is committed to a policy of nondiscrimination on the basis of age, color, disability, gender, race, religion, sexual orientation, national origin, or veteran status in its provision of services, activities, and programs, and in its treatment of students. Students seeking further information about this policy or related complaint procedures for alleged discrimination or sexual harassment should contact the Dean of Students. The dean will follow the procedures for student grievances that are found in UTDSP5005, Student Grievances Policy.

Sexual harassment is a form of sex discrimination. Such harassment is defined as unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature. Suggestions that academic or employment reprisals or rewards will follow the refusal or granting of sexual favors also constitute sexual harassment. The full text of the University's "Sexual Harassment Policy and Procedure" may be found in the Administrative Policies and Procedures Manual, Section D, D11-115.0.
Any student who perceives that he or she has been subject to any form of discrimination as defined above may file a written complaint with the Dean of Students using the following procedures:

1. The complaint must contain the nature of the alleged discrimination, the date on which the alleged discrimination occurred, and other appropriate information as required by the dean.
2. The dean will refer all complaints that name an employee of the university (including graduate assistants and other student employees) as the offender to the Office of Human Resources for investigation and resolution. When the nature of the complaint is on the basis of disability, the dean will refer the grievance or complaint to the ADA Coordinator who will investigate the complaint under the procedures given in the Administrative Policies and Procedures Manual, Vol. IIA, Section D, page D11-195.0, Americans with Disabilities Act Grievance Policy.
3. With the exceptions noted in subsection (2) above, the student discipline procedure outlined in UTDSP5003 Student Discipline and Conduct will be utilized for complaints that name a student as an alleged offender. Such complaints will be investigated by the dean.
4. As a result of the investigation, the dean will, on the basis of the information presented, determine: a) that the charges of discrimination are without basis, b) that further investigation is required, c) that campus action shall be initiated to alleviate a discriminatory situation, or d) that a hearing will be held.

C. Academic Grievances

Procedures for student grievances are found in university policy UTDSP5005. In attempting to resolve any student grievance regarding grades, evaluations, or other fulfillments of academic responsibility, it is the obligation of the student first to make a serious effort to resolve the matter with the instructor, supervisor, administrator, or committee with whom the grievance originated (hereafter called "the respondent"). Individual faculty members retain primary responsibility for assigning grades and evaluations.

PROCEDURES TO APPEAL ACADEMIC DECISIONS

(a) The appeal procedures defined in this section apply to an unresolved grievance concerning some aspect of the student's academic standing at UT Dallas. The intent is to address the grievance of the student in a prompt and orderly fashion. A grievance means a dispute concerning some aspect of the student's academic standing arising from an administrative or faculty decision that the student regards as incorrect or unjust. Grievances include, but are not limited to, disputes over grades, application of degree plan, graduation/degree program requirements, and thesis and dissertation committee and/or adviser actions or decisions. Grievances, as defined in this section, do not include the right to appeal the termination of employment of a teaching assistant or research assistant during the term of the student's appointment. That appeal process is defined and described in UT Dallas Policy PP1075 University Policies Related to Graduate Student Teaching Assistants and Graduate Student Research Assistants.
(b) A grievance regarding academic concerns will be considered in the following manner:

1. **Initial Consideration of Grievance** In attempting to resolve any student grievance falling within the scope of this policy, it is the obligation of the student first to make a serious and prompt effort to resolve the matter through discussion with the instructor, supervisor, administrator, or committee chair with whom the grievance originated (hereafter called "the respondent.") within sixty (60) calendar days after the date on which the decision was first rendered.

2. **Appeal to the Department/Program Head** If the matter cannot be resolved in discussions between the student and the respondent, the student grievant can submit a written appeal to the respondent's department/program head with a copy to the respondent clearly specifying the basis of the appeal and stating the remedies the student is seeking. This written appeal MUST be submitted no later than the sixty-fifth day after the date on which the decision in dispute was first rendered by the respondent. Within ten business days while classes are in session, the respondent will provide both the student and the department/program head with a written response. The department/program head will have 10 business days to review all submissions and provide a written response to the student and respondent (an extension to this timeline may be granted by the school dean for good cause). In determining the validity of the grievance, the department head should be guided by the principle that the burden is on the grievant to show that the decision is arbitrary and capricious. If the department/program head decides that the grievance be granted, he/she will also provide a decision on how to resolve the dispute.

3. **Academic Appeals Panel** If the student is dissatisfied with the decision of the department/program head, the student may submit a written appeal via email or hard copy, within ten business days of the date the decision was sent, to the dean of the school hosting the course, comprehensive or oral examination with a copy to the department/program head (an extension to this timeline may be granted by the dean for good cause). The written appeal by the student to the school dean must clearly state the reasons for the appeal and remedy sought. The dean will appoint an appeals panel. The appeals panel composition will consist of an associate dean of the school in which the grievance originated, acting as chair, two faculty members from the school in which the grievance originated, an associate dean from another school, and a student. The student selected to serve on the panel will be an undergraduate when the grievance is from an undergraduate student and will be a graduate student when the grievance is from a graduate student. The academic panel will review all submissions, obtain additional information and opinions if desired, and provide the student with a written response within twenty business days while classes are in session of the receipt of the student's appeal to the school dean. The appropriate dean of graduate or undergraduate studies will receive a copy of the panel's response. The findings and recommendation of the appeals panel are final.

(c) All parties involved in an academic appeal will be informed about the final disposition of the appeal. Copies of these rules and regulations are available to students in the Office of the Dean of Students where staff are available to assist students in interpreting the rules and regulations.

D. Privacy Act: Student Records

1. The student's university record is established and maintained to provide both the student and the university with information regarding the student's progress while enrolled at the university. Any student enrolled in the university has access to and may inspect those
records relating to his or her academic progress, to the extent allowed by the Family Educational Rights and Privacy Act and the Texas Public Information Act. The record is considered to be confidential and may be released only within the limitations clearly defined by university regulations and state and federal statutes or with the student's written permission.

2. The university may release directory information which is defined as public information and includes the student's name, local and permanent address, telephone number, E-mail address, date and place of birth, major field of study, participation in officially recognized activities and sports, photographs, weight and height of members of athletic teams, dates of attendance, degrees, awards and honors received, and the most recent educational agency or institution attended by the student, classification, and expected date of graduation. This information may be printed in various publications of the university such as the student directory, honors list, athletic programs, list of graduating students, or similar documents. Additionally, this information may be released upon request. A student may request that the university not release directory information by completing the appropriate forms during registration. The student must complete the forms each semester.

3. Student records which the university maintains include official university academic and personal records relating to scholastic, disciplinary and fiscal matters as well as records maintained by university agencies and agencies providing services sought voluntarily by students. Students may challenge the contents of educational records and request corrections to inaccurate or misleading information. Any request for correction or explanation of record contents should be presented in writing to the person in charge of the office where the record is maintained.

4. Detailed information pertaining to the content of and handling of student records is contained in the university policy, Rules on Student Services and Activities of the university's Handbook of Operating Procedures. Students wishing more information about their rights established under the Family Educational Rights and Privacy Act should contact the Office of the Registrar, Student Services Building, (972) 883-2342.

5. The Family Educational Rights and Privacy Act does not extend to research papers and theses authored by students; these documents are available to interested members of the public.

E. Clery Act

In compliance with the Student-Right-to-Know and Campus Security Act, The University of Texas at Dallas collects specified information on campus crime statistics, campus security policies, and institutional completion or graduation rates. The university publishes an annual report of campus security policies and crime statistics and distributes copies during registration.

F. Emergency Response, Fire Safety, and Security

Emergency Response: In the event of an emergency or natural disaster the campus community will be notified as prominently as possible through several means of communication. This includes Campus Alert E-mail, the University's website, campus and local media, text-messaging, Fire Alarm Systems, Indoor Warning System and Outdoor Warning System. For
policies and procedures, and reporting requirements please visit www.utdallas.edu/ehs/emergency.

Fire Safety: The entire UT Dallas campus fire alarm system is monitored 24-7 through a SimplexGrinnell Information management system. This IMS operates on a fiber optic loop connected to every building fire panel on the Richardson campus. All 30 of UT Dallas' buildings have primary reporting to the University Police and secondary reporting to EHS and EMS. For policies and procedures please visit www.utdallas.edu/ehs/firelifesafety.

Gang-free Zones: Premises owned, rented or leaded by The University of Texas at Dallas, and areas within 1,000 feet of the premises are "gang-free" zones. Certain criminal offenses, including those involving gang-related crimes, will be enhanced to the next highest category of offense if committed in a gang-free zone by an individual 17 years or older. See Texas Penal Code, Section 71.028.

Missing Student Notification: The purpose of the UT Dallas Missing Persons Policy is to establish procedures for the University's response to reports of missing students as required by the Higher Education Opportunity Act of 2008. This policy applies to students who reside in on-campus housing. For purposes of this policy, a student may be considered a "missing person" when he or she is absent from the University for more than 24 hours without any known reason. A student may also be deemed missing when his/her absence is contrary to his/her usual pattern of behavior and/or unusual circumstances may have caused the absence. Such circumstances could include, but not be limited to, a report or suspicion that the missing person may be the victim of foul play, has expressed suicidal thoughts, is drug dependent, or has been with persons who may endanger the student's welfare.

All residential students will have the opportunity to designate a confidential contact to be notified by the University no more than 24 hours after the student is determined missing. Instructions will be provided on how to register that person's contact information. Residential students' contact information will be registered confidentially, will be accessible only to authorized UT Dallas officials, and may not be disclosed except to law enforcement personnel in furtherance of a missing person investigation.

All reports of missing students must be directed to the UT Dallas Police Department, which shall investigate each report and make a determination about whether the student is missing. In addition, no later than 24 hours after a student is determined missing, UT Dallas will notify the Richardson Police Department, unless the Richardson Police Department was the entity that determined the student to be missing. At that time, if the missing student is under the age of 18 and not emancipated, UT Dallas will also notify the student's custodial parent or guardian.

G. Use of Facilities

Pursuant to the general authority of *Texas Education Code* Chapter 65, and the specific authority of *Texas Education Code* Chapter 51, the Board of Regents of The University of Texas System, in Series 80101-80110 of the *Rules and Regulations*, promulgates rules relating to the use of
buildings, grounds, and facilities for purposes other than programs and activities related to the role and mission of the UT System and the component institutions.

The property, buildings, or facilities owned or controlled by the UT System or UT Dallas are not open for assembly, speech, or other activities as are the public streets, sidewalks, and parks. The responsibility of the Board of Regents to operate and maintain an effective and efficient system of institutions of higher education requires that the time, place, and manner of assembly, speech, and other activities on the grounds and in the buildings and facilities of the UT System or UT Dallas be regulated.

Mary Jo Venetis 12/11/13 1:11 PM

Comment [109]: Already covered in 3rd paragraph in document; to be deleted

Jennifer McDowell 12/11/13 2:52 PM

Comment [110]: This is in an odd place. I don't think it has anything to do with the heading "use of facilities."

Mary Jo Venetis 12/11/13 1:11 PM

Deleted: Complete copies of the regental and institutional rules and regulations are available to students in the Office of the Dean of Students where staff members are available to assist students in interpreting the rules...
Appendix II

Transfer Credit Disputes for of Lower-Division Courses

The following procedures are established in the Texas Administrative Code, Title 19, Chapter 4, Subchapter B, Section 4.27 of the Texas Higher Education Coordinating Board rule pertaining to transfer of lower-division course credit. The designated official at The University of Texas at Dallas to be contacted regarding a transfer dispute for a lower-division course is the Dean of Undergraduate Education.

4.27. Resolution of Transfer Disputes for Lower-Division Courses

a. The following procedures shall be followed by public institutions of higher education in the resolution of credit transfer disputes involving lower-division courses:

1. If an institution of higher education does not accept course credit earned by a student at another institution of higher education, the receiving institution shall give written notice to the student and to the sending institution that transfer of the course credit is denied, and shall include in that notice the reasons for denying the credit.

2. A student who receives notice as specified in paragraph (1) of this subsection may dispute the denial of credit by contacting a designated official at either the sending or the receiving institution.

3. The two institutions and the student shall attempt to resolve the transfer of the course credit in accordance with Board rules and guidelines.

4. If the transfer dispute is not resolved to the satisfaction of the student or the sending institution within 45 days after the date the student received written notice of denial, the sending institution may notify the Commissioner in writing of the request for transfer dispute resolution, and the institution that denies the course credit for transfer shall notify the Commissioner in writing of its denial and the reasons for the denial.

b. The Commissioner or the Commissioner’s designee shall make the final determination about a dispute concerning the transfer of course credit and give written notice of the determination to the involved student and institutions.

c. Each institution of higher education shall publish in its course catalogs the procedures specified in subsections (a), (b), (d), and (e) of this section.

d. The Board shall collect data on the types of transfer disputes that are reported and the disposition of each case that is considered by the commissioner or the Commissioner’s designee.

e. If a receiving institution has cause to believe that a course being presented by a student for transfer from another school is not of an acceptable level of quality, it should first contact the sending institution and attempt to resolve the problem. In the event that the two institutions are unable to come to a satisfactory resolution, the receiving institution may notify the Commissioner, who may investigate the course. If its quality is found to be unacceptable, the Board may discontinue funding for the course.
Overview of Changes

Each undergraduate plan’s core curriculum section has been revised to reflect the new core curriculum categories.

Program heads and/or associate deans made revisions as needed.

Courses listed in degree programs are updated to match the 2014-15 course inventory data.
School of Arts and Humanities (ARHM)
2014-15 Undergraduate Catalog – Degree Plans
School of Arts and Humanities

The School of Arts and Humanities offers baccalaureate degrees in Art and Performance, Historical Studies, Literary Studies, Arts and Technology, and Emerging Media and Communication. The first three majors integrate traditional courses of study in the studio arts, vocal and instrumental music, dance and theater; history and philosophy; and American, English, Spanish, and other literatures. The fourth and fifth integrate elements of the other three majors.

Students who complete the major in Art and Performance pursue an interdisciplinary study of the arts by selecting among courses in historical context, studio practice, performance ensemble, creative writing, communication, and ideas and interpretation of the arts. Students may also choose to enroll in courses associated with concentrations in communication, drama/dance, film, music, or visual arts. Encompassing coursework in history and philosophy, Historical Studies majors design a distinctive program of study around their interests, such as themes, topics, time periods and historical or philosophical approaches to subject matter. The Literary Studies program, which brings together writers and scholars dedicated to the study of literature and culture in an international and interdisciplinary context, offers students the opportunity to explore a wide range of literary traditions, critical approaches and theoretical debates.

The Arts and Technology (ATEC) degree emphasizes the mutually productive interaction of technology with the arts, with specific emphasis on the interplay of visual art, music, and narrative with the new modes of expression and communication that have emerged from the convergence of computing and media technologies. The program stresses not only the creation but also the potential applications and cultural implications of interactive media.

The Emerging Media and Communication (EMAC) degree addresses the importance of understanding the social and cultural implications of an “always on” world. Through a range of disciplines including media studies, communication, psychology, art, history, writing, philosophy, and sociology, students analyze the significance and impact of digital media on our major social structures and cultural institutions, working to understand how this affects what it means to be a citizen in the digital world. Through working on digital media projects, EMAC majors develop critical, creative, and collaborative skills in web design, digital aesthetics, writing and research, social media, and platform and application development.

Students in the School of Arts and Humanities are encouraged to explore the boundaries and the interrelationships of the major fields of study within the school. Consistent with this focus on the integration of the arts and humanities and a commitment to interdisciplinary education, the School has no conventional departments. Rather, its curriculum is designed to allow study that crosses and transforms traditional disciplinary lines.

Each student in the School consults regularly with an advisor, who helps the student design an integrated program of coursework. At least 42 semester credit hours of upper-division coursework of the total of 51 upper-division hours required to complete the BA are completed...
within the major and related fields. All students who major in Art and Performance, Historical Studies, or Literary Studies complete a 3-hour core course, ARHM 3342, "Advanced Topics in the Arts and Humanities," that introduces the methods, strategies, and theories of inquiry and interpretation that are elaborated in subsequent arts and humanities courses. In addition, all students are required to enroll in an upper-level writing course associated with their major. Students also complete either 3, 6, or 12 semester credit hours of core coursework (depending on the major selected), a series of major requirements and electives, and the remaining semester credit hours in related coursework from within the School of Arts and Humanities.

1. The Arts and Technology Major requires only 39 semester credit hours in required upper division coursework and prescribed electives.

Teacher Certification

Students interested in teaching in secondary schools can achieve Texas Teacher Certification in English and/or History and/or Composite Social Studies as part of their majors in either Literary Studies or Historical Studies. Immediately after being admitted to the University, interested students should meet with an advisor in the Teacher Development Center to receive a certification plan and with an Arts and Humanities adviser in Literary Studies or Historical Studies to receive a degree plan. Further details may be found in the Teacher Education section of the catalog.

Fast Track Baccalaureate/Master's Degrees

The Fast Track program is designed to permit exceptional undergraduate students in Arts and Humanities majors to begin work on the master's degree before graduation.

Qualified seniors at UT Dallas, who have completed at least 30 semester credit hours of upper-division work and the core courses in their major, may take up to 12 semester credit hours of approved graduate courses in Arts and Humanities during their senior year and apply these semester credit hours to their undergraduate degree plans as either major and related courses or electives. After admission to the graduate program, up to 12 graduate semester credit hours may be used to complete the bachelor's degree and also to satisfy requirements for the Master's degree.

For further information on the Fast Track program, see the Associate Dean for Undergraduate Education of the School of Arts and Humanities.

Minors

To minor in the Arts and Humanities, students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division semester credit hours. Core courses offered by the school may count as lower-division semester credit hours toward the minor. Students may choose to minor in any of the following fields of study:

- Art History
Students may contact their academic advisor for a list of the courses that satisfy each minor.

Related Minor Areas:

Minor in Gender Studies (18 semester credit hours)

The Gender Studies minor is 18 semester credit hours. The courses consist of GST 2300, two other Gender Studies core courses, and nine semester credit hours of approved Gender Studies electives.

Faculty

Professors Emeritus: Gerald L. Soliday, Deborah A. Stott

Clinical Professors: Dennis Walsh

Associate Professors: Sean J. Cotter, Frank Dufour, Monica Evans, J. Michael Farmer, Todd Fechter, Scot Gresham-Lancaster, Midori Kitagawa, Shelley D. Lane, Patricia H. Michaelson, Peter Park, Lucy Petrovie, Monica Rankin, Venus O. Reese, Natalie Ring, Maximilian Schich, Dean Terry, Daniel B. Wickberg, Michael L. Wilson

Clinical Associate Professors: Arkady Fomin, Michele Hanlon, Maribeth (Betsy) Schlobohm, Winston Stone, Harold (Chip) Wood

Assistant Professors: Matt Bondurant, Matt Brown, Eric Farrar, Shari Goldberg, John C. Gooch, Charles Hatfield, Kim Knight, Jessica C. Murphy, Cihan Muslu, Mark Rosen, Eric
Schlereth, Ciuhua (Cindy) Shen, Kyoung Swearingen, Scott Swearingen, Charissa N. Terranova, Katherine Turk, Shilyh Warren, Marjorie Zielke

Clinical Assistant Professors: Peter (Jay) Ingrao, Janet Johnson, Carie Lambert, Michael McVay, Cassini Nazir, Lorraine Tady

Research Assistant Professors: Adam Brackin, Phillip (Phil) Johnson, Sean McComber

Visiting Assistant Professors: Kenneth Brewer, Tim Christopher, Kyle Kondas, Nico Martini, Sabrina Starnaman, Michael Stephens, Barbara Vance, Jodi White, Noah Zisman

Distinguished Research Scholar: Bonnie Pitman

Senior Lecturers: Zafar Anjum, Elizabeth (Lisa) Bell, Diane Durant, Kelly P. Durbin, Kathryn C. Evans, Dianne Goode, George Henson, Melissa Hernandez-Katz, Thomas M. Lambert, Wenqi Li, Kathy Lingo, Mary Medrick, Greg L. Metz, Christopher (Chris) Ryan, Monica M. Saba, Jeffrey Schulze, Yuki Watanabe, Betty H. Wiesepape
School of Arts and Humanities

Art and Performance (BA)

Students who complete the major in Art and Performance (AP) pursue an interdisciplinary study of the arts by selecting among courses in historical context, studio practice, performance ensemble, creative writing, and ideas and interpretation of the arts. In the AP core course, students will experience the theory and practice of the arts in a workshop setting and, in studio or ensemble courses, will gain practical experience in at least one area of the visual or performing arts or creative writing. Courses in the historical context and interpretation of the arts will enable students to understand how style, subject matter, and materials may respond to different motivations and purposes. Students may also choose to enroll in courses associated with concentrations in communication, drama/dance, film, music, or visual arts.

Since the following catalog course descriptions are very general, students are urged to consult the detailed course descriptions available on the web site for the School of Arts and Humanities.

Unless otherwise noted, courses in Art and Performance are open to all students in the University.

Bachelor of Arts in Art and Performance

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:

- MATH 1306 College Algebra for the Non-Scientist
- MATH 1314 College Algebra
- Select any 3 semester credit hours from Mathematics core courses

Life and Physical Sciences (6 semester credit hours)

- Gray, Megan 8/1/13 10:24 AM
- Deleted: Social and Behavioral Sciences: 15 semester credit hours
- Comment [2]: Link back to core curriculum section in catalog

- Mary Jo Venetis 1/31/14 8:47 AM
- Deleted: In their selection of required and elective courses, students are encouraged to focus their coursework around one of the following areas: art history (early or modern period), two-dimensional or three-dimensional studio art, creative writing, art and technology (computer imaging, photography, video art), or music/theatre/performace.
Select any 6 semester credit hours from Life and Physical Sciences core courses.

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II

Select any 3 semester credit hours from Language, Philosophy and Culture core courses.

Creative Arts (3 semester credit hours)

One of the following:

ARTS 1301 Exploration of the Arts
AHST 1303 Survey of Western Art History, Ancient to Medieval
AHST 1304 Survey of Western Art History, Renaissance to Modern
AHST 2331 Understanding Art
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses.
Component Area Option (6 semester credit hours)

Two of the following:

ARHM 2340 Creativity
ARHM 2341 Global Media
ARHM 2342 Connections in the Arts and Humanities
ARHM 2343 Science and the Humanities

II. Major Requirements, Lower-Division: 7 semester credit hours

ARHM 1100 Freshman Seminar
UNIV 1010 Freshman Seminar
3 semester credit hours of lower-level preparatory course

And one of the following:

AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

III. Major Requirements, Upper-Division: 42 semester credit hours

Major Core Courses: 9 semester credit hours

AP 3300 Elements of Art and Performance
ARHM 3342 Advanced Topics in the Arts and Humanities
AP 3340 Writing in the Arts or COMM 3300 Reading Media Critically

Major Distribution and Elective Courses: 24 semester credit hours

3 semester credit hours of upper-division Historical Context courses
6 semester credit hours of upper-division courses from Studio and Ensemble courses
15 semester credit hours of upper-division Art and Performance electives

Major-Related Courses: 9 semester credit hours

Students may select any combination of upper-division courses in Arts and Humanities, Humanities, Historical Studies, Philosophy, Literature, Languages, and/or Emerging Media and Communication.

IV. Elective Requirements: 29 semester credit hours
Free Electives: 29 semester credit hours

Both upper- and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
School of Arts and Humanities

Art and Performance with Communication Concentration (BA)

Bachelor of Arts in Art and Performance with Communication Concentration

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:

- MATH 1306 College Algebra for the Non-Scientist
- MATH 1314 College Algebra

Select any 3 semester credit hours from Mathematics core courses.

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses.

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

- HUMA 1301 Exploration of the Humanities
- LIT 2331 Masterpieces of World Literature
- PHIL 1301 Introduction to Philosophy
- PHIL 2316 History of Philosophy I
- PHIL 2317 History of Philosophy II
Select any 3 semester credit hours from Language, Philosophy and Culture core courses

Creative Arts (3 semester credit hours)

One of the following:

- ARTS 1301 Exploration of the Arts
- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2332 Understanding Film
- MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War
- HIST 2301 History of Texas
- HIST 2330 Themes and Ideas in American History
- HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses

Component Area Option (6 semester credit hours)

Two of the following:

- ARHM 2340 Creativity
- ARHM 2341 Global Media
- ARHM 2342 Connections in the Arts and Humanities
- ARHM 2343 Science and the Humanities

II. Major Requirements, Lower-Division: 7 semester credit hours
ARHM 1100 Freshman Seminar
UNIV 1010 Freshman Seminar

Lower-level preparatory course from one of the following (3 semester credit hours):

- COMM 2311 Topics in Communication
- COMM 2313 Public Speaking
- DRAM 1351 Acting 1
- DRAM 1352 Acting 2
- DRAM 2372 Improvisation
- DRAM 2373 Languages of the Body

One of the following (3 semester credit hours):

- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2332 Understanding Film
- MUSI 1306 Understanding Music

III. Major Requirements, Upper-Division: 42 semester credit hours

Major Core Courses: 9 semester credit hours
- AP 3300 Elements of Art and Performance
- ARHM 3342 Advanced Topics in the Arts and Humanities
- COMM 3300 Reading Media Critically

Major Distribution and Elective Courses: 24 semester credit hours
- 9 semester credit hours of upper-division Historical Context courses:
 - COMM 3351 History and Theory of Communication
- 3 semester credit hours of upper-division Communication performance courses:
 - COMM 3301 Business and Professional Communication
 - COMM 3311 Interpersonal Communication
 - COMM 4340 Small Group Communication
 - COMM 4313 Advanced Public Speaking
- 15 semester credit hours of upper-division Art and Performance electives:
 - COMM 4360 Communication Ethics
 - COMM 4314 Persuasion
 - 9 semester credit hours of COMM Electives

Major-Related Courses: 9 semester credit hours
Students may select any combination of upper-division courses in Arts and Humanities, Humanities, Historical Studies, Philosophy, Literature, Languages, and/or Emerging Media and Communication.

IV. Elective Requirements: 29 semester credit hours

Free Electives: 29 semester credit hours

Both upper- and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
School of Arts and Humanities

Art and Performance with Drama/Dance Concentration (BA)

Bachelor of Arts in Art and Performance with Drama/Dance Concentration

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:

MATH 1306 College Algebra for the Non-Scientist
MATH 1314 College Algebra
Select any 3 semester credit hours from Mathematics core courses

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II
Select any 3 semester credit hours from Language, Philosophy and Culture core courses

Creative Arts (3 semester credit hours)

One of the following:

ARTS 1301 Exploration of the Arts
AHIST 1303 Survey of Western Art History: Ancient to Medieval
AHIST 1304 Survey of Western Art History: Renaissance to Modern
AHIST 2331 Understanding Art
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses

Component Area Option (6 semester credit hours)

Two of the following:

ARHM 2340 Creativity
ARHM 2341 Global Media
ARHM 2342 Connections in the Arts and Humanities
ARHM 2343 Science and the Humanities

II. Major Requirements, Lower-Division: 10 semester credit hours
6 semester credit hours from the following:
- DRAM 1351 Acting 1
- DRAM 1352 Acting 2
- DRAM 2364 Music Theater Workshop
- DRAM 2372 Improvisation
- DRAM 2373 Languages of the Body
- DANC 2321 Stretch, Conditioning, Alignment
- DANC 2331 Dance Technique 1
- DANC 2332 Modern Dance 1
- DANC 2333 Jazz Dance 1
- DANC 2334 Ballet 1

3 semester credit hours from the following:
- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2332 Understanding Film
- MUSI 1306 Understanding Music

III. Major Requirements, Upper-Division: 42 semester credit hours

Major Core Courses: 9 semester credit hours
- AP 3300 Elements of Art and Performance
- ARHM 3342 Advanced Topics in the Arts and Humanities
- AP 3340 Writing in the Arts or COMM 3300 Reading Media Critically

Major Distribution and Elective Courses: 24 semester credit hours
- 3 semester credit hours of upper-division Historical Context courses
- 6 semester credit hours of 3000-level courses Drama or Dance Studio and Ensemble courses
- 3 semester credit hours of Drama or Dance electives
- 12 semester credit hours of upper-division Art and Performance electives

Major-Related Courses: 9 semester credit hours
Students may select any combination of upper-division courses in Arts and Humanities, Humanities, Historical Studies, Philosophy, Literature, Languages, and/or Emerging Media and Communication.

IV. Elective Requirements: 26 semester credit hours
Free Electives: 26 semester credit hours

Both upper- and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
new url needed

School of Arts and Humanities

Art and Performance with Film Concentration (BA)

Bachelor of Arts in Art and Performance with Film Concentration

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:

MATH 1306 College Algebra for the Non-Scientist
MATH 1314 College Algebra
Select any 3 semester credit hours from Mathematics core courses

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses.

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II

Select any 3 semester credit hours from Language, Philosophy and Culture core courses
Creative Arts (3 semester credit hours)

One of the following:

ARTS 1301 Exploration of the Arts
AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses

Component Area Option (6 semester credit hours)

Two of the following:

ARHM 2340 Creativity
ARHM 2341 Global Media
ARHM 2342 Connections in the Arts and Humanities
ARHM 2343 Science and the Humanities

II. Major Requirements, Lower-Division: 7 semester credit hours

ARHM 1100 Freshman Seminar
UNIV 1010 Freshman Seminar
Lower-level preparatory courses (6 semester credit hours):
FILM 2332 Understanding Film
and 3 semester credit hours of lower-level preparatory course

III. Major Requirements, Upper-Division: 42 semester credit hours

Major Core Courses: 9 semester credit hours
- AP 3300 Elements of Art and Performance
- ARHM 3342 Advanced Topics in the Arts and Humanities
- AP 3340 Writing in the Arts or COMM 3300 Reading Media Critically

Major Distribution and Elective Courses: 24 semester credit hours
- 6 semester credit hours from the following:
 - FILM 3321 Film in Historical Context
 - FILM 3325 Film Authorship
- 6 semester credit hours from the following:
 - Upper-division film electives
 - AHST 3324 History of Photography
- 6 semester credit hours of upper-division courses from Studio and Ensemble courses
- 6 semester credit hours of upper-division Art and Performance electives

Major-Related Courses: 9 semester credit hours

Students may select any combination of upper-division courses in Arts and Humanities,
Humanities, Historical Studies, Philosophy, Literature, Languages, and/or Emerging Media and

IV. Elective Requirements: 29 semester credit hours

Free Electives: 29 semester credit hours

Both upper- and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
School of Arts and Humanities

Art and Performance with Music Concentration (BA)

Bachelor of Arts in Art and Performance with Music Concentration

Degree Requirements (120 semester credit hours)

1. Core Curriculum Requirements: 42 semester credit hours

 Communication (6 semester credit hours)
 RHET 1302 Rhetoric
 COMM 1311 Survey of Oral and Technology-based Communication

 Mathematics (3 semester credit hours)
 One of the following:
 MATH 1306 College Algebra for the Non-Scientist
 MATH 1314 College Algebra
 Select any 3 semester credit hours from Mathematics core courses

 Life and Physical Sciences (6 semester credit hours)
 Select any 6 semester credit hours from Life and Physical Sciences core courses

 Language, Philosophy and Culture (3 semester credit hours)
 One of the following:
 HUMA 1301 Exploration of the Humanities
 LIT 2331 Masterpieces of World Literature
 PHIL 1301 Introduction to Philosophy
 PHIL 2316 History of Philosophy I
 PHIL 2317 History of Philosophy II
 Select any 3 semester credit hours from Language, Philosophy and Culture core courses
Creative Arts (3 semester credit hours)

One of the following:

- ARTS 1301 Exploration of the Arts
- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2332 Understanding Film
- MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War
- HIST 2301 History of Texas
- HIST 2330 Themes and Ideas in American History
- HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses

Component Area Option (6 semester credit hours)

Two of the following:

- ARHM 2340 Creativity
- ARHM 2341 Global Media
- ARHM 2342 Connections in the Arts and Humanities
- ARHM 2343 Science and the Humanities

II. Major Requirements, Lower-Division: 10 semester credit hours

- ARHM 1100 Freshman Seminar
- UNIV 1010 Freshman Seminar
Lower-level preparatory courses (6 semester credit hours):

- MUSI 2322 Music in Western Civilization
- MUSI 2328 Music Theory I

One of the following (3 semester credit hours):

- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2332 Understanding Film
- MUSI 1306 Understanding Music

III. Major Requirements, Upper-Division: 42 semester credit hours

Major Core Courses: 9 semester credit hours

- AP 3300 Elements of Art and Performance
- ARHM 3342 Advanced Topics in the Arts and Humanities
- AP 3340 Writing in the Arts or COMM 3300 Reading Media Critically

Major Distribution and Elective Courses: 24 semester credit hours

- 6 semester credit hours from the following:
 - MUSI 3322 Music in Historical Context
 - MUSI 3328 Music Theory II
- 6 semester credit hours of 4000-level MUSI Studio/Ensemble courses
- 9 semester credit hours of upper-division MUSI Electives
 and MUSI 4390 Senior Project in Music

Major-Related Courses: 9 semester credit hours

Students may select any combination of upper-division courses in Arts and Humanities, Humanities, Historical Studies, Philosophy, Literature, Languages, and/or Emerging Media and Communication.

IV. Elective Requirements: 26 semester credit hours

Free Electives: 26 semester credit hours

Both upper- and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
new url needed

School of Arts and Humanities

Art and Performance with Visual Arts Concentration (BA)

Bachelor of Arts in Art and Performance with Visual Arts Concentration

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:

MATH 1306 College Algebra for the Non-Scientist
MATH 1314 College Algebra
Select any 3 semester credit hours from Mathematics core courses.

Life and Physical Sciences (6 semester credit hours)

Any 6 semester credit hours of Life and Physical Sciences core courses.

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II
Select any 3 semester credit hours from Language, Philosophy and Culture core courses.
Creative Arts (3 semester credit hours)

One of the following:

- ARTS 1301 Exploration of the Arts
- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2332 Understanding Film
- MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War
- HIST 2301 History of Texas
- HIST 2330 Themes and Ideas in American History
- HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses

Component Area Option (6 semester credit hours)

Two of the following:

- ARHM 2340 Creativity
- ARHM 2341 Global Media
- ARHM 2342 Connections in the Arts and Humanities
- ARHM 2343 Science and the Humanities

II. Major Requirements, Lower-Division: 10 semester credit hours

- ARHM 1100 Freshman Seminar
- UNIV 1010 Freshman Seminar

Deleted: ARHM 2344 World Cultures
Lower-level preparatory courses (6 semester credit hours):

- ARTS 2380 2D Design Foundations
- One of the following:
 - ARTS 1316 Drawing Foundations
 - ARTS 2316 Painting Foundations
 - ARTS 2350 Digital Photography and Design
 - ARTS 2381 Introduction to Sculpture

One of the following (3 semester credit hours):

- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2332 Understanding Film
- MUSI 1306 Understanding Music

III. Major Requirements, Upper-Division: 42 semester credit hours

Major Core Courses: 9 semester credit hours

- AP 3300 Elements of Art and Performance
- ARHM 3342 Advanced Topics in the Arts and Humanities
- AP 3340 Writing in the Arts or COMM 3300 Reading Media Critically

Major Distribution and Elective Courses: 24 semester credit hours

- 3 semester credit hours of upper-division Art History courses
- 6 semester credit hours of 3000-level courses from Visual Arts studios
- 3 semester credit hours of 4000-level courses from Visual Arts studios
- 12 semester credit hours of upper-division Art and Performance electives

Major-Related Courses: 9 semester credit hours

Students may select any combination of upper-division courses in Arts and Humanities, Humanities, Historical Studies, Philosophy, Literature, Languages, and/or Emerging Media and Communication.

IV. Elective Requirements: 26 semester credit hours

Free Electives: 26 semester credit hours

Both upper- and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.
1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
School of Arts and Humanities

Arts and Technology (BA)

Students who complete the major in Arts and Technology receive a thorough grounding in the mutually productive interaction of technology with the arts, with specific emphasis on the interplay of visual art, music, and narrative with the new modes of expression and communication that have emerged from the convergence of computing and media technologies. The program stresses not only the creation but also the potential applications and cultural implications of interactive media. A student majoring in Arts and Technology will be required to channel selected coursework according to individual needs and specialties. Particular attention should be given to the Prescribed Electives for the major, and close consultation with academic advisors is recommended. By selecting courses from a variety of the remaining elective headings, students are able to combine courses in technology and fine arts with coursework in literary criticism and interpretation, creative writing and translation, and linguistics and languages.

Unless otherwise noted, courses in Arts and Technology are open to all students in the University. However, students majoring in Arts and Technology may be given preference in certain course enrollments.

Bachelor of Arts in Arts and Technology

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:

- MATH 1306 College Algebra for the Non-Scientist
- MATH 1314 College Algebra
- Select any 3 semester credit hours from Mathematics core courses

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses
Language, Philosophy and Culture (3 semester credit hours)

One of the following:

HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II
Select any 3 semester credit hours from Language, Philosophy and Culture core courses

Creative Arts (3 semester credit hours)

One of the following:

ARTS 1301 Exploration of the Arts
AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film (Recommended)
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses

Component Area Option (6 semester credit hours)
Two of the following:

- ARHM 2340 Creativity
- ARHM 2341 Global Media
- ARHM 2342 Connections in the Arts and Humanities
- ARHM 2343 Science and the Humanities

II. Major Requirements, Lower-Division: 21 semester credit hours

- ARTS 1316 Drawing Foundations
- ARTS 2380 2D Design Foundations
- ATEC 2320 Introductory Topics in Arts and Technology
 or ATEC 2325 Fundamentals of Game Design and Development
 or ATEC 2326 Computer Animation Processes
- ATEC 2382 Computer Imaging
- ATEC 2384 Basic Design Principles and Practices
- CS 1335 Computer Science I for Non-majors
 or CS 2335 Computer Science II for Non-majors

III. Major Requirements, Upper-Division: 24 semester credit hours

Major Core Courses

- ARTS 3371 Black and White Photography
 or ARTS 3372 Color Photography
 or ARTS 3377 Digital Photography
 or ARTS 3379 Photography and New Media
- ATEC 3320 Digital Content Design and Usability
 or ATEC 3325 Introduction to Computer Mediated Communication
- Any ATEC 3000 level Animation (ATEC 3317 Modeling and Texturing I or ATEC 3327 Lighting and Composition I or ATEC 3328 Rigging I or ATEC 3336 Computer Animation I) or ATEC 3351 Game Design
 or ATEC 3310 Audio Technologies
- ATEC 4340 Project Management for Arts and Technology
- CS 3360 Computer Graphics for Artists and Designers
- HIST 3337 Technology and Western Civilization
 or HIST 3374 American Technological Development
 or HIST 3332 History of the Electronic Age
- LIT 3334 Literature of Science
 or LIT 3316 The Literature of Science Fiction
 or LIT 3317 The Literature of Fantasy
 or HIST 3328 History and Philosophy of Science and Medicine

IV. Elective Requirements: 33 semester credit hours

Mary Jo Venetis 1/28/14 2:09 PM

Deleted: M

Lewis, Tara N 9/30/13 8:17 AM

Deleted:

Mary Jo Venetis 1/28/14 2:03 PM

Deleted:

Mary Jo Venetis 1/28/14 2:04 PM

Deleted:

Mary Jo Venetis 1/28/14 2:04 PM

Deleted:

Lewis, Tara N 7/29/13 9:40 AM

Deleted:

Lewis, Tara N 9/30/13 8:18 AM

Formatted: Font (Default) + Theme Body, 11 pt, No underline, Font color: Auto

Lewis, Tara N 7/29/13 9:40 AM

Deleted:

Lewis, Tara N 7/29/13 9:40 AM

Deleted:

sd063000 11/7/13 9:49 AM

Deleted: and Fantasy
Prescribed Electives (15 semester credit hours)

Any five of the following:

- ATEC 3310 Audio Technologies
- ATEC 3312 Audio Productions Lab
- ATEC 3317 Modeling and Texturing I
- ATEC 3326 Emerging Media Production
- ATEC 3327 Lighting and Composition I
- ATEC 3328 Rigging I
- ATEC 3330 Digital Video Production I
- ATEC 3336 Computer Animation I
- ATEC 3351 Game Design
- ATEC 3352 User Experience Design for Games
- ATEC 3361 Internet Studio I
- ATEC 3363 Basic Interaction Design
- ATEC 3364 Level Design I
- ATEC 3365 Virtual Environments
- ATEC 4310 Digital Audio Processing
- ATEC 4328 Rigging II
- ATEC 4336 Computer Animation II
- ATEC 4347 Advanced Design
- ATEC 4348 Modeling and Texturing II
- ATEC 4349 Lighting and Composition II
- ATEC 4361 Internet Studio II
- ATEC 4365 Level Design II
- ATEC 4367 Game Design II
- ATEC 4368 User Experience Design for Games II

Free Electives (18 semester credit hours)

Both upper- and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. Students who are ATEC/CS double majors or who plan to minor in CS must enroll in CS 1334 Programming Fundamentals for Non-Majors and CS 1134 Computer Science Laboratory, or CS 1337 Computer Science I (if placed out of CS 1334 and CS 1136).

3. Students who are ATEC/CS double majors or who plan to minor in CS must enroll in CS 2336 Computer Science II.
School of Arts and Humanities

Emerging Media and Communication (BA)

Students who complete the Emerging Media and Communication (EMAC) major are challenged to understand the social and cultural implications of communication in an “always on” world. The program reflects a commitment to the concept of applied humanities, as the curriculum balances theoretical understanding drawn from media studies, communication, psychology, and humanities with opportunities for practical application. These diverse perspectives will help a student majoring in EMAC develop the critical skills and technological expertise to become a communicator for the twenty-first century prepared to succeed in the shifting media landscape by using critical, creative, and collaborative skills to

- Develop creative ways to use emerging technology to express ideas and solve problems,
- Analyze communication opportunities to determine appropriate media and rhetorical strategies when creating content for existing and/or emerging media platforms,
- Adapt messages to audiences and technological constraints while retaining (and amplifying) the benefits provided by emerging media, and
- Anticipate the ethical implications of emerging media and their power to shape public opinion.

Unless otherwise noted, courses in Emerging Media and Communication are open to all students in the University.

Bachelor of Arts in Emerging Media and Communication

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- Two of the following:
 RHET 1302 Rhetoric
 COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

- One of the following:
 MATH 1306 College Algebra for the Non-Scientist
 MATH 1314 College Algebra (Recommended)
Select any 3 semester credit hours from Mathematics core courses.

Life and Physical Sciences (6 semester credit hours)

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

- HUMA 1301 Exploration of the Humanities (Recommended)
- LIT 2331 Masterpieces of World Literature
- PHIL 1301 Introduction to Philosophy (Recommended)
- PHIL 2316 History of Philosophy I
- PHIL 2317 History of Philosophy II

Select any 3 semester credit hours from Language, Philosophy and Culture core courses.

Creative Arts (3 semester credit hours)

One of the following:

- ARTS 1301 Exploration of the Arts
- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2322 Understanding Film (Recommended)
- MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War
- HIST 2301 History of Texas
- HIST 2330 Themes and Ideas in American History
- HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
PSY 2301 Introduction to Psychology

Component Area Option (6 semester credit hours)

Two of the following:

ARHM 2340 Creativity
ARHM 2341 Global Media
ARHM 2342 Connections in the Arts and Humanities
ARHM 2343 Science and the Humanities

II. Major Requirements, Lower-Division: 18 semester credit hours

ATEC 2382 Computer Imaging
ATEC 2384 Basic Design Principles and Practices
ATEC 2385 Sound Design
ATEC 2321 Writing and Research for Emerging Media
ATEC 2322 Theories of Emerging Media and Communications
PSY 2317 Statistics for Psychology

III. Major Requirements, Upper-Division: 27 semester credit hours

Major Core Courses

ATEC 3326 Emerging Media Production
ATEC 3361 Internet Studio I
ATEC 4326 Advanced Emerging Media Production
COMM 3300 Reading Media Critically
COMM 3311 Interpersonal Communication
COMM 4314 Persuasion

EMAC 4325 Digital Writing
EMAC 4380 Capstone Project
PSY 3331 Social Psychology

IV. Elective Requirements: 33 semester credit hours

Prescribed Electives (18 semester credit hours)

Any six of the following:

ARTS 4308 Image/Text
ATEC 3330 Digital Video Production I
ATEC 3363 Basic Interaction Design
ATEC 4330 Digital Video Production II
ATEC 4346 Story-Telling for New Media
ATEC 4347 Advanced Design
ATEC 4361 Internet Studio II
CGS 4352 Human Computer Interactions I
CGS 4353 Human Computer Interactions II
COMM 3301 Business and Professional Communication
COMM 3342 Advanced Topics in Communication
COMM 3351 History and Theory of Communication
COMM 4340 Small Group Communication
COMM 4350 Intercultural Communication
COMM 4360 Communication Ethics
COMM 4351 U.S. Culture and Communication
CRWT 3308 Creating Nonfictions
EMAC 3328 The Digital Society
EMAC 3343 Social Networks
EMAC 4372 Topics in Emerging Media and Communication
PHIL 4310 Philosophy of Technology
PSY 3351 Mass Communication and Behavior
PSY 3355 Psychology of Creativity

Free Electives (15 semester credit hours)

Both upper- and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Repeatable for credit up to 6 semester credit hours.
School of Arts and Humanities

Historical Studies (BA)

Students who complete the major in Historical Studies may design distinctive degree programs by selecting among courses in historical and philosophical methods and approaches, traditional historical surveys, and specific historical and philosophical topics. Students are encouraged to focus their work in Historical Studies on a particular time or place, a significant theme, topic, or problem, or an approach to learning such as literature, the arts, science and technology, or the social sciences. Students may also be certified to teach history and/or social studies and/or English.

Since the following catalog course descriptions are very general, students are urged to consult the detailed course descriptions available on the web site for the School of Arts and Humanities.

Courses in Historical Studies are open to all students in the university.

Bachelor of Arts in Historical Studies

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:

- MATH 1306 College Algebra for the Non-Scientist
- MATH 1314 College Algebra
- Select any 3 semester credit hours from Mathematics core courses

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses.

Language, Philosophy and Culture (3 semester credit hours)
One of the following:

HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II

Select any 3 semester credit hours from Language, Philosophy and Culture core courses.

Creative Arts (3 semester credit hours)

One of the following:

ARTS 1301 Exploration of the Arts
AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours of Social and Behavioral Sciences core courses.

Component Area Option (6 semester credit hours)

Two of the following:

ARHM 2340 Creativity
II. Major Requirements, Lower-Division: 4 semester credit hours

PHIL 1301 Introduction to Philosophy or equivalent
ARHM 1100 Freshman Seminar
UNIV 1010 Freshman Seminar

III. Major Requirements, Upper-Division: 42 semester credit hours

Major Core Courses: 6 semester credit hours

HIST 3301 Historical Inquiry
ARHM 3342 Advanced Topics in the Arts and Humanities

Major Distribution and Elective Courses: 24 semester credit hours

3 semester credit hours of upper-division courses from each of the following groups:

- European Historical Studies
- Asian, African, and Latin American Historical Studies
- Studies in Philosophy and Intellectual History
- Historical Studies with content before 1800

12 semester credit hours of upper-division Historical Studies electives

Major-Related Courses: 12 semester credit hours

Students may select any combination of upper-division courses in Arts and Humanities, Art and Performance, Art History, Visual Arts, Arts and Technology, Communications, Creative Writing, Dance, Drama, Emerging Media and Communication, Film Studies, Humanities, Literature and Language, and/or Music.

IV. Elective Requirements: 32 semester credit hours

Free Electives: 32 semester credit hours

Both upper-and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
School of Arts and Humanities

Literary Studies (BA)

Students who complete the major in Literary Studies receive a thorough grounding in literary ideas and methods as well as a broad acquaintance with literatures of different periods and cultures, including literature in translation. Courses in this major are divided into the following groups: Literary Genres, English and American Literature, General Literature Courses, and Foreign Languages and Literatures. By selecting courses from a variety of these headings, students are able to combine courses in criticism and interpretation, in writing and translation, and in linguistics and languages. Students may also be certified to teach English and/or history and/or social studies.

Since the following catalog course descriptions are very general, students are urged to consult the detailed course descriptions available on the web site for the School of Arts and Humanities.

Unless otherwise noted, courses in Literary Studies are open to all students in the university.

Bachelor of Arts in Literary Studies

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements [42 semester credit hours]

Communication [6 semester credit hours]

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-Based Communication

Mathematics [3 semester credit hours]

One of the following:

- MATH 1306 College Algebra for the Non-Scientist
- MATH 1314 College Algebra

Select any 3 semester credit hours of Mathematics core courses

Life and Physical Sciences [6 semester credit hours]

Select any 6 semester credit hours from Life and Physical Sciences core courses,
Language, Philosophy and Culture (3 semester credit hours)

One of the following:

HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II

Select any 3 semester credit hours from Language, Philosophy and Culture core courses.

Creative Arts (3 semester credit hours)

One of the following:

ARTS 1301 Exploration of the Arts
AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral sciences core courses.

Component Area Option (6 semester credit hours)

Two of the following:
II. Major Requirements, Lower-Division: 4 semester credit hours

- LIT 2341 Literary Analysis
- ARHM 1100 Freshman Seminar
- UNIV 1010 Freshman Seminar

III. Major Requirements, Upper-Division: 42 semester credit hours

- Major Core Courses: 9 semester credit hours
 - ARHM 3342 Advanced Topics in the Arts and Humanities
 - LIT 3300 Western Literary Tradition
 - LIT 3339 Writing in Literary Studies

- Major Distribution and Elective Courses: 24 semester credit hours
 - 3 semester credit hours of upper-division courses from each of the following groups:
 - Literary genres
 - Literature before 1850
 - Translated Literature
 - 15 semester credit hours of upper-division Literary Studies electives

- Major-Related Courses: 9 semester credit hours
 - Students may select any combination of upper-division courses from Arts and Humanities, Art and Performance, Art History, Visual Arts, Arts and Technology, Communications, Creative Writing, Dance, Drama, Emerging Media and Communication, Film Studies, Historical Studies, Humanities, Music and/or Philosophy.

IV. Elective Requirements: 32 semester credit hours

- Free Electives: 32 semester credit hours
 - Both upper-division and lower-division courses may be used as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.
Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
School of Arts and Humanities

Minors

Students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division semester credit hours. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). Semester credit hours may not be used to satisfy both the major and minor requirements; however, free elective hours or major preparatory classes may be used to satisfy the minor. Core courses offered by the school may count as lower-division hours toward the minor. Topics courses must be approved by the school. The School of Arts and Humanities will substitute courses as necessary. The undergraduate minors in the School of Arts & Humanities follow:

- Art History
- Asian Studies
- Creative Writing
- Drama/Dance
- Communication
- History
- Literature
- Medical and Scientific Humanities
- Music
- Performing Arts
- Philosophy
- Spanish and Hispanic Area Studies
- Visual Arts

Minor in Art History (18 semester credit hours)

6 of the following:

ARTS 1301 Exploration of the Arts
AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
AHST 3313 Medieval Art
AHST 3315 The Art of the Renaissance
AHST 3316 The Art of the Baroque
AHST 3317 Pioneers of Modern Art
AHST 3318 Contemporary Art
Minor in Asian Studies (18 semester credit hours)

Language Courses (must enroll in a minimum of two sequential courses in either Chinese or Japanese)

CHIN 1311 Beginning Chinese I
CHIN 1312 Beginning Chinese II
CHIN 2311 Intermediate Chinese I
CHIN 2312 Intermediate Chinese II
CHIN 3365 Advanced Chinese I
JAPN 1311 Beginning Japanese I
JAPN 1312 Beginning Japanese II
JAPN 2311 Intermediate Japanese I
JAPN 2312 Intermediate Japanese II
LANG 3342 Advanced Language Instruction
LANG 3348 Topics in Language
LANG 4348 Advanced Topics in Language

Related Courses

AHST 3321 Chinese Art History
HIST 3312 Early China
HIST 3313 Medieval China
HIST 3314 Traditional China
HIST 3315 Modern China
HIST 3316 Women in Traditional China
HIST 4358 Topics in Asian History
HIST 4376 Topics in History
LIT 3382 Topics in Non-Western Literature

Minor in Creative Writing (18 semester credit hours)

Required Course (3 semester credit hours)

CRWT 2301 Introductory Creative Writing

Genres – minimum of two genres required (6 semester credit hours)
CRWT 2V71 Independent Study in Creative Writing
CRWT 3307 Creating Short Stories
CRWT 3308 Creating Nonfictions
CRWT 3351 Creating Poetry
CRWT 3360 Art Criticism

Advanced work (9 semester credit hours)

CRWT 4307 Creating Short Stories: Advanced
CRWT 4353 Creating Poetry: Advanced
CRWT 4354 Creating Play, Movie, and Television Scripts
CRWT 4V71 Independent Study in Creative Writing

Minor in Drama/Dance (18 semester credit hours)

Theatre/Dance Historical Study (3 semester credit hours)

Select one lower-division course from the following:

DANC 1310 Understanding Dance
DANC 2V71 Independent Study in Dance (1-3 semester credit hours)
DRAM 1310 Understanding Theater
DRAM 2V71 Independent Study in Drama (1-3 semester credit hours)

Performance and Technical Study (9 semester credit hours)

Select one required course from the following (3 semester credit hours):

DANC 3345 Dance Performance
DANC 4317 Dance Performance 2
DANC 3347 Dance Composition
DRAM 3310 Theater/Performance Ensemble
DRAM 3325 Directing and Producing

Select two courses from the following (6 semester credit hours, no more than 3 semester credit hours can be at the lower level):

DANC 2311 Topics in Dance
DANC 2321 Stretch, Conditioning, Alignment
DANC 2331 Dance Technique 1
DANC 2332 Modern Dance 1
DANC 2333 Jazz Dance 1
DANC 2334 Ballet 1
DRAM 2371 Technical Theater 1
DRAM 3324 Technical Theater 2
DANC 3332 Dance Technique 2
DANC 3333 Modern Dance 2
DANC 3334 Jazz Dance 2
DANC 3335 Ballet Dance 2
DRAM 1351 Acting 1
DRAM 1352 Acting 2
DRAM 2311 Topics in Theater
DRAM 2364 Musical Theater Workshop
DRAM 2373 Languages of the Body
DRAM 2372 Improvisation

Theatre/Dance Historical and Performance and Design Studies (6 semester credit hours, upper-division coursework)

Select one course from the following (3 semester credit hours):

DANC 3340 Dance in Historical Context
DRAM 3351 Light Design
DRAM 3323 Performance in Historical Context
DANC 3342 Advanced Topics in Dance
DRAM 3342 Advanced Topics in Theater

Select one course from the following (3 semester credit hours; students may select a course from the list above or below):

DANC 4313 Dance Technique 3
DANC 4318 Dance Technique 4
DANC 4V71 Independent Study in Dance (1-3 semester credit hours)
DRAM 3356 Acting 3

Minor in Communication (18 semester credit hours)

Foundations (9 semester credit hours)

COMM 4360 Communication Ethics
COMM 3351 History and Theory of Communication
COMM 4314 Persuasion

Communication Performance (3 semester credit hours)

One of the following:

COMM 2313 Public Speaking
COMM 3301 Business and Professional Communication
COMM 3311 Interpersonal Communication
COMM 4340 Small Group Communication
COMM 4313 Advanced Public Speaking

Communication and Media, (3 semester credit hours)

One of the following:

COMM 3300 Reading Media Critically
COMM 3352 Media and Culture
ATEC 3325 Introduction to Computer Mediated Communication

Communication and Culture (3 semester credit hours)

One of the following:

COMM 4350 Intercultural Communication
COMM 4351 U.S. Culture and Communication

Minor in History (18 semester credit hours)

Foundation Courses

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2V71 Independent Study in Historical Studies
HIST 3301 Historical Inquiry
HIST 3302 Gender in Western Thought
HIST 3386 World History to 1500
HIST 3387 World History from 1500
HIST 4376 Topics in History
HIST 4V71 Independent Study in Historical Studies
HIST 4V99 Senior Honors in Historical Studies
ISAH 4V88 Special Interdisciplinary Topics in the Arts and Humanities

Students may select the appropriate courses in consultation with their advisors regarding the various aspects of historical studies. The total of semester credit hours for each concentration may vary.

European Historical Studies

HIST 3317 The Crusades
HIST 3318 Medieval Europe
HIST 3319 Early Modern Europe
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 3382</td>
<td>The United States Since 1945</td>
</tr>
<tr>
<td>HIST 3384</td>
<td>U.S. Women from Settlement to Present</td>
</tr>
<tr>
<td>HIST 3389</td>
<td>History of Science in the U.S.</td>
</tr>
<tr>
<td>HIST 3390</td>
<td>Twentieth Century African American History</td>
</tr>
<tr>
<td>HIST 3394</td>
<td>Native American History from the Pre-Columbian Period through 1795</td>
</tr>
<tr>
<td>HIST 3395</td>
<td>Native American History in the Nineteenth Century</td>
</tr>
<tr>
<td>HIST 3396</td>
<td>Native Americans in the Twentieth Century</td>
</tr>
<tr>
<td>HIST 4336</td>
<td>The U.S. Jewish Experience</td>
</tr>
<tr>
<td>HIST 4345</td>
<td>Origins of the Jim Crow South</td>
</tr>
<tr>
<td>HIST 4346</td>
<td>American Culture 1877-1919</td>
</tr>
<tr>
<td>HIST 4349</td>
<td>Jewish History</td>
</tr>
<tr>
<td>HIST 4360</td>
<td>Topics in American Women's History</td>
</tr>
<tr>
<td>HIST 4368</td>
<td>North American Environmental History</td>
</tr>
<tr>
<td>HIST 4377</td>
<td>Topics in Early American History</td>
</tr>
<tr>
<td>HIST 4378</td>
<td>Topics in American History</td>
</tr>
</tbody>
</table>

Studies in Philosophy and Intellectual History

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 3328</td>
<td>History and Philosophy of Science and Medicine</td>
</tr>
<tr>
<td>HIST 3332</td>
<td>History of the Electronic Age</td>
</tr>
<tr>
<td>HIST 3376</td>
<td>American Intellectual History, Colonial to the Civil War</td>
</tr>
<tr>
<td>HIST 3377</td>
<td>American Intellectual History, Civil War to the Present</td>
</tr>
<tr>
<td>HIST 4380</td>
<td>Topics in Intellectual History</td>
</tr>
<tr>
<td>PHIL 2316</td>
<td>History of Philosophy I</td>
</tr>
<tr>
<td>PHIL 2317</td>
<td>History of Philosophy II</td>
</tr>
<tr>
<td>PHIL 3373</td>
<td>Philosophy of Mind</td>
</tr>
<tr>
<td>PHIL 3375</td>
<td>Ethics in Contemporary America</td>
</tr>
<tr>
<td>PHIL 4305</td>
<td>Philosophical Concepts</td>
</tr>
<tr>
<td>PHIL 4308</td>
<td>Theories of Knowledge</td>
</tr>
<tr>
<td>PHIL 4310</td>
<td>Philosophy of Technology</td>
</tr>
<tr>
<td>PHIL 4320</td>
<td>Medical Ethics</td>
</tr>
<tr>
<td>PHIL 4321</td>
<td>Philosophy of Medicine</td>
</tr>
<tr>
<td>PHIL 4380</td>
<td>Topics in Philosophy</td>
</tr>
</tbody>
</table>

Minor in Literature (18 semester credit hours)

Foundation Courses (9 semester credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIT 2331</td>
<td>Masterpieces of World Literature</td>
</tr>
<tr>
<td>LIT 2341</td>
<td>Literary Analysis</td>
</tr>
<tr>
<td>LIT 3300</td>
<td>Western Literary Tradition</td>
</tr>
</tbody>
</table>

Students may select the appropriate courses in consultation with their advisors regarding the various aspects of literature. The total of semester credit hours for each concentration may vary.
Literary Genres

LIT 3309 Studies in the Short Story
LIT 3310 Studies in Epic and Romance
LIT 3316 The Literature of Science Fiction
LIT 3317 The Literature of Fantasy
LIT 3312 Studies in Prose Narrative
LIT 3313 Studies in Dramatic Literature
LIT 3314 Studies in Poetry
LIT 3315 Children's Literature

English and American Literature

LIT 3318 British Romanticism
LIT 3319 Periods in English Literature
LIT 3321 Modern British Literature
LIT 3322 Early American Literature
LIT 3323 The American Renaissance 1820-1865
LIT 3324 American Realism and Naturalism
LIT 3325 American Modernism
LIT 3326 The Literature of the American South
LIT 3327 Mid-Twentieth Century American Literature
LIT 3328 Ethnic American Literature
LIT 3383 Topics in British Literature

General Literature

LIT 3381 Topics in Western Literature
LIT 3304 Advanced Composition
LIT 3328 Ethics in Literature
LIT 3330 Linguistics
LIT 3331 Contemporary American Literature
LIT 3332 English Syntax and Mechanical Structure
LIT 3334 Literature of Science
LIT 3335 Media and Pop Culture
LIT 3339 Writing in Literary Studies
LIT 3343 European Romanticism
LIT 3344 European Realism and Naturalism
LIT 3380 Studies in Women's Literature
LIT 3381 Topics in Western Literature
LIT 3382 Topics in Non-Western Literature
LIT 3385 Topics in Latin American Literature
LIT 4329 Major Authors
LIT 4330 Dante
LIT 4344 The Modern Novel
LIT 4346 Contemporary Literature
LIT 4348 Topics in Literary Studies
LIT 4V71 Independent Study in Literary Studies (1-3 semester credit hours)

Minor in Medical and Scientific Humanities (18 semester credit hours)

6 of the following:

- HUMA 3300 Reading and Writing Texts
- or ARHM 3342 Advanced Topics in the Arts and the Humanities
- COMM 3301 Business and Professional Communication
- COMM 3311 Interpersonal Communication
- COMM 3342 Advanced Topics in Communication
- COMM 3351 History and Theory of Communication
- COMM 4314 Persuasion
- COMM 4350 Intercultural Communication
- COMM 4351 U.S. Culture and Communication
- COMM 4360 Communication Ethics
- HIST 3302 Gender in Western Thought
- HIST 3328 History and Philosophy of Science and Medicine
- HIST 3337 Technology and Western Civilization
- HIST 3344 History of Science in Europe
- HIST 3374 American Technological Development
- HIST 3380 The Nuclear Age in America
- HIST 3389 History of Science in the U.S.
- HIST 4380 Topics in Intellectual History
- HUMA 3342 Topics in the Humanities
- LIT 3304 Advanced Composition
- LIT 3316 The Literature of Science Fiction
- LIT 3317 The Literature of Fantasy
- LIT 3312 Studies in Prose Narrative
- LIT 3319 Periods in English Literature
- LIT 3328 Ethics in Literature
- LIT 3344 Literature of Science
- LIT 3344 European Realism and Naturalism
- LIT 4348 Topics in Literary Studies
- LIT 4V71 Independent Study in Literary Studies (1-3 semester credit hours)
- PHIL 2316 History of Philosophy I
- PHIL 2317 History of Philosophy II
- PHIL 3328 History and Philosophy of Science and Medicine
- PHIL 3373 Philosophy of Mind
- PHIL 3375 Ethics in Contemporary America
- PHIL 4310 Philosophy of Technology
- PHIL 4320 Medical Ethics
- PHIL 4321 Philosophy of Medicine
- PHIL 4380 Topics in Philosophy
SPAN 3341 Medical Spanish
And any appropriate course(s) in Interdisciplinary Studies, EPPS, and any 3000/4000 level organized course in PSY (limited to 6 semester credit hours)

Minor in Music (18 semester credit hours)

Required Lower-Division courses (6 semester credit hours)

Two of the following:

MUSI 1306 Understanding Music
or **MUSI 2322** Music in Western Civilization
MUSI 2328 Music Theory I

Required Upper-Division courses (12 semester credit hours total)

Required Music Performance and/or Ensemble courses (6 semester credit hours)

Two of the following:

MUSI 3312 Advanced Music Ensemble I
MUSI 3316 Guitar Ensemble II
MUSI 3318 String Orchestra
MUSI 3320 Wind Ensemble II
MUSI 3380 Guitar II
MUSI 3381 Instrumental Ensemble II
MUSI 3382 Vocal Instruction II
MUSI 3385 Chamber Singers I
MUSI 3386 Jazz Ensemble II
MUSI 3387 Jazz Improvisation and Keyboard Harmony
MUSI 3388 Piano II
MUSI 4312 Advanced Music Ensemble II
MUSI 4316 Guitar Ensemble III
MUSI 4320 Wind Ensemble III
MUSI 4345 Music Performance III
MUSI 4346 Instrumental Ensemble III
MUSI 4347 Vocal Ensemble III
MUSI 4385 Chamber Singers II
MUSI 4386 Jazz Ensemble III
MUSI 4V61 Individual Instruction in Vocal Performance
MUSI 4V71 Independent Study in Music

Required Upper-Division Music History and Music Theory Courses (6 semester credit hours)

Two of the following:
MUSI 3322 Music in Historical Context
MUSI 3323 The Guitar: Medieval to Modern
MUSI 3324 Jazz History: Roots to Swing
MUSI 3325 Jazz History: Modern Jazz since BeBop
MUSI 3328 Music Theory II
MUSI 3342 Advanced Topics in Music
MUSI 3389 Digital Music II
MUSI 4348 Creating Music

Minor in Performing Arts (18 semester credit hours)

6 of the following:

ARTS 1301 Exploration of the Arts
DANC 1310 Understanding Dance
DANC 2311 Topics in Dance
DANC 2321 Stretch, Conditioning, Alignment
DANC 2331 Dance Technique 1
DANC 2332 Modern Dance 1
DANC 2333 Jazz Dance 1
DANC 2334 Ballet 1
DANC 2V71 Independent Study in Dance
DANC 3332 Dance Technique 2
DANC 3333 Modern Dance 2
DANC 3334 Jazz Dance 2
DANC 3335 Ballet 2
DANC 3340 Dance in Historical Context
DANC 3342 Advanced Topics in Dance
DANC 3345 Dance Performance
DANC 3347 Dance Composition
DANC 4313 Dance Technique 3
DANC 4314 Modern Dance 3
DANC 4315 Ballet 3
DANC 4316 Jazz Dance 3
DANC 4317 Dance Performance 2
DANC 4318 Dance Technique 4
DANC 4V71 Independent Study in Dance
DRAM 1310 Understanding Theater
DRAM 1351 Acting 1
DRAM 1352 Acting 2
DRAM 2311 Topics in Theater
DRAM 2364 Musical Theater Workshop
DRAM 2371 Technical Theater 1
DRAM 2372 Improvisation
DRAM 2373 Languages of the Body
DRAM 2V71 Independent Study in Drama
DRAM 3310 Theater/Performance Ensemble
DRAM 3323 Performance in Historical Context
DRAM 3324 Technical Theater 2
DRAM 3325 Directing and Producing
DRAM 3342 Advanced Topics in Theater
DRAM 3351 Light Design
DRAM 3356 Acting 3
DRAM 4V71 Independent Study in Drama (1-3 semester credit hours)

MUSI 1306 Understanding Music
MUSI 1313 Fundamentals of Music
MUSI 2113 Pep Band
MUSI 2315 Guitar I
MUSI 2316 Guitar Ensemble I
MUSI 2317 Piano I
MUSI 2319 Digital Music I
MUSI 2320 Wind Ensemble I
MUSI 2311 Topics in Music
MUSI 2322 Music in Western Civilization
MUSI 2324 Instrumental Ensemble I
MUSI 2325 Vocal Instruction I
MUSI 2326 Jazz Ensemble I
MUSI 2127 Community Chorale
MUSI 2328 Music Theory I

MUSI 2V71 Independent Study in Music
MUSI 3312 Advanced Music Ensemble I
MUSI 3316 Guitar Ensemble II
MUSI 3318 String Orchestra
MUSI 3320 Wind Ensemble II
MUSI 3322 Music in Historical Context
MUSI 3323 The Guitar: Medieval to Modern
MUSI 3324 Jazz History: Roots to Swing
MUSI 3325 Jazz History: Modern Jazz since BeBop
MUSI 3328 Music Theory II
MUSI 3342 Advanced Topics in Music
MUSI 3380 Guitar II
MUSI 3381 Intermediate Ensemble II
MUSI 3385 Chamber Singers I
MUSI 3386 Jazz Ensemble II
MUSI 3387 Jazz Improvisation and Keyboard Harmony
MUSI 3388 Piano II
MUSI 3389 Digital Music II

MUSI 4312 Advanced Music Ensemble II
MUSI 4316 Guitar Ensemble III
MUSI 4320 Wind Ensemble III
MUSI 4345 Music Performance III
MUSI 4346 Instrumental Ensemble II
MUSI 4347 Vocal Ensemble III
MUSI 4385 Chamber Singers II
MUSI 4386 Jazz Ensemble III
MUSI 4348 Creating Music
MUSI 4V61 Individual Instruction in Vocal Performance (1-3 semester credit hours)
MUSI 4V71 Independent Study in Music (1-3 semester credit hours)

Minor in Philosophy (18 semester credit hours)

6 of the following:

PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II
PHIL 2V71 Independent Study in Philosophy
PHIL 3328 History and Philosophy of Science and Medicine
PHIL 3373 Philosophy of Mind
PHIL 3375 Ethics in Contemporary America
PHIL 4305 Philosophical Concepts
PHIL 4308 Theories of Knowledge
PHIL 4310 Philosophy of Technology
PHIL 4380 Topics in Philosophy
HIST 3328 History and Philosophy of Science and Medicine
HIST 3376 American Intellectual History, Colonial to the Civil War
HIST 3377 American Intellectual History, Civil War to the Present
HIST 3302 Gender in Western Thought
PHIL 4320 Medical Ethics
PHIL 4321 Philosophy of Medicine
HIST 4380 Topics in Intellectual History
HIST 4V71 Independent Study in Historical Studies (1-3 semester credit hours)
Minor in Spanish and Hispanic Area Studies (18 semester credit hours)

Required Language Courses (6 semester credit hours)

Two of the following:

- SPAN 1311 Beginning Spanish I
- SPAN 1312 Beginning Spanish II
- SPAN 2311 Intermediate Spanish I
- SPAN 2312 Intermediate Spanish II

Upper-Division Courses (12 semester credit hours)

Four of the following:

- SPAN 3363 Spanish Composition and Style
- SPAN 3365 Advanced Spanish
- SPAN 4364 Advanced Spanish Culture
- LANG 3342 Advanced Language Instruction
- LANG 3348 Topics in Language
- LANG 4348 Advanced Topics in Language
- LIT 3329 Ethnic American Literature
- LIT 3385 Topics in Latin American Literature
- HIST 3358 Latin American History
- HIST 3379 United States Relations with Latin America
- HIST 3391 Modern Mexico
- HIST 3392 U.S.-Mexico Borderlands
- HIST 3398 Colonial Latin American History
- HIST 3399 Modern Latin American History
- HIST 4359 Topics in Latin American History

Topics courses (and LIT 3329 Ethnic American Literature) must be approved by the School of Arts and Humanities before enrolling.

Minor in Visual Arts (18 semester credit hours)

Arts Foundations (3 semester credit hours)

One of the following:

- ARTS 1316 Drawing Foundations
- ARTS 2316 Painting Foundations
- ARTS 2350 Digital Photography and Design
- ARTS 2380 2D Design Foundations
- ARTS 2381 Introduction to Sculpture
- ARTS 2V71 Independent Study in Visual Arts (1-3 semester credit hours)
Art History Foundations (3 semester credit hours)

One of the following:

- **AHST 1303** Survey of Western Art History: Ancient to Medieval
- **AHST 1304** Survey of Western Art History: Renaissance to Modern
- **AHST 2331** Understanding Art
- **AHST 3313** Medieval Art
- **AHST 3315** The Art of the Renaissance
- **AHST 3316** The Art of the Baroque
- **AHST 3317** Pioneers of Modern Art
- **AHST 3318** Contemporary Art
- **AHST 3319** Twentieth Century European Art: Avant-Garde and Aftermath
- **AHST 3320** Art in Historical Context
- **AHST 3324** History of Photography
- **AHST 4342** Topics in Art History
- **FILM 2332** Understanding Film
- **FILM 3321** Film in Historical Context
- **FILM 3325** Film Authorship
- **FILM 3342** Topics in Film

Studio Courses (12 semester credit hours)

Four of the following:

- **ARTS 3311** Theory and Practice of Visual Arts
- **ARTS 3340** Topics in Studio Art
- **ARTS 3341** Chinese Calligraphy
- **ARTS 3363** Design, Text, and Image
- **ARTS 3365** Advanced Drawing
- **ARTS 3366** Drawing Concepts
- **ARTS 3367** Figure Drawing
- **ARTS 3368** Mixed Media
- **ARTS 3369** Intermediate Painting
- **ARTS 3371** Black and White Photography
- **ARTS 3372** Color Photography
- **ARTS 3373** Printmaking
- **ARTS 3375** Sculpture
- **ARTS 3376** Time-Based Art
- **ARTS 3377** Digital Photography
- **ARTS 3379** Photography and New Media
- **ARTS 3381** Video Painting
- **ARTS 3382** Color as Subject
- **ARTS 4308** Image/Text
- **ARTS 4368** Advanced Visual Arts
ARTS 4369 Advanced Painting
ARTS 4372 Advanced Photography
ARTS 4V71 Independent Study in Visual Arts (1-3 semester credit hours)
School of Behavioral and Brain Sciences

The School of Behavioral and Brain Sciences at The University of Texas at Dallas offers degrees in Child Learning and Development; Cognitive Science; Neuroscience; Psychology; and Speech-Language Pathology and Audiology. The Child Learning and Development program provides students a research-based approach to understanding child development as a preparation for careers as teachers, researchers, service providers, and policy makers. The Cognitive Science program provides a multidisciplinary approach to the study of the mind and behavior that incorporates methodology from the fields of philosophy, psychology, neuroscience, and computer science. The Neuroscience program provides students the opportunity to study the nervous system from a multidisciplinary approach that combines the study of brain structure, biochemistry, and physiology, and their links to behavior. The Psychology program provides basic training in the study of mind and behavior as preparation for graduate training in psychology, counseling and related fields, as well as providing courses that may be relevant to employment in human resources or research support positions. The Speech-Language Pathology and Audiology program offers study in the processes and disorders of speech, language and hearing. The program provides the foundation for graduate work leading to careers as a speech-language pathologist or audiologist. Students meeting BS degree and clinical practicum requirements are eligible for Texas state licensure as a speech-language pathology assistant.

The School of Behavioral and Brain Sciences (BBS) offers a number of services and programs for students. Academic Advising by a staff of professional advisors is available for all students, and students are encouraged to meet with their advisors on a regular basis. BBS sponsors events and workshops designed to inform students of research opportunities, career paths, and how to prepare for application to graduate and professional schools. BBS works closely with the UTD Career Center to assist students with exploring careers, opportunities for co-op experiences, resume-writing workshops and practice in interview skills. BBS also offers PSY 3100 Careers in Psychology, a course that explores career and graduate school paths for students in the School of Behavioral and Brain Sciences. This course is offered in the spring and fall semesters and has limited enrollment. It is recommended that students take this course during the sophomore year or early in the junior year.

The school's Internship Placement Program is open to all students who have achieved junior or senior standing (more than 53 semester credit hours) and a minimum 2.500 GPA. Students earn course credit for working 8 hours per week at an approved community agency of their choice. The program has over 70 established placement sites. Students keep daily job diaries, attend one class meeting per month, and write brief papers relevant to their experiences.

The Honors Program of the School of Behavioral and Brain Sciences (BBS) provides enriching research and writing experiences in a mentoring environment with individual members of the faculty. These opportunities attempt to promote greater success in admission to top-ranked graduate schools and/or employment in chosen careers. The Program consists of the Honors
Thesis Core, completed by all students in the Honors Program, and a Dean's Scholars' Tier that is completed in addition to the Thesis Core by a subset of students who wish to pursue doctorall-level professional careers and to serve the School of BBS. Students are eligible for admission to the Program after completing at least 12 graded semester credit hours at UT Dallas including 2 core courses in the student's major and achieving the GPA(s) required. Separate emails are sent notifying students when/how to apply during the fall semester for the Honors Program (Thesis Core) and during the spring semester for the Dean's Scholars' Tier, approximately 2-3 weeks before the application period begins.

To earn BBS School Honors, students must meet the following criteria: (1) at least 30 graded semester credit hours at UT Dallas, (2) at least 12 semester credit hours in BBS major core courses, (3) an overall UT Dallas GPA of at least 3.500 (Honors Thesis Core) and of at least 3.600 (Dean's Scholars' Tier), (4) successful completion of the Honors Seminar (offered in the spring semester) or approved substitute activities, and (5) completion of an Honors Thesis with a grade of at least B+. Students in the Dean's Scholars' Tier must meet these additional criteria: successful completion of (6) the Dean's Scholars' Seminar (offered in the fall semester) and (7) multiple service activities to the School. School Honors with Distinction may be achieved by students whose Theses are judged by a faculty committee to be of exemplary quality.

Faculty

Professor and Dean Emeritus: J. Michael Coleman

Associate Professors: Francesca Filbey, Shayla Holub, Daniel Krawczyk, Mandy Maguire, Christa McIntyre, Candice Mills, Robert L. Rennaker, Pamela Rollins, Bart Rypma, Lucien T. Thompson, Sven Vanneste

Assistant Professors: Robert Ackerman, Chandramallika Basak, Cindy de Frias, Kristen Kennedy, Sven Kroener, Jinkyung Na, Jackie Nelson, Jonathan Ploski, Karen Rodrigue, Raul Rojas, Noah Sasson, Andrea Warner-Czyz, Gagan Wig

Distinguished Scholar in Residence: James Jerger

Senior Lecturers: Matthew Housson, Karen Huxtable-Jester, Nancy Juhn, Van Miller, Toosje Vanbeveren

Clinical Professors: John Stilwell

Clinical Associate Professors: Jackie Clark, Carol Cokely, Kenneth C. Pugh, Lee Wilson
Clinical Assistant Professors: Joanna Gentsch, Carlos Marquez de la Plata, Jeffrey Martin

Clinical Lecturers: Michelle Aldridge, Cheryl L. Bryant, Lucinda Dean, Diane Garst, Karen Kaplan, Helen Kenedi, Janice Lougeay, Felicity Sale
School of Behavioral and Brain Sciences

Child Learning and Development (BS)

Providing better ways to foster the intellectual and emotional development of all of our children is a national priority. As such, well-educated university graduates are needed to go on to become expert child development practitioners and researchers. Over the last 60 years, the academic disciplines of developmental psychology and child development have accumulated a vast body of research-based knowledge about the factors that promote optimal child learning, development and well-being, as well as those that contribute to disadvantaged child development. The Child Learning and Development major provides undergraduate students a rigorous science-based curriculum that immerses them in the theories, findings, research methods, and best practices that the scientific study of child development has to offer.

The Child Learning and Development major focuses on the fundamental processes of child and adolescent development within the contexts of families, schools, peer groups, and larger cultural milieu. Its three objectives are to provide students with a strong foundation in 1) cognitive, language, and socio-emotional development, 2) research skills for conducting scientific studies and evaluating applied programs, and 3) translating scientific findings into practical applications for understanding and improving children's lives. Opportunities for supervised and independent research, as well as field placements that involve working with children, families, schools, and social services, are provided in addition to formal work.

The Child Learning and Development major prepares students for a wide range of careers in education, psychology, social work, family medicine, public health, family law, and public policy. The major is especially well suited for students seeking elementary teacher certification (early childhood - 6th grade) through UT Dallas's Teacher Development Center. By combining a major in Child Learning and Development with elementary teacher certification, students will develop a strong foundation in child development and teaching. Elementary Teacher Certification requires a minimum of 45 additional semester credit hours of coursework that can be completed within the free elective semester credit hours of the Child Learning and Development major. If you are interested in this combined child development/education program (called CLD/EC6), see an advisor to develop a degree plan.

Bachelor of Science in Child Learning and Development

Degree Requirements (120 semester credit hours)

1. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:

MATH 1306 College Algebra for the Non-Scientist
MATH 1314 College Algebra
or MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

Select 6 semester credit hours from Life and Physical Sciences core courses. (See CLDP advisor for options)

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

HUMA 1301 Exploration of the Humanities
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II
LIT 2331 Masterpieces of World Literature

Creative Arts (3 semester credit hours)

One of the following:

AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
ARTS 1301 Exploration of the Arts
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
Government/Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Science (3 semester credit hours)

- PSY 2301 Introduction to Psychology

Component Area Option (6 semester credit hours)

- PSY 2317 Statistics for Psychology
 or STAT 1342 Statistical Decision Making

 AND one of the following:

- PSY 2314 Lifespan Development
- PSY 2364 Animal Communication
- CGS 2301 Cognitive Science

II. Major Requirements: 36 semester credit hours

Major Preparatory Courses (6 semester credit hours) (0 semester credit hours beyond Core Curriculum)

- PSY 2301 Introduction to Psychology
- PSY 2317 Statistics for Psychology
 or STAT 1342 Statistical Decision Making

Major Core Courses (21 semester credit hours)

- CLDP 3303 Normal Language Development
 or CLDP 3305 Language and Literacy Development
- CLDP 3310 Child Development
 or CLDP 3339 Educational Psychology
- CLDP 3332 Social and Personality Development
- CLDP 3342 Exceptional Children
 or CLDP 4344 Child Psychopathology
- CLDP 3362 Cognitive Development
 or CLDP 3365 Child Learning
- PSY 3392 Research Design and Analysis
 or CLDP 3394 Research and Evaluation Methods
 or CLDP 3394 Research and Evaluation Methods

Major Related Courses (15 upper-division semester credit hours)
Guided Electives; 3 semester credit hours of one of the following:

- CLDP 4394 Internship
- CLDP 4395 Co-op Fieldwork
- CLDP 4397 Honors Thesis
- CLDP 4V98 Directed Research
- CLDP 4V99 Individual Study

Plus 12 semester credit hours of courses with CLDP prefix or any of the following courses:

- CGS 3342, CGS 4312, CGS 4313, CGS 4314, CGS 4315, CGS 4352, CGS 4359, ED 4352, ED 4363, ED 4367, NSC 3345, NSC 4352, NSC 4353, NSC 4354, NSC 4367, PSY 3331, PSY 3333, PSY 3361, PSY 4331, PSY 4343, PSY 4359, PSY 4362, PSY 4364, PSY 4373, SPAU 3301, SPAU 3304, SPAU 3340, SPAU 3343, SPAU 3344, SPAU 3345 or SPAU 4308.

III. Elective Requirements: 41 semester credit hours

Free Electives (41 semester credit hours)

Students are encouraged to explore areas of concentration in Child Learning and Development as well as explore interests outside the field. Be aware that at least 51 semester credit hours of upper-division courses are required for graduation.

Minor in Child Learning and Development

This minor is well suited for students pursuing Elementary Teacher certification and for those generally interested in the psychological development of children. Students must complete 18 semester credit hours including 9 required semester credit hours of foundation coursework and 9 semester credit hours of guided electives. At least 12 semester credit hours must be upper-division courses, of which at least 9 semester credit hours must have been completed at UT Dallas. Students majoring in Psychology or Speech-Language Pathology and Audiology may minor in Child Learning and Development provided that no course is used to satisfy both major and minor requirements.

Foundation Courses (9 semester hours required)

- PSY 3310 Child Development
- or PSY 3339 Educational Psychology
- PSY 3332 Social and Personality Development
- PSY 3362 Cognitive Development

Guided Electives Courses (select 9 semester credit hours)

- PSY 3342 Exceptional Children
- PSY 4344 Child Psychopathology
- PSY 4373 Psychological Assessment
- PSY 4394 Internship in Psychology
or **ED 4693 Student Teaching Grades - Elementary** (approval by the Teacher Development Office required)

SPAU 3303 Normal Language Development

SPAU 3305 Language and Literacy Development

SPAU 4308 Language Disorders in Children

Other courses as approved by the Associate Dean.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A required **Preparatory** course that also fulfills a Core Curriculum requirement. Six (6) semester credit hours are counted in Core Curriculum.

3. Required for EC-6 Teacher Certification.
School of Behavioral and Brain Sciences

Cognitive Science (BS)

Cognitive Science is the study of complex information processing in humans and machines and includes the multidisciplinary study of biological and artificial systems. Important components of cognitive science include areas of research such as: cognitive-neuroscience, brain-imaging studies of perceptual and cognitive processing, situated cognition, Human-Computer-Interactions (HCI), computational modeling, and Artificial Intelligence (AI). The field of cognitive science draws from diverse approaches to understanding complex information processing, including research from experimental psychology, neuroscience, linguistics, philosophy, computer science, mathematics, and engineering.

The Cognitive Science program in the School of Behavioral and Brain Sciences at UT Dallas consists of three concentration areas: (1) Psychology/HCI, (2) Cognitive-Neuroscience, and (3) AI/Computational Modeling. Cognitive Science Majors select the majority of their upper-division coursework from 2 of these 3 concentration areas in order to generate multidisciplinary areas of focus. In addition to providing a sound preparation for graduate work in Cognitive Science and related areas, the Cognitive Science major is an ideal choice for students pursuing careers that combine interests in neuroscience, cognition, mathematics, and computer science. There are exciting career prospects in both industry and academics for the Cognitive Science major.

Cognitive-Neuroscience Careers. Students whose focus area is cognitive-neuroscience will be well prepared for the pursuit of graduate degrees and careers associated with: medicine, clinical neuropsychology, brain-imaging technology, intraoperative neurophysiological monitoring, and evaluation of bionic/prosthetic technology (e.g., cochlear implants and artificial limbs). Students interested in Cognitive-Neuroscience career opportunities typically choose their core coursework from both the specialization areas of Psychology/HCI and Neuroscience.

Human-Computer-Interaction Careers. Students whose focus area is Human-Computer-Interactions (HCI), are prepared for the pursuit of careers in the areas of usability engineering and user-experience (UX) design and development that involve the evaluation and design of human-computer interfaces such as website and software graphical user interfaces (GUIs), smartphone interfaces, and voice-user interfaces (VUIs). Students interested in HCI career opportunities should choose their core coursework from the Psychology/HCI specialization area and include one or more HCI courses.

AI/Computational Modeling Careers. Students whose focus area is AI/computational modeling are prepared for the pursuit of careers associated with the development and evaluation of Artificial Intelligence (AI) technology (e.g., web search engines, speech recognition, robotics, computer vision, and computer games), bionic and prosthetic technology development and evaluation (such as cochlear implant technology), computer-based natural language
understanding, data mining, and machine learning as well as the development of computational models to support theory development in the behavioral and brain sciences. Students interested in career opportunities in this area should choose their core coursework from the AI/Computational Modeling specialization area.

Bachelor of Science in Cognitive Science

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

- **Communication (6 semester credit hours)**
 - RHET 1302 Rhetoric
 - COMM 1311 Survey of Oral and Technology-based Communication

- **Mathematics (3 semester credit hours)**
 - MATH 2417 Calculus I

- **Life and Physical Sciences (6 semester credit hours)**
 - Select 6 semester credit hours from Life and Physical Sciences core courses (See CGS advisor for options).

- **Language, Philosophy and Culture (3 semester credit hours)**
 - One of the following:
 - HUMA 1301 Exploration of the Humanities
 - PHIL 1301 Introduction to Philosophy
 - PHIL 2316 History of Philosophy I
 - PHIL 2317 History of Philosophy II
 - LIT 2331 Masterpieces of World Literature

- **Creative Arts (3 semester credit hours)**
 - One of the following:
 - AHST 1303 Survey of Western Art History: Ancient to Medieval
 - AHST 1304 Survey of Western Art History: Renaissance to Modern
 - AHST 2331 Understanding Art
 - ARTS 1301 Exploration of the Arts
 - DRAM 1310 Understanding Dance
 - FILM 2332 Understanding Film
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War
- HIST 2301 History of Texas
- HIST 2330 Themes and Ideas in American History
- HIST 2332 Civil War to Reconstruction

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Science (3 semester credit hours)

- PSY 2301 Introduction to Psychology

Component Area Option (6 semester credit hours)

- MATH 2419 Calculus II
- CGS 2301 Cognitive Science

II. Major Requirements: 60 semester credit hours (15 semester credit hours beyond Core Curriculum)

Major Preparatory Courses

The following are required for all concentration areas: (24 semester credit hours)

- CGS 2301 Cognitive Science
- CS 1337 Computer Science I
- MATH 2417 Calculus I
- MATH 2419 Calculus II (prerequisite: MATH 2417)
- MATH 2418 Linear Algebra (prerequisite: MATH 2417)
- PSY 2301 Introduction to Psychology
- PSY 2317 Statistics for Psychology
 or CS 3341 or SE 3341 or STAT 3341 Probability and Statistics in Computer Science and Software Engineering (prerequisite: MATH 2419 and CS 2305)
 or STAT 4351 Probability (prerequisite: MATH 2451)

Additional Preparatory Courses for AI/Computational Modeling Area (10 semester credit hours)
CS 2305 Discrete Mathematics for Computing I (prerequisite: MATH 2417)
CS 2336 Computer Science II (prerequisite: CS 1337)
MATH 2451 Multivariable Calculus with Applications (prerequisite: MATH 2419)

Major Core Courses required for all concentration areas (12 semester credit hours)

- CGS 3361 Cognitive Psychology
- NSC 3361 Behavioral Neuroscience
- PSY 3392 Research Design and Analysis
- CGS 3340 Experimental Projects in Cognitive Science
 or PSY 3393 Experimental Projects in Psychology

Major Related Courses (24 semester credit hours)

Select 4 courses each from 2 of the following 3 Concentration Areas

Core Courses for Psychology/HCI Concentration Area (select 12 semester credit hours from list of courses below)

- CGS 3325 Historical Perspectives on Psychology: Mind and Machines since 1600
- CGS 4359 Cognitive Neuroscience (prerequisite: PSY 2301)
- CGS 4362 Perception (prerequisite: CGS 2301 or PSY 2301)
- CGS 4352 Human Computer Interactions I
- CGS 4353 Human Computer Interactions II (prerequisite: CGS 4342)
- CGS 4355 Human Computer Interactions Lab (prerequisite: CGS 4352 or CGS 4353)
- PSY 4374 Judgment and Decision Making
- PSY 3331 Social Psychology
- PSY 4343 Abnormal Psychology
- PSY 2314 Lifespan Development
- PSY 3310 Child Development
- PSY 3362 Cognitive Development (prerequisite: PSY 2314 or PSY 3310)

Core Courses required for Cognitive-Neuroscience Concentration Area (select 12 semester credit hours from list of courses below)

- NSC 4352 Cellular Neuroscience (prerequisite: NSC 3361)
- NSC 4354 Integrative Neuroscience (prerequisite or corequisite: NSC 3361)
- NSC 4356 Neurophysiology (prerequisite: NSC 4352)
- NSC 4366 Neurochemistry (prerequisite: NSC 3361 or BIOL 2311)
- NSC 4363 Neuropharmacology (prerequisite: NSC 4352 or NSC 4354)
- NSC 4367 Developmental Neurobiology (prerequisite: NSC 4352 or NSC 4354)
- NSC 4359 Cognitive Neuroscience (prerequisite PSY 2301)
- NSC 4353 Neuroscience Laboratory Methods (prerequisites: NSC 3361 and either NSC 4352 or NSC 4354)
- NSC 4357 Neurobiology of Learning and Memory
- NSC 4362 Molecular Neuroscience
Core Courses required for AI/Computational Modeling Concentration Area (select 12 semester credit hours from list of courses below)

- **CGS 3342** Cognitive and Neural Modeling Laboratory
- **CGS 4312** Computational Modeling Methods for Language Understanding
- **CGS 4313** Neural Net Mathematics (prerequisites: MATH 2451, MATH 2418, and upper-division course in calculus-based probability such as STAT 3341 or STAT 4351)
- **CGS 4314** Intelligent Systems Analysis (prerequisite: **CGS 4313** or instructor consent required)
- **CGS 4315** Intelligent Systems Design (prerequisite: **CGS 4314** or instructor consent required)
- **CS 3345** Data Structures and Introduction to Algorithmic Analysis (prerequisites: CS 2336 and CS 2305)
- **CS 4365** Artificial Intelligence (prerequisite: **CS 3345**)
- **CS 4375** Introduction to Machine Learning (prerequisites: **CS 3345** and **CS 3341**)
- **CS 4391** Introduction to Computer Vision (prerequisite: **CS 3345**)
- **CS 4395** Human Language Technologies (prerequisites: **CS 3345** and **CS 3341** or **SE 3341** or **STAT 3341**)

III. Elective Requirements: 18 semester credit hours

Free Electives (3-18 semester credit hours)

Students are encouraged to explore areas of concentration in Cognitive Science, Psychology, and Neuroscience as well as explore interests outside the field. Be aware that at least 51 semester credit hours of upper division credit hours are required for graduation. In addition, advanced CGS students in good academic standing may request permission from the Cognitive Science Program Head to take graduate Applied Cognition and Neuroscience coursework (ACN prefix) to fulfill some of the elective course requirements.

Minor in Cognitive Science

Students who are not majoring in Cognitive Science may minor in Cognitive Science by completing 18 semester credit hours. At least 12 of the 18 semester credit hours required by the minor in Cognitive Science must be upper-division courses from either the Psychology/HCI, Neuroscience, or Computational Modeling/AI specialization areas. In addition, 9 of the 18 semester credit hours required for the minor in Cognitive Science must have a Cognitive Science (CGS), Psychology (PSY), or Neuroscience (NSC) prefix and be upper-division courses. No credit hours may be used to satisfy both major and minor requirements; however, free elective hours or major preparatory classes may be used to satisfy the minor. At least one-third of the semester credit hours for a minor must be taken at UT Dallas.
Fast Track Baccalaureate/Master's Degrees

UT Dallas undergraduate students with strong academic records who intend to pursue a master's degree in Applied Cognition and Neuroscience at UT Dallas may consider an accelerated undergraduate-graduate plan of study. When accepted into the program, students may take up to 15 semester credit hours of graduate courses that may be used to complete the bachelor's degree and also to satisfy requirements for the Master's degree. Students must maintain a 3.000 grade point average and earn grades of B or better in the graduate courses taken. The Fast Track makes it possible for students to complete upper-division undergraduate education and graduate training in three years. Students must have completed at least 90 semester credit hours toward a baccalaureate degree before beginning Fast Track coursework. Students should apply to admissions one semester before they reach 90 semester credit hours. To qualify for application, undergraduate students must have completed at least 18 semester credit hours in major core courses at UT Dallas. Apply to the Fast Track program through the Cognitive Science Program Office. Students should consult with a graduate advisor regarding admissions criteria and plans of study at the beginning of their junior year.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A required Preparatory course that also fulfills a Core Curriculum requirement. Fourteen semester credit hours are counted in Core Curriculum.
School of Behavioral and Brain Sciences

Neuroscience (BS)

Neuroscience is the multidisciplinary study of brain function that draws on recent advances in cell and molecular biology, biochemistry, biophysics, and computer and behavioral and cognitive sciences. It examines the brain's global and nanoscale biochemistry, its complex and extensively networked anatomical structure, and its remarkably adaptive physiology. The field considers neuronal development from early embryology through advanced senescence, and examines the brain's plasticity from the level of single proteins, of individual neurons, up through the level of networks or systems of cells, on up to complete behaving organisms. It studies the regulation and expression of behavior, the impact of that behavior on the brain, and the complex interactions of multiple neuronal systems that underlie the emergence of cognitive function. The Neuroscience program at UT Dallas provides students with the opportunity to focus on the brain from a systems-level perspective, drawing on behavioral and cognitive expertise combined with cellular and molecular analyses. It allows undergraduates extensive interactions with working neuroscientists who use the latest experimental techniques.

The Neuroscience program is designed to prepare students for admission to graduate, medical, or dental school, or for careers in related biomedical research, industry, and allied health science fields. Required courses and guided electives can include the approved pre-medical curriculum and offer an alternative to other traditional pre-health majors. Students who wish to continue their education in the fields of medicine, dentistry or allied professional areas should register with the Health Professions Advising Center during their first semester. Students are encouraged to design a personalized degree plan of guided electives with their advisor that combines courses from the neurosciences and related disciplines of mathematics, physics, chemistry, biology, engineering, computer science, psychology, and speech pathology and audiology in a way that will suit their individual interests and goals. Students are also strongly encouraged to gain research experience as part of their undergraduate training in Neuroscience.

Students can complete Core Curriculum and Neuroscience major requirements in a minimum of 85 semester credit hours, leaving 35 elective semester hours. Students can complete Core Curriculum, Neuroscience major, and pre-health Professions requirements in a minimum of 111 semester credit hours, leaving 9 remaining elective semester credit hours.

Bachelor of Science in Neuroscience

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)
RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication.

Mathematics (3 semester credit hours)

One of the following:
MATH 2414 Integral Calculus
or MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

CHEM 1311 General Chemistry I
BIOL 2311 Introduction to Modern Biology I

Language, Philosophy and Culture (3 semester credit hours)

One of the following:
HUMA 1301 Exploration of the Humanities
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II
LIT 2331 Masterpieces of World Literature

Creative Arts (3 semester credit hours)

One of the following:
AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
ARTS 1301 Exploration of the Arts
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:
HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction

Government/Political Science (6 semester credit hours)

One of the following:
HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas
HIST 2330 Themes and Ideas in American History
HIST 2332 Civil War and Reconstruction
GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

PSY 2301 Introduction to Psychology

Component Area Option (6 semester credit hours)

PSY 2317 Statistics for Psychology or STAT 1342 Statistical Decision Making
and

CHEM 1312 General Chemistry II

II. Major Requirements: 45 semester credit hours

Major Preparatory Courses (24 semester credit hours - 6 semester credit hours beyond Core Curriculum)

All of the following:

BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2281 Introductory Biology Laboratory
BIOL 2311 Introduction to Modern Biology I \(\frac{2}{2} \)
CHEM 1111 General Chemistry Laboratory I
CHEM 1311 General Chemistry I \(\frac{2}{2} \)
CHEM 1112 General Chemistry Laboratory II
CHEM 1312 General Chemistry II \(\frac{2}{2} \)
MATH 2414 Integral Calculus
or MATH 2417 Calculus I \(\frac{2}{2} \)
PSY 2301 Introduction to Psychology \(\frac{2}{2} \)
PSY 2317 Statistics for Psychology \(\frac{2}{2} \)
or STAT 1342 Statistical Decision Making \(\frac{2}{2} \)

Major Core Courses (24 semester credit hours)

All of the following:

NSC 3361 Behavioral Neuroscience
NSC 4352 Cellular Neuroscience
NSC 4353 Neuroscience Laboratory Methods
NSC 4354 Integrative Neuroscience
NSC 4356 Neurophysiology
NSC 4363 Neuropharmacology
NSC 4366 Neuroanatomy

And one emphasis course from the following six:

- NSC 4357 Neurobiology of Learning and Memory
- or NSC 4367 Developmental Neurobiology
- or NSC 4371 Neural Plasticity
- or NSC 4373 Sensory Neuroscience
- or NSC 4362 Molecular Neuroscience
- or NSC 4385 Neuropsychology

Major Related Courses (15 semester credit hours)

Guided Electives: 15 semester credit hours from the following list (the Emphasis Course selected above will not count twice as a Guided Elective). Consultation with an advisor is required.

- BIOL 3101 Classical and Molecular Genetics Workshop
- BIOL 3301 Classical and Molecular Genetics
- BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
- BIOL 3302 Eukaryotic Molecular and Cell Biology
- BIOL 3161 Biochemistry Workshop I
- BIOL 3361 Biochemistry I
- BIOL 3162 Biochemistry Workshop II
- BIOL 3362 Biochemistry II
- BIOL 3455 Human Anatomy and Physiology with Lab I
- BIOL 3456 Human Anatomy and Physiology with Lab II
- NSC 3344 Anatomy and Physiology of Speech and Hearing
- NSC 3345 Neural Basis of Communication
- NSC 4188 Dean's Scholar's Seminar
- NSC 3351 Medical Neuroscience
- NSC 3355 Advanced Neuroscience Laboratory
- NSC 4357 Neurobiology of Learning and Memory
- NSC 4358 Neuroscience of Pain
- NSC 4359 Cognitive Neuroscience
- NSC 4362 Molecular Neuroscience
- NSC 4367 Developmental Neurobiology
- NSC 4370 Neuropediatric Medicine
- NSC 4371 Neural Plasticity
- NSC 4372 Neuroimmunology
- NSC 4373 Sensory Neuroscience
- NSC 4374 Neuroplasticity in Disorders of the Nervous System
- NSC 4375 Honors Seminar
- NSC 4376 Neurobiology of Stress
- NSC 4378 Neurotoxicology
- NSC 4385 Neuropsychology
- NSC 4387 Neuropathology
III. Elective Requirements: 33 semester credit hours

Free Electives (33 semester credit hours)

At least 33 semester credit hours of lower- or upper-division courses of the student’s choice. Students are encouraged to explore areas of concentration in Neuroscience as well as explore interests outside the field. Be aware that at least 51 semester credit hours of upper-division courses are required for graduation.

Premedical and/or other pre-health professions students (29 semester credit hours)

Students seeking to complete Pre-health Professions requirements should take the following as free electives:

Required pre-medical courses (12 semester credit hours)

- **BIOL 2112** Introduction to Modern Biology II Workshop
- **BIOL 2312** Introduction to Modern Biology II
- **CHEM 2123** Introductory Organic Chemistry Laboratory I
- **CHEM 2125** Introductory Organic Chemistry Laboratory II
- **CHEM 2323** Introductory Organic Chemistry I
- **CHEM 2325** Introductory Organic Chemistry II

Pre-med Advanced Biology requirement (8 semester credit hours, select 2 courses)

- **BIOL 3101** Classic and Molecular Genetics Workshop
- **BIOL 3301** Classic and Molecular Genetics
- **BIOL 3102** Eukaryotic Molecular and Cell Biology Workshop
- **BIOL 3302** Eukaryotic Molecular and Cell Biology
- **BIOL 3161** Biochemistry Workshop I
- **BIOL 3361** Biochemistry I
- **BIOL 3162** Biochemistry Workshop II
- **BIOL 3362** Biochemistry II

Barfield, Leah N 2/18/14 2:51 PM
- Deleted: NSC 4387 Neuropathology

Mary Jo Venetis 1/29/14 11:30 AM
- Deleted: 89

Barfield, Leah N 8/8/13 11:59 AM
- Deleted: NSC 4386 Adult Development and Aging

Windows User 9/18/13 8:32 PM
- Deleted: 4

Barfield, Leah N 7/30/13 11:40 AM
- Deleted: 8

Barfield, Leah N 7/30/13 11:40 AM
- Deleted: 8

Barfield, Leah N 7/30/13 11:40 AM
- Deleted: 8

Barfield, Leah N 7/30/13 11:40 AM
- Deleted: 8
Pre-med Physics requirement (8 semester credit hours, select 2 courses)

- PHYS 1101 College Physics Laboratory I
- PHYS 1102 College Physics Laboratory II
- PHYS 1301 College Physics I
- PHYS 1302 College Physics II
- PHYS 2125 Physics Laboratory I
- PHYS 2126 Physics Laboratory II
- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves

Minor in Neuroscience

Students who are not majoring in Neuroscience may minor in Neuroscience by taking 18 semester credit hours selected from the lists of major core courses, major related courses and major preparatory courses. At least 12 semester credit hours must be upper-division Neuroscience core courses. No semester credit hours may be used to satisfy both major and minor requirements; however, free elective semester credit hours or major preparatory courses may be used to satisfy the minor. At least one-third of the semester credit hours for a minor must be taken at UT Dallas.

Fast Track Baccalaureate/Master's Degrees

UT Dallas undergraduate students with strong academic records who intend to pursue a master's degree in Applied Cognition and Neuroscience at UT Dallas may consider an accelerated undergraduate-graduate plan of study. When accepted into the program, students may take up to 15 semester credit hours of graduate courses that may be used to complete the baccalaureate degree and also satisfy requirements for the master's degree. Students must maintain a 3.000 grade point average and earn grades of B or better in graduate courses taken. Students must have completed at least 90 semester credit hours toward a baccalaureate degree before beginning Fast Track coursework. Students should apply to admissions one semester before they reach 90 semester credit hours. To qualify for application, undergraduate students must have completed at least 18 semester credit hours in major core courses at UT Dallas. Apply to the Fast Track program through the Applied Cognition and Neuroscience Program Office. Students should consult with a graduate advisor regarding admissions criteria and plans of study.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. A required preparatory course that also fulfills a Core Curriculum requirement. Eighteen (18) semester credit hours are counted in Core Curriculum.
3. May be repeated for credit, up to 9 semester credit hours.
4. May be repeated for credit, up to 6 semester credit hours.
5. Algebra-based Physics courses
6. Calculus-based Physics courses
School of Behavioral and Brain Sciences

Psychology (BS)

William James characterized psychology as "the study of mental life." Psychology is both a domain of scientific inquiry and a field of applied practice. The science of psychology is concerned with the study of how people perceive, learn, feel, think, develop, and interact with others. The practice of psychology helps people improve mental health, learning, and performance.

Undergraduate degrees in psychology provide students a number of career options. Further study in graduate school leads to professional careers as clinical, counseling, industrial, academic and other kinds of psychologists. Psychology is also a useful major for students planning careers in law, management, medicine, or social work. A psychology major provides students with the knowledge about human behavior and methods of research and data analysis that is valuable in business, helping fields, and many other occupations.

The Psychology program at UT Dallas approaches the field from a scientific perspective, applying behavioral science research methods to the study of the human mind and behavior. Thus, students will have laboratory experiences in addition to lectures, reading, and demonstrations. Psychology students learn to evaluate evidence relating to theories of social behavior, personality development, perception, memory, brain processes, and other facets of human experience. Students also gain hands-on experience through internship placements, directed research experiences in professors' labs, and individualized study with faculty in specialized topics.

The undergraduate degree awarded through the Psychology program is a bachelor of science. Students may choose electives to obtain a broader grounding in psychology or a general education in the liberal arts. Students should note that it is possible to select clusters of electives that lead to particular concentrations in careers and graduate study. Students can complete Core Curriculum and Psychology major requirements in a minimum of 78 semester credit hours, leaving 42 elective semester credit hours.

Bachelor of Science in Psychology

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

 RHET 1302 Rhetoric
 COMM 1311 Survey of Oral and Technology-based Communication
Mathematics (3 semester credit hours)

One of the following:
- MATH 1306 College Algebra for the Non-Scientist
- MATH 1314 College Algebra
- or MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

Select 6 semester credit hours from Life and Physical Sciences core courses (see PSY advisor for options)

Language, Philosophy and Culture (3 semester credit hours)

One of the following:
- HUMA 1301 Exploration of the Humanities
- PHIL 1301 Introduction to Philosophy
- PHIL 2316 History of Philosophy I
- PHIL 2317 History of Philosophy II
- LIT 2331 Masterpieces of World Literature

Creative Arts (3 semester credit hours)

One of the following:
- AHST 1303 Survey of Western Art History: Ancient to Medieval
- AHST 1304 Survey of Western Art History: Renaissance to Modern
- AHST 2331 Understanding Art
- ARTS 1301 Exploration of the Arts
- DANC 1310 Understanding Dance
- DRAM 1310 Understanding Theater
- FILM 2332 Understanding Film
- MUSI 1306 Understanding Music

American History (6 semester credit hours)

Two of the following:
- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War
- HIST 2301 History of Texas
- HIST 2330 Themes & Ideas in American History
- HIST 2332 Civil War and Reconstruction
Government / Political Science (6 semester credit hours)
- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
- PSY 2301 Introduction to Psychology

Component Area Option (6 semester credit hours)
- PSY 2317 Statistics for Psychology or STAT 1342 Statistical Decision Making
 AND one of the following:
- CGS 2301 Cognitive Science
- PSY 2314 Lifespan Development
- PSY 2364 Animal Communication

II. Major Requirements: **36** upper-division semester credit hours

Major Preparatory Courses (6 semester credit hours)
- PSY 2301 Introduction to Psychology
- PSY 2317 Statistics for Psychology or STAT 1342 Statistical Decision Making

Major Core Courses (24 upper-division semester credit hours)
- NSC 3361 Behavioral Neuroscience
- PSY 3360 Historical Perspectives on Psychology: Mind and Machines since 1600
- PSY 3361 Cognitive Psychology
 or PSY 4359 Cognitive Neuroscience
- PSY 3392 Research Design and Analysis
- PSY 3393 Experimental Projects in Psychology
- PSY 3331 Social Psychology
- PSY 3310 Child Development
- PSY 4343 Abnormal Psychology

Major Related Courses (12 upper-division semester credit hours)
Guided Electives; 3 semester credit hours of one of the following:
- PSY 4394 Internship in Psychology
- PSY 4395 Co-op Fieldwork
- PSY 4V96 Teaching Internship
Plus any 9 semester credit hours of courses with PSY or CGS or CLDP or NSC prefixes or the following courses: SPAU 3301, SPAU 3303, SPAU 3304, SPAU 3340, SPAU 3343, SPAU 3344, SPAU 3345 or SPAU 4308.

III. Elective Requirements: 42 semester credit hours

Free Electives (42 semester credit hours)

Electives are selected by students to explore areas of concentration in Psychology as well as explore interests outside the field. Both lower- and upper-division courses may count as electives but students must be sure to complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Minor in Psychology

Students who are not majoring in Psychology may minor in Psychology by taking 18 semester credit hours of Psychology courses (i.e., those with a PSY prefix, excluding those listed under Independent Study in the Catalog). At least 12 semester credit hours must be upper-division courses, of which at least 9 semester credit hours must be Psychology major core courses taken at UT Dallas (see list below). No semester credit hours may be used to satisfy both major and minor requirements; however, free elective semester credit hours or major preparatory classes may be used to satisfy the minor.

Psychology Major Core Courses: PSY 2314, PSY 3310, PSY 3331, PSY 3360, PSY 3361, PSY 3392, PSY 3393, PSY 4343, PSY 4359, and NSC 3361.

Because Psychology is concerned with a wide range of social behaviors, it provides a strong foundation for all careers that deal with people. Students considering careers in business, education, law, medicine, clinical psychology, counseling or social work can benefit from minororing (or majoring) in psychology. The following courses are suggested preparation for each of these career paths.

Business Careers

Graduate schools of business look for students with a strong liberal arts background that focuses on both writing and quantitative skills. Suggested courses are Cognitive Psychology, Personality Psychology, Social Psychology, Psychology in the Workplace, Industrial and Organizational Psychology, Human Relations, and Research Design and Analysis.

Education Careers
Psychology courses are especially relevant for students pursuing careers in child development, educational psychology, education counseling, and school psychology. Suggested courses are Child or Lifespan Development, Cognitive Psychology, Educational Psychology, Cognitive Development, Exceptional Children, Social and Personality Development, Adolescent Psychology, Psychological Assessment, Statistics for Psychology, and Research Design and Analysis.

Law and Crime and Justice Careers

A background in psychology can be enormously useful for the study and practice of law and law enforcement. Suggested courses are Forensic Psychology, Lifespan Development, Cognitive Psychology, Judgment and Decision-Making, Personality Psychology, Social Psychology, Abnormal Psychology, Psychological Assessment, Statistics for Psychology, and Research Design and Analysis.

Medical Careers

Psychology is highly recommended as a major or minor for premedical students interested in psychiatry or neurology, or any student who wishes to practice medicine. The intended area of medical specialization should influence choice of courses; for example, a future pediatrician would benefit from courses in developmental psychology. In general, suggested courses are Lifespan or Child Development, Behavioral Neuroscience, Health Psychology, Abnormal Psychology, Cognitive Psychology, Adolescent Psychology, Approaches to Clinical Psychology, Statistics for Psychology, and Research Design and Analysis.

Careers in Clinical Psychology, Counseling, or Social Work

All courses in psychology are good preparation for these careers. It is especially important that students take Lifespan Development, Behavioral Neuroscience, Cognitive Psychology, Personality Psychology, Abnormal Psychology, Statistics for Psychology, and Research Design and Analysis. Other courses of interest include Approaches to Clinical Psychology, Social Communication, Human Relations, Health Psychology, Psychological Assessment, Child Psychopathology, and Violence in the Family.

Fast Track Baccalaureate/Master's Degrees

UT Dallas undergraduate students with strong academic records who intend to pursue a master's degree in Human Development and Early Childhood Disorders or in Applied Cognition and Neuroscience at UT Dallas may consider an accelerated undergraduate-graduate plan of study. When accepted into the program, students may take up to 15 semester credit hours of graduate courses that may be used to complete the baccalaureate degree and also to satisfy requirements for the master's degree. Students must maintain a 3.000 grade point average and earn grades of B or better in graduate courses taken. Students must have completed at least 90 semester credit hours toward a baccalaureate degree before beginning Fast Track coursework. Students should apply to admissions one semester before they reach 90 semester credit hours. To qualify for application, undergraduate students must have completed at least 18 semester credit hours in...
major core courses at UT Dallas. Apply to the Fast Track program through the Program Offices of the master's programs. Students should consult with a graduate advisor regarding admissions criteria and plans of study.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A required **Preparatory** course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
School of Behavioral and Brain Sciences

Speech-Language Pathology and Audiology (BS)

The Speech-Language Pathology and Audiology program offers study in the processes and disorders of speech, language, and hearing. The program provides the foundation for graduate study leading to career opportunities and clinical certification as a speech-language pathologist or audiologist. Students are advised that admission to graduate programs in Speech-Language Pathology and Audiology are presently highly competitive. Only students with strong academic records should select this major.

The curriculum in Speech-Language Pathology and Audiology focuses on the development of communicative abilities; the anatomical and physiological mechanisms underlying speech, language, and hearing; the causes of communication disorders in children and adults; and theories and techniques of assessment and treatment of communication disorders.

Students majoring in Speech-Language Pathology and Audiology are strongly encouraged to select electives in Psychology to complement coursework in their major field. Suggested electives in the major include SPAU 3305 Language and Literacy Development, SPAU 3342 or PSY 3342 Exceptional Children, SPAU 4342 Assessment Procedures in Speech-Language Pathology, SPAU 4366 Clinical Report Writing, SPAU 4386 Adult Development and Aging and SPAU 4395 Issues in the Management of Persons with Hearing Impairment.

Students who plan to attend graduate school in speech-language pathology or audiology should be aware that clinical certification by the American Speech-Language-Hearing Association requires that students complete at least one course in each of the following subject areas: Biological Sciences (e.g. biology, neuroscience), Physical Sciences (chemistry or physics is strongly recommended), Behavioral Sciences (e.g. psychology, sociology), and (statistics). Completion of this coursework prior to application to graduate school is strongly advised.

Students who wish to combine Speech-Language Pathology and Audiology with Psychology, Neuroscience or Child Learning and Development should be able to meet requirements in both majors, and, with the approval of the Associate Dean, complete a double major. Students considering a double major should consult with their advisor regarding specific requirements. Students can complete Core Curriculum and Speech-Language Pathology and Audiology major requirements in a minimum of 78 semester credit hours, leaving 42 elective semester credit hours.

Bachelor of Science in Speech-Language Pathology and Audiology
Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements (42 semester credit hours)

Communication (6 semester credit hours)

RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

Select 3 semester credit hours from Mathematics core courses (see Advisor for recommended course)

Life and Physical Sciences (6 semester credit hours)

Select 6 semester credit hours from Life and Physical Sciences core courses (Students planning to attend graduate school in speech-language pathology or audiology should take a minimum of one course in the biological sciences and one course in chemistry or physics.)

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

HUMA 1301 Exploration of the Humanities
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II
LIT 2331 Masterpieces of World Literature

Creative Arts (3 semester credit hours)

One of the following:

AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art
ARTS 1301 Exploration of the Arts
DANC 1310 Understanding Dance
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
MUSI 1306 Understanding Music

America History (6 semester credit hours)
Two of the following:

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War
- HIST 2301 History of Texas
- HIST 2330 Themes and Ideas in American History
- HIST 2332 Civil War to Reconstruction

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

- PSY 2301 Introduction to Psychology

Component Area Option (6 semester credit hours)

- PSY 2317 Statistics for Psychology or STAT 1342 Statistical Decision Making
- PSY 2314 Lifespan Development

II. Major Requirements: 36 semester credit hours

Major Preparatory Courses (3 semester credit hours)

- PSY 2301 Introduction to Psychology

Major Core Courses (36 semester credit hours)

- SPAU 3301 Communication Disorders
- SPAU 3303 Normal Language Development
- SPAU 3304 Communication Sciences
- SPAU 3340 Articulation Disorders
- SPAU 3341 Audiology
- SPAU 3343 Phonetics
- SPAU 3344 Anatomy and Physiology of Speech and Hearing
- SPAU 3345 Neural Basis of Communication
 or NSC 3361 Behavioral Neuroscience
- SPAU 3388 Clinical Observation in Speech-Language Pathology
- SPAU 4308 Language Disorders in Children
- SPAU 4394 Multicultural Aspects of Communication Disorders
 or SPAU 4393 Language in Culture and Society
- SPAU elective (3 hour course with SPAU prefix)
III. Elective Requirements: 48 semester credit hours

Free Electives (42 semester credit hours)

At least 42 semester credit hours of lower- or upper-division courses of the student's choice. Students are encouraged to explore areas of concentration in Speech-Language Pathology and Audiology as well as explore interests outside the field. At least 51 semester credit hours of upper-division courses are required for graduation.

Minor in Speech-Language Pathology and Audiology

Students interested in communication sciences and disorders may elect to minor in Speech-Language Pathology and Audiology. Students complete 18 semester credit hours including 12 required semester credit hours of foundation coursework and 6 elective semester credit hours. Foundation coursework in conjunction with elective semester credit hours permits students to choose to emphasize hearing science/audiology, language development and disorders, or speech production and perception. Students majoring in Psychology, Neuroscience, or Cognitive Science, or students with interests in the health sciences may find that a minor in Speech-Language Pathology and Audiology adds a valuable interdisciplinary dimension to their overall plan of study and may enhance their opportunities for graduate study. No semester credit hours may be used to satisfy both major and minor requirements; however, free elective hours or major preparatory classes may be used to satisfy the minor. At least one-third of the semester credit hours for a minor must be taken at UT Dallas.

Foundation Courses (12 semester credit hours required)

- SPAU 3301 Communication Disorders
- SPAU 3303 Normal Language Development
- SPAU 3304 Communication Sciences
- SPAU 3343 Phonetics

Elective Courses (select 6 semester credit hours)

- SPAU 3340 Articulation Disorders
- SPAU 3341 Audiology
- SPAU 3344 Anatomy and Physiology of Speech and Hearing
- SPAU 3388 Clinical Observation in Speech-Language Pathology
- SPAU 4308 Language Disorders in Children
- SPAU 4393 Language in Culture and Society
- SPAU 4395 Issues in the Management of Persons with Hearing Impairment

Fast Track Baccalaureate/Master's Degrees

UT Dallas undergraduate students with strong academic records who intend to pursue a master's degree in Communication Disorders at the University may consider an accelerated undergraduate-graduate plan of study. If accepted into the program, students may take up to 15
semester credit hours of graduate courses that may be used to complete the baccalaureate degree and also to satisfy requirements for the master's degree. Students must earn grades of B or better in graduate courses taken. Students must have completed at least 90 semester credit hours toward a baccalaureate degree before beginning Fast Track coursework. Students may apply for Fast Track admission up to one semester before they reach 90 semester credit hours. To qualify for admission, students must have completed at least 18 semester credit hours in major field core courses at UT Dallas. Application for admission to the Fast Track is through the graduate Communication Disorders program, not through Enrollment Services. GRE scores are required. For applications and instructions, please contact the Associate Dean's office.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. A required Preparatory course that also fulfills a Core Curriculum requirement. Three (3) semester credit hours are counted in Core Curriculum.
School of Behavioral and Brain Sciences

Minors

Students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division semester credit hours. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). Semester credit hours may not be used to satisfy both the major and minor requirements; however, free elective hours or major preparatory classes may be used to satisfy the minor. The minors in the School of Behavioral and Brain Science are listed below:

• Child Development
• Cognitive Science
• Neuroscience
• Psychology
• Speech Language Pathology and Audiology

Minor in Child Development (18 semester credit hours)

This minor is well suited for students pursuing Elementary Teacher certification and for those generally interested in the psychological development of children. Students must complete 18 semester credit hours including 9 required semester credit hours of foundation coursework and 9 semester credit hours of guided electives. Students majoring in Psychology or Speech-Language Pathology and Audiology may minor in Child Learning and Development provided that no course is used to satisfy both major and minor requirements.

Foundation Courses (9 semester credit hours required):

Three of the following:
PSY 3310 Child Development
or PSY 3339 Educational Psychology
PSY 3332 Social and Personality Development
PSY 3362 Cognitive Development

Guided Elective Courses (9 semester credit hours)

Three of the following:

PSY 3342 Exceptional Children
PSY 4344 Child Psychopathology
PSY 4373 Psychological Assessment
PSY 4394 Internship in Psychology
or ED 4693 Student Teaching - Elementary (approval of the Teacher Development Center required)
SPAU 3303 Normal Language Development
SPAU 3305 Language and Literacy Development
SPAU 4308 Language Disorders in Children
Other courses as approved by the Associate Dean

Minor in Cognitive Science (18 semester credit hours)

Students who are not majoring in Cognitive Science may minor in Cognitive Science by completing 18 semester credit hours. At least 12 of the 18 semester credit hours required by the minor in Cognitive Science must be upper-division courses from either the Psychology/HCI, Neuroscience, or Computational Modeling/AI specialization areas. In addition, 9 of the 18 semester credit hours required for the minor in Cognitive Science must have a Cognitive Science (CGS), Psychology (PSY), or Neuroscience (NSC) prefix and be upper-division courses.
Minor in Neuroscience (18 semester credit hours)

Students who are not majoring in Neuroscience may minor in Neuroscience by taking 18 semester credit hours selected from the lists of major core courses and major related courses. See http://catalog.utdallas.edu/2014/undergraduate/programs/bbs/neuroscience

At least 12 semester credit hours must be upper-division Neuroscience core courses.

Neuroscience Major Core Courses (12 semester credit hours):

NSC 3361 Behavioral Neuroscience
NSC 4352 Cellular Neuroscience
NSC 4353 Neuroscience Laboratory Methods
NSC 4354 Integrative Neuroscience
NSC 4356 Neurophysiology
NSC 4363 Neuropharmacology
NSC 4366 Neuroanatomy
NSC 4357 Neurobiology of Learning and Memory
NSC 4362 Molecular Neuroscience
NSC 4367 Developmental Neurobiology
NSC 4371 Neural Plasticity
NSC 4373 Sensory Neuroscience
NSC 4385 Neuropsychology

Minor in Psychology (18 semester credit hours)

Students who are not majoring in Psychology may minor in Psychology by taking 18 semester credit hours of Psychology courses (i.e., those with a PSY prefix, excluding those listed under Independent Study in the Catalog).

Psychology Major Core courses (9 semester credit hours):
PSY 2314 Lifespan Development
PSY 3310 Child Development
PSY 3331 Social Psychology
PSY 3360 Historical Perspectives on Psychology: Mind and Machines since 1600
PSY 3361 Cognitive Psychology
PSY 3392 Research Design and Analysis
PSY 3393 Experimental Projects in Psychology
PSY 4343 Abnormal Psychology
PSY 4359 Cognitive Neuroscience
NSC 3361 Behavioral Neuroscience

Because Psychology is concerned with a wide range of social behaviors, it provides a strong foundation for all careers that deal with people. Students considering careers in business, education, law, medicine, clinical psychology, counseling or social work can benefit from minoring (or majoring) in psychology.

Upper-Division Courses (9 semester credit hours from one of the career tracks):

Business Careers
Graduate schools of business look for students with a strong liberal arts background that focuses on both writing and quantitative skills. Suggested courses are the following:

PSY 3361 Cognitive Psychology
PSY 4331 Personality
PSY 3331 Social Psychology
PSY 4332 Psychology in the Workplace
PSY 4370 Industrial and Organizational Psychology
PSY 4333 Human Relations
PSY 3392 Research Design and Analysis.

Education Careers
Psychology courses are especially relevant for students pursuing careers in child development, educational psychology, education counseling, and school psychology. Suggested courses are the following:

PSY 2314 Lifespan Development
PSY 3310 Child Development
PSY 3361 Cognitive Psychology
PSY 3339 Educational Psychology
PSY 3362 Cognitive Development
PSY 3342 Exceptional Children
PSY 3332 Social and Personality Development, PSY 3338 Adolescence
PSY 4373 Psychological Assessment
PSY 2317 Statistics for Psychology
PSY 3392 Research Design and Analysis

Law and Crime and Justice Careers
A background in psychology can be enormously useful for the study and practice of law and law enforcement. Suggested courses are the following:

PSY 4372 Forensic Psychology
PSY 2314 Lifespan Development
PSY 3361 Cognitive Psychology
PSY 4374 Judgment and Decision-Making
PSY 4331 Personality
PSY 3331 Social Psychology
PSY 4343 Abnormal Psychology
PSY 4373 Psychological Assessment
PSY 2317 Statistics for Psychology
PSY 3392 Research Design and Analysis

Medical Careers
Psychology is highly recommended as a major or minor for premedical students interested in psychiatry or neurology, or any student who wishes to practice medicine. The intended area of medical specialization should influence choice of courses; for
example, a future pediatrician would benefit from courses in developmental psychology. In general, suggested courses are the following:

PSY 2314 Lifespan Development
NSC 3361 Behavioral Neuroscience
PSY 4328 Health Psychology
PSY 4343 Abnormal Psychology
PSY 3361 Cognitive Psychology
PSY 3338 Adolescence
PSY 3333 Approaches to Clinical Psychology
PSY 2317 Statistics for Psychology
PSY 3392 Research Design and Analysis

Careers in Clinical Psychology, Counseling, or Social Work

All courses in psychology are good preparation for these careers. It is especially important that students take the following courses:

PSY 2314 Lifespan Development
NSC 3361 Behavioral Neuroscience
PSY 3361 Cognitive Psychology
PSY 4331 Personality
PSY 4343 Abnormal Psychology
PSY 2317 Statistics for Psychology
PSY 3392 Research Design and Analysis

Other courses of interest include

PSY 3333 Approaches to Clinical Psychology
PSY 3350 Psychology of Communication
PSY 4333 Human Relations
PSY 4328 Health Psychology
PSY 4373 Psychological Assessment
PSY 4344 Child Psychopathology
PSY 4345 Violence in the Family

Minor in Speech Language Pathology and Audiology (18 semester credit hours)
Students interested in communication sciences and disorders may elect to minor in Speech-Language Pathology and Audiology. Students complete 18 semester credit hours including 12 required semester credit hours of foundation coursework and 6 elective semester credit hours. Foundation coursework in conjunction with elective hours permits students to choose to emphasize hearing science/audiology, language development and disorders, or speech production and perception. Students majoring in Psychology, Neuroscience, or Cognitive Science, or students with interests in the health sciences may find that a minor in Speech-Language Pathology and Audiology adds a valuable interdisciplinary dimension to their overall plan of study and may enhance their opportunities for graduate study.

Foundation coursework in conjunction with elective hours permits students to choose to emphasize hearing science/audiology, language development and disorders, or speech production and perception.

Students majoring in Psychology, Neuroscience, or Cognitive Science, or students with interests in the health sciences may find that a minor in Speech - Language Pathology and Audiology adds a valuable interdisciplinary dimension to their overall plan of study and may enhance their opportunities for graduate study. Students interested in communication sciences and disorders may elect to minor in Speech-Language Pathology and Audiology.

Foundation Courses (12 semester credit hours required):
- **SPAU 3301** Communication Disorders
- **SPAU 3303** Normal Language Development
- **SPAU 3304** Communication Sciences
- **SPAU 3343** Phonetics

Elective Courses (6 semester credit hours)

Two of the following:
- **SPAU 3340** Articulation Disorders
- **SPAU 3341** Audiology
- **SPAU 3344** Anatomy and Physiology of Speech and Hearing
- **SPAU 3388** Clinical Observation in Speech-Language Pathology
- **SPAU 4308** Language Disorders in Children
- **SPAU 4393** Language in Culture and Society
- **SPAU 4395** Issues in the Management of Persons with Hearing-Impairment
School of Economic, Political and Policy Sciences

As a collective of several disciplines, social science is the study of institutions, organizations and behavior. Social scientists ask such questions as: What roles do government, law and politics play in our society? How can public and nonprofit organizations be effectively managed? How are groups formed? How do people produce and distribute goods? Why do cities grow, and why do some cities decay? What are the causes of war, racial discrimination, and revolutions? How can we improve organizational capability in leadership and ethical decision making? Social science uses rigorous methodologies to apply ideas and theories to the real world. Degrees in the social sciences provide students with the tools of critical thinking that allow them to work and succeed in business, government and not-for-profit organizations.

The School of Economic, Politics and Policy Sciences offers undergraduate degrees in Criminology, Economics, Geospatial Information Sciences, International Political Economy, Political Science, Public Affairs, and Sociology. Each degree offers a large number of elective semester credit hours that allow students to direct their educational focus. Careers building on social science degrees include law, public service, nonprofit management, finance, banking, criminal justice, human resource management, teaching, market research and analysis, urban planning and counseling to name a few.

Faculty

Professor Emeritus: Ronald Briggs

Clinical Professors: Donald R. Arbuckle, Brian Beary, Timothy M. Bray, Douglas Dow, Rodolfo Hernandez-Guerrero, Elmer Polk

Assistant Professors: Rodney Andrews, James C. Barnes, Jonas Bunte, Yongwan Chun, Nadine Connell, Monica Deza, Evgenia Gorina, James Harrington, Brandon J. Kinne, Asli
The School of Economic, Political and Policy Sciences has seven degree granting programs: Criminology, Economics, Geospatial Information Sciences, International Political Economy, Political Science, Public Affairs, and Sociology. Within each of these programs, students may specialize in areas that complement their interests and career plans, such as, political economy, law and society, and comparative studies. Students should also note that many courses listed under Interdisciplinary Studies (ISSS) and Social Sciences (SOCS) apply within their major.

Minor Areas of Study

The School of Economic, Political and Policy Sciences offers minors in Criminology, Economics, Geography, Geospatial Information Sciences, International Political Economy, Political Science, Public Affairs, Public Health, and Sociology. Minors are described following each major. Students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division semester credit hours. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). The School of Economic, Political and Policy Sciences requires that a minimum of 12 of the 18 semester credit hours for a minor be taken at UT Dallas.

Students may choose to minor in any of the following fields of study:

- Criminology
- Economics
- Geography
- Geospatial Information Sciences
- International Political Economy
- Political Science
- Public Affairs
- Public Health
- Sociology

Related Minor Areas

Please refer to the [Undergraduate Minors Guide](#) for specific course requirements.

Social Studies Teacher Certification
Teacher certification is offered in Composite Social Studies, Economics, Geography, Government, and History. Specific course requirements are available in the Teacher Development Center.

Economic, Political, and Policy Sciences Core Requirements

All undergraduates receiving degrees in the School of Economic, Political and Policy Sciences must have taken and passed a core of courses designed to provide breadth and an interdisciplinary perspective beyond any individual social science discipline. These courses include:

- Three semester credit hours in economics (normally ECON 2301 or ECON 2302)
- Three semester credit hours in sociology (normally SOC 1301)
- Three semester credit hours in statistics (normally EPPS 2302 or EPPS 2303)
- Three semester credit hours in research design (normally EPPS 2301)
- Three semester credit hours in an approved course satisfying the writing requirement (normally COMM 1311)

Internship and Independent Study Policy

The total number of independent study and internship hours are limited to nine total semester credit hours with the exception of extenuating circumstances to be approved by the Associate Dean for Undergraduate Education.

Fast Track Baccalaureate/Master's Degrees

Undergraduate EPPS majors with a strong academic record (3.500 or above, overall and in their major) at UT Dallas are encouraged to enter the Fast Track program, which allows qualified seniors to take up to 15 semester credit hours of graduate courses during their senior year.

Requirements to take graduate courses:

1. Have and maintain a minimum GPA of 3.500 (overall and in their major) at UT Dallas.
2. Be within 30 semester credit hours of graduating with the Bachelor's degree.

3. Must have earned a grade of B or better in ALL graduate level classes to continue to take graduate classes AND to be considered for Fast Track admission into a Master's program in EPPS.

4. Have permission from the Associate Dean of Undergraduate Studies and the respective Graduate Program Head or Faculty Advisor.

If a student fails to maintain EPPS Fast Track requirements, the student will be required to fulfill ALL the admissions requirements, should the student decide to apply to a master's program at UT Dallas.

Students need to complete a minimum of 6 semester credit hours (maximum of 15 semester credit hours) of graduate course work approved by the Associate Dean of Undergraduate Studies and the respective Graduate Program Head/Faculty Advisor to qualify for Fast Track admission into an EPPS master's program.

Economic Political and Policy Sciences Honors Program

The School Honors Program in the School of EPPS provides eligible students with the opportunity for recognition at the Program level for scholarly performance in degree programs within the School. In order to earn EPPS honors, a student must:

- graduate with an overall GPA of 3.400 or higher
- graduate with a GPA of 3.400 or higher in their major program of study
- complete any two of the following requirements:
 1. Complete 9 semester credit hours of honors designated courses as determined by the program, with no less than a “B” in each course. Honors designated courses are often graduate courses taken in one of the School's fast track programs. Exceptions may be made by the Associate Dean upon recommendation of the Program Head.
 2. Complete an internship by completing three semester credit hours of internship. The internship must be approved by the Program Head, and have a significant research component.
 3. Register for Senior Honors semester credit hours with a faculty supervisor or mentor and complete an Honors paper.

The Honors paper must be submitted to your faculty mentor or supervisor at least three weeks prior to the last day of classes for the term. It is then critiqued by your mentor and returned to the student for revisions and resubmitted by the last day of classes of the term. At that point, a second reader is asked to evaluate the paper.
School Honors with Distinction will be awarded to those students who complete a Senior Honors thesis, and whose paper is judged by a faculty committee to be of exemplary quality and provided the students meet the other requirements stated above.

Students must apply for admission to the Program Head of the academic program in which they expect to receive their degree. Students must apply no later than 30 semester credit hours prior to graduation and no earlier than 60 semester credit hours prior to graduation. Students should contact an academic advisor for an application.
School of Economic, Political and Policy Sciences

Criminology (BA)

The Criminology Program is an interdisciplinary academic program, based primarily in criminology and sociology that studies the interrelationships among law, policy, and societal conditions. The relationships among these factors are dynamic and complex, therefore Criminology integrates a variety of perspectives, approaches, and social science disciplines in order to analyze and understand the origins of crime and injustice and society's response to these issues.

Mission Statement

The mission of the Criminology Program is to examine the causes and consequences of crime and crime control politics by providing a program of study involving a variety of perspectives, approaches, and social science disciplines to undergraduate students. Our faculty members are dedicated teachers and scholars who have published their work in the most prestigious journals in the field. They are committed to expanding the knowledge of the discipline and preparing students to be leaders in influencing our society's response to crime.

Majors in the Criminology Program at UT Dallas will be provided an educational experience, which will allow them to put their academic training, background and experience to use in a wide variety of post-graduate educational and occupational positions, including:

- Employment in Criminal Justice agencies at the federal, state, and local government level;
- Graduate School in Criminology or Criminal Justice (or a related social science discipline);
- Law School; or
- Social Work, Counseling, or other Human Service program.

Bachelor of Arts in Criminology

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHET 1302</td>
<td>Rhetoric</td>
</tr>
<tr>
<td>COMM 1311</td>
<td>Survey of Oral and Technology-based Communication</td>
</tr>
</tbody>
</table>
Mathematics (3 semester credit hours)

One of the following:

- MATH 1306 College Algebra for the Non-Scientist
- MATH 1314 College Algebra

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor)

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

- HUMA 1301 Exploration of the Humanities
- LIT 2331 Masterpieces of World Literature
- PHIL 1301 Introduction to Philosophy
- PHIL 2316 History of Philosophy I
- PHIL 2317 History of Philosophy II

Creative Arts (3 semester credit hours)

- ARTS 1301 Exploration of the Arts

American History (6 semester credit hours)

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

One of the following:

- ECON 2301 Principles of Macroeconomics
- ECON 2302 Principles of Microeconomics
- SOC 1301 Introduction to Sociology

Component Area Option (6 semester credit hours)

- 3 hours Communication (RHET 1302)
- 3 hours Communication Elective (CRIM 3300)
- 15 hours Social Science Elective
Major Requirements: 60 semester credit hours

II. Major Requirements: 60 semester credit hours

Major Preparatory Courses (18 semester credit hours)
- CRIM 1301 Introduction to Criminal Justice
- CRIM 1307 Introduction to Crime and Criminology
- CRIM 2306 Criminal Law
- CRIM 2313 Police and Society
- CRIM 2316 Corrections
- CRIM 2317 Criminal Prosecution and Court Process

Major Core Courses (24 semester credit hours)
- CRIM 3300 Crime and Civil Liberties
- CRIM 3302 Advanced Criminology
- CRIM 3303 Advanced Criminal Justice
- CRIM 3310 Youth Crime and Justice
- CRIM 3311 Crime and Justice Policy
- CRIM 4322 Senior Research Seminar

Distributive Justice Focus

Choose one of the following (3 semester credit hours):
- CRIM 3301 Theories of Justice
- ECON 4330 Law and Economics
- SOC 4302 Class, Status and Power

International or Comparative Focus

Choose one of the following (3 semester credit hour):
- CRIM 3319 Comparative Justice Systems
- ECON 4360 International Trade
- PSCI 3350 Comparative Politics
- SOC 3336 Culture Regions

[1] Deleted: 6 hours Government (GOVT 2301 and GOVT 2302)

[3] Moved up

[4] Moved (insertion)
Major Related Upper-Division Elective Courses (18 semester credit hours)

18 hours of CRIM upper-division courses or related to CRIM

III. Elective Requirements: 18 semester credit hours

This requirement may be satisfied with lower-and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. To be taken upon completion of Criminology major core courses.
3. Preferred courses for Criminology Majors.
School of Economic, Political and Policy Sciences

Bachelor of Arts in Criminology and Biology (Double Major)

Degree Requirements (128-131 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- COMM 1311 Survey of Oral and Technology-based Communication
- RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

- MATH 1325 Applied Calculus I
- MATH 2413 Differential Calculus

Life and Physical Sciences (6 semester credit hours)

- CHEM 1311 General Chemistry I
- CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy, and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War
Or select any 6 semester credit hours from American history core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

One of the following:

- CRIM 1301 Introduction to Criminal Justice
- CRIM 1307 Introduction to Crime and Criminology
- ECON 2301 Principles of Macroeconomics
- SOC 1301 Introduction to Sociology

Or select any 6 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

MATH 2414 Integral Calculus
- or STAT 2332 Statistics for Life Sciences
- or EPPS 2302 Methods of Quantitative Analysis in the Social and Policy Sciences
- or EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences
- ECON 2302 Principles of Microeconomics

II. Major Requirements: 71-73 semester credit hours

Criminology Major Preparatory Course (No semester credit hours beyond Core Curriculum)

- CRIM 1301 Introduction to Criminal Justice
- CRIM 1307 Introduction to Crime and Criminology
- ECON 2301 Principles of Macroeconomics
- or ECON 2302 Principles of Microeconomics

Criminology Core Courses (21 semester credit hours)

CRIM 3300 Crime and Civil Liberties
CRIM 3301 Theories of Justice
CRIM 3302 Advanced Criminology
CRIM 3303 Advanced Criminal Justice
Biology Major Preparatory Courses (18-20 semester credit hours beyond Core Curriculum)

- **CHEM 1111** General Chemistry Laboratory I
- **CHEM 1112** General Chemistry Laboratory II
- **CHEM 1311** General Chemistry I
- **CHEM 1312** General Chemistry II
- **CHEM 2123** Introductory Organic Chemistry Laboratory I
- **CHEM 2125** Introductory Organic Chemistry Laboratory II
- **CHEM 2323** Introductory Organic Chemistry I
- **CHEM 2325** Introductory Organic Chemistry II
- **MATH 2413** Differential Calculus and **MATH 2414** Integral Calculus
- **PHYS 2325** Mechanics and **PHYS 2125** Physics Laboratory I
- **PHYS 2326** Electromagnetism and Waves and **PHYS 2126** Physics Laboratory II

Biology Major Core Courses (32 semester credit hours)

- **BIOL 2111** Introduction to Modern Biology Workshop I
- **BIOL 2112** Introduction to Modern Biology Workshop II
- **BIOL 2281** Introductory Biology Laboratory
- **BIOL 2311** Introduction to Modern Biology I
- **BIOL 2312** Introduction to Modern Biology II
- **BIOL 3101** Classical and Molecular Genetics Workshop
- **BIOL 3102** Eukaryotic Molecular and Cell Biology Workshop
- **BIOL 3161** Biochemistry Workshop I
- **BIOL 3162** Biochemistry Workshop II
- **BIOL 3301** Classical and Molecular Genetics
- **BIOL 3302** Eukaryotic Molecular and Cell Biology
- **BIOL 3318** Forensic Biology
- **BIOL 3361** Biochemistry I
- **BIOL 3362** Biochemistry II
- **BIOL 3335** Microbial Physiology
- **BIOL 3380** Biochemistry Laboratory
III. Elective Requirements: 15 semester credit hours

Guided Electives (15 semester credit hours)

Biology (6 semester credit hours): **BIOL 4380** Cell and Molecular Biology Laboratory

Criminology Related Electives (9 semester credit hours)

All students must complete at least 51 semester credit hours of upper-division courses to graduate.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed in parentheses are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.

3. Six semester credit hours of Calculus are counted under Mathematics Core and Component Area Option Core, and 2 semester credit hours of Calculus are counted as Major Preparatory Courses.

4. Indicates a prerequisite class to be completed before enrolling for upper-division classes.

5. Students may substitute MATH 2413 and MATH 2414 by taking MATH 2417 and MATH 2419.
School of Economic, Political and Policy Sciences

Economics (BA, BS)

Economists study how people make choices in life when scarcity limits what is available and provides incentives to induce efficient behavior. They look at a society's financial, industrial, and labor organizations; its distribution of income and ownership rights; its governmental activities; and its political and economic philosophies, and analyze how these and other factors influence the goods an economy produces, the resources it uses in production, and the distribution of its output. They also look at how incentives affect decisions relating to human behavior, such as whether to obey the law, get married, or have children.

Economic analysis leads to explanations, predictions, and policy suggestions. How are wages and prices set? Why do some cities boom while others decline? Why do we have an energy crisis? How should we use our exhaustible resources? How will consumers and corporations react to a tax cut? How can the crime rate be reduced? If we are to use our resources efficiently, what antitrust and government regulations should be enforced? What can be done to reduce inflation and unemployment? To prevent excess pollution? To achieve economic growth? To distribute income more equitably? In examining these sorts of questions, economics helps us to understand more clearly the choices available to us and the consequences of our decisions.

There is an abundance of career opportunities for an economics major.

Careers in business include consulting, banking and other financial institutions, insurance, corporate strategic planning, real estate, journalism, management, marketing, and public utilities.

Careers in government include consulting, publicly owned utilities, planning and forecasting, regulatory agencies, management, needs assessment, legislative staffs, judicial agencies, and executive support.

Careers in the interfacing of business and government include labor arbitration, regulation, environmental planning, urban and regional planning, and interest representation.

Economics is an excellent preparation for a career in law.

Bachelor of Arts in Economics

Degree Requirements (120 semester credit hours)

I. [Core Curriculum Requirements], 42 semester credit hours
<table>
<thead>
<tr>
<th>Communication (6 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHET 1302 Rhetoric</td>
</tr>
<tr>
<td>COMM 1311 Survey of Oral and Technology-based Communication</td>
</tr>
</tbody>
</table>

Mathematics (3 semester credit hours)

<table>
<thead>
<tr>
<th>One of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1306 College Algebra for the Non-Scientist</td>
</tr>
<tr>
<td>MATH 1314 College Algebra</td>
</tr>
<tr>
<td>STAT 1342 Statistical Decision Making</td>
</tr>
</tbody>
</table>

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor)

Language, Philosophy and Culture (3 semester credit hours)

<table>
<thead>
<tr>
<th>One of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMA 1301 Exploration of the Humanities</td>
</tr>
<tr>
<td>LIT 2331 Masterpieces of World Literature</td>
</tr>
<tr>
<td>PHIL 1301 Introduction to Philosophy</td>
</tr>
<tr>
<td>PHIL 2316 History of Philosophy I</td>
</tr>
<tr>
<td>PHIL 2317 History of Philosophy II</td>
</tr>
</tbody>
</table>

Creative Arts (3 semester credit hours)

| ARTS 1301 Exploration of the Arts |

American History (6 semester credit hours)

| HIST 1301 U.S. History Survey to Civil War |
| HIST 1302 U.S. History Survey from Civil War |

Government / Political Science (6 semester credit hours)

| GOVT 2305 American National Government |
| GOVT 2306 State and Local Government |

Social and Behavioral Sciences (3 semester credit hours)

| One of the following: |
CRIM 1301 Introduction to Criminal Justice
CRIM 1307 Introduction to Crime and Criminology
SOC 1301 Introduction to Sociology

Component Area Option (6 semester credit hours)

- EPPS 2301 Research Design in the Social and Policy Sciences
- And one of the following:
 - EPPS 2302 Methods of Quantitative Analysis in the Social Policy Sciences
 - EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences

II. Major Requirements: 48 semester credit hours

Major Preparatory Courses (6 semester credit hours beyond Core Curriculum)

- ECON 2301 Principles of Macroeconomics
- ECON 2302 Principles of Microeconomics
- STAT 1342 Statistical Decision Making

Major Core Courses (15 semester credit hours)

- ECON 3304 Basic Techniques for Economic Research
- ECON 3310 Intermediate Microeconomic Theory
- ECON 3311 Intermediate Macroeconomic Theory
- ECON 4320 Public Sector Economics
- And one of the following:
 - ECON 3330 Economics of Health
 - ECON 4332 Energy and Natural Resource Economics
 - ECON 4382 International Finance

Major Related Courses (27 semester credit hours)

27 semester credit hours of upper-division ECON courses

III. Elective Requirements: 30 semester credit hours

This requirement may be satisfied with lower- and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

Note: Students wishing to pursue Master's or PhD degrees in economics should consult their advisor about appropriate mathematics and quantitative methods courses.
Bachelor of Science in Economics

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

One of the following:
- MATH 1325 Applied Calculus I
- MATH 2413 Differential Calculus
- MATH 2417 Calculus I
- STAT 1342 Statistical Decision Making

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor)

Language, Philosophy and Culture (3 semester credit hours)

One of the following:
- HUMA 1301 Exploration of the Humanities
- LIT 2331 Masterpieces of World Literature
- PHIL 1301 Introduction to Philosophy
- PHIL 2316 History of Philosophy I
- PHIL 2317 History of Philosophy II

Creative Arts (3 semester credit hours)

- ARTS 1301 Exploration of the Arts

American History (6 semester credit hours)

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. History Survey from Civil War

Government / Political Science (6 semester credit hours)
GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

One of the following:

CRIM 1301 Introduction to Criminal Justice
CRIM 1307 Introduction to Crime and Criminology
SOC 1301 Introduction to Sociology

Component Area Option (6 semester credit hours)

EPPS 2301 Research Design in the Social and Policy Sciences

And one of the following:

EPPS 2302 Methods of Quantitative Analysis in the Social Policy Sciences
EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences

II. Major Requirements: 56 semester credit hours

Major Preparatory Courses (11 semester credit hours beyond Core Curriculum)

ECON 2301 Principles of Macroeconomics
ECON 2302 Principles of Microeconomics
MATH 2417 Calculus I
or MATH 1325 Applied Calculus I
MATH 2419 Calculus II
or MATH 1326 Applied Calculus II
or MATH 2414 Integral Calculus
STAT 1342 Statistical Decision Making

Major Core Courses (18 semester credit hours)

ECON 3310 Intermediate Microeconomic Theory
ECON 3311 Intermediate Macroeconomic Theory
ECON 4320 Public Sector Economics
ECON 4351 Mathematical Economics
ECON 4355 Econometrics

And one of the following:

ECON 3330 Economics of Health
ECON 4332 Energy and Natural Resource Economics
ECON 4382 International Finance
Major Related Courses (27 semester credit hours)

27 semester credit hours of upper-division ECON courses

Optional Major Core Concentrations (9 semester credit hours)

Green Economics

One course from:

- ECON 4333 Environmental Economics
- ECON 4336 Environmental Economic Theory and Policy

Two additional courses from:

- ECON 4320 Public Sector Economics
- ECON 4332 Energy and Natural Resource Economics
- ECON 4333 Environmental Economics
- ECON 4336 Environmental Economic Theory and Policy

International Economics

ECON 4360 International Trade

Select two courses from:

- ECON 3369 Political Economy of Terrorism
- ECON 4362 Development Economics
- ECON 4382 International Finance
- GEOG 3370 The Global Economy
- GEOG 3372 Population and Development

Business Economics

Three courses from:

- ECON 3312 Money and Banking
- ECON 4301 Game Theory
- ECON 4310 Managerial Economics
- ECON 4340 Labor Economics and Human Resources
- ECON 4345 Industrial Organization
- ECON 4355 Econometrics
- ECON 4385 Business and Economic Forecasting

III. Elective Requirements: 22 semester credit hours
This requirement may be satisfied with lower- and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

Note: Students wishing to pursue Master’s or PhD degrees in economics should consult their advisor about appropriate mathematics and quantitative methods courses.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. A Major requirement that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
3. Indicates a prerequisite class to be completed before enrolling for upper-division classes in Economics and Finance.
4. Three semester credit hours are counted under Mathematics core, and one semester credit hour is counted under Major Preparatory Courses.
5. Semester credit hours to be counted as part of major related courses.
School of Economic, Political and Policy Science

Bachelor of Science in Economics and Finance (Double Major)

Degree Requirements (127 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

 ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

 MATH 1326 Applied Calculus II
 ECON 2302 Principles of Microeconomics

II. Major Requirements: 67 semester credit hours

Major Preparatory Courses (15 semester credit hours)

 ACCT 2301 Introductory Financial Accounting
 ACCT 2302 Introductory Management Accounting
 BLAW 2301 Business and Public Law
 ECON 2301 Principles of Macroeconomics
 ECON 2302 Principles of Microeconomics
 MATH 1325 Applied Calculus I
 MATH 1326 Applied Calculus II
 MATH 2333 Matrices, Vectors and Their Application
 OPRE 3360 Managerial Methods in Decision Making Under Uncertainty
 or STAT 3360 Probability and Statistics for Management and Economics

Major Core Courses (52 semester credit hours)

 FIN 3100 Professional Development
 BCOM 3310 Business Communication
 BCOM 4350 Advanced Business Communication
 FIN 3320 Business Finance
 FIN 3330 Personal Financial Planning
 MIS 3300 Introduction to Management Information Systems
 OPRE 3310 Operations Management
 OBHR 3310 Organizational Behavior
 MKT 3300 Principles of Marketing
 FIN 3390 Introduction to Financial Modeling
 BPS 4305 Strategic Management
 FIN 4310 Intermediate Business Finance
 IMS 3310 International Business
 ECON 3310 Intermediate Microeconomic Theory
 ECON 3311 Intermediate Macroeconomic Theory
 ECON 4351 Mathematical Economics
 ECON 4355 Econometrics
III. Elective Requirements: 18 semester credit hours

Guided Electives

Select 9 semester credit hours from: FIN 3305, FIN 3340, FIN 3350, FIN 3365, FIN 3380, FIN 4320, FIN 4340, FIN 4380, FIN 4390, FIN 4V90, or ACCT 4336.

Select 9 semester credit hours from: ECON 3312, ECON 3335, ECON 4301, ECON 4310, ECON 4320, ECON 4345, ECON 4360, ECON 4382, ECON 4385, ECON 4396, or ECON 4V99.

1. Degree is 128 semester credit hours if student is required to take EPPS 1110.
2. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
3. A Major requirement that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Students may substitute MATH 2313 and MATH 2414 or MATH 2417 and MATH 2419.
5. Indicates a prerequisite class to be completed before enrolling for upper-division classes in Economics and Finance.
6. Students may substitute MATH 2418, OPRE 3333 or CS 2305.
Geospatial Information Sciences (BS)

Geospatial Information Science (or GIScience) is the study of relationships between phenomena in space and time. In recent years, powerful new technologies and techniques have emerged that greatly improve our ability to acquire, archive, analyze and communicate information regarding people, places and other things on or near the Earth's surface. These same technologies and techniques allow us to combine this information into multi-tiered databases describing the physical, social and other aspects of all or portions of the Earth. Such databases can then be analyzed in novel ways that take the data's explicit spatial (or locational) nature into account. The insights produced by analyzing these types of databases are revolutionizing many fields of science, government, and business. Currently, commonplace consumer products such as web-based mapping systems and GPS units that incorporate locational information are directly impacting the everyday lives of ordinary individuals.

Graduates of the Bachelors of Science in Geospatial Information Science program will understand the logical, mathematical, and technological foundations for compiling and analyzing spatial data. They will be skilled in solving geospatial problems, enabling them to move into professional roles handling the geospatial needs of typical corporate, government, and nonprofit organizations. The graduates will not only be skilled in the use of common GIScience software systems, but also will understand the underlying principles upon which software systems are based. This will allow them to transfer their knowledge from one software system to another, to expand the capabilities of these systems, and most importantly, to view geospatial problems as issues that can be solved by applying basic theories, techniques and methodologies.

Mission and Objectives

The mission of the Bachelor of Science in Geospatial Information Sciences program is to provide students with a rigorous understanding of the fundamental theories and concepts underlying GIScience, as well as to provide them with extensive hands-on experience with contemporary GIScience hardware and software. The goal of the program is to give students a firm grasp of the theories, ideas, and techniques that underlay software and hardware systems for the compilation and analysis of spatially referenced data, and thus provide them with a foundation of knowledge and skill that transcends any individual piece of software or hardware. Graduates of this program will be able to successfully compete for professional positions within GIScience and related fields, and be admitted into the best graduate schools globally.

Students within the program will:
• Demonstrate their understanding of the underlying theories, ideas, concepts and techniques of GIScience.
• Master contemporary computer hardware and software systems commonly employed in GIScience.
• Demonstrate problem solving skills that employ their understanding of theories, ideas and concepts as well as their mastery of GIScience software and hardware.

Bachelor of Science in Geospatial Information Sciences

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

Two of the following:

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)

Two of the following:

GEOS 1303 Physical Geology
ENVR 2302 or GEOG 2302 or GEOS 2302 The Global Environment
NATS 1311 From the Cosmos to Earth
NATS 2333 Energy, Water, and the Environment
PHYS 1301 College Physics I

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

AMS 2341 American Studies for the Twenty-First Century
HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy

Creative Arts (3 semester credit hours)

One of the following:
ARTS 1301 Explorations of the Arts
AHST 1303 Survey of Western Art History: Ancient to Medieval
AHST 1304 Survey of Western Art History: Renaissance to Modern
AHST 2331 Understanding Art

American History (6 semester credit hours)

Two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 1301</td>
<td>U.S. History Survey to Civil War</td>
</tr>
<tr>
<td>HIST 1302</td>
<td>U.S. Survey from Civil War</td>
</tr>
<tr>
<td>HIST 2301</td>
<td>History of Texas</td>
</tr>
</tbody>
</table>

Government / Political Science (6 semester credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOVT 2305</td>
<td>American National Government</td>
</tr>
<tr>
<td>GOVT 2306</td>
<td>State and Local Government</td>
</tr>
</tbody>
</table>

Social and Behavioral Sciences (3 semester credit hours)

One of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIM 1301</td>
<td>Introduction to Criminal Justice</td>
</tr>
<tr>
<td>CRIM 1307</td>
<td>Introduction to Crime and Criminology</td>
</tr>
<tr>
<td>ECON 2301</td>
<td>Principles of Macroeconomics</td>
</tr>
<tr>
<td>ECON 2302</td>
<td>Principles of Microeconomics</td>
</tr>
<tr>
<td>GEOG 2303</td>
<td>People and Place: An Introduction to World Geographic Regions</td>
</tr>
<tr>
<td>SOC 1301</td>
<td>Introduction to Sociology</td>
</tr>
</tbody>
</table>

Component Area Option (6 semester credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPPS 2301</td>
<td>Research Design in the Social and Policy Sciences</td>
</tr>
</tbody>
</table>

And one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPPS 2302</td>
<td>Methods of Quantitative Analysis in the Social Policy Sciences</td>
</tr>
<tr>
<td>EPPS 2303</td>
<td>Descriptive and Inferential Statistics for the Social and Policy Sciences</td>
</tr>
</tbody>
</table>

JII. Major Requirements: 42 semester credit hours

Major Preparatory Courses (9 semester credit hours)

Three of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVR 2302 or GEOG 2302 or GEOS 2302</td>
<td>The Global Environment</td>
</tr>
<tr>
<td>GEOG 2303</td>
<td>People and Place: An Introduction to World Geographic Regions</td>
</tr>
</tbody>
</table>
GEOG 3370 The Global Economy
GEOG 3377 or PA 3377 Urban Planning and Policy
MATH 1326 Applied Calculus II

Major Core Courses (18 semester credit hours)

GEOG 3304 or GISC 3304 or GEOS 3304 Introduction to Geospatial Information Sciences
GEOG 4380 Spatial Concepts and Organization
GISC 2305 or GEOS 2305 Introduction to Spatial Thinking
GISC 2302 Geodesy and Geospatial Analysis
GISC 4325 or GEOS 4325 Introduction to Remote Sensing
GISC 4382 Applied Geographic Information Systems

Concentrations (15 semester credit hours in ONE of the following concentration areas)

Geography

GEOG 3331 Urban Growth and Structure
GEOG 3357 Spatial Dimensions of Health and Disease
GEOG 3359 Human Migration and Mobility
GEOG 3372 Population and Development
GEOG 3382 Russia: Yesterday, Today and Tomorrow

GeoComputation and GeoVisualization

MIS 3300 Introduction to Management Information Systems
GISC 4317 GeoComputation
GISC 4326 Cartography and GeoVisualization
GISC 4384 Health and Environmental GIS: A Global Perspective
GISC 4385 Advanced Applications in GIS

III. Elective Requirements: 36 semester credit hours

Prescribed Electives (15 semester credit hours)

All students are required to take at least fifteen semester credit hours of prescribed upper-division elective courses.

Free Electives (21 semester credit hours)

This requirement may be satisfied with lower- and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.
1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A Major requirement that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.

3. Alternative courses, as approved by the department head, may be used to satisfy this requirement.
School of Economic, Political and Policy Sciences

International Political Economy (BA, BS)

The International Political Economy program is an interdisciplinary academic program to help students function successfully in today's increasingly complex international environment. Graduates will develop skill sets that include critical thinking, knowledge of multiple cultures, and effective communication skills. Students will be prepared for analytical and administrative positions in the public, nonprofit, and for profit private sectors. The School of Economic, Political, and Policy Sciences offers both the BA and BS degree in International Political Economy. The BA degree places greater emphasis on culture, literature, and history. The BS degree places greater emphasis on economics and international finance.

Employment prospects include, but are not limited to:

- The diplomatic corps;
- International organizations including The United Nations, World Trade Organization, World Bank, and others;
- Multinational corporations;
- Nongovernmental organizations.

Bachelor of Arts in International Political Economy

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

- MATH 1314 College Algebra

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor)
Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

One of the following:

EPPS 2302 Methods of Quantitative Analysis in the Social Policy Sciences
EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences

And any 3 semester credit hours from component area option core courses (see advisor)

II. Major Requirements: 63 semester credit hours

Major Core Courses (15 semester credit hours)

ECON 2302 Principles of Microeconomics

And four of the following:

GEOG 3370 The Global Economy
GEOG 2303 People and Place: An Introduction to World Geographic Regions
International Political Economy (24 semester credit hours)

All students are required to take at least twenty-four semester credit hours of electives from approved courses.

Area Electives (12 semester credit hours)

This requirement may be satisfied with upper-division courses from any given area within IPEC and related fields of study.

Foreign Language Requirement (12 semester credit hours)

The language requirement is 12 semester credit hours of the same language. Students can petition Program Head for exceptions. If the language credit is obtained without taking classes, twelve additional semester credit hours of Free Electives (upper-division or lower-division) can be taken by student.

III. Electives Requirements: 15 semester credit hours

This requirement may be satisfied with lower- and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

Bachelor of Science in International Political Economy

Degree Requirements (120 semester credit hours)

I. **Core Curriculum Requirements**: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)
MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)
Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor)

Language, Philosophy and Culture (3 semester credit hours)
Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)
Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)
HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. Survey from Civil War

Government / Political Science (6 semester credit hours)
GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)
One of the following:
EPPS 2302 Methods of Quantitative Analysis in the Social Policy Sciences
EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences
And any 3 semester credit hours from Component Area Option core courses (see advisor)

II. Major Requirements: 63 semester credit hours

Major Core Courses (21 semester credit hours)
ECON 2302 Principles of Microeconomics
ECON 3310 Intermediate Microeconomic Theory
ECON 3311 Intermediate Macroeconomic Theory
ECON 4360 International Trade

And three of the following courses:

GEOG 2303 People and Place: An Introduction to World Geographic Regions
GEOG 3304 Introduction to Geospatial Information Sciences
IPEC 3349 World Resources and Development
IPEC 4301 Political Economy of Industrialized Countries
IPEC 4302 Political Economy of Developing Countries
PSCI 4329 Global Politics
PSCI 4356 International Political Economy
PSCI 4360 The Political Economy of Multinational Corporations

International Political Economy (21 semester credit hours)

All students are required to take at least twenty-one semester credit hours of electives from approved courses.

Area Electives (9 semester credit hours)

This requirement may be satisfied with upper-division courses from any given geographic area within IPEC and related fields of study.

Foreign Language Requirement (12 semester credit hours)

The language requirement is 12 semester credit hours of the same language. Students can petition Program Head for exceptions. If the language credit is obtained without taking classes, twelve additional semester credit hours of Free Electives (upper-division or lower-division) can be taken by student.

III. Elective Requirements: 15 semester credit hours

This requirement may be satisfied with lower- and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
http://catalog.utdallas.edu/2013/undergraduate/programs/epps/political-science

School of Economic, Political and Policy Sciences

Political Science (BA)

Political Science involves the study of interesting and important topics about citizenship, government and politics. These topics include the influence of citizens on what government does, the scope, responsibilities and effectiveness of government itself, and the activities of both elected and appointed public officials. These topics are important parts of what political scientists know about American government and politics, comparative government and politics, international relations, political behavior, political economy, political institutions, and political theory. Political scientists and public administrators pay particular attention to the design, implementation, and evaluation of laws and public policies that may affect people's well-being.

The Political Science Program at The University of Texas at Dallas provides:

- the foundations for more advanced, graduate study of citizenship, government and politics in Political Science;
- the special core knowledge needed for subsequent professional education in law and public policy analysis;
- the opportunity to acquire useful skills for careers in federal, state, and local government, community service, educational and other nonprofit organizations, and business firms.

Bachelor of Arts in Political Science

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

<table>
<thead>
<tr>
<th>Communication (6 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHET 1302 Rhetoric</td>
</tr>
<tr>
<td>COMM 1311 Survey of Oral and Technology-based Communication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics (3 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the following:</td>
</tr>
<tr>
<td>MATH 1306 College Algebra for the Non-Scientist</td>
</tr>
<tr>
<td>MATH 1314 College Algebra</td>
</tr>
</tbody>
</table>

| Life and Physical Sciences (6 semester credit hours) |
Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor)

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

- **HUMA 1301** Exploration of the Humanities
- **LIT 2331** Masterpieces of World Literature
- **PHIL 1301** Introduction to Philosophy
- **PHIL 2316** History of Philosophy I
- **PHIL 2317** History of Philosophy II

Creative Arts (3 semester credit hours)

- **ARTS 1301** Explorations of the Arts

American History (6 semester credit hours)

- **HIST 1301** U.S. History Survey to Civil War
- **HIST 1302** U.S. Survey from Civil War

Government / Political Science (6 semester credit hours)

- **GOVT 2305** American National Government
- **GOVT 2306** State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

One of the following:

- **CRIM 1301** Introduction to Criminal Justice
- **ECON 2301** Principles of Macroeconomics
- **ECON 2302** Principles of Microeconomics
- **SOC 1301** Introduction to Sociology

Component Area Option (6 semester credit hours)

- **EPPS 2301** Research Design in the Social and Policy Sciences

And one of the following:

- **EPPS 2302** Methods of Quantitative Analysis in the Social Policy Sciences
- **EPPS 2303** Descriptive and Inferential Statistics for the Social and Policy Sciences

II. Major Requirements: 54 semester credit hours
Major Preparatory Courses (0 semester credit hours beyond Core Curriculum)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Major Core Courses (21 semester credit hours)

- PSCI 3301 Political Theory
- PSCI 3322 Constitutional Law
- PSCI 3333 Political Behavior
- PSCI 3362 The American Political Institutions
- PSCI 4329 Global Politics

One of the following:

- CRIM 3301 Theories of Justice
- PSCI 3303 Civil Liberties
- PSCI 3326 Politics and Business
- PSCI 3364 Campaigns and Elections
- PSCI 4364 Civil Rights Law and Society

One of the following:

- PSCI 3325 American Public Policy
- PSCI 4307 Predicting Politics
- PSCI 4360 The Political Economy of Multinational Corporations

Major Related Courses (33 semester credit hours)

33 semester credit hours Major and Related electives

III. Elective Requirements: 24 semester credit hours

This requirement may be satisfied with lower- and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. A Core Curriculum Requirement that also fulfills a Major Requirement. Semester credit hours are counted in the Core Curriculum.
3. Most students take upper-division PSCI courses. However, subject to advisor approval, courses from other disciplines may be used to satisfy this requirement.
School of Economic, Political and Policy Sciences

Public Affairs (BS)

The Bachelor of Science in Public Affairs is intended for individuals called upon to manage in the arenas of government, nonprofits, or business. These generalist managers must synthesize many forms of knowledge derived from government, economics, sociology, and other fields, and must apply that knowledge creatively to meet the varied and multiple challenges of public administration. The ability to understand the substance of policy and program issues; the ability to grasp the administrative, political, and ethical implications embedded in them; and the ability then to act upon the issues with effect, together define the worth of contemporary managers.

The Public Affairs program promotes acquisition of knowledge and skills essential to the tasks of identification, analysis, design implementation, supervision, evaluation, communication, and other key functions that are integral components of management careers in federal, state, and local governments; criminal justice; in social service, education, community development, arts and other nonprofit organizations; and in business firms.

Bachelor of Science in Public Affairs

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHET 1302</td>
<td>Rhetoric</td>
</tr>
<tr>
<td>COMM 1311</td>
<td>Survey of Oral and Technology-based Communication</td>
</tr>
</tbody>
</table>

Mathematics (3 semester credit hours)

One of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1306</td>
<td>College Algebra for the Non-Scientist</td>
</tr>
<tr>
<td>MATH 1314</td>
<td>College Algebra</td>
</tr>
</tbody>
</table>

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor)
Language, Philosophy and Culture (3 semester credit hours)

One of the following:

- HUMA 1301 Exploration of the Humanities
- LIT 2331 Masterpieces of World Literature
- PHIL 1301 Introduction to Philosophy
- PHIL 2316 History of Philosophy I
- PHIL 2317 History of Philosophy II

Creative Arts (3 semester credit hours)

- ARTS 1301 Explorations of the Arts

American History (6 semester credit hours)

- HIST 1301 U.S. History Survey to Civil War
- HIST 1302 U.S. Survey from Civil War

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

- PA 2325 Introduction to Public Service

Component Area Option (6 semester credit hours)

- EPPS 2301 Research Design in the Social and Policy Sciences

And one of the following:

- EPPS 2302 Methods of Quantitative Analysis in the Social Policy Sciences
- EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences

II. Major Requirements: 48 semester credit hours

Major Preparatory Courses (3 semester credit hours)

- ECON 2301 Principles of Macroeconomics
- ECON 2302 Principles of Microeconomics
Major Core Courses (18 semester credit hours)

- PA 3306 Advanced Research and Writing for the Policy Sciences
- or PA 3381 Field Research Methods
- PA 3310 Public Administration
- PA 3333 Human Resources Management
- PA 3380 Organizations and Management in the Public Sector
- PA 4340 Creating High Performance Organizations
- PA 4350 Politics of Bureaucracy

Major Related Courses (27 semester credit hours)

- 27 semester credit hours Major and Related electives

III. Elective Requirements: 30 semester credit hours

This requirement may be satisfied with lower- and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. Most students take upper-division PA courses. However, subject to advisor approval, courses from other disciplines may be used to satisfy this requirement.
School of Economic, Political and Policy Sciences

Sociology (BA)

Sociology offers a scientific approach to examining social groups, human interactions and social change. Sociologists are interested in a wide range of topics and issues related to social life. Some examples of sociological questions include: Why do some groups have more resources and power than others in society and what explains these inequalities? What factors influence marriage and divorce rates? How do families, schools, churches, and corporations affect social control? What are the functions of welfare programs? How do cities grow and transform to reflect changing technologies and population trends? How does law interact with society and social institutions? What are the causes and consequences of crime and deviant behavior?

The mission of the BA in Sociology is to provide undergraduate students (both majors and non-majors) with broad knowledge of the theoretical concepts, empirical research findings, and methodological approaches of the discipline of sociology, with an emphasis on theory and research related to social inequality. As part of this program, sociology majors should gain mastery of these concepts, findings, and approaches central to sociology, as well as develop basic skills in empirical analysis and professional communication.

At UT Dallas, sociology majors are encouraged to go beyond scholarly study to explore ways that sociology can be utilized in corporations, government agencies, or voluntary organizations. Sociology graduates of the university have pursued careers or graduate study in a variety of areas including policy research, social services, business, law, education, law enforcement, and other social sciences.

Bachelor of Arts in Sociology

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

- One of the following:
MATH 1306 College Algebra for the Non-Scientist
MATH 1314 College Algebra

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor)

Language, Philosophy and Culture (3 semester credit hours)

HUMA 1301 Exploration of the Humanities
LIT 2331 Masterpieces of World Literature
PHIL 1301 Introduction to Philosophy
PHIL 2316 History of Philosophy I
PHIL 2317 History of Philosophy II

Creative Arts (3 semester credit hours)

ARTS 1301 Exploration of the Arts

American History (6 semester credit hours)

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

SOC 1301 Introduction to Sociology

Component Area Option (6 semester credit hours)

EPPS 2301 Research Design in the Social and Policy Sciences

And one of the following:

EPPS 2302 Methods of Quantitative Analysis in the Social Policy Sciences
EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences
II. Major Requirements: 48 semester credit hours

Major Preparatory Courses (3 semester credit hours)

ECON 2301 Principles of Macroeconomics
or ECON 2302 Principles of Microeconomics

Major Core Courses (18 semester credit hours)

SOC 2320 Contemporary Social Issues
SOC 3303 Classical Social Theory
SOC 3325 Race, Ethnicity, and Community
or SOC 4369 Public Health and Society
SOC 3306 Advanced Research and Writing for the Policy Sciences
or SOC 3381 Field Research Methods
SOC 4302 Class, Status, and Power

One of the following:

SOC 3333 Religion in Society
SOC 3336 Culture Regions
SOC 4387 Religion in International Development

Major Related Courses (27 semester credit hours)

18 semester credit hours of upper-division Sociology courses
9 semester credit hours Major and Related electives

III. Elective Requirements: 30 semester credit hours

This requirement may be satisfied with lower- and upper-division courses from any field of study. Students must complete at least 51 semester credit hours of upper-division credit to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. Most students take upper-division SOC courses. However, subject to advisor approval, courses from other disciplines may be used to satisfy this requirement.
School of Economic, Political and Policy Sciences

Minors in Economic, Political and Policy Sciences

Students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division semester credit hours. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). Semester credit hours may not be used to satisfy both the major and minor requirements; however, free elective hours or major preparatory classes may be used to satisfy the minor. The undergraduate minors in the School of Economic, Political and Policy Sciences are:

- Criminology
- Economics
- Geography
- Geospatial Information Sciences
- International Political Economy
- Political Science
- Public Affairs
- Public Health
- Sociology

Minor in Criminology (18 semester credit hours)

Required Courses (6 semester credit hours)
CRIM 1301 Introduction to Criminal Justice
CRIM 1307 Introduction to Crime and Criminology

Upper-Division Courses (12 semester credit hours)
Any CRIM upper-division courses (excluding CRIM 4V97, CRIM 4V98, and CRIM 4V99)

Minor in Economics (18 semester credit hours)

Required Courses (9 semester credit hours)
ECON 2301 Principles of Macroeconomics
ECON 2302 Principles of Microeconomics
ECON 3310 Intermediate Microeconomic Theory
or ECON 3311 Intermediate Macroeconomic Theory

Upper–Division Courses (9 semester credit hours)
Any upper-division ECON courses (excluding ECON 4V97, ECON 4V98, and ECON 4V99)

Minor in Geography (18 semester credit hours)

Required Courses (9 semester credit hours)
 GEOG 2302 The Global Environment
 GEOG 3304 Introduction to Geospatial Information Sciences
 GEOG 3370 The Global Economy

Upper-Division Courses (9 semester credit hours)
Any upper-division Geography (GEOG) or Geographic Information Sciences (GISC) courses, excluding GEOG 4v97, GEOG 4v98, and GEOG 4v99.

Minor in Geospatial Information Sciences (GIS) (18 semester credit hours)

Required Courses (9 semester credit hours)
 GISC 2305 Introduction to Spatial Thinking
 GISC 3304 or GEOG 3304 Introduction to Geospatial Information Sciences
 GISC 4325 Introduction to Remote Sensing

Upper-Division Courses (9 semester credit hours)
Any upper-division Geography (GEOG) or Geographic Information Sciences (GISC) courses, excluding GEOG 4v97, GEOG 4v98, and GEOG 4v99.

Minor in International Political Economy (18 semester credit hours)

6 of the following (with at least 4 being upper-division courses):

ECON 2301 Principles of Macroeconomics
ECON 2302 Principles of Microeconomics
GEOG 2303 People and Place: An Introduction to World Geographic Regions
GEOG 3304 Introduction to Geospatial Information Sciences
GEOG 3370 Global Economy
IPEC 3349 World Resources and Development
IPEC 4301 Political Economy of Industrialized Countries

Deleted: with no more than one at the lower division (1000 or 2000 level) and

Comment [2]: New minor

Deleted: with no more than one at the lower division (1000 or 2000 level) and
Minor in Political Science (18 semester credit hours)

Required Courses (6 semester credit hours)
- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Upper-Division Courses (12 semester credit hours)
Any upper-division courses with a PSCI prefix except PSCI 4V76, PSCI 4V97, PSCI 4V98 and PSCI 4V99.

Minor in Public Affairs (18 semester credit hours)

Required Courses (6 semester credit hours)
- PA 3310 or PSCI 3310 Public Administration
- PA 3333 Human Resources Management

Upper-Division Courses (12 semester credit hours)
Any upper-division course with a PA prefix with the exception of PA 4V97, PA 4V98, and PA 4V99.

Minor in Public Health (18 semester credit hours)

Required Courses (9 semester credit hours)
- SOC 4369 Public Health and Society
- SOC 4384 Social Epidemiology
- SOC 4385 Health and Illness in Global and Cross-national Perspective
Electives (9 semester credit hours)
Any three (3) of the following courses will be accepted as electives for the minor. Other courses will be considered on a case-by-case basis by the program coordinator.

ECON 3330 Economics of Health
GEOG 3357 Spatial Dimensions of Health and Disease
GEOG 3372 Population and Development
HIST 3328 History and Philosophy of Science and Medicine
HLTH 1322 Human Nutrition
HLTH 3301 Issues in Geriatric Healthcare
HLTH 3305 The U.S. Healthcare System
HLTH 3310 Health Care Issues: Global Perspectives
HLTH 4380 Special Topics in Healthcare
HMGT 4301 Introduction to Healthcare Management
ISIS 3315 The Politics of Reproduction: U.S. and Global Contexts
PSCI 4365 Law and Medicine
PSY 4328 Health Psychology
PSY 4346 Human Sexuality
SOC 4357 Drugs, Alcohol, and Society
SOC 4371 Mental Health and Illness
SOC 4372 Health and Illness
SPAN 3341 Medical Spanish

Minor in Sociology (18 semester credit hours)

Required Courses (9 semester credit hours)
SOC 1301 Introduction to Sociology
SOC 3303 Classical Social Theory
SOC 4302 Class, Status, and Power

Upper-Division Courses (9 semester credit hours)
Any upper-division classes with a SOC prefix (with the exception of SOC 4V97, SOC 4V98, and SOC 4V99).
Erik Jonsson School of Engineering and Computer Science

Named in honor of one of the three founders of Texas Instruments, Inc. and of The University of Texas at Dallas, the Erik Jonsson School of Engineering and Computer Science provides undergraduate degree preparation for professional practice as an engineer or computer scientist. Particular emphasis is placed on developing strong analytical and problem solving abilities as a foundation for graduate study in these fields.

The school's curricula emphasize electronic information processing devices and technologies that are involved with the acquisition, interpretation, transmission, and utilization of information. The school offers seven degree programs: Biomedical Engineering, Computer Engineering, Computer Science, Electrical Engineering, Mechanical Engineering, Software Engineering and Telecommunications Engineering; a minor in Nanoscience and Nanotechnology is offered by the Department of Materials Science and Engineering. The Biomedical Engineering program offers students the opportunity to combine engineering with biology and physiology. The Computer Science program emphasizes the design and analysis of efficient parallel and sequential algorithms with applications in VLSI layout and routing, distributed networks and operating systems, image processing, computational geometry, automation and robotics. The Software Engineering program concentrates on all aspects of software development including requirements engineering, software architecture and design, program testing, validation, and quality assurance. The Electrical Engineering program offers students an opportunity to acquire a solid foundation in the broad areas of electrical engineering and emphasizes advanced study in digital systems, telecommunications, and microelectronics. The Mechanical Engineering program focuses on the analysis, design, manufacturing of mechanical and thermal systems with particular emphasis on energy conversion, harvesting, and utilization, micro- and nano-technology devices and processes, and robotics. The Computer Engineering and Telecommunications Engineering programs are interdisciplinary, as they require a blend of knowledge from the areas of Electrical Engineering and Computer Science.

All programs are based on a solid foundation of science and mathematics coursework. Students in these programs are given an opportunity to learn to extend their abilities to analyze and solve complex problems and to design new uses of technology to serve today's society. The Engineering programs provide an integrated educational experience directed toward the development of the ability to apply pertinent knowledge to the identification and solution of practical problems in engineering. These programs ensure that the design experience is developed and integrated throughout the curriculum in a sequential development leading to advanced work and includes both analytical and experimental studies. Established cooperative education programs with area industry serve to further supplement design experiences.
The University of Texas at Dallas is located at the heart of a high concentration of companies that specialize in the areas of microelectronics, telecommunications, signal processing and optics. The Erik Jonsson School of Engineering and Computer Science maintains close relationships with these companies and has established cooperative programs through which students can obtain industrial experience to complement their classroom instruction. Details of specific cooperative programs between Computer Science and Engineering students and local companies are available in the respective program offices.

Industrial Practice Programs

The Industrial Practice Programs (IP Programs or IPP) of the Erik Jonsson School of Engineering and Computer Science include the school's Cooperative Education, Internship, and Curricular Practical Training Programs. These programs combine classroom learning with paid work experience. Qualified students are referred to participating employers seeking candidates for career-related, pre-professional work assignments. The programs enhance a student's education and career preparation by integrating classroom theory with on-the-job performance, providing an understanding of work environments and professional requirements, testing career and professional goals, developing confidence, maturity and skills in human relations, and establishing contacts and interests.

Students are expected to register with and follow the rules of the IP Programs when working in any position titled by the employer as an Internship or a Cooperative Education assignment. Also, the Jonsson School offers one semester credit hour ECSC courses (may be used towards free elective requirements), and a three-semester credit hour course (may be used towards advanced free elective requirements) that provide students the opportunity to evaluate their work experience.

For more information about the IP programs, call (972) 883-4363. The IP Programs Office is located in the Student Services suite (ECS South 2.502).

Minors

To minor in the Erik Jonsson School of Engineering and Computer Science, students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division hours. Core courses offered by the school may count as lower-division hours toward the minor. Students may choose to minor in any of the following fields of study:

- **Computer Science**
- **Information Assurance**
- **Nanoscience**
- **Software Engineering**
Department of Materials Science and Engineering

Faculty

Professors: Orlando Auciello, Yves J. Chabal, Kyeongjae (KJ) Cho, Massimo V. Fischetti, Bruce E. Gnade, Julia W. P. Hsu, Jiyoung Kim, Moon J. Kim, Robert M. Wallace

Professor Emeritus: Don Shaw

Research Professor: Padmakumar Nair

Associate Professors: Lev D. Gelb, Manuel Quevedo-Lopez, Amy V. Walker

Assistant Professors: Cong Liu, Christopher L. Hinkle, Walter E. Voit, Chadwin D. Young

Senior Lecturers: Michael Christiansen, Chris I. Davis, Jason W. Smith, Don Vogel

Minor in Nanoscience and Technology

Goals for the Minor in Nanoscience and Technology

As the field of nanotechnology develops further, particularly in the north Texas region, The University of Texas at Dallas has an important role to play in the education of knowledge workers for the industry. The Minor in Nanoscience and Technology offered by the Department of Materials Science and Technology provides a means for undergraduate students to familiarize themselves with the concepts and principles of nanotechnology.

This minor has been designed around three core NANO designated courses, the content of which is exclusively related to Nanoscience and Nanotechnology. The remaining nine semester credit hours of courses may be chosen from the list of courses below.

The contents of the courses **BIOL 4461**, **CHEM 3322**, and **PHYS 4301** are similar enough that only one of these three courses may count toward the minor. In addition, several lower-division electives have been included to provide streamlined access to the available upper-division electives.

Since the three core courses are all upper-division electives, only one of the remaining nine semester credit hours must be an upper-division course, although students may choose to challenge themselves by pursuing all nine semester credit hours as upper-division electives.

In concordance with the creation of this minor, the Nanoscience (NANO) course designation would be added to the course catalog for use in designating future Nanoscience-specific courses as they are created.
Educational Objectives for the Minor in Nanoscience and Technology

On completion of the Minor program, students will:

• Have a comprehensive general education background
• Have a working knowledge of nanotechnology and nanoscience principles and industry applications
• Be able to apply key concepts in materials science, chemistry, physics, biology, and engineering to the field of nanotechnology
• Understand the societal and technology issues that may impede the adoption of nanotechnology
• Have the ability to communicate effectively and work collaboratively
• Be able to become successful professionals and, if they desire, be able to pursue graduate study
• Be able to identify career paths and requisite knowledge and skills for career change towards nanotechnology

Requirements for the Minor in Nanoscience and Technology

A total of 18 semester credit hours are required, consisting of three core classes (9 semester credit hours) and 9 additional semester credit hours of electives.

I. Core Requirements: 9 semester credit hours

NANO 3301 Introduction to Nanoscience and Nanotechnology
NANO 3302 Microscopy, Spectroscopy, and Nanotech Instrumentation
NANO 4V95 Undergraduate Research in Nanotechnology

II. Elective Requirements: 9 semester credit hours

Students must complete at least nine semester credit hours chosen from the following courses. At least one of the courses must be upper-division (3000 or 4000):

Nano-designated courses:

NANO 3310 Introduction to Materials Science
NANO 4391 or EE 4391 Technology of Plasma
NANO 4V95 Undergraduate Research in Nanotechnology
Any other upper-division NANO-designated course

Lower-division courses:

CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
MATH 2451 Multivariable Calculus with Applications
PHYS 2303 Contemporary Physics
MECH 2320 Mechanics of Materials

Upper-division courses:

- PHYS 4352 Concepts of Modern Physics
- PHYS 4383 Plasma Physics
- MECH 4360 Introduction to Nanostructured Materials
- MECH 4370 Introduction to MEMS
- EE 4392 Introduction to Optical Systems
- EE 3310 Electronic Devices
- EE 3311 Electronic Circuits
- CHEM 4335 Polymer Chemistry
- CHEM 3472 Instrumental Analysis
- CHEM 4473 Physical Measurements Laboratory
- CHEM 3321 Physical Chemistry I
- CHEM 4355 Computational Modeling

Only one of the following courses may be used to count toward the Minor:

- BIOL 4461 Biophysical Chemistry
- CHEM 3322 Physical Chemistry II
- PHYS 4301 Quantum Mechanics I
Erik Jonsson School of Engineering and Computer Science

Department of Bioengineering

Biomedical Engineering (BS)

Faculty

Professors: Orlando Auciello, Stephen D. Levene, Raimund J. Ober

Associate Professor: Shalini Prasad, Robert L. Rennaker II

Assistant Professors: Leonidas Bleris, Robert Gregg, Heather Hayenga, Lan Ma, Hyun-Joo Nam, Danieli Rodrigues, Walter Voit, Hyuntae Yoo

Affiliated Faculty: Jonathan Cheng, Xin-Lin Gao, Edward Keefer, Michael P. Kilgard, Balakrishnan Prabhakaran, A. Dean Sherry, Emily A. Tobey, Mathukumalli Vidyasagar, Michael Qiwei Zhang

Mission of the Department of Bioengineering

The mission of the Bioengineering Department is to provide a state-of-the-art, highly interdisciplinary, teaching and research environment for undergraduate and graduate students. Whether at undergraduate or post-graduate levels, our students will be able to reach across traditional disciplinary boundaries, and work effectively with experts in engineering, life sciences, and medicine. At the Bachelors level, our graduates will be ready to meet the rapidly growing demand for bioengineers, and tackle challenges in emerging areas, including but not limited to personalized medicine, biomedical devices, and targeted drug delivery. At the Masters and PhD levels, our graduates will undertake original cutting-edge research at the forefront of scientific and technological developments in bioengineering.

High School Preparation

Engineering education requires a strong high school preparation. Pre-engineering students should have high school preparation of at least one-half year in trigonometry and at least one year each in elementary algebra, intermediate and advanced algebra, plane geometry, chemistry, and physics, thus developing their competencies to the highest possible levels and preparing to move immediately into demanding college courses in calculus, calculus-based physics, and chemistry.
for science majors. It is also essential that pre-engineering students have the competence to read rapidly and with comprehension, and to write clearly and correctly.

Lower-Division Study

All lower-division students in Biomedical Engineering concentrate on mathematics, science and introductory engineering courses, building competence in these cornerstone areas for future application in upper-division engineering courses. The following requirements apply both to students seeking to transfer to UT Dallas from other institutions as well as to those currently enrolled at UT Dallas, whether in another school or in the Erik Jonsson School of Engineering and Computer Science.

Academic Progress in Biomedical Engineering

In order to make satisfactory academic progress as a Biomedical Engineering major, a student must meet all University requirements for academic progress, and must earn a grade of C- or better in each of the "major requirements" courses. No "Major Requirement" course may be taken until the student has obtained a grade of C- or better in each of the prerequisites. If a higher grade requirement is stated for a specific class, the higher requirement applies.

Bachelor of Science in Biomedical Engineering

Degree Requirements (121 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

<table>
<thead>
<tr>
<th>Communication (6 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHET 1302 Rhetoric</td>
</tr>
<tr>
<td>ECS 3390 Professional and Technical Communication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics (3 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2417 Calculus I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Life and Physical Sciences (6 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2325 Mechanics</td>
</tr>
<tr>
<td>PHYS 2326 Electromagnetism and Waves</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language, Philosophy and Culture (3 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Creative Arts (3 semester credit hours)</th>
</tr>
</thead>
</table>

Mary Jo Venetis 2/22/14 5:16 PM
Comment [3]: Approved by Ntafos, 2-21-14 giving students more options to choose.

Mary Jo Venetis 2/22/14 5:15 PM
Formatted: Indent: Left: 0.5"
Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

[GOVT 2305 American National Government](#)

[GOVT 2306 State and Local Government](#)

Social and Behavioral Sciences (3 semester credit hours)

[ECS 3361 Social Issues and Ethics in Computer Science and Engineering](#)

Component Area Option (6 semester credit hours)

- MATH 2417 Calculus I
- MATH 2419 Calculus II
- PHYS 2125 Physics Laboratory

II. Major Requirements: 79 semester credit hours

Major Preparatory Courses (22 semester credit hours beyond Core Curriculum)

- CHEM 1111 General Chemistry Laboratory I
- CHEM 1311 General Chemistry I
- CHEM 1312 General Chemistry II
- CHEM 1112 General Chemistry II Laboratory
- CS 132 Introduction to Programming for Biomedical Engineers
- BIOL 2311 Introduction to Modern Biology I
- BIOL 2111 Introduction to Modern Biology Workshop I
- BIOL 2281 Introductory Biology Laboratory
- MATH 2417 Calculus I
- MATH 2419 Calculus II
- MATH 2420 Differential Equations with Applications
- PHYS 2125 Physics Laboratory I
- PHYS 2126 Physics Laboratory II
- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves

Major Core Courses (48 semester credit hours beyond Core Curriculum)

- ECS 1200 Introduction to Engineering and Computer Science
Prescribed Electives (9 semester credit hours)

Students pursuing the general program take 9 semester credit hours using any other BMEN 3000 level or higher class. 3 semester hours must be from the list below:

- BMEN 3370 Digital Circuits
- BMEN 4320 Intermediate Electrical Systems
- BMEN 4330 Advanced Engineering Physiology of the Human Body
- BMEN 4350 Applied Sensor Technology

Fast Track Baccalaureate/Master's Degrees

In response to the need for advanced education in Biomedical engineering, a Fast Track program is available to well-qualified UT Dallas undergraduate students. The Fast Track program is designed to accelerate a student's education so that both a BS and an MS degree can be earned in five years of full-time study. This is accomplished by (1) taking courses (typically electives) during one or more summer semesters, and (2) beginning graduate coursework during the senior year. Details are available from the Associate Dean for Undergraduate Education.

Honors Program
The Department of Biomedical Engineering offers upper-division Honors for outstanding students in the BS Biomedical Engineering degree program. This program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to the Honors programs requires a 3.500 or better GPA in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes. These honors classes must include either Senior Honors (BMEN 4399) or Undergraduate Research in Biomedical Engineering (BMEN 4V98) and a Senior Honors Thesis must be completed within one of those two classes. While the topics may be related, the Senior Thesis does not replace the need for the student to complete a regular Senior Design Project. The other 5 honors classes can come from a mixture of Graduate level (up to a count of 4) classes and special honor sections of regular undergraduate BMEN classes (up to a count of 2).

Departmental Honors with Distinction may be awarded to students whose Senior Honors Thesis is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to MS Theses in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

Minors

The Department of Bioengineering does not offer minors at this time.

1. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. Semester credit hours fulfill the communication component of the Core Curriculum.

3. Three semester credit hours of Calculus are counted under Mathematics Core, and five semester credit hours of Calculus are counted as Component Area Option Core.

4. Six semester credit hours of Physics are counted under Science core, and one semester credit hour of Physics (PHYS 2125) is counted as Component Area Option Core.

5. Students must pass each of the major requirement courses listed in this degree plan and each of their prerequisites, with a grade of C- or better.

6. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.

7. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.
Erik Jonsson School of Engineering and Computer Science

Interdisciplinary Programs

The Erik Jonsson School of Engineering and Computer Science offers Bachelor of Science programs in Computer Engineering and in Telecommunications Engineering. These programs are delivered by faculty from the Department of Computer Science and Electrical Engineering.

Computer Engineering (BS)

The Computer Engineering program is interdisciplinary. It was designed by the combined faculties of the Computer Science Department and the Electrical Engineering Department. Computer Engineering requires a blend of knowledge from the areas of hardware (Electrical Engineering) and software (Computer Science). The focus of the Computer Engineering degree is to provide excellent education in modern computer systems and prepare its graduates for outstanding careers in the rapidly changing and growing profession and for further continuing education.

The Computer Engineering program is based on a solid foundation of science and mathematics coursework. Students in this program are given an opportunity to learn to extend their abilities to analyze and solve complex problems and to design new uses of technology to serve today's society. This program provides an integrated education experience directed toward the development of the ability to apply pertinent knowledge to the identification and solution of practical problems in computer engineering.

The Computer Engineering curriculum ensures that the design experience, which includes both analytical and experimental studies, is integrated throughout in a sequential development leading to advanced work. Design problems are frequently assigned in both lecture and laboratory courses. Each student is required to complete a major design project during the senior year. In addition, established cooperative education programs with area industries may further supplement a student's design experiences.

Affiliated Faculty

Mean (Edwin) Sha, Lakshman Tamil, Subbarayan Venkatesan, Weili Wu, I-Ling Yen, Kang Zhang, Si Qing Zheng, Dian Zhou

Professor Emeritus: William J. Pervin

Associate Professors: Jorge A. Cobb, Roozbeh Jafari, Yiorgos Makris, Hlaing Minn, Neeraj Mittal, Issa M. S. Panahi

Assistant Professors: Myoungsoo Jung, Joseph Sloan

Senior Lecturers: Nathan B. Dodge, Greg Ozbirn

Affiliated Faculty: Cong Liu

Mission of the Computer Engineering (CE) Program

The mission of the Computer Engineering Program is to provide education in the theory and practice of modern computer engineering. We will prepare our graduates to have rewarding and successful careers in a diverse range of computer engineering fields, including materials, devices, circuits, digital systems, signal/speech processing, and communications.

Goals for the Computer Engineering Program

The focus of the Computer Engineering degree at UT Dallas is to provide excellent education in both computer science and electrical engineering. Our graduates shall be uniquely qualified to apply traditional engineering design and problem solving skills to modern computer systems comprising both hardware and software components.

Program Educational Objectives for Computer Engineering

Within a few years after graduation, graduates of the Computer Engineering program should:

- Have a successful, long-lived engineering based career path
- Meet the needs of industry
- Contribute to, and/or lead engineering based teams
- Actively pursue continuing (lifelong) learning

High School Preparation

Engineering education requires a strong high school preparation. Pre-engineering students should have high school preparation of at least one-half year in trigonometry and at least one year each in elementary algebra, intermediate and advanced algebra, plane geometry, chemistry and physics, thus developing their competencies to the highest possible levels and preparing them to move immediately into demanding college courses in calculus, calculus-based physics and chemistry for science majors. Pre-Computer Engineering students should have some experience
with elementary programming in a high level language such as C, C++, or Java. It is also essential that pre-engineering students have the competence to read rapidly and with comprehension, and to write clearly and correctly.

Lower-Division Study

All lower-division students in Computer Engineering concentrate on mathematics, science, and introductory engineering courses, building competence in these cornerstone areas for future application in upper-division engineering courses. The following requirements apply both to students seeking to transfer to UT Dallas from other institutions as well as to those currently enrolled at UT Dallas, whether in another school or in the Erik Jonsson School of Engineering and Computer Science.

ABET Accreditation

The BS program in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Academic Progress in Computer Engineering

In order to make satisfactory academic progress as a Computer Engineering major, a student must meet all University requirements for academic progress, and must earn a grade of C- or better in each of the "major requirements" courses. No "Major Requirements" course (as listed under Section II of the BS degree requirement) may be taken until the student has obtained a grade of C- or better in each of the prerequisites (if a higher grade requirement is stated for a specific class, the higher requirement applies).

Bachelor of Science in Computer Engineering

Degree Requirements (126 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

RHET 1302 Rhetoric
ECS 3390 Professional and Technical Communication

Mathematics (3 semester credit hours)

MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

PHYS 2325 Mechanics
PHYS 2326 Electromagnetism and Waves
Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor).

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor).

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor).

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

- ECS 3361 Social Issues and Ethics in Computer Science and Engineering

Component Area Option (6 semester credit hours)

- MATH 2417 Calculus I
- MATH 2419 Calculus II
- PHYS 2125 Physics Laboratory

II. Major Requirements: 77 semester credit hours

Major Preparatory Courses (24 semester credit hours including 5 listed above in Core Curriculum)

- CE 1337 Computer Science I
- ECS 1200 Introduction to Engineering and Computer Science
- CE 1202 Introduction to Electrical Engineering
- ENGR 2300 Linear Algebra for Engineers
- CE 2305 Discrete Mathematics for Computing I
- CE 2310 Introduction to Digital Systems
- CE 2336 Computer Science II
- MATH 2417 Calculus I
- MATH 2419 Calculus II
- MATH 2420 Differential Equations with Applications
- PHYS 2125 Physics Laboratory I
- PHYS 2126 Physics Laboratory II
- PHYS 2325 Mechanics

Comment [3]: Approved by Ntafos, 2-21-14 giving students more options to choose.
PHYS 2326 Electromagnetism and Waves

Major Core Courses (53 semester credit hours beyond Core Curriculum)

- CE 3101 Electrical Network Analysis Laboratory
- CE 3102 Signals and Systems Laboratory
- CE 3110 Electronic Devices Laboratory
- CE 3111 Electronic Circuits Laboratory
- CE 3120 Digital Circuits Laboratory
- ECS 3361 Social Issues and Ethics in Computer Science and Engineering
- ECS 3390 Professional and Technical Communication
- ENGR 3300 Advanced Engineering Mathematics
- CE 3301 Electrical Network Analysis
- CE 3302 Signals and Systems
- CE 3310 Electronic Devices
- CE 3311 Electronic Circuits
- CE 3320 Digital Circuits
- ENGR 3341 Probability Theory and Statistics
- CE 3345 Data Structures and Introduction to Algorithmic Analysis
- CE 3354 Software Engineering
- CE 4304 Computer Architecture
- CE 4337 Organization of Programming Languages
- CE 4348 Operating Systems Concepts
- CE 4370 Embedded Microprocessor Systems
- CE 4388 Senior Design Project I
- CE 4389 Senior Design Project II
- CE 4390 Computer Networks

III. Elective Requirements: 7 semester credit hours

Free Electives (7 semester credit hours)

Both lower- and upper-division courses may count as free electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the University can be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.

Fast Track Baccalaureate/Master's Degrees

In response to the need for advanced education in computer engineering, a Fast Track program is available to well-qualified UT Dallas undergraduate students. The Fast Track program is designed to accelerate a student's education so that both a BS and an MS degree can be earned in
five years of full-time study. This is accomplished by (1) taking courses (typically electives) during one or more summer semesters, and (2) beginning graduate coursework during the senior year. Details are available from the Associate Dean for Undergraduate Education.

Honors Program

The Computer Engineering Program offers upper-division Honors for outstanding students in the BS Computer Engineering degree program. This program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to the Honors programs requires a 3.500 or better GPA in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes. These honors classes must include either Senior Honors in Computer Engineering (CE 4399) or Undergraduate Research in Computer Engineering (CE 4V98) and a Senior Honors Thesis must be completed within one of those two classes. (While the topics may be related, the Senior Thesis does not replace the need for the student to complete a regular Senior Design Project.) The other 5 honors classes can come from a mixture of Graduate level (up to a count of 4) classes and special honor sections of regular undergraduate CE classes (up to a count of 2). Current undergraduate honors courses include but are not limited to: CE 2310 (H), ENGR 4334, CE 4372, CE 4399, and CE 4V98. Course grades in the 6 honor classes used to determine Honors status must be B- or higher to qualify.

Departmental Honors with Distinction may be awarded to students whose Senior Honors Thesis is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to MS Theses in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

Minors

The School of Engineering and Computer Science does not offer a minor in Computer Engineering at this time.

1. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Hours fulfill the communication component of the Core Curriculum.
3. Hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.
4. Three semester credit hours of Calculus are counted under the Mathematics Core above, and five semester credit hours of Calculus are counted as Component Area Option Core.
5. Six semester credit hours of Physics are counted under Science core, and one semester hour of Physics (PHYS 2125) is counted under Component Area Core.
6. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.
1. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Semester credit hours fulfill the communication component of the Core Curriculum.
3. Three semester credit hours of Calculus are counted under the Mathematics Core above, and five semester credit hours of Calculus are counted as Component Area Option Core.
4. Six semester credit hours of Physics are counted under Science core, and one semester hour of Physics (PHYS 2125) is counted under Component Area Core.
5. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.
6. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.
Erik Jonsson School of Engineering and Computer Science

Department of Computer Science

Computer Science (BS) and Software Engineering (BS)

The Computer Science Department offers the BS degree in Computer Science and the BS degree in Software Engineering. Both are based on a solid foundation of mathematics, including calculus, linear algebra, and discrete mathematics. These programs of study are designed to offer students opportunities to prepare for an industrial, business, or governmental career in a rapidly changing profession and to prepare for graduate study in a field in which further education is strongly recommended. The two programs have the same basis in core computer science, including the analysis of algorithms and data structures, modern programming methodologies, and the study of operating systems. The Computer Science program continues with courses in advanced data structures, programming languages, telecommunications networks, and automata theory, while the Software Engineering program include courses in requirements engineering, software validation and testing, and software architecture, culminating in a challenging project course in which students must demonstrate use of software engineering techniques. Both programs offer a rich choice of elective studies, including courses in artificial intelligence, computer graphics, databases, and compiler design.

The school offers a "fast track" BS / MS option; see Fast Track Baccalaureate/Master's Degree Program.

Faculty

Professor Emeritus: Klaus Truemper

Associate Professors: Sergey Bereg, Lawrence Chung, Jorge A. Cobb, Kendra M. L. Cooper, Xiaohu Guo, Kevin Hamlen, Sandra M. Harabagiu, Murat Kantarcioğlu, Yang Liu, Neeraj Mittal, Yu-Chung (Vincent) Ng, Kamil Sarac, Haim Schweitzer, Rym Zalila-Wenkstern
Assistant Professors: Alvaro Cárdenas, Mark Gabel, Vibhav Gogate, Zhiqiang Lin, Cong Liu, Ryan McMahan

Senior Lecturers: Ebru Cankaya, Michael Christiansen, John Cole, Chris I Davis, Timothy (Tim) Farage, Shyam Karrah, Linda Morales, Nhut Nguyen, Greg Ozbirn, Mark Paulk, Miguel Razo-Razo, Charles Shields Jr., Jason W. Smith, Janell Straach, Jeyakesavan (Jey) Veerasamy, Don G. Vogel

Mission of the Department of Computer Science

The mission of the Department of Computer Science is to prepare undergraduate and graduate students for productive careers in industry, academia, and government by providing an outstanding environment for teaching, learning, and research in the theory and applications of computing. The Department places high priority on establishing and maintaining innovative research programs to enhance its education quality and make it an important regional, national and international resource center for discovering, integrating and applying new knowledge and technologies.

Bachelor of Science in Computer Science (BS)

Goals for the Computer Science Program

The undergraduate Computer Science program is committed to provide students with a high-quality education and prepare them for long and successful careers in industry and government.

Our graduates, while eminently ready for immediate employment, will also be fully ready for focused training as required for specific positions in Computer Science and closely related areas. Graduates interested in highly technical careers, research, and/or academia will be fully prepared to further their education in graduate school.

Program Educational Objectives for Computer Science

Within a few years after graduation, graduates of the Computer Science program should:

• Have a successful, long-lived, computer science based career path
• Meet the needs of industry or academia
• Contribute to, and/or lead, computer science based teams
• Actively pursue continuing (lifelong) learning

ABET Accreditation

The BS program in Computer Science is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

Bachelor of Science in Computer Science
Degree Requirements (124 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)
- RHET 1302 Rhetoric
- ECS 3390 Professional and Technical Communication

Mathematics (3 semester credit hours)
- MATH 2413 Differential Calculus
 or MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)
- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture (3 semester credit hours)
- Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)
- Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)
- Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)
- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
- ECS 3361 Social Issues and Ethics in Computer Science and Engineering

Component Area Option (6 semester credit hours)
- MATH 2413 Differential Calculus
 or MATH 2417 Calculus I
- MATH 2414 Integral Calculus

Mary Jo Venetis 2/9/14 1:26 PM
Comment [1]: Link back to core curriculum section

Mary Jo Venetis 2/9/14 1:35 PM
Formatted: Superscript

Mary Jo Venetis 2/9/14 1:37 PM
Deleted:

Mary Jo Venetis 2/22/14 5:24 PM
Comment [2]: Approved by Ntafos, 2-21-14
 giving students more options to choose.

Mary Jo Venetis 2/22/14 5:24 PM
Deleted:

Mary Jo Venetis 2/22/14 5:24 PM
Deleted:

Mary Jo Venetis 2/22/14 5:24 PM
Deleted:
II. Major Requirements: 68 semester credit hours

Major Preparatory Courses (20 semester credit hours beyond Core Curriculum)

- ECS 1200 Introduction to Engineering and Computer Science
- CS 1337 Computer Science I
- CS 2305 Discrete Mathematics for Computing I
- MATH 2413 Differential Calculus
 or MATH 2417 Calculus I
- MATH 2418 Linear Algebra
- MATH 2414 Integral Calculus
 or MATH 2419 Calculus II
- PHYS 2125 Physics Laboratory I
- PHYS 2126 Physics Laboratory II
- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves
 4 semester credit hours Science Elective

Major Core Courses (39 semester credit hours beyond Core Curriculum)

- CS 3162 Professional Responsibility in Computer Science and Software Engineering
- CS 3305 Discrete Mathematics for Computing II
- CS 3340 Computer Architecture
- CS 3341 Probability and Statistics in Computer Science and Software Engineering
- CS 3345 Data Structures and Introduction to Algorithmic Analysis
- CS 3354 Software Engineering
- CS 3376 C/C++ Programming in a UNIX Environment
- ECS 3361 Social Issues and Ethics in Computer Science and Engineering
- ECS 3390 Professional and Technical Communication
- CS 4141 Digital Systems Laboratory
- CS 4337 Organization of Programming Languages
- CS 4341 Digital Logic and Computer Design
- CS 4348 Operating Systems Concepts
- CS 4349 Advanced Algorithm Design and Analysis
- CS 4384 Automata Theory
- CS 4485 Computer Science Project

Major Guided Electives (9 semester credit hours)

CS guided electives are 4000 level CS courses approved by the student's CS advisor. The following courses may be used as guided electives without the explicit approval of an advisor:
III. Elective Requirements: 14 semester credit hours

Free Electives (14 semester credit hours)

Both lower- and upper-division courses may count as free electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Fast Track Baccalaureate/Master's Degrees

In response to the need for post-baccalaureate education in the exciting field of computer science, a Fast Track program is available to well-qualified UT Dallas undergraduate students. At the end of five years of successful study, it is possible to earn both the BS and the MSCS degrees in Computer Science (or MS in Computer Science with Major in Software Engineering). Qualified seniors may take up to 15 graduate semester credit hours that may be used to complete the baccalaureate degree and also to satisfy requirements for the master's degree. Interested
students should see the Associate Dean of Undergraduate Education (ADU) for specific requirements.

Honors Programs

The Department of Computer Science offers two Honors Programs. The first program is an upper-division honors program for outstanding students in the BS in Computer Science and BS in Software Engineering degree programs. This Honors program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to this Honors program requires a 3.500 or better GPA in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes, including a Senior Thesis or Senior Design Project class. For more details, contact the Office of Undergraduate Advising (ECS South 2.502; 972-883-2004).

Departmental Honors with Distinction may be awarded to students whose Senior Thesis or Senior Design Project is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to MS Theses and PhD Dissertations in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

The second program, called Computer Science Computing Scholars (CS²) is an intense Bachelor of Science in Computer Science Degree Program created for exceptionally gifted students who wish to pursue a demanding course of study enriched throughout with research experiences. The Computing Scholars Program has a specially designed curriculum. Courses integrate discussion of current research, recent discoveries, and open problems into a rich logical progression of firmly related topics. Course numbers for the Core Curriculum Requirements and Major Requirements are the same as those for the Bachelor of Science in Computer Science, but Computing Scholars take honors versions of the following courses: ECS 1200, CS 2305, CS 3305, CS 3340, CS 3341, CS 3345, CS 3354, CS 4141, CS 4337, CS 4341, CS 4348, CS 4349, CS 4384, and CS 4485.

Admission to the program is mainly by nomination and invitation. Those invited to join the Computing Scholars Honors Program will have successfully completed a full and challenging high school curriculum, will have achieved high scores on the SAT or ACT tests, and will be about to graduate from high school, or equivalent, with high class rank.

Successful participants will graduate with the added distinction of a Computing Scholars Honors Diploma.

For more information about this program students should contact the Computer Science
Minors

A minor in Computer Science requires 21 semester credit hours earned through the following courses:

- CS 1337 Computer Science I
- CS 2305 Discrete Mathematics for Computing I
- CS 2336 Computer Science II
- CS 3305 Discrete Mathematics for Computing II
- CS 3345 Data Structures and Introduction to Algorithmic Analysis
- CS 3354 Software Engineering
- CS 43XX Elective (any 4000-level organized CS class or CS 4390)

A minor in Information Assurance requires 30 semester credit hours earned through the following courses:

- CS 1337 Computer Science I
- CS 2305 Discrete Mathematics for Computing I
- CS 2336 Computer Science II
- CS 3305 Discrete Mathematics for Computing II
- CS 3345 Data Structures and Introduction to Algorithmic Analysis
- CS 4347 Database Systems
- CS 4348 Operating Systems Concepts
- CS 4389 Data and Applications Security
- CS 4393 Computer and Network Security
- CS 4398 Digital Forensics

Certificates

A Certificate in Information Assurance can be obtained by completing the following (as well as any required prerequisites):

- CS 4389 Data and Applications Security
- CS 4393 Computer and Network Security
- CS 4398 Digital Forensics

The certificate is intended for those individuals who are working in the industry and who already have background similar to a BS degree. CS and SE majors that complete the required classes, as well as students that complete the Minor in Information Assurance will be awarded certificates in Information Assurance.

1. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. *Semester credit hours* fulfill the communication *component* of the Core Curriculum.
3. *Three* semester credit hours of Calculus are counted under Mathematics Core, and *five* semester credit hours of Calculus are counted as *Component Area Option Core*.
4. *Six* semester credit hours of *Physics* are counted under Science Core. *One* semester credit hour of *Physics (PHYS 2135)* is counted under *Component Area Core*.
5. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.
6. *Semester credit hours* contribute to the Social and Behavioral Sciences component of the Core Curriculum.
Erik Jonsson School of Engineering and Computer Science

Department of Electrical Engineering

Electrical Engineering (BSEE)

The Electrical Engineering Department offers a bachelor's degree in Electrical Engineering. The Electrical Engineering program offers students an opportunity to acquire a solid foundation in the broad areas of electrical engineering and emphasizes advanced study in digital systems, digital signal processing, communications, analog systems, RF/microwave, and microelectronics.

The Electrical Engineering program offers students a solid educational foundation in the areas of electrical networks, electronics, electromagnetics, computers, digital systems, and communications and is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET). Mastery of these areas provides students with the ability to adapt and maintain leadership roles in their post-baccalaureate pursuits through the application of fundamental principles to a rapidly changing and growing discipline.

Students in the Electrical Engineering program a broad general program in electrical engineering and can then take advanced courses in computer hardware and software; the analysis and design of analog and digital communication systems; analog and digital signal processing; the analysis, design, and fabrication of microelectronic components and systems; and guided and unguided wave propagation. A broad choice of electives (within and external to electrical engineering) allows students to broaden their education as well as develop expertise in areas of particular interest. In keeping with the role of a professional, students are expected to develop communication skills and an awareness of the relationship between technology and society.

The Electrical Engineering program is based on a solid foundation of science and mathematics coursework. Students in this program are given an opportunity to learn and extend their abilities to analyze and solve complex problems and to design new uses of technology to serve today's society. The engineering programs at UT Dallas provide an integrated educational experience directed toward the development of the ability to apply pertinent knowledge to the identification and solution of practical problems in Electrical and other related engineering fields. These programs ensure that the design experience, which includes both analytical and experimental studies, is integrated throughout the curriculum in a sequential development leading to advanced work. Design problems are frequently assigned in both lecture and laboratory courses. Each
student is required to complete a major design project during the senior year. In addition, established cooperative education programs with area industry serve to further supplement design experiences.

Faculty

Professors Emeritus: Louis R. Hunt, William J. Pervin, Don Shaw

Associate Professors: Gerald O. Burnham, Yun Chiu, Wenchuang (Walter) Hu, Roozbeh Jafari, Hoi Lee, Dongsheng Brian Ma, Yiorgos Makris, Hlaing Minn, Issa M. S. Panahi, Siavash Pourkamali, Murat Torlak

Assistant Professors: Bilal Akin, Bhaskar Banerjee, Carlos A. Basso-Recabarren, Nicholas Gans, Rashaunda Henderson, Myoungsoo Jung, Joseph Sloan

Research Professors: Hynek Boril, Walter Duncan, Abhijeet Sangwan, Hisashi (Sam) Shichijo

Senior Lecturers: Charles (Pete) Bernardin, Peter A. Blakey, Nathan B. Dodge, Jung Lee, Randall E. Lehmann, P. K. Rajasekaran, Ricardo E. Saad, William Swartz, Marco Tacca

Affiliated Faculty: Larry P. Ammann, Leonidas Bleris, Yves J. Chabal, Matthew J. Goeckner, Bruce E. Gnade, Robert D. Gregg IV, Jiyoung Kim, Moon J. Kim, David J. Larry, Robert L. Rennaker II, Yang Liu, Mario A. Rotea, Mathukumalli Vidyasagar, Robert M. Wallace, Chadwin D. Young, Steve Yurkovich

Mission of the Electrical Engineering Program

The focus of the Electrical Engineering degree is to provide excellent education in modern electrical engineering practice. Our graduates are uniquely qualified for rewarding and successful careers in materials, devices, circuits, digital systems, signal processing, and communications. In the spring of 2005 the EE faculty adopted a new set of Program Educational Objectives that refined the prior objectives and established measurements and benchmarks to monitor progress. A feedback mechanism using Alumni Surveys (by the ECS Office of Assessment) and other tools are used to measure progress toward these objectives.

Program Educational Objectives for Electrical Engineering
One broad goal for the Erik Jonsson School is an excellent education for our students.

Within a few years of graduation, graduates of the Electrical Engineering program should:

- Have a successful, long-lived engineering based career path
- Meet the needs of industry
- Contribute to, and/or lead engineering based teams
- Actively pursue continuing (lifelong) learning

High School Preparation

Engineering education requires a strong high school preparation. Pre-engineering students should have high school preparation of at least one-half year in trigonometry and at least one year each in elementary algebra, intermediate and advanced algebra, plane geometry, chemistry, and physics, thus developing their competencies to the highest possible levels and preparing to move immediately into demanding college courses in calculus, calculus-based physics, and chemistry for science majors. It is also essential that pre-engineering students have the competence to read rapidly and with comprehension, and to write clearly and correctly.

Lower-Division Study

All lower-division students in Electrical Engineering concentrate on mathematics, science and introductory engineering courses, building competence in these cornerstone areas for future application in upper-division engineering courses. The following requirements apply both to students seeking to transfer to UT Dallas from other institutions as well as to those currently enrolled at UT Dallas, whether in another school or in the Erik Jonsson School of Engineering and Computer Science.

ABET Accreditation

The BS program in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Academic Progress in Electrical Engineering

In order to make satisfactory academic progress as an Electrical Engineering major, a student must meet all University requirements for academic progress, and must earn a grade of C- or better in each of the "major requirements" courses. No "Major Requirements" course (as listed under Section II of the BSEE degree requirement) may be taken until the student has obtained a grade of C- or better in each of the prerequisites (if a higher grade requirement is stated for a specific class, the higher requirement applies).

Bachelor of Science in Electrical Engineering

Degree Requirements (128 semester credit hours)
I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- ECS 3390 Professional and Technical Communication

Mathematics (3 semester credit hours)

- MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture (3 semester credit hours)

- Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

- Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

- Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

- ECS 3361 Social Issues and Ethics in Computer Science and Engineering

Component Area Option (6 semester credit hours)

- MATH 2417 Calculus I
- MATH 2419 Calculus II
- PHYS 2125 Physics Laboratory
II. Major Requirements: 76 semester credit hours

Major Preparatory Courses (22 semester credit hours beyond Core Curriculum)

- CHEM 1111 General Chemistry Laboratory I
- CHEM 1311 General Chemistry I
- CS 1325 Introduction to Programming
- ECS 1200 Introduction to Engineering and Computer Science
- EE 1202 Introduction to Electrical Engineering
- ENGR 2300 Linear Algebra for Engineers
- EE 2310 Introduction to Digital Systems
- MATH 2417 Calculus I
- MATH 2419 Calculus II
- MATH 2420 Differential Equations with Applications
- PHYS 2125 Physics Laboratory I
- PHYS 2126 Physics Laboratory II
- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves

Major Core Courses (45 semester credit hours beyond Core Curriculum)

- ECS 3361 Social Issues and Ethics in Computer Science and Engineering
- ECS 3390 Professional and Technical Communication
- EE 3101 Electrical Network Analysis Laboratory
- EE 3102 Signals and Systems Laboratory
- EE 3110 Electronic Devices Laboratory
- EE 3111 Electronic Circuits Laboratory
- EE 3120 Digital Circuits Laboratory
- EE 3150 Communications Systems Laboratory
- ENGR 3300 Advanced Engineering Mathematics
- EE 3301 Electrical Network Analysis
- EE 3302 Signals and Systems
- EE 3310 Electronic Devices
- EE 3311 Electronic Circuits
- EE 3320 Digital Circuits
- ENGR 3341 Probability Theory and Statistics
- EE 3350 Communications Systems
- EE 4301 Electromagnetic Engineering I
- EE 4310 Systems and Controls
- EE 4368 RF Circuit Design Principles
- EE 4388 Senior Design Project I
- EE 4389 Senior Design Project II

Major Guided Electives (9 semester credit hours)
Students pursuing the general program take 9 semester credit hours from any other 4000 level or higher organized Electrical Engineering courses. Students pursuing a concentration in Microelectronics take 3 of the following courses:

- EE 4302 Electromagnetic Engineering II
- EE 4304 Computer Architecture
- EE 4325 Introduction to VLSI Design
- EE 4330 Integrated Circuit Technology
- EE 4340 Analog Integrated Circuit Analysis and Design
- EE 4391 Technology of Plasma

Students pursuing a concentration in Telecommunications take 3 of the following courses:

- EE 4360 Digital Communications
- EE 4361 Introduction to Digital Signal Processing
- EE 4365 Introduction to Wireless Communication
- EE 4367 Telecommunications Networks
- EE 4390 Computer Networks
- EE 4392 Introduction to Optical Systems

III. Elective Requirements: 10 semester credit hours

Free Electives (10 semester credit hours)

Both lower- and upper-division courses may count as free electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the University can be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.

Fast Track Baccalaureate/Master's Degrees

In response to the need for advanced education in electrical engineering, a Fast Track program is available to well-qualified UT Dallas undergraduate students. The Fast Track program is designed to accelerate a student's education so that both a BSEE and an MSEE degree can be earned in five years of full-time study. This is accomplished by (1) taking courses (typically electives) during one or more summer semesters, and (2) beginning graduate coursework during the senior year. Details are available from the Associate Dean for Undergraduate Education.

Honors Program

The Department of Electrical Engineering offers upper-division Honors for outstanding students in the BS Electrical Engineering degree program. This program offers special sections of
designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to the Honors programs requires a 3.500 or better GPA in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes. These honors classes must include either Senior Honors in Electrical Engineering (EE 4399) or Undergraduate Research in Electrical Engineering (EE 4V98) and a Senior Honors Thesis must be completed within one of those two classes. (While the topics may be related, the Senior Thesis does not replace the need for the student to complete a regular Senior Design Project). The other 5 honors classes can come from a mixture of Graduate level (up to a count of 4) classes and special honor sections of regular undergraduate EE classes (up to a count of 2). Current undergraduate honors courses include but are not limited to EE 2310 (H), EE 3350 (H), EE 4302, EE 4399, and EE 4V98. Course grades in the 6 honors classes used to determine Honors status must be B- or higher to qualify.

Departmental Honors with Distinction may be awarded to students whose Senior Honors Thesis is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to MS Theses in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

Minors

The Department of Electrical Engineering does not offer minors at this time.

1. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Semester credit hours fulfill the communication component of the Core Curriculum.
3. Three semester credit hours of Calculus are counted under Mathematics Core and five semester credit hours of Calculus are counted under the Component Area Option Core.
4. Six hours of Physics (PHYS 2325 and PHYS 2326) are counted under Science Core and one hour (PHYS 2125) is counted under the Component Area Option Core.
5. Students must pass each of the EE, CS, Math and Science courses listed in this degree plan and each of their prerequisites, with a grade of C- or better.
6. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.
7. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.
Erik Jonsson School of Engineering and Computer Science

Department of Mechanical Engineering

Faculty

Professors: Xin-Lin Gao, Hongbing Lu, Mario A. Rotea, Seung M. You

Professor Emeritus: Louis R. Hunt

Associate Professors: Stefano Leonardi, Yaoyu Li, Dong Qian

Assistant Professors: Wonjae Choi, Robert D. Gregg, Fatemeh Hassanipour, Majid Minary, Wooram Park, Yonas Tadesse, Walter E. Voit

Senior Lecturers: Terry V. Baughn, Robert Hart, James Hilkert, Oziel Rios

Affiliated Faculty: Andrew J. Blanchard, Gerald O. Burnham, Yves J. Chabal, Kyeongjae (KJ) Cho, Bahak Fahimi, Bruce E. Gnade, Matthew J. Goeckner, Wenchuang (Walter) Hu, Jiyoung Kim, Moon J. Kim, Jeong-Bong Lee, Kaushik Rajashekara, Mark W. Spong, Mathukumalli Vidyasagar, Robert M. Wallace, Steve Yurkovich

Overview

The objective of the Bachelor of Science degree program in Mechanical Engineering is to produce Mechanical Engineering graduates who will be capable of undertaking challenging projects that require knowledge of the fundamentals and design of mechanical and thermal systems. The program seeks to build Mechanical Engineers to meet the needs of analysis, design, and development in industry, as well as to educate them to be innovators and policy makers. The BS degree program will provide the necessary training and education for future engineers who will effectively identify new problems and develop innovative solutions, including new manufacturing and fabrication technologies.

Mechanical Engineering (BS)

Program Educational Objectives for Mechanical Engineering
One broad goal for the Erik Jonsson School is to provide an excellent education for our students. Within a few years after graduation, graduates of the Mechanical Engineering Program should:

- Have a successful, long-lived engineering-based career path.
- Meet the needs of industry.
- Contribute to, and lead, engineering-based teams.
- Actively pursue life-long learning.

High School Preparation

Engineering education requires a strong high school preparation. Pre-engineering students should have high school preparation of at least one-half year in trigonometry and at least one year in elementary algebra, intermediate and advanced algebra, geometry, pre-calculus, chemistry, and physics, thus developing their competencies to the highest possible levels and preparing to move immediately into demanding college courses in calculus, calculus-based physics, and chemistry for science majors. It is also essential that pre-engineering students have the competence of reading comprehension, and to write logically, clearly and correctly.

ABET Accreditation

The BS program in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Lower-Division Study

All lower-division students in Mechanical Engineering concentrate on mathematics, science and introductory engineering courses, building competence in these cornerstone areas for future application in upper-division engineering courses. The following requirements apply both to students seeking to transfer to UT Dallas from other institutions as well as to those currently enrolled at UT Dallas, whether in another school or in the Erik Jonsson School of Engineering and Computer Science.

Academic Progress in Mechanical Engineering

In order to make satisfactory academic progress as a Mechanical Engineering major, a student must meet all University requirements for academic progress, and must earn a grade of C- or better in each of the "major requirements" courses. No "Major Requirements" course may be taken until the student has obtained a grade of C- or better in each of the prerequisites. If a higher grade requirement is stated for a specific class, the higher requirement applies.

Bachelor of Science in Mechanical Engineering

Degree Requirements (127 semester credit hours)

1. Core Curriculum Requirements 42 semester credit hours
Communication (6 semester credit hours)

RHET 1302 Rhetoric
ECS 3390 Professional and Technical Communication

Mathematics (3 semester credit hours)

MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

PHYS 2325 Mechanics
PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

ECS 3361 Social Issues and Ethics in Computer Science and Engineering

Component Area Option (6 semester credit hours)

MATH 2417 Calculus I
MATH 2419 Calculus II
PHYS 2125 Physics Laboratory

II. Major Requirements: 79 semester credit hours

Major Preparatory Courses (29 semester credit hours beyond Core Curriculum Requirements)
Major Core Courses (38 semester credit hours beyond Core Curriculum Requirements)

- ECS 3361 Social Issues and Ethics in Computer Science and Engineering
- ECS 3390 Professional and Technical Communication
- MECH 3105 Computer Aided Design Laboratory
- MECH 3115 Fluid Mechanics Laboratory
- MECH 3120 Heat Transfer Laboratory
- MECH 3150 Kinematics and Dynamics Laboratory
- ENGR 3300 Advanced Engineering Mathematics
- MECH 3305 Computer Aided Design
- MECH 3310 Thermodynamics
- MECH 3315 Fluid Mechanics
- MECH 3320 Heat Transfer
- ENGR 3341 Probability Theory and Statistics
- MECH 3350 Kinematics and Dynamics of Mechanical Systems
- MECH 3351 Design of Mechanical Systems
- MECH 4110 Systems and Controls Laboratory
- MECH 4310 Systems and Controls
- MECH 4381 Senior Design Project I
- MECH 4382 Senior Design Project II

Prescribed Electives (12 semester credit hours)

Students pursuing the general program take 12 semester credit hours from the list below:

- ECS 3310 Introduction to Materials Science
- MECH 4301 Intermediate Mechanics of Materials
- MECH 4320 Applications of Computational Tools in Thermal Fluid Science
MECH 4330 Intermediate Fluid Mechanics
MECH 4340 Mechanical Vibrations
MECH 4350 Applied Heat Transfer
MECH 4360 Introduction to Nanostructured Materials
MECH 4370 Introduction to MEMS

III. Elective Requirements: 6 semester credit hours

Free Electives (6 semester credit hours)

Both lower- and upper-division courses may count as free electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the University can be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.

Fast Track Baccalaureate/Master's Degrees

In response to the need for advanced education in Mechanical Engineering, a Fast Track program is available to well-qualified UT Dallas undergraduate students. The Fast Track program is designed to accelerate a student's education so that both a BS and an MS degree can be earned in five years of full-time study. This is accomplished by (1) taking courses (typically electives) during one or more summer semesters, and (2) beginning graduate coursework during the senior year. Details are available from the Associate Dean for Undergraduate Education.

Honors Program

The Department of Mechanical Engineering offers upper-division Honors for outstanding students in the BS Mechanical Engineering degree program. This program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to the Honors programs requires a 3.500 or better GPA in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes. These honors classes must include either Senior Honors (MECH 4399) or Undergraduate Research in Mechanical Engineering (MECH 4V98) and a Senior Honors Thesis must be completed within one of those two classes. While the topics may be related, the Senior Thesis does not replace the need for the student to complete a regular Senior Design Project. The other 5 honors classes can come from a mixture of Graduate level (up to a count of 4) classes and special honor sections of regular undergraduate MECH classes (up to a count of 2).

Departmental Honors with Distinction may be awarded to students whose Senior Honors Thesis is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies
to MS Theses in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

Minors

The Department of Mechanical Engineering does not offer minors at this time.

1. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Three semester credit hours of Calculus are counted under Mathematics Core, and five semester credit hours of Calculus are counted as Component Area Option Core.
3. Six semester credit hours of Physics (PHYS 2325, PHYS 2326) are counted as Science Core, one semester credit hour of Physics (PHYS 2125) is counted as Component Area Core.
4. Students must pass each of the “Major Requirements” courses listed in this degree plan and each of their prerequisites, with a grade of C- or better.
5. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.
6. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.
7. Semester credit hours fulfill the communication component of the Core Curriculum.
Erik Jonsson School of Engineering and Computer Science

Department of Computer Science

Computer Science (BS) and Software Engineering (BS)

Faculty

Professor Emeritus: Klaus Truemper

Associate Professors: Sergey Bereg, Lawrence Chung, Jorge A. Cobb, Kendra M. L. Cooper, Xiaohu Guo, Kevin Hamlen, Sandra M. Harabagiu, Murat Kantarcıoğlu, Yang Liu, Neeraj Mittal, Yu-Chung (Vincent) Ng, Kamil Sarac, Haim Schweitzer, Rym Zalila-Wenkstern

Assistant Professors: Alvaro Cárdenas, Mark Gabel, Vibhav Gogate, Zhiqiang Lin, Cong Liu, Ryan McMahan

Senior Lecturers: Ebru Cankaya, Michael Christiansen, John Cole, Timothy (Tim) Farage, Shyam Karrah, Pushpa Kumar, Linda Morales, Nhut Nguyen, Greg Ozbirn, Mark Paulk, Miguel Razo-Razo, Charles Shields Jr., Jason Smith, Janell Straach, Jeyakesavan (Jey) Veerasamy, Don Vogel.

The Computer Science Department offers the BS degree in Computer Science and the BS degree in Software Engineering. Both are based on a solid foundation of mathematics, including calculus, linear algebra, and discrete mathematics. These programs of study are designed to offer students opportunities to prepare for an industrial, business, or governmental career in a rapidly changing profession and to prepare for graduate study in a field in which further education is strongly recommended. The two programs have the same basis in core computer science, including the analysis of algorithms and data structures, modern programming methodologies, and the study of operating systems. The Computer Science program continues with courses in advanced data structures, programming languages, telecommunications networks, and automata theory, while the Software Engineering program include courses in requirements engineering.
software validation and testing, and software architecture, culminating in a challenging project course in which students must demonstrate use of software engineering techniques. Both programs offer a rich choice of elective studies, including courses in artificial intelligence, computer graphics, databases, and compiler design.

The school offers a "fast track” BS / MS option; see Fast Track Baccalaureate/Master's Degree Program.

Mission of the Department of Computer Science

The mission of the Department of Computer Science is to prepare undergraduate and graduate students for productive careers in industry, academia, and government by providing an outstanding environment for teaching, learning, and research in the theory and applications of computing. The Department places high priority on establishing and maintaining innovative research programs to enhance its education quality and make it an important regional, national and international resource center for discovering, integrating and applying new knowledge and technologies.

Software Engineering (BS)

Goals of the Software Engineering Program

The focus of the Software Engineering degree is to provide world class education in modern software engineering. The overall goals of the Bachelor of Science in Software Engineering Program are:

- To prepare students for software engineering positions in industry or government.
- To prepare students for graduate study in Software Engineering.
- To provide a solid foundation in Computer Science and Software Engineering principles that will allow graduates to adapt effectively in a quickly changing field.

Program Educational Objectives for Software Engineering

Within a few years after graduation, graduates of the Software Engineering Program should:

- Have a successful, long-lived, software engineering based career path
- Meet the needs of industry or academia
- Contribute to, and/or lead, software engineering based teams
- Actively pursue continuing (lifelong) learning

ABET Accreditation

The BS program in Software Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.
Bachelor of Science in Software Engineering

Degree Requirements (123 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)
- RHET 1302 Rhetoric
- ECS 3390 Professional and Technical Communication

Mathematics (3 semester credit hours)
- MATH 2413 Differential Calculus
- or MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)
- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture (3 semester credit hours)
Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)
Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)
Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)
- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
- ECS 3361 Social Issues and Ethics in Computer Science and Engineering

Component Area Option (6 semester credit hours)
II. Major Requirements: 70 semester credit hours

Major Preparatory Courses (20 semester credit hours beyond Core Curriculum)

- ECS 1200 Introduction to Engineering and Computer Science
- CS 1337 Computer Science I
- CS 2305 Discrete Mathematics for Computing I
- CS 2336 Computer Science II
- MATH 2413 Differential Calculus
 or MATH 2417 Calculus I
- MATH 2418 Linear Algebra
- MATH 2414 Integral Calculus
 or MATH 2419 Calculus II
- PHYS 2125 Physics Laboratory I
- PHYS 2126 Physics Laboratory II
- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves
 4 semester credit hours Science Elective

Major Core Courses (38 semester credit hours beyond Core Curriculum)

- SE 3162 Professional Responsibility in Computer Science and Software Engineering
- SE 3306 Mathematical Foundations of Software Engineering
- SE 3340 Computer Architecture
- SE 3341 Probability and Statistics in Computer Science and Software Engineering
- CS 3345 Data Structures and Introduction to Algorithmic Analysis
- CS 3354 Software Engineering
- ECS 3361 Social Issues and Ethics in Computer Science and Engineering
- SE 3376 C/C++ Programming in a UNIX Environment
- ECS 3390 Professional and Technical Communication
- CS 4348 Operating Systems Concepts
- SE 4351 Requirements Engineering
- SE 4352 Software Architecture and Design
- SE 4367 Software Testing, Verification, Validation and Quality Assurance
- SE 4381 Software Project Planning and Management
- SE 4485 Software Engineering Project

Major Guided Electives (12 semester credit hours)
SE guided electives are 4000 level CS/SE courses approved by the student's CS/SE advisor. The following courses may be used as guided electives without the explicit approval of an advisor:

- CS 4141 Digital Systems Laboratory
- CS 4314 Intelligent Systems Analysis
- CS 4315 Intelligent Systems Design
- CS 4334 Numerical Analysis
- CS 4337 Organization of Programming Languages
- CS 4341 Digital Logic and Computer Design
- CS 4349 Advanced Algorithm Design and Analysis
- CS 4352 Human Computer Interactions I
- CS 4353 Human Computer Interactions II
- CS 4361 Computer Graphics
- CS 4365 Artificial Intelligence
- CS 4375 Introduction to Machine Learning
- CS 4384 Automata Theory
- CS 4386 Compiler Design
- CS 4389 Data and Applications Security
- CS 4390 Computer Networks
- CS 4391 Introduction to Computer Vision
- CS 4392 Computer Animation
- CS 4393 Computer and Network Security
- CS 4394 Implementation of Modern Operating Systems
- CS 4395 Human Language Technologies
- CS 4396 Networking Laboratory
- CS 4397 Embedded Computer Systems
- CS 4398 Digital Forensics
- CS 4485 Computer Science Project
- EE 4325 Introduction to VLSI Design
- SE 4347 Database Systems
- SE 4376 Object-Oriented Programming Systems
- SE 4399 Senior Honors in Software Engineering

Application Domains (9 semester credit hours)

An important aspect of Software Engineering education is the use of software engineering concepts in a particular application domain. Students should use two or three of their guided electives to complete one of the applications domains below. Additional application domains may become available. Completing an application domain may require careful scheduling since many of these classes will not be offered every semester. It is strongly encouraged that you consult with an advisor.

Networks (9 semester credit hours)

- CS 4390 Computer Networks
- CS 4393 Computer and Network Security
CS 4396 Networking Laboratory

Information Assurance (9 semester credit hours)

- CS 4389 Data and Applications Security
- CS 4393 Computer and Network Security
- CS 4398 Digital Forensics

Embedded Systems (9 semester credit hours)

- CS 4141 Digital Systems Laboratory
- CS 4341 Digital Logic and Computer Design
- CS 4397 Embedded Computer Systems
- CS 4348 Operating Systems Concepts

Computer Imaging (9 semester credit hours)

- CS 4361 Computer Graphics
- CS 4391 Introduction to Computer Vision
- CS 4392 Computer Animation

Artificial Intelligence and Cognitive Modeling (9 semester credit hours; take 3 of 5)

- CS 4314 Intelligent Systems Analysis
- CS 4315 Intelligent Systems Design
- CS 4365 Artificial Intelligence
- CS 4375 Introduction to Machine Learning
- CS 4395 Human Language Technologies

Human-Computer Interaction (9 semester credit hours)

- CS 4352 Human Computer Interactions I
- CS 4353 Human Computer Interactions II
- CS 4361 Computer Graphics

III. Elective Requirements: 11 semester credit hours

Free Electives (11 semester credit hours)

All students must accumulate at least 123 semester credit hours of university credit to graduate. Both lower- and upper-division courses may count as free electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the University can
be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.

Fast Track Baccalaureate/Master's Degrees

In response to the need for post-baccalaureate education in the exciting field of software engineering, a Fast Track program is available to well-qualified UT Dallas undergraduate students. At the end of five years of successful study, it is possible to earn both the BS degree in Software Engineering and the MS degree in Computer Science or the MS degree in Computer Science with Major in Software Engineering. Qualified seniors may take up to 15 graduate semester credit hours that may be used to complete the baccalaureate degree and also to satisfy the requirements for the master's degree. Interested students should see the Associate Dean of Undergraduate Education (ADU) for specific requirements.

Interested students should see the Associate Dean of Undergraduate Education (ADU) for specific admission requirements to the Fast Track program.

Honors Programs

The Department of Computer Science offers two Honors Programs. The first program is an upper-division honors program for outstanding students in the BS in Computer Science and BS in Software Engineering degree programs. This Honors program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to this Honors program requires a 3.500 or better GPA in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes, including a Senior Thesis or Senior Design Project class. For more details, contact the Office of Undergraduate Advising (ECS South 2.502; 972-883-2004).

Departmental Honors with Distinction may be awarded to students whose Senior Thesis or Senior Design Project is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to MS Theses and PhD Dissertations in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

The second program, called Computer Science Computing Scholars (CS²) is an intense Bachelor of Science in Computer Science Degree Program created for exceptionally gifted students who wish to pursue a demanding course of study enriched throughout with research experiences. The Computing Scholars Program has a specially designed curriculum. Courses integrate discussion of current research, recent discoveries, and open problems into a rich logical progression of firmly related topics. Course numbers for the Core Curriculum Requirements and Major Requirements are the same as those for the Bachelor of Science in Computer Science, but
Computing Scholars take honors versions of the following courses: ECS 1200, CS 2305, CS 3305, CS 3340, CS 3341, CS 3345, CS 3354, CS 4141, CS 4337, CS 4341, CS 4348, CS 4349, CS 4384, CS 4485.

Admission to the program is mainly by nomination and invitation. Those invited to join the Computing Scholars Honors Program will have successfully completed a full and challenging high school curriculum, will have achieved high scores on the SAT or ACT tests, and will be about to graduate from high school, or equivalent, with high class rank.

Successful participants will graduate with the added distinction of a Computing Scholars Honors Diploma.

For more information about this program students should contact the Computer Science Department leadership.

Minors

A minor in Software Engineering requires 21 semester credit hours earned through the following courses:

- CS 1337 Computer Science I
- CS 2305 Discrete Mathematics for Computing I
- CS 2336 Computer Science II
- SE 3306 Mathematical Foundations of Software Engineering
- CS 3345 Data Structures and Introduction to Algorithmic Analysis
- CS 3354 Software Engineering
- SE 43XX Elective (any 4000-level organized SE class)

1. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Semester credit hours fulfill the communication elective of the Core Curriculum.
3. Three semester credit hours of Calculus are counted under Mathematics Core, and five semester credit hours of Calculus are counted as Component Area Option Core.
4. Six semester credit hours of Physics (PHYS 2125, PHYS 2126) are counted under Science Core. One semester credit hour of Physics (PHYS 2125) is counted as Component Area Option Core.
5. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.
6. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.
Erik Jonsson School of Engineering and Computer Science

Interdisciplinary Programs

The Erik Jonsson School of Engineering and Computer Science offers Bachelor of Science programs in Computer Engineering and in Telecommunications Engineering. These programs are delivered by faculty from the Department of Computer Science and Electrical Engineering.

Telecommunications Engineering (BSTE)

Affiliated Faculty

Professor Emeritus: William J. Pervin

Associate Professors: Jorge A. Cobb, Hlaing Minn, Neeraj Mittal, Kamil Sarac, Murat Torlak

Senior Lecturers: Charles (Pete) Bernardin, Nathan B. Dodge, P. K. Rajasekaran, Marco Tacca

Affiliated Faculty: Cong Liu

Goals for the Telecommunications Engineering Program

The focus of the UT Dallas' Telecommunications Engineering degree is to provide excellent education in modern communications networks and systems. Our graduates shall be uniquely qualified to apply traditional engineering design and problem solving skills in modern telecommunications.

Program Educational Objectives for Telecommunications Engineering

Within a few years after graduation, graduates of the Telecommunications Engineering Program should:
• Have a successful, long-lived, engineering based career path
• Meet the needs of industry
• Contribute to, and/or lead, engineering based teams
• Actively pursue continuing (lifelong) learning

High School Preparation

Engineering education requires a strong high school preparation. Pre-engineering students should have high school preparation of at least one-half year in trigonometry and at least one year each in elementary algebra, intermediate and advanced algebra, plane geometry, chemistry, and physics, thus developing their competencies to the highest possible levels and preparing to move immediately into demanding college courses in calculus, calculus-based physics, and chemistry for science majors. It is also essential that pre-engineering students have the competence to read rapidly and with comprehension, and to write clearly and correctly.

Lower-Division Study

All lower-division students in either Electrical Engineering or Telecommunications Engineering concentrate on mathematics, science and introductory engineering courses, building competence in these cornerstone areas for future application in upper-division engineering courses. The following requirements apply both to students seeking to transfer to UT Dallas from other institutions as well as to those currently enrolled at UT Dallas, whether in another school or in the Erik Jonsson School of Engineering and Computer Science.

ABET Accreditation

The BS program in Telecommunications Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Academic Progress in Telecommunications Engineering

In order to make satisfactory academic progress as a Telecommunications Engineering major, a student must meet all University requirements for academic progress, and must earn a grade of C- or better in each of the "major requirements" courses. No "Major Requirements" course (as listed under Section II of the BSTE degree requirement) may be taken until the student has obtained a grade of C- or better in each of the prerequisites (if a higher grade requirement is stated for a specific class, the higher requirement applies).

Bachelor of Science in Telecommunications Engineering

Degree Requirements (125 semester credit hours)

I. Core Curriculum Requirements$ 42 semester credit hours$

Communication (6 semester credit hours)
RHET 1302 Rhetoric
ECS 3390 Professional and Technical Communication

Mathematics (3 semester credit hours)
MATH 2417 Calculus I ³

Life and Physical Sciences (6 semester credit hours) ⁴
PHYS 2325 Mechanics
PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture (3 semester credit hours)
Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)
Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)
Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)
GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
ECS 3361 Social Issues and Ethics in Computer Science and Engineering

Component Area Option (6 semester credit hours)
MATH 2417 Calculus I ³
MATH 2419 Calculus II ³
PHYS 2125 Physics Laboratory ⁴

II. Major Requirements: 7⁷ semester credit hours

Major Preparatory Courses (25 semester credit hours beyond Core Curriculum)
CHEM 1111 General Chemistry Laboratory I
CHEM 1311 General Chemistry I
ECS 1200 Introduction to Engineering and Computer Science
CS 1337 Computer Science I
ENGR 2300 Linear Algebra for Engineers
TE 2305 Discrete Mathematics for Computing I
CS 2336 Computer Science II
TE 1202 Introduction to Electrical Engineering
MATH 2417 Calculus I
MATH 2419 Calculus II
MATH 2420 Differential Equations with Applications
PHYS 2125 Physics Laboratory I
PHYS 2126 Physics Laboratory II
PHYS 2325 Mechanics
PHYS 2326 Electromagnetism and Waves

Major Core Courses (52 semester credit hours beyond Core Curriculum)

CS 3340 Computer Architecture
CS 4141 Digital Systems Laboratory
CS 4341 Digital Logic and Computer Design
ECS 3361 Social Issues and Ethics in Computer Science and Engineering
ECS 3390 Professional and Technical Communication
EE 3150 Communications Systems Laboratory
ENGR 3300 Advanced Engineering Mathematics
EE 3350 Communications Systems
EE 4360 Digital Communications
EE 4361 Introduction to Digital Signal Processing
TE 3101 Electrical Network Analysis Laboratory
TE 3102 Signals and Systems Laboratory
TE 3301 Electrical Network Analysis
TE 3302 Signals and Systems
ENGR 3341 Probability Theory and Statistics
TE 3345 Data Structures and Introduction to Algorithmic Analysis
TE 4348 Operating Systems Concepts
TE 4365 Introduction to Wireless Communication
TE 4367 Telecommunication Networks
TE 4388 Senior Design Project I
TE 4389 Senior Design Project II
TE 4390 Computer Networks

III. Elective Requirements: 6 semester credit hours

Free Electives (6 semester credit hours)

Both lower-and upper-division courses may count as free electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.
Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the University can be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.

Fast Track Baccalaureate/Master's Degrees

In response to the need for advanced education in telecommunications engineering, a Fast Track program is available to well-qualified UT Dallas undergraduate students. The Fast Track program is designed to accelerate a student's education so that both a BSTE and an MSTE degree can be earned in five years of full-time study. This is accomplished by (1) taking courses (typically electives) during one or more summer semesters, and (2) beginning graduate coursework during the senior year. Details are available from the Associate Dean for Undergraduate Education.

Honors Program

The Telecommunications Engineering Program offers upper-division Honors for outstanding students in the BS Telecommunications Engineering degree program. This program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to the Honors programs requires a 3.500 GPA in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes. These honors classes must include either Senior Honors (CE 4399) or Undergraduate Research in Telecommunications Engineering (TE 4V98) and a Senior Honors Thesis must be completed within one of those two classes. (While the topics may be related, the Senior Thesis does not replace the need for the student to complete a regular Senior Design Project.) The other 5 honors classes can come from a mixture of Graduate level (up to a count of 4) classes and special honor sections of regular undergraduate TE classes (up to a count of 2). Current undergraduate honors courses include but are not limited to: CE 2310 or EE 2310 (H), EE 3350 or TE 3350 (H), CE 4399 and TE 4V98. Course grades in the 6 honor classes used to determine Honors status must be B- or higher to qualify.

Departmental Honors with Distinction may be awarded to students whose Senior Honors Thesis is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to MS Theses in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

Minors

The School of Engineering and Computer Science does not offer minors in Telecommunications Engineering at this time.
1. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. Semester credit hours fulfill the communication component requirement of the Core Curriculum.

3. Three semester credit hours of Calculus are counted under Mathematics Core, and five semester credit hours of Calculus are counted as Component Area Core.

4. Six semester credit hours of Physics are counted under Science Core; one semester credit hour of Physics (PHYS 2125) is counted under Component Area Core.

5. Students must pass each of the EE, CS, Math and Science courses listed in this degree plan and each of their prerequisites, with a grade of C- or better.

6. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.

7. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.
New stand-alone web page?

Erik Jonsson School of Engineering and Computer Science

Minors

Students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division semester credit hours. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). Semester credit hours may not be used to satisfy both the major and minor requirements; however, free elective hours or major preparatory classes may be used to satisfy the minor. Core courses offered by the school may count as lower-division hours toward the minor. Topics courses must be approved by the school.

The undergraduate minors in the Erik Jonsson School of Engineering and Computer Science are the following:

Department of Computer Science

- Computer Science
- Information Assurance
- **Software Engineering**

Department of Materials Science and Engineering

- Nanoscience and Technology

Department of Computer Science

Faculty

Professor Emeritus: Klaus Truemper

Associate Professors: Sergey Bereg, Lawrence Chung, Jorge A. Cobb, Kendra M. L. Cooper, Xiaohu Guo, Kevin Hanlen, Sandra M. Harabagiu, Murat Kantarcioglu, Yang Liu, Neeraj Mittal, Yu-Chung (Vincent) Ng, Kamul Sarac, Haim Schweitzer, Rym Zalila-Wenkstern
Assistant Professors: Alvaro Cárdenas, Mark Gabel, Vibhav Gogate, Zhiqiang Lin, Cong Liu, Ryan McMahan

Senior Lecturers: Ebru Cankaya, Michael Christiansen, John Cole, Chris I. Davis, Timothy (Tim) Farage, Shyam Karrah, Pushpa Kumar, Linda Morales, Nhut Nguyen, Greg Ozbirn, Mark Paulk, Miguel Razo-Razo, Charles Shields Jr., Jason W. Smith, Janell Straach, Jeyakesavan (Jey) Veerasamy, Don G. Vogel

Minor in Computer Science (21 semester credit hours)

A minor in Computer Science requires 21 semester credit hours earned through the following courses:

- **CS 1337** Computer Science I
- **CS 2305** Discrete Mathematics for Computing I
- **CS 2336** Computer Science II
- **CS 3305** Discrete Mathematics for Computing II
- **CS 3345** Data Structures and Introduction to Algorithmic Analysis
- **CS 3354** Software Engineering
- **CS 43XX** Elective (any 4000-level organized CS class or **CS 4390**)

Minor in Information Assurance (30 semester credit hours)

A minor in Information Assurance requires 30 semester credit hours earned through the following courses:

- **CS 1337** Computer Science I
- **CS 2305** Discrete Mathematics for Computing I
- **CS 2336** Computer Science II
- **CS 3305** Discrete Mathematics for Computing II
- **CS 3345** Data Structures and Introduction to Algorithmic Analysis
- **CS 4347** Database Systems
- **CS 4348** Operating Systems Concepts
- **CS 4389** Data and Applications Security
- **CS 4393** Computer and Network Security
- **CS 4398** Digital Forensics

Minor in Software Engineering (21 semester credit hours)

A minor in Software Engineering requires 21 semester credit hours earned through the following courses:

- **CS 1337** Computer Science I
- **CS 2305** Discrete Mathematics for Computing I
- **CS 2336** Computer Science II
- **SE 3306** Mathematical Foundations of Software Engineering
- **CS 3345** Data Structures and Introduction to Algorithmic Analysis
CS 3354 Software Engineering
SE 43XX Elective (any 4000-level organized SE class)

Department of Materials Science and Engineering

Faculty

Professors: Orlando Auciello, Yves J. Chabal, Kyeongjae (KJ) Cho, Massimo V. Fischetti, Bruce E. Gnade, Julia W. P. Hsu, Jiyoung Kim, Moon J. Kim, Robert M. Wallace

Professor Emeritus: Don Shaw

Research Professor: Padmakumar Nair

Associate Professors: Lev D. Gelb, Manuel Quevedo-Lopez, Amy V. Walker

Assistant Professors: Cong Liu, Christopher L. Hinkle, Walter E. Voit, Chadwin D. Young

Senior Lecturers: Michael Christiansen, Chris I. Davis, Jason W. Smith, Don Vogel

Minor in Nanoscience and Technology (18 semester credit hours)

Goals for the Minor in Nanoscience and Technology

As the field of nanotechnology develops further, particularly in the north Texas region, The University of Texas at Dallas has an important role to play in the education of knowledge workers for the industry. The Minor in Nanoscience and Technology offered by the Department of Materials Science and Technology provides a means for undergraduate students to familiarize themselves with the concepts and principles of nanotechnology.

This minor has been designed around three core NANO designated courses, the content of which is exclusively related to Nanoscience and Nanotechnology. The remaining nine semester credit hours of courses may be chosen from the list of courses below.

The contents of the courses **BIOL 4461**, **CHEM 3322**, and **PHYS 4301** are similar enough that only one of these three courses may count toward the minor. In addition, several lower-division electives have been included to provide streamlined access to the available upper-division electives.

Since the three core courses are all upper-division electives, only one of the remaining nine semester credit hours must be an upper-division course, although students may choose to challenge themselves by pursuing all nine semester credit hours as upper-division electives.
In concordance with the creation of this minor, the Nanoscience (NANO) course designation would be added to the course catalog for use in designating future Nanoscience-specific courses as they are created.

Educational Objectives for the Minor in Nanoscience and Technology

On completion of the Minor program, students will:

- Have a comprehensive general education background
- Have a working knowledge of nanotechnology and nanoscience principles and industry applications
- Be able to apply key concepts in materials science, chemistry, physics, biology, and engineering to the field of nanotechnology
- Understand the societal and technology issues that may impede the adoption of nanotechnology
- Have the ability to communicate effectively and work collaboratively
- Be able to become successful professionals and, if they desire, be able to pursue graduate study
- Be able to identify career paths and requisite knowledge and skills for career change towards nanotechnology

Requirements for the Minor in Nanoscience and Technology

A total of 18 semester credit hours are required, consisting of three core classes (9 semester credit hours) and 9 additional semester credit hours of electives.

I. Core Requirements: 9 semester credit hours

NANO 3301 Introduction to Nanoscience and Nanotechnology
NANO 3302 Microscopy, Spectroscopy, and Nanotech Instrumentation
NANO 4V95 Undergraduate Research in Nanotechnology

II. Elective Requirements: 9 semester credit hours

Students must complete at least nine semester credit hours chosen from the following courses. At least one of the courses must be upper-division (3000 or 4000):

Nano-designated courses:

NANO 3310 Introduction to Materials Science
NANO 4391 or EE 4391 Technology of Plasma
NANO 4V95 Undergraduate Research in Nanotechnology
Any other upper-division NANO-designated course

Lower-division courses:
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
MATH 2451 Multivariable Calculus with Applications
PHYS 2303 Contemporary Physics
MECH 2320 Mechanics of Materials

Upper-division courses:

PHYS 4352 Concepts of Modern Physics
PHYS 4383 Plasma Physics
MECH 4360 Introduction to Nanostructured Materials
MECH 4370 Introduction to MEMS
EE 4392 Introduction to Optical Systems
EE 3310 Electronic Devices
EE 3311 Electronic Circuits
CHEM 4335 Polymer Chemistry
CHEM 3472 Instrumental Analysis
CHEM 4475 Physical Measurements Laboratory
CHEM 3321 Physical Chemistry I
CHEM 4355 Computational Modeling

Only one of the following courses may be used to count toward the Minor:

BIOL 4461 Biophysical Chemistry
CHEM 3322 Physical Chemistry II
PHYS 4301 Quantum Mechanics I
School of Interdisciplinary Studies

The School of Interdisciplinary Studies provides an environment that allows students to understand and integrate the liberal arts and sciences. The school administers interdisciplinary degree programs that afford students the opportunity to design their degree plans on an individualized basis. To assist the student in pursuing a course of study leading to successful completion of an undergraduate degree, the school provides a unique support structure. Included in this structure is the school's Internship Program that supports professional work experience in diverse career settings. The educational environment of Interdisciplinary Studies is especially congenial to students eager to pursue unconventional or innovative combinations of coursework.

Faculty

All faculty in the university are eligible to participate.

Professors: George W. Fair, Karen J. Prager, Lawrence J. Redlinger

Associate Professor: Erin A. Smith

Senior Lecturers: Kathleen Byrnes, Candice T. Chandler, Susan P. Chizeck, Dachang Cong, Jillian Duquaine-Watson, Jonathan Frame, Patricia A. Leek, Lynn Mabe, Angela McNulty, Rebekah Nix, Elizabeth M. Salter, Nancy C. Van, Tonja Wissinger

Programs

The School of Interdisciplinary Studies administers the programs for the Bachelor of Arts in American Studies, the Bachelor of Science in Healthcare Studies, the Bachelor of Arts in Interdisciplinary Studies, and the Bachelor of Science in Interdisciplinary Studies. The program in American Studies is designed for students who wish to learn more about United States' institutions, arts, and society, both in the past and present. The Bachelor of Science in Healthcare Studies is designed for those planning to enter the healthcare professions and affiliated fields. The Bachelor of Arts and the Bachelor of Science in Interdisciplinary Studies Programs emphasize a broad learning experience and a wider perspective than that provided by traditional undergraduate majors. All programs are designed for students who wish to choose among conventional disciplines, both to explore a variety of topics and to integrate courses focusing on a particular area of interest. They are also appropriate for those students who seek a thorough grounding in the traditional arts and sciences from an interdisciplinary perspective. For students in other schools who wish to broaden their education by including a School of Interdisciplinary Studies program, the double degree is recommended. This option calls for a minimum of 30 semester credit hours at the upper division beyond those necessary for the major with the larger semester credit hour requirement. In addition, the student must satisfy all requirements for both majors. The School of Interdisciplinary Studies encourages double majors in American Studies.
and Healthcare Studies, but a double major is not an option in Interdisciplinary Studies. Students seeking to double major in American Studies or Healthcare Studies must consult with the Associate Dean for Undergraduate Education in the School of Interdisciplinary Studies. The School of Interdisciplinary Studies is now working in collaboration with the Health Professions Advising Center to offer health courses under the prefix of HLTH. In order to graduate with a degree from the School of Interdisciplinary Studies, students must complete 51 semester credit hours of upper-division coursework. They must complete a minimum of 45 semester credit hours at UT Dallas. In the final semester, all the coursework should be taken at UT Dallas.

Internship Program

All undergraduates in the School of Interdisciplinary Studies are encouraged to take an internship with an organization in the community. Internships provide students with the opportunity to apply the knowledge and skills that they have mastered in their academic work. Students applying for internships must be in their junior or senior year and in good academic standing, have completed the appropriate coursework, and receive approval of the Internship Director. Students normally enroll for 3 to 6 semester credit hours. Students interested in the program should see the Internship Director of the School of Interdisciplinary Studies or call 972/883-2354.

Honors in the Major

The School of Interdisciplinary Studies offers Honors Programs, which vary, by major, and provide an intellectually challenging opportunity for the brightest and best students in the School of Interdisciplinary Studies.

Junior and Senior students with a cumulative UT Dallas GPA of 3.900 are eligible to apply for the honors programs, which consist of a defined curriculum of 30 semester credit hours, including an upper-division writing course, and an internship component. Due to our high GPA entrance requirements, an honors thesis is not required for honors in the major. For Honors with distinction, however, an honors thesis is required. This thesis must be submitted at least one week before the end of classes, and must be nominated by the supervising professor as being of exceptional quality. The faculty of the school (or a subgroup thereof) will then determine if the thesis warrants this level of distinction. Students must apply for Departmental Honors through their academic advisor at the time they apply for graduation. For applications and more details, please consult your Interdisciplinary Studies academic advisor.

Minors

Minors offered by the School of Interdisciplinary Studies are available to students in all majors except for students taking the Bachelor of Arts or the Bachelor of Science in Interdisciplinary Studies. There is no minor offered in Interdisciplinary Studies. Students enrolled in the Bachelor of Arts in American Studies and the Bachelor of Science in Healthcare Studies are encouraged to take any minor offered by any school at the University. Students may also contact the academic advisor in their major for a list of the courses that satisfy each minor. Students who take a minor
will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). Minors available within the School of Interdisciplinary Studies are:

- American Studies
- Environmental Studies
- Exercise Sciences
- Gender Studies
- Healthcare Studies
School of Interdisciplinary Studies

American Studies (BA)

The program in American Studies focuses on the study of the cultures, institutions, legal system, political structure, and social processes of the United States. It emphasizes an interdisciplinary perspective. Students choose two broad areas or options to study.

American Studies graduates work in business, culture industries, government, legal fields, media, non-profit organizations, and sports industries. The BA in American Studies is also an excellent preparation for law school or graduate school. Each student designs his or her own program within specific guidelines and in consultation with an academic advisor. The courses that a student takes as part of the American Studies program may be given in any school within the university but will include American Studies courses and appropriate Interdisciplinary Studies courses. A list of courses which apply to the American Studies degree may be obtained from the academic advisors in the School of Interdisciplinary Studies. Double majors including American Studies are encouraged.

Bachelor of Arts in American Studies

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- COMM 1311 Survey of Oral and Technology-based Communication
- RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

One of the following:

- MATH 1306 College Algebra for the Non-Scientist
- MATH 1314 College Algebra

Life and Physical Sciences (6 semester credit hours)

Two of the following:
ISIS 2305 Humans: Our Place in Nature
ISIS 2308 Bones, Bodies, and Disease
ISNS 2359 Earthquakes and Volcanoes
ISNS 2367 The Oceans
ISNS 2368 Weather and Climate

Or select any 6 semester credit hours from Life and Physical Sciences core courses

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

AMS 2300 American Popular Culture
AMS 2341 American Studies for the Twenty-First Century
HUMA 1301 Exploration of the Humanities
PHIL 1301 Introduction to Philosophy

Or select any 3 semester credit hours from Language, Philosophy and Culture core courses

Creative Arts (3 semester credit hours)

One of the following:

AHST 2331 Understanding Art
ARTS 1301 Exploration of the Arts
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film

Or select any 3 semester credit hours from Creative Arts core courses

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 hours)
One of the following:

CLDP 2314 Lifespan Development or PSY 2314 Lifespan Development
CRIM 1301 Introduction to Criminal Justice
GST 2300 Introduction to Gender Studies
SOC 1301 Introduction to Sociology

There are other core courses to choose from. Students are strongly encouraged to take a core course that is closely related to their options and career goals.

Component Area Option (6 semester credit hours)

Students are strongly encouraged to take two CAO courses that are closely related to their options and career goals.

II. Major Requirements: (48 semester credit hours)

Major Core Courses (12 semester credit hours)

AMS 3302 American Cultures
or AMS 2341 American Studies for the Twenty-First Century
BIS 3320 The Nature of Intellectual Inquiry

Two of the following courses:

HIST 3369 United States Foreign Relations
PSCI 3325 American Public Policy
PSCI 3327 American Foreign Policy

And other courses on American history or American government approved by the academic advisor.

Major Related Courses: Two Options (36 semester credit hours)

In addition to the major core courses, students will take 18 semester credit hours of coursework in each of two of the following disciplinary options, for a total of 36 semester credit hours:

- African American Culture
- American Body Politic
- American Economic System
- American Legal System
- American Past and Present
- America and the World Community
- American Business and Technology
- American Literature and Arts
- Gender Studies
III. Elective Requirements: (30 semester credit hours)

Required for all freshmen (1 semester credit hour)

UNIV 1010 Freshman Seminar
BIS 1100 Interdisciplinary Studies Freshman Seminar

Free Electives (29 semester credit hours)

Students must complete 51 semester credit hours of upper-division coursework to graduate. They must complete a minimum of 45 semester credit hours at UT Dallas. In the final semester, all the coursework should be taken at UT Dallas.

Honors in American Studies

GPA: 3.900 cumulative GPA, 3.900 GPA in courses described below, and a total of 27 or 30 upper-division UT Dallas semester credit hours as described below. (The variation is determined by whether or not (AMS 3302) or (AMS 2341) is chosen). The total semester credit hours must be 30.

Required courses (24 semester credit hours):

AMS 3302 American Cultures (3 semester credit hours)
or AMS 2341 American Studies for the Twenty-First Century (3 semester credit hours)
BIS 3320 The Nature of Intellectual Inquiry (3 semester credit hours)
Two of HIST 3369, PSCI 3325, PSCI 3327 or other courses on American history or American government approved by the academic advisor (6 semester credit hours)
Core Course of first chosen option area (3 semester credit hours)
Core Course of second chosen option area (3 semester credit hours)
One approved AMS course from option area 1 (3 semester credit hours)
One approved course from option area 2 (3 semester credit hours)

Prescribed courses: (6 semester credit hours)

6 semester credit hours of Internship

Or 3 semester credit hours of Internship and one approved three semester credit hour course from option area 1 or 2

Notation on Transcript: Honors in Major

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient.
Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed in parentheses are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
School of Interdisciplinary Studies

Healthcare Studies (BS)

Overview

The Bachelor of Science degree in Healthcare Studies is designed for pre-health students who want to pursue careers in healthcare fields such as medicine, pharmacy, dentistry, optometry, physical therapy, health care administration, occupational therapy, physician assisting, and podiatry.

The school of Interdisciplinary Studies offers the degree, which provides the academic foundation for pre-health students to prepare for advanced study as well as the essential knowledge components in healthcare studies.

Science foundation areas within the degree include biology, chemistry, and physics. Healthcare studies areas include pre-health professional development, a healthcare internship, medical terminology, psychological aspects of health and illness, understanding of the U.S. healthcare system, patient education, and prevention.

Bachelor of Science in Healthcare Studies

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements 42 semester credit hours

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

One of the following

MATH 1325 Applied Calculus I
MATH 2413 Differential Calculus
MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)
CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

One of the following:
HUMA 1301 Exploration of the Humanities
PHIL 1301 Introduction to Philosophy

Or select any 3 semester credit hours from Language, Philosophy and Culture core courses

Creative Arts (3 semester credit hours)

One of the following:
AHST 2331 Understanding Art
ARTS 1301 Exploration of the Arts
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film

Or select any 3 semester credit hours from Creative Arts core courses

American History (6 semester credit hours)

Two of the following:
HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

PSY 2301 Introduction to Psychology

Component Area Option (6 semester credit hours)
II. Major Requirements: 47 semester credit hours

Major Core Course (3 semester credit hours)

BIS 3320 The Nature of Intellectual Inquiry

Foundation I: Scientific Foundation Studies (15 semester credit hours beyond Core Curriculum)

BIOL 2311 Introduction to Modern Biology I
BIOL 2312 Introduction to Modern Biology II
BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2112 Introduction to Modern Biology Workshop II
CHEM 1311 General Chemistry I
CHEM 1111 General Chemistry Laboratory I
CHEM 1312 General Chemistry II
CHEM 1112 General Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2325 Introductory Organic Chemistry II
CHEM 2125 Introductory Organic Chemistry Laboratory II

Foundation II: Healthcare Foundation Studies (14 semester credit hours)

HLTH 1100 Career Exploration for the Health Professions
HLTH 1322 Human Nutrition
HLTH 3101 Medical Terminology
HLTH 3300 Pre-Health Professional Development
HLTH 3305 The U.S. Healthcare System
HLTH 4304 Health Professions Internship

Foundation III: Multidisciplinary Healthcare Studies (15 semester credit hours)

Required (9 semester credit hours):
HLTH 3301 Issues in Geriatric Healthcare
HLTH 3315 Issues in Patient Education
PSY 4328 Health Psychology or PSY 2314 Lifespan Development

And choose 6 semester credit hours from among the following:

ECON 3330 Economics of Health
GEOG 3357 Spatial Dimensions of Health and Disease
HLTH 3310 Health Care Issues: Global Perspectives

HLTH 4380 Special Topics in Healthcare
HMGT 4301 Introduction to Healthcare Management
PHIL 4320 Medical Ethics
PHIL 4321 Philosophy of Medicine
PSCI 4365 Law and Medicine
SOC 4369 Public Health and Society
SOC 4371 Mental Health and Illness
SOC 4372 Health and Illness

III. Prescribed Elective Requirements: 22 semester credit hours

Required for all freshmen (1 semester credit hour)

UNIV 1010 Freshman Seminar
BIS 1100 Interdisciplinary Studies Freshman Seminar

Prescribed Electives (21 semester credit hours)

Students interested in pursuing entrance into health professional fields, (such as medical, dental, pharmacy, physician assistant, physical therapy, optometry, etc.) should seek advising on additional courses required for entrance into the particular professional school of their interest. A subset of the following courses should be considered essential and should be taken as part of their elective credits.

BIOL 2281 Introductory Biology Laboratory
BIOL 3301 Classical and Molecular Genetics
BIOL 3101 Classical and Molecular Genetics Workshop
BIOL 3302 Eukaryotic Molecular and Cell Biology
BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
BIOL 3361 Biochemistry I
BIOL 3161 Biochemistry Workshop I
BIOL 3362 Biochemistry II
BIOL 3162 Biochemistry Workshop II
BIOL 3455 Human Anatomy and Physiology with Lab I
BIOL 3456 Human Anatomy and Physiology with Lab II
BIOL 3370 Exercise Physiology
BIOL 3V20 General Microbiology with Lab
HLTH 4V01 Health Professions Independent Study
ISIS 2308 Bones, Bodies, and Disease
ISIS 3309 Dental Anthropology
NSC 3361 Behavioral Neuroscience
IV. Elective Requirements: 9 semester credit hours

Guided Electives: 9 semester credit hours

Students must complete a total of 51 semester credit hours of upper-division coursework to graduate. A minimum of 45 semester credit hours must be taken at UT Dallas. All the coursework in the final semester must be taken at UT Dallas.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed in parentheses are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A required major course that also fulfills a core curriculum requirement. Semester credit hours are counted in the Core Curriculum.
School of Interdisciplinary Studies

Interdisciplinary Studies (BA, BS)

The Bachelors' degrees in Interdisciplinary Studies (BAIS) emphasize a broad learning experience and a wider perspective than that provided by traditional undergraduate majors. They are designed to offer the student the opportunity to participate in an interdisciplinary, coherent, academically sound, and goal-oriented education directly relevant to the student's intellectual development and career aspirations. They are appropriate for those students who seek a thorough grounding in the traditional arts and sciences from an interdisciplinary perspective. Each student in the Interdisciplinary Studies program becomes an active partner in the formulation of his or her program of study, working in consultation with an academic advisor to devise an appropriate individual degree plan. Within the framework of two foundation areas, a university-wide Interdisciplinary Studies sequence, and a multidisciplinary concentration, a student may draw upon the resources of all schools of the university to create a degree program.

Common areas of concentration for the BAIS are business issues, environmental studies, human resources, international relations, law, public relations, urban studies, and courses toward Teacher Certification (EC-6 and 4-8). Graduates have been accepted into graduate programs in divinity, education, environmental studies, the health professions, humanities, interdisciplinary studies, law, management, and social sciences. The BS in Interdisciplinary Studies is selected by students interested in environmental studies, the health professions, and other science-related fields. Students interested in pre-health are advised to contact Head of the Healthcare Studies during their first semester.

Minors and Double Majors are not allowed in these two Interdisciplinary Studies degrees. In order to make the Interdisciplinary Studies degrees reflect their name, no more than 21 semester credit hours of courses with the same prefix are allowed in the combined major requirements and the 6 semester credit hours of electives. (All courses taught by the Naveen Jindal School of Management courses count as a single prefix.) In the major requirements and 6 semester credit hours of electives, there must be a minimum of 51 semester credit hours of upper-division courses. In the concentration, a minimum of three (3) prefixes must be represented. Please consult an academic advisor for further elucidation.

Bachelor of Arts in Interdisciplinary Studies

Degree Requirements (120 semester credit hours)

1. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)
COMM 1311 Survey of Oral and Technology-based Communication

RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

One of the following:

MATH 1306 College Algebra for the Non-Scientist
MATH 1314 College Algebra
MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

Two of the following:

ISIS 2305 Humans: Our Place in Nature
ISIS 2308 Bones, Bodies, and Disease
ISNS 2359 Earthquakes and Volcanoes
ISNS 2367 The Oceans
ISNS 2368 Weather and Climate

Or select any 6 semester credit hours from Life and Physical Sciences core courses

Language, Philosophy and Culture (3 semester credit hours)

One of the following:

AMS 2300 American Popular Culture
AMS 2341 American Studies for the Twenty-First Century
HUMA 1301 Exploration of the Humanities
PHIL 1301 Introduction to Philosophy

Or select any 3 semester credit hours from Language, Philosophy and Culture core courses

Creative Arts (3 semester credit hours)

One of the following:

AHST 2331 Understanding Art
ARTS 1301 Exploration of the Arts
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film
Or select any 3 semester credit hours from Creative Arts core courses

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

One of the following:

CLDP 2314 Lifespan Development or PSY 2314 Lifespan Development
CRIM 1301 Introduction to Criminal Justice
GST 2300 Introduction to Gender Studies
SOC 1301 Introduction to Sociology

There are other core courses to choose from. Students are strongly encouraged to take a core course that is closely related to their foundations, concentrations, and career goals.

Component Area Option (6 semester credit hours)

Students are strongly encouraged to take two CAO courses that are closely related to their foundations, concentrations, and career goals.

II. Major Requirements: **54 semester credit hours**

Major Core Courses (12 semester credit hours)

BIS 3320 The Nature of Intellectual Inquiry
One 3 semester credit hour ISIS course
One 3 semester credit hour IS course offered by another school (ISAH, ISEC, ISNS, or ISSS)
One 3 semester credit hour course chosen from AMS, GST or ISIS, or BIS 4V04 Internship

Major Related Courses (42 semester credit hours) consisting of:

Two Foundations: 12 semester credit hours each (24 semester credit hours)
The two foundations are drawn from School of Arts and Humanities, School of Behavioral and Brain Sciences, Erik Jonsson School of Engineering and Computer Science, School of Economic, Political and Policy Sciences, School of Interdisciplinary Studies, Naveen Jindal School of Management, and School of Natural Sciences and Mathematics.

One Concentration: 18 semester credit hours

Each student devises, in consultation with his/her advisor, the topic for the Concentration and selects 18 semester credit hours of coursework related to the topic, drawn from at least three academic disciplines.

Appropriate IS coursework may be selected.

III. Elective Requirements: 24 semester credit hours

Guided Elective (1 semester credit hour)

UNIV 1010 Freshman Seminar
BIS 1100 Interdisciplinary Studies Freshman Seminar

Free Electives (23 semester credit hours)

Students must complete 51 semester credit hours of upper-division coursework to graduate. A minimum of 45 semester credit hours must be taken at UT Dallas. All the coursework in the final semester must be taken at UT Dallas.

Honors in Interdisciplinary Studies (BA)

GPA: 3.900 cumulative GPA, 3.900 GPA in courses as described below, and a total of 30 upper-division UT Dallas semester credit hours as described below.

Required courses (9 semester credit hours)

BIS 3320 The Nature of Intellectual Inquiry (3 semester credit hours)
Foundation I (3 semester credit hours)
Foundation II (3 semester credit hours)

Concentration (15 semester credit hours)

Options: (6 semester credit hours)

- 6 semester credit hours of Practice Teaching
- 6 semester credit hours of Internship
- or 3 semester credit hours of Internship and one three semester credit hour ISIS/AMS/GST course
Notation on Transcript: Honors in Major

Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

Bachelor of Science in Interdisciplinary Studies

Degree Requirements (120 semester credit hours)

1. **Core Curriculum Requirements**: 42 semester credit hours

Communication (6 semester credit hours)

- COMM 1311 Survey of Oral and Technology-based Communication
- RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

- One of the following:
 - MATH 1325 Applied Calculus I
 - MATH 2413 Differential Calculus
 - MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

- CHEM 1311 General Chemistry I
- CHEM 1312 General Chemistry II

 Or select any 6 semester credit hours from Life and Physical Sciences core courses

Language, Philosophy and Culture (3 semester credit hours)

- One of the following:
 - HUMA 1301 Exploration of the Humanities
 - PHIL 1301 Introduction to Philosophy

 Or select any 3 semester credit hours from Language, Philosophy and Culture core courses

Creative Arts (3 semester credit hours)
One of the following:

AHST 2331 Understanding Art
ARTS 1301 Exploration of the Arts
DRAM 1310 Understanding Theater
FILM 2332 Understanding Film

Or select any 3 semester credit hours from Creative Arts core courses

American History (6 semester credit hours)

Two of the following:

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War
HIST 2301 History of Texas

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

PSY 2301 Introduction to Psychology

There are other core courses to choose from.

Component Area Option (6 semester credit hours)

BIOL 2311 Introduction to Modern Biology I

And one of the following courses in mathematics:

MATH 1326 Applied Calculus II (if MATH 1325 Applied Calculus I is taken)
MATH 2414 Integral Calculus or MATH 2415 Calculus of Several Variables
(if MATH 2413 Differential Calculus is taken)
MATH 2419 Calculus II (if MATH 2417 Calculus I is taken)

II. Major Requirements: 54 semester credit hours

Major Core Courses (12 semester credit hours)

Three Science IS courses and
BIS 3320 The Nature of Intellectual Inquiry.
Major Related Courses (42 semester credit hours) consisting of:

Two Foundations: 12 semester credit hours each (24 student semester credit hours)

Foundation I consists of courses taught by School of Natural Sciences and Mathematics and Erik Jonsson School of Engineering and Computer Science, or Science courses from the School of Behavioral and Brain Sciences.

Foundation II is drawn from the courses taught by School of Arts and Humanities, School of Behavioral and Brain Sciences (if not used for Foundation I), Erik Jonsson School of Engineering and Computer Science (if not used in Foundation I), School of Economic, Political and Policy Sciences, School of Interdisciplinary Studies, and Naveen Jindal School of Management.

One Concentration: 18 semester credit hours

Each student devises, in consultation with his/her advisor, the topic for the Concentration and selects 18 semester credit hours of coursework related to the topic, drawn from at least three academic disciplines. Appropriate IS coursework may be selected. Three courses must be science courses and one must be a statistics course.

III. Elective Requirements: 24 semester credit hours

Guided Elective (1 semester credit hour)

UNIV 1010 Freshman Seminar
BIS 1100 Interdisciplinary Studies Freshman Seminar

Free Electives (23 semester credit hours)

Honors in Interdisciplinary Studies (BS)

GPA: 3.900 cumulative GPA, 3.900 GPA in courses described below, and a total of 30 upper-division UT Dallas semester credit hours as described below.

Required courses (9 semester credit hours)

BIS 3320 The Nature of Intellectual Inquiry (3 semester credit hours)
Foundation I - Natural Science and Mathematics (6 semester credit hours)

Concentration (15 semester credit hours)

Options (6 semester credit hours)

6 semester credit hours of Practice Teaching
6 semester credit hours of Internship
Or 3 semester credit hours of Internship and one three semester credit hour ISIS/AMS/GST course

Notation on Transcript: Honors in Major

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
Minors offered by the School of Interdisciplinary Studies are available to students in all majors except for students taking the Bachelor of Arts or the Bachelor of Science in Interdisciplinary Studies. There is no minor offered in Interdisciplinary Studies. Students enrolled in the Bachelor of Arts in American Studies and the Bachelor of Science in Healthcare Studies are encouraged to take any minor offered by any school at the University. Students may also contact the academic advisor in their major for a list of the courses that satisfy each minor. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). Minors available within the School of Interdisciplinary Studies are:

- American Studies
- Environmental Studies
- Exercise Sciences
- Gender Studies
- Healthcare Studies

Minor in American Studies (18 semester credit hours)

The minor in American studies will facilitate a better understanding of American culture, economy, politics, and society.

Required Courses (6 semester credit hours)

- AMS 3302 American Cultures
- BIS 3320 The Nature of Intellectual Inquiry

Electives (12 semester credit hours)

Choose 4 from the following:

- AMS 2300 American Popular Culture
- AMS 3321 American Ethnic Experience: Immigrants Before 1945
- AMS 3322 American Ethnic Experience: Immigrants After 1945
- AMS 3326 The United States in the Twenty-First Century
- AMS 3374 Entrepreneurs in America
- AMS 4304 Communication in America
Minor in Environmental Studies (18 semester credit hours)

This minor will provide students from all majors with a better understanding of environmental issues and the skills to analyze future environmental problems. The name "Environmental Studies" reflects the goal of this interdisciplinary minor to encourage students to learn to view environmental issues from scientific, economic, political, and social standpoints. The 18 semester credit hours of the Environmental Sciences minor enable UT Dallas students to develop expertise in this important area. The framework provides all students with a policy and science perspective and allows students to tailor the minor, through choice of electives, to their individual goals. Students will be strongly encouraged to include an Environmental Studies Internship/Project (BIS 3310) in their minor though it may not be possible for all students.

The Environmental Studies minor will be housed within the School of Interdisciplinary Studies with a Supervisory Committee consisting of Dr. Elizabeth Salter and the professors of the two required courses, Dr. Lloyd Dumas and Dr. Thomas Brikowski.

Required **Foundation Courses (6 semester credit hours)**

- ECON 4336 Environmental Economic Theory and Policy
- NATS 2333 Energy, Water, and the Environment

Electives (12 semester credit hours)

Choose 4 from the following list, or three from the list with one alternate course accompanied by written permission of the Supervisory Committee.

- BIOL 4324 Field Ecology
- BIS 3310 Environmental Studies Project (This course is strongly recommended.)
- CHEM 4381 Green Chemistry and Green Fuels
- ECON 4332 Energy and Natural Resources Economics
- ECON 4333 Environmental Economics
- GEOS 2302 The Global Environment
- GEOS 2310 Environmental Geology
- GEOS 2324 Energy, the Environment and Human Health
- GEOS 2321 Geology, Resources and Environment of Latin America
- GEOS 4V08 Special Topics in Geology or Geophysics (when topic is applicable for Environmental Studies)
- HIST 4368 North American Environmental History
- ISIS 3390 Costa Rica Field Trip
- ISNS 2367 The Oceans
- ISNS 2368 Weather and Climate
Minor in Exercise Sciences (18 semester credit hours)

The minor in Exercise Sciences is ideal for students who are interested in broadening their experience and knowledge base in the study and analysis of principles related to human movement, exercise, and athletics. Students will acquire new information on key domains of the field including exercise physiology, psychological approach to health, nutrition principles, injury prevention, and treatment strategies. Specifically, the minor provides students with an introductory grounding in physiologic principles that help us understand not only how human systems respond to exercise stress, but also how the body changes with chronic exercise stress.

Required Courses (9 semester credit hours)

- HLTH 1301 Introduction to Kinesiology
- HLTH 1322 Human Nutrition
- BIOL 3370 Exercise Physiology

Upper-Division Courses (9 semester credit hours)

- BIOL 3455 Human Anatomy and Physiology with Lab I
- BIOL 3456 Human Anatomy and Physiology with Lab II
- ECON 3315 Sports Economics
- HLTH 3101 Medical Terminology
- PHYS 3317 Physics of the Human Body
- PSY 4328 Health Psychology

Minor in Gender Studies (18 semester credit hours)

The Gender Studies minor is designed to examine the ways in which gender as a complex social construction intersects with class, race, age, ethnicity, nationality, sexual orientation, and sexual identity; to examine the lives and experiences of groups that have been underrepresented in traditional academic work; and to acquaint students with the fundamental methodologies of women's and gender studies.

Required Courses (9 semester credit hours)

- GST 2300 Introduction to Gender Studies
- And two of the following:
 - GST 3301 or PSY 3324 Psychology of Gender
 - GST 3302 or HIST 3302 Gender in Western Thought
 - GST 3303 Gender, Society, and Politics

Electives (9 semester credit hours)
Choose 3 from the following:

AMS 2300 American Popular Culture
BIS 4V04 Internship (related to gender studies)
CRIM 3324 Gender, Crime, and Justice
GST 3301 or PSY 3324 Psychology of Gender
GST 3302 or HIST 3302 Gender in Western Thought
GST 3303 or SOC 3354 Gender, Society, and Politics
GST 4311 Gender and Education
GST 4325 Motherhood and the Technological Womb
GST 4360 or AMS 4360 Rebels and Reformers: Women and Alcohol in America
GST 4379 Topics in Gender Studies
GST 4380 or SOC 4380 Women, Work, and Family
GST 4381 Senior Honors Research
GST 4382 Senior Honors in Gender Studies
GST 4V80 Independent Study
HIST 3324 Women in European Society
HIST 3366 Themes in Social History of the United States
HIST 3384 U.S. Women from Settlement to Present
HIST 4360 Topics in American Women's History
ISIS 3306 Human Female: Biology and Culture
ISIS 3310 Child Sexual Abuse: A Multidisciplinary Investigation
ISIS 3312 Women in Management
ISIS 4350 International Development: Cultural Impacts
LIT 3327 Mid-Twentieth Century American Literature
LIT 3380 Studies in Women's Literature
PSCI 3353 Law and Gender
PSCI 4357 Human Rights and the Rule of Law
PSCI 4364 Civil Rights Law and Society
PSY 3338 or CLDP 3338 Adolescence
PSY 4324 The Psychology of Prejudice
PSY 4345 or CLDP 4345 Violence in the Family
PSY 4346 Human Sexuality
PSY 4347 Marriage and Family Psychology
SOC 3343 Sociology of the Family
SOC 3352 Gender Roles
SOC 4375 Gender and Work

Minor in Healthcare Studies (18 semester credit hours)

The Healthcare Studies minor is designed for students from any major who have an interest in pursuing a career in one of the healthcare fields. Students will learn important aspects of the health profession including appropriate terminology and the foundational elements of professionalism in the healthcare setting. Students will also gain an understanding of basic
biological and medical principles related to human health and disease, the fundamental aspects of the history or philosophy of healthcare, and psychological, social, or economic issues associated with healthcare or the healthcare system in America.

This minor is well suited for traditional pre-health students (medicine, dentistry, pharmacy, and optometry) as well as those interested in allied health fields (physical therapy, physician assistant studies, clinical nutrition, etc.), public health, clinical psychology, and counseling. The minor in Healthcare Studies is designed for students from any major who have an interest in pursuing a career in one of the healthcare fields.

Required Courses in Health Career Development Foundations (8 semester credit hours)

- HLTH 4304 Health Professions Internship
- HLTH 1100 Career Explorations for the Health Professions
- HLTH 3300 Pre-Health Professional Development
- HLTH 3101 Medical Terminology

Electives (10 semester credit hours)

Choose 2 from the following:

Historical, Legal, and Philosophical Foundations

- HIST 3328 History and Philosophy of Science and Medicine
- PHIL 4320 Medical Ethics
- PHIL 4321 Philosophy of Medicine
- PSCI 4365 Law and Medicine

Biological Foundations

- BIOL 3370 Exercise Physiology
- BIOL 3455 Human Anatomy and Physiology with Lab I
- BIOL 3456 Human Anatomy and Physiology with Lab II
- HLTH 1322 Human Nutrition
- ISIS 2308 Bones, Bodies, and Disease
- ISIS 3306 Human Female: Biology and Culture
- NSC 3344 Anatomy and Physiology of Speech and Hearing
- NSC 4356 Neurophysiology
- NSC 4366 Neuroanatomy

Psychological, Social and Economic Foundations

- ECON 3330 Economics of Health
- HLTH 3301 Issues in Geriatric Healthcare
- PSY 4328 Health Psychology
Naveen Jindal School of Management (JSOM)
2014-15 Undergraduate Catalog – Degree Plans
Naveen Jindal School of Management

The Naveen Jindal School of Management's mission is to meet the challenges of a rapidly changing, technology driven, global society by partnering with the business community to:

- Conduct research enhancing management knowledge;
- Deliver high quality management education to a diverse group of undergraduate and graduate students and practicing executives;
- Develop, innovate and continuously improve programs advancing management education and practice.

The Naveen Jindal School of Management is committed to providing our students with an outstanding educational experience that will expand and hone their skill sets, help them become leaders of business and leave them with strong career prospects. Focusing on the rapidly changing challenges of our technology-driven global society, many of the School’s programs have been instituted in response to requests from business and designed to meet the needs of tomorrow’s industry. Our programs stress innovations in the latest technologies while providing a foundation in the basics of business management.

The Bachelor of Science degree in Business Administration is designed to provide students with a broad preparation for a business career and to lay the foundation for further study in business administration. Emphasis is placed on problem solving techniques that are crucial in the modern business environment. The Bachelor of Science in Business Administration offers concentrations in Innovation and Entrepreneurship, Real Estate, Healthcare Management, and Organizational Behavior/Human Resources Management in addition to the general degree. Double majors with Biology and Molecular Biology are offered in conjunction with the Biology Department.

The program leading to the degree of Bachelor of Science in Accounting provides students a broad-based education that balances conceptual with pragmatic knowledge and exposes accounting students to other related areas. The objective of the program is to develop professionals who understand the role of information in organizations and financial markets; have the necessary skills to integrate financial analysis and information technology; and possess analytical and management functional area skills. Completion of this program will enable students to seek careers in information-intensive organizations as information managers, consultants or financial analysts. Students who desire a comprehensive accounting education and are seeking to become Certified Public Accountants are advised to pursue the 150 semester credit hour, BS and MS Fast-Track Program in Accounting. Students who successfully complete both degrees may choose to sit for the CPA examination upon completion of the 150 semester credit hour educational requirement of the Texas State Board of Public Accountancy.

The Bachelor of Science degree in Finance provides students with both practical and theoretical training in financial decision making. Students who choose this degree will have the opportunity to
develop the skills required to analyze financial information to make sound personal or business financial decisions, as well as effectively manage theirs or others’ investments. Completion of the degree requirements will permit students to seek careers with private companies, corporations, financial institutions, government agencies, or as consultants. In addition, with the appropriate choice of courses, a student should be able to successfully complete different financial industry certification exams that would enhance their careers.

The Bachelor of Science degree in Global Business provides students with the knowledge and skills required for succeeding as a global manager while developing an understanding of the cultural, political and regulatory environments that shape international business and trade. Students who enroll in this program will learn the skills necessary for understanding the international business environments and financial markets, cross-cultural communication and negotiation, international human resource management, formulating and implementing global strategy, as well as marketing on a global basis. Completion of this program will enable students to seek careers in multinational corporations, consultancy firms, or internationally oriented organizations that operate in today's increasingly globalized economy.

The Bachelor of Science degree in Management Information Systems provides students with both practical and theoretical training in information technology which has become an integral part of every aspect of business. The objective of the program is to prepare professionals who understand business processes and the information required to support them, have the IT expertise to automate, improve, and re-engineer business processes; and develop an ability to keep up with the changing technology and information needs of business. Completion of the degree requirements will permit students to seek careers as business analysts, application developers, and IT consultants in many industries including corporations and government agencies. With the appropriate choice of courses, a student should be able to successfully get certified in areas such as SAP, SAS Business Intelligence, and Information Security.

The Bachelor of Science degree in Marketing provides students with the necessary knowledge to make good marketing decisions. Students will be exposed to the theoretical foundations of marketing in addition to obtaining practical training needed to make decisions with respect to sales management, customer service, pricing, promotions, market research, and marketing strategy. Students will have the opportunity to develop their analytical and quantitative skills required to analyze marketing and sales data, to formulate strategic responses to competitive moves, and to develop long term and short term marketing plans. Students who complete this degree can seek careers in sales, marketing research, brand management, and advertising and promotions.

The Bachelor of Science in Supply Chain Management prepares students to recognize the needs of consumers and how to serve them better by designing, producing, and managing superior products and services with a 'bottom line' perspective. Students will also learn how to think strategically while focusing on effective analysis. The program places emphasis on three important elements: 1) supply chain management, 2) logistics and distribution, and 3) purchasing and sourcing. The secondary goal is to prepare students for a variety of roles in private, non-profit, and government sectors. Completion of degree requirements will prepare students for graduate study or entry-level
management analyst positions in consultancy, operations, logistics and distribution, manufacturing, purchasing and sourcing, warehousing, information technology, and various other industrial sectors.

All degrees contain a central core of 25-28 semester credit hours. In the core courses, students have an opportunity to learn theories and analytical techniques that can be applied to the functional areas of business, such as finance and marketing. They are exposed to the international dimensions of business activities and to social and political factors that impinge on business behavior. A capstone course in strategic management provides an integrative experience where students are challenged to solve real world business problems. In addition, each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.

Fifty percent of the total business semester credit hours must be taken at UT Dallas. Students may use a maximum of 9 semester credit hours of online-only distance learning business courses toward their degree.

Students are also required to take courses outside the Naveen Jindal School of Management in order to broaden their educational experience in preparation for leadership roles as professionals and/or managers in the modern business organization.

Faculty

Professor Emeritus: Dale Osborne

Clinical Professors: Abhijit Biswas, Larry Chasteen, David Cordell, Tevfik Dalgic, Michael Deegan, Howard Dover, Forney Fleming, Pamela Foster Brady, Randall S. Guttery, Charles Hazzard, Robert Hicks, Marilyn Kaplan, Peter Lewin, John F. McCracken, Dennis McCuistion, Radha Mookerjee, Padmukumar Nair, Joseph Picken, Divakar Rajamani, Rajiv Shah, Kenneth Smith, H. Joe Wells, Habte Weldu, Fang Wu, Laurie L. Ziegler

Associate Professors: Nina Baranchuk, Norris Bruce, Huseyin Cavusoglu, Zhonglan Dai, Xianjun Geng, Umit G. Guran, J. Richard Harrison, Ernan E. Haruvy, Surya N. Janakiraman, Robert L. Kieschnick Jr., Nanda Kumar, Seung-Hyun Lee, Livia Markóczy, Syam Menon, Alp Muhtaroglu, Ramachandran (Ram) Natarajan, Valery Polkovnichenko, Ashutosh Prasad, Orlando C. Richard, Young U. Ryu, Jane Salk, David J. Springate, Jun Xia, Ying Xie, Yexiao Xu, Alejandro Zentner, Yuan Zhang, Feng Zhao, Zhiqiang (Eric) Zheng
Visiting Faculty: Shawn Carrera, Kyle Edgington, Harini Mittal

Davidson Management Honors Program

The Davidson Management Honors Program provides an intellectually challenging and stimulating academic experience in a unique learning environment for the best and brightest students. Incoming freshmen are considered for membership based on high school class rank, SAT/ACT scores and leadership activities in high school. Other students that have earned at least a 3.500 grade point average (GPA) in a minimum of 15 semester credit hours at UT Dallas with no more than 60 semester credit hours of total college credit may also apply. To graduate with Management Honors students must have a minimum of a 3.500 GPA based on at least 30 graded semester credit hours at UT Dallas and complete an honors curriculum along with satisfying other program requirements. Management Honors with Distinction are awarded to students whose thesis is judged by the faculty to be of exemplary quality. Applications and detailed information are available in the Naveen Jindal School of Management Advising Office.

Professional Program in Accounting

The Professional Program in Accounting (PPA) is designed for students who wish to pursue a career in professional accounting. This program is a two-and-a-half year program beginning in the spring
semester of the student's junior year. Qualified students will earn their Bachelor of Science in Accounting degree once all degree requirements for the bachelor's degree have been satisfied, additionally, the Master of Science in Accounting (MS-ACCT) degree will be awarded upon successful completion of requirements for that degree. The goals of the program are to place PPA students in professional accounting internships and full-time positions, increase networking opportunities among students with professionals, and prepare students to become Certified Public Accountants. Applications to the program are accepted in the fall semester of a student's junior year. Applications and detailed information are available in the Naveen Jindal School of Management Advising Office.

Fast Track Baccalaureate/Master's Degrees

Fast Track programs are designed to permit undergraduate students enrolled at UT Dallas to begin work on the MBA or MS degrees before graduation. Qualified seniors may take graduate courses in Management that will apply toward the Bachelor of Science degree and also satisfy requirements for the Master's degree. These courses are selected from a list determined by the School.

Fast Track courses taken during the undergraduate senior year must be well chosen so that they satisfy the requirements of the BS degree AND those of the intended MBA/MS degree. Students in one major may choose to Fast Track into another major. Students can take the Fast Track courses as substitutes for major related courses, as guided and/or free Electives. Students from other Schools at UT Dallas can Fast Track into JSOM degrees as long as they meet the Fast Track admission requirements. Students must earn a grade of at least B in Fast Track courses - otherwise the courses only count toward the undergraduate degree.

Admission to a Fast Track program does not guarantee admission to the graduate program. Students are required to meet the admission requirements of the MBA and MS programs to which they apply, including the GMAT. Students may delay for up to one year entering the graduate program and have their Fast Track courses count toward their graduate degree.

Students can also take graduate courses to apply toward either undergraduate or graduate credit. Students must submit an acceptable GMAT score and receive permission from the Associate Dean before taking more than 12 graduate semester credit hours for any use. Details of the programs are available from the Naveen Jindal School of Management Advising Office.

Fast Track Options in the Naveen Jindal School of Management

Fast Track BS / MBA: The MBA program is a 53 semester credit hour program. Qualified seniors may take up to 12 semester credit hours of graduate courses that will apply to the BS degree and the MBA degree.

Fast Track BS / MS in Accounting: The MS in Accounting is a 36 semester credit hour program. It is primarily designed to permit students to meet the educational requirements of the Texas State Board
of Public Accountancy to become Certified Public Accountants. Qualified seniors may take up to 6 semester credit hours of graduate courses that will apply to the BS degree and the MS degree.

Fast Track BS / MS in Finance: Students choose from four tracks. The investment management track permits students interested in career paths that require Chartered Financial Analyst CFA® certification to take the graduate finance courses that are required to master the complex topics covered on the CFA® examination. The financial analyst track is designed for students interested in pursuing corporate finance related careers (e.g., investment banking, venture capital, private equity, corporate turnarounds, etc.) The financial engineering and risk management track is designed for students with the quantitative ability to pursue a career applying quantitative methods to investment and risk management problems. The financial management track allows students to tailor their coursework for careers in a range of activities. Qualified seniors may take up to 9 semester credit hours of graduate courses that will apply to the Bachelor of Science degree and also satisfy the requirements for an MS degree.

Fast Track BS / MS in Healthcare Management: Students in the Business-Biology double major can Fast Track into this MS degree by selecting their business electives appropriately. Students in other majors can Fast Track into this degree by using free Electives for the Fast Track courses. Qualified seniors may take up to 9 semester credit hours of graduate courses that will apply to the Bachelor of Science degree and also satisfy the requirements for an MS degree.

Fast Track BS / MS in Information Technology and Management: Students may choose a concentration in Enterprise Systems, Healthcare Systems and Information Security. Qualified seniors may take up to 9 semester credit hours of graduate courses that will apply to the Bachelor of Science degree and also satisfy the requirements for an MS degree.

Fast Track BS / MS in International Management Studies: The program provides students the opportunity to learn in-depth the fundamentals of functional areas of management, international management, and cultural, sociopolitical and geographical constraints affecting international business decisions. Qualified seniors may take up to 9 semester credit hours of graduate courses that will apply to the BS degree and also satisfy the requirements for the MS degree.

Fast Track BS / MS in Management and Administrative Science: Students may choose concentrations in Electronic Commerce, Strategy, and Innovation and Entrepreneurship. Qualified seniors may take up to 9 semester credit hours of graduate courses that will apply to the BS degree and also satisfy the requirements for an MS degree.

Fast Track BS / MS in Supply Chain Management: Students explore the key issues associated with the design and management of industrial supply chains. Qualified seniors may take up to 9 semester credit hours of graduate courses that will apply to the BS degree and also satisfy the requirements for the MS degree.

Minors

Minors are available in Business Administration, Accounting, Business Intelligence and Analytics, Enterprise Systems, Finance, Innovation and Entrepreneurship, Marketing, and Organizational
Behavior/Human Resource Management. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average).

For a minor in Business Administration, students must take: OBHR 3310, MKT 3300, BCOM 3311, and MIS 3300 with an additional 6 semester credit hours of upper-division JSOM coursework as approved by the program director (students may not double count courses for both their major and their minor; thus, additional electives may need to be added). All course prerequisites must be met.

For a minor in Accounting, students must take: ACCT 2301 Introductory Financial Accounting, ACCT 2302 Introductory Management Accounting, ACCT 3331 Intermediate Financial Accounting I, ACCT 3350 Fundamentals of Taxation, ACCT 4342 Analysis and Design of Accounting Systems, and one elective must be upper-division (ACCT 3XXX or 4XXX - an Accounting course). All course prerequisites must be met.

For a minor in Business Intelligence and Analytics, students must take: MKT 3330, MIS 3300, MIS 3350, MIS 4351, MIS 4352, and MKT 4330. Students pursuing this minor should be proficient in MS Excel and MS Access. The course prerequisite of MIS 3300 will be exempt. All other prerequisites should be met.

For a minor in Enterprise Systems, students must take ACCT 2301, MIS 4300 or CS 4347, MIS 4350, MIS 4351, MIS 4352, and MKT 4330. Students pursuing this minor should be proficient in MS Excel and MS Access. The course prerequisite of MIS 3300 will be exempt. All other prerequisites should be met.

For a minor in Finance, students must take: ACCT 2301, FIN 3320, FIN 3390, and an additional 9 semester credit hours to be selected from upper-division finance courses listed as options under the finance degree. All course prerequisites must be met.

For a minor in Innovation and Entrepreneurship, students must take: MKT 3300, ENTP 3301, and 9 semester credit hours selected from the following: ENTP 3360, FIN 3360, ENTP 4311, ENTP 4320 or ENTP 4350, with an additional 3 semester credit hours to be selected from the following: the remaining ENTP courses listed above not previously taken, ENTP 3320 or ENTP 3321, ENTP 4340, ENTP 4360, or ENTP 4V90. All course prerequisites must be met.

For a minor in Marketing, students must take: MKT 3300, MKT 3340, MKT 3320, and MKT 3330 with an additional 6 semester credit hours to be selected from: MKT 4380, Capstone, MKT 4331 Digital Prospecting, MKT 4332 Advanced Personal Selling, MKT 4V90 Marketing Internship, MKT 4350 Advertising, MKT 4340 Consumer Behavior, or MKT 4V83 Individual Study in Marketing. All course prerequisites must be met.
For a minor in Organizational Behavior/Human Resource Management, students must take: **OBHR 3310, OBHR 3311, OBHR 3330, OBHR 4350, and OBHR 4360** with an addition 3 semester credit hours of upper-division OBHR coursework as approved by the program director (students may not double count courses for both their major and their minor; thus, additional electives may need to be added). All course prerequisites must be met.
Naveen Jindal School of Management

Bachelor of Science in Accounting

Degree Requirements (120 semester credit hours)

1. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)
 - COMM 1311 Survey of Oral and Technology-based Communication
 - RHET 1302 Rhetoric

Mathematics (3 semester credit hours)
 - MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)
 - Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)

Language, Philosophy and Culture (3 semester credit hours)
 - Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)
 - Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)
 - Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)
 - GOVT 2305 American National Government
 - GOVT 2306 State and Local Government
Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 1326 Applied Calculus II
ECON 2302 Principles of Microeconomics

II. Major Requirements: 73 semester credit hours

Major Preparatory Courses (15 semester credit hours)

ACCT 2301 Introductory Financial Accounting^2
ACCT 2302 Introductory Management Accounting^2
BLAW 2301 Business and Public Law^2
ECON 2301 Principles of Macroeconomics^2,^3
ECON 2302 Principles of Microeconomics^2,^3
MATH 1325 Applied Calculus II^2,^3
MATH 1326 Applied Calculus II^2,^3
OPRE 3333 Quantitative Business Analysis^2
or MATH 2333 Matrices, Vectors, and Their Application^2,^3
STAT 3360 Probability and Statistics for Management and Economics
or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty

Major Core Courses (28 semester credit hours)

ACCT 3100 Professional Development
BCOM 3310 Business Communication
BCOM 4350 Advanced Business Communication
FIN 3320 Business Finance
MIS 3300 Introduction to Management Information Systems
OPRE 3310 Operations Management
OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
BPS 4305 Strategic Management
IMS 3310 International Business

Major Related Courses (18 semester credit hours)

ACCT 3331 Intermediate Financial Accounting I
ACCT 3332 Intermediate Financial Accounting II
ACCT 3341 Cost Management Systems
ACCT 3350 Fundamentals of Taxation
ACCT 4334 Auditing
ACCT 4342 Analysis and Design of Accounting Systems

Guided Electives (12 semester credit hours)

Electives may be any undergraduate chosen from a list of courses approved by the Director of Accounting Programs.

Students wishing to fast-track into the graduate program in accounting may take up to six semester credit hours of graduate ACCT electives.

III. Elective Requirements: 5 semester credit hours

Free Electives (5 semester credit hours)
Both lower- and upper-division courses may count as electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation. JSOM freshman are required to take BA 1100 Business Basics. Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Students may substitute MATH 2413 and MATH 2414 or MATH 2417 and MATH 2419.
5. Students may substitute MATH 2418 or CS 2305.
Naveen Jindal School of Management

Bachelor of Science in Business Administration

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

 COMM 1311 Survey of Oral and Technology-based Communication
 RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

 MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)

 Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)

Language, Philosophy and Culture (3 semester credit hours)

 Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

 Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

 Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

 GOVT 2305 American National Government
 GOVT 2306 State and Local Government
Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 1326 Applied Calculus II
ECON 2302 Principles of Microeconomics

II. Major Requirements: 52-58 semester credit hours

Major Preparatory Courses (15 semester credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2301</td>
<td>Introductory Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2302</td>
<td>Introductory Management Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BLAW 2301</td>
<td>Business and Public Law</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2301</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2302</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1325</td>
<td>Applied Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1326</td>
<td>Applied Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>OPRE 3333</td>
<td>Quantitative Business Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 2333</td>
<td>Matrices, Vectors, and Their Application</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3360</td>
<td>Probability and Statistics for Management and Economics</td>
<td></td>
</tr>
<tr>
<td>or OPRE 3360</td>
<td>Managerial Methods in Decision Making Under Uncertainty</td>
<td></td>
</tr>
</tbody>
</table>

Major Core Courses (28 semester credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 3100</td>
<td>Professional Development</td>
<td>3</td>
</tr>
<tr>
<td>BCOM 3310</td>
<td>Business Communication</td>
<td>3</td>
</tr>
<tr>
<td>BCOM 4350</td>
<td>Advanced Business Communication</td>
<td>3</td>
</tr>
<tr>
<td>FIN 3320</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>MIS 3300</td>
<td>Introduction to Management Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>OPRE 3310</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>OBHR 3310</td>
<td>Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MKT 3300</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MKT 3305</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>IMS 3310</td>
<td>International Business</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Related Courses (12-18 semester credit hours)

General Business (18 semester credit hours)
Required for all students: **ENTP 3301** Entrepreneurship

Breadth Core Courses for students not choosing a concentration. Select 15 semester credit hours from the following with at least 1 course from 3 of the 6 groups:

- **Group 1: Management** - **ENTP** or **OBHR** prefixes
- **Group 2: Marketing** - **MKT** prefix
- **Group 3: Finance and Accounting** - **ACCT**, **FIN**, or **REAL** prefixes
- **Group 4: Information Systems** - **MIS** prefix
- **Group 5: Business Environment** - **BPS**, **BLAW**, **HMGT**, or **IMS** prefixes
- **Group 6: Operations Management** - **OPRE** prefix

For Students Choosing a Concentration

Core Courses for the Innovation and Entrepreneurship Concentration: (12 semester credit hours)

- **ENTP 3301** Entrepreneurship
- **ENTP 3360** Entrepreneurial Finance
- or **FIN 3360** Entrepreneurial Finance
- **ENTP 4311** Entrepreneurial Strategy and Business Models
- **ENTP 4320** Small Business Management
- or **ENTP 4350** Corporate Entrepreneurship

Core Courses for the Organizational Behavior Concentration (15 semester credit hours)

- **ENTP 3301** Entrepreneurship
- **OBHR 3311** Principles of Management
- **OBHR 3330** Introduction to Human Resource Management
- **OBHR 4350** Introduction to Leading and Managing
- **OBHR 4360** Advanced Organizational Behavior and Leadership

Core Courses for the Real Estate Concentration: (15 semester credit hours)

- **ENTP 3301** Entrepreneurship
- or **FIN 3390** Introduction to Financial Modeling
- **REAL 3305** Real Estate Principles
- **REAL 3365** Real Estate Finance and Advanced Principles
- **REAL 4321** Real Estate Law and Contracts

Core Courses for the Healthcare Management Concentration (12 semester credit hours)

- **ENTP 3301** Entrepreneurship
- **HMGT 4301** Introduction to Healthcare Management
- **HMGT 3311** Healthcare Accounting
- **HMGT 4321** Introduction to Healthcare Information Systems
Guided Electives for Concentrations:

Innovation and Entrepreneurship Concentration: (12 semester credit hours)

Guided Entrepreneurship Electives (12 semester credit hours selected from the following. At least 3 semester credit hours must have an ENTP prefix.)

The remaining Entrepreneurship Core Course not taken above (i.e., either ENTP 4320 Small Business Management or ENTP 4350 Corporate Entrepreneurship)

ENTP 3320 Start-up Launch I
ENTP 3321 Start-up Launch II
ENTP 4340 Social Entrepreneurship
ENTP 4360 Innovation and Creativity
ENTP 4V90 Innovation and Entrepreneurship Internship
IMS 4310 Export Market Development
IMS 4320 International Marketing
MKT 3330 Introduction to Professional Selling
MKT 3340 Marketing Research
MKT 4330 Digital and Internet Marketing

Another upper level course may be substituted for the non-ENTP courses listed above with advance permission.

Organizational Behavior Concentration: (9 semester credit hours)

Nine semester credit hours to be selected from:

OBHR 3320 Groups and Teams
OBHR 4300 Management of Non-Profit Organizations
OBHR 4310 Business Ethics
OBHR 4331 Compensation and Benefits Administration
OBHR 4333 Performance Management
OBHR 4334 Talent Acquisition and Management
OBHR 4352 Negotiation and Dispute Resolution
OBHR 4354 Leading Organizational Change
OBHR 4356 Power and Influence in Organizations
OBHR 4358 Transformational Leadership, Ethics, and Social Responsibility

Healthcare Management Concentration: (12 semester credit hours)

Twelve semester credit hours to be selected from:

HMGT 4331, HMGT 4341, OBHR 4350, OBHR 4310, MIS 4300, OBHR 4352, MKT 3340, MKT 4321, OPRE 3320, OPRE 4310, PA 3333, ECON 3330, or SPAN 3341.

Real Estate Concentration: (9 semester credit hours)
Nine semester credit hours to be selected from:

FIN 3360, FIN 4300, GEOG 3304, MIS 4300, MKT 3340, MKT 4321, OBHR 4352, OPRE 3330, PA 3377, REAL 4328, REAL 4365, REAL 4V80, or REAL 4V90.

III. Elective Requirements: 20-26 semester credit hours

Free Electives (11-17 semester credit hours)
Both lower- and upper-division courses may count as electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation. JSOM freshman are required to take BA 1100 Business Basics. Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Students may substitute MATH 2413 and MATH 2414 or MATH 2417 and MATH 2419.
5. Students may substitute MATH 2418 or CS 2305.
Bachelor of Science in Business Administration and Biology (Double Major)

Degree Requirements (146 semester credit hours)1

1. Core Curriculum Requirements 42 semester credit hours2

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

MATH 2413 Differential Calculus 3,4

Life and Physical Sciences (6 semester credit hours)

CHEM 1311 General Chemistry I5
CHEM 1312 General Chemistry II5

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses
(see advisor and degree requirements)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics 3, 5

Component Area Option (6 semester credit hours)

MATH 2414 Integral Calculus 3, 4, 7
ECON 2302 Principles of Microeconomics 3, 5

II. Major Requirements: 92 semester credit hours

Business Major Preparatory Courses (16 semester credit hours beyond Core Curriculum)

ACCT 2301 Introductory Financial Accounting 5
ACCT 2302 Introductory Management Accounting 5
BA 3100 Professional Development
BLAW 2301 Business and Public Law 5
ECON 2301 Principles of Macroeconomics 3, 5
ECON 2302 Principles of Microeconomics 3
OPRE 3333 Quantitative Business Analysis 5
or MATH 2333 Matrices, Vectors, and Their Application 3, 6
STAT 3360 Probability and Statistics for Management and Economics
or STAT 3332 Statistics for Life Sciences
or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty

Business Core Courses (27 semester credit hours)

BCOM 3310 Business Communication
BCOM 4350 Advanced Business Communication
FIN 3320 Business Finance
MIS 3300 Introduction to Management Information Systems
OPRE 3310 Operations Management
OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
BPS 4305 Strategic Management
IMS 3310 International Business

Biology Major Preparatory Courses (21 semester credit hours beyond Core Curriculum)

CHEM 1111 General Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2125 Introductory Organic Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
MATH 2413 Differential Calculus
MATH 2414 Integral Calculus
PHYS 2325 Mechanics and PHYS 2125 Physics Laboratory I or PHYS 1301 College Physics I and PHYS 2125 Physics Laboratory I
PHYS 2326 Electromagnetism and Waves and PHYS 2126 Physics Laboratory II or PHYS 1302 College Physics II and PHYS 2126 Physics Laboratory II

Biology Core Courses (29 semester credit hours)

BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2112 Introduction to Modern Biology Workshop II
BIOL 2281 Introductory Biology Laboratory
BIOL 2311 Introduction to Modern Biology I
BIOL 2312 Introduction to Modern Biology II
BIOL 3101 Classical and Molecular Genetics Workshop
BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
BIOL 3161 Biochemistry Workshop I
BIOL 3162 Biochemistry Workshop II
BIOL 3301 Classical and Molecular Genetics
BIOL 3302 Eukaryotic Molecular and Cell Biology
BIOL 3361 Biochemistry I
BIOL 3362 Biochemistry II
or BIOL 3335 Microbial Physiology
BIOL 3380 Biochemistry Laboratory

III. Elective Requirements: 12 semester credit hours

Guided Electives (12 semester credit hours)

Business: (9 semester credit hours) to be selected from any upper-level JSOM course. If qualified, the student may select from JSOM graduate courses.

Biology: (3 semester credit hours) BIOL 4380 Cell and Molecular Biology Laboratory or approved upper-level biology course.

Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.
1. Degree is 147 semester credit hours if students are required to take BA 1100.
2. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Six semester credit hours of Calculus are counted under Mathematics Core and Component Area Option Core, and 2 semester credit hours of Calculus are counted as Biology Major Preparatory Courses.
5. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
6. Students may substitute MATH 2418 or CS 2305.
7. Students may substitute MATH 2413 and MATH 2414 by taking MATH 2417 and MATH 2419.
Naveen Jindal School of Management

Bachelor of Science in Business Administration and Molecular Biology (Double Major)

Degree Requirements (147 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor and degree requirements)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)
GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
ECON 2301 Principles of Macroeconomics ³,⁵

Component Area Option (6 semester credit hours)
MATH 2419 Calculus II ³,⁴
ECON 2302 Principles of Microeconomics ³,⁵

II. Major Requirements: 96 semester credit hours

Business Major Preparatory Courses (16 semester credit hours beyond Core Curriculum)

ACCT 2301 Introductory Financial Accounting⁵
ACCT 2302 Introductory Management Accounting⁵
BA 3100 Professional Development
BLAW 2301 Business and Public Law⁵
ECON 2301 Principles of Macroeconomics ³,⁵
ECON 2302 Principles of Microeconomics ⁵
OPRE 3333 Quantitative Business Analysis
or MATH 2333 Matrices, Vectors, and Their Application⁵,⁶
STAT 3360 Probability and Statistics for Management and Economics
or STAT 2332 Statistics for Life Sciences
or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty

Business Core Courses (27 semester credit hours)

BCOM 3310 Business Communication
BCOM 4350 Advanced Business Communication
FIN 3320 Business Finance
MIS 3300 Introduction to Management Information Systems
OPRE 3310 Operations Management
OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
BPS 4305 Strategic Management
IMS 3310 International Business
Biology Major Preparatory Courses (20 semester credit hours beyond Core Curriculum)

- CHEM 1111 General Chemistry Laboratory I
- CHEM 1112 General Chemistry Laboratory II
- CHEM 1311 General Chemistry I
- CHEM 1312 General Chemistry II
- CHEM 2123 Introductory Organic Chemistry Laboratory I
- CHEM 2125 Introductory Organic Chemistry Laboratory II
- CHEM 2323 Introductory Organic Chemistry I
- CHEM 2325 Introductory Organic Chemistry II
- MATH 2417 Calculus I
- MATH 2419 Calculus II
- PHYS 2125 Physics Laboratory I
- PHYS 2326 Electromagnetism and Waves
- PHYS 2126 Physics Laboratory II

Biology Core Courses (33 semester credit hours)

- BIOL 2111 Introduction to Modern Biology Workshop I
- BIOL 2112 Introduction to Modern Biology Workshop II
- BIOL 2281 Introductory Biology Laboratory
- BIOL 2311 Introduction to Modern Biology I
- BIOL 2312 Introduction to Modern Biology II
- BIOL 3101 Classical and Molecular Genetics Workshop
- BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
- BIOL 3161 Biochemistry Workshop I
- BIOL 3162 Biochemistry Workshop II
- BIOL 3301 Classical and Molecular Genetics
- BIOL 3302 Eukaryotic Molecular and Cell Biology
- BIOL 3361 Biochemistry I
- BIOL 3362 Biochemistry II
- or BIOL 3335 Microbial Physiology
- BIOL 3380 Biochemistry Laboratory
- BIOL 4461 Biophysical Chemistry

III. Elective Requirements: 9 semester credit hours

Guided Electives (9 semester credit hours)

Business: (6 semester credit hours) to be selected from any upper level JSOM course. If qualified, the student may select from JSOM graduate courses. Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.
Biology: (3 semester credit hours) **BIOL 4380** Cell and Molecular Biology Laboratory or approved upper-level biology course.

1. Degree is **148** semester credit hours if students are required to take BA 1100.
2. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Six semester credit hours of Calculus are counted under Mathematics Core and **Component Area Option Core**, and 2 semester credit hours of Calculus are counted as Biology Major Preparatory Courses.
5. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
6. Students may substitute MATH 2418 or CS 2305.
Naveen Jindal School of Management

Bachelor of Science in Finance

Degree Requirements (120 semester credit hours)

<table>
<thead>
<tr>
<th>I. Core Curriculum Requirements</th>
<th>42 semester credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication (6 semester credit hours)</td>
<td></td>
</tr>
<tr>
<td>COMM 1311 Survey of Oral and Technology-based Communication</td>
<td></td>
</tr>
<tr>
<td>RHET 1302 Rhetoric</td>
<td></td>
</tr>
<tr>
<td>Mathematics (3 semester credit hours)</td>
<td></td>
</tr>
<tr>
<td>MATH 1325 Applied Calculus I</td>
<td></td>
</tr>
<tr>
<td>Life and Physical Sciences (6 semester credit hours)</td>
<td></td>
</tr>
<tr>
<td>Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)</td>
<td></td>
</tr>
<tr>
<td>Language, Philosophy and Culture (3 semester credit hours)</td>
<td></td>
</tr>
<tr>
<td>Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)</td>
<td></td>
</tr>
<tr>
<td>Creative Arts (3 semester credit hours)</td>
<td></td>
</tr>
<tr>
<td>Select any 3 semester credit hours from Creative Arts core courses (see advisor)</td>
<td></td>
</tr>
<tr>
<td>American History (6 semester credit hours)</td>
<td></td>
</tr>
<tr>
<td>Select any 6 semester credit hours from American History core courses (see advisor)</td>
<td></td>
</tr>
<tr>
<td>Government / Political Science (6 semester credit hours)</td>
<td></td>
</tr>
<tr>
<td>GOVT 2305 American National Government</td>
<td></td>
</tr>
<tr>
<td>GOVT 2306 State and Local Government</td>
<td></td>
</tr>
</tbody>
</table>
Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 1326 Applied Calculus II
ECON 2302 Principles of Microeconomics

II. Major Requirements: 73 semester credit hours

Major Preparatory Courses (15 semester credit hours)

ACCT 2301 Introductory Financial Accounting
ACCT 2302 Introductory Management Accounting
BLAW 2301 Business and Public Law
ECON 2301 Principles of Macroeconomics
ECON 2302 Principles of Microeconomics
MATH 1325 Applied Calculus I
MATH 1326 Applied Calculus II
MATH 2333 Matrices, Vectors, and Their Application
OPRE 3333 Quantitative Business Analysis
or MATH 2333 Matrices, Vectors, and Their Application
or STAT 3360 Probability and Statistics for Management and Economics
or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty

Major Core Courses (28 semester credit hours)

FIN 3100 Professional Development
BCOM 3310 Business Communication
BCOM 4350 Advanced Business Communication
FIN 3320 Business Finance
MIS 3300 Introduction to Management Information Systems
OPRE 3310 Operations Management
OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
BPS 4305 Strategic Management
IMS 3310 International Business

Major Related Courses (9 semester credit hours)

FIN 3390 Introduction to Financial Modeling
FIN 3330 Personal Financial Planning
FIN 4310 Intermediate Business Finance

Elective Courses (21 semester credit hours)

Students must select no less than 12 semester credit hours of upper-division course work from the following list of courses: FIN 3305, FIN 3340, FIN 3350, FIN 3360, FIN 3365, FIN 3370, FIN 3380, FIN 3390, FIN 4300, FIN 4320, FIN 4321, FIN 4328, FIN 4330, FIN 4335, FIN 4340, FIN 4345, FIN 4350, FIN 4360, FIN 4380, FIN 4390, FIN 4399, FIN 4V80, or FIN 4V90.

Students must select at least 3 semester credit hours of upper-division course work from the following list of courses: ACCT 3331, ACCT 3332, ACCT 3341, ACCT 3350, or ACCT 4336.

Finance Tracks

Students pursuing a Bachelor of Science in Finance will be best prepared for certain career paths if they follow the below recommended course work for each of the below tracks, but they are not required to do so.

Corporate Finance Track - Students who choose this track will focus on the skills necessary to manage the financial problems of a firm. Students completing this track pursue careers as corporate financial officers, private equity capitalists, and investment bankers.

Recommended coursework (21 semester credit hours): FIN 3350, FIN 3380, FIN 4340, FIN 4360, ACCT 3331, ACCT 3332, ACCT 3341

Investment Track - Students who choose to concentrate in the Investment track study to become investment analysts and investment advisors. Careers in this field include security analysts, portfolio managers, etc. Students who complete this track should be prepared to take the CFA® level 1 exam.

Recommended coursework (21 semester credit hours): FIN 3340, FIN 3350, FIN 4300, FIN 4340, FIN 4345 or FIN 4380, ACCT 3331, ACCT 4336

Personal Financial Planning - Students who choose this track will learn how to become financial planners and help clients with their financial problems. Students who complete this track meet the educational requirements set forth for the CFP® Board of Standards, Inc.

Recommended Coursework (21 semester credit hours): FIN 3305, FIN 3370*, FIN 4300*, FIN 4330*, FIN 4335*, FIN 4350*, ACCT 3350

* Notates classes required by the CFP® Board of Standards, Inc. to fulfill the educational requirement for the CERTIFIED FINANCIAL PLANNER™ Designation
Real Estate Track - Students who choose this track will learn both the qualitative and quantitative tools necessary to enter one of the many different areas within real estate including investment analysis, consulting, brokerage, appraisal, development and corporate asset management.

Recommended Coursework (21 semester credit hours): FIN 3305, FIN 3365, FIN 4321, FIN 4328, FIN 3350 or FIN 3370, REAL 4365

Financial Information Management Track - Students who choose to concentrate in the Financial Information Management track will learn how to use the tools of information technology to apply their knowledge of finance within either a corporate or investment setting demanding the ability to work with and manipulate digitally stored data. Careers in this field include trading, investment analysis, and business analysis.

Recommended Coursework (21 semester credit hours): FIN 3350, FIN 4300, FIN 4340, FIN 4345, MIS 4300, MIS 4350, MIS 4351

III. Free Electives: 5 semester credit hours
Both lower- and upper-division courses may count as electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation. JSOM freshman are required to take BA 1100 Business Basics. Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Students may elect to substitute MATH 2413 and MATH 2414 or MATH 2417 and MATH 2419.
5. Students may substitute MATH 2418 or CS 2305.
Degree Requirements (127 semester credit hours)\(^1\)

I. Core Curriculum Requirements: 42 semester credit hours\(^2\)

Communication (6 semester credit hours)

- COMM 1311 Survey of Oral and Technology-based Communication
- RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

- MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)

- Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)

Language, Philosophy and Culture (3 semester credit hours)

- Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

- Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

- Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

\(^1\) mkaplan 9/18/13 3:31 PM

\(^2\) Mary Jo Venetis 1/28/14 10:56 AM

Comment [1]: Will link back to core curriculum section in catalog

Mary Jo Venetis 9/30/13 11:14 AM

Deleted: Mediated/
Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 1326 Applied Calculus II
ECON 2302 Principles of Microeconomics

II. Major Requirements: 67 semester credit hours

Major Preparatory Courses (15 semester credit hours)

ACCT 2301 Introductory Financial Accounting
ACCT 2302 Introductory Management Accounting
BLAW 2301 Business and Public Law
ECON 2301 Principles of Macroeconomics
ECON 2302 Principles of Microeconomics
MATH 1325 Applied Calculus I
MATH 1326 Applied Calculus II
MATH 2333 Matrices, Vectors and Their Application
OPRE 3360 Managerial Methods in Decision Making Under Uncertainty or STAT 3360 Probability and Statistics for Management and Economics

Major Core Courses (52 semester credit hours)

FIN 3100 Professional Development
BCOM 3310 Business Communication
BCOM 4350 Advanced Business Communication
FIN 3320 Business Finance
FIN 3330 Personal Financial Planning
MIS 3500 Introduction to Management Information Systems
OPRE 3310 Operations Management
OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
FIN 3390 Introduction to Financial Modeling
BPS 4305 Strategic Management
FIN 4310 Intermediate Business Finance
IMS 3310 International Business
ECON 3310 Intermediate Microeconomic Theory
ECON 3311 Intermediate Macroeconomic Theory
ECON 4351 Mathematical Economics
ECON 4355 Econometrics
III. Elective Requirements: 18 semester credit hours

Guided Electives

Select 9 semester credit hours from: **FIN 3305, FIN 3340, FIN 3350, FIN 3365, FIN 3380, FIN 4320, FIN 4340, FIN 4380, FIN 4390, FIN 4V90, or ACCT 4336.**

Select 9 semester credit hours from: **ECON 3312, ECON 3335, ECON 4301, ECON 4310, ECON 4320, ECON 4345, ECON 4360, ECON 4382, ECON 4385, ECON 4396, or ECON 4V99.**

- Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.

1. Degree is 128 semester credit hours if student is required to take BA 1100.
2. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
3. A Major requirement that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Students may substitute MATH 2313 and MATH 2414 or MATH 2417 and MATH 2419.
5. Indicates a prerequisite class to be completed before enrolling for upper-division classes in Economics and Finance.
6. Students may substitute MATH 2418, OPRE 3333 or CS 2305.
Naveen Jindal School of Management

Bachelor of Science in Global Business

Degree Requirements (120 semester credit hours)

A minimum of 9 semester credit hours must be earned during a semester of study abroad. Any 9 credit hours from the degree plan may be chosen, however, students should be aware that study abroad courses are subject to a pre-approval process to ensure transferability.

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 1311 Survey of Oral and Technology-based Communication</td>
</tr>
<tr>
<td>RHET 1302 Rhetoric</td>
</tr>
</tbody>
</table>

Mathematics (3 semester credit hours)

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1325 Applied Calculus I</td>
</tr>
</tbody>
</table>

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)
Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 1326 Applied Calculus II
ECON 2302 Principles of Microeconomics

II. Major Requirements: 73 semester credit hours

Major Preparatory Courses (15 semester credit hours)

ACCT 2301 Introductory Financial Accounting
ACCT 2302 Introductory Management Accounting
 	Mary Jo Venetis 10/4/13 12:19 PM	Deleted: 2
 	mkaplan 9/18/13 3:02 PM	Deleted: 5
 	mkaplan 9/18/13 3:02 PM	Deleted: 1
 	mkaplan 9/18/13 3:02 PM	Deleted: 2

Major Core Courses (28 semester credit hours)

- **BLAW 2301** Business and Public Law
- **ECON 2301** Principles of Macroeconomics
- **ECON 2302** Principles of Microeconomics
- **MATH 1325** Applied Calculus I
- **MATH 1326** Applied Calculus II
- **MATH 2326** Applied Calculus I
- **MATH 2328** Applied Calculus II
- **MATH 2333** Quantitative Business Analysis
- or **MATH 2333** Matrices, Vectors, and Their Application
- **STAT 3360** Probability and Statistics for Management and Economics
- or **OPRE 3360** Managerial Methods in Decision Making Under Uncertainty

Major Related Courses (18 semester credit hours)

- **IMS 3100** Professional Development
- **BCOM 3310** Business Communication
- **BCOM 4350** Advanced Business Communication
- **FIN 3320** Business Finance
- **MIS 3300** Introduction to Management Information Systems
- **OPRE 3310** Operations Management
- **OBHR 3310** Organizational Behavior
- **MKT 3300** Principles of Marketing
- **BPS 4305** Strategic Management
- **IMS 3310** International Business

Guided Electives (12 semester credit hours)

Select 12 semester credit hours from one of the following tracks:

Global Business Track

- **IMS 4310** Export Market Development
- **ENTP 4311** Entrepreneurial Strategy
- **OBHR 4310** Business Ethics
- **OBHR 4352** Negotiation and Dispute Resolution
- **FIN 3350** Macroeconomics and Financial Markets
- **OPRE 3320** Supply Chain Management
- **GEOG 3370** The Global Economy

Six semester credit hours of the same foreign language. May include 3 semester credit hours from **BCOM 3320, BCOM 3321, BCOM 3322, BCOM 3323**.
ECON 4360 International Trade

Finance Track

- **FIN 3330** Personal Financial Planning
- **FIN 3380** International Financial Management
- **FIN 3350** Macroeconomics and Financial Markets
- **FIN 3340** Regulation of Business and Financial Markets
- **FIN 3305** Real Estate Principles

IT Track

- **MIS 4300** Database Fundamentals
- **MIS 4340** Enterprise Resource Planning
- **MIS 4350** Introduction to Business Intelligence and Data Mining
- **MIS 4352** Introduction to Web Analytics
- **MIS 4360** Network and Information Security

Marketing Track

- **MKT 3340** Market Research
- **MKT 3320** Product and Brand Management
- **MKT 3330** Introduction to Professional Selling
- **MKT 4330** Digital and Internet Marketing
- **MKT 4340** Consumer Behavior

Supply Chain Management Track

- **OPRE 3330** Project Management
- **OPRE 4340** Purchasing and Sourcing Management
- **OPRE 3320** Supply Chain Management
- **OPRE 4350** Global Outsourcing Services
- **OPRE 4330** Logistics and Inventory Management

Innovation & Entrepreneurship Track

- **ENTP 3301** Entrepreneurship

Any 3 (9 semester credit hours of the following)

- **ENTP 3360** Entrepreneurial Finance
- **FIN 3360** Entrepreneurial Finance
- **ENTP 4311** Entrepreneurial Strategy and Business Models
- **ENTP 4320** Small Business Management
- **ENTP 4350** Corporate Entrepreneurship
- **ENTP 4340** Social Entrepreneurship
International Political Economy Track

IPEC 3349 World Resources and Development
ISSS 4358 National and International Security
GEOG 3372 Population and Development
PSCI 4356 International Political Economy
PSCI 4329 Global Politics
PSCI 4347 The War on Drugs
PSCI 4348 Terrorism
GEOG 3359 Human Migration and Mobility: Global Patterns
ISSS 4377 Alternative Approaches to National Security
PSCI 4360 The Political Economy of Multinational Corporations
PSCI 4359 Globalization and International Conflict
PSCI 4332 Latin American Politics
SOC 3336 Culture Regions
GEOG 3382 Russia: Yesterday, Today, and Tomorrow

III. Elective Requirements: 5 semester credit hours

Free Electives (5 semester credit hours)
Both lower- and upper-division courses may count as electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation. JSOM freshman are required to take BA 1100 Business Basics. Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.

1. Students with non-academic obligations (for example, full time jobs) who cannot study abroad for an entire semester may request a waiver to substitute 6 semester credit hours of faculty led study trips (IMS 3V91, IMS 3V92, IMS 3V93, IMS 3V94, IMS 3V95, IMS 3V96). An international internship may also be substituted for the semester of study abroad.
2. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
3. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
4. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
5. Students may elect to substitute MATH 2413 and MATH 2414 or MATH 2417 and MATH 2419.
6. Students may substitute MATH 2418 or CS 2305.
Naveen Jindal School of Management

Bachelor of Science in Management Information Systems

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)
Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 1326 Applied Calculus II
ECON 2302 Principles of Microeconomics

II. Major Requirements: 70 semester credit hours

Major Preparatory Courses (15 semester credit hours)

ACCT 2301 Introductory Financial Accounting
ACCT 2302 Introductory Management Accounting
BLAW 2301 Business and Public Law
ECON 2301 Principles of Macroeconomics
ECON 2302 Principles of Microeconomics
MATH 1325 Applied Calculus I
MATH 1326 Applied Calculus II
OPRE 3333 Quantitative Business Analysis
or MATH 2333 Matrices, Vectors, and Their Application
or STAT 3360 Probability and Statistics for Management and Economics
or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty

Major Core Courses (28 semester credit hours)

MIS 3100 Professional Development
BCOM 3310 Business Communication
BCOM 4350 Advanced Business Communication
FIN 3320 Business Finance
MIS 3300 Introduction to Management Information Systems
OPRE 3310 Operations Management
OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
BPS 4305 Strategic Management
IMS 3310 International Business

Major Related Courses (9 semester credit hours)

MIS 4300 Database Fundamentals
MIS 4330 Systems Analysis and Design
MIS 4390 Information Systems Capstone

Guided Electives (18 semester credit hours)

Three semester credit hours to be selected from

MIS 4310, MIS 4312.

Fifteen semester credit hours to be selected from

BA 4199, BA 4299, MIS 4310, MIS 4312, MIS 4340, MIS 4342, MIS 4350, MIS 4351, MIS 4352, MIS 4360, MIS 4370, MIS 4390.

III. Elective Requirements: 8 semester credit hours

Free Electives (8 semester credit hours)

Both lower- and upper-division courses may count as electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation. JSOM freshman are required to take BA 1100 Business Basics. Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. Indicates a prerequisite class to be completed before enrolling for upper-division classes.

3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.

4. Students may elect to substitute MATH 2413 and MATH 2414 or MATH 2417 and MATH 2419.

5. Students may substitute MATH 2418 or CS 2305.
Naveen Jindal School of Management

Bachelor of Science in Marketing

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 1326 Applied Calculus II
ECON 2302 Principles of Microeconomics

II. Major Requirements: 64 semester credit hours

Major Preparatory Courses (16 semester credit hours)

ACCT 2301 Introductory Financial Accounting
ACCT 2302 Introductory Management Accounting
BLAW 2301 Business and Public Law
ECON 2301 Principles of Macroeconomics
ECON 2302 Principles of Microeconomics
MATH 1325 Applied Calculus I
MATH 1326 Applied Calculus II
OPRE 3333 Quantitative Business Analysis
or MATH 2333 Matrices, Vectors, and Their Application
STAT 3360 Probability and Statistics for Management and Economics
or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty

Major Core Courses (28 semester credit hours)

MKT 3100 Professional Development
BCOM 3310 Business Communication
BCOM 4350 Advanced Business Communication
FIN 3320 Business Finance
MIS 3300 Introduction to Management Information Systems
OPRE 3310 Operations Management
OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
BPS 4305 Strategic Management
IMS 3310 International Business
Major Related Courses (12 semester credit hours)

- **MKT 3340** Marketing Research
- **MKT 3320** Product and Brand Management
- **MKT 3330** Introduction to Professional Selling
- **MKT 4380** Capstone Course in Marketing

Guided Electives (9 semester credit hours)

Three semester credit hours to be selected from:

- **MKT 4330**, **MKT 4331**, **MKT 4332**, **MKT 4340**, **MKT 4350** or **MKT 4V93**.

Six semester credit hours to be selected from:

III. Elective Requirements: 14 semester credit hours

Free Electives (14 semester credit hours)

Both lower- and upper-division courses may count as electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation. JSOM freshman are required to take **BA 1100** Business Basics. **Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.**

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Students may elect to substitute MATH 2413 and MATH 2414 or MATH 2417 and MATH 2419.
5. Students may substitute MATH 2418 or CS 2305.
Naveen Jindal School of Management

Bachelor of Science in Supply Chain Management

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- COMM 1311 Survey of Oral and Technology-based Communication
- RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

- MATH 1325 Applied Calculus I

Life and Physical Sciences (6 semester credit hours)

Select any 6 semester credit hours from Life and Physical Sciences core courses (see advisor and degree requirements)

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government
Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 1326 Applied Calculus II
ECON 2302 Principles of Microeconomics

II. Major Requirements: 67 semester credit hours

Major Preparatory Courses (15 semester credit hours)

ACCT 2301 Introductory Financial Accounting
ACCT 2302 Introductory Management Accounting
BLAW 2301 Business and Public Law
ECON 2301 Principles of Macroeconomics
ECON 2302 Principles of Microeconomics
MATH 1325 Applied Calculus I
MATH 1326 Applied Calculus II
OPRE 3333 Quantitative Business Analysis
or MATH 2333 Matrices, Vectors, and Their Application
or STAT 3360 Probability and Statistics for Management and Economics
or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty

Major Core Courses (28 semester credit hours)

MKT 3100 Professional Development
BCOM 3310 Business Communication
BCOM 4350 Advanced Business Communication
FIN 3320 Business Finance
MIS 3300 Introduction to Management Information Systems
OPRE 3310 Operations Management
OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
BPS 4305 Strategic Management
IMS 3310 International Business

Major Related Courses (15 semester credit hours)

OPRE 3320 Supply Chain Management
OPRE 3330 Project Management
Guided Electives (9 semester credit hours)

- **MKT 3330** Introduction to Professional Selling
- **IMS 4310** Export Market Development
- **OBHR 4352** Negotiation and Dispute Resolution
- **OBHR 4310** Business Ethics
- **MIS 4340** Enterprise Resource Planning
- **MIS 4300** Database Fundamentals
- **OPRE 4320** Integrated SCM Information Systems
- **OPRE 4360** Capstone Projects in Supply Chain Management
- **OPRE 4350** Global Outsourcing Services

III. Elective Requirements: 11 semester credit hours

Free Electives (11 semester credit hours)

Both lower- and upper-division courses may count as electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation. JSOM freshman are required to take **BA 1100** Business Basics. **Each student is expected to complete a minimum of 160 hours of business-related work to fulfill the JSOM professional practicum requirement.**

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Students may elect to substitute MATH 2413 and MATH 2414 or MATH 2417 and MATH 2419.
5. Students may substitute MATH 2418 or CS 2305.
Students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division semester credit hours. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). Semester credit hours may not be used to satisfy both the major and minor requirements; however, free elective hours or major preparatory classes may be used to satisfy the minor. The minors in the Naveen Jindal School of Management are the following:

- Accounting
- Business Administration
- Business Intelligence and Analytics
- Enterprise Systems
- Finance
- Innovation and Entrepreneurship
- Marketing
- Organizational Behavior

Minor in Accounting (18 semester credit hours)

ACCT 2301 Introductory Financial Accounting
ACCT 2302 Introductory Management Accounting
ACCT 3331 Intermediate Financial Accounting I
ACCT 3350 Fundamentals of Taxation
ACCT 4342 Analysis and Design of Accounting Systems

And one elective must be upper-division (ACCT 3XXX or 4XXX - an Accounting course)

Minor in Business Administration (18 semester credit hours)

OBHR 3310 Organizational Behavior
MKT 3300 Principles of Marketing
BCOM 3311 Business Communication
MIS 3300 Introduction to Management Information Systems

And an additional 6 semester credit hours of upper-division JSOM coursework as approved by the program director (students may not double count courses for both their major and their minor; thus, additional electives may need to be added).
Minor in Business Intelligence and Analytics (18 semester credit hours)

STAT 3360 Probability and Statistics for Management and Economics
MIS 4300 Database Fundamentals
or CS 4347 Database Systems
MIS 4350 Introduction to Business Intelligence and Data Mining
MIS 4351 Enterprise Data Warehouses
MIS 4352 Introduction to Web Analytics
MKT 4330 Digital and Internet Marketing

Students pursuing this minor should be proficient in MS Excel and MS Access. The course prerequisite of MIS 3300 Introduction to Management Information Systems will be exempt.

Minor in Enterprise Systems (18 semester credit hours)

ACCT 2301 Introductory Financial Accounting
MIS 4300 Database Fundamentals
or CS 4347 Database Systems
MIS 4340 Enterprise Resource Planning
And an additional 9 semester credit hours to be selected from:

MIS 4330 Systems Analysis and Design
or CS 4376 Object-Oriented Programming Systems
MIS 4351 Enterprise Data Warehouses
OPRE 4320 Integrated SCM Information Systems
ACCT 3322 Integrated Accounting Information Systems
MIS 4342 Analysis and Design of Accounting Systems

Students completing the enterprise systems minor will be eligible to participate in SAP Business One and/or TERP 10 certification programs. Students pursuing this minor should be proficient in MS Excel and MS Access. The course prerequisite of MIS 3300 will be exempt.

Minor in Finance (18 semester credit hours)

ACCT 2301 Introductory Financial Accounting
FIN 3320 Business Finance
FIN 3390 Introduction to Financial Modeling
And an additional 9 semester credit hours to be selected from upper-division finance courses listed as options under the finance degree.

Minor in Innovation and Entrepreneurship (18 semester credit hours)
MKT 3300 Principles of Marketing
ENTP 3301 Entrepreneurship
And 9 semester credit hours to be selected from:

ENTP 3360 Entrepreneurial Finance
or FIN 3360 Entrepreneurial Finance
ENTP 4311 Entrepreneurial Strategy and Business Models
ENTP 4320 Small Business Management
or ENTP 4350 Corporate Entrepreneurship
With an additional 3 semester credit hours to be selected from the remaining ENTP courses not previously taken:
ENTP 3320 Start-up Launch I
or ENTP 3321 Start-up Launch II
ENTP 4340 Social Entrepreneurship
ENTP 4360 Innovation and Creativity
or ENTP 4V90 Innovation and Entrepreneurship Internship

Minor in Marketing (18 semester credit hours)

MKT 3300 Principles of Marketing
MKT 3340 Marketing Research
MKT 3320 Product and Brand Management
MKT 3330 Introduction to Professional Selling
with an additional 6 semester credit hours to be selected from:

MKT 4380 Capstone Course in Marketing
MKT 4331 Digital Prospecting
MKT 4332 Advanced Personal Selling
MKT 4V90 Marketing Internship
MKT 4350 Advertising
MKT 4340 Consumer Behavior
or MKT 4V83 Individual Study in Marketing

Minor in Organizational Behavior/Human Resource Management (18 semester credit hours)

OBHR 3310 Organizational Behavior
OBHR 3311 Principles of Management
OBHR 3330 Introduction to Human Resource Management
OBHR 4350 Introduction to Leading and Managing
OBHR 4360 Applied Organizational Behavior and Leadership
with an additional 3 semester credit hours of upper-division OBHR coursework as approved by the program director (students may not double count courses for both their major and their minor; thus, additional electives may need to be added).
School of Natural Sciences and Mathematics (NSM)
2014-15 Undergraduate Catalog – Degree Plans
School of Natural Sciences and Mathematics

The School of Natural Sciences and Mathematics offers both graduate and undergraduate programs in Biology and Molecular Biology, Chemistry and Biochemistry, Geosciences, Mathematics, and Physics, and a graduate program in Science Education. Undergraduate and post-baccalaureate programs in teacher certification are administratively housed in the School of Natural Sciences and Mathematics but serve other schools as well.

The undergraduate programs in Biology and Molecular Biology provide a basic foundation in molecular and cell biology to prepare students for graduate studies in biological sciences (BS), for professional studies in a wide variety of health-related areas, for secondary school teaching, and for employment as research assistants in pharmaceutical, biotechnology, government, and environmental science laboratories (BS, BA).

The undergraduate program in Chemistry provides the fundamental knowledge required for professional participation in chemically oriented industries, for graduate study in chemistry, and for medical or dental studies (BS), or for secondary science teaching or ancillary positions (sales, legal, etc.) in the chemical industries (BA).

The undergraduate program in Geosciences provides a general scientific background suitable for some careers in business or law, for secondary school teaching (BS), or for employment as a professional geologist, or for graduate studies in Geosciences (BS).

The undergraduate programs in Mathematics (BS) encompass Mathematics, Statistics, and Applied Mathematics, and are designed so that students can have the opportunity to prepare for employment immediately upon graduation in a broad range of positions in business, industry, government and education - or for continuing with graduate studies in any of these areas.

The undergraduate Physics program offers a basic foundation in classical and modern physics for students interested in professional careers in physics, usually requiring graduate degrees, as well as in related fields, e.g., electrical engineering, medical physics, radiology, lasers, geophysics, computer science (BS), or a strong base in physics for students seeking to pursue careers in medicine, patent law, government or industrial laboratories, or secondary school teaching (BA).

The School of Natural Sciences and Mathematics also provides opportunities for students to complete Texas Teacher Certification requirements in Biology, Chemistry, Earth Science, Life/Earth Science, Mathematics, and Physics. Students who wish to be certified should consult the UT Teach Dallas for specific requirements as soon as possible after formal admission to the University. Further details may be found in the Teacher Education Certification Programs section of the catalog.

UT-PACT BA/MD Program

The Partnership in Advancing Clinical Transition (UT-PACT) is a collaborative program between UT Dallas and UT Southwestern Medical School. Students enrolled in UT PACT will have joint admission to BA in Biology and MD training programs. The University of Texas System initiative is an effort to expedite the training for healthcare professions and to prepare students for careers in medicine through the coordination of undergraduate and medical school curricula.

Information about the UT-PACT partnership is available at www.utdallas.edu/pre-health/ut-pact.

Major Honors
The Departments of the School of Natural Science and Mathematics offer the opportunity for outstanding students to graduate with Honors or Honors with Distinction in their major. The program provides for these students to work individually with faculty for an in-depth experience in research.

Eligibility requirements include:

- at least 30 graded semester credit hours of coursework at UT Dallas with a cumulative grade point average of 3.750,
- at least 12 semester credit hours of upper-division courses in the student's major with a grade point average of 3.750 over all the upper-division courses in the major, and
- completion of an honors thesis evaluated by two faculty members with a grade of at least B+.

The thesis should satisfy the advanced writing requirement if completed as part of a three-semester credit hour research course, and submitted at least three weeks prior to the last day of classes of the term. It is then critiqued by the faculty mentor, returned to the student for revision and resubmission following the guidelines of the advanced writing requirement by the last day of classes of the term.

Honors with Distinction will be awarded to students whose theses are judged by a faculty committee of at least three members to be of exemplary quality, and if carried to fruition, would warrant publication in a journal in the field of work.
School of Natural Sciences and Mathematics

Actuarial Science (BS)

The Bachelor of Science Actuarial Science (AS) Program at the University of Texas at Dallas is administered through the Department of Mathematical Sciences.

Students receive a rigorous mathematical background including all the major courses taken by students majoring in mathematics or statistics. Further, ten courses devoted to finance, economics, applied statistics, insurance and actuarial science are required. Upon completion of this program, a student will have the knowledge and business background necessary to pursue a career as an actuary, as well as to undertake graduate study in actuarial science, statistics, mathematics, economics or finance.

Faculty

Professors: Larry P. Ammann, Michael I. Baron, Sam Efromovich, Robert Serfling

Associate Professor: Pankaj K. Choudhary

Clinical Professor: Ronald Dearing

Clinical Associate Professor: Natalia Humphreys

Bachelor of Science in Actuarial Science

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication

RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)
PHYS 2325 Mechanics
or PHYS 2421 Honors Physics I - Mechanics and Heat
or CHEM 1311 General Chemistry I

PHYS 2326 Electromagnetism and Waves
or PHYS 2422 Honors Physics II - Electromagnetism and Waves
or CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)
HUMA 1301 Exploration of the Humanities

Creative Arts (3 semester credit hours)
ARTS 1301 Exploration of the Arts

American History (6 semester credit hours)
HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War

Government / Political Science (6 semester credit hours)
GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)
MATH 2417 Calculus I
MATH 2419 Calculus II
PHYS 2125 Physics Laboratory I

II. Major Requirements: 77 semester credit hours

Major Preparatory Courses (29 semester credit hours beyond core curriculum)
MATH 2417 Calculus I
MATH 2419 Calculus II
MATH 2419 Calculus II

PHYS 2325 Mechanics
or PHYS 2421 Honors Physics I - Mechanics and Heat
or CHEM 1311 General Chemistry I

PHYS 2326 Electromagnetism and Waves
or PHYS 2422 Honors Physics II - Electromagnetism and Waves
or CHEM 1312 General Chemistry II

PHYS 2125 Mechanics Laboratory

PHYS 2126 Electromagnetism and Waves Laboratory

CHEM 1111 General Chemistry I Laboratory
Or CHEM 1112 General Chemistry II Laboratory

BCOM 3310 Business Communication

ACCT 2301 Introductory Financial Accounting
ACCT 2302 Introductory Management Accounting

CS 1337 Computer Science I

ECON 2302 Principles of Microeconomics

MATH 2418 Linear Algebra

MATH 2420 Differential Equations with Applications

MATH 2451 Multivariable Calculus with Applications

Major Core Courses (48 semester credit hours)

ACTS 4301 Principles of Actuarial Models: Life Contingencies I

ACTS 4302 Principles of Actuarial Models: Financial Economics

ACTS 4304 Construction and Evaluation of Actuarial Models
ACTS 4308 Actuarial Financial Mathematics
FIN 3320 Business Finance
MIS 3300 Introduction to Management Information Systems
FIN 4300 Investment Management
FIN 3390 Introduction to Financial Modeling
MATH 3310 Theoretical Concepts of Calculus
MATH 3311 Abstract Algebra I
MATH 3379 Complex Variables
MATH 4334 Numerical Analysis
STAT 4382 Stochastic Processes
STAT 3355 Data Analysis for Statisticians and Actuaries
STAT 4351 Probability
STAT 4352 Mathematical Statistics

III. Elective Requirements: 1 semester credit hour

Freshman students are required to take **UNIV 1010** and **NATS 1101**.

Preparation for Actuarial Exams

Exam 1/P: **STAT 4351** or **ACTS 4306**

Exam 2/FM: **ACTS 4308**, **FIN 3320**, and **FIN 4300**

Exam 3L/MLC: **ACTS 4301**

Exam 3F/MFE: **ACTS 4302**

Exam 4/C: **ACTS 4304**

Validation by Educational Experience (VEE) Credits

Applied Statistical Methods: **STAT 3355** and **STAT 4382**

Corporate Finance: **FIN 3320**
Major in Actuarial Science

The Minor in Actuarial Science program at UT Dallas is administered through the Department of Mathematical Sciences. It is ideal for students who are interested in broadening their experience and knowledge base in the study and analysis of principles of Actuarial Science. The minor core courses prepare students for a number of actuarial exams required for a designation of Associate of the Society of Actuaries, Casualty Actuarial Society, or Canadian Institute of Actuaries. Specifically, the minor provides students with an intense background in principles of actuarial models. All of the courses in the minor serve as starting points for learning the concepts covered on the preliminary actuarial exams (P/1, FM/2, MLC/3L).

Students not majoring in Actuarial Science may obtain a minor in Actuarial Science by satisfying 24 semester credit hours (9 semester credit hours of minor core courses and 15 semester credit hours of minor preparatory courses).

Minor Preparatory Courses (15 semester credit hours)

- **MATH 2417** Calculus I (Differential Calculus)
- **MATH 2419** Calculus II (Integral Calculus)
- **MATH 2451** Multivariable Calculus with Applications
- **MIS 3300** Introduction to Management Information Systems

Minor Core Courses (9 semester credit hours)

- **STAT 4351** Probability
- **ACTS 4301** Principles of Actuarial Models: Life Contingencies I
- **ACTS 4308** Actuarial Financial Mathematics

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. A required Major preparatory course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
3. Three semester credit hours of Calculus are counted to fulfill the Mathematics Core Requirement with the remaining five semester credit hours to be counted under Component Area Option Core Requirement.
4. Six semester credit hours of Physics are counted under Science core, and one semester hour of Physics (PHYS 2125) are counted under Component Area Option core.
5. Students may choose one of the following calculus sequences: (a) MATH 2413, MATH 2414, and MATH 2415; or (b) MATH 2417 and MATH 2419.
6. NATS 1101 may be substituted for an appropriate elective for transfer students.

7. Students whose major does not require MATH 2417 and MATH 2419 as part of their Mathematics and Component Area Option Core Curriculum Requirements, should take this sequence as their core curriculum courses to ensure efficiency toward the minor.

8. These classes prepare for the three preliminary actuarial examinations jointly administered by the Society of Actuaries (SOA), Casualty Actuarial Society (CAS) and the Canadian Institute of Actuaries (CIA).
School of Natural Sciences and Mathematics

Biochemistry (BS)

The Biochemistry program at UT Dallas, administered through the Department of Chemistry, draws on faculty from the Departments of Chemistry, Molecular and Cell Biology, and researchers from UT Southwestern Medical School to provide courses and research opportunities to its majors. The Biochemistry major bridges the gap between modern Chemistry and Biology. The curriculum, designed to prepare students for either graduate work in the Biological Sciences, the Chemical Sciences, or for entry-level positions in the biotechnology industry, builds on a base of biology, chemistry, physics, and mathematics to provide the student the opportunity to develop essential theoretical and practical skills.

Chemistry Faculty

Robert A. Welch Chair in Chemistry; Professors of Chemistry: Ray H. Baughman, Dennis W. Smith Jr.

Cecil and Ida Green Distinguished Chair in Systems Biology; Professor of Chemistry: A. Dean Sherry

Distinguished Chair in Natural Sciences and Mathematics; Dean of the School of Natural Sciences and Mathematics: Bruce M. Novak

Professors: Kenneth J. Balkus Jr., Julia Y. Chan, Rockford K. Draper, John P. Ferraris, Bruce E. Gnade, Inga H. Musselman

Professor Emeritus: Richard A. Caldwell

Research Professors: Garry E. Kiefer, Duck Joo (D. J.) Yang

Associate Professors: Jung-Mo Ahn, Michael C. Biewer, Gregg R. Dieckmann, Warren J. Goux, Steven O. Nielsen, Paul Pantano, John W. Sibert IV, Mihaela C. Stefan

Assistant Professors: Jeremiah J. Gassensmith, Jiyong Lee, Ronald A. Smaldone, Jie Zheng

Senior Lecturers: Sergio Cortes, Sandhya R. Gavva, Jason L. McAfee, Yanping Qin, Amandeep Sra, Claudia Taenzler

Affiliated Faculty: Lee A. Bulla, Yves J. Chabal, Lev D. Gelb, Amy V. Walker, Anvar A. Zakhidov

Molecular and Cell Biology Faculty
Professors: Lee A. Bulla, Santosh D'Mello, Rockford K. Draper, Juan E. González, Stephen D. Levene, Lawrence J. Reitzer, Stephen Spiro, Li Zhang, Michael Qiwei Zhang

Professor Emeritus: Donald M. Gray

Associate Professors: Gail A. M. Breen, John G. Burr, Jeff L. DeJong, Ernest M. Hannig, Dennis L. Miller

Assistant Professors: Zhenyu Xuan

Senior Lecturers: Irina Borovkov, Mehmet Candas, Vincent P. Cirillo, Wen-Ju Lin, Robert C. Marsh, Ruben D. Ramirez, Scott A. Rippel, Ilya Sapozhnikov, Wen-Ho Yu

UT Southwestern Medical School

UT Dallas Biochemistry majors may perform their research in the laboratories of faculty members from the departments of Biochemistry, Internal Medicine, Pharmacology and Physiology at UT Southwestern, as available.

Bachelor of Science in Biochemistry

Degree Requirements (120 semester credit hours)

I. **Core Curriculum Requirements: 42 semester credit hours**

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

- MATH 2417 Calculus 2, 3
- Or MATH 2413 Differential Calculus 2, 3

Life and Physical Sciences (6 semester credit hours)

- CHEM 1311 General Chemistry I 2
- Or CHEM 1315 Honors Freshman Chemistry I 2
- CHEM 1312 General Chemistry II 2
- Or CHEM 1316 Honors Freshman Chemistry II 2
Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

 GOVT 2305 American National Government
 GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 6 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

 MATH 2417 Calculus I 2,3 or MATH 2413 Differential Calculus 2,3
 MATH 2419 Calculus II 2,3 or MATH 2414 Integral Calculus 2,3
 PHYS 2125 Physics Laboratory I 2,4

II. Major Requirements: 66 semester credit hours

Major Preparatory Courses (29 semester credit hours beyond core curriculum)

 BIOL 2111 Introduction to Modern Biology Workshop I
 BIOL 2311 Introduction to Modern Biology I
 CHEM 1111 General Chemistry Laboratory I

 or CHEM 1115 Honors Freshman Chemistry Laboratory I
 CHEM 1112 General Chemistry Laboratory II

Java/3
or **CHEM 1116** Honors Freshman Chemistry Laboratory II

CHEM 1311 General Chemistry I

or **CHEM 1315** Honors Freshman Chemistry I

CHEM 1312 General Chemistry II

or **CHEM 1316** Honors Freshman Chemistry II

CHEM 2123 Introductory Organic Chemistry Laboratory I

CHEM 2125 Introductory Organic Chemistry Laboratory II

CHEM 2323 Introductory Organic Chemistry I

CHEM 2325 Introductory Organic Chemistry II

CHEM 2401 Introductory Quantitative Methods in Chemistry

MATH Sequence - Students may choose one of the following sequences:

I. **MATH 2413** Differential Calculus

and **MATH 2414** Integral Calculus

and **MATH 2415** Calculus of Several Variables

OR

II. **MATH 2417** Calculus I

and **MATH 2419** Calculus II

and **MATH 2451** Multivariable Calculus with Applications

PHYS 2125 Physics Laboratory I

PHYS 2126 Physics Laboratory II

PHYS 2325 Mechanics

or **PHYS 2421** Honors Physics I - Mechanics and Heat

PHYS 2326 Electromagnetism and Waves

or **PHYS 2422** Honors Physics II - Electromagnetism and Waves
Major Core Courses (37 semester credit hours)

- **BIOL 3101** Classical and Molecular Genetics Workshop
- **BIOL 3102** Eukaryotic Molecular and Cell Biology Workshop
- **BIOL 3161** Biochemistry Workshop I
- **BIOL 3162** Biochemistry Workshop II
- **BIOL 3301** Classical and Molecular Genetics
- **BIOL 3302** Eukaryotic Molecular and Cell Biology
- **BIOL 3361** or **CHEM 3361** Biochemistry I
- **BIOL 3362** or **CHEM 3362** Biochemistry II
- **CHEM 3321** Physical Chemistry I
- **CHEM 3322** Physical Chemistry II
- **CHEM 3472** Instrumental Analysis

Any two upper-division Chemistry or Biology electives (8 semester credit hours) not taken to fulfill above.

III. Elective Requirements: 12 semester credit hours

Free Electives (12 semester credit hours)

The plan must include sufficient upper-division credit to total 51 upper-division semester credit hours.

STAT 2332 Statistics for Life Sciences is strongly recommended.

Fast Track Baccalaureate/Master's Degrees

Undergraduate students at UT Dallas with strong academic records who intend to pursue the MS in Chemistry at UT Dallas may apply for a Fast Track plan of study which involves taking selected graduate courses as an upper-level student. After admission to the graduate program, 15 semester credit hours of graduate courses with an earned grade of B or better can be used toward completion of the baccalaureate degree and to satisfy requirements for the master's degree. Interested students should contact the undergraduate advisor well in advance of the junior year to prepare a sequence permitting maximal advantage to be taken of the catalog's regulations (see
1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A required Major course that also fulfills Core Curriculum requirements. Semester credit hours are counted in the Core Curriculum.

3. Three semester credit hours of Calculus are counted to fulfill the Mathematics Core Requirement with the remaining five semester credit hours to be counted under Component Area Option Core Requirement.

4. Six semester credit hours of Physics are counted under Science core, and one semester of Physics (PHYS 2125) are counted under Component Area Option core.

5. Indicates a prerequisite class to be completed before enrolling for upper-division classes.

6. Students will take one of the two Physics sequences: PHYS 2325 and PHYS 2326 or PHYS 2421 and PHYS 2422 with accompanying labs.
The Biology Program at UT Dallas emphasizes the unifying molecular and cellular nature of organisms. At the center of the Biology undergraduate curriculum are the biochemical, genetic, and cell biology concepts and tools used to study the genes of prokaryotes and eukaryotes, to study the proteins and ribonucleic acids (RNA) encoded by these genes, and to study how the expression of these genes is regulated during the development and lifetimes of organisms. Molecular Biology represents a fusion of the four disciplines of biochemistry, biophysics, genetics, and cell biology. Modern biology requires a background in other disciplines such as chemistry, mathematics, physics, and computer sciences. Principles from these disciplines have to be merged to understand and apply new biotechnology and genetic engineering techniques. It is desirable for entering students to have a broad interest and background in the sciences.

Biology (BA, BS)

Both BS and BA degrees are offered in Biology at UT Dallas. The BS degrees are intended as preparation for scientific careers in biology or careers in the health professions. The BA degree is intended as liberal arts biology major with less emphasis on calculus and more free hours for coursework in other disciplines. Biology offers a streamlined double major with Business Administration or Crime and Justice Studies. Fast Track BS / MS Biology and Molecular Biology degree programs are available.

The UTeach option may be added to either the BA or BS degree in Biology. UTeach Dallas Option degree plans are streamlined to allow students to complete both a rigorous Bachelor of Science or Bachelor of Arts degree and all coursework for middle or high school teacher certification in four years. Teaching Option degrees require deep content knowledge combined with courses grounded in the latest research on math and science education. While most graduates go on to classroom teaching, UTeach alums are also prepared to enter graduate school and to work in discipline related industry.

Minors are offered in Biology, Biomolecular Structure, Microbiology, Molecular and Cell Biology, and Neurobiology.

Faculty

Professors: Lee A. Bulla, Rockford K. Draper, Juan González, Stephen D. Levene, Lawrence J. Reitzer, Stephen Spiro, Li Zhang, Michael Qiwei Zhang

Professor Emeritus: Hans Bremer, Donald M. Gray, Claud S. Rupert
Associate Professors: Gail A.M. Breen, John G. Burr, Jeff L. DeJong, Ernest M. Hannig, Dennis L. Miller

Assistant Professors: Heng Du, Jung-whan (Jay) Kim, Kelli Palmer, Duane D. Winkler, Zhenyu Xuan, Hyuntae Yoo

Research Assistant Professor: Lan Guo

Senior Lecturers: Irina Borovkov, Mehmet Candas, Vincent P. Cirillo, Monique Duncan, Wen-Ju Lin, Robert C. Marsh, David Murchison, Jing Pan, Elizabeth Pickett, Ruben D. Ramirez, Scott A. Rippel, Elizabeth Rugg, Ilya Sapozhnikov, Uma Srikanth, Michelle Wilson, Wen-Ho Yu

Bachelor of Arts or Bachelor of Science in Biology

Degree Requirements (120 semester credit hours)

I. **Core Curriculum Requirements**: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

- MATH 2413 Differential Calculus – BA or BS
- OR MATH 2417 Calculus I

 or MATH 1325 Applied Calculus I - BA only

Life and Physical Science (6 semester credit hours)

- CHEM 1311 General Chemistry I
- CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

- Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

- Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)
Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

- **GOVT 2305** American National Government
- **GOVT 2306** State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

- **BIOL 2311** Introduction to Modern Biology I
- **MATH 2414** Integral Calculus – BS or BA
- **GOVT 2305** American National Government
- **GOVT 2306** State and Local Government
- **STAT 2332** Statistics for Life Sciences – BA only

II. Major Requirements: 53 - 61 semester credit hours beyond core curriculum (53-55 for BA; 61 for BS)

Major Preparatory Courses (18-21 semester credit hours beyond Core Curriculum)

- **CHEM 1311** General Chemistry I
- **CHEM 1111** General Chemistry Laboratory I
- **CHEM 1312** General Chemistry II
- **CHEM 1112** General Chemistry Laboratory II
- **CHEM 2323** Introductory Organic Chemistry I
- **CHEM 2123** Introductory Organic Chemistry Laboratory I
- **CHEM 2325** Introductory Organic Chemistry II
- **CHEM 2125** Introductory Organic Chemistry Laboratory II
- **MATH 2413** Differential Calculus and **MATH 2414** Integral Calculus (BA or BS)
- **MATH 2417** Calculus I and **MATH 2419** Calculus II (BA or BS)
- **PHYS 2325** Mechanics and **PHYS 2125** Physics Laboratory I
- **PHYS 1301** College Physics I and **PHYS 2125** Physics Laboratory I
- **PHYS 2326** Electromagnetism and Waves and **PHYS 2126** Physics Laboratory II
- **PHYS 1302** College Physics II and **PHYS 2126** Physics Laboratory II
NATS 1101 Natural Sciences and Mathematics Freshman Seminar
UNIV 1010 Freshman Seminar

Major Core Courses (26-29 semester credit hours beyond Core Curriculum)

- BIOL 2281 Introductory Biology Laboratory 4
- BIOL 2111 Introduction to Modern Biology Workshop I 2
- BIOL 2112 Introduction to Modern Biology Workshop II 2
- BIOL 2311 Introduction to Modern Biology I 2
- BIOL 2312 Introduction to Modern Biology II 2
- BIOL 3101 Classical and Molecular Genetics Workshop
- BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
- BIOL 3161 Biochemistry Workshop I
- BIOL 3162 Biochemistry Workshop II
- BIOL 3301 Classical and Molecular Genetics
- BIOL 3302 Eukaryotic Molecular and Cell Biology
- BIOL 3361 Biochemistry I
- BIOL 3362 Biochemistry II
or BIOL 3335 Microbial Physiology
- BIOL 3380 Biochemistry Laboratory
- BIOL 4380 Cell and Molecular Biology Laboratory (BS only)

Major Related Courses (9-12 semester credit hours)

- 9 semester credit hours upper-division BIOL electives (BA only)
- 12 semester credit hours upper-division BIOL electives (BS only)

III. Elective Requirements: 17-24 semester credit hours (23-24 for BA; 16 for BS)

Free Electives 17-24 semester credit hours (23-24 for BA; 16 for BS)

The plan must include sufficient upper-division credit to total 51 upper-division credit hours.

Bachelor of Arts in Biology with UTeach Option

Degree Requirements (121 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours 1

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)
MATH 2413 Differential Calculus – BA or BS or MATH 1325 Applied Calculus I - BA only

Life and Physical Science (6 semester credit hours)

CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

BIOL 2311 Introduction to Modern Biology

MATH 2413 Differential Calculus and MATH 2414 Integral Calculus – BS or BA or MATH 1325 Applied Calculus I and STAT 2332 Statistics for Life Sciences – BA only

II. Major Requirements: 53 semester credit hours

Major Preparatory Courses (15-18 semester credit hours beyond Core Curriculum)
CHEM 1311 General Chemistry I
CHEM 1111 General Chemistry Laboratory I
CHEM 1312 General Chemistry II
CHEM 1112 General Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2325 Introductory Organic Chemistry II
CHEM 2125 Introductory Organic Chemistry Laboratory II

MATH 2413 Differential Calculus and MATH 2414 Integral Calculus (BA or BS)
or MATH 1325 Applied Calculus I and STAT 2332 Statistics for Life Sciences (BA only)

PHYS 2325 Mechanics and PHYS 2125 Physics Laboratory I
PHYS 1301 College Physics I and PHYS 2125 Physics Laboratory I

PHYS 2326 Electromagnetism and Waves and PHYS 2126 Physics Laboratory II
PHYS 1302 College Physics II and PHYS 2126 Physics Laboratory II

NATS 1101 Natural Sciences and Mathematics Freshman Seminar
UNIV 1010 Freshman Seminar

Major Core Courses (29 semester credit hours)

BIOL 2281 Introductory Biology Laboratory
BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2112 Introduction to Modern Biology Workshop II
BIOL 2311 Introduction to Modern Biology I
BIOL 2312 Introduction to Modern Biology II
BIOL 3101 Classical and Molecular Genetics Workshop
BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
BIOL 3161 Biochemistry Workshop I
BIOL 3162 Biochemistry Workshop II
BIOL 3301 Classical and Molecular Genetics
BIOL 3302 Eukaryotic Molecular and Cell Biology
BIOL 3361 Biochemistry I

BIOL 3362 Biochemistry II

or **BIOL 3335** Microbial Physiology

BIOL 3380 Biochemistry Laboratory

Major Related Courses (9 semester credit hours)

- 9 semester credit hours upper-division BIOL electives
- NATS 4390 satisfies 3 hours of this requirement.

III. Elective Requirements: 25 semester credit hours

UTeach Requirements (21 semester credit hours beyond Major-Related Courses)

- NATS 1141 UTeach STEP 1
- NATS 1143 UTeach STEP 2
- NATS 3341 Knowing and Learning in Mathematics and Science
- NATS 3343 Classroom Interactions
- HIST 3328 History and Philosophy of Science and Medicine
- NATS 4390 Research Methods
- NATS 4341 Project-Based Instruction
- NATS 4694 UTeach Apprentice Teaching, 8-12 Science and Mathematics
- or NATS 4696 UTeach Apprentice Teaching, 4-8 Science and Mathematics
- NATS 4141 UTeach Apprentice Teaching Seminar

Upper-Division Free Electives (4 semester credit hours)

The plan must include sufficient upper-division credit to total 51 upper-division semester credit hours.

Minor in Biology

Minor in Biology

Course Requirements: 18 semester credit hours

- **BIOL 2311** Introduction to Modern Biology I
- **BIOL 2111** Introduction to Modern Biology Workshop I
- **BIOL 3301** Classical and Molecular Genetics
- **BIOL 3101** Classical and Molecular Genetics Workshop
- **BIOL 3361** Biochemistry I
- **BIOL 3161** Biochemistry Workshop I
Two BIOL approved electives for majors

Minor in Biomolecular Structure

Course Requirements: 18 semester credit hours
BIOL 3336 Protein and Nucleic Acid Structure
BIOL 4461 Biophysical Chemistry, unless taken to fulfill the Molecular Biology major requirements
BIOL 4261 Biomolecular Modeling
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
One to two approved BIOL, CHEM, CS, EE, MATH, or PHYS electives

Minor in Molecular and Cell Biology

Course Requirements: 18 semester credit hours
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
Four approved molecular and cell biology electives

Minor in Microbiology

Course Requirements: 18 semester credit hours
BIOL 3V20 General Microbiology with Laboratory²
BIOL 3335 Microbial Physiology²
BIOL 4350 Medical Microbiology
or BIOL 4316 Parasites and Symbionts
BIOL 4345 Immunobiology
CHEM 2323 Introductory Organic Chemistry I
One approved microbiology elective

Minor in Neurobiology

Course Requirements: 18 semester credit hours
BIOL 4370 Developmental Neurobiology
BIOL 3371 Biology of the Brain
or NSC 4352 Cellular Neuroscience
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
NSC 4353 Neuroscience Laboratory Methods
NSC 4354 Integrative Neuroscience

Fast Track Baccalaureate/Master's Degrees

UT Dallas undergraduate students with strong academic records, including at least 15 semester credit hours of upper-division Biology core courses, who intend to pursue graduate work in
Biology at UT Dallas, may apply for the Fast Track which involves taking selected graduate courses as an upper-division student. After admission to the graduate program, 15 semester credit hours of graduate courses with an earned grade of B or better can be used toward completion of the BS and to satisfy requirements for those courses at the graduate level. Graduate courses must be approved by the graduate advisor. This program provides an opportunity to obtain the BS degree in Biology after 120 semester credit hours of work and an MS degree in Molecular and Cell Biology after an additional 21 semester credit hours of graduate course and research work. Interested students should contact the Biology undergraduate advisor well in advance of the senior year to prepare a degree plan taking maximal advantage of this Fast Track program.

Degree Planning

Upper-division biology courses taken at other institutions may be included as part of the degree plan subject to the provisions of the section on Transfer Admissions.

Major-related courses may not include more than 9 hours (BS) or 6 hours (BA) of upper-division transfer credit and not more than 3 hours (Biology major) or 6 hours (Molecular Biology major) of individual instruction (e.g., BIOL 3V90, BIOL 3V91, BIOL 3V92, BIOL 3V95, BIOL 3V96, BIOL 4302, BIOL 4390, BIOL 4391, BIOL 4398, BIOL 4399, BIOL 4V98, or BIOL 4V99).

Students planning a career in a particular allied health profession should consult the school they expect to attend to apprise themselves of the course requirements for admission.

Admission standards for medical and dental schools are set by the individual professional school, whose specific requirements should be reviewed with the help of the UT Dallas Health Professions Advising Center (HPAC). Most professional schools prefer that admission applications be channeled through the HPAC.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major requirements at UT Dallas.

2. A required Major course that also fulfills a Core Curriculum requirement. Hours are counted in Core Curriculum.

3. Six semester credit hours of Calculus are counted under Mathematics Core and Component Area Option and 2 semester credit hours of Calculus are counted as Major Preparatory Courses.

4. Indicates a prerequisite class to be completed before enrolling for upper-division classes.

5. Up to 3 hours of individual instruction may be used in fulfilling this requirement for BA degree. Up to 6 hours of individual instruction may be used in fulfilling this requirement for BS degree.

6. NATS 4390 counts as an Upper-Division Biology Elective.

7. Two semester credit hours of BIOL 3V20 may be used to satisfy the upper level elective requirement for Biology and Molecular Biology majors.
8. May be substituted with CHEM 2325 Introductory Chemistry II if BIOL 3335 is used to satisfy the Biochemistry II core requirement for Biology and Molecular Biology majors.

School of Natural Sciences and Mathematics

Bachelor of Science in Biology and Business Administration (Double Major)

Degree Requirements (146 semester credit hours)

I. Core Curriculum Requirements 42 semester credit hours

Communication (6 semester credit hours)

- COMM 1311 Survey of Oral and Technology-based Communication
- RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

- MATH 2413 Differential Calculus

Life and Physical Sciences (6 semester credit hours)

- CHEM 1311 General Chemistry I
- CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy, and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government
Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 2414 Integral Calculus
ECON 2302 Principles of Microeconomics

II. Major Requirements: 92 semester credit hours

Biology Major Preparatory Courses (21 semester credit hours beyond Core Curriculum)

CHEM 1111 General Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2125 Introductory Organic Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
MATH 2413 Differential Calculus
MATH 2414 Integral Calculus
PHYS 2325 Mechanics and PHYS 2125 Physics Laboratory I or PHYS 1301 College Physics I and PHYS 2125 Physics Laboratory I
PHYS 2326 Electromagnetism and Waves and PHYS 2126 Physics Laboratory II or PHYS 1302 College Physics II and PHYS 2126 Physics Laboratory II
NATS 1101 Natural Sciences and Mathematics Freshman Seminar
UNIV 1010 Freshman Seminar

Biology Core Courses (29 semester credit hours)

BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2112 Introduction to Modern Biology Workshop II
BIOL 2281 Introductory Biology Laboratory
BIOL 2311 Introduction to Modern Biology I
BIOL 2312 Introduction to Modern Biology II
BIOL 3101 Classical and Molecular Genetics Workshop
BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
BIOL 3161 Biochemistry Workshop I
BIOL 3162 Biochemistry Workshop II
BIOL 3301 Classical and Molecular Genetics
BIOL 3302 Eukaryotic Molecular and Cell Biology
BIOL 3361 Biochemistry I
BIOL 3362 Biochemistry II
or BiOL 3335 Microbial Physiology
BiOL 3380 Biochemistry Laboratory

<table>
<thead>
<tr>
<th>Business Administration Major Preparatory Courses (16 semester credit hours beyond Core Curriculum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2301 Introductory Financial Accounting^5</td>
</tr>
<tr>
<td>ACCT 2302 Introductory Management Accounting^5</td>
</tr>
<tr>
<td>BA 3100 Professional Development</td>
</tr>
<tr>
<td>BLAW 2301 Business and Public Law^2</td>
</tr>
<tr>
<td>ECON 2301 Principles of Macroeconomics 1.5</td>
</tr>
<tr>
<td>ECON 2302 Principles of Microeconomics 1.5</td>
</tr>
<tr>
<td>OPRE 3333 Quantitative Business Analysis^5</td>
</tr>
<tr>
<td>or MATH 2333 Matrices, Vectors, and Their Application^4</td>
</tr>
<tr>
<td>STAT 3360 Probability and Statistics for Management and Economics</td>
</tr>
<tr>
<td>or STAT 2332 Statistics for Life Sciences</td>
</tr>
<tr>
<td>or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Administration Core Courses (27 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCOM 3310 Business Communication</td>
</tr>
<tr>
<td>BCOM 4350 Advanced Business Communication</td>
</tr>
<tr>
<td>FIN 3320 Business Finance</td>
</tr>
<tr>
<td>MIS 3300 Introduction to Management Information Systems</td>
</tr>
<tr>
<td>OPRE 3310 Operations Management</td>
</tr>
<tr>
<td>OBHR 3310 Organizational Behavior</td>
</tr>
<tr>
<td>MKT 3300 Principles of Marketing</td>
</tr>
<tr>
<td>BPS 4305 Strategic Management</td>
</tr>
<tr>
<td>IMS 3310 International Business</td>
</tr>
</tbody>
</table>

III. Elective Requirements: 12 semester credit hours

Guided Electives (12 semester credit hours)

Business: (9 semester credit hours) to be selected from any upper-level JSOM course. If qualified, the student may select from JSOM graduate courses.

Biology: (3 semester credit hours) BiOL 4380 Cell and Molecular Biology Laboratory or approved upper-level biology course.

1. Degree is 147 semester credit hours if students are required to take NATS 1101
2. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Six semester credit hours of Calculus are counted under Mathematics Core and Component Area Option Core, and 2 semester credit hours of Calculus are counted as Biology Major Preparatory Courses.
5. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
6. Students may substitute MATH 2418 or CS 2305.
7. Students may substitute MATH 2413 and MATH 2414 by taking MATH 2417 and MATH 2419.

School of Natural Sciences and Mathematics

Bachelor of Arts in Biology and Criminology (Double Major)

Degree Requirements (128-131 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

One of the following:

MATH 1325 Applied Calculus
MATH 2413 Differential Calculus

Life and Physical Sciences (6 semester credit hours)

CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

Select any 2 semester credit hours from Language, Philosophy, and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

HIST 1301 U.S. History Survey to Civil War
HIST 1302 U.S. History Survey from Civil War

Or Select any 6 credit hours from American history core courses (see advisor)

Government / Political Science (6 semester credit hours)
GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

One of the following:

- CRIM 1301 Introduction to Criminal Justice
- CRIM 1307 Introduction to Crime and Criminology
- ECON 2301 Principles of Macroeconomics
- SOC 1301 Introduction to Sociology

Or Select any 6 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

- MATH 2414 Integral Calculus
- ECON 2302 Principles of Microeconomics
- or STAT 2332 Statistics for Life Sciences
- or EPPS 2302 Methods of Quantitative Analysis in the Social and Policy Sciences
- or EPPS 2303 Descriptive and Inferential Statistics for the Social and Policy Sciences

II. Major Requirements: 71-73 semester credit hours

Criminology Major Preparatory Course [No semester credit hours beyond Core Curriculum]

- CRIM 1301 Introduction to Criminal Justice
- CRIM 1307 Introduction to Crime and Criminology
- ECON 2301 Principles of Macroeconomics

Criminology Core Courses (21 semester credit hours)

- CRIM 3300 Crime and Civil Liberties
- CRIM 3301 Theories of Justice
- CRIM 3302 Advanced Criminology
- CRIM 3303 Advanced Criminal Justice
- CRIM 3319 Comparative Justice Systems
- CRIM 4311 Crime and Justice Policy
- CRIM 4322 Senior Research Seminar
Biology Major Preparatory Courses (18-20 semester credit hours beyond Core Curriculum)

CHEM 1111 General Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2125 Introductory Organic Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II

MATH 2413 Differential Calculus and MATH 2414 Integral Calculus
MATH 1325 Applied Calculus I and STAT 2332 Statistics for Life Sciences or EPPS 2302 Methods of Quantitative Analysis in the Social and Policy Sciences

PHYS 2325 Mechanics and PHYS 2125 Physics Laboratory I
PHYS 2326 Electromagnetism and Waves and PHYS 2126 Physics Laboratory II

Biology Major Core Courses (32 semester credit hours)

BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2112 Introduction to Modern Biology Workshop II
BIOL 2281 Introductory Biology Laboratory
BIOL 2311 Introduction to Modern Biology I
BIOL 2312 Introduction to Modern Biology II
BIOL 3101 Classical and Molecular Genetics Workshop
BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
BIOL 3161 Biochemistry Workshop I
BIOL 3162 Biochemistry Workshop II
BIOL 3301 Classical and Molecular Genetics
BIOL 3302 Eukaryotic Molecular and Cell Biology
BIOL 3318 Forensic Biology
BIOL 3361 Biochemistry I
BIOL 3362 Biochemistry II

or BIOL 3335 Microbial Physiology

BIOL 3380 Biochemistry Laboratory
III. Elective Requirements: 15 semester credit hours

Guided Electives (15 semester credit hours)

Biology (6 semester credit hours): **BIOL 4380** Cell and Molecular Biology Laboratory

Criminology Related Electives (9 semester credit hours)

All students must complete at least 51 semester credit hours of upper-division courses to graduate.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
3. Six semester credit hours of Calculus are counted under Mathematics Core and Component Area Option Core and 2 semester credit hours of Calculus are counted as Major Preparatory Courses.
4. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
5. Students may substitute MATH 2413 and MATH 2414 by taking MATH 2417 and MATH 2419.
School of Natural Sciences and Mathematics

Chemistry (BA, BS)

The Chemistry major builds on a base of chemistry, physics, mathematics, and computer science to provide the student the opportunity to develop essential theoretical and practical skills in the subdisciplines of organic, physical, inorganic, analytical, and macromolecular chemistry. Typically, the practice of chemistry in industry deals with the synthesis, analysis, and control of the many materials used in our technological society.

The Chemistry program at UT Dallas is designed to instruct the student in how chemical experiments are performed, how results are interpreted, and through its integrated laboratory sequence, to emphasize the importance of one subdisciplines in solving problems inherent to another. Meeting these goals, the Chemistry program provides the student with the flexibility to enter industry, go on to graduate school, or pursue medical, dental, and other degrees in the health sciences.

Faculty

Robert A. Welch Chair in Chemistry; Professors of Chemistry: Ray H. Baughman, Dennis W. Smith Jr.

Cecil and Ida Green Distinguished Chair in Systems Biology; Professor of Chemistry: A. Dean Sherry

Distinguished Chair in Natural Sciences and Mathematics; Dean of the School of Natural Sciences and Mathematics: Bruce M. Novak

Professors: Kenneth J. Balkus Jr., Julia Y. Chan, Rockford K. Draper, John P. Ferraris, Bruce E. Gnade, Inga H. Musselman

Professor Emeritus: Richard A. Caldwell

Research Professors: Garry E. Kiefer, Duck Joo (D. J.) Yang

Associate Professors: Jung-Mo Ahn, Michael C. Biewer, Gregg R. Dieckmann, Warren J. Goux, Steven O. Nielsen, Paul Pantano, John W. Sibert IV, Mihaela C. Stefan

Assistant Professors: Jeremiah J. Gassensmith, Jiyong Lee, Ronald A. Smaldone, Jie Zheng

Senior Lecturers: Sergio Cortes, Sandhya R. Gavva, Jason L. McAfee, Yanping Qin, Amandeep Sra, Claudia Taenzler
Affiliated Faculty: Lee A. Bulla, Yves J. Chabal, Lev D. Gelb, Amy V. Walker, Anvar A. Zakhidov

Degrees

The Chemistry major may choose a program leading either to the BA or BS degree. The latter degree sequence has been approved by the American Chemical Society's Committee on Professional Training.

BA Program

The BA program offers the minimum fundamental knowledge required for adequate professional function in a career in chemistry. It is possible that students choosing this option may, through suitable use of unspecified semester credit hours, prepare for careers in areas as varied as chemistry-related businesses, government, medicine and dentistry, secondary school teaching, and even law or politics.

BS Program

The BS program provides more intensive training in chemistry for the student who intends either to obtain employment at the bachelor's level in the chemical industry or to pursue graduate study.

UTeach Option

The UTeach option may be added to the BA degree in Chemistry. UTeach Dallas Option degree plans are streamlined to allow students to complete both a rigorous Bachelor of Science or Bachelor of Arts degree and all coursework for middle or high school teacher certification in four years. Teaching Option degrees require deep content knowledge combined with courses grounded in the latest research on math and science education. While most graduates go on to classroom teaching, UTeach alums are also prepared to enter graduate school and to work in discipline related industry.

Bachelor of Arts or Bachelor of Science in Chemistry

Degree Requirements (120 semester credit hours)

I. [Core Curriculum Requirements](#), 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 2312 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

- MATH 2417 Calculus

Mary Jo Venetis 2/7/14 3:04 PM
Comment [1]: Will link back to core curriculum section catalog.

Dieckmann lab 10/8/13 9:21 AM
Deleted: [something]

Mary Jo Venetis 2/7/14 3:04 PM
Deleted: [something]

Dieckmann lab 10/8/13 9:21 AM
Deleted: [something]

Mary Jo Venetis 2/7/14 3:06 PM
Formatted: Superscript
Or MATH 2413 Differential Calculus 2,3

Life and Physical Science (6 semester credit hours)

CHEM 1311 General Chemistry 1

Or CHEM 1315 Honors Freshman Chemistry I 2

CHEM 1312 General Chemistry II 3

Or CHEM 1316 Honors Freshman Chemistry II 2

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government/Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

MATH 2417 Calculus I 2,3 or MATH 2413 Differential Calculus 2,3

MATH 2419 Calculus II 2,3 or MATH 2414 Integral Calculus 2,3

PHYS 2125 Physics Laboratory I 2,4
II. Major Requirements: BS 60 semester credit hours; BA 60 semester credit hours

Major Preparatory Courses (28-29 semester credit hours beyond the Core Curriculum)

CHEM 1111 General Chemistry Laboratory I
or CHEM 1115 Honors Freshman Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
or CHEM 1116 Honors Freshman Chemistry Laboratory II
CHEM 1311 General Chemistry I
or CHEM 1315 Honors Freshman Chemistry I
CHEM 1312 General Chemistry II
or CHEM 1316 Honors Freshman Chemistry II
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2125 Introductory Organic Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
CHEM 2401 Introductory Quantitative Methods in Chemistry

MATH Sequence - Students may choose one of the following sequences:

I. MATH 2413 Differential Calculus 3, 4
and MATH 2414 Integral Calculus 3, 4
and MATH 2415 Calculus of Several Variables
and MATH 2418 Linear Algebra
or STAT 2332 Statistics for Life Sciences

OR

II. MATH 2417 Calculus I 3, 4
and MATH 2419 Calculus II 3, 4
and MATH 2451 Multivariable Calculus with Applications
and MATH 2415 Linear Algebra
or STAT 2332 Statistics for Life Sciences

PHYS 2125 Physics Laboratory I 4
PHYS 2126 Physics Laboratory II
PHYS 2325 Mechanics
PHYS 2326 Electromagnetism and Waves

Major Core Courses (11 semester credit hours)

CHEM 3321 Physical Chemistry I
CHEM 3471 Advanced Chemical Synthesis Laboratory
CHEM 3472 Instrumental Analysis

Major Related Courses (BS 22 semester credit hours; BA 21 semester credit hours)

Bachelor of Arts (18 semester credit hours)

- BIOL 3361 or CHEM 3361 Biochemistry I
- or CHEM 4335 Polymer Chemistry
- CHEM 3341 Inorganic Chemistry I
- or CHEM 3322 Physical Chemistry II

Guided Electives - 12 semester credit hours

May be used in (partial) fulfillment of a Second Major, Minor or Teaching Certificate

Advanced Writing

- NATS 4310 Advanced Writing in the Natural Sciences and Mathematics

Bachelor of Science (19 semester credit hours beyond the Core Curriculum)

- CHEM 3322 Physical Chemistry II
- CHEM 3341 Inorganic Chemistry I
- BIOL 3361 or CHEM 3361 Biochemistry I
- CHEM 4473 Physical Measurements Laboratory
- or CHEM 4399 Research and Advanced Writing in Chemistry for Honors Students
- or CHEM 4V91 (3 semester credit hours) Research in Chemistry
- BIOL 3362 or CHEM 3362 Biochemistry II
- or CHEM 4335 Polymer Chemistry
- or CHEM 4355 Computational Modeling

III. Elective Requirements: 18 semester credit hours

6 semester credit hours must be outside the major and be upper-division and/or have prerequisites. The plan must include sufficient upper-division credit to total 51 upper-division semester credit hours.

Bachelor of Arts in Chemistry with UTeach Option

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)
RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)
MATH 2417 Calculus^{2,3}

Life and Physical Science (6 semester credit hours)
CHEM 1311 General Chemistry I^{2}
CHEM 1312 General Chemistry II^{2}

Language, Philosophy and Culture (3 semester credit hours)
Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)
Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)
Select any 6 semester credit hours from American History core courses (see advisor)

Government/Political Science (6 semester credit hours)
GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)
MATH 2417 Calculus I^{2,3}
MATH 2419 Calculus II^{2,3}
PHYS 2125 Physics Laboratory I^{2,4}

II. Major Requirements: 57-59 semester credit hours

Major Preparatory Courses (28-29 semester credit hours beyond the Core Curriculum)
CHEM 1111 General Chemistry Laboratory I, or CHEM 1115 Honors Freshman Chemistry Laboratory I

Mary Jo Venetis 2/7/14 3:18 PM
Comment [3]: Check hours?
Mary Jo Venetis 2/7/14 3:25 PM
Deleted: 2 semester credit hours Communication (RHET 1302)
Mary Jo Venetis 2/7/14 3:26 PM
Deleted: 2
Mary Jo Venetis 2/7/14 3:26 PM
Deleted: 2
CHEM 1112 General Chemistry Laboratory II
or **CHEM 1116** Honors Freshman Chemistry Laboratory II
CHEM 1311 General Chemistry II
or **CHEM 1315** Honors Freshman Chemistry II
CHEM 1312 General Chemistry III
or **CHEM 1316** Honors Freshman Chemistry III
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2125 Introductory Organic Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
CHEM 2401 Introductory Quantitative Methods in Chemistry

MATH Sequence - Students may choose one of the following sequences:

I. **MATH 2413** Differential Calculus
 and **MATH 2414** Integral Calculus
 and **MATH 2415** Calculus of Several Variables
 and **MATH 2418** Linear Algebra
or **STAT 2332** Statistics for Life Sciences

OR

II. **MATH 2417** Calculus
 and **MATH 2419** Calculus II
 and **MATH 2451** Multivariable Calculus with Applications
 and **MATH 2418** Linear Algebra
or **STAT 2332** Statistics for Life Sciences

Major Core Courses (11 semester credit hours)

CHEM 3321 Physical Chemistry I
CHEM 3471 Advanced Chemical Synthesis Laboratory
CHEM 3472 Instrumental Analysis

Major Related Courses (18-19 semester credit hours beyond core curriculum)

BIOL 3361 or **CHEM 3361** Biochemistry I
BIOL 3161 Biochemistry Workshop I
or **CHEM 4335** Polymer Chemistry
CHEM 3341 Inorganic Chemistry I
or **CHEM 3322** Physical Chemistry II
Guided Electives (15 semester credit hours)

UTeach courses will fulfill this requirement.

III. Elective Requirements: 19-21 semester credit hours

Electives (6 semester credit hours)

These courses must be outside the major and be upper-division and/or have prerequisites. UTeach courses can fulfill this requirement.

UTeach Requirements (3 semester credit hours beyond guided electives, and advanced electives)

- **NATS 1141** UTeach **STEP 1**
- **NATS 1143** UTeach **STEP 2**
- **NATS 3341** Knowing and Learning in Mathematics and Science
- **NATS 3343** Classroom Interactions
- **HIST 3328** History and Philosophy of Science and Medicine
- **NATS 4390** Research Methods
- **NATS 4341** Project-Based Instruction
- **NATS 4694** UTeach Apprentice Teaching, 8-12 Science and Mathematics
 or **NATS 4696** UTeach Apprentice Teaching, 4-8 Science and Mathematics
- **NATS 4141** UTeach Apprentice Student Teaching Seminar

Free Electives (10-12 semester credit hours)

The plan must include sufficient upper-division credit to total 51 upper-division semester credit hours.

Minor in Chemistry

18 semester credit hours that must include

- **BIOL 3161** Biochemistry Workshop I
- **BIOL 3361** or **CHEM 3361** Biochemistry I
- **CHEM 3321** Physical Chemistry I
- **CHEM 3472** Instrumental Analysis

Fast Track Baccalaureate/Master's Degrees

Undergraduate students at UT Dallas with strong academic records who intend to pursue the MS in Chemistry at UT Dallas may apply for a Fast Track plan of study which involves taking selected graduate courses as an upper-level student. After admission to the graduate program, 15 semester credit hours of graduate courses with an earned grade of B or better can be used toward completion of the baccalaureate degree and to satisfy requirements for the master's degree.
Interested students should contact the undergraduate advisor well in advance of the junior year to prepare a sequence permitting maximal advantage to be taken of the catalog's regulations (see catalog.utdallas.edu/2013/undergraduate/policies/graduate-courses) regarding Undergraduate Registration for Graduate Courses.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A required Major course that also fulfills Core Curriculum requirements. If semester credit hours are counted in the Core Curriculum, students must complete additional coursework to meet the minimum requirement for graduation. Course selection assistance is available from the undergraduate advisor.

3. Three semester credit hours of Calculus are counted to fulfill the Mathematics Core Requirement with the remaining five semester credit hours to be counted under Component Area Option Core Requirement.

4. Six semester credit hours of Physics are counted under Science core, and one semester of Physics (PHYS 2125) are counted under Component Area Option core.

5. Indicates a prerequisite class to be completed before enrolling for upper-division classes.

6. Research in Chemistry (CHEM 4V91), Research and Advanced Writing in Chemistry (CHEM 4390), and Research and Advanced Writing in Chemistry for Honors Students (CHEM 4399) are better defined as a project than a course and constitute an important part of the BS degree. The student conducts original research under the supervision of a faculty member, and then must submit a research report which is defended orally. Normally this project will span two or more semesters. A complete set of guidelines is available from the undergraduate advisor.
School of Natural Sciences and Mathematics

Geosciences (BS)

Attaining greater understanding of past and present Earth processes is the fundamental goal of geosciences. To achieve this goal the geoscientist studies the minerals, rocks, fluids, and fossils of the Earth and investigates the physical, chemical, and biological processes occurring on and in the Earth.

Professional opportunities in geology exist in the environmental, energy, and mineral resources industries and in government agencies concerned with these fields. In addition, many occupations concerned with law, management, economics, and the environment utilize a background in geosciences.

Specific degree plans will be formulated by the undergraduate advisor in Geosciences. Changing circumstances may require changes to the degree plans.

The UTeach option may be added to the BS degree in Geosciences. UTeach Dallas Option degree plans are streamlined to allow students to complete both a rigorous Bachelor of Science or Bachelor of Arts degree and all coursework for middle or high school teacher certification in four years. Teaching Option degrees require deep content knowledge combined with courses grounded in the latest research on math and science education. While most graduates go on to classroom teaching, UTeach alums are also prepared to enter graduate school and to work in discipline related industry.

Faculty

Professors: Carlos L. V. Aiken, John F. Ferguson, John W. Geissman, William I. Manton, George A. McMechan, John S. Oldow, Robert J. Stern

Professors Emeritus: David E. Dunn, Richard M. Mitterer, Emile A. Pessagno Jr., Dean C. Presnall, Robert H. Rutford

Associate Professors: Thomas H. Brikowski

Associate Professor Emeritus: James L. Carter

Senior Lecturers: William R. Griffin, Ignacio Pujana

Bachelor of Science in Geosciences

Degree Requirements (120 semester credit hours)
I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

MATH 2413 Differential Calculus ², ³
or
MATH 2417 Calculus I ², ³

Life and Physical Science (6 semester credit hours)

CHEM 1311 General Chemistry I ²
CHEM 1312 General Chemistry II ²

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government/Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

GEOS 1303 Physical Geology
GEOS 1304 History of Earth and Life
II. Major Requirements: 60-68 semester credit hours

A. Major Preparatory Courses (19 semester credit hours beyond Core Curriculum)

Prerequisite courses to be completed before enrolling in upper-division GEOS courses.

- MATH 2413 Differential Calculus \(^2,3\)
 or
- MATH 2417 Calculus I \(^2,3\)

- CHEM 1311 General Chemistry I \(^2\)
- CHEM 1312 General Chemistry II \(^2\)

- GEOS 1303 Physical Geology \(^2\)
- GEOS 1304 History of Earth and Life \(^2\)

- MATH 2414 Integral Calculus
 or
- MATH 2419 Calculus II

- GEOS 1103 Physical Geology Laboratory
- GEOS 1104 History of Earth and Life Laboratory

- PHYS 2325 Mechanics
- PHYS 2125 Physics Laboratory I
- PHYS 2326 Electromagnetism and Waves
- PHYS 2126 Physics Laboratory II

- GEOS 2409 Rocks and Minerals

B. Major Core Courses (27 semester credit hours)

- GEOS 2306 Essentials of Field Geologic Methods
- GEOS 3300 Field Geology I (Summer Field Camp I)
- GEOS 3421 Stratigraphy and Sedimentology
- GEOS 3464 Igneous and Metamorphic Petrography
- GEOS 3470 Structural Geology
- GEOS 4300 Field Geology II (Summer Field Camp II)
- GEOS 4320 The Physics and Chemistry of the Solid Earth
- GEOS 4390 Geoscience Writing and Reports

C. Geology Option (14-15 semester credit hours)

- GEOS 3434 Paleobiology
- GEOS 4322 The Earth System
- GEOS 4430 Hydrogeology and Aqueous Geochemistry
A mathematics course selected from:

- GEOS 5306 Data Analysis for Geoscientists (with permission)
- MATH 2418 Linear Algebra
- MATH 2451 Multivariable Calculus with Applications
- PHYS 3330 Numerical Methods in Physics and Computational Techniques

OR

C. Geophysics Option (22 semester credit hours)

- MATH 2420 Differential Equations with Applications
- MATH 2451 Multivariable Calculus with Applications
- MATH 4362 Partial Differential Equations
- PHYS 3411 Theoretical Physics
- PHYS 3312 Classical Mechanics
- PHYS 3416 Electricity and Magnetism

III. Elective Requirements: 10-18 semester credit hours (17 or 18 semester credit hours for Geology Option; 10 semester credit hours for Geophysics Option)

Electives (6 semester credit hours)

All students are required to take at least six semester credit hours of electives outside their major field of study. These must be either upper-division classes or lower-division classes that have prerequisites.

Free Electives (4-12 semester credit hours; 11 or 12 semester credit hours for Geology Option; 4 semester credit hours for Geophysics Option)

Both lower- and upper-division courses may count as electives, but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation. Students are strongly encouraged to take GEOS graduate courses as free electives.

Bachelor of Science in Geosciences with UTeach Option

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral, and Technology-based Communication
Mathematics (3 semester credit hours)

MATH 2413 Differential Calculus \(^2,^3\)
or
MATH 2417 Calculus I \(^2,^3\)

Life and Physical Science (6 semester credit hours)

CHEM 1311 General Chemistry I \(^2\)
CHEM 1312 General Chemistry II \(^2\)

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government/Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

GEOS 1303 Physical Geology
GEOS 1304 History of Earth and Life

II. Major Requirements: 72 semester credit hours

A. Major Preparatory Courses (19 semester credit hours beyond Core Curriculum)

Prerequisite courses to be completed before enrolling in upper-division GEOS courses.
MATH 2413 Differential Calculus2,3
\textbf{or}
MATH 2417 Calculus I2,3

CHEM 1311 General Chemistry I2
CHEM 1312 General Chemistry II2

GEOS 1303 Physical Geology2
GEOS 1304 History of Earth and Life2

MATH 2414 Integral Calculus
\textbf{or}
MATH 2419 Calculus II

GEOS 1103 Physical Geology Laboratory
GEOS 1104 History of Earth and Life Laboratory

PHYS 2325 Mechanics
PHYS 2125 Physics Laboratory I
PHYS 2326 Electromagnetism and Waves
PHYS 2126 Physics Laboratory II
GEOS 2409 Rocks and Minerals

B. Major Core Courses (21 semester credit hours)

GEOS 2306 Essentials of Field Geologic Methods
GEOS 3421 Stratigraphy and Sedimentology
GEOS 3434 Paleobiology
GEOS 4320 Physics and Chemistry of the Solid Earth
GEOS 4322 The Earth System
GEOS 4430 Hydrogeology and Geochemistry

C. Composite Science and Mathematics Requirements (8 semester credit hours)

BIOL 2311 Introduction to Modern Biology I
BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2312 Introduction to Modern Biology II
BIOL 2112 Introduction to Modern Biology Workshop II

D. UTeach Requirements, (24 semester credit hours)
NATS 1141 UTeach STEP 1
NATS 1143 UTeach STEP 2
NATS 3341 Knowing and Learning in Mathematics and Science
NATS 3343 Classroom Interactions
HIST 3328 History and Philosophy of Science and Medicine
NATS 4390 Research Methods
NATS 4341 Project-based Instruction
NATS 4694 UTeach Apprentice Teaching, 8-12 Science and Mathematics
or NATS 4696 UTeach Apprentice Teaching, 4-8 Science and Mathematics
NATS 4141 UTeach Apprentice Teaching Seminar

III. Free Electives: 6 semester credit hours.

Electives (6 semester credit hours)

Students are required to take additional free electives (upper-division if necessary) if needed to reach 120 total degree semester credit hours or 51 upper-division semester credit hours.

Fast Track Baccalaureate/Master's Degrees

The Fast-Track program allows students with strong academic records to take selected graduate courses that may be applied toward the baccalaureate degree and be used to satisfy requirements for the master's degree. Interested students who intend to pursue a master's degree in Geosciences may apply for a Fast Track baccalaureate/master's plan of study via the Geosciences graduate advisor. The planned coursework must be coordinated with the Geosciences undergraduate advisor; the Geosciences graduate advisor should also be notified. A maximum of 15 semester credit hours may be applied under this program.

Geosciences Minor

Students not majoring in Geosciences are encouraged to choose Geosciences as a minor.

Lower-division courses (8 semester credit hours):

- GEOS 1103 Physical Geology Laboratory
- GEOS 1104 History of Earth and Life Laboratory
- GEOS 1303 Physical Geology
- GEOS 1304 History of Earth and Life

Upper-division courses (12 semester credit hours)

To be selected in consultation with Geosciences Undergraduate advisor
1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. A Major requirement that also fulfills a Core Curriculum requirement.

3. Three semester credit hours are counted to fulfill the Mathematics Core Requirement with the remaining hour to be counted under the major requirements.
School of Natural Sciences and Mathematics

Mathematics (BS)

Mathematics is both a profession and an indispensable tool for many types of work. As a tool, mathematics is a universal language that has been crucial in formulating and expressing ideas not only in science and engineering, but also in many other areas such as business and the social sciences. As probably the oldest and most basic science, it provides the key to understanding the major technological achievements of our time.

Of equal importance, knowledge of mathematics may help provide a student with the type of uncompromising and clear-sighted thinking useful in considering the problems of many other disciplines. The Mathematics degree program encompasses mathematics, statistics, and applied mathematics.

Applied mathematics and statistics continue to enjoy a rapid growth. Students have the opportunity of applying their expertise to any of a number of fields of application. For the student to be more effective in such applications, Mathematics also offers degree programs allowing additional emphasis in the areas of actuarial science, computer science, electrical engineering, and management.

Those interested in obtaining both a BS in Mathematics and Teacher Certification in the state of Texas should consult the Teacher Development Center or UTeach Dallas office for specific requirements as soon as possible after formal admission to the University. See the Teacher Education Certification Programs section of the catalog for additional information.

The Mathematics degree program also prepares students for graduate studies. An accelerated BS/MS Fast Track program is available which provides the opportunity for undergraduate students to satisfy some of the requirements of the master's degree while they are completing the bachelor's degree in Mathematics.

Faculty

Professors: Larry P. Ammann, Michael I. Baron, Vladimir Dragovic, Sam Efromovich, Matthew J. Goeckner, M. Ali Hooshyar, Wieslaw Krawcewicz, Susan E. Minkoff, Dmitry Rachinskiy, Viswanath Ramakrishna, Robert Serfling, Janos Turi, John Zweck

Professors Emeritus: Patrick L. Odell, Ivor Robinson, John W. Van Ness

Associate Professors: Zalman I. Balanov, Yan Cao, Pankaj K. Choudhary, Mieczyslaw K. Dabkowski, Yulia Gel
Assistant Professors: Mohammad Akbar, Swati Biswas, Bhargab Chattopadhyay, Min Chen, Tobias Hagge, Qingwen Hu, Oleg Makarenkov, Qiongxia Song

Clinical Professor: Ronald Dearing

Clinical Associate Professor: Natalia Humphreys

Senior Lecturers III: Bentley T. Garrett, David L. Lewis, Paul Stanford

Senior Lecturers II: Manjula Foley, Yuly Koshevnik, William M. Scott

Senior Lecturers I: Diana Cogan, Malgorzata Dabkowska, Anatoly Eydelzon, Richard Ketchersid, Brady McCary, Jigarkumar Patel

Affiliated Faculty: Hervé Abdi, Titu Andreescu, Alain Bensoussan, Raimund J. Ober, John J. Wiorkowski

Adjunct Faculty from the Research for Mathematics of the Mexican Council and Technology (CIMAT): José Carlos Gómez Larrañaga, Adolfo Sánchez Valenzuela

The Program in Mathematics

Students seeking a degree in Mathematics may specialize in Mathematics, Statistics, or Applied Mathematics, and receive a BS degree. Each specialization allows some flexibility in electives so that students can better adapt their degree plans to their educational goals.

Mathematics Specialization: For students interested in a career in mathematics and for students interested in continuing on to graduate work in mathematics, applied mathematics, math education, and related areas.

Statistics Specialization: For students interested in probability and statistical models and their use in data analysis and decision-making and for students interested in continuing on to graduate work in statistics, biostatistics, actuarial science, and other statistics related areas.

Applied Mathematics Specialization: For students interested in mathematics for the purpose of using it broadly in various areas of application and for students interested in continuing on to graduate work in applied mathematics and related areas.

The UTeach option may be added to the BS degree in Mathematics. UTeach Dallas Option degree plans are streamlined to allow students to complete both a rigorous Bachelor of Science or Bachelor of Arts degree and all coursework for middle or high school teacher certification in four years. Teaching Option degrees require deep content knowledge combined with courses grounded in the latest research on math and science education. While most graduates go on to classroom teaching, UTeach alums are also prepared to enter graduate school and to work in discipline related industry.
Bachelor of Science in Mathematics

Degree Requirements (120 semester credit hours)

All majors with specialization in either Mathematics or Statistics are strongly urged to meet with assigned departmental advisors every semester.

I. Core Curriculum Requirements: 42 semester credit hours

1. Communication (6 semester credit hours)

 COMM 1311 Survey of Oral and Technology-based Communication
 RHET 1302 Rhetoric

2. Mathematics (3 semester credit hours)

 MATH 2417 Calculus I

3. Life and Physical Sciences (6 semester credit hours)

 a. Mathematics/Applied Mathematics Specialization
 PHYS 2325 Mechanics
 or PHYS 2421 Honors Physics I - Mechanics and Heat
 PHYS 2326 Electromagnetism and Waves
 or PHYS 2422 Honors Physics II - Electromagnetism and Waves

 b. Statistics Specialization
 PHYS 2325 Mechanics
 or PHYS 2421 Honors Physics I - Mechanics and Heat
 PHYS 2326 Electromagnetism and Waves
 or PHYS 2422 Honors Physics II - Electromagnetism and Waves

 OR

 CHEM 1311 General Chemistry I
 CHEM 1312 General Chemistry II

4. Language, Philosophy and Culture (3 semester credit hours)

 HUMA 1301 Exploration of the Humanities
OR

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

ARTS 1301 Exploration of the Arts

OR

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American history core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

MATH 2417 Calculus I 2,3
MATH 2419 Calculus II 2,3
PHYS 2125 Physics Laboratory I 4

II. Major Requirements: 48 semester credit hours

Major Preparatory Courses (15-16 semester credit hours beyond core curriculum)

For Mathematics Specialization

PHYS 2125 Physics Laboratory I 4
PHYS 2325 Mechanics
PHYS 2126 Physics Laboratory II
PHYS 2326 Electromagnetism and Waves

For Statistics Specialization

Mary Jo Venetis 2/25/14 2:17 PM
Deleted: Communication (6 semester credit hours)

Matthew Goeckner 2/25/14 4:10 PM
Formatted: Indent: Left: 1"
PHYS 2125 Physics Laboratory I
PHYS 2325 Mechanics
PHYS 2126 Physics Laboratory II
PHYS 2326 Electromagnetism and Waves

OR

CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

For ALL

CS 1337 Computer Science I
MATH 2417 Calculus I
MATH 2418 Linear Algebra
MATH 2419 Calculus II
MATH 2420 Differential Equations with Applications
MATH 2451 Multivariable Calculus with Applications

Major Core Courses (21 semester credit hours)

MATH 3310 Theoretical Concepts of Calculus
MATH 3311 Abstract Algebra I
MATH 3379 Complex Variables
MATH 4301 Mathematical Analysis I
MATH 4302 Mathematical Analysis II
MATH 4334 Numerical Analysis
STAT 4351 Probability

Major Related Courses (12 semester credit hours)

Applied Mathematics Specialization

MATH 4341 Topology
MATH 4355 Methods of Applied Mathematics
MATH 4382 Partial Differential Equations
STAT 4382 Stochastic Processes

Mathematics Specialization

MATH 3312 Abstract Algebra II
MATH 3380 Differential Geometry
MATH 4341 Topology
3 semester credit hours upper-division guided elective

Statistics Specialization

Matthew Goeckner 2/25/14 4:10 PM
Formatted: Indent: Left: 1"

Mary Jo Venetis 2/26/14 8:59 PM
Deleted: 4

Mary Jo Venetis 2/25/14 2:22 PM
Deleted: 4

Mary Jo Venetis 2/25/14 2:22 PM
Formatted: Default Paragraph Font, Not Superscript/Subscript

Mary Jo Venetis 2/25/14 2:22 PM
Formatted: Superscript

Mary Jo Venetis 2/25/14 2:22 PM
Deleted: 4

Mary Jo Venetis 2/25/14 2:22 PM
Deleted: 11

Mary Jo Venetis 2/25/14 2:22 PM
Deleted: 4

Mary Jo Venetis 2/25/14 2:22 PM
Deleted: 11

Mary Jo Venetis 2/25/14 2:22 PM
Deleted: 11

Mary Jo Venetis 2/25/14 2:22 PM
Deleted: 11

Matthew Goeckner 2/25/14 4:11 PM
Deleted: NATS 4310 Advanced Writing in the Natural Sciences and Mathematics

Mary Jo Venetis 2/25/14 2:25 PM
Formatted: Superscript

Mary Jo Venetis 2/25/14 2:25 PM
Deleted: 6

Mary Jo Venetis 2/25/14 2:25 PM
Formatted: Default Paragraph Font, Not Superscript/Subscript
III. Elective Requirements: 30 semester credit hours

Electives (30 semester credit hours)

All students are required to take at least six semester credit hours of electives outside their major field of study. These must be either upper-division classes or lower-division classes that have prerequisites. Both lower- and upper-division courses may count as electives, but the student must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

BS in Actuarial Science

The department offers a BS in Actuarial Science (see the program within this catalog for additional information).

Mathematics or Statistics with Computer Science Emphasis

Applied Mathematics Specialization or Statistics Specialization together with following courses:

- CS 2305 Discrete Mathematics for Computing I
- CS 2336 Computer Science II
- CS 3305 Discrete Mathematics for Computing II
- CS 3376 C/C++ Programming in a UNIX Environment
- CS 3345 Data Structures and Introduction to Algorithmic Analysis
- CS 4337 Organization of Programming Languages
- CS 3340 Computer Architecture

Mathematics or Statistics with Electrical Engineering Emphasis

Applied Mathematics Specialization or Statistics Specialization together with following courses:

- FE 3101 Electrical Network Analysis Laboratory
- FE 3111 Electronic Circuits Laboratory
- FE 3120 Digital Circuits Laboratory
- FE 3301 Electrical Network Analysis
- FE 3311 Electronic Circuits
- FE 3320 Digital Circuits
- FE 4301 Electromagnetic Engineering I

Mathematics or Statistics with Management Emphasis
Mathematics Specialization, Applied Mathematics Specialization or Statistics Specialization together with following courses:

- ACCT 2301 Introductory Financial Accounting
- ACCT 2302 Introductory Management Accounting
- BLAW 2301 Business and Public Law
- FIN 3320 Business Finance
- MIS 3300 Introduction to Management Information Systems
- OBHR 3310 Organizational Behavior

NOTE: Students transferring into Mathematics at the upper-division level are expected to have completed all of the 1000- and 2000-level mathematics core course requirements.

Bachelor of Science in Mathematics with UTeach Option

Degree Requirements (120-121 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

- Communication (6 semester credit hours)
 - COMM 1311 Survey of Oral and Technology-based Communication
 - RHET 1302 Rhetoric

- Mathematics (3 semester credit hours)
 - MATH 2417 Calculus II

- Life and Physical Sciences (6 semester credit hours)

 Mathematics/Applied Mathematics Specialization
 - PHYS 2325 Mechanics
 - or PHYS 2421 Honors Physics I - Mechanics and Heat
 - PHYS 2326 Electromagnetism and Waves
 - or PHYS 2422 Honors Physics II - Electromagnetism and Waves

 Statistics Specialization
 - PHYS 2325 Mechanics
 - or PHYS 2421 Honors Physics I - Mechanics and Heat
 - PHYS 2326 Electromagnetism and Waves
 - or PHYS 2422 Honors Physics II - Electromagnetism and Waves
OR

CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

HUMA 1301 Exploration of the Humanities

OR

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

ARTS 1301 Exploration of the Arts

OR

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hours from American history core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

MATH 2417 Calculus I 2,3
MATH 2419 Calculus II 2,3
PHYS 2125 Physics Laboratory I 4

II. Major Requirements: 51-52 semester credit hours
Major Preparatory Courses (15-16 semester credit hours beyond core curriculum)

For Mathematics Specialization
PHYS 2125 Physics Laboratory I 4
PHYS 2325 Mechanics
PHYS 2126 Physics Laboratory II
PHYS 2326 Electromagnetism and Waves

For Statistics Specialization
PHYS 2125 Physics Laboratory I 4
PHYS 2325 Mechanics
PHYS 2126 Physics Laboratory II
PHYS 2326 Electromagnetism and Waves

OR
CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

For All
CS 1337 Computer Science I 2
MATH 2417 Calculus I 2, 3, 6
MATH 2418 Linear Algebra
MATH 2419 Calculus II 2, 3, 6
MATH 2420 Differential Equations with Applications
MATH 2451 Multivariable Calculus with Applications

Major Core Courses (24 semester credit hours beyond core curriculum)

MATH 3310 Theoretical Concepts of Calculus
MATH 3331 Abstract Algebra I
MATH 3379 Complex Variables
MATH 4301 Mathematical Analysis I
MATH 4302 Mathematical Analysis II
MATH 4334 Numerical Analysis
STAT 4351 Probability

Major Related Courses (12 semester credit hours)

Applied Mathematics Specialization

MATH 4341 Topology
MATH 4355 Methods of Applied Mathematics
MATH 4362 Partial Differential Equations
STAT 4382 Stochastic Processes
Mathematics Specialization

- **MATH 3312** Abstract Algebra II
- **MATH 3321** Geometry
- **MATH 4341** Topology

3 semester credit hours upper-division guided elective

Statistics Specialization

- **STAT 3355** Data Analysis for Statisticians and Actuaries
- **STAT 4352** Mathematical Statistics
- **STAT 4382** Stochastic Processes

3 semester credit hours upper-division guided elective

III. Elective Requirements: 27 semester credit hours

UTeach Requirements (27 semester credit hours)

- **NATS 1141** UTeach STEP 1
- **NATS 1143** UTeach STEP 2
- **NATS 3341** Knowing and Learning in Mathematics and Science
- **NATS 3343** Classroom Interactions
- **HIST 3328** History and Philosophy of Science and Medicine
- **NATS 4390** Research Methods
- **NATS 4341** Project-Based Instruction
- **NATS 4694** UTeach Apprentice Teaching, 8-12 Science and Mathematics
 or **NATS 4696** UTeach Apprentice Teaching, 4-8 Science and Mathematics
- **NATS 4141** UTeach Apprentice Teaching Seminar
- **MATH 3303** Introduction to Mathematical Modeling

Minor in Mathematics

Students not majoring in Mathematics or Statistics may obtain a minor in Mathematics or Statistics by satisfying the following requirements: 18 semester credit hours of mathematics or statistics. Of these 18, 12 semester credit hours will be selected from:

Mathematics Minor: **MATH 3310** and **MATH 4334** and two more upper-division mathematics courses that satisfy degree requirements by students in Mathematics.

OR

Statistics Minor: **STAT 4351** and **STAT 4352** and two more upper-division mathematics courses that satisfy degree requirements by students in Statistics.

The remaining 6 semester credit hours can be satisfied by choosing other MATH or STAT courses with advisor approval.
Fast Track Baccalaureate/Master's Degrees

For students interested in pursuing graduate studies in Mathematics, the Mathematics Department offers an accelerated BS / MS Fast Track that involves taking graduate courses instead of several advanced undergraduate courses. Acceptance into the Fast Track is based on the student's attaining a GPA of at least 3.200 in all mathematics classes and being within 30 semester credit hours of graduation. Fast Track students may, during their senior year, take 15 graduate semester credit hours that may be used to complete the baccalaureate degree. After admission to the graduate program, these 15 graduate semester credit hours may also satisfy requirements for the master's degree. Fast Track programs are offered in mathematics with specializations in applied mathematics and statistics.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. A required Major course that also fulfills Core Curriculum requirements. If semester credit hours are counted in the Core Curriculum, students must complete additional coursework to meet the minimum requirement for graduation. Course selection assistance is available from the undergraduate advisor.
3. Three semester credit hours of Calculus are counted to fulfill the Mathematics Core Requirement with the remaining five semester credit hours to be counted under Component Area Option Core Requirement.
4. Six semester credit hours of Physics are counted under Science core, and one semester hour of Physics (PHYS 2125) is counted under Component Area Core.
5. Indicates a prerequisite class to be completed before enrolling in upper-division classes.
6. MATH 2417 and MATH 2419 requirements can be fulfilled by completing MATH 2413, MATH 2414, and MATH 2415.
7. Approval of Mathematics department advisor required.
8. Another MATH course, i.e. MATH 3380, may be substituted if MATH 3321 is not offered.
School of Natural Sciences and Mathematics

The Biology Program at UT Dallas emphasizes the unifying molecular and cellular nature of organisms. At the center of the Biology undergraduate curriculum are the biochemical, genetic, and cell biology concepts and tools used to study the genes of prokaryotes and eukaryotes, to study the proteins and ribonucleic acids (RNA) encoded by these genes, and to study how the expression of these genes is regulated during the development and lifetimes of organisms. Molecular Biology represents a fusion of the four disciplines of biochemistry, biophysics, genetics, and cell biology. Modern biology requires a background in other disciplines such as chemistry, mathematics, physics, and computer sciences. Principles from these disciplines have to be merged to understand and apply new biotechnology and genetic engineering techniques. It is desirable for entering students to have a broad interest and background in the sciences.

Molecular Biology (BS)

A BS degree is offered in Molecular Biology. The BS degrees are intended as preparation for scientific careers in biology or careers in the health professions. Biology offers a streamlined double major with Business Administration or Crime and Justice Studies. Fast Track BS / MS Biology and Molecular Biology degree programs are available.

Minors are offered in Biology, Biomolecular Structure, Microbiology, Molecular and Cell Biology, and Neurobiology.

Faculty

Professors: Lee A. Bulla, Rockford K. Draper, Juan E. González, Stephen D. Levene, Lawrence J. Reitzer, Stephen Spiro, Li Zhang, Michael Qiwei Zhang

Professors Emeritus: Hans Bremer, Donald M. Gray, Claud S. Rupert

Associate Professors: Gail A. M. Breen, John G. Burr, Jeff L. DeJong, Ernest M. Hannig, Dennis L. Miller

Assistant Professors: Heng Du, Jung-whan (Jay) Kim, Kelli Palmer, Duane D. Winkler, Zhenyu Xuan, Hyuntae Yoo

Research Assistant Professor: Lan Guo
Senior Lecturers: Irina Borovkov, Mehmet Candas, Vincent P. Cirillo, Monique Duncan, Wen-Ju Lin, Robert C. Marsh, David Murchison, Jing Pan, Elizabeth Pickett, Ruben D. Ramirez, Scott A. Rippel, Elizabeth Rugg, Ilya Sapozhnikov, Uma Srikanth, Michelle Wilson, Wen-Ho Yu

Bachelor of Science in Molecular Biology

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours:

Communication (6 semester credit hours)

 RHET 1302 Rhetoric
 COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

 MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hours)

 CHEM 1311 General Chemistry I
 CHEM 1312 General Chemistry II

Language, Philosophy and culture (3 semester credit hours)

 Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

 Select any 3 semester credit hours from creative arts core courses (see advisor)

American History (6 semester credit hours)

 Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

 GOVT 2305 American National Government
 GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)
Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

BIOL 2311 Introduction to Modern Biology I
MATH 2419 Calculus II

II. Major Requirements: 89 semester credit hours

Major Preparatory Courses (24 semester credit hours beyond Core Curriculum)

CHEM 1111 General Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2125 Introductory Organic Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
MATH 2417 Calculus I
MATH 2419 Calculus II
MATH 2418 Linear Algebra
PHYS 2125 Physics Laboratory I
PHYS 2126 Physics Laboratory II
PHYS 2325 Mechanics
PHYS 2326 Electromagnetism and Waves

NATS 1101 Natural Sciences and Mathematics Freshman Seminar
UNIV 1010 Freshman Seminar

Major Core Courses (33 semester credit hours beyond Core Curriculum)
BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2112 Introduction to Modern Biology Workshop II
BIOL 2281 Introductory Biology Laboratory
BIOL 2311 Introduction to Modern Biology I
BIOL 2312 Introduction to Modern Biology II
BIOL 3101 Classical and Molecular Genetics Workshop
BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
BIOL 3161 Biochemistry Workshop I
BIOL 3162 Biochemistry Workshop II
BIOL 3301 Classical and Molecular Genetics
BIOL 3302 Eukaryotic Molecular and Cell Biology
BIOL 3361 Biochemistry I
BIOL 3362 Biochemistry II
or BIOL 3335 Microbial Physiology
BIOL 3380 Biochemistry Laboratory
BIOL 4380 Cell and Molecular Biology Laboratory
or BIOL 3V96 (3 semester credit hours) Undergraduate Research in Molecular and Cell Biology
or BIOL 4399 (3 semester credit hours) Senior Honors Research in Molecular and Cell Biology
or BIOL 4391 (3 semester credit hours) Senior Research in Molecular and Cell Biology
BIOL 4461 Biophysical Chemistry

Major Related Courses (12 semester credit hours):
12 semester credit hours upper-division approved molecular biology-related BIOL or CHEM electives

III. Elective Requirements: 9 semester credit hours
Free Electives (9 semester credit hours)

All students must complete at least 51 semester credit hours of upper-division courses to graduate.

Minor in Biology

Course Requirements: 18 semester credit hours

- **BIOL 2311** Introduction to Modern Biology I
- **BIOL 2111** Introduction to Modern Biology Workshop I
- **BIOL 3301** Classical and Molecular Genetics
- **BIOL 3101** Classical and Molecular Genetics Workshop
- **BIOL 3361** Biochemistry I
- **BIOL 3161** Biochemistry Workshop I
- Two BIOL approved electives for majors

Minor in Biomolecular Structure

Course Requirements: 18 semester credit hours

- **BIOL 3336** Protein and Nucleic Acid Structure
- **BIOL 4461** Biophysical Chemistry, unless taken to fulfill the Molecular Biology major requirements
- **BIOL 4261** Biomolecular Modeling
- **CHEM 2323** Introductory Organic Chemistry I
- **CHEM 2325** Introductory Organic Chemistry II
- One to two approved BIOL, CHEM, CS, EE, MATH, or PHYS electives

Minor in Molecular and Cell Biology

Course Requirements: 18 semester credit hours

- **CHEM 2323** Introductory Organic Chemistry I
- **CHEM 2325** Introductory Organic Chemistry II
Four approved molecular and cell biology electives

Minor in Microbiology

Course Requirements: 18 semester credit hours

BIOL 3V20 General Microbiology with Laboratory

BIOL 3335 Microbial Physiology

BIOL 4350 Medical Microbiology or BIOL 4316 Parasites and Symbionts

BIOL 4345 Immunobiology

CHEM 2323 Introductory Organic Chemistry I

One approved microbiology elective

Minor in Neurobiology

Course Requirements: 18 semester credit hours

BIOL 4370 Developmental Neurobiology

BIOL 3371 Biology of the Brain or NSC 4352 Cellular Neuroscience

CHEM 2323 Introductory Organic Chemistry I

CHEM 2325 Introductory Organic Chemistry II

NSC 4353 Neuroscience Laboratory Methods

NSC 4354 Integrative Neuroscience

Fast Track Baccalaureate/Master's Degrees

UT Dallas undergraduate students with strong academic records, including at least 15 semester credit hours of upper-division Biology core courses, who intend to pursue graduate work in Biology at UT Dallas, may apply for the Fast Track which involves taking selected graduate courses as an upper-division student. After admission to the graduate program, 15 semester credit hours of graduate courses with an earned grade of B or better can be used toward completion of the BS and to satisfy requirements for those courses at the graduate level. Graduate courses must be approved by the graduate advisor. This program provides an opportunity to obtain the BS degree in Biology after 120 semester credit hours of work and an MS degree in Molecular and Cell Biology after an additional 21 semester credit hours of graduate course and research work. Interested students should contact the Biology undergraduate advisor well in advance of the senior year to prepare a degree plan taking maximal advantage of this 5-year Fast Track program.
Degree Planning

Upper-division biology courses taken at other institutions may be included as part of the degree plan subject to the provisions of the section on Transfer Admissions.

Major-related courses may not include more than 9 semester credit hours (BS) or 6 semester credit hours (BA) of upper-division transfer credit and not more than 3 semester credit hours (Biology major) or 6 semester credit hours (Molecular Biology major) of individual instruction (e.g., BIOL 3V90, BIOL 3V91, BIOL 3V92, BIOL 3V95, BIOL 3V96, BIOL 4302, BIOL 4390, BIOL 4391, BIOL 4398, BIOL 4399, BIOL 4V98, or BIOL 4V99).

Students planning a career in a particular allied health profession should consult the school they expect to attend to apprise themselves of the course requirements for admission.

Admission standards for medical and dental schools are set by the individual professional school, whose specific requirements should be reviewed with the help of the UT Dallas Health Professions Advising Center (HPAC). Most professional schools prefer that admission applications be channeled through the HPAC.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
2. Six semester credit hours of Calculus are counted under Mathematics Core and Component Area Option and 2 semester credit hours of Calculus are counted as Major Preparatory Courses.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
5. These substitutes for BIOL 4380 require permission of the Biology Undergraduate Advisor to ensure equivalent training in recombinant DNA analysis.
6. Up to 6 semester credit hours of research may be used in fulfilling the major related course requirement.
7. Two semester credit hours of BIOL 3V20 may be used to satisfy the upper level elective requirement for Biology and Molecular Biology majors.
8. May be substituted with CHEM 2325 Introductory Chemistry II if BIOL 3335 is used to satisfy the Biochemistry II core requirement for Biology and Molecular Biology majors.
School of Natural Sciences and Mathematics

Bachelor of Science in Molecular Biology and Business Administration (Double Major)

Degree Requirements (147 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

COMM 1311 Survey of Oral and Technology-based Communication
RHET 1302 Rhetoric

Mathematics (3 semester credit hours)

MATH 2417 Calculus I

Life and Physical Sciences (6 semester credit hour)

CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

Language, Philosophy and Culture (3 semester credit hours)

Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts (3 semester credit hours)

Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History (6 semester credit hours)

Select any 6 semester credit hour from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government
Social and Behavioral Sciences (3 semester credit hours)

ECON 2301 Principles of Macroeconomics

Component Area Option (6 semester credit hours)

MATH 2419 Calculus II

ECON 2302 Principles of Microeconomics

II. Major Requirements: 96 semester credit hours

Biology Major Preparatory Courses (20 semester credit hours beyond Core Curriculum)

CHEM 1111 General Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II
CHEM 2123 Introductory Organic Chemistry Laboratory I
CHEM 2125 Introductory Organic Chemistry Laboratory II
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
MATH 2417 Calculus I
MATH 2419 Calculus II
PHYS 2325 Mechanics
PHYS 2125 Physics Laboratory I
PHYS 2326 Electromagnetism and Waves
PHYS 2126 Physics Laboratory II
NATS 1101 Natural Sciences and Mathematics Freshman Seminar
UNIV 1010 Freshman Seminar

Biology Major Core Courses (33 semester credit hours)

BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 2112 Introduction to Modern Biology Workshop II
BIOL 2281 Introductory Biology Laboratory
BIOL 2311 Introduction to Modern Biology I
BIOL 2312 Introduction to Modern Biology II
BIOL 3101 Classical and Molecular Genetics Workshop
BIOL 3102 Eukaryotic Molecular and Cell Biology Workshop
<table>
<thead>
<tr>
<th>Business Administration Major Preparatory Courses (16 semester credit hours beyond Core Curriculum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2301 Introductory Financial Accounting<sup>5</sup></td>
</tr>
<tr>
<td>ACCT 2302 Introductory Management Accounting<sup>5</sup></td>
</tr>
<tr>
<td>BA 3100 Professional Development</td>
</tr>
<tr>
<td>BLAW 2301 Business and Public Law<sup>5</sup></td>
</tr>
<tr>
<td>ECON 2301 Principles of Macroeconomics<sup>3</sup></td>
</tr>
<tr>
<td>ECON 2302 Principles of Microeconomics<sup>3</sup></td>
</tr>
<tr>
<td>OPRE 3333 Quantitative Business Analysis<sup>5</sup></td>
</tr>
<tr>
<td>or MATH 2333 Matrices, Vectors, and Their Application<sup>3,6</sup></td>
</tr>
<tr>
<td>STAT 3360 Probability and Statistics for Management and Economics</td>
</tr>
<tr>
<td>or STAT 2332 Statistics for Life Sciences</td>
</tr>
<tr>
<td>or OPRE 3360 Managerial Methods in Decision Making Under Uncertainty</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Core Courses (27 semester credit hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCOM 3310 Business Communication</td>
</tr>
<tr>
<td>BCOM 4350 Advanced Business Communication</td>
</tr>
<tr>
<td>FIN 3320 Business Finance</td>
</tr>
<tr>
<td>MIS 3300 Introduction to Management Information Systems</td>
</tr>
<tr>
<td>OPRE 3310 Operations Management</td>
</tr>
<tr>
<td>OBHR 3310 Organizational Behavior</td>
</tr>
<tr>
<td>MKT 3300 Principles of Marketing</td>
</tr>
<tr>
<td>BPS 4305 Strategic Management</td>
</tr>
<tr>
<td>IMS 3310 International Business</td>
</tr>
</tbody>
</table>

III. Elective Requirements: 9 semester credit hours

Guided Electives (9 semester credit hours)
Business: (6 semester credit hours) to be selected from any upper level JSOM course. If qualified, the student may select from JSOM graduate courses.

Biology (3 semester credit hours): To be selected from BIOL 4380, BIOL 3V96, BIOL 4391, or BIOL 4399.

All students must complete at least 51 semester credit hours of upper-division courses to graduate.

1. Degree is 148 semester credit hours if students are required to take NATS 1101.
2. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
3. A required Major course that also fulfills a Core Curriculum requirement. Semester credit hours are counted in Core Curriculum.
4. Six semester credit hours of Calculus are counted under Mathematics Core and Component Area Option Core, and 2 semester credit hours of Calculus are counted as Biology Major Preparatory Courses.
5. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
6. Requires permission of the Biology Undergraduate Advisor to ensure training in recombinant DNA analysis.
School of Natural Sciences and Mathematics

Physics (BA, BS)

The science of physics seeks understanding of the behavior of matter and energy at the most general and fundamental level. The physicist is trained to explore the physical universe in which people live and seeks interpretations of the natural phenomena found there. While much is known about the physical universe, many phenomena still remain to be investigated, understood, and exploited to the ultimate benefit of humankind. This is the challenge that a modern physicist faces.

Faculty

Cecil and Ida Green Chair in Physics: Roderick A. Heelis

Distinguished Chair in Physics: Myron B. Salamon

Green Distinguished Chair in Academic Leadership: B. Hobson Wildenthal

Professor Emeritus: Ervin J. Fenyves, Walter Heikkila, Brian A. Tinsley

Associate Professors: Yuri Gartstein, Mustapha Ishak-Boushaki, Lindsay King, David J. Lary, Chuanwei Zhang

Assistant Professors: Lunjin Chen, Xingang Chen, Michael Kesden, Anton Malko, Fabiano Rodrigues, Jason Slinker

Senior Lecturers: Paul MacAlevey, Beatrice Rasmussen

Affiliated Faculty: Yves J. Chabal, John P. Ferraris, Massimo V. Fischetti, Tobias Hagge, Wenchuang (Walter) Hu, Stephen D. Levene, A. Dean Sherry, Mary L. Urquhart, Duck Joo (D. J.) Yang

The Degrees

The student majoring in Physics must meet the general university requirements for admission and for the specific degree the student is seeking. The Physics Program offers both the Bachelor of Arts and the Bachelor of Science degrees. A total of 120 semester credit
hours is required for either degree. With the proper sequencing of courses, these degrees can be achieved in a four year period.

Bachelor of Arts

The Bachelor of Arts program provides an opportunity for a strong base in physics for students wishing to pursue graduate studies (non-physics) in, for example, business administration, economics, finance, oceanography, and patent or high technology law. Additionally, students seeking certification as high school teachers with physics as a major specialization and those seeking employment in industry, government service, and computer technology have the opportunity to obtain the necessary physics background through the BA program. The lower-division course requirements for the BA degree are the same as those for the BS degree. At the upper-division level, 15 semester credit hours of advanced physics courses are replaced with 15 semester credit hours of science electives.

Bachelor of Science

The Bachelor of Science is intended for students interested in a professional career in physics or closely related fields. It provides an excellent background for graduate programs in physics, biophysics, geophysics, engineering, medicine and other health related degree programs.

Graduate Studies Track

The recommended course of study toward a Bachelor of Science degree for those students who intend to pursue graduate studies in Physics begins with a two-semester Honors sequence of fundamentals of physics that gives the student a more extensive foundation in basic physics. The remainder of the program is the same as the regular BS program.

UTeach Option

The UTeach option may be added to the BA degree in Physics. UTeach Dallas Option degree plans are streamlined to allow students to complete a rigorous Bachelor of Arts degree and all coursework for middle or high school teacher certification in four years. Teaching Option degrees require deep content knowledge combined with courses grounded in the latest research on math and science education. While most graduates go on to classroom teaching, UTeach alums are also prepared to work in discipline related industry.

Algebra Based Physics

An algebra based general physics course (PHYS 1301, PHYS 1302) with lab (PHYS 2125, PHYS 2126) is offered for students interested in the health sciences and those curious about the physical world in which we live. It stresses understanding the workings of nature and the physical processes and phenomena occurring therein.
Minor in Physics (20 semester credit hours)

A minor is offered that consists of PHYS 2325, PHYS 2125, PHYS 2326, PHYS 2126, PHYS 3411, and three other upper-division physics courses.

Fast Track Baccalaureate/Master's Degrees

For students interested in pursuing graduate studies in physics, the Physics Department offers an accelerated BS / MS Fast Track that involves taking graduate courses in lieu of several advanced undergraduate courses. Acceptance into the Fast Track is based on the student's attaining a GPA of at least 3.200 on a minimum of 30 semester credit hours of upper-division courses that include PHYS 3411, PHYS 3312, PHYS 3330, PHYS 3416, PHYS 4301 and PHYS 4311. Eligible students may take up to 15 semester credit hours of selected graduate courses that may be used to complete the baccalaureate degree and also satisfy requirements for the master's degree. These credits will partially satisfy the MS degree requirements when the student completes the BS degree. Interested students should contact their advisor during their junior year to apply to the Fast Track program.

Bachelor of Arts in Physics

Degree Requirements (120 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

RHET 1302 Rhetoric
COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

MATH 2413 Differential Calculus or MATH 2417 Calculus I

Life and Physical Science (6 semester credit hours)

PHYS 2325 Mechanics
PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture (3 semester credit hours)

HUMA 1301 Exploration of the Humanities

Creative Arts (3 semester credit hours)
ARTS 1301 Exploration of the Arts

American History (6 semester credit hours)

Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

II. Major Requirements: 66 semester credit hours

Major Preparatory Courses (25 semester credit hours)

CHEM 1111 General Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II
MATH 2413 Differential Calculus
or MATH 2417 Calculus I
MATH 2414 Integral Calculus
or MATH 2419 Calculus II
MATH 2415 Calculus of Several Variables
or MATH 2451 Multivariable Calculus with Applications
MATH 2418 Linear Algebra
MATH 2420 Differential Equations with Applications
Major Core Courses (26 semester credit hours)

PHYS 3312 Classical Mechanics
PHYS 3327 Electronics with Laboratory
PHYS 3330 Numerical Methods in Physics and Computational Techniques
PHYS 3411 Theoretical Physics
PHYS 3416 Electricity and Magnetism
PHYS 4311 Physics of the Human Body
PHYS 4380 Astronomy
PHYS 4301 Quantum Mechanics I
PHYS 4302 Quantum Mechanics II
PHYS 4335 Remote Sensing of the Earth
PHYS 4352 Concepts of Modern Physics
PHYS 4371 Solid State Physics

III. Elective Requirements: 12 semester credit hours

Electives (6 semester credit hours)

All students are required to take at least six semester credit hours of electives outside their major field of study. These must be either upper-division classes or lower-division classes that have prerequisites.

Free Electives (6 semester credit hours)

Both lower- and upper-division courses may count as electives, but the student must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Physics Electives

PHYS 3317 Physics of the Human Body
PHYS 3380 Astronomy
PHYS 4301 Quantum Mechanics I
PHYS 4302 Quantum Mechanics II
PHYS 4335 Remote Sensing of the Earth
PHYS 4352 Concepts of Modern Physics
PHYS 4371 Solid State Physics
PHYS 4381 Space Science
PHYS 4383 Plasma Physics
PHYS 4395 Cosmology
PHYS 4386 Elementary Particle Physics
PHYS 4V07 Senior Research Projects
PHYS 4V10 Special Topics in Physics

Other Courses

PHYS 1101 College Physics Laboratory I
PHYS 1102 College Physics Laboratory II
PHYS 1301 College Physics I
PHYS 1302 College Physics II

Bachelor of Science in Physics

Degree Requirements (120 semester credit hours)

Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

 RHET 1302 Rhetoric
 COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

 MATH 2413 Differential Calculus
 or MATH 2417 Calculus I

Life and Physical Science (6 semester credit hours)

 PHYS 2325 Mechanics
 PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture (3 semester credit hours)

 HUMA 1301 Exploration of the Humanities

Creative Arts (3 semester credit hours)

 ARTS 1301 Exploration of the Arts

American History (6 semester credit hours)

 ELECTIVE

 COMM 1311 Survey of Oral and Technology-based Communication

 MATH 2413 Differential Calculus
 or MATH 2417 Calculus I

 PHYS 2325 Mechanics
 PHYS 2326 Electromagnetism and Waves

 HUMA 1301 Exploration of the Humanities

 ARTS 1301 Exploration of the Arts

 ELECTIVE

 COMM 1311 Survey of Oral and Technology-based Communication

 MATH 2413 Differential Calculus
 or MATH 2417 Calculus I

 PHYS 2325 Mechanics
 PHYS 2326 Electromagnetism and Waves

 HUMA 1301 Exploration of the Humanities

 ARTS 1301 Exploration of the Arts

 ELECTIVE
Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

GOVT 2305 American National Government
GOVT 2306 State and Local Government

Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

CHEM 1311 General Chemistry I

CHEM 1312 General Chemistry II

II. Major Requirements: 66 semester credit hours

Major Preparatory Courses (25 semester credit hours)

CHEM 1111 General Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
MATH 2413 Differential Calculus
or MATH 2417 Calculus I
MATH 2414 Integral Calculus
or MATH 2419 Calculus II
MATH 2415 Calculus of Several Variables
or MATH 2451 Multivariable Calculus with Applications
MATH 2418 Linear Algebra
MATH 2420 Differential Equations with Applications
PHYS 1100 The Fun of Physics
PHYS 2303 Contemporary Physics
PHYS 2325 Mechanics and PHYS 2125 Physics Laboratory I
or PHYS 2421 Honors Physics I - Mechanics and Heat and PHYS 2121 Honors Physics Lab or PHYS 2125 Physics Laboratory I
PHYS 2326 Electromagnetism and Waves and PHYS 2126 with Physics Laboratory II
or PHYS 2422 Honors Physics II - Electromagnetism and Waves and PHYS 2126 Physics Laboratory II
Major Core Courses (23 semester credit hours)

PHYS 3312 Classical Mechanics
PHYS 3327 Electronics with Laboratory
PHYS 3330 Numerical Methods in Physics and Computational Techniques
PHYS 3411 Theoretical Physics
PHYS 3416 Electricity and Magnetism
PHYS 4311 Thermodynamics and Statistical Mechanics
PHYS 4373 Physical Measurements Laboratory

Major Related Courses (18 semester credit hours)

PHYS 4301 Quantum Mechanics I
PHYS 4302 Quantum Mechanics II
PHYS 4328 Optics
PHYS 4352 Concepts of Modern Physics

6 semester credit hours Physics Electives

Electives (6 semester credit hours)

All students are required to take at least six semester credit hours of electives outside their major field of study. These must be either upper-division classes or lower-division classes that have prerequisites.

Free Electives (6 semester credit hours)

Both lower- and upper-division courses may count as electives, but the student must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Physics Electives

PHYS 3317 Physics of the Human Body
PHYS 3380 Astronomy
PHYS 4335 Remote Sensing of the Earth
PHYS 4395 Cosmology
PHYS 4386 Elementary Particle Physics
PHYS 4371 Solid State Physics
PHYS 4381 Space Science
PHYS 4383 Plasma Physics
PHYS 4V07 Senior Research Projects
PHYS 4V10 Special Topics in Physics

Other Courses
Bachelor of Arts in Physics with UTeach Option

Degree Requirements (123 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication (6 semester credit hours)

- RHET 1302 Rhetoric
- COMM 1311 Survey of Oral and Technology-based Communication

Mathematics (3 semester credit hours)

- MATH 2413 Differential Calculus
- or MATH 2417 Calculus I

Life and Physical Science (6 semester credit hours)

- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture (3 semester credit hours)

- HUMA 1301 Exploration of the Humanities

Creative Arts (3 semester credit hours)

- ARTS 1301 Exploration of the Arts

American History (6 semester credit hours)

- Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science (6 semester credit hours)

- GOVT 2305 American National Government
- GOVT 2306 State and Local Government
Social and Behavioral Sciences (3 semester credit hours)

Select any 3 semester credit hours from Social and Behavioral Sciences core courses (see advisor)

Component Area Option (6 semester credit hours)

CHEM 1311 General Chemistry I
CHEM 1312 General Chemistry II

II. Major Requirements: 66 semester credit hours

Major Preparatory Courses (25 semester credit hours beyond core curriculum)

CHEM 1111 General Chemistry Laboratory I
CHEM 1112 General Chemistry Laboratory II
MATH 2413 Differential Calculus
or MATH 2417 Calculus I
MATH 2414 Integral Calculus
or MATH 2419 Calculus II
MATH 2415 Calculus of Several Variables
or MATH 2451 Multivariable Calculus with Applications
MATH 2418 Linear Algebra
MATH 2420 Differential Equations with Applications
PHYS 1100 The Fun of Physics
PHYS 2303 Contemporary Physics
PHYS 2325 Mechanics and PHYS 2125 Physics Laboratory I
or PHYS 2421 Honors Physics I - Mechanics and Heat and PHYS 2121 Honors Physics Lab or PHYS 2125 Physics Laboratory I
PHYS 2326 Electromagnetism and Waves and PHYS 2126 Physics Laboratory II,
or PHYS 2422 Honors Physics II - Electromagnetism and Waves and PHYS 2126 Physics Laboratory II

Major Core Courses (26 semester credit hours)

PHYS 3411 Theoretical Physics
PHYS 3312 Classical Mechanics
PHYS 3327 Electronics with Laboratory
PHYS 3330 Numerical Methods in Physics and Computational Techniques
PHYS 3416 Electricity and Magnetism
PHYS 3431 Thermodynamics and Statistical Mechanics
PHYS 4373 Physical Measurements Laboratory
PHYS Elective

Major Related Courses (15 semester credit hours)

15 semester credit hours of upper division Science Electives
NATS 4694 and NATS 4696 UTeach Apprentice Teaching can fulfill 6 of these semester credit hours.

III. Elective Requirements: 15 semester credit hours

Electives (6 semester credit hours)

All students are required to take at least six semester credit hours of electives outside their major field of study. These must be either upper-division classes or lower-division classes that have prerequisites. UTeach courses can be used to fulfill these requirements.

UTeach Requirements (9 semester credit hours beyond core curriculum, science electives, and advanced electives)

NATS 1141 UTeach STEP 1
NATS 1143 UTeach STEP 2
NATS 3341 Knowing and Learning in Mathematics and Science
NATS 3343 Classroom Interactions
HIST 3328 History and Philosophy of Science and Medicine
NATS 4390 Research Methods
NATS 4341 Project-Based Instruction
NATS 4694 UTeach Apprentice Teaching, 8-12 Science and Mathematics
or NATS 4696 UTeach Apprentice Teaching, 4-8 Science and Mathematics
NATS 4141 UTeach Apprentice Teaching Seminar

Both lower- and upper-division courses may count as electives, but the student must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

1. Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2. One semester credit hour of Calculus is counted as Major Preparatory credit; three semester credit hours are counted in Core Curriculum. Students may choose either calculus sequence MATH 2413, MATH 2414, and MATH 2415 or MATH 2417, MATH 2419 and MATH 2451.

4. Counted in Core Curriculum in Component Area Option
5. Indicates a prerequisite class to be completed before enrolling for upper-division classes.
School of Natural Science and Mathematics

Minors

Students must take a minimum of 18 semester credit hours for the minor, 12 of which must be upper-division semester credit hours. Students who take a minor will be expected to meet the normal prerequisites in courses making up the minor, and should maintain a minimum GPA of 2.000 on a 4.00 scale (C average). Semester credit hours may not be used to satisfy both the major and minor requirements; however, free elective hours or major preparatory classes may be used to satisfy the minor.

For all minors in the School of Natural Science and Mathematics students must complete all prerequisite sequences for required minor courses.

- Actuarial Science
- Biology
- Biomolecular Structure
- Chemistry
- Geosciences
- Mathematics
- Microbiology
- Molecular and Cell Biology
- Neurobiology
- Statistics
- Physics

Minor in Actuarial Science (24 semester credit hours)

Students not majoring in Actuarial Science may obtain a minor in Actuarial Science by satisfying 24 semester credit hours (9 semester credit hours of minor core courses and 15 semester credit hours of...
Minor Preparatory Courses (15 semester credit hours) *
MATH 2417 Calculus I (Differential Calculus)
MATH 2419 Calculus II (Integral Calculus)
MATH 2451 Multivariable Calculus with Applications
MIS 3300 Introduction to Management Information Systems

* Students whose major does not require MATH 2417 and MATH 2419 as part of their Mathematics and Quantitative Reasoning Core Curriculum Requirements, should take this sequence as their core curriculum courses to ensure efficiency toward the minor.

Minor Core Courses (9 semester credit hours) **
STAT 4351 Probability
ACTS 4301 Principles of Actuarial Models: Life Contingencies I
ACTS 4308 Actuarial Financial Mathematics

** These classes prepare for the three preliminary actuarial examinations jointly administered by the Society of Actuaries (SOA), Casualty Actuarial Society (CAS) and the Canadian Institute of Actuaries (CIA).

Minor in Biology (18 semester credit hours)

Required (12 semester credit hours)

BIOL 2311 Introduction to Modern Biology I
BIOL 2111 Introduction to Modern Biology Workshop I
BIOL 3301 Classical and Molecular Genetics
BIOL 3101 Classical and Molecular Genetics Workshop
BIOL 3361 Biochemistry I
BIOL 3161 Biochemistry Workshop I

Also:
Two BIOL electives for majors

Minor in Biomolecular Structure (18 semester credit hours)
Required (15 semester credit hours)

BIOL 3336 Protein and Nucleic Acid Structure
BIOL 4461 Biophysical Chemistry, unless taken to fulfill the Molecular Biology major requirements
BIOL 4261 Biomolecular Modeling
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II

Also:
One to two courses from approved BIOL, CHEM, CS, EE, MATH, or PHYS electives

Minor in Chemistry (18 semester credit hours)

Required (11 semester credit hours)

BIOL 3161 Biochemistry Workshop I
BIOL 3361 or CHEM 3361 Biochemistry I
CHEM 3321 Physical Chemistry I
CHEM 3472 Instrumental Analysis

Also:
A minimum of 7 additional semester credit hours in chemistry

Minor in Geosciences (20 semester credit hours)

Required lower-division courses (8 semester credit hours):

GEOS 1103 Physical Geology Laboratory *
GEOS 1104 History of Earth and Life Laboratory *
GEOS 1303 Physical Geology *
GEOS 1304 History of Earth and Life *

* A prerequisite course to be completed before enrolling in upper-division GEOS core courses (GEOS 3421, GEOS 3434, GEOS 3464, GEOS 3470, GEOS 4320, GEOS 4322, GEOS 4430 and GEOS 4606).
Upper-division courses (12 semester credit hours):
To be selected in consultation with Geosciences Undergraduate advisor

Minor in Mathematics (18 semester credit hours)

The minor in Mathematics requires 18 semester credit hours math or statistics course requirements. Of these 18, 12 semester credit hours will be selected from a specific set of courses.

12 semester credit hours of courses must be chosen from the following:

MATH 3310 Theoretical Concepts of Calculus
MATH 4334 Numerical Analysis

Two more upper-division mathematics courses that satisfy degree requirements by students in Mathematical Sciences.

The remaining 6 semester credit hours can be satisfied by choosing either MATH or STAT courses with advisor approval.

Minor in Molecular and Cell Biology (18 semester credit hours)

Required (6 semester credit hours)
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II

Also:
Four approved molecular and cell biology electives

Minor in Microbiology (18 semester credit hours)

Required
BIOL 3V20 General Microbiology with Laboratory *
BIOL 3335 Microbial Physiology **
BIOL 4350 Medical Microbiology
or BIOL 4316 Parasites and Symbionts
BIOL 4345 Immunobiology
CHEM 2323 Introductory Organic Chemistry I

* Two semester credit hours of BIOL 3V20 may be used to satisfy the Cell and Molecular Biology Laboratory core requirement for Biology and Molecular Biology majors.

** May be substituted with CHEM 2325 Introductory Chemistry II if used to satisfy the Biochemistry II core requirement for Biology and Molecular Biology majors.

Also:
One approved microbiology elective.

Minor in Molecular and Cell Biology (18 semester credit hours)

Required (6 semester credit hours)
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II

Also:
Four approved molecular and cell biology electives

Minor in Neurobiology (18 semester credit hours)

BIOL 4370 Developmental Neurobiology
BIOL 3371 Biology of the Brain
 or NSC 4352 Cellular Neuroscience
CHEM 2323 Introductory Organic Chemistry I
CHEM 2325 Introductory Organic Chemistry II
NSC 4353 Neuroscience Laboratory Methods
NSC 4354 Integrative Neuroscience

Minor in Statistics (18 semester credit hours)

The minor in Statistics requires 18 semester credit hours math or statistics course requirements. Of these 18, 12 semester credit hours will be selected from a specific set of courses.
12 semester credit hours of courses must be chosen from the following:
STAT 4351 Probability
STAT 4352 Mathematical Statistics

Two more upper-division mathematics courses that satisfy degree requirements by students in Mathematical Sciences.

The remaining 6 semester credit hours can be satisfied by choosing either MATH or STAT courses with advisor approval.

Minor in Physics (20 semester credit hours)

Required (12 semester credit hours)

PHYS 2325 Mechanics
PHYS 2125 Physics Laboratory I
PHYS 2326 Electromagnetism and Waves
PHYS 2126 Physics Laboratory II
PHYS 3411 Theoretical Physics

Also:
Three other upper-division physics courses
Undergraduate Certificate Programs
2014-15 Undergraduate Catalog
Certificate in Biomedical Sciences

The post-baccalaureate Certificate in Biomedical Sciences (CBioMed) is offered through the School of Natural Sciences and Mathematics (NSM) and administered through the Health Professions Advising Center (HPAC). A rigorous curriculum allows students to further develop their scientific knowledge in preparation for application to schools of medicine, dentistry, or podiatry. Program requirements also include clinical, community service, and/or research hours, independent from course credit and initiated by the student. Certificate students access HPAC services, receiving assistance with the application process. Students enrolled in the CBioMed program must meet the 3.30 GPA after two semesters CBioMed coursework at UT Dallas or be subject to dismissal from the program.

Application for the program is through the ApplyTexas online application at www.utdallas.edu/admissions. Applicants apply as "Transfer, Undergraduate" students in the School of Natural Sciences and Mathematics, and select the "Undergraduate Certificate in Biomedical Sciences." A supplemental application, as well as the booklet "Information and Program Guidelines," can be found on the HPAC webpage.
Undergraduate Programs

Teacher Education Certification Preparation Programs

UT Dallas offers rigorous university-based teacher certification curricula and has built an outstanding reputation for producing excellent teachers.

At UT Dallas, coursework and field experiences leading to teacher certification are planned and delivered through two separate teacher preparation programs - the Teacher Development Center in the School of Interdisciplinary Studies (972-883-2730) and UTeach Dallas in the School of Natural Sciences & Mathematics (NS&M) (972-883-2496) - in coordination with the other UT Dallas academic programs that provide the content for the teaching fields. Both of the UT Dallas Teacher Certification Preparation Programs use the total resources of the University rather than relying on a school of education. Students interested in pursuing teaching certification preparation through UT Dallas should preview program requirements of both the Teacher Development Center and UTeach Dallas. While both of these programs cover the same curriculum, they are uniquely independent, not interchangeable, and differ in course design and some requirements. The State Board for Educator Certification (SBEC) and Texas Higher Education Coordinating Board have approved the content and procedures for both programs' curricula.

Initial teaching certificates may be earned by UT Dallas undergraduates, concurrently with their degree studies, or by graduates from UT Dallas or other institutions. Prior to enrollment in the Teacher Development Center program, undergraduate students must first meet with their academic major advisor before being advised in the Teacher Development Center for the development of their teacher certification plan. Students enrolling in UTeach Dallas can meet directly with the UTeach Dallas advisor who also serves as the NS&M academic advisor for NS&M students in UTeach Dallas. Post-baccalaureate students interested in completing teacher certification requirements are advised in either the Teacher Development Center or UTeach Dallas.

SBEC (State Board for Educator Certification), working in conjunction with the Texas Education Agency and the Texas Higher Education Coordinating Board, has revised the rules governing educator preparation, shifting the process away from a prescribed schedule of required classes and semester hours to a standards-based system that identifies the knowledge and skills required for a beginning teacher in Texas. These standards are aligned with the Texas Essential Knowledge and Skills, the state's required curriculum for public school students. Texas law requires persons seeking educator certification to perform satisfactorily on comprehensive examinations. The educator preparation program is required to determine the candidate's eligibility to test. The TEA (Texas Education Agency) and ETS (Educational Testing Service) websites are the best source of updated information.
Certification Subject Areas

The University of Texas at Dallas offers approved teaching fields leading to teacher certification in the following subject areas. The Teacher Development Center supports all of the following certifications while UTeach Dallas supports only the secondary mathematics and science certifications.

Secondary (Grades 7-12) Certification

Undergraduate students must have an academic major and a minimum of 24 semester hours of appropriate coursework in the teaching field, a reading course in the content area for the Teacher Development Center program, and 18 semester hours of professional education, including student teaching. All UT Dallas student teacher candidates must pass state required TExES examinations for Pedagogy and Professional Responsibilities as well as the content exam in the appropriate certification area prior to being placed in a student teaching assignment. Certification for secondary education is offered in the following fields:

- 7-12 English Language Arts and Reading (ELAR)
- 7-12 History
- 7-12 Social Studies
- 8-12 Computer Science
- 7-12 Mathematics
- 7-12 Chemistry
- 7-12 Life Sciences
- 6-12 Physical Sciences
- 7-12 Science

Secondary (Grades 4-8) Certification

Undergraduate students must have an academic major with a minimum of 24 semester hours of appropriate coursework in the teaching field and 18 hours of professional education, including student teaching. In addition, students must have two reading courses for the Teacher Development Center program or one reading course for the UTeach Dallas program. All UT Dallas student teacher candidates must pass state required TExES examinations for Pedagogy and Professional Responsibilities and content in the appropriate certification area prior to student teaching. Students who wish to teach grades 4-8 may choose "4-8 Generalist" certification or a specialized teaching field. They may be enrolled in the School of Interdisciplinary Studies, the School of Natural Sciences and Mathematics, or in the school of their major subject.

Certification fields for Grades 4-8:

- 4-8 Science
- 4-8 Mathematics
- 4-8 Social Studies
- 4-8 English Language Arts and Reading (ELAR)
• 4-8 Generalist - because this certificate qualifies a candidate to teach multiple subjects, additional academic coursework is required in order to prepare the candidate for the rigorous, broad-based "Generalist 4-8" TExES examination.

Early Childhood - Grade 6 Certification

Generalist

The Generalist Certification is the only certification available for students interested in Early Childhood - Grade 6. The content related TExES examination for this certificate will test for a broad-based content mastery. Students are advised to work with advisors in the School of Interdisciplinary Studies or the School of Behavioral and Brain Sciences if they seek degrees that lead to teaching certification for Generalist EC-6. Because most elementary schools now seek to hire EC-6 teachers with ESL or Bilingual supplemental certification, UT Dallas highly recommends that students working on this certification prepare to take the ESL Supplemental exam when they complete their initial certification. The Teacher Development Center supports this by offering electives designed to prepare students to work in an ESL classroom.

All Teaching Fields

All undergraduate students must meet the 42-hour core curriculum for The University of Texas at Dallas.

All candidates seeking fulfillment of certification requirements through the Teacher Development Center are required to pass 18 semester hours of appropriate professional development courses, including six semester credit hours of full day student teaching. In addition to the professional education courses, state requirements for courses in Reading are required for each certification level. Candidates must also demonstrate technology and online educational literacy and effective public speaking.

All candidates seeking fulfillment of certification requirements through the UTeach Dallas program are required to pass 18 semester credit hours of appropriate professional development courses, including six semester credit hours of student teaching. Candidates must also complete History and Philosophy in Medicine and Science and demonstrate technology literacy, online educational literacy, and effective public speaking.

Admission

Upon admission to the University, undergraduate students should meet with an academic advisor in the major field to develop a degree plan, indicating to the advisor that they are seeking teacher certification. NS&M and STEM undergraduate students seeking certification preparation through UTeach Dallas should meet initially with the UTeach Dallas academic advisor. Students must then apply for admission to either the Teacher Development Center's or UTeach Dallas's teacher education certification preparation program, meet program's GPA and basics skills (THEA, SAT,
ACT, or GRE) standards, and complete a Certification Plan through either the Teacher Development Center or UTeach Dallas.

Post-Baccalaureate Program

Persons who already have baccalaureate degrees may seek teacher certification. They should consult with an advisor in either the Teacher Development Center or UTeach Dallas to develop a certification plan after they have been admitted to the University through the Office of Enrollment Services. *Prior to being admitted to the University Post-Baccalaureate Certification Program, students must meet basic skills (THEA, GRE, SAT or ACT) standards.*

Post-baccalaureate students must meet the 24 semester **credit hour** content requirement in the appropriate teaching field and required professional education coursework. A certification plan will be developed based on an evaluation of the student's transcript. If additional content coursework is needed, students may take the required courses in their teaching field(s) at the graduate or undergraduate level. Post-baccalaureate students must demonstrate technology literacy and effective public speaking. Post-baccalaureate students in the Teacher Development Center must complete 12 semester hours of English. All students must fulfill either the Teacher Development Center or UTeach requirements for student teaching or supervised internship.

Guidelines for Admission to The University of Texas at Dallas Teacher Certification Program

Guidelines are in compliance with Chapter 227 of the *Texas Administrative Code* and the HEA Title II accountability requirements.

Students seeking Texas teaching credentials at UT Dallas must meet the following requirements:

- **Provisional Admission** - Entitles a prospective student who has applied for admission to UT Dallas to be advised for a certification plan and/or to take the initial courses related to certification.
- **GPA** of 2.750 overall or on last 60 hours of coursework.
- **Undergraduate students** must have 60 semester hours of undergraduate coursework. This should include 12 semester hours at UT Dallas with no grade below a "C".
- **Post-baccalaureate students** must have an undergraduate or graduate degree from an accredited university. If the students have never enrolled in an Educator Preparation Program (EPP), they might qualify to register for a Pre-Admission Content Test (PACT). Detailed PACT information is available at the ETS website. Taking PACT does not ensure admittance into an Educator Preparation Program. Individual programs may have additional admission requirements.
- **THEA** - Unless exempt, a candidate must pass the THEA with the following minimum scores: **260 in Reading**, **240 in Math**, and **240 in Writing**.
- **Students** are exempt from taking the TASP/THEA if they meet the qualifying standards on the GRE, ACT, or SAT.
• GRE: For tests taken prior to August 1, 2011: a minimum Verbal score of 450 and a minimum Quantitative score of 450 for a combined Verbal/Quantitative minimum score of 900 and a writing score of 3 or higher; for tests taken after August 1, 2011: a minimum Verbal score of 135 and a minimum Quantitative score of 135 for a combined Verbal/Quantitative minimum score of 270 and a writing score of 3 or higher.

• ACT: A composite score of 26, and English and Math sub scores of at least 22. (Scores can be no more than five years old).

• SAT: A total score of 1650 with 550 minimums in the math, critical reading, and writing sections of the test. (Scores can be no more than five years old).

Appropriate documentation is required to qualify for the exemptions from THEA. The Official THEA Test Study Guide may be purchased in the UT Dallas Bookstore. Preregistration is required to take the THEA test at the UT Dallas Student Success Center located in the McDermott Library building, room 1.302. Undergraduate students enrolling in the Teacher Development Center program should meet with a faculty advisor in their academic major to develop a degree plan, no later than the end of the second regular semester following the semester in which the student earned 45 or more semester hours, per the Texas Education Code, Section 51.9685, indicating to the advisor their interest in pursuing teacher certification. Students can then make an appointment for certification plan advising with the Teacher Development Center whenever they are ready to take upper division courses.

For undergraduate students enrolling in the UTeach Dallas program, all students (including freshmen) interested in exploring or pursuing secondary mathematics or science teaching as a career are encouraged to enroll in UTeach Dallas certification coursework as early as their first semester at UT Dallas due to early field and teaching experiences and compacting degree plans with certification preparation. Students should make an appointment for certification plan advising with the UTeach Dallas advisor, who also serves as the academic advisor for all NS&M majors enrolled in UTeach Dallas.

Official Admission

Teacher Development Center Program:

• Meet all requirements for "Provisional Admission."

• Complete an application for admission to the Teacher Development Center program. A committee of faculty, administrators, and public school educators will review all applications before students can proceed in the program.

• Complete American Public School (ED 3314) and Educational Psychology for Teachers (ED 3339). Students must adhere to the Code of Ethics and Standard Practices for Texas Educators (TAC Chapter 247, Rule 247.2) and to the Fitness to Teach Policy (to be provided at the first advising appointment in the Teacher Development Center).

UTeach Dallas Program:
• Meet all requirements for "Provisional Admission."

• Complete an application for admission to the UTeach Dallas program.

• Complete STEP 1, STEP 2, and Knowing and Learning; be at least currently enrolled in Classroom Interactions, and have a 2.750 GPA or higher in University coursework.

• Receive approval of the preliminary portfolio.

Students must adhere to the Code of Ethics and Standard Practices for Texas Educators (TAC Chapter 247, Rule 247.2) and to the Fitness to Teach Policy (to be provided at the first advising appointment in the UTeach Dallas program).

Texas Examinations of Educator Standards (TExES)

All candidates for initial teacher certification must pass two TExES certification examinations:

1. Pedagogy and Professional Responsibilities test EC-12.
2. Content specialization test for the appropriate grade level.

Students must be officially admitted to the Teacher Development Program to take the TExES certification examinations. For information on TExES registration and eligibility, please review the Teacher Development Center website - www.utdallas.edu/teach or contact the Teacher Development Center or UTeach Dallas at www.utdallas.edu/uteach. TExES preparation manuals and Tests at a Glance can be downloaded from the web at [ETS website](http://ets.org). Students should access this information before or during the first semester of enrollment in the Teacher Certification program or the UTeach Dallas program at UT Dallas. Students are encouraged to prepare early for the content related specialization TExES examination and to take the PPR TExES exam during or immediately after completing Classroom Management through the Teacher Development Center program or beginning of Project-Based Instruction through the UTeach Dallas program. Practice tests are available through the Teacher Development Center. UT Dallas provides a free six-hour test preparation workshop twice each long semester.

Requirements for Student Teaching

Applications for student teaching will be accepted at one of several information sessions held early in each long semester (before October 15 in the fall and before March 15 in the spring). For further information contact the Teacher Development Center or UTeach Dallas.

A committee of faculty, administrators, and field placement educators will review all applications for supervised student teaching or Post-baccalaureate internships. All candidates must have exhibited professional maturity, acceptable class attendance, and meet the following requirements.
Teacher Development Center Program:

- Adhere to the Code of Ethics and Standard Practices for Texas Educators as listed in Appendix III in the student teacher handbook.
- Meet all requirements for official admission to the Teacher Development Center's teacher certification preparation program.
- Pass both required TExES exams.
- Complete all required coursework in teaching field with a 2.750 minimum GPA.
- Have no grade lower than a "B" in Classroom Management, C&I or Methods courses.
- Have no grade lower than "C" in other required certification courses.
- Request a student teaching assignment where no family member works or attends.
- Clear district criminal background check.
- Register for student teaching (6 semester hours). A student teaching fee will be included in the total registration charges.
- Pay tuition expenses before beginning official student teaching assignment.

UTeach Dallas Program:

- Adhere to the Code of Ethics and Standard Practices for Texas Educators as listed in Appendix III in the student teacher handbook.
- Meet all requirements for official admission to the UTeach Dallas's teacher certification preparation program.
- Pass both required TExES exams.
- Complete all required coursework in teaching field with a 2.750 minimum GPA.
- Have no grade lower than a "B" in STEP 1 and STEP 2 for certification through UTeach Dallas as well as a 3.000 GPA in UTeach Dallas coursework.
- Have no grade lower than "C" in other required certification courses.
- Request a student teaching assignment where no family member works or attends.
- Clear district criminal background check.
- Register for student teaching (6 semester credit hours). A student teaching fee will be included in the total registration charges.
- Enroll concurrently in the Apprentice Teaching Seminar course (1 semester credit hour).
- Pay tuition expenses before beginning official student teaching assignment.

UT Dallas Requirements for Teacher Certification

Teacher Development Center:

- A 2.750 GPA or higher in all professional education coursework and in content areas.
- Grade of "A" or "B" in Classroom Management, C&I or Methods courses.
- No grade lower than "C" in other required certification courses.
- Professional education coursework taken at UT Dallas.
- Online Educational Technology course, ED 4372.
- Appropriate documentation of effective public speaking.
- 12 semester hours of English with no grade lower than a "C."
• 40 clock hours of early field experience.
• 14 weeks/semester student teaching experience: Grade of "A" or "B" in Student Teaching.

UTeach Dallas:

• A 2.750 GPA or higher in content areas.
• Grade of "A" or "B" in STEP 1 or STEP 2 and overall GPA of 3.000 in UTeach Dallas courses with no grade lower than a "C" in Knowing and Learning, Classroom Interactions, or Project Based Instruction.
• No grade lower than "C" in other required certification courses.
• Professional education coursework taken at UT Dallas.
• Appropriate documentation of educational technology competency.
• Appropriate documentation of effective public speaking.
• 40 clock hours of early field experience.
• 14 weeks/semester student teaching experience with grade of "A" or "B" in Student Teaching.

Application for Certification

Students who successfully fulfill all requirements for Texas teacher certification (GPA, coursework, Basics Skills exam, and TExES examinations, etc.) should apply for certification on the Texas Education Agency (TEA) website (www.tea.state.tx.us). The Certification Officer will access student online applications and, upon verification of all certification requirements, will make recommendations for certification online. Students will immediately receive an email from the certifying agency verifying recommendation. When TEA posts the certificate online, the teacher candidate can print a copy of the certificate on paper suitable for framing if they wish. The online certificate is the official credential.

Contact Information

UT Dallas Teacher Development Center
School of Interdisciplinary Studies
Hoblitzelle Hall 2.900
Telephone: 972-883-2730
Fax: 972-883-4330
www.utdallas.edu/teach

UTeach Dallas
Department of Science/Mathematics Education
School of Natural Sciences and Mathematics
Founders North 3.218
Telephone: 972-883-6485
Fax: 972-883-6797
www.utdallas.edu/uteach
1. Available only through the Teacher Development Center.
Teacher Certification

Students who wish to gain certification to teach in Texas schools may do so at UT Dallas through one of its two separate teacher preparation programs - the Teacher Development Center in the School of Interdisciplinary Studies (972-883-2730) and UTeach Dallas in the School of Natural Sciences & Mathematics (972-883-2496). Students must first be admitted individually to the academic program of their choice. They must also seek admission through either the Teacher Development Center or UTeach Dallas as early as possible. The Teacher Certification website is located at www.utdallas.edu/teach; the UTeach website is at www.utdallas.edu/uteach.

Professional education courses, including student teaching, of at least 18 semester credit hours are prescribed to meet state certification regulations. Certification requirements may increase the number of semester credit hours normally required for graduation. Careful planning and utilization of electives for fulfillment of professional requirements may allow the student to avoid such an increase.

The Teacher Development Center supports all of the following certifications while UTeach Dallas supports only the secondary mathematics and science certifications (4-8 and 8-12). Teaching fields in which certification for Grades 8-12 may be earned are English Language Arts and Reading, Social Studies, Computer Science, History, Life Sciences, Physical Science, Science, Chemistry, and Mathematics. Teaching fields in which certification for Grades 4-8 may be earned are Science, Mathematics, Social Studies, English Language Arts and Reading, and Generalist 4-8. The Generalist Certificate is the only teaching field available at UT Dallas for Early Childhood (EC)-6 certification.

All students interested in Teacher Certification should consult the section on Teacher Education Certification Programs in the catalog, as well as the appropriate subject area.
Additions / Deletions

The following course have been added to the undergraduate course inventory:

MUSI 2127 Community Chorale (renumbered – see below)
NSC 4V91 Green Fellowship Directed Research
PSY 4V91 Green Fellowship Directed Research
UNIV 2014 Portfolio Seminar for UT Pact Students

The following course has been renumbered from a 3 credit hour to 1 credit hour course and will be removed: MUSI 2327 Community Chorale (see above).
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * musi2327 musi2127 (r1) musi2127.2</td>
<td></td>
<td>MUSI 2127 Community Chorale (1 semester credit hour) A choir that combines UT Dallas students, faculty, staff, alumni and singers from the community. Repertoire is selected from sacred and secular choral music from the Middle Ages to the twenty-first century. May be repeated for credit (9 semester credit hours maximum). (0-3) S</td>
<td>phase: approve status: approving audit: 11</td>
<td>sd1063000 2014-02-24 12:28:12 50.0908.00.03 audit: -1.8 m index: -1.8 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber * musi2327 (r5) -> musi2127 musi2327.8</td>
<td></td>
<td>MUSI 2327 Community Chorale (3 semester credit hours) A choir that combines UT Dallas students, faculty, staff, alumni and singers from the community. Repertoire is selected from sacred and secular choral music from the Middle Ages to the twenty-first century. May be repeated for credit (9 semester credit hours maximum). (0-3) Y</td>
<td>phase: approve status: approving audit: 27</td>
<td>mxv062000 2014-02-22 16:19:11 009576 50.0908.00.03 audit: -1.8 m index: -1.8 m</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/5ff901090d902764d341da6fc836b03e/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>nsc4v91</td>
<td>NSC 4V91 Green Fellowship Directed Research (1-12 semester credit hours) Student assists faculty with research projects or conducts a research project under weekly faculty supervision. Enrollment is limited to students selected for the Green Fellowship program. Instructor and Associate Dean consent required. ([1-12]-0) Y</td>
<td>phase: approve</td>
<td>Inall</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nsc4v91.4</td>
<td>diffpub: NSC 4V91 Green Fellowship Directed Research (1-12 semester credit hours) Student assists faculty with research projects or conducts a research project under weekly faculty supervision. Enrollment is limited to students selected for the Green Fellowship program. Instructor and Associate Dean consent required. ([1-12]-0) Y</td>
<td>status: approving</td>
<td>audit:</td>
<td>2014-02-10 11:45:05 NOLINK 26.1501.00.02 audit: -0.4 m index: -0.4 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psy4v91</td>
<td>PSY 4V91 Green Fellowship Directed Research (1-12 semester credit hours) Student assists faculty with research projects or conducts a research project under weekly faculty supervision. Enrollment is limited to students selected for the Green Fellowship program. Instructor and Associate Dean consent required. ([1-12]-0) Y</td>
<td>phase: approve</td>
<td>Inall</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psy4v91.4</td>
<td>diffpub: PSY 4V91 Green Fellowship Directed Research (1-12 semester credit hours) Student assists faculty with research projects or conducts a research project under weekly faculty supervision. Enrollment is limited to students selected for the Green Fellowship program. Instructor and Associate Dean consent required. ([1-12]-0) Y</td>
<td>status: approving</td>
<td>audit:</td>
<td>2014-02-10 11:45:29 NOLINK 42.0101.00.01 audit: -0.4 m index: -0.4 m</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>univ2014</td>
<td>(r1)</td>
<td>UNIV 2014 Portfolio Seminar for UT PACT Students (0 semester credit hours) The purpose of this seminar, required of all students enrolled in the UT PACT program, is for students to work on their professional development portfolios. Students will meet regularly with the program assessment director to discuss elements to be added to their portfolios and other issues related to their completion of the UT PACT requirements. Enrollment is limited to UT PACT students. Credit/No Credit only. May be repeated for credit. UT PACT advisor consent required. (1-0) S</td>
<td>phase: check</td>
<td>mxv062000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>univ2014.4</td>
<td></td>
<td>peoplesoft diff: UNIV 2014 Portfolio Seminar for UT PACT Students (0 semester credit hours) The purpose of this seminar, required of all students enrolled in the UT PACT program, is for students to work on their professional development portfolios. Students will meet regularly with the program assessment director to discuss elements to be added to their portfolios and other issues related to their completion of the UT PACT requirements. Enrollment is limited to UT PACT students. Credit/No Credit only. May be repeated for credit. UT PACT advisor consent required. (1-0) S</td>
<td>status: group1</td>
<td>2014-02-27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 13</td>
<td>30.0000.00.01</td>
<td>audit: -0.3 m</td>
</tr>
</tbody>
</table>
Overview of changes

• Verified Texas Education Codes and Texas Administrative Codes
• Mission statement
• Master’s programs admissions criteria: clarified procedures for candidates who possess a master’s degree
• Final Exams
• Commencement Ceremonies
• Student Travel Policy (replaces Appendix II)

Meets Office of General Counsel’s Catalog Checklist

• Criminal Background Check
• Making a False Alarm or Report Involving a Public or Private Institution of Higher Education
• Tuition and Fee Exemptions/Waivers
• Free Parking for Disabled Veterans

Updated March 2014
2014-2015 Graduate Catalog

About the Graduate Catalog

The University of Texas at Dallas Graduate Online Catalog is a general information publication only. The catalog intends to reflect current academic policies, procedures, degree offerings, course descriptions, and other information pertinent to graduate study at The University of Texas at Dallas. It is not intended to nor does it contain all regulations that relate to students. The provisions of this catalog do not constitute a contract, express or implied, between any applicant, student or faculty member and The University of Texas at Dallas or The University of Texas System.

The University of Texas at Dallas reserves the right to change the provisions of this catalog at any time, including, but not limited to: withdraw courses at any time, to change fees or tuition, calendar, curriculum, course offerings, degree requirements, graduation procedures, and any other requirements affecting students as necessitated by legislative or regental action. Changes will become effective whenever the proper authorities so determine and will apply to both prospective students and those already enrolled.

The online version of The University of Texas at Dallas Graduate Catalog is the official version. The online catalog will be updated periodically and will contain all major policy changes that occur during the 2014-15 catalog cycle. The official publication date of this catalog is August 2014.

Although this catalog was prepared on the basis of the best information available at the time, and the information is updated regularly, users are cautioned about the following:

· Editorial, clerical, and programming errors may have occurred in the publication of this website, and The University of Texas at Dallas assumes no responsibility for such errors.
· There is a lag time between approved changes and their publication on this website.
· Graduate students can graduate either under the catalog in effect when they enter or the catalog in effect when they complete their degree.

Students are held individually responsible for complying with all requirements of the rules and regulations of the University and the Board of Regents of The University of Texas System. Failure to read and comply with policies, regulations, and procedures will not exempt a student from whatever penalties the student may incur.

Accreditation

The University of Texas at Dallas is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award baccalaureate, masters, and doctoral degrees. Contact the Commission
on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097 or call (404) 679-4500 for questions about the accreditation of The University of Texas at Dallas.

Equal Educational Opportunity Statement

The University is committed to a policy of nondiscrimination, on the basis of sex, race, color, religion, age, sexual orientation, national origin, disability, or veteran status in its provision of services, activities, and programs, and in its treatment of students. Students seeking further information about this policy, or related complaint procedures for alleged discrimination or sexual harassment should contact the Dean of Students.

Catalog Publish Date: August 2014
About UT Dallas

Historical Sketch

Prior to World War II, Eugene McDermott, Cecil Green, and J. Erik Jonsson, the founders of Geophysical Services, Inc., were in the business of searching for natural resources. The war changed the focus of the company from searching for natural resources to creating instruments that aided in finding enemy planes and submarines. GSI spawned Texas Instruments and in 1958, TI employee Jack Kilby invented the integrated circuit that launched a new era for the company, for North Texas, and for the world.

During the expansion of Texas Instruments, the Founders were forced to import engineering talent from outside the state, while the region's bright young adults pursued education elsewhere. McDermott, Green, and Jonsson saw that Texas needed highly educated minds if the state were to remain competitive in the decades to come. They noted that, in 1959 alone, Columbia University conferred 560 doctoral degrees - more than the entire Southwest region. They wrote at the time, "To grow industrially, the region must grow academically; it must provide the intellectual atmosphere, which will allow it to compete in the new industries dependent on highly trained and creative minds."

Therefore, they established the Graduate Research Center of the Southwest (later renamed the Southwest Center for Advanced Studies) in 1961. The center recruited some of the best scientific talent in the nation. The Texas Legislature concurred with the vision of the Founders and mandated in 1967 that science and technology educational opportunities needed to exist in North Texas. McDermott, Green, and Jonsson decided to donate SCAS and its lands to The University of Texas System, and on June 13, 1969, Governor Preston Smith signed the bill creating The University of Texas at Dallas. The SCAS scientists formed the core of UT Dallas' educational infrastructure.

By terms of its enabling legislation, UT Dallas offered only graduate degrees until 1975 when the addition of juniors and seniors increased enrollment from 408 in 1974 to more than 3,300 students. By the fall of 1977, the enrollment reached over 5,300. In 1986, UT Dallas established the Erik Jonsson School of Engineering and Computer Science. Today, the Jonsson School plays a critical role in providing a highly educated work force for the advanced technology industry.

The Rise to National Prominence

In 1990, the Texas Legislature authorized UT Dallas to admit lower division students. UT Dallas' first freshman class consisted of only 100 students. Despite its small size, this cohort's achievements set the standard for future classes. Since then, freshman classes have grown in size while the University has maintained high enrollment standards. Nationally published data
indicate that UT Dallas' freshman class compares extremely well with those from many prominent national universities. UT Dallas consistently has three-fourths of its entering freshmen in the top twenty-five percent of their graduating class with many coming from the state’s most competitive high schools.

The University's ability to attract and retain these students has propelled The University of Texas at Dallas into national prominence within a few short years. US News and World Report ranks UT Dallas as one of the three best public universities in the state along with UT Austin and Texas A&M. Kiplinger's Personal Finance Magazine, in its February 2014 article "[Top 100] Best Values in Public Colleges, 2014," ranked UT Dallas 29th among all public universities nationally, gaining 21 spots from 60th last year. The quality of the students who attend UT Dallas has remained consistently high. Thirty-eight percent of the incoming freshmen are in the top 10% of their high school graduating class and their average SAT scores place them in the top twenty percent of all college-bound students. In recent years, UT Dallas has ranked among the top 100 American universities in terms of the number of National Merit Scholars enrolled.

The addition of freshmen has accelerated the rise in the percentage of full-time undergraduates from 31% in 1986 to 81% in 2013. Masters, doctoral and post-baccalaureate students currently comprise 38% of the student body. Given its location and mission, UT Dallas will continue to have significant numbers of professionals attending undergraduate or master's courses part-time.

The transition of the University from a part-time upper division school to a four-year university with an emphasis on engineering, mathematics, the sciences and the management of new technologies has been greatly facilitated by the University's faculty. By retaining key faculty members and attracting more nationally and internationally prominent researchers and instructors, UT Dallas has enabled its faculty to provide quality instruction to an increasingly diverse student population while sustaining the University's longstanding research tradition. In the past decade, the faculty has increased the level of external research funds substantially. During this same period, the University expanded its teaching mission, enhanced its areas of focused excellence and became independently recognized as one of the top public universities in the nation.

Mission

The University of Texas at Dallas provides the State of Texas and the nation with excellent, innovative education and research. The University is committed to graduating well-rounded citizens whose education has prepared them for rewarding lives and productive careers in a constantly changing world; to continually improving educational and research programs in the arts and sciences, engineering, and management; and to assisting the commercialization of intellectual capital generated by students, staff, and faculty.

Organization

The University of Texas at Dallas is one of nine universities and six health institutions governed by The University of Texas System's nine regents, who are nominated by the governor, selected...
from different areas of the state, and appointed with the advice and consent of the Texas senate. UT Dallas consists of seven schools, each headed by a dean: School of Arts and Humanities, School of Behavioral and Brain Sciences, Erik Jonsson School of Engineering and Computer Science, School of Economic, Political and Policy Sciences, School of Interdisciplinary Studies, Naveen Jindal School of Management, and School of Natural Sciences and Mathematics. The schools, in turn, consist of teaching and research programs that provide the disciplinary foundations of the University. In addition to the usual disciplinary approaches, the University has a strong commitment to interdisciplinary study at both the graduate and undergraduate levels. Most faculty members teach in both graduate and undergraduate areas so that the character of their instruction is informed by critical examination of the most recent developments in their fields.

The Office of Graduate Studies coordinates graduate education across the seven schools. The Graduate Council, chaired by the Dean of Graduate Studies, oversees degree requirements, and develops and implements educational policy.
University Officers

President's Cabinet

President

David E. Daniel, PhD

Executive Vice President and Provost

B. Hobson Wildenthal, PhD

Vice President for Administration

Calvin Jamison, EdD

Vice President for Budget and Finance

Terry Pankratz, MBA, CPA

Vice President for Student Affairs

N. Darrelene Rachavong, EdD

Vice President for Research

Bruce E. Gnade, PhD

Vice President for Public Affairs

Amanda Oneacre Rockow, MA

Vice President for Development and Alumni Relations

Aaron Conley, EdD

Vice President for Communications

Susan Rogers, BJ

Vice President and Chief Information Officer

Andrew J. Blanchard, PhD

Vice President of Diversity and Community Engagement
Administrative Officers / Deans

Vice Provosts

James W. Marquart, PhD
Emily A. Tobey, PhD
John J. Wiorkowski, PhD

Dean of Undergraduate Education

Andrew J. Blanchard, PhD

Dean of Graduate Studies

Austin J. Cunningham, PhD

Dean of Students

Gene Fitch, EdD

University Registrar

Jennifer M. McDowell, MPA

Academic Deans of Academic Units

School of Arts and Humanities

Dean

Dennis M. Kratz, PhD

Associate Dean of Graduate Studies

Michael L. Wilson, PhD

Associate Dean of Undergraduate Studies

Shelley D. Lane, PhD

School of Behavioral and Brain Sciences

Dean

Bert S. Moore, PhD
Associate Dean, Graduate Studies
 Robert D. Stillman, PhD

Associate Dean, Undergraduate Studies
 Melanie J. Spence, PhD

School of Economic, Political and Policy Sciences
Dean
 Denis J. Dean, PhD
Associate Dean for Graduate Education
 Nicole Leeper Piquero, PhD
Associate Dean of Undergraduate Studies
 Euel W. Elliott, PhD

Erik Jonsson School of Engineering and Computer Science
Dean
 Mark W. Spong, PhD
Associate Dean of Academic Affairs
 Poras T. Balsara, PhD
Associate Dean for Undergraduate Education
 Simeon Ntafos, PhD

School of Interdisciplinary Studies
Dean
 George W. Fair, PhD
Associate Dean for Undergraduate Studies
 Dachang Cong, PhD

Naveen Jindal School of Management
Dean
Hasan Pirkul, PhD

Senior Associate Dean
Varghese S. Jacob, PhD

Associate Dean, Executive Education
Gerald (Jerry) Hoag, MBA

Associate Dean, Graduate Programs
Monica Powell, PhD

Associate Dean, Undergraduate Programs
Marilyn Kaplan, PhD

Associate Dean, Undergraduate Programs
Matt Polze, JD

School of Natural Sciences and Mathematics
Dean
Bruce M. Novak, PhD

Associate Dean for Graduate Studies
Juan E. González, PhD

Associate Dean for Undergraduate Studies
Dennis L. Miller, PhD
The University of Texas System Board of Regents

Officers
Paul L. Foster, Chairman
R. Steven "Steve" Hicks, Vice Chairman
Wm. Eugene "Gene" Powell, Vice Chairman
Francie A. Frederick, General Counsel

Members
Terms Scheduled to Expire February 1, 2015:
Vice Chairman R. Steven "Steve" Hicks
Vice Chairman Wm. Eugene "Gene" Powell
Regent Robert L. Stillwell

Terms Scheduled to Expire February 1, 2017:
Regent Alex M. Cranberg
Regent Wallace L. Hall, Jr.
Regent Brenda Pejovich

Terms Scheduled to Expire February 1, 2019:
Chairman Paul L. Foster
Regent Ernest Aliseda
Regent Jeffrey D. Hildebrand

1. The actual expiration date of the term depends on the date the successor is appointed, qualified, and takes the oath of office.
Graduate Admission

About Graduate Admission

The University of Texas at Dallas is a comprehensive, state supported institution of higher learning, offering a variety of programs at the undergraduate, masters, and doctoral levels. UT Dallas is committed to providing quality education to a diverse student body and offers programs designed for both full-time and part-time students. The University of Texas at Dallas accepts applications for admission from graduate students for the fall, spring and summer semesters.

Admission to UT Dallas is open to all candidates on the basis of academic preparation, ability, and availability of space without regard to race, color, religion, national origin, gender, age, disability, citizenship, veteran status, or sexual orientation.

Graduate Admissions

For more detailed information, contact the Graduate department to which you are applying since each program has specific admission requirements listed at http://www.utdallas.edu/admissions/graduate/degrees.

Graduate application deadlines and available terms of entry may vary by program. Please refer to the application section in this catalog. International applicants may have different deadlines; please refer to both the application section in this catalog and International Students graduate admissions website for more information.

As with all state institutions of higher education, the procedures and criteria for admission used by UT Dallas are effective as of the publication date of this catalog but are subject to change by actions of the Texas Legislature or the Board of Regents.

Admission Requirements for Graduate Study

Each program has specific admission requirements listed at www.utdallas.edu/admissions/graduate/degrees.

At a minimum, all applicants must provide the following documentation:

Master's Programs

An earned UT Dallas baccalaureate degree or its equivalent from an institution with a grade average of B or better in upper-division (junior and senior level) work in the student's major field and related fields is the minimum requirement for admission to any master's degree program.
Applicants in their final year of undergraduate study may be admitted on the condition that their bachelor's degree is awarded before enrollment at UT Dallas. Students who have completed a relevant Master's degree and have submitted official degree conferral documentation are only required to submit unofficial copies of their baccalaureate degree transcripts and degree conferral.

Doctoral Programs

The minimum requirement for admission to any doctoral program is an appropriate earned UT Dallas master's degree or its equivalent, with an average of at least B+ or demonstrated comparable research competence. Applicants currently enrolled in post baccalaureate study may be admitted on the condition that their master's degree is awarded before enrollment at UT Dallas.

Some departments admit directly to the doctoral program from a bachelor's degree for highly qualified candidates.

Graduate Certificate Programs

UT Dallas offers a number of graduate level certificate programs that typically involve 9 to 15 semester credit hours of graduate coursework in a focused area of study. Each certificate at UT Dallas consists of a subset of the courses from a current master's degree program offering. For a full list of our current certificate offerings please refer to www.utdallas.edu/academics/certificates.html.

Each certificate provides specialized training to help expand a student's areas of expertise, teaches them about new developments in their field, augments their professional skills and provides credentials that help advance their careers. In addition the certificate offering enables students to test the waters before deciding to pursue a master's degree in that area. Students who are later accepted to the master's program may be allowed to count all of their completed certificate courses toward their degrees. Or a student may pursue the graduate certificate and master's degree concurrently.

Admission to graduate-level certificate programs requires a bachelor's degree and an undergraduate record indicative of readiness for graduate work. Many certificate programs do not require admissions tests such as the Graduate Record Examination (GRE) or Graduate Management Admission Test (GMAT) unless or until a student seeks admission to a related master's program.

Specific Admission Documentation Requirements

As a Degree-Seeking Graduate Student

Official Transcripts
The term "Official Transcript" is understood to refer to the official recorded results of the student’s academic work in a sealed envelope signed and stamped by the registrar or by an authorized official of the issuing college or university. English translations of transcripts and documents that are in a language other than English are also required and should be sent to:

Office of Admission and Enrollment Services
The University of Texas at Dallas
800 West Campbell Road
Richardson, Texas 75080-3021

All materials submitted in the process of applying to the University become the property of the University and will not be returned to the applicant. Falsifying or omitting information may result in withdrawal of any offer of acceptance, cancellation of enrollment, and/or disciplinary actions.

Admission to a master's degree requires that an official transcript demonstrating the completion of a bachelor's degree with a grade average of B or better in upper-division (junior and senior level) work in the student's major field and related fields from UT Dallas or another institution be submitted at the time of enrollment. An applicant who has earned a baccalaureate degree under the "academic fresh start statute" (Texas Education Code, Section 51.931) will be evaluated only on the grade point average of the coursework completed for that baccalaureate degree and the other criteria stated in this catalog.

Students who have completed a relevant Master's degree and have submitted official Master’s degree conferral documentation are only required to submit unofficial copies of their baccalaureate degree transcripts and degree conferral.

An official transcript demonstrating the completion of a master's degree, submitted at the time of enrollment, is required for admission to a doctoral degree. Some departments admit highly qualified candidates directly to the doctoral program from a bachelor's degree.

Graduate Admission Examination Scores (GRE, GMAT)

Standardized test scores must be official and reported directly by the Educational Testing Service (ETS) should be sent to The University of Texas at Dallas, Code 6897. The Graduate Management Admissions Test (GMAT) is required if applying to the Naveen Jindal School of Management and the Graduate Record Examination (GRE) revised General Test is required if applying to all other schools except the School of Arts and Humanities. Each degree program sets its own criteria for what constitutes a satisfactory score for degree-seeking admission (see http://www.utdallas.edu/admissions/graduate/degrees).

The information about the GRE and GMAT examinations given below was current at the time this catalog was published. Applicants should be advised that both examinations are undergoing changes in format and design.

Graduate Record Examination (GRE)
The GRE revised general test is offered on a year-round basis at regional testing centers in a computer-based testing (CBT) format. Information on regional CBT testing may be obtained directly from Graduate Record Examination, Educational Testing Service, P.O. Box 6000; Princeton, NJ 08541-6000; by phone 1-610-771-7670 or 1-866-473-4373, via email through its email form or direct email, or go to http://www.ets.org/gre. Applicants should specify by both institution and code that the test score be sent to The University of Texas at Dallas, Code 6897.

Graduate Management Admission Test (GMAT)

The GMAT is offered on a year-round basis at regional testing centers in a computer-based testing (CBT) format. Information on regional CBT testing sites may be obtained directly from the GMAT website; by phone 1-800-717-GMAT (4628); via email; or go to http://www.mba.com. Applicants should specify by both institution and code that the test score be sent to The University of Texas at Dallas, Code 6897.

Narrative

A narrative is submitted by the applicant outlining academic interests, current or long-range interests in research, teaching or other professional objectives; describing publications or other scholarly endeavors; listing of academic and professional organizations and fellowships, scholarships, or other honors received (for additional information see http://www.utdallas.edu/admissions/graduate/degrees).

Request for Recommendation Forms

Applicants must ask three individuals (employers, community leaders, teachers, etc.) who are able to judge their ability to complete the graduate study program and their probable success in graduate school by completing recommendation forms. These letters of recommendation may be sent directly to the contact listed for the degree program. The form is located at: http://www.utdallas.edu/admissions/graduate/documents/GradReqRecommendation.pdf.

International applicants without Permanent Resident Visas must submit evidence of financial support (financial affidavit and original bank statement) before they can receive the I-20 or other required documents needed for visa application.

In accord with Chapter 51, of the Texas Education Code, decisions on admission to degree-granting graduate programs at UT Dallas are based on holistic considerations of all submitted information regarding the academic, career, and personal histories of the applicants. Standardized test scores and coursework GPA levels cited in the catalog descriptions of some degree programs are listed for advisory purposes only, to indicate the typical achievement levels of students enrolled and succeeding in the various programs. No single quantitative or qualitative measure; or any specific combination thereof, constitutes a definitive standard for admission. Rather, each application will be considered individually and each applicant's complete profile of strengths and prospects for successful completion of the program will be evaluated by the admissions committee. Applicants are encouraged to contact the graduate advisor in the degree program in which they expect to enroll to discuss specific admission requirements.
Applicants who satisfy all of the above criteria qualify for regular admission to the degree program. Students denied this admission status may qualify for admission under one of the following categories:

as a Conditional Degree-Seeking Graduate Student

Upon review of the credentials of an applicant seeking regular admission to a UT Dallas degree program, the graduate studies committee of that degree program may recommend, and seek concurrence of the Dean of Graduate Studies, that the applicant be admitted subject to specific conditions being satisfied over a specified time period. Such conditions might include requiring additional semester credit hours to be taken, and/or a specific grade point average to be maintained. A student satisfying the conditional requirements within the specified time period will then qualify for regular admission. The graduate advisor in the academic program will monitor compliance with the admissions conditions. A student who does not fulfill the specified conditions within the time period specified at the time of admission will be barred from continued registration in the degree program.

Normally a student cannot remain in conditional status for more than one calendar year. Exceptions to the one-year limitation can be granted only by the Dean of Graduate Studies upon recommendation of the graduate program. Under no circumstances will the student be allowed to remain enrolled under Conditional Status for more than 15 semester credit hours or two consecutive years, whichever comes first. Within these limits, specified graduate level coursework taken as a conditionally admitted student can be applied to the degree program.

as a Non-Degree Seeking Graduate Student

A student wishing to take graduate level coursework without becoming a candidate for a graduate degree may apply for admission to UT Dallas as a non-degree seeking graduate student. He/she should consult with the graduate advisor in the department or program offering the graduate level coursework. The graduate advisor in the degree program will define specific eligibility requirements and admit students to the courses open to non-degree enrollment each semester. Enrollment as a non-degree student is restricted to the regular registration period each semester. Please refer to the graduate catalog in each school for additional information on prerequisite requirements for each course.

The non-degree student seeking admission to the master's degree program must satisfy the condition of having an earned baccalaureate degree for admission to a master's degree program at UT Dallas. He/she should consult with the department or program offering the graduate level coursework to determine GRE/GMAT and letters of recommendation requirements.

Enrollment as a non-degree seeking graduate student is subject to review and approval by the Associate Dean of Graduate Studies in the specific school. No more than 15 semester credit hours taken as a non-degree enrolled student at UT Dallas may be transferred to satisfy the requirements of a graduate degree program, except with the permission of the Dean of Graduate Studies. Students admitted as non-degree seeking may not be eligible for financial aid and should
consult the UT Dallas Financial Aid office regarding their status prior to submission of their application for admission.

NOTE: A student in the United States on an F1 or J1 Visa may only be admitted to a degree program at UT Dallas and is not eligible for non-degree seeking student status.

as a Graduate Student Taking Only Undergraduate Courses

Students holding a bachelor's degree from an institution of higher education may elect to take or, based on their academic background, be restricted to taking only undergraduate level courses. The applicant need only provide an official transcript demonstrating the completion of a bachelor's degree level and be in good academic standing. These students will be required to maintain the same scholastic standards as regularly admitted undergraduates and will receive academic guidance from the academic advisor in the school. Students restricted to taking undergraduate courses may not take graduate courses in a degree program. Students admitted to take only undergraduate level courses may not be eligible for financial aid and should consult the UT Dallas Office of Financial Aid regarding their status prior to submission of their application for admission.

International Students

Applicants educated at non-U.S. institutions should note that their educational background will be assessed for equivalency with a UT Dallas degree as described above. International applicants from non-English speaking countries whose primary language is not English and who graduated from a non-U.S. university where the language of instruction and examination was not English, must demonstrate English proficiency.

English Proficiency Requirements

English proficiency requirements can be met by one of the following methods:

- Achieving a minimum score of 80 on the Test of English as a Foreign Language (TOEFL) IBT (Internet-based test),
- A minimum score of 6.5 on the International English Language Testing System (IELTS) test,
- A minimum score of 67 on the Pearson's Test of English Academic (PTE), or

This requirement should be met at the time the admission application is submitted. Applicants with lower scores will be considered but are advised to improve their test scores and reapply.

Applicants with an earned baccalaureate degree from an institution of higher education where the language of instruction and examination was in English are excused from this requirement. Scores must not be more than two years old, and an official copy must be sent from the testing agency to:
Higher scores may be required if the applicant is to succeed in the competition for Teaching Assistant openings.

English Requirements for Teaching Assistants

Students are required to be able to speak and write English clearly and well. Texas state law and regulations, *Texas Education Code, Section 51.917*, require that international students appointed as Teaching Assistants (TA’s) be proficient in the use of the English language. An English Proficiency Interview conducted under the auspices of the office of the Dean of Graduate Studies will be used to screen for students requiring remedial help in the form of English as a Second Language (ESL) course. International students must satisfy the proficiency requirement upon appointment or pass the ESL course within two semesters to be eligible for consideration of continued appointment as a TA. Regardless of test scores, students must meet the language requirements of their programs.

J-1 Exchange Visitor and Graduate Exchange Students

International applicants wishing to attend UT Dallas as a Visiting Graduate Researcher (J-1 Exchange Visitor) should contact directly the academic unit where they want to pursue the program to obtain an invitation letter. This modality does not imply registration of credits, transcripts, and tuition. The J-1 Exchange Visitor is subject to the premises of the Human Resources Management Office. For more information regarding the flow-of-J1 exchange visitor process please consult http://www.utdallas.edu/hrm/toolkits/foreign/J-1.php5.

Graduate students wishing to attend UT Dallas as an exchange student from one of our partner institutions should contact the UT Dallas Office of International Education (OIE) at http://www.utdallas.edu/oie/ies.htm. This modality do imply full time enrollment (9 semester credit hours) for long term semesters (Fall and Spring) and payment of tuition and fees at the home institution.

http://catalog.utdallas.edu/2013/graduate/admission

Graduate Admission

Application

To apply to UT Dallas, prospective graduate students should use a web-based application form that can be accessed using the "Apply Now" link for each degree listing at: www.utdallas.edu/admissions/graduate
Applicants are advised to carefully review the program information and the semester specific deadlines for domestic and international applications. Applicants are required to submit official copies of all past academic transcripts, test scores, and other degree specific documentation by the appropriate application deadlines to be considered for admission to The University of Texas at Dallas.

Application Fees and Deadlines

All fees are non-refundable.

- The application fee is $50 if your application is submitted on or before the regular application deadline.
- If you submit your application after the application deadline but prior to the completed application deadline (application and all required documents) the application fee is $125 in order to process your application for decision in time to register for classes.
- Applicants with international academic documents will be assessed an additional foreign credential evaluation fee of $50.
- All supporting documents and transcripts, with the exception of courses in progress, must be received in the Office of Admissions and Enrollment Services by the completed application deadline.
- A new application must be completed and submitted for consideration for any subsequent semester for all incomplete applications after the documentation deadline.

Domestic and international applicants are urged to plan ahead and apply as early as possible and to allow adequate time for review by the admissions committees. To ensure consideration for financial assistantships students are urged to submit a completed application nine months prior to anticipated enrollment. Applicants are advised to refer to www.utdallas.edu/admissions/graduate/degrees for additional information on specific admission deadlines for each degree program. Applications submitted after the application deadline and before the Completed Application Deadline (application and all required documents) deadline will still be processed; however, a decision may not be reached in time for students to avoid late registration.

Domestic applicants should have all necessary application materials to the Office of Admission and Enrollment Services prior to the following dates:

<table>
<thead>
<tr>
<th>Term</th>
<th>Application Deadline</th>
<th>Completed Application Deadline (application and all required documents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Full-Term</td>
<td>July 1</td>
<td>August 1</td>
</tr>
<tr>
<td>Spring Full-Term</td>
<td>November 1</td>
<td>December 1</td>
</tr>
<tr>
<td>Summer Sessions</td>
<td>April 1</td>
<td>May 1</td>
</tr>
</tbody>
</table>

Mary Jo Venetis 12/8/13 10:58 PM
Deleted: A

Mary Jo Venetis 12/8/13 10:58 PM
Deleted: D

Mary Jo Venetis 12/8/13 9:52 PM
Deleted: C

Mary Jo Venetis 12/8/13 9:52 PM
Deleted: A

Mary Jo Venetis 12/8/13 9:52 PM
Deleted: D

Sanchez, Matthew 1/17/14 1:31 PM
Comment [12]: Please delete postmarked and change to "received in the Office of Enrollment Services by..."
International applicants who are not citizens or permanent US residents should submit all necessary application materials to the Office of Admission and Enrollment Services by the following dates:

<table>
<thead>
<tr>
<th>Term</th>
<th>Application Deadline</th>
<th>Completed Application Deadline (application and all required documents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Full-Term</td>
<td>May 1*</td>
<td>June 1*</td>
</tr>
<tr>
<td>Spring Full-Term</td>
<td>September 1*</td>
<td>October 1*</td>
</tr>
<tr>
<td>Summer Sessions</td>
<td>March 1*</td>
<td>April 1*</td>
</tr>
</tbody>
</table>

*International applicants with visa types other than F1 or J1 visas may adhere to the domestic application deadlines and dates, but still will be assessed late fees according to the international deadline dates.

Students seeking appointments as Teaching Assistants or Research Assistants should contact the academic advisor for the degree program and plan for earlier application submissions.

The Office of Admission and Enrollment Services, located in the Student Services Building, can assist prospective students in exploring the possibility of graduate study at UT Dallas. For detailed admissions or academic advice, please contact the specific academic program by visiting www.utdallas.edu/admissions/graduate.degrees.
List of Registration and Enrollment Requirements

Registration and Enrollment Policies

- Registration and Enrollment Requirements
- Orientation
- Academic Good Standing
- Continuous Enrollment
- Registration and Readmission Requirements
- Dates of Early, Regular and Late Registration
- Paying Fees as a Part of Registration
- Leave of Absence
- Readmission

Undergraduate Registration for Graduate Courses

- Undergraduate Registration for Graduate Courses
- Graduate Courses Applied Toward an Undergraduate Degree
- Graduate Courses for Possible Future Use as Graduate Credit
- Graduate Courses Taken in Fast Track Options

Cooperative Arrangements

- Cooperative Arrangements
- The University of Texas System
- Concurrent Enrollment
- Visiting Student Program
- Texas A&M University System

Schedule Changes

- Schedule Changes: Dropping, Adding and Withdrawing From Courses
- Withdrawal (Resignation) from the University

Course Policies

- Auditing Courses
- Course Numbering System
- Frequency of Course Offerings
- Course Load
- Repeated Course Work
- Final Examinations
- Religious Holy Days

Grades

- Grades and Grade Point Average
- Grade of I: Incomplete
- Grade Changes
- Pass/Fail Grading

Military Service

- Military Service Activation
- Interruption of Education
- Option to Remain Enrolled and Complete Coursework Following Brief Military Service
- Option to Withdraw, Receive Incomplete Grade, or Receive Final Grade
- Readmission Following Military Service

Other Policies

- Change of Address, Email or Name
- Criminal Background Check
- Making a False Alarm or Report Involving a Public or Private Institution of Higher Education
- Religious Holy Days
- Student Travel Policy
Graduate Admission

Registration and Enrollment Requirements

Following the receipt of your admission letter, per State legislation effective January 1, 2012, all entering Texas college students must receive a vaccination or booster (if the vaccination is five years old) against bacterial meningitis before enrollment in accordance with Texas Education Code, Section 51.9192. Entering students who are 22 years of age or older are exempt. Questions concerning the bacterial meningitis requirement and forms should be directed to the Office of the Registrar, 972-883-2342 or go to http://www.utdallas.edu/student/registrar/contact.html.

A graduate student must be registered in any session:

· during which they are taking courses, or taking examinations, required in his/her degree program.
· in which he/she requires guidance in the preparation of a thesis or dissertation required in his/her degree program. Additionally, a thesis/dissertation student must complete in a total of at least three thesis or dissertation semester credit hours prior to graduating.
· for at least one semester credit hour in the semester in which they plan to graduate. The graduating students may avail themselves of this rule only one time. Some programs may require additional semester credit hours.
· have paid all required fees in the semester in which he/she plans to graduate.

Orientation

New student orientation sessions are designed to assist new students with an understanding of university rules and regulations and to provide information about registration procedures, academic programs, and student life. New student orientation programs are available for UT Dallas freshmen, undergraduate transfer students, graduate students, international students, and teaching and research assistants. Attendance is strongly recommended for all new students as a means of efficient matriculation into the University. International Student Orientation is mandatory for all F and J status international students. TA orientation is mandatory for all newly appointed Teaching Assistants.

Academic Good Standing

Registration in the graduate programs beyond the first semester (or summer session) is contingent on the student's being in good academic standing based on three main factors:
· Satisfactory progress in meeting admission conditions that were imposed at the time of admission.
· Maintenance of a 3.0 cumulative grade point average in graduate courses in the degree program.
· Satisfactory progress in meeting program degree requirements.

If, at the end of a semester, a student's cumulative grade point average is below 3.0, the student will be placed on academic probation. The student must earn sufficient grade points during the next two semesters of registration to raise the cumulative grade point average to at least 3.0 exclusive of incomplete (I) grades. Failure to achieve this 3.0 cumulative grade point average will result in immediate dismissal from the University.

Continuous Enrollment

Unless on an approved leave of absence, a graduate student in a degree program must maintain continuous enrollment during the fall and spring (long session) semesters of each academic year. A graduate student who fails to register in any given long session will be permitted to re-enroll through his/her program office in any two subsequent semesters provided the student was in good academic standing at the time of last enrollment.

Registration and Readmission Requirements

A continuing student in good academic standing may register in one of three ways:

- online, with the department or program office,
- with the Office of the Registrar during registration, or
- early to increase the probability of enrollment in available courses.

The Office of the Registrar informs the instructor of the names of all students who are officially registered and have paid all required tuition and fees in each class. It is recommended that the student confirm with the instructor that his/her registration has been properly recorded within the first week of classes. It is the student's responsibility during his/her enrolled semester that he/she is attending the correct courses for which he/she is registered. A student may not attend classes in which he/she is not registered in the above manner unless the student has been approved to audit the course.

Dates of Early, Regular and Late Registration

Registration dates and procedures are listed in the online Comet Calendar and the Academic Calendar. These online resources contain important dates and information that will be useful throughout the semester. Failure to consult and be aware of these dates and procedures does not excuse a student from information or regulations contained therein. The University reserves the right to make changes to both calendars at any time.
Paying Fees as a Part of Registration

A student is not registered or eligible to attend classes until all tuition and fees have been paid in full or until the student has arranged installment payments with the Bursar by the payment deadline in the online Comet Calendar or the Academic Calendar. If a student's registration has been canceled for nonpayment, a reinstatement fee and a late fee will be charged (see online course schedule for current fees). A student who has not completed the payment of all tuition and fees by the end of the semester will be subject to one or more of the following actions at the University's option:

- bar against readmission at this institution,
- withholding of grades, degree and official transcript,
- all penalties and actions authorized by law.

Leave of Absence

A student who formally requests and is granted a leave of absence will be exempt from the readmission requirements. A request for a leave of absence must be made through the department or program to the Dean of Graduate Studies and is recorded on the student's academic record by the Office of the Registrar. The leave of absence does not alter the time limits placed on graduate degrees.

Readmission

A student in good academic standing who finds it necessary to suspend his/her academic activities or transfer to another institution for the duration of three long semesters (not including a summer session) must reapply to the program of intended degree. In that circumstance, a new review will be made to determine eligibility of enrollment under current standards for admission. An official transcript mailed directly by each institution attended after leaving The University of Texas at Dallas must be sent to the Office of Admission and Enrollment Services, including any transcript of attendance at another university during a summer session. If accepted, the readmitted student will be bound by the catalog in force at the time of readmission.

Beginning in the Fall 2009 semester, if a student was previously enrolled at UT Dallas, the student may be eligible to return to the University without reapplying through admissions.

To be eligible for the new policy, the student must have previously enrolled for at least one semester. A student is considered enrolled if he/she was enrolled in one or more courses after the census day for a semester. The student also must have left the University in good standing and must be in good standing with all institutions of higher education he/she formerly attended.

The following guidelines describe whether or not a student must apply or submit a re-entry form:

- Previously graduate degree-seeking, returning as graduate degree-seeking
If different programs and/or different plans, must reapply and waive fee unless filing premium application
If same program, same plan, and in good standing, must submit re-entry form
- Previously graduate non-degree seeking, returning as graduate degree-seeking
 Must reapply and pay fee
- Previously graduate degree-seeking, returning as graduate non-degree seeking
 If in good standing, must submit re-entry form
- Previously graduate taking undergraduate courses (GRU), coming back as graduate taking undergraduate courses (GRU)
 Must submit re-entry form

If the student qualifies under the readmission policy, the student must submit a re-entry form and return it to the Office of the Registrar 10 days before the first day of class.

In addition, the student must submit official transcripts for all institutions of higher education he/she attended after last attending UT Dallas. If official transcripts are not received by Census Day, the student will be automatically dropped from any currently enrolled courses. The readmitted student may be required to submit bacterial meningitis vaccination necessary forms before being allowed to register.

Undergraduate Registration for Graduate Courses

Upper-division undergraduates who are classified as seniors may petition their Associate Dean to take graduate courses by completing the appropriate form available in the student's academic advising office. If approved, these graduate courses can be applied toward satisfying undergraduate degree requirements or can be designated for future application toward a graduate degree requirement at UT Dallas. The student must declare at the time of registration for the course, on a form provided by the Undergraduate Associate Dean, how each approved course is to be applied. Once applied, the options cannot be changed. Approvals will be subject to the conditions outlined in the following sections.

Graduate Courses Applied Toward an Undergraduate Degree

With the approval of the student's Undergraduate Associate Dean, up to 12 semester credit hours of graduate work taken as an undergraduate may be used for completing any baccalaureate degree at The University of Texas at Dallas. Pass/Fail grading for graduate courses will be permitted only in this category but must be approved by the instructor prior to the start of class.

Graduate Courses for Possible Future Use as Graduate Credit

Undergraduates may take up to 12 semester credit hours of graduate courses to reserve for possible application toward a graduate degree. To register, undergraduate students must obtain permission from the course instructor and from the graduate advisor of the program in which the course is offered. Such courses with an earned grade of 'B' or better will be eligible for application to the student's graduate record when the student is admitted to a graduate program.
These courses will not apply to the student's undergraduate degree and will not affect the student's undergraduate GPA.

Graduate Courses Taken in Fast Track Options

A number of programs at The University of Texas at Dallas offer an accelerated Fast Track option that allows qualified senior undergraduate students to take specified masters level coursework. Specific admission requirements for Fast Track programs can be found within the descriptions of majors. Undergraduate students at UT Dallas who have been admitted to Fast Track programs leading to baccalaureate/master's degrees may, with the permission of the student's Undergraduate Associate Dean and the graduate advisor of the intended graduate program, take a maximum of 15 specified semester credit hours of graduate work, as a Fast Track student. The graduate semester credit hours may be used to complete the baccalaureate degree and also to satisfy requirements for the master's degree. The grade earned in the graduate coursework must be a B (3.000) or better to be applied to the master's degree requirements. A student may only Fast Track into ONE graduate program.

Graduate programs at UT Dallas may accept admission to a Fast Track program as satisfying Graduate Record Examination (GRE) criteria for admission to the graduate program. The Naveen Jindal School of Management requires students to meet its graduate admission requirements including completion of the Graduate Management Admissions Test (GMAT) prior to receiving the baccalaureate degree.

A student must be classified as a senior in order to eligible for Fast Track. Associate Deans of Undergraduate Education (ADU) determine specific eligibility to take graduate courses as evidenced by the attachment of a degree plan to the application form. The student must declare at the time of graduation on a form provided by the Undergraduate Associate Dean, how each approved graduate course is to be applied (either Fast Track or towards undergraduate degree). Once applied, the options cannot be changed.

Cooperative Arrangements

The University of Texas System

Concurrent Enrollment

A concurrent enrollment agreement is in place between The University of Texas at Dallas, The University of Texas at Arlington, and The University of Texas Southwestern Medical Center. This agreement allows any student enrolled concurrently between these institutions to receive a waiver of certain fees per Texas Education Code 54.011. Students must be enrolled in at least one semester credit hour at their home institution to be considered concurrently enrolled. Students must apply for concurrent enrollment with The Office of the Registrar in the Student Services Building, first floor customer service area.

Visiting Student Program

The UT System Visiting Student Program is designed to allow a graduate or professional student enrolled in an institution of the UT System to take courses or engage in research at another institution within the System during a regular semester or summer session. A UT Dallas graduate student, who has been admitted to a degree program at UT Dallas, must have completed a minimum of 15 semester credit hours at UT Dallas and be in academic good standing in order to be eligible to participate in the visiting student program. Courses to be taken under this visiting student program must have prior approval of the student's degree program advisor. An approved Leave of Absence also is required. A visiting student registers and pays tuition and required fees at his/her home institution and is given normal privileges associated with available student services at the exchange institution. A visiting student is subject to the rules and regulations of both institutions. Each UT System institution has designated an individual to coordinate and approve graduate or professional visiting students. Interested UT Dallas students should contact the Office of the Dean of Graduate Studies for additional information, 972-883-2234, or go to the Office of Graduate Studies website. A student at other UT System schools wishing to take courses at UT Dallas under this visiting student program should contact and work through the graduate dean at the home institution.

Texas A&M University System

A cooperative arrangement between The University of Texas System and the Texas A&M University System allows a graduate student at one institution to use unique facilities or courses at the other institution with a minimum of administrative paperwork. The graduate student registers and pays tuition and fees at the home institution.

Schedule Changes: Dropping, Adding and Withdrawing From Courses

Dates and time limits for schedule changes can be found in the online Comet Calendar and the Academic Calendar.

A new student seeking to drop or add courses to his/her schedule must obtain permission from his/her graduate advisor in the degree program. Drop/Add forms may be obtained from advising offices.

Drop/Adds may not be processed after Census Day. Any drops prior to and including Census Day will not show on the student's transcript. Withdrawals after Census Day will show as a W (withdraw) on the transcript.

After the last day indicated in the online Comet Calendar and the Academic Calendar for a graduate student to withdraw, the course withdrawal will be approved only on a documented emergency basis for reasons extrinsic to curricula matters. To secure such approval, the student must complete a Drop/Add form and obtain the signature of the instructor certifying that the student was passing at the time of the proposed withdrawal. The student should then submit the Drop/Add form and a written petition detailing the nature of the emergency with written documentation from employer or doctor, as appropriate, to the graduate advisor and then to the
Dean of Graduate Studies. If the petition is approved, the grade assigned by the instructor on the Drop/Add form will determine the grade which will appear on the student’s transcript: a passing grade will appear as a W on the transcript; a failing grade will appear as an F. Students who cease to attend classes without securing approval in the manner prescribed above will receive the grade of F for that course. Courses may not be dropped after the last day of classes in the semester.

A student who habitually withdraws from a significant fraction of his/her schedules may lose the right to withdraw or may be dismissed from the University for failure to make adequate academic progress.

Any student on a Teaching/Research Assistantship wishing to drop a course at any time during the semester must secure the signature of the Dean of Graduate Studies.

The Office of the Registrar, upon recommendation of the instructor and with the approval of the Dean of Graduate Studies, may require a student to drop a course for which the student has not satisfied the prerequisite.

UT Dallas operates multiple sessions with different academic calendar and Census dates. If a student registers in a shorter session, it is the student's responsibility to review the online Comet Calendar and deadlines that affect the drop/add/withdrawal procedures. The same holds true for the summer session.

Withdrawal (Resignation) from the University

A student who wishes to withdraw entirely from the University must complete the proper withdrawal form and procedures in the Office of the Registrar. The grade assigned by the instructor on the withdrawal form will determine the grade which will appear on the student's transcript:

- a passing grade will appear as a W on the transcript
- a failing grade will appear as an F

Withdrawal after the final drop date requires the same procedures as listed in the previous paragraphs on Schedule Changes.

Auditing Courses

Auditing allows a student to observe the instruction of a course without earning credit. Computer Science and Engineering courses, Geoscience courses, Physical Education courses, Creative Writing courses, Foreign Language courses, online courses, and any courses that charge a lab fee may not be audited. Participation and discussion is at the discretion of the instructor. Auditing grants only the privilege of hearing and observing and does not grant credit or access to online course tools.
Beginning the first day of classes through Census Day, a student may obtain an audit form in the Office of Registrar located on the first floor of the Student Services Building. Please consult http://www.utdallas.edu/student/registrar/faq.html for more detailed audit procedures and associated non-refundable fees.

All applicants for auditing graduate courses should have documentation indicating the completion of a baccalaureate degree. Exceptions to this policy may be granted only upon application to the Dean of Graduate Studies. Under no circumstances will a student be allowed to audit Studio/Ensemble courses.

Course Numbering System

All courses are identified by a four-digit number preceded by the name (or abbreviation) of the program. Courses beginning with a number 5 or greater are graduate courses. The second digit of the course number identifies the semester credit hour value. Courses with a V in the second position are variable semester credit hour courses.

The number of lecture hours per week and the number of laboratory hours are given in brackets following the course description: (2-4) means two hours of lecture and four hours of laboratory each week.

For additional information on semester credit hours, see policy.utdallas.edu/utdp1090.

Frequency of Course Offerings

At the end of each course description, a frequency of course offering code is available.

- **S** = course offered at least once each long semester
- **Y** = course offered at least once a year
- **T** = course offered at least once every two years
- **R** = course offered based on student interest and instructor availability

Course Load

During each long semester, the normal course load for a full-time graduate student including those supported as a Teaching or Research Assistant is 9 semester credit hours.

The maximum allowed graduate course load in any given semester is 18 semester credit hours.

Registration in excess of this maximum must have the recommendation of the graduate advisor and approval of the Dean of Graduate Studies and will be permitted only under exceptional circumstances.
Students who are appointed as Teaching or Research Assistants should consult with the graduate advisor or supervisor about their combined course and work load each semester.

For certification purposes, UT Dallas uses the following criteria for graduate students:

- Fall/Spring Full-time status - 9 semester credit hours
- Fall/Spring Half-time status - 5 semester credit hours
- Summer Full-time status - 6 semester credit hours*
- Summer Half-time status - 3 semester credit hours*

* Summer semester status is determined by total official enrolled semester credit hours for all the summer sessions.

Repeated Course Work

A student who wishes to repeat a course must submit a Repeated Course Adjustment form to the Graduate Dean.

Up to three graduate courses may be repeated. However, no graduate course may be repeated more than once. When a course is repeated, both grades will remain in the student's record and will be included in any transcript. The higher grade will be used in computing the grade point average or semester credit hours for purposes of graduation. This policy does not apply to coursework specified in the catalog that can be repeated for credit. Students are advised to check with the Office of Financial Aid to determine how and if grades earned in repeated coursework impact their financial aid eligibility status.

Final Examinations

When a final examination is given in a course, it must be given at the time scheduled by the Office of the Registrar during the final examination period. A final examination must not last more than 2 hours and 45 minutes. Students for whom three or more final examinations are scheduled in one day may petition to take the additional final examinations on different days.

Grades and Grade Point Average

The following grade scale is used in graduate coursework at the University:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Grade Points per Semester Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>A-</td>
<td></td>
<td>3.67</td>
</tr>
<tr>
<td>B+</td>
<td></td>
<td>3.33</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>3.00</td>
</tr>
</tbody>
</table>

Mary Jo Venetis 1/20/14 5:01 PM
Comment [23]: Approved by Graduate Council, 12-12-13.
Mary Jo Venetis 1/20/14 5:01 PM
Deleted: If
* The grades of I and P do not produce grade points.

Grade of I: Incomplete

An **incomplete** grade of I may be assigned, at the discretion of the instructor, for work unavoidably missed at the semester's end. The student must obtain a Grade of Incomplete/Documentation Form in the office of the student’s degree program. The instructor assigning an incomplete grade must furnish a description of work required to complete the course. An incomplete must be completed eight (8) weeks from the first day of the subsequent long semester. The completed form must be signed by both the student and the instructor, and the appropriate Associate Dean, Graduate Advisor, or Department/Program Head, and must be retained with the student’s academic record. If the required work to complete the course and to remove the grade of I is not submitted by the specified deadline, the grade of I is changed automatically to an F. Extension beyond the specified limit can be made only with the permission of the Dean of Graduate Studies. A student may not re-enroll in a course in which an I has already been assigned.

The instructor alone will be responsible for determining whether the requirements for completion are met and for assigning the grade in the course. If the instructor who assigned the incomplete is no longer associated with the University when the work is completed, the head of the department or program may assign a committee of appropriate faculty to evaluate the material and/or obtain any other information that may be required to assign the grade in the course. Upon completion of the evaluation of the required work, the symbol I must be converted into a letter grade (A through F or P) by the instructor, head of the department or program, or Graduate Advisor as indicated above.

Grade Changes

Faculty Initiated

After a final grade has been recorded by the Office of the Registrar, faculty may change grades only to correct a clerical error or replace a grade of incomplete. A faculty-initiated change of a final grade requires the written approval of the instructor, the department or program head, Associate Dean of Graduate Studies, and the School Dean. Such grade changes must be submitted by the end of the eighth week of the long semester after the grade was awarded. Any grade change initiated after this deadline requires the written approval of the instructor, the department or program head, the School Dean, and the Dean of Graduate Studies.
Student Request

A student has the right to request a review of the grades received in any class.

The only grounds for considering a grade to be incorrect are either clerical error or that the grade is arbitrary or capricious. Examples of clerical error would include, but are not limited to, a mistake in adding component grades, a mistake in recording grades, or attributing a paper or examination to the wrong student. "Arbitrary or capricious" means that the grade cannot be considered reasonable given the material of the course, the overall performance of the class, and the individual performance of the student. The university assumes that coursework is best evaluated by the instructor in the immediate context of the course activity. Requests for reconsideration must show with clear and convincing evidence why this assumption should be set aside.

If a student believes he or she has been assigned a grade on the basis of a clerical error or that the grade is arbitrary or capricious, the student should first seek to discuss the grade with the instructor. If this does not lead to satisfactory understanding, the student may file a formal appeal following the procedures described for academic grievances in the Rules, Regulations, and Statutory Requirements Section C (see Academic Grievances, Appendix I).

Students must petition for a grade review by the end of the eighth week of the long semester after the grade was awarded. The request must be submitted in writing to the appropriate faculty member, who then has the remainder of that semester to take action.

Pass/Fail Grading

The pass/fail option is intended to encourage a student to take courses in topics outside his/her major area where the student would be competing with a significant number of students who are majoring in these outside areas. Subject to the constraints stated below, a student may elect to take certain courses either by letter grade (A, B, C, F) or pass/fail grade (P/F). The pass/fail option should be exercised at the time of registration. In any courses in which letter grades are given to one or more students, any student wishing to take the course on a pass/fail basis must obtain the approval of the instructor and his/her graduate advisor on the Pass/Fail form. This completed form must be submitted to the Office of the Registrar no later than Census Day. No change of grade designation from grade to pass/fail or pass/fail to grade can be made after the Census Day designated in the online Comet Calendar and the Academic Calendar.

A student may not elect to take the following types of courses on a pass/fail basis:

• major core courses and their prerequisites required for the student's degree
• elective courses in the student's major area
• more than 20 percent of the semester credit hours earned at UT Dallas for any master's degree (excluding casebook, internship, practicum, independent study, research, reading, thesis or dissertation requirements)
Only pass/fail grades are given for independent study, research and reading courses, and for thesis and dissertation.

Military Service Activation Interruption of Education

From time to time, students who are reservists or members of the National Guard may be called to active duty in the U.S. military after a semester has begun. These students have several options for the treatment of their enrollment and tuition.

Option to Remain Enrolled and Complete Coursework Following Brief Military Service

Under certain circumstances, a student who is required to participate in active military service is excused from scheduled classes or other required activities and will be allowed to complete an assignment or exam within a reasonable time after the absence. The excused absence is permitted only if the student will miss no more than 25% of the total number of class meetings or the contact hour equivalent (not including the final examination period) for the specific course or courses in which the student is enrolled at the beginning of the period of active military service.

Option to Withdraw, Receive Incomplete Grade, or Receive Final Grade

A reservist or member of the National Guard called to active duty in the U.S. military who receives activation orders after the start of a semester has four other options for the treatment of tuition and fees paid to The University of Texas at Dallas and transcript notation. In accordance with Texas statutes and Coordinating Board rules, the student may request any one of the following:

• The Office of the Registrar will process the withdrawal of the student from all classes and record "Withdrawn-Called to Military Duty" (WM) on the student's transcript and the Bursar Office shall refund the tuition and fees paid by the student for the semester in which the student withdraws; or
• The Office of the Registrar may grant a student who is eligible under UT Dallas guidelines an incomplete grade (see "Incomplete Grades" section of the catalog for eligibility) in all courses by designating "Incomplete-Called to Military Duty" (XM) on the student's transcript. Please note: XM grades must be resolved within one year from the "release from active duty" date on military orders; or
• The student may petition the instructor to assign an appropriate final grade or credit for the course after successfully completing a substantial amount of coursework and having demonstrated sufficient mastery of the course material; or
• If the student withdraws before the Census Day of the semester in which the student is called to active military duty and the student requests Military Leave, courses will be dropped. Courses dropped on or before Census Day will not appear on the student's transcript.
NOTE: There are no provisions for refunds for active duty service members who are deployed as a result of military orders or for individuals who choose to enter the service. The provisions listed above apply only to reservists or members of the National Guard called to active duty.

Readmission Following Military Service

The University of Texas at Dallas will grant readmission to any veteran who was previously offered admission in a graduate program at the University, but could not enroll or had to withdraw due to deployment as a member of the United States Armed Forces or the Texas National Guard (not including routine Texas National Guard training). The graduate program must grant credit for previous coursework and accept standardized test scores regardless of the time since the veteran was initially offered admission.

If the student was enrolled in classes at the University when called to active duty in the United States Armed Forces or the Texas National Guard (not including routine Texas National Guard training), the student shall be readmitted without reaplication or payment of additional application fees within one year of the "release from active duty" date on the student's military orders. An eligible student will retain prior academic standing, course credits awarded and financial eligibility if the student meets current eligibility requirements other than continuous enrollment or other timing requirements.

Change of Address, Email, or Name

Students may complete a change of address online through Galaxy. Students must maintain home and mail addresses and telephone numbers using Galaxy. Although the UT Dallas administration and faculty primarily utilize UT Dallas email for communications, UT Dallas sends certain academic and financial communications through the mail. Therefore, if a student fails to maintain a current address, the student will be responsible for correspondence that is undeliverable.

Students may complete a change of personal email online through Galaxy. A student's UT Dallas email address is the official method of communication between faculty, administration, and the student. A UT Dallas student must maintain his/her UT Dallas email account at all times. Therefore, if a student fails to maintain their UT Dallas email account, the student will be responsible for correspondence that is undeliverable.

Students may complete a "Name Change Request" form at http://www.utdallas.edu/student/registrar/forms and submit in person to The Office of the Registrar in the Student Services Building, first floor customer service area. A copy of the student's driver's license, a marriage certificate, or court order used as proof of the name change must accompany the name change request.

Criminal Background Check

Mary Jo Venetis 1/23/14 9:17 AM
Comment [26]: Fix URL in list of registration requirements / web catalog

Mary Jo Venetis 1/22/14 12:03 PM
Comment [28]: Required by OGC catalog checklist. Additional note: Student Affairs will not perform background checks on students who apply for campus housing since it is an optional mandate, Sherbet, email 12-12-13.
Certain programs require students to submit to and satisfactorily complete a background check review as a condition of admission and/or participation in education experiences. Students who refuse to submit to a background check or who do not pass the background check may be dismissed from the program. The student is responsible for the costs associated with the criminal background check.

Making a False Alarm or Report Involving a Public or Private Institution of Higher Education

A person commits an offense under Section 42.06, Texas Penal Code, if he or she knowingly initiates, communicates or circulates a report of a present, past, or future bombing, fire, offense, or other emergency that he knows is false or baseless and that would ordinarily: (1) cause action by an official or volunteer agency organized to deal with emergencies; (2) place a person in fear of imminent serious bodily injury; or (3) prevent or interrupt the occupation of a building, room, place of assembly, place to which the public has access, or aircraft, automobile, or other mode of conveyance. The offense under Section 42.06, Texas Penal Code, of making such a false alarm or report involving a public or private institution of higher education is a state jail felony. An individual adjudged guilty of a state jail felony shall be punished by confinement in a state jail for any term of not more than two years or less than 180 days and, in addition to confinement, an individual adjudged guilty of a state jail felony may be punished by a fine not to exceed $10,000.

Religious Holy Days

The University of Texas at Dallas will excuse a student from class or other required activities, including examinations, for the travel to and observance of a religious holy day for a religion whose places of worship are exempt from property tax under Section 11.20, Tax Code, Texas Code Annotated.

The student is encouraged to notify the instructor or activity sponsor as soon as possible regarding the absence, preferably in advance of the assignment.

The student, so excused, will be allowed to take the exam or complete the assignment within a reasonable time after the absence: a period equal to the length of the absence, up to a maximum of one week. A student who notifies the instructor and completes any missed exam or assignment may not be penalized for the absence. A student who fails to complete the exam or assignment within the prescribed period may receive a failing grade for that exam or assignment.

If a student or an instructor disagrees about the nature of the absence [i.e., for the purpose of observing a religious holy day] or if there is similar disagreement about whether the student has been given a reasonable time to complete any missed assignments or examinations, either the student or the instructor may request a ruling from the President of UT Dallas, or his or her designee. The chief executive officer or designee must take into account the legislative intent of
TEC 51.911(b), and the student and instructor will abide by the decision of the chief executive officer or designee.
Tuition and Required Fees

As a state supported institution of higher education, The University of Texas at Dallas is required to comply with all state laws in the assessment and collection of tuition, fees, and deposits. The tuition, fees, and deposits listed herein are subject to change by legislative or regental action and changes become effective on the date enacted. Pursuant to Chapter 54, Texas Education Code, each student who registers is required to pay tuition and fees appropriate to the student's residence classification and according to the number of semester credit hours for which he or she has registered.

In accordance with state laws, a student is not entitled to enter a class or laboratory until registered and all tuition, fees, and deposits have been paid.

The University of Texas at Dallas utilizes a consolidated tuition rate, which is capped at 15 semester credit hours for all students. The consolidated tuition and fee rates cover all academic program costs; including tuition, mandatory fees, and most of the college and course incidental fees. Additional fees that will be charged separately are: field trip fees, supplemental designated tuition fees, and distance education fees. The Tuition and Fee Tables can be found on the Bursar Office website.

Residency Classification for Tuition Purposes

Residency classification for tuition purposes at Texas colleges or universities is in accordance with Title 19, Part 1, Chapter 21, Subchapter B of the Texas Administrative Code and the rules of the Texas Higher Education Coordinating Board for determining residence status. A person classified as a nonresident for tuition purposes may qualify, under certain exceptions specified in the rules, for resident tuition rates and other charges, while he or she continues to be classified as a nonresident for tuition purposes. Two helpful websites concerning residency classification for tuition purposes provided by the State are Texas Administrative Code website and www.collegeforalltexans.com. Please consult The University of Texas at Dallas' website for residency information and procedures, www.utdallas.edu/residency.

It is the student’s responsibility to establish, prior to registration, the correct residence classification through the Office of the Registrar. Likewise, any student wishing to request a change of residence status for tuition purposes should do so through the Office of the Registrar. This will require completion of a residency questionnaire and the provision of documents to support the claim of Texas residency. Rules and regulations for determining residency, or for obtaining a waiver to pay resident tuition even if one is a non-resident, are found at www.utdallas.edu/residency. Final authority of appeal for review of residence decisions rests with the Office of the Registrar.

The University cannot accept personal checks for amounts in excess of the total registration cost.
For residents of Oklahoma, tuition is the Texas resident rate shown plus thirty dollars ($30.00) per semester credit hour. Oklahoma residents must apply for this tuition waiver each semester through the Office of Financial Aid.

Guaranteed Tuition Plan

Beginning fall 2007, The University of Texas at Dallas introduced the Guaranteed Tuition Plan. The Guaranteed Tuition Plan is designed to help new students and their families better plan for the cost of a college education, while allowing the University to maintain the quality of its academic programs. Under the terms of the plan, graduate students enrolling at UT Dallas for the first time for the fall 2014, spring 2015 and summer 2015 semesters are charged for tuition and mandatory fees fixed at the fall 2014 rates for all succeeding semesters through the summer of 2018. The charges per semester credit hour for tuition and mandatory fees at UT Dallas depend on the number of semester credit hours for which a student enrolls. Other user fees for courses and services including, for example, parking, and housing fees, are subject to change. More information on the Guaranteed Tuition Plan can be found at http://www.utdallas.edu/tuition.

In the event a student is unable to complete their degree requirements in four years, that student will be advanced to the subsequent Guaranteed Tuition rate. Students enrolling after three consecutive semesters have elapsed will be placed in the Guaranteed Tuition Rate plan applicable to all new incoming students.

Students who graduate from UT Dallas before their rate plan expires may retain their current Guaranteed Tuition Rate as a graduate student. Additionally, if the student maintains consecutive enrollment and reaches the end of their Guaranteed Tuition Rate period, they will be moved to the next subsequent Guaranteed Tuition Rate plan. Students enrolling after three consecutive semesters have elapsed will be placed in the Guaranteed Tuition Rate plan applicable to all new incoming students.

Tuition Installment Payments

A student enrolled a full term fall, spring or eleven-week summer semesters may elect to pay tuition and fees under the installment payment plan (Section 54.007, Texas Education Code). The installment plan allows the student to pay their tuition and fee balance in three equal payments. A $25.00 fee per semester will be assessed to each student who elects to pay by installments. Additionally, a late payment fee of $30.00 for delinquent payment will be assessed each time an installment is not paid by the date it is due. If the installment is not paid in full by the third due date, it begins accruing interest at the rate of 10% per year until it is paid in full.

Nonpayment of Debt
Students must pay by the published deadline to avoid late fees and/or possible dropping of classes. Students should NOT expect classes to be automatically dropped for nonpayment. Please be advised it is the student's responsibility to confirm that he/she has been dropped from all classes for nonpayment to avoid being assessed late fees or penalties.

Students who have not paid in full or enrolled in a payment plan by the posted payment deadline may have their registration cancelled. If a student's registration is canceled for nonpayment, and that student wishes to reinstate registration, a reinstatement fee in addition to any late fees and tuition and fees will be charged. See the online fee schedules at www.utdallas.edu/bursar/tuition/fees for fees associated with course reinstatement. No student will be reinstated in a closed course.

A student who fails to provide full payment of loans, tuition, and fees, including late fees assessed, to the University when the payments are due is subject to one or more of the following actions at the University's option:

- Classes may be cancelled;
- Bar against registration and/or readmission to the institution;
- Withholding of grades, diploma, and official transcript; and
- All penalties and collection actions authorized by law.

Students may refer to the http://www.utdallas.edu/student/registrar/calendar Academic Calendar or the Tuition and Fees Schedule for information regarding payment and refund deadlines.

Tuition for Excessive Doctoral Hours

For a doctoral student enrolling for the first time in Fall 1999 or after, Section 54.012, *Texas Education Code*, establishes a maximum number of doctoral semester credit hours that a doctoral student may attempt while paying tuition at the rate provided for Texas residents. Attempted semester credit hours include all doctoral semester credit hours taken at a Texas institution of higher education for which a student was registered as of Census Day, including, but not limited to, courses that have been repeated, failed, and courses from which the student withdrew. The maximum is 99 doctoral semester credit hours. A student who exceeds the maximum semester credit hours may be charged tuition at the rate charged nonresident doctoral students. The higher tuition rate applies only to those doctoral semester credit hours that exceed 99 semester credit hours.

Tuition and Fee Exemptions/Waivers

As a state-sponsored institution of higher education in Texas, The University of Texas at Dallas is authorized to award tuition and fee exemptions and/or waivers to a student who qualifies based on statutory criteria. Effective Fall 2014, in order to continue to qualify for many of the tuition and fee exemptions or waivers, a student must maintain a grade point average for making...
satisfactory academic progress at The University of Texas at Dallas. In addition, in order to continue to qualify for most tuition and fee exemptions, undergraduate students must not complete an excessive number of credit hours (Texas Education Code, Sections 54.2001 and 54.2002.). See http://www.utdallas.edu/student/finaid/SAP.htm for details regarding the satisfactory academic progress criteria and policies. Exemptions are available to:

- entering undergraduate students who are the highest ranking graduates of accredited Texas high schools,
- certain students who were adopted and subject to an adoption assistance agreement,
- certain students who have been under the conservatorship of the Department of Protective and Regulatory Services,
- blind or deaf students,
- students from other nations of the western hemisphere,
- certain students who are enrolled only in distance/off campus learning courses,
- certain students taking courses at an institution under an inter-institutional academic program agreement, but who are enrolled primarily at another institution,
- senior citizens who are 65 years or older,
- certain residents of Texas who served in the armed forces of the United States, and their dependents,
- Texas residents classified by the U.S. Department of Defense as prisoners of war on or after January 1, 1999,
- children of POWs/MIA's,
- children and spouses of disabled/deceased MIA Texas veterans,
- certain residents of Texas who were permanently disabled when performing duties as Texas peace officers,
- firefighters enrolled in Fire Science classes,
- peace officers enrolled in law enforcement or criminal justice courses as undergraduate students,
- children and spouses of disabled/deceased firefighters and peace officers,
- surviving spouses and minor children of certain police, security or emergency personnel killed in the line of duty,
- undergraduate students who are children of professional nursing program faculty.

Senior citizens who are age 65 or older as of Census Day may be exempted from tuition for up to six semester credit hours each semester or summer term if space is available.

For additional information, please see the College for All Texans website regarding exemptions/waivers. Individuals who feel they may qualify under this section are requested to contact the Office of Financial Aid at 972-883-2941.

Tuition Tables

Tuition tables for current semesters may be found on the [Bursar Office website](http://www.utdallas.edu/student/finaid/tuition/tuition.htm) or through the Galaxy portal during registration.
Tuition and fees are subject to change by legislative or regental action.

The Texas Legislature does not set the specific amount for any particular fee. The student fees assessed to students are authorized by state statute; however, the specific fee amounts and the determination to increase fees are made by the University administration and The University of Texas System Board of Regents. Changes in tuition and fees will be effective upon date of enactment and will be reflected in fees and tuition charged. Specific tuition and fees for each term can be found on the Bursar Office website. Students taking courses in the School of Behavioral and Brain Sciences may be required to purchase professional liability insurance if they are in certain clinical experiences.

Students will be given notice on their tuition bill, tuition receipt or an email in connection with tuition charges, of the amount of his/her tuition payment that is required to be set aside to provide financial assistance for students enrolled at the institution per the Texas Education Code, Section 56.014.
http://catalog.utdallas.edu/2013/graduate/tuition-and-financial-aid/tuition-refund

Tuition and Required Fees

Refund of Tuition and Fees

It is the student's responsibility to know and understand the state mandated refund policy. Upon notification from the Office of the Registrar of official withdrawal, the Bursar Office shall reimburse the applicable portion of tuition and fees (unless otherwise noted) in accordance with the following schedule:

If the student withdraws during a fall or spring semester or a summer term of 10 weeks or longer:

- Prior to the first class day of a given semester, 100 percent reimbursement
- During the first five class days, 80 percent of the applicable portion of the tuition and applicable fees reimbursement
- During the second five class days, 70 percent reimbursement
- During the third five class days, 50 percent reimbursement
- During the fourth five class days, 25 percent reimbursement
- After the fourth five class days, no reimbursement

If the student withdraws during a term or session of more than five weeks but less than 10 weeks (five- and eight-week summer sessions):

- Prior to the first class day of a given term, 100 percent reimbursement
- During the first, second, and third class day, 80 percent reimbursement
- During the fourth, fifth, and sixth class day, 50 percent reimbursement
- Seventh class day and thereafter, no reimbursement

Separate withdrawal refund schedules may be established for other fees and charges. Refer to the Other User Fees for Courses and Services section for refund information.

Cash refunds will not be made to students. Refund checks will be mailed to the student's address listed on their Student Center in Orion three business days after the refund is requested unless the student has opted for direct deposit through EZPAY. Direct deposit refunds are normally available 3 business days from the date they were requested.

All policies regarding the payment or refunding of tuition, fees, and charges are approved by the Board of Regents of The University of Texas System and are in compliance with the Texas Education Code, Section 54.006 of the Texas Statutes. If a person desires clarification of any matter relating to payment or refund of such charges, he or she should contact the office or administrative unit from which the charge or refund originated.
Refunding Students in Title IV Programs

As an institution participating in programs under Title IV of the Higher Education Act of 1965 as amended ("Act"), The University of Texas at Dallas is required to refund unearned tuition, fees, room and board, and other charges to certain students attending who have received a grant, a loan, or work assistance under Title IV of the Act, or whose parents have received a loan on their behalf under 20 U.S.C. Section 1087-2. The refund is required if the student does not register for, withdraws from, or otherwise fails to complete the period of enrollment for which the financial assistance was intended. No refund is required if the student withdraws after a point in time that is sixty percent of the period of enrollment for which the charges were assessed. A student who withdraws prior to that time is entitled to a refund of tuition, fees, room and board, and other charges that is the larger of the amount provided for in Section 54.006, Texas Education Code, or a pro rata refund calculated pursuant to Section 484B of the Act, reduced by the amount of any unpaid charges and a reasonable administrative fee not to exceed the lesser of five percent of the tuition, fees, room and board, and other charges that were assessed for the enrollment period, or one hundred dollars. If the student's charges were paid by Title IV funds, a portion or all of the refund will be returned to these programs.
Tuition and Required Fees

Other User Fees for Courses and Services*

* The following information is not intended to be comprehensive and is subject to change. Tuition and fees are subject to change by legislative or regental action, and changes become effective on the date of enactment. The Texas Legislature does not set the specific amount for any particular student fee. The student fees assessed below are authorized by state statute; however, the specific fee amounts and the determination to increase fees are made by the University administration and The University of Texas System Board of Regents. Fees can be found on the Bursar Office website for each term.

Application Fee: A nonrefundable application fee of $50.00 is required of all students applying for admission to The University of Texas at Dallas during the regular application period. If a student submits an application after the application deadline but prior to the documentation deadline, the application fee is $125.00 in order to process the application for a decision in time to register for classes. An additional $50.00 international document evaluation fee is required for those who have educational documents from countries other than the United States. Please refer to the Office of Admission and Enrollment Services website for application deadlines.

Audit Fee: Students at The University of Texas at Dallas may, with the approval of the instructor and of the Office of the Registrar, audit courses. Auditing grants only the privilege of hearing and observing and does not grant credit. When approval has been granted, the applicant pays a fee of $100.00 per course. A student may withdraw from an audit course, but the fee will not be refunded. Persons 65 or over are permitted to audit without paying a fee. They must, however, qualify otherwise (see "Auditing Courses" in this catalog), complete the audit form, and have the consent of the instructor. Audit registration is permitted only during the late registration period of each semester or term.

Change of Major Fee: There is a $50.00 fee for students changing majors more than two times in an academic career.

Collin Higher Education Center Fee: Courses offered at Collin Higher Education Center are charged a $80.00 fee per semester credit hour.

Diploma Replacement or Duplicate Fee: A $10.00 fee is required to defray costs of preparing replacement or duplicate diplomas. An additional $25.00 will be charged to mail a diploma to a foreign address.

Distance Learning Fee: A fee per semester credit hour to enroll in distance education courses offered over the Internet. Please check the online fee schedules at www.utdallas.edu/bursar/tuition/tables for fees rate. The rate varies based on the specific tuition plan.
Emergency Transcript (same day): A $10.00 processing fee in addition to the Transcript Request Fee *(see below for fee)* for expedited service of the official transcript.

Field Trip Fee: This fee is assessed to cover the costs of transportation, food, and/or lodging associated with a field trip. The amount of the fee varies depending on the destination and duration of the field trip. Every effort will be made to advise students of the field trip costs associated with a particular course at the time of registration, and the appropriate fee will be assessed at that time. Refund provisions do not apply to this fee.

In Absentia Registration Fee: A student who registers in absentia shall pay a nonrefundable/nontransferable registration fee of $100.00.

Installment Payment Plan Fee: A $25.00 fee to cover the costs of providing a payment option for students in full term fall or spring semester courses. The plan is also available for students enrolled in the 11-week summer semester.

Installment Plan Late Fee: A late payment fee of $30.00 for delinquent payment will be assessed if the second or third tuition installment is not paid by the published due date. In the event of non-payment, the total amount due shall accrue interest from the third payment deadline at the rate of ten percent (10%) per year until the note is paid in full.

Institutional Loan Delinquency Fee: A late charge of $30.00 per month ($90.00 maximum per note) will be assessed to students who do not repay their loans in accordance with the terms of the note.

Institutional Loan Origination Fee: A loan origination/administration fee of 1.25% of the total loan balance will be assessed and must be paid by the due date.

International Student Special Services Fee: The International Student Special Services Fee supports the ongoing success of non-immigrant students enrolled at UT Dallas. This fee supports the programs and services of the International Student Services Office (ISSO), including: immigration advising, certification of immigration benefits, cultural/social events, and educational/transitional programs. In addition, the fee supports federal reporting and certification of international student data in accord with federal regulations.

The mandatory $100.00 International Student Special Services fee is assessed at the time of registration each semester. Immigrant categories that are fee-exempt include: U.S. citizen, U.S. Permanent Resident, Temporary Protected Status, Refugee, Asylee, Public Interest Parolee, Temporary Residence-Amnesty and undocumented aliens. Any student whose status changes officially to one of the exempt classifications is required to submit proof of that change to the UT Dallas Registrar's Office and International Student Services Office and will not, subsequently, be assessed the fee. If the appropriate documentation is submitted prior to Census Day of a semester, the fee for that semester will be refunded based on the tuition refund schedule as published in the UT Dallas Academic Calendar.
Late Course Add Fee: A $100.00 per course fee is assessed when a registered student adds a course after Census Day.

Late Graduation Fee: A $100.00 non-refundable, non-transferable fee is assessed when an approved application for graduation is received after the deadline.

Late Registration/Late Payment Fee: A nonrefundable charge of $100.00 with additional increments of $50.00 based on the number of days past the regular registration/payment deadline is required to defray costs associated with extending registration times.

Library Fines and Charges: Fines and fees for overdue library items are available at the Eugene McDermott Library's circulation policies: www.utdallas.edu/library/about/policies/circpolicy.html. Copies of the fine schedule can also be obtained at the McDermott Library Circulation/Reserve Desk.

Orientation Fees: Students attending Freshman Orientation will be charged $100.00. Transfer students will be charged the Transfer Student Orientation Fee of $25.00. International students will be assessed the International Student Orientation Fee of $50.00.

Parking Fees: A parking permit is required to park any motorized vehicle on campus. Any vehicle parked on campus that does not display a current parking permit will be subject to a parking citation. In compliance with the Texas Education Code 51.207 (b), The University of Texas at Dallas has procedures for enforcing State of Texas vehicle inspection laws for vehicles parking or driving on the campus of the institution. The law is as follows:

51.207 (b) This subsection applies only to a public institution of higher education campus that is located in whole or part in an area in which a motor vehicle registered in the area is required to undergo a vehicle emissions inspection under Subchapter F, Chapter 548, Transportation Code. The institution may not issue a permit to a student enrolled at the institution to park or drive a motor vehicle that is not registered in this state on institutional property unless the institution has provided written notice to the student concerning requirements for vehicle emissions inspections pursuant to Subchapter F, Chapter 548, Transportation Code.

Information regarding parking regulations and permit fees may be found at the Parking and Transportation website under permits at www.utdallas.edu/parking/regulations.html or www.utdallas.edu/parking/permits.html. Students may purchase the following permits online through the UT Dallas Online Store and mailed to the shipping address provided or purchase them in person at the Bursar Office:

- E-Parking: Allows students to park in extended parking spaces in lots A and B only.
- Green: Allows students to park in campus green and extended parking spaces.
- Gold: Allows students to park in campus gold, green, or extended parking spaces.
- Evening Orange: Allows students to park in orange marked spaces after 5 p.m. or gold, green, and extended parking spaces anytime.
· Housing Only: A parking permit is required for all residents of the University Village apartments. Allows students to park in residential lots or green parking at WSTC, ROC, and Callier-Dallas only.

Note: Only one housing permit may be sold per student residing in the on campus apartments or resident hall. Housing permits are non-refundable.

Parking permits are purchased for the academic year and are refundable on a prorated basis with the exception of the housing only permit.

Parking is free for disabled veterans that have a state handicap placard and/or plates in accordance with Texas Education Code, section 681.008. The disabled veterans must register with Parking and Transportation Services to receive a UT Dallas handicap parking permit and may park in any parking space on campus that is not Reserved. A UT Dallas handicap parking permit is necessary to park in handicap designated spaces.

The Dallas Area Rapid Transit System (DART) provides bus service to the campus from the Richardson transfer terminal. Contact DART for schedule information. Students are eligible for a free transit pass from DART, which is available through the Comet Center, located on the second floor of the Student Union.

Physical Instruction Fee: A $25.00 per course fee will be charged for all Physical Instruction (PHIN) courses.

Practical Training Fee: A $100.00 per semester fee is charged to assist in funding the administrative and clerical expenses required to review records and process the forms required by the United States Citizenship and Immigration Service to certify international students for placement in curricular or optional practical training assignments.

Recreational Sports Group Exercise / Non-credit Course Fee: A group exercise pass can be purchased for $50.00 granting access to all group exercise classes for the semester. Non-credit courses are $50.00 for each individual class a student chooses to participate in.

Recreational Sports Locker Rental Fee: An optional locker rental fee (based on the size of the locker rented) of $5.00 - $15.00 per semester.

Recreational Sports Towel Service Fee: An optional towel service of $10.00 per semester.

Reinstatement Fee (Prior to Census Day): After the payment deadline for each semester, all registration for which tuition and fee payments have not been received may be canceled. If a student requests that the courses be reinstated before Census Day, a $25.00 reinstatement fee will be charged in addition to the graduated late registration fee. No student will be reinstated into a class that has been closed.

Reinstatement Fee (After Census Day): A $300.00 fee will be charged, in addition to tuition and required fees, to enroll a student after Census Day.
Returned Check Fee: Students will be assessed a $25.00 fee for each returned check unless their bank provides written notification it was at fault. Students who write bad checks to the University for tuition and fees will have their registration canceled unless full payment is made by the census day listed in the Academic Calendar.

Student Documents/Records Fee: Students may obtain a copy of International Transcripts by making a written request to the Office of the Registrar and paying a fee of $10.00 per document copy at the Bursar Office. Processing of these requests for copies will generally take four to five work days. Students should be aware, however, that transcripts of other schools received by the University are used as working documents, frequently carry written marks and notations, and may not be considered viable transcripts by other agencies.

Student Health Insurance Fee: A variable fee to pay the student's premium for the approved UT Dallas student health insurance plan available to all students and required for international students (students who are not US citizens, US Permanent Residents, Asylees, Refugees or undocumented aliens).

Student Health Insurance Fee, Dependents and Extra Coverage: A variable fee to pay the premium for expanded coverage within the approved UT Dallas student health insurance plan. These insurance fees are optional and available upon request to students who wish to add dependents or extra coverage to their enrollment in the UT Dallas student health insurance plan.

Student Identification Card Replacement Fee: A $25.00 fee is required to defray the costs of reissuing a student ID card.

Student Teaching Supervisory Fee: A $250.00 per field experience fee is required to defray costs of providing University supervisors and travel for University supervisors of student teachers.

Supplemental Designated Tuition: An extra fee per semester credit hour will be assessed for students enrolled in any School of Management course, School of Engineering and Computer Science course, School of Arts and Humanities ATEC course, Economic, Political and Policy Sciences graduate Public Affairs course, or School of Behavioral and Brain Sciences graduate Speech Language or Audiology (COMD or AUD) course. These fees are assessed to defray the higher costs associated with instruction in these schools. Please check the online fee schedules at www.utdallas.edu/bursar/tuition/tables for fees rate. The rate varies based on the specific tuition plan.

Transcript Request Fee: A $10.00 processing fee for each official University transcript requested.

Universities Center at Dallas Fee: A $15.00 fee per semester credit hour is required to defray the costs of courses taken at the Universities Center at Dallas.
Tuition and Financial Aid

Student Financial Aid

Office of Financial Aid

The Office of Financial Aid is available to assist students in obtaining funds to attend the University. Aid is available in the form of loans, grants, and part-time employment or any combination of those programs. The total amount of aid the student receives depends on the level of financial need, submission of appropriate financial information and applications, academic records, and the availability of funds.

Students are encouraged to contact the Office of Financial Aid to obtain appropriate application materials and to determine eligibility for the various forms of aid available. Students are also strongly encouraged to view the Office of Financial Aid website for up-to-date information. The Office of Financial Aid is located in the Student Services Building, 972-883-2941.

Changes in regulations or policy on a federal, state, university, private lending, or donor level could affect the types of programs, amounts available, and/or program requirements. A complete overview of the estimated cost of attending the University is available on our website at http://www.utdallas.edu/student/finaid/Estimated_Costs.htm.

Eligibility

Most of the aid listed in this catalog is awarded on the basis of financial need. Students are encouraged to determine the amount of resources they can provide toward their education and to compare it with the average cost of attending the University. Student cost of attendance budgets are reviewed annually in accordance with federally accepted guidelines. Federal guidelines outline what can be included in student budgets. The costs of tuition and fees, books and supplies, an average room and board cost, transportation, and a limited amount for other personal expenses are the basic components of student budgets. Unusual expenses, such as childcare costs or educational costs related to the student's medical disability, may be considered when they have been properly documented.

Financial need is defined as the difference between the cost of attending the University and the amount a student and family can reasonably provide. The amount of the expected family contribution is based on a federal formula reflecting total family income, assets, household size and number of family members currently attending post-secondary educational institutions.

In determining whether a student is considered independent or self-supporting, the Office of Financial Aid adheres to the standards set by the U.S. Department of Education to establish an applicant's dependency status. Graduate students are considered by these standards to be independent of their parents for the purpose of calculating a family contribution.
Applying for Financial Aid

Students must submit a Free Application for Federal Student Aid (FAFSA) form in order that a determination can be made of the expected resources available to the applicants. The FAFSA is available January 1st of each year for the subsequent academic year. The awarding of need-based financial aid is based on the results of each year’s FAFSA.

Required Course Load

To be considered for federal financial aid a graduate student has to be enrolled for a minimum of five semester credit hours of graduate coursework during each long term and a minimum of three semester credit hours of graduate study during any summer session.

Renewal of Financial Aid

For a student to be considered for a renewal of financial aid, a new Free Application for Federal Student Aid (FAFSA) and supporting documents must be submitted for each academic year. If you do not meet federal eligibility requirements to be considered a citizen or eligible non-citizen, but have been classified as a Texas resident and are therefore eligible to pay the Texas in-state tuition rate, you must complete a paper version of the Texas Application for Student Financial Aid (TASFA) available to be downloaded and printed at www.collegeforalltексans.com. This must be submitted directly to the Office of Financial Aid.

Revocation of Aid

The University reserves the right to adjust or cancel awarded financial aid when the information used to make the award changes. Partial or full repayment of awards may be required.

Any change in a recipient's financial situation, such as additional grants, scholarships, or private student loans, must be reported to the Office of Financial Aid. Federal law governing the administration of financial aid requires UT Dallas to consider most forms of grants, scholarships, and private loans as a resource, without regard to the source or how the aid is disbursed, when awarding federal student financial aid.

Information concerning student financial aid is accurate at the time of printing. Changes in regulations or policy of a federal, state, university, private lending, or donor level could affect the type and amount of programs available and/or program requirements. The Office of Financial Aid has detailed information available upon request.

Satisfactory Academic Progress Policy for Federal Financial Aid

The University of Texas at Dallas has a "Satisfactory Academic Progress" policy for a student receiving student financial aid.

Generally, the student is expected to remain in good standing by the satisfactory completion of a minimum number of semester credit hours, based on a percentage of the semester credit hours
attempted and completed. This completion rate may vary depending on the student's academic level and semester credit hour load. In addition, graduate students must maintain a GPA of 3.0 or above on coursework completed at the University.

For more detailed information the student should contact the Office of Financial Aid. This information is also available online at the Office of Financial Aid website at http://www.utdallas.edu/student/finaid/SAP.htm. A link to the website is provided on award notifications.

Selective Service

Male students between the ages of 18 and 26 must register with Selective Service to qualify for federal and Texas student loans or grant programs. Students may register with Selective Service by visiting their local post office or online; they can also verify their registration at www.sss.gov.

Effective January 1, 1998, the selective service requirement is also applicable to students applying for financial assistance funded by State revenue.
Tuition and Financial Aid

Types of Financial Aid

Basis for the Type of Financial Aid

The aid awarded to a student may consist of a loan, grant, scholarship, part-time job, or any combination of these programs. The total amount of aid the student receives depends on the student’s cost of attendance, expected family contribution, meeting application deadlines, outside resources, academic history, and the availability of funds.

Types of Financial Aid

The following is a summary of the types of assistance that are available to graduate students at The University of Texas at Dallas. The student should be aware that many of the programs are subject to change without notice by the state or federal government. Information on all programs may be obtained from the Office of Financial Aid unless otherwise noted.

Texas Public Education Grant

An act of the 64th Texas Legislature established a grant program to provide financial assistance to students. This program is funded through appropriation of a portion of the tuition charge for resident and nonresident students. Students completing a FAFSA or TASFA will automatically be considered for this grant. Awards are based on the availability of funds and the student’s financial need.

Educational Assistance Grant

This program was established to provide financial assistance to students by an act of the Texas Legislature. The program is funded through appropriation of a portion of the designated tuition charge for resident and nonresident students. Students completing a FAFSA will automatically be considered for this grant. Awards are based on availability of funds and the student’s financial need.

International Education Fund Scholarship

Through the proceeds from the International Education fee, scholarships are available for study-abroad programs. These scholarships are open to both graduate and undergraduate students enrolled at least one-half time. Graduate students must be admitted to a degree program and have a minimum GPA of 3.0. While abroad, the recipient of this scholarship must be enrolled in a full-time course of study. Coursework undertaken must apply to the student’s degree program.
Hazlewood Veteran Tuition Exemption

The Hazlewood Exemption Act provides an education benefit to honorably discharged or separated Texas veterans and to eligible dependent children and spouses of Texas veterans. Eligible students may receive an exemption from the payment of all tuition and most fees at Texas public institutions for up to 150 credit hours. Information on the Hazlewood Act and eligibility requirements are available at the Texas Veterans Commission website. Additional information can be found in the Office of Financial Aid Hazlewood Exemption website.

Federal Perkins Loan Program

This loan program provides a combination of federal and institutional funds to students who qualify on the basis of financial need. Priority is given to those students who demonstrate exceptional need. Students completing a FAFSA are considered for the program. Funding for this program is limited.

A graduate student may borrow up to a maximum amount of $30,000 which includes all undergraduate Federal Perkins loans.

A Federal Perkins loan bears a modest interest rate. Borrowers are required to begin repayment of principal and interest nine months after they cease to be at least half-time students. Repayment may extend over a ten-year period; however, there is a minimum monthly payment of $40.00 a month.

Hinson-Hazlewood College Student Loan Program

Texas residents who meet eligibility requirements may borrow funds to meet a portion of their school expenses. The loan carries a modest interest rate. Repayment begins six months after graduation or withdrawal from the university. The application for this loan is found at www.hhloans.com.

Federal Direct Stafford Loan

Also called a Direct Loan, funds from this program are made available to students from the U.S. Department of Education. As of July 1, 2012 all graduate Federal Direct Stafford Loans are unsubsidized. The maximum amount a student can borrow from this program in an academic year depends on the student’s total cost of education as determined by the school and what other forms of financial aid the student is receiving. Graduate student may not borrow more than $20,500 in an academic year. The unsubsidized Direct Stafford Loan accrues interest while the student is in school; a student may choose to pay the accruing interest while in school or may defer the repayment of the interest until after graduation, when it is added to the principle of the loan. Students completing a FAFSA will automatically be considered for this program.

Information regarding this program, including the promissory note and the Entrance Counseling, is available at www.studentloans.gov.
Federal Work-Study Program

Federal Work-Study employment is available to students on the basis of demonstrated financial need and is counted as a form of need-based financial aid. Funds from this program are received as a result of working part-time at a position either on or off campus. The wages of students participating in this program are subsidized with federal funds, making it easier to find a part-time job. The student is paid directly. Students completing a FAFSA will automatically be considered for this program. Awards are based on availability of funds and the student's financial need.

The rate of compensation depends on the type of job, qualifications, and classification. The number of semester credit hours and work schedule will vary depending on the position. For information on job availability, students who have been awarded Federal Work-Study as part of their financial aid package should contact the Career Center at 972-883-2943 or go to their website at www.utdallas.edu/career to access the CometCareers system.

Other On-Campus Employment

Various programs and schools of the university employ students in positions that are not Federal Work-Study positions and are not based on need. In accordance with appropriate guidelines, pay scales depend on the type of job, qualifications, and classification. Students interested in these positions should contact the Career Center at 972-883-2943 or go online at http://www.utdallas.edu/career to access the CometCareers system.

Information concerning student financial aid is accurate at the time of printing. Changes in regulations or policy on a federal, state, university, private lending, or donor level could affect the type and amount of programs available and/or program requirements. The Office of Financial Aid has detailed information available upon request.

Scholarship Programs

Information about a variety of scholarships awarded on the basis of academic merit and achievement is available from the Office of Financial Aid. The University of Texas at Dallas also offers a number of endowed scholarships that are administered by a school, department, or program. Students are encouraged to contact their school dean or program office to obtain information about eligibility criteria and scholarships awarded in the student's area of study.

In accord with Chapter 54 of the Texas Education Code provided below, all applications for competitive academic scholarships for graduate study are reviewed by the Committee on Student Scholarships and/or the Graduate Scholarship Committee in the appropriate academic unit.

Texas Education Code – Competitive Scholarship
Sec. 54.213. SCHOLARSHIP STUDENT

(a) An institution of higher education may charge a nonresident student who holds a competitive scholarship of at least $1,000 for the academic year or summer term for which the student is
enrolled resident tuition and fees without regard to the length of time the student has resided in Texas. The student must compete with other students, including Texas residents, for the scholarship and the scholarship must be awarded by a scholarship committee officially recognized by the administration and be approved by the Texas Higher Education Coordinating Board under criteria developed by the coordinating board.

(b) The total number of students at an institution paying resident tuition under this section for a particular semester may not exceed five percent of the total number of students registered at the institution for the same semester of the preceding academic year.

(c) A student who would be entitled to pay resident tuition in the 2009-2010 academic year under this section as this section existed on January 1, 2009, because the student is awarded a competitive scholarship for that academic year in the amount prescribed by Subsection (a) before the beginning of the 2009 fall semester is entitled to continue to pay resident tuition under this section as this section existed on January 1, 2009, in each semester or other term in which the student is awarded such a scholarship, as long as the student remains enrolled in the same certificate or degree program. This subsection expires August 1, 2014.

(d) The difference between tuition charged to the student under this section and the tuition the student would be charged if this section did not apply to the student shall not be accounted for in such a way as to reduce the general revenue appropriation to an institution of higher education that charges a nonresident student resident tuition and fees under this section.

Transferred and redesignated from Education Code, Section 54.064 by Acts 2011, 82nd Leg., R.S., Ch. 359, Sec. 1, eff. January 1, 2012.

Please visit UT Dallas Scholarships for more information.

Graduate Scholarships

General Selection Criteria:

- Good academic standing
- Demonstrate academic promise
- Full or part-time enrollment
- Degree seeking
- Financial need may be considered but is not required

Teaching and Research Assistantships

Teaching Assistantships are available on a limited basis in most graduate programs. Also, many faculty members have research projects which provide Research Assistantships. These Teaching and Research assistantships normally involve half-time employment and are awarded on the basis of merit. Students holding these assistantships must be enrolled for a minimum of nine semester credit hours for each regular semester in which the assistantship is awarded. The Dean of each school designates the minimum semester credit hours for a summer session. A student on a Teaching/Research Assistantship who is enrolled in the minimum number of semester credit hours and wishes to drop a course must obtain the signature of the Dean of Graduate Studies.
Students on probation will not be supported on an assistantship. Applications should be made to the appropriate Graduate Program office at least 60 days prior to the date of registration.

Prior to their appointment as Teaching Assistants, international students must meet the English requirements described in the "English Requirements for Teaching Assistants" section. All TA's are required to attend TA Orientation held immediately prior to fall and spring semesters.
Academic Common Market

Texas is one of fifteen states participating in the Academic Common Market (ACM), an interstate agreement for sharing state-supported graduate programs. Residents of member states who are accepted for admission into selected out-of-state graduate programs may enroll on an in-state rather than out-of-state tuition basis. Programs are selected by the states annually. Information about UT Dallas graduate programs selected for the ACM by other states is available from the Office of the Dean of Graduate Studies.

For residents of Texas looking to study out-of-state, the first step is to confirm that a comparable program at the same graduate degree level is not being offered at a Texas public university. For a listing of these programs, or for more information, visit the Texas Higher Education Coordinating Board Degree Board Program Search web site or email the ACM Coordinator or call at 512-427-6518. A number of programs are available at in-state tuition rates (those in-state rates applicable to the out-of-state where the graduate program is offered).

To apply for admittance into an ACM program, send a certification of Texas residency and a copy of the out-of-state university’s unconditional acceptance letter into the graduate program, and mail to:

Academic Common Market Coordinator
Academic Affairs
Texas Higher Education Coordinating Board
P.O. Box 12788
Austin, TX 78711
512-427-6518

For out-of-state residents looking to study in Texas, please contact the ACM coordinator at your home institution or home state. The contact information for each participating state can be found on the Southern Regional Education Board web site.
List of Graduate Policies and Procedures

Graduate Policies

- Program of Studies/Degree Plan
- Milestones Agreement Form
- Change of Program
- Transfer of Credit
- General Degree Requirements
- Required Semester Credit Hours
- Required Grade Point Average
- Registration Requirements
- Time Limits
- Additional Master's Degrees
- Supervising Committee for Thesis and Dissertation
- Admission to Doctoral Candidacy
- Doctoral Dissertation
- Final Oral Examination for Doctoral Candidates
- Required Copies of Dissertation and Thesis
- Intellectual Property Rights
- FERPA
- Graduation under a Particular Catalog

Detailed information on graduate policies can be found in the policy memorandum "Policy on Procedures for Completing a Graduate Degree" (UTDPP1052). Faculty and students should be familiar with the policies contained in this memorandum. Copies are on file in the Office of the Dean of Graduate Studies and in the academic department and program offices.
Graduate Policies and Procedures

Program of Studies/Degree Plan

Each student admitted to a graduate program will have a specific program of studies, outlined in the current graduate catalog that is agreed to in consultation with the appropriate committee, graduate advisor or administrator for that degree program, except in those Schools with standard degree plans. Students enrolled in master's degree programs must have a completed "Program of Studies/Degree Plan" filed in and approved by the Office of the Dean of Graduate Studies prior to the student's registration for his or her 19th semester credit hour in the degree program. The form will be completed and revised, if necessary, each semester under the guidance of the student's graduate advisor.

For more information on this policy please review UTDPP1052 - Policy on Procedures for Completing a Graduate Degree: Program of Studies

Milestones Agreement Form

For each student enrolled in a doctoral degree program, the academic advisor in consultation with the student, will prepare and submit a completed and updated "Milestones Agreement Form" annually to the Office of the Dean of Graduate Studies. The completed form will define academic milestones and timeline required to earn the doctoral degree and the progress being made by the student in meeting each requirement.

Change of Program

A student must be in good academic standing to change from his/her admitted graduate program to another one within the same graduate department. A student wishing to change programs within their same UT Dallas School must see their advisor prior to registration and no later than the first day of classes of a semester/term. If the change of program is approved, the student will then be responsible for meeting all program requirements and course prerequisites of the catalog in effect at the time of the change. The student and advisor will prepare a new degree plan.

Transfer of Credit

A degree-seeking student may petition to have graduate coursework taken at another institution be counted towards satisfying the master's or doctoral degree requirements. To qualify for transfer of credit the student had to be enrolled in a graduate degree program at an institution of higher education and the grade earned in the course must be a B or better. Grades of B- are not
transferrable and the course must not be a correspondence or extension course. Courses delivered in a distance learning format will be considered by the Graduate Dean on a case-by-case basis.

An official transcript and an official explanation of the course numbering system at the school where the credit was earned should accompany the transfer request that must be prepared by the student’s Graduate Program and submitted to the Dean of Graduate Studies for approval.

Transfer of credit petitions are subject to the following limitations:

• No more than 25% of the total requirement of a master's degree may be transfer credits. Some degree programs have more restrictive transfer of credit requirements.
• Transfer of master's level credit into a doctoral program is limited to a maximum of 36 semester credit hours.
• No more than 15 semester credit hours taken as a non-degree student at UT Dallas can be subsequently applied to a degree program at UT Dallas.

Exceptions to these transfer policies may be granted only on petition to the Dean of Graduate Studies.

All petitions for transfer of credit for coursework taken prior to enrolling at UT Dallas should be submitted to the student's Program Graduate Advisor by the student prior to filing a Program of Studies; however, acceptance of transfer of semester credit hours will not occur until after the student has completed 9 semester credit hours at UT Dallas with a grade point average of at least 3.0. All petitions must be processed and approved no later than the semester prior to anticipated graduation. Accordingly, requests to take courses at another institution during the semester a student plans to graduate cannot be approved because the grades may not be received in time to certify the student for graduation.

For more information on this policy please review UTDPP1052 - Policy on Procedures for Completing a Graduate Degree: Transfer Credit

General Degree Requirements

The student will be deemed to have completed the coursework degree requirements when he or she completes the previously filed program of studies with acceptable grades.

For more information on this policy please review UTDPP1052 - Policy on Procedures for Completing a Graduate Degree: Degree Requirements

Required Semester Credit Hours

The minimum semester credit hours required for the degree in a Program of Studies will be those shown in the catalog applicable to the student at the time of his or her admission or readmission to the program. In no case will a student be allowed to graduate with less than 30 approved
graduate semester credit hours (including approved graduate transfer semester credit hours) for the master’s degree.

Enrollment in doctoral study at UT Dallas for a minimum of three, consecutive long terms and for a minimum of 18 doctoral semester credit hours are required for graduation with a doctoral degree. Additional requirements for the doctoral degree may be specified by the faculty of each program as described in the individual degree program sections of this catalog.

For more information on this policy please review UTDPP1052 - Policy on Procedures for Completing a Graduate Degree: Registration Requirements

Required Grade Point Average

In order to qualify for graduation, students must maintain a minimum 3.0 grade point average in their degree program's core courses. However, individual programs may have more stringent grade point requirements in selected courses, which must be satisfied for graduation.

The minimum acceptable University grade point average for graduation is 3.0 for all graduate courses taken in the student's degree program at UT Dallas.

Registration Requirements Examinations or Proposal Presentation

A student must be registered for at least three semester credit hours of graduate coursework during the semester in which any major degree examination, such as the Qualifying Examination, Final Written Examination, or Final Oral Examination, is taken. A student must also be registered for at least three semester credit hours of graduate coursework during the semester in which the Dissertation Proposal is submitted for approval.

Time Limits

All requirements for a graduate degree, including transfer credit, must be completed within the specified time period. Students exceeding the specified time limit will not be eligible for their degrees and will be dismissed from the graduate program. An approved leave of absence will not alter the time limits placed on graduate degrees.

All requirements for the master's degree must be completed within one six-year period. All requirements for the doctoral degree must be completed within one ten-year period. Students whose master's degrees are accepted for full credit toward a PhD must complete all requirements for the doctoral degree within one eight-year period. Work exceeding these limits, whether done at this university or elsewhere, will not count towards the degree.

Individual programs may set shorter time limits. Exceptions to time limit specifications must be approved by the Dean of Graduate Studies.
Additional Master's Degrees

Students are encouraged to pursue additional master's degrees at The University of Texas at Dallas. To the extent that the requirements of some master's degrees overlap, some of the semester credit hours taken in pursuit of previously earned master's degrees at UT Dallas may be counted toward an additional master's degree. The only limitation is that more than one-half of the semester credit hours for any master's degree earned at UT Dallas must be satisfied by new coursework. A student is required to develop an approved plan of studies through the department or program offering the master's degree prior to enrolling in that degree. Similarly, a student wishing to earn two master's degrees concurrently must develop an approved plan of studies through both relevant departments and programs. All coursework for any degree must meet the academic standards of that degree.

Supervising Committee for Thesis and Dissertation

A supervising committee will be appointed to approve a research topic, provide advice, and periodically assess progress and accomplishments for students pursuing degree options requiring a written master's thesis, a doctoral dissertation, or a research practicum report. The composition of the Supervising Committee must follow the guidelines contained in the UT Dallas policy memorandum, "Policy on Procedures for Completing a Graduate Degree" (UTDPP1052), and must be submitted by the appropriate committee or administrator of the degree program to the Dean of Graduate Studies for approval. A student may obtain copies of this policy from their department or program office.

The Supervising Committee must meet at least once annually to assess the student's progress, and send a written report to the Dean of Graduate Studies. This report should describe any problems which could delay the student's research beyond its anticipated completion date. A copy of this report must also be sent to the student.

The student may request a meeting of the Supervising Committee through a written request to the appropriate committee or administrator of the degree program.

For more information on this policy please review UTDPP1052 - Policy on Procedures for Completing a Graduate Degree: Supervision

Admission to Doctoral Candidacy

The research potential and ability of each doctoral student to both understand and integrate previous coursework will be evaluated before a student can be formally admitted to doctoral candidacy. The format of this evaluation, hereafter referred to as a qualifying examination, varies amongst the degree programs and can be obtained from the student's Graduate Program office. A student failing the Qualifying Examination is terminated as a doctoral student in that Graduate
Program unless a two-thirds majority of the examining committee votes that a second examination be permitted. All committee members should have all evidence of the student's academic record and Qualifying Examination performance prior to this vote. The second examination typically would be taken no sooner than three months after the first examination, and no later than one year. A student failing the second examination will not be allowed to pursue a doctoral degree in that program. Under no circumstances will a third examination be allowed. The student will have advanced to candidacy when she or he has:

- passed the Qualifying Examination;
- been assigned an approved Supervising Committee;
- satisfied any other program or school candidacy requirements.

Candidacy must be achieved before a student is eligible to enroll in dissertation or in the chemistry internship practicum courses.

Doctoral Dissertation

Each doctoral candidate must prepare and submit for examination a written dissertation meeting the guidelines specified in the "Guide for the Preparation of Master's Theses and Doctoral Dissertations." A copy of the guide can be obtained from the office of the Dean of Graduate Studies or visit http://www.utdallas.edu/dept/graddean.

The dissertation manuscript for the Doctor of Philosophy degree must demonstrate an independent research competence on the part of the candidate that substantially adds to knowledge in the candidate's field with respect either to its intellectual substance or professional practice.

For more information on this policy please review [UTDPP1052 - Policy on Procedures for Completing a Graduate Degree: Thesis and Dissertation Requirement](http://www.utdallas.edu/dept/graddean).

Final Oral Examination for Doctoral Candidates

The presentation and defense of the Dissertation will constitute the Final Oral Examination for the doctoral candidate. Specifics on the scheduling and conduct of the examination are contained in the "Guide for the Preparation of Master's Theses and Doctoral Dissertations." The initial phase of the examination will be open to the public. Following the public presentation, the candidate's research will be examined by the members of the examining committee. This part of the examination is not open to the public. Depending upon the school's policy, other members of the faculty may also attend that part of the examination. This portion of the examination will be chaired by the representative of the Dean of Graduate Studies. The examination will focus primarily on the candidate's research contribution, although aspects of the general field in which the candidate's research was conducted may also be covered.

One of five possible results of the examination will be reported:
• passed the oral examination and manuscript accepted,
• passed the oral examination and manuscript accepted pending specified revisions,
• second oral examination required, but manuscript accepted or accepted with specified revisions,
• major revisions of the manuscript and a second oral examination required,
• or oral examination failed, manuscript not accepted and the committee recommends dismissal from the program.

If a recommendation for re-examination is made, the second Final Oral Examination must be taken between six months and one year after the first examination. In no cases will a third Final Oral Examination be given. See also "Policy on Procedures for Completing a Graduate Degree" (UTDPP1052), in the University's Handbook of Operating Procedures and/or the "Guide for the Preparation of Master's Theses and Doctoral Dissertation" or visit http://www.utdallas.edu/dept/graddean.

For more information on this policy please review UTDPP1052 - Policy on Procedures for Completing a Graduate Degree: Final Oral Examination

Required Copies of Dissertation and Thesis

Three final, approved hard copies and one disk copy are required. After final, approved hard copies have been bound:

• one hard copy will be available to the public in the university library,
• one hard copy will be sent to the Supervising Professor,
• one hard copy will be sent to the program office,
• and one electronic copy will be sent to UMI.

UMI will publish and make the dissertation/thesis available to the public for purchase both on the web and in hard copy.

For more information on this policy please review UTDPP1052 - Policy on Procedures for Completing a Graduate Degree: Thesis and Dissertation Requirement

Intellectual Property Rights

In order to protect patent or other intellectual property rights, the Dean of Graduate Studies may, upon request, delay for a period of up to one year the binding, distribution, and/or publication in microform of the thesis, dissertation, or research practicum report. This request must be supported by a written recommendation of the Supervising Professor.
Graduate Policies and Procedures

Family Educational Rights and Privacy Act (FERPA)

The Family Educational Rights and Privacy Act (FERPA) is a federal law enacted in 1974 to protect the privacy of student education records. The law applies to those institutions that regularly receive federal funding from the Department of Education and is enforced by the Family Policy Compliance Office of the U.S. Department of Education.

FERPA forms for students can be found at www.utdallas.edu/student/registrar/forms (click on "FERPA packet").

Complaints of alleged violations may be addressed to

Family Policy Compliance Office
U.S. Department of Education
400 Maryland Avenue SW
Washington, D.C. 20202-5920

The UT Dallas FERPA violation link is located at www.utdallas.edu/legal/ferpa.

FERPA defines an eligible student as a student who has reached 18 years of age or is attending an institution of postsecondary education.

Students have four primary rights under FERPA:

- To inspect and review their education records
- To seek to amend those education records they believe to be inaccurate or misleading
- To have some control over the disclosure of information from those education records
- To file a complaint concerning alleged failures by an institution to comply with FERPA regulations within 180 days

More information regarding education records and the procedure for amending records can be found at www.utdallas.edu/student/registrar/faq.html#FERPA.

Directory or public information is information that is not generally considered harmful or an invasion of privacy if released. Directory information includes student's full name, local and permanent address, email address, phone numbers, date and place of birth, major field of study, dates of attendance, degrees/awards/honors received, most recent previous educational agency or institution attended, enrollment status (classification, under/grad, part/full-time), participation in officially recognized activities and sports, weight/height of members of athletic team, expected date of graduation, and photographs.
Non-directory information is information that is not considered to be directory information, such as enrollment records, grades, and schedules.

Student may choose to withhold release of directory information. A student may do so by completing the "Request for Confidentiality of Directory Information" form at www.utdallas.edu/student/registrar/forms (click on "FERPA packet").

More information regarding FERPA can be found at www2.ed.gov/policy/gen/guid/fpco/ferpa.
Graduate Degree Program Policies and Procedures

Graduation Requirements

Graduation under a Particular Catalog

General and specific requirements for degrees in graduate programs may be altered in successive catalogs. Provided the requisite courses continue to be offered, the student is bound by the coursework requirements of the catalog in force at the time of admission.

The graduate student may instead elect to be bound by a subsequent catalog with the approval of:

- relevant Department Head
- Associate Dean
- Director of Graduate Studies
- Dean of Graduate Studies

This regulation applies only to the specific coursework and the number of semester credit hours required for the academic degree. If there are any requisite courses not available, they will be substituted by the program with the approval of the Graduate Dean.

Administrative requirements such as minimum grade point requirements for the major's core courses can change for all students with the issuance of a new catalog.

The student should be aware that operating regulations, procedures, and tuition and fees can be changed at any time. These are not bound by any catalog.

Application for Graduation

Students must complete the online application for graduation after meeting with their academic advisor or program office. The procedures and deadlines for submitting this application are listed in the online Comet Calendar and the Academic Calendar in order to graduate at the end of a given semester. The student must complete a separate application for graduation for each semester in which an attempt to graduate is made. A student who expects to receive more than one degree in a single semester must complete a separate application for each degree. A late applicant for graduation will incur an additional fee (refer to the Academic Calendar).

In order to receive a diploma, a student must pay all accounts due the university.

Graduation under In Absentia Registration
In absentia registration for graduation (i.e., registration for no coursework) may be arranged for the candidate who has completed all degree requirements including final oral examination, but has not yet submitted final approved copies of thesis, dissertation or other required reports. Such a candidate may, for a nominal fee and with the approval of his/her graduate advisor, the Dean of Graduate Studies, and submission of the approved in absentia registration form, register during the semester or summer session in which the degree will be received. If the final copies of the dissertation or thesis have not been approved by the supervisory committee and received and approved by the Dean of Graduate Studies before the Census day in a given semester, in absentia registration is not acceptable for that semester. This arrangement is not permissible for a candidate who is removing an incomplete (I) grade. All in absentia registration requests must be submitted for approval of the Graduate Dean prior to the Census Day in the semester for which it will apply and the degree will be received.

Graduation Ceremonies

Commencement

Commencement ceremonies are held at the conclusion of each spring and fall semester. There is no summer commencement ceremony.

Students who meet graduation requirements in a summer semester may participate in the graduation ceremony offered in the following fall semester. Students who meet graduation requirements in a fall or spring semester may participate in the graduation ceremony offered that semester only.

Any questions regarding the commencement ceremonies should be directed to the Office of the Registrar.

Doctoral Hooding Ceremony

The Doctoral Hooding Ceremony is held at the end of each semester. This event is different and separate from the Commencement ceremony. Any questions regarding the Doctoral Hooding Ceremony should be directed to the Office of Graduate Studies. See http://www.utdallas.edu/dept/graddean.
Graduate Degree Program Policies and Procedures

Student Travel Policy

The University of Texas at Dallas promotes safe travel by students to and from activities or events within the scope of the University’s mission. Before traveling, it is beneficial to review the travel policy about domestic and foreign travel, emergency procedures, insurance, and liability; and to obtain authorization by completing travel authorization forms and other related forms at least 5 working days prior to travel. Procedures also apply to faculty, staff, and students who transport students off campus on any university-organized and university-sponsored travel business or related travel activities for student organizations.

Detailed information regarding this policy, in accordance to Texas Education Code, Section 51.950, can be accessed at the UT Dallas Policy Navigator, policy.utdallas.edu/utdbp3023, and at www.utdallas.edu/administration/insurance/travel.
Resources for Study and Campus Life

General Resources
- Callier Center for Communication Disorders
- Career Center
- Carolyn Lipshy Galerstein Women's Center
- Child Care Center
- Comet Card
- Comet Center
- Comet Families
- Computer Facilities
- CourseBook Tool
- Dean of Students
- Distance Education
- Financial Literacy Training
- Fraternity and Sorority Life
- Intercollegiate Athletics
- International Education Credit Programs
- International Education Non-Credit Programs
- International Student Services
- Internship Program
- Judicial Affairs
- Leadership Education and Development
- Living Learning Communities
- Multicultural Center
- New Student Programs
- Recreational Sports
- Residential Life
- Spirit Squads
- Student AccessAbility
- Student Affairs
- Student Counseling Center
- Student Government
- Student Media
- Student Organization Center
- Student Organizations
- Student Success Center
- Student Union
- Student Union and Activities Advisory Board (SUAAB)
- Student Volunteerism
- Student Wellness Center
- Textbooks
- Transfer Student Services
- University Housing Information
- University Libraries
- Veteran Services Center

Health Resources
- Student Health Center
- Bacterial Meningitis Vaccination Requirement
- Hepatitis B Vaccination Requirement
- Mandatory Tuberculosis (TB) Skin Test for International Students
- Recommended Immunizations
- Student Health Insurance

Student Complaint Resources
- Student Complaint Resources
Resources for Study and Campus Life

Callier Center for Communication Disorders

The Callier Center is an internationally recognized institution that offers services to people who have any type of communication disorder. Acknowledged for meeting the assessment, treatment, education, and social service needs of children and adults with communication disorders, the Center has programs in preschool education, parent education, and child development. Its clinical services include pediatric and adult services in audiology, speech pathology, and language development; its research activities include psychoacoustics, auditory neurophysiology, speech science, and audiology. Graduate classes are conducted at the Callier Center-Dallas facility, adjacent to The UT Southwestern Medical Center and at the Callier Center-Richardson facility on the main UT Dallas campus.

Career Center

The Career Center offers a full range of services to help students prepare for their careers. Services include career counseling and interest assessments, resume and job search document critiques, internships and externships, mock interviews, and more. In-depth information is available on the Career Center's website. A variety of seminars on such topics as resume writing, cover letter writing, interviewing, networking, and conducting an effective job search are offered on a regular basis. The Career Center offers a credential file service to assist PhD students applying for academic positions after graduation.

Representatives of business, government, industry, education, and social agencies recruit UT Dallas students and alumni through career expos and on-campus interviews. The Career Center manages the internship program for all majors, except EE/CS majors. Most on-campus student employment is listed through the Career Center, with the exception of TA and RA positions.

Part-time jobs, both on- and off-campus, full-time jobs, and on-campus interview schedules are posted through CometCareers. All students have a CometCareers account - they just need to log in and complete their profile. Students upload a resume into the system in order to apply for qualified positions or to make it available for employer referrals. Employers may have access to candidate resumes via various web resume books set up in the CometCareers system.

For more information, contact the Career Center in the Student Services Building room 3.300, telephone: 972-883-2943, web: www.utdallas.edu/career, email: Career Center.

Carolyn Lipsky Galerstein Women’s Center
The Women's Center works with organizations in the University and the Dallas communities to provide resources and services that enhance the experience of all campus women by contributing to an academic atmosphere in which positive role models are highly visible and gender bias and inequities can be addressed. The Center acts as a central coordinating agency for campus and community groups, and offers opportunities and events that promote a broader understanding of the diverse experiences and ideas of women. The Center offers dynamic programs, and provides resources and services that will help the women of our community to grow and develop personally and professionally.

How can I use the Women's Center?

· Meet new people, network with other professionals, socialize, talk to someone who's willing to listen;
· Take a break, study, use the computer, read or rent a book, video, or magazine from our library;
· Learn about resources on campus and in the community that address your specific needs;
· Use the Center as a meeting place for your organization;
· Volunteer at the Women's Center, or find out about volunteer opportunities in the community;
· Stay current on upcoming events and important issues;
· Find out about scholarships offered in the community and nationally.

The Women's Center is located in the Student Services Building, room SSB 4.300, 972-883-6555.

Child Care Center

The Dallas International School (DIS) and UT Dallas jointly provide evening child care. Parents who attend classes are eligible for child care services during their evening class hours for children ages 4 to 11. Child care hours are from 3:30 p.m. to 10:30 p.m., Monday-Thursday. To register your child/children for the child care program please complete each of the forms in the enrollment packet. Call 972-883-6391 to have a packet sent to you, or pick one up in the Student Services Building, 4.400.

Comet Card

The Comet Card is the official University identification card for all students, faculty, and staff. The Comet Card allows the use of campus facilities and services and offers an optional campus account for on-campus purchases and payments. The card can also be linked to a Wells Fargo checking account and used as an ATM/PIN-debit card. Cards are issued through the Comet Center located in the Student Union. Call 972-883-2495 or go to www.utdallas.edu/cometcard for information.

Comet Center

The Comet Center, located on the second floor of the Student Union, is the UT Dallas information hub. Students can pick up Comet Cards and DART passes or purchase postage
stamps and discount tickets to movies, museums and other local attractions. See www.utdallas.edu/cometcenter for more information.

Comet Families

Comet Families is an avenue for family members and parents of UT Dallas students to get information about the campus and be involved in their student's campus experience. For more information call 972-883-6395 or go to www.utdallas.edu/family.

Computer Facilities

The Office of Information Resources provides computing facilities for student, faculty, and staff use in instruction and research. General access computer labs are located on the first floors of the Founders Building and the McDermott Library Building. The labs provide a modern, networked computing environment with Windows-based and Macintosh computers, scanners, and more.

Dedicated systems are also available to support such functions as campus information services, programming, research-related activities, and computationally intensive applications. A sophisticated campus-wide network permits offices and laboratories direct access to extensive computing resources both on- and off-campus. The university maintains high bandwidth connections to the commodity Internet as well as appropriate research and education networks, such as Internet 2.

Remote administrative services are provided through the Galaxy portal (galaxy.utdallas.edu), and remote access to the campus network and computing resources is provided through VPN (Virtual Private Networking) services. The University provides wireless LAN access to the campus community across most of the institution. Currently enrolled UT Dallas students and employed faculty and staff may utilize the campus network using devices with the appropriate wireless network interface. Guest wireless access is also provided on request. The latest information regarding computing services can be found at the Information Resources website at www.utdallas.edu/ir.

Many of the schools, programs, and research centers operate their own computing facilities that are available to students as appropriate.

CourseBook Tool

CourseBook is a tool to search for and obtain information related to course scheduling, course descriptions, and course location. CourseBook also contains course syllabi (syllabus), textbook information, course evaluations, and instructor curriculum vitae within one web portal. Go to coursebook.utdallas.edu.

Dean of Students
The Dean of Students provides leadership in the development, overall management, and supervision of organizations and activities and serves as an information/referral source for students needing assistance in any situation. The Dean of Students Office is in the Student Services Building, 4.400, and can be contacted at 972-883-6391 or on the web at www.utdallas.edu/deanofstudents.

Distance Education

Education opportunities at the University include courses and entire programs taught online via the Internet. UT Dallas currently offers courses in a number of areas from across the campus, including courses in teacher education and the natural sciences. Furthermore, distance learning opportunities at The University of Texas at Dallas now utilize e-learning technologies to provide students the opportunity to engage in coursework from remote locations and without the time constraints of the traditional face-to-face classes.

Blended (or hybrid) courses that utilize both on- and off-campus presentation, providing students an opportunity to maximize their learning by collaborative learning experiences are also available. UT Dallas also works with a number of partner institutions to provide students additional learning opportunities through exchange programs and other collaborative programs both nationally and internationally.

More information about specific distance learning programs or courses at The University of Texas at Dallas and registration procedures can be found in the Class Schedule or on the distance learning website at www.utdallas.edu/elearning/online-programs.

Financial Literacy Training

In accordance with Texas Education Code, Section 51.305, the University provides students information and resources to acquire financial literacy skills through a series of lectures and/or online courses. By accessing these resources at the Financial Literacy website, students learn how to budget, to build and maintain credit, and to develop skills in managing their personal finances, including health care and other benefits, investing for the future, loans and repayments, retirement planning, saving accounts, and taxes.

Fraternity and Sorority Life

UT Dallas is home to 20 national Greek fraternity and sorority organizations that provide students with opportunities for friendship, guidance, service and leadership. For more information call 972-883-6523 or go to www.utdallas.edu/gogreek.

Intercollegiate Athletics

UT Dallas is a member of the NCAA Division III American Southwest Conference. The UT Dallas athletic program includes men's and women's soccer, golf, basketball, tennis, and cross country, men's baseball, women's softball, and women's volleyball teams. Graduate students are able to participate only if their undergraduate degree is from UT Dallas and they still have...
NCAA eligibility remaining. Administrative offices are located in the Activity Center. For additional information call 972-883-4490 or go to cometsports.utdallas.edu.

International Education Credit Programs

OIE staff provides guidance to graduate students who want to pursue study abroad programs, international internships, independent studies abroad, international research opportunities, and international scholarship programs. The OIE is located in the Green Center (GC), 2.126. Students are required to review an OIE presentation before seeking staff assistance in selecting the program most appropriate to their individual needs and interests. The OIE presentation, http://www.utdallas.edu/oie/OIE-Study-Abroad-Presentation.pdf, includes University policies governing international education, program options, eligibility requirements, basic preparation, types of mobility, institutional protocol, and international fund scholarship. Information is also disseminated through special events, group meetings, individual appointments, reference materials, and at the OIE website, www.utdallas.edu/oie. (See "International Education" located in the Academic Policies and Procedures section of the catalog for more details).

International Education Non-Credit Programs

Graduate students, including Teaching or Research Assistants, who are representing UT Dallas in an international conference, workshop, and/or fully or partially sponsored by UT Dallas, i.e., air ticket, hotel, conference registration, etc., are required to complete the OIE Protocol at least three weeks before departure. For more information, please consult http://www.utdallas.edu/oie/seo.htm.

International Student Services

The International Student Services Office (ISSO) houses International Student Programs and International Student Advising for the international student population at UT Dallas. ISSO organizes on- and off-campus programs which allow international students to be a part of a variety of US cultural experiences, as well as educational events for US students wanting to participate in multicultural activities. ISSO also provides immigration information for F and J students through seminars, individual student appointments, and other outreach activities to provide students with information affecting their status. International Student Services is located in the Student Services Building, 3.400, and may be contacted by calling 972-883-4189. More information can be found at www.utdallas.edu/isso.

Internship Program

For Graduate Students, the Internship Program provides an opportunity to gain professional work experience related to a particular field of study. An internship is meant to be educational in nature. Internships can be paid or unpaid, and in many cases can be completed for academic credit to be used toward a degree requirement. Completing an internship to add to a resume is a strong way to improve options for full-time employment after graduation.
The UT Dallas Career Center Internship Program provides students with the information and tools necessary to successfully navigate the internship process, from orientation to the program itself to evaluation at the end of the semester. Internship Coordinators provide information about eligibility, preparation, academic credit options, and assistance with the internship search. Students can also get information about the possibility of completing an internship at their current place of full-time employment.

To register for the internship program:

- have an active CometCareers account
- attend an Internship Information Session or a CPT Information Session (required for students on a Visa)

Please note: Internships for students enrolled in ECS are handled by the Industrial Practice Program Office (IPP) in ECSS 2.502.

The Career Center recommends that a student begin searching for an internship one semester or more in advance of the desired starting semester. The Career Center also recommends that the student take advantage of other services, including resume critiques and mock interviews to be most successful in the internship search. For information on Internship or CPT Information Sessions and the program, contact the Career Center in SSB 3.300, telephone: 972-883-2943, web: www.utdallas.edu/career, email: Career Center.

Judicial Affairs

A part of the Dean of Students Office, the Office of Judicial Affairs promotes academic integrity and is responsible for investigating allegations of scholastic dishonesty and implementing the discipline process. More information can be found at www.utdallas.edu/deanofstudents or by calling 972-883-6391.

Leadership Education and Development

Non-credit leadership classes, offered through Student Development, help students to develop and enhance competence and self-knowledge as it pertains to leadership in a global society. For more information call 972-883-2242 or go to www.utdallas.edu/leadership.

Living Learning Communities

Living Learning Communities allow small groups of freshmen who share common academic objectives, goals, and interests to develop a support network with other students, peer advisors, and faculty/staff members. Communities are built around academic interests with a faculty or staff advisor who facilitates distinctive academic and social opportunities that help students extend their learning beyond the classroom. For more information call 972)-883-7348 or go to www.utdallas.edu/livinglearning.

Multicultural Center
The Multicultural Center (MC) provides cultural programs, support services, resources and cultural education programs. The MC is a place for students, faculty and staff to gather and relax. The MC has a comfortable lounge area with a television, videos, computer lab, work station, and a meeting room. Traditional events hosted by the MC are Hispanic Heritage Month, Black History Month, MLK Jr. Breakfast, Asian-American Heritage Celebration, Native American Heritage program and the Diversity Dinner Dialogues. The MC is home to the Multicultural Peer Advocates (MPA's). The MPA's are student peer advocates that are available for personal, social or academic assistance.

Office hours are Monday through Thursday 8:30 a.m. - 6:00 p.m., Friday 8:30 a.m. - 5:00 p.m. Location: Student Services Building. Email: Multicultural Center. Telephone: 972-883-6390. Website: www.utdallas.edu/multicultural. Director: Arthur Gregg.

New Student Programs

New Student Programs offers orientations, advising, peer support and other resources to get new students off to a strong start at UT Dallas. For more information call 972-883-6171 or go to www.utdallas.edu/newstudents.

Recreational Sports

Recreational Sports provides UT Dallas students with diverse recreational programs to enhance their overall educational experience. Recreational facilities include a state-of-the-art fitness center, racquetball courts, squash courts, basketball courts, a multi-purpose room, an indoor swimming pool, sand volleyball courts, soccer fields, tennis courts, softball and baseball fields, and a rock climbing wall. Recreational Sports also offers students opportunities to participate in a variety of intramural and club sports, group exercise and non-credit courses. For additional information call 972-883-2096 or go to www.utdallas.edu/recsports.

Residential Life

Residential Life and its student-support team of Peer Advisors are committed to seeing that every resident student has a safe, comfortable and welcoming environment in which to live and learn. For more information call 972-883-5561 or go to www.utdallas.edu/housing.

Spirit Squads

Temoc is the official mascot of UT Dallas and works with the UT Dallas Cheerleaders, Power Dancers, Crush Crew, and Pep Band to build school spirit, promote community and cheer the Comets on to victory (www.utdallas.edu/spirit).

Student AccessAbility

Student AccessAbility ensures that qualified students with documented disabilities have an equal opportunity to participate in educational, recreational, and social activities at UT Dallas. Students with disabilities are urged to contact Student AccessAbility as soon as they are admitted to the
University. Student AccessAbility is located in the Student Services Building, 3.200, and can be contacted at 972-883-2098 or on the web at www.utdallas.edu/studentaccess.

Student Affairs

The Division of Student Affairs, under the direction of the Vice President for Student Affairs, offers a variety of student services and programs to enhance the educational experience of all enrolled students.

Student Counseling Center

The Student Counseling Center is staffed by a licensed psychiatrist, as well as licensed psychologists and counselors, who are available to help students with personal and interpersonal problems. Services include individual counseling for personal or educational concerns, marital/family counseling, group counseling, crisis counseling and stress reduction, and special workshops/programs relevant to student needs. In addition, a personal development book and tape library is available and materials may be checked out.

All counseling services and records are held confidential to the extent permitted by law and are governed by the Family Educational Rights and Privacy Act, the Texas Open Records Act, and Article 5561(h), Vernon's Annotated Texas Civil Statutes. The Student Counseling Center is located in the Student Services Building, SSB 4.600.

For more information call 972-883-2575 or go to www.utdallas.edu/counseling.

Student Government

Student Government is the official representative body and voice of UT Dallas students. Students have the opportunity to participate through serving on committees, running for office, or voting in elections. Student Government provides many free services for students, including attorney services, the Comet Discount Program and free bluebooks. Further information may be obtained from the Student Government Offices in the Student Union (SU Suite 2.4), by calling 972-883-2284, or by going to www.utdallas.edu/student/sg.

Student Health Center

The Student Health Center offers routine medical services and treatment to all currently enrolled students who have paid the medical services fee and are attending classes. Services include physicals, diagnosis and treatment of acute illnesses and injuries, general medical problems, gynecological problems, treatment of stabilized chronic illnesses, allergy injections and limited immunizations. Care providers include Nurse Practitioners and a Staff Physician. While there is no out-of-pocket cost for most services, there are charges for laboratory services, medication, and specific procedures provided for individual students. All services or treatment obtained from facilities other than the Student Health Center are the responsibility of the individual student. The staff at the Student Health Center can make referrals as appropriate.
The Student Health Center provides information on the prevention and transmission of HIV infection and AIDS, and offers HIV and AIDS education programs and testing.

All medical services and records are held confidential to the extent permitted by law and are governed by the Family Educational Rights and Privacy Act, the Texas Open Records Act, and Article 5561(h), Vernon's Annotated Texas Civil Statutes. The Student Health Center is located in the Student Services Building, SSB 4.700. Call 972-883-2747 for more information or go to www.utdallas.edu/healthcenter.

We encourage all students to be current on their immunizations.

Bacterial Meningitis Vaccination Requirement

Per State legislation effective January 1, 2012, all entering Texas college students must receive a vaccination or booster (if the vaccination is five years old) against bacterial meningitis before enrollment in accordance with Texas Education Code, Section 51.9192.

The vaccine or booster is required for entering students at Texas public and private colleges, living both on- and off-campus.

- An entering student is a new student or a student who has had a break of enrollment for one or more fall or spring semesters. Summer semester is not included as a break in enrollment.
- Transfer students are considered entering students. Transfer students may request an official memo stating proof of vaccination (within the last five years) from their previous institution and submit with the vaccination requirement form.
- Students who are enrolled only in online courses are exempt if they supply an online exemption form.
- Entering students 22 years of age or older are exempt.

The student, or parent or guardian of the student, must provide a meningococcal meningitis vaccine requirement form with an official immunization record or other required documentation listed on the form, showing the student has received the bacterial meningitis vaccination or booster during the five-year period prior to enrollment, and not less than 10 days before the first day of classes.

Students opting to decline the vaccination for bacterial meningitis for reasons of conscience, including religious belief, should request an affidavit through the Texas Department of State Health Services.

Entering students will be unable to register until the paperwork is received and reviewed. The Office of the Registrar sends electronic notifications to students about the vaccination or booster requirement until the paperwork is received.

Mail proof of bacterial meningitis vaccination and form to the following address:
Questions concerning the bacterial meningitis requirement and forms should be directed to the Office of the Registrar, 972-883-2342 or go to www.utdallas.edu/student/registrar.

Hepatitis B Vaccination Requirement

A Hepatitis B vaccination is required for students enrolled in a course of study that involves potential exposure to human or animal blood or bodily fluids in accordance with Texas Education Code, Section 51.933.

Mandatory Tuberculosis Screening for International Students

- Tuberculosis (TB) screening is required for all persons born outside the United States, regardless of the status of their application, prior to registering for their first semester at UT Dallas. (Note: Being granted the resident tuition rate does NOT exempt an international student from this requirement.)
- Screening for TB must be administered, regardless of prior BCG vaccination, no more than (6) months prior to the first day of class.
- **The only acceptable TB screening option** is the Interferon Gamma Release Assay (IGRA) blood test (T-Spot). A TB skin test will NOT be accepted.
- The T-Spot test must be administered and interpreted in the United States by a licensed medical provider.
- International students who do not complete a TB screening or who do not submit the appropriate documentation will NOT be allowed to register for classes.
- The T-Spot test is available through the on-campus Student Health Center for a fee.

Appropriate documentation secured from a U.S. licensed medical provider may be sent to the following address:

Student Health Center, SSB 43
The University of Texas at Dallas
800 West Campbell Road
Richardson, TX 75080-3021

See the UT Dallas Student Health Center website for more detailed information.

Recommended Immunizations
The following vaccines are recommended but not required:

- Hepatitis A and B
- Human Papillomavirus (HPV)
- Influenza (flu)
- Measles, mumps, rubella (MMR) - 2 doses (required for international students)
- Tetanus, diphtheria, pertussis (Tdap)
- Varicella (chicken pox)

For more information, please visit www.utdallas.edu/healthcenter/immunizations.

Student Health Insurance

The University of Texas at Dallas Student Health Insurance Office, under the direction of the Student Health Center, provides unique and confidential health insurance advising services for UT Dallas students. Health insurance is available to all students at UT Dallas and is required of all international students (students who are not US Citizens, US Permanent Residents, Asylees, Refugees or undocumented aliens). All international students are assessed the Student Health Insurance (SHI) fee at the time of registration for classes. International students are responsible to pay the fee unless they apply for and are granted a waiver based on documentation of other comparable insurance coverage. Contact the Student Health Insurance Office for more information at 972-883-2747 or on the web at www.utdallas.edu/healthcenter/insurance.

Student Media

The award-winning student newspaper of UT Dallas, The Mercury, publishes biweekly on Mondays throughout the school year. The newspaper offers paid positions for writers, editors, page designers and photographers.

Radio UT Dallas, the student-run Internet radio station, features an eclectic and freeform mix of music and original programming including talk, poetry and live coverage of UT Dallas sports. College Music Journal nominated Radio UT Dallas as one of the best internet radio stations in the United States.

A Modest Proposal, a student publication that focuses on student life, global politics, arts, events, and social commentary, publishes eight editions during the fall and spring semesters each year.

UT Dallas TV, a web-based television station provides a medium for broadcasting news, entertainment shows and other content produced by students, staff and faculty.

Student Organization Center

The Student Organization Center (SOC) helps UT Dallas students become more connected to campus life. SOC provides programming and services for student organizations and for students
interested in participating in the many activities at UT Dallas. Visit us in the Student Union (SU 2.416) or go to www.utdallas.edu/sof.

Student Organizations

Registered student organizations provide the major means by which students can contribute to campus life while developing friendships, interests, talents, and leadership skills. There are over 150 student organizations at UT Dallas that cater to a variety of interests, such as academic and honor groups, service clubs, religious groups, ethnic groups, and special interest groups. Detailed information on the groups and guidelines for forming new organizations is available in the Student Organization Center (Student Union, 2.416). For additional information call 972-883-6551 or go to www.utdallas.edu/sof.

Student Success Center

The Office of Student Success operates the Student Success Center, which offers assistance to students in the areas of writing, mathematics, communication, multiple science fields, reading, study skills, and other academic disciplines. These services are available through individual and small group appointments, workshops, short courses, and a variety of online and instructional technologies. All students enrolled at UT Dallas are eligible for these services.

The Math Lab gives short-term and semester long support for a variety of introductory and advanced mathematics courses. Students may drop in to visit with a math tutor on a regular basis. Comet card is required.

The Writing Center offers one-to-one and small group assistance with general and advanced writing assignments and overall writing skills. Scheduling an appointment is strongly recommended. Drop in appointments are granted if a tutor is available.

The Peer Tutoring program offers free tutoring each semester to UT Dallas undergraduates who are currently enrolled. Students meet with peer tutors in the Student Success Center tutoring rooms. Students should check the SSC website for subject and session times.

The Peer-Led Team Learning (PLTL) program provides an active, engaged learning experience for students who meet in small groups once a week with a Peer Leader who helps guide them through potentially difficult gateway course. Students that attend sessions regularly typically earn a half to a whole letter grade higher than students that do not participate in the PLTL program.

Supplemental Instruction (SI) is an academic support program that provides academic assistance to students in historically difficult classes. The SI sessions help with content mastery and with learning and study strategies that are applicable to all subject areas. Students should check the SSC website for subject and session times.

The Communication Lab (CommLab) offers one-on-one and group consultations where you will gain practical feedback for improving oral and group presentations.
Success Coaches are available for individual student appointments to discuss study skills, time management, note taking, test taking and preparation, and other success strategies.

The Student Success Center’s main office is located in the McDermott Library Building and can be contacted by calling 972-883-6707 or by sending an email to the Center.

Student Union

The Student Union is a place for students to hang out, grab a bite to eat and just relax. Open seven days a week, it includes a TV lounge, study lounges, pool tables, ping-pong tables, a video arcade, the Comet Café, The Pub, and a number of meeting rooms that can be reserved for organization meetings.

Student Union and Activities Advisory Board (SUAAB)

SUAAB is a group of student leaders dedicated to programming diverse social and educational events to enhance the student experience. Events coordinated by SUAAB include the annual Homecoming Dance, Casino Night, Springapalooza, movies, comedians, concerts, pep rallies, and more (www.utdallas.edu/suaab or 972-883-6438).

Student Volunteerism

The Student Volunteerism Program offers students a variety of opportunities to lend their time and talents in service to the communities of UT Dallas, North Central Texas, and beyond. Programs include Alternative Spring Break, Service Saturdays and Viva! Volunteer among others. The Office of Student Volunteerism is located in the Student Services Building (SSB 3.600) and can be contacted at 972-883-6393 or on the web at www.utdallas.edu/volunteer.

Student Wellness Center

The Student Wellness Center promotes health, fitness, and responsible personal choices among UT Dallas students through educational programs, resources and individual consultations. Programs include alcohol and other drug awareness, sexual responsibility, suicide awareness, nutrition and fitness, and men's and women's health. The Student Wellness Center is located in the Student Services Building, SSB 4.500, and can be contacted at 972-883-4275 or on the web at www.utdallas.edu/studentwellness.

Textbooks

The University Bookstore stocks all required textbooks and software. Textbook information for specific courses is available within the CourseBook web portal at coursebook.utdallas.edu. Textbook information includes International Standard Book Number (ISBN) and retail price information; data is collected from the campus bookstore on a regular basis. For additional assistance, click on the help tab within coursebook.utdallas.edu.
The University of Texas at Dallas advises students that they are not under any obligation to purchase a textbook from a university-affiliated bookstore. The same textbook may also be available from an independent retailer, including an online retailer. *(Texas Education Code 51.9705; 19 TAC 4.215)*

Transfer Student Services

The Transfer Student Services Office provides support to new and returning transfer students to ensure their successful transition into UT Dallas. The Transfer Student Services Office is located in the Student Services Building, 3.600, and can be contacted at 972-883-6147 or on the web at www.utdallas.edu/transferservices.

University Housing Information

Students are provided several affordable on-campus housing options. All on-campus housing is reserved for UT Dallas students.

Locations include University Village apartments and University Commons residence halls, a community owned by UT Dallas and managed by American Campus Communities.

In accordance with University policy, all freshmen who choose to live on campus are required to live in University Commons residence halls.

For more information please go to www.utdallas.edu/housing or www.utdallas.edu/reslife.

Contact Information:

Residential Life Office
Telephone: 972-883-5561
[Residential Life Office](#)

University Village Apartments Leasing Office
2800 Waterview Parkway Suite #200
Richardson, TX 75080
Telephone: 972-792-9100
Fax: 972-792-9101
[General Information](#)

University Libraries

The Eugene McDermott Library and the Callier Library support the research, instruction, and community service programs of the University by providing access to information in both print and electronic forms. The libraries consist of over two and a half million items, including over
65,000 electronic journals, 1,000,000 electronic books, federal and Texas government documents, media, microforms, and maps.

The McDermott Library is a U.S. government document depository. Special collections include the Jaffe Holocaust Collection, the Wineburgh Philatelic Research Library, the Louise B. Belsterling Collection, the History of Aviation Collection, and the UT Dallas Archives. The Library also has a rare books collection. The libraries provide an ever-expanding digital collection that is available to distance learners. Users connect to these resources through the library portal at www.utdallas.edu/library. Current students have unlimited access to the digital library. The Library is also developing Treasures, a digital institutional repository to showcase the research and scholarship conducted at the University.

The librarians and staff provide competent and cordial interactions with the people they serve. Librarians provide class and individual instruction on the use of the library.

The library collections are enhanced by the Interlibrary Loan Service, which provides students with books or articles from a network of major libraries. Student research is facilitated by copiers available to duplicate from paper, microfilm, or microfiche. The McDermott Library Information Commons provides connections to our electronic material. The libraries offer students with disabilities a range of services to encourage their independent research.

Veteran Services Center

The UT Dallas Veteran Services Center is a resource center for veterans, reservists, eligible dependents, and active duty military students attending UT Dallas. The center helps students access information about VA benefits, financial aid, scholarship opportunities, and on- and off-campus veteran support services. The center's lounge allows students to meet and greet other veterans, and the office of the UT Dallas VA certifying official is also located in the center.
Student Complaint Resources

The University of Texas at Dallas Graduate Online Catalog includes procedures to assist students in expressing and resolving complaints, issues, and questions that may arise during their academic careers. This web page provides information about specific procedures and their respective web links.

Nondiscrimination Policy

- Nondiscrimination Policy Statement
- Equal Educational Opportunity Statement

Student Conduct

- Student Conduct and Appeals

Academic Grievances and Procedures

- Student Grievances Policy
- Rules, Regulations, and Statutory Requirements: Grievance Procedures

Grades

- Changing Grades
- Incomplete Grades

Final Examinations

- Petition to take Final Examinations on Different Days

Academic Standing

- Academic Good Standing

Class Registration and Withdrawals

- Schedule Changes: Dropping, Adding, and Withdrawing from Courses

Transfer Credits

- Transfer of Semester Credit Hours Dispute and Resolution

Graduation

- Graduation Time Limits
Tuition and Financial Aid (including Residency Classification)

- Tuition and Required Fees
- Refund of Tuition and Fees
- Other User Fees (including Parking Regulations)

Military Services

- Option to Withdraw, Receive Incomplete Grade or Receive Final Grade

Religious Holy Days

- Disagreements About Religious Holy Days Absences

Family Educational Rights and Privacy Act (FERPA) and Student Records

- Handling Alleged Violations of FERPA Policy
- Handling of Student Records

Resources for Students to Obtain Assistance and/or Additional Information

- Dean of Students
- Judicial Affairs
Appendix I

Rules, Regulations, and Statutory Requirements

A. Student Conduct and Discipline

The University of Texas System and The University of Texas at Dallas have rules and regulations for the orderly and efficient conduct of their business. It is the responsibility of each student and each student organization to be knowledgeable about the rules and regulations which govern student conduct and activities. General information on student conduct and discipline is contained in the UT Dallas publication, A to Z Guide, which is provided to all registered students each academic year.

The University of Texas at Dallas administers student discipline within the procedures of recognized and established due process. Procedures are defined and described in the Rules and Regulations, Board of Regents, The University of Texas System, Series 50101 and in Student Discipline and Conduct, UTSP5003. Copies of these rules and regulations are available to students in the Office of the Dean of Students where staff are available to assist students in interpreting the rules and regulations (SSB 4.400, 972-883-6391).

A student at the university neither loses the rights nor escapes the responsibilities of citizenship. He or she is expected to obey federal, state, and local laws as well as the Regents' Rules, university regulations, and administrative rules. Students are subject to discipline for violating its standards of conduct whether such conduct takes place on or off campus or whether civil or criminal penalties are also imposed for such conduct.

1. **Academic Dishonesty.** The faculty expects from its students a high level of responsibility and academic honesty. Because the value of an academic degree depends upon the absolute integrity of the work done by the student for that degree, it is imperative that a student demonstrates a high standard of individual honor in his or her scholastic work.

 Scholastic dishonesty includes, but is not limited to, statements, acts or omissions related to applications for enrollment or the award of a degree, and/or the submission as one's own work of material that is not one's own. As a general rule, scholastic dishonesty involves one of the following acts: cheating, plagiarism, collusion and/or falsifying academic records. Students suspected of academic dishonesty are subject to disciplinary proceedings.

2. **Campus and Residence Hall Solicitations.** "Solicitations," as defined by the Rules and Regulations of the Board of Regents of The University of Texas System, means the sale, lease, rental of any property product, merchandise, publication, or service, whether for immediate or future delivery; an oral statement or the distribution or display of printed material, merchandise or product that is designed to encourage the purchase, use or rental of any property, product, merchandise, publication, or service; the oral or written appeal or request to join an organization other than a registered student, faculty or staff organization; the receipt of or request for any gift
or contribution; and/or the request to support or oppose or to vote for or against a candidate, issue, or proposition appearing on the ballot at any election pursuant to state or federal law or local ordinances. All solicitations on the UT Dallas campus must conform to the Regents' Rules, copies of which are available in the offices of the President, Executive Vice President and Provost, Vice Presidents, and Deans and in numerous other administrative offices and the library.

3. **Hazing.** Hazing, submission to hazing, or failure to report first-hand knowledge of the planning or occurrence of specific hazing incidents is prohibited by state law and, in addition to disciplinary actions, is punishable by fines up to $10,000 and confinement in county jail for up to two years. Moreover, any hazing offense that causes the death of another person is a state jail felony. Hazing is defined by state law as, "... any intentional, knowing, or reckless act, occurring on or off the campus of an educational institution, by one person alone or acting with others, directed against a student, that endangers the mental or physical health or safety of a student for the purpose of pledging, being initiated into, affiliating with, holding office in, or maintaining membership in an organization." Any person who reports a specific hazing incident involving a student to the Dean of Students is immune from civil or criminal liability that he/she might otherwise incur as a result of the report. Any persons who have further questions about hazing or activities that may be considered hazing should call the Dean of Students' office at (972) 883-6391.

4. **Copyrighted Material.** Unauthorized distribution of copyrighted material may subject students to civil and criminal penalties. All UT Dallas syllabi are required to include, whether in text or a hyperlink, student conduct policies including a copyright notice. This notice directs students to UT Dallas' Policy Regarding Photocopying Copyrighted Materials (UTDPP1043) and UT System's copyright website. Further, the Director of Information Security is identified as the University's contact for copyright questions or concerns. See www.utdallas.edu/copyright.

5. **Other Disciplinary Situations.** Any student organization as a group is subject to disciplinary action or revocation of registration as a student organization for violation of a rule or regulation of The University of Texas System or The University of Texas at Dallas.

B. Grievance Procedures

The University of Texas at Dallas is committed to a policy of nondiscrimination on the basis of age, color, disability, gender, race, religion, sexual orientation, national origin, or veteran status in its provision of services, activities, and programs, and in its treatment of students. Students seeking further information about this policy or related complaint procedures for alleged discrimination or sexual harassment should contact the Dean of Students. The dean will follow the procedures for student grievances that are found in UTDSP5005, Student Grievances Policy.

Sexual harassment is a form of sex discrimination. Such harassment is defined as unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature. Suggestions that academic or employment reprisals or rewards will follow the refusal or granting of sexual favors also constitute sexual harassment. The full text of the University's "Sexual Harassment Policy and Procedure" may be found in the Administrative Policies and Procedures Manual, Section D, D11-115.0.

Any student who perceives that he or she has been subject to any form of discrimination as defined above may file a written complaint with the Dean of Students using the following procedures:
1. The complaint must contain the nature of the alleged discrimination, the date on which the alleged discrimination occurred, and other appropriate information as required by the dean.

2. The dean will refer all complaints that name an employee of the university (including graduate assistants and other student employees) as the offender to the Office of Human Resources for investigation and resolution. When the nature of the complaint is discrimination on the basis of disability, the dean will refer the grievance or complaint to the ADA Coordinator who will investigate the complaint under the procedures given in the Administrative Policies and Procedures Manual, Vol. IIA, Section D, page D11-195.0, Americans with Disabilities Act Grievance Policy.

3. With the exceptions noted in subsection (2) above, the student discipline procedure outlined in UTDSP5003 Student Discipline and Conduct will be utilized for complaints that name a student as an alleged offender. Such complaints will be investigated by the dean.

4. As a result of the investigation, the dean will, on the basis of the information presented, determine: a) that the charges of discrimination are without basis, b) that further investigation is required, c) that campus action shall be initiated to alleviate a discriminatory situation, or d) that a hearing will be held.

C. Academic Grievances

Procedures for student grievances are found in university policy UTDSP5005. In attempting to resolve any student grievance regarding grades, evaluations, or other fulfillments of academic responsibility, it is the obligation of the student first to make a serious effort to resolve the matter with the instructor, supervisor, administrator, or committee with whom the grievance originated (hereafter called "the respondent"). Individual faculty members retain primary responsibility for assigning grades and evaluations.

PROCEDURES TO APPEAL ACADEMIC DECISIONS

(a) The appeal procedures defined in this section apply to an unresolved grievance concerning some aspect of the student's academic standing at UT Dallas. The intent is to address the grievance of the student in a prompt and orderly fashion. A grievance means a dispute concerning some aspect of the student's academic standing arising from an administrative or faculty decision that the student regards as incorrect or unjust. Grievances include, but are not limited to, disputes over grades, application of degree plan, graduation/degree program requirements, and thesis and dissertation committee and/or adviser actions or decisions. Grievances, as defined in this section, do not include the right to appeal the termination of employment of a teaching assistant or research assistant during the term of the student's appointment. That appeal process is defined and described in UT Dallas Policy PP1075 University Policies Related to Graduate Student Teaching Assistants and Graduate Student Research Assistants.

(b) A grievance regarding academic concerns will be considered in the following manner:
1. **Initial Consideration of Grievance** In attempting to resolve any student grievance falling within the scope of this policy, it is the obligation of the student first to make a serious and prompt effort to resolve the matter through discussion with the instructor, supervisor, administrator, or committee chair with whom the grievance originated (hereafter called "the respondent") within sixty (60) calendar days after the date on which the decision was first rendered.

2. **Appeal to the Department/Program Head** If the matter cannot be resolved in discussions between the student and the respondent, the student grievant can submit a written appeal to the respondent's department/program head with a copy to the respondent clearly specifying the basis of the appeal and stating the remedies the student is seeking. This written appeal MUST be submitted no later than the sixty-fifth day after the date on which the decision in dispute was first rendered by the respondent. Within ten business days while classes are in session, the respondent will provide both the student and the department/program head with a written response. The department/program head will have 10 business days to review all submissions and provide a written response to the student and respondent (an extension to this timeline may be granted by the school dean for good cause). In determining the validity of the grievance, the department head should be guided by the principle that the burden is on the grievant to show that the decision is arbitrary and capricious. If the department/program head decides that the grievance be granted, he/she will also provide a decision on how to resolve the dispute.

3. **Academic Appeals Panel** If the student is dissatisfied with the decision of the department/program head, the student may submit a written appeal via email or hard copy, within ten business days of the date the decision was sent, to the dean of the school hosting the course, comprehensive or oral examination with a copy to the department/program head (an extension to this timeline may be granted by the dean for good cause). The written appeal by the student to the school dean must clearly state the reasons for the appeal and remedy sought. The dean will appoint an appeals panel. The appeals panel composition will consist of an associate dean of the school in which the grievance originated, acting as chair, two faculty members from the school in which the grievance originated, an associate dean from another school, and a student. The student selected to serve on the panel will be an undergraduate when the grievance is from an undergraduate student and will be a graduate student when the grievance is from a graduate student. The academic panel will review all submissions, obtain additional information and opinions if desired, and provide the student with a written response within twenty business days while classes are in session of the receipt of the student's appeal to the school dean. The appropriate dean of graduate or undergraduate studies will receive a copy of the panel's response. The findings and recommendation of the appeals panel are final.

(c) All parties involved in an academic appeal will be informed about the final disposition of the appeal. Copies of these rules and regulations are available to students in the Office of the Dean of Students where staff are available to assist students in interpreting the rules and regulations.

D. Privacy Act: Student Records
1. The student's university record is established and maintained to provide both the student and the university with information regarding the student's progress while enrolled at the university. Any student enrolled in the university has access to and may inspect those records relating to his or her academic progress, to the extent allowed by the Family Educational Rights and Privacy Act and the Texas Public Information Act. The record is considered to be confidential and may be released only within the limitations clearly defined by university regulations and state and federal statutes or with the student's written permission.

2. The university may release directory information which is defined as public information and includes the student's name, local and permanent address, telephone number, E-mail address, date and place of birth, major field of study, participation in officially recognized activities and sports, photographs, weight and height of members of athletic teams, dates of attendance, degrees, awards and honors received, and the most recent educational agency or institution attended by the student, classification, and expected date of graduation. This information may be printed in various publications of the university such as the student directory, honors list, athletic programs, list of graduating students, or similar documents. Additionally, this information may be released upon request. A student may request that the university not release directory information by completing the appropriate forms during registration. The student must complete the forms each semester.

3. Student records which the university maintains include official university academic and personal records relating to scholastic, disciplinary and fiscal matters as well as records maintained by university agencies and agencies providing services sought voluntarily by students. Students may challenge the contents of educational records and request corrections to inaccurate or misleading information. Any request for correction or explanation of record contents should be presented in writing to the person in charge of the office where the record is maintained.

4. Detailed information pertaining to the content of and handling of student records is contained in the university policy, Rules on Student Services and Activities of the university's Handbook of Operating Procedures. Students wishing more information about their rights established under the Family Educational Rights and Privacy Act should contact the Office of the Registrar, Student Services Building, (972) 883-2342.

5. The Family Educational Rights and Privacy Act does not extend to research papers and theses authored by students; these documents are available to interested members of the public.

E. Clery Act

In compliance with the Student-Right-to-Know and Campus Security Act, The University of Texas at Dallas collects specified information on campus crime statistics, campus security policies, and institutional completion or graduation rates. The university publishes an annual report of campus security policies and crime statistics and distributes copies during registration.

F. Emergency Response, Fire Safety, and Security
Emergency Response: In the event of an emergency or natural disaster the campus community will be notified as prominently as possible through several means of communication. This includes Campus Alert E-mail, the University's website, campus and local media, text-messaging, Fire Alarm Systems, Indoor Warning System and Outdoor Warning System. For policies and procedures, and reporting requirements please visit www.utdallas.edu/ehs/emergency.

Fire Safety: The entire UT Dallas campus fire alarm system is monitored 24-7 through a SimplexGrinnell Information management system. This IMS operates on a fiber optic loop connected to every building fire panel on the Richardson campus. All 30 of UT Dallas' buildings have primary reporting to the University Police and secondary reporting to EHS and EMS. For policies and procedures please visit www.utdallas.edu/ehs/firelifesafety.

Gang-free Zones: Premises owned, rented or leaded by The University of Texas at Dallas, and areas within 1,000 feet of the premises are "gang-free" zones. Certain criminal offenses, including those involving gang-related crimes, will be enhanced to the next highest category of offense if committed in a gang-free zone by an individual 17 years or older. See Texas Penal Code, Section 71.028.

Missing Student Notification: The purpose of the UT Dallas Missing Persons Policy is to establish procedures for the University's response to reports of missing students as required by the Higher Education Opportunity Act of 2008. This policy applies to students who reside in on-campus housing. For purposes of this policy, a student may be considered a "missing person" when he or she is absent from the University for more than 24 hours without any known reason. A student may also be deemed missing when his/her absence is contrary to his/her usual pattern of behavior and/or unusual circumstances may have caused the absence. Such circumstances could include, but not be limited to, a report or suspicion that the missing person may be the victim of foul play, has expressed suicidal thoughts, is drug dependent, or has been with persons who may endanger the student's welfare.

All residential students will have the opportunity to designate a confidential contact to be notified by the University no more than 24 hours after the student is determined missing. Instructions will be provided on how to register that person's contact information. Residential students' contact information will be registered confidentially, will be accessible only to authorized UT Dallas officials, and may not be disclosed except to law enforcement personnel in furtherance of a missing person investigation.

All reports of missing students must be directed to the UT Dallas Police Department, which shall investigate each report and make a determination about whether the student is missing. In addition, no later than 24 hours after a student is determined missing, UT Dallas will notify the Richardson Police Department, unless the Richardson Police Department was the entity that determined the student to be missing. At that time, if the missing student is under the age of 18 and not emancipated, UT Dallas will also notify the student's custodial parent or guardian.

G. Use of Facilities
Pursuant to the general authority of Texas Education Code Chapter 65, and the specific authority of Texas Education Code Chapter 51, the Board of Regents of The University of Texas System, in Series 80101-80110 of the Rules and Regulations, promulgates rules relating to the use of buildings, grounds, and facilities for purposes other than programs and activities related to the role and mission of the UT System and the component institutions.

The property, buildings, or facilities owned or controlled by the UT System or UT Dallas are not open for assembly, speech, or other activities as are the public streets, sidewalks, and parks. The responsibility of the Board of Regents to operate and maintain an effective and efficient system of institutions of higher education requires that the time, place, and manner of assembly, speech, and other activities on the grounds and in the buildings and facilities of the UT System or UT Dallas be regulated.

Complete copies of the regental and institutional rules and regulations are available to students in the Office of the Dean of Students where staff members are available to assist students in interpreting the rules.
Appendix II

Respective Responsibilities of Students and Faculty

A. Student Responsibility

Students are responsible for reading this catalog and understanding the programs, rules, and regulations affecting their academic progress. Further, students are responsible for fulfilling degree requirements and for enrolling in courses that fit into their degree programs.

Students are urged to plan their work with care, consulting their graduate advisers and those of the teaching staff under whom their work will be taken, and to bear in mind the requirements for the degree they seek. Students are responsible for developing a program of studies approved by their graduate adviser acting on behalf of the Graduate Studies Committee for the graduate program in which they are enrolled. The program of study must assure substantial mastery of the scholarly apparatus of the student's chosen field as well as any languages or other research skills necessary to pursue the degree. The requirements for a particular degree are listed in this catalog under the name of the specific program.

In addition, all graduate students must visit their graduate advisers prior to registration for the semester in which they plan to graduate.

A. Faculty Responsibility

Faculty members are responsible for reading this catalog and understanding the programs, rules, and regulations so that they can effectively advise students.

Each graduate program has a Graduate Studies Committee that is responsible for the academic content of the programs of studies required for degrees, subject to certain administrative approvals. Each committee has responsibility for the acceptance of graduate students and for the approval of the specific program of study for each student. Each committee also has the responsibility for naming graduate advisers to advise graduate students until the time of appointment of their thesis or dissertation supervising committees, if any. Supervising committees must meet at least once each year and file an annual report on students' progress with the Dean of Graduate Studies.
Appendix III

Mary Jo Venetis 8/4/13 11:38 AM
Comment [50]: Appendix III will be removed and replaced with “Student Travel Policy.”

Mary Jo Venetis 8/4/13 11:38 AM
Deleted: Travel and Risk-Related Activities
Overview of Changes

Program heads and/or associate deans made revisions as needed.

Courses listed in degree programs are updated to match the 2014-15 course inventory data.
School of Arts and Humanities (ARHM)
2014-15 Graduate Catalog – Degree Programs
School of Arts and Humanities

The School of Arts and Humanities offers five graduate degree programs: Arts and Technology, Emerging Media and Communication, History, Humanities, and Latin American Studies.

Degrees Offered

- **Master of Arts in Arts and Technology** (36 semester credit hours minimum)
- **Master of Fine Arts in Arts and Technology** (54 semester credit hours minimum)
- **Doctor of Philosophy in Arts and Technology** (60 semester credit hours minimum beyond the master's degree)
- **Master of Arts in Emerging Media and Communication** (33 semester credit hours minimum)
- **Master of Arts in History** (36 semester credit hours minimum)
- **Master of Arts in Humanities** (33 semester credit hours minimum)
- **Master of Arts in Humanities Major in Aesthetic Studies** (33 semester credit hours minimum)
- **Master of Arts in Humanities Major in History of Ideas** (33 semester credit hours minimum)
- **Master of Arts in Latin American Studies** (36 semester credit hours minimum)
- **Doctor of Philosophy in Humanities** (60 semester credit hours minimum beyond the master's degree)
- **Doctor of Philosophy in Humanities Major in Aesthetic Studies** (60 semester credit hours minimum beyond the master's degree)
- **Doctor of Philosophy in Humanities Major in History of Ideas** (60 semester credit hours minimum beyond the master's degree)
- **Certificate in Holocaust Studies** (15 semester credit hours)

Faculty

Professors Emeritus: Joan M. Chandler, S. Michael Simpson, Gerald L. Soliday, Deborah A. Stott

Associate Professors: Sean J. Cotter, Frank Dufour, Monica Evans, J. Michael Farmer, Todd Fechter, Midori Kitagawa, Shelley D. Lane, Patricia H. Michaelson, Peter Park, Monica Rankin, Venus O. Reese, Natalie Ring, Maximilian Schich, Erin A. Smith, Dean Terry, Daniel B. Wickberg, Michael L. Wilson

Clinical Associate Professors: Dennis Walsh, Harold (Chip) Wood
Assistant Professors: Matt Bondurant, Matt Brown, Eric Farrar, Shari Goldberg, John C. Gooch, Charles Hatfield, Jessica C. Murphy, Cihan Muslu, Mark Rosen, Eric Schlereth, Charissa N. Terranova, Katherine Turk, Shilyh Warren, Marjorie Zielke

Clinical Assistant Professor: Peter (Jay) Ingrao

Senior Lecturers: Elizabeth (Lisa) Bell, Kelly P. Durbin, Maria A. Engen, Kathryn C. Evans, Dianne Goode, Michele Hanlon, Janet Johnson, Thomas M. Lambert, Kathy Lingo, Mary Medrick, Greg L. Metz, Christopher (Chris) Ryan, Monica M. Saba, Jeffrey Schulze, Betty H. Wiesepape

Objectives

The School of Arts and Humanities is committed to interdisciplinary programs that investigate the linkages between the arts and the humanities by fusing critical with creative thinking, theoretical with practical endeavors. Rather than identifying fixed disciplinary areas, the program emphasizes the interrelationship of broad areas of interest.

Within the Graduate Program in Arts and Technology, most courses are offered under the rubric of Arts and Technology (ATEC), but the degree plan also includes courses in Aesthetic Studies (HUAS), History of Ideas (HUHI), and Studies in Literature (HUSL).

Within the Graduate Program in Emerging Media and Communication, most courses are offered under the rubric of Emerging Media and Communication (EMAC), but the degree plan also includes courses in Arts and Technology (ATEC), Aesthetic Studies (HUAS), History of Ideas (HUHI), and Studies in Literature (HUSL).

Within the Graduate Program in the Humanities, most courses are offered within the three main areas of concentration: Aesthetic Studies (HUAS), History of Ideas (HUHI), and Studies in Literature (HUSL), and students seeking the MA or PhD degrees in humanities must take courses in all three areas. The fourth area and other courses, including core courses required of all students, are offered under the rubric Humanities (HUMA).

Within the Graduate Program in History, most courses are offered within History (HIST) and History of Ideas (HUHI) but students may also take courses in Aesthetic Studies (HUAS) and Studies in Literature (HUSL).

Within the Graduate Program in Latin American Studies, required courses are offered within Latin American Studies (LATS) and elective courses are drawn from Aesthetic Studies (HUAS), History (HIST), History of Ideas (HUHI), and Studies in Literature (HUSL).

All our graduate programs are designed to provide students a flexible, interdisciplinary context within which to pursue a program of study built on connections among specific courses and the areas of concentration. Offerings include not only seminars stressing the interpretation and criticism of specific works and issues but also ensembles, studios, and workshops in which the activity of creation and/or performance becomes the primary means of learning.

Facilities

The School of Arts & Humanities provides specialized facilities for academic research and creative expression. The Jonsson Building contains technologically rich environments for studies in Rhetoric, Computer Graphics, Professional Communication, Musical Instrument Digital Interface, and Art & Technology. The Visual Arts Building houses a Media Room as well as studios for painting, photography, sculpture, and other arts. Performance venues for drama and music include the University Theatre and the Jonsson Performance Hall.

Admission Requirements
The University’s general admission requirements are discussed on the [Graduate Admission](catalog.utdallas.edu/2013/graduate/admission) page.

Each application is considered on its individual merits. Normally students applying for admission to the Graduate Program in Arts and Technology should have a previous academic degree (BA or BS, MA or MFA) in an appropriate field (i.e., Art, Computer Science), a grade point average of 3.3 (especially in upper-division undergraduate and graduate work), and evidence of previous coursework and/or expertise in the creative arts and digital technology.

Normally students applying for admission to the Graduate Program in Emerging Media and Communication should have a previous academic degree (BA or BS) in an appropriate field (i.e., Art, Computer Science, Communication), a grade point average of 3.3 (especially in upper-division undergraduate work), and evidence of previous coursework and/or expertise in the creative arts, communications, and/or digital technology.

Normally students applying for admission to the Graduate Program in Humanities should have previous academic degrees (BA or MA) in arts and humanities fields and a grade point average of 3.3 (especially in upper-division undergraduate or graduate work).

Normally students applying for admission to the Graduate Program in History should have a previous degree (BA or BS) in history or related disciplines and a grade point average of 3.3 (especially in upper-division undergraduate work).

Normally students applying for admission to the Graduate Program in Latin American Studies should have a previous degree (BA or BS) in arts and humanities fields, demonstrated interest and experience in Latin American studies and a grade point average of 3.3 (especially in upper-division undergraduate work).

The School of Arts and Humanities does not require the Graduate Record Examination for admission to graduate programs.

Full-time and Part-time Students

Students can pursue the graduate degrees in humanities on a full- or part-time basis. Full-time students normally register for nine or more semester credit hours per term. The school takes care to accommodate part-time study by scheduling both day and night classes, thus allowing students flexibility in organizing individual schedules.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures](catalog.utdallas.edu/2013/graduate/policies/policy) page.

The approach to graduate education in the School of Arts and Humanities is flexible. Within the specific degree requirements listed below, each student plans a program of studies in consultation with an assigned faculty advisor.

Courses meeting degree requirements are normally chosen from the core courses and the areas of concentration within the School of Arts and Humanities. To have courses taken outside the school applied to one of its degrees, students must seek prior approval from the School's Associate Dean for Graduate Studies. They may also petition to have appropriate transfer courses applied to reduce the required number of semester credit hours for a degree at UT Dallas. The School's Associate Dean for Graduate Studies may require students with background deficiencies in interdisciplinary work to take additional courses at the undergraduate or graduate level to remedy those deficiencies.
Active involvement in the process of artistic creation and performance is basic to the design of the Aesthetic Studies area of concentration. Therefore, students working in the Graduate Program in the Humanities at the MA level with an emphasis on Aesthetic Studies are required to take at least one ensemble/workshop, and those working toward a PhD with an emphasis on this area are required to take at least one additional ensemble/workshop. Students undertaking creative projects for master's portfolios or doctoral dissertations must demonstrate their competency as artists by including in their degree plans a minimum number of studios, ensembles, or workshops related to a proposed medium: two for the MA and four for the PhD.

Research

The research interests of the faculty reflect the interdisciplinary mission of the School. In addition to the research activities of individual faculty, six centers and institutes that promote interdisciplinary research are located within the School: The Center for Translation Studies; the Ackerman Center for Holocaust Studies; the Confucius Institute; the Institute for Interactive Arts and Engineering; the Center for the Interdisciplinary Study of Museums, and the Center for Values in Medicine, Science and Technology. Since the School combines the Humanities and the Arts, many faculty are engaged in the creation and performance of artistic works in music, drama, literature, and the visual arts.
School of Arts and Humanities

Graduate Programs in Arts and Technology

The program leading to the MA in Arts and Technology is designed both for individuals engaged in professional practice wishing to enhance their knowledge and skills and for students intending to pursue a doctorate in a related field. It offers advanced studies in interactive media and computer-based arts that emphasize the fusion of creative with critical thinking and theory with practice. Students must complete thirty-six semester credit hours of coursework and an advanced project.

Master of Arts in Arts and Technology

36 semester credit hours minimum

<table>
<thead>
<tr>
<th>Major Core Courses: 9 semester credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEC 6300 Interdisciplinary Approaches to Arts and Technology</td>
</tr>
<tr>
<td>ATEC 6331 Aesthetics of Interactive Arts</td>
</tr>
<tr>
<td>ATEC 6391 Computer Processing for Arts and Technology</td>
</tr>
<tr>
<td>Students are expected to complete these courses as early as possible in their degree plan.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prescribed Electives: 24 semester credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twenty-four semester credit hours chosen from the following courses:</td>
</tr>
<tr>
<td>ATEC 6332 Design Principles</td>
</tr>
<tr>
<td>ATEC 6335 Research in Sound Design</td>
</tr>
<tr>
<td>ATEC 6341 Game Design</td>
</tr>
<tr>
<td>ATEC 6344 History and Culture of Interactive Media</td>
</tr>
<tr>
<td>ATEC 6345 Game Production Lab</td>
</tr>
<tr>
<td>ATEC 6346 Game Pipeline Methodologies</td>
</tr>
<tr>
<td>ATEC 6347 Serious Games</td>
</tr>
<tr>
<td>ATEC 6348 Educational Games</td>
</tr>
<tr>
<td>ATEC 6351 Digital Arts</td>
</tr>
<tr>
<td>ATEC 6352 Motion Capture</td>
</tr>
<tr>
<td>ATEC 6353 Visualization Research</td>
</tr>
<tr>
<td>ATEC 6354 Virtual Environments</td>
</tr>
<tr>
<td>ATEC 6355 Animation Production Lab</td>
</tr>
<tr>
<td>ATEC 6356 Interactive Narrative</td>
</tr>
</tbody>
</table>

Deleted: 6
Deleted: 27
Deleted: seven
Deleted: ATEC 6333 Computational Design
Deleted: ATEC 6334 Information Design for New Media
Deleted: ATEC 6342 Game Studies
Deleted: ATEC 6343 Interactive Environments
ATEC 6357 Animation Studio
ATEC 6358 Concept Development
ATEC 6359 Digital Cinematography
ATEC 6361 Creating Interactive Media
ATEC 6362 Modeling and Simulation
ATEC 6363 Creative Automata
ATEC 6371 Studies in Arts, Science, and Humanities
ATEC 6375 Topics in Emerging and Cognitive Design
ATEC 6384 Special Topics in Game Studies
ATEC 6385 Special Topics in Animation
ATEC 6389 Topics in Arts and Technology
EMAC 6372 Approaches to Emerging Media and Communication
EMAC 6373 Emerging Media Studio I
EMAC 6374 Digital Textuality
HUAS 6310 Introduction to Film Studies
HUAS 6313 The Business of the Arts
HUAS 6312 Art and Society
HUAS 6330 Studies in the Visual Arts
HUAS 6339 Painting/Digital Imaging/Video
HUAS 6354 Creating Short Fictions
HUAS 6375 Imagery and Iconography
HUAS 6381 Creating Fiction: Intermediate
HUAS 6391 Creativity: Visual Arts Workshop
HUAS 6392 Creativity: Image/Text Workshop
HUAS 6393 Creativity: Time-Based Arts Workshop
HUAS 6370 Studies in Literature and Ideas

Final Project: 3 semester credit hours
ATEC 6V95 Advanced Project Workshop

Having completed at least 30 semester credit hours of course work, students will complete and present an advanced project in digital arts for evaluation by a master’s committee.

Master of Fine Arts in Arts and Technology
54 semester credit hours minimum

The program leading to the MFA in Arts and Technology is designed both for students wishing to teach arts-and-technology-related courses in colleges and universities and for those intending to engage in professional studio or design practice. While maintaining a commitment to interdisciplinary education fusing critical with creative thinking, this program places greater emphasis on the creation and application of computer-based arts and narrative. Students must complete fifty-four semester credit hours of course work and a substantial advanced project.

Major Core Courses: 6 semester credit hours
ATEC 6300 Interdisciplinary Approaches to Arts and Technology
ATEC 6331 Aesthetics of Interactive Arts

Students are expected to complete these courses as early as possible in their degree plan.

Prescribed Electives: 24 semester credit hours

Twenty-four semester credit hours chosen from the following courses:

ATEC 6332 Design Principles
ATEC 6335 Research in Sound Design
ATEC 6341 Game Design

ATEC 6344 History and Culture of Interactive Media
ATEC 6345 Game Production Lab
ATEC 6346 Game Pipeline Methodologies
ATEC 6347 Serious Games
ATEC 6348 Educational Games

ATEC 6351 Digital Arts
ATEC 6352 Motion Capture
ATEC 6353 Visualization Research
ATEC 6354 Virtual Environments

ATEC 6355 Animation Production Lab
ATEC 6356 Interactive Narrative
ATEC 6357 Animation Studio
ATEC 6358 Concept Development
ATEC 6359 Digital Cinematography

ATEC 6361 Creating Interactive Media
ATEC 6362 Modeling and Simulation
ATEC 6363 Creative Automata
ATEC 6380 Studies in Arts, Science, and Humanities

ATEC 6385 Special Topics in Animation

ATEC 6389 Topics in Arts and Technology
ATEC 6398 Computer Processing for Arts and Technology
EMAC 6372 Approaches to Emerging Media and Communication
EMAC 6373 Emerging Media Studio I
EMAC 6374 Digital Textuality
EMAC 6375 Research Methodologies in Emerging Media and Communication

HUAS 6310 Introduction to Film Studies
HUAS 6312 Art and Society
HUAS 6313 The Business of the Arts
HUAS 6317 Art and Authorship
HUAS 6330 Studies in the Visual Arts
HUAS 6339 Painting/Digital Imaging/Video
HUAS 6352 Creating TV and Movie Scripts
HUAS 6354 Creating Short Fictions
HUAS 6373 Studies in Film, Television, and Digital Media
HUAS 6375 Imagery and Iconography
HUAS 6381 Creating Fiction: Intermediate
HUAS 6391 Creativity: Visual Arts Workshop
HUAS 6392 Creativity: Image/Text Workshop
HUAS 6393 Creativity: Time-Based Arts Workshop

HUAS 6370 Studies in Literature and Ideas

Free Electives: 9 semester credit hours
Nine semester credit hours of electives in any organized courses.

Independent Study: 9 semester credit hours

Final Project: 6 semester credit hours
ATEC 6V95 Advanced Project Workshop

Having completed at least 45 semester credit hours of course work, students complete and present a substantial advanced project in digital arts for evaluation by a master’s committee.
Doctor of Philosophy in Arts and Technology

60 semester credit hours minimum beyond the master’s degree

The program leading to the PhD in Arts and Technology is designed both for students wishing to teach arts-and-technology-related courses in colleges and universities and those who wish to develop new artistic, cultural or commercial applications of digital technology/emerging media. This program emphasizes the fusion of creative with critical thinking and theory with practice. Students seeking a PhD in Arts and Technology will normally complete a minimum of 60 semester credit hours (42 semester credit hours in course work and 18 semester credit hours in dissertation) beyond a master’s degree or its equivalent, pass doctoral field examinations, and complete and defend a dissertation.

Within the first 18 hours of course work applicable to the degree plan, students must successfully complete ATEC 6300, ATEC 6331, ATEC 7331, and EMAC 6375.

Major Core Courses: **12** semester credit hours

- ATEC 6300 Interdisciplinary Approaches to Arts and Technology
- ATEC 6331 Aesthetics of Interactive Arts
- ATEC 6391 Computer Processing for Arts and Technology
- ATEC 7331 Research Methodology in Arts and Technology

Recommended Electives: **18** semester credit hours

- Eighteen semester credit hours chosen from the suggested courses below:

 - ATEC 6341 Game Design
 - ATEC 6351 Digital Arts
 - ATEC 6353 Visualization Research
 - ATEC 6361 Creating Interactive Media
 - ATEC 6389 Special Topics in Arts and Technology
 - ATEC 7349 Advanced Studies in Arts and Technology
 - ATEC 7V81 Advanced Project Workshop
 - ATEC 7V82 Advanced Projects in Interactive Media
 - ATEC 7620 Advanced Projects in Simulation and Game Design
 - ATEC 8303 Independent Readings in Arts and Technology
 - ATEC 8305 Independent Research in Arts and Technology
 - EMAC 6342 Digital Culture
 - EMAC 6372 Approaches to Emerging Media and Communication
 - EMAC 6374 Digital Textuality
 - EMAC 6375 Research Methodologies in Emerging Media and Communication
 - EMAC 6381 Special Topics in Emerging Media and Communication
 - HUAS 6375 Imagery and Iconography
 - HUHI 7387 Science and Technology in Western Culture
 - HUSL 6384 Digital and Visual Rhetorics

Free Electives: **12** semester credit hours
Twelve semester credit hours of electives in any organized graduate-level courses offered by the Schools of Arts and Humanities, Engineering and Computer Science, Behavioral and Brain Sciences, Management, Economic, Political and Policy Sciences, Natural Science and Mathematics, or Interdisciplinary Studies. All free electives are subject to approval by the Graduate Advisor.

Doctoral Field Examinations

After completing all these requirements, students proceed to the doctoral field examinations, a sequence consisting of three written sections and one oral section. The examining committee, composed of three regular members of the faculty, oversees definition and preparation of the three examination fields within guidelines established by the program. At least, three business days before the exams themselves, the faculty members submit examination questions to the Arts and Humanities office, which schedules and administers the examination. The maximum time allowed for a student’s completion of the examination sequence is 20 business days.

Dissertation (18 semester credit hours minimum)

Students are formally advanced to PhD candidacy when they have successfully completed the qualifying examinations and received final approval for dissertation topics. A four-person supervising committee is formed, normally from the examining committee plus another regular faculty member proposed by the student, to oversee dissertation work.

Each candidate then writes a doctoral dissertation, which is supervised and defended according to general university regulations. Every student must register for a minimum of nine semester credit hours of dissertation credit in two successive semesters and must maintain continuous enrollment thereafter for at least three semester credit hours during consecutive long semesters until the degree is completed. Any exception to this requirement is granted only by petition to the school’s Associate Dean for Graduate Studies.
School of Arts and Humanities

Graduate Program in Emerging Media and Communication

The program leading to the MA in Emerging Media and Communication focuses on ways in which network technologies are transforming the creation and dissemination of information and content. Providing an interdisciplinary education that connects theory with practice, the program combines the creation of digital content for multiple communication platforms with examination of cultural issues created by emerging technology. The program is intended for (a) professionals in fields such as journalism, design, public relations, and advertising that are powerfully affected by emerging communicative technologies, (b) graduates with degrees in computer science or related fields who wish to expand their occupational potential by gaining expertise in communication, (c) graduates of programs in the humanities, communication, and journalism who wish to expand their occupational potential by gaining expertise in emerging media, and (d) teachers in the humanities and other fields that will be profoundly affected by new modes of communication and information transfer. Students must complete 33 semester credit hours of coursework and a capstone project.

Master of Arts in Emerging Media and Communication

33 semester credit hours minimum

Major Core Course: 3 semester credit hours

EMAC 6300 Interdisciplinary Studies in Emerging Media and Communication

Required Courses: 15 semester credit hours

EMAC 6342 Digital Culture
EMAC 6372 Approaches to Emerging Media and Communication
EMAC 6373 Emerging Media Studio I
EMAC 6374 Digital Textuality
HUHI 6323 Space, Time, and Culture
or
HUHI 6351 History and Philosophy of Science and Technology
or
HUSL 6355 Literature, Science, and Culture

Prescribed Electives: 9 semester credit hours

Nine hours chosen from the following courses:

ATEC 6331 Aesthetics of Interactive Media
ATEC 6361 Creating Interactive Media
EMAC 6365 Journalism and the Digital Network
EMAC 6375 Research Methodologies in Emerging Media and Communication
EMAC 6383 Emerging Media Studio II
EMAC 6381 Special Topics in Emerging Media and Communication
HUAS 6312 Art and Society
HUAS 6330 Studies in the Visual Arts
HUAS 6339 Painting/Digital Imaging/Video
HUAS 6354 Creating Short Fictions
HUAS 6355 Creating Nonfictions
HUAS 6373 Studies in Film, Television, and Digital Media
HUAS 6391 Creativity: Visual Arts Workshop
HUHI 6323 Space, Time, and Culture
HUHI 6327 Artist and Writer in Society
HUSL 6355 Literature, Science, and Culture

Free Elective: 3 semester credit hours

Final Project: 3 semester credit hours

EMAC 6V91 Advanced Project Workshop

Having completed at least 30 semester credit hours of coursework, students will complete and present an advanced multi-media project for evaluation by a master's committee.
School of Arts and Humanities

Graduate Programs in the Humanities

The program leading to the MA in Humanities is designed both for individuals wishing to enhance their knowledge and skills and for students intending to pursue a doctorate in a humanistic field. Thus, students seeking an MA in Humanities have two options, a "research" or a "professional" option. Students with plans for doctoral study should choose the research option.

Students in the research option must complete thirty-three semester credit hours of coursework, demonstrate reading proficiency in an approved foreign language, and successfully complete a portfolio.

Master of Arts in Humanities

33 semester credit hours minimum

- Master of Arts in Humanities Major in Aesthetic Studies
- Master of Arts in Humanities Major in History of Ideas
- Master of Arts in Humanities Major in Studies in Literature

Major Core Course: 3 semester credit hours

HUMA 6300 Interdisciplinary Approaches to the Arts and Humanities

Students are expected to complete this course within their first two semesters of enrollment.

Elective Courses: 30 semester credit hours

Thirty semester credit hours, of which at least twenty-seven semester credit hours are normally in organized courses. Eighteen of these semester credit hours are divided among organized courses in Aesthetic Studies (6 semester credit hours), History of Ideas (6 semester credit hours), and Studies in Literature (6 semester credit hours). The remaining semester credit hours must be taken in the student's major area of concentration (Aesthetic Studies, History of Ideas, or Studies in Literature), the exception being students pursuing a general Humanities degree. Normally no more than three semester credit hours of independent study are applicable to the degree plan. Independent studies do not count toward the 18 semester credit hour minimum in the major required for certification to teach at either a two or four year college/university. MA students are restricted to courses numbered at the 5000- and 6000-level.

Foreign Language

The research MA degree requires demonstrated reading proficiency in an approved foreign language. Students can demonstrate proficiency by passing a translation examination in an approved language (e.g., Chinese, French, German, classical Greek, Italian, Latin, or Spanish). Intensive review courses (HUMA 6320 to HUMA 6323) and the advanced language workshops (HUMA 6330 to HUMA 6333), which students may take to prepare for the examination, do not count toward minimum course requirements for the degree. Any students wishing to satisfy the
requirement with languages other than those listed above must secure the approval of the School's Associate Dean for Graduate Studies. Students must satisfy the MA language requirement before or as they submit their master's portfolio proposals to the Graduate Studies Committee.

Portfolio

Two substantial pieces of work (two research papers or a creative project plus a scholarly essay) originating in or completed for graduate courses are revised and presented in a portfolio for evaluation by a master's committee.

Students in the professional option in Humanities must complete thirty-three semester credit hours of coursework, all normally in organized courses and distributed as in the research option above. They are not required to complete a portfolio or meet a foreign language requirement, however, and they receive a terminal degree.

Doctor of Philosophy in Humanities

60 semester credit hours minimum beyond the master's degree

- Doctor of Philosophy in Humanities Major in Aesthetic Studies
- Doctor of Philosophy in Humanities Major in History of Ideas
- Doctor of Philosophy in Humanities Major in Studies in Literature

Students seeking a PhD in the Humanities will normally complete a minimum of sixty semester credit hours beyond a master's degree or its equivalent, demonstrate advanced proficiency in a foreign language, pass doctoral field examinations, and complete and defend a dissertation. In addition to meeting the general university criteria for admission to graduate study, students earning an MA degree in the Humanities from UT Dallas must obtain the formal endorsement of their portfolio committees to proceed into the doctoral program. Students who have completed pertinent graduate work at other institutions (thirty semester credit hours of humanities courses, language training, and written work roughly equivalent to the portfolio here) may qualify for a Master of Arts equivalency upon admission to the graduate program. Students admitted with an MA equivalent must take HUMA 6300 within their first two semesters of enrollment.

Courses: 42 semester credit hours

Forty-two semester credit hours of which at least thirty-three are normally in organized courses. Eighteen of these semester credit hours are divided among organized courses in Aesthetic Studies (6 semester credit hours), History of Ideas (6 semester credit hours), and Studies in Literature (6 semester credit hours). The remaining semester credit hours may be in one or more of the three areas, and normally no more than nine semester credit hours of independent study are applicable to the degree. At least fifteen semester credit hours of doctoral coursework must be taken in organized courses numbered at the 7000-level.

Within the first 18 hours of course work applicable to the degree plan, students must successfully complete HUMA 6300, one course in HUAS, one course in HUHI, and one course in HUSL.

Foreign Language

Students admitted to the PhD program from universities other than UT Dallas must pass a translation examination in an approved foreign language (e.g., Chinese, French, German, classical Greek, Italian, Latin, or Spanish) during their first year in the PhD program. Part-time students admitted from other universities, however, may have two calendar years to meet this initial requirement. All PhD students must then demonstrate active use of the foreign language at an advanced level in two courses. For this purpose, they may undertake readings and research in regular
organized courses, they may meet one half the requirement by taking the Art and Craft of Translation (HUSL 6380) once, or they may arrange to demonstrate active use of the language as part of an independent study. Students wishing to satisfy the requirement with languages other than those listed above must secure the approval of the school's Associate Dean for Graduate Studies.

Students must satisfy the PhD foreign-language requirement prior to taking doctoral field examinations.

Doctoral Field Examinations

After completing all the above requirements, students proceed to the doctoral field examinations, a sequence consisting of three written sections and one oral section. The examining committee, composed of three regular members of the faculty, oversees definition and preparation of the three examination fields within guidelines established by the program. At least three business days before the exams themselves, the faculty members submit examination questions to the Arts and Humanities office, which schedules and administers the examination. The maximum time allowed for a student's completion of the examination sequence is twenty business days.

Dissertation (18 semester credit hours minimum)

Students are formally advanced to PhD candidacy when they have successfully completed the qualifying examinations and received final approval for dissertation topics. A student may submit a preliminary dissertation proposal for consideration during the oral section of the qualifying examination. In any case, after that examination, a four-person supervising committee is formed, normally from the examining committee plus another regular faculty member proposed by the student, to oversee dissertation work. The supervising committee must then approve a formal dissertation proposal before the student submits it to the Graduate Studies Committee for final approval.

Each candidate then writes a doctoral dissertation, which is supervised and defended according to general university regulation. Every student must register for a minimum of nine semester credit hours of dissertation credit in two successive semesters and must maintain continuous enrollment thereafter for at least three semester credit hours during consecutive long semesters until the degree is completed. Any exception to this requirement is granted only by petition to the school's Associate Dean for Graduate Studies.

Certificate in Holocaust Studies

The Ackerman Center for Holocausts Studies

The Certificate in Holocaust Studies (Certificate) is offered to MA and PhD students in the School of Arts and Humanities (A&H) from The Ackerman Center for Holocaust Studies at UT Dallas.

Each student seeking a Certificate in Holocaust Studies must complete 15 graduate semester credit hours in organized classes chosen from the courses below.

Holocaust Certification Courses: 15 semester credit hours

I. Foundation Courses (6 semester credit hours)

- HUHI 6338: The Holocaust
- HUSL 6378: Literature and the Holocaust

II. German history, philosophy, and literature (3 semester credit hours)
HUSL 6375: German Literature and Ideas 1870-1960
or
HUSL 6376: Literature of Weimar Germany

III. Jewish Studies (6 semester credit hours):

HUSL 6374: Modern Jewish Literature across Cultures
HUHI 6336: Modernity, Culture, and the Jews

1. As new courses are developed, students may substitute a required course with the permission of the Center’s Director.

Students with Existing Course Credit

Students who have completed a minimum of 9 semester credit hours as of the date of application for the Holocaust Certificate may apply their semester credit hours toward the above requirements as long as those classes have been taken within the last 24 semester credit hours or 12 months of prior coursework. Students must be current in their requirements for graduation, and should be prepared to furnish the Center Advisor a completed, up-to-date advising form from their A&H Academic Advisor.

Certificate Registration

Certificate registration forms are available online at www.utdallas.edu/ah/ackerman. Please contact the Center office at 972-883-2100, or by email: holocauststudies@utdallas.edu if you have any questions. Please submit Certification enrollment forms to the Arts and Humanities Office located at JO 4.510.
School of Arts and Humanities

Graduate Program in History

The program leading to the MA in History is designed both for individuals wishing to enhance their knowledge of and skills at the study of the past and for those intending to pursue a doctorate in a related field. Thus, students seeking the MA in History have two options, a "research" or a "professional" option. Students with plans for doctoral study should choose the research option.

Students in the research option must complete thirty-six semester credit hours of coursework, demonstrate reading proficiency in an approved foreign language, and successfully complete a master's thesis.

Master of Arts in History

36 semester credit hours minimum

Major Core Course: 3 semester credit hours

[HIST 6301] Historiography

Students are expected to complete this course as early as possible in their programs.

Electives in History (HIST) or History of Ideas (HUHI): 24 semester credit hours

Twenty-four semester credit hours chosen from graduate courses in HIST or HUHI, at least fifteen of which must be in HIST courses. Normally no more than six semester credit hours of independent study are applicable to the degree plan.

Elective Course: 3 semester credit hours

Three semester credit hours in any organized course outside of History (HIST) and History of Ideas (HUHI), but normally in the Humanities Graduate Program.

Thesis: 6 semester credit hours

[HIST 6399] Master's Thesis

Having completed thirty semester credit hours of coursework, students must write and present a thesis in history for evaluation by a master's committee.

Students in the professional option in History must complete thirty-six semester credit hours of coursework, including [HIST 6301] and normally all in organized HIST and HUHI courses. They are not required to complete a thesis or meet a foreign-language requirement, and they receive a terminal degree.
School of Arts and Humanities

Graduate Program in Latin American Studies

The program leading to the MA in Latin American Studies allows students to acquire expertise in multiple aspects of Latin America. Building on the unique interdisciplinary structure of the School of Arts and Humanities, the program has an integrated curriculum that connects literary, historical, cultural, and visual studies. Students seeking the MA in Latin American Studies have two options, a "research" or a "professional" option. Students with plans for doctoral study should choose the research option.

Students pursuing the research option must complete thirty-six semester credit hours of coursework, demonstrate reading proficiency in an approved foreign language, complete an approved internship or study abroad, and successfully complete a capstone project. Normally no more than six semester credit hours of independent study are applicable to the degree plan.

Master of Arts in Latin American Studies

36 semester credit hours minimum

Major Core Course: 3 semester credit hours

LATS 6300: Introduction to Latin American Studies

Students are expected to complete this course as early as possible in their program.

Prescribed Electives: 15 semester credit hours

Prescribed electives are selected from the following courses:

HIST 6360 Latin American History
HIST 6365 Mexican History
HUAS 6334 Iberian Culture and Music
HUHI 6315 Thought, Culture, and Society in Latin America
HUSL 6373 Topics in Latin American Literature
HUSL 6380 The Art and Craft of Translation
HUSL 6396 Spanish Language, Literature, and Culture

Free Elective Courses: 9 semester credit hours

These three courses may be selected from other courses related to Latin America and/or the students' area of concentration. Students may take approved courses on Latin America topics in the School of Economic, Political, and Policy Sciences and the School of Interdisciplinary Studies.

Free electives must be approved by the Associate Dean for Graduate Studies.

Internship or Study Abroad: 3 semester credit hours
Students will also complete a minimum of 3 semester credit hours in an approved study abroad immersion program or a comparable internship program established in partnership with UT Dallas and businesses and/or non-for-profit agencies in the Dallas-Fort Worth area.

LATS 6390 Internship in Latin American Studies

Capstone Project: 6 semester credit hours

LATS 6399 Capstone Project in Latin American Studies

Having completed thirty semester credit hours of coursework, students must write and present a capstone project on a topic of their choice in Latin American Studies, either a research thesis or final project.

Professional Option in Latin American Studies

Students pursuing the professional option in Latin American Studies must complete thirty-six semester credit hours of coursework, including **LATS 6300** and 15 semester credit hours of prescribed electives, demonstrate reading proficiency in an approved foreign language, and complete an approved internship or study abroad. They are not required to complete a capstone project and they receive a terminal degree. Normally no more than six semester credit hours of independent study are applicable to the degree plan.
School of Behavioral and Brain Sciences

The School of Behavioral and Brain Sciences offers graduate preparation at the Masters and Doctoral levels designed to meet the needs of students with both research and professional objectives. With instruction and mentoring from internationally recognized faculty, the School's programs emphasize multidisciplinary training coupled with opportunities for intensive research and clinical experiences. The School's degree programs draw upon three clusters of expertise: Communication Sciences and Disorders, Cognition and Neuroscience, and Psychological Sciences. The Callier Center for Communication Disorders-Dallas, Callier-Richardson, the Center for BrainHealth, the Center for Vital Longevity, and the Center for Children and Families all large comprehensive clinical, research, and community service facilities further enrich the training of graduate students.

Degrees Offered

- **Master of Science in Applied Cognition and Neurosciences** (36 semester credit hours minimum)
- **Master of Science in Communication Disorders** (48 semester credit hours minimum)
- **Master of Science in Human Development and Early Childhood Disorders** (45 semester credit hours minimum)
- **Master of Science in Psychological Sciences** (36 semester credit hours minimum)
- **Doctor of Audiology** (100 semester credit hours)
- **Doctor of Philosophy in Cognition and Neuroscience** (75 semester credit hours minimum beyond the baccalaureate degree)
- **Doctor of Philosophy in Communication Sciences and Disorders** (75 semester credit hours minimum beyond the baccalaureate degree)
- **Doctor of Philosophy in Psychological Sciences** (75 semester credit hours minimum beyond the baccalaureate degree)
School of Behavioral and Brain Sciences
Program

Master of Science Program in Applied Cognition and Neuroscience

Faculty

Professor Emeritus: Susan W. Jerger

Associate Professors: Francesca Filbey, Daniel Krawczyk, Mandy J. Maguire, Christa K. McIntyre, Bart Rypma, Lucien (Tres) Thompson

Assistant Professors: Chandramallika Basak, Cindy M. De Frias, Kristen Kennedy, Sven Kröener, Jonathan E. Ploski, Karen Rodrigue, Noah J. Sasson, Gagan Wig

Distinguished Scholar in Residence Emeritus: James F. Jerger

Objectives

The Master of Science in Applied Cognition and Neuroscience (ACN) program is an applied multidisciplinary program that incorporates and integrates methodologies from such diverse fields as psychology, neuroscience, computer science, and philosophy. The Neuroscience specialization area enables students to focus on the brain from a variety of perspectives including systems, cellular, and molecular-level approaches with the objective of understanding the interactions of these systems and how they underlie the emergence and diversity of behavior. The Cognition specialization area provides students with training in the area of experimental cognitive psychology, which exploits experimental psychology methods to develop and test information processing theories of human behavior, including perception, learning, memory, thinking, and language. The Cognition and Neuroscience specialization area provides a flexible multidisciplinary curriculum for studying the mind and brain that strategically incorporates features of both the Cognition specialization area and the Neuroscience specialization area. Students enrolling in the Cognition and Neuroscience specialization area learn to use behavioral research methods in conjunction with neuroscience research methods to investigate the neural foundations of cognitive processes. The Computational Modeling/Intelligent Systems specialization area provides advanced training applicable to mathematical and computer simulation models of the brain and behavior as well as the design, development, and evaluation of artificially intelligent systems. The Human-Computer Interaction specialization area provides preparation for work in areas involving human-computer interactions. These areas include usability engineering and user-experience design issues associated with the design, development, and evaluation of user-friendly human-computer interfaces. The Neurological Diagnosis and Monitoring specialization area provides advanced training for using functional brain imaging methodologies such as: EEG, SPECT, PET, and fMRI for both clinical and experimental investigations. It also provides training for career paths in the field of Intraoperative Neurophysiological Monitoring. Furthermore, all six specialization areas provide excellent preparation for doctoral work in the Cognition and Neuroscience area as well as medical school.
Career Opportunities

The Masters of Science in Applied Cognition and Neuroscience (ACN) provides advanced training opportunities in the areas of Neuroscience, Experimental Psychology, Artificial Intelligence, and Human-Computer Interactions. In addition, the ACN program is a multidisciplinary program that should be of interest to business professionals working full-time in a professional-level job who are interested in either a career change or continuing education. Many courses in the ACN program are offered periodically as evening courses that meet either once or twice a week. A few representative career opportunities in the Applied Cognition and Neuroscience Area are listed as follows.

- Software development and engineering professionals interested in pursuing careers in the areas of usability engineering and user-experience (UX) design and development will greatly benefit from the Human-Computer Interactions specialization area. Usability engineering and user-experience design involve the evaluation and design of human-computer interfaces such as: website and software graphical user interfaces (GUIs), smartphone interfaces, and voice-user interfaces (VUIs).
- Psychological counselors and education professionals (e.g., high school science teachers, adult literacy educators) will greatly benefit from the basic neuroscience and psychological science courses offered in the Cognition and Neuroscience specialization area.
- Medical health professionals (e.g., Electroneurodiagnostic Technologists, MRI Technicians, Radiologists) who are working in the area of brain imaging technology will find the Neurological Diagnosis and Monitoring specialization area relevant for improving their knowledge and understanding of functional brain imaging technologies such as: EEG, SPECT, PET, and fMRI.
- Software development and engineering professionals interested in artificially intelligent systems should consider the Intelligent Systems specialization area. Mathematical algorithms are now widely embedded in a variety of systems for the purposes of providing "intelligent assistance" to the end-user. Examples of such systems include: web search engines, speech recognition systems, robotics, computer-vision systems, computer games, natural language understanding systems, bionic and prosthetic technology, data mining systems, and machine learning systems.

Facilities

In addition to numerous individual faculty research labs, the Applied Cognition and Neuroscience Program utilizes several facilities which are shared among faculty and graduate students in the School of Behavioral and Brain Sciences. The Computational Systems Laboratory consists of a network of workstations which are used for computationally intensive models of perceptual, cognitive, and neural processes as well as high-volume data analyses. The Computational Systems Laboratory can be accessed remotely by graduate students and faculty members. The Neuroscience Laboratory facilities are located in Green Hall and the Administration Building at the Richardson campus as well. The Callier Center for Communication Disorders, located adjacent to the University of Texas Southwestern Medical Center, provides access to brain imaging laboratories and speech, hearing, and language laboratories.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

Admission to the Applied Cognition and Neuroscience Program is based on a review of the applicant's GPA, letters of recommendation, and narrative description of interests and career goals. Both GRE math and verbal scores are required to be considered for admission.
Students with strong academic records, who are in the process of completing their undergraduate degree at UT Dallas, may be admitted as Fast-track students. Fast-track students may accelerate completion of the degree requirements of the Master of Science Program in Applied Cognition and Neuroscience at UT Dallas by completing up to 15 credits of specified fast-track graduate coursework at UT Dallas as an undergraduate. Fast-track semester credit hours may be used to fulfill requirements for the student's undergraduate UT Dallas degree as well as satisfy course requirements for the masters' degree in Applied Cognition and Neuroscience. Applications to the Graduate Program in Applied Cognition and Neuroscience can be submitted as soon as the student is an undergraduate at UT Dallas with no more than 45 semester credit hours remaining.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

All students in the program are required to regularly review their degree plans with their program advisor. In all areas of specialization, students complete 6 semester credit hours of approved core courses, 6 semester credit hours of approved methods courses, 6 semester credit hours of approved advanced elective courses, 12 semester credit hours of coursework in an approved specialization area, and 6 semester credit hours of internship courses. A grade of 'B' is the required passing grade for coursework used to fulfill the core course and methods course requirements of the degree. Internship coursework must be taken pass/fail.

Master of Science in Applied Cognition and Neuroscience

36 semester credit hours minimum

Required Major Core Courses: 6 semester credit hours

Select two of the following core courses based upon choice of specialization area:

- ACN 6330 Cognitive Science
- ACN 6395 Cognitive Psychology
- ACN 6340 Cellular Neuroscience
- ACN 6338 Functional Neuroanatomy
- ACN 6346 Systems Neuroscience
- ACN 6348 Neural Net Mathematics

Required Methods Courses: 6 semester credit hours

Select two methods courses based upon choice of specialization area:

- ACN 6312 Research Methods in Behavioral and Brain Sciences - Part I
- ACN 6313 Research Methods in Behavioral and Brain Sciences - Part II
- ACN 6316 Research Methods in Behavioral and Brain Sciences - Part III
- ACN 5314 Computational Modeling Methods in Behavioral and Brain Sciences
- ACN 6388 MATLAB for Brain Sciences
- ACN 6322 Computational Modeling Methods for Language Understanding
- ACN 6347 Intelligent Systems Analysis
- ACN 6349 Intelligent Systems Design
- ACN 6373 Intraoperative Neurophysiological Monitoring I
- ACN 6374 Intraoperative Neurophysiological Monitoring II
Area of Specialization (18 semester credit hours)

The following six specialization areas have been approved for the Applied Cognition and Neuroscience program. Alternative curriculum proposals may be submitted for consideration to the Applied Cognition and Neuroscience program head.

Neuroscience Specialization Area

All students selecting this specialization area should take at least two of the following three courses: ACN 6346 Systems Neuroscience, ACN 6338 Functional Neuroanatomy, and ACN 6340 Cellular Neuroscience in order to fulfill their core course requirements. Students interested in pursuing work in the area of Cognitive-Neuroscience should, in addition, take either: ACN 6330 Cognitive Science or ACN 6395 Cognitive Psychology.

Students selecting this specialization area are approved to select any four courses from the ACN program (i.e., courses with the prefix ACN) or the Cognition and Neuroscience Area of the Doctoral Programs in Psychological Sciences (i.e., courses with the prefix HCS). Students in this specialization area should consider taking ACN 6330 Cognitive Science as an elective course.

Cognition Specialization Area

The core course requirement for this specialization area is satisfied by choosing: ACN 6330 Cognitive Science and ACN 6395 Cognitive Psychology. Research Methods I (ACN 6312) and Research Methods II (ACN 6313) are also strongly recommended for this specialization area. It is also strongly recommended that students take at least one of the following two courses: ACN 6346 Systems Neuroscience and ACN 6338 Functional Neuroanatomy.

Students selecting this specialization area are approved to select any four courses from the ACN program (i.e., courses with the prefix ACN) or the Cognition and Neuroscience Area of the Doctoral Programs in Psychological Sciences (i.e., courses with the prefix HCS).

Cognition and Neuroscience Specialization Area

All students selecting this specialization area should take either: ACN 6346 Systems Neuroscience or ACN 6338 Functional Neuroanatomy in order to fulfill one of their core course requirements. The remaining core course requirement will be satisfied by choosing either: ACN 6330 Cognitive Science or ACN 6395 Cognitive Psychology. Research Methods I (ACN 6312) and Research Methods II (ACN 6313) are also strongly recommended for this specialization area.

Students selecting this specialization area are approved to select any four courses from the ACN program (i.e., courses with the prefix ACN) or the Cognition and Neuroscience Area of the Doctoral Programs in Psychological Sciences (i.e., courses with the prefix HCS).

Human-Computer Interactions Specialization Area

Both ACN 6330 Cognitive Science and ACN 6395 Cognitive Psychology may be used to satisfy the core course requirement for this specialization area. All students selecting this specialization area should take at least one of the following three courses: ACN 6341 Human Computer Interactions I, ACN 6342 Human Computer Interactions II, and ACN 6343 Human Computer Interactions Lab.

The course sequence Research Methods I (ACN 6312) and Research Methods II (ACN 6313) is highly recommended for satisfying the methods requirement for this specialization area.
The internship requirement is satisfied by enrolling in 6 semester credit hours of Internships (6 semester credit hours), Functional Brain Imaging Practica, and/or Neurosciences and Electrical Engineering: Artificial Intelligence, and/or electrical engineering: specializing in the Intelligent Systems area who have the appropriate prerequisite background in Arts and Technology. Note that the prerequisites for CS 5343 are: CS 5303 Computer Science I (or equivalent) and CS 5333 Discrete Structures.

The following highly relevant Arts and Technology courses are pre-approved electives for all students specializing in the Human-Computer Interactions area, who have the appropriate prerequisite background in Arts and Technology: ATEC 6333 Design Principles, ATEC 6333 Computational Design, and ATEC 6333 Topics in Emerging and Cognitive Design, ATEC 6041 Computer Processing for Arts and Technology, and ATEC 6334 Advanced Topics in Digital Interactive Systems.

Computational Modeling/Intelligent Systems Specialization Area

Students pursuing the computer simulation modeling track should take four courses from the Cognition and Neuroscience specialization area, which include at least one of the following courses: ACN 6388 MATLAB for Brain Sciences, ACN 6322 Computational Modeling Methods for Language Understanding, and ACN 5314 Computational Modeling Methods in Behavioral and Brain Sciences.

Students pursuing the mathematical modeling track will satisfy the advanced elective requirement in this specialization area by taking the sequence: ACN 6348 Neural Net Mathematics, ACN 6347 Intelligent Systems Analysis, and ACN 6349 Intelligent Systems Design and one additional course from the Cognition and Neuroscience specialization area course selection. Note that STAT 5351 Probability and Statistics I, linear algebra, multivariable calculus, and ACN 5314 Computational Modeling Methods in Behavioral and Brain Sciences are recommended prerequisites for: ACN 6347, ACN 6348, and ACN 6349.

The following Computer Science and Electrical Engineering courses are pre-approved electives for students specializing in the Intelligent Systems area who have the appropriate prerequisite background in computer science and/or electrical engineering: CS 6320 Natural Language Processing, CS 6321 Discourse Processing, CS 6364 Artificial Intelligence, CS 6372 Intelligent Systems, CS 6375 Machine Learning, CS 6384 Computer Vision, EESC 6362 Introduction to Speech Processing, EESC 6363 Digital Image Processing, EESC 6364 Pattern Recognition, and EESC 6365 Adaptive Signal Processing.

Neurological Diagnosis and Monitoring Specialization Area

Students should choose ACN 6339 Functional Neuroanatomy and ACN 6346 Systems Neuroscience to fulfill the core course requirements. ACN 6373 Intraoperative Neurophysiological Monitoring I and ACN 6374 Intraoperative Neurophysiological Monitoring II should be taken to fulfill the methods requirement.

Students should also choose at least 2 of the following courses as specialization area electives: ACN 6310 Fundamentals of Functional Brain Imaging, HCS 7315 Statistical Analysis of Brain Imaging Data, HCS 7329 Functional Brain Imaging Practica, ACN 6372 The Neuroscience of Pain, and ACN 7330 Advanced Functional Brain Imaging.

Internships (6 semester credit hours)

The internship requirement is satisfied by enrolling in 6 semester credit hours of ACN 7V71 Industry Internship, ACN 7V72 Research Internship, and/or HCS 8V80 Research in Behavioral and Brain Sciences.
Students whose immediate post-graduate goals are graduate school and medical school should fulfill the Internship Requirement by taking six semester credit hours of HCS 8V80 in order to obtain research experience.

Students not intending to pursue graduate or medical school training immediately after receiving their ACN masters degree should discuss internship opportunities with the Program Head during their second semester of enrollment in the ACN program.
School of Behavioral and Brain Sciences

Doctor of Audiology Program

Faculty

Professors: Peter F. Assmann, Michael P. Kilgard, Aage R. Møller, Ross J. Roeser, Robert D. Stillman, Linda M. Thibodeau, Emily A. Tobey

Associate Professor: Sven Vanneste

Clinical Associate Professors: Jackie Clark, Carol Cokely, Kenneth C. Pugh, Phillip (Lee) Wilson

Assistant Professor: Andrea Warner-Czyz

Clinical Assistant Professor: Jeffrey S. Martin

Distinguished Scholar in Residence Emeritus: James F. Jerger

Faculty Associates: Beth Bernthal, Jennifer Carlock, Yun-Chih (Jill) Chen, Lisa Flores, Elizabeth Gill, Shawna Jackson, Shari Kwon, Amanda Labue, Elizabeth Mani, Holly Marvin, Lisa Richards, Cheryl Taylor, Sarah Tillman, Laura Veazey

Objectives – AuD Program

Doctor of Audiology (AuD): The AuD degree offers broad-based professional preparation in audiology within an environment supporting an active program of clinical services and research. Students receive comprehensive exposure to clinical methods and procedures across the scope of practice in audiology and to the scientific foundations from which clinical approaches are derived. Clinic rotations are provided at the Callier Center and medical and educational settings throughout the Dallas-Fort Worth Metroplex.

AuD/PhD degree track: Students who are interested in combining clinical and research training may combine the AuD with the PhD in Communication Sciences and Disorders. Students must apply separately to the PhD program to be considered.

Facilities

The principal site for the academic, clinical, and research activities of the Doctor of Audiology program is the UT Dallas Callier Center for Communication Disorders, which is adjacent to The University of Texas Southwestern Medical Center. Courses and practicum are also offered at UT Dallas Callier Richardson on the main campus of the University. The UT Dallas Callier Advanced Hearing Research Center (AHRC) provides specialized clinical and research facilities for the program. The Callier Centers and AHRC have a combined 11 sound suites, equipped with state-of-the-art equipment for clinical-service provision and auditory research. In addition to the Callier outpatient clinics, the Callier Center houses the Dallas Cochlear Implant Program, the Dallas Regional Day School for the Deaf, Tinnitus and Hyperacusis Clinic, Auditory Processing Clinic, and Assistive Devices Center.

Admission Requirements
The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

Admission to the Doctor of Audiology Program is based on a review of the applicant's GPA, GRE scores, letters of recommendation, and narrative description of interest in audiology, research interests, and career goals. The GRE score is included in the evaluation of the applicant's record. There is no minimum cut-off scores for admission.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The Doctor of Audiology (AuD) degree requires 100 semester credit hours. Students completing the AuD degree meet the academic and clinical practicum requirements for the Certificate of Clinical Competence offered by the American Speech-Language-Hearing Association and Texas State licensure requirements for audiology. Specific degree requirements follow.

Doctor of Audiology (AuD)

100 semester credit hours

Required Courses (100 semester credit hours)

Foundation: 25 semester credit hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUD 6V20</td>
<td>Laboratory Procedures in Audiology and Hearing Science (taken 4 times)</td>
</tr>
<tr>
<td>AUD 6303</td>
<td>Hearing Science</td>
</tr>
<tr>
<td>AUD 6305</td>
<td>Anatomy and Physiology of Audition</td>
</tr>
<tr>
<td>AUD 6306</td>
<td>Speech Science</td>
</tr>
<tr>
<td>AUD 6310</td>
<td>Advanced Clinical Audiology</td>
</tr>
<tr>
<td>AUD 6311</td>
<td>Diagnostic Audiometry</td>
</tr>
<tr>
<td>AUD 6316</td>
<td>Audiologic Rehabilitation for Adults</td>
</tr>
<tr>
<td>AUD 6318</td>
<td>Pediatric Audiology</td>
</tr>
</tbody>
</table>

Doctoral Core: 29 semester credit hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUD 6352</td>
<td>Medical Audiology</td>
</tr>
<tr>
<td>AUD 7122</td>
<td>Issues in Mentoring and Counseling</td>
</tr>
<tr>
<td>AUD 7113</td>
<td>Grand Rounds (taken 4 times)</td>
</tr>
<tr>
<td>AUD 7321</td>
<td>Theories of Amplification</td>
</tr>
<tr>
<td>AUD 7324</td>
<td>Seminar in Cochlear Implants and Technology for Persons with Hearing Impairments</td>
</tr>
<tr>
<td>AUD 7326</td>
<td>Aural Rehabilitation of Children with Hearing Impairments</td>
</tr>
<tr>
<td>AUD 7327</td>
<td>Evaluation and Fitting of Amplification Systems</td>
</tr>
<tr>
<td>AUD 7338</td>
<td>Research in Audiology</td>
</tr>
<tr>
<td>AUD 7339</td>
<td>Evidence-Based Practice in Communication Disorders</td>
</tr>
<tr>
<td>AUD 7355</td>
<td>Clinical Electrophysiology</td>
</tr>
</tbody>
</table>

Advanced: 18 semester credit hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUD 7210</td>
<td>Professional Issues in Audiology</td>
</tr>
<tr>
<td>AUD 7228</td>
<td>Hearing Loss Prevention</td>
</tr>
<tr>
<td>AUD 7351</td>
<td>Physiologic Assessment of Vestibular System</td>
</tr>
</tbody>
</table>
AUD 7240 Auditory Processing Disorders
AUD 6314 Instrumentation

Various Doctoral Electives in AuD (taken 2 times: a 3-semester credit hour course)
AUD 7V82 Special Topics Auditory Processing Disorders

Experiential: 28 semester credit hours

AUD 7280 Doctoral Practicum in Audiology (taken 8 times)
AUD 8V80 Individual Research in Audiology
AUD 8V97 Doctoral Internship in Audiology (taken 3 times)

Out-of-Field Students

Students entering the program who lack undergraduate preparation in communication disorders or science are required to take a specified sequence of corequisite courses. Students may take these courses at The University of Texas at Dallas prior to the beginning of the program, or concurrently during AuD courses.

Students are advised that participation in clinical rotations mandates some personal expense. All students must obtain lab coats and professional liability insurance. Off campus clinical rotations and externship may have additional expenses such as a criminal background check, drug screening, TB screening, chicken pox titer, hepatitis vaccination, CPR certification, and fingerprinting. Students excluded from off-campus sites for any reason may be unable to complete all degree requirements.
School of Behavioral and Brain Sciences

Master of Science Program in Communication Disorders Program

Faculty

Professors: Thomas Campbell, Sandra B. Chapman, Christine Dollaghan, Julia Evans, William F. Katz, Robert D. Stillman, Linda M. Thibodeau, Emily A. Tobey, Hanna K. Ulatowska, Anne van Kleeck

Associate Professors: Mandy J. Maguire, Pamela R. Rollins

Assistant Professors: Raúl Rojas

Clinical Faculty: Michelle Aldridge, Lucinda Dean, Diane Garst, Karen Kaplan, Helen Kenedi, Janice Lougeay, Felicity Sale

Objectives

The Master of Science program in Communication Disorders offers broad-based professional preparation in speech-language pathology within an environment which supports an active program of clinical services and research. Students are provided comprehensive exposure to clinical approaches in communication disorders and to the scientific foundations from which clinical approaches are derived. Practical experience is available in a variety of on- and off-campus clinical, educational, and medical settings.

The graduate program in Communication Disorders is accredited in speech-language pathology by the Council on Academic Accreditation of the American Speech-Language-Hearing Association.

Facilities

The principal sites for the academic, clinical, and research activities of the Communication Disorders program are the UT Dallas Callier Center for Communication Disorders, adjacent to The University of Texas Southwestern Medical Center, and Callier-Richardson on the University's main campus. These facilities, and others throughout the Dallas-Fort Worth Metroplex, provide the educational, clinical, research, and medical environments essential for an interdisciplinary program in Communication Disorders.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

Admission to the Communication Disorders Program is based on a review of the applicant's transcripts, GRE scores, letters of recommendation, and statement of purpose.

Degree Requirements
The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The Master of Science program requires a minimum of 48 semester credit hours. Students completing the master's degree meet the academic and clinical practicum requirements for the Certificate of Clinical Competence offered by the American Speech-Language-Hearing Association.

Master of Science in Communication Disorders

48 semester credit hours minimum

Required Courses

Students entering the master's program with a bachelor's degree in speech-language pathology are required to take the following courses:

- COMD 6221 Voice Disorders
- COMD 6222 Stuttering
- COMD 6320 Motor Speech Disorders
- COMD 6377 Neurogenic Communication Disorders
- COMD 7303 Dysphagia
- COMD 7378 Assessment and Intervention of Language Impairments in Preschool and School-Age Children

Elective Courses

Students must also complete approved elective courses and practicum/internship totaling 48 semester credit hours. In addition to the required courses listed above, students must complete a minimum of three additional courses in the areas of language disorders in children and language disorders in adults. Two courses must be completed in one area and one course in the other. Students enroll in Practicum (HCS 7380) or Internship (COMD 6630) each semester in order to earn the necessary clock hours for certification and licensure. In general, a maximum of 9 semester credit hours of Practicum/Internship may be counted toward the minimum 48 semester credit hours required for the degree. Exceptions to the above requirements must be approved by the program head.

Combined Master/Doctoral Study

Students who wish to earn a clinical master's degree while pursuing doctoral study may apply for combined master's/doctoral study. Students approved to enroll in both master's and doctoral courses pursue an individualized plan of study leading to both degrees.

Comprehensive Examination

All students seeking the master's degree in Communication Disorders must pass a written comprehensive examination. A thesis is optional.

Out-Of-Field Students

Students entering the program who lack undergraduate preparation in speech-language pathology or audiology are required to take preparatory courses as part of their graduate degree plan. Students must be admitted to the graduate program before they are eligible to enroll in preparatory courses. UT Dallas does not offer a non-degree or "leveling" program in Communication Disorders.
School of Behavioral and Brain Sciences

Master of Science Program in Human Development and Early Childhood Disorders Program

Faculty

Professors: Bert S. Moore, Margaret Tresch Owen, John W. Santrock, Melanie J. Spence, Robert D. Stillman, Marion K. Underwood

Associate Professors: Shayla C. Holub, Mandy J. Maguire, Candice M. Mills, Pamela R. Rollins

Assistant Professors: Jackie Nelson, Noah J. Sasson

Clinical Faculty: Cherryl L. Bryant, Ana-Maria Mata-Otero

Senior Lecturer: Jacoba (Toosje) VanBeveren

Objectives

The Master of Science program in Human Development and Early Childhood Disorders is designed for students with professional interests in early child development and disorders. The curriculum offers a strong foundation in the normative path of physical, cognitive, and social development with specialized training in assessment, diagnostic and intervention skills needed to work with developmental disorders of early childhood. The program is designed for students interested in a career in the delivery of services to young children who show developmental delays and disorders, the prevention of delays, and the promotion of optimal development. It teaches students to work as part of a multi- or transdisciplinary team. It provides training to work with infants and young children and their families in early childhood intervention programs, child life programs in hospitals, preschools, and medical/therapy clinics. Classroom training is combined with practical experience in a variety of clinical and educational settings, both on campus and in the community. Students graduating from the program qualify to work as Early Intervention Specialists and Developmental Specialists. Coursework also satisfies most of the competencies toward Child Life certification. Graduates with one additional year of work experience typically qualify for Level 2 Infant Mental Health Endorsement by the Texas Association for Infant Mental Health.

Facilities

The principal sites for the academic activities of the Human Development and Early Childhood Disorders program are located at UT Dallas and the Callier Center for Communication Disorders on the main campus in Richardson and on the campus of the UT Southwestern Medical Center in Dallas. Facilities include research and observational laboratories, including settings dedicated to infant and child assessment. The Callier Center on both the main campus in Richardson and the medical center campus offer a number of educational and clinical programs serving young children, including the Preschool Language Development Program held at Callier-Richardson. Various community programs and settings throughout the Dallas-Fort Worth Metroplex provide essential educational and clinical environments for training in Human Development and Early Childhood Disorders. Practicum and Internship placements both on campus and in the community provide supervised on-site and community based fieldwork experiences with young children with special needs and their families.
Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The Human Development and Early Childhood Disorders program is designed for students with backgrounds in psychology, special education, early childhood education, social work, and communication disorders. Students from other disciplines are also encouraged to apply. Those from other fields are generally not required to take leveling courses.

Admission to the Human Development and Early Childhood Disorders program is based on a review of the applicant's GPA, GRE scores, letters of recommendation, and narrative description of interests, relevant experiences, and career goals.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The plan of study includes a set of required foundational courses, elective course options, and supervised practical experience in applied settings designed to prepare students to work with children and their families.

Students are advised that participation in off-campus practicum and internship requires a criminal background check. Students excluded from off-campus sites for any reason may be unable to complete all degree requirements.

Master of Science in Human Development and Early Childhood Disorders

45 semester credit hours

The Master of Science program requires a minimum of 45 semester credit hours. Specific degree requirements follow.

Required Major Core Courses: 24 semester credit hours

HDCD 6319 The Developing Child: Infants and Toddlers
HDCD 6312 Atypical Development
HDCD 6315 Assessment Theory
HDCD 6314 Developmental Assessment
HDCD 6335 Intervention Paradigms
HDCD 6310 Parent Education
HCDD 6330 The Developing Child: Toddler and Preschool Years (Two to Five Years)
HDCD 6370 Intervention with Young Children

Practicum: 3 semester credit hours

HDCD 7V20 Practicum/Internship in Early Childhood Disorders

Internship: 6 semester credit hours
HDCD 7V20 Practicum/Internship in Early Childhood Disorders

Electives: 12 semester credit hours

HDCD 6325 Service Coordination of Community Resources
HDCD 6395 Medical and Biobehavioral Factors in Early Childhood Disorders
HDCD 6330 Families and Culture
HDCD 6350 Introduction to Child Life
HDCD 6351 Play Matters
HDCD 6385 Child Psychopathology
HDCD 6355 Family Outreach and Assessment
HDCD 6390 Infant Mental Health
HDCD 6V81 Special Topics in Human Development and Early Childhood Disorders
HDCD 6360 Behavior Management
HDCD 6365 (COMD 7336) Social Communication in Early Childhood Disorders
HCS 7382 Health Psychology
COMD 6307 Language Acquisition
COMD 7V62 Seminar in Autism
HDCD 7V98 Independent Study
HDCD 7V80 Independent Research
School of Behavioral and Brain Sciences

Master of Science Program in Psychological Sciences Program

Faculty

Professor Emeritus: Susan W. Jerger

Associate Professors: Francesca Filbey, Shayla C. Holub, Daniel Krawczyk, Mandy J. Maguire, Christa K. McIntyre, Candice M. Mills, Bart Rypma

Assistant Professors: Robert Ackerman, Chandramallika Basak, Cindy M. De Frias, Kristen Kennedy, Jinkyung Na, Jackie Nelson, Karen Rodrigue, Noah J. Sasson

Objectives

The Master of Science (MS) in Psychological Sciences program provides advanced training in psychological sciences. The program is designed for full-time student scholars who wish to expand their knowledge of psychology by engaging in advanced coursework, additional research training, and/or applied experience in psychological sciences. The program also offers students the opportunity to gain additional psychology training in preparation for applying to nationally prominent doctoral programs in Clinical and Experimental Psychology. This research-focused program requires students to work with a research mentor from the beginning and to be actively involved in at least one research laboratory throughout training. The Master of Psychological Sciences degree does not provide clinical training or lead to licensure as a counselor or psychologist.

Facilities

The principal sites for the academic, applied, and research activities of the Master of Science Program in Psychological Sciences include faculty labs located on the Richardson campus and at vibrant centers within the School of Behavioral and Brain Sciences: the Center for Children and Families, the Callier Center for Communication Disorders, the Center for BrainHealth, the joint Center for Brain Imaging with UT Southwestern Medical Center, and the Center for Vital Longevity. These centers provide access to brain imaging laboratories and speech, hearing, and language laboratories.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The application deadline is February 15th each year. Applicants are selected once a year to begin the program in the fall semester.
Admission to the Master of Science Program in Psychological Sciences is based on a review of the applicant's GPA, three letters of recommendation, and narrative description of interests and career goals. Both GRE math and verbal scores are required to be considered for admission.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The MS in Psychological Sciences curriculum is designed to offer opportunities for specialization in a chosen core field, breadth of training, selection of electives that serve students' individual goals, and research experience. Each student will be assigned to a research mentor at the start of the program and will maintain involvement in a research laboratory throughout the two-year program.

All students in the program are required to regularly review their degree plans with their research mentor. The program requires a minimum of 36 semester credit hours distributed as follows. Students are required to complete 6 semester credit hours of major field core courses (two selected from one of the following fields: Developmental, Cognitive, Social and Personality, Neuroscience), 6 semester credit hours of additional core courses (two courses from a different area than the major core), 6 semester credit hours of Research Methods (a two course sequence in statistics and research methods), 12 semester credit hours of approved advanced elective courses, and 6 semester credit hours of Independent Study/Research.

Master of Science in Psychological Sciences

36 semester credit hours minimum

Major Field Core Courses: 12 semester credit hours minimum

Students will declare a major in one of these areas and take two courses from the major area and two courses from a different area than the major core.

Developmental Psychology

PSYC 6350 Social Development
PSYC 6331 Cognitive Development
PSYC 6568 Language Development

Cognition

PSYC 6330 Cognitive Science
PSYC 6395 Cognitive Psychology
PSYC 6333 Memory

Social/Personality Psychology

PSYC 6376 Social Psychology
PSYC 6327 Personality

Neuroscience

PSYC 6346 Systems Neuroscience

Deleted: Students will also have the opportunity to gain applied experience by participating in the internship program offered by the School of Behavioral and Brain Sciences.

Deleted: Students are encouraged to use the summer between the first and the second year to get applied internship experience. Students interested in summer applied internships can find placements through the currently existing School of Behavioral and Brain Sciences internship program for undergraduates.
PSYC 6338 Functional Neuroanatomy

Research Methods: 6 semester credit hours minimum

Students will complete two 3-semester credit hour courses in research methods and design that are approved by the program head and faculty coordinator.

Research Methods I

PSYC 6312 Research Methods in Behavioral and Brain Sciences - Part I

Research Methods II

PSYC 6313 Research Methods in Behavioral and Brain Sciences - Part II

Advanced Electives: 12 semester credit hours minimum

Students will elect 4 courses from masters and doctoral offerings. Any core course (listed above) may count as an advanced elective, though it cannot count both as a core course and as an elective.

As an elective course, interested students may participate in a Teaching Internship. Teaching internships will be arranged by the Program Head in consultation with the teaching faculty. Teaching internships will be for course credit and not for pay.

Independent Study/Research: 6 semester credit hours

Students will complete a Research Project fulfill this requirement. The research requirement will be fulfilled by completion of a focused research project to be submitted and presented in poster format.
School of Behavioral and Brain Sciences

Doctoral Programs in Cognition and Neuroscience, Communication Sciences and Disorders, Psychological Sciences

Faculty

Professor Emeritus: Susan W. Jerger, Allen L. Rupert

Associate Professors: Gregory Dussor, Francesca Filbey, Shayla C. Holub, Daniel Krawczyk, Mandy J. Maguire, Christa K. McIntyre, Candice M. Mills, Theodore Price, Robert L. Renacker II, Pamela R. Rollins, Bart Rypma, Lucien (Tres) Thompson, Sven Vanneste

Assistant Professors: Robert Ackerman, Chandramallika Basak, Cindy M. De Frias, Kristen Kennedy, Sven Kröener, Jinkyung Na, Jackie Nelson, Jonathan E. Ploski, Karen Rodrigue, Raid Rojas, Noah J. Sasson, Gagan Wig

Distinguished Scholar in Residence Emeritus: James F. Jerger

Objectives

The School of Behavioral and Brain Sciences offers doctoral programs in Cognition and Neuroscience, Communication Sciences and Disorders, and Psychological Sciences. Each provides preparation in basic and applied aspects of behavioral and brain sciences. The faculty consists of specialists in developmental psychology, cognitive science, neuroscience, cognitive neuroscience, and communication sciences and disorders. Students may specialize in these areas or pursue study across areas as in the study of child language, aging, perception, and behavioral and neural plasticity. Core and specialized courses provide the foundation for advanced seminars and a wide spectrum of doctoral research in laboratories, schools, and clinics. Frequent colloquia and informal brown-bag seminars contribute to a stimulating environment for scholarly development.

Cognition and Neuroscience

The flexible, non-traditional doctoral program in Cognition and Neuroscience provides novel opportunities for multidisciplinary and cross-disciplinary studies in the areas of perception, memory, attention, and executive processing, cognitive neuroscience, cellular and systems neuroscience, cortical plasticity, and computational modeling of cognitive and neural processes. Close liaison with the UT Southwestern Medical Center provides access to first-class neuroimaging technologies and research populations. Students pursuing research in this program have the option of developing, in consultation with their doctoral advisor, a unique training program tailored to their specific research interests.
Communication Sciences and Disorders

The doctoral program in Communication Sciences and Disorders provides opportunities for graduate study and research in the areas of speech, language, and hearing science, and in the disorders that affect speech, language, and hearing. Students have available a wealth of research opportunities in laboratories, clinics, and schools, both on-campus and in the community. Close liaison with the UT Southwestern Medical Center provides patient access and numerous opportunities for research in medical settings. Coursework and research options within the doctoral programs in Psychological Sciences and Cognition and Neuroscience allow students to pursue interdisciplinary study in areas such as neuroimaging of language processes, child language, autism, neural plasticity and recovery, speech perception, auditory neuroscience and cognitive aging.

Psychological Sciences

The doctoral program in Psychological Sciences provides opportunities for study within the context of a traditional experimental psychology curriculum. The program also offers strong interdisciplinary linkages to other areas within the School of Behavioral and Brain Sciences, including cognitive neuroscience, behavioral neuroscience, and communication sciences and disorders. The primary goal of the program is to prepare research investigators for academic and applied settings either directly or indirectly related to the field of Experimental Psychology. Students work closely with one or more faculty members in a collegial mentoring relationship. Although all students complete a core curriculum comprised of coursework in areas such as Developmental Psychology, Cognition, and Social/Personality Psychology, the program allows students to individually tailor their studies in creative ways.

Facilities

The offices and research facilities of the School of Behavioral and Brain Sciences are located on the Richardson campus, and off-campus at the Callier Center for Communication Disorders-Dallas, the Center for BrainHealth, and the Center for Vital Longevity, which are adjacent to the campus of the UT Southwestern Medical Center at Dallas. Facilities on the Richardson campus include teaching and research laboratories for neuroscience, cognitive science, and communication sciences and disorders. The Center for Children and Families and Callier-Richardson provide a variety of clinical services to the community and serve as a research sites for graduate students.

The Center for BrainHealth and the Center for Vital Longevity are the primary facilities for the study of cognitive neuroscience. The Center for BrainHealth includes research activities in the areas of aging and neurogenic disorders in children and adults. The Callier Center-Dallas has its primary focus on speech, language, and hearing, and includes research laboratories, clinical services, and classroom programs for preschool children. The Center for Vital Longevity includes research on how the body and mind can successfully age together and uses cutting-edge brain imaging technologies and advances in cognitive science to identify the "neural signature" of those at risk of not aging well and preventing problems before symptoms occur. Collaborative arrangements with the UT Southwestern Medical Center expand student research opportunities including access to its clinical populations and neuroimaging facilities. The Center for Children and Families, housed in the School for Behavioral and Brain Sciences, offers an array of clinical and community outreach activities organized around three initiatives: parenting healthy families, strengthening interpersonal relationships, and enhancing thinking and learning.

Admission Requirements

The University's general admission requirements are discussed on the [Graduate Admission](catalog.utdallas.edu/2013/graduate/admission) page.

Admission to a doctoral program is based on a review of the applicant's transcripts, GRE scores, 3 letters of recommendation, and narrative description of research interests and career goals. In addition to academic requirements, the admissions committee weighs heavily the match between the applicant's research interests and the research areas available to students in the school. For information about faculty research interests, see our web pages at bbs.utdallas.edu.
Applications for admission are due December 1. Students are accepted for the Fall semester only. Some courses in the graduate programs in Audiology, Applied Cognition and Neuroscience, Communication Disorders, Human Development and Early Childhood Disorders, and Psychological Sciences complement doctoral coursework and, upon a student's admission to the PhD program, can be applied toward the degree. Students should consult with the doctoral program head to determine which graduate courses can be applied to the PhD.

Combining a Clinical Master’s (MS) or Doctorate (AuD) with the PhD

Students seeking clinical certification from the American Speech-Language-Hearing Association in Speech-Language Pathology or Audiology, in addition to the PhD, may combine the masters program in Communication Disorders (speech-language pathology) or doctoral program in Audiology with the PhD programs in Communication Sciences and Disorders, Cognition and Neuroscience, or Psychological Sciences. An individualized plan of study leads to both degrees. Students are separately admitted to each program and admission to one program does not assure admission to the other.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking the Doctor of Philosophy degree must complete 75 graduate semester credit hours.

Doctor of Philosophy in Cognition and Neuroscience

75 semester credit hours minimum beyond the baccalaureate degree

Doctoral Proseminar: 3 semester credit hours

HCS 6302 Issues in Behavioral and Brain Sciences - Part I

Research Methods: 6 semester credit hours minimum

HCS 6312 Research Methods in Behavioral and Brain Sciences - Part I
HCS 6313 Research Methods in Behavioral and Brain Sciences - Part II

Cognition and Neuroscience Core Courses: 6 semester credit hours minimum

Students must take a minimum of one Cognition Core and one Neuroscience Core, choosing from those listed below.

Cognition

HCS 6330 Cognitive Science
HCS 6395 Cognitive Psychology

Neuroscience

HCS 6346 Systems Neuroscience
HCS 6338 Functional Neuroanatomy
Advanced Electives: 9 semester credit hours minimum

In addition to completing the 6 semester credit hours core requirement, students take a minimum of 9 semester credit hours of advanced electives. Any HCS course may count as an advanced elective. This includes core courses (see above), though no course can be counted both as a core and an advanced elective for any single student. Advanced electives are selected by students with the concurrence of their research advisors based on the students' research foci. Depending on a student's background and research, additional advanced electives beyond the 9 semester credit hours minimum may be necessary.

Students with research interests in systems neuroscience are required to take the following course:

Neuroscience

- HCS 6340 Cellular Neuroscience
- HCS 6346 Systems Neuroscience
- HCS 7343 Neuropharmacology
- HCS 6341 Genes, Brain, and Behavior

Cognition

One of the following:

- HCS 6330 Cognitive Science
- HCS 6395 Cognitive Psychology

Other approved course in Cognition or Cognitive Neuroscience

Depending on a student's background and research, additional advanced electives beyond the 15 semester credit hours minimum may be necessary.

Doctor of Philosophy in Communication Sciences and Disorders

75 semester credit hours minimum beyond the baccalaureate degree

Doctoral Proseminar: 2 semester credit hours

- HCS 6302 Issues in Behavioral and Brain Sciences - Part I

Research Methods: 9 semester credit hours minimum

- HCS 6312 Research Methods in Behavioral and Brain Sciences - Part I
- HCS 6313 Research Methods in Behavioral and Brain Sciences - Part II
- Other Approved Advanced Research Methods course or Statistics course

Major Core Courses: 6 semester credit hours minimum
Students must complete a minimum of 6 semester credit hours of approved COMD or AUD prefixed courses. Courses meeting this requirement will vary depending on the student's research interests. The requirement may be waived for students holding a graduate degree in the field of speech-language pathology or audiology. Students lacking an adequate foundation in communication sciences may be required to complete more than the 6 semester credit hours minimum of core coursework.

Communication Sciences and Disorders: 3 semester credit hours minimum

All students must complete a minimum of 3 semester credit hours of doctoral coursework offered through the PhD program in Communication Sciences and Disorders.

Supplemental Coursework: 12 semester credit hours minimum

All students must complete an additional minimum of 12 semester credit hours of doctoral level courses and seminars. Courses may be selected from doctoral level coursework offered through the PhD programs in Communication Sciences and Disorders or, with advisor approval, from the doctoral coursework offered through the PhD programs in Cognition and Neuroscience and Psychological Sciences.

Doctor of Philosophy in Psychological Sciences

75 semester credit hours minimum beyond the baccalaureate degree

- **Professional Development:** 6 semester credit hours
 - HCS 6302 Issues in Behavioral and Brain Sciences - Part I
 - HCS 6319 Scientific Writing

- **Research Methods:** 6 semester credit hours minimum
 - HCS 6312 Research Methods in Behavioral and Brain Sciences - Part I
 - HCS 6313 Research Methods in Behavioral and Brain Sciences - Part II

- **Psychological Science Core Courses:** 12 semester credit hours minimum
 - Students will declare a concentration in Developmental Psychology, Cognition, or Social/Personality Psychology. Students must take four core courses from those listed below. Two of these courses must be selected from the concentration, and the four courses must be selected from at least two of the four areas listed.

 - **Developmental Psychology**
 - HCS 6350 Social Development
 - HCS 6331 Cognitive Development
 - HCS 6368 Language Development

 - **Cognitive Psychology**
 - HCS 6395 Cognitive Psychology
 - HCS 6330 Cognitive Science
 - HCS 6333 Memory

 - **Social/Personality Psychology**
HCS 6376 Social Psychology
HCS 6327 Personality

Neuroscience
HCS 6346 Systems Neuroscience
HCS 6338 Functional Neuroanatomy

Advanced Electives: 9 semester credit hours minimum

In addition to completing the 12 semester credit hours core requirements, students will take an additional 9 semester credit hours of advanced electives. Any core course (see above) may count as an advanced elective, though it cannot count both as a core course and as an elective. One of these 3-semester credit hour elective courses must be an advanced research methods course. Students will declare a major in Developmental Psychology, Cognitive Psychology, or Social/Personality Development and will take a minimum of four courses (cores and electives) in the major area. Students may enroll in other advanced electives from the other doctoral course offerings available in the School, including courses in language and communication. Additional advanced electives are available each semester.

Additional Requirements (All PhD Programs)

All students must complete the Qualifying Project/Qualifying Paper requirements of the PhD degree sought. The successful defense of a written dissertation completes the requirements for the degree.
School of Economic, Political and Policy Sciences

As we begin the 21st century, the School of Economic, Political and Policy Sciences is strategically positioned to offer leadership in addressing society's most pressing concerns. Our mission is simple: develop scholars and practitioners who love to learn, individuals who can integrate knowledge and analyze sophisticated problems, and who are committed to advancing the search for truth and justice. Our domain is broad: risk management, economic performance, terrorism, voter behavior, health care, democratization, social inequality, international trade, and conflict resolution only hint at the wide variety of specific topics that must be addressed by informed social scientists. Our approach is comprehensive: strong disciplinary foundations, a dynamic interdisciplinary environment, and a striving to achieve a synthesis of theory-based knowledge and practical experience through internships, workshops, and seminars.

The School of Economic, Political and Policy Sciences awards master's degrees in Applied Sociology, Criminology, Economics, Geospatial Information Sciences (jointly with the School of Natural Sciences and Mathematics), International Political Economy, Justice Administration and Leadership, Political Science, Public Affairs, and Public Policy; and PhD's in Criminology, Economics, Geospatial Information Sciences (jointly with the Erik Jonsson School of Engineering and Computer Science and the School of Natural Sciences and Mathematics), Political Science, Public Affairs, and Public Policy and Political Economy. Each degree program offers a rigorous foundation with enough flexibility to specialize and earn additional certification in city planning, crime and justice analysis, economic and demographic data analysis, evaluation research, geographic information systems, geospatial intelligence, homeland security, local government management, nonprofit management, and remote sensing. These certificate programs are available to degree-seeking as well as non-degree students seeking highly focused curricula that can benefit their professional development. We invite you to explore our programs, scrutinize our faculty, examine our resources, and, then, to join us as we prepare to face our future.

Degrees Offered

- Master of Arts in Political Science (30 semester credit hours minimum)
- Master of Arts in Political Science - Constitutional Law Studies (30 semester credit hours minimum)
- Master of Arts in Political Science - Legislative Studies (30 semester credit hours minimum)
- Master of Science in Applied Sociology (36 semester credit hours minimum)
- Master of Science in Criminology (36 semester credit hours minimum)
- Master of Science in Criminology (Online) (36 semester credit hours minimum)
- Master of Science in Economics (36 semester credit hours minimum)
- Master of Science in Geospatial Information Sciences (36 semester credit hours minimum)
- Master of Science in International Political Economy (36 semester credit hours minimum)
- Executive Master of Science in Justice Administration and Leadership (30 semester credit hours minimum)
- Master of Public Affairs (42 semester credit hours minimum)
- Master of Public Policy (36 semester credit hours minimum)
- Doctor of Philosophy in Criminology (75 semester credit hours minimum beyond the baccalaureate degree)
Clinical Assistant Professors:
- Meghna Sabharwal

Assistant Professors:
- Deza

Clinical Associate Professors:
- Vieraitis
- Peinhardt
- Tomislav Kovandzic
- Michael H. Crespin

Associate Professors:
- Stewart
- Alex R. Piquero
- A. Hicks
- Harold D. Clarke

Clinical Professors:
- Donald R. Arbuckle
- Calvin Jamison
- Elmer Polk

Certificates Offered
- Certificate in Economic and Demographic Data Analysis (15 semester credit hours)
- Certificate in Geographic Information Systems (GIS) (15 semester credit hours)
- Certificate in Geospatial Intelligence (Geoint) (15 semester credit hours)
- Certificate in Local Government Management (15 semester credit hours)
- Certificate in Nonprofit Management (15 semester credit hours)
- Certificate in Program Evaluation (15 semester credit hours)
- Certificate in Remote Sensing (15 semester credit hours)

School Faculty

Professor Emeritus: Ronald Briggs

Clinical Professors: Donald R. Arbuckle, Calvin Jamison, Elmer Polk

Clinical Associate Professors: Brian Beary, Douglas Dow, Karl K. Ho

Adjunct Associate Professor: Ernan E. Haruvy

Assistant Professors: Rodney Andrews, James C. Barnes, Jonas Bunte, Yongwan Chun, Nadine Connell, Monica Deza, Evgenia Gorina, James Harrington, Brandon J. Kinne, Asli Leblebiciglu, Young-joo Lee, Banks P. Miller, Meghna Sabharwal, Nicholas Vargas

Clinical Assistant Professors: Timothy M. Bray, Rodolfo Hernandez-Guerrero
Objectives

There is increasing awareness of the impact that rapid technological, economic, and social change is having on society. The graduate programs in the School of Economic, Political and Policy Sciences are designed to prepare students for careers in the rapidly evolving public, private and nonprofit sectors by developing expertise in areas such as policy analysis, economic decision making and public management. Our PhD Programs are also designed to prepare students for careers in both teaching and research. Each graduate program is discussed in more detail.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has its own teaching laboratories. The University's Computer Labs also provide personal computers and UNIX workstations for student use. Databases, a computerized geographic information system, and Westlaw, a legal research system, are also available for student research. Doctoral students have opportunities to participate in research programs directed by members of the faculty. Further details are available in respective sections.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

All programs require applicants to have a baccalaureate degree from an accredited college or university, GRE or GMAT scores, transcripts and letters of recommendation. Specific additional requirements are discussed for each program in their respective sections.

Prerequisites

The details for each program are discussed in their respective sections. Students may be required to take courses to prepare them for coursework.

Research

The School of Economic, Political and Policy Sciences offers graduate degrees in twelve master's programs and six PhD programs. These programs represent a wide range of both disciplinary as well as interdisciplinary courses of study. Our master's degree offerings include MS degrees in Applied Sociology, Criminology, Economics, Geospatial Information Sciences, International Political Economy, Master of Public Affairs and the Master of Public Policy degrees. The PhD programs include programs of study in Criminology, Economics, Geospatial Information Sciences, Political Science, Public Affairs, and Public Policy and Political Economy. The Economics and Political Science programs offer innovative courses of study in these disciplinary areas. The PhD in Public Policy and Political Economy combines rigorous methodological training with a strong substantive focus in different policy areas. The School also offers non-degree certificate programs in Economic and Demographic Data Analysis, Geographic Information Sciences (GIS), Geospatial Intelligence (Geolit), Local Government Management, Nonprofit Management, Program Evaluation, and Remote Sensing.
School of Economic, Political and Policy Sciences

Graduate Programs in Criminology

Doctor of Philosophy in Criminology

75 semester credit hours minimum beyond the baccalaureate degree

Program Faculty

Professors: Bruce A. Jacobs, James W. Marquart, Alex R. Piquero, Nicole Leeper Piquero, Robert W. Taylor, John L. Worrall

Associate Professors: Denise Paquette Boots, Tomislav Kovandzic, Robert G. Morris II, Lynne M. Vieraitis

Assistant Professors: James C. Barnes, Nadine Connell

Clinical Professor: Elmer Polk

Clinical Assistant Professor: Timothy M. Bray

Mission

The mission of the Doctor of Philosophy in Criminology at the University of Texas at Dallas is threefold in nature, in order to:

• Deliver high-quality education to a diverse body of graduate students regarding the etiology, control, and variation of lawbreaking across space and time.

• Serve local, regional, and national communities through professional development programs, public policy analyses, evaluation research, program and policy design, and a forum for new approaches to the study of crime.

• Advance the understanding of criminology through a multidisciplinary mix of theoretical and applied research.

Objectives

The doctoral program in Criminology is an interdisciplinary, research-oriented degree offered in conjunction with other graduate programs in the School of Economic, Political and Policy Sciences at UT Dallas. The objective of the PhD program is to provide students a coherent, yet intellectually challenging degree that adequately prepares them to conduct research among the many aspects of criminology and criminal justice, varying with individual interests.
and areas of specialty. Graduates of the PhD program will be qualified to teach at the university level as professors. Graduates will also be competent to enter into analytic and administrative posts within the vast array of research and policy institutions, criminal justice organizations, and in the private sector.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences (EPPS) and the University’s Computer Labs. The School has four computing laboratories which have 24-30 computers that are network linked and equipped with major social science software packages, including EViews, K, RATS, FASW, Stata, LexisNexis database, and Westlaw for student use. The University's Computer Labs provide personal computers and UNIX Workstations. Data and reference materials are also available online via the library and UT Dallas's memberships in numerous organizations.

Application and Admission Requirements

The PhD Program in Criminology seeks applicants who have completed a Master’s in Criminology or a relevant discipline from an accredited University. A graduate GPA of 3.50 and a GRE combined verbal and quantitative score of 300 are desirable, but students may be admitted at the program's discretion. All transcripts must be submitted, along with three letters of recommendation (preferably academic) and a one-page essay describing their background, education, and professional objectives. To be considered for Fall admissions and funding opportunities, applications must be submitted in full by February 15. Students can apply as late as July 1, per University policy, but they will likely not be considered for funding opportunities. Students should note their desire to be considered for graduate funding in their letter of intent at the time of application. For more information please see our Graduate Handbook on our website.

Degree Requirements

On admission to the PhD in Criminology Program, a student must earn a minimum of 75 semester credit hours beyond the baccalaureate degree, pass a qualifying methods examination, pass the criminology comprehensive examination, and successfully complete independent research. Students must fulfill the following requirements:

• Coursework: 75 semester credit hours of graduate study (minus transferred or Master's semester credit hours up to 30 semester credit hours)
• Qualifying Methods Examination
• Comprehensive Examination
• Doctoral Dissertation

A grade of "B-" or lower in any graduate class requires that the class be retaken with only one retake allowed per course. If the retake results in a final grade of "B-" or worse, the student will be dropped from the program. In addition, all students must meet the University’s minimum required GPA of 3.0 or higher. See the Graduate Program Handbook located on the Criminology website for more specific requirements.

Course Requirements

1. **Coursework:** 75 semester credit hours of graduate study (minus transferred or Master’s semester credit hours up to 30 semester credit hours)
 - **Criminology core classes (15 semester credit hours)**
 - CRIM 6307 Extent of Crime and Measurement
- CRIM 7300 Advances in Criminology Theory
- CRIM 7301 Seminar in Criminology Research and Analysis
- CRIM 7305 Professional Development in Criminology
- CRIM 7315 Evidence-Based Crime Prevention

- Methodology/Statistics core classes (9 semester credit hours)
 - EPPS 6310 Research Design I*
 - EPPS 7313 Descriptive and Inferential Statistics
 - EPPS 7316 Regression and Multivariate Analysis

* If a student has completed this course at UT Dallas with a “B” or better this course will need to be substituted with an additional advanced statistics or methods course.

A grade of “B-” or lower in any core graduate class requires that the class be retaken. Only one retake is allowed per course. If the retake results in a final grade of “B-” or lower, the student will be dropped from the program. In addition, all students must meet the University’s minimum required GPA of 3.0 or higher. See the Graduate Program Handbook located on the Criminology website for more specific requirements.

- Methodology or Advanced Statistics Elective (3 semester credit hours)

Students must select one additional methodology or advanced statistics course. Students may select this course from any number of methodology or statistics courses offered through the School of Economic, Political, and Policy Sciences (EPPS).

Sample of Methodology or Advanced Statistics Courses:
 - EPPS 6346 Qualitative Research Methods
 - EPPS 6352 Evaluation Research Methods in the Economic, Political and Policy Sciences
 - EPPS 7304 Cost-Benefit Analysis
 - EPPS 7318 Structural Equation and Multilevel (Hierarchical) Modeling
 - EPPS 7344 Categorical and Limited Dependent Variables
 - EPS 7368 Spatial Epidemiology
 - EPPS 7370 Time Series Analysis
 - EPPS 7376 Survey Research
 - EPPS 7390 Bayesian Analysis for Social and Behavioral Sciences

- Elective Courses (39 semester credit hours)

Students take free electives in areas of interest to fulfill the 75 semester credit hour PhD requirement.

Per University policy, students may apply up to 36 semester credit hours of Master’s level credit into the doctoral program. Courses being applied must have earned a grade of “B” or better from an accredited University. All students should consult with the Criminology Doctoral Advisor to determine which courses will be accepted toward the PhD in Criminology. The Criminology Doctoral Advisor has sole discretion to decide the number and manner in which transfer credits will be applied.

- Dissertation Research (minimum of 9 semester credit hours)

A dissertation or a three-paper option requirement must be completed in order to successfully complete the Criminology doctoral program. Students will select a dissertation chair and a supervising committee to advise them through the research component of the doctoral requirement.
The dissertation is an original work initiated and completed by the doctoral candidate that demonstrates research competence and substantially adds to the knowledge in the candidate’s field. The three-paper option is composed of a set of articles that together represent a significant and coherent contribution to our knowledge in the field of Criminology.

Regardless of the option selected, students will enroll in CRIM 8V99 during each semester until the research is completed and defended. The final dissertation defense is completed when the student’s dissertation chair and supervising committee agree that the research has been satisfactorily completed.

I. Qualifying Methods Examination

Students must pass the Qualifying Methods Examination following the completion of the first academic year (or 18 semester credit hours) in order to continue in the Criminology PhD program. This exam is based on materials from the following four courses: (1) EPPS 6310 Research Design I, (2) EPPS 7313 Descriptive and Inferential Statistics, (3) EPPS 7316 Regression and Multivariate Analysis, and (4) CRIM 6307 Extent of Crime and Measurement. The exam will be administered once each year in late April or May. Student performance will be evaluated as pass or fail. Those failing the exam will be given a second opportunity to pass the exam at the end of the summer. Those failing the Qualifying Methods Examination the second time will be dismissed from the program.

III. Comprehensive Examination

Students will sit for the Criminology comprehensive examination after successfully completing all coursework (66 semester credit hours) but no later than the end of year three in the PhD program. This exam is offered twice per year, once in the fall and again in the spring. The comprehensive examination will test students’ knowledge in two topical areas: theory and policy. Student performance will be evaluated as pass or fail on each section. Those failing a section of the exam will be given a second opportunity to pass the failed section in the following semester. Those who fail either section of the exam for the second time will be dismissed from the Criminology program.

Master of Science in Criminology

36 semester credit hours minimum

Program Faculty

Professors: Bruce A. Jacobs, James W. Marquart, Alex R. Piquero, Nicole Leeper Piquero, Robert W. Taylor, John L. Worrall

Associate Professors: Denise Paquette Boots, Tomislav Kovandzic, Robert G. Morris II, Lynne M. Vieraitis

Assistant Professors: James C. Barnes, Nadine Connell

Clinical Professor: Elmer Polk

Clinical Assistant Professor: Timothy M. Bray
Mission

The mission of the Master of Science in Criminology program at the University of Texas at Dallas is threefold, to:

• Deliver high-quality education to a diverse body of students regarding the etiology, control, and variation of law-breaking across space and time.
• Serve local, regional, and national communities through professional development programs, public policy analyses and evaluation research, program and policy design, and as a forum for new ideas and approaches to the study of crime.
• Advance the understanding of criminology through a multidisciplinary mix of theoretical and applied research, as well as to provide a forum for new ideas and approaches to the study of crime.

Objectives

The Master of Science in Criminology provides students with a coherent yet intellectually challenging degree that prepares them to conduct interdisciplinary research among the many aspects of criminology and criminal justice, varying with individual interests and areas of specialty. Graduates of the MS program will be competent to teach at the community college and at the university level as adjunct lecturers. Graduates will also be ready to enter into analytic and administrative posts within a vast array of research and policy institutions, criminal justice organizations, and in the private sector.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories which have 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are also available online via the library's and School's memberships in numerous organizations.

Application and Admission Requirements

The Master of Science in Criminology seeks applicants from a baccalaureate in Criminology, Sociology, or a relevant discipline. A 3.2 undergraduate GPA and a combined GRE verbal and quantitative score of 300 are desirable, but students may be admitted at the program's discretion. All transcripts must be submitted, along with three letters of recommendation (preferably academic) and a one-page essay describing their background, education, and professional objectives. For more information please see our Graduate Handbook on our website.

Prerequisites

For the Master of Science in Criminology, students with an undergraduate degree in Criminology or a related field will have the necessary academic foundation to begin their graduate coursework (See the Graduate Program Handbook which is posted on the EPPS website for more information on Prerequisites and Transfer Policies at epps.utdallas.edu/crim).

Program of Studies Policy

Each student admitted to a graduate program will have a specific program of studies agreed upon in consultation with the Graduate Studies Committee or graduate advisor for Criminology per the degree plan for the program. A
complete Program of Studies Form will be filled in and approved prior to the student's registration for his/her 19th semester credit hour to be counted toward a master's degree.

Writing Requirement (MS in Criminology)

All Doctoral track students must complete a writing requirement while enrolled in the MS Program. Students must take a minimum of six semester credit hours of CRIM 6V96 or CRIM 6V98, complete an independent paper, and present their findings in a colloquium setting to be eligible for graduation with the MS.

Non-Writing Requirement Option for the MS in Criminology

MS students on a terminal track who do not wish to be considered for admission into a doctoral program have the option of taking 6 semester credit hours of any graduate classes as electives in lieu of the writing requirement.

Required Courses: 15 semester credit hours

- CRIM 6300 Proseminar in Criminology
- CRIM 6303 Etiology of Crime and Criminality
- CRIM 6311 Crime and Justice Policy
- EPPS 6310 Research Design I
- EPPS 6313 Introduction to Quantitative Methods

Elective Courses: 21 semester credit hours

- 9 semester credit hours in Elective Criminology graduate courses
- 6 semester credit hours in any program or school outside Criminology
- 6 semester credit hours of CRIM 6V98 Analytical Writing Research (for PhD track students)
- 6 semester credit hours of graduate-level course electives (for students wishing to terminate at MS)

Master of Science in Criminology (Online)

36 semester credit hours minimum

Program Faculty

Professors: Bruce A. Jacobs, Alex R. Piquero, Nicole Leeper Piquero, James W. Marquart, Robert W. Taylor, John L. Worrall

Associate Professors: Denise Paquette Boots, Tomislav Kovandzic, Robert G. Morris II, Lynne M. Vieraitis

Assistant Professors: James C. Barnes, Nadine Connell

Clinical Professor: Elmer Polk

Clinical Assistant Professor: Timothy M. Bray
Mission

The mission of the Master of Science in Criminology program at the University of Texas at Dallas is threefold, to:

- Deliver high-quality education to a diverse body of students regarding the etiology, control, and variation of law-breaking across space and time.
- Serve local, regional, and national communities through professional development programs, public policy analyses and evaluation research, program and policy design, and as a forum for new ideas and approaches to the study of crime.
- Advance the understanding of criminology through a multidisciplinary mix of theoretical and applied research, as well as to provide a forum for new ideas and approaches to the study of crime.

Objectives

The Master of Science in Criminology (MS) provides students with a coherent yet intellectually challenging degree that prepares them to conduct interdisciplinary research among the many aspects of criminology and criminal justice, varying with individual interests and areas of specialty.

The fully online MS in Criminology offers students the convenience of completing coursework on their own schedules.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories which have 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are also available online via the library's and School's memberships in numerous organizations.

Prerequisites

For the Master of Science in Criminology, students with an undergraduate degree in Criminology or a related field will have the necessary academic foundation to begin their graduate coursework (See the Graduate Program Handbook which is posted on the EPPS website for more information on Prerequisites and Transfer Policies at epps.utdallas.edu/crim).

Program of Studies Policy

Each student admitted to a graduate program will have a specific program of studies agreed upon in consultation with the Graduate Studies Committee or graduate advisor for Criminology per the degree plan for the program. A complete Program of Studies Form will be filed in and approved prior to the student's registration for his/her 19th semester credit hour to be counted toward a master's degree.

Non-Writing Requirement Option for the MS in Criminology

MS students on a terminal track who do not wish to be considered for admission into a doctoral program have the option of taking 6 semester credit hours of any graduate classes as electives in lieu of the writing requirement.
Required Courses: 15 semester credit hours

- **CRIM 6300**: Proseminar in Criminology
- **CRIM 6303**: Etiology of Crime and Criminality
- **CRIM 6311**: Crime and Justice Policy
- **EPPS 6310**: Research Design I
- **EPPS 6313**: Introduction to Quantitative Methods

Elective Courses: 21 semester credit hours

15 semester credit hours in Elective Criminology graduate courses

And one of the following:

- 6 semester credit hours of non-CRIM graduate electives (online, in any program or school)
- 6 semester credit hours of **CRIM 8V01** (for independent study project directed by a faculty member)

Executive Master of Science in Justice Administration and Leadership

30 semester credit hours minimum

Program Faculty

Professors: James W. Marquart, Robert W. Taylor, John L. Worrall

Associate Professors: Denise Paquette Boots, Robert G. Morris II

Assistant Professors: James C. Barnes

Clinical Professor: Elmer Polk

Mission

The mission of the Executive Master of Science in Justice Administration and Leadership program at the University of Texas at Dallas is to:

- Deliver high-quality education to working professionals who in turn will examine the role of leadership within justice agencies and organizations.
- Prepare students to evaluate and apply relevant research findings on leadership and administration to lead, influence, and manage others in an increasingly diverse workforce and work environment.
- Advance the understanding of the consequences of change within justice organizations, and lead and manage personnel in periods of organizational change.
• Prepare students to apply relevant techniques of leadership, management, conflict resolution, and negotiation when confronted with change and subsequent conflict in justice and related organizations.

Objectives

The Executive Master of Science in Justice Administration and Leadership (MS-JAL) is housed in the Criminology Program and provides students with a coherent and intellectually challenging degree that prepares a new generation of leaders to manage and administer justice and other social service organizations. The program will deliver an innovative and integrated curriculum that connects such key components of leadership and administration in the justice setting as policy implementation and analysis, organizational behavior and change, planning and decision-making, and legal issues and conflict resolution to prepare students for supervisory and executive positions.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences (EPPS), the University's Computer Labs. EPPS has four computing laboratories which have 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are also available online via the library's and School's memberships in numerous organizations.

Graduate Assistantships

Graduate teaching and research assistantships will not be available.

Admissions Requirement

The Executive Master of Science in Justice Administration and Leadership (MS-JAL) seeks applications from students with a baccalaureate degree from an accredited university or college. Although applications will be reviewed holistically, in general, entering students have earned a 3.0 undergraduate grade point average (on a 4.0 scale). Students should also submit an on-line application, all transcripts, two letters of recommendation, a resume, and a one-to-two page essay outlining the applicant's background, education, and professional objectives. Applications are reviewed by the MS-JAL Program Director and appropriate faculty in the School of Economic, Political and Policy Sciences.

Prerequisites

For the Executive Master of Science in Justice Administration and Leadership, students with a Bachelor's degree in Criminal Justice, Criminology, Public Administration, or general business will have the necessary foundation for the master's degree. Students who lack this foundation should complete the following undergraduate courses at UT Dallas or their equivalents at another institution: CRIM 3302 Advanced Criminology, CRIM 3303 Advanced Criminal Justice, and CRIM 3304 Research Methods in Crime and Justice Studies. Prospective students with concerns about their preparation for the program are encouraged to consult with the program director.

Degree Requirements

Students seeking an Executive Master of Science in Justice Administration and Leadership degree must complete 30 semester credit hours of coursework in the program. The Core curriculum includes 15 semester credit hours in
criminal justice policy and criminology, 9 semester credit hours in public administration and practice courses, 6 semester credit hours in legal aspects of administration and dispute resolution, and 3 semester credit hours of independent research acting as a capstone project to satisfy a writing requirement. Students must achieve at least an overall grade point average of 3.0 to graduate.

Core Courses: 30 semester credit hours

Criminology (12 semester credit hours)

- **CRIM 6311** Crime and Justice Policy
- **CRIM 6390** Administration of Justice Agencies
- **CRIM 6395** Contemporary Issues in Justice Administration

One 3 semester credit hour CRIM elective (6000 level course)

Public Administration (9 semester credit hours)

- **PA 6316** Leadership in Public and Nonprofit Management
- **PA 6345** Human Resource Management
- **PA 6351** (CRIM 6351) Introduction to Homeland Security

Legal Aspects and Dispute Resolutions (6 semester credit hours)

- **CRIM 6312** Legal Aspects of Justice Administration
- **PA 6319** Topics in Public Affairs (when topic is Negotiation and Dispute Resolution)

Capstone Course Requirement (3 semester credit hours)

- **CRIM 6399** Capstone in Justice Administration

Other courses may substitute for those listed with the approval of the Executive MS-JAL Director or the Criminology Program Head.
School of Economic, Political and Policy Sciences

Graduate Programs in Economics

Doctor of Philosophy in Economics

75 semester credit hours minimum beyond the baccalaureate degree

Program Faculty

Professors: Daniel G. Arce M., Kurt J. Beron, Todd Sandler, Donghyu Sul

Associate Professors: Xin (Sherry) Li, Susan Williams McElroy, Kevin Siqueira

Assistant Professors: Rodney Andrews, Monica Deza, Asli Leblebicioglu

Mission

The mission of the PhD in Economics is to provide a cutting-edge education in economic theory, the development of a rigorous toolkit of mathematical and econometric techniques, and in various research areas in economics. This education allows students to think critically about how to approach the analysis of economic problems and to contribute to the knowledge base of the discipline.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories which house 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS, and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

Applicants will be judged and evaluated by the existing admission standards as set forth by the University in its Graduate Catalog. These standards include a bachelor's degree from an accredited institution or its equivalent, fluency in written and spoken English, a grade average of 3.25 or better in upper-division and graduate course work in economics and related courses, submission of official Graduate Record Examination (GRE) scores: a quantitative score of 148 and a verbal score of 160. Students may also wish to consider submitting their score from the writing component of the GRE test as additional evidence of their writing skills. A score of at least 4.5 in analytical writing is considered desirable.
Standardized tests scores are only one of the factors taken into account in determining admission. Given the demands that will be placed on the student in his/her study of economics, a strong background in calculus, linear algebra, and mathematical statistics is highly desirable.

Students should submit all transcripts, three letters of recommendation, and a one-page essay outlining the applicant's background, reasons for choosing UT Dallas, prior educational experiences, and personal objectives.

Prerequisites

Students who lack the necessary background to start the program are advised to take courses at the School of Economic, Political and Policy Sciences to strengthen their preparation, but they will not receive credit towards their PhD program. The following courses may be used to gain the prerequisite knowledge (i) ECON 3310 Intermediate Microeconomic Theory; (ii) ECON 3311 Intermediate Macroeconomic Theory; (iii) ECON 4351 Mathematical Economics; (iv) EPPS 7316 Regression and Multivariate Analysis or ECON 4355 Econometrics; (v) EPPS 7313 Descriptive and Inferential Statistics or equivalent. It is also necessary to have had undergraduate courses in calculus and matrix or linear algebra. Additional math courses, such as differential equations, mathematical statistics and real analysis, are useful.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking the PhD in Economics must complete 75 graduate semester credit hours. In addition, they must (i) complete core courses with an average GPA of 3.00; (ii) pass comprehensive exams in micro- and macroeconomic theory and in econometrics (although the econometrics exam will be waived for students who complete each of the required econometrics courses with an average grade of A- or better); (iii) submit an acceptable research paper by the beginning of the fourth year of study, (iv) be certified in two research areas within the science of Economics; and (v) submit an approved dissertation. The following paragraphs elaborate on these requirements.

Students are required to complete the following core courses:

- **ECON 6301** Microeconomics Theory I
- **ECON 7301** Microeconomics Theory II
- **ECON 7303** Microeconomics Theory III
- **ECON 6302** Macroeconomics Theory I
- **ECON 7802** Macroeconomics Theory II
- **ECON 6305** Mathematical Economics
- **ECON 6309** Econometrics I
- **ECON 7309** Econometrics II

In addition, they are required to register for the following courses at the appropriate stages of their study:

- **ECON 7V01** Paper Seminar
- **ECON 8V01** Dissertation Seminar

In order to assure that the student progresses satisfactorily, each student is required to consult with the Director of Graduate Studies (DGS) of Economics Programs prior to registration in every semester.
For research area certification, the student must select the two research areas, preferably during the second year of study, and advise the DGS of the selection. The DGS will, in conjunction with the Economics Curriculum Committee, advise the student regarding the appropriate certification requirements. The general guidelines for certification consist of making a grade of B or better in three courses within each area.

The submission of an approved dissertation will complete the course of study for the PhD degree in Economics. The procedure for approval of the dissertation is outlined in the UT Dallas Graduate Catalog.

Master of Science in Economics

36 semester credit hours minimum

Program Faculty

Professors: Daniel G. Arce M., Kurt J. Beron, Todd Sandler, Donggyu Sul

Associate Professors: Xin (Sherry) Li, Susan Williams McElroy, Kevin Siqueira

Assistant Professors: Rodney Andrews, Monica Deza, Asli Leblebicioglu

Mission

The mission of the Master of Science in Applied Economics is to provide excellent graduate-level education in economics, with an emphasis on the development of theoretical understanding of economic phenomena, quantitative skills that can be applied to economic problems, and critical thinking to understand how best to apply economic theory and quantitative skills to real-world problems. Graduates of the Economics program will have an educational background that is conducive to employment in banking or financial institutions, insurance, consulting, corporate strategic planning, real estate, journalism, management, marketing, labor arbitration, regulation, environmental and urban and regional planning, and quantitative analysis. Graduates may also choose to undertake further studies in PhD programs in Economics, Political Economy, and Political Science, as well as additional studies in business or law.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University’s Computer Labs. The School has four computing laboratories which house 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS, and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University’s Computer Labs provide personal computers and UNIX workstations.

Admissions Requirement

The masters program in Economics seeks applications from students with a baccalaureate degree from an accredited university of college. A 3.0 undergraduate grade point average (on a 4.0 scale), and a verbal score of 156 and a quantitative score of 146 on the Graduate Records Examination (GRE). Students may also wish to consider submitting their score from the writing component of the GRE test as additional evidence of their writing skills. Standardized test scores are only one of the factors taken into account in determining admission. Students should also submit all transcripts, three letters of recommendation, and a one-page essay outlining the applicants’ background, education and professional objectives.
Prerequisites

For the Master of Science in Economics, students with a Bachelor of Science in Economics and courses in calculus and matrix or linear algebra will have the necessary foundation in economics, statistics, and mathematics. Students who lack this foundation should complete the following undergraduate courses at UT Dallas or their equivalents at another institution: ECON 3310 Intermediate Microeconomic Theory, ECON 3311 Intermediate Macroeconomic Theory, ECON 4351 Mathematical Economics, ECON 4355 Econometrics, and EPPS 3302 Methods of Quantitative Analysis in the Social Sciences, MATH 1325 Applied Calculus I, MATH 1326 Applied Calculus II, and MATH 2333 Matrices, Vectors, and Their Application in order to begin the program.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking a Master of Science in Economics degree must complete 36 semester credit hours of work in the program. The program has three components: 12 semester credit hours (four courses) of Required Core Courses (listed below), 9 semester credit hours of Economics Electives and 15 semester credit hours of Other Electives. Students must consult with the Director of Graduate Studies of the Economics Program each semester in order to determine the approved Economics Electives and Other Electives each semester. Students must achieve at least a 3.0 grade point average in the required courses and an overall grade point average of 3.0 to graduate.

Major Required Core Courses in Economics: 12 semester credit hours

ECON 5321 Microeconomic Theory for Applications
ECON 5322 Macroeconomic Theory for Applications
ECON 6305 Mathematical Economics
ECON 6306 Applied Econometrics

Advising note: If the student intends to enter the PhD program in Economics upon completion of the MS, then he or she should consider taking ECON 6301 Microeconomics Theory I instead of ECON 5321 and ECON 6302 Macroeconomics Theory I instead of ECON 5322.

Economics Elective Courses: 9 semester credit hours

Approved ECON courses numbered 5000 and above.

Other Elective Courses: 15 semester credit hours

Approved ECON courses numbered 5000 and above or approved graduate courses from other programs.

Advising note: If the student intends to enter the PhD program in Economics upon completion of the MS then he or she should consider taking ECON 7301 Microeconomics Theory II and ECON 7302 Macroeconomic Theory II as electives.
The PhD in Geospatial Information Sciences aims to develop individuals capable of advancing this field by developing new knowledge or capabilities relevant to it.

The degree program is jointly offered by the School of Economic, Political and Policy Sciences, the School of Natural Sciences and Mathematics (specifically the Department of Geosciences) and the Erik Jonsson School of Engineering and Computer Science. This unique structure reflects geospatial information science's origins as the confluence of multiple disciplines including geography, computer science, engineering, geology, and various social, policy and applied sciences. It is anticipated that many students will enter the program with a bachelor's or master's degree (and/or work experience) in an application area (such as public administration, geology, or economics) or in a technical specialization (such as engineering, computer science, or statistics). These students may choose to pursue research projects that advance existing geospatial information sciences practices within that application area. Alternatively, students may opt to pursue research that expands the technological or theoretical base of all the geospatial information sciences.
Mission and Objectives

The mission of the Doctor of Philosophy in Geographic Information Sciences program is to cultivate innovative researchers capable of advancing the frontiers of knowledge in the geospatial information sciences through improved theories, new technologies, innovative methodologies, sophisticated quantitative analyses, and integrative applications. Specifically, program graduates will:

- Demonstrate their knowledge of the fundamental theories and concepts underlying the geospatial sciences.
- Master the advanced methodologies and/or quantitative analyses used in at least one of three geospatial specialization areas: (a) computing and information management, (b) spatial analysis and modeling, or (c) remote sensing and satellite technologies.
- Produce innovative research that advances theory or methodology in the geospatial sciences.
- Participate at academic conferences, publish in peer-reviewed journals and find employment in research departments of public and private organizations and in major academic institutions.

Facilities

Students have access to state-of-the-art GIS computing facilities housed in the School of Economic, Political and Policy Sciences and at the NASA Center for Excellence in Remote Sensing in the Department of Geosciences. The University’s extensive instructional computing facilities, including those in the Erik Jonsson School of Engineering and Computer Science, are also available. Facilities are open extended hours including evenings and weekends. Enrollment in hands-on courses is controlled to ensure that a computer workstation is available for every student. All major industry-standard GIS and remote sensing software is available. The University is a member of the University Consortium for Geographic Information Science (UCGIS).

Admission Requirements

The University’s general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The PhD program in Geospatial Information Sciences seeks applications from students with a baccalaureate, Master of Arts, Master of Science or professional masters-level degree in any field relevant to geospatial information science including, but not limited to, computer science, economics, engineering, geography, geology, management information systems, marketing, natural resource management, public affairs and public administration, statistics, and urban and regional planning.

Applicants will be judged and evaluated by the existing admission standards as set forth by the University in its Graduate Catalog and by the standards set forth here by the Geospatial Information Sciences program. A bachelor’s degree from an accredited institution or its equivalent and fluency in written and spoken English are required. A grade average of at least 3.25 in undergraduate and graduate course work, and a combined verbal and quantitative score of 300 on the GRE are desirable. An analytical writing score of at least 4.5 in the GRE is considered desirable.

Applicants must submit transcripts from all higher education institutions attended, three letters of recommendation, and an essay outlining their background, education, and academic objectives as they specifically relate to a PhD in Geospatial Information Sciences.

Prerequisites
The following prerequisites/corequisites will also be required for admission to the PhD program: (i) college mathematics through calculus, (ii) competence in at least one modern programming language equivalent to GISC 6317 GIS Programming Fundamentals, and (iii) at least one course in inferential statistics through to regression analysis equivalent to GISC 6301 GIS Data Analysis Fundamentals, EPPS 7313 Descriptive and Inferential Statistics, or GEOS 5306 Data Analysis for Geoscientists. Graduate courses taken at UT Dallas to meet these prerequisites may be counted as electives toward the 75 semester credit hours required of students entering the PhD program directly from a BA or BS degree, but they shall not be considered substitutes for any other specified course.

Advising

Because of the cross-disciplinary nature of this doctoral program, to ensure adequate preparation and appropriate course sequencing, every doctoral student is required to consult with the student's designated advisor and/or the GIS Doctoral Program Director prior to registration in every semester. Students generally will not have a faculty advisor when they first enter the PhD program, but every student is required to select (with consent of the potential advisor) an advisor from the advising faculty by the end of his/her first academic year.

Degree Requirements

The University’s general degree requirements are discussed on the [Graduate Policies and Procedures page](catalog.utdallas.edu/2013/graduate/policies/policy).

To receive the PhD in Geospatial Information Sciences, students must complete the Geospatial Science Core (15 semester credit hours) to achieve a mastery of appropriate Geospatial Information Science technologies and theory, have Prescribed Specialization Electives (15 semester credit hours), have a Specific Application area or Technical field (12 semester credit hours), evidence research skills through successful completion and defense of a PhD dissertation, and take related electives as necessary for a total of 75 semester credit hours. A maximum of 6 semester credit hours can be taken at the 5000 level and the rest of them should be at the 6000 level or above. In addition, students must satisfy a set of exams and qualifiers. Other courses may be substituted for those listed below with the written permission in advance of the Director of the GIS Doctoral program.

Geospatial Science Core: 15 semester credit hours

Students must earn a minimum grade point average (GPA) of 3.0 across the following five courses:

- **GISC 6381 (GEOS 6381)** Geographic Information Systems Fundamentals
- **GISC 6325 (GEOS 5325)** Remote Sensing Fundamentals
- **GISC 6384 (GEOS 6384)** Advanced Geographic Information Systems
- **GISC 6385 (GEOS 6385)** GIS Theories, Models and Issues
- **GISC 7310** Advanced GIS Data Analysis

Prescribed Specialization Electives: 15 semester credit hours

Students may select any five courses from the following:

I. Geospatial Computing and Information Management

- **CS 6359** Object-Oriented Analysis and Design
- **CS 6360** Database Design
- **CS 6364** Artificial Intelligence
- **CS 6366** Computer Graphics
- **CS 6375** Machine Learning
II. Spatial Analysis and Modeling

- ECON 6309 Econometrics I
- ECON 7309 Econometrics II
- EPPS 7318 Structural Equation and Multilevel (Hierarchical) Modeling
- EPPS 7370 Time Series Analysis
- ECON 6316 Spatial Econometrics
- GISC 7364 Demographic and Epidemiological Analysis and Modeling
- GISC 6311 Statistics for Geospatial Science
- GISC 6331 (CRIM 6322) GIS Applications in Criminology
- GISC 6334 (PPPE 6334) Workshop in Environmental and Health GIS/Policy
- GISC 6382 (GEOS 6383) Applied Geographic Information Systems
- GISC 7360 GIS Pattern Analysis
- GISC 7361 Spatial Statistics
- EPPS 7313 Descriptive and Inferential Statistics
- EPPS 7316 Regression and Multivariate Analysis

III. Remote Sensing and Satellite Technologies

- GISC 5322 (GEOS 5322) GPS (Global Positioning System) Surveying Techniques
- GISC 5324 (GEOS 5324) 3D Data Capture and Ground Lidar
- GISC 5330 (GEOS 5330) Geospatial Applications in Earth Science
- GISC 5355 Satellite Geophysics and Applications
- GISC 7363 (GEOS 5326) Advanced Remote Sensing
- GISC 7366 (GEOS 5329) Applied Remote Sensing
- EESC 6360 Digital Signal Processing I
- EESC 6363 Digital Image Processing

IV. Customized Geospatial Specialization

Identified by the student with approval in advance by the Director of the GIS Doctoral Program.

Application Area or Technical Field (12 semester credit hours)

Twelve semester credit hours of specialized course work in an application area or technical field relevant to GIScience. Normally, these will derive from the student's Master's degree. These semester credit hours may be...
transferred from another institution, or taken at UT Dallas in an existing master's program area and may be applied toward a master's degree in that area.

Application area examples: planning, public affairs, criminal justice, health and epidemiology, geoscience, forestry, hydrology, marketing, real estate, economics, civil engineering, etc.

Technical field examples: statistics, computer science, software engineering, management information systems, image analysis, operations research/location science, instrumentation.

Research and Dissertation (variable semester credit hours)

All students must complete the following class as part of the research and dissertation requirement:

- **GISC 7387** GIS Research Design

In addition, students must complete sufficient additional research and dissertation semester credit hours to bring the total number of semester credit hours they have earned within the UT Dallas doctoral program (or transferred into the UT Dallas doctoral program) to 75 semester credit hours, the minimum required to earn a doctoral degree. Additional research and dissertation semester credit hours above and beyond those required to reach the 75 semester credit hours minimum may be required at the discretion of the student’s PhD advisor. Additional research and dissertation semester credit hours can be earned through any of the following classes:

- **GISC 6387** Geospatial Sciences Workshop
- **GISC 6389** Geospatial Information Sciences Master’s Research
- **EPPS 6310** Research Design I
- **EPPS 6342** Research Design II
- **GISC 8320** Geospatial Sciences Seminar
- **GISC 8V29** Research in GIS
- **GISC 8V99** or **GEOS 8399** or **CS 8V99** Dissertation

Other Related Electives (0 to 24 semester credit hours)

Students may choose up to 24 semester credit hours in related electives (from CS, GEOS, GISC, etc.) with consent of their advisor or the GIS Doctoral Program Director.

Exams and Qualifiers

Qualifying Examination

The GISC PhD Qualifier Examination is administered in May of a full-time doctoral student’s first year, following the completion of the first academic year (i.e. fall and spring semester) by the student. This exam comprises of four parts, each based upon one of the following core courses:

- **GISC 6325** Remote Sensing Fundamentals
- **GISC 6384** Advanced Geographic Information Systems
- **GISC 6385** GIS Theories, Models and Issues
- **GISC 7310** Advanced GIS Data Analysis
A student must pass three of the four parts to pass the exam. If a student fails his/her exam, s/he may retake only the parts they failed in the subsequent August. If s/he does not pass a cumulative total of three parts after the August exam date, then s/he fails the Qualifier Examination, and is withdrawn from the GIS doctoral program.

Defense of Proposal

After completing the GIS Research Design class, doctoral students must successfully present and defend a dissertation proposal through an oral examination, according to uniform guidelines established by the GIS program.

Grade Point Qualifier

Doctoral students must have GPAs of at least 3.25, and preferably 3.5, in courses taken at UT Dallas at the time they register for GISC 7385 GIS Research Design, or they must petition the GIS faculty for an exemption for extenuating circumstances beyond the student's control.

Defense of Dissertation

A dissertation must be prepared and defended successfully following the procedures established by the Dean of Graduate Studies.

Note: Individuals experienced with GIS may have the introductory course (GISC 6381) waived at the discretion of the Geospatial Information Sciences Program Head, but must take an additional course from the prescribed specialization elective courses listed above.

Master of Science in Geospatial Information Sciences

36 semester credit hours minimum

Faculty

Professors: Carlos L. V. Aiken, Brian J. L. Berry, Denis J. Dean, John F. Ferguson, Daniel A. Griffith, James Murdoch, Hsing-Mean (Edwin) Sha, Robert J. Stern, Weili Wu

Associate Professors: Thomas H. Brikowski, Dohyeong Kim, Fang Qiu, Michael Tiefelsdorf

Assistant Professors: Yongwan Chun

Senior Lecturers: Bryan Chastain, Anthony Cummings, Irina Vakulenko

Students may choose between two tracks within the Master of Science in Geospatial Information Sciences program. Both tracks are offered jointly by the School of Economic, Political and Policy Sciences and the School of Natural Sciences and Mathematics. The first track is a professional program that focuses on the use of Geographic Information Systems (GIS) and associated technologies such as remote sensing and global positioning systems for acquiring, describing, managing, analyzing and communicating spatially-referenced information in order to provide decision support.

This track emphasizes coursework, and involves a GIS Masters Research class where a student needs to identify a faculty member as their Masters advisor, prepare a proposal for a professional GIS Masters project and conduct research under the supervision of the advisor. To obtain his/her Masters degree, a student must present the Masters project to the faculty and fellow students and successfully defend it. Students are expected to master the concepts...
underlying GIS, the skills for implementing GIS projects in public or private sector organizations, and the ability to use GIS in pure or applied research in substantive areas. Graduates can apply their skills in a variety of areas such as public administration and policy analysis; public safety, criminology, emergency preparedness management; environmental and resource management; urban, regional, social service and transportation planning and analysis; marketing, site selection, logistics and real estate; and resource exploration, including petroleum.

The second track of the Masters of Science in Geospatial Information Sciences program is a conventional program that offers a balance between coursework and research. A student needs to register for a Masters thesis class under a supervising advisor to conduct a research project, which will ultimately lead to a research-oriented masters thesis. To obtain his/her Masters degree, a student must present the Masters thesis to the faculty and fellow students and successfully defend it. This track is aimed at students who want to hone their research skills, and is the preferred route for students who may want to move to a doctoral program. Graduates in this track can apply their skills to the same areas as graduates from the first track, but also have the option of moving into research-oriented jobs, and maximizing their ability to move into doctoral programs.

Mission and Objectives

The mission of both tracks of the Master of Science in Geospatial Information Sciences program is to provide students a rigorous understanding of the technologies, quantitative techniques, models and theories used to acquire and manage spatially referenced information, analyze spatial processes, communicate spatial information, and provide spatial decision support. The second track has the additional mission of providing students with a thorough understanding of the scientific research method. UT Dallas graduates will have strong analytical and numerical skills, knowledge of empirical and quantitative research methodologies, and employ novel geographic information sciences technologies. They will use these capabilities to support public and private sector organizations, to address significant societal issues, and to enhance understanding of the human and natural environments. They will successfully compete at the highest level for jobs requiring geospatial skills and for entry into quality doctoral programs in relevant areas. More specifically, graduates of the program will:

- Possess a thorough knowledge of the technologies, quantitative techniques, models and theories used to acquire and manage spatially referenced information and to analyze spatial processes.
- Have strong analytical and numerical skills, knowledge of empirical and quantitative research methodologies, and be able to employ these skills and methodologies in novel geographic information sciences applications.
- Be able to identify and apply appropriate geospatial methodologies to support public and private sector organizations, to address significant societal issues, and to enhance understanding of the human and natural environments.
- Successfully compete at the highest level for jobs requiring geospatial skills and for entry into quality doctoral programs in relevant areas.

Facilities

Classes are offered through state-of-the-art GIS computing facilities housed in the School of Economic, Political and Policy Sciences and the NASA Center for Excellence in Remote Sensing in the Department of Geosciences. The University's extensive instructional computing facilities are also available. Facilities are open extended hours including evenings and weekends. Enrollment in hands-on courses is controlled to ensure that a computer workstation is available for every student. All industry-standard GIS and remote sensing software is available. The University is a member of the University Consortium for Geographic Information Science (UCGIS).

Admissions Requirement
The University’s general admission requirements are discussed on the [Graduate Admission page](catalog.utdallas.edu/2013/graduate/admission).

For admission to the program, a baccalaureate degree from an accredited university or college is required and Graduate Record Examination (GRE) or Graduate Management Aptitude Test (GMAT) scores must be presented. A 3.0 undergraduate grade point average (on a 4.0 scale), and a combined verbal and quantitative score of at least 295 on the GRE, or equivalent score on the GMAT, are desirable. Students must also submit transcripts from all higher education institutions attended, three letters of recommendation, and a personal statement, approximately one page in length, outlining their background, education and professional objectives.

Degree Requirements

The University’s general degree requirements are discussed on the [Graduate Policies and Procedures page](catalog.utdallas.edu/2013/graduate/policies/policy).

To earn the Master of Science in Geospatial Information Sciences, students must complete a minimum of 36 semester credit hours of work beyond the prerequisites. Both tracks of the program involve the core requirement of 15 semester credit hours, and prescribed electives for 18 semester credit hours. The two tracks differ in their research requirements (3 semester credit hours). Students must achieve at least a 3.0 grade point average in the core requirement and an overall grade point average of 3.0 to graduate. Other courses may be substituted for those listed below with the written permission in advance of the Geospatial Information Sciences Program Head.

Program Core Requirement - Both Tracks: 15 semester credit hours

Students must earn a minimum grade point average (GPA) of 3.0 in the following courses:

- **GISC 6301** GIS Data Analysis Fundamentals
- **GISC 6317** GIS Programming Fundamentals
- **GISC 6325** (GEOS 5325) Remote Sensing Fundamentals
- **GISC 6381** (GEOS 6381) Geographic Information Systems Fundamentals 1
- **GISC 6384** (GEOS 6384) Advanced Geographic Information Systems

Prescribed Electives: 18 semester credit hours

- **CS 6359** Object-Oriented Analysis and Design
- **CS 6360** Database Design
- **CS 6366** Computer Graphics
- **CS 6384** Computer Vision
- **GISC 5310** (GEOS 5310) Hydrogeology
- **GISC 5311** (GEOS 5311) Applied Groundwater Modeling
- **GISC 5322** (GEOS 5322) GPS (Global Positioning System) Satellite Surveying Techniques
- **GISC 5324** (GEOS 5324) 3D Data Capture and Ground Lidar
- **GISC 5330** (GEOS 5330) Geospatial Applications in Earth Science
- **GISC 5395** Satellite Geophysics and Applications
- **GISC 6331** (CRIM 6331) GIS Applications in Criminology
- **GISC 6334** (PPPE 6334) Workshop in Environmental and Health GIS/Policy
- **GISC 6382** (GEOS 6382) Applied Geographic Information Systems
- **GISC 6385** GIS Theories, Models, and Issues
- **GISC 6387** (GEOS 6387) Geospatial Sciences Workshop
- **GISC 6388** Advanced GIS Programming
Choose one of the following Research Requirement Tracks:

Research Requirement - Project Track: 3 semester credit hours

GISC 6389 Geospatial Information Sciences Master’s Research
AND Successfully defend a professional GIS Master’s Project

Research Requirement - Thesis Track: 3 semester credit hours

GISC 6V98 Master’s Thesis
AND Successfully defend a GIS Master’s Research Thesis

1. Individuals experienced with GIS may have the introductory course (GISC 6381) waived at the discretion of the Geospatial Information Sciences Program Head, but must take an additional course from the prescribed specialization elective courses listed above.
School of Economic, Political and Policy Sciences

Graduate Programs in Political Science

Doctor of Philosophy in Political Science

75 semester credit hours minimum beyond the baccalaureate degree

Faculty

Professors: Thomas L. Brunell, Anthony M. Champagne, Harold D. Clarke, Euel W. Elliott, Edward J. Harpham, L. Douglas Kiel, Robert C. Lowry, Marianne C. Stewart

Associate Professors: Patrick T. Brandt, Michael H. Crespin, Jennifer S. Holmes, Linda Camp Keith, Clint W. Peinhardt, Gregory S. Thielemann

Clinical Associate Professor: Brian Beary, Karl K. Ho

Assistant Professors: Brandon J. Kinne, Banks P. Miller

Mission Statement

The Doctor of Philosophy in Political Science provides a rigorous, disciplinary program with strong multidisciplinary links. The Program consists of innovative, state-of-the-science graduate education in political methodology and the fields of Comparative Politics and International Relations; Political Institutions and American Politics; and Law and Courts. In the first two years of the program, students acquire basic research skills and tools, and work on research projects. Later, they have opportunities to develop their instructional and presentation skills, to participate in summer methodology programs, and to interact with highly regarded scholars and practitioners in their fields of study.

Objectives

- Students will engage in critical and constructive thinking, effective communication to academic audiences, and rigorous design and execution of research projects.
- Students will describe, classify, and analyze the causes and consequences of the unprecedented unfolding of democracy on a global scale, its successes and failures, and its opportunities and problems during an era of globalization and of ongoing subnational, national, and transnational conflicts and negotiations.
- Students will describe, classify, and analyze the major theories, methods, and findings that are used to explain the participation of individuals in a variety of institutional settings in the United States and elsewhere, how public institutions can be designed to promote both collective goods and individual gains, and how changes in institutions have consequences for individuals and public policy.
• Students will describe, classify, and analyze the major theories and empirical findings about the behavior of judges, interactions between the judiciary and other institutions, and the role of courts in the evolution of public policy and the definition and protection of human rights around the world.
• Students will acquire the professional socialization necessary to teach and to conduct research in American, comparative, or international government and politics; democratization, globalization and international relations; governmental and political institutions and processes; and public administration, decision making, and risk management.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories which house 12-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, S-Plus, SPSS, and Stata. Computerized geographic information system software (e.g. ARC/GE), the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations.

Many important data and reference materials are available online from professional associations or at UT Dallas via the Library's and School's memberships in the American Political Science Association, the Inter-University Consortium for Political and Social Research (ICPSR), the European Consortium for Political Research (ECPR), and UCGIS. In addition, the School has access to journals via loan from the University of Texas System.

Students have opportunities to participate in research programs directed by members of the faculty. As appropriate, some students may become involved in methodological development activities offered by the School's membership in the ICPSR, ECPR, and UCGIS. In addition, some students may be eligible to participate in the professional development activities provided by faculty who co-edit the journal Electoral Studies.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission)

The Doctor of Philosophy in Political Science Program seeks applications from individuals with a baccalaureate, Master of Arts, or Master of Science degree in Government and Politics, Political Science, Public Administration, Public Affairs or a relevant discipline. The degree must be from an accredited college or university. An undergraduate grade point average of at least 3.2 and a combined quantitative and verbal Graduate Record Examination (GRE) score of 310 are desirable for students who expect to progress satisfactorily towards graduation. An analytical writing score of at least 4.5 in the GRE is considered desirable. Applicants also may submit their score from the writing component of the GRE as additional evidence of their admission eligibility. Applicants should submit all transcripts, three letters of recommendation (preferably from individuals who can evaluate the applicant's potential for graduate study and research), and a one-page essay describing educational and professional objectives. Grade point average, GRE score, and other information pertaining to the applicants' educational background and professional goals are among the factors that are considered in determining direct admission. Applications are reviewed by the Political Science Program Committee in the School of Economic, Political and Policy Sciences.

To attract the best students, editorial, research and teaching assistantships are available. Prospective students interested in teaching assistantships should apply for admission to start in the Fall by February 15. Editorial assistantships are available through several of the professional journals supported by the University. Research assistantships are available through several of the professional journals supported by the University.
assistantships may be available with individual faculty who have funding from external sources. Other assistantships are provided to work with faculty at the Center for Texas Politics or on instructional activities.

Students who lack the necessary background to start the Program are advised to take courses that strengthen their preparation, but these courses do not receive credit towards the PhD Program.

Undergraduate students who are interested in completing their undergraduate degrees while simultaneously taking graduate courses in the Political Science PhD Program are expected to meet the School's "fast-tracking" requirements.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

On admission to the PhD in Political Science Program, the student earns a minimum of 75 semester credit hours of coursework and dissertation credit beyond the baccalaureate degree. Core semester credit hours include four courses in Political Science Methodology and Theory, and three proseminars in the Program fields. The three fields are Comparative Politics and International Relations; Political Institutions and American Politics; and Law and Courts. Additional coursework includes four courses in the major field, two courses in the minor field, and at least three courses of freely chosen elective credit. Students may use these electives to complete an optional concentration in research methods.

Prior to admission to doctoral candidacy and further work on the dissertation or practicum, the student must pass examinations in the subjects covered by the core and field courses. Students must receive a grade of B- or better in all core courses and must maintain at least a 3.0 grade point average to graduate.

On examination completion, the student proceeds to present a doctoral dissertation or practicum proposal. The proposal must be approved by his/her Advisory Committee not later than two consecutive semesters after examination completion. Upon Committee approval, the student does further work on the doctoral dissertation or practicum while enrolling continuously for credit in research seminars and in dissertation or practicum research. The dissertation has multiple chapters that consist of a clear statement of the research problem, the theoretical framework and research design, the methods of analysis and findings, and an appropriately developed conclusion. The practicum consists of three papers that may or may not be thematically related and are informed by the theories and methodology of the student's major field. All three papers must be suitable for presentation at a major professional meeting and/or submission to a peer-reviewed professional journal.

Semester Credit Hour Requirements

- Core Courses in Political Science Methodology and Theory: 21 semester credit hours
- Field Proseminars: 9 semester credit hours
- Program Fields: 9 semester credit hours
- Courses in Major Field: 12 semester credit hours
- Courses in Minor Field: 6 semester credit hours
- Freely Chosen Elective Credit: at least 9 semester credit hours
- Dissertation or Practicum Research: up to 27 semester credit hours
- Total (Minimum): 75 semester credit hours

Core Courses in Political Science Methodology and Theory (12 semester credit hours)

- **EPPS 7313** Descriptive and Inferential Statistics
EPPS 7316 Regression and Multivariate Analysis

PSCI 6350 Logic, Methodology, and Scope of Political Science
PSCI 6352 Empirical Democratic Theory

Field Proseminars (9 semester credit hours)

PSCI 6300 Proseminar in Comparative Politics and International Relations
PSCI 6311 Proseminar in Law and Courts
PSCI 6347 Proseminar in Political Institutions and American Politics

Students who lack the math background for EPPS 7313 and EPPS 7316 may need to do additional work before completing these requirements.

Program Fields (9 semester credit hours)

Comparative Politics and International Relations

PSCI 6308 International Political Economy
PPPE 6319 Political Economy of MNCs
PSCI 6316 International Organizations
PSCI 6335 Institutions and Development
PSCI 6337 Comparative Institutions
PSCI 6357 Political Economy of Latin America
PSCI 6362 Political Development
PSCI 6363 Conflict and Development
PSCI 6361 Political Violence and Terrorism
PSCI 7330 Contemporary International Security

Political Institutions and American Politics

PSCI 6314 Policy Processes, Implementation and Evaluation
PSCI 6324 Local and State Government and Politics
PSCI 6330 Campaigns and Elections
PSCI 6331 Executives, Legislatures and Public Policy
PSCI 6333 Political and Civic Organizations
PSCI 6337 Comparative Institutions
PSCI 6323 Public Choice
PSCI 6339 Election Law and Electoral Systems
PSCI 6343 Law and the Policy Process
PSCI 7350 Institutions and Citizen Behavior
PSCI 7352 Choice and Decision Making

Law and Courts

PSCI 6301 Constitutional Law
Major Field Courses (12 semester credit hours)

Minor Field Courses (6 semester credit hours)

Freely Chosen Electives (9 semester credit hours minimum)

Dissertation or Practicum Research (27 semester credit hours maximum)

Research Methods Concentration: optional (9 semester credit hours)

Students can complete a concentration in research methods by taking three courses from the following list. Students must consult with the Director of Graduate Studies in advance to determine which courses fit best with their research interests.

ECON 6306 Applied Econometrics
ECON 6309 Econometrics I
ECON 7309 Econometrics II
ECON 6316 Spatial Econometrics
ECON 6320 Game Theory for the Social Sciences
ECON 6380 Experimental Economics I
ECON 7315 Econometrics III
ECON 7316 Game Theory
EPPS 6310 Research Design I
EPPS 6342 Research Design II
EPPS 6346 Qualitative Research Methods
EPPS 6352 Evaluation Research Methods in Economic, Political and Policy Sciences
EPPS 7306 Cost-Benefit Analysis
EPPS 7318 Structural Equation and Multilevel (Hierarchical) Modeling
EPPS 7344 Categorical and Limited Dependent Variables
EPPS 7370 Time Series Analysis
EPPS 7390 Bayesian Analysis for the Social and Behavioral Sciences
GISC 6301 GIS Data Analysis Fundamentals
GISC 6317 GIS Programming Fundamentals
GISC 7310 Advanced GIS Data Analysis
PSCI 6325 Decision Theory
PSCI 6353 Mathematical Models in Political and Social Science
PSCI 6364 Public Opinion and Survey Research
PSCI 7352 Choice and Decision Making
PSCI 7372 Game Theory for Political Scientists

Other courses as approved by the Director of Graduate Studies.
Semester credit hours are counted as part of major core.

Master of Arts in Political Science

30 semester credit hours minimum

Faculty

Associate Professors: Patrick T. Brandt, Michael H. Crespin, Jennifer S. Holmes, Linda Camp Keith, Clint W. Peinhardt, Gregory S. Thielemann

Clinical Associate Professor: Brian Beary, Karl K. Ho

Assistant Professors: Brandon J. Kinne, Banks P. Miller

Mission

The mission of the Master of Arts in Political Science (MAPS) degree is to offer advanced instruction in the social science literature and theories about politics, citizenship and governance. The program serves the interests and needs of talented students who can commit initially to a 30-semester credit hour program but may be attracted subsequently to the PhD program, as well as those who can commit initially to the doctoral program but subsequently decide not to complete the program. The Master of Arts in Political Science further can satisfy the interests and talents of students who “fast-track” in the Political Science undergraduate program and who want an additional year of more rigorous, sharply focused graduate coursework in Political Science.

Objectives

Students in the Master of Arts in Political Science program will:

- Demonstrate the ability to apply political science theories and concepts to the study of citizenship, governance and politics.
- Develop a competency in one of the fields of Comparative Politics and International Relations; Political Institutions and American Politics; or Law and Courts.
- Develop basic skills in professional communication appropriate to political science research and analysis.
- Develop competency in analysis, evaluation, and research design relevant to political science research and analysis.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories that have 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS, and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are available online from professional associations or at UT Dallas via the library's and
School's memberships in the American Political Science Association, the Inter University Consortium for Political and Social Research, the European Consortium for Political Research, the Roper Center, and the University Consortium for Geographic Information Systems, and other organizations.

Admissions Requirement

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The Master of Arts in Political Science seeks applications from students with a baccalaureate degree from an accredited university or college. Although applications will be reviewed holistically, in general, entering students have earned a 3.0 undergraduate grade point average (on a 4.0 scale), and a combined verbal and quantitative score of at least 300 on the Graduate Records Examination (GRE). Standardized test scores are only one of the factors taken into account in determining admission. Applicants should also submit all transcripts, three letters of recommendation (preferably from individuals who can evaluate the applicant's potential for graduate study), and a one-page essay outlining the applicant's background, education, and professional objectives. Applications are reviewed by the Political Science Program Committee in the School of Economic, Political and Policy Sciences.

Undergraduate students who are interested in completing their undergraduate degrees while simultaneously taking graduate courses in the MA in Political Science program are expected to meet the School's "fast-tracking" requirements.

Prerequisites

While there are no specific course prerequisites, entering students will benefit from exposure to undergraduate courses in the Economic, Political and Policy Sciences, statistics, and research design. In cases where undergraduate preparation is not adequate, students may be required to take additional course work before starting the master's program.

Transfer Policies

Students who have previous graduate work pertinent to the requirements of a master's program may be given up to 6 semester credit hours of transfer credit, and the semester credit hours of coursework required for the degree will be reduced accordingly. Students desiring to transfer graduate courses thought to be equivalent to core courses may be required to demonstrate competency through examination. The award of such transfer credit must be consistent with the University's "Transfer of Credit" policy.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking a Master of Arts in Political Science must complete at least 30 semester credit hours of work in the program, must receive a grade of B- or better in all required courses, and must maintain at least a 3.0 grade point average to graduate.

The curriculum has two components:

- Fifteen semester credit hours of required coursework
- Fifteen semester credit hours of prescribed electives
Required Courses: 15 semester credit hours

All students should complete the core courses as soon as possible.

All of the following:

- EPPS 6313 Introduction to Quantitative Methods
- PSCI 6350 Logic, Methodology, and Scope of Political Science
- PSCI 6352 Empirical Democratic Theory

Two of the following:

- PSCI 6300 Proseminar in Comparative Politics and International Relations
- PSCI 6311 Proseminar in Law and Courts
- PSCI 6347 Proseminar in Political Institutions and American Politics

Prescribed Electives: 15 semester credit hours

Two additional courses at the 5000 or 6000 level in one of the following fields: Comparative Politics and International Relations; Political Institutions and American Politics; or Law and Courts.

Three additional political science courses at the 5000 or 6000 level, or methodology courses such as applied regression (EPPS 6316) or other methods courses offered throughout the School, or up to three credits of optional thesis (independent study).

Master of Arts in Political Science - Constitutional Law Studies

30 semester credit hours minimum

Faculty

- Professors: Thomas L. Brunell, Anthony M. Champagne, Marianne C. Stewart, John L. Worrall
- Associate Professors: Denise Paquette Boots, Patrick T. Brandt, Linda Camp Keith
- Assistant Professors: Banks P. Miller

Mission

The mission of the Master of Arts in Political Science - Constitutional Law Studies degree is to provide students with the reasoning and analytic skills necessary to understand the technical rules of law, legal practices and policies, and law more generally as a social phenomenon. It serves the interests and needs of students who want an intellectually rigorous legal education as preparation for law school, for more advanced graduate learning, or for law-related careers in teaching, journalism, government, policy-making, or the private sector.

Objectives
Students in the Master of Arts in Political Science - Constitutional Law Studies program will:

- Acquire detailed knowledge of the role of the judicial system in the evolution of public policy in the United States.
- Acquire detailed knowledge of the roles played by practicing attorneys in the development and application of public law in the United States.
- Demonstrate basic skills in legal research and writing.
- Develop competency in the application of theories of the evolution of constitutional law to United States Supreme Court decisions.
- Demonstrate the ability to conduct original research on law and courts using skills in legal research and writing, quantitative research or field research.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories that have 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS, and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are available online from professional associations or at UT Dallas via the library's and School's memberships in the American Political Science Association, the Inter University Consortium for Political and Social Research, the European Consortium for Political Research, the Roper Center, and the University Consortium for Geographic Information Systems, and other organizations.

The Center for American and International Law, an internationally known organization that provides professional development to lawyers, judges, and law enforcement officers, helps to administer the Capstone Seminar in Constitutional Law Studies in which leading lawyers and judges provide lectures on law and the legal process.

Admissions Requirement

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The Master of Arts in Political Science seeks applications from students with a baccalaureate degree from an accredited university or college. Although applications will be reviewed holistically, in general, entering students have earned a 3.0 undergraduate grade point average (on a 4.0 scale), and a combined verbal and quantitative score of at least 300 on the Graduate Records Examination (GRE). Standardized test scores are only one of the factors taken into account in determining admission. Applicants should also submit all transcripts, three letters of recommendation (preferably from individuals who can evaluate the applicant's potential for graduate study), and a one-page essay outlining the applicant's background, education, and professional objectives. Applications are reviewed by the Political Science Program Committee in the School of Economic, Political and Policy Sciences.

Undergraduate students who are interested in completing their undergraduate degrees while simultaneously taking graduate courses in the MA in Political Science - Constitutional Law Studies program are expected to meet the School's "fast-tracking" requirements.

Prerequisites

While there are no specific course prerequisites, entering students will benefit from exposure to undergraduate courses in the Economic, Political and Policy Sciences, statistics, and research design. In cases where undergraduate
preparation is not adequate, students may be required to take additional course work before starting the master's program.

Transfer Policies

Students who have previous graduate work pertinent to the requirements of a master's program may be given up to 6 semester credit hours of transfer credit, and the semester credit hours of coursework required for the degree will be reduced accordingly. Students desiring to transfer graduate courses thought to be equivalent to core courses may be required to demonstrate competency through examination. The award of such transfer credit must be consistent with the University’s "Transfer of Credit" policy.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking a Master of Arts in Political Science - Constitutional Law Studies must complete at least 30 semester credit hours of work in the program, must receive a grade of B- or better in all required courses, and must maintain at least a 3.0 grade point average to graduate.

The curriculum has two components:

- **Twenty-one** semester credit hours of required coursework
- **Nine** semester credit hours of prescribed electives

Major Required Courses: 21 semester credit hours

All students should complete the core courses as soon as possible.

One of the following:

- EPPS 6313 Introduction to Quantitative Methods
- PSCI 6350 Logic, Methodology, and Scope of Political Science

All of the following:

- PSCI 5306 The American Legal System and the Practice of Law
- PSCI 5307 Legal Reasoning and Writing
- PSCI 6301 Constitutional Law
- PSCI 6305 Workshop in Constitutional Law Studies
- PSCI 6311 Proseminar in Law and Courts
- PSCI 6343 Law and the Policy Process

Prescribed Electives: 9 semester credit hours

Three of the following:

- CRIM 6311 Criminal Justice Policy
- CRIM 6317 Courts
Master of Arts in Political Science - Legislative Studies

30 semester credit hours minimum

Faculty

Associate Professors: Patrick T. Brandt, Michael H. Crespin, Linda Camp Keith, Gregory S. Thielemann

Mission

The mission of the Master of Arts in Political Science - Legislative Studies degree is to offer pre-professional instruction for students interested in positions as legislative staff, political consultants, or other careers in professional politics. Students will receive instruction that moves beyond the standard coursework in American and Texas government and politics by advancing their knowledge of legislative processes and the role that legislatures play at the local, state, and national levels of government. Graduates will have the communication, research, and project management skills that are necessary for undertaking policy or political analysis in legislative and/or public affairs offices of the state of Texas and elsewhere.

Objectives

Students in the Master of Arts in Political Science - Legislative Studies program will:

- Demonstrate knowledge of subnational political institutions and processes in the United States and their effects on politics and policy
- Demonstrate knowledge of normative issues in contemporary democracies involving representation, influence, and the balance of majority and minority interests and the ability to evaluate political institutions and processes in the United States.
- Demonstrate proficiency in skills required for at least one position in the practice of politics by successfully completing an internship.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories that have 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS, and...
Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are available online from professional associations or at UT Dallas via the library's and School's memberships in the American Political Science Association, the Inter University Consortium for Political and Social Research, the European Consortium for Political Research, the Roper Center, and the University Consortium for Geographic Information Systems, and other organizations.

Students also have access to the non-partisan Center for the Study of Texas Politics. The Center develops opportunities for North Texans to interact with Texas' leading policy-makers while simultaneously enhancing the quality of instruction, research, and service that exists in the School of Economic, Political and Policy Sciences.

Admissions Requirement

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The Master of Arts in Political Science seeks applications from students with a baccalaureate degree from an accredited university or college. Although applications will be reviewed holistically, in general, entering students have earned a 3.0 undergraduate grade point average (on a 4.0 scale), and a combined verbal and quantitative score of at least 300 on the Graduate Records Examination (GRE). Standardized test scores are only one of the factors taken into account in determining admission. Applicants should also submit all transcripts, three letters of recommendation (preferably from individuals who can evaluate the applicant's potential for a career in professional politics), and a one-page essay outlining the applicant's background, education, and professional objectives.

Applications are reviewed by the Political Science Program Committee in the School of Economic, Political and Policy Sciences.

Undergraduate students who are interested in completing their undergraduate degrees while simultaneously taking graduate courses in the MA in Political Science - Legislative Studies program are expected to meet the School's "fast-tracking" requirements.

Prerequisites

While there are no specific course prerequisites, entering students will benefit from exposure to undergraduate courses in the Economic, Political and Policy Sciences, statistics, and research design. In cases where undergraduate preparation is not adequate, students may be required to take additional course work before starting the master's program.

Transfer Policies

Students who have previous graduate work pertinent to the requirements of a master's program may be given up to 6 semester credit hours of transfer credit, and the semester credit hours of coursework required for the degree will be reduced accordingly. Students desiring to transfer graduate courses thought to be equivalent to core courses may be required to demonstrate competency through examination. The award of such transfer credit must be consistent with the University's "Transfer of Credit" policy.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).
Students seeking a Master of Arts in Political Science - Legislative Studies must complete at least 30 semester credit hours of work in the program, must receive a grade of B- or better in all required classes, and must maintain at least a 3.0 grade point average to graduate.

Major Required Courses: 9 semester credit hours

- **EPPS 6313** Introduction to Quantitative Methods
- **PSCI 6352** Empirical Democratic Theory

One of the following:

- **PSCI 6347** Proseminar in Political Institutions and American Politics
- **PA 6313** Public Policymaking and Institutions

Prescribed Electives: 9 semester credit hours

Three from the following list of courses:

- **PSCI 6314** Policy Processes, Implementation and Evaluation
- **PSCI 6324** Local and State Government and Politics
- **PSCI 6330** Campaigns and Elections
- **PSCI 6331** Executives, Legislatures and Public Policy
- **PSCI 6332** The U.S. Congress
- **PSCI 6333** Political and Civic Organizations
- **PSCI 6339** Election Law and Electoral Systems
- **PSCI 6341** Texas Legislative Process
- **PSCI 7350** Institutions and Citizen Behavior
- **PSCI 6364** Public Opinion and Survey Research
- or **EPPS 7386** Survey Research

Free Electives: 6 semester credit hours

Two additional courses at the 5000-level or above offered by programs in the School of Economic, Political and Policy Sciences, subject to approval by the Director of Graduate Studies. These may include additional courses from the list above.

Internship: 6 semester credit hours

- **PSCI 6V42** Legislative Affairs Internship (6 semester credit hours total; can be spread over more than one semester). Internships can be done in Austin, TX or Washington, DC, or with another state or local government agency or political organization.

1 Students cannot receive credit for both courses, PSCI 6364 and EPPS 7386.
School of Economic, Political and Policy Sciences

Graduate Programs in Public Affairs

Doctor of Philosophy in Public Affairs

75 semester credit hours minimum beyond the baccalaureate degree

Faculty

Professor: L. Douglas Kiel,

Associate Professors: R. Paul Battaglio Jr., Doug Goodman, Sarah Maxwell, Sheryl L. Skaggs

Assistant Professors: Evgenia Gorina, James Harrington, Young-joo Lee, Meghna Sabharwal, Nicholas Vargas

Clinical Professors: Donald R. Arbuckle, John McCaskill

Senior Lecturer: Teodoro Benavides

Mission

The mission of the PhD in Public Affairs program is to prepare students for research-oriented careers in academia, policy analysis, and executive public/nonprofit management positions. The rigorous core curriculum provides advanced conceptual and theoretical training in the principal areas of public administration and management, including: public policy, intergovernmental relations, budget and finance, human capital and organizational theory. Students develop analytical competencies through a sequence of research methods courses, and technical knowledge in specific topics through a flexible elective sequence.

Objectives

Through a faculty-guided program of instruction, research and mentoring, students in the Public Affairs doctoral program develop a firm understanding of the broad intellectual tradition of public administration and related fields. The guiding philosophy of the degree is that "public affairs" involves more than mere functional administration, policy implementation or quantitative policy analysis. Rather, doctoral education in public affairs requires an interface between the traditions of public management, public policy, and organizations with a practical appreciation for the challenges of maintaining and building institutions of governance and a civic culture in a complex, democratic society.

The PhD in Public Affairs begins as a cohort program where entering students remain together through the completion of a core curriculum and the qualifying examination (QE), after which they are able to pursue one of several areas of concentration. The concentration allows students to take courses appropriate for their research interests. This structure produces shared experiences and progress through the program that enrich student learning and research.
Faculty Commitments

The faculty of the PhD program in Public Affairs is committed to assist students in meeting a set of clear and specific education- and research-related goals. The specific objectives for all graduates of the PhD in Public Affairs program are to:

- **Demonstrate Comprehensive and Deep Knowledge**: Students will demonstrate their knowledge in principal fields of public administration and management, including: public policy, intergovernmental relations, organization theory, budget and finance, and human capital.
- **Understand and Apply Theories and Processes of Knowledge Acquisition**: Students will demonstrate familiarity with key theories in each of the principal fields of public administration and management, and will apply this theoretical knowledge in the development of research projects ranging from course assignments to their dissertation research projects.
- **Produce Scholarly Manuscripts and Publications**: Students, as scholars, will have the ability to execute research projects that utilize state of the art methodologies to produce scholarly manuscripts that are worthy of publication in the journals of the field.
- **Develop, Present, and Defend Complex Ideas**: Students will have the ability to develop, present, and defend both orally and in writing complex ideas based on in-depth scholarly research.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories which house 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS, and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations.

Application, Admission and Assistantships

Application Deadlines: Due to the cohort nature of the PhD program in Public Affairs, admissions are limited to the fall semester only. The application deadline for students seeking funding through assistantships is March 31. Applications for international students must be received by May 1 and June 1 for all required documentation (transcripts, test scores, letters of recommendation, etc.). The application deadline for US Citizens and Residents is July 1 with all documentation (transcripts, test scores, letters of recommendation, etc.). These deadlines must be followed to ensure applications are given full consideration. The web-based application form can be accessed using the "Apply Now" link for each degree listing at: www.utdallas.edu/admissions/graduate/degrees.

Admission Requirements: The program typically admits only students who have completed a Master's degree in Public Affairs or Social Science from an accredited University. A graduate GPA of 3.0 or better is expected. Prospective students must complete the University's online graduate application and submit a narrative outlining 1) academic interests, 2) current or long-range interests in research, teaching or other professional objectives, 3) description of publications or other scholarly endeavors, and 3) listing of academic and professional organizations and fellowships, scholarships, or other honors received. The Graduate Record Examination (GRE) is also required of all applications with a minimum verbal score of 156 and quantitative score of 52. International students whose native language is not English are also required to submit the Test of English as a Second Language (TOEFL) with a minimum score of 88, unless they graduated from a four-year college or university in the United States or other English speaking country. Students should submit examination scores and transcripts from all colleges previously attended to UT Dallas Admission and Enrollment Services. Three letters of recommendation from individuals (employers, community leaders, teachers, etc.) who are able to judge a student's probable success in graduate school are required. The letters may be sent directly to the program office or uploaded online.
International applicants without Permanent Resident Visas must submit evidence of financial support (financial affidavit and original bank statement) before they can receive the I-20 or other required documents needed for visa application.

Teaching Assistantships: Prospective students interested in receiving assistantships must have submitted all application materials including a Teaching Assistant (TA) application form by March 31 of the year they intend to start the program. Applications for the assistantships may be obtained from the Public Affairs Program Office. Offers of teaching assistantships will be made during the spring semester prior to fall enrollment, although additional appointments may be made as new positions become available each semester.

It is expected that those applying for a TA position can communicate effectively in both written and spoken English. State law and regulations of the Texas Higher Education Coordinating Board require that international students appointed as TAs be proficient in the use of the English language. An English Proficiency Interview conducted under the auspices of the office of the Dean of Graduate Studies will be used to screen for students requiring remedial help in the form of English as a Second Language (ESL) course. International students must satisfy the proficiency requirement upon appointment or pass the ESL course within two semesters to be eligible for consideration of continued appointment as a TA. Regardless of test scores, students must meet the language requirements of their programs.

Program Overview

The PhD in Public Affairs requires the completion of at least 75 semester credit hours including a minimum of 45 semester credit hours of course work and 12 semester credit hours of dissertation work. Students may be allowed to transfer some of their graduate course work (a maximum of 18 semester credit hours) which can be applied to the 75 semester credit hours required. To qualify for transfer credit, the student must have completed the graduate course work within the past 24 months at an accredited college or university and earned a grade of B or better. Grades of B- and courses completed through correspondence or extension are not eligible for transfer credit.

Prerequisites

Prior to enrolling in core classes for the PhD program, students must have completed a master’s degree in public affairs/administration or related field and show evidence of completing a graduate level course within the past 24 months in statistics/quantitative methods and public policymaking/public institutions. A grade of B or better is expected in these course prerequisites.

Qualifying Exam (QE)

Students must pass the QE to continue in the PhD program. If a student fails the exam he or she will be dismissed from the program. Students must have a grade of B or better in each of the four exam-related courses to be eligible to sit for the exam. Students who do not meet this requirement may choose to leave the program or repeat a course to earn a better grade (only one course may be repeated). Students are encouraged to review the University’s Retaking Courses Policy. Students retaking an exam related course are required to enroll in the course in the next semester it is offered. Students will not be permitted to enroll in courses outside the doctoral core curriculum until successful completion of the QE.

1. The QE is based on four specified courses from the core curriculum. The exam comprises 3 sections: (1) general public affairs topics; (2) policy topics; and (3) research methods.
2. The QE is a classroom proctored test. It includes three 4-semester credit hour sessions, which will take place over a two day period. The specific days and location of the sessions will be designated by the Department Head and announced at the start of the spring semester.
III. Program Coursework

I. Public Affairs Core: 18 semester credit hours

- **PA 7314** Advanced Policy Process, Implementation and Evaluation
- **PA 7320** Advanced Human Capital Research and Theory
- **PA 7350** Advanced Organizational Theory and Behavior
- **PA 7360** Advanced Fiscal and Budgetary Policy
- **PA 7375** Nonprofit Organizations: Theory and Practice
- **PA 8302** Proseminar in Public Affairs (this course includes a series of professional workshops which runs through a student’s first year)

II. Research Methods: 9 semester credit hours

A student who fails two or more sections of the QE will be dismissed from the program.

If a student fails one section, he or she will be given the opportunity to retake that section. The retake exam will be given within four weeks of the original exam, and will be graded as described above (see 3). If the student passes the retake exam he or she may continue in the program.

Only under extreme, documented circumstances will a student be allowed to reschedule the QE. If an emergency arises, the student must notify the Department Head within 12 semester credit hours of the scheduled exam and request to take a rescheduled exam. If approved, the exam will be rescheduled within 2 weeks of the original exam date.

Required Courses and Dissertation: 75 semester credit hours

Required courses fall into three categories: core, research methods, and areas of concentration.

The Program consists of course work in five core substantive knowledge areas central to public administration and management, including: public policy, nonprofit theory, organizational theory, fiscal and budgetary theory, and human capital. In addition, students are required to complete a three semester credit hour proseminar. A grade of B or better is required for all core courses (18 semester credit hours).

Research methods provide analytical training necessary to conduct doctoral level research beginning with Research Design, a regression course suitable for the student’s mathematical skill set (EPPS 6316 for algebra, EPPS 7316 for calculus), and a methods course appropriate for the student’s intended dissertation research. A grade of B- or better is required for all research methods-related courses (9 semester credit hours).

Building on the core curriculum, students have the flexibility to choose from one of three concentrations or develop their own customized concentration based on their area of interest (18 semester credit hours). Each concentration allows students the flexibility to select from existing EPPS course (6000 level or above; with program director approval). Students must earn a grade of B+ or better in courses within their area of concentration. Repeating a course for a higher grade will be permitted one time only; a student earning two or more grades lower than B- in their area of concentration will be dismissed from the program. To graduate, students are required to complete a three semester credit hour dissertation seminar (PA 8V99) and subsequently enroll in a dissertation research (PA 8V99) with their appointed dissertation chairperson (9 semester credit hours minimum). To remain in good standing, students must be continuously enrolled in 8V99 each long semester, while completing their dissertation.
PA 7330 Research Design in Public Affairs
EPPS 6316* Applied Regression OR EPPS 7316* Regression and Multivariate Analysis.
*Note: 6000 presumes algebra; 7000 level presumes calculus.

ONE of the following:
EPPS 6346 Qualitative Research Methods
EPPS 7344 Categorical and Limited Dependent Variables
EPPS 7370 Time Series Analysis
EPPS 7386 Survey Research
EPPS 7390 Bayesian Analysis for Social and Behavioral Sciences

III. Concentration: 18 semester credit hours

Concentration 1: Policy Analysis and Evaluation

PA 6315 Program Evaluation
PA 6344 Local Government Management
PA 7317 Microeconomics and Policy Analysis
SOC 6340 Domestic Social Policy
6 semester credit hours approved electives (6000 level or above)

Concentration 2: Personnel Policy

PA 6345 Human Resource Management
PA 7305 Leadership and Change in Public and Nonprofit Organizations
PA 6322 Negotiations for Effective Management
PA 6386 Diversity in the Public and Nonprofit Sectors
6 semester credit hours approved electives (6000 level or above)

Concentration 3: Nonprofit Management

PA 6345 Program Evaluation
PA 6335 Resource Development for Nonprofit Organizations
PA 7305 Leadership and Change in Public and Nonprofit Organizations
PA 6337 Strategic Planning for Nonprofit
6 semester credit hours approved electives (6000 level or above)

Concentration 4: Customized and Directed Research

Choose 6 elective courses; *ALL courses must be pre-approved by the Graduate Director.

IV. Dissertation Seminar (3 semester credit hours) and Dissertation Research (minimum of 9 semester credit hours)

Dissertation: Students are encouraged to consult with the department head and/or doctoral program director about the selection of their dissertation chair. Following the completion of Dissertation Seminar (PA 8340) and a successful public proposal defense, students begin work on their dissertation research, and enroll in PA 8V99 during
each semester until the dissertation is completed and successfully defended. The final dissertation defense is conducted when the student’s chair and committee agree that the dissertation is satisfactorily completed.

Master of Public Affairs

42 semester credit hours minimum

Faculty

Professor: L. Douglas Kiel

Associate Professors: R. Paul Battaglio Jr., Doug Goodman, Sarah Maxwell

Assistant Professors: Evgenia Gorina, James Harrington, Young-jo Lee, Meghna Sabharwal, Nicholhs Vargas

Clinical Professors: Donald R. Arbuckle, John McCaskill

Senior Lecturer: Teodoro Benavides

Mission

The Master of Public Affairs (MPA) program advances excellence in public service. The program is designed to prepare students to build competencies and develop creative solutions for challenges in finance, leadership, human resource, and project management.

Objectives

The Master's degree in Public Affairs is a professional diploma that focuses on skills of management and analysis that contribute to successful carrying out of administrative and leadership responsibilities in government and nonprofit settings. The specific outcome objectives for students who graduate with the MPA degree are:

- An understanding of the philosophical, theoretical, and legal foundations of public management, policy making, and leadership in government and nonprofit settings;
- Proficiency in organizational and decision analysis, research and evaluation practice, and quantitative and qualitative techniques;
- Sound preparation for advanced study aimed at research centers;
- Mastery of persuasive written and oral communication.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University’s Computer Labs. The School has four computing laboratories which have 24-30 computers that are network linked and equipped with major social science software packages, including Eviews, R, RATS, SPSS and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University’s Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are also available online via the library and School’s memberships in numerous organizations.
Admissions Requirement

The University’s general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The Public Affairs Master’s program at UT Dallas typically admits only students who have an undergraduate GPA of 3.0 or better. Prospective students must complete the University’s online graduate application and submit a narrative outlining 1) academic interests, 2) current or long-range interests in research, teaching or other professional objectives, 3) description of publications or other scholarly endeavors, and 3) listing of academic and professional organizations and fellowships, scholarships, or other honors received. International students whose native language is not English are also required to submit the Test of English as a Second Language (TOEFL) with a minimum score of 88, unless they graduated from a four-year college or university in the United States or other English speaking country. Students should submit examination scores and transcripts from all colleges previously attended to UT Dallas Admission and Enrollment Services. Three letters of recommendation from individuals (employers, community leaders, teachers, etc.) who are able to judge a student's probable success in graduate school and a current resume are required. The letters and resume may be sent directly to the program office or uploaded online.

To be guaranteed consideration for admission, fall applications must be received by July 1 (late registration deadline is August 1). Applications for spring admission must be received by November 1 (late registration deadline is December 1). Any incomplete application received after these dates will not be considered for admission during the designated semester. Students who do not meet this deadline must reapply for the following semester.

In addition to the university's transfer of credit requirements, a maximum of 9 semester credit hours of transfer credit can be applied to the MPA degree.

Prerequisites

While there are no specific prerequisites required for any MPA course, students who lack background in particular areas may be advised or required to take preparatory courses. In particular, students who lack background or experience in American political and policymaking institutions, in mathematics, and micro computing may be required to develop proficiency in these areas before being admitted into certain courses. Students meet with the MPA Director to determine these requirements. Leveling courses will not count toward the MPA degree.

Degree Requirements

The University’s general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking an MPA degree must complete at least 42 semester credit hours of work in the program. The program has three components: a 21 semester credit hour core, 15 semester credit hours of directed electives within a chosen professional specialization and the 3 semester credit hour Capstone seminar (PA 6399). For students without evidence of at least 12 months full time managerial experience in the public or nonprofit sectors, 3 semester credit hours of internship credit are also mandatory. Students for whom the internship requirement is waived must complete an additional 3 semester credit hours of approved elective coursework.

Grade Point Requirements

Students must maintain at least a 3.0 grade point average in the core courses and an overall grade point average (GPA) of 3.0 to graduate. If a student’s GPA does not meet these standards, University policy concerning academic probation and removal from the program are in effect.
Program Coursework

Major Core: 21 semester credit hours

All MPA students should complete the core courses as soon as possible, with the requirement that Introduction to Quantitative Methods (EPPS 6313) be taken during the first two long semester following admission. A full-time student entering the program will normally take three core courses and one additional course each semester. The Capstone or internship is usually undertaken when the student has completed most of the other degree requirements.

Required core: 21 semester credit hours

EPPS 6313 Introduction to Quantitative Methods
PA 6311 Public Management
PA 6313 Public Policymaking and Institutions
PA 6320 Organizational Theory
PA 6321 Government Financial Management and Budgeting
PA 6342 Local Economic Development
or PA 7317 Microeconomics and Policy Analysis
PA 6345 Human Resource Management

Professional Specialization Courses: 15 semester credit hours

Specialization tracks include: Public Management, Local Government Management, Nonprofit Management, and Policy Analysis. Students can also customize a track based on their career goals with the MPA Director’s approval.

Specialization 1: Public Management (15 semester credit hours)

PA 6344 Local Government Management
PA 6300 Quality and Productivity in Government
PA 6318 Information Systems in Policy Environments
PA 6324 Urban Planning
PA 6370 Project and Contract Management
SOC 6341 Urban Economics
or other appropriate courses approved by the MPA Director

Specialization 2: Local Government Management (15 semester credit hours)

PA 6344 Local Government Management
PA 6345 Human Resources Management
PA 6321 Government Financial Management and Budgeting
PA 6342 Local Economic Development
or other appropriate courses approved by the MPA Director

Specialization 3: Nonprofit Management (15 semester credit hours)

PA 6380 Nonprofit Organizations
PA 6382 Nonprofit Management
PA 6374 Financial Management for Nonprofit Organizations
PA 6315 Program Evaluation
Specialization 4: Policy Analysis (15 semester credit hours)

PA 7317 Microeconomics and Policy Analysis
EPPS 6316 Applied Regression
PA 6315 Program Evaluation
EPPS 7304 Cost-Benefit Analysis
or other appropriate courses approved by the MPA Director

Capstone Course: 3 semester credit hours

The Capstone in Public Affairs is the culminating experience for graduating MPA students. Students integrate knowledge from across the MPA curriculum in a faculty-directed semester-long applied research project (PA 6399). This required 3 semester credit hour seminar should be taken during the semester in which the student intends to graduate.

Internship: 3 semester credit hours

Three (3) semester credit hours of internship credit (PA 6V7) are required for completing the MPA. The internship involves work in a professional capacity in an organization, under the joint supervision of an experienced professional mentor at the internship site and the MPA Internship Coordinator. The standard three semester credit hour internship requires approximately a 20-hour per week time commitment to the work experience for a total of 300 internship contact hours during the semester. The objective of the internship is to provide an introduction to professional life and to establish sound approaches to the practice of public affairs. Students shall not take more than 6 semester credit hours of approved internship toward the MPA. For students with evidence of at least 12 months full-time managerial experience in the public or nonprofit sector, 3 semester credit hours of internship may be waived at the discretion of the MPA Director. Students who wish to seek the internship waiver must submit a formal written request to the MPA Director that includes a letter documenting the duration of their experience and its relevance to public or nonprofit management. This request must be approved no later than the student’s penultimate semester in the program. Students for whom the internship requirement is waived must complete an additional 3 semester credit hours of approved elective coursework in lieu of the internship.
School of Economic, Political and Policy Sciences

Graduate Programs in Public Policy and Political Economy

Doctor of Philosophy in Public Policy and Political Economy

75 semester credit hours minimum beyond the baccalaureate degree

Faculty

Professors: Brian J. L. Berry, Lloyd J. Dumas, Euel W. Elliott, Donald A. Hicks, Murray J. Leaf, Richard K. Scotch

Associate Professors: Patrick T. Brandt, Simon M. Fass, Jennifer S. Holmes, Linda Camp Keith, Dohyeong Kim, Clint W. Peinhardt

Assistant Professors: Jonas Bunte, Brandon J. Kinne

Mission

The mission of the PhD program in Public Policy and Political Economy is to prepare our students for professional positions in research, teaching, and practice in fields related to public policy and political economy, in both academic and nonacademic settings. We prepare students through instruction in social science and public policy concepts, advanced methodological knowledge, applied social research techniques, and professional communication skills. PPPE students and faculty are encouraged to promote an inclusive and diverse environment that is committed to continued scholarship and service.

Objectives

• Students will demonstrate the ability to apply social science and public policy theories and concepts.
• Students will develop competency in advanced methods of social science and public policy research and analysis.
• Students will develop basic skills in professional communication appropriate to the public policy and political economy research and analysis.

Facilities

Students have access to the computing faculties in the School of Economic, Political and Policy Sciences and University’s Computer Labs. The School has four computing laboratories that have 24-30 computers each that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS and Stata. A geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University’s Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are also available online via the library and the school’s memberships in numerous organizations.
Admission Requirements

The PhD in Public Policy and Political Economy seeks applications from students with a baccalaureate degree from an accredited university or college. An undergraduate grade point average of at least 3.2, a score of 160 Verbal and a score of 148 Quantitative on the GRE, or equivalent score on the GMAT, are desirable. Standardized test scores are only one of the factors taken into account in determining admission. Students should also submit all transcripts, three letters of recommendation, and a one-page essay outlining the applicant’s background, education, and professional objectives.

Prerequisites

While there are no specific course prerequisites, entering students will benefit from exposure to undergraduate courses in economics, political science, sociology, calculus, statistics, and research design.

Degree Requirements

The PhD in Public Policy and Political Economy requires a minimum of 75 post-baccalaureate graduate semester credit hours. Full-time students can complete the degree in an average of 5 years.

Students must maintain a 3.0 cumulative GPA in their graduate courses in the degree program, and earn a grade of at least 3.0 (B) for all core courses. If placed on probation, students will have one semester to bring their cumulative grade point average to a 3.0 or greater. Any student who receives two Cs will not be allowed to continue in the program.

Students must complete the following:

• 33 semester credit hours of core courses
• 12 semester credit hours of field courses (six semester credit hours in two fields of the student’s choice)

Development

• International Conflict and Security
• International Political Economy
• Social and Health Policy
• Business, Technology, and Innovation
• 6 semester credit hours area of specialization (in one of the fields of the student’s choice)
• A Methods Qualifying Examination in Quantitative Methods and Research Design
• Matriculation to the dissertation phase
• Successful completion of a dissertation
• Successful completion of 75 semester credit hours including electives

The requirements are outlined in further detail below:

I. Major Core Requirements (33 semester credit hours)

Students complete a core sequence of courses as follows:

1. Six semester credit hours of coursework in Government and Public Policy:

 PPPE 6347 Proseminar in Political Institutions and American Politics
PPE 6329 Ethics, Culture, and Public Policy

2. Six semester credit hours of Theories of Political Economy

- **PPE 6301** Political-Economic Theories
- **PPE 6321** Economics for Public Policy

3. Fifteen semester credit hours of Analytical Methods

Methods Core (Algebra-based or Calculus-based)

Algebra-based series

- **EPPS 6313** Introduction to Quantitative Methods
- **EPPS 6316** Applied Regression

or

Calculus-based series

- **EPPS 7313** Descriptive and Inferential Statistics
- **EPPS 7316** Regression and Multivariate Analysis

Students are strongly encouraged to take the calculus-based sequence, which is better preparation for the methods qualifying exam and more advanced methods courses.

Students will also take at least three additional courses from a set of courses approved by the relevant graduate program committee. Students may obtain a list of those courses from the program office.

4. Six semester credit hours of Research Design

- **PPE 6310** Research Design I
- **PPE 6342** Research Design II

II. Field Courses (12 semester credit hours)

Students take a two course introductory sequence in two of the following five fields. The fields and required courses are as follows:

Development:

- **PPE 6354** Theories and Issues of Development (Required)

Select one of the following:

- **PPE 6335** Institutions and Development
- **PPE 6343** Global Health Policy
- **PPE 6352** World Political Economy
- **PPE 6362** Political Development

- **POEC 6312** Social-Economic Theories
- **POEC 7327** Innovation Dynamics and Economic Change

Students are strongly encouraged to take the calculus-based sequence, which is better preparation for the methods qualifying exam and more advanced methods courses.

Students will also take at least three additional courses from a set of courses approved by the relevant graduate program committee. Students may obtain a list of those courses from the program office.

4. Six semester credit hours of Research Design

- **PPE 6310** Research Design I
- **PPE 6342** Research Design II

II. Field Courses (12 semester credit hours)

Students take a two course introductory sequence in two of the following five fields. The fields and required courses are as follows:

Development:

- **PPE 6354** Theories and Issues of Development (Required)

Select one of the following:

- **PPE 6335** Institutions and Development
- **PPE 6343** Global Health Policy
- **PPE 6352** World Political Economy
- **PPE 6362** Political Development

- **POEC 6312** Social-Economic Theories
- **POEC 7327** Innovation Dynamics and Economic Change

Students are strongly encouraged to take the calculus-based sequence, which is better preparation for the methods qualifying exam and more advanced methods courses.

Students will also take at least three additional courses from a set of courses approved by the relevant graduate program committee. Students may obtain a list of those courses from the program office.
International Conflict and Security

Select two of the following:

- PPPE 6361 Political Violence and Terrorism
- PPPE 6369 National and International Security Strategies and Policies
- PPPE 6363 Conflict and Development
- PSCI 6300 Proseminar in Comparative Politics and International Relations
- PSCI 6306 Human Rights and International Law
- PSCI 7330 Contemporary International Security
- PSCI 7335 Theories of International Relations

International Political Economy

Select one of the following:

- PSCI 6309 International Political Economy (required)
- PPPE 6319 Political Economy of MNCs
- PPPE 6351 World Political Economy
- PPPE 6368 Political Economy of Finance
- PPPE 6370 Political Economy of Natural Resources
- PSCI 6316 International Organizations

Social and Health Policy

Select two of the following:

- PPPE 6313 Human Organizations and Social Theory
- PPPE 6330 Domestic Social Policy
- PPPE 6341 Health Policy
- PPPE 6343 Global Health Policy
- PPPE 6350 Social Stratification
- PPPE 6356 Health and Illness

Business, Technology and Innovation

Select one of the following:

- PPPE 6359 Political Economy of Economic Development
- PPPE 6365 The Innovation Economy
Select one of the following:

- PPPE 6353 Industry, Technology, and Science Policy
- PPPE 6368 Political Economy of Finance
- PPPE 6373 Issues in Science, Technology and Society

Students may request that alternative courses be substituted in a particular field with the approval of the Program Head. Moreover, students may, in consultation with the Program Head, define a new field provided that appropriate coursework is available in a coherent research literature is identified.

III. Area of Specialization (6 semester credit hours)

The student takes at least six semester credit hours of additional coursework in one of the field areas as defined above. The specific required courses are designated by the faculty associated with that field and may be obtained from the program office. The student completes a dissertation in one of the two fields (see above) and must successfully defend the dissertation before a duly constituted dissertation committee, in accordance with the requirements of the University and the UT System.

IV. Methods Qualifying Exam and Matriculation to the Dissertation Phase

To advance to the dissertation stage of the program, students are evaluated based on a Methods Qualifying Examination (MQE).

The MQE will cover course material from (EPPS 6313 Introduction to Quantitative Methods and EPPS 6316 Applied Regression) and/or (EPPS 7313 Descriptive and Inferential Statistics and EPPS 7316 Regression and Multivariate Analysis), PPPE 6310 Research Design I and PPPE 6342 Research Design II. It is required that full-time (and 6 hours-a-semester part-time) students take EPPS 6313 or EPPS 7313 and PPPE 6310 in the fall semester of the first year and EPPS 6316 or EPPS 7316 and PPPE 6342 in spring. The MQE is administered once a year in late April or May. Student performance will be evaluated as unsatisfactory, satisfactory or excellent. Those failing the MQE for the second time will not be allowed to continue in the program. Part-time students should seek to complete the required methods sequence by spring of their second year; courses noted above should be taken in the same basic sequence.

V. Dissertation Seminar

Students must register for PPPE 8398 Dissertation Seminar for a minimum of one semester after passing the MQE and workshop paper requirements. The aim of the Dissertation Seminar is to assist students in the formulation of a dissertation topic, and prepare a dissertation topic for submission to a dissertation Committee and defense of the proposal before the committee. The Dissertation Seminar can also be taken as an independent study course under the supervision of the student’s likely dissertation supervisor. Students seeking advising concerning a suitable dissertation topic or appropriate supervisor are encouraged to consult with the Program Head.

VI. Electives

Students take free electives in areas of interest to fulfill the 75-semester credit hour PhD requirement.

PhD students should note that they are eligible to receive Master's degrees offered by the School of Economic, Political and Policy Sciences while they matriculate toward the doctorate. These degrees include the Master of Public Policy and the MS in International Political Economy. Other EPPS masters degrees can be earned as well. Students interested in obtaining one of these degrees should consult the catalog requirements or the graduate advisor.
1. **Courses that count for multiple fields (concentrations) can only be applied to one field (concentration), not double count in two fields (concentrations) for an individual student.**

Master of Science in International Political Economy

36 semester credit hours minimum

Faculty

Professors: Brian J. L. Berry, Lloyd J. Dumas, Euel W. Elliott, Donald A. Hicks, Murray J. Leaf, Richard K. Scotch

Associate Professors: Patrick T. Brandt, Simon M. Fass, Jennifer S. Holmes, Linda Camp Keith, Dohyeong Kim, Clint W. Peinhardt

Assistant Professors: Jonas Bunte, Brandon J. Kinne

Mission

The mission of the Master of Science in International Political Economy is to offer an experience in interdisciplinary education and policy research through activities in graduate education, scholarly and applied inquiry, and professional service. Today, more careers increasingly require international knowledge and skills that transcend the confines of traditional disciplinary training. We prepare students for careers in research, teaching, and practice in a variety of both academic and non-academic public policy and political economy settings. The Master of Science in International Political Economy will develop students’ critical skill sets to meet the needs and demands of the international diplomatic and business sectors. These skills include critical thinking, knowledge of multiple cultures, and cultural contexts, rigorous research skills, and the ability to communicate effectively in an array of environments. Students will be prepared to advance careers in policy and data analysis, and administrative positions in government, the nonprofit and private sectors.

Objectives

- Students will demonstrate the ability to apply social science and international political economy theories and concepts.
- Students will develop competency in advanced methods of social science and international political economy research and analysis.
- Students will develop basic skills in professional communication appropriate to international political economy research and analysis.
- Students will develop competency in analysis, evaluation, and research design relevant to social science and international political economy research and analysis.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories that have between 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS, and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are also available online via the library and school's memberships in numerous organizations.
Admissions Requirement

The University's general admission requirements are discussed on the [Graduate Admission page](catalog.utdallas.edu/2013/graduate/admission).

The master's program in International Political Economy seeks applications from students with a baccalaureate degree from an accredited university or college. Although applications will be reviewed holistically, in general, entering students have earned a 3.0 undergraduate grade point average (on a 4.0 scale), and a verbal score of 156 and a quantitative score of 146 on the Graduate Records Examination (GRE). Standardized test scores are only one of the factors taken into account in determining admission. Students should also submit all transcripts, three letters of recommendation, and a one-page essay outlining the applicant's background, education, and professional objectives.

Prerequisites

While there are no specific course prerequisites, entering students will benefit from exposure to undergraduate courses in the Economic, Political and Policy Sciences, statistics, and research design. Students are strongly encouraged to strengthen their foreign language skills.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures page](catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking a Master of Science in International Political Economy must complete at least 36 semester credit hours of work in the program. The program has four components:

- Eighteen semester credit hours of required coursework
- Twelve semester credit hours of prescribed electives
- Six semester credit hours of free electives
- Students must demonstrate a foreign language proficiency equivalent to two years of university-level study in one foreign language before graduation.

Students must maintain a 3.0 cumulative GPA in their graduate courses in the degree program, including core courses. If placed on probation, students will have one semester to bring their cumulative grade point average to a 3.0 or greater. Any student who receives two Cs will no longer be allowed to continue in the program.

<table>
<thead>
<tr>
<th>Major Required Courses: 18 semester credit hours</th>
</tr>
</thead>
</table>

All students should complete the core courses as soon as possible.

Economic Theory Core (take one of the following):

- **PPPE 6321** Economics for Public Policy
- **PPPE 6365** The Innovation Economy

Methods Core (Algebra-based or Calculus based)

Algebra-based series

- **EPPS 6313** Introduction to Quantitative Methods
 Prescribed Electives: 12 semester credit hours

Students complete 12 semester credit hours of Prescribed Electives. These consist of:

An area concentration in which the student completes two courses (six semester credit hours) in history, advanced language, or area studies courses that address a single region, including Europe, Latin America, or the Middle East/Greater Asia.

A theme concentration in which the student completes two courses (six semester credit hours) in Development, International Business & Public Policy, or International Conflict & Security.

Courses in both the area concentrations and theme concentrations must have the approval of the Program Head. Internships and independent studies may count toward either area or theme concentrations, with the permission of the Program Head.

Elective Courses

Students also select an additional six semester credit hours of coursework. Students may select courses from those courses not selected under Required Courses.
Master of Public Policy

36 semester credit hours minimum

Faculty

Professors: Brian J. L. Berry, Lloyd J. Dumas, Euel W. Elliott, Donald A. Hicks, Murray J. Leaf, Richard K. Scotch

Associate Professors: Patrick T. Brandt, Simon M. Fass, Jennifer S. Holmes, Dohyeong Kim

Assistant Professor: Jonas Bunte

Mission

The Mission of the Master of Public Policy is to offer students an interdisciplinary graduate education designed to develop skills for careers in which a solid understanding of the public policy process and the analysis and evaluation of public policies are essential. Students will be prepared for analytical and administrative positions and responsibilities in a wide array of professional settings in the public, nonprofit, and private sectors as well as advanced study for careers in research. Specific skills include knowledge of the policy process and related ethical concerns, rigorous research skills that provide students with an essential grounding in statistical and data analysis and research design, and effective communication skills.

Objectives

• Students will understand and analyze the principal policy making institutions and the ways in which they formulate debate and implement public policies at the national, sub-national and local levels. Students will examine legislative, executive, and non-governmental roles in policy formation at different levels of government. They will analyze the ways in which the various institutions interact and set policy priorities. They will study policy implementation and the interrelated functions of levels of governments, nonprofit and corporate entities in policy implementation.

• Students will learn and apply quantitative skills and economic theories to measure and evaluate public policies. They will learn when to apply appropriate techniques to complex policies. They will demonstrate an understanding of techniques to examine the preferred outcomes of policy alternatives to advise senior officials. Students will acquire skills in applying statistical measures of projected policy outcomes. Students will learn economic theories and acquire skills in applying those theories appropriately to establish policy objectives and outcomes.

• Students will understand the role of and learn appropriate, rigorous ways to design research to increase knowledge of public policy and citizen welfare. Students will learn ways to quantitatively and qualitatively design research projects that address important public policy questions and concerns.

• Students will learn and understand the unique role of ethical theories and behavior as it applies to the public and nonprofit sectors. Students will understand the ethical obligation of elected and appointed governmental officials to the body politic. Students will understand the functions of internal and public oversight of the formation and implementation of public policies.

• Students will develop expertise in a substantive area of public policy and learn how to effectively communicate new findings and innovative policies to senior decision makers and the general public. Students will study one of three major public policy disciplines - social policy, health policy or the business-government relationship. Students will understand the theories and scientific principles that
support these substantive policy areas and the ways in which those theories are tested. Students will understand how these policy areas contribute to the well-being of citizens to enhance the quality of life.

- Qualified students are encouraged to consider the PhD in Public Policy and Political Economy (PPPE). Such students should meet with Program Head of PPPE as soon as possible to discussion options.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories that have between 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS, and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are also available online via the library and the school's memberships in numerous organizations.

Admissions Requirement

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The master's program in Public Policy seeks applications from students with a baccalaureate degree from an accredited university or college. Although applications will be reviewed holistically, in general, entering students have earned a 3.0 undergraduate grade point average (on a 4.0 scale), and a verbal score of 156 and a quantitative score of 146 on the Graduate Records Examination (GRE). Standardized test scores are only one of the factors taken into account in determining admission. Students should also submit all transcripts, three letters of recommendation, and a one-page essay outlining the applicant's background, education, and professional objectives.

Prerequisites

While there are no specific course prerequisites, entering students will benefit from exposure to undergraduate courses in the economics, political sciences, sociology, college algebra, statistics, public policy, and research design.

Grading Policy

In order to qualify for graduation, students must maintain a minimum 3.0 grade point average in their degree program's core courses plus an aggregate grade point average of 3.0 for all graduate courses taken in the student's degree program at UT Dallas.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking a Masters in Public Policy must complete at least 36 semester credit hours of graduate coursework in the program. The program has three components:

- Twenty-one semester credit hours of required coursework
- Nine semester credit hours of prescribed electives
- Six semester credit hours of free electives
Students must maintain at least a 3.0 (B) grade point average to graduate.

I. Major Required Core Courses: 21 semester credit hours

Policymaking and Institutions (6 semester credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPE 6347</td>
<td>Proseminar in Political Institutions and American Politics</td>
</tr>
<tr>
<td>PPPE 6329</td>
<td>Ethics, Culture, and Public Policy</td>
</tr>
</tbody>
</table>

Methodology (Statistics, Research Design, and related courses - 9 semester credit hours)

Methods Core (Algebra-based or Calculus based)

Algebra-based series

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPPS 6313</td>
<td>Introduction to Quantitative Methods</td>
</tr>
<tr>
<td>EPPS 6316</td>
<td>Applied Regression</td>
</tr>
</tbody>
</table>

or

Calculus-based series

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPPS 7313</td>
<td>Descriptive and Inferential Statistics</td>
</tr>
<tr>
<td>EPPS 7316</td>
<td>Regression and Multivariate Analysis</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPE 6310</td>
<td>Research Design I</td>
</tr>
<tr>
<td>EPPS 6352</td>
<td>Evaluation Research Methods in the Economic, Political and Policy Sciences</td>
</tr>
</tbody>
</table>

Economics (3 semester credit hours)

One of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPE 6321</td>
<td>Economics for Public Policy</td>
</tr>
<tr>
<td>PPPE 6365</td>
<td>The Innovation Economy</td>
</tr>
</tbody>
</table>

Research Workshop or Internship (3 semester credit hours)

A PPPE Policy Research Workshop or internship or substitution as approved by the Program Head.

II. Prescribed Electives: 9 semester credit hours

Students complete nine semester credit hours in ONE of the following areas of concentration. All courses must be approved by the Program Head.

<table>
<thead>
<tr>
<th>Area of Concentration</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Social and Health Policy</td>
<td>PPPE 6365</td>
<td>The Innovation Economy</td>
</tr>
<tr>
<td>B. Security Studies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mary Jo Venetis 2/20/14 9:49 AM
C. Geographic Information Systems (GIS)
D. Analytic Methods

Other concentration areas proposed by the student and approved by the Program Head.

Students should consult the graduate catalog, and the Program Head, for additional information regarding those courses that would best satisfy the "Prescribed Electives" requirement.

III. Free Electives: 6 semester credit hours

Students may select six semester credit hours of 6000-level or higher courses. Students may choose courses that are not selected under "Major Required Core Courses" to fulfill this requirement and may choose courses outside the School of Economic, Political and Policy Sciences.
School of Economic, Political and Policy Sciences

Master of Science in Applied Sociology

36 semester credit hours minimum

Faculty

Professor: Richard K. Scotch

Associate Professors: Bobby C. Alexander, Sarah Maxwell, Sheryl L. Skaggs

Assistant Professor: Nicholas Vargas

Objectives

With an emphasis on the acquisition of theoretical knowledge and social research skills, the MS degree in Applied Sociology is offered under two different options: (1) the thesis option, which is primarily designed for students continuing on for a PhD in sociology or other social science program; (2) the non-thesis option, which is primarily designed to prepare students for careers in policy analysis, program development and evaluation, and quantitative and qualitative data analysis. As public, private, and nonprofit organizations attempt to maximize their human and monetary resources, they often seek professionals with specialized skills to assess program demands and viability, evaluate program success, direct change and inform policy. Graduates of the MS-AS program are trained to fill such roles and effectively apply their knowledge and skills in employment areas including healthcare, local, state and national government, nonprofit social services, community activism, marketing research, human resources, and business administration.

Although the MA in Applied Sociology is a terminal degree program, a number of our graduates have transitioned into UT Dallas's doctoral program in Public Policy and Political Economy, as well as external sociology doctoral programs throughout the country. Students planning to apply to a doctoral program are strongly encouraged to pursue the master's thesis option. The program is open to full-time and part-time students, with many of our classes offered in the late afternoon and evenings. Students may enter the program in the fall, spring or summer semesters.

Facilities

Students have access to the computing facilities in the School of Economic, Political and Policy Sciences and the University's Computer Labs. The School has four computing laboratories which have over 24-30 computers that are network linked and equipped with major social science software packages, including EViews, R, RATS, SPSS and Stata. A computerized geographic information system, the LexisNexis database, and Westlaw are also available for student use. The University's Computer Labs provide personal computers and UNIX workstations. Many important data and reference materials are also available online via the library's and the School's memberships in numerous organizations.

Admission Requirements
The Master of Science in Applied Sociology (ASOC) seeks applications from students with a baccalaureate degree from an accredited university or college. Although applications will be reviewed holistically, in general, entering students should have earned a 3.0 undergraduate grade point average (on a 4.0 scale) and optimally have a Graduate Records Examination (GRE) verbal score of 156 and a quantitative score of 152. Standardized test scores are only one of the factors taken into account in determining admission. Students should also submit all transcripts, three letters of recommendation, and a one-page essay outlining personal background, education, and professional objectives. UT Dallas undergraduates in any major may apply to the ASOC fast track program, which involves taking up to 15 semester credit hours of graduate courses as an undergraduate that can subsequently be applied to the master's degree requirements. For fast track program policies and information, see http://www.utdallas.edu/academics/fact-sheets/epps/ba-sociology.html.

Prerequisites

There are no required prerequisite courses in sociology for the Applied Sociology program, although prior coursework in social theory, research methods, and social statistics is desirable. Prospective students with concerns about their preparation for the Applied Sociology program are encouraged to consult with the program coordinator.

Grading Policy

To qualify for graduation, students must have earned a grade of B or better in each of the program's core courses plus an aggregate grade point average of 3.0 for all graduate courses taken in the student's degree program at UT Dallas.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures](catalog.utdallas.edu/2013/graduate/policies/policy) page.

Students may select the thesis or non-thesis option. The Master of Science (MS) in Applied Sociology has three components and requires the completion of 36 semester credit hours.

Thesis Option

Course Requirements

- 12 semester credit hours of core courses in Applied Sociology and EPPS
- 12 semester credit hours of Applied Sociology guided electives
- 6 semester credit hours of Economic, Political and Policy Sciences (EPPS) electives
- 6 semester credit hours of thesis research

The Master's Thesis is supervised by the student's major professor and the thesis committee, chosen in consultation with the major professor. The thesis committee may include a faculty member from another program with the approval of the major professor. Students are advised to consult with the graduate program director in selecting a major professor and thesis committee members. Students must pass a publicly announced defense of the thesis before it is submitted to the Graduate School. A passing grade on the defense is required in order to graduate. The date for the thesis defense should be early enough for required revisions (if any) to be made prior to the Graduate School deadline for submission. The thesis must conform to all Graduate School requirements.

Non-Thesis Option

Course Requirements
The Master of Science (MS) in Applied Sociology (ASOC) requires the completion of 36 semester credit hours: 12 semester credit hours of core courses in Applied Sociology, 15 semester credit hours of Applied Sociology guided electives, and 9 semester credit hours of electives from any graduate program in the School of Economic, Political and Policy Sciences (EPPS).

Major Core Courses in Applied Sociology and EPPS: 12 semester credit hours

- EPPS 6310 Research Design
- EPPS 6313 Introduction to Quantitative Methods
- SOC 6350 Social Stratification

One of the following:

- EPPS 6316 Applied Regression
- EPPS 6346 Qualitative Research Methods

One of the following:

- SOC 6340 Domestic Social Policy
- SOC 6312 Social-Economic Theories

Applied Sociology Guided Elective Courses: 12 semester credit hours (Thesis Option) or 15 semester credit hours (Non-Thesis Option)

Any graduate-level courses with a SOC prefix outside of the core may be applied to this requirement. Students may apply other graduate social science courses related to Sociology, including an appropriate graduate-level internship, with the permission of the program coordinator.

Economic, Political and Policy Sciences (EPPS) Electives: 6 semester credit hours (Thesis Option) or 9 semester credit hours (Non-Thesis Option)

Any 5000 or 6000 level courses in the School of Economic, Political and Policy Sciences may be applied to this requirement. Students are encouraged to consult with the program coordinator in order to select courses appropriate for their academic and professional career goals.

Thesis Research (Thesis Option Only): 6 semester credit hours

For further information about the Applied Sociology Program, contact Katie Doctor-Troup (kld015500@utdallas.edu, 972-883-4936), see our web page at www.utdallas.edu/epps/soc, or contact the program coordinator: Dr. Sheryl L. Skaggs (slskaggs@utdallas.edu, 972-883-4460).
School of Economic, Political and Policy Sciences

Certificate Programs

The School of Economic, Political and Policy Sciences offers seven graduate certificate programs for both degree and non-degree seeking students. Certificate programs are a valuable component of the School's educational mission and can be an important resource for both mid-career professionals and others seeking to advance their knowledge and expertise. The Certificates are offered in: Economic and Demographic Data Analysis, Geographic Information Systems (GIS), Geospatial Intelligence (Geoint), Local Government Management, Nonprofit Management, Program Evaluation, and Remote Sensing.

Graduate Certificate in Economic and Demographic Data Analysis: 15 semester credit hours

The Certificate in Economic and Demographic Data Analysis may be acquired by graduate degree-seeking and non-degree seeking students. For the certificate, students must complete 15 graduate semester credit hours (5 courses).

Students are required to take:

- EPPS 7313 Descriptive and Inferential Statistics
- EPPS 7316 Regression and Multivariate Analysis

Students must choose at least one of the following courses:

- ECON 6306 Applied Econometrics
- EPPS 7318 Structural Equation and Multilevel (Hierarchical) Modeling
- EPPS 7344 Categorical and Limited Dependent Variables

In addition, two other empirically oriented courses must be completed. Students should check with the Director of the Certificate Program or the program office for details as to the list of acceptable courses.

Students seeking the certificate who do not plan to seek a degree should (1) submit an application and (2) an undergraduate transcript. No GRE score is required. Note: (a) up to 15 semester credit hours of coursework taken as a non-degree seeking student can be applied later to a graduate degree; (b) currently enrolled students may use up to 9 semester credit hours of courses required for their degree for the certificate. Non-degree seeking students interested in continuing their graduate education must formally apply to the University and their program of interest to be considered for admission.

Courses for the certificate must be completed within a 3-year period with a minimum cumulative GPA of 3.0.

Graduate Certificate in Geographic Information Systems (GIS): 15 semester credit hours
The School of Economic, Political and Policy Sciences offers a certificate in Geographic Information Systems for both novice and experienced GIScience professionals. Classes are offered through the state-of-the-art facilities housed within the Geospatial Information Sciences program in the School of Economic, Political and Policy Sciences. The certificate is available to both graduate degree-seeking and non-degree seeking students. The certificate requires 15 graduate semester credit hours (5 classes). All courses taken as part of this certificate also count toward the Master of Science in Geospatial Information Sciences degree, and can be taken in conjunction with the Graduate Certificate in Geospatial Intelligence and the Graduate Certificate in Remote Sensing.

Admission Requirements

Students seeking the GIS Certificate must have completed an undergraduate degree. Students may complete and submit an application for admission online. Primary admissions requirements are: (1) an application to UT Dallas, and (2) an undergraduate transcript. Applicants for the certificate program do not need a GRE (Graduate Record Examination) score, or letters of reference for admission. They should apply as "non-degree seeking" students to the Geospatial Information Sciences program. Admissions requirements are the same for students who would simply like to take one or more of the related courses without pursuing certification. Up to 15 semester credit hours of coursework taken in the certificate program can be applied later in a graduate degree, if desired.

Registration by Current UT Dallas Students

Graduate students in any degree program within UT Dallas may register for GISC courses using standard registration procedures. Students should see their program advisor regarding course plan credit assignment. Courses are listed under geospatial information sciences (GISC) in the UT Dallas class scheduler, with additional offerings under Geosciences (GEOS).

The Graduate Certificate in Geographic Information Sciences requires 15 semester credit hours earned through the following courses:

Two Required Courses (6 semester credit hours)

GISC 6381 (GEOS 6381) Geographic Information Systems Fundamentals
GISC 6384 (GEOS 6384) Advanced Geographic Information Systems

Two elective courses chosen from the following or as approved by the Director of the Certificate Program (6 semester credit hours):

GISC 5322 (GEOS 5322) GPS (Global Positioning System) Satellite Surveying Techniques
GISC 5324 (GEOS 5324) 3D Data Capture and Ground Lidar
GISC 6303 GIS Data Analysis Fundamentals
GISC 6317 GIS Programming Fundamentals
GISC 6325 (GEOS 5325) Remote Sensing Fundamentals
GISC 6385 (GEOS 6385) GIS Theories, Models and Issues
GISC 6388 Advanced GIS Programming
GISC 7310 Advanced GIS Data Analysis
GISC 7360 GIS Pattern Analysis
GISC 7361 Spatial Statistics
GISC 7363 Internet Mapping and Information Processing
GISC 7365 (GEOS 5326) Advanced Remote Sensing

One Required Research Project Course (3 semester credit hours)
Graduate students in any degree program within UT Dallas may register for GISC courses using standard Registration by Current UT Dallas Students degree, if desired. Up to 15 semester credit hours of course work taken in the certificate program may also enroll. See Trang, Vy 11/5/13 3:36 PM

Graduate Certificate in Geospatial Intelligence (GeoInt): 15 semester credit hours

Geospatial Intelligence (GEOINT) is a rapidly evolving field that demands certain technical skill sets, the ability for individual rapid critical thinking and a global awareness of supporting information for national security and other intelligence activities. This certificate program produces graduates that have met the requirements for such professionals set forth by the United States Geospatial Intelligence Foundation (USGIF).

Classes are offered through the state of the art facilities housed within the Geospatial Information Sciences program in the school of Economic, Political and Policy Sciences. The certification requires 15 graduate semester credit hours (5 classes) detailed below. All courses taken as part of this certificate also count toward the Master of Science in Geospatial Information Sciences degree, and can be taken in conjunction with the Graduate Certificate in Geographic Information Systems and the Graduate Certificate in Remote Sensing.

Mission

The mission of the Graduate Certificate in Geospatial Intelligence is to provide students with a broad set of skills in the areas of geographic information systems, remote sensing, geospatial statistical analysis, intelligence gathering and global positioning systems. Courses will emphasize these skills along with the ability to find and interpret data, conduct accurate analysis, work in a professional and collaborative environment and communicate effectively. UT Dallas geospatial intelligence certificate graduates will have demonstrated to the intelligence community that they have acquired the basic skills needed for employment in this high growth industry.

Admission Requirements

Students seeking the Geospatial Intelligence certificate must have completed an undergraduate degree. Students may complete and submit an application for admission online. Primary admission requirements are: (1) an application to the Graduate Record Examination score or letters of reference for admission.

Students should apply as "non-degree seeking" students to the Geospatial Information Sciences program. Admission requirements for these students are similar to admission requirements for those students who would simply like to take one or more of the related courses without pursuing a certificate.

Up to 15 semester credit hours of course work taken in the certificate program can be applied later to a graduate degree, if desired.

Registration by Current UT Dallas Students

Graduate students in any degree program within UT Dallas may register for GISC courses using standard registration procedures. Students should see their program advisor regarding degree-plan credit assignment. Courses transferred from another institution will be applied at the discretion of the Director of the Certificate Program. All courses applied to the Certificate must have been taken within the three year period prior to the award of the Certificate.

Admission Requirements

Students seeking the Geospatial Intelligence certificate must have completed an undergraduate degree. Students may complete and submit an application for admission online. Primary admission requirements are: (1) an application to the Graduate Record Examination score or letters of reference for admission.

Students should apply as "non-degree seeking" students to the Geospatial Information Sciences program. Admission requirements for these students are similar to admission requirements for those students who would simply like to take one or more of the related courses without pursuing a certificate.

Up to 15 semester credit hours of course work taken in the certificate program can be applied later to a graduate degree, if desired.

Registration by Current UT Dallas Students

Graduate students in any degree program within UT Dallas may register for GISC courses using standard registration procedures. Students should see their program advisor regarding degree-plan credit assignment. Courses transferred from another institution will be applied at the discretion of the Director of the Certificate Program. All courses applied to the Certificate must have been taken within the three year period prior to the award of the Certificate.

Admission Requirements

Students seeking the Geospatial Intelligence certificate must have completed an undergraduate degree. Students may complete and submit an application for admission online. Primary admission requirements are: (1) an application to the Graduate Record Examination score or letters of reference for admission.

Students should apply as "non-degree seeking" students to the Geospatial Information Sciences program. Admission requirements for these students are similar to admission requirements for those students who would simply like to take one or more of the related courses without pursuing a certificate.

Up to 15 semester credit hours of course work taken in the certificate program can be applied later to a graduate degree, if desired.

Registration by Current UT Dallas Students

Graduate students in any degree program within UT Dallas may register for GISC courses using standard registration procedures. Students should see their program advisor regarding degree-plan credit assignment. Courses transferred from another institution will be applied at the discretion of the Director of the Certificate Program. All courses applied to the Certificate must have been taken within the three year period prior to the award of the Certificate.
are listed under geospatial information sciences (GISC) in the UT Dallas Class Schedule, with additional offerings under Geosciences (GEOS) and Management Information Systems (MIS).

Required Coursework (15 semester credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GISC 6301</td>
<td>GIS Data Analysis Fundamentals</td>
</tr>
<tr>
<td>GISC 6325</td>
<td>(GEOS 5325) Remote Sensing Fundamentals</td>
</tr>
<tr>
<td>GISC 6381</td>
<td>(GEOS 6381) Geographic Information Systems Fundamentals</td>
</tr>
</tbody>
</table>

Three required courses:

- GISC 6301 GIS Data Analysis Fundamentals
- GISC 6325 (GEOS 5325) Remote Sensing Fundamentals
- GISC 6381 (GEOS 6381) Geographic Information Systems Fundamentals

One elective course chosen from the following, or as approved by the Director of the certificate program:

- GISC 5322 (GEOS 5322) GPS (Global Positioning System) Satellite Surveying Techniques
- GISC 5324 (GEOS 5324) 3D Data Capture and Ground Lidar
- GISC 6317 GIS Programming Fundamentals
- GISC 6379 Special Topics in Geographic Information Sciences
- GISC 6384 (GEOS 6384) Advanced Geographic Information Systems
- GISC 6385 (GEOS 6385) GIS Theories, Models and Issues
- GISC 6388 Advanced GIS Programming
- GISC 7310 Advanced GIS Data Analysis
- GISC 7360 GIS Pattern Analysis
- GISC 7361 Spatial Statistics
- GISC 7363 Internet Mapping and Information Processing
- GISC 7365 (GEOS 5326) Advanced Remote Sensing
- GISC 7366 (GEOS 5329) Applied Remote Sensing
- GISC 7387 GIS Research Design
- MIS 6320 Database Foundations
- MIS 6324 Business Intelligence Software and Techniques
- MIS 6360 Software Project Management

One required research project course:

- GISC 6381 (GEOS 6381) Geospatial Sciences Workshop

Students should take this course with varied research topics if different certificate programs are pursued.

No more than two courses can be transferred from another institution. Courses for the certificate must be completed within a 3-year period with a minimum cumulative GPA of 3.0.

Individuals experienced with GIS may have the introductory course (GISC 6381) waived at the discretion of the Program Head, but must take an additional course from the elective courses listed above.

Graduate Certificate in Local Government Management: 15 semester credit hours

The School of Economic, Political and Policy Sciences offers a Graduate Certificate in Local Government Management for local government professionals and for MPA students who desire to broaden their knowledge of important issues and approaches employed by professional local public administrators. Local governments in the United States play an important role in our democratic system. They are the place in our democratic system where citizens have the most direct contact with elected and appointed officials on numerous issues.
Local government managers operate in a complex legal and political environment. They are responsible for the provision of varied services directly to citizens, such as land use planning, law enforcement, water and sewer services, and recreation. Both the method and quality of service delivery are greatly influenced by managers who are hired by elected officials. The management of cities and counties has become increasingly professional over the past several decades. How the professional staff delivers services to the public within the political environment in which it works is the topic of many of the courses in this program.

Requirements for admission to the certificate program are the same as for a non-degree seeking graduate student. Completion of fifteen (15) semester credit hours is required to attain the Certificate in Nonprofit Management and those semester credit hours may count toward a degree if the student completes all requirements for full admission as a graduate student.

Required courses are:

- **PA 6321 Government Financial Management and Budgeting**
- **PA 6342 Local Economic Development**
- **PA 6344 Local Government Management**
- **PA 6345 Human Resources Management**

Related elective – Permission from the Public Affairs Program Head or MPA Director is required.

The related elective may be selected from among courses that pertain to local government offered in the graduate programs of the School of Economic, Political and Policy Sciences. Permission of the certificate coordinator/Public Affairs Program Head/MPA Director must be obtained for the related elective course.

Courses for the certificate must be completed within a 3-year period with a minimum cumulative GPA of 3.0.

Graduate Certificate in Nonprofit Management: 15 semester credit hours

Nonprofit organizations constitute an increasingly significant sector of the American economy as well as an essential element in American civic life. Nonprofits are found in such diverse fields as health care, education, human services, and criminal justice, as well as in cultural and civic activities. Faced with resource constraints and rising demands for accountability, nonprofit organizations require professional managers with an understanding of both administrative principles and techniques and of the distinctive legal, economic, and social environment within which nonprofits operate.

The Certificate in Nonprofit Management is designed to provide an overview of the nature and context of nonprofit organizations combined with skill-based courses to develop the competencies needed by nonprofit managers. The Certificate is intended for professionals already working in the nonprofit sector, those working in private for-profit or governmental settings who would like to work or volunteer in the nonprofit sector, and students without professional experience who seek to prepare themselves for nonprofit careers.

Completion of fifteen (15) semester credit hours is required to attain the Certificate in Nonprofit Management and those hours may be counted toward a degree if the student completes all requirements for full admission as a graduate student.

Required courses are:

- **PA 6374 Financial Management for Nonprofit Organizations**
- **PA 6380 Nonprofit Organizations**
- **PA 6382 Nonprofit Management**
- **PA 6315 Program Evaluation**
Courses for the certificate must be completed within a 3-year period with a minimum cumulative GPA of 3.0.

Graduate Certificate in Program Evaluation: 15 semester credit hours

A graduate-level certificate program in Program Evaluation is offered by the School of Economic, Political and Policy Sciences. Students who complete this program have an opportunity to gain competencies in the design and implementation of program evaluations in fields such as education, health care, human services, criminal justice, and economic development. The Certificate in Program Evaluation may be incorporated into graduate degree programs in the School of Economic, Political and Policy Sciences, or may be taken independently by non-degree seeking students. Students pursuing the certificate program are normally expected to have completed undergraduate courses in statistics and in research methods. Students lacking appropriate preparation may be asked to take needed courses prior to admission to the program.

In order to receive the certificate, students must successfully complete a total of 15 semester credit hours of focused study, comprising of three required courses in the School of Economic, Political and Policy Sciences (9 semester credit hours) and 6 semester credit hours of field practice.

Required courses (9 semester credit hours)

One of the following:

EPPS 6313 Introduction to Quantitative Methods
EPPS 7313 Descriptive and Inferential Statistics

And all of the following:

PPPE 6310 Research Design I
EPPS 6352 Evaluation Research Methods in the Economic, Political and Policy Sciences
PPPE 6V91 Evaluation Research (Field Practice) [6 semester credit hours]*

With permission of the Coordinator of the certificate program, students may substitute appropriate courses from other offerings in the School of Economic, Political and Policy Sciences or prior coursework taken at other institutions.

Students interested in applying for admission to the Certificate in Program Evaluation program should consult the graduate advising office in the School of Economic, Political and Policy Sciences.

Courses for the certificate must be completed within a 3-year period with a minimum cumulative GPA of 3.0.

1 This is a two-semester long program evaluation project that culminates in a final report.

Graduate Certificate in Remote Sensing: 15 semester credit hours

The Remote Sensing Certificate is administered jointly by the School of Economic, Political and Policy Sciences and the Department of Geosciences. The American Society for Photogrammetry and Remote Sensing (1997) defines
remote sensing as the art, science, and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring and interpreting imagery and digital representations of energy patterns derived from non-contact sensor systems. Remote sensing involves a powerful set of computerized software and hardware, and sophisticated mathematical, statistical and logical techniques for extraction and presentation of information acquired via non-contact sensors. It provides reliable and cost-effective means of studying the Earth's surface for urban planning, natural resources management and protection, and a wide variety of other fields. Government and non-government organizations continuously seek qualified professionals to use remote sensing for a wide range of applications.

Admission Requirements

Students seeking the Remote Sensing certificate must have completed an undergraduate degree. Students may complete and submit an application for admission online. Primary admission requirements are: (1) an application to UT Dallas, and (2) an undergraduate transcript. Applicants for the certificate program do not need a GRE (Graduate Record Examination) score or letters of reference for admission.

Students should apply as "non-degree seeking" students to the Geospatial Information Sciences program. Admission requirements for these students are similar to admission requirements for those students who would simply like to take one or more of the related courses without pursuing a certificate.

Up to 15 semester credit hours of course work taken in the certificate program can be applied later to a graduate degree, if desired.

Registration by Current UT Dallas Students

Graduate students in any degree program within UT Dallas may register for GISC courses using standard registration procedures. Students should see their program advisor regarding degree-plan credit assignment. Courses are listed under geospatial information sciences (GISC) in the UT Dallas Class Schedule, with additional offerings under Geosciences (GEOS) and Management Information Systems (MIS).

Required Coursework (15 semester credit hours)

Two required courses:

- GISC 6325 (GEOS 5325) Remote Sensing Fundamentals
- GISC 7365 (GEOS 5326) Advanced Remote Sensing

Two elective course chosen from the following, or as approved by the Director of the certificate program:

- GISC 5322 (GEOS 5322) GPS (Global Positioning System) Satellite Surveying Techniques
- GISC 5324 (GEOS 5324) 3D Data Capture and Ground Lidar
- GISC 6301 GIS Data Analysis Fundamentals
- GISC 6317 GIS Programming Fundamentals
- GISC 6379 Special Topics in Geographic Information Sciences
- GISC 6381 (GEOS 6381) Geographic Information Systems Fundamentals
- GISC 6384 (GEOS 6384) Advanced Geographic Information Systems
- GISC 6385 (GEOS 6385) GIS Theories, Models and Issues
- GISC 6388 Advanced GIS Programming
- GISC 7310 Advanced GIS Data Analysis
- GISC 7360 GIS Pattern Analysis
- GISC 7361 Spatial Statistics
One required research project course:
GISC 6387 (GEOS 6387) Geospatial Sciences Workshop
Students should take this course with varied research topics if different certificate programs are pursued.

No more than two courses can be transferred from another institution. Courses for the certificate must be completed within a 3-year period with a minimum cumulative GPA of 3.0.
Erik Jonsson School of Engineering & Computer Science

Advances in technology are causing some of the most dramatic changes in the history of civilization. With a mandate from the State of Texas, Texas Instruments and industry, the Jonsson School is emerging as a national leader in the technological revolution.

The achievements of the Erik Jonsson School in its short 25-year history include:

• SAT scores of freshmen that are the highest of any public university in Texas.
• The School is the third most highly ranked public engineering school in Texas, according to *US News & World Report*.
• The School is the fifth highest producer of women graduates in Computer Science in the U.S. and the sixth highest producer of women graduates in Electrical Engineering, according to the American Society for Engineering Education (ASEE).
• The School is among the top five producers of computer science graduates in the U.S. and among the top ten producers of Electrical Engineering graduates, according to ASEE.
• The School is home to some of the world's top faculty in several fields.
• The School established the nation's first accredited telecommunications engineering program.

With 900 high tech companies nearby, the Jonsson School's location means that students and industry benefit from cutting edge research and development, top-notch internships and cooperative education programs, and highly qualified employees. These are just a few benefits of a strong alliance between industry and academe.

At The University of Texas at Dallas, the strong tie that binds the University to corporations was present even at UT Dallas's inception. Some 44 years ago, the founders of Texas Instruments (TI) offered their private research and development institution to the State of Texas to become part of the University of Texas System. Sixteen years later, the Texas Higher Education Coordinating Board authorized UT Dallas's Erik Jonsson School of Engineering & Computer Science to prepare students to tackle the rapidly changing world of technology and communications.

A strategic collaboration between UT Dallas, Texas Instruments, and the State of Texas is helping to ensure that the Erik Jonsson School will be recognized as one of the nation's elite engineering schools. This $300 million investment features construction of a 200,000 sq. ft. research building, the addition of 40 faculty members, recruitment of 400 full-time graduate research students, and the formation of new degree programs. Focusing strong interest in the investment, TI built a $3 billion semiconductor chip manufacturing facility near the university if the State of Texas allocated $50 million for research at UT Dallas. The investment includes a commitment from UT Dallas to raise $100 million from public and private sources.

UT Dallas and the Jonsson School have maintained close ties with TI, but as enrollment and programs have grown, so have strong relationships with other corporations such as Alcatel, Nortel, Ericsson, Nokia, Verizon, Lucent, Zyvex, Raytheon, EDS, SBC Communications, Tri-Quint Semiconductor, Cisco Systems, Lockheed Martin, Intervoice, and many others. Industry leaders have joined with UT Dallas and the Jonsson School to conduct research, share resources, enhance educational opportunities, and develop new technologies.

The Jonsson School is organized into six departments: Bioengineering, Computer Science, Electrical Engineering, Materials Science and Engineering, Mechanical Engineering, and Systems Engineering.
The Computer Science Department was created in 1975 and became a part of the Jonsson School in 1986. Today UT Dallas boasts one of the largest computer science departments in the country, with a talented student body numbering more than 1,500, taught by an internationally recognized group of 46 tenured/tenure-track faculty and 13 experienced senior lecturers. The UT Dallas Department of Computer Science is committed to excellence in three areas: providing the highest quality instruction to undergraduate and graduate students; conducting leading edge research in computer science and engineering; and providing leadership and services to professional communities. The graduate curriculum focuses on preparing students to perform fundamental and development research. Courses and research are offered in a variety of sub-fields of computer science.

The Electrical Engineering Department was founded in 1988 and graduated its first MS student in 1989. It has grown to become the third largest Electrical Engineering program in the State, graduating 364 students in academic year 2011-2012, and out-producing such well-known schools as the University of Colorado, Iowa State, Michigan State, and the University of Oklahoma. UT Dallas’s Electrical Engineering Program provides high quality education and internationally competitive research to the Dallas-Fort Worth Metroplex and Texas, focusing its efforts on areas of greatest need to North Texas industry. The department features 49 tenured/tenure-track faculty members supported by 8 senior lecturers. The program specializes in the following areas: Communications and Signal Processing, Digital Systems, Microelectronic Circuits and Systems, Optical and Photonic Devices, Materials and Systems, and Solid-State Devices and Circuits.

The Department of Materials Science and Engineering, created in 2006 and authorized to offer PhD and Master's degrees, already has fifteen tenure-system faculty members and world-class experimental facilities.

The rapidly growing Department of Mechanical Engineering, organized in 2008, offers Bachelor's and Master's degrees, and jointly with the University of Texas at Arlington, the PhD degree.

The Department of Bioengineering was organized in 2010 and is authorized to offer Bachelor's, Master's and PhD degrees in Biomedical Engineering.

The newest department in the School, Systems Engineering, offers the degree of Master of Science in Systems Engineering and Management jointly with the Naveen Jindal School of Management.

Degrees Offered

- **Master of Science in Biomedical Engineering** (33 semester credit hours minimum)
- **Master of Science in Computer Engineering** (33 semester credit hours minimum)
- **Master of Science in Computer Science** (33 semester credit hours minimum)
- **Master of Science in Software Engineering** (33 semester credit hours minimum)
- **Master of Science in Electrical Engineering** (33 semester credit hours minimum)
- **Master of Science in Materials Science and Engineering** (33 semester credit hours minimum)
- **Master of Science in Mechanical Engineering** (33 semester credit hours minimum)
- **Master of Science in Systems Engineering and Management** (33 semester credit hours minimum)
- **Master of Science in Telecommunications Engineering** (33 semester credit hours minimum)
- **Doctor of Philosophy in Biomedical Engineering** (75 semester credit hours beyond the baccalaureate degree)
- **Doctor of Philosophy in Computer Engineering** (75 semester credit hours beyond the baccalaureate degree)
- **Doctor of Philosophy in Computer Science** (75 semester credit hours beyond the baccalaureate degree)
- **Doctor of Philosophy in Electrical Engineering** (75 semester credit hours beyond the baccalaureate degree)
• Doctor of Philosophy in Materials Science and Engineering (75 semester credit hours beyond the baccalaureate degree)
• Doctor of Philosophy in Mechanical Engineering (78 semester credit hours beyond the baccalaureate degree)
• Doctor of Philosophy in Software Engineering (75 semester credit hours beyond the baccalaureate degree)
• Doctor of Philosophy in Telecommunications Engineering (75 semester credit hours beyond the baccalaureate degree)
Erik Jonsson School of Engineering & Computer Science

Department of Bioengineering

Department Faculty

Professors: Orlando Auciello, Stephen D. Levene, Jinming Gao, Mathukumalli Vidyasagar, Raimund J. Ober

Associate Professor: Robert L. Rennaker II, Shalini Prasad

Assistant Professors: Leonidas Bleris, Robert D. Gregg, Heather Hayenga, Lan Ma, Hyun-Joo Nam, Daniell Rodrigues, Hyuntae Yoo

Senior Lecturers: Allison Case, Clark Andrew Meyer, Todd W. Polk

UT Dallas Affiliated Faculty: Dinesh Bhatia, Jinming Gao, Michael P. Kilgard, Duncan L. MacFarlane, Raimund J. Ober, Issa M. S. Panahi, Balakrishnan Prabhakaran, A. Dean Sherry, Emily A. Tobey

Mathukumalli Vidyasagar, Walter E. Voit, Zhenyu Xuan, Michael Qiwei Zhang

UTSW Adjunct Faculty: Matthew Patel, Jonathan Cheng, Peter Rolland, Mark Goldberg, Hunt Batjer, Jinming Gao, Jeffery Cadeddu, Craig Malloy, Steven Patrie

http://www.utsouthwestern.edu/education/graduate-school/programs/phd-degrees/biomedical-engineering/program-faculty.html

Objectives

The MS and PhD programs in Biomedical Engineering at UT Dallas are offered as a part of a unique tricampus program, encompassing UT Southwestern Medical Center and UT Arlington. The objective of the PhD Program in Biomedical Engineering (BME) is to train the next generation of leaders in the field through high-quality original research work, supplemented as appropriate by a broad range of interdisciplinary courses.

The new generation of biomedical engineers will address fundamental scientific questions, provide answers to critical problems, and develop novel applications with commercial potential. The opportunities for interdisciplinary research and coursework in several branches of engineering, coupled with the life sciences, will prepare the graduates of this program to address complex life sciences-related problems in novel ways and to create vital solutions for the future.

The objective of the MS degree program in Biomedical Engineering is to generate BME graduates who will be capable of undertaking challenging BME-related projects. The primary educational objective of the MS program is to expose students to the latest developments in biomedicine and to provide them with the

http://catalog.utdallas.edu/2013/graduate/programs/ecs/biomedical-engineering
appropriate tools to understand and contribute further to these developments. The MS degree program will provide the necessary education and immediately applicable skills that will enable both recent baccalaureate graduates and experienced biomedical engineers to develop new life science related technologies and applications.

Facilities

The Engineering and Computer Science Building and the new Natural Science and Engineering Research Laboratory provide extensive wet lab, fabrication, instrumentation, and high performance computing facilities to foster biomedical engineering and nano-technology research. A Class 10000 microelectronics clean room facility, including e-beam lithography, sputter deposition, PECVD, LPCVD, etch, ash and evaporation, is available for student projects and research. In addition to the facilities on campus, students in this program will also have an opportunity to work closely with researchers in the UT Southwestern Medical Center and UT Arlington.
Master of Science in Biomedical Engineering

33 semester credit hours minimum

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

A student lacking undergraduate prerequisites for graduate courses in Biomedical Engineering (BMEN) must complete these prerequisites or receive approval from the graduate advisor and the course instructor.

The student entering the MS BMEN program should meet the following qualification guidelines:

- Undergraduate preparation equivalent to a baccalaureate in a field of engineering or the sciences
- A grade-point average (GPA) in upper-division quantitative coursework of 3.33 or better on a 4.0 scale
- GRE revised-scale scores of 154, 156, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program. These verbal and quantitative scores are equivalent to 520 (V) and 720 (Q) on ETS's prior GRE scale.
- See also UT Dallas requirements for English proficiency.

Applicants must submit an essay or “Statement of Purpose,” outlining the candidate’s background, education, and professional goals. Applicants must also submit an essay or “Statement of Purpose,” outlining the candidate's background, education, and professional goals.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The MS BMEN requires the completion of a minimum of 33 semester credit hours. A minimum of 24 semester credit hours must consist of BMEN or BMEN cross-listed courses, 9 semester credit hours of which must come from the following BMEN core courses:

- BMEN 6351 Biomedical Microdevices
- BMEN 6355 (MSEN 6355) Nanotechnology and Sensors
- BMEN 6373 (EEBM 6373) Anatomy and Human Physiology for Engineers
- BMEN 6374 (EEBM 6374) Genes, Proteins and Cell Biology for Engineers
- BMEN 6375 Techniques in Cell and Molecular Biology
- BMEN 6384 Biological Processes: Modeling and Simulation
- BMEN 6387 (BIOL 6376) Applied Bioinformatics

The requirement for the remaining 9 semester credit hours beyond the 24 semester credit hours of BMEN or BMEN cross-listed courses can be satisfied by completing recommended electives. These credits can be selected from 6000-level courses offered by the Erik Jonsson School of Engineering and Computer Science.
Science, the Department of Molecular and Cell Biology in the School of Natural Sciences and Mathematics, or appropriate courses taught at UT Southwestern or UT Arlington.

The MS BME program offers both thesis and non-thesis options. All MS BME students will be assigned initially to the non-thesis option. Those students who elect the thesis option may do so by obtaining the approval of a faculty thesis supervisor. Research and thesis semester credit hours cannot be counted in an MS BME degree plan unless a thesis is written and successfully defended.

- In order to satisfy degree requirements, students must achieve an overall GPA of 3.00 or better.
- Students must obtain a GPA of 3.33 or better in all MS BME or BMEN cross-listed courses.
- To be considered for admission to the PhD program one must obtain an overall graduate GPA of 3.33.

All full-time, supported students are required to participate in the thesis option. These students must have an academic advisor and an approved degree plan.
Doctor of Philosophy in Biomedical Engineering

75 semester credit hours minimum beyond the baccalaureate degree

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The PhD in Biomedical Engineering (BMEN) is awarded primarily to acknowledge the student's success in an original research project, the description of which is a significant contribution to the literature of the discipline. Applicants for the doctoral program are therefore selected by the Biomedical Engineering Program Graduate Committee on the basis of research aptitude, as well as academic record. Applications for the doctoral program are considered on an individual basis.

The following are guidelines for admission to the PhD program in Biomedical Engineering:

- A master's degree in engineering or one of the natural sciences
- A grade point average in graduate coursework of 3.33 or better on a 4.0 scale
- Students admitted to the program without a master's degree are required to take a minimum of 33 semester credit hours of organized coursework. A minimum of 24 semester credit hours must consist of BMEN or BMEN cross-listed courses.
- An overall grade point average of 3.33 or better on a 4.0 scale for students entering without a master's degree
- GRE revised-scale scores of 154, 156, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program. These verbal and quantitative scores are equivalent to 520 (V) and 720 (Q) on ETS's prior GRE scale.
- See also UT Dallas requirements for English proficiency.

Applicants must submit an essay or 'Statement of Purpose' describing motivation for doctoral study and how it relates to their professional goals, area of research interest, and potential supervising professor. Students are encouraged to directly contact faculty about research opportunities and their willingness to serve as their supervising professor.

Three letters of recommendation from individuals who are familiar with the student's record and are able to competently judge the candidate's probability of success in pursuing doctoral study in biomedical engineering are required. Letters may be submitted by recommenders on official school or business letterhead in sealed envelopes or by using the electronic UT Dallas Letter of Recommendation Form available on the UT Dallas Graduate Application for Admission.

For students who are interested in a PhD but are unable to attend school full-time, there is a part-time option. The guidelines for admission to the program and the degree requirements are the same as for full-time PhD students.

All students must have a supervising professor and an approved plan of study.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).
Each program for doctoral study is individually tailored to the student's background and research objectives by the student's dissertation committee.

The PhD degree requires a minimum of 75 semester credit hours beyond the baccalaureate degree.

1. All students entering the PhD program with a master's degree must complete a minimum of 9 semester credit hours of BMEN or BMEN cross-listed graduate-level courses work with a 3.33 GPA or higher. The courses will be selected in consultation with the supervising professor.

2. Students admitted to the program without a master's degree are required to complete a minimum of 33 semester credit hours of organized coursework. A minimum of 24 semester credit hours must consist of BMEN or BMEN cross-listed courses with a 3.33 GPA or higher. The courses will be selected in consultation with the supervising professor.

3. Students are required to have a supervising professor upon entry to the PhD program and develop an approved plan of study during the first long semester.

4. It is expected that candidates will form a dissertation committee following successful completion of the qualifying exam. The candidates should schedule a meeting with their dissertation committee once per long semester until they graduate from the program.

5. The dissertation committee or supervising professor can require additional courses.

Also required are:

- A qualifying examination (QE), consisting of a written exam and an oral defense demonstrating competence in the PhD candidate's research area. Admission to PhD candidacy is based on two criteria: graded performance in the QE and GPA in graduate-level organized courses. All students entering the PhD program must pass the QE within 2 long semesters. A student has at most two attempts to pass the QE which is given once during each fall and spring semester.

- After successful completion of the qualifying exam, the student is required to officially form the Dissertation Committee. The Dissertation Committee must be formally approved by the Department Head and the University's Dean of Graduate Studies.

- After the student's Dissertation Committee is formally approved, the student submits a written dissertation proposal to the Dissertation Committee. After the proposal is approved by the Dissertation Committee, the student will defend the dissertation proposal. A student has at most two attempts to successfully complete the dissertation proposal defense.

- Completion of a major research project culminating in a dissertation demonstrating an original contribution to scientific knowledge and engineering practice. The dissertation will be defended publicly. The rules for this defense are specified by the Office of Graduate Studies. Neither a foreign language nor a minor is required for the PhD. However, the student's Dissertation Committee may impose these or other requirements that it feels are necessary and appropriate to the student's degree program.
Erik Jonsson School of Engineering & Computer Science

Graduate Program in Computer Engineering

Program Faculty

Professor Emeritus: William J. Pervin

Associate Professors: Jorge A. Cobb, Roozbeh Jafari, Yiorgos Makris, Hlaing Minn, Neeraj Mittal, Issa M. S. Panahi

Assistant Professors: Myoungsoo Jung, Joseph Sloan

Senior Lecturers: Nathan B. Dodge, Greg Ozbirn

Affiliated Faculty: Cong Liu

Objectives

The MS and PhD degrees in Computer Engineering (CE) emerged as a bridge between the increasingly overlapping disciplines of Computer Science and Electrical Engineering. The MS CE degree program provides intensive preparation for engineers who seek knowledge and skills necessary for the design of complex systems comprised of both hardware and software components. It has a heavy emphasis on the design of high speed and complex hardware and highly reliable and time critical software systems. It is designed to serve the needs of engineers who wish to continue their education. Courses are offered at a time and location convenient for the student who is employed on a full-time basis.
Facilities

The Erik Jonsson School of Engineering and Computer Science has developed a state-of-the-art computational facility consisting of a network of Sun servers and Sun Engineering Workstations. All systems are connected via an extensive fiber-optic Ethernet, and through the Texas Higher Education Network, have direct access to most major national and international networks. In addition, many personal computers are available for student use.

The Engineering and Computer Science Building provides extensive facilities for research in electrical engineering, telecommunications, and computer science and engineering.

The Center for Systems, Communications, and Signal Processing, with the purpose of promoting research and education in general communications, signal processing, control systems, medical and biological systems, circuits and systems and related software, is located in the Erik Jonsson School.

In the Digital Signal Processing Laboratory several multi-CPU workstations are available in a network configuration for simulation experiments. Hardware development facilities for real time experimental systems are available and include microphone arrays, active noise controllers, speech compressors, and echo cancellers. The Distributed Computing Laboratory has a network of personal computers running Linux to support network simulation using discrete-event simulation packages. The Hardware/Software Co-design Laboratory has many workstations and PCs with DSP modules to support the experiments for various implementations in DSP and communications.

In addition to the facilities on campus, cooperative arrangements have been established with many local industries to make their facilities available to UT Dallas graduate engineering students.

Master of Science in Computer Engineering

33 semester credit hours minimum

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

A student lacking undergraduate prerequisites for graduate courses in electrical engineering and computer science must complete these prerequisites or receive approval from the graduate advisor and the course instructor. A diagnostic exam may be required. Specific admission requirements follow.

The student entering the MS CE program should meet the following guidelines:

• An undergraduate preparation equivalent to a baccalaureate in computer science or electrical engineering from an accredited engineering program.

• A grade point average in upper-division quantitative coursework of 3.0 or better on a 4.0 point scale.

• GRE revised scores of 154, 156, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Applicants must submit three letters of recommendation from individuals able to judge the candidate's probability of success in pursuing master's study. Applicants must also submit an essay outlining the candidate's background, education, and professional goals.
Students from other engineering disciplines or from other science and math areas may be considered for admission to the program on a case-by-case basis; however, some additional coursework may be necessary before starting the master's program.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures](catalog.utdallas.edu/2013/graduate/policies/policy) page.

The MS CE requires a minimum of 33 semester credit hours.

All students must have an academic advisor and an approved degree plan. Courses taken without advisor approval will not count toward the 33 semester credit hour requirement. Successful completion of the approved course of studies leads to the MS CE degree.

The MS CE program has both a thesis and a non-thesis option. All part-time MS CE students will be assigned initially to the non-thesis option. Those wishing to elect the thesis option may do so by obtaining the approval of a faculty thesis supervisor.

All full-time, supported students are required to participate in the thesis option. The thesis option requires six semester credit hours of research, a written thesis submitted to the graduate school, and a formal public defense of the thesis. The supervising committee administers this defense and is chosen in consultation with the student's thesis advisor prior to enrolling for thesis credit. Each student must take at least 2 courses selected from Group 1 and at least 2 courses selected from Group 2:

Group 1 (at least 2 courses)
- CE 6302 Microprocessor Systems
- CE 6304 Computer Architecture
- CE 6325 VLSI Design

Group 2 (at least 2 courses)
- CE 6363 Design and Analysis of Computer Algorithms
- CE 6378 Advanced Operating Systems
- CE 6390 Advanced Computer Networks

Approved electives must be taken to make a total of 33 semester credit hours. These courses must be at 6000 level or higher from computer engineering, electrical engineering, computer science, and telecommunications engineering curricula with the approval of the advisor. It is highly recommended that two of these electives be chosen from the following list:

- CE 6303 Testing and Testable Design
- CE 6305 Computer Arithmetic
- CE 6308 Real-Time Systems
- CE 6352 Performance of Computer Systems and Networks
- CS 6353 Compiler Construction
- CE 6370 Design and Analysis of Reconfigurable Systems
- CE 6375 Design Automation of VLSI Systems
- CE 6380 Distributed Computing
Students must achieve an overall GPA of 3.0 or higher, a GPA of 3.0 or higher in their core MS CE classes, and a grade of B- or higher in all their core MSCE classes in order to satisfy their degree requirements.

Doctor of Philosophy in Computer Engineering

75 semester credit hours minimum beyond the baccalaureate degree

Objectives

The PhD in Computer Engineering is awarded primarily to acknowledge the student’s success in an original research project, the description of which is a significant contribution to the literature of the discipline. Applicants for the doctoral program are therefore selected by the Computer Engineering Program Graduate Committee on the basis of research aptitude, as well as academic record. Applications for the doctoral program are considered on an individual basis.

Admission Requirements

The University’s general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The admission requirements will be basically the same as the existing ones for admission to the PhD programs in Electrical Engineering and Computer Science. The entrance requirements are:

- A master's degree in Computer Engineering or a closely associated discipline such as Electrical Engineering or Computer Science. Consideration will be given to highly qualified students wishing to pursue the doctorate without satisfying all of the requirements for a master’s degree.
- GPA in graduate level coursework of 3.5 or higher on a 4.0 point scale.
- GRE revised scores of 154, 156, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Applicants must submit three letters of recommendation from individuals able to judge the candidate's probability of success in pursuing doctoral study. Applicants must also submit an essay outlining the candidate's background, education, and professional goals.

Applicants must also submit a narrative describing their motivation for doctoral study and how it relates to their professional goals.

For students who are interested in a PhD but are unable to attend school full-time, there is a part-time option. The guidelines for admission to the program and the degree requirements are the same as for full-time PhD students. All students must have an academic advisor and an approved plan of study.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).
The program will require a minimum of 75 semester credit hours beyond the baccalaureate degree. These credits must include at least 30 semester credit hours of graduate level courses beyond the baccalaureate level in the major concentration. The core requirements for the PhD degree in Computer Engineering are the same as the ones for the MS in Computer Engineering. All PhD students must demonstrate competence in the master's level core courses in their research area. However, a student's supervising committee may impose course requirements that are necessary and appropriate for the student's research program. It is expected that MS degree students planning to enter the proposed doctoral program will take most of the courses as part of their MS degree requirements. All students must have an academic advisor and an approved plan of study.

Also required are:

- A qualifying examination (QE), as approved by the CE graduate committee, demonstrating competence in the PhD candidate’s research area. A student entering the PhD program with a MS CE must pass this exam within 3 long semesters, and a student entering without an MS CE must pass this exam within 4 long semesters. A student has at most two attempts at this qualifying exam. The exam will be given during the fall and spring semesters.
- A comprehensive exam consisting of: a written dissertation proposal, a public seminar, and a private oral examination conducted by the PhD candidate’s supervising committee.
- Completion of a major research project culminating in a dissertation demonstrating an original contribution to scientific knowledge and engineering practice. The dissertation will be defended publicly. The rules for this defense are specified by the Office of the Dean of Graduate Studies. Neither a foreign language nor a minor is required for the PhD. However, the student's supervisory committee may impose these or other requirements that it feels are necessary and appropriate to the student’s degree program.

Dissertation

A dissertation is required and must be approved by the graduate program. A student must arrange for a dissertation advisor willing to guide this dissertation. The student must have a dissertation supervising committee that consists of no less than four members. The dissertation may be in computer engineering exclusively or it may involve considerable work in an area of application.
Graduate Program in Computer Science

Program Faculty

Professor Emeritus: Klaus Truemper

Associate Professors: Sergey Bereg, Lawrence Chung, Jorge A. Cobb, Kendra M. L. Cooper, Xiaohu Guo, Kevin Hamlen, Sandra M. Harabagiu, Murat Kantarcioglu, Yang Liu, Neeraj Mittal, Yu-Chung (Vincent) Ng, Kamil Sarac, Haim Schweitzer, Rym Zalila-Wenkstern

Assistant Professors: Alvaro Cárdenas, Mark Gabel, Vibhav Gogate, Zhiqiang Lin, Cong Liu, Ryan McMahan

Research Professors: Ron Bose

Senior Lecturers: Ebru Cankaya, Michael Christiansen, John Cole, Chris I. Davis, Timothy (Tim) Farage, Neeraj Gupta, Shyam Karrah, Pushpa Kumar, Linda Morales, Nhut Nguyen, Greg Ozbirn, Mark Paulk, Miguel Razo-Razo, William Semper, Charles Shields Jr., Jason W. Smith, Janell Straach, Jeyakesavan (Jey) Veerasamy, Don G. Vogel

Affiliated Faculty: Milind Dawande, Eakta Jain

Objectives

The Graduate Program in Computer Science provides intensive preparation in the design, programming, theory, and applications of computers. The Department of Computer Science offers courses of study leading to the MS in Computer Science, the MS in Software Engineering, PhD degree in Computer Science, and the PhD degree in Software Engineering. Training is
provided for both academically oriented students and students with professional goals in the many business, industrial or governmental occupations requiring advanced knowledge of computer theory and technology. Courses and research are offered in a variety of subfields of computer science, including operating systems, computer architecture, computer graphics, pattern recognition, automata theory, combinatorics, artificial intelligence, data and network security, natural language processing, database design, computer networks, programming languages, software systems, analysis of algorithms, computational complexity, software engineering, software testing, software reliability, scheduling, visualization, fault-tolerant computing, parallel processing, telecommunications networks, telecommunications software, performance of systems, VLSI, computational geometry, and design automation.

A comprehensive program of evening courses is offered which enables part-time students to earn the master's degree or to select individual courses of interest.

Facilities

The Department of Computer Science systems are comprised of a private virtualization cloud, several individual compute servers, computer workstations, and desktop computers. Research laboratories are available for parallel processing, distributed systems, software engineering, high-performance computing, graphics, programming languages and systems, telecommunications, CAD and graph visualization, image understanding and processing, artificial intelligence, big data, natural language processing, speech processing, and web technologies. The Department of Computer Science network connects through Internet 2 with other research universities, gigabit ethernet intranet, and pervasive wireless connectivity.

Master of Science in Computer Science

33 semester credit hours minimum

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The student entering the Computer Science MS program should have an undergraduate preparation equivalent to a baccalaureate in a quantitative science, including calculus and linear algebra. However, special arrangements (requiring more than the minimal number of semester credit hours) can be made for students with good undergraduate preparation in other fields. Minimum requirements are:
- Bachelor's degree which includes 2 semesters of calculus and 1 semester of linear algebra.
- GPA of at least 3.0 (last 60 semester credit hours). GPA in quantitative courses of at least 3.3.
- GRE revised scores of 308, 153, 155, and 4 for the combined, verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Students lacking undergraduate preparation in Computer Science must complete the courses listed below. At the discretion of the graduate advisor, a diagnostic exam may be required. The required prerequisite courses common to all Master's students are:

Required Prerequisite Courses

- **CS 5303** Computer Science I
- **CS 5330** Computer Science II
- **CS 5333** Discrete Structures
- **CS 5343** Algorithm Analysis and Data Structures
- **CS 5348** Operating Systems Concepts

Substitution of **CS 5303** and/or **CS 5330** by professional experience will be considered.

Additional prerequisite courses required for the various degree plans are:

For the Traditional Computer Science:

- **CS 5349** Automata Theory
- **CS 5390** Computer Networks

For the Networks and Telecommunications Track:

- **CS 3341** (SE 3341) Probability and Statistics in Computer Science and Software Engineering
- **CS 5390** Computer Networks

For the Data Sciences Track:

- **CS 3341** (SE 3341) Probability and Statistics in Computer Science and Software Engineering

For the Information Assurance Track:

- **CS 5390** Computer Networks

For the Major in Software Engineering:

- **CS 3354** (SE 3354) Software Engineering or **CS 5354** (SE 5354) Software Engineering
Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The student may choose a thesis plan or a non-thesis plan. The thesis plan requires a minimum of 27 semester credit hours of courses, plus completion of an approved thesis (six thesis semester credit hours). This thesis is directed by a supervising professor and must be approved by the head of the Department of Computer Science. The non-thesis plan also requires a minimum of 33 semester credit hours of courses.

By a judicious planning of courses chosen from the computer science curriculum, supervised and approved by the graduate advisor, students may pursue the MS degree in Computer Science while emphasizing specific areas of the discipline. Students may also choose to receive the MS degree in Computer Science - Software Engineering (MSCS). Because of the rapidly changing nature of the computer science discipline, the specific courses required may change by the time of the student's admission. A listing of the required courses will be specified by the student's advisor. Specific degree requirements follow.

Core Requirements (15 semester credit hours)

Students are required to complete one of the following:

Data Sciences Track

CS 6313 Statistical Methods for Data Science
CS 6350 Big Data Management and Analytics
CS 6363 Design and Analysis of Computer Algorithms

CS 6375 Machine Learning

One of the five following courses:

CS 6301 Special Topics in Computer Science [when topic is Social Network Analytics]
CS 6347 Statistical Methods in AI and Machine Learning
CS 6327 Video Analytics
CS 6320 Natural Language Processing

CS 6360 Database Design
Information Assurance Track

CS 6324 Information Security
CS 6363 Design and Analysis of Computer Algorithms
CS 6378 Advanced Operating Systems

Two of the following four courses:

CS 6332 System Security and Malicious Code Analysis
CS 6348 Data and Application Security
CS 6349 Network Security
CS 6377 Introduction to Cryptography

Intelligent Systems Track

CS 6320 Natural Language Processing
CS 6363 Design and Analysis of Computer Algorithms
CS 6364 Artificial Intelligence
CS 6375 Machine Learning

One of the following courses:

CS 6360 Database Design
CS 6378 Advanced Operating Systems

Networks and Telecommunications Track

CS 6352 Performance of Computer Systems and Networks
CS 6363 Design and Analysis of Computer Algorithms
CS 6378 Advanced Operating Systems
CS 6385 Algorithmic Aspects of Telecommunication Networks
CS 6390 Advanced Computer Networks

Systems Track

CS 6304 Computer Architecture
CS 6363 Design and Analysis of Computer Algorithms
One of the following four courses:

- CS 6380 Distributed Computing
- CS 6397 Synthesis and Optimization of High-Performance Systems
- CS 6399 Parallel Architecture and Systems
- CS 6349 Network Security

Traditional Computer Science Track

- CS 6363 Design and Analysis of Computer Algorithms
- CS 6378 Advanced Operating Systems
- CS 6390 Advanced Computer Networks

Two of the following three courses:

- CS 6353 Compiler Construction
- CS 6360 Database Design
- CS 6371 Advanced Programming Languages

Master of Science in Software Engineering

33 semester credit hours minimum

Core Requirements

Course Requirements

Track Required Courses

- CS 6329 (SE 6329) Object-Oriented Software Engineering
- CS 6361 (SE 6361) Advanced Requirements Engineering
- CS 6362 (SE 6362) Advanced Software Architecture and Design
- CS 6367 (SE 6367) Software Testing, Validation and Verification
- CS 6387 (SE 6387) Advanced Software Engineering Project

Credit will not be given for both courses if students take them together to satisfy...
Computer Science and Software Engineering degree plan requirements:

CS 6359 Object-Oriented Analysis and Design and CS 6329 Object-Oriented Software Engineering

Students must satisfy the core requirements by either earning a 3.19 minimum grade point average OR by earning a 3.0 minimum grade point average in the five core courses and taking an extra approved elective (beyond the minimum degree requirements of 33 semester credit hours) and maintain the required GPA.

Electives (minimum of 18 semester credit hours)

Five [15 semester credit hours], 6000/7000/8000 level elective CS courses, or six semester credit hours of thesis or project courses plus three elective courses \(9 + 3 = 15 \) semester credit hours, with approval of a graduate advisor; a minimum grade point average of 3.0 is required. Courses that are prerequisites to the student's core requirements are especially recommended. Approved electives must be taken to make a minimum of 33 semester credit hours.

Note: For the information assurance track, students must also take six elective courses (two approved information assurance electives), and all electives must be 6000 level or above. A course cannot be used to satisfy both core and elective requirements.

While the Department of Computer Science offers both the Master of Science in Computer Science and the Master of Science in Software Engineering degrees, students are not permitted to pursue both degrees.

Doctor of Philosophy in Computer Science

75 semester credit hours minimum beyond the baccalaureate degree

The Department of Computer Science offers a Doctor of Philosophy in Computer Science.

The doctoral program is tailored to the student. The student must arrange a course program with the guidance and approval of a faculty member chosen as his/her graduate advisor. Adjustments can be made as the student's interests develop and a specific dissertation topic is chosen.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

A student may be admitted under one of two possible options. The student must have:

Admission Option One

- A Master's degree in computer science or its equivalent, and
- A GPA of at least 3.5, and
• GRE revised scores of at least 308, 153, 155, and 4 for the combined, verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Admission Option Two

• A BS in related area that includes two semesters of calculus and linear algebra with
• GPA of at least 3.5 in the last 60 semester credit hours, and
• GRE revised scores of at least 315, 156, 159, and 4 for the combined, verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Core requirements:

The core requirements for the PhD degree in Computer Science are the same as the ones listed on the Master of Science in Computer Science page or on the Master of Science in Software Engineering page.

Also required are:

- Pass a qualifying examination.
- Pass CS 6382 Theory of Computation with a grade of B or better.
- Two CS or SE 7000 and above level courses.

Sufficient CS electives for a total of at least 75 semester credit hours beyond the baccalaureate degree. At least 9 semester credit hours of organized advanced Computer Science electives must be taken at UT Dallas. The student is encouraged to consult with an advisor in choosing electives.

Dissertation

A dissertation is required and must be approved by the graduate program. A student must arrange for a dissertation advisor willing to guide this dissertation. The student must have a dissertation supervising committee that consists of no less than four members of whom at least three must be from the Computer Science faculty. Students must enroll in a minimum 3 dissertation hours in the degree plan. The dissertation may be in computer science exclusively or it may involve considerable work in an area of application.

Doctor of Philosophy in Software Engineering
75 semester credit hours minimum beyond the baccalaureate degree

The Department of Computer Science offers a Doctor of Philosophy in Software Engineering.

The doctoral program is tailored to the student. The student must arrange a course program with the guidance and approval of a faculty member chosen as his/her graduate advisor. Adjustments can be made as the student's interests develop and a specific dissertation topic is chosen.

Admission Requirements

The University's general admission requirements are discussed on the [Graduate Admission page](catalog.utdallas.edu/2013/graduate/admission).

A student may be admitted under one of two possible options:

Admission Option One

- A master's degree in computer science or its equivalent, and
- A GPA of at least 3.5 and
- GRE revised scores of at least 308, 153, 155, and 4 for the combined, verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Admission Option Two

- A BS in related area that includes two semesters of calculus and linear algebra with,
- GPA of at least 3.5 in the last 60 semester credit hours, and
- GRE revised scores of at least 315, 156, 159, and 4 for the combined, verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures page](catalog.utdallas.edu/2013/graduate/policies/policy).

Core requirements:

The core requirements for the PhD degree in Software Engineering are the same as those listed on the [Master of Science in Software Engineering page](catalog.utdallas.edu/2013/graduate/policies/policy).

Also required are:

- Pass a qualifying examination,
- Pass CS 6382 Theory of Computation with a grade of B or better,
- Two CS or SE 7000 and above level courses

Sufficient CS electives for a total of at least 75 semester credit hours beyond the baccalaureate
degree. At least 9 semester credit hours of organized advanced Computer Science electives must be taken at UT Dallas. The student is encouraged to consult with an advisor in choosing electives.

Dissertation
A dissertation is required and must be approved by the graduate program. A student must arrange for a dissertation advisor willing to guide this dissertation. The student must have a dissertation supervising committee that consists of no less than four members of whom at least three must be from the Computer Science faculty. Students must enroll in a minimum 3 dissertation hours in the degree plan. The dissertation may be in computer science exclusively or it may involve considerable work in an area of application.

Graduate Certificate in Information Assurance
15 semester credit hours

The Department of Computer Science offers a graduate certificate in information assurance.

Admission Requirements
Students must gain admission to the MS CS program or be eligible to take graduate courses in CS as a non-degree seeking student.

Certificate Requirements
Students must complete the following five courses with a GPA of 3.2 or better.

CS 6324 Information Security
CS 6348 Data and Applications Security
CS 6349 Network Security
CS 6363 Design and Analysis of Computer Algorithms
CS 6378 Advanced Operating Systems
Erik Jonsson School of Engineering & Computer Science

Department of Electrical Engineering

Department Faculty

Professors Emeritus: Louis R. Hunt, William J. Pervin, Don W. Shaw

Research Professors: Walter Duncan, Andrew Marshall, Hisashi (Sam) Shichijo

Associate Professors: Gerald O. Burnham, Yun Chiu, Wenhuang (Walter) Hu, Roozbeh Jafari, Hoi Lee, Dongsheng Brian Ma, Yiorgos Makris, Hlaing Minn, Issa M. S. Panahi, Siavash Pourkamali, Murat Torlak

Assistant Professors: Bilal Akin, Bhaskar Banerjee, Carlos A. Busso-Recabarren, Nicholas Gans, Rashaunda Henderson, Myoungsoo Jung, Joseph Sloan, Chadwin D. Young

Research Assistant Professors: Abhijeet Sangwan, Hynek Boril

Senior Lecturers: Charles (Pete) Bernardi, Peter A. Blakey, Nathan B. Dodge, Jung Lee, Randall E. Lehmann, P. K. Rajasekaran, Ricardo E. Saad, William Swartz, Marco Tacca

Affiliated Faculty: Larry P. Ammann, Leonidas Bleris, Yves J. Chabal, Matthew J. Goeckner, Bruce E. Gnade, Robert D. Gregg IV, Jyoung Kim, Moon J. Kim, David J. Larry, Yang Liu, Robert L. Rennaker II, Mario A. Rotea, Mathukumalli Vidyasagar, Robert M. Wallace, Steve Yurkovich

Objectives

The program leading to the MSEE degree provides intensive preparation for professional practice in a broad spectrum of high-technology areas of electrical engineering. It is designed to serve the needs of engineers who wish to continue their education. Courses are offered at a time and location convenient for the student who is employed on a full-time basis.

The objective of the doctoral program in electrical engineering is to prepare individuals to perform original, leading edge research in the broad areas of communications and signal processing; mixed-signal IC design; digital systems; power electronics; microelectronics and nanoelectronics; optics and photonics; optical communication devices and systems; power electronics and energy systems, and wireless communications. Because of our strong collaborative programs with Dallas-area high-technology companies, special emphasis is placed on preparation for research and development positions in these high-technology industries.
Facilities

The Erik Jonsson School of Engineering and Computer Science has developed a state-of-the-art information infrastructure consisting of a wireless network in all buildings and an extensive fiber-optic and copper Ethernet. Through the Texas Higher Education Network, students and faculty have direct access to most major national and international networks. UT Dallas has an Internet 2 connection. In addition, many personal computers and UNIX workstations are available for student use.

The Engineering and Computer Science Building and the new Natural Science and Engineering Research Laboratory provide extensive facilities for research in microelectronics, telecommunications, and computer science. A Class 10000 microelectronics clean room facility, including e-beam lithography, sputter deposition, PECVD, LPCVD, etch, ash and evaporation, is available for student projects and research. The Plasma Applications and Science Laboratories have state-of-the-art facilities for mass spectrometry, microwave interferometry, optical spectroscopy, optical detection, in situ ellipsometry and FTIR spectroscopy. In addition, a modified Gaseous Electronics Conference Reference Reactor has been installed for plasma processing and particulate generation studies. Research in characterization and fabrication of nanoscale materials and devices is performed in the Nanoelectronics Laboratory. The Optical Communications Laboratory includes attenuators, optical power meters, lasers, APD/p-i-n photodetectors, optical tables, and couplers and is available to support system level research in optical communications. Tissue optics research is also supported in the laboratory. The Photonic Testbed Laboratory supports research in photonics and optical communications with current generation optical networking test equipment. The Electronic Materials Processing Laboratory has extensive facilities for fabricating and characterizing semiconductor and optical devices. The Photonic Devices and Systems Laboratory houses graduate research projects centered on optical instrumentation and photonic integrated circuits.

The Renewable Energy and Vehicular Technology Laboratory (REVT Lab) is equipped with various sources of renewable energy such as wind and solar, a micro-grid formed by a network of multi-port power electronic converters, a stationary plug in hybrid vehicle testbed, a stationary DFIG-based wind energy emulator, a series of adjustable speed motor drive technologies including PMSM, SRM and induction motor drives. All of the testbeds are equipped with digital control, state-of-the-art measurement and protection devices. REVT laboratory is also equipped with a cold plasma chamber for hydrogen harvesting and battery testing facilities. The main focus of the REVT Lab is to improve reliability and security of the power electronic-driven technologies as applied to utility and vehicular industries.

The Texas Analog Center of Excellence (TxACE) at the University of Texas at Dallas (UT Dallas) has the mission of leading the country in analog research and education. TxACE research seeks to create fundamental analog, mixed signal and RF design innovations in integrated circuits and systems that improve energy efficiency, healthcare, and public safety and security. The center is supported by Semiconductor Research Corporation, Texas Emerging Technology Fund, Texas Instruments Inc., the UT System, and UT Dallas. TxACE is the largest analog technology center in the world on the basis of funding and the number of principal investigators. The center funds ~70 directed research projects led by ~65 principal and co-principal investigators from 31 academic institutions including three international institutions.

The Multimedia Communications Laboratory has a dedicated network of PCs, Linux stations, and multi-processor, high performance workstations for analysis, design and simulation of image and video processing systems. The Signal and Image Processing (SIP) Laboratory has a dedicated network of PC's equipped with digital camera and signal processing hardware platforms allowing the implementation of advanced image processing algorithms. The Statistical Signal Processing Laboratory is dedicated to research in statistical and acoustic signal processing for biomedical and non-biomedical applications. It is equipped with high-performance computers and powerful textxual and graphical software platforms to analyze advanced signal processing methods, develop new algorithms, and perform system designs and simulations. The Acoustic Research Laboratory provides number of test-beds and associated equipment for signal measurements, system modeling, real-time implementation and testing of algorithms related to audio/acoustic/speech signal processing applications such as active noise control, speech enhancement, dereverberation, echo cancellation, sensor arrays, psychoacoustic signal processing, etc.
The Center for Robust Speech Systems (CRSS) is focused on a wide range of research in the area of speech signal processing, speech and speaker recognition, speech/language technology, and multi-modal signal processing involving facial/speech modalities. CRSS is affiliated with HLTRI in the Erik Jonsson School, and collaborates extensively with faculty and programs across UT Dallas on speech and language research. CRSS supports an extensive network of workstations, as well as a High-Performance Compute Cluster with over 30TB of disk space and 420 CPU ROC5 multi-processor cluster. The center also is equipped with several Texas Instruments processors for real-time processing of speech signals, and two ASHA certified sound booths for perceptual/listening based studies and for speech data collection. CRSS supports mobile speech interactive systems through the UT Dallas runtime program for in-vehicle driver-behavior systems, and multi-modal based interaction systems via image-video-speech research.

The Sensing, Robotics, Vision, Control and Estimation (SeRViCE) Lab focuses on topics of control and estimation with applications in robotics, autonomous vehicles and sensor management. Primary expertise is in vision-based control and estimation and nonlinear control, that is, using cameras as the primary sensor to control robots or other complex systems. Robotics resources in the lab currently include two Pioneer 3-DX mobile robots from Mobile Robots Inc. and a Stabili TX90 robot manipulator, with six degrees of freedom. The nominal payload and capable of torque level control. Camera resources include multiple web cameras, three high-quality, firewire, color, digital video cameras, and an 18Mp digital SLR camera. The SeRViCE Lab also features general support equipment, including desktop and mobile work stations DLP projectors, power tools, hand tools, oscilloscopes, and other electronic measurement equipment.

The Laboratory for Autonomous Robotics and Systems (LARS) focuses on the development of novel control theory to support autonomous and teleoperation of general robotic systems. Active research projects include: (a) human-in-the-loop multi-robot telemanipulation, (b) autonomous networked robotics, and (c) control of bipedal walking robots. The LARS is equipped with high speed high resolution 8-camera Vicon motion capture system for general purpose motion tracking. The LARS possesses various mobile robots to supported multi-robot research, including six Gumstix controlled iRobot Creates and a Quanser QBall quadrotor UAV. The LARS also possesses various force feedback user interface devices, including Logitech force feedback joystick and driving wheel, and Novint Falcon, a 3-translational degree-of-freedom Delta-structure desktop haptic device.

The Broadband Communication Laboratory has design and modeling tools for fiber and wireless transmission systems and networks, and all-optical packet routing and switching. The Advanced Communications Technologies (ACT) Laboratory provides a design and evaluation environment for the study of telecommunication systems and wireless and optical networks. ACT has facilities for designing network hardware, software, components, and applications.

The Center for Systems, Communications, and Signal Processing, with the purpose of promoting research and education in general communications, signal processing, control systems, medical and biological systems, circuits and systems and related software, is located in the Erik Jonsson School.

The Wireless Information Systems (WISLAB) and Antenna Measurement Laboratories have wireless experimental equipment with a unique multiple antenna testbed to integrate and to demonstrate radio functions (i.e. WiFi and WiMAX) under different frequency usage characteristics. With the aid of the Antenna Measurement Lab located in the Waterview Science and Technology Center (WSTC), the researchers can design, build, and test many types of antennas.

The Quality of Life Technology Laboratory is a multidisciplinary engineering education, research and developmental laboratory aimed at improving Quality of Life of people through technological advancements, innovations, and intelligent system designs. It has design, modeling and simulation tools for medical devices and systems.

The faculty of the Erik Jonsson School's Photonic Technology and Engineering Center (PhoTEC) carry out research in enabling technologies for microelectronics and telecommunications. Current research areas include nonlinear
optics, Raman amplification in fibers, optical switching, applications of optical lattice filters, microarrays, integrated optics, and optical networking.

In addition to the facilities on campus, cooperative arrangements have been established with many local industries to make their facilities available to UT Dallas graduate engineering students.

Master of Science in Electrical Engineering

33 semester credit hours minimum

Admission Requirements

The University's general admission requirements are discussed on the [Graduate Admission page](catalog.utdallas.edu/2013/graduate/admission).

A student lacking undergraduate prerequisites for graduate courses in electrical engineering must complete these prerequisites or receive approval from the graduate advisor and the course instructor.

A diagnostic exam may be required. Specific admission requirements follow.

The student entering the MSEE program should meet the following guidelines:

- An undergraduate preparation equivalent to a baccalaureate in electrical engineering from an accredited engineering program.
- A grade point average in upper-division quantitative coursework of 3.0 or better on a 4.0 point scale, and
- GRE revised scores of 154, 156, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Applicants must submit three letters of recommendation from individuals who are able to judge the candidate's probability of success in pursuing a program of study leading to the master's degree. Applicants must also submit an essay outlining the candidate's background, education, and professional goals. Students from other engineering disciplines or from other science and math areas may be considered for admission to the program; however, some additional coursework may be necessary before starting the master's program.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures page](catalog.utdallas.edu/2013/graduate/policies/policy).

The MSEE requires a minimum of 33 semester credit hours.

All students must have an academic advisor and an approved degree plan. These are based upon the student's choice of concentration (Biomedical Applications of Electrical Engineering; Circuits and Systems; Communications; Control Systems; Digital Systems; Photonic Devices and Systems; Power Electronics and Energy Systems, RF and Microwave Engineering, Signal Processing; Solid State Devices and Micro Systems Fabrication). Courses taken without advisor approval will not count toward the 33 semester credit hour requirement. Successful completion of the approved course of studies leads to the MSEE degree.

The MSEE program has both a thesis and a non-thesis option. All part-time MSEE students will be assigned initially to the non-thesis option. Those wishing to elect the thesis option may do so by obtaining the approval of a faculty thesis supervisor. With the prior approval of an academic advisor, non-thesis students may count no more than 3
semester credit hours of research or individual instruction courses towards the 33-semester credit hour degree requirement.

All full-time, supported students are required to participate in the thesis option. The thesis option requires nine semester credit hours of research (of which three must be thesis semester credit hours), a written thesis submitted to the graduate school, and a formal public defense of the thesis. The supervising committee administers this defense and is chosen in consultation with the student's thesis advisor prior to enrolling for thesis credit. Research and thesis semester credit hours cannot be counted in an MSEE degree plan unless a thesis is written and successfully defended.

Concentrations

One of the nine concentrations listed below, subject to approval by a graduate advisor, must be used to fulfill the requirements of the MSEE program. Students must achieve an overall GPA of 3.0 or better, a GPA of 3.0 or better in their core MSEE classes, and a grade of B- or better in all their core MSEE classes in order to satisfy their degree requirements. One 5000 level electrical engineering course can be counted towards the graduate semester credit hours.

Biomedical Applications of Electrical Engineering

This curriculum provides a graduate-level introduction to advanced methods and biomedical applications of electrical engineering.

Each student electing this concentration must take 15 semester credit hours:

- EEBM 6376 Lecture Course in Biomedical Applications of Electrical Engineering
- EEBM 6373 Anatomy and Human Physiology for Engineers
- EEBM 6374 Genes, Proteins and Cell Biology for Engineers

and two core courses from any one other concentration.

Approved electives must be taken to make a total of 33 semester credit hours.

Depending on the specific orientation of the course program it can be very beneficial to the student to take courses from other departments (e.g. Biology, Chemistry, Brain and Behavioral Sciences, Computer Science-Bioinformatics). Typically, not more than three approved courses can be taken outside the EE department. Additional courses can be taken only with the explicit approval by the Department Head.

It is highly recommended that students take an independent study course with an EE faculty member that will be counted as one of the EE electives. The independent study course is intended to gear the coursework towards one of the following research areas in the department: Biosensors, biomedical signal processing, bioinstrumentation, medical imaging, biomaterials, and bio-applications in RF.

Circuits and Systems

The courses in this curriculum emphasize the design and test of circuits and systems, and the analysis and modeling of integrated circuits.

Each student electing this concentration must take five required courses (15 semester credit hours).

Two of the courses are:
The remaining three courses must be selected from:

- EEDG 6301 Advanced Digital Logic
- EEDG 6303 Testing and Testable Design
- EEDG 6306 Application Specific Integrated Circuit Design
- EEDG 6315 Design Automation of VLSI Systems
- EECT 6370 Power Management Circuits
- EECT 6379 Energy Harvesting, Storage, and Powering for Microsystems
- EECT 7325 Advanced VLSI Design
- EECT 7326 Advanced Analog Integrated Circuit Design
- EECT 7327 Data Converters
- EERF 6330 RF Integrated Circuit Design

Approved electives must be taken to make a total of 33 semester credit hours.

Communications

This curriculum emphasizes the application and theory of all phases of modern communications.

Each student electing this concentration must take four required courses (12 semester credit hours).

Two of the courses are:

- EESC 6349 Random Processes
- EESC 6352 Digital Communication Systems

The remaining two must be selected from:

- EERF 5305 Radio Frequency Engineering
- EEOP 6310 Optical Communication Systems
- EESC 6340 Introduction to Telecommunications Networks
- EESC 6341 Information Theory
- EESC 6342 Detection and Estimation Theory
- EESC 6544 Coding Theory
- EESC 6551 Broadband Digital Communication
- EESC 6560 Digital Signal Processing I
- EESC 6590 Introduction to Wireless Communication Systems

Approved electives must be taken to make a total of 33 semester credit hours.

Control Systems

This curriculum emphasizes methods to predict, estimate, and regulate the behavior of electrical, mechanical, or other systems including robotics.

Each student electing this concentration must take four required courses (12 semester credit hours).

Two of the courses are:
Approved electives must be taken to make a total of 33 semester credit hours.

Digital Systems

The goal of the curriculum is to educate students about issues arising in the design and analysis of digital systems, an area relevant to a variety of high-technology industries. Because the emphasis is on systems, coursework focuses on three areas: hardware design, software design, analysis and modeling.

Each student electing this concentration must take four required courses (12 semester credit hours):

Two of the courses are:

- EEEDG 6301 Advanced Digital Logic
- EEEDG 6304 Computer Architecture

The remaining two must be selected from:

- EEEDG 6302 Microprocessor Systems
- EEECT 6325 VLSI Design
- EEEDG 6345 Engineering of Packet-Switched Networks

Approved electives must be taken to make a total of 33 semester credit hours.

Photonic Devices and Systems

This curriculum is focused on the application and theory of modern optical devices, materials and systems.

Each student electing this concentration must take four required courses (12 semester credit hours).

Three of the courses are:

- EEOP 6310 Optical Communication Systems
- EEOP 6311 Photonic Devices and Integration
- EEOP 6314 Principles of Fiber and Integrated Optics
- EEGR 6316 Fields and Waves

Approved electives must be taken to make a total of 33 semester credit hours.
Power Electronics and Energy Systems

The goal of the curriculum is to prepare students to address growing needs in contemporary power electronics and energy related areas. The coursework focuses on fundamentals of power electronics, design and control of motor drives, power management, and energy systems.

Each student electing this concentration must take four required courses (12 semester credit hours):

Two of the courses are:

- EEPE 6354 Power Electronics
- EEPE 6356 Adjusted Speed Motor Drives

The remaining two must be selected from:

- EEPE 6357 Control, Modeling and Simulation in Power Electronics
- EEPE 6358 Electrification of Transportation
- EEPE 6359 Renewable Energy Systems and Distributed Power Generation Systems
- EECT 6378 Power Management Circuits
- EESC 6395 Energy Harvesting, Storage, and Powering for Microsystems
- EEPE 7356 Computer Aided Design of Electric Machines
- EEPE 7V91 Special Topics in Power Electronics

Approved electives must be taken to make a total of 33 semester credit hours.

RF and Microwave Engineering

This curriculum is focused on the application and theory of modern electronic devices, circuits and systems in the radiofrequency and microwave regime.

Each student electing this concentration must take the following four required courses (12 semester credit hours):

Four of the courses are:

- EERF 6311 RF and Microwave Circuits
- EERF 6316 Fields and Waves
- EERF 6355 RF and Microwave Amplifier Design
- EERF 6395 RF and Microwave Systems Engineering

Approved electives must be taken to make a total of 33 semester credit hours.

Signal Processing

This curriculum emphasizes the application and theory of signal processing.

Each student electing this concentration must take four required courses (12 semester credit hours).

Two of the courses are:

- EESC 6349 Random Processes
EESC 6360 Digital Signal Processing I

The remaining two must be selected from:

- EESC 6343 Detection and Estimation Theory
- EESC 6350 Signal Theory
- EESC 6361 Digital Signal Processing II
- EESC 6362 Introduction to Speech Processing
- EESC 6363 Digital Image Processing
- EESC 6364 Pattern Recognition
- EESC 6365 Adaptive Signal Processing
- EESC 6366 Speech and Speaker Recognition
- EESC 6367 Applied Digital Signal Processing
- EESC 7V85 Special Topics in Signal Processing

Approved electives must be taken to make a total of 33 semester credit hours.

Solid State Devices and Micro Systems Fabrication

This concentration is focused on the fundamental principles, design, fabrication and analysis of solid-state devices and associated micro systems.

Each student electing this concentration must take four required courses (12 semester credit hours).

Two of the courses are:

- EENG 6316 Fields and Waves
- EEMF 6319 Quantum Physical Electronics

and at least two of the following four courses:

- EEMF 6320 Fundamentals of Semiconductor Devices
- EEMF 6321 Active Semiconductor Devices
- EEMF 6322 Semiconductor Processing Technology
- EEMF 6382 Introduction to MEMS

Approved electives must be taken to make a total of 33 semester credit hours.

Doctor of Philosophy in Electrical Engineering

75 semester credit hours minimum beyond the baccalaureate degree

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The PhD in Electrical Engineering is awarded primarily to acknowledge the student's success in an original research project, the description of which is a significant contribution to the literature of the discipline. Applicants for the doctoral program are therefore selected by the Electrical Engineering Program Graduate Committee on the basis of
Also required are:

- A master’s degree in electrical engineering or a closely associated discipline from an accredited U.S. institution, or from an acceptable foreign university. Consideration will be given to highly qualified students wishing to pursue the doctorate without satisfying all of the requirements for a master’s degree. A grade point average in graduate course work of 3.5 or better on a 4.0 point scale.
- GRE scores of 154, 156 and 4 for the verbal, quantitative and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Applicants must submit three letters of recommendation on official school or business letterhead or the UT Dallas Letter of Recommendation Form from individuals who are familiar with the student’s record and able to judge the candidate's probability of success in pursuing doctoral study in electrical engineering.

Applicants must also submit a narrative describing their motivation for doctoral study and how it relates to their professional goals.

For students who are interested in a PhD but are unable to attend school full-time, there is a part-time option. The guidelines for admission to the program and the degree requirements are the same as for full-time PhD students. All students must have an academic advisor and an approved plan of study.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures](catalog.utdallas.edu/2013/graduate/policies/policy) page.

Each program for doctoral study is individually tailored to the student's background and research objectives by the student's supervisory committee. The program will require a minimum of 75 semester credit hours beyond the baccalaureate degree. These credits must include at least 30 semester credit hours of graduate level courses beyond the baccalaureate level in the major concentration. All PhD students must demonstrate competence in the master's level core courses in their research area. All students must have an academic advisor and an approved plan of study.

Also required are:

- A research oriented oral qualifying examination (QE) demonstrating competence in the PhD candidate's research area. A student must make an oral presentation based on a review of 2 to 4 papers followed by a question-answer session. Admission to PhD candidacy is based on two criteria: Graded performance in the QE and GPA in graduate level organized courses. A student entering the PhD program with a M.S.E.E. must pass this exam within 5 long semesters, and a student entering without an M.S.E.E. must pass this exam within 4 long semesters. A student has at most two attempts at this qualifying exam. The exam will be given during the fall and spring semesters.
- A comprehensive exam consisting of: a written dissertation proposal, a public seminar, and a private oral examination conducted by the PhD candidate’s supervising committee. At least half of the supervising committee must comprise of core EE faculty members and it must be chaired or co-chaired by an EE faculty member.
- Completion of a major research project culminating in a dissertation demonstrating an original contribution to scientific knowledge and engineering practice. The dissertation will be defended publicly. The rules for this defense are specified by the Office of the Dean of Graduate Studies. Neither a foreign language nor a minor is required for the PhD. However, the student’s supervisory committee may impose these or other requirements that it feels are necessary and appropriate to the student's degree program.

\[...\]
Research

The principal concentration areas for the MSEE program are: Biomedical Applications of Electrical Engineering; Circuits and Systems; Communications; Control Systems; Digital Systems; Photonic Devices and Systems; Power Electronics and Energy Systems, RF and Microwave Engineering, Signal Processing; Solid State Devices and Micro Systems Fabrication. Besides courses required for each concentration, a comprehensive set of electives is available in each area.

Doctoral level research opportunities include: VLSI design and test, analog and mixed-signal circuits and systems, RF and microwave engineering, biomedical applications of electrical engineering, power electronics, renewable energy, motors and drives, vehicular technology, computer architecture, embedded systems, computer aided design (CAD), ASIC design methodologies, high speed system-on chip design and test, reconfigurable computing, network processor design, interconnection networks, nonlinear signal-processing, smart antennas and array processing, statistical and adaptive signal processing, multimedia signal processing, image processing, real-time imaging, medical image analysis, pattern recognition, speech processing and recognition, control theory, robotics, digital communications, modulation and coding, electromagnetic-wave propagation, diffractive structures, fiber and integrated photonics, nonlinear optics, optical transmission systems, all-optical networks, optical investigation of material properties (reflectometry and ellipsometry), optical instrumentation, lasers, quantum-well optical devices, theory and experiments in semiconductor-heterostructure devices, plasma deposition and etching, nanoelectronics, wireless communication, network protocols and evaluation, mobile computing and networking, and optical networking.

Interdisciplinary Opportunities: Continuing with the established tradition of research at UT Dallas, the Electrical Engineering Program encourages students to interact with researchers in the strong basic sciences and mathematics. Cross disciplinary collaborations have been established with the Chemistry, Mathematics, and Physics programs of the School of Natural Sciences and with faculty in the School of Brain and Behavioral Science.
Erik Jonsson School of Engineering & Computer Science

Department of Materials Science and Engineering

Department Faculty

Professors: Orlando Auciello, Yves J. Chabal, Kyeongjae (KJ) Cho, Massimo V. Fischetti, Bruce E. Gnade, Julia W. P. Hsu, Jiyoung Kim, Moon J. Kim, Robert M. Wallace

Professor Emeritus: Don W. Shaw

Associate Professors: Lev D. Gelb, Manuel Quevedo-Lopez, Amy V. Walker

Assistant Professors: Christopher L. Hinkle, Walter E. Voit, Chadwin D. Young

Adjunct Faculty: Shela Aboud (Stanford University), Husam Alshareef (KAUST, Saudi Arabia), Luigi Colombo (Texas Instruments), Mathew David Halls (Schrödinger Inc.), Dale L. Huber (Sandia National Laboratories), Steven Mick (Protochips, Inc.), Sriram Muthukumar (Maxim Integrated), Carlos A. Paz de Araujo (University of Colorado at Colorado Springs), Bhabendra Pradahn (NanoHoldings LLC), Ecatherina (Katy) Roedenko (IntelliEpi), Bin Shan (Hua-Zhong University of Science and Technology), Eric M. Vogel (Georgia Tech), Weichao Wang (Nankai University), Ka Xiong (Dongguan Innovative New Materials (INM))

Objectives

The objective of the Master of Science (MS) degree in materials science and engineering is to provide intensive preparation for the professional practice in modern materials science by those engineers and scientists who wish to continue their education. Courses are offered at times and locations convenient for the student who is employed on a full-time basis.

The objective of the Doctor of Philosophy (PhD) program in materials science and engineering is to prepare individuals to perform original, cutting-edge research in materials science, particularly in the areas of nano-structured materials, electronics, optical and magnetic materials, bio-mimetic materials, polymeric materials, MEMS materials and systems, organic electronics, and advanced processing of modern materials.
Scholarship Opportunities

The Erik Jonsson School of Engineering and Computer Science offers competitive scholarship awards for very well qualified students. Interested students should request application materials by contacting the Department of Materials Science and Engineering.

Master of Science in Materials Science and Engineering

33 semester credit hours minimum

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

A student lacking undergraduate prerequisites for graduate courses in Materials Science and Engineering must complete these prerequisites or receive approval from the graduate advisor and the course instructor. A diagnostic exam may be required. Specific admission requirements are as follows:

• Student has met standards equivalent to those currently required for admission to the PhD or Master's degree programs in Materials Science, Electrical Engineering, Chemistry, Physics, or Biology.
• A grade-point average in undergraduate-level coursework of 3.5 or better on a 4-point scale.
• GRE revised scores which are recommended as 154 or above, 154 or above, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Students, who fulfill only some of the above requirements, if admitted conditionally, will be required to take graduate level courses as needed to make up any deficiencies.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The MSEN MS degree requires a minimum of 33 semester credit hours.

All students must have an academic advisor and an approved degree plan. These are based upon the student's choice of concentration. Courses taken without advisor approval will not count toward the 33 semester credit hour requirement. Successful completion of the approved course of studies leads to the MS degree.

MS students undertaking the non-thesis option must complete at least 33 semester credit hours of coursework with a grade of B or better.

MS students undertaking the thesis option must carry out a research project under the direction of a faculty or affiliated faculty in Materials Science and Engineering, and complete and defend a thesis on the research project, but they need only complete the four core courses and 9 semester credit hours of advanced coursework. A Supervisory Committee will be appointed once the faculty member accepts
the student for a research project. The rules for the thesis defense are specified by the Office of the Dean of Graduate Studies.

Students must obtain a grade of B- or better in each of the following “core” classes and maintain an average core class GPA of at least 3.0 to remain in good standing and satisfy their degree requirements:

- **MSEN 5310** Thermodynamics of Materials
- **MSEN 5360** Materials Characterization
- **MSEN 6324 (EEMF 6324)** Electronic, Optical and Magnetic Materials
- **MSEN 6319** Quantum Mechanics for Materials Scientists

Note: the presence of a course number in parentheses indicates that this course is cross-listed in another department.

A minimum of 9 semester credit hours of advanced coursework is required, from the following list:

- **MSEN 5340 (CHEM 5340)** Advanced Polymer Science and Engineering
- **MSEN 5361** Fundamentals of Surface and Thin Film Analysis
- **MSEN 5370** Ceramics and Metals
- **MSEN 5375** Electronic Devices Based On Organic Solids
- **MSEN 5377 (PHYS 5377)** Computational Physics of Nanomaterials
- **MSEN 6310 (MECH 6367)** Mechanical Properties of Materials
- **MSEN 6320 (EEMF 6320)** Fundamentals of Semiconductor Devices
- **MSEN 6327 (EEMF 6327)** Semiconductor Device Characterization
- **MSEN 6330** Phase Transformations
- **MSEN 6339** Nanostructured Materials: Synthesis, Properties and Applications
- **MSEN 6340** Advanced Electron Microscopy
- **MSEN 6350** Imperfections in Solids
- **MSEN 6362** Diffraction Science

These courses are intended to provide greater depth and advanced training in areas broadly relevant to Materials Science and Engineering research.
The remaining semester credit hours may be taken from the following list of elective courses (or other electives which have been approved by the student's Thesis Advisor or the Graduate Director as appropriate):

- MSEN 5300 (PHYS 5376) Introduction to Materials Science
- MSEN 5320 Materials Science for Sustainable Energy
- MSEN 5331 (CHEM 5331) Advanced Organic Chemistry I
- MSEN 5333 (CHEM 5333) Advanced Organic Chemistry II
- MSEN 5341 (CHEM 5341) Advanced Inorganic Chemistry I
- MSEN 5344 Thermal Analysis
- MSEN 5353 Integrated Circuit Packaging
- MSEN 5355 (CHEM 5355) Analytical Techniques I
- MSEN 5356 (CHEM 5356) Analytical Techniques II
- MSEN 5371 (PHYS 5371) Solid State Physics
- MSEN 5383 (EEMF 5383, MECH 5383, and PHYS 5383) Plasma Technology
- MSEN 5410 (BIOL 5410) Biochemistry
- MSEN 5440 (BIOL 5440) Cell Biology
- MSEN 6313 (EEOE 6313) Semiconductor Opto-Electronic Devices
- MSEN 6321 (EEMF 6321) Active Semiconductor Devices
- MSEN 6322 (EEMF 6322, MECH 6348) Semiconductor Processing Technology
- MSEN 6341 Advanced Electron Microscopy Laboratory
- MSEN 6348 (EEMF 6348, MECH 6341) Lithography and Nanofabrication
- MSEN 6355 (BMEN 6355) Nanotechnology and Sensors
- MSEN 6358 (BIOL 6358) Bionanotechnology
- MSEN 6361 Deformation Mechanisms in Solid Materials
- MSEN 6371 (PHYS 6371) Advanced Solid State Physics
- MSEN 6374 (PHYS 6374) Optical Properties of Solids
Doctor of Philosophy in Materials Science and Engineering

75 semester credit hours minimum beyond the baccalaureate degree

Admission Requirements

The University's general admission requirements are discussed on the [Graduate Admission](catalog.utdallas.edu/2013/graduate/admission) page.

A student lacking undergraduate prerequisites for graduate courses in Materials Science and Engineering must complete these prerequisites or receive approval from the graduate advisor and the course instructor.

A diagnostic exam may be required. Specific admission requirements follow.

- Student has met standards equivalent to those currently required for admission to the PhD or Master's degree programs in Materials Science, Electrical Engineering, Chemistry, Physics, or Biology.
- A grade-point average in undergraduate-level coursework of 3.5 or better on a 4.0-point scale
- GRE revised scores which are recommended as 154 or above, 154 or above, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Students who fulfill some of the above requirements, if admitted conditionally, will be required to take graduate level courses as needed to make up any deficiencies.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures](catalog.utdallas.edu/2013/graduate/policies/policy) page.

The MSEN PhD requires a minimum of 75 semester credit hours beyond the baccalaureate degree.
These credits must include at least 30 semester credit hours of graduate-level coursework in MSEN. All students must have an academic advisor and an approved degree plan. Courses taken without advisor approval will not count toward the 75 semester credit hour requirement.

Each doctoral student must carry out original research in the area of Materials Science and Engineering, under the direction of a faculty or affiliated faculty of Materials Science and Engineering, and complete and defend a dissertation on the research project. A Supervisory Committee will be appointed once the faculty member accepts the student for a research project.

Students must be admitted to doctoral candidacy by passing a Qualifying Exam, which will be administered near the time that the students have completed their coursework. Upon passing the Qualifying Exam, students must present and defend a Research Proposal with their Supervisory Committee within approximately nine months or sooner after passing the Qualifying Exam. The rules for the dissertation research and defense are specified by the Office of the Dean of Graduate Studies.

Students must obtain a grade of B- or better in each of the following “core” classes and maintain an average core class GPA of at least 3.0 to remain in good standing and satisfy their degree requirements:

- **MSEN 5310** Thermodynamics of Materials
- **MSEN 5360** Materials Characterization
- **MSEN 6319** Quantum Mechanics for Materials Scientists
- **MSEN 6324** (EEMF 6324) Electronic, Optical and Magnetic Materials

Note: the presence of a course number in parentheses indicates that this course is cross-listed in another department.

A student may petition for waiver of core courses based on prior coursework of equivalent scope and level, and if the Department finds that the student has already mastered the course material, the student may replace that core course with elective courses for up to a total of twelve semester credit hours.

A minimum of 9 semester credit hours of advanced coursework is required, from the following list:

- **MSEN 5340** (CHEM 5340) Advanced Polymer Science and Engineering
- **MSEN 5361** Fundamentals of Surface and Thin Film Analysis
- **MSEN 5370** Ceramics and Metals
- **MSEN 5375** Electronic Devices Based On Organic Solids
- **MSEN 5377** (PHYS 5377) Computational Physics of Nanomaterials
- **MSEN 6310** (MECH 6367) Mechanical Properties of Materials
MSEN 6320 (EEMF 6320) Fundamentals of Semiconductor Devices
MSEN 6327 (EEMF 6327) Semiconductor Device Characterization
MSEN 6330 Phase Transformations
MSEN 6339 Nanostructured Materials: Synthesis, Properties and Applications
MSEN 6340 Advanced Electron Microscopy
MSEN 6350 Imperfections in Solids
MSEN 6362 Diffraction Science

These courses are intended to provide greater depth and advanced training in areas broadly relevant to Materials Science and Engineering research.

Any remaining semester credit hours of coursework may be taken from the following list of elective courses (or other electives which have been approved by the student's Thesis advisor):

MSEN 5300 (PHYS 5376) Introduction to Materials Science
MSEN 5320 Materials Science for Sustainable Energy
MSEN 5331 (CHEM 5331) Advanced Organic Chemistry I
MSEN 5333 (CHEM 5333) Advanced Organic Chemistry II
MSEN 5341 (CHEM 5341) Advanced Inorganic Chemistry I
MSEN 5344 Thermal Analysis
MSEN 5353 Integrated Circuit Packaging
MSEN 5355 (CHEM 5355) Analytical Techniques I
MSEN 5356 (CHEM 5356) Analytical Techniques II
MSEN 5371 (PHYS 5371) Solid State Physics
MSEN 5383 (EEMF 5383, MECH 5383, and PHYS 5383) Plasma Technology
MSEN 5410 (BIOL 5410) Biochemistry
MSEN 5440 (BIOL 5440) Cell Biology
MSEN 6313 (EEOP 6313) Semiconductor Opto-Electronic Devices
MSEN 6321 (EEMF 6321) Active Semiconductor Devices
MSEN 6322 (EEMF 6322, MECH 6348) Semiconductor Processing Technology
MSEN 6341 Advanced Electron Microscopy Laboratory
MSEN 6348 (EEMF 6348, MECH 6341) Lithography and Nanofabrication
MSEN 6355 (BMEN 6355) Nanotechnology and Sensors
MSEN 6358 (BIOL 6358) Bionanotechnology
MSEN 6361 Deformation Mechanisms in Solid Materials
MSEN 6371 (PHYS 6371) Advanced Solid State Physics
MSEN 6374 (PHYS 6374) Optical Properties of Solids
MSEN 6377 (PHYS 6377) Physics of Nanostructures: Carbon Nanotubes, Fullerenes, Quantum Wells, Dots and Wires
MSEN 6382 (EEMF 6382, MECH 6347) Introduction to MEMS
MSEN 7320 (EEMF 7320) Advanced Semiconductor Device Theory
MSEN 7V80 Special Topics in Materials Science and Engineering
MSEN 8V40 Individual Instruction in Materials Science and Engineering

Research effort towards the degree should be completed under:

MSEN 8V70 Research In Materials Science and Engineering

MSEN 8V99 Dissertation

Description of Facilities Available for Conducting Research

An extensive array of the materials characterization, synthesis, and processing tools exist in the Department for student use in research. Characterization capabilities include advanced high-resolution electron microscopy, x-ray diffraction, a large variety of surface analysis methods, and electrical characterization. Thin film deposition methods include atomic layer deposition, sputter deposition, thermal deposition, molecular beam epitaxy, chemical vapor deposition, pulsed laser deposition, and gas phase adsorption. Fabrication methods can be accomplished in the Cleanroom Research Laboratory as well (www.utdallas.edu/research/cleanroom). Computational modeling activities include studies...
from the atomistic to the macroscopic level. Details of the capabilities and faculty research can be obtained at: mse.utdallas.edu.
http://catalog.utdallas.edu/2013/graduate programas/ecs/mechanical-engineering

Erik Jonsson School of Engineering & Computer Science

Department of Mechanical Engineering

Department Faculty

Professors: Xin-Lin Gao, Hongbing Lu, Mario A. Rotea, Seung M. You

Associate Professors: Stefano Leonardi, Yaoyu Li, Dong Qian

Assistant Professors: Wonjae Choi, Robert D. Gregg, Fatemeh Hassamipour, Majid Minary, Wooram Park, Yonas Tadesse, Walter E. Voit

Senior Lecturers: Terry V. Baughn, Robert Hart, James Hilkert, Oziel Rios

Affiliated Faculty

Professor Emeritus: Louis R. Hunt

Associate Professors: Gerald O. Burnham, Wenchuang (Walter) Hu

Objectives

The program leading to the MS degree in Mechanical Engineering (ME) provides advanced studies for both recent baccalaureate graduates and experienced engineers in the following core areas: control & dynamic systems, manufacturing & design innovation, mechanics & materials, and thermal & fluid sciences. The program is designed to provide advanced skills in mechanical engineering. The program also provides the foundation for a PhD degree in engineering or closely related disciplines.

The PhD program in Mechanical Engineering at UT Dallas is offered as a joint degree program between UT Dallas and UT Arlington. The objective of the PhD program is to prepare talented doctoral students for careers in which they will create new technologies and processes for the design, manufacturing, control and operation of components and systems in energy, health care, security and defense, and transportation. Given the key enabling role of mechanical engineering in all areas of technology, the graduates of this program will have the preparation to become technical leaders in emerging and existing scientific and industrial fields in Texas and the nation.

Facilities
The Engineering and Computer Science Building and the Natural Science and Engineering Research Laboratory provide extensive facilities for teaching and research. These include wind tunnels, material test systems, nanoindenter, impact facilities, ultra-high speed camera, DMA, XPS, FTIR, NMR, TGA, DSC, XRD, μ-Raman, Fluorescence Spectrometer, AFM, FIB/SEM, and atomic resolution TEM. A Class 10000 microelectronics clean room facility, including e-beam lithography, sputter deposition, PECVD, LPCVD, etch, ash and evaporation, is available for student projects and research.

Concentration Areas

There are four technical areas of concentration for the graduate degree programs in Mechanical Engineering, which are:

- Dynamic Systems & Control (DSC)
- Manufacturing & Design Innovation (MDI)
- Mechanics & Materials (MM)
- Thermal & Fluid Sciences (TFS)

All graduate students must select a concentration area within the first two semesters in the program.

Scholarship Opportunities

The Erik Jonsson School of Engineering and Computer Science offers competitive scholarships for highly qualified students. Interested students should request application materials by contacting the Department of Mechanical Engineering.

Master of Science in Mechanical Engineering

33 semester credit hours minimum

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2014/graduate/admission). The student entering the MS ME program should meet the following guidelines:

- A bachelor’s degree in engineering or one of the natural sciences from an accredited U.S. institution, or from a comparable institution abroad,
- A grade point average in upper-division quantitative coursework of 3.0 or better on a 4-point scale, and
- GRE revised scores of 150, 160, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.
- Three letters of recommendation from individuals who are able to judge the candidate's potential for success in the master's degree program.
- An essay outlining the candidate's background, education and professional goals.

Students from other engineering disciplines or from other areas of science or mathematics may be considered for admission to the program; however, additional coursework may be necessary to complete the master's program.
A student lacking undergraduate prerequisites for graduate courses in mechanical engineering must complete these prerequisites or receive approval from the faculty advisor and the course instructor.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures](catalog.utdallas.edu/2013/graduate/policies/policy) page.

The MS ME requires a minimum of 33 semester credit hours.

All students must have a faculty advisor and an approved plan of study within the first two consecutive long semesters in the program. The plan of study is based upon the student's choice of concentration area. Courses taken without advisor's approval will not be counted towards the 33 semester credit hour requirement. Successful completion of an approved plan of study leads to the MS ME degree.

The MS ME program has both a thesis and a non-thesis option. All part-time MS ME students will be assigned initially to the non-thesis option. Those wishing to elect the thesis option may do so by obtaining the approval of a faculty thesis supervisor.

All full-time, supported students are required to participate in the thesis option. The thesis option requires six semester credit hours of research, a written thesis submitted to the graduate school, and a formal public defense of the thesis. The supervising committee administers this defense and is chosen in consultation with the student's thesis advisor prior to enrolling for thesis credit. Research and thesis semester credit hours cannot be counted in a MS ME degree plan unless a thesis is written and successfully defended.

Required Major Courses: 12 semester credit hours

A MS student in ME must take one core course from each of the four concentration areas in the list below, and must receive a grade of B- or better in the four core courses. A student must maintain a GPA of at least 3.0 to remain in good standing and satisfy the degree requirements.

<table>
<thead>
<tr>
<th>Concentration Area</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Systems & Control</td>
<td>MECH 6300 (EECS 6331, SYSM 6307) Linear Systems</td>
</tr>
<tr>
<td></td>
<td>MECH 6314 (SYSM 6306, BMEN 6372) Engineering Systems: Modeling and Simulation</td>
</tr>
<tr>
<td>Manufacturing & Design Innovation</td>
<td>MECH 6303 Computer Aided Design</td>
</tr>
<tr>
<td>Mechanics & Materials</td>
<td>MECH 6306 Continuum Mechanics,</td>
</tr>
<tr>
<td></td>
<td>MECH 6330 Advanced Solid Mechanics</td>
</tr>
<tr>
<td>Thermal & Fluid Sciences</td>
<td>MECH 6370 Incompressible Fluid Mechanics</td>
</tr>
<tr>
<td></td>
<td>MECH 6373 Convective Heat Transfer</td>
</tr>
<tr>
<td></td>
<td>MECH 6374 Conductive and Radiative Heat Transfer</td>
</tr>
</tbody>
</table>

Prescribed Electives within Concentration Areas

The following is a list of prescribed elective courses. Students must take at least 3 prescribed elective courses from one concentration area. Courses counted towards satisfying requirements on Required Major Courses cannot be counted towards satisfying requirements on Prescribed Electives. All electives must be approved by faculty advisor.
Note: the presence of a course number in parentheses indicates that this course is cross-listed in another department.

Dynamic Systems & Controls (DSC)

MS students must take at least 3 courses from one concentration area.

- MECH 5308 (EECS 5375) Introduction to Robotics
- MECH 6300 (EECS 6331, SYSM 6307) Linear Systems
- MECH 6311 Advanced Mechanical Vibrations
- MECH 6312 (EECS 6349) Random Processes
- MECH 6313 (EECS 6336, BMEN 6388, SYSE 6324) Nonlinear Systems
- MECH 6314 (SYSM 6306, BMEN 6372) Engineering Systems: Modeling and Simulation
- MECH 6316 (SYSE 6322) Digital Control of Automotive Powertrain Systems
- MECH 6317 (SYSM 6302, SYSE 6302) Dynamics of Complex Networks and Systems
- MECH 6323 (SYSE 6323, EECS 6323) Robust Control Systems
- MECH 6324 (EECS 6324) Robot Control
- MECH 6V29 Special Topics in Controls and Dynamic Systems

Manufacturing & Design Innovation (MDI)

MS students must take at least 3 courses from one concentration area.

- MECH 6311 Advanced Mechanical Vibrations
- MECH 6314 (BMEN 6372, SYSM 6306) Engineering Systems: Modeling and Simulation
- MECH 6317 (EECS 6302, SYSM 6302) Dynamics of Complex Networks and Systems
- MECH 6318 (SYSM 6305) Optimization Theory and Practice
- MECH 6330 Multiscale Design and Optimization
- MECH 6333 Materials Design and Manufacturing
- MECH 6334 Smart Materials and Structures
- MECH 6335 (OPRE 6340) Flexible Manufacturing Strategies
- MECH 6337 (SYSM 6301) Systems Engineering, Architecture and Design
- MECH 6341 (EEMF 6348, MSEN 6348) Lithography and Nanofabrication
- MECH 6347 (EEMF 6382, MSEN 6382) Introduction to MEMS
- MECH 6348 (EEMF 6322, MSEN 6322) Semiconductor Processing Technology
- MECH 6353 Computational Mechanics
- MECH 6354 Experimental Mechanics
- MECH 6V49 Special Topics in Manufacturing and Design Innovation

Mechanics & Materials (MM)

MS students must take at least 3 courses from one concentration area.

- MECH 5350 Introduction to Applied Finite Element Method
- MECH 6306 Continuum Mechanics
- MECH 6350 Advanced Solid Mechanics
- MECH 6353 Computational Mechanics
- MECH 6354 Experimental Mechanics

2/23/2014 6:19 PM
MECH 6355 Viscoelasticity
MECH 6367 (MSEN 6310) Mechanical Properties of Materials
MECH 6368 (MSEN 6350) Imperfections in Solids
MECH 6V69 Special Topics in Mechanics and Materials

Thermal & Fluid Sciences (TFS)

MS students must take at least 3 courses from one concentration area.

- **MECH 5307** Applied Thermodynamics
- **MECH 5370** Introduction to Wind Energy
- **MECH 5372** Introduction to Compressible Fluid Mechanics
- **MECH 5373** Thermal Management of Microelectronics
- **MECH 5376** Introduction to Computational Thermal Fluid Science
- **MECH 6370** Incompressible Fluid Mechanics
- **MECH 6371** Computational Fluid Dynamics
- **MECH 6372** Turbulent Flows
- **MECH 6373** Convective Heat Transfer
- **MECH 6374** Conductive and Radiative Heat Transfer
- **MECH 6375** Boiling Heat Transfer and Two-Phase Flow
- **MECH 6377** Advanced Thermodynamics
- **MECH 5371** Internal Combustion Engine
- **MECH 6374** Design and Analysis of HVAC Systems
- **MECH 5378** Micro/Nanoscale Heat Transfer
- **MECH 6379** Special Topics in Thermal and Fluid Sciences
- **MECH 5371** Plasma Technology
- **MECH 6378** Plasma Science
- **MECH 6V89** Special Topics in Mechanical Engineering

Students participating in the non-thesis option must also take 4 graduate level electives. Students participating in the thesis option must take 2 graduate level electives and the following courses to fulfill the research and thesis requirements of the MS ME degree program:

- **MECH 6V97** Research in Mechanical Engineering *(1-9 semester credit hours)*
- **MECH 6V98** Thesis *(3 semester credit hours minimum)*

All electives must be approved by the faculty advisor.

Doctor of Philosophy in Mechanical Engineering

78 semester credit hours minimum beyond the baccalaureate degree

Admission Requirements

The University’s general admission requirements are discussed on the [Graduate Admission page](catalog.utdallas.edu/2014/graduate/admission).

The PhD in Mechanical Engineering is awarded primarily to acknowledge the student's success in an original research project, the description of which is a significant contribution to the scholarly literature. Applicants for the doctoral program are therefore selected by the Mechanical Engineering Graduate Committee on the basis of research aptitude as well as academic record.

The following are guidelines for admission to the PhD program in Mechanical Engineering:

2/23/2014 6:19 PM
• A master's or bachelor's degree in engineering or one of the natural sciences from an accredited U.S. institution, or from a comparable institution abroad.
• A grade point average of 3.3 or better on a 4-point scale.
• GRE revised scores of 150, 160, and 4 for the verbal, quantitative and analytical components, respectively, are advisable based on our experience with student success. (See also UT Dallas requirements for English proficiency).
• Three letters of recommendation from individuals who are familiar with the student's record, and are able to judge the candidate's preparation and ability to succeed in doctoral study in Mechanical Engineering.
• An essay describing motivation for doctoral study and how it relates to the student's professional goals.

Students from other engineering disciplines or from other areas of science or mathematics may be considered for admission to the program; however, additional coursework may be necessary to complete the PhD program.

For students who are interested in pursuing a PhD but are unable to attend school full-time, there is a part-time option. The guidelines for admission to the program and the degree requirements are the same as for full-time PhD students.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2014/graduate/policies/policy).

Doctoral students must have a faculty advisor and an approved plan of study within the first two consecutive long semesters in the program. The faculty advisor shall be a faculty member, or affiliated faculty member, in Mechanical Engineering. The plan of study is based upon the student's choice of concentration area. Each doctoral student must conduct original research in the area of Mechanical Engineering, under the direction of the faculty advisor. A supervisory committee will be formed once the faculty advisor accepts the student for a research project. The student must complete and defend a dissertation on the research project.

The PhD program in Mechanical Engineering requires a minimum of 78 semester credit hours beyond the baccalaureate degree. The breakdown is shown in the table below:

<table>
<thead>
<tr>
<th>Category</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td>12</td>
</tr>
<tr>
<td>Prescribed Electives</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics Electives</td>
<td>6</td>
</tr>
<tr>
<td>Free Electives</td>
<td>12</td>
</tr>
<tr>
<td>Dissertation</td>
<td>6 (minimum)</td>
</tr>
<tr>
<td>Other: Research in Mechanical Engineering</td>
<td>30 (minimum)</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
</tr>
</tbody>
</table>

Transfer of graduate level credit into a doctoral program in mechanical engineering is limited to a maximum of 27 semester credit hours of graduate course work upon approval by the graduate committee based on the recommendation by dissertation advisor.

Required Major Courses: 12 semester credit hours
A PhD student in ME must take one core course from each of the four concentration areas in the list below, and must receive a grade of B- or better in the four core courses.

- **Dynamic Systems & Control**
 - MECH 6300 (EECS 6331, SYSM 6307) Linear Systems
 - MECH 6314 (SYSM 6306, BMEN 6372) Engineering Systems: Modeling and Simulation

- **Manufacturing & Design Innovation**
 - MECH 6303 Computer Aided Design

- **Mechanics & Materials**
 - MECH 6306 Continuum Mechanics
 - MECH 6350 Advanced Solid Mechanics

- **Thermal & Fluid Sciences**
 - MECH 6370 Incompressible Fluid Mechanics
 - MECH 6373 Convective Heat Transfer
 - MECH 6374 Conductive and Radiative Heat Transfer

Prescribed Electives within Concentration Areas: 12 semester credit hours

The following is a list of prescribed elective courses. A PhD student in Mechanical Engineering must take at least 4 courses from the list of prescribed elective courses in one of the four areas of concentration. Courses counted towards satisfying requirements on Required Major Courses cannot be counted towards satisfying requirements on Prescribed Electives. Upon approval from the student’s faculty advisor and the Mechanical Engineering Graduate Committee, a qualified student can take other courses offered by UT Dallas or UT Arlington to satisfy the requirements on prescribed electives.

Note: the presence of a course number in parentheses indicates that this course is cross-listed in another department.

Dynamic Systems & Controls (DSC)

PhD students must take at least 4 courses from one concentration area.

- MECH 6300 (EECS 6331, SYSM 6307) Linear Systems
- MECH 6311 Advanced Mechanical Vibrations
- MECH 6312 (EECS 6349) Random Processes
- MECH 6313 (EECS 6336, BMEN 6388, SYSE 6324) Nonlinear Systems
- MECH 6314 (SYSM 6306, BMEN 6372) Engineering Systems: Modeling and Simulation
- MECH 6316 (SYSE 6322) Digital Control of Automotive Powertrain Systems
- MECH 6317 (SYSM 6302) Dynamics of Complex Networks and Systems
- MECH 6318 (SYSM 6305) Optimization Theory and Practice
- MECH 6323 (SYSE 6323, EECS 6323) Robust Control Systems
- MECH 6324 (EECS 6324) Robot Control
- MECH 6V29 Special Topics in Controls and Dynamic Systems

Manufacturing & Design Innovation (MDI)

PhD students must take at least 4 courses from one concentration area.

- MECH 6311 Advanced Mechanical Vibrations
- MECH 6314 (BMEN 6372, SYSM 6306) Engineering Systems: Modeling and Simulation

2/23/2014 6:19 PM
MECH 6317 (EECS 6302, SYM 6302) Dynamics of Complex Networks and Systems
MECH 6318 (SYM 6305) Optimization Theory and Practice
MECH 6330 Multiscale Design and Optimization
MECH 6333 Materials Design and Manufacturing
MECH 6334 Smart Materials and Structures
MECH 6335 (OPRE 6340) Flexible Manufacturing Strategies
MECH 6337 (SYM 6301) Systems Engineering, Architecture and Design
MECH 6341 (EEMF 6348, MSEN 6348) Lithography and Nanofabrication
MECH 6347 (EEMF 6382, MSEN 6382) Introduction to MEMS
MECH 6348 (EEMF 6322, MSEN 6322) Semiconductor Processing Technology
MECH 6353 Computational Mechanics
MECH 6354 Experimental Mechanics
MECH 6V49 Special Topics in Manufacturing and Design Innovation

Mechanics & Materials (MM)

PhD students must take at least 4 courses from one concentration area.

MECH 6306 Continuum Mechanics
MECH 6350 Advanced Solid Mechanics
MECH 6353 Computational Mechanics
MECH 6354 Experimental Mechanics
MECH 6355 Viscoelasticity
MECH 6367 (MSEN 6310) Mechanical Properties of Materials
MECH 6368 (MSEN 6350) Imperfections in Solids
MECH 6V69 Special Topics in Mechanics and Materials

Thermal & Fluid Sciences (TFS)

PhD students must take at least 4 courses from one concentration area.

MECH 6370 Incompressible Fluid Mechanics
MECH 6371 Computational Fluid Dynamics
MECH 6372 Turbulent Flows
MECH 6373 Convective Heat Transfer
MECH 6374 Conductive and Radiative Heat Transfer
MECH 6375 Boiling Heat Transfer and Two-Phase Flow
MECH 6377 Advanced Thermodynamics
MECH 6383 (EEMF 6383, PHYS 6383) Plasma Science
MECH 6V89 Special Topics in Thermal and Fluid Sciences

Mathematics Electives: 6 semester credit hours

The following is a list of suggested elective courses in mathematics.

Two courses are required for mathematics electives.
Upon the approval of a student's faculty advisor, a qualified student can request to take other graduate courses in mathematics not listed above.

In addition to course requirements, the PhD students need to complete the following:

- **Qualifying Exam (QE):** It tests fundamental knowledge in mathematics and one concentration area of mechanical engineering. A student entering the PhD program must take this exam within 3 long semesters. A student has at most two attempts made within two consecutive semesters at this qualifying exam. The exam will be given during the fall and spring semesters.

- **Comprehensive Exam (CE):** Written dissertation proposal and an exam given by candidate's supervisory committee.

- **Final Exam:** Completion of a major research project culminating in a dissertation demonstrating an original contribution to the body of knowledge. The dissertation will be defended publicly. The rules for this defense are specified by the Office of the Dean of Graduate Studies.

A student who has passed the QE and maintained the GPA requirements in PhD level organized courses will be admitted to the PhD candidacy.

A student entering the PhD program must pass the QE exam within 3 consecutive long semesters. A student has at most two consecutive attempts at the QE. The QE will be given during the fall and spring semesters.

The following courses are required to fulfill the research and dissertation requirements of the PhD degree program:

- **MECH 8V70 Advanced** Research in Mechanical Engineering (30 semester credit hours minimum)
- **MECH 8V99** Dissertation (6 semester credit hours minimum)

Neither a foreign language nor a minor is required for the PhD. However, the student's supervisory committee may impose these or other requirements that it feels are necessary and appropriate to the student's degree program.

Non-Degree Seeking Students in Mechanical Engineering

2/23/2014 6:19 PM
“Non-Degree Seeking” is a term which applies to students who are taking selected courses and who have not applied to, or been accepted into, a degree program. A student may be taking classes for various reasons; i.e., personal or professional enhancement, to transfer courses to another university, to correct a grade deficiency. Students who have not taken the GRE or GMAT, or who are awaiting results, may also be classified non-degree seeking.

A non-degree seeking student must meet the same academic eligibility requirements and English proficiency requirements as ME graduate degree-seeking students. Non-degree seeking students who are ultimately admitted to a MS graduate degree program may transfer no more than 15 non-degree credit hours to the ME graduate degree program. A new application must be submitted when transferring from non-degree to degree seeking status.
Department of Systems Engineering

Objectives

Systems engineering is an interdisciplinary field of systems engineering, focusing on the design, modeling, interconnection, and management of large complex systems. In addition to the methods of traditional engineering, systems engineering relies on skills and expertise in areas such as optimization, simulation, economics and finance, risk management, and decision making under uncertainty. These skills come together to address the challenges of designing and managing complex interconnected systems, ranging from an automobile or an airplane to communication systems, financial markets, the power grid, and many more.

The Department of Systems Engineering at UT Dallas focuses research and curriculum in the fundamentals of systems engineering and management, with applications in interdisciplinary areas of interest to industry, such as energy systems, financial engineering systems, software systems, healthcare systems, cyber security systems, control and mechatronic systems, and others. In so doing, the Department of Systems Engineering offers an MS degree in Systems Engineering and Management (MS-SEM), a joint program with the UT Dallas Naveen Jindal School of Management. The program brings together faculty and disciplines from the engineering school and from the management school into a single program that has traditional and executive education formats.

Research

While many diverse areas of research and curriculum are represented by the core faculty and affiliated faculty in the Department of Systems Engineering, we identify with a few basic, core areas of concentration which combine graduate level research and curriculum:

• Control Systems and Mechatronic Systems
• Financial Engineering
• Energy Systems

Other curriculum-centric concentration areas, discussed below for the MS-SEM degree program, are also possible areas of research focus.
In keeping with the established tradition of research at UT Dallas, the Systems Engineering Department through its research efforts and its MS-SEM degree program, encourages students to interact with researchers in other strong programs in the Jonsson School of Engineering and Computer Science and the Naveen Jindal School of Management, including computer science, electrical engineering, mechanical engineering, bioengineering, computer engineering, operations management, finance, marketing, innovation and entrepreneurship, and business management.

Master of Science in Systems Engineering and Management (MS-SEM)

36 semester credit hours minimum

Admission Requirements

A student lacking undergraduate prerequisites for graduate courses must complete prerequisites or receive approval from the graduate advisor and the course instructor. A diagnostic examination may be required. Please consult with the University's general admission requirements, discussed in the graduate catalog, whereas specific admission requirements for the MS-SEM follow.

A student entering the MS-SEM program should meet the following guidelines:

• A minimum of a BS in engineering, mathematics, physics, chemistry, economics or finance from an accredited program (specifically, programs that provide adequate fundamental skills in mathematics).
• Must submit GRE and/or GMAT scores, as appropriate.
• Must submit three letters of recommendation from individuals who are able to judge the candidate's probability of success in pursuing a program of study leading to the MS-SEM degree.
• Must also submit an essay outlining the candidate's background, education, and professional goals.

Degree Requirements

The MS-SEM program is designed to be flexible to accommodate different student backgrounds, allowing students to pick up areas in which they are deficient, while still guaranteeing core competency in systems engineering and systems management. This program has both a thesis and a non-thesis option. All part-time MS-SEM students will be assigned initially to the non-thesis option. Those wishing to elect the thesis option may do so by obtaining the approval of a faculty thesis supervisor.

The MS-SEM degree requires a total of 36 semester credit hours consisting of 12 courses in the non-thesis option or 10 courses plus six semester credit hours of thesis credit for the thesis option. All students must have an academic advisor and an approved degree plan. Courses taken without advisor approval will not count toward the 36 semester credit hour requirement. Successful completion of the approved course of studies leads to the MS-SEM degree.
Please also note that the University's general degree requirements are discussed elsewhere in the graduate catalog.

Non-thesis Option

Completion of a minimum of 36 semester credit hours of graduate level lecture courses including the required core courses. With advisor approval, these may include some 5000 level courses. Students must earn a grade of B- or better in each of four core courses (see below).

Thesis Option
An alternative to 36 semester credit hours required for the MS-SEM degree, would be the completion of a minimum of 30 semester credit hours of graduate level lecture courses, with a grade of B- or better in each of the required core courses (see below), six semester credit hours of a combination of master's research (SYSM 6V70) and thesis (SYSM 6V90), submitted to the graduate school, and a formal public defense of the thesis.

Students enrolled in the thesis option should meet with individual faculty members to discuss research opportunities and to choose a research advisor during the first or second semester that the student is enrolled. After the second semester of study, course selection should be made in consultation with the research advisor. Part-time students are encouraged to enroll in only one course during their first semester and in no more than two courses during any semester they are also working full-time.

Research and thesis semester credit hours cannot be counted in an MS-SEM degree plan unless a thesis is written and successfully defended. A supervising committee, which must be chosen in consultation with the student's thesis advisor prior to enrolling for thesis credit, administers the defense. With advisor approval, the lecture courses may include some 5000 level courses. Full-time students at UT Dallas who receive financial assistance are required to enroll in nine semester credit hours each semester.

Course Requirements

Core Courses: 12 semester credit hours

Students are required to take four courses (a total of 12 semester credit hours) from a set of eight courses in the lists below. Two of the courses must be from the Engineering Core section and two from the Management Core section. The four required courses contribute a total of 12 semester credit hours toward the MS degree.

Engineering Core Courses

- SYSM 6301 Systems Engineering, Architecture and Design
- SYSM 6302 Dynamics of Complex Networks and Systems
- SYSM 6303 Quantitative Introduction to Risk and Uncertainty in Business
- SYSM 6305 Optimization Theory and Practice

Management Core Courses

- SYSM 6311 Systems Project Management in Engineering and Operations
- SYSM 6312 Systems Financial Management
- SYSM 6318 Marketing Management
- SYSM 6333 Systems Organizational Behavior

Prescribed Electives: 12 semester credit hours

Students are required to take an additional four courses (a total of 12 semester credit hours) from the set of eight core courses listed above and/or the set of courses listed below. Two of these courses must be chosen from the two Engineering sections (core and elective), and two from the two Management sections (core and elective). Because a program objective is to maintain a high degree of flexibility, students are encouraged to work with an MS-SEM program advisor to discuss possible (limited) exceptions and substitutions for the prescribed elective courses.

Engineering Elective Courses

- SYSM 6304 Risk and Decision Analysis
- SYSM 6306 Engineering Systems: Modeling and Simulation
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSM 6307</td>
<td>Linear Systems</td>
</tr>
<tr>
<td>SYSM 6308</td>
<td>Software Maintenance, Evolution and Re-Engineering</td>
</tr>
<tr>
<td>SYSM 6309</td>
<td>Advanced Requirements Engineering</td>
</tr>
<tr>
<td>SYSM 6310</td>
<td>Software Testing, Validation and Verification</td>
</tr>
<tr>
<td>SYSM 6321</td>
<td>Financial Engineering I</td>
</tr>
<tr>
<td>SYSM 7321</td>
<td>Financial Engineering II</td>
</tr>
</tbody>
</table>

Management Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSM 6313</td>
<td>Systems Negotiation Deals and Dispute Resolution</td>
</tr>
<tr>
<td>SYSM 6314</td>
<td>Manufacturing and Service Systems Planning and Analysis</td>
</tr>
<tr>
<td>SYSM 6315</td>
<td>The Entrepreneurial Experience</td>
</tr>
<tr>
<td>SYSM 6316</td>
<td>Managing Innovation Within the Corporation</td>
</tr>
<tr>
<td>SYSM 6317</td>
<td>The Management of High Tech Products</td>
</tr>
<tr>
<td>SYSM 6319</td>
<td>Business Economics</td>
</tr>
<tr>
<td>SYSM 6320</td>
<td>Strategic Leadership</td>
</tr>
<tr>
<td>SYSM 6332</td>
<td>Technology and New Product Development</td>
</tr>
</tbody>
</table>

Free Electives: 12 semester credit hours

Working with an MS-SEM program advisor, students are required to take four additional and distinct courses either from the remaining SYSM courses listed above or from other courses offered in management or engineering that form a "concentration" or "specialization" in systems-related, possibly industry-specific sectors. The concentration area consists of four courses (12 semester credit hours) in the degree program; examples include: Mechatronic and Control Systems, Financial Engineering Systems, Energy Systems, Healthcare Systems, Telecom and IT Networks, Information Assurance and Cyber-security, Global Supply Chain Management, Entrepreneurship and Innovation, and Enterprise Systems. Finally, because of the flexible nature of the MS-SEM degree program, students may submit for approval a "personalized" concentration area that focuses on aspects of systems engineering, and may combine elements of other concentration areas on a focused theme.

Systems Engineering and Management (MS-SEM) Courses

Engineering Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSM 6301</td>
<td>Systems Engineering, Architecture and Design</td>
</tr>
<tr>
<td>SYSM 6302</td>
<td>Dynamics of Complex Networks and Systems</td>
</tr>
<tr>
<td>SYSM 6303 (OPRE 6301)</td>
<td>Quantitative Introduction to Risk and Uncertainty in Business</td>
</tr>
<tr>
<td>SYSM 6304 (OPRE 6335)</td>
<td>Risk and Decision Analysis</td>
</tr>
<tr>
<td>SYSM 6305</td>
<td>Optimization Theory and Practice</td>
</tr>
<tr>
<td>SYSM 6306 (BMEN 6372, MECH 6314)</td>
<td>Engineering Systems: Modeling and Simulation</td>
</tr>
<tr>
<td>SYSM 6307 (EECS 6331, MECH 6300)</td>
<td>Linear Systems</td>
</tr>
<tr>
<td>SYSM 6308 (CS 6356, SE 6356)</td>
<td>Software Maintenance, Evolution and Re-Engineering</td>
</tr>
<tr>
<td>SYSM 6309 (SE 6361, CE 6361)</td>
<td>Advanced Requirements Engineering</td>
</tr>
<tr>
<td>SYSM 6310 (SE 6357, CE 6357, CS 6367)</td>
<td>Software Testing, Validation, and Verification</td>
</tr>
<tr>
<td>SYSM 6321</td>
<td>Financial Engineering I</td>
</tr>
<tr>
<td>SYSM 7321</td>
<td>Financial Engineering II</td>
</tr>
<tr>
<td>SYSM 6V70</td>
<td>Research in Systems Engineering and Management</td>
</tr>
<tr>
<td>SYSM 6V80</td>
<td>Special Topics in Systems Engineering and Management</td>
</tr>
<tr>
<td>SYSM 6V90</td>
<td>Thesis</td>
</tr>
</tbody>
</table>
Management Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSM 6311</td>
<td>OPRE 6362</td>
</tr>
<tr>
<td>SYSM 6312</td>
<td>FIN 6301</td>
</tr>
<tr>
<td>SYSM 6313</td>
<td>OB 6332</td>
</tr>
<tr>
<td>SYSM 6314</td>
<td>Manufacturing and Service Systems Planning and Analysis</td>
</tr>
<tr>
<td>SYSM 6315</td>
<td>ENTP 6398</td>
</tr>
<tr>
<td>SYSM 6316</td>
<td>ENTP 6388</td>
</tr>
<tr>
<td>SYSM 6317</td>
<td>OPRE 6395</td>
</tr>
<tr>
<td>SYSM 6318</td>
<td>MKT 6301</td>
</tr>
<tr>
<td>SYSM 6319</td>
<td>MECO 6303</td>
</tr>
<tr>
<td>SYSM 6320</td>
<td>BPS 6332</td>
</tr>
<tr>
<td>SYSM 6332</td>
<td>ENTP 6375, OPRE 6394</td>
</tr>
<tr>
<td>SYSM 6333</td>
<td>OB 6301</td>
</tr>
<tr>
<td>SYSM 6V98</td>
<td></td>
</tr>
</tbody>
</table>

Systems Engineering Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSE 6321</td>
<td></td>
</tr>
<tr>
<td>SYSE 6322</td>
<td></td>
</tr>
<tr>
<td>SYSE 6323</td>
<td>(EECS 6323, MECH 6323)</td>
</tr>
<tr>
<td>SYSE 6324</td>
<td>(BMEN 6388, EECS 6336, MECH 6313)</td>
</tr>
</tbody>
</table>
Graduate Program in Telecommunications Engineering

Objectives
The Graduate Program in Telecommunications Engineering provides intensive preparation for professional practice in the design, programming, theory, and applications of telecommunications networks. It is designed to serve the needs of engineers who wish to continue their education. The Telecommunications Engineering Program offers courses of study leading to the MS and a PhD degree in Telecommunications Engineering. Education and training is provided to both academically oriented students and students with professional goals in industrial or governmental occupations requiring advanced knowledge of telecommunications and related technology. A comprehensive program of evening courses is also offered, which enables part-time students to earn the MS and PhD degree or to select individual courses of interest. Courses and research are both offered in a variety of subfields of telecommunications engineering, including, fault-tolerant networks, digital communications, modulation and coding, electromagnetic-wave propagation, fiber and integrated optics, lasers, wireless communications, mobile computing, wireless multimedia, DWDM networks, QoS assurance protocols, network design and optimization, telecommunications software, performance of systems, ad-hoc and PCS wireless networks, network security and high speed transmission protocols.

Facilities
The Erik Jonsson School of Engineering and Computer Science has developed a state-of-the-art computational facility consisting of a network of Sun servers and Sun Engineering Workstations. All systems are connected via an extensive fiber-optic Ethernet, and through the Texas Higher Education Network, have direct access to most major national and international networks. In addition, many personal computers are available for student use.

The Engineering and Computer Science Buildings provide extensive facilities for research in telecommunications, microelectronics, and computer science. The TARGET Laboratory has state-of-the-art telecommunications equipment, which includes a number of transport nodes, data packet routers, voice over IP gears, and a cluster of Linux workstations for protocols development and testing. The Wireless Information Systems (WISLAB) and Antenna Measurement Laboratories at UT Dallas have a wealth of experimental equipment with a unique
reconfigurable multiple antenna testbed. Having this testbed allows wireless researchers to integrate and to
demonstrate radio functions (i.e. WiFi and WiMAX) in geographically different regions under different frequency
usage characteristics. With the aid of the Antenna Measurement Lab located in the Waterview Science and
Technology Center (WSTC), the researchers can design, build, and test many type of antennas. The Optical
Communications Laboratory includes attenuators, optical power meters, lasers, APD/p-i-n photodetectors, optical
tables, and couplers and is available to support system level research in optical communications.

The Center for Systems, Communications, and Signal Processing, with the purpose of promoting research and
education in general communications, signal processing, control systems, medical and biological systems, circuits
and systems and related software, is located in the Erik Jonsson School. The Photonic Technology and Engineering
Center (PhoTEC) has produced more than thirty PhD graduates. The PhoTEC faculty carry out research in enabling
technologies for microelectronics and telecommunications.

The Digital Systems Laboratory includes a network of workstations, personal computers, FPGA development
systems, and a wide spectrum of state-of-the-art commercial and academic design tools to support graduate research
in VLSI design and computer architecture. In the Digital Signal Processing Laboratory several multi-CPU
workstations are available in a network configuration for simulation experiments. Hardware development facilities
for real time experimental systems are available and include microphone arrays, active noise controllers, speech
compressors and echo cancellers. The Nonlinear Optics Laboratory has a dedicated network of Sun workstations for
the development of simulation methods and software for optical transmission and communication systems, optical
routers and all-optical networks. The Broadband Communication Laboratory has design and modeling tools for fiber
and wireless transmission systems and networks, and all-optical packet routing and switching. The Advanced
Communications Technologies (ACT) Laboratory provides a design and evaluation environment for the study of
telecommunication systems and wireless and optical networks. ACT has facilities for designing network hardware,
software, components, and applications.

In addition to the aforementioned facilities, a Class 1000 microelectronics clean room facility, including optical
lithography, sputter deposition and evaporation, is available for student projects and research. An electron beam
lithography pattern generator capable of sub-micron resolution is also available for microelectronics research. The
Plasma Applications Laboratory has state-of-the-art facilities for mass spectrometry, microwave interferometry,
optical spectroscopy, and optical detection. In addition, a Gaseous Electronics Conference Reference Reactor has
been installed for plasma processing and particulate generation studies. The Optical Measurements Laboratory has
dual wavelength (visible and near infrared) Gaertner Ellipsometer for optical inspection of material systems, a
variety of interferometric configurations, high precision positioning devices, and supporting optical and electrical
components. The Electronic Materials Processing laboratory has extensive facilities for fabricating and
characterizing semiconductor and optical devices. The Laser Electronics Laboratory houses graduate research
projects centered on the characterization, development and application of ultrafast dye and diode lasers. Research in
characterization and fabrication of nanoscale materials and devices is performed in the Nanoelectronics Laboratory.

In addition to the facilities on campus, cooperative arrangements have been established with many local industries to
make their facilities available to UT Dallas graduate engineering students.

Master of Science in Telecommunications Engineering

33 semester credit hours minimum

Admission Requirements

The University’s general admission requirements are discussed on the Graduate Admission page
catalog.utdallas.edu/2013/graduate/admission).
A student lacking undergraduate prerequisites for graduate courses in electrical engineering must complete these prerequisites or receive approval from the graduate advisor and the course instructor. A diagnostic examination may be required. Specific admission requirements follow.

A student entering the MSTE program should meet the following guidelines:

- An undergraduate preparation equivalent to a baccalaureate in electrical engineering from an accredited engineering program,
- A grade point average in upper-division quantitative coursework of 3.0 or better on a 4.0-point scale, and
- GRE revised scores of 154, 156, and 4 for the verbal, quantitative and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Applicants must submit three letters of recommendation from individuals who are able to judge the candidate's probability of success in pursuing a program of study leading to the master's degree.

Applicants must also submit an essay outlining the candidate's background, education, and professional goals.

Students from other engineering disciplines or from other areas of science or mathematics may be considered for admission to the program; however, some additional coursework may be necessary before starting the master's program.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures](catalog.utdallas.edu/2013/graduate/policies/policy) page.

The MSTE degree requires a minimum of 33 semester credit hours.

All students must have an academic advisor and an approved degree plan. Courses taken without advisor approval will not count toward the 33 semester credit hour requirement. Successful completion of the approved course of studies leads to the MSTE degree.

The MSTE program has both a thesis and a non-thesis option. All part-time MSTE students will be assigned initially to the non-thesis option. Those wishing to elect the thesis option may do so by obtaining the approval of a faculty thesis supervisor.

All full-time, supported students are required to participate in the thesis option. The thesis option requires six semester credit hours of research, a written thesis submitted to the graduate school, and a formal public defense of the thesis. Research and thesis semester credit hours cannot be counted in a MSTE degree plan unless a thesis is written and successfully defended. A supervising committee, which must be chosen in consultation with the student's thesis advisor prior to enrolling for thesis credit, administers the defense. Full-time students at UT Dallas who receive financial assistance are required to enroll in 9 semester credit hours during the fall, spring and summer semesters. Students enrolled in the thesis option should meet with individual faculty members to discuss research opportunities and to choose a research advisor during the first or second semester that the student is enrolled. After the second semester of study, course selection should be made in consultation with the research advisor. Part-time students are encouraged to enroll in only one course during their first semester and in no more than two courses during any semester they are also working full-time.

To receive a Master of Science degree in Telecommunications Engineering, a student must meet the following minimum set of requirements:
Completion of a minimum of 33 semester credit hours of graduate level lecture courses including the required core courses. With advisor approval, these may include some 5000 level courses.

Course Requirements

Required Core Courses: 15 semester credit hours

Students must take the following five core courses and make a grade of B or better:

- **CS 6385** (TE 6385) Algorithmic Aspects of Telecommunication Networks
- **EESC 6349** Random Processes
- **EESC 6352** Digital Communication Systems
- **CS 6352** Performance of Computer Systems and Networks
- **CS 6390** Advanced Computer Networks

Recommended Elective Courses: 18 semester credit hours

Students will take additional courses from those described in the following lists. Choose any 18 semester credit hours of 6000 level courses or higher with approval of the advisor.

Recommended Electrical Engineering Electives

- **EEOP 6310** Optical Communication Systems
- **EEGR 6316** Fields and Waves
- **EESC 6340** Introduction to Telecommunications Networks
- **EESC 6341** Information Theory I
- **EESC 6342** Detection and Estimation Theory
- **EESC 6344** Coding Theory
- **EEDG 6345** Engineering of Packet-Switched Networks
- **EESC 6360** Digital Signal Processing I
- **EESC 6361** Digital Signal Processing II
- **EESC 6362** Introduction to Speech Processing
- **EESC 6365** Adaptive Signal Processing
- **EESC 6390** Introduction to Wireless Communications Systems
- **EESC 6391** Signaling and Coding for Wireless Communication Systems
- **EESC 6392** Propagation and Devices for Wireless Communications
- **EERF 6394** Antenna Engineering and Wave Propagation
- **EERF 6395** RF and Microwave Systems Engineering
- **EEOP 7340** Optical Network Architectures and Protocols

Recommended Computer Science Electives

- **CS 6349** Network Security
- **CS 6354** Advanced Software Engineering
- **CS 6360** Database Design
- **CS 6363** Design and Analysis of Computer Algorithms
- **CS 6368** Telecommunication Network Management
Doctor of Philosophy in Telecommunications Engineering

75 semester credit hours minimum beyond the baccalaureate degree

Each doctoral degree program is tailored to the student. The student must arrange a course program with the guidance and approval of a faculty member chosen as his/her graduate advisor. Adjustments can be made as the student's interests develop and a specific dissertation topic is chosen.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The PhD degree in Telecommunications Engineering is awarded primarily to acknowledge the student's success in an original research project, the description of which is a significant contribution to the literature of the discipline. Applications for the doctoral program are therefore selected by the Telecommunications Engineering Graduate Committee on the basis of research aptitude, as well as academic record. Applications for the doctoral program are considered on the individual basis.

The following are guidelines for admission to the PhD program in Telecommunications Engineering.

A master's degree in Telecommunications Engineering, or Electrical Engineering or Computer Science or a closely associated discipline from an accredited U.S institution or from an acceptable foreign university. Consideration will be given to highly qualified students wishing to pursue the doctorate without satisfying all of the requirements for a master's degree.

• A grade point average in graduate coursework of 3.5 or better on a 4-point scale
• GRE revised scores of 154, 156, and 4 for the verbal, quantitative and analytical writing components, respectively, are advisable based on our experience with student success in the program.
• Applicants must submit three letters of recommendation on official school or business letterhead or the UT Dallas Letter of Recommendation form from individuals who are familiar with the student record and able to judge the candidate's probability of success in pursuing doctoral study in electrical engineering.

Applicants must also submit a narrative describing their motivation for doctoral study in telecommunications engineering.

Applicants must also submit a narrative describing their motivation for doctoral study and how it relates to their professional goals.

For students who are interested in a PhD, but are unable to attend school full-time, there is a part-time option. The guidelines for admission to the program and the degree requirements are the same as for full-time PhD students. All students must have an academic advisor and an approved plan of study.
Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The program will require a minimum of 75 semester credit hours beyond the baccalaureate degree. These credits must include at least 30 semester credit hours of graduate level courses beyond the baccalaureate level in the major concentration. The core requirements for the PhD degree in Telecommunications Engineering are the same as the ones for the MS in Telecommunications Engineering. All PhD students must demonstrate competence in the master's level core courses in their research area. However, a student's supervising committee may impose course requirements that are necessary and appropriate for the student's research program. It is expected that MS degree students planning to enter the proposed doctoral program will take most of the courses as part of their MS degree requirements. All students must have an academic advisor and an approved plan of study.

Also required are:

• A qualifying examination (QE), as approved by the TE graduate committee, demonstrating competence in the PhD candidate's research area. A student entering the PhD program with a MSTE must pass this exam within 3 long semesters, and a student entering without an MSTE must pass this exam within 4 long semesters. A student has at most two attempts at this qualifying exam. The exam will be given during the fall and spring semesters.
• A comprehensive exam consisting of: a written dissertation proposal, a public seminar, and a private oral examination conducted by the PhD candidate's supervising committee.
• Completion of a major research project culminating in a dissertation demonstrating an original contribution to scientific knowledge and engineering practice. The dissertation will be defended publicly. The rules for this defense are specified by the Office of the Dean of Graduate Studies. Neither a foreign language nor a minor is required for the PhD. However, the student's supervisory committee may impose these or other requirements that it feels are necessary and appropriate to the student's degree program.

Dissertation

A dissertation is required and must be approved by the graduate program. A student must arrange for a dissertation advisor willing to guide this dissertation. The student must have a dissertation supervising committee that consists of no less than four members. The dissertation may be in telecommunication engineering exclusively or it may involve considerable work in an area of application.

Areas of Research

The principal concentration areas for the Telecommunications Engineering graduate program are:

• Core and wireless networks
• Communications and signal processing
• Network design and protocols
• Embedded and reconfigurable systems
• Optical and photonic devices, materials and systems
• Fault-tolerant data networks
Doctoral level research opportunities include: VLSI design, reconfigurable systems, system architecture, fault-tolerant computing, digital signal processing, digital communications, modulation and coding, electromagnetic-wave propagation, fiber and integrated optics, lasers and optoelectronic devices, optical transmission systems, optical networks, wireless communications, mobile IP, wireless multimedia, DWDM networks, QoS assurance protocols, network design and optimization, ad-hoc and PCS wireless networks, network security and high speed transmission protocols.

Interdisciplinary Opportunities

In keeping with the established tradition of research at UT Dallas, the Telecommunications Engineering Program encourages students to interact with researchers in other strong programs, including computer science, electrical engineering, computer engineering, and business management.
Erik Jonsson School of Engineering & Computer Science

Combination of Engineering and Management Graduate Degrees

Today's graduates aspiring to assume managerial and leadership positions in high tech firms and research institutions must be knowledgeable in both the engineering and managerial dimensions of the position. In recognition of this growing reality, UT Dallas offers a blend of courses allowing students to earn a combination of master's level degrees in both engineering and management. Specifically, graduates of this program will qualify to earn an MSEE degree in combination with an MBA or a degree in Management.

Faculty
The combination of master's level degrees in both engineering and management are jointly administered by the faculty members in the Department of Electrical Engineering in the Erik Jonsson School of Engineering and Computer Science and the Naveen Jindal School of Management.

Objectives
The program of studies leading to the award of an MSEE degree by the Erik Jonsson School of Engineering and Computer Science in combination with one of the following master's degrees, MBA or MS, offered by the Naveen Jindal School of Management, provides intensive preparation for engineers who seek knowledge and skills necessary to manage a technology firm. This program emphasizes both Electrical Engineering and Engineering Management, preparing students for a career in management and for holding leadership positions in engineering companies and research institutions. The program of studies is ideal for students interested in managing new technologies, from conceptualization and development to introduction and production.

Admission Requirements
The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/now/graduate/admission). Student pursuing the MSEE degree in combination with a master's degree in management must meet the admission requirements for both graduate programs. The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/now/graduate/policies/policy). For this program, the Jindal School of Management will accept a competitive GRE performance in lieu of the GMAT.

Combination of MSEE and MBA graduate degrees
68 semester credit hours minimum
The combination of MSEE and MBA degrees can be earned by completing a minimum of 68 graduate semester credit hours beyond prerequisite courses. This includes a minimum of 24 semester credit hours of approved electrical engineering (EE) courses in combination with a minimum of 44 semester credit hours of approved management courses.
Students enrolled in this combination of MSEE and MBA degree programs are permitted to:

- utilize a maximum of 9 semester credit hours from the approved list of management courses together with 12 semester credit hours of approved elective EE courses to satisfy the required 21 semester credit hours of elective courses listed in the MSEE degree requirements, and
- utilize a maximum of 9 semester credit hours from the approved list of EE courses together with 15 semester credit hours of approved elective MBA courses to satisfy the 24 semester credit hours of elective courses listed in the MBA degree requirements.

Students are required to meet all other core and elective requirements for the MSEE and MBA degrees to obtain the combination of the MSEE with MBA graduate degrees.

Combination of MSEE with MS graduate degrees

51 minimum semester credit hours

The combination of MSEE and MS degrees can be earned by completing a minimum of 51 semester credit hours beyond prerequisites. This includes a minimum of 24 semester credit hours of approved electrical engineering courses in combination with a minimum of 27 semester credit hours of approved management courses for each of these management degrees.

Students enrolled in a combination of the MSEE and MS degree programs are permitted to:

- utilize a maximum of 9 semester credit hours from the approved list of management courses together with 12 semester credit hours of approved elective EE courses to satisfy the required 21 semester credit hours of elective courses listed in the MSEE degree requirements, and
- utilize a maximum of 9 semester credit hours from the approved list of EE courses in satisfying elective course requirements for the MS degree requirements here.

Students are required to meet all other core and elective requirements for the MSEE and MS degrees to obtain the combination of MSEE with MS graduate degrees.

All students must have a graduate advisor in the Department of Electrical Engineering in the Erik Jonsson School of Engineering and Computer Science and a graduate advisor in the Naveen Jindal School of Management who will advise on respective programs and approve a degree plan. The advising office in each school will provide a detailed listing of approved courses. Courses taken without advisor approval may not count toward the required semester credit hours. No degree will be awarded until the completion of all requirements, including the requirement for the 68 or 51 semester credit hours for the MSEE/MBA or MSEE/MS or combinations respectively.

If a student chooses at a later time to pursue only one of the two degree programs, the student MUST again seek admission into the degree program of the student’s choice and satisfy the requirements of that degree program. Prior coursework relevant to the specific degree program will be transferred, provided the course requirements have not changed.
Erik Jonsson School of Engineering and Computer Science

Doctor of Philosophy in Geospatial Information Sciences Program

75 semester credit hours minimum beyond the baccalaureate degree

Faculty

Professors: Carlos L. V. Aiken, Brian J. L. Berry, Denis J. Dean, John F. Ferguson, Daniel A. Griffith, James Murdoch, Hsing-Mean (Edwin) Sha, Robert J. Stern, Weili Wu

Associate Professors: Thomas H. Brikowski, Dohyeong Kim, Fang Qiu, Michael Tiefelsdorf

Assistant Professors: Yongwan Chun

Visiting Assistant Professor: Anthony Cummings

Senior Lecturers: Bryan Chastain, Irina Vakulenko

Powerful technologies have emerged in recent years to collect, store, manage, analyze, and communicate information regarding the features of the Earth's surface and to combine these with other types of environmental, social, and economic information. These technologies, which include geographic information systems (GIS), the global positioning system (GPS), and remote sensing, are used in many ways, including the production of digital maps in vehicles, the management and maintenance of city infrastructure, agriculture and forestry, the policing of communities, and the conduct of modern warfare. The PhD in Geospatial Information Sciences aims to develop individuals capable of advancing this field by developing new knowledge or capabilities relevant to it.

The degree program is jointly offered by the School of Economic, Political and Policy Sciences, the School of Natural Sciences and Mathematics (specifically the Department of Geosciences) and the Erik Jonsson School of Engineering and Computer Science. This unique structure reflects geospatial information science's origins as the confluence of multiple disciplines including geography, computer science, engineering, geology, and various social, policy and applied sciences. It is anticipated that many students will enter the program with a bachelor's or master's degree (and/or work experience) in an application area (such as public administration, geology, or economics) or in a technical specialization (such as engineering, computer science, or statistics). These students may choose to pursue research projects that advance existing geospatial information sciences practices within that application area. Alternatively, students may opt to pursue research that expands the technological or theoretical base of all the geospatial information sciences.

Mission and Objectives

The mission of the Doctor of Philosophy in Geographic Information Sciences program is to cultivate innovative researchers capable of advancing the frontiers of knowledge in the geospatial information sciences through improved theories, new technologies, innovative methodologies, sophisticated quantitative analyses, and integrative applications. Specifically, program graduates will:
• Demonstrate their knowledge of the fundamental theories and concepts underlying the geospatial sciences.
• Master the advanced methodologies and/or quantitative analyses used in at least one of three geospatial specialization areas: (a) computing and information management, (b) spatial analysis and modeling, or (c) remote sensing and satellite technologies.
• Produce innovative research that advances theory or methodology in the geospatial sciences.
• Participate at academic conferences, publish in peer-reviewed journals and find employment in research departments of public and private organizations and in major academic institutions.

Facilities

Students have access to state-of-the-art GIS computing facilities housed in the School of Economic, Political and Policy Sciences and at the NASA Center for Excellence in Remote Sensing in the Department of Geosciences. The University's extensive instructional computing facilities, including those in the Erik Jonsson School of Engineering and Computer Science, are also available. Facilities are open extended hours including evenings and weekends. Enrollment in hands-on courses is controlled to ensure that a computer workstation is available for every student. All major industry-standard GIS and remote sensing software is available. The University is a member of the University Consortium for Geographic Information Science (UCGIS).

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The PhD program in Geospatial Information Sciences seeks applications from students with a baccalaureate, Master of Arts, Master of Science or professional masters-level degree in any field relevant to geospatial information science including, but not limited to, computer science, economics, engineering, geography, geology, management information systems, marketing, natural resource management, public affairs and public administration, statistics, and urban and regional planning.

Applicants will be judged and evaluated by the existing admission standards as set forth by the University in its Graduate Catalog and by the standards set forth here by the Geospatial Information Sciences program. A bachelor's degree from an accredited institution or its equivalent and fluency in written and spoken English are required. A grade average of at least 3.25 in undergraduate and graduate course work, and a combined verbal and quantitative score of 300 on the GRE are desirable. An analytical writing score of at least 4.5 in the GRE is considered desirable.

Applicants must submit transcripts from all higher education institutions attended, three letters of recommendation, and an essay outlining their background, education, and academic objectives as they specifically relate to a PhD in Geospatial Information Sciences.

Prerequisites

The following prerequisites/corequisites will also be required for admission to the PhD program: (i) college mathematics through calculus, (ii) competence in at least one modern programming language equivalent to GISC 6317, GIS Programming Fundamentals and (iii) at least one course in inferential statistics through to regression analysis equivalent to GISC 6301 GIS Data Analysis Fundamentals, EPPS 7313 Descriptive and Inferential Statistics, or GEOS 5306 Data Analysis for Geoscientists. Graduate courses taken at UT Dallas to meet these prerequisites may be counted as electives toward the 75 semester credit hours required of students entering the PhD program directly from a BA or BS degree, but they shall not be considered substitutes for any other specified course.

Advising

Trang, Vy 10/22/13 12:42 PM

Trang, Vy 10/22/13 12:42 PM

Trang, Vy 10/22/13 12:42 PM

Trang, Vy 10/22/13 12:42 PM
Because of the cross-disciplinary nature of this doctoral program, to ensure adequate preparation and appropriate course sequencing, every doctoral student is required to consult with the student's designated advisor and/or the GIS Doctoral Program Director prior to registration in every semester. Students generally will not have a faculty advisor when they first enter the PhD program, but every student is required to select (with consent of the potential advisor) an advisor from the advising faculty by the end of his/her first academic year.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures](catalog.utdallas.edu/2013/graduate/policies/policy) page.

To receive the PhD in Geospatial Information Sciences, students must complete the Geospatial Science Core (15 semester credit hours) to achieve a mastery of appropriate Geospatial Information Science technologies and theory, have Prescribed Specialization Electives (15 semester credit hours), have a Specific Application area or Technical field (12 semester credit hours), evidence research skills through successful completion and defense of a PhD dissertation, and take related electives as necessary for a total of 75 semester credit hours. A maximum of 6 semester credit hours can be taken at the 5000 level and the rest of them should be at the 6000 level or above. In addition, students must satisfy a set of exams and qualifiers. Other courses may be substituted for those listed below with the written permission in advance of the Director of the GIS Doctoral program.

Geospatial Science Core: 15 semester credit hours

Students must earn a minimum grade point average (GPA) of 3.0 across the following five courses:

- **GISC 6381 (GEOS 6381)** Geographic Information Systems Fundamentals
- **GISC 6325 (GEOS 5325)** Remote Sensing Fundamentals
- **GISC 6384 (GEOS 6384)** Advanced Geographic Information Systems
- **GISC 6385 (GEOS 6385)** GIS Theories, Models and Issues
- **GISC 7310** Advanced GIS Data Analysis

Prescribed Specialization Electives: 15 semester credit hours

Students may select any five courses from the following:

1. **Geospatial Computing and Information Management**
 - **CS 6359** Object-Oriented Analysis and Design
 - **CS 6360** Database Design
 - **CS 6364** Artificial Intelligence
 - **CS 6366** Computer Graphics
 - **CS 6375** Machine Learning
 - **CS 6384** Computer Vision
 - **GISC 6317 GIS Programming Fundamentals**
 - **GISC 6388 Advanced GIS Programming**
 - **GISC 7362** Internet Mapping and Information Processing
 - **MIS 6320 Database Foundations**
 - **MIS 6324 Business Intelligence Software and Techniques**
 - **MIS 6360 Agile Software Project Management**
 - **MIS 6326 Data Management**
II. Spatial Analysis and Modeling

ECON 6309 Econometrics I
ECON 7309 Econometrics II
EPPS 7318 Structural Equation and Multilevel (Hierarchical) Modeling
EPPS 7370 Time Series Analysis
ECON 6316 Spatial Econometrics
GISC 7364 Demographic and Epidemiological Analysis and Modeling
GEOS 5306 Data Analysis for Geoscientists
GISC 6311 Statistics for Geospatial Science
GISC 6331 (CRIM 6322) GIS Applications in Criminology
GISC 6334 (PPPE 6334) Workshop in Environmental and Health GIS/Policy
GISC 6382 (GEOS 6383) Applied Geographic Information Systems
GISC 7360 GIS Pattern Analysis
GISC 7361 Spatial Statistics
EPPS 7313 Descriptive and Inferential Statistics
EPPS 7316 Regression and Multivariate Analysis

III. Remote Sensing and Satellite Technologies

GISC 5322 (GEOS 5322) GPS (Global Positioning System) Surveying Techniques
GISC 5324 (GEOS 5324) 3D Data Capture and Ground Lidar
GISC 5330 (GEOS 5330) Geospatial Applications in Earth Science
GISC 5395 Satellite Geophysics and Applications
GISC 7365 (GEOS.5326) Advanced Remote Sensing
GISC 7366 (GEOS 5329) Applied Remote Sensing
EESC 6360 Digital Signal Processing I
EESC 6363 Digital Image Processing

IV. Customized Geospatial Specialization

Identified by the student with approval in advance by the Director of the GIS Doctoral Program.

Application Area or Technical Field (12 semester credit hours)

Twelve semester credit hours of specialized course work in an application area or technical field relevant to GIScience. Normally, these will derive from the student's Master's degree. These semester credit hours may be transferred from another institution, or taken at UT Dallas in an existing master's program area and may be applied toward a master's degree in that area.

Application area examples: planning, public affairs, criminal justice, health and epidemiology, geoscience, forestry, hydrology, marketing, real estate, economics, civil engineering, etc.

Technical field examples: statistics, computer science, software engineering, management information systems, image analysis, operations research/location science, instrumentation.

Research and Dissertation (variable semester credit hours)
All students must complete the following classes as part of the research and dissertation requirement:

- **GISC 7387 GIS Research Design**

In addition, students must complete sufficient additional research and dissertation semester credit hours to bring the total number of semester credit hours they have earned within the UT Dallas doctoral program (or transferred into the UT Dallas doctoral program) to 75 semester credit hours, the minimum required to earn a doctoral degree. Additional research and dissertation semester credit hours above and beyond those required to reach the 75 semester credit hours minimum may be required at the discretion of the student's PhD advisor. Additional research and dissertation semester credit hours can be earned through any of the following classes:

- **GISC 6387 Geospatial Sciences Workshop**
- **GISC 6389 Geospatial Information Sciences Master’s Research**
- **EPPS 6310 Research Design I**
- **EPPS 6342 Research Design II**
- **GISC 8320 Geospatial Sciences Seminar**
- **GISC 8V29 Research in GIS**
- **GISC 8V99 or GEOS 8399 or CS 8V99 Dissertation**

Other Related Electives (0 to 24 semester credit hours)

Students may choose up to 24 semester credit hours in related electives (from CS, GEOS, GISC, etc.) with consent of their advisor or the GIS Doctoral Program Director.

Exams and Qualifiers

Qualifying Examination

The GISC PhD Qualifier Examination is administered in May of a full-time doctoral student's first year, following the completion of the first academic year (i.e. fall and spring semester) by the student. This exam comprises of four parts, each based upon one of the following core courses:

- **GISC 6325 Remote Sensing Fundamentals**
- **GISC 6384 Advanced Geographic Information Systems**
- **GISC 6385 GIS Theories, Models and Issues**
- **GISC 7310 Advanced GIS Data Analysis**

A student must pass three of the four parts to pass the exam. If a student fails his/her exam, s/he may retake only the parts they failed in the subsequent August. If s/he does not pass a cumulative total of three parts after the August exam date, then s/he fails the Qualifier Examination, and is withdrawn from the GIS doctoral program.

Defense of Proposal

After completing the GIS Research Design class, doctoral students must successfully present and defend a dissertation proposal through an oral examination, according to uniform guidelines established by the GIS program.

Grade Point Qualifier
Doctoral students must have GPAs of at least 3.25, and preferably 3.5, in courses taken at UT Dallas at the time they register for GISC 7387 GIS Research, Design, or they must petition the GIS faculty for an exemption for extenuating circumstances beyond the student's control.

Defense of Dissertation

A dissertation must be prepared and defended successfully following the procedures established by the Dean of Graduate Studies.

Note: Individuals experienced with GIS may have the introductory course (GISC 6381) waived at the discretion of the Geospatial Information Sciences Program Head, but must take an additional course from the prescribed specialization elective courses listed above.
Erik Jonsson School of Engineering & Computer Science

Industrial Practice Programs

The Industrial Practice Programs (IP Programs or IPP) of the Erik Jonsson School of Engineering and Computer Science include the School's Cooperative Education, Internship, and Curricular Practical Training programs (ecs.utdallas.edu/student-services/ipp/index.html). These programs combine classroom learning with paid work experience. Qualified students are referred to participating employers seeking candidates for career-related, pre-professional, work assignments. The programs enhance a student's education and career preparation by integrating classroom theory with on-the-job performance; providing an understanding of work environments and professional requirements; testing career and professional goals; developing confidence, maturity, and skills in human relations; and establishing professional contacts and interests.

Students enroll in Engineering Computer Science Co-op (ECSC) courses during semesters when working on an IPP assignment. Students are expected to follow the rules of the IP Programs when working in a position titled by the employer as an Internship or a Cooperative Education assignment.

For more information about the IP Programs, call 972-883-4363. The IP Programs are located in ECSS 2.502.

Engineering and Computer Science Co-Op Courses

ECSC 5177 CS IPP Assignment
ECSC 5179 ENG IPP Assignment
Erik Jonsson School of Engineering & Computer Science

Certificate Program

The volume and sophistication of cyber security threats point to a critical demand for research and education in the general area of cyber security, which is highly interdisciplinary by nature. Elements form computer science, systems engineering, and information technology management form the basis for systems-related technologies to secure typical vulnerabilities. In addressing this growing critical demand, the Certificate in Cyber Security Systems (CCSS) offered at UT Dallas provides a joint program between the ECS (engineering and computer science) and JSOM (internal audit and information technology management), with a natural home in the Department of Systems Engineering (SYSE).

Graduate Certificate in Cyber Security Systems: 12 semester credit hours

The CCSS requires 12 semester credit hours, and may be combined with other courses and/or certificates toward an MS degree, such as Computer Science, Information Technology and Management, or Systems Engineering and Management, provided that provided that the student has gained admission into that particular program.

To earn the certificate, students in the program must take four courses with an overall GPA of 3.0.

Required Course (3 semester credit hours)

MIS 6311 Cyber Security Fundamentals

Track #1: Computer Science (CS) Emphasis (9 semester credit hours)

Students can choose three courses from the following:

- CS 6324 Information Security
- CS 6349 Network Security
- CS 6348 Data and Applications Security

Or a course from a list of existing cyber security systems Computer Science...
courses (offered periodically and must be approved)

Track #2: Internal Audit, Information Management (IA/IM) Emphasis (9 semester credit hours)

Students must take MIS 6330 and ACCT 6336, and choose between ACCT 6380 or MIS 6363:

- MIS 6330 Information Technology Security
- ACCT 6336 Information Technology Audit and Risk Management
- ACCT 6380 Internal Audit or MIS 6363 Cloud Computing

Track #3: Systems Engineering and Management Emphasis (9 semester credit hours)

Students must take SYSM 6301, and choose between CS 6324 or MIS 6330:

- SYSM 6301 Systems Engineering, Architecture and Design
- CS 6324 Information Security or MIS 6330 Information Technology Security

Students can choose at least one course from each of the CS and IA/IM tracks from the following:

- CS 6348 Data and Applications Security (CS track)
- CS 6349 Network Security (CS track)
- MIS 6363 Cloud Computing (CS track)
- ACCT 6336 Information Technology Audit and Risk Management (IA/IM track)
- ACCT 6380 Internal Audit (IA/IM track)
School of Interdisciplinary Studies (GENS)
2014-15 Graduate Catalog – Degree Programs
School of Interdisciplinary Studies

The Graduate Program in Interdisciplinary Studies, leading to the degree of Master of Arts in Interdisciplinary Studies, is designed for students who wish to continue their intellectual development within an interdisciplinary framework and for those with specialized training who wish to broaden their education. The objective of the program is to provide students the opportunity to develop an approach to topics and problems from the perspectives of more than one discipline and to develop a better understanding of many of the social, cultural, and scientific forces which affect the individual and society.

Teacher Development Center

The University offers opportunities in selected fields for teachers and other school personnel to earn initial teaching certification and certificate endorsements.

Students wishing to pursue an advanced degree should consider programs leading to the Master of Arts in Teaching (MAT) degree in Science Education, or Mathematics Education. Students enrolling for one of these degrees should consult the appropriate subject area in this catalog. Students pursuing coursework leading to additional certificate endorsement or initial certification should seek counsel in the Teacher Development Center early in their program of study. Contact 972-883-2730 or go to www.utdallas.edu/teach.

Degrees Offered

• Master of Arts in Interdisciplinary Studies (36 semester credit hours minimum)

Faculty

All faculty in the university are eligible to participate.

Professors: George W. Fair, Karen J. Prager, Lawrence J. Redlinger

Associate Professor: Erin A. Smith

Senior Lecturers: Kathleen Byrnes, Susan P. Chizeck, Dachang Cong, Jillian Duquaine-Watson, Jonathan Frome, Lynn W. Mabe, Elizabeth M. Salter, Tonja Wissinger

Objectives

The Graduate Program in Interdisciplinary Studies, leading to the degree of Master of Arts in Interdisciplinary Studies, is designed for students who wish to continue their intellectual development within an interdisciplinary framework and for those with specialized training who wish to broaden their education. The objective of the program is to provide students the opportunity to develop an approach to topics and problems from the perspectives of more than one discipline and to develop a better understanding of many of the social, cultural, and scientific forces which affect the individual and society.
Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

For admission to the program, the student must have a bachelor's degree from an accredited institution, with a grade average of B or better. A verbal plus quantitative GRE score of 295 (or equivalent examination) is advisable based on our experience with student success in the program. All students not meeting the above criteria are considered on an individual basis. A student who has a deficit in either GRE score or grade point average may be conditionally admitted to the program.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

For the degree of Master of Arts in Interdisciplinary Studies, 36 semester credit hours of course work must be completed. These semester credit hours are distributed as follows:

Interdisciplinary Seminars (3 semester credit hours)

In the first year the student must complete an interdisciplinary seminar, MAIS 5301, MAIS 5315, MAIS 5321, MAIS 5333, MAIS 5335 or MAIS 5336. The seminars are designed to introduce students to graduate work and to give them experience in interdisciplinary approaches to subjects and problems.

Core Requirements (9 semester credit hours)

From the graduate courses offered in this catalog, the student selects, in consultation with the advisor, at least three semester credit hours each from at least two of the following areas: Humanities, which includes Aesthetic Studies, History of Ideas, and Studies in Literature; Natural Sciences and Mathematics, which includes courses in Biology, Chemistry, Geosciences, Mathematical Sciences, Physics, and selected courses in Science Education; Economic, Political and Policy Sciences, which includes courses in Public Affairs, Criminology, Economics, Geospatial Science, Public Policy and Political Economy, Political Science, and Sociology; Management, which includes Management and International Management Studies, Accounting, Information Technology, Innovation and Entrepreneurship, Management and Administrative Sciences, Finance and Healthcare Management.

Concentration (12 semester credit hours)

From the graduate courses offered in this catalog, the student selects, in consultation with the advisor, at least 12 additional semester credit hours of coursework in one or two of the general areas listed above.

Electives (6 semester credit hours)
From the graduate courses offered in this catalog, the student selects, in consultation with the advisor, at least six semester credit hours of courses.

Capstone Seminar and Research Project (6 semester credit hours)

The seminar and project are the culmination of the student’s program. The seminar includes readings in, and discussion of, interdisciplinary theory and preparation for the research project. Each student will develop a research topic which lends itself to an interdisciplinary approach. The topic should be sufficiently broad to draw upon knowledge and techniques gained throughout the program. To complete the project, students should synthesize and integrate information from various sources, utilizing different methodologies, and thus draw conclusions which present a new perspective on the topic as a result of this interdisciplinary approach.

Graduate Program in Interdisciplinary Studies

At the beginning of the degree program each student participates in a specially designed interdisciplinary seminar on topics related to the development of human beings and their world. At the end of the program, each student participates in a capstone seminar and completes an interdisciplinary research project. The remainder of the program is individually designed by the student, in consultation with the advisor, to meet particular personal interests and professional needs.
School of Interdisciplinary Studies

Post-Baccalaureate Program for Teacher Certification

Faculty

Professor: George W. Fair, Dean – Interdisciplinary Studies

Teacher Development Center: Persons who already have baccalaureate degrees may seek teacher certification in all fields. They should consult with an advisor in the Teacher Development Center to develop a certification plan after they have been admitted to the university through the School of Interdisciplinary Studies as a post-baccalaureate student. Post-baccalaureate students must meet the 24 semester credit hours requirement in the appropriate teaching field. A certification plan will be developed based on an evaluation of the student's transcript. Post-baccalaureate students must demonstrate computer literacy, effective public speaking, and complete 12 semester credit hours of English. All students must fulfill the UT Dallas requirements for student teaching or supervised internship.

See the Teacher Development Center website at http://www.utdallas.edu/teach for the most current information and course requirements.
Naveen Jindal School of Management

The Naveen Jindal School of Management was established in 1975 as the academic unit responsible for (1) the Master of Science (MS) degree in Management and Administrative Sciences; (2) the Master of Science (MS) degree in International Management Studies; (3) the Doctor of Philosophy (PhD) degrees in Management Science and in International Management Studies; and (4) an upper-division program leading to a Bachelor of Science (BS) degree in Business Administration.

The School added a Master of Business Administration (MBA) degree in 1983, and in 1992, in conjunction with UT Dallas’ expansion to include a full undergraduate program, lower-division instruction was initiated. The Master of Science in Accounting started in 1994. In 1996, the School added the Cohort MBA, a full-time MBA program in which students take all of their courses together in a fixed sequence.

In 1997, the School formed a strategic alliance with The University of Texas Southwestern Medical Center at Dallas to offer a Master of Science in Medical Management for medical doctors. In 1999, the Professional MBA Online program was added in which students take all core and elective courses online (distance learning). In 2007, the program was split into two parts and renamed the Master of Science in Healthcare Management Executive Track in 2007 (for medical doctors) and the Master of Science in Healthcare Management Professional Track for all other healthcare professionals.

To help bridge the gap between business and information technology, the School established the Master of Science in Information Technology and Management in 2003. In Fall 2008, the School added two new masters’ degree programs, the MS in Finance and the MS in Supply Chain Management. The School then added the MS in Innovation and Entrepreneurship, and the MS in Systems Engineering and Management, a joint degree with the Erik Jonsson School of Engineering and Computer Science, which both opened in 2010. The last degree to be added was the MS in Marketing in 2011.

Since its inception, the Naveen Jindal School of Management has offered a range of degree options and program formats designed to serve the diverse needs of a student population primarily composed of working adults, but also including traditional full-time graduate students and, more recently, residential undergraduate students.

The graduate programs in the Naveen Jindal School of Management stress the theory and use of applied sciences for successful management and administration of private and public institutions. Courses provide an opportunity to gain integrated and detailed knowledge of the functional areas of management as well as analytical tools for effective appraisal and decision-making. Seminars and research on specific projects are designed to develop creativity and to stimulate the student toward an integrated application of the acquired knowledge.

The Naveen Jindal School of Management’s mission is to meet the challenges of a rapidly changing, technology-driven, global society by partnering with the business community to:

- deliver high quality management education to a diverse group of undergraduate and graduate students and practicing executives;
- develop and continuously improve programs advancing management education and practice; and,
- conduct world-class research enhancing cutting-edge management knowledge.
Degrees Offered

- Master of Science in Accounting (36 semester credit hours minimum)
- Master of Business Administration (53 semester credit hours minimum)
- Master of Science in Finance (36 semester credit hours minimum)
- Master of Science in Healthcare Management - Executive Track (36 semester credit hours minimum)
- Master of Science in Healthcare Management - Professional Track (36 semester credit hours minimum)
- Master of Science in Information Technology and Management (36 semester credit hours minimum)
- Master of Science in Innovation and Entrepreneurship (36 semester credit hours minimum)
- Master of Science in International Management Studies (36 semester credit hours minimum)
- Master of Science in Management and Administrative Sciences (36 semester credit hours minimum)
- Master of Science in Marketing (36 semester credit hours minimum)
- Master of Science in Supply Chain Management (36 semester credit hours minimum)
- Master of Science in Systems Engineering and Management (36 semester credit hours minimum)
- Doctor of Philosophy in International Management Studies (75 semester credit hours minimum beyond the baccalaureate degree)
- Doctor of Philosophy in Management Science (75 semester credit hours minimum beyond the baccalaureate degree)

Certificates Offered

- Business Intelligence and Data Mining (Certificate)
- Corporate Innovation (Certificate)
- Engineering Management (Certificate)
- Enterprise Systems (Certificate)
- Healthcare Information Technology (Certificate)
- Lean 6 Sigma Green Belt in Healthcare Management (Certificate)
- Lean 6 Sigma Yellow Belt in Healthcare Management (Certificate)
- New Venture Entrepreneurship (Certificate)
- Product Lifecycle/Supply Chain Management (Executive Certificate)
- Project Management (Executive Certificate)
- Systems Engineering (Certificate)
- Systems Management (Certificate)
- Executive and Professional Coaching (Executive Certificate)

Faculty

Professor Emeritus: Dale Osborne

Clinical Professors: John Barden, Abhijit Biswas, Larry Chasteen, David Cordell, Tevfik Dalgic, Michael Deegan, Howard Dover, Forney Fleming, Pamela Foster Brady, Randall S. Guttery, Charles Hazzard, Robert Hicks, Marilyn Kaplan, Peter Lewin, John F. McCracken, Dennis McCuistion, Radha Mookerjee, Joseph Picken, Divakar Rajamani, Rajiv Shah, Kenneth Smith, Habte Woldu, Fang Wu, Laurie L. Ziegler

Associate Professors: Nina Baranchuk, Norris Bruce, Huseyin Cavusoglu, Zhonglan Dai, Jianjun Geng, Umit G. Gurun, J. Richard Harrison, Ernan Haruyu, Sunya N. Janakiraman, Robert L. Kieschnick Jr., Nanda Kumar, Seung-Hyun Lee, Livia Markóczy, Syam Menon, Alp Muharremoglu, Ramachandran (Ram) Natrajian, Valery Polkownikchenko, Ashutosh Prasad, Orlando C. Richard, Young U. Ryu, Jane Salk, David J. Springate, Jun Xia, Ying Xie, Yexiao Xu, Alejandro Zentner, Yuan Zhang, Feng Zhao, Zhiqiang (Eric) Zheng

Clinical Associate Professors: Sonia Leach, Carolyn Reichert, Kelly Slaughter, Mark Thouin, John McClain Watson

Assistant Professors: Mehmet Ayvaci, Jianqing Chen, Emily Choi, Rebecca Files, Bernhard Ganglmair, Dorthée Honhon, Elisabeth Honka, Kyle Hyndman, Todd D. Kravit, Bin Li, Jun Li, Meng Li, Ningzong Li, Virginie Lopez-Kidwell, Arzu Ozoguz, Alessio Saretto, Harpreet Singh, Gonca P. Soysal, Upender Subramanian, Yu Wang, Malcolm Wardlaw, Kelsey D. Wei, Han (Victor) Xia, Nir Yehuda, Jun Zhang, Xiaofei Zhao, Yibin Zhou

Clinical Assistant Professors: Hans-Joachim Adler, Shawn Alborz, Moran Bluestein, Ayfer Gurun, Vance Lewis, Liping Ma, Ravi Narayan, Dawn Owens, Kannan Ramanathan, Anastasia V. Shcherbakova

Senior Lecturers: Arthur M. Agulnek, Semiramis Amirpour, Frank Anderson, Mark Anderson, Ronald Blair, Daniel Bochslr, Tiffany A. Bortz, Richard Bowen, Judd Bradbury, Monica E. Brussolo, Bobby Chang, George DeCourcy, Eugene (Gene) Deluke, Alexander Edsel, Amal El-Ashmawi, Carol Flannery, John Fowler, Mary Beth Goodrich, Maria Hansenhutt, Julie Haworth, Jennifer G. Johnson, Lynn Carl Jones, Jackie Kimzey, Kristen Lawson, Chris Linsteadt, Jensi Maier, Diane S. McNulty, Madison Pedigo, Jared Pickens, Matt Polze, James Richards, Mark Salamasick, Avanti P. Sethi, Jeanne Sluder, Steven Solcher, James Sztot, Luell (Lou) Thompson, Ami L. Troutman, Robert Wright, Kathy Zolton

Visiting Faculty: Shawn Carracher, Kyle Edgington, Usman A. Ghani, Harini Mittal

Objectives

The MS in Accounting provides a tailored educational experience that encourages (1) a globally-oriented, interdisciplinary focus, (2) a balanced conceptual and pragmatic approach, (3) development of written and oral communication skills, (4) a refinement of research and analytical skills that result in enhanced decision-making abilities, and (5) a commitment to life-long learning. Within the program, students are offered a choice of 18 graduate accounting electives. Classes are tailored towards typical career paths in areas such as corporate accounting, assurance services, taxation services and internal audit. The MS Accounting is available as on campus or as an online degree program. Upon completion of the MS in Accounting, students may be eligible to sit for the Uniform CPA Examination, provided they meet the educational requirements.
The **Master of Business Administration (MBA)** degree provides students with a broad managerial education drawing from all business disciplines. It is obtained by completing the program course requirements of 53 semester credit hours beyond the prerequisites. UT Dallas offers several distinct approaches to obtaining an MBA. These include:

- the Cohort MBA Program, a full-time program in which students are admitted as a group each fall and take their required classes together in a fixed sequence,
- the Professional MBA Flex Program for students attending school part-time, with classes largely meeting in the evening,
- the Professional MBA Evening Cohort Program in which students are admitted as a group each fall and take their required classes together in a fixed sequence,
- the Professional MBA Online with all core and elective courses available online,
- the Executive MBA program in which students must have 8-10 years of experience and are admitted as a classroom cohort each fall,
- the Global Leadership Executive MBA program in which students must have 8-10 years of experience are admitted as a hybrid cohort twice annually.

Each of these MBA programs consists of 29 semester credit hours of required core courses and 24 semester credit hours of elective coursework, which may include an optional concentration in a selected area of business study. Courses in the Professional MBA Online use audio streaming lectures supported by downloadable presentations, online text-based conferences, bulletin board and e-mail exchanges, and teleconferences.

The **MS in Finance** is designed for students either with or without previous educational background in finance. At least 36 semester credit hours of management coursework beyond prerequisite courses is required, including 18 semester credit hours of basic business core courses and 18 semester credit hours of graduate finance and/or finance-related courses. Most MS Finance students will select the **Financial Management** option, which provides a generalist approach to the degree while allowing maximum flexibility to design a program tailored to their needs. Students can also choose one of the seven concentrations: investment management, financial analysis, financial risk management, **energy risk management**, management of financial institutions, real estate finance, and financial information management.

The **MS in Healthcare Management** prepares students for roles in the leadership and management of the U.S. healthcare industry. The 36 semester credit hour program integrates a thorough grounding in advanced business management theory and practice with an understanding of the structure, operation, and financing of the US healthcare system. The curriculum is customized to accommodate the needs of two different audiences: the Professional Track for healthcare administrators and those desiring a management career in healthcare; and the Executive Track, for physicians.

The Professional Track classes are offered on a semester-long basis in the evenings, with core business classes also offered online. Admission may be in fall, spring or summer semesters. The Executive Track for physicians is delivered in a different format, consisting of nine 4-day residential classes. A different class is offered every two months and classes may be started at any time and taken in any order. The Executive curriculum is jointly taught by faculty from the UT Dallas Naveen Jindal School of Management and the University of Texas Southwestern Medical Center.

The **MS in Information Technology and Management (MS ITM)** bridges the gap between the pure information technologist and the business professional. By providing a technology intensive program
with a business focus, the program prepares graduates to apply information technology to business problems and create efficient and effective solutions. The degree requires a minimum of 36 semester credit hours, consisting of basic business courses, IT foundation courses, IT elective courses and free electives. The business core courses are designed to provide incoming students with the context to better appreciate and understand the complex issues that occur at the interface between IT and business. The IT foundation courses cover the essentials of IT knowledge that any student must possess. The IT elective courses provide in-depth knowledge of the technology and technology management issues. The MS ITM is available as on campus or as an online degree program. In addition, students may choose approved electives that maximize their individual educational and professional goals. The program also offers opportunities for students to concentrate in specific tracks such as 'Enterprise Systems,' 'Business Intelligence and Analytics,' 'Healthcare Systems,' 'IT Consulting,' and 'Information Security and Assurance' depending on their interests and goals.

The MS in Innovation and Entrepreneurship (MS IE) prepares students for successful business careers in entrepreneurial new ventures, entrepreneurial finance (venture capital/private equity), or innovation-related roles in mature organizations (product planning, product marketing, product development, etc.). This degree offers two primary program options: the Innovation within the Corporation concentration and the New Venture concentration, which includes the Startup Launch Track as a separate option. The MSIE degree complements baccalaureate or advanced degrees in management, scientific or engineering disciplines, and is valued by employers in technology-related or consumer products industries. The program provides a solid foundation in the management disciplines essential to innovation, with specific focus on the tools, techniques, and skills required to develop and lead product, service and business model innovation.

The MS in International Management Studies (MS IMS) degree program provides relevant knowledge and training in international management, which includes trade across national boundaries, management practices within multinational firms as well as international organizations. The program provides students the opportunity to learn in-depth the fundamentals of (1) functional areas of management, (2) international management practices and strategies, and (3) cultural, sociopolitical, and geographical constraints affecting international business decisions. The program also provides students with opportunity to learn about international business environments through international study trips conducted in various regions of the world. The international study courses are usually offered between semesters and vary in length from two to three weeks and are generally taken as part of an Area Studies course. Many of the courses for this degree can also be taken via distance learning.

The MS in Management and Administrative Sciences (MS MAS) degree provides students the opportunity for specialized education in a specific management discipline built upon a core of business courses. It is obtained by completing the program course requirements of 36 semester credit hours beyond all prerequisites. The program consists of 10 semester credit hours of business core courses, and the remaining semester credit hours as elective courses. Potential concentration areas for students include: accounting, enterprise systems, internal audit, corporate finance, investments, marketing, e-commerce, information systems, operations and supply chain, real estate, innovation and entrepreneurship, organizations, organizational behavior and coaching, strategy, and international topics. The classes for this degree are largely offered in the evenings or online.

The MS in Marketing program prepares students seeking higher level positions in marketing and/or pursuing a graduate program to further advance their marketing knowledge. The MS in Marketing program offers five specialized tracks: advertising and branding, digital advertising and marketing,
marketing analytics, product management, and a general track of marketing management. The program also offers an opportunity to obtain academic certifications in marketing analytics or product management.

The **MS in Supply Chain Management (MS SCM)** is the management of business activities from product development, sourcing, production and logistics to managing the resources and related capabilities the organization needs in the accomplishment of its strategic objectives. This 36 semester credit hours program explores the key issues associated with the design and management of industrial supply chains and provide students with advanced knowledge on how to identify, resolve and manage complex operational problems. The program also introduces students to current supply chain operating practices, analysis methods, technology, applications and strategy developments. Students will acquire not only the crucial knowledge of business management but also analytical decision-making skills (especially for complex systems) along with real-life experiences gained through industry projects with area companies.

The **MS in Systems Engineering and Management (MS SEM)** will focus on educating industry-sponsored corporate employees in the disciplines of Systems Engineering, Systems Management, Entrepreneurship & Intrapreneurship, Product Line Development and Management, and Strategic Business Management. Target industries for the program include: aerospace, defense and space systems; transportation systems; information and communications technology (ICT) systems; information assurance and cybersecurity systems; healthcare systems; energy, environment and infrastructure systems; complex biological systems; and macro-economic and financial systems.

Dual Degree, Executive MS SEM/GLEMBA: The Naveen Jindal School of Management and the Erik Jonsson School of Engineering and Computer Science offer a Joint Executive MS SEM and Global Leadership Executive MBA (GLEMBA) program because today’s experienced graduate students - seasoned by three or more years as workforce professionals - often seek a more comprehensive education in technical skills as well as broad-based business-leadership capabilities for the global economy. The joint-degree option provides both deep knowledge in SEM, as well as a broad knowledge of all areas of management with an enhanced worldwide perspective of business leadership for increasing productivity, efficiency and profitability.

The joint-degree program allows students to earn a combination of an MS SEM degree and a Global Leadership Executive MBA degree together. Separately, each degree would require 36 (MS) + 53 (MBA) semester credit hours, or 89 semester credit hours total. However, in the joint program students can earn both degrees with a smaller total of 63 to 65 semester credit hours.

The **MD/MBA program** is a joint effort of the school of medicine at UT Southwestern Medical Center and the Naveen Jindal School of Management. Students usually complete the first three years of the medical curriculum (all basic science courses and third-year clinical rotations) and then take a one-year leave of absence from the medical school to complete the business education. Students then return to the medical school for completion of the medial curriculum in the required fourth-year clinical clerkships and electives. At the end of the five years, the medical degree will be awarded by UT Southwestern and the MBA by UT Dallas.

The Naveen Jindal School of Management also offers **Executive Education** degree programs. Executive Education MBA programs are offered for students with more than five years of experience. These include (1) the Executive MBA Program with classes meeting for three to four days (Friday and two
Both doctoral programs offer preparation for academic and/or research positions in universities, with services associated with these programs. Each of these programs requires 53 semester credit hours to graduate.

Leaders in high tech firms often need expertise in both engineering and management. Through a unique combined master’s level degree program, graduate students may earn an MSEE degree from the Jonsson School of Engineering and Computer Science in combination with an MBA, or an MS degree from the Naveen Jindal School of Management. This combined degree program is ideal for students interested in managing new technologies, from conceptualization and development to introduction and production. Students must meet the admission requirements in both schools and have an advisor in both schools. The combination of MSEE and MBA degrees can be earned by completing a minimum of 68 graduate semester credit hours, compared to 86 semester credit hours if completing the two degrees separately. The combination of MSEE and MS degrees can be earned by completing a minimum of 51 semester credit hours beyond prerequisites, compared to 69 semester credit hours if completing the two degrees separately.

The PhD in International Management Studies provides the opportunity to conduct research in the analysis of international business, emphasizing a strong foundation in theory and research in organizations and strategy. International Management Studies focuses on the analysis of organizations, industries and markets as interdependent systems, stressing structural, strategic, environmental and international considerations and their implications for management. Topics such as corporate strategy, international business, multinational management, organization design and change, technological and industrial development, and managerial decision-making are examined using management theories and empirical methods.

The PhD in Management Science provides the opportunity to conduct research in a functional business area to contribute to the knowledge in that field with respect to its intellectual content or professional practice. The Naveen Jindal School of Management defines Management Science as the use of economics, behavioral science, mathematics and statistics to conduct rigorous scientific research. It encompasses both theory and empirical analysis. Management Science embraces areas of specialization like marketing, finance, accounting, organizational behavior, management strategy and public policy, and decision sciences. It has no clear boundaries among the various areas, places emphasis on science, and is not constrained by the culture of individual disciplines. It is the underlying orientation of science and integration that distinguishes Management Science from other philosophies and approaches to the study of management.

Both doctoral programs offer preparation for academic and/or research positions in universities, with organizations such as the World Bank, and in industry, both in the United States and in other countries.

Facilities.
The Naveen Jindal School of Management’s 200,000 square foot (approximate) building opened in the Fall of 2003. The three wings, arranged around a courtyard, provide classrooms, meeting rooms, office space and state-of-the-art wireless access to the internet throughout the facility.

Admission Requirements to Master's Programs

Please visit the university’s general admission criteria for the graduate programs. The following factors are considered in arriving at an admission decision:

- A bachelor’s degree from an institution in the United States, or its equivalent, as determined by the Dean of Graduate Studies,
- International applicants must submit a TOEFL score of at least 80 on the internet based test that is less than two years old,
- Personal essay outlining academic interests and goals,
- Three letters of recommendation,
- Resume, and
- Competitive GMAT (GRE also accepted) performance based on a score that is less than five years old.

Applications are due in the Admissions Office 90 days prior to registration for international students and 45 days prior to registration for all other students. Students are admitted three times per year and can start their studies during any one of the three semesters. Students may apply for the Dean’s Excellence Scholarship, which provides financial support in the form of scholarships.

Admission Requirements to Full-time (Cohort) MBA program: In addition to the factors required for admission to the evening programs, admission to the Full-time, Cohort MBA program requires the capability to perform well in a fast-paced, team-oriented curriculum. Applicants are admitted based on a composite evaluation of the submitted measures of performance which include the GMAT, GPA, recommendation letters, and work experience, as well as initiative and interest suggested through essays. The Admission Committee seeks academic and professional excellence. Applications completed by March 1 will be considered for financial support. International applications are due May 1 and domestic applications by July 1. Students are admitted each fall.

Admission Requirements to Executive MBA programs: Admissions are based on academic transcripts, a personal essay, letters of recommendation, and knowledge of elementary calculus and basic financial accounting. Also, approximately 10 years of business experience with relevant managerial experience. The GMAT is encouraged, but not required.

Admission Requirements to Master of Science in Healthcare Management for Physicians and the Healthcare Management Executive MBA for Physicians (both Executive Track) requires an MD or DO degree from a school of medicine or school of osteopathy, a copy of a current unrestricted license to practice medicine in the U.S. and a medical school transcript.

Admission Requirements to Non-Degree Seeking Students: Students may be admitted as non-degree seeking students. To be admitted as a non-degree seeking student, students will have to meet all the admission requirements specified for degree seeking students including relevant test scores (GMAT/GRE, TOEFL). Students who want to switch to degree-seeking status, will have to apply to the
degree program. If they are admitted, at most six credits taken as a non-degree seeking student can be transferred to the degree program.

Substitutions and Transfers of Credit
Substitutions of program requirements may be granted in recognition of previous coursework taken in a specific business program area. Substitutions are approved by the appropriate Program Director through a process which allows a student to skip a core course and take the next higher level course in that area with no reduction in the overall program semester credit hour requirements.

Transfers of credit may be granted for equivalent graduate coursework taken at other universities with a grade of "B" or better within the past six years. The appropriate Program Director initiates such transfers, which must be approved by the Dean of Graduate Studies. The total number of transfers of credit toward the completion of a master's degree cannot exceed nine semester credit hours toward the MS degree, and twelve semester credit hours toward the MBA degree.

Applications for approval of substitutions and transfers of credit may be obtained in and submitted to the Naveen Jindal School of Management Advising Office.

Prerequisites for Graduate Programs
Knowledge of calculus is a requirement for certain programs (see individual programs for details).

Students who have not completed an undergraduate calculus course may satisfy the prerequisite by completing OPRE 6303 Quantitative Foundations in Business. Degree credit is not earned for program prerequisites; however, the grade achieved in OPRE 6303 will count toward the student's grade point average. For the MS in International Management Studies, FIN 6301 Financial Management has a prerequisite of OPRE 6301, its equivalent or instructor consent required. Prerequisites must be satisfied within the first twelve semester credit hours of graduate study as a degree-seeking student.
Naveen Jindal School of Management
Master of Business Administration
53 semester credit hours minimum

Degree Requirements
The MBA degree is obtained by completing a 53 semester credit hour program beyond prerequisite courses consisting of 29 semester credit hours of core courses and 24 semester credit hours of elective courses. At the option of the student, a concentration may be developed by taking a set of electives related to an area of interest. Students must maintain a 3.0 grade point average in both core courses and in aggregate courses to qualify for the MBA degree.

There are four different programs for students interested in the MBA. We offer an MBA full-time (cohort) program, a professional MBA evening cohort program, professional MBA Flex and an professional MBA online.

NOTE: The Executive Education area of the Naveen Jindal School of Management offers four distinctive and separate MBA programs, which retain the same set of MBA core courses but have their own set of specific topical electives. These include the Executive MBA (EMBA), the Global Leadership Executive MBA (GLEMBA), the Executive MBA with an emphasis in project management, product lifecycle and supply chain, or organizational behavior and coaching, and the Executive Healthcare MBA.

Prerequisite
Calculus is required as a prerequisite for some of the coursework in the MBA. Candidates that have not taken calculus or an equivalent course will need to take OPRE 6303 to meet this requirement.

Course Requirements
Core Courses: 29 semester credit hours
Each candidate must satisfactorily complete the following core of 11 courses.
- ACCT 6201 Introduction to Financial Accounting
- ACCT 6202 Introduction to Managerial Accounting
- BPS 6310 Strategic Management
- FIN 6301 Financial Management
- IMS 6204 Global Business
- MECO 6303 Business Economics
- MKT 6301 Marketing Management
- OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
- OPRE 6302 Operations Management
- OB 6301 Organizational Behavior

Elective Courses: 24 semester credit hours
Each candidate must also complete an additional 24 semester credit hours of elective graduate coursework. Students may develop a concentration within the 24 semester credit hours of electives, but are not required to do so. Students cannot include more than 15 semester credit hours in any single functional area (demarcated by the area prefix) beyond the required core courses.
Concentrations
Concentrations are informal collections of electives that address a student's educational goals. A concentration may be aligned with functional area specialties, or may cut across functional areas. Students are encouraged to develop their concentration with the help of a faculty member, area coordinator, or the Advising Office. Typical concentrations include:

Accounting: In today’s global and technology-driven environment, managers need skills to effectively analyze accounting information and make value-enhancing decisions. Students may select accounting courses to concentrate in financial analysis, consulting, corporate governance, and tax management.

Finance: Students can prepare for careers in corporate finance, investment management, or the management of financial institutions. Courses in this area emphasize creative solutions to business financing problems, the development of value maximizing investment and financing strategies, and the analysis and management of fixed income and equity investments. Students may choose to concentrate in either corporate financial planning or the analysis of financial securities and investment portfolios.

Healthcare Administration: The primary goal of this concentration is to prepare students for leadership positions in healthcare organizations. The healthcare concentration is cross-functional and industry focused. Courses will contain cases, projects, and assignments that are centered around applying management skills to healthcare issues and organizations. Classes are taught by faculty and healthcare executives who bring special expertise and experience to the program.

Information Technology Management: Information Technology permeates all aspects of modern business and our courses will enable you to make the most of information technology to solve business problems and gain strategic advantage. We also provide advanced courses for students who wish to be on the "supply" side of information technology in the areas of IT consulting, software management, and e-business.

Innovation and Entrepreneurship: Focused on the processes of technological innovation in both large and small organizations, a set of multidisciplinary courses prepares students for successful careers either as principals or key functional managers in emerging growth firms, or as leaders of technological innovation in established firms.

International Management: In this concentration, students can take a multi-disciplinary approach to the study of international management, with courses in finance, marketing, strategic management, and the legal and cross-cultural differences that effect business.

Leadership in Organizations: The leadership concentration prepares students for upper management positions through the study of the psychological, sociological and organizational behavior disciplines. The program provides a foundation of leadership theory, building and problem solving in interpersonal work relationships, group dynamics, organizational decision making and change, and ethics.

Marketing: Students learn to understand customers' needs and purchase behaviors, how to satisfy those needs, and how to make a profit in competitive industries and markets. Topics include: developing an effective marketing strategy, developing new products, and managing different brands and product categories. Students can also acquire expertise in pricing, advertising and promotions, market research, and retailing strategies. Courses are also available on the Internet's effect on marketing and business.
Organizations: This concentration emphasizes organizational behavior and theory, and human resources management. Students learn how to effectively integrate and leverage human resources to create sustainable advantages in a competitive marketplace. Courses chosen in this area integrate a wide variety of disciplines, including economics, organization theory, finance, psychology, and sociology.

Real Estate: this concentration includes courses in: real estate finance and capital markets, covering real estate loans, syndication, securitization, and regulation; investment and analysis, combining lectures and case studies to explore the sources of real estate value, project feasibility, strategies for financing, and portfolio management; and, development, covering market analysis, government approvals, financing and risk assessment.

Strategy: This concentration focuses on corporate level strategic management, including: implementation of strategic designs; top management team leadership; the strategic implications of the social, governmental, technological, and international environments; organization structuring; and strategic alliances. Students will learn how to integrate accounting, finance, economics and organization theory to create sustainable competitive advantage.

Supply Chain Management: Firms can use effective and innovative operations to create and sustain competitive advantages. Students in these courses gain a deep, analytical understanding of how challenges posed by fast developing business environments can become profit-making opportunities. Integration of various parties (suppliers, factories, stores) and various functional areas (marketing, finance, procurement) is an important theme. In particular, incentives, contracts and information technologies fostering collaboration among financially independent parties are emphasized.
Naveen Jindal School of Management
Master of Science in Accounting
36 semester credit hours minimum

Degree Requirements
The MS in Accounting is a 36 semester credit hour degree program focused primarily on educating students in Accounting while recognizing the need for a business foundation. The degree is separated into three components:

- Business Core
- Accounting Core
- Accounting Electives

The degree plan also requires a prerequisite knowledge of accounting foundations.

Accounting Foundational Prerequisites
Students joining the program must have a foundational knowledge in intermediate and cost accounting. Each student’s application and transcripts will be evaluated for successful mastery of these subjects. If a student has not demonstrated successful mastery, then a student may still be granted admission to the program and the accounting foundation classes will be required to be taken at the graduate level at the University of Texas at Dallas in addition to the 36 semester credit hours required for the degree. Any accounting foundational courses required may not be used as Graduate Accounting Electives in the standard MS Accounting degree. Details of the foundational classes are below.

Graduate Accounting Electives
Students should choose 15 semester credit hours of graduate accounting electives that best fit their unique career goals and needs. The MS in Accounting program does not have stated or required concentrations. Students are not required to choose a concentration. Additionally, students may use one non-ACCT graduate class (up to three semester credit hours) from another discipline in the Jindal School of Management. Typical career paths include areas such as corporate accounting, assurance services, taxation, internal audit or accounting systems/ERP. Refer to the Accounting area advising sheets for assistance with aligning classes with career and personal goals.

GPA Requirements
Students must maintain a 3.0 grade point average in both business core courses and in aggregate to qualify for the MS in Accounting degree.

CPA Exam Requirements
Students wishing to become eligible to take the Uniform CPA Exam should understand the requirements of the State Board of Accountancy in their respective state or jurisdiction. Approved and accepted courses to satisfy the requirements for CPA examination can change, and students should keep up-to-date on the requirements. The Texas State Board of Public Accountancy (TSBPA) accepts certain courses towards the requirement of 30 semester credit hours of upper level accounting for CPA eligibility.
Courses accepted by the TSBPA are subject to change based on catalog review. Please inquire with the Program Director or the MS Accounting website for the most current list.

Program Prerequisites
Calculus is required as a graduate program prerequisite. If a student has not taken an equivalent course already, he/she will need to complete a Math refresher course (OPRE 6303) with a grade of "B" or better to meet the calculus requirement.

Accounting Foundational Prerequisites
If a student has not demonstrated successful mastery in the following accounting foundation courses prior to beginning the MS in Accounting program, then the accounting foundation classes must be taken at the graduate level at the University of Texas at Dallas in addition to the 36 semester credit hours required for the degree. Any foundational courses taken may not be used as Graduate Accounting Electives in the standard MS Accounting degree.

ACCT 3331 or ACCT 6330 Intermediate Financial Accounting I (US GAAP based / in English)
ACCT 3332 or ACCT 6332 Intermediate Financial Accounting II (US GAAP based / in English)
ACCT 3341 Cost Management Systems or ACCT 6331 Cost Accounting

Course Prerequisites
Some courses offered have specific class prerequisites. Some class prerequisites may qualify as Accounting Program electives. For specific course prerequisite information, please visit the UT Dallas Graduate Catalog for further details.

Course Requirements
Business Core: 12 semester credit hours
Each candidate must satisfactorily complete the following four courses (with 3.0 or higher GPA in both core courses and in aggregate courses).

ACCT 6388 Accounting Communications
ACCT 6335 Ethics for Professional Accountants

OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business or OPRE 6332 Spreadsheet Modelling and Analytics
MECO 6303 Business Economics or FIN 6301 Financial Management

Accounting Core: 8 semester credit hours
Each candidate must satisfactorily complete the following three accounting core courses:

ACCT 6333 Advanced Financial Reporting
ACCT 6353 Fundamentals of Taxation II
ACCT 6382 Advanced Auditing

NOTE: Candidates who have completed the required accounting classes within the accounting core or the business core (or their undergraduate equivalents) may be able to obtain a course waiver and substitute for these required courses with other graduate level ACCT electives. Substitutions must be approved by the appropriate Program Director, and forms may be obtained from and submitted to the Naveen Jindal School of Management Advising Office. Waivers do not reduce total hours required for the degree.
Accounting Electives: 15 semester credit hours

Students should choose 15 semester credit hours of graduate accounting electives that best fit their unique career goals and needs. Additionally, students may use one non-ACCT graduate class (up to three semester credit hours) from another discipline in the Jindal School of Management. Typical career paths include areas such as corporate accounting, assurance services, taxation, internal audit, or accounting systems/ERP. Refer to the Accounting area advising sheets for assistance with aligning classes with career and personal goals.

Select from any of the following courses:

- ACCT 6309 Business Data Warehousing
- ACCT 6320 Database Foundations
- ACCT 6334 Auditing
- ACCT 6336 Information Technology Audit and Risk Management
- ACCT 6338 Accounting Systems Integration and Configuration
- ACCT 6340 System Analysis and Project Management
- ACCT 6341 Planning, Control and Performance Evaluation
- ACCT 6342 Strategic Cost Management
- ACCT 6343 Accounting Information Systems
- ACCT 6344 Financial Statement Analysis
- ACCT 6345 Business Valuation
- ACCT 6349 Information Technology Strategy and Management
- ACCT 6350 Fundamentals of Taxation I
- ACCT 6354 Partnership Taxation
- ACCT 6356 Tax Research
- ACCT 6359 Accounting Policy and Research
- ACCT 6362 International Accounting
- ACCT 6365 Governmental and Not-For-Profit Accounting
- ACCT 6366 Special Topics in Taxation
- ACCT 6370 Business Law
- ACCT 6377 Corporate Governance
- ACCT 6380 Internal Audit
- ACCT 6383 Fraud Examination
- ACCT 6384 Analytical Reviews Using Audit Software
- ACCT 6385 Governance, Risk Management and Compliance (GRC)
- ACCT 6389 Volunteer Income Tax Assistance Practicum

For students interested in the Internal Audit program and the CIA or CISA designation, 12-18 semester credit hours from the following courses are required:

- ACCT 6380 Internal Audit (This core course is required and must be taken in the first semester.)
- ACCT 6384 Auditing
- ACCT 6335 Ethics for Professional Accountants
- ACCT 6336 Information Technology Audit and Risk Management
- ACCT 6377 Corporate Governance
- ACCT 6382 Advanced Auditing
- ACCT 6383 Fraud Examination
- ACCT 6384 Analytical Reviews Using Audit Software
Please contact the Internal Audit Education Program Director for more information.
Naveen Jindal School of Management
Master of Science in Finance
36 semester credit hours minimum

Degree Requirements
At least 36 semester credit hours of management coursework beyond prerequisite courses is required, including 18 semester credit hours of basic business core courses and 18 semester credit hours of graduate finance courses. The MS is Finance is designed for students with or without previous educational background in finance. Many students will select the Financial Management option, which allows them to design a program to their needs.

For students wanting a more focused program, seven concentrations are available: Investment Management, Financial Analyst, Financial Risk Management, Energy Risk Management, Management of Financial Institutions, Real Estate, or Financial Information Management. The Investment Management concentration is designed for students interested in pursuing an investment career and completing the Chartered Financial Analyst (CFA) examinations. The Financial Analyst concentration is designed for students interested in corporate finance, investment banking, venture capital, private equity, or corporate restructuring and turnarounds. The Financial Risk Management concentration is designed for students with the quantitative ability to pursue a career applying quantitative methods to risk management problems and prepares students for the Financial Risk Manager (FRM) examinations. The Energy Risk Management concentration is designed for students with the quantitative ability to pursue a career applying quantitative methods to energy risk management problems and prepares students for the Energy Risk Manager (ERM) examinations. The Management of Financial Institutions concentration prepares students for careers in banking or other financial institutions. The Real Estate concentration prepares students for various types of careers in the real estate industry. The Financial Information Management concentration prepares students to apply information technology to financial analysis, investment management and trading. Because these concentrations have been designed to prepare students for certain certifications, students are recommended to focus only on the coursework within a particular concentration in order to prepare for its associated certification.

Students must maintain a 3.0 grade point average in both core courses and in aggregate courses to qualify for the MS degree.

Prerequisites
Calculus and basic statistics are required as prerequisites. Candidates that have not taken equivalent courses will need to take OPRE 6303 to meet the calculus requirement and OPRE 6301 to complete the basic statistics requirement.

Course Requirements
Basic Core Courses: 18 semester credit hours

All students enrolling in the Master of Science in Finance program must complete the following Basic Business Core courses, or their equivalents. Please see the catalog for further prerequisite information.

ACCT 6305 Accounting for Managers or ACCT 6201 Introduction to Financial Accounting and
Financial Risk Management Concentration - recommended coursework:

ACCT 6352 Financial Negotiation and Dispute Resolution

Financial Analyst Concentration - recommended coursework:

ACCT 6330 Intermediate Financial Accounting I
ACCT 6332 Intermediate Financial Accounting II
FIN 6308 Regulation of Business and Financial Markets
FIN 6311 Valuation Models and Practices
FIN 6316 Private Equity Finance
FIN 6352 Financial Modeling
FIN 6355 Corporate Finance and Policy
FIN 6356 Mergers and Acquisitions
FIN 6357 Corporate Restructuring and Turnarounds
FIN 6366 International Financial Management
MECO 6352 Financial Negotiation and Dispute Resolution

Investment Management Concentration - recommended coursework:

ACCT 6344 Financial Statement Analysis
FIN 6308 Regulation of Business and Financial Markets
FIN 6311 Valuation Models and Practices
FIN 6314 Fixed Income Securities
FIN 6325 Macroeconomics and Financial Markets
FIN 6330 Behavioral Finance
FIN 6360 Options and Futures Markets
FIN 6364 Advanced Investment Management
FIN 6370 The Theory of Finance and Its Applications
FIN 6380 Global Fund Management

Category A: ACCT 6330, ACCT 6332, ACCT 6344, MECO 6312, MECO 6315, ECON 6305, ECON 6306, OPRE 6335, OPRE 7310, MIS 6320, MIS 6324, MIS 6344. Note: Either MECO 6312 or ECON 6306 can be counted as they are substitutes.

Category B: FIN 6308, FIN 6311, FIN 6314, FIN 6316, FIN 6320, FIN 6321, FIN 6322, FIN 6323, FIN 6325, FIN 6328, FIN 6330, FIN 6335, FIN 6340, FIN 6341, FIN 6342, FIN 6352, FIN 6355, FIN 6356, FIN 6357, FIN 6360, FIN 6364, FIN 6366, FIN 6368, FIN 6370, FIN 6380, FIN 6381, FIN 6382, FIN 6383, FIN 6V98, FIN 6V99, MECO 6318, MECO 6352.

Concentrations: 18 semester credit hours

Financial Management Option: 18 semester credit hours
Students must complete six courses; of which at least three must come from category B. Students may do an internship (FIN 6V98) as part of this option.

Category A: FIN 6325, FIN 6341, ECON 6311, ECON 6315, ECON 6316, FIN 6320, FIN 6321, FIN 6322, FIN 6323, FIN 6325, FIN 6328, FIN 6330, FIN 6335, FIN 6340, FIN 6341, FIN 6342, FIN 6352, FIN 6355, FIN 6356, FIN 6357, FIN 6360, FIN 6364, FIN 6366, FIN 6368, FIN 6370, FIN 6380, FIN 6381, FIN 6382, FIN 6383, FIN 6V98, FIN 6V99, MECO 6318, MECO 6352.

Category B: FIN 6308, FIN 6311, FIN 6314, FIN 6316, FIN 6320, FIN 6321, FIN 6322, FIN 6323, FIN 6325, FIN 6328, FIN 6330, FIN 6335, FIN 6340, FIN 6341, FIN 6342, FIN 6352, FIN 6355, FIN 6356, FIN 6357, FIN 6360, FIN 6364, FIN 6366, FIN 6368, FIN 6370, FIN 6380, FIN 6381, FIN 6382, FIN 6383, FIN 6V98, FIN 6V99, MECO 6318, MECO 6352.

Students must complete six courses; of which at least three must come from category B. Students may do an internship (FIN 6V98) as part of this option.

Category A: FIN 6325, FIN 6341, ECON 6311, ECON 6315, ECON 6316, FIN 6320, FIN 6321, FIN 6322, FIN 6323, FIN 6325, FIN 6328, FIN 6330, FIN 6335, FIN 6340, FIN 6341, FIN 6342, FIN 6352, FIN 6355, FIN 6356, FIN 6357, FIN 6360, FIN 6364, FIN 6366, FIN 6368, FIN 6370, FIN 6380, FIN 6381, FIN 6382, FIN 6383, FIN 6V98, FIN 6V99, MECO 6318, MECO 6352.

Category B: FIN 6308, FIN 6311, FIN 6314, FIN 6316, FIN 6320, FIN 6321, FIN 6322, FIN 6323, FIN 6325, FIN 6328, FIN 6330, FIN 6335, FIN 6340, FIN 6341, FIN 6342, FIN 6352, FIN 6355, FIN 6356, FIN 6357, FIN 6360, FIN 6364, FIN 6366, FIN 6368, FIN 6370, FIN 6380, FIN 6381, FIN 6382, FIN 6383, FIN 6V98, FIN 6V99, MECO 6318, MECO 6352.

Students must complete six courses; of which at least three must come from category B. Students may do an internship (FIN 6V98) as part of this option.
<table>
<thead>
<tr>
<th>Concentration</th>
<th>Recommended Coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Estate Finance</td>
<td>FIN 6314 Fixed Income Securities, FIN 6321 (REAL 6321) Introduction to Real Estate, FIN 6322 (REAL 6322) Real Estate Finance and Investment, FIN 6323 (REAL 6323) Real Estate Market Analysis and Investment, FIN 6328 (REAL 6328) Real Estate Valuation, FIN 6325 Macroeconomics and Financial Markets</td>
</tr>
<tr>
<td>Financial Information Management</td>
<td>MECO 6312 Applied Econometrics and Times Series Analysis or ECON 6306 Applied Econometrics, FIN 6360 Options and Futures Markets, FIN 6364 Advanced Investment Management, FIN 6368 Financial Information and Trading, MIS 6324 Business Intelligence Software and Techniques, MIS 6326 Data Management, MIS 6344 Web Analytics</td>
</tr>
</tbody>
</table>
Naveen Jindal School of Management
Master of Science in Healthcare Management
36 semester credit hours minimum

Degree Requirements
The Master of Science in Healthcare Management prepares students for roles in the leadership and management of the U.S. healthcare industry. It integrates a thorough grounding in advanced business management theory and practice with an understanding of the structure, operation, and financing of the U.S. healthcare system. The curriculum is customized to accommodate the needs of two different audiences:

Professional Track - for healthcare administrators and those desiring a management career in the healthcare industry; and

Executive Track - for physicians and senior healthcare executives.

Professional Track - The Professional Track MS in Healthcare Management is a 36 semester credit hour program consisting of business core, healthcare management courses, and electives. Students must maintain a 3.0 grade point average in both core courses and overall to qualify for the MS degree.

Required Business Core: 15 semester credit hours
- OB 6301 Organizational Behavior
- FIN 6301 Financial Management
- ACCT 6305 Accounting for Managers
- MKT 6301 Marketing Management
- OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business

Healthcare Management Core: 12 semester credit hours
The following four courses are required:
- HMG 6320 The American Healthcare System
- HMG 6321 Strategic Leadership of Healthcare Organizations
- HMG 6323 Healthcare Informatics
- HMG 6330 Healthcare Law, Policy, and Regulation

Choose at least 6 semester credit hours from the following:
- HMG 6322 Healthcare Cost Management and Control
- HMG 6324 (OPRE 6396, OB 6332, SYSM 6313) Healthcare Negotiation and Dispute Resolution
- HMG 6325 Healthcare Operations Management
- HMG 6327 Information and Knowledge Management in Healthcare
- HMG 6329 Seminar in Healthcare Management
- HMG 6331 Healthcare Economics
- HMG 6332 Quality Improvement in Healthcare: Six Sigma and Beyond
- HMG 6333 Ethics in Healthcare Management
- HMG 6334 Healthcare Analytics or MIS 6324 Business Intelligence Software and Techniques
Other Electives: 3 semester credit hours
The 3 semester credit hour Business Management elective requirement may be met by additional healthcare courses as well as by advanced courses in other management disciplines. Suggested elective concentrations:

Healthcare Informatics
For students desiring a strong background in the application of IT in the healthcare field
HMGT 6323 Healthcare Informatics (core course)
HMGT 6327 Information and Knowledge Management in Healthcare
HMGT 6334 Healthcare Analytics or
MIS 6324 Business Intelligence Software and Techniques

Students completing HMGT 6323, HMGT 6334, and HMGT 6327 will qualify for a Graduate Certificate in Healthcare Information Technology.

Healthcare Internal Auditing
For students with a desire for an internal auditing career with a healthcare provider organization
HMGT 6380 Internal Audit
HMGT 6382 Advanced Auditing
HMGT 6336 Information Technology Audit and Risk Management

Healthcare Operations
For students desiring a broad-based background in management of healthcare organizations
HMGT 6325 Healthcare Operations Management
HMGT 6332 Quality Improvement in Healthcare: Six Sigma and Beyond
HMGT 6322 Healthcare Cost Management and Control or
HMGT 6334 Healthcare Analytics

Executive Track
The Executive Track for physicians is delivered in a non-semester format. The 36 semester credit hour curriculum consists of nine 4-day residential classes. A different class is offered every two months and classes may be started at any time and taken in any order. The program is jointly taught by faculty from UT Dallas Naveen Jindal School of Management and The University of Texas Southwestern Medical Center. Eight classes are eligible for up to 36 semester credit hours each of Category 1 CME credit toward the AMA Physician's Recognition Award and CEU credit for healthcare executives.

Successful completion of any five classes is recognized by the award of a Graduate Certificate in Healthcare Management. Completion of the nine healthcare management classes OR any eight classes plus a self-directed field study is recognized by the award of a Master of Science in Healthcare.
Management. Students must maintain a 3.0 overall grade point average in order to qualify for the MS degree.

The Executive Track MS in Healthcare Management is supported entirely by participant fees and special admission requirements apply. The class is open only to physicians with a current license to practice medicine in the U.S.

- HMGT 6401 Negotiation and Conflict Management in Healthcare
- HMGT 6402 Financial Management of Healthcare Organizations
- HMGT 6403 Medical Cost and Performance Management
- HMGT 6404 Quality and Performance Improvement in Healthcare
- HMGT 6405 Healthcare Information Management and Technology
- HMGT 6406 Strategic Management of Healthcare Organizations
- HMGT 6407 Healthcare Policy and Regulation
- HMGT 6408 Motivational Leadership in Healthcare Organizations
- HMGT 6410 Coaching as a Leadership Style
- HMGT 6V15 Self-Directed Field Study

Deleted: For information, contact the program office at 972-883-6252.
Naveen Jindal School of Management
Master of Science in Information Technology and Management
36 semester credit hours minimum

Degree Requirements
The Master of Science in Information Technology Management (MS ITM) degree requires a minimum of 36 semester credit hours, consisting of basic business courses, IT foundation courses, IT elective courses and free electives. The business core courses are designed to provide incoming students with the context to better appreciate and understand the complex issues that occur at the interface between IT and business.

The IT foundation courses cover the essentials of IT knowledge that any student must possess. The IT elective courses provide in-depth knowledge of the technology and technology management issues. In addition, students may choose approved electives that maximize their individual educational and professional goals. The program also offers opportunities for students to concentrate in specific tracks such as 'Enterprise Systems,' 'Business Intelligence and Analytics,' 'IT Consulting,' 'Healthcare Systems,' and 'Information Security and Assurance' depending on their interests and goals. Students can contact the advising office for the recommended courses for these tracks.

Students must maintain a 3.0 grade point average in both core courses and in aggregate courses to qualify for the MS degree

Course Requirements
Basic Business Core Courses: minimum of 9 semester credit hours from the following
- ACCT 6305 Accounting for Managers
- FIN 6301 Financial Management
- MECO 6303 Business Economics
- MKT 6301 Marketing Management
- OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
- OPRE 6302 Operations Management
- OB 6301 Organizational Behavior

IT Foundation Courses: 12 semester credit hours
- MIS 6316 Data Communications
- MIS 6323 Object Oriented Programming
- MIS 6326 Data Management
- MIS 6308 Systems Analysis and Project Management

IT Electives: choose 9 semester credit hours from the list of courses that have an MIS prefix, excluding MIS 6204 and MIS 6320.
- MIS 6302 Information Technology Strategy and Management
- MIS 6309 Business Data Warehousing
- MIS 6311 Cybersecurity Fundamentals
- MIS 6317 Healthcare Informatics
- MIS 6319 Enterprise Resource Planning
MIS 6324 Business Intelligence Software and Techniques
MIS 6330 Information Technology Security
MIS 6332 Advanced ERP: Sales and Distribution
MIS 6334 Advanced Business Intelligence
MIS 6338 Accounting Systems Integration and Configuration
MIS 6344 Web Analytics
MIS 6352 Web Systems Design and Development
MIS 6360 Agile Software Project Management
MIS 6362 Service Oriented Computing
MIS 6363 Cloud Computing
MIS 6364 Enterprise IT Architecture
MIS 6369 Supply Chain Software
MIS 6372 IT Services Management
MIS 6373 Social Media and Business
MIS 6378 Enterprise Systems and CRM
MIS 6379 SAP ABAP Programming
MIS 6390 Analytics Practicum
MIS 6V98 Information Systems Internship

Free Electives: 6 semester credit hours
Any course from the set of IT electives may be used as a free elective. Also, any course from the set of business core courses, or any other graduate level business course, except MIS 6204 and MIS 6320, may be used as a free elective.

Graduate Certificate in Health Information Technology
9 semester credit hours

The graduate certificate in health information technology emphasizes practical concepts in healthcare IT and hands-on experience gained using computerized medical records (EMR) software. The focus will be on identification and understanding the key information required for managing and working with healthcare information systems. It also demonstrates the use of analytics and software tools related to healthcare information to develop sound healthcare decisions, particularly the core functionalities of EMR software. The focus is on identification and understanding the key information required for managing and working with healthcare information systems. It also demonstrates the use of analytics and software tools related to healthcare information to develop sound healthcare decisions, particularly the core functionalities of EMR software platform, including how to support clinical information workflows in a paperless environment, and the interconnectivity with other clinical and business systems.

Courses required for graduate certificate in health information technology (9 semester credit hours)
HMGT 6323 Health Informatics
HMGT 6327 Information and Knowledge Management in Healthcare
HMGT 6334 Healthcare Analytics

Graduate Certificate in Enterprise Management Systems
9 semester credit hours

The graduate certificate in enterprise management systems emphasizes theoretical concepts in enterprise resource planning and hands-on experience using the SAP software. It provides broad exposure to various SAP functional modules such as Sales and Distribution, Supply Chain Management, Customer Relationship Management, Procurement, Human Capital Management, Accounting, and Data Warehousing.
Furthermore, the certificate program provides students with an opportunity to get an in-depth knowledge of two of these modules.

The graduate certificate in enterprise systems is awarded after completion of MIS 6319 Enterprise Resource Planning, and two of the courses listed below:

MIS 6309 Business Data Warehousing
MIS 6332 Advanced ERP: Sales and Distribution
MIS 6338 Accounting Systems Integration and Configuration
MIS 6369 Supply Chain Software
MIS 6378 Enterprise Systems and CRM
MIS 6379 SAP ABAP Programming

Graduate Certificate in Business Intelligence
12 semester credit hours

The graduate certificate in business intelligence provides students with an understanding of how to analyze large complex data sets in order to solve business problems. It emphasizes theoretical concepts and clinical knowledge associated with the design, delivery and use of business intelligence and data mining techniques in organizations.

Courses required for graduate certificate in business intelligence (12 semester credit hours)

OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
MIS 6324 Business Intelligence, Software and Techniques
MIS 6334 Advanced Business Intelligence (with SAS)
MIS 6309 Business Data Warehousing (ITM Majors Only) or
MIS 6320 Database Foundations (non-ITM Majors Only)
Naveen Jindal School of Management
Master of Science in Innovation and Entrepreneurship
36 semester credit hours minimum

Objectives
The MS in Innovation and Entrepreneurship (MSIE) prepares students for successful business careers in entrepreneurial new ventures, entrepreneurial finance (venture capital/private equity), and innovation-related roles in mature organizations (product planning, product marketing, product development, etc.). This degree offers two primary program options: the Innovation within the Corporation concentration and the New Venture concentration, which includes the Startup Launch Track as a separate option. The MSIE degree complements baccalaureate or advanced degrees in a business, scientific or engineering discipline, and is valued by employers in technology-related or consumer products industries.

Degree Requirements
The Master of Science in Innovation and Entrepreneurship degree requires 12 semester credit hours of basic core courses, including foundational courses in entrepreneurship and entrepreneurial finance. The curriculum also provides two concentration areas, the first focuses on entrepreneurial startups (New Venture concentration) and the second on the challenges of managing entrepreneurial innovation within the more structured environment of a mature organization (Innovation within the Corporation concentration). The student must take a minimum of 12 semester credit hours within one of the designated concentration areas.

An additional 12 semester credit hours of electives must be taken, including at least one course from among the experiential courses taught in the Venture Development Center (ENTP 6360, ENTP 6365, or ENTP 6398). The remaining electives may be chosen from any of the concentration area courses not already taken, the other ENTP electives offered, the non-ENTP courses listed as electives below, or, with permission, from among any of the other JSOM offerings in the ACCT, BPS, FIN, IMS, MIS, MKT, OPRE, or OB areas.

Students must maintain a 3.0 grade point average in both core courses and in aggregate courses to qualify for the MS degree.

Prerequisites
ENTP 6315 requires that students have completed a course in finance (equivalent to FIN 6301). FIN 6301 requires completion of a course in business statistics (equivalent to OPRE 6301). Candidates who have not taken equivalent courses will need to take FIN 6301 and/or OPRE 6301 to meet the prerequisite requirements. If required, one of these prerequisite courses (but not both) may be included as an elective that will count as part of the 36 credit hours required for the MSIE degree.

Course Requirements
Basic Core Courses: 12 semester credit hours
Each candidate must satisfactorily complete the 12-semester credit hour basic core consisting of the following courses:
 ACCT 6305 Accounting for Managers
 MKT 6301 Marketing Management
ENTP 6370 Entrepreneurship
ENTP 6315 (FIN 6315) Entrepreneurial Finance

Concentration Area Courses: 12 semester credit hours
Each candidate must complete a minimum of 12 semester credit hours within one of the two concentration areas below:

New Venture Concentration
ENTP 6375 Technology and New Product Development
ENTP 6378 Managing the Emerging Enterprise
ENTP 6380 Market Entry Strategies
ENTP 6390 Business Model Innovation

Innovation within the Corporation Concentration
ENTP 6375 Technology and New Product Development
ENTP 6380 Market Entry Strategies
ENTP 6388 Managing Innovation within the Corporation
ENTP 6390 Business Model Innovation

Elective Courses: 12 semester credit hours
Each candidate must complete a sufficient number of electives to earn a minimum of 36 semester credit hours toward the MS degree. At least one course must be chosen from among the experiential courses taught in the Venture Development Center (indicated by an asterisk * below). The remaining electives may be chosen from:

ENTP 6311 (FIN 6311) Valuation Models and Practices
ENTP 6316 (FIN 6316) Private Equity Finance
ENTP 6360 Startup Launch I*
ENTP 6361 Startup Launch II*
ENTP 6362 Startup Launch III-IV*
ENTP 6365 Business Concept Validation*
ENTP 6382 (MKT 6382) Professional Selling
ENTP 6392 Entrepreneurship in the Social Sector
ENTP 6398 The Entrepreneurial Experience
ENTP 6V97 Entrepreneurial Internship
BPS 6310 Strategic Management
OB 6301 Organizational Behavior
OB 6321 Principles of Leadership
Any Concentration Area Courses not yet taken (listed above)
Other JSOM graduate course offerings (with permission)

Startup Launch Track
The Startup Launch Track is a unique program within the framework of the MSIE degree program. Startup Launch is a competitive program for students with a significant and scalable business concept who desire to launch their venture during or immediately after completion of the degree. The program is designed to progressively develop and mature both the entrepreneur and his or her venture concept from the early startup stage to the point where it is ready for launch and represents a prime candidate for funding by the professional investment community.
Participants will be selected on the basis of their scalable business concept and entrepreneurial capability and will be provided ongoing support and mentoring by faculty and experienced entrepreneurs, space in the UT Dallas Venture Development Center, up to $25,000 in seed capital, and the opportunity to earn up to 12 credit hours (in ENTP 6360, 6361 and 6362) toward the 36 credit hour MSIE program for progress toward the launch of their venture. Admission to the track is competitive and requires a separate application.

Graduate Certificate in Corporate Innovation
15 semester credit hours minimum

The graduate certificate in corporate innovation is focused on the management of innovation within the context of an established organization. The certificate is designed for students desiring to augment their skills in a technical or functional discipline with the management skills and perspectives necessary for the successful launch of new businesses or other innovations. The certificate may be obtained by completing 15 credit hours of study as detailed below:

- ENTP 6388 (SYSM 6316) Managing Innovation within the Corporation
- ENTP 6375 Technology and New Product Development
- ENTP 6380 (MKT 6380) Market Entry Strategies
- ENTP 6390 Business Model Innovation
- ENTP 6398 (SYSM 6315) The Entrepreneurial Experience

Graduate Certificate in New Venture Entrepreneurship
15 semester credit hours minimum

The graduate certificate in new venture entrepreneurship is focused on the management of innovation within the context of a new venture startup. The certificate may be obtained by completing 15 credit hours of study as detailed below:

- ENTP 6370 Entrepreneurship
- ENTP 6380 (MKT 6380) Market Entry Strategies
- ENTP 6390 Business Model Innovation
- ENTP 6378 Managing the Emerging Enterprise
- ENTP 6360 Startup Launch I or ENTP 6365 Business Concept Validation
http://catalog.utdallas.edu/now/graduate/programs/jsom/international-management-studies

Naveen Jindal School of Management
Master of Science in International Management Studies
36 semester credit hours minimum

Degree Requirements
The MS degree is obtained by completing satisfactorily a 36-semester credit hour program beyond prerequisite courses for the Jindal School of Management graduate programs. The program provides students the opportunity to learn in-depth the fundamentals of (1) functional areas of management, (2) international management, and (3) cultural, sociopolitical, and geographical constraints affecting international business decisions. It also provides educational opportunities for the student with non-business undergraduate training to prepare for a career in the management of international trade and industry.

Students must maintain a 3.0 grade point average in both core courses and in aggregate courses to qualify for the MS degree.

Course Requirements
Basic Business Core: 8 semester credit hours
All students enrolling in MS IMS must complete the following Basic Business Core Courses:
- ACCT 6201 Introduction to Financial Accounting
- FIN 6301 Financial Management*
- MKT 6301 Marketing Management

* FIN 6301 Financial Management requires OPRE 6301 as a prerequisite or corequisite or a substantial background in statistics leading to a waiver of the requirement by consent of the instructor.

IMS Foundation Courses: 11 semester credit hours
- IMS 6204 Global Business
- IMS 6310 International Marketing
- IMS 6360 International Strategic Management
- IMS 6365 Cross-Culture Communication and Management

IMS Electives: 6 semester credit hours
Select a minimum of 6 semester credit hours from the following:
- IMS 6302 Legal Aspects of International Business Transactions
- IMS 6320 International Corporate Finance or FIN 6366 International Financial Management
- BPS 6332 Strategic Leadership
- IMS 6314 Global E-Business Marketing
- IMS 6205 Export Market Planning

Free Elective Courses: 11 semester credit hours
Four semester credit hours of area study is strongly recommended. Any course from the set of IMS electives may be used as a free elective. Also, any advanced courses from other departments within the Jindal School of Management may be used as a free elective.
The following are some of the other IMS related courses offered with the Jindal School of Management:

- **MKT 6332** Advertising and Promotional Strategy
- **IMS 6314** Global E-Business Marketing
- **IMS 6V9X** Regional Area Studies: Faculty led study trip (see specific course number for an area study)
- **OB 6301** Organizational Behavior
- **OB 6303** Managing Organizations
- **OB 6307** Strategic Human Resource Management
- **OB 6331** Power and Politics in Organizations
- **OB 6332** Negotiation and Dispute Resolution
- **IMS 6340** Managing Strategy and People in International Techno-Creative Industries
- **IMS 6341** International Human Resource Management
- **IMS 6343** Sustainability in a Global Business Environment

Additionally, up to 6 semester credit hours of a graduate level language courses may be applied to your degree plan as a Free Elective. The following are the list of courses available with the University:

- **HUMA 6320** French Review
- **HUMA 6321** Spanish Review
- **HUMA 6323** German Review
- **HUMA 6330** French Workshop
- **HUMA 6331** Spanish Workshop
- **HUMA 6333** German Workshop

Areas of Concentration

The MS-IMS degree program can be taken by itself or with a concentration in one of the six provided degree program areas. Once students take the 25 semester credit hours (8 semester credit hours of basic business core courses, 11 semester credit hours of IMS foundation course and 6 semester credit hours of IMS elective courses), they can take 11 semester credit hours of free elective courses from the optional electives or the areas of concentration. However, if students decide to take the MS JMS with a specific choice of concentration, the students should take 12 semester credit hours entirely from that specific area of concentration.

Supply Chain Management: 12 semester credit hours
- **OPRE 6332** Spreadsheet Modeling and Analytics
- **OPRE 6366** Global Supply Chain Management
- **OPRE 6362** Project Management in Engineering and Operations
- **OPRE 6370** Global Logistics and Transportation
- **OPRE 6371** Purchasing, Sourcing and Contract Management
- **OPRE 6389** Managing Energy: Risk, Investment, Technology (MERIT)

Human Resources/Organizational Behavior: 12 semester credit hours
- **JMS 6341** International Human Resource Management
- **OB 6301** Organizational Behavior
- **OB 6303** Managing Organizations
- **OB 6307** Strategic Human Resource Management
- **OB 6331** Power and Politics in Organizations
- **OB 6332** Negotiation and Dispute Resolution
Marketing: 12 semester credit hours

- IMS 6314 Global E-Business Marketing
- MKT 6309 Marketing Research
- MKT 6310 Consumer Behavior
- MKT 6321 Interactive and Digital Marketing
- MKT 6332 Advertising and Promotional Strategy
- MKT 6339 Capstone Marketing Decision Making
- MKT 6350 Competitive Marketing Strategy

Finance: 12 semester credit hours

- FIN 6308 Regulation of Business and Financial Markets
- FIN 6310 Investment Management
- FIN 6320 Financial Markets and Institutions
- FIN 6322 Real Estate Finance and Investment
- FIN 6330 Behavioral Finance
- FIN 6366 International Financial Management

Innovation and Entrepreneurship: 12 semester credit hours

- ENTP 6315 (FIN 6315) Entrepreneurial Finance
- ENTP 6370 Entrepreneurship
- ENTP 6375 Technology and New Product Development
- ENTP 6380 Market Entry Strategies
- ENTP 6388 Managing Innovation within the Corporation
- ENTP 6390 Business Model Innovation

Information Management Technology: 12 semester credit hours

- MIS 6309 Business Data Warehousing
- MIS 6319 Enterprise Resource Planning
- MIS 6320 Database Foundations
- MIS 6324 Business Intelligence Software and Techniques
- MIS 6334 Advanced Business Intelligence
- MIS 6344 Web Analytics

Foreign study trips

The Jindal School of Management encourages all students studying for the MS degree to master one foreign language. However, equally important is direct experience of business practices in a foreign country. UT Dallas has organized study abroad opportunities in Latin America, Western Europe, Asia, Africa, North America, and Eastern Europe. Foreign study courses, usually offered between semesters, vary in length from two to three weeks and are generally taken as part of an Area Studies course. Area study course is preceded by two weeks of seminar and followed by two weeks of post-trip seminar. Regional Area Studies course(s) may be repeated for credit if regions of study differ.

- IMS 6V91 Regional Area Studies: Latin America
- IMS 6V92 Regional Area Studies: Western Europe
- IMS 6V93 Regional Area Studies: Asia
- IMS 6V94 Regional Area Studies: Africa
- IMS 6V95 Regional Area Studies: North America
IMS 6V96 Regional Area Studies: Eastern Europe

Program Notes
Students are encouraged to complete the basic core courses before beginning the advanced core courses. International Strategic Management (IMS 6360) serves as the capstone course and should be taken during the last semester prior to graduation. The classes for this degree are largely offered in the evenings.
Naveen Jindal School of Management

Master of Science in Management and Administrative Sciences

36 semester credit hours minimum

Degree Requirements

The MS in Management and Administrative Sciences (MS MAS) degree is flexible and allows students to design a program of study that fits their specific needs. Students complete a 36 semester credit hour program, beyond prerequisite courses, consisting of 10 semester credit hours of basic core courses and 26 semester credit hours of graduate level electives. Students must maintain a 3.0 grade point average in both core courses and in aggregate courses to qualify for the MS degree.

Students should be aware that separate Master of Science programs, with varying core and elective requirements exist in the following areas:

- Accounting
- Finance
- Healthcare Management (for Professionals)
- Information Technology and Management
- Innovation & Entrepreneurship
- Supply Chain Management
- International Management Studies

For the MS-MAS degree program, students choose their own course of study, pulling courses from the School of Management graduate catalog.

NOTE: The Executive Education area of the School of Management offers three additional and separate MS MAS programs, which retain the same set of core courses but have their own set of specific topical electives. These include: (1) the MS MAS with an emphasis in project management, (2) the Executive Healthcare MS MAS and (3) the MS MAS with an emphasis in Organizational Behavior and Coaching. These are described in the Executive Education section of the Jindal School of Management chapter. All three programs are supported entirely by participant fees and special admissions requirements apply.

Course Requirements

Basic Core Courses: 10 semester credit hours

Each candidate must satisfactorily complete the following 10 semester credit hours basic core:

- ACCT 6201 Introduction to Financial Accounting
- MECO 6303 Business Economics
- MIS 6204 Information Technology and MIS Fundamentals
- OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business

Elective Courses: 26 semester credit hours

A student’s course of study beyond the core can be determined in consultation with faculty members, area coordinators, or the Advising Office. A student can continue to generalize in management courses or choose to concentrate in a given subject.
Degree Concentrations: 15+ semester credit hours
Students may choose to concentrate in one of the areas listed below that have historically been offered as defined specialties in the masters programs. Concentrations are informal collections of electives that address a student's educational goals. A concentration may be aligned with functional area specialties, or may cut across functional areas. Typical concentrations have a minimum of 15 semester credit hours in a given area, and include:

Accounting: In today’s global and technology-driven environment, managers need skills to effectively analyze accounting information and make value-enhancing decisions. Students may select accounting courses to concentrate in financial analysis, consulting, corporate governance, and tax management.

Finance: Students can prepare for careers in corporate finance, investment management, or the management of financial institutions. Courses in this area emphasize creative solutions to business financing problems, the development of value maximizing investment and financing strategies, and the analysis and management of fixed income and equity investments. Students may choose to concentrate in either corporate financial planning or the analysis of financial securities and investment portfolios.

Healthcare Administration: The primary goal of this concentration is to prepare students for leadership positions in healthcare organizations. The healthcare concentration is cross-functional and industry focused. Courses will contain cases, projects, and assignments that are centered around applying management skills to healthcare issues and organizations. Classes are taught by faculty and healthcare executives who bring special expertise and experience to the program.

Information Technology Management: Information Technology permeates all aspects of modern business and our courses will enable you to make the most of information technology to solve business problems and gain strategic advantage. We also provide advanced courses for students who wish to be on the "supply" side of information technology in the areas of IT consulting, software management, and e-business.

Innovation and Entrepreneurship: Focused on the processes of technological innovation in both large and small organizations, a set of multidisciplinary courses prepares students for successful careers either as principals or as key functional managers in emerging growth firms, or as leaders of technological innovation in established firms.

International Management: In this concentration, students can take a multi-disciplinary approach to the study of international management, with courses in finance, marketing, strategic management, and the legal and cross-cultural differences that effect business.

Leadership in Organizations: The leadership concentration prepares students for upper management positions through the study of the psychological, sociological, and organizational behavior disciplines. The program provides a foundation of leadership theory, building and problem solving in interpersonal work relationships, group dynamics, organizational decision making and change, and ethics.

Marketing: Students learn to understand customers' needs and purchase behaviors, how to satisfy those needs, and how to make a profit in competitive industries and markets. Topics include: developing an effective marketing strategy, developing new products, and managing different brands and product categories. Students can also acquire expertise in pricing, advertising and promotions, market research, and retailing strategies.
Organizations: This concentration emphasizes organizational behavior and theory, and human resources management. Students learn how to effectively integrate and leverage human resources to create sustainable advantages in a competitive marketplace. Courses chosen in this area integrate a wide variety of disciplines, including economics, organization theory, finance, psychology, and sociology.

Real Estate: this concentration includes courses in real estate finance and capital markets, covering real estate loans, syndication, securitization, and regulation; investment and analysis, combining lectures and case studies to explore the sources of real estate value, project feasibility, strategies for financing, and portfolio management; and, development, covering market analysis, government approvals, financing and risk assessment.

Strategy: This concentration focuses on corporate level strategic management, including implementation of strategic designs; top management team leadership; the strategic implications of the social, governmental, technological and international environments; organization structuring; and strategic alliances. Students will learn how to integrate accounting, finance, economics and organization theory to create sustainable competitive advantage.

Supply Chain Management: Firms can use effective and innovative operations to create and sustain competitive advantages. Students in these courses gain a deep, analytical understanding of how challenges posed by fast developing business environments can become profit-making opportunities. Integration of various parties (suppliers, factories, stores) and various functional areas (marketing, finance, procurement) is an important theme. In particular, incentives, contracts and information technologies fostering collaboration among financially independent parties are emphasized.
Naveen Jindal School of Management
Master of Science in Marketing

36 semester credit hours minimum

Degree Requirements
The Master of Science in Marketing program is designed to meet the needs of students in today's data driven marketplace, where the exponential growth in data generated from store scanners and web transactions, navigation, search, and more recently, social media requires new marketing skills and knowledge.

The Master of Science in Marketing program allows students to choose from six different tracks:

- Advertising & Brand Management
- Business Development & Sales
- Digital Advertising & Marketing
- Marketing Analytics and Market Research
- Marketing Management
- Product Management

The Master of Science in Marketing is designed for students with or without previous educational background in this area. Courses are primarily offered in the late afternoon and evenings of weekdays. Several courses are currently offered online.

At least 36 semester credit hours of management coursework is required for the Master of Science degree, including nine semester credit hours of business core courses, nine semester credit hours of marketing core courses and 18 semester credit hours of marketing focused core courses and/or electives depending on the track chosen.

Students can obtain a dual MS and MBA degree by taking a total of 63 semester credit hours (assuming they meet all the degree requirements for both programs). Students must maintain a 3.0 grade point average in both core courses and in aggregate courses to qualify for the MS degree.

Prerequisites
Calculus is not a requirement or prerequisite for the MS in Marketing degree program.

Course Requirements

Business Core Courses: 9 semester credit hours
- MKT 6301 Marketing Management
- OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
- MIS 6326 Data Management or
- MIS 6320 Database Foundations

Marketing Core Courses: 9 semester credit hours
- MKT 6309 Marketing Research
- MKT 6310 Consumer Behavior
- MKT 6339 Capstone Marketing Decision Making or
Marketing Analytics & Market Research Track
Marketing Analytics & Market Research Core Courses (12 semester credit hours)
MKT 6321 Interactive and Digital Marketing
MKT 6323 Database Marketing
MKT 6337 Marketing Analytics using SAS (or MIS 6334 with consent of Program Director)
MKT 6362 Marketing Models

Elective Options for Marketing Analytics & Market Research (select 6 semester credit hours)
MIS 6344 Web Analytics
MKT 6335 Advertising Research
MKT 6336 Pricing
MKT 6340 Marketing Projects
OPRE 6332 Spreadsheet Modeling and Analytics

For optional SAS Graduate certification (all 3 plus OPRE 6301)
MIS 6324 Business Intelligence Software and Techniques
MIS 6309 Business Data Warehousing [with SAP]
MIS 6334 Advanced Business Intelligence [with SAS]

Product Management Track
Product Management Core Courses (12 semester credit hours)
MKT 6362 Marketing Models
MKT 6329 New Product Development
MKT 6330 Brand Management
MKT 6336 Pricing

Elective Options for Product Management (select 6 semester credit hours)
IMS 6310 International Marketing
MKT 6331 Building and Managing Professional Sales Organizations
MKT 6332 Advertising and Promotional Strategy
MKT 6333 Channels of Distribution and Retailing
MKT 6340 Marketing Projects
MKT 6350 Competitive Marketing Strategy
MKT 6360 Services Marketing
MKT 6380 Market Entry Strategies
OPRE 6362 Project Management in Engineering and Operations
MKT 6383 Professional Selling II
MKT 6334 Digital Sales Strategy

Marketing Management Track: 18 semester credit hours
For this track, there are no track core courses. Students may select any 18 semester credit hours from the offerings listed below; however, at least 9 semester credit hours must be from the marketing area courses (i.e. have a MKT prefix in the course number).

Marketing Area Courses (at least 9 semester credit hours)
MKT 6321 Interactive and Digital Marketing
MKT 6323 Database Marketing
MKT 6328 Product Management
MKT 6329 New Product Development
MKT 6330 Brand Management
MKT 6331 Building and Managing Professional Sales Organizations
MKT 6332 Advertising and Promotional Strategy
MKT 6333 Channels of Distribution and Retailing
MKT 6335 Advertising Research
MKT 6336 Pricing
MKT 6337 Marketing Analytics Using SAS
MKT 6338 Enterprise Systems and CRM
MKT 6340 Marketing Projects
MKT 6350 Competitive Marketing Strategy
MKT 6360 Services Marketing
MKT 6362 Marketing Models
MKT 6380 Market Entry Strategies
MKT 6383 Professional Selling II
MKT 6384 Digital Sales Strategy

Non-Marketing Area Courses
ACCT 6201 Introduction to Financial Accounting (dual MS MKT MBA only)
ACCT 6305 Accounting for Managers (dual MS MKT MBA only)
BPS 6360 Management and Organizational Consulting: Theory and Practice
ENTP 6382 Professional Selling
ENTP 6390 Business Model Innovation
FIN 6301 Financial Management (dual MS MKT MBA only)
IMS 6310 International Marketing
IMS 6314 Global E-Business Marketing
MIS 6309 Business Data Warehousing (with SAP)
MIS 6324 Business Intelligence Software and Techniques
MIS 6334 Advanced Business Intelligence (with SAS)
MIS 6344 Web Analytics
OB 6301 Organizational Behavior (dual MS MKT MBA only)
OB 6332 Negotiation and Dispute Resolution
OPRE 6332 Spreadsheet Modeling and Analytics
OPRE 6362 Project Management in Engineering and Operations
Naveen Jindal School of Management
Master of Science in Supply Chain Management

36 semester credit hours minimum

Degree Requirements

The Master of Science in Supply Chain Management (MS SCM) explores the key issues associated with the design and management of industrial supply chains, including methods for improving supply chain operations by lowering costs, speeding delivery and improving quality. The depth of our supply chain program, uniquely prepares students to be the next generation business leaders with skills and competencies necessary to perform across functions within an organization. Students gain business management knowledge and analytical decision-making skills (especially for complex systems) along with real-life experiences through projects with area companies.

The MS SCM program is designed for students with or without previous educational background in supply chain management. Students must maintain a 3.0 grade point average in both core courses and in aggregate courses to qualify for the MS degree. Students can also obtain a dual MS SCM/MBA degree by successfully completing a total of 63 semester credit hours (if all prerequisites are met).

Prerequisites

Calculus is required as a graduate program prerequisite. Candidates that have not taken an equivalent course will need to complete OPRE 6303 with a grade of "B" or better to meet the calculus requirement.

Course Requirements

All students enrolling in MS SCM must complete the following Basic Business Core Courses:

- OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
- OPRE 6302 Operations Management

And one of the following courses:

- ACCT 6305 Accounting for Managers
- FIN 6301 Financial Management

Supply Chain Management Core Courses: 9 semester credit hours

- OPRE 6366 Global Supply Chain Management
- OPRE 6370 Global Logistics and Transportation
- OPRE 6371 Purchasing, Sourcing and Contract Management

Supply Chain Management Elective Courses: 15 or 18 semester credit hours

- OPRE 6325 Healthcare Operations Management
- OPRE 6332 Spreadsheet Modeling and Analytics
- OPRE 6335 Risk and Decision Analysis
- OPRE 6340 Flexible Manufacturing Strategies
- OPRE 6341 Retail Operations
- OPRE 6362 Project Management in Engineering and Operations

Calculus is required as a graduate program prerequisite. If a student has not taken an equivalent course, they will need to complete OPRE 6303 with a grade of "B" or better to meet the calculus requirement.

At least 36 semester credit hours of management coursework beyond prerequisite courses is required to earn the MS SCM degree. Students can also obtain a dual MS SCM/MBA degree by successfully completing a total of 63 semester credit hours (if all prerequisites are met). The MS SCM program is designed for students with or without previous educational background in supply chain management. Students must meet these requirements.

Students can also obtain a dual MS SCM/MBA degree. The Master of Science in Supply Chain Management (MS SCM) explores the key issues associated with the design and management of industrial supply chains, including methods for improving supply chain operations by lowering costs, speeding delivery, improving quality, and expanding variety. The ultimate objective is to use SCM to mold traditional business operations into competitive tools for today’s global economy. Students acquire not only knowledge of business management but also analytical decision-making skills (especially for complex systems) along with real-life experiences gained through projects with area companies.

Waivers and Transfer of Credit

At least 36 semester credit hours of management coursework beyond prerequisite courses is required to earn the MS SCM degree. Students can also obtain a dual MS SCM/MBA degree by successfully completing a total of 63 semester credit hours (if all prerequisites are met).

Students must meet these requirements.
OPRE 6363 Inventory Control
OPRE 6364 Quality Control (Lean Six Sigma)
OPRE 6367 Capstone Projects in Supply Chain Management
OPRE 6368 Industrial Applications in Supply Chains
OPRE 6369 Supply Chain Software [SAP APO]
OPRE 6377 Demand and Revenue Management
OPRE 6378 Supply Chain Strategy
OPRE 6379 Product Lifecycle Management
OPRE 6387 Models of Energy Markets
OPRE 6388 Engineering Packaged Goods Distribution
OPRE 6389 Managing Energy: Risk, Investment, Technology (MERIT)
OPRE 6388 Prescriptive Analytics

Free Elective Course: 3 semester credit hours (optional)
Students may choose one of the supply chain technology based courses listed below or any three semester credit hour graduate level course within JSOM as a free elective.

OPRE 6390 Enterprise Resource Planning (ERP)
OPRE 6391 Business Data Warehousing [with SAP]
OPRE 6393 Database Foundations
OPRE 6394 Technology and New Product Development
OPRE 6395 The Management of High Tech Products
OPRE 6396 Negotiation and Dispute Resolution
OPRE 6397 Cross-Culture Communication and Management
OPRE 6399 Business Intelligence Software and Techniques

* Executive Education students may take FIN 6301 course as an elective with a prior approval of the program director.
Naveen Jindal School of Management

Master of Science in Systems Engineering and Management (MS SEM)

36 semester credit hours minimum

Degree Requirements
The MS SEM program is designed to be flexible to accommodate different student backgrounds, allowing students to pick up areas in which they are deficient, while still guaranteeing core competency in systems engineering and systems management. This program has both a thesis and a non-thesis option. All part-time MS SEM students will be assigned initially to the non-thesis option. Those wishing to elect the thesis option may do so by obtaining the approval of a faculty thesis supervisor.

The MS SEM degree requires a total of 36 semester credit hours consisting of 12 courses in the non-thesis option or 10 courses plus six semester credit hours of thesis credit for the thesis option. All students must have an academic advisor and an approved degree plan. Courses taken without advisor approval will not count toward the 36 semester credit hour requirement. Successful completion of the approved course of studies leads to the MS SEM degree. Please also note that the University's general degree requirements are discussed elsewhere in the graduate catalog.

Non-thesis Option
Completion of a minimum of 36 semester credit hours of graduate level lecture courses including the required core courses. With advisor approval, these may include some 5000 level courses. Students must earn a grade of "B" or better in each of four core courses (see below).

Thesis Option
An alternative to 36 semester credit hours required for the MS SEM degree, would be the completion of a minimum of 30 semester credit hours of graduate level lecture courses, with a grade of "B" or better in each of the required core courses (see below), six semester credit hours of a combination of Master's research (SYSM 6V70) and thesis (SYSM 6V90), submitted to the graduate school, and a formal public defense of the thesis.

Students enrolled in the thesis option should meet with individual faculty members to discuss research opportunities and to choose a research advisor during the first or second semester that the student is enrolled. After the second semester of study, course selection should be made in consultation with the research advisor. Part-time students are encouraged to enroll in only one course during their first semester and in no more than two courses during any semester they are also working full-time.

Research and thesis semester credit hours cannot be counted in an MS SEM degree plan unless a thesis is written and successfully defended. A supervising committee, which must be chosen in consultation with the student's thesis advisor prior to enrolling for thesis credit, administers the defense. With advisor approval, the lecture courses may include some 5000 level courses. Full-time students at UT Dallas who receive financial assistance are required to enroll in nine semester credit hours each semester.

Course Requirements
Core Courses: 12 semester credit hours

http://catalog.utdallas.edu/now/graduate/programs/jsom/systems-engineering-and-management
Students are required to take four courses (a total of 12 semester credit hours) from a set of eight courses in the lists below. Two of the courses must be from the Engineering Core section and two from the Management Core section. The four required courses contribute a total of 12 semester credit hours toward the MS degree.

Engineering Core Courses

- SYSM 6301 Systems Engineering, Architecture and Design
- SYSM 6302 Dynamics of Complex Networks and Systems
- SYSM 6303 Quantitative Introduction to Risk and Uncertainty in Business
- SYSM 6305 Optimization Theory and Practice

Management Core Courses

- SYSM 6311 Systems Project Management in Engineering and Operations
- SYSM 6312 Systems Financial Management
- SYSM 6318 Marketing Management
- SYSM 6333 Systems Organizational Behavior

Prescribed Elective Courses: 12 semester credit hours

Students are required to take an additional four courses (a total of 12 semester credit hours) from the set of eight core courses listed above and/or the set of courses listed below. Two of these courses must be chosen from the two Engineering sections (core and elective), and two from the two Management sections (core and elective). Because a program objective is to maintain a high degree of flexibility, students are encouraged to work with an MS SEM program advisor to discuss possible (limited) exceptions and substitutions for the prescribed elective courses.

Engineering Elective Courses

- SYSM 6304 Risk and Decision Analysis
- SYSM 6306 Engineering Systems: Modeling and Simulation
- SYSM 6307 Linear Systems
- SYSM 6308 Software Maintenance, Evolution and Re-Engineering
- SYSM 6309 Advanced Requirements Engineering
- SYSM 6310 Software Testing, Validation and Verification
- SYSM 6321 Financial Engineering I
- SYSM 7321 Financial Engineering II

Management Elective Courses

- SYSM 6313 Systems Negotiation and Dispute Resolution
- SYSM 6314 Manufacturing and Service Systems Planning and Analysis
- SYSM 6315 The Entrepreneurial Experience
- SYSM 6316 Managing Innovation Within the Corporation
- SYSM 6317 The Management of High Tech Products
- SYSM 6319 Business Economics
- SYSM 6320 Strategic Leadership
- SYSM 6332 Technology and New Product Development

Free Elective Courses: 12 semester credit hours

Working with an MS SEM program advisor, students are required to take four additional and distinct courses either from the remaining SYSM courses listed above or from other courses offered in
management or engineering that form a "concentration" or "specialization" in systems related, possibly industry-specific sectors.

The concentration area consists of four courses (12 semester credit hours) in the degree program; examples include: Control and Mechatronic Systems, Cyber-Security and Information Assurance, Energy and Infrastructure Systems, Enterprise and Data Management Systems, Entrepreneurship and Innovation Management, Global Supply Chain Management, Healthcare and Biomedical Systems, Optimization and Operations Research, Telecom, IT and Multimedia Networks, and Transportation Systems. Finally, because of the flexible nature of the MS SEM degree program, students may submit for approval a "personalized" concentration area that focuses on aspects of systems engineering, and may combine elements of other concentration areas on a focused theme.

SEM Graduate Certificates
Each certificate requires 12 semester credit hours. The courses are offered in an Executive Education (4 semester credit hour module format).

Graduate Certificate in Systems Engineering
12 semester credit hours

The graduate certificate in systems engineering requires students to complete over the period of one academic year two courses from the set of engineering courses listed below, and any two additional courses from the remainder of the 20 SYSM prefix courses listed below in either group, engineering or management.

Systems Engineering Courses
- SYSM 6301 Systems Engineering, Architecture and Design
- SYSM 6302 Dynamics of Complex Networks and Systems
- SYSM 6303 Quantitative Introduction to Risk and Uncertainty in Business
- SYSM 6304 Risk and Decision Analysis
- SYSM 6305 Optimization Theory and Practice
- SYSM 6306 Engineering Systems: Modeling & Simulation
- SYSM 6307 Linear Systems
- SYSM 6308 Software Maintenance, Evolution and Re-Engineering
- SYSM 6309 Advanced Requirements Engineering
- SYSM 6310 Software Testing, Validation and Verification
- SYSM 6321 Financial Engineering I
- SYSM 7321 Financial Engineering II

Graduate Certificate in Systems Management
12 semester credit hours

The graduate certificate in systems management requires students to complete over the period of one academic year two courses from the set of management courses listed below, and any two additional courses from the remainder of the 20 SYSM-prefix courses listed in either group, engineering or management.

Systems Management Courses
- SYSM 6311 Systems Project Management in Engineering and Operations
Graduate Certificate in Cyber Security Systems
12 semester credit hours

The graduate certificate in Cyber Security Systems Certificate (CCSS) is offered by the Erik Jonsson School of Engineering and Computer Science and Jindal School of Management. The CCSS may be combined with other courses and/or certificates toward an MS degree, such as Computer Science, Information Technology and Management, or Systems Engineering and Management, provided that the student has gained admission into that particular program.

To earn the certificate, students in the program must take four courses with an overall GPA of 3.0.

Required Course (3 semester credit hours)
MIS 6311 Cyber Security Fundamentals

Track #1: Computer Science (CS) Emphasis (9 semester credit hours)
Students can choose three courses from the following:

- CS 6324 Information Security
- CS 6349 Network Security
- CS 6348 Data and Applications Security

Or a course from a list of existing cyber security systems in Computer Science courses (offered periodically, and must be approved)

Track #2: Internal Audit, Information Management (IA/IM) Emphasis (9 semester credit hours)
Students must take MIS 6330 and ACCT 6336, and choose between ACCT 6380 or MIS 6363:

- MIS 6330 Information Technology Security
- ACCT 6336 Information Technology Audit and Risk Management
- ACCT 6380 Internal Audit or MIS 6363 Cloud Computing
Track #3: Systems Engineering and Management Emphasis (9 semester credit hours)

Students must take SYSM 6301, and choose between CS 6324 or MIS 6330:

SYSM 6301 Systems Engineering, Architecture and Design
CS 6324 Information Security or MIS 6330 Information Technology Security

Students can choose at least one course from each of the CS and IA/IM tracks from the following:

- CS 6348 Data and Applications Security (CS track)
- CS 6349 Network Security (CS track)
- MIS 6363 Cloud Computing (CS track)
- ACCT 6336 Information Technology Audit and Risk Management (IA/IM track)
- ACCT 6380 Internal Audit (IA/IM track)
Naveen Jindal School of Management
Combination of Engineering and Management Graduate Degrees

Today’s graduates aspiring to assume managerial and leadership positions in high tech firms and
research institutions must be knowledgeable in both the engineering and managerial dimensions of the
position. In recognition of this growing reality, UT Dallas offers a blend of courses allowing students to
earn a combination of master's level degrees in both engineering and management. Specifically,
graduates of this program will qualify to earn an MSEE degree in combination with an MBA or a degree
in Management.

Faculty
The combination of master's level degrees in both engineering and management are jointly
administered by the faculty members in the Department of Electrical Engineering in the Erik Jonsson
School of Engineering and Computer Science and the Naveen Jindal School of Management.

Objectives
The program of studies leading to the award of an MSEE degree by the Erik Jonsson School of
Engineering and Computer Science in combination with one of the following master's degrees, MBA or
MS, offered by the Naveen Jindal School of Management, provides intensive preparation for engineers
who seek knowledge and skills necessary to manage a technology firm. This program emphasizes both
Electrical Engineering and Engineering Management, preparing students for a career in management
and for holding leadership positions in engineering companies and research institutions. The program of
studies is ideal for students interested in managing new technologies, from conceptualization and
development to introduction and production.

Admission Requirements
The University's general admission requirements are discussed on the Graduate Admission page
(catalog.utdallas.edu/now/graduate/admission). Student pursuing the MSEE degree in combination with
and a master's degree in management must meet the admission requirements for both graduate
programs. The University's general degree requirements are discussed on the Graduate Policies and
Procedures page (catalog.utdallas.edu/now/graduate/policies/policy). For this program, the Jindal
School of Management will accept a competitive GRE performance in lieu of the GMAT.

Combination of MSEE and MBA graduate degrees
68 semester credit hours minimum
The combination of MSEE and MBA degrees can be earned by completing a minimum of 68 graduate
semester credit hours beyond prerequisite courses. This includes a minimum of 24 semester credit
hours of approved electrical engineering (EE) courses in combination with a minimum of 44 semester
credit hours of approved management courses.

Students enrolled in this combination of MSEE and MBA degree programs are permitted to:

• utilize a maximum of 9 semester credit hours from the approved list of management courses
together with 12 semester credit hours of approved elective EE courses to satisfy the required 21
semester credit hours of elective courses listed in the MSEE degree requirements, and
• utilize a maximum of 9 semester credit hours from the approved list of EE courses together with 15 semester credit hours of approved elective MBA courses to satisfy the 24 semester credit hours of elective courses listed in the MBA degree requirements.

Students are required to meet all other core and elective requirements for the MSEE and MBA degrees to obtain the combination of the MSEE with MBA graduate degrees.

Combination of MSEE with MS graduate degrees

51 minimum semester credit hours

The combination of MSEE and MS degrees can be earned by completing a minimum of 51 semester credit hours beyond prerequisites. This includes a minimum of 24 semester credit hours of approved electrical engineering courses in combination with a minimum of 27 semester credit hours of approved management courses for each of these management degrees.

Students enrolled in a combination of the MSEE and MS degree programs are permitted to

• utilize a maximum of 9 semester credit hours from the approved list of management courses together with 12 semester credit hours of approved elective EE courses to satisfy the required 21 semester credit hours of elective courses listed in the MSEE degree requirements, and
• utilize a maximum of 9 semester credit hours from the approved list of EE courses in satisfying elective courses requirements for the MS degree requirements here.

Students are required to meet all other core and elective requirements for the MSEE and MS degrees to obtain the combination of MSEE with MS graduate degrees.

All students must have a graduate advisor in the Department of Electrical Engineering in the Erik Jonsson School of Engineering and Computer Science and a graduate advisor in the Naveen Jindal School of Management who will advise on respective programs and approve a degree plan. The advising office in each school will provide a detailed listing of approved courses. Courses taken without advisor approval may not count toward the required semester credit hours. No degree will be awarded until the completion of all requirements, including the requirement for the 68 or 51 semester credit hours for the MSEE/MBA or MSEE/MS or combinations respectively.

If a student chooses at a later time to pursue only one of the two degree programs, the student MUST again seek admission into the degree program of the student’s choice and satisfy the requirements of that degree program. Prior coursework relevant to the specific degree program will be transferred, provided the course requirements have not changed.
Naveen Jindal School of Management
Doctor of Philosophy Programs

Degree Requirements

Each doctoral candidate is required to complete a minimum of 75 semester credit hours of applicable graduate work in specific program areas beyond the baccalaureate and prerequisites. Throughout their programs, PhD students are encouraged to participate in ongoing research activities and to develop their own lines of research. Research activities include research seminars, directed reading courses, and research assistantships. Research supervision is available in the areas of Accounting, Finance and Economics, Information Systems, International Management Studies, Marketing, and Operations Management.

Doctor of Philosophy in International Management Studies
75 semester credit hours beyond the baccalaureate degree

Students may enter the International Management Studies (IMS) doctoral program after previous graduate training or directly from undergraduate programs. Desirable educational backgrounds include graduate training in any area of business and graduate or undergraduate degrees in areas such as economics, sociology, political science, mathematics, and engineering, although students from all areas are considered.

The IMS PhD curriculum includes a business foundation, core courses, advanced seminars, a methodology requirement, directed readings and independent research courses, and the dissertation. All students must take the PhD courses that are offered in each of the first two years in the program. Students must satisfy first year research paper requirement which will be due at the end of the first year. Students also must pass the comprehensive qualifying examination, which is administered at the end of the second year of study when all the relevant course requirements (Core Courses, Advanced Seminars, Research Methods) have been satisfied. It is intended to assess the student’s mastery of the basic theories and methodologies central to the program and to evaluate the student’s potential to do original research in an area of specialization. After passing the comprehensive exam, each student writes a dissertation proposal. This must be completed within six months of the comprehensive exam. The proposal is defended before a faculty committee appointed in consultation with the student, dissertation chair, and PhD advisor. This committee also serves as the supervising committee for the dissertation after the proposal is approved.

Course Requirements

Foundation Courses: minimum of 12 semester credit hours

These courses provide a foundation in basic business topics such as economics, marketing, finance, and accounting. These courses may be waived for students with master’s degrees in management or other academic backgrounds that provide an equivalent foundation.

Core Courses: 24 semester credit hours

http://catalog.utdallas.edu/now/graduate/programs/jsom/phd

Degree Requirements

Each doctoral candidate is required to complete a minimum of 75 semester credit hours of applicable graduate work in specific program areas beyond the baccalaureate and prerequisites. Throughout their programs, PhD students are encouraged to participate in ongoing research activities and to develop their own lines of research. Research activities include research seminars, directed reading courses, and research assistantships. Research supervision is available in the areas of Accounting, Finance and Economics, Information Systems, International Management Studies, Marketing, and Operations Management.

Doctor of Philosophy in International Management Studies
75 semester credit hours beyond the baccalaureate degree

Students may enter the International Management Studies (IMS) doctoral program after previous graduate training or directly from undergraduate programs. Desirable educational backgrounds include graduate training in any area of business and graduate or undergraduate degrees in areas such as economics, sociology, political science, mathematics, and engineering, although students from all areas are considered.

The IMS PhD curriculum includes a business foundation, core courses, advanced seminars, a methodology requirement, directed readings and independent research courses, and the dissertation. All students must take the PhD courses that are offered in each of the first two years in the program. Students must satisfy first year research paper requirement which will be due at the end of the first year. Students also must pass the comprehensive qualifying examination, which is administered at the end of the second year of study when all the relevant course requirements (Core Courses, Advanced Seminars, Research Methods) have been satisfied. It is intended to assess the student’s mastery of the basic theories and methodologies central to the program and to evaluate the student’s potential to do original research in an area of specialization. After passing the comprehensive exam, each student writes a dissertation proposal. This must be completed within six months of the comprehensive exam. The proposal is defended before a faculty committee appointed in consultation with the student, dissertation chair, and PhD advisor. This committee also serves as the supervising committee for the dissertation after the proposal is approved.

Course Requirements

Foundation Courses: minimum of 12 semester credit hours

These courses provide a foundation in basic business topics such as economics, marketing, finance, and accounting. These courses may be waived for students with master’s degrees in management or other academic backgrounds that provide an equivalent foundation.

Core Courses: 24 semester credit hours
The PhD program in Management Science is characterized by a high ratio of research faculty to students, which fosters close working relationships. Core and elective courses provide the students with a thorough understanding of management principles. Coursework incorporates a broad business outlook into the study of theory and practice. A sequence of PhD seminars exposes students to traditional and emerging research issues. Students have the opportunity to be involved in ongoing research projects under the mentorship of experienced faculty. We emphasize involving students in research early in their graduate careers. The close interaction with faculty members enables students to learn to identify and develop research ideas and create their own research agenda. Students also develop their teaching competence under faculty mentorship by teaching organized classes.

The course of study for the PhD in Management Science consists of three phases. First is attaining a background in business concepts. Second are the requirements for doctoral proficiency. Third is the dissertation. Each area of study - Accounting, Finance, Information Systems, Marketing, and Operations
Management - determines the specific requirements for the three phases. Details can be obtained from the Director of the PhD programs in the Jindal School of Management.

Students admitted into the program typically devote two years to the doctoral proficiency coursework and research projects. They then take a comprehensive qualifying exam, based on the coursework. Following passing the qualifying exam, each student develops his or her dissertation research area, which is usually completed over the next two years.

Doctoral proficiency encompasses courses in research methods, electives or a specialization, doctoral seminars, and a written and oral qualifying examination.

Course Requirements

Required core courses: 18 semester credit hours

Secondary Core Courses: minimum of 9 semester credit hours

Remaining requirements beyond the core consist of research courses, electives, independent study and seminars as approved by the program committee appointed to guide and evaluate each student. After completion of the coursework to achieve doctoral proficiency, the student will sit for a written qualifying exam which must be passed before formal admission to candidacy for the doctorate. The student must also orally defend the dissertation proposal before starting the dissertation. Written examination in the area of specialization may also be required.
The focal point of the PhD program is the dissertation. The dissertation is written under the direction of the candidate’s committee. Twelve to twenty-four semester credit hours may be granted for the dissertation toward the minimum 75 semester credit hour requirement for the degree. At a time mutually agreeable with the candidate and the members of the committee, the student will orally defend his or her dissertation to the satisfaction of the committee. A student must pass in order to have the PhD degree conferred.

Accounting Concentration
This program is for individuals seeking training in the most advanced issues, both theoretical and applied, in the field of Accounting. It is designed to prepare them primarily for teaching positions in research-oriented universities. Some students may be placed in senior positions in industry, government or consulting organizations. The program requires a hands-on training in accounting research, supported by work in the disciplines of economics, mathematics, psychology and statistics, culminating in a doctoral dissertation.

Finance Concentration
This program is for individuals seeking the most advanced academic degree with an emphasis in Finance. It is designed to prepare them for (1) teaching positions in research-oriented universities, (2) senior staff positions in industry or government, or (3) senior positions in consulting organizations; however, the emphasis is on (1). The program consists of coursework in financial management, investments, and money and capital markets, together with work in the supporting areas of economics, mathematics, and statistics; it culminates in a doctoral dissertation.

Information Systems Concentration
This program is designed for individuals who seek training in advanced theoretical and applied issues in the field of information systems. The training prepares students for conducting leading edge research in topics ranging from the design of optimized systems to the effective use of such systems in organizations. Students undergo rigorous training in research methodologies as well as in the design of information systems. The research conducted is often interdisciplinary in nature, and is characterized by strong analytical modeling of new and emerging issues in information technology creation and management. The program prepares students primarily for academic positions in research universities; some students may be placed in research positions in industry, government or consulting organizations.

Marketing Concentration
The purpose of the PhD Program in Management Science with a marketing concentration is to train researchers capable of dealing with the most advanced issues, both theoretical and applied, in the field of marketing. Universities as well as major companies with marketing orientation aggressively recruit PhD’s with strong theoretical and research training in marketing. Graduates will have rigorous training in disciplinary areas and research methodology. They will have knowledge of the various research streams in marketing, will have developed a research specialization and a clear perspective on management issues.

Operations Management Concentration
Operations Management emphasizes the development of models, methods, applications, and algorithms as they apply to problems in manufacturing and services. All students will be exposed to deterministic and stochastic modeling and will have the option of applying and/or developing these and new methods to solve problems in their selected topics. The goal of the doctoral program in Operations Management is to educate future practitioners and researchers in the concepts and analytical
techniques needed to understand and advance scientific solutions to the problems currently faced by operations managers.

Research
The faculty of the School makes intellectual contributions in two areas: fundamental scholarship that advances theory and practice, and applied scholarship focusing on practical issues. The fundamental work includes traditional basic research as well as applied research that defines new areas of practice and provides general frameworks that address a wide range of application problems. The applied scholarship provides "how to" frameworks for skilled practitioners, uses demonstration cases to show how theories can be applied, and defines new areas of application for existing tools and techniques.
Naveen Jindal School of Management
School of Management Executive Education Programs

UT Dallas School of Management Executive Education combines the best of the School’s nationally recognized faculty with a select group of executives to provide an innovative, relevant portfolio of programs. Designed to advance knowledge and skills that improve organizational performance, these programs include both MBA and Master of Science degree programs, as well as certificate programs. Courses are taught on campus, on site, or online.

Executive MBA and Master’s Degrees
- Executive MBA (EMBA) Program
- Global Leadership Executive MBA (GLEMBA) Program
- Certificates and Degree Programs with an emphasis in Project Management
- Certificates and Degree Programs with an emphasis in Product Lifecycle and Supply Chain Management
- Master of Science in Healthcare Management for Physicians
- Healthcare Management Executive MBA for Physicians
- Executive Education Program in Organizational Behavior and Coaching
- Executive Master of Science Degree and Certificate Programs in Systems Engineering and Management (MS SEM)
- Joint Executive MS SEM/Global Executive MBA Program (Dual Degree)

Special admission and fee requirements apply to the following programs and courses.

Executive MBA (EMBA) Program
53 semester credit hours minimum

Ranked internationally, the Executive MBA (EMBA) program prepares experienced professionals for upper management, executive levels, and the C-suite. Based in part on personal executive coaching, the program provides a transformative, leadership, educational, and personal improvement experience that enhances your success and takes your career to a higher level. The 21-month program has only 3-4 class days per month, minimizing disruptions for those with busy schedules. Executive MBA students learn versatile confidence and performance-oriented capabilities in an integrated curriculum. The program includes two trips (America’s and international). The ten-day international trip exposes students to corporate and governmental decision makers and provides behind the scenes with one-on-one conversations with global leaders.

The EMBA program is supported entirely by participant fees and special admissions requirements apply.

Executive MBA degree programs in the Naveen Jindal School of Management require a core of 29 semester credit hours, along with a set of specially designed elective courses equivalent to 24 semester credit hours, for a total of 53 semester credit hours. The MBA core is comprised of the following courses:

MBA Core Curriculum: 30 semester credit hours

ACCT 6201 Introduction to Financial Accounting

ACCT 6202 Introduction to Managerial Accounting
BPS 6310 Strategic Management
FIN 6301 Financial Management
IMS 6204 Global Business
MIS 6302 Information Technology Strategy and Management*
MEOC 6303 Business Economics
MKIT 6301 Marketing Management
OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
OPRE 6302 Operations Management
OB 6301 Organizational Behavior

*This course replaces MIS 6204, which is a two semester credit hour course. The Executive MBA MIS 6302 is a three semester credit hour course.

The following courses, comprising a total of 23 semester credit hours, are currently required in the Executive MBA Program curriculum.

BPS 6251 Capstone: Integration Enterprise
FIN 6252 Creating Value through Mergers, Acquisitions and Private Equity
IMS 6252 International Business Management
BPS 6151 Executive Study - Americas
IMS 6351 Executive International Study Trip - EMBA
ACCT 6287 Board Membership, Risk Management and Compliance
OB 6152 Executive Coaching
BPS 6256 C-Suite Leadership
OB 6339 Negotiations and Contracts
ENTP 6395 Seminar – Topics in Innovation and Entrepreneurship
BPS 6255 Field Project

Global Leadership Executive MBA (GLEMBA) Program
53 semester credit hours minimum

The Global Leadership Executive MBA (GLEMBA) program emphasizes international skills, business operations, and transformative leadership. Courses are taught and experiences are provided to working professionals to gain the skills and knowledge needed to assume global leadership responsibilities. This 23 month program includes: online learning, five retreats held on campus, and a ten day international study tour as part of this Executive MBA program. A set degree plan expands the MBA core curriculum with an international curriculum.

GLEMBA students take additional courses comprising a total of 24 semester credit hours from the following list specific to the Global Leadership Executive MBA Program curriculum.

GLEMBA program is supported entirely by participant fees and special admissions requirements apply.

GLEMBA degree programs in the Naveen Jindal School of Management require a core of 29 semester credit hours, along with a set of specially designed elective courses equivalent to 24 semester credit hours, for a total of 53 semester credit hours. The MBA core is comprised of the following courses:

MBA Core Curriculum: 29 Semester credit hours
ACCT 6201 Introduction to Financial Accounting
ACCT 6202 Introduction to Managerial Accounting
BPS 6310 Strategic Management
FIN 6301 Financial Management
IMS 6204 Global Business
MIS 6204 Information Technology and MIS Fundamentals
MECO 6303 Business Economics
MKT 6301 Marketing Management
OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
OPRE 6302 Operations Management
OB 6301 Organizational Behavior

The following courses, comprising a total of 24 semester credit hours, are currently required in the GLE MBA Program curriculum

IMS 6365 Cross-Culture Communication and Management
IMS 6151 Global Business Ethics
IMS 6212 Global Communications and Negotiations
IMS 6354 Global Marketing
IMS 6213 Global Politics in Business
IMS 6214 Global Mergers and Acquisitions
OPRE 6250 Global Supply Chain Management
ENTP 6352 International Business Plan
ENTP 6351 International Entrepreneurship and Innovation
IMS 6351 Executive International Study Trips - EMBA

Certificates and Degree Programs with an emphasis in Project Management

The Executive Education Project Management Program is one of the emphasis areas designed to begin with a set of specialization area courses followed by additional business management core courses and leading to either a Master of Science or a Master of Business Administration degree with the chosen emphasis. Upon completion of the project management core courses, students earn a graduate certificate in project management and are prepared to take the Project Management Institute's Project Management Professional (PMP) certification exam. Following completion of the project management core, students may then continue to complete the requirements for the Master of Science or the Master of Business Administration degree.

Project management faculty members have industrial project management, operations management, management consulting, and teaching experience. The program curriculum is delivered both on campus and online. The on-campus program accommodates work and travel schedules by meeting 8 hours per day on one consecutive Thursday, Friday, and Saturday per month. The online program is designed as weekly modules equivalent to one-half day on campus and includes live interaction.

The project management emphasis certificate and degree programs are supported entirely by participant fees and special admissions requirements apply. Both degree and non-degree seeking students with undergraduate degrees can study towards the Graduate Certificate in Project Management. Potential students are required to complete an application, provide written professional references from 3 people, attend an interview with the program director, and request all universities attended send an official transcript.
Graduate Certificates in Project Management (21 semester credit hours minimum)
The graduate certificate in Project Management is awarded after completion of the project management core courses described below totaling 21 semester credit hours. These courses emphasize a systems approach to project management and follow the lifecycle of a project, integrating relevant topics from multiple knowledge areas rather than presenting topical courses in isolation. This type of learning environment more closely tracks an actual work experience and facilitates learning and application.

Courses Required for Certificate in Project Management
OPRE 6271 Project Overview, Strategic and Process Management
OPRE 6372 Project Initiation
OPRE 6373 Project Planning
OPRE 6374 Project Planning and Execution
OPRE 6375 Project Execution and Closeout
OPRE 6376 Advanced Project Management and Simulation
MAS 6101 Legal Considerations in Project Management
OB 6301 Organizational Behavior

Master of Science in Management and Administrative Sciences with an emphasis in Project Management
39 semester credit hours minimum

A Master of Science degree is awarded after the completion of an additional 18 semester credit hours beyond the Project Management Core requirements.

The MS MAS in Project Management requires the following coursework
MS MAS in Project Management supplemental curriculum:
ACCT 6201 Introduction to Financial Accounting
ACCT 6202 Introduction to Managerial Accounting
MECO 6303 Business Economics
MIS 6204 Information Technology and MIS Fundamentals
OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
IMS 6270 Seminar in International Operations Management
IMS 6271 Seminar in International Strategic Management

Executive MBA degree with an emphasis in Project Management
53 semester credit hours minimum

The Executive MBA is earned by waiving the Master of Science degree and completing an additional 14 semester credit hours, for a total of 53 semester credit hours. Students must include the executive core courses listed below to earn the degree.

Additional courses to fulfill requirements for the Executive MBA
BPS 6310 Strategic Management
FIN 6301 Financial Management
IMS 6204 Global Business
MKT 6301 Marketing Management
Certificates and Degree Programs with an emphasis in Product Lifecycle and Supply Chain Management

The graduate certificate and degree programs in Product Lifecycle and Supply Chain Management focus on educating executives and industry sponsored employees by combining theory and practice. It emphasizes the need to understand “the big picture,” the importance of renewed focus on product lifecycle from design to disposal and supply chain from end to end. Students are trained to be effective problem solvers, and to continuously improve product performance and supply chain efficiency.

The program will employ lectures, case studies, site visits, and the use of quantitative and qualitative methods to meet the learning objectives of the program. Students are required to integrate classroom learning with work projects. The program leverages the world-class faculty in the operations management and industry leaders/practitioners to deliver the program. Following completion of the product lifecycle and supply chain management core, students may then continue to complete the requirements for the Master of Science or the Master of Business Administration degree.

The product lifecycle and supply chain emphasis certificate and degree programs are supported entirely by participant fees and special admissions requirements apply. Both degree and non-degree seeking students with undergraduate degrees can study towards the Graduate Certificate in Project Management. Potential students are required to complete an application, provide written professional references from 3 people, attend an interview with the program director, and request all universities attended send an official transcript.

Graduate Certificates in Product Lifecycle and Supply Chain Management
15 semester credit hours minimum

The Graduate certificate in Product Lifecycle and Supply Chain Management is awarded after completion of the product lifecycle and supply chain management core courses described below, totaling 15 semester credit hours.

Courses Required for Graduate Certificate in Product Lifecycle and Supply Chain Management: 15 semester credit hours

OPRE 6366 Global Supply Chain Management
OPRE 6370 Global Logistics and Transportation
OPRE 6371 Purchasing, Sourcing and Contract Management
OPRE 6379 Product Lifecycle Management
OPRE 6364 Quality Control (Lean 6 Sigma)

Master of Science in Supply Chain Management
36 semester credit hours minimum

A Master of Science in supply chain management degree is awarded after the completion of an additional 22 semester credit hours beyond the product lifecycle and supply chain management Core requirements. The MS in Supply Chain Management requires the following coursework:

MS in Supply Chain Management supplemental curriculum: 22 semester credit hours
ACCT 6201 Introduction to Financial Accounting
ACCT 6202 Introduction to Managerial Accounting
FIN 6301 Financial Management
OB 6301 Organizational Behavior
OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
OPRE 6302 Operations Management
OPRE 6367 Capstone Projects in Supply Chain Management (International Study)
OPRE 6368 Industrial Applications in Supply Chains (International Study)

Executive MBA degree with an emphasis in Product Lifecycle and Supply Chain Management
53 semester credit hours minimum

The Executive MBA is earned by waiving the Master of Science degree and completing an additional 16 semester credit hours, for a total of 53 semester credit hours. Students must include the executive core courses listed below to earn the degree.

Additional courses to fulfill requirements for the Executive MBA: 16 semester credit hours
BPS 6310 Strategic Management
IMS 6204 Global Business
MIS 6301 Marketing Management
OPRE 6342 Special Topics in Product Lifecycle and Supply Chain Management

Master of Science in Healthcare Management for Physicians
36 semester credit hours minimum

The Master of Science in Healthcare Management is a specialized business degree available to licensed MDs and DOs. The 36 semester credit hour healthcare management curriculum consists of nine 4-day residential classes or any eight classes plus a self-directed field study. A different class is offered every two months and classes may be started at any time and taken in any order. Classes are eligible for up to 36 semester credit hours each of Category 1 CME credit toward the AMA Physician’s Recognition Award. Successful completion of any five classes is recognized by the award of a Graduate Certificate in Healthcare Management.

The curriculum is centered on real-life healthcare problems and cases. Classes are jointly taught by senior business and medical school faculty with outstanding academic credentials and real-world healthcare experience. Physicians and faculty work collaboratively in small teams to examine facts, evaluate alternatives, and develop workable solutions.

The healthcare management curriculum consists of the following courses
HMGT 6401 Negotiation and Conflict Management in Healthcare
HMGT 6402 Financial Management of Healthcare Organizations
HMGT 6403 Medical Cost and Performance Management
HMGT 6404 Quality and Performance Improvement in Healthcare
The Healthcare Management Executive MBA is a general business degree preferred by physicians who wish to transition into an executive management role. It requires the completion of the healthcare management curriculum plus an additional 17 semester credit hours consisting of six non-healthcare related general business classes. These classes provide an integrated overview of functional areas of management as well as analytical tools for effective decision making. The general business classes may be taken online for maximum flexibility and convenience. The online classes require no on-campus visits.

The six general business courses required are:
- FIN 6301 Financial Management
- IMS 6204 Global Business
- MECO 6303 Business Economics
- MKT 6301 Marketing Management
- OPRE 6301 Quantitative Introduction to Risk and Uncertainty in Business
- OPRE 6302 Operations Management

The Healthcare Management Executive MS and MBA degrees are supported entirely by participant fees and special admissions requirements apply. Further information may be obtained from the program website: http://amme.utdallas.edu.

Executive Education Program in Organizational Behavior and Coaching
As is the case with both Project Management and Healthcare Management for Physicians, students in the executive program in Organizational Behavior and Coaching can complete multiple levels of recognition in the program, including:
- A Graduate Certificate in Executive and Professional Coaching after 15 semester credit hours
- A Master of Science degree in Management and Administrative Sciences after the completion of an additional 21 semester credit hours beyond certificate requirements.

This concentration focuses on organizational behavior and coaching theory, methodology and techniques. Students learn how to become instruments of individual and organizational change, lead and manage organizational transitions, work effectively when there is resistance to change, and develop skills as an internal and external practitioner. Students deepen their knowledge of individual and organizational behavior through the integration of theory and practice. They leave the program with a set of tools for personal, group, organization, and community transformation, qualified to apply for professional accreditation by the International Coach Federation.

Classes are conducted utilizing the very best in interactive distance learning methodologies, making the program convenient, efficient, and geographically independent for busy professionals. Students are
taught by outstanding master coaches with real-world coaching experience within business settings and School of Management faculty. Participants will be eligible to receive fifteen graduate semester credit hours upon completion of the graduate certificate.

Graduate Certificate in Executive and Professional Coaching
15 semester credit hours minimum

The graduate level certificate requires the successful completion of the following six courses specific to Executive and Professional Coaching, including three Coaching Practice/Practicum courses, **OB 6248**, **OB 6249**, or **OB 6253**.

Executive and Professional Coaching courses
- **OB 6248** Coaching Practice Lab I
- **OB 6249** Coaching Practice Lab II
- **OB 6350** Introduction to Executive and Professional Coaching
- **OB 6351** Coaching in the Business or Organizational Setting
- **OB 6352** Advanced Coaching Models and Methods
- **OB 6253** Coaching Practicum

Master of Science in Management and Administrative Sciences with a Concentration in Organizational Behavior and Coaching
36 semester credit hours minimum

After completion of the certificate requirements, students can go on to complete a Master of Science in Management and Administrative Sciences by completing another 21 semester credit hours of graduate level courses, including the courses in the **MS MAS core curriculum**.

The **MS MAS core** is comprised of the following courses:

- **ACCT 6201** Introduction to Financial Accounting
- **MECO 6303** Business Economics
- **MIS 6204** Information Technology and MIS Fundamentals
- **OPRE 6301** Quantitative Introduction to Risk and Uncertainty in Business
- **OB 6301** Organizational Behavior

Organizational Behavior and Coaching students take the executive **MS MAS core set**, and then draw the remainder of their courses from the following list specific to the Organizational Behavior component of the curriculum.

Organizational Behavior Electives
- **OB 6331** Power and Politics in Organizations
- **OB 6332** Negotiation and Dispute Resolution
- **OB 6337** Motivational Leadership in Organizations (On Campus Only)
- **OB 6338** Coaching as a Leadership Style (On Campus Only)
- **OB 6355** Capstone in Organizational Behavior and Coaching
Executive Master of Science Degree and Certificate Programs in Systems Engineering and Management (MS SEM)

36 semester credit hours minimum

The certificates and degree programs are jointly offered by the Naveen Jindal School of Management and the Erik Jonsson School of Engineering and Computer Science.

Admissions Requirements
A student lacking undergraduate prerequisites for graduate courses must complete prerequisites or receive approval from the graduate advisor and the course instructor. Specific admission requirements for the MS SEM follow.

A student entering the MS SEM program should meet the following guidelines:

• A minimum of a BS in engineering, mathematics, physics, chemistry, economics or finance (specifically, programs that provide adequate fundamental skills in mathematics).
• A minimum of three years of work experience.
• Submission of three letters of recommendation from individuals who are able to judge the candidate's probability of success in pursuing a program of study leading to the MS SEM degree.
• Submission of an essay outlining the candidate's background, education, and professional goals.

Degree Requirements
The MS SEM program is designed to be flexible to accommodate different student backgrounds, allowing students to learn in areas in which they are deficient, while still guaranteeing core competency in systems engineering and systems management. This program has both a thesis and a non-thesis option. All part-time MS SEM students will be assigned initially to the non-thesis option. Those wishing to elect the thesis option may do so by obtaining the approval of a faculty thesis supervisor.

The MS SEM degree requires a total of 36 semester credit hours consisting of 12 courses in the non-thesis option or 10 courses plus six semester credit hours of thesis credit for the thesis option. All students must have an academic advisor and an approved degree plan. Courses taken without advisor approval will not count toward the 36 semester credit hour requirement. Successful completion of the approved course of studies leads to the MS SEM degree. Please also note that the University's general degree requirements are discussed in the graduate catalog.

Non-Thesis Option
Completion of a minimum of 36 semester credit hours of graduate-level lecture courses including the required core courses. With advisor approval, these may include some 5000 level courses. Students must earn a grade of B- or better in each of four core courses (see below).

Thesis Option
An alternative to the 36 semester credit hour requirement for the MS SEM degree is the completion of a minimum of 30 semester credit hours of graduate-level lecture courses, with a grade of B- or better in each of the required core courses (see below), six semester credit hours of a combination of master's research (SYSM 6V70) and thesis (SYSM 6V90), submitted to the graduate school, and a formal public defense of the thesis.

Students enrolled in the thesis option should meet with individual faculty members to discuss research opportunities and to choose a research advisor during the first or second semester that the student is
enrolled. After the second semester of study, course selection should be made in consultation with the research advisor. Part-time students are encouraged to enroll in only one course during their first semester and in no more than two courses during any semester they are also working full-time.

Research and thesis semester credit hours cannot be counted in an MS SEM degree plan unless a thesis is written and successfully defended. A supervising committee, which must be chosen in consultation with the student’s thesis advisor prior to enrolling for thesis credit, administers the defense. With advisor approval, the lecture courses may include some 5000 level courses. Full-time UT Dallas students who receive financial assistance are required to enroll in nine semester credit hours each semester.

Required Courses

Students are required to take four courses (a total of 12 semester credit hours) from a set of eight courses in the list below. Two of the courses must be from the Engineering Core section and two from the Management Core section. The four required courses contribute a total of 12 semester credit hours toward the MS degree.

Prescribed Elective Courses

These consist of an additional four courses (a total of 12 semester credit hours) from the set of eight core courses listed and/or the set of courses listed below. Two of these courses must be chosen from the two Engineering sections (core and elective), and two from the two Management sections. Because a program objective is to maintain a high degree of flexibility, students are encouraged to work with a SEM program advisor to discuss possible (limited) exceptions and substitutions for the prescribed courses.

SEM Core Curriculum

Engineering 1 (Core)

- SYSM 6301 Systems Engineering, Architecture and Design
- SYSM 6302 Dynamics of Complex Networks and Systems
- SYSM 6303 Quantitative Introduction to Risk and Uncertainty in Business
- SYSM 6305 Optimization Theory and Practice

Management 1 (Core)

- SYSM 6311 Systems Project Management in Engineering and Operations
- SYSM 6312 Systems Financial Management
- SYSM 6318 Marketing Management
- SYSM 6333 Systems Organizational Behavior

Engineering 2 (Prescribed Elective)

- SYSM 6304 Risk and Decision Analysis
- SYSM 6306 Engineering Systems: Modeling and Simulation
- SYSM 6307 Linear Systems
- SYSM 6308 Software Maintenance, Evolution and Re-Engineering
- SYSM 6309 Advanced Requirements Engineering
- SYSM 6310 Software Testing, Validation and Verification
- SYSM 6321 Financial Engineering I
- SYSM 7321 Financial Engineering II

Management 2 (Prescribed Elective)
Free Elective Courses
For the free elective, students will be able to take, with prior approval from the program director, any four additional and distinct courses of the remaining 12 core courses that have not already been taken as required courses or prescribed elective courses. Students will also be able to take additional free elective courses that are already being offered in management or in engineering that will allow "concentration" or "specialization" in specific industry sectors, including the following:

- Healthcare Services
- Energy, Resources and Infrastructure
- Complex Brain, Biological and Behavioral
- Aerospace, Defense and Space
- Telecom and IT Networks
- Information Assurance and Cyber-Security
- Arts and Technology and Web Media
- Transportation
- Macro-economic and Finance
- Global Supply Chain Management
- Enterprise Systems
- Entrepreneurship and Innovation

Students must take a minimum of five core and prescribed elective courses before taking any free elective courses.

Certificates
The program offers two certificates: a Certificate in Systems Engineering and a Certificate in Systems Management. Each certificate requires 12 semester credit hours and is offered in an Executive Education, four-semester credit hour module format. See Course Descriptions for information on course content.

Certificate in Systems Engineering
Students are required to complete two from the set of engineering courses listed below, and any two additional from the remainder of the 20 SYSM-prefix listed below in either group, engineering or management.

Systems Engineering Courses
- SYSM 6301 Systems Engineering, Architecture and Design
- SYSM 6302 Dynamics of Complex Networks and Systems
- SYSM 6303 Quantitative Introduction to Risk and Uncertainty in Business
- SYSM 6304 Risk and Decision Analysis
- SYSM 6305 Optimization Theory and Practice
Certificate in Systems Management

Students are required to complete two from the set of management courses listed below, and any two additional from the remainder of the 20 SYSM-prefix listed in group, engineering or management.

Systems Management Courses
- SYSM 6311 Systems Project Management
- SYSM 6312 Systems Financial Management
- SYSM 6313 Systems Negotiation and Dispute Resolution
- SYSM 6314 Manufacturing and Service Systems Planning and Analysis
- SYSM 6315 The Entrepreneurial Experience
- SYSM 6316 Managing Innovation Within the Corporation
- SYSM 6317 The Management of High Tech Products
- SYSM 6318 Marketing Management
- SYSM 6319 Business Economics
- SYSM 6320 Strategic Leadership
- SYSM 6322 Technology and New Product Development
- SYSM 6333 Systems Organizational Behavior

Engineering Courses
- SYSM 6301 Systems Engineering, Architecture and Design
- SYSM 6302 Dynamics of Complex Networks and Systems
- SYSM 6303 (OPRE 6301) Quantitative Introduction to Risk and Uncertainty in Business
- SYSM 6304 (OPRE 6335) Risk and Decision Analysis
- SYSM 6305 Optimization Theory and Practice
- SYSM 6306 (BMEN 6372, MECH 6314) Engineering Systems: Modeling and Simulation
- SYSM 6307 (EECS 6330, MECH 6300) Linear Systems
- SYSM 6308 (CS 6356, SE 6356) Software Maintenance, Evolution and Re-Engineering
- SYSM 6309 (SE 6361, CS 6361) Advanced Requirements Engineering
- SYSM 6310 (CE 6367, CS 6367, SE 6367) Software Testing, Validation and Verification
- SYSM 6321 Financial Engineering I
- SYSM 7321 Financial Engineering II
- SYSM 6V70 Research In Systems Engineering and Management
- SYSM 6V80 Special Topics in Systems Engineering and Management
- SYSM 6V90 Thesis

Management Courses
- SYSM 6311 (OPRE 6362) Systems Project Management in Engineering and Operations
- SYSM 6312 (FIN 6301) Systems Financial Management
- SYSM 6313 (MECO 6352, OPRE 6396, OB 6332, HMG 6324) Systems Negotiation and Dispute Resolution
Those students who start out in the GLEMBA Program and wish to join the dual program will:

1. First finish 29 semester credit hours by completing the 1st year of GLEMBA, and

- Dual Executive MS SEM/Global Executive MBA Degree

 63-65 semester credit hours minimum

 The Naveen Jindal School of Management and the Erik Jonsson School of Engineering and Computer Science offer a Dual Executive MS SEM and Global Executive MBA (GLEMBA) program because today's experienced graduate students seasoned by eight or more years as workforce professionals often seek a more comprehensive education in technical skills as well as broad-based business-leadership capabilities for the global economy. The dual-degree option provides both deep knowledge in SEM, as well as a broad knowledge of all areas of management with an enhanced worldwide perspective of business leadership for increasing productivity, efficiency and profitability.

 The dual-degree program allows students to earn a combination of an MS SEM degree and a Global Executive MBA degree together. Separately, each degree would require 36 semester credit hours for the MS plus 53 semester credit hours for the MBA, or 89 semester credit hours total. However, in the dual program students can earn both degrees with a smaller total of 63 to 65 semester credit hours. The two degrees are awarded at the same time, upon completion of the requisite number of semester credit hours.

 Those students who start out in the Executive MS SEM Program and wish to join the dual program will (1) first complete 36 semester credit hours in the Executive MS SEM program, and (2) will then transition to the 2nd year of the GLEMBA Program and complete the remaining 27 semester credit hours, by taking the following GLEMBA courses, for a total of 63 semester credit hours towards getting their dual degree.

- BPS 6310 Strategic Management
- IMS 6365 Cross-Culture Communication and Management
- IMS 6151 Global Business Ethics
- IMS 6355 Global Communications and Negotiations
- IMS 6354 Global Marketing
- IMS 6214 Global Mergers and Acquisitions
- IMS 6213 Global Politics in Business
- OPRE 6250 Global Supply Chain Management
- ENTP 6352 International Business Plan
- ENTP 6351 International Entrepreneurship and Innovation
- IMS 6351 Executive International Study Trip - EMBA

Those students who start out in the GLEMBA Program and wish to join the dual program will:
• Then join the Executive SEM Program. Five of the courses they will have taken (OPRE 6301, FIN 6301, OB 6301, MKT 6301 and MECO 6303) in the 1st year of GLEMB, overlap with five core required or prescribed elective courses in Executive MS SEM - one engineering (SYSM 6303) and four management (SYSM 6312, SYSM 6333, SYSM 6318, and SYSM 6319). They will thus be required to take 4 more core or prescribed elective courses in Executive MS SEM for a total of 12 semester credit hours, at least 3 of which will need to be engineering courses, and at least one of those will be from the core engineering courses.

• They will then rejoin the 2nd year of the GLEMB Program and complete the remaining 24 semester credit hours. They will thus have completed a total of 65 semester credit hours towards getting the dual degree.
School of Natural Sciences and Mathematics

The School of Natural Sciences and Mathematics (NS&M) houses six departments, each with graduate programs: Chemistry (MS, PhD); Geosciences (MS, PhD); Mathematical Sciences, emphasizing Applied Mathematics, Statistics and Actuarial Science (MS, PhD); Molecular and Cell Biology (MS, PhD); Physics (MS, PhD); and Science and Mathematics Education (Master of Arts in Teaching). In addition, there are three interdisciplinary degrees offered: Bioinformatics and Computational Biology (MS) and Geospatial Information Sciences (MS, PhD). Each is relatively small and thus able to provide excellent graduate student - faculty contact. However, each maintains a strong research program. Increasingly, departments interact with each other in research, allowing interdisciplinary efforts to flourish. A number of well-funded Research Centers and Institutes are also housed in NS&M; these allow graduate students to approach real world, cutting edge research problems while working side by side with professional research staff and internationally recognized faculty. They are: the Center for Applied Mathematics; the Center for Lithospheric Studies; the UT Dallas NanoTech Institute; the Center for Quantum Electronics; and the Center for Space Sciences.

Degrees Offered

Chemistry

- **Master of Science in Chemistry** (30 semester credit hours minimum)
- **Doctor of Philosophy in Chemistry** (75 semester credit hours minimum beyond the baccalaureate degree)

Geosciences

- **Master of Science in Geosciences** (36 semester credit hours minimum)
- **Doctor of Philosophy in Geosciences** (75 semester credit hours minimum beyond the baccalaureate degree)

Mathematical Sciences

- **Master of Science in Actuarial Science** (36 semester credit hours minimum)
- **Master of Science in Mathematics - Specialization in Applied Mathematics** (36 semester credit hours minimum)
- **Master of Science in Mathematics - Specialization in Engineering Mathematics** (36 semester credit hours minimum)
- **Master of Science in Mathematics - Specialization in Mathematics** (36 semester credit hours minimum)
- **Master of Science in Mathematics - Specialization in Statistics** (36 semester credit hours minimum)
- **Doctor of Philosophy in Mathematics - Specialization in Applied Mathematics** (75 semester credit hours minimum beyond the baccalaureate degree)
• Doctor of Philosophy in Mathematics Specialization in Statistics (75 semester credit hours beyond the baccalaureate degree)

Molecular and Cell Biology

• Master of Science in Biotechnology (36 semester credit hours minimum)
• Master of Science in Molecular and Cell Biology (36 semester credit hours minimum)
• Doctor of Philosophy in Molecular and Cell Biology (75 semester credit hours minimum beyond the baccalaureate degree)

Physics

• Master of Science in Physics (30 semester credit hours minimum)
• Doctor of Philosophy in Physics (75 semester credit hours minimum beyond the baccalaureate degree)

Science and Mathematics Education

• Master of Arts in Teaching in Science Education (37 semester credit hours minimum)
• Master of Arts in Teaching in Mathematics Education (37 semester credit hours minimum)

Interdisciplinary Studies

• Master of Science in Bioinformatics and Computational Biology (36 semester credit hours minimum)
• Master of Science in Geospatial Information Sciences (30 semester credit hours minimum)
• Doctor of Philosophy in Geospatial Information Sciences (75 semester credit hours minimum beyond the baccalaureate degree)
School of Natural Sciences and Mathematics

Master of Science in Actuarial Science Program

36 semester credit hours minimum

Program Objective

The objective of the program is to educate future leaders of the actuarial industry with training in actuarial theory and methods in a wide spectrum of actuarial applications involving probabilistic and statistical models. All students will be prepared to take five actuarial preliminary exams and will take two advanced actuarial classes to prepare for professional accreditation. Furthermore, students who did not take classes required for VEE (Validation of Educational Experience) credits in statistics, finance, and economics will have such opportunity. With this combined knowledge of mathematics particularly of probability, statistics, and decision theory together with knowledge of financial mathematics and insurance, the expected passing of five actuarial exams, and the three required VEE credits, graduates of the program will be able to work as senior actuaries in insurance, consulting, finance, government, and emerging markets.

Program Faculty

Professors: Larry P. Ammann, Michael I. Baron, Sam Efromovich [Endowed Professorship], Robert Serfling

Associate Professor: Pankaj K. Choudhary

Assistant Professor: Bhargab Chattopadhayay, Min Chen, Qionxia Song

Clinical Professor: Ron Dearing

Clinical Associate Professor: Natalia Humphreys

The Master of Science in Actuarial Science (AS) Program at the University of Texas at Dallas is administered through the Department of Mathematical Sciences.

Course Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The minimal total required number of classes for graduation is 36 semester credit hours. Among them, 27 semester credit hours of required courses and 9 semester credit hours of electives.

Required Courses: 27 semester credit hours

- STAT 5351 Probability and Statistics I
- STAT 5352 Probability and Statistics II
- ACTS 6301 Theory of Actuarial Models: Life Contingencies
Prescribed Elective Courses: 9 semester credit hours

For the prescribed elective courses student chooses three of the following:

- **STAT 6337** Advanced Statistical Models
- **STAT 6329** Applied Probability and Stochastic Processes
- **STAT 6338** Advanced Statistical Methods II
- **STAT 6343** Experimental Design
- **STAT 6347** Applied Time Series Analysis
- **STAT 7338** Time Series Modeling and Filtering
- **STAT 6348** Applied Multivariate Analysis
- **STAT 6390** Topics in Statistics - Level 6
- **STAT 7334** Nonparametric and Robust Statistical Methods
- **MATH 6313** Numerical Analysis
- **STAT 6331** Statistical Inference I
- **FIN 6301** Financial Management
- **FIN 6308** Regulation of Business and Financial Markets
- **FIN 6310** Investment Management
- **FIN 6314** Fixed Income Securities
- **FIN 6360** Options and Future Markets
- **OPRE 6335** Risk and Decision Analysis
- **MECO 6303** Business Economics
- **ACCT 6305** Accounting for Managers
- **PPPE 6321** Economics for Public Policy

Preparation for Actuarial Exams

These classes prepare for the three preliminary actuarial examinations jointly administered by the Society of Actuaries (SOA), Casualty Actuarial Society (CAS) and the Canadian Institute of Actuaries (CIA):

- Exam 1/P: [STAT 5351](#) and [STAT 5352](#)
- Exam 2/FM: [ACTS 6308](#)
- Exam 3L/MLC: [ACTS 6301](#)
- Exam 3F/MFE: [ACTS 6302](#)
- Exam 4/C: [ACTS 6304](#)
- Exam 5/FAP: [ACTS 6306](#)

Validation by Educational Experience (VEE) Credits

Applied Statistical Methods: **STAT 6337** and **STAT 6347**
Corporate Finance: **FIN 6301**
Economics: **MECO 6303**

1. Exam 1/P
2. Exam 3L/MLC, Part I
3. Exam 3F/MFE
4. Exam 3L/MLC, Part II
5. Exam 4/C, Part I
6. Exam 4/C, Part II
7. Exam 5/FAP
8. Exam 2/FM
9. VEE, Applied Statistical Methods
10. VEE, Corporate Finance
11. VEE, Economics
School of Natural Sciences and Mathematics

Biotechnology Program

Program Faculty

The following faculty members work with and teach students in the MS in Biotechnology degree program:

Professors: Lee A. Bulla, Rockford K. Draper, Stephen D. Levene, Lawrence J. Reitzer, Stephen Spiro, Li Zhang, Michael Qiwei Zhang

Professor Emeritus: Donald M. Gray

Associate Professors: Gail A. M. Breen, John G. Burr, Jeff L. De Jong, Ernest M. Hannig, Dennis L. Miller

Assistant Professors: Heng Du, Jung-whan (Jay) Kim, Kelli Palmer, Duane D. Winkler, Zhenyu Xuan, Hyuntae Yoo

Senior Lecturers: Mehmet Candas, Li Liu, Robert C. Marsh

Master of Science in Biotechnology

36 semester credit hours minimum

Degree Objectives

The MS degree in biotechnology is intended to prepare students for careers in biotechnology and biomedicine and to assist currently employed professionals in enhancing their career opportunities.

Biotechnology captures the exciting possibilities made possible by the decoding of the human genome and by the advances in bioanalytical instrumentation, and the field is projected for continued rapid growth. The MS in Biotechnology is designed so that students may enter the program with a wide range of prior disciplinary backgrounds, prepare for and take the four core courses, and, by choice from a wide range of approved electives, tailor the remainder of the degree program to their career opportunities. In this manner, students may develop areas of additional depth in fields such as:

- molecular and cell biology
- chemistry
- engineering and computer science
- health care policy
- management and business administration

The MS in Biotechnology requires 36 semester credit hours of courses, typically twelve courses of three semester credit hours each. Students may also elect to prepare and defend a thesis; more than 36 semester credit hours may be required for such a program.
The MS in Biotechnology is administered by the Department of Molecular and Cell Biology. Students seeking further information or advisement should contact the Molecular and Cell Biology Department office.

Core Courses

The core consists of four courses: BIOL 5376 Applied Bioinformatics, BIOL 5381 Genomics, BIOL 6373 Proteomics, and BIOL 6384 Biotechnology Laboratory. BIOL 6384 Biotechnology Laboratory is a skills based course. Students must show that they have adequate laboratory skills in order to enroll in BIOL 6384. Students enrolled in the MS in Biotechnology program will have priority for enrollment in BIOL 6384.

The four core courses should be taken in the following order: BIOL 5376 Applied Bioinformatics, BIOL 5381 Genomics, BIOL 6373 Proteomics, BIOL 6384 Biotechnology Laboratory. Consent of instructor is required for core courses taken out of this sequence.

Program Policies

The program is open to all students who hold a bachelors degree, although those with laboratory science, mathematics, computer science, or engineering degrees are particularly encouraged to apply. In general, students will not be admitted to the MS in Biotechnology program if they require more than two courses in order to be ready to take the core courses.

Every student admitted to the MS in Biotechnology program shall consult with the program advisor(s) and develop a mutually agreed degree plan. All requests for deviations from the degree program described in this catalog shall be discussed first with a program advisor, who will forward the request to the Committee on Biotechnology for decision.

There are no formal prerequisites for most of the core courses, and a student, after obtaining consent of the program advisor, may attempt one or more core courses. However, the level of the BIOL core courses is such that most students will want to have mastered the material in the following courses:

- General Chemistry (two semesters, with lab), Organic Chemistry (two semesters, with lab)
- BIOL 2311 Introduction to Modern Biology I (with workshop)
- BIOL 3361 Biochemistry I or BIOL 6352 Modern Biochemistry I
- BIOL 3301 Classical and Molecular Genetics or BIOL 6V31 Molecular Genetics
- BIOL 3302 Eukaryotic Molecular and Cell Biology or BIOL 6356 Eukaryotic Molecular and Cell Biology

Students who elect to prepare and defend a thesis must satisfy the MS thesis procedures specified by the department of their thesis supervisor.

Elective Courses

As a general rule, any UT Dallas graduate course that is approved by the advisor as being relevant to the student's tailored degree plan may be taken as an elective for the Biotechnology MS program. Students should consult the program advisor for the current list of recommended electives.
School of Natural Sciences and Mathematics

Department of Chemistry

Department Faculty

Robert A. Welch Chair in Chemistry; Professor of Chemistry: Ray H. Baughman

Cecil and Ida Green Distinguished Chair in Systems Biology; Professor of Chemistry: A. Dean Sherry

Distinguished Chair in Natural Sciences and Mathematics; Dean of the School of Natural Sciences and Mathematics: Bruce M. Novak

Professors: Kenneth J. Balkus Jr., Julia Chan, Rockford K. Draper, John P. Ferraris, Jinming Gao, Bruce E. Gnade, Inga H. Musselman

Professor Emeritus: Richard A. Caldwell

Research Professors: Garry E. Kiefer, Duck Joo (D. J.) Yang

Associate Professors: Jung-Mo Ahn, Michael C. Biewer, Gregg R. Dieckmann, Warren J. Goux, Steven O. Nielsen, Paul Pantano, John W. Sibert IV, Mihaela C. Stefan, Jie Zheng

Assistant Professors: Jeremiah J. Gassensmith, Jiyong Lee, Ronald A. Smaldone

Senior Lecturers: Sergio Cortes, Sandhya R. Gavva, Jason McAfee, Yanping Qin, Amandeep Sra, Claudia Taenzler

Objectives

The PhD program is designed to produce graduates with a focus on innovation and problem solving in interdisciplinary cutting edge research areas such as organic and inorganic materials, nanotechnology, biotechnology, and polymer chemistry. These graduates, with their broad course background, research skills, and practical attitudes should find ready employment in industry or academic positions. A spectrum of courses provides the student with a broad knowledge of chemistry.

The Master of Science program offers students the opportunity to prepare for positions in industry, for further training in related scientific fields, or for further training in chemistry.

Facilities

The department has the equipment and facilities necessary for routine use by its faculty and students in teaching and research. Larger items include: 270 MHz (2), 400 MHz, and 500 MHz multi-nuclear FT-NMR spectrometers;
powder and single crystal x-ray diffractometer; MALDI mass spectrometer, several GC-MS and HPLC-MS, assorted spectrophotometers utilizing fluorescence, phosphorescence and absorption; peptide synthesizers; gel permeation chromatographs; workstations with molecular modeling software; and scanning tunneling and atomic force microscopes. Chemistry also participates in the Alan G. MacDiarmid NanoTech Institute, which houses instrumentation for modern materials science research. Facilities external to chemistry, but readily available to its use, include a library, the computer center, the cleanroom, and well-equipped machine and electronics shops.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

Undergraduate preparation equivalent to the degree of Bachelor of Science in Chemistry is required. The Chemistry program has no other requirements above the general admission requirements. However, admission is competitive and is decided case by case on the basis of the quality of previous relevant academic work. GRE combined score of 295 for the verbal and quantitative components, letters of reference, the student's statement of academic interests and, for foreign students, evidence of fluency in English. Foreign students with TOEFL scores less than 600 (paper test), 250 (computer test), or 100 (internet test) are admitted only in special circumstances.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Master of Science in Chemistry

30 semester credit hours minimum

A minimum of 30 total graduate semester credit hours is required. The MS degree can be pursued on a full- or part-time basis.

Graduate students in chemistry are expected to demonstrate fundamental knowledge of lecture and laboratory skills by completing the following courses with a grade of B or better.

Core Courses:

- CHEM 5314 Advanced Physical Chemistry
- CHEM 5331 Advanced Organic Chemistry I
- CHEM 5341 Advanced Inorganic Chemistry I
- CHEM 5355 Analytical Techniques I

Doctor of Philosophy in Chemistry

75 semester credit hours minimum beyond the baccalaureate degree

Normally pursued by full-time students enrolled in a minimum of 9 semester credit hours of approved graduate level courses per semester.

Other Course Requirements
In addition to the 12-semester credit hour core course requirements listed above, students seeking the PhD degree must take two upper level elective courses that are approved by the student's faculty research advisor and the Chemistry graduate advisor. PhD students are expected to complete these six required courses within the first two years of their enrollment. CHEM 8399 is also required as part of the preparation of the dissertation. Additional courses may be required by the student's Supervisory Committee.

Well-prepared students may request substitution of portions of the course requirements from the Committee on Graduate Studies in Chemistry. At least three organized courses must be taken at the University of Texas at Dallas. The opportunity exists to take elective courses during their second and subsequent years.

Qualifying Examination: Original Research Proposal

All PhD students must take the qualifying examination. In the second year, students seeking the PhD degree are required to write, present, and defend an original research proposal. In addition to providing valuable experience to the student, this exam is used to assess the student's originality and skills in organizing an effective approach to solving a novel problem. The results of this examination will be one criterion upon which admission to doctoral candidacy will be judged.

Research

Students have the option of completing a thesis Master's degree as part of their doctoral candidacy preparation, unless this requirement has been satisfied at the time of admission. The doctoral research project may be conducted in the same laboratory as the Master's degree research or, in order to gain a broader research experience, in another laboratory. A manuscript embodying a substantial portion of the PhD dissertation research accomplished by the student must be submitted to a suitable professional refereed journal prior to the public seminar and dissertation defense. A public seminar, successful defense of the dissertation, and its acceptance by the Supervising Committee and the Graduate Dean conclude the requirements for the PhD.

Representative Research Areas

Within the Chemistry program, opportunities exist for coursework and/or research in nanotechnology, biochemistry/biotechnology, organic, inorganic, materials, analytical, and physical chemistry. The opportunity to take coursework in several of the other university programs allows the student to prepare for interdisciplinary work. Specific topics within these broad research areas include nanoscience (carbon nanotubes, sensors, actuators, nanoscale devices, synthesis of nanoporous materials); organic solid-state and polymer chemistry (energy storage, electrochromism, light-emitting polymers, solar cells, membrane separations); inorganic solid-state (zeolites, membranes, laser ablation, sensors, fuel cells, electrospinning); biological NMR (structural biology, using NMR active tracers to follow metabolism in cells, isolated tissues and in vivo); supramolecular chemistry (design of novel host-guest systems, biologically responsive MRI agents, design, synthesis and study of macrocyclic receptors with applications in catalysis, materials science, and medicine); scanning probe microscopy (instrument development, image contrast, application to polymer microstructure); bioanalytical and bionano chemistry, synthetic chemistry (macrocycles, metalloprotein function); biochemistry/ enzymology (study of oxidative stress; oxidative metabolism of signaling molecules; molecular modeling; and catalysis).
School of Natural Sciences and Mathematics

Department of Geosciences

Department Faculty

Professors: Carlos L. V. Aiken, John F. Ferguson, John W. Geissman, William I. Manton, George A. McMechan, John S. Oldow, Robert J. Stern

Professors Emeritus: David E. Dunn, Richard M. Mitterer, Emile A. Pessagno Jr., Dean C. Presnall, Robert H. Rutford

Associate Professors: Thomas H. Brikowski

Associate Professor Emeritus: James L. Carter

Senior Lecturers: William R. Griffin, Ignacio Pujana

Objectives

The basic objective of the Department of Geosciences Graduate Program is to provide students with a broad fundamental background in geosciences as well as an in-depth emphasis in a particular specialty.

The Master of Science degree (thesis option) is designed for students desiring research experience in a specific area of the geosciences. This degree will prepare the student for professional employment in the energy, mining, or environmental industries or government, as well as those seeking a doctoral degree. The Master of Science degrees (non-thesis options) are designed for students who are employed or seek employment in the energy, mining, or environmental industries, and the industrial application of Geospatial Information Sciences (GIS).

The Doctor of Philosophy degree in Geosciences emphasizes basic research in one of the specialties in geosciences and is designed to prepare students for advanced positions in the energy, environmental or mining professions in industry or government, or for positions in academia.

The Doctor of Philosophy degree in Geospatial Information Sciences (GIS) is supported by the Department of Geosciences, the School of Economic, Political and Policy Sciences, and the School of Engineering and Computer Science. The degree reflects geospatial information science origins at the confluence of work in multiple disciplines. The degree focuses on advancement of the technology, its associated theory, and the enhancement of its applications. Graduates of this program will be well suited to advanced positions in the geospatial technology industry and academic positions.

Facilities

Departmental research facilities include: digital imaging petrographic microscopes, rock preparation and mineral separation facilities. Separate research facilities for computing, hydrology, geophysics and paleomagnetism/rock magnetism are described below.

Computing Facilities
The Geosciences Department has a large number of networked Windows/PC and Unix/Linux workstations in several laboratories accessible to the students and faculty. A number of laser printers are available, including a color printer. A large format HP 2500CP printer/plotter is available for creating maps and posters. A variety of software licenses are supported for GIS, remote sensing, image processing, geophysical data processing, graphics and visualization. Large scale computing is supported by two state of the art Linux clusters, one with 32 and one with 192 64-bit cores, and 30 terabytes of disk. A GeoWall visualization facility permits immersive interaction with 3-D data and is supported by high-resolution 3D HDTV visualization systems.

Hydrology Laboratory

Field equipment for measuring ground and surface water flow and chemistry, including borehole bailers, electric water level meter, FlowProbe hand-held flow meter, Hach DREL 2010 Basic Water Quality Lab (field spectrophotometer, pH and salinity meters), and YSI-85 DO/salinity/conductivity meter. Software for modeling water flow and transport, including general interfaces GMS and WMS, Hydrus-2D (unsaturated flow and transport), TOUGH2 and Tetrat (2-D multiphase flow and transport), and many public-domain models. Hardware and software for visualizing model results, including Windows and Linux workstations.

Geophysical Facilities

Geophysical research is supported by two Scintrex CG-5 gravimeters, a variety of surveying instruments including a Nikon theodolite and data collector, a TOPCON GPT 3005LW total station/electronic distance meter and theodolite, two Laser Atlanta Advantage CI reflectorless laser rangelfinders, a Riegl LMP 3800 laser scanner and a Riegl Z620 laser scanner, seven dual frequency Leica Viva RTK GPS systems, three dual frequency Topcon HyperLite RTK GPS systems (6 receivers), nine dual frequency Leica SR 9500 GPS receiver systems with choke-ring antennas, a Trimble GeoXT GPS system, a Trimble GeoHT GPS system and GPS post-processing software including Leica SK1, Trimble Pathfinder Office and BERNESE. A Geometrics proton-precession total field magnetometer system, an AGI SuperSting RI/IP DC resistivity and induced polarization system is available for near surface electrical conductivity mapping. Seismic and radar equipment include a Geometrics 48-channel floating point seismic acquisition system with Betsy, hammer, and explosive sources for shallow to deep exploration; and pulse EKKO IV, 1000 and PRO ground penetrating radars.

Paleomagnetism and Rock Magnetism Laboratory

The newly completed Paleomagnetism and Rock Magnetism laboratory, including a low magnetic field induction space designed and constructed by Dr. Gary Scott of Lodestar Magnetics, is about 2,600 sq. feet in footprint, and includes an attached sample preparation/wet chemistry laboratory, equipped with a fume hood, and an attached meeting/office space area for graduate and undergraduate students. The laboratory includes all non-magnetic furniture and cabinetry installed by Dr. Gary Scott and colleagues in the low magnetic field space. The workhorse instrument for all remanence measurements is a 2G Enterprises Model 760R horizontal access, three measurement axis (DC SQUID) superconducting rock magnetometer, equipped with DC SQUIDS and superinsulation. A fully automated specimen handling system is interfaced with an online alternating field (AF) demagnetizer capable of reaching peak inductions of 160 mT, allowing for automated demagnetization of specimens. We have initiated the purchase of a new, pulse-capable magnetometer from 2G Enterprises, with anticipated delivery in early 2013. AGICO JR-5 and AGICO JR-6 spinner magnetometers allow for the remanence measurements in both automated and static mode. Thermal demagnetization is conducted using Shaw (MMDT), and three ASC (TD48) furnaces, a Schonstedt (TSD-1), as well as a home built large-volume, three heating zone furnace capable of heating/cooling in an inert atmosphere. A large-volume furnace is capable of conducting long-term, elevated temperature magnetic viscosity experiments in a controlled atmosphere. The laboratory includes two ASC impulse magnetizers, with the full range of coil sizes. Two home built impulse magnetizers capable of peak DC induction of 1.3 T and 3.4 T and a horizontal Curie balance for measuring saturation magnetization as a function of temperature in an inert atmosphere. An additional, home built impulse magnetizer, capable of reaching about 9 T, is currently being tested. Two ASC D-2000 AF demagnetizers provide peak field values of 200 mT and are capable of imparting anhysteretic remanent magnetization (ARM) and partial ARM with DC fields up to 1.0 mT. A D-Tech coil interfaced with an externally tuned Schonstedt GSD 1 AF demagnetizer also allows for AF demagnetization and ARM acquisition. Chemical
demagnetizations are carried out in a fume hood environment in the laboratory. The leaching and drying of specimens is carried out in a field-reduced environment (less than 300 mT) in the fume hood. Kappabridge KLY-3S, KLY-4S, and MFK1-FA susceptibility systems allow bulk and anisotropy of magnetic susceptibility measurements to be made in both static and automated modes. The KLY-3S and MFK1-FA susceptibility units are interfaced with a CS-4 furnace assembly for measuring susceptibility as a function of temperature in an inert atmosphere. The laboratory also has over ten sets of mu-metal shields of different volumes and geometries, to provide very low magnetic field environments for different purposes. We are equipped for all aspects of field sampling and specimen preparation, including four complete sets of drilling equipment and three dual bladed trim saws. An Olympus BX51TRF-5 transmitted light/reflected light microscope, equipped with a dedicated DP72, 12.8 mp digital camera. A Princeton Instruments AGM/VSM, equipped with a high temperature furnace assembly, acquired by the Physics Department in 2010, has been transferred to the Geosciences Department, and a space remote from the Paleomagnetism Laboratory houses the magnetometer and internal water chiller system. The Physics Department at UT Dallas maintains a Quantum Designs Magnetic Property Measurement System and this is available for use by the PI and students. The UT Dallas Paleomagnetism Laboratory has dedicated field vehicle.

Admission Requirements

The University's general admission requirements are discussed on the [Graduate Admission page](catalog.utdallas.edu/2013/graduate/admission).

Applicants are typically expected to take the GRE General Test (Verbal, Quantitative, and Analytical Writing). A combined score of no less than 300 on the Verbal and Quantitative portions of the exam is advisable based on our experience with student success in the program. In addition, students should complete and submit a Supplemental Geosciences Application Form which can be obtained from the Geosciences Department Office by mail (ROC 21, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA), telephone (972-883-2401), or email the Geosciences Department.

Entering students are expected to have completed the equivalent of the University's BS degree in Geosciences, including courses in physics, mathematics and chemistry. Students whose undergraduate training is in a science other than geology or geophysics are admitted to the program when their previous course work complements or supports their intended research interests. Deficiencies in the undergraduate background of admitted students will be addressed through a sequence of four required graduate courses. It is understood that the minimum course requirements for the intended degree, as specified below, apply to well-prepared students.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures page](catalog.utdallas.edu/2013/graduate/policies/policy).

Additional requirements are specified below for each degree.

Master of Science in Geosciences

36 semester credit hours minimum

Thesis Option

All students seeking the Master of Science degree (thesis option) must satisfactorily complete the following requirements (a minimum of 36 graduate semester credit hours):

- **GEOS 5315** The Earth: An Overview
A minimum of 15 semester credit hours of additional graduate courses.

A minimum of nine semester credit hours of thesis research including GEOS 6398 Thesis and submit an acceptable thesis.

In addition to the above requirements, students seeking the MS degree (thesis option) must submit, no later than the second semester of enrollment, an acceptable degree plan and a research proposal to their supervising committee. Upon completion of the thesis research, the MS degree candidate will publicly defend the thesis.

Non-Thesis Option

All students seeking the Master of Science degree (non-thesis option) must satisfactorily complete a minimum of 36 graduate semester credit hours including the specified Geosciences courses below.

- GEOS 5315 The Earth: An Overview
- GEOS 5325 Remote Sensing Fundamentals or GEOS 6381 Geographic Information Systems Fundamentals
- GEOS 5375 Tectonics
- GEOS 5387 Applied Geophysics

A minimum of 21 semester credit hours of additional graduate courses, to be selected in consultation with the graduate advisor.

Research: An 8000 level, 3-semester credit hour research course.

In addition to the above requirements, students seeking the MS degree (non-thesis option) must submit, no later than the second semester of enrollment, an acceptable degree plan.

Master of Science in Geospatial Information Sciences

30 semester credit hours minimum

The Master of Science in Geospatial Information Sciences (MGIS) is a professional program that is offered jointly by the School of Economic, Political and Policy Sciences and the School of Natural Sciences and Mathematics. The program focuses on the use of Geographic Information Systems (GIS) and associated technologies such as remote sensing and global positioning systems for managing spatially referenced information. Students are provided with the concepts underlying GIS, the skills for implementing GIS projects in public and private sector organizations, and the ability to use GIS in pure or applied research in substantive areas. Prospective students should apply using established procedures to either Geosciences or the School of Economic, Political and Policy Sciences depending on their background.

For the Master's degree in Geospatial Information Sciences, beginning students are expected to have completed college Mathematics through Calculus and at least one programming or computer applications course or possess equivalent knowledge. Students must have the equivalent of GISC 6381 Geographic Information Systems Fundamentals and GISC 6382 Applied Geographic Information Systems, or they must take these courses at UT Dallas in addition to the 30 semester credit hours required for the MGIS. Additional details of the curriculum can be
Doctor of Philosophy in Geosciences

75 semester credit hours minimum beyond the baccalaureate degree

All students seeking a Doctor of Philosophy degree in Geosciences must satisfactorily complete the following requirements (75 graduate semester credit hours minimum).

GEOS 5315 The Earth: An Overview
GEOS 5325 Remote Sensing Fundamentals or GEOS 6381 Geographic Information Systems Fundamentals
GEOS 5375 Tectonics
GEOS 5387 Applied Geophysics

A minimum of 18 semester credit hours of additional Geosciences graduate courses to be specified by the student's research supervisory committee and the graduate advisor.
A minimum of 36 semester credit hours of additional graduate courses or research.
A minimum of nine semester credit hours of thesis research including GEOS 8399 Dissertation and submit an acceptable dissertation.

In addition to the above course requirements, students seeking the PhD degree must submit an acceptable degree plan and research proposal describing the intended project to be completed for the dissertation. Students entering with a Master's should complete this proposal in the third semester; students entering without a Master's have until the fourth semester. An oral qualifying examination covering the broad background and detailed knowledge relating to the student's specialization and research proposal will be held in the same semester that the proposal is submitted. After satisfactory performance on the Qualifying Examination, the student will complete and publicly defend the dissertation.

Also, see the University's general degree requirements. Please note that more detailed instructions for Geosciences Graduate students are given in the "Guidelines for Graduate Students - Geosciences" that is available in the office of the Department Head.

Doctor of Philosophy in Geospatial Information Sciences

75 semester credit hours minimum beyond the baccalaureate degree

The Doctor of Philosophy in Geospatial Information Sciences is an advanced degree offered jointly by the School of Natural Sciences and Mathematics, the School of Economic, Political and Policy Sciences and the Erik Jonsson School of Engineering and Computer Science. Geospatial information is a unifying theme across a wide range of disciplines and the unique organization of this program permits a diverse range of expertise to the prospective student. The PhD in GIS is intended to go beyond the MS in GIS degree in terms of analysis, the creation of new technology and the novel application of geospatial information technology. This program will prepare students for leadership positions in academy, industry or government.

Individual students can concentrate in particular discipline areas. The Geosciences component focuses on remote sensing and mapping technologies, including global positioning satellite and three-dimensional laser ranging based data capture as well as other imaging technologies. In particular, these methodologies are applied to geological, hydrological, and environmental problems associated with the physical Earth.
It is expected that students will enter this program with diverse educational backgrounds. Applicants may have Bachelors, Masters or other advanced degrees in any relevant field including computer science, economics, engineering, geography, geology, information system management, resource management, geographical information science, and possibly others. At least a Bachelors degree from an accredited (or equivalent) institution with an undergraduate/graduate grade point average of 3.25 or better is required. A GRE score of 300 or higher for the combined quantitative and verbal components is desirable. Fluency in written and spoken English is required. Please see detailed degree requirements under "Doctor of Philosophy in Geospatial Information Sciences," listed in the School of Natural Sciences and Mathematics section of the catalog.
School of Natural Sciences and Mathematics

Department of Mathematical Sciences

Department Faculty

Professors: Larry P. Ammann, Michael I. Baron, Vladimir Dragovic, Sam Efromovich, Matthew J. Goeckner, M. Ali Hooshuyar, Wieslaw Krawcewicz, Susan E. Minkoff, Dmitry Rachinskiy, Viswanath Ramakrishna, Robert Serfling, Janos Turi, John Zweck

Professors Emeritus: Patrick L. Odell, Ivor Robinson, John W. Van Ness

Clinical Professor: Ronald D. Dearing

Associate Professors: Zalman I. Balanov, Yan Cao, Pankaj K. Choudhary, Mieczyslaw K. Dabkowski, Yulia Gel

Clinical Associate Professor: Natalia Humphreys

Assistant Professors: Mohammad Akbar, Swati Biswas, Bhargab Chattopadhyay, Min Chen, Tobias Hagge, Qingwen Hu, Oleg Makarenkov, Qiongxia (Joanne) Song

Senior Lecturers III: Bentley T. Garrett, David L. Lewis, Paul Stanford

Senior Lecturers II: Manjula Foley, Yuly Koshevnik, William M. Scott

Senior Lecturers I: Mohammad Ahmadi, Diana Cogan, Malgorzata Dabkowska, Anatoly Eydelzon, Farid Khafizov, Brady McCary, My Linh Nguyen, Jigarkumar Patel

Affiliated Faculty: Hervé Abdi, Titu Andreescu, Alain Bensoussan, Raimund J. Ober, John J. Wiorkowski

Adjunct Faculty from the Research for Mathematics of the Mexican Council and Technology (CIMAT): José Carlos Gómez Larrañaga, Adolf Sánchez Valenzuela

Objectives

The Mathematical Sciences Department at The University of Texas at Dallas offers graduate study in six specializations: Actuarial Science, Applied Mathematics, Engineering Mathematics, Mathematics, Statistics, and an interdisciplinary degree in Bioinformatics and Computational Biology. The degree programs offer students the opportunity to prepare for careers in these disciplines themselves or in any of the many other fields for which these disciplines are such indispensable tools. As other sciences develop, problems which require the use of these tools are numerous and pressing.

In addition to a wide range of courses in mathematics and statistics, the Mathematical Sciences Department offers a unique selection of courses that consider mathematical and computational aspects of engineering, biology and other scientific problems.
The Master of Science degree programs are designed for persons seeking specializations in Applied Mathematics, Engineering Mathematics, Mathematics, Statistics, or Actuarial Science, or Bioinformatics and Computational Biology.

The Master of Science degree is available also for those who plan to teach Mathematics or Statistics above the remedial level at a community college or at a college or university. The Master of Science degree is recommended as a minimum, since an earned doctorate is sometimes required.

For information concerning the Master of Arts in Teaching in Mathematics Education, designed for persons who are teaching in grades 6-12, see the Science and Mathematics Education section.

The Doctor of Philosophy degree programs cover two basic areas of concentration: Statistics and Applied Mathematics. They are designed for those who plan to pursue academic, government, financial, actuarial, or industrial careers.

Facilities

The faculty, staff, and students have access to a large network of workstations and servers on campus.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

Specific additional admission requirements for students in degree programs in the Department of Mathematical Sciences follow. Students lacking undergraduate prerequisites for graduate courses in their area must complete these prerequisites or receive approval from the graduate advisor and the course instructor before registering.

One of the components of a student's academic history which is evaluated when the student is seeking admission to the graduate program is his/her performance on certain standardized tests. Since these tests are designed to indicate only the student's potential for graduate study, they are used in conjunction with other measures of student proficiency (such as GPA, etc.) in determining the admission status of a potential graduate student. Accordingly, there is no rigid minimum cutoff score for admission to the program. Most applicants admitted to either the MS or PhD programs have GRE scores of at least 143 verbal, 155 quantitative, and 310 combined. However, exceptions are made in some cases when other credentials are especially strong. Higher standards prevail for applicants seeking Teaching Assistantships.

Master of Science in Actuarial Science

36 semester credit hours minimum

The Master of Science in Actuarial Science (AS) Program at the University of Texas at Dallas is administered through the Department of Mathematical Sciences.

Complete information about the Master of Science in Actuarial Science Program is available at catalog.utdallas.edu/2013/graduate/programs/nsm/actuarial-science.

Master of Science in Mathematics

36 semester credit hours minimum
The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Students seeking a Master of Science in Mathematics must complete a total of 12 three-semester credit hour courses. In some cases, credit for 3 semester credit hours is approved for good mathematics background. The student may choose a thesis plan or a non-thesis plan. In the thesis plan, the thesis replaces two elective courses with completion of an approved thesis (six thesis semester credit hours). The thesis is directed by a Supervising Professor and must be approved by the Head of the Mathematical Sciences Department.

Each student must earn a 3.0 minimum GPA in the courses listed for the student's program.

Applied Mathematics Specialization (MS)

- **MATH 5301** Elementary Analysis I (or equivalent)
- **MATH 5302** Elementary Analysis II (or equivalent)
- **MATH 6303** Theory of Complex Functions I
- **MATH 6313** Numerical Analysis
- **MATH 6315** Ordinary Differential Equations
- **MATH 6318** Numerical Analysis of Differential Equations
- **MATH 6319** Principles and Techniques in Applied Mathematics I
- **MATH 6320** Principles and Techniques in Applied Mathematics II
- **MATH 6318** Inverse Problems and Applications
- **MATH 6321** Optimization

Plus two guided electives.

Engineering Mathematics Specialization (MS)

- **MATH 5301** Elementary Analysis I (or equivalent)
- **MATH 5302** Elementary Analysis II (or equivalent)
- **MATH 6303** Theory of Complex Functions I
- **MATH 6313** Numerical Analysis
- **MATH 6315** Ordinary Differential Equations
- **MATH 6318** Numerical Analysis of Differential Equations
- **MATH 6319** Principles and Techniques in Applied Mathematics I
- **MATH 6320** Principles and Techniques in Applied Mathematics II
- **MATH 6331** Linear Systems and Signals
- **MATH 6305** Mathematics of Signal Processing

Plus two guided electives.

Mathematics Specialization (MS)

- **MATH 5301** Elementary Analysis I (or equivalent)
- **MATH 5302** Elementary Analysis II (or equivalent)
- **MATH 6303** Theory of Complex Functions I
- **MATH 6313** Numerical Analysis
- **MATH 6315** Ordinary Differential Equations
- **MATH 6318** Numerical Analysis of Differential Equations
- **MATH 6301** Real Analysis
- **MATH 6302** Functional Analysis I

Mary Jo Venetis 2/11/14 9:37 AM

Deleted: their

Mary Jo Venetis 2/11/14 9:42 AM

Deleted: Real and
Statistics Specialization (MS)

1. Students seeking a Master of Science in Mathematics with a specialization in Statistics must complete the following core courses:
 - STAT 6331 Statistical Inference I
 - STAT 6337 Advanced Statistical Methods I
 - STAT 6338 Advanced Statistical Methods II
 - STAT 6339 Linear Statistical Models
 - STAT 6341 Numerical Linear Algebra and Statistical Computing

2. Two courses selected from different specialization groups:
 - **Statistics Specialization Group One**
 - STAT 6329 Applied Probability and Stochastic Processes
 - STAT 6343 Experimental Design
 - STAT 7334 Nonparametric and Robust Statistical Methods
 - **Statistics Specialization Group Two**
 - STAT 6348 Applied Multivariate Analysis
 - STAT 7331 Multivariate Analysis
 - **Statistics Specialization Group Three**
 - STAT 6347 Applied Time Series Analysis
 - STAT 7338 Time Series Modeling and Filtering

3. Students must choose remaining courses as electives approved by the graduate advisor for Statistics. Up to two of the following prerequisite 5000-level courses may be counted as electives:
 - MATH 5301 Elementary Analysis I
 - MATH 5302 Elementary Analysis II
 - STAT 5351 Probability and Statistics I
 - STAT 5352 Probability and Statistics II

Other Requirements

Electives must be approved by the assigned graduate advisor. Typically, electives are 6000- and 7000-level Mathematics or Statistics courses. Courses from other disciplines may also be used upon approval. Substitutions for required courses may be made if approved by the assigned graduate advisor. Instructors may substitute stated prerequisites for students with equivalent experience.

Master of Science in Bioinformatics and Computational Biology
36 semester credit hours minimum

The Master of Science in Bioinformatics and Computational Biology (BCBM) is offered jointly by the Departments of Mathematical Sciences and Molecular and Cell Biology. This program will combine coursework from the disciplines of biology, computer science, and mathematics. The BCBM program seeks to answer the demand for a new breed of scientist who has fundamental understanding in the fields of biology, mathematics, statistics, and computer science. With this interdisciplinary training, these scientists will be well prepared to meet the demand and challenges that have arisen and will continue to develop in the biotechnology arena.

Complete information about the Master of Science in Bioinformatics and Computational Biology Program is available at catalog.utdallas.edu/2013/graduate/programs/nsm/bioinformatics-and-computational-biology.

Doctor of Philosophy in Mathematics

75 semester credit hours minimum beyond the baccalaureate degree

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Each Doctor of Philosophy degree program is tailored to the student. The student must arrange a course program with the guidance and approval of the graduate advisor. Adjustments can be made as the student's interests develop and a specific dissertation topic is chosen. A minimum of 75 semester credit hours beyond the bachelor's degree is required.

Applied Mathematics Specialization (PhD)

MATH 6301 Real Analysis
MATH 6302 Functional Analysis
MATH 6303 Theory of Complex Functions I
MATH 6311 Abstract Algebra I
MATH 6313 Numerical Analysis
MATH 6315 Ordinary Differential Equations
MATH 6316 Differential Equations
MATH 6318 Numerical Analysis of Differential Equations
MATH 6319 Principles and Techniques in Applied Mathematics I
MATH 6320 Principles and Techniques in Applied Mathematics II
MATH 7313 Partial Differential Equations I
MATH 7319 Functional Analysis II

Statistics Specialization (PhD)

STAT 6331 Statistical Inference I
STAT 6332 Statistical Inference II
STAT 6337 Advanced Statistical Methods I
STAT 6338 Advanced Statistical Methods II
STAT 6339 Linear Statistical Models
STAT 6344 Probability Theory I
Three courses approved by the student's PhD advisor from the following list:

- STAT 7330 Decision Theory and Bayesian Inference
- STAT 7331 Multivariate Analysis
- STAT 7334 Nonparametric and Robust Statistics Statistical Methods
- STAT 7338 Time Series Modeling and Filtering
- STAT 7345 Advanced Probability and Stochastic Processes

Electives and Dissertation

An additional 18-24 semester credit hours for Applied Mathematics and 18-24 semester credit hours for Statistics designed for the student's area of specialization are taken as electives in a degree plan designed by the student and the graduate advisor. This plan is subject to approval by the Department Head. After completion of the first 3 or 4 academic semesters of the course program, the student must pass a PhD Qualifying Examination in order to continue on to the research and dissertation phase of the PhD program. Finally, a dissertation is required and must be approved by the graduate program. Areas of specialization include, for example:

Applied Mathematics:

- applied analysis, biomathematics, differential equations, relativity, scattering theory, systems theory, signal processing.

Statistics:

- statistical inference, applied statistics, biostatistics, statistical computing, probability, stochastic processes, time series analysis, multivariate analysis, nonparametric and robust statistics, asymptotic theory.

Other specializations are possible, including interdisciplinary topics. There must be available a dissertation research advisor or group of dissertation advisors willing to supervise and guide the student. A dissertation Supervising Committee should be formed in accordance with the UT Dallas policy memorandum (UTDPP1052). The dissertation may be in Applied Mathematics or in Statistics exclusively, or it may include considerable work in an area of application.

Research

Within the Mathematical Sciences Department opportunities exist for work and/or research in Applied Mathematics, Engineering Mathematics, Mathematics, and Statistics. The opportunity to take coursework in several of the other university programs also allows the student to prepare for interdisciplinary work. Such coursework must be approved by the assigned graduate advisor.

Special topics within the Applied Mathematics research area include functional analysis, operator theory, differential and integral equations, optimization, numerical analysis, system theory and control with application in material and molecular sciences, inverse problems with applications in geosciences and medical sciences, relativistic cosmology, differential geometry, applications of topology to biology, mathematical logic, quantum computation and mathematical and computational biology with applications in cardiovascular physiology, neurobiology and cell biology.

Special topics within the Statistics research area include: probability theory, applied probability, stochastic processes, mathematical statistics, statistical inference, asymptotic theory, time series analysis, Bayesian analysis, robust multivariate statistical methods, robust linear models, robust and nonparametric methods, nonparametric curve estimation, sequential analysis, statistical computing, remote sensing, change-point problems, and spatial statistics.
For a complete list of faculty and their areas of research, visit the Department of Mathematical Sciences Faculty (www.utdallas.edu/nsf/math/faculty).
School of Natural Sciences and Mathematics

Department of Molecular and Cell Biology

Department Faculty

Professors: Lee A. Bulla, Rockford K. Draper, Juan E. González, Lawrence J. Reitzer, Stephen Spiro, Li Zhang, Michael Qiwei Zhang

Professors Emeritus: Hans Bremer, Donald M. Gray, Claud S. Rupert

Associate Professors: Gail A. M. Breen, John G. Burr, Jeff L. DeJong, Ernest M. Hannig, Dennis L. Miller

Assistant Professors: Heng Du, Jung-whan (Jay) Kim, Kelli Palmer, Duane D. Winkler, Zhenyu Xuan, Hyuntae Yoo

Research Assistant Professor: Lan Guo

Affiliated Faculty: Stephen D. Levene, Raimund J. Ober, Jonathan E. Ploski

Senior Lecturers: Irina Borovkov, Mehmet Candas, Vincent P. Cirillo, Monique Duncan, Wen-Ju Lin, Robert C. Marsh, David Murchison, Jing Pan, Elizabeth Pickett, Ruben D. Ramirez, Scott A. Rippel, Elizabeth Rugg, Ilya Sapozhnikov, Uma Srikanth, Michelle Wilson, Wen-Ho Yu

Lecturers: Uyen Henson, John Kolar

Department Objectives

The Graduate Program offers training in those aspects of molecular and cell biology that are the bases of modern biological and biomedical sciences.

The Master of Science degree is designed for students who wish to learn the methodology of research in molecular and cell biology and the fundamentals of problem solving in these areas.

The Master of Science degree without thesis is intended for students who wish to acquire a working knowledge of biotechnology, for other students who seek to gain knowledge of modern biology without the intent to seek positions as technical laboratory personnel, and for those students who are seeking additional preparation for admission to professional schools.

The Master of Arts in Teaching degree in Science Education with a specialization in Biology is designed to strengthen the knowledge of high school teachers in fundamental aspects of biology and to bring them up to date on advances in this rapidly developing field. For further information on this program and for course descriptions, see the Science/Mathematics Education section of this catalog.

The Doctor of Philosophy degree with a major in Molecular and Cell Biology is appropriate for students who show a potential for originality in research and is designed to develop a critical and analytical understanding of current
developments, which will enable them to keep abreast of the rapid advances that are likely to occur in the biological and biomedical fields.

The MS and PhD degree plans offer students the opportunity to prepare for academic careers in colleges and universities including medical and dental schools, and for careers in industrial, hospital, public health, and environmental and governmental laboratories and organizations.

Specializations

First-year **MS and PhD** students will complete a body of core courses that emphasize fundamental aspects of biochemistry, biophysics, computational biology, molecular biology, and cell biology. Students may then proceed to advanced coursework in any of these general areas. Elective courses are open to all qualified students as recommended by their supervising committees. First-year **PhD** students are required to participate in rotations through research laboratories.

In the second year, research is initiated under the supervision of one or more of the Molecular and Cell Biology faculty. The faculty and their research interests are listed below. Prospective students should recognize that it is possible to do research in closely related areas not mentioned in this list, provided a faculty member is prepared to supervise the work.

- **Gail A. M. Breen**: Isolation and characterization of the genes that code for proteins of the mammalian mitochondrion; mitochondrial biogenesis; eukaryotic gene regulation.
- **Lee A. Bulla**: Molecular basis of biopesticides.
- **John G. Burr**: Eukaryotic growth regulation; mechanism of viral oncogenic transformation.
- **Santosh D'Mello**: Molecular control of neuronal apoptosis.
- **Jeff L. DeJong**: Eukaryotic transcription; initiation and activation of RNA polymerase II.
- **Rockford K. Draper**: Membrane traffic; protein toxins; bio-nanotechnology.
- **Heng Du**: Role of mitochondria in synaptic and neural degeneration in Alzheimer's disease.
- **Juan E. González**: Cell-cell interactions, role of exopolysaccharides in nodulation of legumes by rhizobia; molecular genetics of plant-microbe interactions.
- **Ernest M. Hannig**: Control of protein synthesis; genetic and biochemical analysis of translation initiation factors; protein-protein interactions.
- **Jung-whan (Jay) Kim**: Cancer cell metabolism and the tumor microenvironment.
- **Dennis L. Miller**: Structure and organization of mitochondrial DNA; mitochondrial gene expression; RNA editing; mitochondrial biogenesis.
- **Kelli Palmer**: Genomic, transcriptomic, and biochemical analysis of antibiotic resistance in pathogenic bacteria.
- **Lawrence J. Reitzer**: Regulation of gene expression and metabolism in prokaryotes.
- **Stephen Spiro**: Regulation of bacterial gene expression by environmental signals; genetic and physiological adaptation to stress.
- **Duane D. Winkler**: Structural, biophysical, and thermodynamic analysis of trans-acting factors responsible for the dynamic nature of nucleosomes with regard to normal DNA metabolism and disease.
- **Zhenyu Xuan**: Computational biology and bioinformatics.
- **Hyuntae Yoo**: Systems biology for drug discovery.
- **Li Zhang**: Molecular mechanisms of cell signaling, heme signaling and oxygen sensing, genomics, and systems biology.
- **Michael Qiwei Zhang**: Computational biology; gene regulation and epigenomics.
Facilities

Major items of equipment used by the faculty are available for graduate student research. This equipment includes fluorescence and confocal microscope systems, fluorescence activated cell sorter, Veeco MultiMode SPM atomic force microscope, Molecular Dynamics Phospholagers, BioRad real-time polymerase chain reaction instruments, Beckman scintillation counters and Optima ultracentrifuges, a Jasco J-715 spectropolarimeter, and an Agilent 5975C series GC/MS with associated software. Individual laboratories are well-equipped with instrumentation needed for research in molecular and cell biology, including thermal cyclers, spectrophotometers, chromatography and electrophoresis systems, chemical hoods, and mammalian cell culture facilities.

Other shared biology facilities include environmental chambers, two staffed media kitchens with autoclaves and washing machines, a darkroom with an x-ray film developer, and an electronics workshop. There is a modern research animal housing facility on campus, as well as a GE 500 MHz FT multinuclear magnetic resonance spectrometer.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

For full participation in the Graduate Program in Molecular and Cell Biology, the student should have a good background in calculus, general physics, organic chemistry, biochemistry, and general biology, including genetics. Entering students not having this background may be required to take some additional coursework in their first year or in the summer immediately preceding entry. Admission is competitive. A minimum GRE score of 295 (verbal plus quantitative) with a minimum of 147 for the verbal component is required. Average test scores for admitted students vary from year to year. The actual scores required for admission are higher, especially for PhD applicants.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

Upon satisfactory completion of the core courses (and, for PhD candidates, a favorable evaluation following the spring semester as described below), a Supervising Committee is appointed for each student (except non-thesis MS students) based upon mutual agreement between student, research mentor, and faculty. The Supervising Professor, possibly with the advice of the Supervising Committee, will help plan an elective course curriculum. The Supervising Committee will oversee the student's research and thesis or dissertation.

Master of Science in Molecular and Cell Biology

36 semester credit hours minimum

All students seeking the Master of Science degree in Molecular and Cell Biology must satisfactorily complete a total of at least 36 graduate semester credit hours, which must include the following core courses:

Core Courses

- BIOL 5410 Biochemistry
- BIOL 5420 Molecular Biology
- BIOL 5460 Quantitative Biology
MS students intending to submit a thesis must, in addition to the core courses specified above, satisfactorily complete a further 20 semester credit hours of Biology courses which includes BIOL 6193 Colloquium in Molecular and Cell Biology, BIOL 8V01 Research in Molecular and Cell Biology, BIOL 6V98 Thesis, and a minimum of 6 semester credit hours of general electives for which a letter grade is assigned. The remainder of the semester credit hours usually reflects experimental research but may also be based on literature research as determined by mutual agreement of the student and Supervising Committee. For MS (thesis) students, the maximum number of Pass/Fail credits allowed within the 36 semester credit hour minimum is 13 semester credit hours.

MS (non-thesis) students must, in addition to the core courses specified, satisfactorily complete a minimum of four general elective courses in Biology (for which a letter grade is assigned) for a minimum of 9 semester credit hours, up to 11 semester credit hours of special electives, and/or, with approval of the graduate advisor, other graduate courses. For non-thesis MS students, the maximum number of Pass/Fail credits allowed within the 36 semester credit hour minimum is 11 semester credit hours.

A Master of Science Degree in Biotechnology is also offered through the Department of Molecular and Cell Biology.

In addition to the above Master of Science Degrees, a Master of Science in Bioinformatics and Computational Biology (BCBM) is offered jointly by the Departments of Mathematics and Molecular and Cell Biology. This program combines coursework from the disciplines of biology, computer science, and mathematics. Faculty from both Mathematics (MMS) and Molecular and Cell Biology (MCB) participate in the Bioinformatics and Computational Biology program, with the Mathematics Department serving as the administrative unit. Both departments participate in advising students.

See the Department of Mathematics for more information on this degree program.

Master of Science in Bioinformatics and Computational Biology

36 semester credit hours minimum

The Master of Science in Bioinformatics and Computational Biology (BCBM) is offered jointly by the Departments of Mathematical Sciences and Molecular and Cell Biology. This program will combine coursework from the disciplines of biology, computer science, and mathematics. The BCBM program seeks to answer the demand for a new breed of scientist who has fundamental understanding in the fields of biology, mathematics, statistics, and computer science. With this interdisciplinary training, these scientists will be well prepared to meet the demand and challenges that have arisen and will continue to develop in the biotechnology arena.

Complete information about the Master of Science in Bioinformatics and Computational Biology (BCBM) Program is available at catalog.utdallas.edu/2013/graduate/programs/nsm/bioinformatics-and-computational-biology.

Doctor of Philosophy in Molecular and Cell Biology

75 semester credit hours minimum beyond the baccalaureate degree

All PhD students must satisfactorily complete a total of at least 75 semester credit hours beyond the bachelor's degree and four core courses: BIOL 5410 Biochemistry, BIOL 5420 Molecular Biology, BIOL 5460 Quantitative
Biology, and BIOL 5440 Cell Biology. In the first year, PhD candidates must perform two laboratory rotations, and take BIOL 6V02 The Art of Scientific Presentation, and BIOL 6193 Colloquium in Molecular and Cell Biology. At the end of the first year, students are evaluated based upon performance in the core classes, laboratory rotations, and performance as teaching assistants (if applicable). Students who pass this evaluation must then pass an oral qualifying examination within three semesters to determine the student’s aptitude for continuation of dissertation research. After the first year, students must also complete a minimum of four general elective courses in Biology (for which a letter grade is assigned). A dissertation defense will be conducted after the dissertation has been written. All students are required to submit a minimum of one manuscript for publication in an internationally recognized, peer-reviewed scientific journal. There is no foreign language requirement.
School of Natural Sciences and Mathematics

Department of Physics

Department Faculty

Cecil and Ida Green Chair in Physics: Roderick A. Heelis

Distinguished Chair in Physics: Myron B. Salamon

Green Distinguished Chair in Academic Leadership: B. Hobson Wildenthal

Professor Emeritus: Ervin J. Fenyves, Walter Heikkila, Brian A. Tinsley

Associate Professors: Yuri Gartstein, Mustapha Ishak-Boushaki, Lindsay J. King, David J. Lary, Chuanwei Zhang

Assistant Professors: Lunjim Chen, Xingang Chen, Michael Kesden, Anton Malko, Fabiano Rodrigues, Jason D. Slinker

Senior Lecturers: Paul MacAlevey, Beatrice Rasmussen

Objectives

The goal of the Graduate Program in Physics is to develop individual creativity and expertise in the fields of physics. In pursuit of this objective, study in the program is strongly focused on research. Students are encouraged to begin participating in ongoing research activities from the beginning of their graduate studies. The research experience culminates with the doctoral dissertation, the essential element of the PhD program that prepares students for careers in academia, government laboratories, or industry.

A Master of Science degree is offered to those seeking to acquire or maintain technical mastery of both fundamentals and current applications.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The Graduate Physics Program seeks students who have a BS degree in Physics or closely related subjects from an university or college, and who have superior skills in quantitative and deductive analysis. Official scores from the GRE General Test (Verbal and Quantitative) and the GRE Subject Test in Physics are required. Decisions on admission are made on an individual basis. However, as a guide, a combined score on the verbal and quantitative parts of the GRE General Test of 308, with at least 155 on the quantitative part, is advisable based on past experience with student success in the program.
For graduate work it is assumed that the student has an undergraduate background that includes the following courses at the level indicated by texts referred to: mechanics at the level of Symon, Mechanics; electromagnetism at the level of Reitz and Milford, Foundations of Electromagnetic Theory; thermodynamics at the level of Kittel, Thermal Physics; quantum mechanics at the level of Griffiths, Introduction to Quantum Mechanics (chapters 1-4), some upper-division course(s) in modern physics, and atomic physics. Students who lack this foundation may be required to take one or more undergraduate courses to complete their preparation for graduate work.

Financial Support
A limited number of teaching assistantships (TAs) are awarded to those students displaying the most promise in teaching or research. Specific decisions regarding TA awards are made on an individual basis. Students who wish to be considered for financial support are encouraged to submit completed applications by February 1st for admission in the fall semester. Admission for the spring term is possible, but opportunities for financial support in such cases are extremely limited and not guaranteed. Teaching assistantship awardees are required to complete 12 graduate physics courses approved by the graduate adviser during the first 24 months in residence. Continuation of support is evaluated year by year and requires achievement of a minimum GPA of 3.0, and a satisfactory record in teaching or research assignments.

Financial support is preferentially provided to students in the PhD track.

Specializations
The central principle in the structure of the graduate program is that a student's progress and ultimate success is best served by early and varied research experiences coupled with individually tailored course sequences.

Current areas of research specialization in the physics program are: Atmospheric and Space Physics; Astrophysics/Cosmology/Relativity; Condensed Matter Physics/Materials Science; and High Energy Physics. Further details on the current research topics in these areas are provided below.

Astrophysics, Cosmology and Relativity
This research group studies fundamental problems in theoretical astrophysics, contemporary cosmology, and relativity. These research efforts typically involve analytical, numerical, and cosmological-data related projects. The group is instrumental in organizing the biennial Texas Symposia on Relativistic Astrophysics, beginning in Dallas in 1963 and recurring regularly all over the world since then. Current areas of research include: gravitational lensing (lenses) and its applications to cosmology; the acceleration of the expansion of the universe (cosmological constant, dark energy); fitting cosmological models to observational data (e.g. CMB, lensing, supernovae); dark matter; the structure of the big bang; the role of inflation; computer algebra systems applied to general relativity and cosmology; space-time junction conditions and wormholes; cosmological models of wider generality than the classical homogeneous models and their possible observational signatures. More specific information is available at: http://www.utdallas.edu/~mishak/relativitycosmology.html.

Atmospheric And Space Physics
Research in Atmospheric and Space Physics encompasses both theory and experiment, with emphasis on aeronomy, ionospheric physics, planetary atmospheres, atmospheric electricity and its effects on weather and climate, and space instrumentation. Much of the research occurs in the William B. Hanson Center for Space Sciences, which includes laboratory facilities for instrument design, fabrication, and testing. Faculty and students participate in ongoing satellite missions sponsored by NASA and DoD, and suborbital sounding rockets. Most students participate in analysis of large data sets from previous missions, and from ground-based optical and radar instruments at locations ranging from Greenland to South America. Particular areas of interest include large and small scale dynamics and electrodynamics, numerical modeling of the thermosphere and ionosphere, characteristics of the near earth plasma environment, the effects of solar variability on atmospheric electricity, cloud microphysics and tropospheric dynamics, plasma instabilities and irregularities, and development and testing of innovative space flight instrumentation. Computer facilities include a network of dedicated workstations and access to supercomputers. For further details see http://www.utdallas.edu/research/spacesciences.

High Energy Physics And Elementary Particles
The UTD High Energy Physics Group collaborates on the Atlas experiment at the CERN Large Hadron Collider (LHC) and the BaBar experiment, at the PEP-II asymmetric b factory located at the Stanford Linear Accelerator Center (SLAC). Atlas will search for the Higgs boson, believed to be responsible for electroweak symmetry breaking, for new physics beyond the standard model such as supersymmetric partners to known particles, and for new hadrons. Atlas data-taking will begin in 2009. BaBar measures CP violation in the decays of bottom mesons and is exploring whether the origin of this CP violation lies within the Standard Model. BaBar data is fertile ground for precision and rare decays of bottom and charm.

Further details on the current research topics in these areas are provided below.

Financial Support
A limited number of teaching assistantships (TAs) are awarded to those students displaying the most promise in teaching or research. Specific decisions regarding TA awards are made on an individual basis. Students who wish to be considered for financial support are encouraged to submit completed applications by February 1st for admission in the fall semester. Admission for the spring term is possible, but opportunities for financial support in such cases are extremely limited and not guaranteed. Teaching assistantship awardees are required to complete 12 graduate physics courses approved by the graduate adviser during the first 24 months in residence. Continuation of support is evaluated yearly and requires achievement of a minimum GPA of 3.0, and a satisfactory record in teaching or research assignments.

Financial support is preferentially provided to students in the PhD track.

Specializations
The central principle in the structure of the graduate program is that a student's progress and ultimate success is best served by early and varied research experiences coupled with individually tailored course sequences.

Current areas of research specialization in the physics program are: Atmospheric and Space Physics; Astrophysics/Cosmology/Relativity; Condensed Matter Physics/Materials Science; and High Energy Physics. Further details on the current research topics in these areas are provided below.

Astrophysics, Cosmology and Relativity
This research group studies fundamental problems in theoretical astrophysics, contemporary cosmology, and relativity. These research efforts typically involve analytical, numerical, and cosmological-data related projects. The group is instrumental in organizing the biennial Texas Symposia on Relativistic Astrophysics, beginning in Dallas in 1963 and recurring regularly all over the world since then. Current areas of research include: gravitational lensing (lenses) and its applications to cosmology; the acceleration of the expansion of the universe (cosmological constant, dark energy); fitting cosmological models to observational data (e.g. CMB, lensing, supernovae); dark matter; the structure of the big bang; the role of inflation; computer algebra systems applied to general relativity and cosmology; space-time junction conditions and wormholes; cosmological models of wider generality than the classical homogeneous models and their possible observational signatures. More specific information is available at: http://www.utdallas.edu/~mishak/relativitycosmology.html.

Atmospheric And Space Physics
Research in Atmospheric and Space Physics encompasses both theory and experiment, with emphasis on aeronomy, ionospheric physics, planetary atmospheres, atmospheric electricity and its effects on weather and climate, and space instrumentation. Much of the research occurs in the William B. Hanson Center for Space Sciences, which includes laboratory facilities for instrument design, fabrication, and testing. Faculty and students participate in ongoing satellite missions sponsored by NASA and DoD, and suborbital sounding rockets. Most students participate in analysis of large data sets from previous missions, and from ground-based optical and radar instruments at locations ranging from Greenland to South America. Particular areas of interest include large and small scale dynamics and electrodynamics, numerical modeling of the thermosphere and ionosphere, characteristics of the near earth plasma environment, the effects of solar variability on atmospheric electricity, cloud microphysics and tropospheric dynamics, plasma instabilities and irregularities, and development and testing of innovative space flight instrumentation. Computer facilities include a network of dedicated workstations and access to supercomputers. For further details see http://www.utdallas.edu/research/spacesciences.

High Energy Physics And Elementary Particles
The UTD High Energy Physics Group collaborates on the Atlas experiment at the CERN Large Hadron Collider (LHC) and the BaBar experiment, at the PEP-II asymmetric b factory located at the Stanford Linear Accelerator Center (SLAC). Atlas will search for the Higgs boson, believed to be responsible for electroweak symmetry breaking, for new physics beyond the standard model such as supersymmetric partners to known particles, and for new hadrons. Atlas data-taking will begin in 2009. BaBar measures CP violation in the decays of bottom mesons and is exploring whether the origin of this CP violation lies within the Standard Model. BaBar data is fertile ground for precision and rare decays of bottom and charm...
The group explores both charmonia and a class of unexpected particles with charm-anticharm quark content that are quite different from conventional charmonium. BaBar has completed data-taking and is analysing its data. The group's research is funded by the U.S. Department of Energy. The UTD High Energy Physics group specializes in high performance computing, simulation production, and data analysis while contributing to the commissioning and operation of experiments. Additional information can be found at: http://www.utdallas.edu/~joe/hepweb/utdhep.html

Solid State/Condensed Matter Physics/Materials Science
Materials Science is at the interface of many disciplines and involves a collaborative approach with colleagues in chemistry, and electrical engineering. Our research facilities are distributed over the physics laboratories, NanoTech Institute (nanotech.utdallas.edu) and Electrical Engineering Clean Room. Research in Materials Science involves both experiment and theory with emphasis on the physical aspects of solid state materials, optical properties of solids, Raman scattering, physical properties of thin films, and carbon nanotubes. Various nanoscale and synthetic materials are being studied for their optical, electronic, magnetic and transport properties, as well as applications in photonics, spintronics and (opto)electronics. The materials of interest include nanostructures (quantum dots and wires, fullerences and carbon nanotubes) and low-dimensional systems, photonic band gap crystals and "left-handed" electromagnetic meta-materials, organic and polymeric materials. Unconventional superconductivity and superconducting nanostructures are also under investigation.

The interaction of nanoscale materials, such as carbon nanotubes, with biological entities are being investigated for prospective biomedical and electronic applications. For example, chemically functionalized carbon nanotubes are being studied as building blocks in transistor and sensor applications.

Degree Requirements

The University’s general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

All candidates for graduate degrees in physics must satisfy general University degree requirements. Well prepared students may demonstrate by examination adequate knowledge of the core and basic course material. In addition to the general university graduation requirements, graduation in physics requires achieving a grade of B or better in each core course in the MS and Ph. D. programs.

Master of Science in Physics

30 semester credit hours minimum

A minimum total of 30 graduate semester credit hours is required, including the core courses listed below.

Core Courses: 12 semester credit hours
PHYS 5301 Mathematical Methods of Physics I
PHYS 5311 Classical Mechanics I
PHYS 5320 Electromagnetism I
PHYS 6300 Quantum Mechanics I

Elective courses: 18 semester credit hours

In addition to the core courses, 18 semester credit hours of additional graduate level physics or related field courses must be successfully completed by MS candidates in physics, with prior approval from the graduate advisor. Up to 6 semester credit hours of elective credit may be satisfied through approved industrial internships, supervised research, or the satisfactory completion of an MS thesis. Prior approval for these options must be obtained from the graduate advisor.

Doctor of Philosophy in Physics

75 semester credit hours minimum beyond the baccalaureate degree

A minimum of 24 semester credit hours in the graduate core sequence are required for the PhD degree, plus additional courses specified by the student’s thesis committee chair. The required core courses must include
Students in space sciences must also take

PHYS 6383 Plasma Science

A candidate must also take a minimum of 3 elective courses, 1 from within his/her area of specialization and 2 selected from outside the student’s specialty area. Additional courses may be required to satisfy the particular degree requirements and/or to ensure sufficient grounding in physical principles. The graduate advisor and the student’s supervisory committee must approve course selections. A minimum of one year residency after admission to the doctoral program is required.

Students are required to take and pass a qualifying examination during their first year in the PhD program. The qualifying examination is normally given in January of the first year of graduate study. At the discretion of the Physics Qualifying Exam Committee, a student may pass the exam, fail the exam, or be offered a second attempt at the qualifying examination. A second attempt, if offered, will normally be given before the end of the summer semester of the first year of graduate study. A student taking the second attempt will either pass or fail the exam; under no circumstances will a third attempt be given. Students who fail the qualifying examination will be ineligible to continue enrollment in the physics graduate program after the completion of their first full year in residence.

After a student has completed the required course work with a minimum grade of B in each core course and a minimum GPA of 3.0 for all courses, passed the qualifying examination, and decided upon his/her field of specialization, the student is required to indentify a dissertation topic and form a Supervising Committee to guide the student’s dissertation work. The student must submit a proposal that outlines the present state of knowledge of the field and presents the research program the student expects to accomplish for the dissertation. This proposal must be approved by the Supervising Committee and the Department Head. A seminar on the dissertation proposal must be presented, followed by an oral examination conducted by the faculty on the proposed area of research and related topics. The Supervising Committee shall determine by means of the exam and any ancillary information whether the student is adequately prepared and has the ability to conduct independent research. The approved dissertation proposal is then filed with the Dean of Graduate Studies. An approved dissertation proposal is normally expected no later than the end of the first semester of the student's third year.

A manuscript embodying a substantial portion of the dissertation research accomplished by the student must be submitted to a suitable professional refereed journal prior to the public seminar and dissertation defense. A public seminar, successful defense of the dissertation, and its acceptance by the supervising committee conclude the requirements for the PhD In lieu of the traditional dissertation, and at the discretion of the supervising professor, a manuscript dissertation following the guidelines published by the Graduate Dean's Office may be substituted.

Core Course listing for Doctor of Philosophy

24 semester credit hours required, 27 semester credit for Space Science

- **PHYS 5311** Classical Mechanics
- **PHYS 5313** Statistical Physics
- **PHYS 5320** Electromagnetism I
- **PHYS 5322** Electromagnetism II
- **PHYS 5301** Mathematical Methods of Physics I
- **PHYS 5302** Mathematical Methods of Physics II
- **PHYS 6300** Quantum Mechanics I
PHYS 6301 Quantum Mechanics II
PHYS 6383 Plasma Science (required core course for Space Science students)
School of Natural Sciences and Mathematics

Department of Science and Mathematics Education

Preface

The department of Science and Mathematics Education offers two graduate degree programs: Science Education and Mathematics Education.

Degrees Offered

Master of Arts in Teaching/Science Education
36 semester credit hours minimum

Master of Arts in Teaching/Mathematics Education
36 semester credit hours minimum

Department Faculty

Professors Emeritus: Thomas R. Butts, Frederick Fifer, Cynthia E. Ledbetter, Lynn A. Melton

Associate Professors: Titu Andreescu, Homer A. Montgomery, Mary L. Urquhart

Assistant Professor: Nikki N. Hanegan

Science Education Specialist and Senior Lecturer: Barbara A. Curry

Clinical Faculty: Katherine (Kate) Donaldson, Floyd Dorsey, Bill Gammons, Amin Lalani, Jim McConnell, James (Bill) Neal

Objectives and Structure

The Master of Arts in Teaching (MAT) in Science Education Program and the MAT in Mathematics Program are designed to enhance the content knowledge and pedagogical content knowledge of science, technology, engineering, and mathematics (STEM) teachers. Both programs share a set of core courses that allow students to explore knowledge common to both disciplines. Students in Science Education or Mathematics Education can then collaborate to integrate science and mathematics education and to provide a better education for their students. Because many graduates of these MAT programs will rise to leadership positions such as department head or science/mathematics coordinator, the core courses provide fundamental skills in cognition, education research, and assessment so that MAT graduates can evaluate educational strategies and thoughtfully advise their colleagues about...
them. The STEM Content courses provide additional depth in specific science and mathematics content areas. Students may elect to write and defend a research-based thesis.

Both programs are designed for individuals with significant ability in a science/mathematics discipline and a serious commitment to teaching. They provide forward-looking opportunities for professional development for both new and experienced teachers.

Departmental Activities and Facilities

The Science/Mathematics Education (SME) Department is a hub for many important activities. In addition to the graduate MAT in Science Education and MAT in Mathematics Education degree programs, faculty in the Science/Mathematics Education Department direct and carry out the UT Dallas implementation of UTeach, the nationally-acclaimed program for recruitment, preparation, and support of STEM teachers. The Science and Engineering Education Center, directed by Nobel Laureate Russell A. Hulse, is housed in facilities adjoining the SME area, and collaborations with SEEC continue to grow. Joint meetings with faculty from the School of Brain and Behavioral Sciences and the Center for BrainHealth lead to discussions of ways in which neuroscience and STEM education can grow symbiotically. The Center for Science Education and Research and the UT Dallas T-STEM Center provide partnership and professional development support for T-STEM Academies in Texas.

In fall 2010, UT Dallas opened its new Science Learning Center. It contains not only undergraduate teaching areas for the science students, but also a specially designed classroom area for SME that can be configured for interactive classes. SME instructors can model the best of educational practices and develop research projects to evaluate such strategies.

Scientific equipment supporting the various programs at the university can be available to students in the MAT program. Facilities in biology, chemistry, computer science, geosciences, mathematics, and physics are briefly described in the respective sections of the catalog.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

Science Education

Admission to the Graduate Program in Science Education requires, in addition to general University requirements, a significant background in science. A background of 24 semester credit hours in science at the undergraduate level or higher is preferred. An interview with an SME faculty member may also be required.

Mathematics Education

Admission to the Graduate Program in Mathematics Education requires, in addition to the general University requirements, an adequate background in mathematics. Applicants for the Upper Elementary/Middle School Mathematics and Applications track should have mastered pre-calculus and have experience with mathematical problem solving (e.g., MATH 3307 or equivalent). Applicants for the High School Mathematics track should have at least one year of calculus, a course in linear algebra, and a junior-level course involving mathematical proof. An interview with an SME faculty member may also be required.

Background Checks

For both Science Education and Mathematics Education programs, opportunities may arise for students to work directly in local schools. Public schools and many private schools in the state of Texas require criminal background
checks of all volunteers or individuals working within the schools regardless of the potential for direct contact with students.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The MAT in Science Education and the MAT in Mathematics Education have a common set of four core courses. Both degrees require satisfactory completion of a minimum of 36 semester credit hours, and both degrees allow a student to select a Practitioner Option (coursework only) or a Research Option (coursework plus thesis).

An overall grade point average of B (3.00) or better in the four core courses is required for graduation. Requirements common to the MAT in Science Education and to the MAT in Mathematics Education

Four (4) Core Courses:

- **SMED 5301 Science, Mathematics, and Society**
- **SMED 5302 Teaching and Learning of Science and Mathematics**
- **SMED 5303 Introduction to Research and Evaluation in Science and Mathematics Education**
- **SMED 5304 Research Methods in Science and Mathematics Education**

Six (6) STEM Content Courses (Practitioner Option) or four (4) STEM content courses plus at least six semester credit hours of **SMED 6V98** (Research Option). In both cases, four STEM content courses must be taken within a single STEM content area subject to the specific requirements for each program given below.

Elective Courses sufficient to bring the total semester credit hours to a minimum of 36 semester credit hours. Electives must be approved by the SME Graduate Studies Committee. Research Option students must use one of their electives to take **SCI 5340** Statistics for Science/Mathematics Education, which must be taken prior to enrolling in thesis semester credit hours.

Students may petition the Graduate Studies Committee for waiver of requirements or substitution of alternate means of meeting requirements. Students who have particularly strong STEM content backgrounds are encouraged to meet with the graduate advisor and develop an appropriate degree plan.

Thesis Option

Students who wish to pursue the thesis option must consult with potential faculty advisors and present to the Graduate Studies Committee the name of the proposed thesis advisor, the proposed thesis topic, and potential committee members. The Graduate Studies Committee, after consultation with the student and appropriate faculty members, may approve the project and committee or require changes. In order to fulfill the thesis requirement, the student must pass a minimum of six semester credit hours in thesis research, **SMED 6V98**, and submit an acceptable thesis. The thesis is directed by a Supervising Professor and must be approved by the student's thesis supervisory committee. In addition, the student must comply with the rules set by the Graduate Dean and successfully defend the thesis.

Requirements Specific to the MAT in Science Education

Students in the MAT in Science Education must pass four courses in one of the following Science Content areas: (1) Earth and Space Sciences, (2) Life Sciences, or (3) Physical Sciences. For Practitioner Option students, the other
two courses must be taken in a different STEM content area, which may include both Mathematics content areas described below.

Requirements Specific to the MAT in Mathematics Education

(1) Upper Elementary/Middle School Mathematics and Applications

Students must pass MTHE 5327 Functions and Modeling and five of the six courses in the Mathematics B content area.

(2) High School Mathematics

Students must pass four courses in the Mathematics A content area and at least two courses in the Mathematics B content area. It is recommended that those in the Practitioner Option use their elective courses to take two additional courses in the Mathematics B content area.

Requirements Associated with Community College Teaching

Many community colleges require that instructors have 18 semester credit hours of graduate coursework in the discipline to be taught. Students with an interest in teaching in community colleges should consult with the Graduate Studies Committee as soon as possible to identify the courses taken as part of the MAT in Science Education or the MAT in Mathematics Education that meet the expected requirements.

STEM Content Area Courses

Earth and Space Sciences

- SCI 5322 Basis of Evolution
- SCI 5337 Rockin’ Around Texas
- SCI 5326 Astronomy: Our Place in Space
- SCI 5327 Comparative Planetology

Life Sciences

- SCI 5322 Basis of Evolution
- SCI 5324 Ecology
- SCI 5329 Bioethics
- SCI 5330 Emerging Topics in Biology

Physical Sciences

- SCI 5323 Laboratories and Demonstrations for Middle School Science Teachers
- SCI 5331 Conceptual Physics I: Force and Motion
- SCI 5332 Conceptual Physics II: Particles and Systems
- SCI 5333 Conceptual Physics III: Atoms, Charges, and Interactions

Mathematics A

- MATH 5301 Elementary Analysis I
The courses available to students to meet the STEM Content requirements include, but are not limited to, the courses listed in the STEM Content areas above. Use of courses outside these sets must be approved by the Graduate Studies Committee.

Online Course Work and Degree Options

Courses applicable to the MAT in Science Education and MAT in Mathematics Education may be offered online. However, the Science/Mathematics Education Department cannot guarantee that a student can carry out the entire degree program online. Students interested in online work should consult course schedules and contact the Graduate Studies Committee for current advice.

Undergraduate UTeach Dallas Students May Begin an MAT Program

Undergraduate students at UT Dallas who anticipate entering one of the Master of Arts in Teaching programs after obtaining a bachelors degree are encouraged to begin taking MAT courses under UT Dallas's reserved for graduate credit option. The most appropriate courses for such students to take are

- **SMED 5301** Science, Mathematics, and Society
- **SMED 5302** Teaching and Learning of Science and Mathematics
- **SMED 5303** Introduction to Research and Evaluation in Science and Mathematics Education

UTeach students are encouraged (1) to explore with their advisors the possibility that some graduate courses, such as **SMED 5302 Teaching and Learning of Science and Mathematics** and **SCI 5342** Research Methods in STEM may satisfy a portion of the UTeach requirements and (2) to contact the graduate advisor to discuss a smooth transition to the Master of Arts in Teaching programs.

MAT and Other Post Baccalaureate Students May Pursue Secondary Mathematics or Science Certification Through UTeach Dallas
UTeach Dallas is an innovative teacher preparation program that allows students to pursue middle school and high school teacher certification within a science-technology-engineering-mathematics (STEM) degree program. While learning STEM subject matter, students also learn--through courses taught by some of Texas's most respected secondary school math and science teachers--how to teach. Upon completing the UTeach program, students are recommended for a middle school or high school teaching certificate. Both degree seeking and non-degree seeking students may apply. Interested students should contact the graduate advisor or the UTeach Dallas Advisor.

Teacher certification requirements are described in the following section of the undergraduate catalog: catalog.utdallas.edu/2013/undergraduate/programs/teacher-education-certification.
School of Natural Sciences and Mathematics

Bioinformatics and Computational Biology Program

Program Faculty

Associate Professor: Yan Cao

Assistant Professors: Swati Biswas, Min Chen

Affiliated Faculty: Zhenyu Xuan, Hyuntae Yoo, Michael Qiwei Zhang

Master of Science in Bioinformatics and Computational Biology

36 semester credit hours minimum

The Master of Science in Bioinformatics and Computational Biology (BCBM) is offered jointly by the Departments of Mathematical Sciences and Molecular and Cell Biology. This program will combine coursework from the disciplines of biology, computer science, and mathematics. The BCBM program seeks to answer the demand for a new breed of scientist who has fundamental understanding in the fields of biology, mathematics, statistics, and computer science. With this interdisciplinary training, these scientists will be well prepared to meet the demand and challenges that have arisen and will continue to develop in the biotechnology arena.

Faculty from both Mathematical Sciences (MMS) and Molecular and Cell Biology (MCB) will participate in the Bioinformatics and Computational Biology program, with the Mathematical Sciences Department serving as the administrative unit. Both departments will participate in advising students.

For the Master's degree in Bioinformatics and Computational Biology, beginning students are expected to have completed multivariate calculus, linear algebra, two semesters of general chemistry, two semester of organic chemistry, two semesters of general physics, programming in C/C++, and two semesters of biology.

Requirements for completing a degree in BCBM are:

Core Courses

- **BIOL 5410** Biochemistry
- **BIOL 5420** Molecular Biology
- **BIOL 5381** Genomics
- **STAT 5351** Probability and Statistics I
- **STAT 5352** Probability and Statistics II
- **MATH 6341** Bioinformatics
Additional Core Courses for the Computational Biology Track

MATH 6313 Numerical Analysis
MATH 6343 Computational Biology
MATH 6345 Mathematical Methods in Medicine and Biology

Additional Core Courses for the Bioinformatics Track

CS 5333 Discrete Structures
CS 5343 Algorithms Analysis & Data Structures
CS 6360 Database Design

Elective Courses

A minimum of 7 semester credit hours of electives, approved by the student's advisor. Typically, electives are 6000- and 7000- level courses in mathematical sciences, biology or computer science.

Courses from other disciplines may also be used upon approval.
School of Natural Sciences and Mathematics

Doctor of Philosophy in Geospatial Information Sciences

75 semester credit hours minimum beyond the baccalaureate degree

This degree program is jointly offered by the School of Economic, Political and Policy Sciences, the School of Natural Sciences and Mathematics (specifically in the Department of Geosciences) and the Erik Jonsson School of Engineering and Computer Science, and is administered by the School of Economic, Political and Policy Sciences.

Faculty

Professors: Carlos L. V. Aiken, Brian J. L. Berry, Denis J. Dean, John F. Ferguson, Daniel A. Griffith, James Murdoch, Hsing-Mean (Edwin) Sha, Robert J. Stern, Weili Wu

Associate Professors: Thomas H. Brikowski, Dohyeong Kim, Fang Qiu, Michael Tiefelsdorf

Assistant Professors: Yongwan Chun

Visiting Assistant Professor: Anthony Cummings

Senior Lecturers: Bryan Chastain, Irina Vakulenko

Powerful technologies have emerged in recent years to collect, store, manage, analyze, and communicate information regarding the features of the Earth's surface and to combine these with other types of environmental, social, and economic information. These technologies, which include geographic information systems (GIS), the global positioning system (GPS), and remote sensing, are used in many ways, including the production of digital maps in vehicles, the management and maintenance of city infrastructure, agriculture and forestry, the policing of communities, and the conduct of modern warfare. The PhD in Geospatial Information Sciences aims to develop individuals capable of advancing this field by developing new knowledge or capabilities relevant to it.

The degree program is jointly offered by the School of Economic, Political and Policy Sciences, the School of Natural Sciences and Mathematics (specifically the Department of Geosciences) and the Erik Jonsson School of Engineering and Computer Science. This unique structure reflects geospatial information science's origins as the confluence of multiple disciplines including geography, computer science, engineering, geology, and various social, policy, and applied sciences. It is anticipated that many students will enter the program with a bachelor's or master's degree (and/or work experience) in an application area (such as public administration, geology, or economics) or in a technical specialization (such as engineering, computer science, or statistics). These students may choose to pursue research projects that advance existing geospatial information sciences practices within that application area. Alternatively, students may opt to pursue research that expands the technological or theoretical base of all the geospatial information sciences.

Mission and Objectives

The mission of the Doctor of Philosophy in Geographic Information Sciences program is to cultivate innovative researchers capable of advancing the frontiers of knowledge in the geospatial information sciences through improved theories, new technologies, innovative methodologies, sophisticated quantitative analyses, and integrative applications. Specifically, program graduates will:
• Demonstrate their knowledge of the fundamental theories and concepts underlying the geospatial sciences.
• Master the advanced methodologies and/or quantitative analyses used in at least one of three geospatial specialization areas: (a) computing and information management, (b) spatial analysis and modeling, or (c) remote sensing and satellite technologies.
• Produce innovative research that advances theory or methodology in the geospatial sciences.
• Participate at academic conferences, publish in peer-reviewed journals and find employment in research departments of public and private organizations and in major academic institutions.

Facilities

Students have access to state-of-the-art GIS computing facilities housed in the School of Economic, Political and Policy Sciences and at the NASA Center for Excellence in Remote Sensing in the Department of Geosciences. The University's extensive instructional computing facilities, including those in the Erik Jonsson School of Engineering and Computer Science, are also available. Facilities are open extended hours including evenings and weekends. Enrollment in hands-on courses is controlled to ensure that a computer workstation is available for every student. All major industry-standard GIS and remote sensing software is available. The University is a member of the University Consortium for Geographic Information Science (UCGIS).

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission). The PhD program in Geospatial Information Sciences seeks applications from students with a baccalaureate, Master of Arts, Master of Science or professional masters-level degree in any field relevant to geospatial information science including, but not limited to, computer science, economics, engineering, geography, geology, management information systems, marketing, natural resource management, public affairs and public administration, statistics, and urban and regional planning.

Applicants will be judged and evaluated by the existing admission standards as set forth by the University in its Graduate Catalog and by the standards set forth here by the Geospatial Information Sciences program. A bachelor's degree from an accredited institution or its equivalent and fluency in written and spoken English are required. A grade average of at least 3.25 in undergraduate and graduate course work, and a combined verbal and quantitative score of 300 on the GRE are desirable. An analytical writing score of at least 4.5 in the GRE is considered desirable.

Applicants must submit transcripts from all higher education institutions attended, three letters of recommendation, and an essay outlining their background, education, and academic objectives as they specifically relate to a PhD in Geospatial Information Sciences.

Prerequisites

The following prerequisites/corequisites will also be required for admission to the PhD program: (i) college mathematics through calculus, (ii) competence in at least one modern programming language equivalent to GISC 6317, GIS Programming Fundamentals and (iii) at least one course in inferential statistics through to regression analysis equivalent to GISC 6301 GIS Data Analysis Fundamentals, EPPS 7313 Descriptive and Inferential Statistics, or GEOS 5306 Data Analysis for Geoscientists. Graduate courses taken at UT Dallas to meet these prerequisites may be counted as electives toward the 75 semester credit hours required of students entering the PhD program directly from a BA or BS degree, but they shall not be considered substitutes for any other specified course.

Advising
Because of the cross-disciplinary nature of this doctoral program, to ensure adequate preparation and appropriate course sequencing, every doctoral student is required to consult with the student's designated advisor and/or the GIS Doctoral Program Director prior to registration in every semester. Students generally will not have a faculty advisor when they first enter the PhD program, but every student is required to select (with consent of the potential advisor) an advisor from the advising faculty by the end of his/her first academic year.

Degree Requirements

The University’s general degree requirements are discussed on the [Graduate Policies and Procedures page](catalog.utdallas.edu/2013/graduate/policies/policy).

To receive the PhD in Geospatial Information Sciences, students must complete the Geospatial Science Core (15 semester credit hours) to achieve a mastery of appropriate Geospatial Information Science technologies and theory, have Prescribed Specialization Electives (15 semester credit hours), have a Specific Application area or Technical field (12 semester credit hours), evidence research skills through successful completion and defense of a PhD dissertation, and take related electives as necessary for a total of 75 semester credit hours. A maximum of 6 semester credit hours can be taken at the 5000 level and the rest of them should be at the 6000 level or above. In addition, students must satisfy a set of exams and qualifiers. Other courses may be substituted for those listed below with the written permission in advance of the Director of the GIS Doctoral program.

Geospatial Science Core: 15 semester credit hours

Students must earn a minimum grade point average (GPA) of 3.0 across the following five courses:

- **GISC 6381 (GEOS 6381)** Geographic Information Systems Fundamentals
- **GISC 6325 (GEOS 5325)** Remote Sensing Fundamentals
- **GISC 6384 (GEOS 6384)** Advanced Geographic Information Systems
- **GISC 6385 (GEOS 6385)** GIS Theories, Models and Issues
- **GISC 7310** Advanced GIS Data Analysis

Prescribed Specialization Electives: 15 semester credit hours

Students may select any five courses from the following:

1. **Geospatial Computing and Information Management**
 - **CS 6359** Object-Oriented Analysis and Design
 - **CS 6360** Database Design
 - **CS 6364** Artificial Intelligence
 - **CS 6366** Computer Graphics
 - **CS 6375** Machine Learning
 - **CS 6384** Computer Vision
 - **GISC 6317 GIS Programming Fundamentals**
 - **GISC 6388 Advanced GIS Programming**
 - **GISC 7363 Internet Mapping and Information Processing**
 - **MIS 6320 Database Foundations**
 - **MIS 6324 Business Intelligence Software and Techniques**
 - **MIS 6360 Agile Software Project Management**
 - **MIS 6326 Data Management**

2. **Geospatial Specialization Area**
 - **CS 6378** Advanced Operating Systems
 - **GEOG 5303** Computing for Geoscientists
 - **GEOG 5307** Computing for Geoscientists
 - **GEOG 6303** Geoscientists
 - **GEOG 6307** Geoscientists
 - **GIS 5303** GIS Application Software Development
 - **GIS 6303** GIS Application Software Development
 - **GIS 6307** GIS Application Software Development
 - **GIS 7363** Internet Mapping and Information Processing
 - **MIS 6320 Database Foundations**
 - **MIS 6324 Business Intelligence Software and Techniques**
 - **MIS 6360 Agile Software Project Management**
 - **MIS 6326 Data Management**
II. Spatial Analysis and Modeling

- **ECON 6309** Econometrics I
- **ECON 7309** Econometrics II
- **EPPS 7318** Structural Equation and Multilevel (Hierarchical) Modeling
- **EPPS 7370** Time Series Analysis
- **ECON 6316** Spatial Econometrics
- **GISC 7364** Demographic and Epidemiological Analysis and Modeling
- **GEOS 5306** Data Analysis for Geoscientists
- **GISC 6311** Statistics for Geospatial Science
- **GISC 6331** (CRIM 6322) GIS Applications in Criminology
- **GISC 6334** (PPPE 6334) Workshop in Environmental and Health GIS/Policy
- **GISC 6382** (GEOS 6383) Applied Geographic Information Systems
- **GISC 7360** GIS Pattern Analysis
- **GISC 7361** Spatial Statistics
- **EPPS 7313** Descriptive and Inferential Statistics
- **EPPS 7316** Regression and Multivariate Analysis

III. Remote Sensing and Satellite Technologies

- **GISC 5322** (GEOS 5322) GPS (Global Positioning System) Surveying Techniques
- **GISC 5324** (GEOS 5324) 3D Data Capture and Ground Lidar
- **GISC 5330** (GEOS 5330) Geospatial Applications in Earth Science
- **GISC 5395** Satellite Geophysics and Applications
- **GISC 7365** (GEOS.5326) Advanced Remote Sensing
- **GISC 7366** (GEOS 5329) Applied Remote Sensing
- **EESC 6360** Digital Signal Processing I
- **EESC 6363** Digital Image Processing

IV. Customized Geospatial Specialization

Identified by the student with approval in advance by the Director of the GIS Doctoral Program.

Application Area or Technical Field (12 semester credit hours)

Twelve semester credit hours of specialized course work in an application area or technical field relevant to GIScience. Normally, these will derive from the student’s Master's degree. These semester credit hours may be transferred from another institution, or taken at UT Dallas in an existing master's program area and may be applied toward a master's degree in that area.

Application area examples: planning, public affairs, criminal justice, health and epidemiology, geoscience, forestry, hydrology, marketing, real estate, economics, civil engineering, etc.

Technical field examples: statistics, computer science, software engineering, management information systems, image analysis, operations research/location science, instrumentation.

Research and Dissertation (variable semester credit hours)
All students must complete the following as part of the research and dissertation requirement:

- **GISC 7387 GIS Research Design**

In addition, students must complete sufficient additional research and dissertation semester credit hours to bring the total number of semester credit hours they have earned within the UT Dallas doctoral program (or transferred into the UT Dallas doctoral program) to 75 semester credit hours, the minimum required to earn a doctoral degree. Additional research and dissertation semester credit hours above and beyond those required to reach the 75 semester credit hours minimum may be required at the discretion of the student's PhD advisor. Additional research and dissertation semester credit hours can be earned through any of the following classes:

- **GISC 6375 Remote Sensing Fundamentals**
- **GISC 6384 Advanced Geographic Information Systems**
- **GISC 6385 GIS Theories, Models and Issues**
- **GISC 7310 Advanced GIS Data Analysis**

Other Related Electives (0 to 24 semester credit hours)

Students may choose up to 24 semester credit hours in related electives (from CS, GEOS, GISC, etc.) with consent of their advisor or the GIS Doctoral Program Director.

Exams and Qualifiers

Qualifying Examination

The GISC PhD Qualifier Examination is administered in May of a full-time doctoral student's first year, following the completion of the first academic year (i.e., fall and spring semester) by the student. This exam comprises of four parts, each based upon one of the following core courses:

- **GISC 6325 Remote Sensing Fundamentals**
- **GISC 6384 Advanced Geographic Information Systems**
- **GISC 6385 GIS Theories, Models and Issues**
- **GISC 7310 Advanced GIS Data Analysis**

A student must pass three of the four parts to pass the exam. If a student fails his/her exam, s/he may retake only the parts they failed in the subsequent August. If s/he does not pass a cumulative total of three parts after the August exam date, then s/he fails the Qualifier Examination, and is withdrawn from the GIS doctoral program.

Defense of Proposal

After completing the GIS Research Design class, doctoral students must successfully present and defend a dissertation proposal through an oral examination, according to uniform guidelines established by the GIS program.

Grade Point Qualifier
Doctoral students must have GPAs of at least 3.25, and preferably 3.5, in courses taken at UT Dallas at the time they register for GISC 7387, GIS Research, or they must petition the GIS faculty for an exemption for extenuating circumstances beyond the student's control.

Defense of Dissertation

A dissertation must be prepared and defended successfully following the procedures established by the Dean of Graduate Studies.

Note: Individuals experienced with GIS may have the introductory course (GISC 6381) waived at the discretion of the Geospatial Information Sciences Program Head, but must take an additional course from the prescribed specialization elective courses listed above.
Graduate Instruction in Education

Faculty

Professors: George W. Fair

Associate Professors: Titu Andreescu Homer Montgomery, Mary L. Urquhart Assistant Clinical Professors: Katie Donaldson, Floyd Dorsey, Bill Gummens, Amin Lalani, Jim McConnell, Bill Neal, Laurie Pollock

Post-Baccalaureate Programs for Teacher Certification

Teacher Development Center: Persons who already have baccalaureate degrees may seek teacher certification in all fields. They should consult with an advisor in the Teacher Development Center to develop a certification plan after they have been admitted to the university through the School of Interdisciplinary Studies as a post-baccalaureate student. Post-baccalaureate students must meet the 24 semester credit hours requirement in the appropriate teaching field. A certification plan will be developed based on an evaluation of the student's transcript. Post-baccalaureate students must demonstrate computer literacy, effective public speaking, and complete 12 semester credit hours of English. All students must fulfill the UT Dallas requirements for student teaching or supervised internship.

See the Teacher Development Center website at http://www.utdallas.edu/teach for the most current information and course requirements.

UTeach Dallas: Persons who already have baccalaureate degrees may seek teacher certification in secondary science and/or mathematics through UTeach Dallas in the School of Natural Sciences and Mathematics. Post-baccalaureate students must meet the 24 semester credit hours requirement in the appropriate STEM teaching field. A certification plan will be developed based on an evaluation of the student's transcript. Post-baccalaureate students must demonstrate computer literacy and effective public speaking. All students must fulfill the UT Dallas requirements for student teaching or supervised internship.

See the UTeach Dallas website at http://www.utdallas.edu/uteach for the most current information and course requirements.

Graduate Degrees

School of Natural Sciences and Mathematics: Programs leading to a Master of Arts in Teaching in Mathematics Education or a Master of Arts in Teaching in Science Education are offered through the Department of Science/Mathematics Education in the School of Natural Sciences and Mathematics. For additional information, see http://www.utdallas.edu/scimathed.
2014-2015 Graduate Catalog
Course Descriptions Overview of Changes

<table>
<thead>
<tr>
<th>Status/School</th>
<th>ARHM</th>
<th>BBSC</th>
<th>ENCS</th>
<th>EPPS</th>
<th>GENS</th>
<th>JSOM</th>
<th>NSMT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>New courses added</td>
<td>10</td>
<td>8</td>
<td>42</td>
<td>75</td>
<td>2</td>
<td>33</td>
<td>9</td>
<td>179</td>
</tr>
<tr>
<td>Courses edited</td>
<td>241</td>
<td>242</td>
<td>380</td>
<td>253</td>
<td>19</td>
<td>425</td>
<td>326</td>
<td>1886</td>
</tr>
<tr>
<td>Courses renumbered</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>46</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>63</td>
</tr>
<tr>
<td>Courses removed</td>
<td>13</td>
<td>3</td>
<td>13</td>
<td>22</td>
<td>3</td>
<td>37</td>
<td>16</td>
<td>107</td>
</tr>
<tr>
<td>Total number of courses</td>
<td>264</td>
<td>255</td>
<td>446</td>
<td>396</td>
<td>24</td>
<td>496</td>
<td>354</td>
<td>2235</td>
</tr>
</tbody>
</table>

NOTE: Due to policy change, the phrases of “credit hours” and/or “semester hours” have been changed to “semester credit hours.” As a result, every graduate course has been updated to reflect this change.

NOTE: The BBSC and NSMT CatBook reports were updated to include the addition of HCS 6341 and the removal of SMED 5100 respectively.

2-18-14
School of Arts and Humanities (ARHM)
2014-15 Graduate Catalog – Courses
2014-open	edit * atec6300 (r4) atec6300.4	ATEC 6300 Interdisciplinary Approaches to Arts and Technology (3 semester credit hours) Introduction to the interdisciplinary study of mutual interactions between technology and the creative arts. Establishes basic theoretical concepts and principles underlying the graduate program in Arts and Technology. Required of all degree candidates in Arts and Technology. (3-0) Y
2014-open	edit * atec6331 (r5) atec6331.5	ATEC 6331 Aesthetics of Interactive Arts (3 semester credit hours) Exploration of aesthetic principles underlying the interactive electronic arts, their relation to and divergence from aesthetic principles underlying traditional forms of artistic expression. Topics will include interactive games, animation, and new modes of narrative. Required of all degree candidates in Arts and Technology. (0-3) Y
2014-open	edit * atec6332 (r3) atec6332.3	ATEC 6332 Design Principles (3 semester credit hours) Exploration of advanced design principles and practices common to most design professions. Topics include the language of design, core design concepts, analysis of design, and specialized design practices. (0-3) Y
ATEC 6333 Computational Design (3 semester credit hours) Exploration of the computational theory of design and the design of products and processes through digital means, such as computer graphics, animation, visualization, simulation, computer-aided design, and image processing. (0-3) Y

ATEC 6334 Information Design for New Media (3 semester credit hours) This course explores holistic discovery research and practice in the field of new media studies. Students will learn to uncover insights about user desirability, technological potential and possibility, data evaluation, value measures, and how to select ideas that have the greatest potential to ultimately invest, develop, and build new products and services. (0-3) T

ATEC 6335 Research in Sound Design (3 semester credit hours) Exploration of the relationship between sound, music, and the visual arts. This course covers the history of art and technology as applied to the domain of sound, with a special focus on interactive applications. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3) T

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6341 (r6)</td>
<td>atec6341.8</td>
<td>ATEC 6341 Game Design (3 semester credit hours) Advanced study of the structure and design of digital, analog, narrative, and social game systems. Course focuses on theory, critical analysis, innovation, and prototype creation. May be for credit (9 semester credit hours maximum). (0-3) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 10:20:46 000853 50.0702.00.03 audist: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6342 (r3)</td>
<td>atec6342.5</td>
<td>ATEC 6342 Game Studies (3 semester credit hours) Advanced study of the computer game as cultural artifact, procedural system, social space, and artistic medium. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 10:21:20 013199 50.0702.00.03 audist: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6343 (r3)</td>
<td>atec6343.5</td>
<td>ATEC 6343 Interactive Environments (3 semester credit hours) Exploration of design principles and practices for the creation of interactive experiential spaces. Course focuses on atmosphere, flow, interactivity, spatial narrative, and user experience. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 10:22:37 013205 50.0702.00.03 audist: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6344 (r2)</td>
<td>ATEC 6344 History and Culture of Interactive Media (3 semester credit hours) Interdisciplinary research in the historical, cultural, sociological, and technological impact of interactive media on human society. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:47:02 014018 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6345 (r2)</td>
<td>ATEC 6345 Game Production Lab (3 semester credit hours) This course functions as a simulation of the game development industry. This course utilizes various aspects of all areas of game development including programming, art, animation, sound design, game design, level design, project management, and project direction. Games developed in this course emphasize innovation, aesthetics, unique or experimental mechanics and technological achievement. May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (0-3) T</td>
<td>phase: approve</td>
<td>mwilson 2014-01-13 14:36:30 013206 50.0702.00.03 audit: -84.1 m index: -84.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>Start End</td>
<td>Req Type Course Req Id</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6346 (r2) atec6346.5</td>
<td>ATEC 6346 Game Pipeline Methodologies (3 semester credit hours) This course functions as a simulation of the game development industry. This course utilizes various aspects of all areas of game development including programming, art, animation, sound design, game design, level design, project management, and project direction. Games developed in this course emphasize innovation, aesthetics, unique or experimental mechanics, and technological achievement. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3)</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:52:42 014004 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 6346 Game Pipeline Methodologies (3 semester credit hours) Advanced This course functions as a simulation of the game development and production industry. This course utilizes various aspects of digital, analog, narrative, and social games with emphasis on post-production techniques, all areas of game development including system balancing and tuning, rapid iteration, programming, art, animation, sound design, game design, level design, project management, and commercial and independent business models. Includes participation project direction. Games developed in a development team for creation of a prototype, vertical slice demo, this course emphasize innovation, aesthetics, unique or complete original game. (May experimental mechanics, and technological achievement. May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (0-3) T</td>
<td>phase: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6347 (r2) atec6347.4</td>
<td>ATEC 6347 Serious Games (3 semester credit hours) Advanced research in the application of gaming technologies, systems, and principles toward games outside the entertainment sector, including health and medical, social and civil, business, and academic applications. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 10:25:35 014019 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 6347 Serious Games (3 semester credit hours) Advanced research in the application of gaming technologies, systems, and principles toward games outside the entertainment sector, including health and medical, social and civil, business, and academic applications. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (0-3)</td>
<td>phase: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6348 (r2) atec6348.4</td>
<td>ATEC 6348 Educational Games (3 semester credit hours) Advanced research in the design, creation, and implementation of game-like systems towards new research in pedagogy, simulation, training, and formal and informal education. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 10:26:01 014020 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6351 (r6) atec6351.8</td>
<td>ATEC 6351 Digital Arts (3 semester credit hours) Exploration and application of advanced methods and techniques for the creation of visual images through the use of digital media. May be repeated as topics vary (9 semester credit hours maximum). (0-3) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 10:26:29 000854 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6352 (r3) atec6352.5</td>
<td>ATEC 6352 Motion Capture (3 semester credit hours) Exploration of advanced methods and techniques in motion capture animation. Course culminates in a professional-quality animation project. May be repeated (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 10:26:48 013207 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>Req Type</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6353 (r3) atec6353.5</td>
<td>ATEC 6353 Visualization Research (3 semester credit hours) Exploration and application of advanced techniques in animation, visualization, simulation, and interactivity. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>2013-10-07 10:27:09 013208 50.0702.00.03 audit: -84.8 m index: -84.8 m</td>
<td>peoplesoft diff: 013208 2012-08-26 sxh121431 ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6354 (r4) atec6354.6</td>
<td>ATEC 6354 Virtual Environments (3 semester credit hours) Advanced research in the conceptualization, creation, and application of interactive immersive environments, including research in synthetic spaces, interactive game engines, and hybrid physical/virtual worlds. May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum. (0-3) T</td>
<td>phase: approve</td>
<td>2013-10-07 10:28:02 013209 50.0702.00.03 audit: -84.8 m index: -84.8 m</td>
<td>peoplesoft diff: 013209 2012-08-26 sxh121431 ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6355 (r2) atec6355.4</td>
<td>ATEC 6355 Animation Production Lab (3 semester credit hours) Exploration and application of advanced concepts and techniques involved in the development of animated shorts and features. Includes participation in a development team for creation of an animated short or feature-length animated film. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>2013-10-07 10:28:26 013210 50.0702.00.03 audit: -84.8 m index: -84.8 m</td>
<td>peoplesoft diff: 013210 2010-08-18 sxh121431 ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td>---</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6356 (r3)</td>
<td>ATEC 6356 Interactive Narrative (3 semester credit hours) Advanced research in the analysis and creation of interactive narrative systems, designs, and models through various philosophical and mechanical approaches. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 10:29:21 014023 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atec6356.5</td>
<td>peoplesoft diff: 014023 2012-08-26 sxr090100 ATEC 6356 Interactive Narrative (3 semester credit hours) Advanced research in the analysis and creation of interactive narrative systems, designs, and models through various philosophical and mechanical approaches. (May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours maximum). (0-3) T</td>
<td></td>
<td></td>
<td>detail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6357 (r1)</td>
<td>ATEC 6357 Animation Studio (3 semester credit hours) This course replicates an actual animation studio environment. It utilizes various aspects of all areas of computer animation including story development, layout, modeling, texturing, rigging, animation and lighting, rendering/compositing, sound design as well as project planning and management. Registration for this course is determined by a portfolio review by the instructor. May be repeated as topics vary (9 semester credit hours maximum). Instructor consent required. (0-3) Y</td>
<td>phase: approve</td>
<td>mwilson 2014-01-13 14:37:44 NOLINK 50.0702.00.03 audit: -84.1 m index: -84.1 m match_fail</td>
<td>ps info</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atec6357.3</td>
<td>peoplesoft diff: NOLINK ATEC 6357 Animation Studio (3 semester credit hours) This course replicates an actual animation studio environment. It utilizes various aspects of all areas of computer animation including story development, layout, modeling, texturing, rigging, animation and lighting, rendering/compositing, sound design as well as project planning and management. Registration for this course is determined by a portfolio review by the instructor. May be repeated as topics vary (9 semester credit hours maximum). Instructor consent required. (0-3) Y</td>
<td></td>
<td></td>
<td>detail</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * atec6358 (r1) atec6358.2</td>
<td>ATEC 6358 Concept Development (3 semester credit hours) This course is an in-depth examination of the creation and development of game and animation concepts through various writing and creation techniques. Topics include, advanced modeling and texturing principles and techniques, creating hard surface/organic models, and utilization of polygonal geometry. (0-3) R</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 15:28:11</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>audit: 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 6358 Concept Development (3 semester credit hours) This course is an in-depth examination of the creation and development of game and animation concepts through various writing and creation techniques. Topics include, advanced modeling and texturing principles and techniques, creating hard surface/organic models, and utilization of polygonal geometry. (0-3) R</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 15:32:45</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>audit: 9</td>
<td></td>
</tr>
</tbody>
</table>

ATEC 6359 Digital Cinematography (3 semester credit hours) This course will utilize computer generated pre-visualization techniques and cinematic principles to build a strong foundation in visual storytelling. Topics will include proper camera setup, character staging, moving cameras, line-action management, shot design utilizing color and light, and computer generated storyboard interpretation. Students must have prior experience in modeling and texturing. Department consent required. (0-3) R

phase: approve	mwilson 2013-11-10 15:32:45	ps info detail change process orion
status: approving	audit: 9	
peoplesoft diff: NOLINK		

ATEC 6359 Digital Cinematography (3 semester credit hours) This course will utilize computer generated pre-visualization techniques and cinematic principles to build a strong foundation in visual storytelling. Topics will include proper camera setup, character staging, moving cameras, line-action management, shot design utilizing color and light, and computer generated storyboard interpretation. Students must have prior experience in modeling and texturing. Department consent required. (0-3) R

<p>| phase: approve | mwilson 2013-11-10 15:32:45 | ps info detail change process orion |
| status: approving | audit: 9 | |
| peoplesoft diff: NOLINK | | |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atece6361 (r6)</td>
<td>atece6361.9</td>
<td></td>
<td>ATEC 6361 Creating Interactive Media (3 semester credit hours) This course covers theory, principles, and practice of media objects created for an interactive environment. Sections may be devoted exclusively to a single aspect of emerging media and communications or to a multiplicity of subjects related to the field. May be repeated (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 17:02:59 000855 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atece6362 (r1)</td>
<td>atece6362.3</td>
<td></td>
<td>ATEC 6362 Modeling and Simulation (3 semester credit hours) Theory and practice of modeling, including models for concepts, knowledge, geometry, and dynamics. A variety of model types are covered along with their algebraic and diagrammatic representations. Creative media design and representation of models are stressed. Instructor consent required. (0-3) Y</td>
<td>phase: approve</td>
<td>mwilson 2014-01-13 14:38:57 NOLINK 50.0702.00.03 audit: -84.1 m index: -84.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atece6363 (r1)</td>
<td>atece6363.2</td>
<td></td>
<td>ATEC 6363 Creative Automata (3 semester credit hours) Media design principles and methods for the creation of automata, including mathematical structures, models, and data. History and culture of classical automata and mathematical automata, along with their interconnections. (0-3) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 15:13:01 NOLINK 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atec6365 (r2) atec6365.4</td>
<td>ATEC 6365 Interaction, Communication, and Exchanges in Virtual Societies (3 semester credit hours) This course will address emerging issues related to the ever increasing use of virtual representations of the self and the other in the fields of human interaction, communication, and exchanges. Topics may include education and training, cultural exchanges, and e-government, with the underlying human computer interaction and project management implications. The course will address the design, technical, psychological, ethical, and sociological dimensions in these fields. May be repeated as topics vary (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 10:30:28 014024 50.0702.00.03 audit: -84.3 m index: -84.8 m match_fail</td>
<td>ps info change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * atec6372 (r5) atec6372.6</td>
<td>ATEC 6372 (EMAC 6372) Approaches to Emerging Media and Communication (3 semester credit hours) This course focuses on the conceptual study of emerging media. Course may explore the theoretical, political, technological, cultural, cognitive, and historical forces which inform the way media and communication develop. (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:53:16 000857 50.0702.00.03 audit: -84.3 m index: -84.3 m</td>
<td>ps info change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * atec6373 (r5) atec6373.8</td>
<td>ATEC 6373 (EMAC 6373) Emerging Media Studio I (3 semester credit hours) This course explores media production across multiple media. Students work in teams to develop meta-media projects in a variety of content delivery environments. Class will require students to develop a range of rhetorical (text, audio) and visual (image, video) strategies appropriate for emerging media. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:53:37 000858 50.0702.00.03 audit: -84.3 m index: -84.3 m</td>
<td>ps info change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove * atec6374 (r4)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:53:46</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atec6374.5</td>
<td></td>
<td>status: approving</td>
<td>013211 50.0702.00.03 audit: -84.3 m index: -84.3 m</td>
<td>change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATEC 6374 Digital Textuality (3 semester credit hours) This course will combine theory and practice to focus on shifts in text, image, and sound. Students will become acquainted with the influence of the digital on forms of textuality and put theory into practice by communicating ideas through multiple media forms. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * atec6375 (r4)</td>
<td></td>
<td>phase: approve</td>
<td>srx090100 2013-10-31 15:34:33</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atec6375.7</td>
<td>ATEC 6375 Topics in Emerging and Cognitive Design (3 semester credit hours) Exploration of the underlying psychological issues of users that can be taken into account in the design and assessment of interactive technologies, such as online personas, virtual humans and cultures, brain-computer or human-robotic interfaces, and e-behavior. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>status: approving</td>
<td>013212 50.0702.00.03 audit: -84.4 m index: -84.4 m</td>
<td>change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013212 2012-08-26 sxh121431</td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATEC 6375 Topics in Emerging & and Cognitive Design (3 semester credit hours) Exploration of the underlying psychological issues of users that can be taken into account in the design and assessment of interactive technologies, such as online personas, virtual humans and cultures, brain-computer or human-robotic interfaces, and e-behavior. (May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * atec6376 (r4)</td>
<td></td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 10:31:51</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atec6376.6</td>
<td>ATEC 6376 E-Business Environment Design (3 semester credit hours) Students in this course will analyze underlying changes in societal structures fueled by a web-based economic environment, apply the effect of these societal paradigms to marketing, examine the effect of technology-driven societal structures on the workplace, and explore how the optimization of e-marketing and e-business environment designs can be used to create sustainability strategies. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>status: approving</td>
<td>013213 50.0702.00.03 audit: -84.8 m index: -84.8 m</td>
<td>change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013213 2012-08-26 sxh121431</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATEC 6376 E-Business Environment Design (3 semester credit hours) Students in this course will analyze underlying changes in societal structures fueled by a web-based economic environment, apply the effect of these societal paradigms to marketing, examine the effect of technology-driven societal structures on the workplace, and explore how the optimization of e-marketing and e-business environment designs can be used to create sustainability strategies. (May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atece6380 (r1) atece6380.3</td>
<td>ATEC 6380 Studies in Art, Science, and Humanities (3 semester credit hours) This course will study current and emerging topics, approaches, and practices, where the arts, sciences, and humanities interact or converge, with the goal to advance new research questions and areas of inquiry. May be repeated for credit as topics vary (9 semester credit hours maximum). (0-3) Y</td>
<td>phase: approve</td>
<td>mwilson 2014-01-13 14:39:53</td>
<td>NOLINK 50.0702.00.03 audit: -84.2 m index: -84.2 m match_fail</td>
<td>ps info detail process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atece6382 (r3) atece6382.5</td>
<td>ATEC 6382 Special Topics in Interactive Media (3 semester credit hours) Students in this course will explore how interactivity defines the degree to which digital artifacts (such as games, multimedia applications, and interactive applications) are generated and transformed by their users. Topics may include interaction design, interface design, and research in anticipatory systems. May be repeated for credit (9 semester credit hours maximum). (0-3) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 10:32:15 013214 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * atece6383 (r4) atece6383.6</td>
<td>ATEC 6383 Special Topics in Sound Design (3 semester credit hours) Advanced research in digital music and sound design. Topics may include advanced visualization of music and sound, sonification of images and data, and advanced research in interactive sound applications. May be repeated for credit (9 semester credit hours maximum). (0-3) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 10:32:48 013215 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * atec6384 (r3)</td>
<td>ATEC 6384 Special Topics in Game Studies (3 semester credit hours) An examination of the links between technology, play, and culture. Topics may include the ethics of game development, serious and persuasive games, simulation and training, interactive education, identity and culture in virtual worlds, multilinear narrative, and philosophical origins of games as a medium. May be repeated for credit (9 semester credit hours maximum). (0-3) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>peoplesoft diff: 013216 2012-08-26 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atec6384.5</td>
<td></td>
<td>status: approving</td>
<td>2013-10-07</td>
<td>10:33:10</td>
<td>013216</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>50.0702.00.03</td>
<td>audit: -84.8 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -84.8 m</td>
<td>match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * atec6385 (r4)</td>
<td>ATEC 6385 Special Topics in Animation (3 semester credit hours) Advanced research in animation, including concept development, character development, advanced techniques and methods in 3D animation, and animation production techniques. May be repeated for credit (9 semester credit hours maximum). (0-3) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>peoplesoft diff: 013217 2013-08-25 keh120030</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atec6385.6</td>
<td></td>
<td>status: approving</td>
<td>2013-10-07</td>
<td>10:33:31</td>
<td>013217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>50.0702.00.03</td>
<td>audit: -84.8 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -84.8 m</td>
<td>match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * atec6389 (r2)</td>
<td>ATEC 6389 Topics in Arts and Technology (3 semester credit hours) The study of specific issues, problems, methods, or practices relevant to arts and technology. May be repeated for credit (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>peoplesoft diff: 014029 2012-08-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atec6389.4</td>
<td></td>
<td>status: approving</td>
<td>2013-10-07</td>
<td>10:33:49</td>
<td>014029</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>50.0702.00.03</td>
<td>audit: -84.8 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -84.8 m</td>
<td>match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>atec6390 (r3)</td>
<td>atec6390.7</td>
<td></td>
<td>ATEC 6390 Special Topics in Arts and Technology (3 semester credit hours) Independent study course that may count toward minimum course requirements for the MA or MFA degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 20:33:57 013218 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>atec6391 (r2)</td>
<td>atec6391.4</td>
<td></td>
<td>ATEC 6391 Computer Processing for Arts and Technology (3 semester credit hours) Advanced study of technology and programming methods appropriate for research design in Arts and Technology. Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 16:53:37 014031 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>atec6397 (r2)</td>
<td>atec6397.3</td>
<td></td>
<td>ATEC 6397 Independent Readings in Arts and Technology (3 semester credit hours) Pass/Fail only. May be repeated for credit. Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 16:12:06 013219 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>atec6398 (r2)</td>
<td>atec6398.3</td>
<td></td>
<td>ATEC 6398 Independent Research in Arts and Technology (3 semester credit hours) Pass/Fail only. May be repeated for credit. Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 16:11:54 013220 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6v90 (r3)</td>
<td>ATEC 6V90 Internship in Arts and Technology (1-3 semester credit hours) Students undertake a learning experience at a supervised work situation related to their graduate area of study. An internship provides exposure experience to a professional working environment, application of theory to working realities, and an opportunity to test skills and clarify goals. Course requirements include formal and reflective writing. May be repeated for credit (6 semester credit hours maximum). ([1-3]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-13 15:53:13 014033 50.0702.00.03 audit: -84.1 m index: -84.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec6v95 (r3)</td>
<td>ATEC 6V95 Advanced Project Workshop (3-6 semester credit hours) Students will engage in the creation of an advanced creative and/or research project exploring the interaction of the arts with digital technology. Required of all MA and MFA degree candidates in Arts and Technology. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([3-6]-0) Y</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 17:18:14 013186 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>request</td>
<td>catalog course description</td>
<td>status</td>
<td>metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec7330 (r2)</td>
<td>atec7330.4</td>
<td>phase: approve</td>
<td>ATEC 7330 Advanced Topics in Complex Digital Interactive Systems (3 semester credit hours) This course focuses on the analysis, design and production of complex digital interactive systems applied to domains such as learning and training, entertainment, and scientific experiment. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec7331 (r3)</td>
<td>atec7331.3</td>
<td>phase: approve</td>
<td>ATEC 7331 Research Methodology in Arts and Technology (3 semester credit hours) This course presents students with a variety of research methods that are appropriate for advanced research in Arts and Technology. Methods will include ethnographic, experimental, descriptive, historical, and philosophical. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 014034 2012-08-26
ATEC 7330 Advanced Topics in Complex Digital Interactive Systems (3 semester credit hours) This course focuses on the analysis, design and production of complex digital interactive systems applied to domains such as learning and training, entertainment, and scientific experiment. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T

peoplesoft diff: 013687 2012-08-26 sxh121431
ATEC 7331 Research Methodology in Arts and Technology (3 semester credit hours) This course presents students with a variety of research methods that are appropriate for advanced research in Arts and Technology. Methods will include ethnographic, experimental, descriptive, historical, and philosophical. (3-0) R
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * atec7335 (r2)</td>
<td>ATEC 7335 Advanced Topics in Digital Multisensory Representations and Simulations (3 semester credit hours) This course explores the technical, conceptual, sociological, and artistic dimensions of digital multisensory representations in various contexts, domains and applications: entertainment, communication, education and training. Focus of the course may vary to deeper address specific questions in visual, auditory, kinetic, and olfactive representations and simulations. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 10:37:45 014036 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 014036 2012-08-26

ATEC 7335 Advanced Topics in Digital Multisensory Representations and Simulations (3 semester credit hours) This course explores the technical, conceptual, sociological, and artistic dimensions of digital multisensory representations in various contexts, domains and applications: entertainment, communication, education and training. Focus of the course may vary to deeper address specific questions in visual, auditory, kinetic, and olfactive representations and simulations. *(May be repeated for credit to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T*

| 2014-open | edit * atec7340 (r2) | ATEC 7340 Advanced Studies in Arts and Technology (3 semester credit hours) Advanced studies in the theoretical and/or practical interactions of arts and technology. May be repeated for credit (9 semester credit hours maximum). (3-0) R | phase: approve | cxj140030 2013-11-14 16:34:29 013685 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail | ps info detail change process orion |

peoplesoft diff: 013685 2011-08-23 sxh121431

ATEC 7340 Advanced Studies in Arts and Technology (3 semester credit hours) Advanced studies in the theoretical and/or practical interactions of arts and technology. May be repeated for credit to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) R

| 2014-open | edit * atec7390 (r5) | ATEC 7390 Advanced Special Topics in Arts and Technology (3 semester credit hours) Independent study course that may count toward minimum course requirements for the PhD degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R | phase: approve | mxv062000 2014-01-09 13:07:57 000863 50.0702.00.03 audit: -84.2 m index: -84.2 m match_fail | ps info detail change process orion |

peoplesoft diff: 000863 2013-01-01 sxr090100

ATEC 7390 Advanced Special Topics in Arts and Technology (3 semester credit hours) Independent studies study course that may count toward minimum course requirements for the PhD degree. May be repeated for credit to a maximum of 9 (9 semester credit hours) hours maximum). Instructor consent required. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>ATEC 7620</td>
<td>ATEC 7620 Advanced Projects in Simulation and Game Design (6 semester credit hours) Students will engage in the creation of advanced creative and/or research projects exploring simulation and game design. Instructor consent required. (0-6) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 7620.3</td>
<td>peopleosdiff: 013684 2011-08-23 sxh121431</td>
<td>status: approving</td>
<td>2013-10-31 16:55:22</td>
<td>013684 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 7V81</td>
<td>ATEC 7V81 Advanced Project Workshop (3-6 semester credit hours) Students will engage in the creation of an advanced creative and/or research project exploring the interaction of the arts with digital technology. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([3-6]-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 7V81.7</td>
<td>peopleosdiff: 000859 2012-08-26 sxh121431</td>
<td>status: approving</td>
<td>2013-10-31 17:17:23</td>
<td>000859 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 7V82</td>
<td>ATEC 7V82 Advanced Projects in Interactive Media (1-9 semester credit hours) Students will complete an advanced creative and/or research project exploring the interaction of communication and digital technology. May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 7V82.8</td>
<td>peopleosdiff: 000860 2010-08-18 sxh121431</td>
<td>status: approving</td>
<td>2013-10-31 16:56:10</td>
<td>000860 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 8303</td>
<td>ATEC 8303 Independent Readings in Arts and Technology (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATEC 8303.7</td>
<td>peopleosdiff: 000864 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td>2013-10-31 17:16:20</td>
<td>000864 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec8305 (r4) atec8305.6</td>
<td>ATEC 8305 Independent Research in Arts and Technology (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>2013-10-31 16:57:50</td>
<td>srx090100 000865 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>atec8v99 (r3) atec8v99.5</td>
<td>ATEC 8V99 PhD Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>2013-10-31 16:58:26</td>
<td>013623 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>emac6300 (r5) emac6300.5</td>
<td>EMAC 6300 Interdisciplinary Studies in Emerging Media and Communication (3 semester credit hours) This course is an interdisciplinary study of the implications of interactive technology for the creation, dissemination, and impact of communication. Establishes basic theoretical concepts and principles underlying the graduate program in Emerging Media and Communication. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 14:39:19</td>
<td>013183 09.0102.00.01 audit: -84.7 m index: -84.7 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>emac6342 (r2) emac6342.2</td>
<td>EMAC 6342 Digital Culture (3 semester credit hours) This course will examine the way that the digital network alters various cultural practices. Students will examine a range of institutions, practices, and values that are affected by the digital shift. Topics may include, privacy, legal practices, journalism, politics, and intellectual property. (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-16 14:39:29</td>
<td>014096 50.0702.00.03 audit: -84.6 m index: -84.6 m match_fail</td>
</tr>
<tr>
<td>Start End</td>
<td>Req Type Course Req_ID</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * emac6361 (r5) emac6361.6</td>
<td>request to remove this course from catalog EMAC 6361 (ATEC 6361) Creating Interactive Media (3 semester credit hours) This course covers theory, principles, and practice of media objects created for an interactive environment. Sections may be devoted exclusively to a single aspect of emerging media and communications or to a multiplicity of subjects related to the field. (May be repeated to a maximum of 9 semester credit hours.) (0-3) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:56:00 012797 50.0702.00.03 audit: -84.3 m index: -84.3 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * emac6365 (r2) emac6365.2</td>
<td>EMAC 6365 Journalism and the Digital Network (3 semester credit hours) This course will examine the ways in which the digital network has (and by extension has not) transformed the work of reporting, filtering, and creating the news. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:39:54 014097 09.0102.00.01 audit: -84.7 m index: -84.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * emac6372 (r6) emac6372.7</td>
<td>EMAC 6372 Approaches to Emerging Media and Communication (3 semester credit hours) This course focuses on the conceptual study of emerging media. Course may explore the theoretical, political, technological, cultural, cognitive, and historical forces which inform the way media and communication develop. (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:56:22 012788 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>emac6373 (r5)</td>
<td>EMAC 6373 Emerging Media Studio I (3 semester credit hours) This course explores media production across multiple media. Students work in teams to develop meta-media projects in a variety of content delivery environments. Class will require students to develop a range of rhetorical (text, audio) and visual (image, video) strategies appropriate for emerging media. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:56:41 012787 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>emac6373.6</td>
<td>peoplesoft diff: 012787 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>emac6374 (r4)</td>
<td>EMAC 6374 Digital Textuality (3 semester credit hours) This course will combine theory and practice to focus on shifts in text, image, and sound. Students will become acquainted with the influence of the digital on forms of textuality and put theory into practice by communicating ideas through multiple media forms. (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:55:37 013184 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>emac6374.5</td>
<td>peoplesoft diff: 013184 2012-08-26 sxh121431</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----------------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>emac6375</td>
<td>EMAC 6375 Research Methodologies in Emerging Media and Communication (3 semester credit hours) This course introduces the basic set of knowledge and skills required for conducting rigorous research in emerging media and communication from various approaches. The concepts, strategies, methods, and skills that students will acquire in this course should help in understanding the implications and limitations of research reported by others, and to conduct and publish research in students' chosen area of inquiry. Methods covered might include qualitative, quantitative, and/or ethnographic approaches. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 14:57:57 014083 50.0702.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r2)</td>
<td>emac6375.3</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014083 2012-08-26 EMAC 6375 Research Methodologies in Emerging Media and Communication (3 semester credit hours) This course introduces the basic set of knowledge and skills required for conducting rigorous research in emerging media and communication from various approaches. The concepts, strategies, methods, and skills that you students will acquire in this course should help you understand in understanding the implications and limitations of research reported by others, and to conduct and publish research in your students' chosen area of inquiry. Methods covered might include qualitative, quantitative, and/or ethnographic approaches. (May May be repeated for credit to a maximum of 9 hours.) as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>emac6381</td>
<td>EMAC 6381 Special Topics in Emergent Communication (3 semester credit hours) A course dedicated to current issues, research problems, and special projects in emerging media and communication. Topics will vary and may include distributed, mobile, time-shifted, interactive, and personal media. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-15 13:18:51 014098 09.0102.00.01 audit: -84.3 m index: -84.3 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r2)</td>
<td>emac6381.3</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014098 2012-08-26 EMAC 6381 Special Topics in Emergent Communication (3 semester credit hours) A course dedicated to current issues, research problems, and special projects in emerging media and communication. Topics will vary and may include distributed, mobile, time-shifted, interactive, and personal media. (May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours.) hours maximum). (3-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>emac6383</td>
<td>(r3)</td>
<td>EMAC 6383 Emerging Media Studio II (3 semester credit hours) Advanced collaborative workshop devoted to the creation of sophisticated communications employing multiple media platforms. May be repeated for credit (9 semester credit hours maximum). (0-3) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>emac6383.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-15 13:19:57 012790 09.0102.00.01 audit: -84.3 m index: -84.3 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012790 2010-08-18 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>emac6v91</td>
<td>(r2)</td>
<td>EMAC 6V91 Advanced Project Workshop (3-6 semester credit hours) Students propose, develop, and execute an advanced creative and/or research project exploring the Emerging Media and Communication. This course is required of all degree candidates in Emerging Media and Communication. May be repeated for credit (12 semester credit hours maximum). Instructor consent required. ([3-6]-0) Y</td>
<td>phase: approve</td>
<td>sxr090100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>emac6v91.3</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-31 16:59:34 013185 50.0702.00.03 audit: -84.4 m index: -84.4 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013185 2010-08-18 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6301</td>
<td>(r3)</td>
<td>HIST 6301 Historiography (3 semester credit hours) Graduate-level introduction to the practice and forms of written history. Required of all students in the MA program in History, this course examines the ways in which historians have conceived of their craft, the centrality of interpretation to the historical process, and the use of a variety of methods and theories in the study of the past. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hist6301.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-06 12:53:57 013005 54.0101.00.01 audit: -85.4 m index: -85.4 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HIST 6310 Early American History (3 semester credit hours) The study of specific themes and/or periods in American history through the American Revolution. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hist6310 (r4)</td>
<td></td>
<td>status: approving</td>
<td>2013-10-07 12:41:41</td>
<td>006958 54.0102.00.01</td>
<td>audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td></td>
<td>hist6310.6</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006958 2008-08-21 keh120030</td>
<td>HIST 6310 Early American History (3 semester credit hours) The study of specific themes and/or periods in American history through the American Revolution. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hist6310.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HIST 6320 America in the Nineteenth Century (3 semester credit hours) The study of specific themes and/or periods in American history in the nineteenth century. Topics may include the Civil War and Reconstruction. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hist6320 (r4)</td>
<td></td>
<td>status: approving</td>
<td>2013-10-07 12:43:01</td>
<td>006959 54.0102.00.01</td>
<td>audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td></td>
<td>hist6320.6</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006959 2008-08-21 keh120030</td>
<td>HIST 6320 America in the Nineteenth Century (3 semester credit hours) The study of specific themes and/or periods in American history in the nineteenth century. Topics may include the Civil War and Reconstruction. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hist6320.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HIST 6324 Gilded Age and Progressive Era (3 semester credit hours) The study of social, political, and economic life in the period between 1877 and 1919. Special attention to the relationship between government and society. (3-0) T</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hist6324 (r3)</td>
<td></td>
<td>status: approving</td>
<td>2013-10-31 15:35:47</td>
<td>013006 54.0101.00.01</td>
<td>audit: -84.4 m index: -84.4 m match_fail</td>
</tr>
<tr>
<td></td>
<td>hist6324.4</td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 013006 2011-08-23 keh120030</td>
<td>HIST 6324 Gilded Age & and Progressive Era (3 semester credit hours) The study of social, political, and economic life in the period between 1877 and 1919. Special attention to the relationship between government and society. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hist6324.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HIST 6325 America in the Twentieth Century (3 semester credit hours) The study of specific themes and/or periods of American history in the twentieth century. Topics may include World War I, World War II, and the Civil Rights Era. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hist6325 (r3)</td>
<td></td>
<td>status: approving</td>
<td>2013-10-21 12:46:10</td>
<td>006960 54.0102.00.01</td>
<td>audit: -84.5 m index: -84.5 m match_fail</td>
</tr>
<tr>
<td></td>
<td>hist6325.3</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006960 2008-08-21 keh120030</td>
<td>HIST 6325 America in the Twentieth Century (3 semester credit hours) The study of specific themes and/or periods of American history in the twentieth century. Topics may include World War I, World War II, and the Civil Rights Era. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hist6326 (r3) hist6326.3</td>
<td>HIST 6326 U.S. Foreign Relations (3 semester credit hours) The study of U.S. diplomatic relations with Asia, Africa, Europe, Latin America, the Middle East, and Soviet Russia in the twentieth and twenty-first centuries. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 09:40:50 013007 54.0102.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hist6327 (r3) hist6327.3</td>
<td>HIST 6327 U.S. Since 1945 (3 semester credit hours) The study of the political, economic, social, and cultural development of the United States since the end of World War II. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 09:40:56 013008 54.0102.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hist6330 (r5) hist6330.7</td>
<td>HIST 6330 Regional and Area History in the United States (3 semester credit hours) The study of themes related to the history of specific regions of the United States, for example the South, the Southwest, and Texas. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:43:33 006961 54.0101.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hist6332 (r3) hist6332.3</td>
<td>HIST 6332 Slavery in America (3 semester credit hours) The study of the origins, evolution, growth and destruction of racial slavery in America from 1619-1865. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 09:41:34 013009 54.0102.00.01 audit: -85.2 m index: -85.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hist6333</td>
<td>(r3)</td>
<td>HIST 6333 Rise of the Jim Crow South (3 semester credit hours) The study of the origins of segregation and disfranchisement in the New South. Explores historiographical debates about the nature and meaning of Jim Crow. (3-0) T</td>
<td>phase:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hist6333.3</td>
<td></td>
<td></td>
<td></td>
<td>status:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013011 2011-08-23 keh120030 HIST 6333 Rise of the Jim Crow South (3 semester credit hours) The study of the origins of segregation and disfranchisement in the New South. Explores historiographical debates about the nature and meaning of Jim Crow. (3-0) T</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hist6335</td>
<td>(r3)</td>
<td>HIST 6335 U.S. Women (3 semester credit hours) The study of recent historiography, current methods, and major themes in U.S. women's and gender history. (3-0) T</td>
<td>phase:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hist6335.3</td>
<td></td>
<td></td>
<td></td>
<td>status:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013013 2011-08-23 keh120030 HIST 6335 U.S. Women (3 semester credit hours) The study of recent historiography, current methods, and major themes in U.S. women's and gender history. (3-0) T</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hist6340</td>
<td>(r5)</td>
<td>HIST 6340 European and World History (3 semester credit hours) The study of specific themes and/or periods in the history of Europe and the world. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hist6340.7</td>
<td></td>
<td></td>
<td></td>
<td>status:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006962 2012-08-26 keh120030 HIST 6340 European and World History (3 semester credit hours) The study of specific themes and/or periods in the history of Europe and the world. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hist6350</td>
<td>(r2)</td>
<td>HIST 6350 Asian History (3 semester credit hours) The study of specific themes and/or periods in the history of Asia. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hist6350.4</td>
<td></td>
<td></td>
<td></td>
<td>status:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013015 2010-08-18 keh120030 HIST 6350 Asian History (3 semester credit hours) The study of specific themes and/or periods in the history of Asia. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf 27/90
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6360 (r2) hist6360.4</td>
<td>HIST 6360 Latin American History (3 semester credit hours) The study of specific themes and/or periods in the history of Latin America. May be repeated for credit as topics vary (9 semester credit hours). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:44:32 013017 54.0101.00.01 audit: -84.8 m index: -84.8 m match _fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6365 (r2) hist6365.4</td>
<td>HIST 6365 Mexican History (3 semester credit hours) The study of specific themes and/or periods in the history of Mexico. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:44:55 013021 54.0199.01.01 audit: -84.8 m index: -84.8 m match _fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6370 (r3) hist6370.5</td>
<td>HIST 6370 Middle Eastern History (3 semester credit hours) The study of specific themes and/or periods in the history of the Middle East. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:45:14 013023 54.0101.00.01 audit: -84.8 m index: -84.8 m match _fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6390 (r4) hist6390.6</td>
<td>HIST 6390 Topics in History (3 semester credit hours) The study of specific themes and/or periods in history. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:45:35 013024 54.0101.00.01 audit: -84.8 m index: -84.8 m match _fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6395 (r2)</td>
<td>HIST 6395 Special Topics in History (3 semester credit hours) If taken as an independent study, course may count toward minimum course requirements for the MA degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6397 (r2)</td>
<td>HIST 6397 Independent Readings in History (3 semester credit hours) Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6398 (r2)</td>
<td>HIST 6398 Independent Research in History (3 semester credit hours) Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hist6399 (r2)</td>
<td>HIST 6399 Master's Thesis (3 semester credit hours) Pass/Fail only. May be repeated for credit (12 semester credit hours maximum). Only 6 semester credit hours will be counted toward MA. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

HIST 6395 Special Topics in History (3 semester credit hours) If taken as an independent study, course may count toward minimum course requirements for the M.A. MA degree. (May May be repeated for credit to a maximum of 9 hours.) (9 semester credit hours maximum). Instructor consent required. (3-0) R

HIST 6397 Independent Readings in History (3 semester credit hours) (May Pass/Fail only. May be repeated for credit) credit (9 semester credit hours maximum). Instructor consent required. (3-0) R

HIST 6398 Independent Research in History (3 semester credit hours) (May Pass/Fail only. May be repeated for credit) credit (9 semester credit hours maximum). Instructor consent required. (3-0) R

HIST 6399 Master's Thesis (3 semester credit hours) (May Pass/Fail only. May be repeated for credit but only) (12 semester credit hours maximum). Only 6 semester credit hours will be counted toward M.A. MA. Instructor consent required. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6303</td>
<td>HUAS 6303 Performance Literature, Theory, and Criticism (3 semester credit hours) Examination of a wide range of performance and theatrical traditions and texts. Using various critical and theoretical perspectives, the focus will be on the interplay between textual analysis, theoretical and critical frames, and performance. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r4) huas6303.6</td>
<td></td>
<td>status: approving</td>
<td>2013-10-07 12:49:11</td>
<td>change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>007111</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007111 2014-08-24 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUAS 6303 Performance Literature, Theory, and Criticism (3 semester credit hours) Examination of a wide range of performance and theatrical traditions and texts. Using various critical and theoretical perspectives, the focus will be on the interplay between textual analysis, theoretical and critical frames, and performance. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6305</td>
<td>HUAS 6305 Criticism, Interpretation, and Performance (3 semester credit hours) An investigation of interrelationship among the activities of criticizing, interpreting, and performing artistic texts. Examples may be drawn from literature, theater, performance art, web and inter-media applications, film/video, music, and visual arts. The course will include an exploration of the effects of various cultural and theoretical perspectives on our response to specific works. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r6) huas6305.6</td>
<td></td>
<td>status: approving</td>
<td>2013-09-30 09:55:47</td>
<td>change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>007113</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007113 2014-08-24 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUAS 6305 Criticism, Interpretation, and Performance (3 semester credit hours) An investigation of interrelationship among the activities of criticizing, interpreting, and performing artistic texts. Examples may be drawn from literature, theater, performance art, web and inter-media applications, film/video, music, and visual arts. The course will include an exploration of the effects of various cultural and theoretical perspectives on our response to specific works. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6310</td>
<td>(r6)</td>
<td>huas6310.6</td>
<td>HUAS 6310 Introduction to Film Studies (3 semester credit hours) Study of the history and formal and stylistic elements of cinema as a medium of expression, as an industry, and as an art form; and an introduction to the tenets and theoretical basis of the academic discipline known as film studies. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6312</td>
<td>(r4)</td>
<td>huas6312.6</td>
<td>HUAS 6312 Art and Society (3 semester credit hours) Study of the many forms of interaction between the arts and the society in which they exist. Topics may include the role of the artist in society, the representation of social and religious values in art, or the influence of art and the artist upon society. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6313</td>
<td>(r6)</td>
<td>huas6313.8</td>
<td>HUAS 6313 The Business of the Arts (3 semester credit hours) Exploration of effective means to find, create, and manage markets and audiences for works of art. Topics may include digital media, visual or performing arts, museum studies, and arts management. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huas6315</td>
<td>HUAS 6315 The Arts in Historical Contexts (3 semester credit hours) Studies in one or more arts of various places and historical periods. Topics will vary, but may focus on a particular movement (e.g., Surrealism), a specific era (e.g., the Renaissance), or a place (e.g., Paris in the early twentieth century). May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:51:31 50.0101.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huas6317</td>
<td>HUAS 6317 Art and Authorship (3 semester credit hours) In-depth study of the role of the work, cultural milieu, and impact of an individual artist, writer, filmmaker, composer, performer, critic, scholar, or cultural historian. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:52:18 013304 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6318</td>
<td>huas6318.6</td>
<td>HUAS 6318 Arts and Their Institutions (3 semester credit hours) Studies of the institutions that shape and present the visual and performing arts by providing their physical, administrative, and financial frames; art museums, theaters, symphony associations, performance consortiums, or private foundations. The course will focus selectively on these institutions, grouping them for study in various ways depending on the interests and expertise of the instructor. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:52:32 007120 50.0101.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6320</td>
<td>huas6320.9</td>
<td>HUAS 6320 Studies in Experimental Traditions (3 semester credit hours) Studies in the works of artists whose experimentation with forms of expression breaks new ground in the arts and demands changes in the aesthetic perception of the public. The course will focus on such experimental movements as modernism, postmodernism, and various avant-gardes that form the new tradition of the contemporary arts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:53:05 007122 50.0101.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6324 (r4) huas6324.6</td>
<td></td>
<td></td>
<td>HUAS 6324 Spaces of Display and Performance (3 semester credit hours) Usually art works and performances are encountered in specific ritualized spaces designed for them and exerting strong influence on their character. The course will address such spaces critically from the point of view of architecture, theories of display, and concepts of ritual spectatorship. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007125 2014-08-24 adp130030</td>
<td>cxj140030</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6330 (r9) huas6330.11</td>
<td></td>
<td></td>
<td>HUAS 6330 Studies in the Visual Arts (3 semester credit hours) Explorations in various forms of the visual arts. The course may focus on a specific form (e.g., painting, sculpture, film, photography) or interrelations among visual forms. Emphasis will be on the understanding of the creative process underlying the finished work. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007131 2014-08-24 adp130030</td>
<td>cxj140030</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6331 (r8) huas6331.10</td>
<td>HUAS 6331 Studies in Music (3 semester credit hours) Studies in forms of musical expression. Topics will vary, but the course will emphasize the nature, development, and artistic possibilities of various forms of music. Courses may relate music to developments in other arts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>cxj140030 2013-10-07 12:54:03 007132 50.0901.00.03 audit: -84.8 m index: -84.8 m</td>
<td>peoplesoft diff: 007132 2014-08-24 adp130030 ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6333 (r2) huas6333.5</td>
<td>HUAS 6333 Advanced Orchestra/Chamber Music Ensemble (3 semester credit hours) Workshop in which instrumentalists, singers, dancers, actors, composers, lyricists, visual artists and/or video/performance artists create and perform music for small and larger ensembles, plus multi-media and theater works. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (0-3) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>mwilson 2014-01-13 14:43:05 013229 50.0901.00.03 audit: -84.2 m index: -84.2 m</td>
<td>peoplesoft diff: 013229 2010-08-18 keh120030 ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6334 (r3) huas6334.3</td>
<td>HUAS 6334 Iberian Culture and Music (3 semester credit hours) Study of the transfer of music and culture between Spain, Portugal, and the countries of the Americas which had close connections to the Iberian countries via language, culture, and commerce. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>cxj140030 2013-09-30 09:58:35 013230 50.0901.00.03 audit: -85.3 m index: -85.3 m</td>
<td>peoplesoft diff: 013230 2011-08-23 keh120030 ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6336</td>
<td>r2</td>
<td>HUAS 6336 Photography Studio/Seminar (3 semester credit hours) Workshop-based course designed to foster reflection on the relationship between human perception and the photographic mediation of reality. The course may emphasize photographic processes or conceptual frameworks. May be repeated for credit (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-07 12:54:25 013234 50.0101.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6337</td>
<td>r2</td>
<td>HUAS 6337 Digital Photography (3 semester credit hours) Workshop in which students explore digital photography within the context of contemporary art, emphasizing the relationship between digital imaging processes and color photographic techniques. May be repeated for credit (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-07 12:54:43 013235 50.0101.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6339</td>
<td>r2</td>
<td>HUAS 6339 Painting/Digital Imaging/Video (3 semester credit hours) Workshop in which students will pursue creative work in a medium of their preference or expertise (can include painting, drawing, digital imaging, video or hybrid forms). May be repeated for credit (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-07 12:55:05 013236 50.0101.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6340 (r7) huas6340.9</td>
<td>HUAS 6340 Studies in Theater and Dance (3 semester credit hours) An investigation of theater, performance art, inter-media, and/or dance as forms of art. The course will relate to and incorporate trends in other arts and contemporary intellectual and cultural movements, theories and critical issues. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:56:03 007135 50.0101.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 007135 2014-08-24 adp130030</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUAS 6340 Studies in Theater and Dance (3 semester credit hours) An investigation of theater, performance art, inter-media, and/or dance as forms of art. The course will relate to and incorporate trends in other arts and contemporary intellectual and cultural movements, theories and critical issues. (May be repeated for credit as topics vary to a maximum of 9 semester credit hours.) (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6343 (r1) huas6343.3</td>
<td>HUAS 6343 Essential Plays (3 semester credit hours) This course examines some of the world's most beloved masterpieces of dramatic literature. The class will explore methods of analyzing and interpreting plays for theatrical production, as literature, and for deeper understanding and enjoyment as readers, scholars, and spectators. May be repeated as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2014-01-13 14:44:07 NOLINK 50.0101.00.03 audit: -84.2 m index: -84.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>audit: 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUAS 6343 Essential Plays (3 semester credit hours) This course examines some of the world's most beloved masterpieces of dramatic literature. The class will explore methods of analyzing and interpreting plays for theatrical production, as literature, and for deeper understanding and enjoyment as readers, scholars, and spectators. May be repeated as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6345</td>
<td>HUAS 6345 Shakespeare in Performance (3 semester credit hours) Studies of Shakespeare's plays, examining varied artistic and scholarly interpretations in film and performance. The course will blend lectures, discussions, and practical skill-based exercises and may include scholarly and/or creative projects. Meant for aspiring writers, actors, directors, and teachers, with or without experience in performing. May be repeated for credit as topics may vary (6 semester credit hours maximum). (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:56:52 007137 50.0901.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>peoplesoft diff: 007137 2014-08-24 adp130030</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6347</td>
<td>HUAS 6347 Solo Performance (3 semester credit hours) Workshop in which students explore aspects of devising, writing, and performing solos, with an emphasis on developing work in multiple genres, media, and formats. May be repeated for credit (9 semester credit hours maximum). (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:57:13 013237 50.0903.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>peoplesoft diff: 013237 2010-08-18 keh120030</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huas6348</td>
<td>r2</td>
<td>HUAS 6348 Performance Installation (3 semester credit hours) An exploration of the theory, history, and practice of employing installation and performance art with technology as a means of extending personal artistic practice. Emphasis will be on practical experience in the conceptualization and production of collaborative, experimental, trans-disciplinary artistic expression. May be repeated for credit (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huas6350</td>
<td>r5</td>
<td>HUAS 6350 Creating Poetry (3 semester credit hours) An investigation in a workshop environment of the aesthetics of the art and creation of poetry, focusing on the creative techniques and processes involved in producing poems and song lyrics in a variety of formalist, free verse, and experimental forms that combine verbal, written art with the visual and performing arts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>edit *</td>
<td>huas6351</td>
<td></td>
<td>HUAS 6351 Creating Novels (3 semester credit hours) An investigation in a workshop environment of the aesthetics of the art and creation of the novel, focusing on the creative techniques and processes involved in producing novels in a variety of lyrical, experimental, and traditional forms that combine verbal, written art with the visual and performing arts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-16 16:01:30 007140 23.1302.00.01 audit: -84.6 m index: -84.6 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007140 2014-08-24 adp130030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>req_type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>edit *</td>
<td>huas6352</td>
<td></td>
<td>HUAS 6352 Creating Television and Movie Scripts (3 semester credit hours) An investigation in a workshop environment of the aesthetics of art and creation of movie, multimedia, video, and television scripts, focusing on the creative techniques and processes involved in producing scripts in a variety of experimental and traditional forms that combine verbal, written art with acting, filmmaking, and production. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-07 12:58:24 007141 50.0504.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007141 2014-08-24 adp130030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>request type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6353</td>
<td>HUAS 6353 Creating Plays and Musicals (3 semester credit hours) An investigation in a workshop environment of the aesthetics of art and creation of drama, focusing on the creative techniques and processes involved in producing plays and musicals in a variety of experimental and traditional forms that combine verbal, written art with the musical and dramatic arts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 12:58:41 007142</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>req_id</td>
<td>huas6353.6</td>
<td></td>
<td>status: approving</td>
<td>50.0504.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007142 2014-08-24 adp130030</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6354</td>
<td>HUAS 6354 Creating Short Fictions (3 semester credit hours) An investigation in a workshop environment of the aesthetics of the art and creation of the short story and the novella, focusing on the creative techniques and processes involved in producing short stories in a variety of experimental and traditional forms that combine verbal, written art with the visual and performing arts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0)</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-18 15:37:14 013239</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>req_id</td>
<td>huas6354.6</td>
<td></td>
<td>status: approving</td>
<td>23.1302.00.01 audit: -84.3 m index: -84.3 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013239 2012-08-26 keh120030</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * huas6355 (r3) huas6355.5</td>
<td></td>
<td>HUAS 6355 Creating Nonfictions (3 semester credit hours) This workshop will draw from one or several nonfiction genres such as portraiture, historical accounts, essays, biography, and autobiography and will show how they are realized using techniques by the creation of art. Topics may vary but may include visual artists, filmmakers, composers, or other artists. May be repeated for credit (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td></td>
<td>cxj140030 2013-10-07 13:01:01 013240 23.1302.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6373 (r8) huas6373.10</td>
<td></td>
<td>HUAS 6373 Studies in Film, Television, and Digital Media (3 semester credit hours) Study of aspects of motion picture history, criticism, and aesthetics. Topics may include genre study, documentary practices, national cinemas or movements, theories of reception, or comparisons of these and other art forms. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td></td>
<td>cxj140030 2013-10-07 13:01:20 007147 50.0602.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6374</td>
<td>(r1)</td>
<td>huas6374.2</td>
<td>HUAS 6374 Myth In/And Media (3 semester credit hours) The class will explore, from a mythological perspective, how we have come to live in a world surrounded by an increasingly pervasive, powerful deluge of mythologically-informed media representations. Yet the content, language, formations, and templates applied are mythological, if not fundamental, to the origins of human consciousness and civilization. Includes mythological examinations of popular television programs, music videos, computer games, comic books, and films. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6375</td>
<td>(r7)</td>
<td>huas6375.9</td>
<td>HUAS 6375 Imagery and Iconography (3 semester credit hours) The study of the visual image, its uses, and constructions of meaning. Topics may include the nature of the visual image, the modes of interpretation of visual images, the relationship of image and text, and the ways in which the visual image is used to shape our imagination. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6377 (r3)</td>
<td>HUAS 6377 Critical Theory and the Visual Arts (3 semester credit hours) A mapping of the relations between the visual arts and critical theories from the mid-twentieth century to the present. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mxa062000</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huas6377.6</td>
<td></td>
<td>status: approving</td>
<td>2013-12-03 12:56:34</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>013253</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013253 2012-08-26 keh120030</td>
<td></td>
<td></td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUAS 6377 Critical Theory and the Visual Arts (3 semester credit hours) A mapping of the relations between the visual arts and critical theories from the mid-twentieth century to the present. (May be repeated for credit as topics vary to a maximum of 6 (6 semester credit hours) hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mxa062000</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-03 12:56:34</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>013253</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013253 2012-08-26 keh120030</td>
<td></td>
<td></td>
<td>process</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6380 (r3)</td>
<td>HUAS 6380 Creating Poetry: Intermediate (3 semester credit hours) An intensive investigation into the forms (both ancient and modern), theories, and creations of poetry in a workshop environment that will focus on the creative techniques and processes involved in producing formalist, lyrical, free verse, and experimental poetry. May be repeated for credit (9 semester credit hours maximum). Prerequisite: HUAS 6350 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxa062000</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huas6380.8</td>
<td></td>
<td>status: approving</td>
<td>2014-01-13 14:45:41</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>013254</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013254 2012-08-26 keh120030</td>
<td></td>
<td></td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUAS 6380 Creating Poetry: Intermediate (3 semester credit hours) An intensive investigation into the forms (both ancient and modern), theories, and creations of poetry in a workshop environment that will focus on the creative techniques and processes involved in producing formalist, lyrical, free verse, and experimental poetry. Permission of the instructor and previous completion of HUAS 6350 are required. (May be repeated for credit to a maximum of 9 (9 semester credit hours) hours maximum). Prerequisite: HUAS 6350 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxa062000</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2014-01-13 14:45:41</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>013254</td>
<td>change</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td>huas6381</td>
<td>(r3)</td>
<td>HUAS 6381 Creating Fiction: Intermediate (3 semester credit hours) An intensive investigation into the theories, aesthetics, and creation of fiction in a workshop environment that will focus both on structure and on creative techniques and creative process involved in producing sophisticated, challenging, and linguistically developed fictions. The course may emphasize the short story, novel, or novella. May be repeated as topics vary (9 semester credit hours maximum). Prerequisite: (HUAS 6351 or HUAS 6354) or instructor consent required.</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td>huas6383</td>
<td>(r3)</td>
<td>HUAS 6383 Creating Scripts: Intermediate (3 semester credit hours) An intense investigation of the theory, history, aesthetics, art, and creation of play, movie, and television scripts in a workshop environment that will focus on the creative techniques and processes involved not only in the creation of film, play, and television scripts, but also in the production of plays, films, and television episodes. May be repeated for credit (9 semester credit hours maximum). Prerequisite: (HUAS 6352 or HUAS 6353) or instructor consent required.</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6385 (r3)</td>
<td>HUAS 6385 Creating Nonfictions: Intermediate (3 semester credit hours) An intensive investigation into the theory, aesthetics, and creation of biographies, autobiographies, and historical accounts in a workshop environment that will explore the boundaries between fiction and non-fiction and between art and reality. May be repeated for credit (9 semester credit hours maximum). Prerequisite: HUAS 6355 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mwilson 2013-11-09 16:19:06 013257 23.1302.00.01 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6390 (r8)</td>
<td>HUAS 6390 Special Topics in Aesthetic and Performance Studies (3 semester credit hours) Independent study course that may count toward minimum course requirements for the MA degree. May be repeated for credit (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 20:34:49 013258 50.0501.00.03 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6391</td>
<td>(r5)</td>
<td>huas6391.7</td>
<td>HUAS 6391 Creativity: Visual Arts Workshop (3 semester credit hours) A workshop emphasizing the creation of artistic works in a specific area of the visual arts (e.g., painting, drawing, photography, sculpture). Topics, such as narrative representation or the study of a genre, are explored to examine the theoretical basis guiding practice. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | huas6392 | (r4) | huas6392.6 | HUAS 6392 Creativity: Image/Text Workshop (3 semester credit hours) An exploration of the visual possibilities inherent in the art of the text. Topics may include an investigation of techniques derived from various media that foster the transformation and combination of words and images. The problem of creating text for a visual environment will be examined. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T | phase: approve | cxj140030 | 2013-10-07 13:02:29 007152 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail | ps info detail change process orion |</p>
<table>
<thead>
<tr>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * huas6393 (r5) huas6393.7</td>
<td>HUAS 6393 Creativity: Time-Based Arts Workshop (3 semester credit hours) Exploration of the conceptual demands inherent in time-based visual art. Topics may include interactive visual arts, installation, kinetic art, computer animation, and video processes. The potential of narrative models may be examined. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>cxj140030 2013-10-07 13:02:43 007153 50.0702.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>peoplesoft diff: 007153 2014-08-24 adp130030 ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6394 (r6) huas6394.8</td>
<td>HUAS 6394 Creativity: Performance (3 semester credit hours) A skills-based course intended to enable the exploration, development, and realization of a performance expression. Project-focused, the course may include playwriting, adaption of non-dramatic or oral history sources, or be guided by specific text(s), improvisation, inter-cultural or inter-media explorations. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>cxj140030 2013-10-07 13:02:56 007154 50.0501.00.03 audit: -84.8 m index: -84.8 m match_fail</td>
<td>peoplesoft diff: 007154 2014-08-24 adp130030 ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huas6397 (r4) huas6397.6</td>
<td>HUAS 6397 Independent Readings in Aesthetic and Performance Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxr090100 2013-10-31 17:23:14 007157 50.0501.00.03 audit: -84.5 m index: -84.5 m match_fail</td>
<td>peoplesoft diff: 007157 2014-08-24 adp130030 ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6398</td>
<td>(r5)</td>
<td>huas6398.7</td>
<td>HUAS 6398 Independent Research in Aesthetic and Performance Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUAS 6398 Independent Research in Aesthetic and Performance Studies (3 semester credit hours)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(May Pass/Fail only. May be repeated for credit.) Instructor consent required. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas6399</td>
<td>(r3)</td>
<td>huas6399.5</td>
<td>HUAS 6399 Music in Historical Context (3 semester credit hours) Study of music in society: dates, periods, genres, style characteristics, major figures, representative masterworks, political/economical/social climate, corollaries in literature, theater, visual art. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUAS 6399 Music in Historical Context (3 semester credit hours) Study of music in society: dates, periods, genres, style characteristics, major figures, representative masterworks, political/economical/social climate, corollaries in literature, theatre, visual art. (May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>huas6608</td>
<td>(r3)</td>
<td>huas6608.6</td>
<td>HUAS 6608 Performance Training (6 semester credit hours) Intensive workshop-based course focusing on training and performance techniques to develop skills and methods for creating new performance. Activities include physical and vocal training, performance games and exercises, and will focus on methods, strategies, and processes of creation. Special attention to the performer’s relation to 'text' exploration and evolution. May be repeated for credit (12 semester credit hours maximum). (6-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>huas6609</td>
<td>(r2)</td>
<td>huas6609.6</td>
<td>HUAS 6609 Music Performance (6 semester credit hours) Applied study of instrumental/vocal techniques, interpretation, repertoire building and performance practice. May be repeated for credit (12 semester credit hours maximum). Instructor consent required. (6-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>End</td>
<td>Request Type</td>
<td>Course Topic</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas7305 (r4)</td>
<td>HUAS 7305 Advanced Topics in Art History (3 semester credit hours) Advanced studies in one or more arts of various places and historical periods. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huas7305.7</td>
<td></td>
<td>peoplesoft diff: 007166 2014-08-24 adp130030 HUAS 7305 Advanced Topics in Art History (3 semester credit hours) Advanced studies in one or more arts of various places and historical periods. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas7320 (r2)</td>
<td>HUAS 7320 Advanced Topics in the Visual Arts (3 semester credit hours) Advanced explorations in various forms of the visual arts. The course may focus on a specific genre or form or on interrelations among visual forms. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huas7320.4</td>
<td></td>
<td>peoplesoft diff: 013277 2010-08-18 keh120030 HUAS 7320 Advanced Topics in the Visual Arts (3 semester credit hours) Advanced explorations in various forms of the visual arts. The course may focus on a specific genre or form or on interrelations among visual forms. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas7330 (r3)</td>
<td>HUAS 7330 Advanced Topics in Music (3 semester credit hours) Advanced studies in forms of musical expression. The course will emphasize the nature, development, and artistic possibilities of various forms of music. Courses may relate music to developments in other arts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huas7330.5</td>
<td></td>
<td>peoplesoft diff: 013278 2012-08-26 keh120030 HUAS 7330 Advanced Topics in Music (3 semester credit hours) Advanced studies in forms of musical expression. The course will emphasize the nature, development, and artistic possibilities of various forms of music. Courses may relate music to developments in other arts. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td>status: approving</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas7340 (r2)</td>
<td>huas7340.4</td>
<td>HUAS 7340 Advanced Topics in Theater and Dance (3 semester credit hours) Advanced investigation of theater, performance art, intermedia, and/or dance as forms of art. The course will relate to and incorporate trends in other arts and contemporary intellectual and cultural movements, theories and critical issues. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas7349 (r5)</td>
<td>huas7349.11</td>
<td>HUAS 7349 Advanced Topics in Creative Writing (3 semester credit hours) Advanced investigation of the theory, history, aesthetics, art, and creation of creative writing in a workshop environment. The course may focus on poetry, short stories, scripts or other genres. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisite: completion of 6 semester credit hours of graduate creative writing or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas7355</td>
<td>(r3) huas7355.5</td>
<td>HUAS 7355 Interdisciplinary Studies in Music (3 semester credit hours) Study of music in relation to one or more of the other arts/disciplines: literature, theatre, dance, visual art, cinema, history, psychology, technology, etc. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas7360</td>
<td>(r2) huas7360.5</td>
<td>HUAS 7360 Advanced Topics in Film, Television, and Digital Media (3 semester credit hours) Advanced study of particular aspects of motion picture history, criticism, and aesthetics. Topics may include genre study, documentary practices, national cinemas or movements, theories of reception, or comparisons of these and other art forms. (May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huas7380</td>
<td>(r2) huas7380.4</td>
<td>HUAS 7380 Advanced Topics in Aesthetic Studies (3 semester credit hours) Advanced study of particular themes, topics, and issues in the various disciplines that constitute aesthetic studies. May be repeated for credit as topics may vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hua7390 (r7) hua7390.10</td>
<td>HUAS 7390 Advanced Special Topics in Aesthetic and Performance Studies (3 semester credit hours) Independent study course that may count toward minimum course requirements for the Ph.D degree. May be repeated for credit (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 20:36:19 007176 50.0101.00.03 audit: -84.3 m index: -84.3 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007176 2014-08-24 adp130030</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUAS 7390 Advanced Special Topics in Aesthetic and Performance Studies (3 semester credit hours) Independent studies study course that may count toward minimum course requirements for the Ph.D. Ph.D degree. (May May be repeated for credit to a maximum of 9 (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>hua7601 (r2) hua7601.7</td>
<td>request to remove this course from catalog HUAS 7601 Advanced Music Performance (6 semester credit hours) Applied study of advanced instrumental/vocal techniques, interpretive insights, repertoire building and historical performance practice. May be repeated for credit (12 semester credit hours maximum). Instructor consent required. (6-0) T</td>
<td>phase: approve</td>
<td>mwilsen 2013-11-09 16:04:11 007179 50.0903.00.03 audit: -84.4 m index: -84.4 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007184 2014-08-24 sxh121431</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUAS 7601 Advanced Music Performance (6 semester credit hours) Applied study of advanced instrumental/vocal techniques, interpretive insights, repertoire building and historical performance practice. May be repeated for credit (12 semester credit hours maximum). Instructor consent required. (6-0) T</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hua8303 (r7) hua8303.9</td>
<td>HUAS 8303 Independent Readings in Aesthetic and Performance Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 17:26:29 007184 50.0101.00.03 audit: -84.4 m index: -84.4 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007184 2014-08-24 sxh121431</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUAS 8303 Independent Readings in Aesthetic and Performance Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hua8305 (r7) hua8305.9</td>
<td>HUAS 8305 Independent Research in Aesthetic and Performance Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 17:26:54 007185 50.0101.00.03 audit: -84.4 m index: -84.4 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007185 2014-08-24 adp130030</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUAS 8305 Independent Research in Aesthetic and Performance Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>hued5353 (r6) hued5353.7</td>
<td>request to remove this course from catalog HUED 5353 (ED 5353) Teaching English as a Second Language (3 semester credit hours) Investigation of modern techniques of teaching English as a second language in relation to the general development of language skills (listening, speaking, reading, and writing) in secondary schools. Contributions of modern linguistic science to both theory and practice. (3-0) Y</td>
<td>phase: approve</td>
<td>mwilsen 2013-11-09 16:04:29 007280 13.1401.00.01 audit: -84.4 m index: -84.4 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007185 2014-08-24 adp130030</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUED 5353 (ED 5353) Teaching English as a Second Language (3 semester credit hours) Investigation of modern techniques of teaching English as a second language in relation to the general development of language skills (listening, speaking, reading, and writing) in secondary schools. Contributions of modern linguistic science to both theory and practice. (3-0) Y</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * hued5360</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mwilson 2013-11-09 16:04:41 007281</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>(r6) hued5360.7</td>
<td>HUED 5360 Teaching Spanish (3 semester credit hours) Study of modern theories and practices of teaching Spanish, with a focus on pedagogical applications for students teaching foreign-language skills in secondary schools or community colleges. (3-0) T</td>
<td>status: approving</td>
<td>16.0905.00.01 audit: -84.4 m index: -84.4 m</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * hued6304</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mwilson 2013-11-09 16:04:49 013057 13.1305.00.01</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>(r3) hued6304.7</td>
<td>HUED 6304 Master of Arts in Teaching Casebook (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>status: approving</td>
<td>audit: -84.4 m index: -84.4 m</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huhi6300</td>
<td>HUHI 6300 History of Early Modern Thought (3 semester credit hours) Introduction to and examination of the authors and texts influential in shaping Western culture through the eighteenth century. The course will treat philosophy as well as social, political, and religious thought during particular periods. May be repeated for credit as topics vary (6 semester credit hours). (3-0) T</td>
<td>phase: approve</td>
<td>cjx140030 2013-10-07 13:08:50 007290 54.0101.00.01</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>(r5) huhi6300.7</td>
<td></td>
<td>status: approving</td>
<td>audit: -84.8 m index: -84.8 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 007290 2014-08-24 adp130030</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huhi6301</td>
<td>HUHI 6301 History of Modern Thought (3 semester credit hours) Introduction to and examination of the authors and texts influential in shaping modern Western culture since 1800. The course will treat philosophy as well as social, political, and religious thought during particular periods. (May be repeated for credit as topics vary to a maximum of 6 hours.) (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cjx140030 2013-10-07 13:09:11 007291 54.0101.00.01</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>(r6) huhi6301.8</td>
<td></td>
<td>status: approving</td>
<td>audit: -84.8 m index: -84.8 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 007291 2014-08-24 adp130030</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hui6305 (r7) hui6305.9</td>
<td>HUHI 6305 Ideas in Contexts (3 semester credit hours) The study of an idea or ideas in specific cultural, historical, or disciplinary circumstances. Topics may include the idea of revolution considered in theory as well as in the American, French, and Bolshevik Revolutions; the idea of creativity in science, art, philosophy, and psychology; the interaction of science and religion from various perspectives. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:09:33 007295 54.0101.00.01 audit: -84.8 m index: -84.8 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hui6313 (r7) hui6313.9</td>
<td>HUHI 6313 Thought, Culture, and Society in Europe (3 semester credit hours) Themes in the intellectual and cultural life of European societies. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:09:55 007301 54.0101.00.01 audit: -84.8 m index: -84.8 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hui6314 (r7) hui6314.9</td>
<td>HUHI 6314 Thought, Culture, and Society in the United States (3 semester credit hours) Themes in the intellectual, cultural, and philosophical history of the United States. The course will focus on the writings of key thinkers chosen from different periods and on placing these writings within their intellectual and social contexts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:10:18 007302 05.0102.00.01 audit: -84.8 m index: -84.8 m</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6315 (r4)</td>
<td>HUHI 6315 Thought, Culture, and Society in Latin America (3 semester credit hours) Themes in the intellectual and cultural life of Latin American societies. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huhi6315.6</td>
<td></td>
<td>status: approving</td>
<td>2013-10-07 13:10:36</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007303 2014-08-24 adp130030</td>
<td>audit: 30</td>
<td>007303</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUHI 6315 Thought, Culture, and Society in Latin America (3 semester credit hours) Themes in the intellectual and cultural life of Latin American societies. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013166 2010-08-18 keh120030</td>
<td>status: approving</td>
<td>2013-10-07 13:10:56</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUHI 6320 Perceptions of the Past (3 semester credit hours) Approaches to perceiving, reconstructing, appreciating, and analyzing the past. Formal historiographical methods, the fictionalization of the past, or the understanding of memory and nostalgia may be emphasized. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013166 2010-08-18 keh120030</td>
<td>status: approving</td>
<td>2013-10-07 13:10:56</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUHI 6320 Perceptions of the Past (3 semester credit hours) Approaches to perceiving, reconstructing, appreciating, and analyzing the past. Formal historiographical methods, the fictionalization of the past, or the understanding of memory and nostalgia may be emphasized. (May be repeated for credit as topics vary to a maximum of 6 (6 semester credit hours) hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUHI 6323 Space, Time, and Culture (3 semester credit hours) The study of the relationship between changing philosophic and scientific concepts of space and time and forms of cultural expression such as art, literature, and music. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013167 2011-08-23 keh120030</td>
<td>status: approving</td>
<td>2013-09-30 10:42:02</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUHI 6323 Space, Time, and Culture (3 semester credit hours) The study of the relationship between changing philosophic and scientific concepts of space and time and forms of cultural expression such as art, literature, and music. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013167 2011-08-23 keh120030</td>
<td>status: approving</td>
<td>2013-09-30 10:42:02</td>
<td>orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
<td>metadata</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hui6325 (r6) huhi6325.8</td>
<td>HUHI 6325 Movements in Thought and Culture (3 semester credit hours) The study of movements in thought and culture through a variety of perspectives, but emphasizing their intellectual bases: e.g., the Enlightenment, Romanticism, etc. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 13:11:16 007304 54.0101.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hui6327 (r3) hui6327.5</td>
<td>HUHI 6327 Artist and Writer in Society (3 semester credit hours) Inquiries into the role and activities of creative artists (e.g., painters, sculptors, musicians, writers, filmmakers, comics creators, game designers) in various places and times. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 13:11:33 013168 24.0103.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hui6329 (r3) hui6329.5</td>
<td>HUHI 6329 Philosophical Issues and the Humanities (3 semester credit hours) An investigation philosophical problems and traditions in continental philosophy, hermeneutics, as well as philosophy of science and technology. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 13:11:51 013307 24.0103.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>huhi6332</td>
<td>(r3) hui6332.3</td>
<td>HUHI 6332 European Enlightenment (3 semester credit hours) The study of the European intellectual movement of the Enlightenment, its precursors and consequences. (3-0) T</td>
<td>phase:</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>huhi6334</td>
<td>(r3) hui6334.4</td>
<td>HUHI 6334 Exploring Urban Cultures (3 semester credit hours) The study of the European cities of Berlin, Paris, and London from the mid-nineteenth through the early twentieth centuries. (3-0) T</td>
<td>phase:</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>huhi6335</td>
<td>(r3) hui6335.3</td>
<td>HUHI 6335 Modern Jewish Thought (3 semester credit hours) Study of modern and contemporary Jewish thought, with an emphasis on the relationship between Judaism and philosophy. (3-0) T</td>
<td>phase:</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>huhi6336</td>
<td>(r3) hui6336.3</td>
<td>HUHI 6336 Modernity, Culture, and the Jews (3 semester credit hours) The study of the role of Jews in the creation of modern culture, with emphasis on Jewish participation as an area of interaction, exchange, and encounter. (3-0) T</td>
<td>phase:</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf 58/90
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6337 (r3) huhi6337.3</td>
<td>HUHI 6337 Moving Pictures in Jewish Culture and Thought (3 semester credit hours) The study of the role of Jews in the movie industry from the silent era to contemporary Hollywood production. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 10:44:04 013310 38.0206.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6338 (r2) huhi6338.4</td>
<td>HUHI 6338 The Holocaust (3 semester credit hours) An examination of the event, its background and consequences, with emphasis on the political, psychological, theological, and artistic responses it has engendered. May be repeated for credit (6 semester credit hours maximum). (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:12:16 013172 54.0101.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6340 (r5) huhi6340.7</td>
<td>HUHI 6340 Readings in American Culture (3 semester credit hours) An examination of the ways in which Americans have defined themselves, and been defined by others, over time. Works read will be drawn from a variety of genres and may include studies of myth and symbol. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:12:38 007307 05.0102.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6341 (r3) huhi6341.3</td>
<td>HUHI 6341 American Intellectual History (3 semester credit hours) The study of American thought from the seventeenth century to the present, with a focus on philosophy, political thought, and social thought. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 10:44:32 013173 05.0102.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6342</td>
<td>3 (r4)</td>
<td>hui6342.6</td>
<td>HUHI 6342 American Political Cultures (3 semester credit hours) An inquiry into the development of political cultures in the United States since the late eighteenth century. Topics may include the apparatus of the state (courts, legislatures, elections, schools, asylums, the military), the development and influence of political parties and ideologies, and the interaction of formal political structures with grass-roots political movements. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2014-01-13 14:46:36 007308 05.0102.00.01 audit: -84.2 m index: -84.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6343</td>
<td>3 (r3)</td>
<td>hui6343.3</td>
<td>HUHI 6343 The American Experience in Vietnam (3 semester credit hours) The study of the reaction and response of American society to the political, military, and cultural turmoil engendered by the Vietnam War. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 10:45:04 013296 05.0102.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6344</td>
<td>3 (r3)</td>
<td>hui6344.3</td>
<td>HUHI 6344 The 1960s (3 semester credit hours) The study of the "Long Decade" of the 1960s, from Elvis to the fall of Richard Nixon. The course will analyze political, economic, social, and cultural developments. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 10:45:13 013298 05.0102.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>HUHI 6345</td>
<td>hui6345 (r5) hui6345.7</td>
<td>The Woman Question (3 semester credit hours) The study of how particular cultures and/or thinkers have defined the "woman question." Subjects may include particular geographical regions, major literary or historical movements and events. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:13:22 007309 05.0207.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>HUHI 6346</td>
<td>hui6346 (r3) hui6346.3</td>
<td>New Directions in Southern Studies (3 semester credit hours) The study of how scholarship on the U.S. South has begun to push the conventional boundaries of the discipline through its focus on the categories of race, gender, sexuality, and transnationalism. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 10:46:13 013297 05.0102.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>HUHI 6348</td>
<td>hui6348 (r4) hui6348.6</td>
<td>Thought, Culture, and Society in Asia (3 semester credit hours) Themes in the intellectual and cultural life of Asian societies. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:15:49 007311 54.0106.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HUHI 6349</td>
<td>Thought, Culture, and Society in the Middle East (3 semester credit hours) Themes in the intellectual and cultural life of Middle Eastern societies. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:16:12</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>013299 54.0101.00.01 audit: 84.8m index: -84.8m match_fail</td>
<td>detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>peoplesoft diff: 013299 2010-08-18 keh120030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUHI 6349 Thought, Culture, and Society in the Middle East (3 semester credit hours) Themes in the intellectual and cultural life of Middle Eastern societies. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HUHI 6351</td>
<td>History and Philosophy of Science and Technology (3 semester credit hours) The study of one or more topics in history or philosophy of science, technology, or medicine. For example, science and values, science and democracy, philosophy of information technology, feminist philosophy of science, history of psychology, foundations of physics, biomedical ethics. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:17:54</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>014099 38.0101.00.01 audit: 84.8m index: -84.8m match_fail</td>
<td>detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>peoplesoft diff: 014099 2012-08-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUHI 6351 History and Philosophy of Science and Technology (3 semester credit hours) The study of one or more topics in history or philosophy of science, technology, or medicine. For example, science and values, science and democracy, philosophy of information technology, feminist philosophy of science, history of psychology, foundations of physics, biomedical ethics. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HUHI 6355</td>
<td>Twentieth Century Philosophy (3 semester credit hours) This course will focus on major thinkers and texts within twentieth century European or American philosophy taking up a variety of issues, e.g., ethics, technology, hermeneutics, phenomenology, epistemology or philosophy of science. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-03 12:59:13</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>014100 38.0101.00.01 audit: 84.3m index: -84.3m match_fail</td>
<td>detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>peoplesoft diff: 014100 2012-08-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUHI 6355 Twentieth Century Philosophy (3 semester credit hours) This course will focus on major thinkers and texts within twentieth century European or American philosophy taking up a variety of issues, e.g., ethics, technology, hermeneutics, phenomenology, epistemology or philosophy of science. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6395 (r2)</td>
<td>hahi6395.4</td>
<td>HUHI 6395 Topics in the History of Ideas (3 semester credit hours) Topics in philosophy, intellectual and/or cultural history. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013300 2010-08-18 keh120030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6396 (r3)</td>
<td>hahi6396.3</td>
<td>HUHI 6396 Historical Inquiry (3 semester credit hours) A leveling course for graduate students with little background in the field as an advanced introduction to historical study and the history of ideas. Department consent required. (3-0) R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013175 2011-08-23 keh120030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6397 (r2)</td>
<td>hahi6397.2</td>
<td>HUHI 6397 Independent Readings in History of Ideas (3 semester credit hours) Pass/Fail only. May be repeated for credit. Department consent required. (3-0) R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013309 2010-08-18 keh120030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-open</td>
<td>edit *</td>
<td>huhi6398 (r2)</td>
<td>hahi6398.4</td>
<td>HUHI 6398 Independent Research in History of Ideas (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013249 2010-08-18 keh120030</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * huhi6399 (r2) huhi6399.4</td>
<td>HUHI 6399 Special Topics in the History of Ideas (3 semester credit hours) Independent study course that may count toward minimum course requirements for the MA degree. May be repeated for credit as topics vary (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 20:36:38 013303 05.0102.00.01</td>
<td>peoplesoft diff: 013303 2010-08-18 keh120030 ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUHI 6399 Special Topics in the History of Ideas (3 semester credit hours) Independent studies course that may count toward minimum course requirements for the MA degree. (May May be repeated for credit as topics vary to a maximum of 9 hours.) (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>status: approving</td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huhi7313 (r2) huhi7313.4</td>
<td>HUHI 7313 Advanced Topics in U.S. Thought, Culture, and Society (3 semester credit hours) Advanced topics in the intellectual and cultural history of the United States. The course will focus on key thinkers, ideas, schools of thought, or cultural beliefs chosen from different periods and understood within their intellectual and social contexts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:21:54 013306 24.0103.00.01</td>
<td>peoplesoft diff: 013306 2010-08-18 keh120030 ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUHI 7313 Advanced Topics in U.S. Thought, Culture, and Society (3 semester credit hours) Advanced topics in the intellectual and cultural history of the United States. The course will focus on key thinkers, ideas, schools of thought, or cultural beliefs chosen from different periods and understood within their intellectual and social contexts. (May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours maximum).) (3-0) T</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huhi7314 (r2) huhi7314.4</td>
<td>HUHI 7314 Advanced Topics in European Thought, Culture, and Society (3 semester credit hours) Advanced topics in the intellectual and cultural life of European societies. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:22:16 013305 24.0103.00.01</td>
<td>peoplesoft diff: 013305 2010-08-18 keh120030 ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUHI 7314 Advanced Topics in European Thought, Culture, and Society (3 semester credit hours) Advanced topics in the intellectual and cultural life of European societies. (May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours maximum).) (3-0) T</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi7315 (r2)</td>
<td>huhi7315.4</td>
<td>HUHI 7315 Advanced Topics in Thought, Culture, and Society (3 semester credit hours) Advanced topics in intellectual and cultural history. The course may focus on different themes, periods, and geographical areas. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi7330 (r3)</td>
<td>huhi7330.3</td>
<td>HUHI 7330 The History of Hermeneutics (3 semester credit hours) Studies in the history of hermeneutics as a biblical-philological method and its transformation by the modern German tradition into a philosophical approach to language and experience. Focus on the work of Schleiermacher, Dilthey, Heidegger, and Gadamer. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi7332 (r7)</td>
<td>huhi7332.7</td>
<td>HUHI 7332 Topics in Recent Continental Philosophy (3 semester credit hours) Close textual study of the works of leading continental philosophers such as Nietzsche, Derrida, Foucault, Heidegger, Husserl, and others. May be repeated for credit as topics vary (6 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>huhi7335 (r5)</td>
<td>HUHI 7335 Philosophical Topics in the Analytic Tradition (3 semester credit hours) Examination of philosophical issues arising from or inspired by the works of Russell, Wittgenstein, Frege, Carnap, and their heirs, including Popper, Quine, and Sellars. May be repeated for credit as topics vary (6 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huhi7340 (r7)</td>
<td>HUHI 7340 New Currents in the History of Ideas (3 semester credit hours) Exploration of significant recent approaches that represent major disciplinary and interdisciplinary contributions to the field. With emphasis on theory and method, focus falls upon critical study of new interests that include 'new' social and cultural histories, mentalities, post-structuralism, feminism, critical theory, institutionalist history, and hermeneutics, among others. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huhi7368 (r6)</td>
<td>HUHI 7368 Topics in Thought and Society (3 semester credit hours) Studies in ideas, institutions, and applied history. The approach may be comparative or limited to a single cultural or geographical area. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 007323 2014-08-24 sxx121431
HUHI 7340 New Currents in the History of Ideas (3 semester credit hours) Exploration of significant recent approaches that represent major disciplinary and interdisciplinary contributions to the field. With emphasis on theory and method, focus falls upon critical study of new interests that include 'new' social and cultural histories, mentalities, post-structuralism, feminism, critical theory, institutionalist history, and hermeneutics, among others. (May be repeated for credit as topics vary to maximum of 6 semester credit hours) maximum. (3-0) R

peoplesoft diff: 007337 2014-08-24 adp130030
HUHI 7368 Topics in Thought and Society (3 semester credit hours) Studies in ideas, institutions, and applied history. The approach may be comparative or limited to a single cultural or geographical area. May be repeated for credit as topics vary to a maximum of 9 semester credit hours) maximum. (3-0) R
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * huhi7387 (r8) huhi7387.10</td>
<td>HUHI 7387 Science and Technology in Western Culture (3 semester credit hours) Topics will vary but may include consideration of the philosophical or historical basis for the evolution of scientific thought; the problem of conceptual change in the study of the fundamental character of technology and its impact on culture. May be repeated for credit (6 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:24:20 007350 38.0101.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huhi7391 (r4) huhi7391.6</td>
<td>HUHI 7391 Women in European Society (3 semester credit hours) A historical examination of the varied experiences of European women, focusing on work, family life, political action, sexuality, and cultural expression. May emphasize early modern or modern period. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:24:41 007352 05.0207.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huhi7397 (r5) huhi7397.7</td>
<td>HUHI 7397 Women in American Society (3 semester credit hours) A historical examination of the varied experiences of American women, focusing on work, family life, political action, sexuality, and cultural expression. May emphasize early modern or modern period. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:25:13 007358 05.0207.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi7399</td>
<td>(r7)</td>
<td></td>
<td>HUHI 7399 Advanced Special Topics in the History of Ideas (3 semester credit hours) Independent study course that may count toward minimum course requirements for the PhD degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huhi7399.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 007359 2014-08-24 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi8303</td>
<td>(r5)</td>
<td></td>
<td>HUHI 8303 Independent Readings in History of Ideas (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huhi8303.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 007364 2014-08-24 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huhi8305</td>
<td>(r5)</td>
<td></td>
<td>HUHI 8305 Independent Research in History of Ideas (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huhi8305.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 007365 2014-08-24 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huma6300</td>
<td>(r4)</td>
<td></td>
<td>HUMA 6300 Interdisciplinary Approaches to the Arts and Humanities (3 semester credit hours) Introduction to interdisciplinary approaches to the arts and humanities, including concepts of inquiry and interpretation that form the theoretical bases of the graduate programs, seminars, workshops, and studios. Required of all degree candidates for the Master of Arts and Doctor of Philosophy in Humanities. (3-0) S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huma6300.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012997 2013-08-25 keh120030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huma6320</td>
<td>(r6)</td>
<td>HUMA 6320 French Review (3 semester credit hours) Intensive grammar review to assist students in moving from intermediate to advanced work with French texts. Pass/Fail only. Prerequisite: intermediate proficiency (usually equivalent to four semesters of undergraduate courses). (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huma6320.7</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007415 2014-08-24 adp130030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUMA 6320 French Review (3 semester credit hours) Intensive grammar review to assist students in moving from intermediate to advanced work with French texts. Pass/Fail only. Prerequisite: intermediate proficiency (usually equivalent to four semesters of undergraduate courses). (3-0) Y</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huma6321</td>
<td>(r6)</td>
<td>HUMA 6321 Spanish Review (3 semester credit hours) Intensive grammar review to assist students in moving from intermediate to advanced work with Spanish texts. Pass/Fail only. Prerequisite: intermediate proficiency (usually equivalent to four semesters of undergraduate courses). (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huma6321.7</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007416 2014-08-24 adp130030</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huma6323</td>
<td>(r6)</td>
<td>HUMA 6323 German Review (3 semester credit hours) Intensive grammar review to assist students in moving from intermediate to advanced work with German texts. Pass/Fail only. Prerequisite: intermediate proficiency (usually equivalent to four semesters of undergraduate courses). (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huma6323.7</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007417 2014-08-24 adp130030</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>huma6330</td>
<td>(r4)</td>
<td>HUMA 6330 French Workshop (3 semester credit hours) Advanced reading, interpretation, and translation of texts in French. Workshop concludes with a translation examination, which comprises both the course final and the program's proficiency examination in French. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>huma6330.5</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012998 2011-08-23 keh120030</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huma6331</td>
<td>(r3)</td>
<td>HUMA 6331 Spanish Workshop (3 semester credit hours) Advanced reading, interpretation, and translation of texts in Spanish. Workshop concludes with a translation examination, which comprises both the course final and the program's proficiency examination in Spanish. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>huma6331.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huma6333</td>
<td>(r3)</td>
<td>HUMA 6333 German Workshop (3 semester credit hours) Advanced reading, interpretation, and translation of texts in German. Workshop concludes with a translation examination, which comprises both the course final and the program's proficiency examination in German. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>huma6333.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huma6390</td>
<td>(r2)</td>
<td>HUMA 6390 Topics in Arts and Humanities (3 semester credit hours) Studies of topics that incorporate multiple disciplinary materials and perspectives. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>huma6390.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>huma6393</td>
<td>(r2)</td>
<td>HUMA 6393 Independent Readings in Arts and Humanities (3 semester credit hours) Pass/Fail only. May be repeated for credit. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>huma6393.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huma6395 (r2) huma6395.4</td>
<td>HUMA 6395 Independent Research in Arts and Humanities (3 semester credit hours) May be repeated for credit. Instructor consent required. (3-0) R</td>
<td></td>
<td></td>
<td>HUMA 6395 Independent Research in Arts and Humanities (3 semester credit hours) May be repeated for credit. Instructor consent required. (3-0) R</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huma6v81 (r5) huma6v81.8</td>
<td>HUMA 6V81 Special Topics in Arts and Humanities (1-9 semester credit hours) If taken as an independent study, course may count toward minimum course requirements for the MA and PhD degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
<td></td>
<td></td>
<td>HUMA 6V81 Special Topics in Arts and Humanities (1-9 semester credit hours) If taken as an independent study, course may count toward minimum course requirements for the MA and PhD degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * huma7390 (r7) huma7390.10</td>
<td>HUMA 7390 Advanced Topics in Arts and Humanities (3 semester credit hours) Advanced studies of topics that incorporate multiple disciplinary materials and perspectives. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td></td>
<td></td>
<td>HUMA 7390 Advanced Topics in Arts and Humanities (3 semester credit hours) Advanced studies of topics that incorporate multiple disciplinary materials and perspectives. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>huma7v81</td>
<td>huma7v81.5</td>
<td>HUMA 7V81 Advanced Special Topics in Arts and Humanities (1-9 semester credit hours) If taken as an independent study, course may count toward minimum course requirements for the PhD degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>peoplesoft diff: 013004 2012-08-26 keh120030</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>huma8303</td>
<td>huma8303.9</td>
<td>HUMA 8303 Independent Readings in Arts and Humanities (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>peoplesoft diff: 007442 2014-08-24 adp130030</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>huma8305</td>
<td>huma8305.6</td>
<td>HUMA 8305 Independent Research in Arts and Humanities (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>peoplesoft diff: 007444 2014-08-24 adp130030</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>huma8v99</td>
<td>huma8v99.7</td>
<td>HUMA 8V99 Dissertation (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>peoplesoft diff: 007432 2014-08-24 ddc130130</td>
</tr>
</tbody>
</table>

HUMA 7V81 Advanced Special Topics in Arts and Humanities (1-9 semester credit hours) If taken as an independent study, course may count toward minimum course requirements for the PhD degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R

HUMA 8303 Independent Readings in Arts and Humanities (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R

HUMA 8305 Independent Research in Arts and Humanities (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R

HUMA 8V99 Dissertation (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>husl6304 (r7)</td>
<td>husl6304.9</td>
<td>HUSL 6304 Studies in Literary Themes (3 semester credit hours) Examinations of specific themes as they appear in various literary works and traditions. Themes considered in courses may include love, heroism, feminism, the anti-hero, or revolution. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td></td>
<td>peoplesoft diff: 007474 2014-08-24 ddc130130</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>husl6308 (r7)</td>
<td>husl6308.9</td>
<td>HUSL 6308 Studies in Literary Forms and Genres (3 semester credit hours) Studies in various literary genres, either individually or in relation to each other. Among topics considered will be the difficulties of defining genres, the nature of specific genres, their historical and aesthetic development, and their artistic possibilities. Genres for discussion may include tragedy, comedy, the novel, and various forms of poetic expression. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>peoplesoft diff: 007475 2014-08-24 ddc130130</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * husl6309 (r8)</td>
<td>HUSL 6309 Literary Movements (3 semester credit hours) Studies in the nature of intellectual and artistic movements, with emphasis on how they affect literary expression. Examples of such movements are romanticism, naturalism, modernism, and postmodernism. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-07 13:27:46</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>husl6309.10</td>
<td></td>
<td>status: approving</td>
<td>007476 16.0104.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007476 2014-08-24 ddc130130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUSL 6309 Literary Movements (3 semester credit hours) Studies in the nature of intellectual and artistic movements, with emphasis on how they affect literary expression. Examples of such movements are romanticism, naturalism, modernism, and postmodernism. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours) hours maximum). (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * husl6310 (r6)</td>
<td>HUSL 6310 Studies in Literary Interpretation (3 semester credit hours) Study of the issues involved in the attempt to interpret dramatic, poetic, and fictional texts. Emphasis will be placed on the writing of interpretive essays and on the exploration of how various cultural and intellectual perspectives as well as different theoretical stances affect the reading of a specific text. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-07 13:28:05</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>husl6310.8</td>
<td></td>
<td>status: approving</td>
<td>007477 24.0103.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007477 2014-08-24 ddc130130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUSL 6310 Studies in Literary Interpretation (3 semester credit hours) Study of the issues involved in the attempt to interpret dramatic, poetic, and fictional texts. Emphasis will be placed on the writing of interpretive essays and on the exploration of how various cultural and intellectual perspectives as well as different theoretical stances affect the reading of a specific text. (May be repeated for credit as topics vary to a maximum of 6 (6 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * husl6312 (r4)</td>
<td>HUSL 6312 Major Authors (3 semester credit hours) Study of one or more major literary figures, such as Dante, Chaucer, Milton, Cervantes, Goethe, Austen, Blake, Balzac, Dostoevsky, Tolstoy, Mann, Eliot, Pound, Woolf, Faulkner, Paz, or Borges. May be repeated for credit as subjects vary (9 semester credit hours maximum). (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-07 13:28:21</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>husl6312.6</td>
<td></td>
<td>status: approving</td>
<td>007479 16.0104.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007479 2014-08-24 ddc130130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUSL 6312 Major Authors (3 semester credit hours) Study of one or more major literary figures, such as Dante, Chaucer, Milton, Cervantes, Goethe, Austen, Blake, Balzac, Dostoevsky, Tolstoy, Mann, Eliot, Pound, Woolf, Faulkner, Paz, or Borges. May be repeated for credit as subjects vary (9 semester credit hours maximum). (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>---</td>
<td>-----------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6313 (r2)</td>
<td>husl6313.4</td>
<td>HUSL 6313 Shakespeare (3 semester credit hours) Study of the dramatic and/or poetic writings of William Shakespeare. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>cxj140030 2013-10-07 13:28:37 012965 16.0104.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6314 (r3)</td>
<td>husl6314.3</td>
<td>HUSL 6314 Jane Austen and Her Time (3 semester credit hours) Study of the writings of Jane Austen and the ways in which her work engages the political and social issues of her day. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>cxj140030 2013-09-30 12:41:18 012967 16.0104.00.01 audit: -85.4 m index: -85.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6315 (r7)</td>
<td>husl6315.9</td>
<td>HUSL 6315 Literary Theory (3 semester credit hours) Consideration of major literary theories, such as new criticism, deconstruction, gender studies, and chaos theory, with emphasis on how these theories influence and modify the interpretation of literary and other artistic texts. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>cxj140030 2013-10-07 13:28:58 007480 16.0104.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6330 (r6)</td>
<td>HUSL 6330 Studies in Literature and the Other Arts (3 semester credit hours) An examination of the links between literature and music, the visual arts, film, theater, and/or dance. Topics and approaches will vary but may include, for example, the fantastic in literature and visual arts, structures in literature and music, adaptations of novels into film, and the pastoral in literature and the visual arts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:29:15 007485 24.0103.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6340 (r4)</td>
<td>HUSL 6340 Literature Before 1800 (3 semester credit hours) Studies in the literature and culture of selected periods in the Western tradition. May focus on ancient, medieval, or early modern periods. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:29:32 007486 24.0103.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6345 (r2)</td>
<td>HUSL 6345 Early American Literature (3 semester credit hours) Study of literary works written in and about America from the early 1500s to 1800. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:29:52 012980 24.0103.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6350 (r4)</td>
<td>husl6350.7</td>
<td>HUSL 6350 Literature of the Nineteenth Century (3 semester credit hours) Studies in the literature and culture of the nineteenth century. May focus on British, European, American, Latin American, or Asian contexts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-31 17:54:51 007487 24.0103.00.01</td>
<td>peopelsoft diff: 007487 2014-08-24 ddc130130</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6355 (r8)</td>
<td>husl6355.10</td>
<td>HUSL 6355 Literature, Science, and Culture (3 semester credit hours) Seminar emphasizing the treatment in literature of scientific concepts (e.g., relativity, evolution) and technological developments (e.g., computers, virtual reality) of particular importance. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 13:30:28 007490 30.9999.01.01</td>
<td>peopelsoft diff: 007490 2014-08-24 ddc130130</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6360 (r4)</td>
<td>husl6360.6</td>
<td>HUSL 6360 Literature of the Twentieth Century (3 semester credit hours) Studies in the literature and culture of the twentieth century. May focus on British, European, American, Latin American or Asian contexts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 13:30:44 007491 24.0103.00.01</td>
<td>peopelsoft diff: 007491 2014-08-24 ddc130130</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>course_id</td>
<td>course_title</td>
<td>request_status</td>
<td>request_metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6370</td>
<td>HUSL 6370 Studies in Literature and Ideas (3 semester credit hours) Studies of the relationship between selected literary texts and major ideas in philosophy, science, and politics. The course will examine systems of thoughts as they are incorporated, delineated, and explored in literature. May be repeated for credit as topics vary (6 semester credit hours maximum).</td>
<td>phase: approve</td>
<td>2013-10-07 13:31:03 007492 24.0103.00.01 audit: -84.8 m index: -84.8 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6372</td>
<td>HUSL 6372 Literature and Society (3 semester credit hours) Seminar studying the values and concerns of various social groups through a study of literary texts, including consideration of the role of literature and the writer in given societies. May be repeated for credit as topics vary (9 semester credit hours maximum).</td>
<td>phase: approve</td>
<td>2013-10-07 13:31:19 007493 45.1101.00.01 audit: -84.8 m index: -84.8 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6373</td>
<td>HUSL 6373 Topics in Latin American Literature (3 semester credit hours) Studies in the literatures and cultures of Latin America. May be repeated for credit as topics vary (9 semester credit hours maximum).</td>
<td>phase: approve</td>
<td>2013-10-07 13:31:43 012981 16.1203.00.01 audit: -85 m index: -85 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----------------</td>
<td>--------------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * husl6374 (r6)</td>
<td>HUSL 6374 Modern Jewish Literature across Cultures (3 semester credit hours) Study of modern Jewish literatures in multiple national contexts and languages, with emphasis on the interaction between modernity and vision of Jewish identities and traditions. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030 2013-09-30 12:45:45 007494 16.0104.00.01 audit: -85.4 m index: -85.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * husl6375 (r5)</td>
<td>HUSL 6375 German Literature and Ideas 1870-1960 (3 semester credit hours) Study of the range and diversity of German-Austrian literature and thought from the end of the nineteenth century through the 1960s. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030 2013-09-30 12:45:52 007495 16.0104.00.01 audit: -85.2 m index: -85.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * husl6376 (r5)</td>
<td>HUSL 6376 Literature of Weimar Germany (3 semester credit hours) Study of literature written during the Weimar Republic (1918-1933) with attention to formative influences on and cultural-political forces shaping the artistic imagination. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030 2013-09-30 12:46:00 007496 16.0104.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * husl6378 (r4)</td>
<td>HUSL 6378 Literature and the Holocaust (3 semester credit hours) Seminar considering both major literary works (novels, short stories, and poems) written under the impact of the Holocaust as well as literary theories responding to these texts. Some emphasis placed on films and other works of visual art. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030 2013-09-30 12:46:07 007497 16.0104.00.01 audit: -85.3 m index: -85.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>request course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HUSL 6380 The Art and Craft of Translation (3 semester credit hours) Workshop designed to provide students with a model not only of literary interpretation but also of an interdisciplinary approach through the act of translating that can be applied to a wide range of texts and issues. Emphasis is on the actual translation of literary texts from another language into English. Issues involved in this process will form the basis of the workshop's theoretical component. May be repeated for credit (9 semester credit hours maximum). (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012982 2010-08-18 keh120030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUSL 6380 The Art and Craft of Translation (3 semester credit hours) Workshop designed to provide students with a model not only of literary interpretation but also of an interdisciplinary approach through the act of translating that can be applied to a wide range of texts and issues. Emphasis is on the actual translation of literary texts from another language into English. Issues involved in this process will form the basis of the workshop's theoretical component. (May be repeated for credit to a maximum of 9 (3 semester credit hours) hours maximum). (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>HUSL 6381 Critical Approaches to Translation (3 semester credit hours) The study of the various approaches to the history, theory, and criticism of literary and humanistic translation. Topics may include the translator's working methods, interviews with translators, multiple translations, the changing nature of interpretive approaches, theoretical models of translation, and criteria for the evaluation of translations. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012983 2010-08-18 keh120030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUSL 6381 Critical Approaches to Translation (3 semester credit hours) The study of the various approaches to the history, theory, and criticism of literary and humanistic translation. Topics may include the translator's working methods, interviews with translators, multiple translations, the changing nature of interpretive approaches, theoretical models of translation, and criteria for the evaluation of translations. (May be repeated for credit as topics vary to a maximum of 6 (6 semester credit hours) hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>husl6383 (r3) husl6383.6</td>
<td></td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 15:48:15 012984 23.1302.00.01 audit: -84.4 m index: -84.4 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUSL 6383 Teaching First-Year Writing (3 semester credit hours) Covers both the methods of teaching first-year writing and pedagogical theories of modern composition. Enrollment required for teaching assistants assigned to sections of Rhetoric 1302, but not limited to such students. May be repeated for credit (6 semester credit hours maximum). (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6384 (r3) husl6384.3</td>
<td></td>
<td>HUSL 6384 Digital and Visual Rhetorics (3 semester credit hours) Covers a wide range of topics addressing the study of visual rhetoric as well as rhetoric in digital environments. Course also emphasizes the relationship of digital and visual rhetorics to media ecology/media studies as well as the implications of these rhetorics for composition pedagogy. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 12:47:22 012985 16.0104.00.01 audit: -85.2 m index: -85.2 m matchFail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUSL 6384 Digital and Visual Rhetorics (3 semester credit hours) Covers a wide range of topics addressing the study of visual rhetoric as well as rhetoric in digital environments. Course also emphasizes the relationship of digital and visual rhetorics to media ecology/media studies as well as the implications of these rhetorics for composition pedagogy. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6385 (r3) husl6385.3</td>
<td></td>
<td>HUSL 6385 Rhetorical Theory (3 semester credit hours) A historical survey of Western rhetorical theory focusing on major figures in rhetoric. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 12:47:30 012986 23.1304.00.01 audit: -85.3 m index: -85.3 m matchFail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUSL 6385 Rhetorical Theory (3 semester credit hours) A historical survey of Western rhetorical theory focusing on major figures in rhetoric. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req_type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>husl6386 (r3)</td>
<td>husl6386.6</td>
<td>HUSL 6386 Special Topics in Rhetoric (3 semester credit hours) A course in the study of rhetoric. May include one or more topics such as ethos, histories of rhetoric, the rhetoric of technology and science, the Sophists, rhetoric as epistemic, key figures in rhetoric (e.g., Burke, Foucault, Baudrillard, Spivak, etc.). May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>husl6388 (r3)</td>
<td>husl6388.3</td>
<td>HUSL 6388 The Nature of Language (3 semester credit hours) An inquiry into the nature, origins, and evolution of language, the relationship of language to thought and to creativity, language as a social tool, and nonverbal patterns of communication. Survey of linguistic theory and method applicable to the study of the phonological, morphological, lexical, semantic, and syntactic levels of language. (3-0)</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-2014</td>
<td>2014-2014</td>
<td>remove *</td>
<td>husl6389 (r3)</td>
<td>husl6389.4</td>
<td>HUSL 6389 Applied Linguistics (3 semester credit hours) Techniques for comparing two or more languages. The study of traditional and modern theories and practices of language learning and teaching. (3-0)</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>start date</td>
<td>end date</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6390 (r7) husl6390.9</td>
<td>HUSL 6390 Theory and Practice in Literary Studies (3 semester credit hours) Group projects integrating the interpretation of literary texts or themes with experiments in creative writing and performance. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:34:09 007498 23.1302.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6392 (r2) husl6392.4</td>
<td>HUSL 6392 Topics in Literary Studies (3 semester credit hours) The study of themes, genres, authors, and/or movements in literature. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 13:34:47 012990 23.0101.00.01 audit: -84.8 m index: -84.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6393 (r2) husl6393.2</td>
<td>HUSL 6393 Independent Readings in Literary Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-22 09:57:52 012991 23.0101.00.01 audit: -84.3 m index: -84.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6394 (r2) husl6394.4</td>
<td>HUSL 6394 Independent Research in Literary Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 17:34:59 012992 23.0101.00.01 audit: -84.4 m index: -84.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>request</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUSL 6395 Special Topics in Literary Studies (3 semester credit hours) Independent study course that may count toward minimum course requirements for the MA degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase:</td>
<td>approve</td>
<td>mxv062000 2013-11-16 20:37:51 007499 23.0101.00.01 audit: -84.3 m index: -84.3 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUSL 6396 Spanish Language, Literature, and Culture (3 semester credit hours) Studies in the language, various literary movements, or the general cultures of Spanish-speaking peoples in Europe or Latin America. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase:</td>
<td>approve</td>
<td>cxj140030 2013-10-07 13:35:37 007500 16.0905.00.01 audit: -84.9 m index: -84.9 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUSL 6398 World Literatures (3 semester credit hours) Studies in literatures from specific regions, ethnic groups, and nationalities within and outside the United States. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase:</td>
<td>approve</td>
<td>cxj140030 2013-10-07 13:35:57 007501 16.0104.00.01 audit: -84.9 m index: -84.9 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>---------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl6399</td>
<td>(r3) husl6399.4</td>
<td>HUSL 6399 Studies in Asian Literature (3 semester credit hours) Studies in the literature and cultures of Asia. Topics may include Zen/Chan History, Thought, and Poetry; Confucianism; and the I-Ching (Book of Changes). May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 007502 2014-08-24 ddc130130

HUSL 6399 Studies in Asian Literature (3 semester credit hours) Studies in the literature and cultures of Asia. Topics may include Zen/Chan History, Thought, and Poetry; Confucianism; and the I-Ching (Book of Changes). **(May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours hours maximum). (3-0) T** |

| 2014-open | edit * | husl7308 | (r5) husl7308.6 | HUSL 7308 Advanced Studies in Literary Forms and Genres (3 semester credit hours) Advanced studies in various literary genres, either individually or in relation to each other. Topics considered may include the difficulties of defining genres, the nature of specific genres, their historical and aesthetic development, and their artistic possibilities. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T | phase: approve | status: approving | ps info detail change process orion |

peoplesoft diff: 007503 2014-08-24 ddc130130

HUSL 7308 Advanced Studies in Literary Forms and Genres (3 semester credit hours) Advanced studies in various literary genres, either individually or in relation to each other. Topics considered may include the difficulties of defining genres, the nature of specific genres, their historical and aesthetic development, and their artistic possibilities. **(May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours hours maximum). (3-0) T** |

| 2014-open | edit * | husl7309 | (r2) husl7309.3 | HUSL 7309 Advanced Studies in Literary Movements (3 semester credit hours) Advanced studies in the nature of intellectual and artistic movements, with emphasis on how they affect literary expression. Examples of such movements are romanticism, naturalism, modernism, and postmodernism. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R | phase: approve | status: approving | ps info detail change process orion |

peoplesoft diff: 012993 2010-08-18 keh120030

HUSL 7309 Advanced Studies in Literary Movements (3 semester credit hours) Advanced studies in the nature of intellectual and artistic movements, with emphasis on how they affect literary expression. Examples of such movements are romanticism, naturalism, modernism, and postmodernism. **(May May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours hours maximum). (3-0) R**
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>husl7322 (r5)</td>
<td>HUSL 7322 Advanced Translation Workshop (3 semester credit hours) An intensive investigation in a workshop environment of the aesthetics of the art and craft of literary translation focusing on the techniques and processes involved in producing English translations of poetic, dramatic, fictional, and essayistic works. Students are expected to produce publishable translations primarily of works by contemporary international writers. Discussions will include the history and theory of literary translation. Prerequisite: HUSL 6380 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mwilson 2013-11-09 16:31:43 007505 16.0102.00.01 audit: -84.4 m index: -84.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>edit *</td>
<td>husl7322.7</td>
<td>HUSL 7322 Advanced Translation Workshop (3 semester credit hours) An intensive investigation in a workshop environment of the aesthetics of the art and craft of literary translation focusing on the techniques and processes involved in producing English translations of poetic, dramatic, fictional, and essayistic works. Students are expected to produce publishable translations primarily of works by contemporary international writers. Discussions will include the history and theory of literary translation. Permission of the instructor or previous completion of Prerequisite: HUSL 6380 or instructor consent required. (3-0) R</td>
<td>status: approving</td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>husl7340 (r1)</td>
<td>HUSL 7340 Advanced Studies in Literature Before 1800 (3 semester credit hours) Advanced studies in the literature and culture of selected periods in the Western tradition. May focus on ancient, medieval, or early modern periods. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>mwilson 2013-11-10 15:07:03 NOLINK 23.0101.00.01 audit: -84.4 m index: -84.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>edit *</td>
<td>husl7340.2</td>
<td>HUSL 7340 Advanced Studies in Literature Before 1800 (3 semester credit hours) Advanced studies in the literature and culture of selected periods in the Western tradition. May focus on ancient, medieval, or early modern periods. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>status: approving</td>
<td>audit: 8</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl7350 (r2) husl7350.3</td>
<td>HUSL 7350 Advanced Studies in Nineteenth Century Literature (3 semester credit hours) Advanced studies in the literature and culture of the nineteenth century. May focus on British, European, American, Asian, or Latin American contexts. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 13:39:37 13:39:37 012994 23.0101.00.01 audit: -84.9 m index: -84.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUSL 7350 Advanced Studies in Nineteenth Century Literature (3 semester credit hours) Advanced studies in the literature and culture of the nineteenth century. May focus on British, European, American, Asian, or Latin American contexts. (May be repeated for credit as topics vary to a maximum of 9 hours) (9 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl7360 (r2) husl7360.3</td>
<td>HUSL 7360 Advanced Studies in Twentieth Century Literature (3 semester credit hours) Advanced studies in the literature and culture of the twentieth century. May focus on British, European, American, Asian, or Latin American contexts. (May be repeated for credit as topics vary to a maximum of 9 hours) (9 semester credit hours maximum). (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 13:40:13 13:39:37 012994 23.0101.00.01 audit: -84.9 m index: -84.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUSL 7360 Advanced Studies in Twentieth Century Literature (3 semester credit hours) Advanced studies in the literature and culture of the twentieth century. May focus on British, European, American, Asian, or Latin American contexts. (May be repeated for credit as topics vary to a maximum of 9 hours) (9 semester credit hours maximum). (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl7370 (r4) husl7370.5</td>
<td>HUSL 7370 Advanced Studies in Literature and History (3 semester credit hours) Studies of selected literary texts and art movements in times of high political tension (American Revolution, Civil War, Weimar Germany, etc.). May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-07 13:40:37 13:40:37 007512 45.1101.00.01 audit: -84.9 m index: -84.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUSL 7370 Advanced Studies in Literature and History (3 semester credit hours) Studies of selected literary texts and art movements in times of high political tension (American Revolution, Civil War, Weimar Germany, etc.). (May be repeated for credit as topics vary to a maximum of 9 hours maximum) (9 semester credit hours maximum). (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req_type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>husl7372 (r2)</td>
<td>husl7372.3</td>
<td>HUSL 7372 Advanced Studies in Literature and Society (3 semester credit hours) Advanced studies of the values and concerns of various social groups through the analysis of literary texts, including consideration of the role of literature and the writer in given societies. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012996 2010-08-18 keh120030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUSL 7372 Advanced Studies in Literature and Society (3 semester credit hours) Advanced studies of the values and concerns of various social groups through the analysis of literary texts, including consideration of the role of literature and the writer in given societies. (May be repeated for credit as topics vary to a maximum of 9 (9 semester credit hours maximum). (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>husl7383 (r1)</td>
<td>husl7383.2</td>
<td>HUSL 7383 Teaching First-Year Writing (3 semester credit hours) Covers both the methods of teaching first-year writing and pedagogical theories of modern composition. Enrollment required for teaching assistants assigned to sections of Rhetoric 1302, but not limited to such students. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUSL 7383 Teaching First-Year Writing (3 semester credit hours) Covers both the methods of teaching first-year writing and pedagogical theories of modern composition. Enrollment required for teaching assistants assigned to sections of Rhetoric 1302, but not limited to such students. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>husl7390 (r6)</td>
<td>husl7390.9</td>
<td>HUSL 7390 Advanced Special Topics in Literary Studies (3 semester credit hours) Independent study course that may count toward minimum course requirements for the PhD degree. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 007515 2014-08-24 ddc130130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HUSL 7390 Advanced Special Topics in Literary Studies (3 semester credit hours) Independent study course that may count toward minimum course requirements for the PhD degree. (May be repeated for credit to a maximum of 9 hours.) (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl7391 (r4)</td>
<td>husl7391</td>
<td>HUSL 7391 Special Topics in Translation Studies (3 semester credit hours) The investigation of the field of Translation Studies. Topics may include the anthropological foundation of translation; the study of crossing cultural barriers; translation methodologies as a model for interdisciplinary research; communication as translation; translation and reading; historical aspects of translation; models of cultural differences; critical approaches to the theories of translation from the Greeks to the present; and specific research and translation projects. May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>srx090100 2013-10-31 17:36:48</td>
<td>peoplesoft diff: 007516 2014-08-24 ddc130130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>husl7391.6</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>007516</td>
<td>16.0102.00.01</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>007516</td>
<td>index: -84.4 m</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl8303 (r6)</td>
<td>husl8303</td>
<td>HUSL 8303 Independent Readings in Literary Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>srx090100 2013-10-31 17:37:07</td>
<td>peoplesoft diff: 007522 2014-08-24 ddc130130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>husl8303.8</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>007522</td>
<td>16.0104.00.01</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>007522</td>
<td>index: -84.4 m</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>husl8305 (r7)</td>
<td>husl8305</td>
<td>HUSL 8305 Independent Research in Literary Studies (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>srx090100 2013-10-31 17:37:26</td>
<td>peoplesoft diff: 007523 2014-08-24 ddc130130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>husl8305.9</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>007523</td>
<td>16.0104.00.01</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>007523</td>
<td>index: -84.4 m</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/b396f406cf0f8ce11e185e87487952e0/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>lats6300</td>
<td>(r3)</td>
<td>LATS 6300 Introduction to Latin American Studies (3 semester credit hours) An interdisciplinary introduction to the theories, methodologies, topics, and themes relevant to the study of Latin America. Required of all students in the MA program in Latin American Studies. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lats6300.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-06 12:58:46</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>013103</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05.0107.00.01</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -84.5 m</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft: 013103 2011-08-23 keh120030</td>
<td></td>
<td></td>
<td>LATS 6300 Introduction to Latin American Studies (3 semester credit hours) An interdisciplinary introduction to the theories, methodologies, topics, and themes relevant to the study of Latin America. Required of all students in the M.A. MA program in Latin American Studies. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>lats6390</td>
<td>(r2)</td>
<td>LATS 6390 Internship in Latin American Studies (3 semester credit hours) Students will complete an internship established in partnership with UT Dallas and businesses and/or not-for-profit agencies in the Dallas-Fort Worth area. May be repeated for credit (12 semester credit hours maximum). Only 6 semester credit hours will be counted toward the MA. Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr90100</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lats6390.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-31 17:40:49</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>013104</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05.0107.00.01</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -84.4 m</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft: 013104 2010-08-18 keh120030</td>
<td></td>
<td></td>
<td>LATS 6390 Internship in Latin American Studies (3 semester credit hours) Students will complete an internship established in partnership with UT Dallas and businesses and/or not-for-profit agencies in the Dallas-Fort Worth area. (May be repeated but only for credit (12 semester credit hours maximum). Only 6 semester credit hours will be counted toward the M.A.) MA. Department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>lats6399</td>
<td>(r2)</td>
<td>LATS 6399 Capstone Project in Latin American Studies (3 semester credit hours) Students produce a capstone project on a topic of their choice in Latin American Studies in the form of either a research thesis or final project. Pass/Fail only. May be repeated for credit (12 semester credit hours maximum). Only 6 credit hours will be counted toward the MA. Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr90100</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lats6399.3</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-31 16:39:01</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>013105</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>05.0107.00.01</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -84.4 m</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft: 013105 2010-08-18 keh120030</td>
<td></td>
<td></td>
<td>LATS 6399 Capstone Project in Latin American Studies (3 semester credit hours) Students produce a capstone project on a topic of their choice in Latin American Studies in the form of either a research thesis or final project. (May Pass/Fail only. May be repeated but only for credit (12 semester credit hours maximum). Only 6 credit hours will be counted toward the M.A.) MA. Department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Behavioral and Brain Sciences (BBSC)
2014-15 Graduate Catalog – Courses
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * acn5314 (r13) acn5314.20</td>
<td>ACN 5314 (HCS 5314) Computational Modeling Methods in Behavioral and Brain Sciences (3 semester credit hours) Computational Neuroscience, Cognitive Neural Modeling, and Mathematical Psychology modeling methodologies are introduced through the use of computer-based simulation modeling experiments. Emphasizes creative applications of these research methodologies. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-02-15 15:07:59 000170 30.2501.00.01 audit: -6.6 m index: -6.6 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acn6160 (r2) acn6160.10</td>
<td>ACN 6160 Neurobiology (1 semester credit hour) A self-paced course providing the neurobiological foundation for the study of speech-language pathology. Pass/Fail only. Prerequisites: COMD majors only and department consent required. (1-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-02-05 17:13:59 012550 51.0201.00.14 audit: -6 m index: -6 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ACN 6310 (HCS 6310) Fundamentals of Functional Brain Imaging (3 semester credit hours) This course covers topics such as principles of tracer techniques, neuroimaging instrumentation, safety issues, brain physiology (perfusion, metabolism, and receptor function), image processing and analysis, fundamentals of SPECT, PET and fMRI, and critical evaluation of the functional neuroimaging literature. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-18 08:42:51 000176 26.1501.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>acn6310 (r4) acn6310.6</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acn6312 (r7) acn6312.10</td>
<td>ACN 6312 (HCS 6312 and PSYC 6312) Research Methods in Behavioral and Brain Sciences - Part I (3 semester credit hours) This course focuses on applying, understanding, and interpreting various statistical techniques in a behavioral science context. Students learn the framework for hypothesis testing, basic descriptive (e.g., measures of central tendency, variability and shape) and inferential (e.g., z, t, correlation, ordinary least squares regression, and ANOVA) statistics. The course provides students with an understanding of the interrelationships among statistical techniques, and computer skills required for data analyses. Students without the necessary background knowledge of basic statistics and experimental design will be required to take PSY 3392 before registering for ACN 6312. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 13:37:14 000177 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6313 (r8)</td>
<td>acn6313.10</td>
<td>ACN 6313 (HCS 6313 and PSYC 6313) Research Methods in Behavioral and Brain Sciences - Part II (3 semester credit hours) Topics in general linear modeling including regression analysis correlation, simple analysis of variance, factorial analysis of variance, analysis of covariance, between and within subject designs, and multiple regression. Prerequisites: (ACN 6312 or HCS 6312 or PSYC 6312) and department consent required. (3-0)</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6316 (r5)</td>
<td>acn6316.9</td>
<td>ACN 6316 (HCS 6316 and PSYC 6316) Research Methods in Behavioral and Brain Sciences - Part III (3 semester credit hours) Applying, understanding, and interpreting various advanced multivariate statistical techniques in brain and behavioral science contexts. Includes principal component analyses, simple and multiple correspondence analyses, partial least square methods, multivariate analyses, discriminant analyses, and structural equation modeling. May be repeated for credit (6 semester credit hours maximum). Prerequisite: BBSC majors only. (3-0)</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 000178 2012-08-26 sxh121431

peoplesoft diff: 013151 2013-08-25 adp130030

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf 4/115
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>acn6319 (r3)</td>
<td>acn6319.5</td>
<td>request to remove this course from catalog</td>
<td>ACN 6319 (HCS 6319 and PSYC 6319) Scientific Writing (3 semester credit hours) Scientific writing of articles for publication. (3-0) Y</td>
<td>phase: approve</td>
<td>stillman 2013-10-02 14:39:18 013152 51.0201.00.14 audit: -6.5 m index: -6.5 m</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6322 (r4)</td>
<td>acn6322.7</td>
<td>ACN 6322 (HCS 6322) Computational Modeling Methods for Language Understanding (3 semester credit hours) Probabilistic methods for natural language understanding. Use of the MATLAB computer language for instantiating specific knowledge-based computational theories of natural language understanding. Emphasizes creative applications of these research methodologies. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-02-15 15:05:41 013158 11.0201.00.06 audit: -6.3 m index: -6.3 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6330 (r5)</td>
<td>acn6330.7</td>
<td>ACN 6330 (HCS 6330 and PSYC 6330) Cognitive Science (3 semester credit hours) Cognitive, computational, and neural processing approaches to understanding perception, memory, thought, language, and emotion. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:02:12 000180 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6331 (r4) acn6331.6</td>
<td>ACN 6331 (HCS 6331 and PSYC 6331) Cognitive Development (3 semester credit hours) Survey of cognitive development theories and research in a variety of domains including perception, memory, language, and problem solving. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2014-01-23 14:06:47 013153 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6332 (r6) acn6332.9</td>
<td>ACN 6332 (HCS 6332 and PSYC 6332) Perception (3 semester credit hours) Psychophysical, neurophysiological, and computational foundations of sensation and perception. Basic senses of vision, audition, chemoreception, and tactile processing, with emphasis on understanding the processes that take us from neurons to perception and action. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2013-12-17 16:41:16 000181 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6333 (r6) acn6333.9</td>
<td>ACN 6333 (HCS 6333 and PSYC 6333) Memory (3 semester credit hours) Research and theory on the acquisition, representation, and retrieval of information by the mind/brain. Includes information processing and neuropsychological perspectives. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2014-01-23 14:09:11 000182 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>---------</td>
<td>--------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acn6334 (r5) acn6334.7</td>
<td>ACN 6334 (HCS 6334) Attention (3 semester credit hours) Theory and evidence on the study of attention especially in human vision and audition. Includes perceptual learning, information processing, and neuropsychological approaches. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxs121431 2014-01-23 14:10:03 000183 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acn6338 (r2) acn6338.5</td>
<td>ACN 6338 (HCS 6338 and PSYC 6338) Functional Neuroanatomy (3 semester credit hours) An introduction to human neuroanatomy organized by major brain system. Function of the neuroanatomy of each major system and relation to neurological disorders associated with damage to the neuroanatomy of the system. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxs121431 2014-01-23 14:13:09 000218 26.1502.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acn6339 (r4) acn6339.6</td>
<td>ACN 6339 (HCS 6339 and PSYC 6339) Psycholinguistics (3 semester credit hours) Classic and current research in psycholinguistics. Includes concepts from linguistics, the biological bases of speech and language processing, and child language acquisition. Prerequisite: BBSC majors only. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxs121431 2014-01-23 14:14:37 013154 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------------</td>
<td>----------</td>
<td>---</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6340 (r6)</td>
<td>acn6340.8</td>
<td>ACN 6340 (HCS 6340) Cellular Neuroscience (3 semester credit hours) Basic neural biology and physiology and principles of synaptic transmission. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve status:</td>
<td>sxh121431 2014-01-23</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>approving audit: 30</td>
<td>14:15:44 000184 26.1501.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff:</td>
<td></td>
<td>000184 2012-08-26 sxh121431 ACN 6340 (HCS 6340) Cellular Neuroscience (3 semester credit hours) Basic neural biology and physiology and principles of synaptic transmission. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6341 (r4)</td>
<td>acn6341.6</td>
<td>ACN 6341 Human Computer Interactions I (3 semester credit hours) Methods and principles of human-computer interaction (HCI), user-centered design (UCD), and use ability evaluation. Provides broad overview of HCI and how HCI informs UCD processes throughout product development life cycle. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve status:</td>
<td>sxh121431 2013-12-18</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>approving audit: 30</td>
<td>approving audit: 30</td>
<td>08:43:40 000185 14.0901.00.06 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff:</td>
<td></td>
<td>000185 2008-08-21 sxh121431 ACN 6341 Human Computer Interactions I (3 semester credit hours) Methods and principles of human-computer interaction (HCI), user-centered design (UCD), and use ability evaluation. Provides broad overview of HCI and how HCI informs UCD processes throughout product development life cycle. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6342 (r4)</td>
<td>acn6342.6</td>
<td>ACN 6342 Human Computer Interactions II (3 semester credit hours) Detailed exploration of human-computer interaction (HCI) through readings in journal articles and research reports. Practical experience in methodology typically used in the design of usable systems. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve status:</td>
<td>sxh121431 2013-12-18</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>approving audit: 30</td>
<td>approving audit: 30</td>
<td>08:44:04 000186 14.0901.00.06 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff:</td>
<td></td>
<td>000186 2008-08-21 sxh121431 ACN 6342 Human Computer Interactions II (3 semester credit hours) Detailed exploration of human-computer interaction (HCI) through readings in journal articles and research reports. Practical experience in methodology typically used in the design of usable systems. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acn6343 (r5) acn6343.8</td>
<td>ACN 6343 Human Computer Interactions Lab (3 semester credit hours) Provides students with resources to learn and perform hands-on lab-based techniques such as usability testing and cognitive walkthroughs. Emphasizes creative applications of these research methodologies as well as the development of critical thinking skills in a usability engineering context. Prerequisites: BBSC majors only and department consent required. (0-3) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-18 08:44:23 14.0901.00.06 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acn6346 (r8) acn6346.10</td>
<td>ACN 6346 (HCS 6346 and PSYC 6346) Systems Neuroscience (3 semester credit hours) Integrative systems level study of the nervous system. Aspects of neural mechanisms and circuitry underlying regulation of motor behaviors, sensory and perceptual processing, biological homeostasis, and higher cognitive functions. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:16:39 26.1501.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acn6347 (r6)</td>
<td>acn6347.8</td>
<td>ACN 6347 (HCS 6347) Intelligent Systems Analysis (3 semester credit hours) Mathematical tools for investigating the asymptotic behavior of both deterministic and stochastic nonlinear dynamical systems. Topics include: artificial neural network architectures, Lyapunov stability theory, nonlinear optimization theory, stochastic approximation theory, and Monte Carlo Markov Chain methods such as the Metropolis-Hastings algorithm. Emphasizes development of advanced analytic skills and mathematical reasoning abilities. Prerequisites: (Linear algebra, multivariable calculus, STAT 3341 or equivalent) and BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
</tbody>
</table>

ACN 6347 (HCS 6347) Intelligent Systems Analysis (3 semester credit hours) Mathematical tools for investigating the asymptotic behavior of both deterministic and stochastic nonlinear dynamical systems. Topics include: artificial neural network architectures, Lyapunov stability theory, nonlinear optimization theory, stochastic approximation theory, and Monte Carlo Markov Chain methods such as the Metropolis-Hastings algorithm. Emphasizes development of advanced analytic skills and mathematical reasoning abilities. **Prerequisite: ACN/HCS 6348 (or equivalent)** and BBSC majors only and department consent of instructor required. (3-0) T

peoplesoft diff: 000190 2012-08-26 sxr090100
ACN 6348 (HCS 6348) Neural Net Mathematics
(3 semester credit hours) Vector calculus and
vector calculus-based probability theory with
artificial neural network modeling applications.
Emphasizes development of advanced analytic
skills and mathematical reasoning abilities.
Intended to provide mathematics preparation
for ACN 6347 or HCS 6347 and ACN 6349 or
HCS 6349. Prerequisites: (Linear algebra,
multivariable calculus, STAT 3341 or
equivalent) and BBSC majors only and
department consent required. (3-0) T

ACN 6348 (HCS 6348) Neural Net Mathematics
(3 semester credit hours) Vector calculus and
vector calculus-based probability theory with
artificial neural network modeling applications.
Emphasizes development of advanced analytic
skills and mathematical reasoning abilities.
Intended to provide mathematics preparation
for ACN/HCS ACN 6347 or HCS 6347 and
ACN/HCS ACN 6349 or HCS 6349.
Prerequisites: Either: (1) Linear (Linear algebra,
multivariable calculus, STAT 5351 or
equivalent, ACN/HCS 5314, 3341 or (2)
equivalent) and BBSC majors only and
department consent of instructor required. (3-0) T
<table>
<thead>
<tr>
<th>start end</th>
<th>request course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * acn6349 (r5) acn6349.6</td>
<td>ACN 6349 (HCS 6349) Intelligent Systems Design (3 semester credit hours) Probabilistic and statistical modeling tools for the design and evaluation of artificially intelligent deterministic and stochastic nonlinear dynamical systems for the purpose of building computational models in the fields of neuroscience, psychology, and artificial intelligence. Topics include probabilistic interpretations of nonlinear dynamical system models and asymptotic mathematical statistical theory for parameter estimation, model selection, specification analysis, and hypothesis testing. Prerequisites: (Linear algebra, multivariable calculus, STAT 3341 or equivalent) and BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>stillman 2013-10-11 09:12:57 000192 11.0102.00.06 audit: -6.5 m index: -6.5 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6355 (r4)</td>
<td>acn6355.6</td>
<td>ACN 6355 (HCS 6355 and PSYC 6355) Judgment and Decision Making (3 semester credit hours) This course examines human inferences, judgments, decisions, and the processes by which we arrive at them. It will focus on the fact that our social judgments are not based on the laws of probability and chance, but on other cognitive processes that may have serious shortcomings in important inferential and decision making tasks. We will also see that these processes, while ecologically efficient, systematic and often predictable, are imperfect in today's data-rich environment. Prerequisite: BBSC majors only. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6363 (r3)</td>
<td>acn6363.7</td>
<td>ACN 6363 (HCS 6363) Text Comprehension Seminar (3 semester credit hours) Current readings in the field of text comprehension and memory. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acn6367 (r5) acn6367.7</td>
<td>ACN 6367 (HCS 6367 and PSYC 6367) Speech Perception (3 semester credit hours) Current topics and theories in speech perception. Topics include the acoustic correlates of speech sounds and the problem of invariance, the perception of speech under adverse conditions, the effects of hearing impairment, and models of speech perception. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:25:12 000196 51.0204.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acn6368 (r4) acn6368.6</td>
<td>ACN 6368 (HCS 6368 and PSYC 6368) Language Development (3 semester credit hours) Advanced study of normal oral language development. The goals of this course are to consider the developmental trajectories of the different components of language; to consider the varied and critical roles of language in human development; to understand the impact of culture, different languages, child factors and the environment on development; and to be introduced to the theoretical perspectives driving research and thinking in this area of inquiry. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:26:13 013155 51.0204.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acn6372</td>
<td>ACN 6372 (HCS 6372) The Neuroscience of Pain (3 semester credit hours) A systems-oriented course covering the anatomical and physiologic basis of pain. The course emphasizes the similarities and differences between the different forms of pain and describes the basic features of neural processing of pain signals in the spinal cord and brain, the anatomy and the function of the descending systems that can control transmission of pain signals, and peripheral and central sensitization. The physiological and molecular basis for treatment of pain is discussed. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acn6373</td>
<td>ACN 6373 (HCS 6373) Intraoperative Neurophysiological Monitoring I (3 semester credit hours) The anatomical and physiological basis for the use of electrophysiological techniques in intraoperative neurophysiologic monitoring and in diagnosis of disorders affecting the nervous system. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6374 (r9)</td>
<td>acn6374.12</td>
<td>ACN 6374 (HCS 6374) Intraoperative Neurophysiological Monitoring II (3 semester credit hours) The use of recordings of neuroelectric brain potentials and their interpretation for diagnostic purposes and for intraoperative monitoring. The use of electrophysiological methods for managing implantation of stimulating electrodes deep in the brain and for guiding the surgeon in certain operations is also described. Prerequisites: (ACN 6373 or HCS 6373) and departmental consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 000198 2012-08-26 sxr090100 ACN 6374 (HCS 6374) Intraoperative Neurophysiological Monitoring II (3 semester credit hours) The use of recordings of neuroelectric brain potentials and their interpretation for diagnostic purposes and for intraoperative monitoring. Prerequisite: ACN/HCS 6373. The use of electrophysiological methods for managing implantation of stimulating electrodes deep in the brain and for guiding the surgeon in certain operations is also described. Prerequisites: (ACN 6373 or HCS 6373) and departmental consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6388 (r3)</td>
<td>acn6388.6</td>
<td>ACN 6388 (HCS 6388) MATLAB for Brain Sciences (3 semester credit hours) Introduction to MATLAB computer programming. Covers the use of the MATLAB programming language for the purpose of stimulus generation, behavioral data analysis, statistical analyses, and generation of publication quality figures. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014043 2012-08-26 sxr090100 ACN 6388 (HCS 6388) MATLAB for Brain Sciences (3 semester credit hours) Introduction to MATLAB computer programming. Covers the use of the MATLAB programming language for the purpose of stimulus generation, behavioral data analysis, statistical analyses, and generation of publication quality figures. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf 16/115
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>add_renumber * acn7367 acn6389 (r1) acn6389.1</td>
<td>ACN 6389 (HCS 6389) Speech Perception Laboratory (3 semester credit hours) Introduction to the field of speech processing by computer, with primary application to research techniques in the study of speech perception. Prerequisites: BBSC majors only and department consent required. (0-9) T</td>
<td>phase: approve</td>
<td>stillman 2013-10-11 11:09:53</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acn6395 (r5) acn6395.9</td>
<td>ACN 6395 (HCS 6395 and PSYC 6395) Cognitive Psychology (3 semester credit hours) Theory and research on perception, learning, thinking, psycholinguistics, and memory. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:29:22</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acn6399 (r5) acn6399.7</td>
<td>ACN 6399 (HCS 6399 and PSYC 6399) Research Ethics and Scientific Integrity (3 semester credit hours) An interactive, intensive course designed to cover critical issues related to human subjects, animal welfare, research design, accountability of scientific actions and fraud. Course designed for individuals intending research careers in academia or industry. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:30:11</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

ACN 6389 (HCS 6389) Speech Perception Laboratory (3 semester credit hours) Introduction to the field of speech processing by computer, with primary application to research techniques in the study of speech perception. Prerequisites: BBSC majors only and department consent required. (0-9) T

peoplesoft diff: 000199 2012-08-26 sxh121431

ACN 6395 (HCS 6395 and PSYC 6395) Cognitive Psychology (3 semester credit hours) Theory and research on perception, learning, thinking, psycholinguistics, and memory. Prerequisites: BBSC majors only and department consent required. (3-0) Y

peoplesoft diff: 000200 2012-08-26 sxh121431

ACN 6399 (HCS 6399 and PSYC 6399) Research Ethics and Scientific Integrity (3 semester credit hours) An interactive, intensive course designed to cover critical issues related to human subjects, animal welfare, research design, accountability of scientific actions and fraud. Course designed for individuals intending research careers in academia or industry. Prerequisite: BBSC majors only. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn6v81</td>
<td>(r4)</td>
<td>ACN 6V81 Special Topics in Applied Cognition and Neuroscience (1-9 semester credit hours) May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. ([1-9]-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2013-12-18 08:41:41 000175 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn7324</td>
<td>(r6)</td>
<td>ACN 7324 (AUD 7324 and COMD 7324) Seminar in Cochlear Implants and Technology for Persons with Hearing Impairments (3 semester credit hours) Overview of prosthetic alternatives to conventional amplification for individuals with severe-to-profound hearing loss. Topics include candidacy determination, technology, programming/fitting of devices, aural (re)habilitation, and awareness of controversial areas related to cochlear implantation. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2013-12-18 08:45:13 000206 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn7330</td>
<td>(r3)</td>
<td>acn7330.5</td>
<td>ACN 7330 (HCS 7330) Advanced Functional Brain Imaging (3 semester credit hours) This course explores more in-depth topics such as neuroimaging detection systems, clinical applications of functional neuroimaging, experimental design, statistical techniques in image analysis and reviews of pertinent literature using functional brain imaging to illuminate various cognitive and perceptual processes, such as language, memory, hearing and vision. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acn7335</td>
<td>(r10)</td>
<td>acn7335.12</td>
<td>ACN 7335 (HCS 7333) Computational Neuroscience (3 semester credit hours) Introduction to state-of-the-art computer methods for simulation of biologically realistic neuronal dynamics. Students must demonstrate computer skills. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>acn7343 (6) acn7343.7</td>
<td>ACN 7343 (HCS 7343) Neuropharmacology (3 semester credit hours) Biology of neurotransmission in the central nervous system. Includes ionotropic and metabotropic coupling of all known classes of receptors to both their cellular and systemic effects. Clinical efficacy, side effects, and other issues related to drug use and abuse are covered. Prerequisites: (ACN 6340 or HCS 6340 or ACN 6346 or HCS 6346) and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>stillman 2013-09-27 11:49:35 000217 26.1501.00.02 audit: -6.6 m index: -6.6 m</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>2014-open</td>
<td>remove_renumber *</td>
<td>acn7367 (7) acn7367.8</td>
<td>request to remove this course from catalog ACN 7367 (HCN 7367) Speech Perception Laboratory (3 semester credit hours) Introduction to the field of speech processing by computer, with primary application to research techniques in the study of speech perception. (0-9) T</td>
<td>phase: approve</td>
<td>stillman 2013-10-11 11:09:53 000221 51.0204.00.14 audit: -6.9 m index: -6.9 m</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>acn7v71 (5) acn7v71.12</td>
<td>ACN 7V71 Industry Internship (1-6 semester credit hours) Pass/Fail only. May be repeated for credit (12 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-12 15:01:51 000201 51.0201.00.14 audit: -6.1 m index: -6.1 m</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>course id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>---</td>
<td>---------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | acn7v72 (r6) | acn7v72.13 | ACN 7V72 Research Internship (1-6 semester credit hours) Pass/Fail only. May be repeated for credit (12 semester credit hours maximum). Prerequisites: BBSC majors only and instructor consent required. ([1-6]-0) S | phase: approve
status: approving
audit: 30 | mxv062000
2014-01-12
15:02:58
000202
51.0201.00.14
audit: -6.1 m
index: -6.1 m
match_fail | process orion |
| 2014-open | edit * | aud6113 (r3) | aud6113.6 | AUD 6113 Grand Rounds (1 semester credit hour) Case staffing, presentations and discussion of patient audiological diagnostic and rehabilitation and selected topics in a group session attended by students and faculty. Pass/Fail only. May be repeated for credit (6 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. (1-0) Y | phase: approve
status: approving
audit: 30 | sxr090100
2014-01-14
13:33:16
014044
51.0202.00.14
audit: -6.1 m
index: -6.1 m
match_fail | process orion |
| 2014-2014 | remove * | aud6120 (r4) | aud6120.6 | AUD 6120 Laboratory Procedures in Audiology and Hearing Science (1-9 semester credit hours) Application in structured laboratories of principles taught in diagnostic audiology, rehabilitation audiology, hearing science, amplification, cochlear implant and electrophysiology courses. To be taken with AUD 6303, AUD 6310, AUD 6311, AUD 6316, AUD 7321, AUD 7326, AUD 7327 and AUD 7353. (May be repeated for credit.) (0-[1-9]) S | phase: approve
status: approving
audit: 29 | mxv062000
2013-10-26
20:00:11
000867
51.0202.00.14
audit: -6.3 m
index: -6.3 m | process orion |
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * aud6303 (r4) aud6303.7</td>
<td>AUD 6303 Hearing Science (3 semester credit hours) Basic acoustics and psychoacoustics. Prerequisites: BBSC majors only and department consent required. Corequisite: AUD 6V20. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 14:16:50 000868 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * aud6305 (r4) aud6305.5</td>
<td>AUD 6305 Anatomy and Physiology of Audition (3 semester credit hours) Structure and function of the auditory system including external, middle, and inner ear, and central auditory mechanisms. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 14:22:16 000869 26.0707.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * aud6306 (r4) aud6306.5</td>
<td>AUD 6306 Speech Science (3 semester credit hours) The physical properties of speech and the perceptual, cognitive and neural processes that intervene between the production and perception of speech in everyday speech communication. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 14:22:42 000870 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud6310 (r6)</td>
<td>AUD 6310 Advanced Clinical Audiology (3 semester credit hours) Instrumentation and calibration standards for audiology practice. The development, application and interpretation of standard and advanced diagnostic audiological procedures. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 13-12-17 15:27:52 000871 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud6310.7</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 000871 2013-08-25 adp130030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud6311 (r6)</td>
<td>AUD 6311 Diagnostic Audiology (3 semester credit hours) Diagnostic procedures for audiological diagnosis including behavioral and functional measures (ABR and OAE). Emphasis on administration and interpretation of diagnostic audiological tests. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 13-12-17 15:28:17 000872 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud6311.7</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 000872 2013-08-25 adp130030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud6314 (r2)</td>
<td>AUD 6314 Instrumentation (3 semester credit hours) This course focuses on the use, care, and maintenance of instrumentation used in clinical audiology, including the basic principles of electrical systems, signal processing and analysis, calibration, and laboratory safety. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 13-12-17 15:28:55 014050 15.0404.00.19 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud6314.3</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014050 2012-08-26 sxr090100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AUD 6314 Instrumentation (3 semester credit hours) This course focuses on the use, care, and maintenance of instrumentation used in clinical audiology, including the basic principles of electrical systems, signal processing and analysis, calibration, and laboratory safety. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud6316 (r6)</td>
<td>aud6316.7</td>
<td>AUD 6316 Audiologic Rehabilitation for Adults (3 semester credit hours) Evaluation and remediation of impairment, limitations and restrictions associated with hearing loss. Emphasis on hearing aid orientation and benefit, counseling, assistive technology, coping skills, communication strategies, speech reading, advocacy for adults with hearing loss, and partnering with community mentors. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2013-12-17 15:30:37 51.0202.00.14</td>
<td>peoplesoft diff: 000873 2010-08-18 sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AUD 6316 Audiologic Rehabilitation for Adults (3 semester credit hours) Evaluation and remediation of impairment, limitations and restrictions associated with hearing loss. Emphasis on hearing aid orientation and benefit, counseling, assistive technology, coping skills, communication strategies, speech reading, advocacy for adults with hearing loss, and partnering with community mentors. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>status: approving</td>
<td>000873</td>
<td>audit: -6.1 m 47</td>
<td>sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AUD 6316 Audiologic Rehabilitation for Adults (3 semester credit hours) Evaluation and remediation of impairment, limitations and restrictions associated with hearing loss. Emphasis on hearing aid orientation and benefit, counseling, assistive technology, coping skills, communication strategies, speech reading, advocacy for adults with hearing loss, and partnering with community mentors. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>audit: 30</td>
<td>51.0202.00.14</td>
<td>index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | aud6318 (r6) | aud6318.7 | AUD 6318 Pediatric Audiology (3 semester credit hours) Etiological, medical and genetic considerations relevant to the pediatric population. Emphasis on current diagnostic options with infants and young children, including those having developmental delays from cognitive deficits or physical disabilities. Prerequisites: BBSC majors only and department consent required. (3-0) Y | phase: approve | sxh121431 | 2013-12-17 15:31:03 51.0202.00.14 | peoplesoft diff: 000874 2013-08-25 adp130030 |
| | | | | AUD 6318 Pediatric Audiology (3 semester credit hours) Etiological, medical and genetic considerations relevant to the pediatric population. Emphasis on current diagnostic options with infants and young children, including those having developmental delays from cognitive deficits or physical disabilities. Prerequisites: BBSC majors only and department consent required. (3-0) Y | status: approving | 000874 | audit: -6.2 m 47 | sxh121431 |
| | | | | AUD 6318 Pediatric Audiology (3 semester credit hours) Etiological, medical and genetic considerations relevant to the pediatric population. Emphasis on current diagnostic options with infants and young children, including those having developmental delays from cognitive deficits or physical disabilities. Prerequisites: BBSC majors only and department consent required. (3-0) Y | audit: 30 | 51.0202.00.14 | index: -6.2 m match_fail | process orion |</p>
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * aud6352 (r4) aud6352.5</td>
<td>AUD 6352 Medical Audiology (3 semester credit hours) Etiology and pathology of auditory/vestibular disorders and diagnostic and treatment procedures. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:31:57 000876 26.0910.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>peoplediff: 000876 2008-08-21 sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * aud6v20 (r7) aud6v20.8</td>
<td>AUD 6V20 Laboratory Procedures in Audiology and Hearing Science (1-9 semester credit hours) Application in structured laboratories of principles taught in diagnostic audiology, rehabilitation audiology, hearing science, amplification, cochlear implant and electrophysiology courses. May be repeated for credit. Prerequisites: BBSC majors only and department consent required. Corequisite: AUD 6303 or AUD 6310 or AUD 6311 or AUD 6316 or AUD 7321 or AUD 7326 or AUD 7327 or AUD 7353. (0-(1-9)) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 14:04:16 000866 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>peoplediff: 000866 2013-08-25 sxr090100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7182</td>
<td>AUD 7182 Issues in Mentoring and Counseling (1 semester credit hour) This course focuses on topics in patient counseling and professional mentoring. Counselors and mentors across various disciplines will discuss the importance of effective communication as it relates to key issues in clinician-patient interaction, family dynamics, and workplace dynamics. Prerequisites: BBSC majors only and department consent required. (1-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:31:00 013340 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud7182.8</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013340 2013-08-25 adp130030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7210</td>
<td>AUD 7210 Professional Issues in Audiology (2 semester credit hours) Ethics and professional issues in various practice settings, including multicultural considerations, licensure, certification, outcome measures, liability, malpractice, and practice management. Prerequisite: BBSC majors only. (2-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:32:27 014053 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud7210.4</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014053 2013-08-25 adp130030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>AUD 7228 Hearing Loss Prevention (2 semester credit hours) Identification and prevention of hearing loss in children and adults. Focuses on industrial hearing conservation programs. Includes hearing loss prevention in children, hearing protection, and noise standards. Prerequisites: BBSC majors only and department consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:32:51 014056 51.0202.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>AUD 7240 Auditory Processing Disorders (2 semester credit hours) Auditory processing disorders with respect to underlying etiologies and behavioral and electrophysiologic procedures for diagnosis and therapeutic management. Prerequisite: BBSC majors only. (2-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:33:13 014057 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>AUD 7280 Doctoral Practicum in Audiology (2 semester credit hours) Supervised doctoral level experience in assessment and habilitation/rehabilitation of hearing impairment. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:33:48 014058 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7321</td>
<td>aud7321.6</td>
<td>AUD 7321 Theories of Amplification (3 semester credit hours) The affect of sensory hearing loss on speech perception. Compression and hearing aid signal processing. Verification of hearing aid performance including electroacoustic and probe microphone measurement. Assessing candidacy, prescribing hearing aid performance and assessing hearing aid outcomes. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7324</td>
<td>aud7324.9</td>
<td>AUD 7324 (ACN 7324 and COMD 7324) Seminar in Cochlear Implants and Technology for Persons with Hearing Impairments (3 semester credit hours) Overview of prosthetic alternatives to conventional amplification for individuals with severe-to-profound hearing loss. Topics include candidacy determination, technology, programming/fitting of devices, aural (re)habilitation, and awareness of controversial areas related to cochlear implantation. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * aud7325 (r3) aud7325.4</td>
<td>AUD 7325 Intensive Auditory Rehabilitation for Adult Hearing Loss (3 semester credit hours) Intensive experience with comprehensive rehabilitation of adults and/or teens with a focus on research and clinical techniques to facilitate communication in employment, social, and home situations through the use of communication strategies and advanced assistive technology. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:40:15 012552 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * aud7326 (r4) aud7326.5</td>
<td>AUD 7326 Aural Habilitation of Children with Hearing Impairments (3 semester credit hours) Issues in selection and fitting of amplification and FM systems for children, rationale and methods of auditory training, optimizing the auditory environment, communication options, and family-centered intervention. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:40:37 000884 51.0202.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7327</td>
<td>AUD 7327 Evaluation and Fitting of Amplification Systems (3 semester credit hours) Advanced study of digital technology in amplification systems including compression, noise reduction, signal-to-noise ratio enhancement, feedback suppression, frequency lowering technology and speech enhancement strategies. Verification of advanced features in hearing aid delivery. Examination of new developments in hearing aid technologies. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:41:21 000885 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud7327.6</td>
<td>peoplesoft diff: 000885 2012-08-26 sxh121431 AUD 7327 Evaluation and Fitting of Amplification Systems (3 semester credit hours) Advanced study of digital technology in amplification systems including compression, noise reduction, signal-to-noise ratio enhancement, feedback suppression, frequency lowering technology and speech enhancement strategies. Verification of advanced features in hearing aid delivery. Examination of new developments in hearing aid technologies. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7338</td>
<td>AUD 7338 Research in Audiology (3 semester credit hours) Review of statistical principles including the relationship between working hypotheses and methodology and outcomes to prepare individuals to become a critical consumer of research. Scientific writing process including journal publication, scientific posters, and writing style. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:41:45 000887 51.0202.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud7338.4</td>
<td>peoplesoft diff: 000887 2012-08-26 sxh121431 AUD 7338 Research in Audiology (3 semester credit hours) Review of statistical principles including the relationship between working hypotheses and methodology and outcomes to prepare individuals to become a critical consumer of research. Scientific writing process including journal publication, scientific posters, and writing style. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7339 (r4)</td>
<td></td>
<td>AUD 7339 (COMD 7339) Evidence-Based Practice in Communication Disorders (3 semester credit hours) Evidence-based practice as a paradigm for identifying, appraising, and using high-quality evidence to plan research studies and to make decisions about clinical practice. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud7339.5</td>
<td></td>
<td>peoplesoft diff: 000888 2012-08-26 sxh121431</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7351 (r7)</td>
<td></td>
<td>AUD 7351 Physiologic Assessment of Vestibular System (3 semester credit hours) Anatomy, physiology and pathophysiology of the vestibular, oculomotor and related systems used for maintaining equilibrium and balance. Disorders affecting balance. Procedures used for diagnostic assessment of the vestibular system including ENG/VNG, rotational chair and platform posturography and vestibular evoked myogenic potentials. Medical and non-medical treatments for balance disorders. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud7351.8</td>
<td></td>
<td>peoplesoft diff: 000891 2012-08-26 sxh121431</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7353 (r4)</td>
<td>AUD 7353 Clinical Electrophysiology (3 semester credit hours) Evoked and event-related potentials including recording techniques, neurophysiological mechanisms, and applications to clinical populations. Prerequisites: BBSC majors only and department consent required. Corequisite: AUD 6V20. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:46:18</td>
</tr>
<tr>
<td>peoplesoft diff: 000892 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td>AUD 7353 Clinical Electrophysiology (3 semester credit hours) Evoked and event-related potentials including recording techniques, neurophysiological mechanisms, and applications to clinical populations. Prerequisites: BBSC majors only and department consent required. Corequisite: AUD 6V20. (3-0) Y</td>
<td>status: approving</td>
<td>000892 51.0202.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7371 (r5)</td>
<td>AUD 7371 Doctoral Seminar in Audiology (3 semester credit hours) Selected topics and current research in audiology and hearing science. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-13 10:58:47</td>
</tr>
<tr>
<td>peoplesoft diff: 000893 2011-08-23 sxh121431</td>
<td></td>
<td></td>
<td>AUD 7371 Doctoral Seminar in Audiology (3 semester credit hours) Selected topics and current research in audiology and hearing science. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>status: approving</td>
<td>000893 51.0202.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud7v82 (r5)</td>
<td>AUD 7V82 Special Topics in Hearing Science and Audiology (1-9 semester credit hours) Selected topics and current research in hearing science and audiology. Pass/Fail only. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. (1-9-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 14:20:24</td>
</tr>
<tr>
<td>peoplesoft diff: 000878 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td>AUD 7V82 Special Topics in Hearing Science and Audiology (1-9 semester credit hours) Selected topics and current research in hearing science and audiology. Topics will vary from semester to semester. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. (1-9-0) Y</td>
<td>status: approving</td>
<td>000878 51.0202.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud8v80</td>
<td>AUD 8V80 Individual Research in Audiology (1-9 semester credit hours) Independent research project to fulfill the Doctor of Audiology research requirement. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud8v80.8</td>
<td></td>
<td>status: approving</td>
<td>2013-12-17 14:21:02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>000894</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.0202.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -6.1 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -6.1 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 000894 2008-08-21 sxh121431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>aud8v97</td>
<td>AUD 8V97 Doctoral Internship in Audiology (1-9 semester credit hours) Intensive, full-time, clinical audiology practicum in a work setting that provides exposure to a diverse clinical population and a wide breadth of audiologic services. Completed during the fourth year of the AuD Program. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aud8v97.11</td>
<td></td>
<td>status: approving</td>
<td>2013-12-17 14:21:44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>000895</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.0202.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -6.1 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -6.1 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 000895 2013-08-25 adp130030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd5340</td>
<td>COMD 5340 Articulation Disorders (3 semester credit hours) Etiology, symptomatology, evaluation, and treatment of articulation disorders. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td>comd5340.4</td>
<td></td>
<td>status: approving</td>
<td>2013-12-17 15:59:55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>012830</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.0201.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -6.1 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -6.1 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012830 2011-08-23 sxh121431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd5341 (r3)</td>
<td>COMD 5341 Audiology (3 semester credit hours) Clinical application and interpretation in audiology. Emphasis on instrumentation and calibration considerations for air and bone conduction test, speech audiometry, and some information on cerumen management, infection control, and basic masking principles. Prerequisite: BBSC majors only and instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-30 13:34:26 012829 51.0201.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmd5341.7</td>
<td>peoplesoft diff: 012829 2011-08-23 sxh121431</td>
<td>status: approving</td>
<td>audit: 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COMD 5341 Audiology (3 semester credit hours) Clinical application and interpretation in audiology. Emphasis on instrumentation and calibration considerations for air and bone conduction test, speech audiometry, and some information on cerumen management, infection control, and basic masking principles. Prerequisite: BBSC majors only and instructor consent required. (3-0) S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012829 2011-08-23 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COMD 5344 Anatomy and Physiology of Speech and Hearing (3 semester credit hours) Study of anatomic and physiologic mechanisms underlying speech: respiration, phonation, and articulation. Overview of the peripheral auditory system. Prerequisite: BBSC majors only. (3-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:00:55 012828 51.0201.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmd5344 (r3)</td>
<td>peoplesoft diff: 012828 2011-08-23 sxh121431</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmd5344.5</td>
<td>COMD 5344 Anatomy and Physiology of Speech and Hearing (3 semester credit hours) Study of anatomic and physiologic mechanisms underlying speech: respiration, phonation, and articulation. Overview of the peripheral auditory system. Prerequisite: BBSC majors only. (3-0) S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012828 2011-08-23 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 2014-open| edit * | comd6101 | (r2) | comd6101.4 | COMD 6101 Childhood Apraxia of Speech (1 semester credit hour) Current research topics in the assessment and management of children of all ages with childhood apraxia of speech. Includes recent developments in prosody, oral motor therapy, profiling characteristics, articulatory error consistency, augmentative communication, integral stimulation intervention, and diagnostic criteria. **Prerequisite:** Pass/Fail only. **Prerequisites:** COMD 6320 and department consent required. (1-0) S
<p>| | | | | | peoplesoft diff: 014059 2012-08-26 | | | |
| | | | | | COMD 6101 Childhood Apraxia of Speech (1 semester credit hour) Current research topics in the assessment and management of children of all ages with Childhood Apraxia of Speech. Includes recent developments in prosody, oral motor therapy, profiling characteristics, articulatory error consistency, augmentative communication, integral stimulation intervention, and diagnostic criteria. Prerequisite: Pass/Fail only. Prerequisites: COMD 6320. 6320 and department consent required. (1-0) S | | | |
| | | | | | peoplesoft diff: 014060 2012-08-26 | | | |
| | | | | | COMD 6102 Dysphagia in Public Schools (1 semester credit hour) Current research topics in dysphagia assessment and management of children of all ages in the public school setting. Includes program development, legislative information, treatment plans in the IEP, and ethical considerations. Prerequisite: Pass/Fail only. Prerequisites: COMD 7303 and department consent required. (1-0) S |
| | | | | | peoplesoft diff: 014060 2012-08-26 | | | |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comm6103 (r2)</td>
<td>comm6103.3</td>
<td>COMD 6103 Research in Pediatric TBI (1 semester credit hour) Current research topics in the assessment and management of children of all ages with traumatic brain injury (TBI). Includes clinical characteristics of acute dysphagia in children with TBI, recovery of memory function, articulatory function, executive function, and inference comprehension skills in children with TBI. Pass/Fail only. Prerequisites: COMD 6377 and COMD 7378 and department consent required. (1-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>stillman 2013-09-27 11:24:19 014061 51.0201.00.14 audit: -6.8 m index: -6.8 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comm6104 (r2)</td>
<td>comm6104.5</td>
<td>COMD 6104 Dysphagia in Infancy (1 semester credit hour) Assessment and management of infants and with feeding and swallowing impairments. Include review of anatomy and physiology of suck/swallow/breathe triad, diagnostic and test procedures in the NICU and hospital setting, clinical feeding evaluation of infants in the NICU and hospital, therapeutic treatment strategies for infants with dysphagia, special medical populations, and breast feeding. Pass/Fail only. Prerequisites: COMD 7303 and department consent required. (1-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>sxr090100 2014-01-14 15:04:27 014063 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cmd6105</td>
<td>COMD 6105 Professional Writing (1 semester credit hour) Professional reports, and professional writing covering behavioral objectives, discharge planning, and report formats. Pass/Fail only. Prerequisites: BBSC majors only and department consent required. (1-0) S</td>
<td>phase: approve</td>
<td>srx090100 2014-01-14 15:09:06 014066 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cmd6106</td>
<td>COMD 6106 Medical SLP (1 semester credit hour) Medical terminology and scope of practice of the medical SLP. Topics include assessment of aphasia, cognitive rehabilitation after TBI, diagnostic approaches to dementia, communication impairment and management of dementia, assessment and management of dysphagia, voice disorders, head and neck cancer, psychogenic communication disorders, issues in geriatric medicine and drug induced communication and swallowing disorders. Pass/Fail only. Prerequisites: BBSC majors only and department consent required. (1-0) S</td>
<td>phase: approve</td>
<td>srx090100 2014-01-14 15:09:44 014067 51.0201.00.14 audit: -6.1 m index: -6.1 m matchFail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cmd6107</td>
<td>COMD 6107 Dementia (1 semester credit hour) Diagnosis, treatment, and current best practice in the management of the dementias. Pass/Fail only. Prerequisites: COMD 6377 and department consent required. (1-0) S</td>
<td>phase: approve</td>
<td>srx090100 2014-01-14 15:10:24 014069 51.0201.00.14 audit: -6.1 m index: -6.1 m matchFail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd6108</td>
<td>(r2)</td>
<td>6108.6</td>
<td>COMD 6108 Pulmonary Issues (1 semester credit hour) Issues related to respiration and swallowing coordination in normal aging and patients with specific respiratory conditions (i.e., aspiration pneumonia, COPD, Parkinsonism, patients on mechanical ventilation). Normal and disordered respiratory systems, and assessment/management considerations for patients with specific respiratory issues are discussed. Pass/Fail only. Prerequisites: COMD 7303 and department consent required. (1-0) S</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2014-01-14 15:10:53</td>
<td>014071</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 014071 2012-08-26

COMD 6108 Pulmonary Issues (1 semester credit hour) Issues related to respiration and swallowing coordination in normal aging and patients with specific respiratory conditions (i.e., aspiration pneumonia, COPD, Parkinsonism, patients on mechanical ventilation). Normal and disordered respiratory systems, and assessment/management considerations for patients with specific respiratory issues are discussed. **Prerequisite:** Pass/Fail only. **Prerequisites:** COMD 7303. 7303 and department consent required. (1-0) S

2014-open	edit *	cmd6109	(r2)	6109.6	COMD 6109 Trachs and Vent (1 semester credit hour) Communication, respiration and swallowing issues/considerations as they relate to patients who require tracheostomy tubes and/or ventilators. Normal and disordered respiratory systems, oral and nonoral communication and assessment/management of dysphagia. Pass/Fail only. Prerequisites: COMD 7303 and department consent required. (1-0) S	phase: approve	sxr090100	process orion
						status: approving	2014-01-14 15:11:43	014072
						audit: 29	51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail	

peoplesoft diff: 014072 2012-08-26

COMD 6109 Trachs and Vent (1 semester credit hour) Communication, respiration and swallowing issues/considerations as they relate to patients who require tracheostomy tubes and/or ventilators. Normal and disordered respiratory systems, oral and nonoral communication and assessment/management of dysphagia. **Prerequisite:** Pass/Fail only. **Prerequisites:** COMD 7303. 7303 and department consent required. (1-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd6110 (r2)</td>
<td>COMD 6110 Pediatric Feeding (1 semester credit hour) Assessment and management of infants and children of all ages with feeding and swallowing impairments. Includes recent developments in the field of swallowing disorders including advances in technology, surgery and pharmacology, and management of pediatric patients with dysphagia. Prerequisites: COMD 7303 and department consent. (1-0) S</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxr090100 2014-01-14 15:12:12 014073 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd6221 (r4)</td>
<td>COMD 6221 Voice Disorders (2 semester credit hours) Etiology of voice disorders and methods for assessing and modifying vocal behavior. Prerequisites: BBSC majors only and department consent required. (2-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxh121431 2013-12-17 16:03:07 002904 51.0203.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd6222 (r4)</td>
<td>COMD 6222 Stuttering (2 semester credit hours) Principles, methods, and procedures for assessment, and intervention of stuttering and associated disorders. Prerequisites: BBSC majors only and department consent required. (2-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxh121431 2013-12-17 16:03:42 002905 51.0203.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd6240 (r3)</td>
<td>comd6240.5</td>
<td></td>
<td>COMD 6240 Professional Issues in Speech/Language Pathology (2 semester credit hours) Insights into the real-world and a means to master objectives as a professional in the field of speech-language pathology. Prerequisites: BBSC majors only and department consent required. (2-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd6305 (r8)</td>
<td>comd6305.11</td>
<td></td>
<td>COMD 6305 Speech Science (3 semester credit hours) Anatomy, physiology and functional organization of speech. Mechanisms of normal speech production and perception with applications to the clinical setting. Pass/ Fail only. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd6307 (r7)</td>
<td>comd6307.9</td>
<td></td>
<td>COMD 6307 Language Acquisition (3 semester credit hours) Development of the phonological, morpho-syntactic, semantic, and pragmatic aspects of language, and consideration of the social, psychological, and cultural influences. Prerequisites: BBSC majors only and department consent required. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd6317</td>
<td>(r7) cmd6317.9</td>
<td>COMD 6317 Language in Communication Disorders (3 semester credit hours) Basic processes underlying language disruptions in phonology, morphology, syntax, semantics, and pragmatics. Biological and social aspects of language. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:13:12 002920 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd6320</td>
<td>(r4) cmd6320.6</td>
<td>COMD 6320 Motor Speech Disorders (3 semester credit hours) Anatomic and physiologic bases of the motor speech mechanism. Etiology, symptomatology, evaluation and treatment techniques for a variety of motor speech disorders in children and adults. Prerequisites: BBSC majors only and department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:14:41 002922 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 2014-open | | edit * | cmd6348 | (r7) cmd6348.8 | COMD 6348 Counseling for Communication Disorders Professionals (3 semester credit hours) Psychological aspects of communication disorders in the context of the family system. Basic counseling and problem-solving skills to use as an adjunct to roles as communication disorders professionals. Emphasis on helping students to gain comfort and skill in coping with their clients' emotions and giving their clients constructive feedback. Prerequisites: BBSC majors only and department consent required. (3-0) R
peoplesoft diff: 002939 2012-08-26 sxh121431 | phase: approve | status: approving | audit: 30 | sxh121431 2013-12-17 16:15:06 002939 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail | process orion |
| 2014-open | | edit * | cmd6377 | (r5) cmd6377.7 | COMD 6377 Neurogenic Communication Disorders I (3 semester credit hours) Introduction to adult neurogenic communication disorders including neuropathology, assessment and diagnosis of aphasia, traumatic brain injury, right hemispheric impairment, and dementia. Prerequisites: BBSC majors only and department consent required. (3-0) S
peoplesoft diff: 002945 2010-08-18 sxh121431 | phase: approve | status: approving | audit: 30 | sxh121431 2013-12-17 16:16:11 002945 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail | process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd6378 (r4) cmd6378.6</td>
<td>COMD 6378 Neurogenic Communication Disorders II (3 semester credit hours) Language and cognitive intervention for individuals with adult neurogenic communication disorders with management of special populations including stroke, traumatic brain injury, and dementia. Prerequisites: BBSC majors only and department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:18:56 002946 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd6630 (r7) cmd6630.10</td>
<td>COMD 6630 Internship in Communication Disorders (6 semester credit hours) Intensive internship program in a clinical setting. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. (6-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:19:30 002953 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd6v98 (r3) cmd6v98.7</td>
<td>COMD 6V98 Thesis (3-6 semester credit hours) Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and department consent required. ([3-6]-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:47:24 013625 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cmd7172 (r4)</td>
<td>COMD 7172 Laryngectomy (1 semester credit hour) Laryngectomy process from surgery to rehabilitation, laryngeal devices and how to use them. TEP, stoma, and trach care, and strategies to help patients master esophageal speech. Pass/Fail only. Prerequisites: BBSC majors only and department consent required. (1-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-31 13:24:27</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>012556 51.0201.00.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: -6.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>metadatametadata</td>
<td>index: -6.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>actions</td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 012556 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cmd7173 (r5)</td>
<td>COMD 7173 Methods in Pediatric Aural Habilitation - Part I (1 semester credit hour) Discussion of topics related to the management of children with hearing loss with specific reference to observation experiences. In addition, introduction to audiometric testing, hearing aids, assistive technology, and Deaf Culture is provided. There is also practice of basic sign language as the vocabulary relates to these topics. Pass/Fail only. May be repeated for credit as topics vary (4 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. (1-0) R</td>
<td>phase: approve</td>
<td>sxx090100 2014-01-14 15:13:30</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>012557 51.0201.00.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: -6.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>metadatametadata</td>
<td>index: -6.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>actions</td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 012557 2012-08-26 sxr090100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7174 (r4)</td>
<td>cmd7174.10</td>
<td>COMD 7174 Methods in Pediatric Aural Habilitation - Part II (1 semester credit hour) Speech, language, and learning assessments for students with hearing loss and auditory management skills. Troubleshooting hearing aids, cochlear implants, and assistive technology is reviewed. Development of sign language skills through group practice and community service projects. Pass/Fail only. May be repeated for credit (4 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. (1-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-14 15:14:07 012558 51.0201.00.14</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7204 (r4)</td>
<td>cmd7204.6</td>
<td>COMD 7204 Craniofacial Disorders (2 semester credit hours) Etiology, symptomatology, evaluation, and treatment of communication disorders found within the population with a craniofacial difference emphasizing cleft lip and palate and Velo-Cardio-Facial Syndrome. Prerequisites: BBSC majors only and department consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:21:42 002974 51.0201.00.14</td>
</tr>
</tbody>
</table>

peoplesoft diff: 012558 2012-08-26 sxh121431

peoplesoft diff: 002974 2008-08-21 sxh121431

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7207</td>
<td>4</td>
<td>Comd7207.4</td>
<td>COMD 7207 Advanced Topics in Dysphagia (2 semester credit hours) Integration and application of dysphagia evaluation and treatment at an advanced level. Management of special populations including stroke, traumatic brain injury, and oral/laryngeal cancers. Family and patient counseling/education. Ethical issues and decision-making. Prerequisite: COMD 7303 and department consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>2014-01-13 12:48:22</td>
<td>sxr090100 002975 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmd7221</td>
<td>4</td>
<td>Comd7221.4</td>
<td>COMD 7221 Preschool Intervention (2 semester credit hours) The purpose of this class is to develop the skills to select and use appropriate assessment methods for preschoolers in the areas of language and articulation/phonological process delays/disorders, to develop appropriate treatment plans and intervention procedures for this population based on assessment results, and to determine when it is appropriate to end services. Skills such as varied treatment and scaffolding approaches, appropriate programming options (group and individual therapy models, etc.), behavior management, considerations involving parents and ethics, and data collection will be emphasized in discussion. Prerequisite: COMD 7378 and department consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>2014-01-23 13:03:36</td>
<td>sxr090100 51.0204.00.14 NOLINK audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * comd7301 (r3) comd7301.5</td>
<td>COMD 7301 Public School Methods (3 semester credit hours) Practices and procedures of implementing clinical skills in the public schools including applying federal and state laws to best practices in assessment and intervention. Prerequisites: BBSC majors only and department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:22:05 002990 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * comd7302 (r5) comd7302.6</td>
<td>COMD 7302 Seminar in Aphasiology (3 semester credit hours) Current issues in neurolinguistics. Models of brain and language; classification, symptoms, and etiology of aphasia. Analysis of aphasic language with respect to phonology, morphology, syntax, and semantics. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:23:10 002991 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * comd7303 (r4) comd7303.5</td>
<td>COMD 7303 Dysphagia (3 semester credit hours) Anatomic and physiologic bases of normal swallowing. Etiology, symptomatology, evaluation and treatment techniques for swallowing disorders in children and adults. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:23:45 002992 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd7305 (r5)</td>
<td>comd7305.6</td>
<td>COMD 7305 Communication and the Aging Brain (3 semester credit hours) Social and biological factors affecting language and communication in normal aging. Pathological changes in aphasia and dementia. Assessment and intervention strategies. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 002994 2009-08-19 sxh121431

COMD 7305 Communication and the Aging Brain (3 semester credit hours) Social and biological factors affecting language and communication in normal aging. Pathological changes in aphasia and dementia. Assessment and intervention strategies. Prerequisites: BBSC majors only and department consent required. (3-0) Y

| 2014-open | edit * | comd7306 (r4) | comd7306.5 | COMD 7306 Cultural Issues in Communication (3 semester credit hours) The multicultural nature of society, the role of language and communication in cultural identity, and how practice in the field of communicative disorders is tailored to cultural and linguistic diversity. Prerequisites: BBSC majors only and department consent required. (3-0) Y | phase: approve | sxh121431 | process orion |

peoplesoft diff: 002995 2008-08-21 sxh121431

COMD 7306 Cultural Issues in Communication (3 semester credit hours) The multicultural nature of society, the role of language and communication in cultural identity, and how practice in the field of communicative disorders is tailored to cultural and linguistic diversity. Prerequisites: BBSC majors only and department consent required. (3-0) Y

| 2014-open | edit * | comd7308 (r4) | comd7308.5 | COMD 7308 Preliteracy Development (3 semester credit hours) Historical, cultural, theoretical, developmental, and pedagogical perspectives on the foundation for literacy in early childhood. Prerequisites: BBSC majors only and department consent required. (3-0) T | phase: approve | sxh121431 | process orion |

peoplesoft diff: 002997 2013-08-25 adp130030

COMD 7308 Preliteracy Development (3 semester credit hours) Historical, cultural, theoretical, developmental, and pedagogical perspectives on the foundation for literacy in early childhood. Prerequisites: BBSC majors only and department consent required. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7309 (r5) cmd7309.7</td>
<td>COMD 7309 (HCS 7309) Neural Correlates of Human Cognition: Lesion-Deficit Models (3 semester credit hours) Correlation of brain lesions with cognitive deficits provides a human brain map of the essential anatomy underlying specific cognitive functions. The areas of cognition to be covered using this model include language, episodic memory, semantic memory, working memory, aspects of visuospatial functions, and higher-order motor planning. This knowledge base provides a key framework to combine with the findings of functional neuroimaging (fMRI, PET) in understanding how humans think. Cognitive deficits in patients (e.g., amnesia, aphasia, etc.) will be explained within this framework. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:32:37 013336 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>--------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7323 (r4)</td>
<td>COMD 7323 Auditory-Verbal Methods (3 semester credit hours) Comprehensive survey of the auditory-verbal approach to the habilitation of children with hearing losses from infancy through the early elementary years; includes philosophy, research, special problems, auditory habilitation for older children, and specific methodology. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:25:18 003009 51.0203.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmd7323.6</td>
<td>peoplesoft diff: 003009 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COMD 7323 Auditory-Verbal Methods (3 semester credit hours) Comprehensive survey of the auditory-verbal approach to the habilitation of children with hearing losses from infancy through the early elementary years; includes philosophy, research, special problems, auditory habilitation for older children, and specific methodology. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7324 (r8)</td>
<td>COMD 7324 (ACN 7324 and AUD 7324) Seminar in Cochlear Implants and Technology for Persons with Hearing Impairments (3 semester credit hours) Overview of prosthetic alternatives to conventional amplification for individuals with severe-to-profound hearing loss. Topics include candidacy determination, technology, programming/fitting of devices, aural (re)habilitation, and awareness of controversial areas related to cochlear implantation. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:35:02 003010 51.0202.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmd7324.10</td>
<td>peoplesoft diff: 003010 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COMD 7324 (AUD 7324, ACN 7324, and AUD 7324) Seminar in Cochlear Implants and Technology for Persons with Hearing Impairments (3 semester credit hours) Overview of prosthetic alternatives to conventional amplification for individuals with severe-to-profound hearing loss. Topics include candidacy determination, technology, programming/fitting of devices, aural (re)habilitation, and awareness of controversial areas related to cochlear implantation. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>---------------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>cmd7325 (r5)</td>
<td>COMD 7325 Hearing and Deafness (3 semester credit hours) Introduction to issues, assessment, and management of hearing-impairment. Includes principles and prerequisites for intervention, amplification, aural habilitation programs, sign language, and Deaf culture. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:20:42 003022 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cmd7325.6</td>
<td></td>
<td>status: approving</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:25:42 003011 51.0203.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cmd7336 (r7)</td>
<td>COMD 7336 (HDCD 6365) Social Communication in Early Childhood Disorders (3 semester credit hours) Development of infant and toddler cognitive, social, communication and language skills are explored through major theories, current research and application to disorders. Emphasis is placed on functional assessments and intervention for children with social communication disorders functioning at the prelinguistic and emerging language stages. Prerequisites: BBSC majors only and department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:20:42 003022 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cmd7336.10</td>
<td></td>
<td>status: approving</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:20:42 003022 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7339 (r4)</td>
<td>COMD 7339 (AUD 7339) Evidence-Based Practice in Communication Disorders (3 semester credit hours) Evidence-based practice as a paradigm for identifying, appraising, and using high-quality evidence to plan research studies and to make decisions about clinical practice. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmd7339.5</td>
<td></td>
<td>status: approving</td>
<td>2013-12-17 15:42:43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>012560</td>
<td>51.0201.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2012-08-26 sxh121431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012560 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COMD 7339 (AUD 7339) Evidence-Based Practice in Communication Disorders (3 semester credit hours) Evidence-based practice as a paradigm for identifying, appraising, and using high-quality evidence to plan research studies and to make decisions about clinical practice. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7345 (r7)</td>
<td>COMD 7345 Pediatric Traumatic Brain Injury (3 semester credit hours) Assessment and management of acquired brain injury in children including linguistic, cognitive, psychosocial, educational, and neurological factors within a brain plasticity framework. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmd7345.8</td>
<td></td>
<td>status: approving</td>
<td>2013-12-17 16:26:05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>003028</td>
<td>51.0201.00.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008-08-21 sxh121431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003028 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COMD 7345 Pediatric Traumatic Brain Injury (3 semester credit hours) Assessment and management of acquired brain injury in children including linguistic, cognitive, psychosocial, educational, and neurological factors within a brain plasticity framework. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7378</td>
<td>cmd7378.6</td>
<td>COMD 7378 Assessment and Intervention of Language Impairments in Preschool and School-Age Children (3 semester credit hours) Assessment and intervention for children with diverse language impairments. Theoretical models, characteristics and correlates of pediatric language disorders; evidence-based approaches to screening, diagnosis, assessment, treatment, and prevention. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7379</td>
<td>cmd7379.10</td>
<td>COMD 7379 (HCS 7379) Current Research in Autism (3 semester credit hours) Exploration of research theories related to Autism Spectrum Disorders (ASD) and the implications the disability has on an individual's learning, behavior and ability to process information. Topics may include: diagnostic classification, the evaluation process, current theoretical models, intervention models, research on potential causes and treatments, provisions for service delivery and areas of impairment. May be repeated for credit (9 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxr090100</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7384 (r5)</td>
<td>cmd7384.6</td>
<td>COMD 7384 Augmentative Communication (3 semester credit hours) Components and dimensions of augmentative and alternative communication (AAC) systems. AAC assessment and intervention for individuals with congenital and acquired complex communication needs. Includes hands on AAC equipment labs. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:27:45 003066 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7389 (r5)</td>
<td>cmd7389.6</td>
<td>COMD 7389 Alzheimer's Disease and Related Disorders (3 semester credit hours) Clinical characteristics, diagnosis, cognitive-linguistic evaluation discourse based assessment, and direct and indirect intervention of adults with different dementias such as Alzheimer's disease, frontotemporal dementias, and vascular dementia. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:28:14 003071 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd7392</td>
<td>(r4)</td>
<td>comd7392.5</td>
<td>COMD 7392 Language Disorders, Learning Disabilities, and Dyslexia (3 semester credit hours) Theoretical models concerning the relationships among language disorders, learning disabilities, and dyslexia. Typical and atypical language and literacy development, definitional and diagnostic issues, and evidence-based treatment approaches for deficits in phonological processing, reading fluency, reading comprehension and compensatory meta-cognitive strategies. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003074 2012-08-26 sxh121431</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd7v19</td>
<td>(r5)</td>
<td>comd7v19.7</td>
<td>COMD 7V19 Birth-To-Three (1-3 semester credit hours) Assessment and treatment of infants and toddlers with a variety of speech, language, feeding, and oral-motor disorders. Prerequisites: BBSC majors only and department consent required. ([1-3]-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012832 2012-08-26 sxr090100</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd7v56 (r5)</td>
<td>COMD 7V56 Bilingual Speech-Language Assessment and Intervention (1-3 semester credit hours) Evaluation procedures and intervention strategies bilingual populations, specifically English Language Learners. Demographics, second language acquisition, acculturation, bilingual education models and differentiating between language difference vs. language disorders. Prerequisites: BBSC majors only and department consent required. (1-3) T</td>
<td>phase: approve</td>
<td>sxh121431 13-12-17 15:48:30</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>comd7v56.7</td>
<td>peoplesoft diff: 012831 2013-08-25 sxr090100</td>
<td>status: approving</td>
<td>012831 51.0201.00.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COMD 7V56 Bilingual Speech-Language Assessment and Intervention with Bilingual Populations (1-3 semester credit hours) Evaluation procedures and intervention strategies of culturally and linguistically diverse populations, bilingual populations, specifically English Language Learners. Demographics, second language acquisition, acculturation, bilingual education models and differentiating between language difference vs. language disorders. Prerequisites: BBSC majors only and department consent required. (1-3) T</td>
<td>audit: 29</td>
<td>012831 51.0201.00.14</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>comd7v62 (r5)</td>
<td>COMD 7V62 Seminar in Autism (1-3 semester credit hours) Issues concerning the diagnosis and theories of autism. The development of social, communication/language, and cognitive skills in autism, as well as various therapeutic approaches. Prerequisites: BBSC majors only and department consent required. (1-3) Y</td>
<td>phase: approve</td>
<td>mxv062000 14-01-26 06:01:03</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>comd7v62.7</td>
<td>peoplesoft diff: 012826 2012-08-26 sxr090100</td>
<td>status: approving</td>
<td>012826 51.0204.00.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COMD 7V62 Seminar in Autism (1-3 semester credit hours) Issues concerning the diagnosis and theories of autism. The development of social, communication/language, and cognitive skills in autism, as well as various therapeutic approaches. Prerequisites: BBSC majors only and department consent required. (1-3) Y</td>
<td>audit: 27</td>
<td>012826 51.0204.00.14</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cmd7v68 (r4) cmd7v68.6</td>
<td>COMD 7V68 Cognitive Rehabilitation (1-3 semester credit hours) Study of normal and impaired aspects of cognition as it relates to communication, including attention, memory, and executive function with an emphasis on current evidence supporting evaluation and treatment in the adult rehabilitation setting. Prerequisites: BBSC majors only and department consent required. ([1-3]-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:36:33 013337 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cmd7v73 (r2) cmd7v73.6</td>
<td>COMD 7V73 Seminar in Hearing and Speech Science (1-6 semester credit hours) Current topics in hearing and speech science. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. ([1-6]-0) T</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-13 11:16:10 002954 51.0204.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cmd7v82 (r5) cmd7v82.7</td>
<td>COMD 7V82 Special Topics in Communication Disorders (1-6 semester credit hours) Selected topics and current research in communication disorders. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:50:00 002955 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff 013337 2012-08-26 sxh121431

COMD 7V68 Cognitive Rehabilitation (1-3 semester credit hours) Study of normal and impaired aspects of cognition as it relates to communication, including attention, memory, and executive function with an emphasis on current evidence supporting evaluation and treatment in the adult rehabilitation setting. Prerequisites: BBSC majors only and department consent required. ([1-3]-0) R

peoplesoft diff 002954 2008-08-21 sxh121431

COMD 7V73 Seminar in Hearing and Speech Science (1-6 semester credit hours) Current topics in hearing and speech science. (May be repeated for credit.) credit as topics vary. Prerequisites: BBSC majors only and department consent required. ([1-6]-0) T

peoplesoft diff 002955 2008-08-21 sxh121431

COMD 7V82 Special Topics in Communication Disorders (1-6 semester credit hours) Selected topics and current research in communication disorders. Topics will vary from semester to semester. (May be repeated for credit.) credit as topics vary. Prerequisites: BBSC majors only and instructor consent required. ([1-6]-0) R

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf 57/115
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7v86 (r6)</td>
<td>cmd7v86.10</td>
<td>COMD 7V86 Special Topics in Child Language (1-6 semester credit hours) Current issues in child language emphasizing research on intervention practices. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. ([1-6]-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:50:40 002957 51.0204.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7v90 (r4)</td>
<td>cmd7v90.8</td>
<td>COMD 7V90 Special Topics in Hearing and Speech Science (1-6 semester credit hours) Special topics and current research in hearing and speech science. May be repeated for credit. Prerequisites: BBSC majors only and department consent required. ([1-6]-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 15:51:25 002958 51.0204.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7v91 (r6)</td>
<td>cmd7v91.11</td>
<td>COMD 7V91 Methods in Communication Disorders (1-6 semester credit hours) Issues related to methods of assessment and intervention in communication disorders. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. ([1-6]-0) Y</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-13 11:19:02 002959 51.0204.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd7v98</td>
<td>7V98</td>
<td>(r6)</td>
<td>COMD 7V98 Directed Study in Communication Disorders (1-9 semester credit hours) Individualized program of study which may include reading, research implementation of clinical strategies and/or other designated activities. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cmd8v80</td>
<td>8V80</td>
<td>(r6)</td>
<td>COMD 8V80 Research in Communication Disorders (1-9 semester credit hours) Supervised research experience in communication disorders. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and department consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxr090100</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs5314</td>
<td>(r7)</td>
<td>HCS 5314 (ACN 5314) Computational Modeling Methods in Behavioral and Brain Sciences (3 semester credit hours) Computational Neuroscience, Cognitive Neural Modeling, and Mathematical Psychology modeling methodologies are introduced through the use of computer-based simulation modeling experiments. Emphasizes creative applications of these research methodologies. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs6302</td>
<td>(r9)</td>
<td>HCS 6302 Issues in Behavioral and Brain Sciences - Part I (3 semester credit hours) Doctoral proseminar on current theory and research in cognition and neuroscience, communication sciences and disorders, and psychological sciences. Pass/Fail only. Prerequisites: HCS doctoral students only and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | hcs6303 (r7) | hcs6303.9 | HCS 6303 Issues in Behavioral and Brain Sciences - Part II (3 semester credit hours) Continuation of the doctoral proseminar on current theory and research in cognition and neuroscience, communication sciences and disorders, and psychological sciences. Pass/ Fail only. Prerequisites: HCS doctoral students only and instructor consent required. (3-0) Y
peoplesoft diff: 006442 2012-08-26 sxh121431
HCS 6303 Issues in Behavioral and Brain Sciences - Part II (3 semester credit hours) Continuation of the doctoral proseminar on current theory and research in cognition and neuroscience, communication sciences and disorders, and psychological sciences. Pass/ Fail only. Prerequisites: HCS doctoral students only and instructor consent required. (3-0) Y | phase: approve
status: approving
audit: 27 | mxv062000
2014-01-26
06:02:12
006442
51.0201.00.14
audit: -6.1 m
index: -6.1 m
match_fail | process orion |
| 2014-open | edit * | hcs6310 (r4) | hcs6310.6 | HCS 6310 (ACN 6310) Fundamentals of Functional Brain Imaging (3 semester credit hours) This course covers topics such as principles of tracer techniques, neuroimaging instrumentation, safety issues, brain physiology (perfusion, metabolism, and receptor function), image processing and analysis, fundamentals of SPECT, PET and fMRI, and critical evaluation of the functional neuroimaging literature. Prerequisites: BBSC majors only and department consent required. (3-0) Y
peoplesoft diff: 006443 2010-08-18 sxh121431
HCS 6310 (ACN 6310) Fundamentals of Functional Brain Imaging (3 semester credit hours) This course covers topics such as principles of tracer techniques, neuroimaging instrumentation, safety issues, brain physiology (perfusion, metabolism, and receptor function), image processing and analysis, fundamentals of SPECT, PET and fMRI, and critical evaluation of the functional neuroimaging literature. Prerequisites: BBSC majors only and department consent required. (3-0) Y | phase: approve
status: approving
audit: 30 | mxv062000
2014-01-12
15:03:49
006443
26.1501.00.02
audit: -6.1 m
index: -6.1 m
match_fail | process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6312 (r8) hcs6312.11</td>
<td>HCS 6312 (ACN 6312 and PSYC 6312) Research Methods in Behavioral and Brain Sciences - Part I (3 semester credit hours) This course focuses on applying, understanding, and interpreting various statistical techniques in a behavioral science context. Students learn the framework for hypothesis testing, basic descriptive (e.g., measures of central tendency, variability and shape) and inferential (e.g., z, t, correlation, ordinary least squares regression, and ANOVA) statistics. The course provides students with an understanding of the interrelationships among statistical techniques, and computer skills required for data analyses. Students without the necessary background knowledge of basic statistics and experimental design will be required to take PSY 3392 before registering for ACN 6312. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 29</td>
</tr>
</tbody>
</table>

peoplesoft diff: 006444 2012-08-26 sxh121431

HCS 6312 (ACN 6312, 6312 and PSYC 6312) Research Methods in Behavioral and Brain Science Sciences - Part I (3 semester credit hours) This course focuses on applying, understanding, and interpreting various statistical techniques in a behavioral science context. Students learn the framework for hypothesis testing, basic descriptive (e.g., measures of central tendency, variability and shape) and inferential (e.g., z, t, correlation, ordinary least squares regression, and ANOVA) statistics. The course provides students with an understanding of the interrelationships among statistical techniques, and computer skills required for data analyses. Students without the necessary background knowledge of basic statistics and experimental design will be required to take PSY 3392 before registering for ACN 6312. Prerequisites: BBSC majors only and department consent required. (3-0) Y | phase: approve | status: approving | audit: 29 |
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6313</td>
<td>HCS 6313 (ACN 6313 and PSYC 6313) Research Methods in Behavioral and Brain Sciences - Part II (3 semester credit hours) Topics in general linear modeling including regression analysis correlation, simple analysis of variance, factorial analysis of variance, analysis of covariance, between and within subject designs, and multiple regression. Prerequisites: (ACN 6312 or HCS 6312 or PSYC 6312) and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-13 20:17:45 006445 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hcs6313.10</td>
<td></td>
<td>status:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>еканомия 6313 (1СН 6313 and PSYC 6313) Research Methods in Behavioral and Brain Sciences - Part II (3 semester credit hours) Topics in general linear modeling including regression analysis correlation, simple analysis of variance, factorial analysis of variance, analysis of covariance, between and within subject designs, and multiple regression. Prerequisites: (ACN 6312 or HCS 6312 or PSYC 6312) and department consent required. (3-0) Y</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006445 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6315</td>
<td>HCS 6315 Grant Writing for Researchers (3 semester credit hours) Identifying funding sources appropriate to research needs, formulating a research plan, generating specific aims and a methodological design to address those aims, presentation of preliminary results to show the feasibility of the proposed work, and use of appropriate reference citations. Prerequisites: BBSC majors only and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:39:43 006447 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hcs6315.6</td>
<td></td>
<td>status:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>еканомия 6315 Grant Writing for Researchers (3 semester credit hours) Identifying funding sources appropriate to research needs, formulating a research plan, generating specific aims and a methodological design to address those aims, presentation of preliminary results to show the feasibility of the proposed work, and use of appropriate reference citations. Prerequisites: BBSC majors only and instructor consent required. (3-0) Y</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006447 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf 63/115
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6316 (r5)</td>
<td>hcs6316.8</td>
<td></td>
<td>HCS 6316 (ACN 6316 and PSYC 6316) Research Methods in Behavioral and Brain Sciences - Part III (3 semester credit hours) Applying, understanding, and interpreting various advanced multivariate statistical techniques in brain and behavioral science contexts. Includes principal component analyses, simple and multiple correspondence analyses, partial least square methods, multitable analyses, discriminant analyses, and structural equation modeling. May be repeated for credit (6 semester credit hours maximum). Prerequisite: BBSC majors only. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013161 2013-08-25 adp130030</td>
<td>status: approving</td>
<td>2014-01-14 08:57:44 013161 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog_course_description</td>
<td>request_status</td>
<td>request_metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6319 (r2)</td>
<td>hcs6319.6</td>
<td>HCS 6319 Scientific Writing (3 semester credit hours) This course covers the fundamentals of effective scientific manuscript writing and de-constructs the peer-review process. Instruction, exercises and assignments will focus primarily on the process of writing and publishing scientific manuscripts. The course will be simultaneous (1) lectures / discussions / class exercises on how to write effectively, concisely, and clearly, and, (2) preparation of an actual scientific manuscript to be ready for submission to a scientific journal at the end of the semester, which will involve one-on-one editing sessions with the instructor. Students must have data available, analyzed, and prepared for a writing project (e.g., first year project) prior to enrollment in this course which is open only to BBS doctoral students. Prerequisites: current enrollment in a BBS PhD program and BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>mxv062000 2014-01-26 06:12:51 013162 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs6322</td>
<td>(r9)</td>
<td>HCS 6322 (ACN 6322) Computational Modeling Methods for Language Understanding (3 semester credit hours) Probabilistic methods for natural language understanding. Use of the MATLAB computer language for instantiating specific knowledge-based computational theories of natural language understanding. Emphasizes creative applications of these research methodologies. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>2014-02-15 15:06:01 006450 11.0201.00.06 audit: 6.6 m index: -6.6 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hcs6322.12</td>
<td></td>
<td>peoplesoft diff: 006450 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs6327</td>
<td>(r5)</td>
<td>HCS 6327 (PSYC 6327) Personality (3 semester credit hours) Survey of trait, biological, and social-cognitive, analytic, and learning theory approaches to the study of personality. Emphasis on intensive exploration of modern theoretical and empirical work. Prerequisites: BBSC majors only and related research. department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-01-23 16:31:38 006454 42.2701.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hcs6327.9</td>
<td></td>
<td>peoplesoft diff: 006454 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open edit *</td>
<td>HCS 6330 (ACN 6330 and PSYC 6330) Cognitive Science (3 semester credit hours)</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process</td>
</tr>
<tr>
<td>hcs6330 (r9)</td>
<td>Cognitive, computational, and neural processing approaches to understanding perception, memory, thought, language, and emotion. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>status: approving</td>
<td>2014-01-23 14:02:25</td>
<td>orion</td>
</tr>
<tr>
<td>hcs6330.11</td>
<td>peoplesoft diff: 006455 2011-08-23 sxh121431</td>
<td>audit: 30</td>
<td>006455 51.0201.00.14</td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td>HCS 6330 (ACN 6330, PSY 6330 and PSYC 6330) Cognitive Science (3 semester credit hours)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cognitive, computational, and neural processing approaches to understanding perception, memory, thought, language, and emotion. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006456 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCS 6331 (ACN 6331 and PSYC 6331) Cognitive Development (3 semester credit hours) Survey of cognitive development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>theories and research in a variety of domains including perception, memory, language, and problem solving. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006456 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCS 6331 (ACN 6331, 6331 and PSYC 6331) Cognitive Development (3 semester credit hours) Survey of cognitive development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>theories and research in a variety of domains including perception, memory, language, and problem solving. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006457 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCS 6332 (ACN 6332 and PSYC 6332) Perception (3 semester credit hours) Psychophysical, neurophysiological, and computational foundations of sensation and perception. Basic senses of vision, audition, chemoreception, and tactile processing, with emphasis on understanding the processes that take us from neurons to perception and action. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006457 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCS 6332 (ACN 6332, 6332 and PSYC 6332) Perception (3 semester credit hours) Psychophysical, neurophysiological, and computational foundations of sensation and perception. Basic senses of vision, audition, chemoreception, and tactile processing, with emphasis on understanding the processes that take us from neurons to perception and action. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6333</td>
<td>(r7)</td>
<td>hcs6333.11</td>
<td>HCS 6333 (ACN 6333 and PSYC 6333) Memory (3 semester credit hours) Research and theory on the acquisition, representation, and retrieval of information by the mind/brain. Includes information processing and neuropsychological perspectives. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006458 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2014-01-23 14:09:19</td>
<td>006458</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6334</td>
<td>(r5)</td>
<td>hcs6334.7</td>
<td>HCS 6334 (ACN 6334) Attention (3 semester credit hours) Theory and evidence on the study of attention especially in human vision and audition. Includes perceptual learning, information processing, and neuropsychological approaches. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006459 2011-08-23 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2014-01-23 14:10:12</td>
<td>006459</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6336</td>
<td>(r6)</td>
<td>hcs6336.7</td>
<td>HCS 6336 Principles of Developmental Neuroscience (3 semester credit hours) Molecular and cellular events underlying neuronal differentiation, axon guidance, synapse formation, neurotrophic factors, and neural death, with special emphasis on activity-dependent plasticity and its role in generating and maintaining the extraordinary precision of connections found in the nervous system. Prerequisites: BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006461 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-17 16:42:08</td>
<td>006461</td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hcs6338 (r2) hcs6338.3</td>
<td>HCS 6338 (ACN 6338 and PSYC 6338) Functional Neuroanatomy (3 semester credit hours) An introduction to human neuroanatomy organized by major brain system. Function of the neuroanatomy of each major system and relation to neurological disorders associated with damage to the neuroanatomy of the system. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:13:19 006535 26.1502.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hcs6339 (r4) hcs6339.6</td>
<td>HCS 6339 (ACN 6339 and PSYC 6339) Psycholinguistics (3 semester credit hours) Classic and current research in psycholinguistics. Includes concepts from linguistics, the biological bases of speech and language processing, and child language acquisition. Prerequisite: BBSC majors only. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:14:45 013164 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hcs6340 (r10) hcs6340.12</td>
<td>HCS 6340 (ACN 6340) Cellular Neuroscience (3 semester credit hours) Basic neural biology and physiology and principles of synaptic transmission. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:15:52 006463 26.1501.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>reinstate *</td>
<td>hcs6341</td>
<td>HCS 6341 Genes, Brain, and Behavior (3 semester credit hours) Neuroscience is a remarkable interdisciplinary field requiring analysis at multiple levels: behavioral, electrophysiological, and molecular. This course will focus on the basic cellular and molecular mechanisms that control neuronal functioning, with an emphasis on the regulation of gene expression (transcription/translation) via genetic, epigenetic and synapse to nucleus signaling mechanisms. Relevant examples will reference: regulating cellular excitability, LTP, learning and memory, psychiatric and neurological diseases. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-02-18 16:58:04 006464 26.1501.00.02 audit: -6.3 m index: -6.3 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hcs6341.6</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006464 1992-12-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HCS 6341 Genes, Brain, and Behavior (3 semester credit hours) Neuroscience is a remarkable interdisciplinary field requiring analysis at multiple levels: behavioral, electrophysiological, and molecular. This course will focus on the basic cellular and molecular mechanisms that control neuronal functioning, with an emphasis on the regulation of gene expression (transcription/translation) via genetic, epigenetic and synapse to nucleus signaling mechanisms. Relevant examples will reference: regulating cellular excitability, LTP, learning and memory, psychiatric and neurological diseases. Prerequisites: BBSC majors only and department consent required. (3-0) Y

2014-open	edit *	hcs6343	HCS 6343 Neurobiology of Learning and Memory (3 semester credit hours) Current research and theory on modifications in the central nervous system that contribute to the processes of learning and memory. Includes an overview of different forms of learning as assessed in model systems, with extensive review of anatomical, cellular, and molecular changes underlying neuronal and behavioral plasticity. Prerequisites: HCS 6346 and department consent required. (3-0) Y	phase: approve	2013-10-11 11:47:26 006466 26.1503.00.02 audit: -6.9 m index: -6.9 m match_fail	process orion
		hcs6343.6		status: approving		
				audit: 30		
				peoplesoft diff: 006466 2010-08-18 sxh121431		

HCS 6343 Neurobiology of Learning and Memory (3 semester credit hours) Current research and theory on modifications in the central nervous system that contribute to the processes of learning and memory. Includes an overview of different forms of learning as assessed in model systems, with extensive review of anatomical, cellular, and molecular changes underlying neuronal and behavioral plasticity. Prerequisites: HCS 6346 and department consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6346</td>
<td>(r8)</td>
<td>HCS 6346 (ACN 6346 and PSYC 6346) Systems Neuroscience (3 semester credit hours) Integrative systems level study of the nervous system. Aspects of neural mechanisms and circuitry underlying regulation of motor behaviors, sensory and perceptual processing, biological homeostasis, and higher cognitive functions. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:16:46 006469 26.1501.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6347</td>
<td>(r7)</td>
<td>HCS 6347 (ACN 6347) Intelligent Systems Analysis (3 semester credit hours) Mathematical tools for investigating the asymptotic behavior of both deterministic and stochastic nonlinear dynamical systems. Topics include: artificial neural network architectures, Lyapunov stability theory, nonlinear optimization theory, stochastic approximation theory, and Monte Carlo Markov Chain methods such as the Metropolis-Hastings algorithm. Emphasizes development of advanced analytic skills and mathematical reasoning abilities. Prerequisites: (Linear algebra, multivariable calculus, STAT 3341 or equivalent) and BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>stillman 2013-10-11 09:11:40 006470 11.0102.00.06 audit: -6.8 m index: -6.8 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6348 (r8)</td>
<td>hcs6348.10</td>
<td>HCS 6348 (ACN 6348) Neural Net Mathematics (3 semester credit hours) Vector calculus and vector calculus-based probability theory with artificial neural network modeling applications. Emphasizes development of advanced analytic skills and mathematical reasoning abilities. Intended to provide mathematics preparation for ACN 6347 or HCS 6347 and ACN 6349 or HCS 6349. Prerequisites: (Linear algebra, multivariable calculus, STAT 3341 or equivalent) and BBSC majors only and department consent required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HCS 6348 (ACN 6348) Neural Net Mathematics *(3 semester credit hours)* Vector calculus and vector calculus-based probability theory with artificial neural network modeling applications. Emphasizes development of advanced analytic skills and mathematical reasoning abilities. Intended to provide mathematics preparation for **ACN/HCS ACN 6347 or HCS 6347 and ACN/HCS ACN 6349 or HCS 6349**. Prerequisites: **Either:** *(1)* Linear *(Linear algebra, multivariable calculus, STAT 5351 or equivalent, ACN/HCS 5314, 3341 or (2) equivalent) and BBSC majors only and department consent of instructor required. *(3-0)* T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * hcs6349 (r6) hcs6349.8</td>
<td></td>
<td>HCS 6349 (ACN 6349) Intelligent Systems Design (3 semester credit hours) Probabilistic and statistical modeling tools for the design and evaluation of artificially intelligent deterministic and stochastic nonlinear dynamical systems for the purpose of building computational models in the fields of neuroscience, psychology, and artificial intelligence. Topics include probabilistic interpretations of nonlinear dynamical system models and asymptotic mathematical statistical theory for parameter estimation, model selection, specification analysis, and hypothesis testing. Prerequisites: (Linear algebra, multivariable calculus, STAT 3341 or equivalent) and BBSC majors only and department consent required. (3-0) T</td>
<td>phase: approve</td>
<td>stillman 2013-10-11 09:12:04 006472 11.0102.00.06 audit: -6.6 m index: -6.6 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * hcs6350 (r9) hcs6350.11</td>
<td></td>
<td>HCS 6350 (PSYC 6350) Social Development (3 semester credit hours) Foundations of social and personality development. Includes survey of psychodynamic, social learning, behavior genetic, family systems, and social-cognitive approaches to the study of attachment, parenting, aggression, peer relationships, sex typing, and other contemporary issues. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:17:28 006473 42.2701.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6355 (r6)</td>
<td>HCS 6355 (ACN 6355 and PSYC 6355) Judgment and Decision Making (3 semester credit hours) This course examines human inferences, judgments, decisions, and the processes by which we arrive at them. It will focus on the fact that our social judgments are not based on the laws of probability and chance, but on other cognitive processes that may have serious shortcomings in important inferential and decision making tasks. We will also see that these processes, while ecologically efficient, systematic and often predictable, are imperfect in today's data-rich environment. Prerequisite: BBSC majors only. (3-0) T</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:18:28 006478 51.0204.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hcs6355.8</td>
<td>peoplesoft diff: 006478 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6357 (r7)</td>
<td>HCS 6357 (PSYC 6357 and HDCD 6319) The Developing Child: Infants and Toddlers (3 semester credit hours) Theories of infant development in multiple content domains (cognitive, social, motor, language, physical) from conception to 24 months. Milestones of development and the understanding of relationship across domains and viewing the child as a "system" within the relationships. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:42:38 006480 42.2703.00.01 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hcs6357.10</td>
<td></td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6359</td>
<td></td>
<td>HCS 6359 (HDCD 6320 and PSYC 6320) The Developing Child: Toddler and Preschool Years (Two to Five Years) (3 semester credit hours) Relevant developmental theories and processes as well as skills acquired in motor, sensory-perceptual, cognitive, and social domains. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 13:59:03 006482 42.2703.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6360</td>
<td></td>
<td>HCS 6360 Neural Basis of Speech-Sound Processing (3 semester credit hours) Basic neural mechanisms of speech-sound processing. Discussion of research articles. Prerequisite: BBSC majors only. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:19:09 006483 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6363</td>
<td></td>
<td>HCS 6363 (ACN 6363) Text Comprehension Seminar (3 semester credit hours) Current readings in the field of text comprehension and memory. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-12 14:43:12 006486 42.2701.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 006482 2012-08-26 sxh121431
HCS 6359 (PSYC 6320, HDCD (HDCD 6320 and PSYC 6320) The Developing Child: Toddler and Preschool Years (Two to Five Years) (3 semester credit hours) Relevant developmental theories and processes as well as skills acquired in motor, sensory-perceptual, cognitive, and social domains. Prerequisites: BBSC majors only and department consent required. (3-0) Y

peoplesoft diff: 006483 2012-08-26
HCS 6360 Neural Basis of Speech-Sound Processing (3 semester credit hours) Basic neural mechanisms of speech-sound processing. Discussion of research articles. Prerequisite: BBSC majors only. (3-0) R

peoplesoft diff: 006486 2012-08-26 sxh121431
HCS 6363 (ACN 6363) Text Comprehension Seminar (3 semester credit hours) Current readings in the field of text comprehension and memory. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. (3-0) T

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6364 (r2) hcs6364.3</td>
<td></td>
<td>HCS 6364 Cortical Plasticity (3 semester credit hours) Basic principles of neural plasticity with special emphasis on cortical plasticity related to development, recovery from injury, and learning. Classic and recent research articles will be discussed Prerequisite: BBSC majors only. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 014080 2012-08-26</td>
<td></td>
<td></td>
<td>HCS 6364 Cortical Plasticity (3 semester credit hours) Basic principles of neural plasticity with special emphasis on cortical plasticity related to development, recovery from injury, and learning. Classic and recent research articles will be discussed Prerequisite: BBSC majors only. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6366 (r5) hcs6366.10</td>
<td></td>
<td>HCS 6366 Seminar in Auditory Cortical Processing (3 semester credit hours) Basic principles of neural information processing with special emphasis on the central nervous system processes underlying hearing and speech perception. May be repeated for credit (12 semester credit hours maximum). Prerequisite: BBSC majors only. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006488 2012-08-26</td>
<td></td>
<td></td>
<td>HCS 6366 Seminar in Auditory Cortical Processing (3 semester credit hours) Basic principles of neural information processing with special emphasis on the central nervous system processes underlying hearing and speech perception. May be repeated for credit (12 semester credit hours maximum). Prerequisite: BBSC majors only. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6367 (r8) hcs6367.10</td>
<td></td>
<td>HCS 6367 (ACN 6367 and PSYC 6367) Speech Perception (3 semester credit hours) Current topics and theories in speech perception. Topics include the acoustic correlates of speech sounds and the problem of invariance, the perception of speech under adverse conditions, the effects of hearing impairment, and models of speech perception. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 006489 2011-08-23 keh120030</td>
<td></td>
<td></td>
<td>HCS 6367 (ACN 6367, 6367 and PSYC 6367) Speech Perception (3 semester credit hours) Current topics and theories in speech perception. Topics include the acoustic correlates of speech sounds and the problem of invariance, the perception of speech under adverse conditions, the effects of hearing impairment, and models of speech perception. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs6368 (r8)</td>
<td>HCS 6368 (ACN 6368 and PSYC 6368) Language Development (3 semester credit hours) Advanced study of normal oral language development. The goals of this course are to consider the developmental trajectories of the different components of language; to consider the varied and critical roles of language in human development; to understand the impact of culture, different languages, child factors and the environment on development; and to be introduced to the theoretical perspectives driving research and thinking in this area of inquiry. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:26:19 006490 51.0204.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hcs6368.10</td>
<td>peoplesoft diff: 006490 2012-08-26 keh120030</td>
<td>status: approving</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

HCS 6368 (ACN 6368, 6368 and PSYC 6368) Language Development (3 semester credit hours) Advanced study of normal oral language development. The goals of this course are to consider the developmental trajectories of the different components of language; to consider the varied and critical roles of language in human development; to understand the impact of culture, different languages, child factors and the environment on development; and to be introduced to the theoretical perspectives driving research and thinking in this area of inquiry. Prerequisite: BBSC majors only. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6372 (r8) hcs6372.9</td>
<td>HCS 6372 (ACN 6372) The Neuroscience of Pain (3 semester credit hours) A systems-oriented course covering the anatomical and physiologic basis of pain. The course emphasizes the similarities and differences between the different forms of pain and describes the basic features of neural processing of pain signals in the spinal cord and brain, the anatomy and the function of the descending systems that can control transmission of pain signals, and peripheral and central sensitization. The physiological and molecular basis for treatment of pain is discussed. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 13:58:09 006493 26.1501.00.02 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6373 (r7) hcs6373.9</td>
<td>HCS 6373 (ACN 6373) Intraoperative Neurophysiological Monitoring I (3 semester credit hours) The anatomical and physiological basis for the use of electrophysiologic techniques in intraoperative neurophysiologic monitoring and in diagnosis of disorders affecting the nervous system. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:27:28 006494 26.1501.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs6374 (r9)</td>
<td></td>
<td>HCS 6374 (ACN 6374) Intraoperative Neurophysiological Monitoring II (3 semester credit hours) The use of recordings of neuro-electric brain potentials and their interpretation for diagnostic purposes and for intraoperative monitoring. The use of electrophysiological methods for managing implantation of stimulating electrodes deep in the brain and for guiding the surgeon in certain operations is also described. Prerequisites: (ACN 6373 or HCS 6373) and departmental consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs6376 (r5)</td>
<td></td>
<td>HCS 6376 (PSYC 6376) Social Psychology (3 semester credit hours) Overview of the social bases of behavior. Topics may include social cognition and self-justification, biases in judgment, attitudes and persuasion, conformity, compliance, group dynamics, prejudice and stereotyping, interpersonal attraction and relationships, aggression and altruism, cultural diversity, and applications relevant to these aspects of the human experience. Special attention to research paradigms of interest to students developing their own empirical work. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 006495 2012-08-26 keh120030

peoplesoft diff: 006497 2012-08-26 keh120030
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * hcs6379 (r4) hcs6379.5</td>
<td>HCS 6379 Neurological Basis of Language Development (3 semester credit hours) Study of the developing brain and how it relates to the acquisition and development of language throughout the lifespan. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:45:56 006498 26.1503.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * hcs6388 (r3) hcs6388.4</td>
<td>HCS 6388 (ACN 6388) MATLAB for Brain Sciences (3 semester credit hours) Introduction to MATLAB computer programming. Covers the use of the MATLAB programming language for the purpose of stimulus generation, behavioral data analysis, statistical analyses, and generation of publication quality figures. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 13:59:18 014082 26.1501.00.02 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>add_renumber * hcs7367 hcs6389 (r1) hcs6389.1</td>
<td>HCS 6389 (ACN 6389) Speech Perception Laboratory (3 semester credit hours) Introduction to the field of speech processing by computer, with primary application to research techniques in the study of speech perception. Prerequisites: BBSC majors only and department consent required. (0-9) T</td>
<td>phase: approve</td>
<td>stillman 2013-10-11 11:10:29 NOLINK 51.0204.00.14 audit: -6.7 m index: -6.7 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6391 (r4)</td>
<td>hcs6391.8</td>
<td>HCS 6391 Seminar on Preliteracy Development (3 semester credit hours) Selected topics and current research in preliteracy development. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-13 11:35:44 006500 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6392 (r3)</td>
<td>hcs6392.4</td>
<td>HCS 6392 Seminar in Theories of Language Acquisition (3 semester credit hours) A survey and critical exploration of current theories of language acquisition and more general theories of cognitive development that have been applied to language development. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:46:48 006501 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6395 (r5)</td>
<td>hcs6395.7</td>
<td>HCS 6395 (ACN 6395 and PSYC 6395) Cognitive Psychology (3 semester credit hours) Theory and research on perception, learning, thinking, psycholinguistics, and memory. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:29:27 006502 42.2701.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs6399 (r6) hcs6399.8</td>
<td>HCS 6399 (ACN 6399 and PSYC 6399) Research Ethics and Scientific Integrity (3 semester credit hours) An interactive, intensive course designed to cover critical issues related to human subjects, animal welfare, research design, accountability of scientific actions and fraud. Course designed for individuals intending research careers in academia or industry. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7309 (r5) hcs7309.9</td>
<td>HCS 7309 (COMD 7309) Neural Correlates of Human Cognition: Lesion-Deficit Models (3 semester credit hours) Correlation of brain lesions with cognitive deficits provides a human brain map of the essential anatomy underlying specific cognitive functions. The areas of cognition to be covered using this model include language, episodic memory, semantic memory, working memory, aspects of visuospatial functions, and higher-order motor planning. This knowledge base provides a key framework to combine with the findings of functional neuroimaging (fMRI, PET) in understanding how humans think. Cognitive deficits in patients (e.g., amnesia, aphasia, etc.) will be explained within this framework. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxh121431</td>
</tr>
</tbody>
</table>

Note: The URL provided in the image is not relevant to the content of the document. The course descriptions and metadata are the primary focus of the document.
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request</th>
<th>metadata</th>
<th>actions</th>
</tr>
</thead>
</table>
| 2014-open | edit * | hcs7310 | (r9) hcs7310.10 | **HCS 7310 Advanced Research Methods (3 semester credit hours)** Advanced methods of inquiry and analysis unique to cognition and neuroscience, communication sciences and disorders, or psychological sciences. May be repeated for credit. Prerequisite: HCS 6313 and department consent required. (3-0) Y
peoplesoft diff: 006508 2012-08-26 keh120030
HCS 7310 Advanced Research Methods (3 semester credit hours) Advanced methods of inquiry and analysis unique to cognition and neuroscience, communication sciences and disorders, or psychological sciences. **Prerequisite: HCS 6313. (May be repeated for credit.)** Prerequisite: HCS 6313 and department consent required. (3-0) Y | phase: approve | status: approving | audit: 30 | sxr090100 2014-01-13 12:56:49 006508 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail | process orion |
| 2014-open | edit * | hcs7311 | (r4) hcs7311.6 | **HCS 7311 Family Psychology (3 semester credit hours)** Theory and research on family systems, including topics related to family interactions and relationships within the family. Prerequisites: BBSC majors only and instructor consent required. (3-0) R
peoplesoft diff: 006509 2012-08-26
HCS 7311 Family Psychology (3 semester credit hours) Theory and research on family systems, including topics related to family interactions and relationships within the family. **Prerequisites: BBSC majors only and instructor consent required.** (3-0) R | phase: approve | status: approving | audit: 30 | sxh121431 2014-01-23 14:33:28 006509 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail | process orion |
| 2014-open | edit * | hcs7315 | (r5) hcs7315.6 | **HCS 7315 Statistical Analysis of Brain Imaging Data (3 semester credit hours)** Covers analysis of brain imaging data obtained from diverse techniques such as PET, SPECT, fMRI, or EEG. Includes standard analysis with packages such as SPM02 or AFNI as well as pattern analysis approaches (e.g., partial least squares regression, correspondence, discriminant, and principal component analysis). Prerequisites: BBSC majors only and department consent required. (3-0) R
peoplesoft diff: 006512 2013-08-25
HCS 7315 Statistical Analysis of Brain Imaging Data (3 semester credit hours) Covers analysis of brain imaging data obtained from diverse techniques such as PET, SPECT, fMRI, or EEG. Includes standard analysis with packages such as SPM02 or AFNI as well as pattern analysis approaches (e.g., partial least squares regression, correspondence, discriminant, and principal component analysis). **Prerequisites: BBSC majors only and department consent required.** (3-0) R | phase: approve | status: approving | audit: 30 | sxh121431 2013-12-17 16:47:14 006512 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail | process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7316 (r3)</td>
<td>hcs7316.5</td>
<td>HCS 7316 Statistical Analysis of Brain Imaging Data (3 semester credit hours) Covers analysis of brain imaging data obtained from diverse techniques such as PET, SPECT, fMRI, or EEG. Includes standard analyses with packages such as SPM02 or AFNI as well as pattern analysis approaches (e.g., partial least squares methods, regression, correspondence, discriminant, and principal component analyses). Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:33:59 014103 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7318 (r1)</td>
<td>hcs7318.3</td>
<td>HCS 7318 Healthy Aging and Neuropathology (3 semester credit hours) This class focuses on understanding how normal age-related deterioration occurs and how healthy aging can transition to the progression to Alzheimer’s disease and other cognitive disorders. The course focuses on specific topics each week with an emphasis on understanding how apparently healthy adults maintain function in the face of neuropathology, and what are the catalysts for a transition to pathology. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-23 16:04:40 NOLINK 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7329 (r4)</td>
<td>hcs7329.5</td>
<td>HCS 7329 Functional Brain Imaging Practica (3 semester credit hours) Application of learned skills to short research projects in small group format. Projects include: 1) acquisition of new data in SPECT, PET or fMRI in association with ongoing funded research; 2) mentored analysis of existing data sets; and 3) experimental design projects with a full experimental protocol, including informed consent procedures, acquisition parameters and data analysis plans. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
</tbody>
</table>

peoplesoft diff: 006522 2012-08-26 keh120030

HCS 7329 Functional Brain Imaging Practica (3 semester credit hours) Application of learned skills to short research projects in small group format. Projects include: 1) acquisition of new data in SPECT, PET or fMRI in association with ongoing funded research; 2) mentored analysis of existing data sets; and 3) experimental design projects with a full experimental protocol, including informed consent procedures, acquisition parameters and data analysis plans. Prerequisites: BBSC majors only and department consent required. (3-0) R

| 2014-open | edit * | hcs7330 (r4) | hcs7330.5 | HCS 7330 (ACN 7330) Advanced Functional Brain Imaging (3 semester credit hours) This course explores more in-depth topics such as neuroimaging detection systems, clinical applications of functional neuroimaging, experimental design, statistical techniques in image analysis and reviews of pertinent literature using functional brain imaging to illuminate various cognitive and perceptual processes, such as language, memory, hearing and vision. Prerequisites: BBSC majors only and department consent required. (3-0) R | phase: approve | status: approving | audit: 30 | sxh121431 2013-12-17 16:48:12 006523 51.0204.00.14 audit: -6.2 m index: -6.2 m match_fail | process orion |

peoplesoft diff: 006523 2012-08-26 keh120030

HCS 7330 (ACN 7330) Advanced Functional Brain Imaging (3 semester credit hours) This course explores more in-depth topics such as neuroimaging detection systems, clinical applications of functional neuroimaging, experimental design, statistical techniques in image analysis and reviews of pertinent literature using functional brain imaging to illuminate various cognitive and perceptual processes, such as language, memory, hearing and vision. Prerequisites: BBSC majors only and department consent required. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * hcs7333 (r7) hcs7333.8</td>
<td>HCS 7333 (ACN 7335) Computational Neuroscience (3 semester credit hours) Introduction to state-of-the-art computer methods for simulation of biologically realistic neuronal dynamics. Students must demonstrate computer skills. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:48:52 006526 26.1503.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hcs7334 (r5) hcs7334.7</td>
<td>HCS 7334 Affective Neuroscience (3 semester credit hours) Current studies and theories of the biological basis of emotion and affective behaviors. The interactions of emotional processes with other brain functions. Topics covered may include anxiety, depression, stress, and fear as well as hedonically positive emotional states. Prerequisites: (ACN 6346 or HCS 6346) and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-23 16:45:13 006527 26.1503.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7337 (r3)</td>
<td>HCS 7337 Advanced Neuroscience Lab Methods (3 semester credit hours) Intensive hands-on training and exposure to neuroscience laboratory methods such as neurophysiology, neuropharmacology, and behavioral observation approaches to understanding the biology of behavior. Experimental design, analysis and science writing are emphasized. May be repeated for credit (6 semester credit hours maximum). Prerequisites: HCS 6346 and HCS 7343 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>srx090100 2014-01-13 13:01:32 013163 26.1501.00.02 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hcs7337.5</td>
<td>peoplesoft diff: 013163 2012-08-26 keh120030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | hcs7343 (r9) | HCS 7343 (ACN 7343) Neuropharmacology (3 semester credit hours) Biology of neurotransmission in the central nervous system. Includes ionotropic and metabotropic coupling of all known classes of receptors to both their cellular and systemic effects. Clinical efficacy, side effects, and other issues related to drug use and abuse are covered. Prerequisites: (ACN 6340 or HCS 6340 or ACN 6346 or HCS 6346) and department consent required. (3-0) T | phase: approve | stillman 2013-10-02 14:50:34 006534 26.1501.00.02 audit: -6.6 m index: -6.6 m match_fail | process orion |
| | | hcs7343.9 | peoplesoft diff: 006534 2012-08-26 keh120030 | status: approving | | |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7351</td>
<td>(r5) hcs7351.6</td>
<td>HCS 7351 Aging and the Nervous System (3 semester credit hours) Critical evaluation of research and theory concerning the impact of aging on neuronal function. Cognitive dysfunctions, dementias, and underlying neuropathologies, as well as neurophysiological and neurochemical changes that accompany normal aging. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>2013-12-17 16:49:48 006542 26.1503.00.02 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7352</td>
<td>(r7) hcs7352.7</td>
<td>HCS 7352 Seminar in Language Impairments in Children (3 semester credit hours) Advanced study of language impairments in children emphasizing research issues related to these diverse clinical populations. Topics may include SLI, SCI, SELD, deafness, and autistic spectrum disorders among others. May be repeated for credit. Prerequisites: (COMD 6307 or HCS 6368) and COMD 7378 and instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-02 14:53:24 006543 51.0201.00.14 audit: -6.7 m index: -6.7 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7355</td>
<td>(r10) hcs7355.16</td>
<td>HCS 7355 Seminar in Psychological Sciences (3 semester credit hours) Selected topics of current research in social or cognitive development. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-01-26 06:02:34 006546 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf 88/115
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7364 (r1)</td>
<td>hcs7364.5</td>
<td>HCS 7364 Cognitive Neuroscience of Human Memory (3 semester credit hours) Seminar-based class that covers the cognitive neuroscience of human long term memory. It combines a historical perspective with discussion of current controversies and advances. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-26 08:55:14 NOLINK 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>hcs7367 (r6)</td>
<td>hcs6389 -> hcs7367.7</td>
<td>request to remove this course from catalog</td>
<td>HCS 7367 (ACN 7367) Speech Perception Laboratory (3 semester credit hours) Introduction to the field of speech processing by computer, with primary application to research techniques in the study of speech perception. (0-9) T</td>
<td>phase: approve</td>
<td>stillman 2013-10-11 11:10:29 006556 51.0204.00.14 audit: -6.7 m index: -6.7 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7372 (r9)</td>
<td>hcs7372.14</td>
<td>HCS 7372 Seminar in Cognition and Neuroscience (3 semester credit hours) Selected topics and current research in cognition and neuroscience. May be repeated for credit as topics vary. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:35:57 006561 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs7376 (r5)</td>
<td>HCS 7376 (HDCD 6385 and PSYC 6335) Child Psychopathology (3 semester credit hours) Major classes of childhood psychopathology manifested during infancy through adolescence. Normal personality development as a basis for identifying psychopathology. Issues of etiology, diagnosis, prognosis and social policy. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-13 20:20:28 006568 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcs7379 (r9)</td>
<td>HCS 7379 (COMD 7379) Current Research in Autism (3 semester credit hours) Exploration of research theories related to Autism Spectrum Disorders (ASD) and the implications the disability has on an individual's learning, behavior and ability to process information. Topics may include: diagnostic classification, the evaluation process, current theoretical models, intervention models, research on potential causes and treatments, provisions for service delivery and areas of impairment. May be repeated for credit (9 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>peoplesoft diff: 006568 2012-08-26 keh120030</td>
<td>process orion</td>
</tr>
</tbody>
</table>

HCS 7376 (HDCD 6385 and PSYC 6335) Child Psychopathology (3 semester credit hours) Major classes of childhood psychopathology manifested during infancy through adolescence. Normal personality development as a basis for identifying psychopathology. Issues of etiology, diagnosis, prognosis and social policy. Prerequisites: BBSC majors only and department consent required. (3-0) R

HCS 7379 (COMD 7379) Current Research in Autism (3 semester credit hours) Exploration of research theories related to Autism Spectrum Disorders (ASD) and the implications the disability has on an individual's learning, behavior and ability to process information. Topics may include: diagnostic classification, the evaluation process, current theoretical models, intervention models, research on potential causes and treatments, provisions for service delivery and areas of impairment. May be repeated for credit (9 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. (3-0) Y

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * hcs7380 (r7) hcs7380.11</td>
<td>HCS 7380 Practicum in Communication Sciences (3 semester credit hours) Supervised, practice-based activities in applied contexts or evaluation and therapeutic management of communication disorders. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:55:38 006569 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hcs7382 (r3) hcs7382.5</td>
<td>HCS 7382 (PSYC 7382 and HDCD 7382) Health Psychology (3 semester credit hours) Current theory and research concerning the social, cognitive, behavioral, and biological processes that shape experiences of physical health. The importance of these concepts for health behaviors, psychosomatics, and psychological adjustment to illness. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:56:04 006570 42.2810.00.01 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hcs7v71 (r4) hcs7v71.8</td>
<td>HCS 7V71 Topics in Communication Sciences and Disorders (1-6 semester credit hours) Selected topics and current research in communication sciences and disorders. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-13 12:04:55 006504 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs7v98 (r7)</td>
<td>hcs7v98.9</td>
<td></td>
<td>HCS 7V98 Directed Individual Study in Behavioral and Brain Sciences (1-9 semester credit hours) Individualized program of study which may include reading, research, implementation of clinical strategies, and/or other designated activities. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs8v50 (r7)</td>
<td>hcs8v50.13</td>
<td></td>
<td>HCS 8V50 Doctoral Readings and Research Seminar (1-6 semester credit hours) Seminar for advanced doctoral students on current issues and research in Behavioral and Brain Sciences. Pass/Fail only. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and instructor consent required. ([1-6]-0) R</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcs8v80 (r8)</td>
<td>hcs8v80.12</td>
<td></td>
<td>HCS 8V80 Research in Behavioral and Brain Sciences (1-9 semester credit hours) Supervised research experience. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 2014-open | | edit * | hcs8v99 (r6) | HCS 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S

peoplesoft diff: 006580 2012-08-26 keh120030

HCS 8V99 Dissertation (1-9 semester credit hours) (May Pass/Fail only. May be repeated for credit.) Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S |
phase: approve	2013-12-17 16:30:50	006580 51.0201.00.14	sxh121431	process orion	
status: approving		audit: 30		NOLINK	
audit: 30	2013-12-17 16:30:50	006580 51.0201.00.14	sxh121431	process orion	
peoplesoft diff: 006580 2012-08-26 keh120030				NOLINK	

2014-open | | edit * | hdc5350 (r1) hdc5350.3 | HDCD 5350 Introduction to Child Life (3 semester credit hours) Study of the historical and theoretical perspectives on the development of the child life field. Exploration of the fundamental skills required to help children and families cope with the stress of the health care experience. Prerequisite: BBSC majors only. (3-0) Y |
phase: approve	2014-01-23 16:46:23	NOLINK	sxr090100	process orion	
status: approving		audit: 10	42.2703.00.01	NOLINK	
audit: 10	2014-01-23 16:46:23	NOLINK	sxr090100	process orion	
peoplesoft diff: NOLINK				NOLINK	

2014-open | | edit * | hdc6310 (r6) hdc6310.7 | HDCD 6310 Parent Education (3 semester credit hours) Skills needed by professionals to assess parents' strengths, resources and needs as well as to assist parents in understanding and promoting their children's development and adjustment. Includes effective communication techniques, basic counseling skills, and strategies to enhance parental effectiveness within the family and community. Prerequisites: BBSC majors only and department consent required. (3-0) Y

peoplesoft diff: 006689 2012-08-26 keh120030

HDCD 6310 Parent Education (3 semester credit hours) Skills needed by professionals to assess parents' strengths, resources and needs as well as to assist parents in understanding and promoting their children's development and adjustment. Includes effective communication techniques, basic counseling skills, and strategies to enhance parental effectiveness within the family and community. Prerequisites: BBSC majors only and department consent required. (3-0) Y |
<p>| phase: approve | 2013-12-17 16:58:46 | 006689 42.2703.00.01 | sxh121431 | process orion | |
| status: approving | | audit: 30 | 42.2703.00.01 | NOLINK | |
| audit: 30 | 2013-12-17 16:58:46 | 006689 42.2703.00.01 | sxh121431 | process orion | |
| peoplesoft diff: 006689 2012-08-26 keh120030 | | | | NOLINK | |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hdcd6312 (r4)</td>
<td></td>
<td>HDCD 6312 Atypical Development (3 semester credit hours) Disorders of development from conception through preschool. Effects of developmental impairments on the child, family, and the environment and prognosis and treatment options. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:59:06 013324 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hdcd6315 (r4)</td>
<td></td>
<td>HDCD 6315 Assessment Theory (3 semester credit hours) Latest developments in the field of assessment with young children, including behavioral observation, contextual multi-faceted assessment, and inclusion of the family. Training in traditional psychometrics and assessment tools/techniques. Prerequisite or Corequisite: HDCD 6319 and department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-23 16:46:54 013325 42.2708.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hdcd6316 (r5) hdcd6316.8</td>
<td>HDCD 6316 Developmental Assessment (3 semester credit hours) Play-based, curriculum-based, authentic assessment, family assessment protocols and the Functional Emotional Assessment Scale (FEAS). Use of Zero-to-Three diagnostic classification system (DC: 0-3) through differential diagnosis decision-making based on the results from the FEAS. Emphasis on clinical judgment/observation, interpretation and integration with assessment results. Prerequisites: HDCD 6315 and HDCD 6319 and department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>srx090100 2014-01-23 16:47:22 013326 42.2708.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * hdcd6319 (r5) hdcd6319.8</td>
<td>HDCD 6319 (HCS 6357 and PSYC 6357) The Developing Child: Infants and Toddlers (3 semester credit hours) Theories of infant development in multiple content domains (cognitive, social, motor, language, physical) from conception to 24 months. Milestones of development and the understanding of relationship across domains and viewing the child as a "system" within the relationships. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:43:18 013333 42.2703.00.01 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hdcd6320</td>
<td>(r9)</td>
<td>HDCD 6320 (HCS 6359 and PSYC 6320) The Developing Child: Toddler and Preschool Years (Two to Five Years) (3 semester credit hours) Relevant developmental theories and processes as well as skills acquired in motor, sensory-perceptual, cognitive, and social domains. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
</tr>
<tr>
<td>2013-01-23</td>
<td>13:59:18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 006690 2012-08-26 keh120030

HDCD 6320 (HCS 6359, 6359 and PSYC 6320) The Developing Child: Toddler and Preschool Years (Two to Five Years) (3 semester credit hours) Relevant developmental theories and processes as well as skills acquired in motor, sensory-perceptual, cognitive, and social domains. Prerequisites: BBSC majors only and department consent required. (3-0) Y

date: 2014-01-23 13:59:18

index: 006690

match_fail

people soft diff: 013327 2013-08-25 adp130030

HDCD 6325 Service Coordination of Community Resources (3 semester credit hours) Policies and procedures pertinent to service coordination of community resources in early intervention and family centered practices that help families become more independent. Identifying and screening relevant resources for children with special needs and their families. Prerequisites: BBSC majors only and department consent required. (3-0) Y

phase: approve

status: approving

audit: 30

sxh121431

2013-12-17 17:00:05

013327

42.2703.00.01

match fail

match fail

people soft diff: 013327 2013-08-25 adp130030

HDCD 6325 Service Coordination of Community Resources (3 semester credit hours) Policies and procedures pertinent to service coordination of community resources in early intervention and family centered practices that help families become more independent. Identifying and screening relevant resources for children with special needs and their families. Prerequisites: BBSC majors only and department consent required. (3-0) Y

date: 2013-12-17 17:00:05

index: 013327

match fail
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcdn6330</td>
<td>(r7) hcdn6330.9</td>
<td>HDCD 6330 Families and Culture (3 semester credit hours) Child growth and development in the context of diverse families and cultures. Respect for cultural variations in family values and practices. Emphasizes the impact of the students' own culture, attitudes, and beliefs in working with families from diverse backgrounds. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>sxh121431 2014-01-23 14:02:57 006691 42.2703.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006691 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HDCD 6330 Families and Culture (3 semester credit hours) Child growth and development in the context of diverse families and cultures. Respect for cultural variations in family values and practices. Emphasizes the impact of the students' own culture, attitudes, and beliefs in working with families from diverse backgrounds. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcdn6335</td>
<td>(r5) hcdn6335.7</td>
<td>HDCD 6335 Intervention Paradigms (3 semester credit hours) Historical, theoretical, practice, and research bases for early intervention paradigms. Research methods to evaluate the effectiveness of early intervention programs and determine evidence-based practice. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>mxv062000 2014-01-14 09:45:34 013334 42.2703.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013334 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HDCD 6335 Intervention Paradigms (3 semester credit hours) Historical, theoretical, practice, and research bases for early intervention paradigms. Research methods to evaluate the effectiveness of early intervention programs and determine evidence-based practice. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td></td>
<td>HDCD 6351 Play Matters (3 semester credit hours) Study of the importance of play for child development and its unique value as an evaluative and remedial tool in early intervention. Combines didactic and experiential elements to facilitate an integrated understanding of play-based approaches to working children and families. Includes weekly guided experience conducting a playgroup program for young children and their parents. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving audit: 10</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td></td>
<td>HDCD 6355 Family Outreach and Assessment (3 semester credit hours) This practicum is designed to provide students, as part of a 2-3 person team, supervised experiences with young children from diverse backgrounds, at selected off-campus sites. Emphasis is on assessment, professional report writing, communicating assessment results orally to the families and other professionals, the referral process, and working together in 2-3 student teams. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>status: approving audit: 27</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

HDCD 6351 Play Matters (3 semester credit hours) Study of the importance of play for child development and its unique value as an evaluative and remedial tool in early intervention. Combines didactic and experiential elements to facilitate an integrated understanding of play-based approaches to working children and families. Includes weekly guided experience conducting a playgroup program for young children and their parents. Prerequisite: BBSC majors only. (3-0) Y

peoplesoft diff: 013335 2013-08-25

HDCD 6355 Family Outreach and Assessment (3 semester credit hours) This practicum is designed to provide students, as part of a 2-3 person team, supervised experiences with young children from diverse backgrounds, at selected off-campus sites. Emphasis is on assessment, professional report writing, communicating assessment results orally to the families and other professionals, the referral process, and working together in 2-3 student teams. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and department consent required. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcdc6360</td>
<td>(r8)</td>
<td>HDCD 6360 Behavior Management (3 semester credit hours) Observational methodology in behavioral assessment and a review of principles and procedures of behavior change from social learning and applied behavior analysis perspectives. Particular attention will be given to the design, implementation, and evaluation of behavioral interventions with children and families. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 17:02:38 006694 42.2703.00.01 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hcdc6360.9</td>
<td></td>
<td>peoplesoft diff: 006694 2012-08-26 keh120030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HDCD 6360 Behavior Management (3 semester credit hours) Observational methodology in behavioral assessment and a review of principles and procedures of behavior change from social learning and applied behavior analysis perspectives. Particular attention will be given to the design, implementation, and evaluation of behavioral interventions with children and families. Prerequisite: BBSC majors only. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hcdc6365</td>
<td>(r5)</td>
<td>HDCD 6365 (COMD 7336) Social Communication in Early Childhood Disorders (3 semester credit hours) Development of infant and toddler cognitive, social, communication and language skills are explored through major theories, current research and application to disorders. Emphasis is placed on functional assessments and intervention for children with social communication disorders functioning at the prelinguistic and emerging language stages. Prerequisites: BBSC majors only and department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:20:48 013329 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hcdc6365.8</td>
<td></td>
<td>peoplesoft diff: 013329 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HDCD 6365 (COMD 7336) Social Communication in Early Childhood Disorders (3 semester credit hours) Development of infant and toddler cognitive, social, communication and language skills are explored through major theories, current research and application to disorders. Emphasis is placed on functional assessments and intervention for children with social communication disorders functioning at the prelinguistic and emerging language stages. Prerequisites: BBSC majors only and department consent required. (3-0) S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hdc6370</td>
<td>HDCD 6370 Intervention with Young Children (3 semester credit hours) Emphasis on methods and procedures for facilitating development of high risk, delayed or handicapped young children through relationship-based intervention. Reviews the contributions and perspectives of various early intervention disciplines. Students design and implement individualized intervention programs. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hdc6370.7</td>
<td>peoplesoft diff: 006695 2012-08-26 keh120030</td>
<td>status: approving</td>
<td>2013-12-17 17:03:08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>006695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.2703.00.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -6.2 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hdc6385</td>
<td>HDCD 6385 (HCS 7376 and PSYC 6335) Child Psychopathology (3 semester credit hours) Major classes of childhood psychopathology manifested during infancy through adolescence. Normal personality development as a basis for identifying psychopathology. Issues of etiology, diagnosis, prognosis and social policy. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hdc6385.6</td>
<td>peoplesoft diff: 013330 2012-08-26 keh120030</td>
<td>status: approving</td>
<td>2014-01-13 11:43:53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>013330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.0204.00.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -6.1 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req typ</th>
<th>course req</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcdc6390</td>
<td>HDCD 6390 Infant Mental Health (3 semester credit hours) How children's healthy development is impacted by the attachment-separation process and social-emotional development. Theoretical foundations for current practice. Addresses contributing factors, including brain development, temperament, trauma, multiple separations, and parent attachment styles. Overview of intervention programs that address relationship disruptions or disorders. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:28:38 006697 42.2703.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hcdc6390.9</td>
<td>peoplesoft diff: 006697 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HDCD 6390 Infant Mental Health (3 semester credit hours) How children's healthy development is impacted by the attachment-separation process and social-emotional development. Theoretical foundations for current practice. Addresses contributing factors, including brain development, temperament, trauma, multiple separations, and parent attachment styles. Overview of intervention programs that address relationship disruptions or disorders. Prerequisite: BBSC majors only. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hcdc6395</td>
<td>HDCD 6395 Medical and Biobehavioral Factors in Early Childhood Disorders (3 semester credit hours) The normal functioning of organ systems and the most common malformations, dysfunction, and diseases. Effects of these disorders on the child and family. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 17:03:42 006698 42.2703.00.01 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hcdc6395.9</td>
<td>peoplesoft diff: 006698 2014-08-24 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HDCD 6395 Medical and Biobehavioral Factors in Early Childhood Disorders (3 semester credit hours) The normal functioning of organ systems and the most common malformations, dysfunction, and diseases. Effects of these disorders on the child and family. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hdc6v81</td>
<td>(6)</td>
<td>HDCD 6V81 Special Topics in Human Development and Early Childhood Disorders (1-9 semester credit hours) May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. ([1-9]-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:35:15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hdc6v81.12</td>
<td></td>
<td>peoplesoft diff: 006688 2012-08-26 keh120030 HDCD 6V81 Special Topics in Human Development and Early Childhood Disorders (1-9 semester credit hours) Topics vary from semester to semester. (May be repeated for credit) credit as topics vary. Prerequisites: BBSC majors only and department consent required. ([1-9]-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-open</td>
<td>edit *</td>
<td>hdc7382</td>
<td>(r2)</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:56:36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hdc7382.4</td>
<td></td>
<td>HDCD 7382 (HCS 7382 and PSYC 7382) Health Psychology (3 semester credit hours) Current theory and research concerning the social, cognitive, behavioral, and biological processes that shape experiences of physical health. The importance of these concepts for health behaviors, psychosomatics, and psychological adjustment to illness. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>status: approving</td>
<td>014109 42.2810.00.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014109 2012-08-26 HDCD 7382 (HCS 7382, 7382 and PSYC 7382) Health Psychology (3 semester credit hours) Current theory and research concerning the social, cognitive, behavioral, and biological processes that shape experiences of physical health. The importance of these concepts for health behaviors, psychosomatics, and psychological adjustment to illness. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>audit: 30</td>
<td>audit: -6.2 m index: -6.2 m match fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hdc7v20 (r8)</td>
<td></td>
<td></td>
<td>HDCD 7V20 Practicum/Internship in Early Childhood Disorders (3 or 6 semester credit hours) Supervised participation in on-site, early intervention, preschool and private therapy settings for young children with special needs. Includes professional activities such as conducting assessments, intervention, service coordination, and interdisciplinary teaming. Bi-weekly seminars address reflective practice as a tool for professional growth, ethical decision making in real situations, and professional use of self. Taken for 3 hours credit coincident with practicum placement and for 6 hours credit coincident with internship placement. Pass/Fail only. May be repeated for credit with the supervisor's prior approval. Prerequisites: BBSC majors only and instructor consent required. ([3 or 6]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hdc7v80 (r4)</td>
<td></td>
<td></td>
<td>HDCD 7V80 Independent Research (1-6 semester credit hours) Individualized program of study which includes research and/or other designated activities. Permission of supervising instructor is required. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hdc7v98 (r5)</td>
<td></td>
<td></td>
<td>HDCD 7V98 Independent Study (1-6 semester credit hours) Individualized program of study which may include reading, research, and/or other designated activities. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psyc6312 (r4)</td>
<td></td>
<td></td>
<td>PSYC 6312 (ACN 6312 and HCS 6312) Research Methods in Behavioral and Brain Sciences - Part I (3 semester credit hours) This course focuses on applying, understanding, and interpreting various statistical techniques in a behavioral science context. Students learn the framework for hypothesis testing, basic descriptive (e.g., measures of central tendency, variability and shape) and inferential (e.g., z, t, correlation, ordinary least squares regression, and ANOVA) statistics. The course provides students with an understanding of the interrelationships among statistical techniques, and computer skills required for data analyses. Students without the necessary background knowledge of basic statistics and experimental design will be required to take PSY 3392 before registering for ACN 6312. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>Start</td>
<td>Request</td>
<td>Req Type</td>
<td>Course</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psyc6313 (r4) psyc6313.7</td>
<td>PSYC 6313 (ACN 6313 and HCS 6313) Research Methods in Behavioral and Brain Sciences - Part II (3 semester credit hours) Topics in general linear modeling including regression analysis correlation, simple analysis of variance, factorial analysis of variance, analysis of covariance, between and within subject designs, and multiple regression. Prerequisites: (ACN 6312 or HCS 6312 or PSYC 6312) and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-13 20:18:45</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSYC 6313 (HCS 6313, ACN (ACN 6313 and HCS 6313) Research Methods in Behavioral and Brain Sciences - Part II (3 semester credit hours) Topics in general linear modeling including regression analysis correlation, simple analysis of variance, factorial analysis of variance, between and within subject designs, and multiple regression. Prerequisite: ACN/HCS/PSYC 6312. Prerequisites: (ACN 6312 or HCS 6312 or PSYC 6312) and department consent required. (3-0) Y</td>
<td>status: approving</td>
<td>51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psyc6316 (r4) psyc6316.7</td>
<td>PSYC 6316 (ACN 6316 and HCS 6316) Research Methods in Behavioral and Brain Sciences - Part III (3 semester credit hours) Applying, understanding, and interpreting various advanced multivariate statistical techniques in brain and behavioral science contexts. Includes principal component analyses, simple and multiple correspondence analyses, partial least square methods, multi-table analyses, discriminant analyses, and structural equation modeling. May be repeated for credit (6 semester credit hours maximum). Prerequisite: BBSC majors only. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-14 08:57:27</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSYC 6316 (HCS 6316, ACN (ACN 6316 and HCS 6316) Research Methods in Behavioral and Brain Sciences - Part III (3 semester credit hours) Applying, understanding, and interpreting various advanced multivariate statistical techniques in brain and behavioral science contexts. Includes principal component analyses, simple and multiple correspondence analyses, partial least square methods, multi-table analyses, discriminant analyses, and structural equation modeling. (May May be repeated for credit (6 semester credit hours maximum). Prerequisite: BBSC majors only. (3-0) R</td>
<td>status: approving</td>
<td>51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>psyc6319 (r3)</td>
<td>psyc6319.4</td>
<td></td>
<td>request to remove this course from catalog
PSYC 6319 (HCS 6319, ACN 6319) Scientific Writing (3 semester credit hours) Scientific writing of articles for publication. (3-0) Y</td>
<td>phase: approve
status: approving
audit: 30</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psyc6320 (r4)</td>
<td>psyc6320.6</td>
<td></td>
<td>PSYC 6320 (HCS 6359 and HDCD 6320) The Developing Child: Toddler and Preschool Years (Two to Five Years) (3 semester credit hours) Relevant developmental theories and processes as well as skills acquired in motor, sensory-perceptual, cognitive, and social domains. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve
status: approving
audit: 30</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psyc6327 (r3)</td>
<td>psyc6327.6</td>
<td></td>
<td>PSYC 6327 (HCS 6327) Personality (3 semester credit hours) Survey of cognitive, trait, biological, and social-cognitive, analytic, and learning theory approaches to the study of personality. Emphasis on intensive exploration of modern theoretical and empirical work. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve
status: approving
audit: 30</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf 106/115
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * psyc6330 (r3)</td>
<td>PSYC 6330 (ACN 6330 and HCS 6330) Cognitive Science (3 semester credit hours) Cognitive, computational, and neural processing approaches to understanding perception, memory, thought, language, and emotion. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:02:38 012724 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>psyc6330.5</td>
<td>PSYC 6330 (ACN 6330 and HCS 6330) Cognitive Science (3 semester credit hours) Cognitive, computational, and neural processing approaches to understanding perception, memory, thought, language, and emotion. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012724 2011-08-23</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSYC 6330 (HCS 6330, ACN) (ACN 6330 and HCS 6330) Cognitive Science (3 semester credit hours) Cognitive, computational, and neural processing approaches to understanding perception, memory, thought, language, and emotion. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psyc6331 (r4)</td>
<td>PSYC 6331 (ACN 6331 and HCS 6331) Cognitive Development (3 semester credit hours) Survey of cognitive development theories and research in a variety of domains including perception, memory, language, and problem solving. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:06:59 012725 51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>psyc6331.6</td>
<td>PSYC 6331 (ACN 6331 and HCS 6331) Cognitive Development (3 semester credit hours) Survey of cognitive development theories and research in a variety of domains including perception, memory, language, and problem solving. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012725 2011-08-23</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psyc6332 (r5)</td>
<td>PSYC 6332 (ACN 6332 and HCS 6332) Perception (3 semester credit hours) Psychophysical, neurophysiological, and computational foundations of sensation and perception. Basic senses of vision, audition, chemoreception, and tactile processing, with emphasis on understanding the processes that take us from neurons to perception and action. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:41:39 013316 51.0201.00.14 audit: -6.2 m index: -6.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>psyc6332.7</td>
<td>PSYC 6332 (ACN 6332 and HCS 6332) Perception (3 semester credit hours) Psychophysical, neurophysiological, and computational foundations of sensation and perception. Basic senses of vision, audition, chemoreception, and tactile processing, with emphasis on understanding the processes that take us from neurons to perception and action. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013316 2012-08-26</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>psyc6333 (r4)</td>
<td>psyc6333.7</td>
<td>PSYC 6333 (ACN 6333 and HCS 6333) Memory (3 semester credit hours) Research and theory on the acquisition, representation, and retrieval of information by the mind/brain. Includes information processing and neuropsychological perspectives. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:09:25</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012726 2012-08-26</td>
<td>status: approving</td>
<td>012726 51.0201.00.14</td>
<td>audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>psyc6335 (r4)</td>
<td>psyc6335.6</td>
<td>PSYC 6335 (HCS 7376 and HDCD 6385) Child Psychopathology (3 semester credit hours) Major classes of childhood psychopathology manifested during infancy through adolescence. Normal personality development as a basis for identifying psychopathology. Issues of etiology, diagnosis, prognosis and social policy. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-12-17 16:53:17</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013317 2012-08-26</td>
<td>status: approving</td>
<td>013317 51.0204.00.14</td>
<td>audit: -6.2 m index: -6.2 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * psyc6338 (r2)</td>
<td>PSYC 6338 (ACN 6338 and HCS 6338) Functional Neuroanatomy (3 semester credit hours) An introduction to human neuroanatomy organized by major brain system. Function of the neuroanatomy of each major system and relation to neurological disorders associated with damage to the neuroanatomy of the system. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012733 2012-08-26</td>
<td>phase: approve</td>
<td>srxh121431 2014-01-23</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSYC 6338 (HCS 6338, ACN (ACN 6338 and HCS 6338) Functional Neuroanatomy (3 semester credit hours) Function of each An introduction to human neuroanatomy organized by major brain system as related to the organization and synaptic connections of their principal nuclei. System. Function of the neuroanatomy of each major system related and relation to the neurological disorders associated with disease or lesions at specific locations, damage to the neuroanatomy of the system. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>012733 26.1502.00.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>index: -6.1 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * psyc6339 (r4)</td>
<td>PSYC 6339 (ACN 6339 and HCS 6339) Psycholinguistics (3 semester credit hours) Classic and current research in psycholinguistics. Includes concepts from linguistics, the biological bases of speech and language processing, and child language acquisition. Prerequisite: BBSC majors only. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013318 2012-08-26</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSYC 6339 (HCS 6339, ACN (ACN 6339 and HCS 6339) Psycholinguistics (3 semester credit hours) Classic and current research in psycholinguistics. Includes concepts from linguistics, the biological bases of speech and language processing, and child language acquisition. Prerequisite: BBSC majors only. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>013318 51.0201.00.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>index: -6.1 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
<td>metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psyc6346</td>
<td>(r4) psyc6346.6</td>
<td>PSYC 6346 (ACN 6346 and HCS 6346) Systems Neuroscience (3 semester credit hours) Integrative systems level study of the nervous system. Aspects of neural mechanisms and circuitry underlying regulation of motor behaviors, sensory and perceptual processing, biological homeostasis, and higher cognitive functions. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase:</td>
<td>approve</td>
<td>status:</td>
<td>approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psyc6350</td>
<td>(r4) psyc6350.6</td>
<td>PSYC 6350 (HCS 6350) Social Development (3 semester credit hours) Foundations of social and personality development. Includes survey of psychodynamic, social learning, behavior genetic, family systems, and social-cognitive approaches to the study of attachment, parenting, aggression, peer relationships, sex typing, and other contemporary issues. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase:</td>
<td>approve</td>
<td>status:</td>
<td>approving</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psyc6355 (r3)</td>
<td>PSYC 6355 (ACN 6355 and HCS 6355) Judgment and Decision Making (3 semester credit hours) This course examines human inferences, judgments, decisions, and the processes by which we arrive at them. It will focus on the fact that our social judgments are not based on the laws of probability and chance, but on other cognitive processes that may have serious shortcomings in important inferential and decision making tasks. We will also see that these processes, while ecologically efficient, systematic and often predictable, are imperfect in today's data-rich environment. Prerequisite: BBSC majors only. (3-0) T</td>
<td></td>
<td></td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psyc6357 (r5)</td>
<td>PSYC 6357 (HCS 6357 and HDCD 6319) The Developing Child: Infants and Toddlers (3 semester credit hours) Theories of infant development in multiple content domains (cognitive, social, motor, language, physical) from conception to 24 months. Milestones of development and the understanding of relationship across domains and viewing the child as a "system" within the relationships. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td></td>
<td></td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>psyc6367 (r4)</td>
<td>psyc6367.6</td>
<td>PSYC 6367 (ACN 6367 and HCS 6367) Speech Perception (3 semester credit hours) Current topics and theories in speech perception. Topics include the acoustic correlates of speech sounds and the problem of invariance, the perception of speech under adverse conditions, the effects of hearing impairment, and models of speech perception. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>sxh121431 2014-01-23 14:25:28 013321 51.0204.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>psyc6368 (r5)</td>
<td>psyc6368.7</td>
<td>PSYC 6368 (ACN 6368 and HCS 6368) Language Development (3 semester credit hours) Advanced study of normal oral language development. The goals of this course are to consider the developmental trajectories of the different components of language; to consider the varied and critical roles of language in human development; to understand the impact of culture, different languages, child factors and the environment on development; and to be introduced to the theoretical perspectives driving research and thinking in this area of inquiry. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>sxh121431 2014-01-23 14:26:27 012728 51.0204.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psyc6376 (r4)</td>
<td>PSYC 6376 (HCS 6376) Social Psychology (3 semester credit hours) Overview of the social bases of behavior. Topics may include social cognition and self-justification, biases in judgment, attitudes and persuasion, conformity, compliance, group dynamics, prejudice and stereotyping, interpersonal attraction and relationships, aggression and altruism, cultural diversity, and applications relevant to these aspects of the human experience. Special attention to research paradigms of interest to students developing their own empirical work. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:28:09 012729 42.2707.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psyc6395 (r4)</td>
<td>PSYC 6395 (ACN 6395 and HCS 6395) Cognitive Psychology (3 semester credit hours) Theory and research on perception, learning, thinking, psycholinguistics, and memory. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2014-01-23 14:29:32 012730 42.2701.00.01 audit: -6.1 m index: -6.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>psyc6399 (r3)</td>
<td>PSYC 6399 (ACN 6399 and HCS 6399) Research Ethics and Scientific Integrity (3 semester credit hours) An interactive, intensive course designed to cover critical issues related to human subjects, animal welfare, research design, accountability of scientific actions and fraud. Course designed for individuals intending research careers in academia or industry. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2014-01-23 14:30:22</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psyc6399.5</td>
<td>PSYC 6399 (HCS 6399, ACN (ACN 6399 and HCS 6399) Research Ethics and Scientific Integrity (3 semester credit hours) An interactive, intensive course designed to cover critical issues related to human subjects, animal welfare, research design, accountability of scientific actions and fraud. Course designed for individuals intending research careers in academia or industry. Prerequisite: BBSC majors only. (3-0) Y</td>
<td>status: approving</td>
<td>013322</td>
<td>51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>psyc7318 (r2)</td>
<td>PSYC 7318 Special Topics in Psychological Sciences (3 semester credit hours) Selected topics of current research in psychological sciences. May be repeated for credit as topics vary. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2014-01-23 14:34:47</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psyc7318.6</td>
<td>PSYC 7318 Special Topics in Psychological Sciences (3 semester credit hours) Selected topics of current research in psychological sciences. (May be repeated for credit) credit as topics vary. Prerequisites: BBSC majors only and department consent required. (3-0) R</td>
<td>status: approving</td>
<td>012732</td>
<td>51.0201.00.14 audit: -6.1 m index: -6.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>psyc7382 (r2)</td>
<td>PSYC 7382 (HCS 7382 and HDCD 7382) Health Psychology (3 semester credit hours) Current theory and research concerning the social, cognitive, behavioral, and biological processes that shape experiences of physical health. The importance of these concepts for health behaviors, psychosomatics, and psychological adjustment to illness. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>2013-12-17 16:57:04</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psyc7382.4</td>
<td>PSYC 7382 (HCS 7382, 7382 and HDCD 7382) Health Psychology (3 semester credit hours) Current theory and research concerning the social, cognitive, behavioral, and biological processes that shape experiences of physical health. The importance of these concepts for health behaviors, psychosomatics, and psychological adjustment to illness. Prerequisites: BBSC majors only and department consent required. (3-0) Y</td>
<td>status: approving</td>
<td>014110</td>
<td>42.2810.00.01 audit: -6.2 m index: -6.2 m match_fail</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/989119632c7f1bd5cd240e695167bd7a/makepdf 114/115
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * psyc7v50 (r3)</td>
<td>PSYC 7V50 Internship in Psychological Sciences (1-6 semester credit hours) Applied placement in community agency or other approved site. Pass/Fail only. May be repeated for credit (6 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>psyc7v50.5</td>
<td></td>
<td>status: approving</td>
<td>2014-01-14 11:04:56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>014111</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.0201.00.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -6.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -6.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 014111 2012-08-26 sxr090100</td>
<td>PSYC 7V50 Internship in Psychological Sciences (1-6 semester credit hours) Applied placement in community agency or other approved site. (May Pass/Fail only. May be repeated for credit) credit (6 semester credit hours maximum). Prerequisites: BBSC majors only and department consent required. ([1-6]-0) S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psyc8v80 (r4)</td>
<td>PSYC 8V80 Research in Behavioral and Brain Sciences (1-9 semester credit hours) Supervised research experience. Pass/Fail only. May be repeated for credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>psyc8v80.6</td>
<td></td>
<td>status: approving</td>
<td>2014-01-23 14:37:03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>012734</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.0201.00.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -6.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -6.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 012734 2012-08-26</td>
<td>PSYC 8V80 Research in Behavioral and Brain Sciences (1-9 semester credit hours) Supervised research experience. (May Pass/Fail only. May be repeated for credit) credit. Prerequisites: BBSC majors only and instructor consent required. ([1-9]-0) S Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Erik Jonsson School of Engineering and Computer Science (ENCS)
2014-15 Graduate Catalog – Courses
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bmen6341 (r2)</td>
<td>BMEN 6341 Biostatistics (3 semester credit hours) Introduction to probability; joint, marginal and conditional distributions; entropy and relative entropy (Kullback-Leibler divergence); Markov processes and hidden Markov models; applications to specific problems such as sequence alignment, analysis of gene expression data and protein classification. (3-0)</td>
<td>phase: approve</td>
<td>mef025000 2013-12-13 14:25:45</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>14084 14.0501.00.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>014084 14.0501.00.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014084 2012-08-26</td>
<td>index: -87.2 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bmen6351 (r3)</td>
<td>BMEN 6351 Biomedical Microdevices (3 semester credit hours) Introduction to concepts of medical microdevices; design methodology and its applications for diagnostics and therapeutics. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:11:15</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>14085 14.0501.00.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>014085 14.0501.00.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014085 2012-08-26 srx090100</td>
<td>index: -88.2 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bmen6355 (r2)</td>
<td>BMEN 6355 (MSEN 6355) Nanotechnology and Sensors (3 semester credit hours) Introduction to the concept of nanotechnology, in context toward designing sensors/diagnostic devices. Identifying the impact of nanotechnology in designing "state-of-the-art" sensors for healthcare applications. Topics include: nanotechnology and nanomaterials, principles of sensing and transduction and heterogeneous integration toward sensor design. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:11:26</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>14086 15.1601.00.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>014086 15.1601.00.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014086 2012-08-26</td>
<td>index: -87.9 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6372 (r2)</td>
<td>bmen6372.5</td>
<td>BMEN 6372 (MECH 6314 and SYSM 6306) Engineering Systems: Modeling and Simulation (3 semester credit hours) This course will present principles of computational modeling and simulation of systems. General topics covered include: parametric and non-parametric modeling; system simulation; parameter estimation, linear regression and least squares; model structure and model validation through simulation; and, numerical issues in systems theory. Techniques covered include methods from numerical linear algebra, nonlinear programming and Monte Carlo simulation, with applications to general engineering systems. Modeling and simulation software is utilized (MATLAB/SIMULINK). (3-0) Y</td>
<td>phase: approve</td>
<td>2013-12-12 16:07:34 14.2701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6373 (r3)</td>
<td>bmen6373.4</td>
<td>BMEN 6373 (EEBM 6373) Anatomy and Human Physiology for Engineers (3 semester credit hours) This course provides an introduction to anatomy and human physiology for engineers and other non-life scientists. Topics include nervous system, muscle and cardiac function, digestive system, and immune system. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-12-13 13:37:24</td>
<td>process orion</td>
</tr>
<tr>
<td>Course ID</td>
<td>Course Title</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMEN 6374 (EEBM 6374)</td>
<td>Genes, Proteins and Cell Biology for Engineers (3 semester credit hours)</td>
<td>This course provides an introduction to principles of modern molecular and cellular biology for engineers and other non-life scientists. Topics include genes, protein structure and function, organization of cells and cellular trafficking. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMEN 6375 Techniques in Cell and Molecular Biology (3 semester credit hours)</td>
<td>Introduction to cell and molecular laboratory techniques including DNA recombinant technology, protein biochemistry, structural biology, and molecular biology. Intended for engineers and other non-life-scientists. Prerequisite: BMEN 6374 or instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMEN 6376 (EEBM 6376)</td>
<td>Lecture Course in Biomedical Applications of Electrical Engineering (3 semester credit hours)</td>
<td>This course provides an introduction to different areas of biomedical applications of electrical engineering. A special emphasis will be placed on research topics that are actively pursued at UT Dallas. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bmen6377 (r4) bmen6377.7</td>
<td>BMEN 6377 Introduction to Protein Engineering (3 semester credit hours) Development of proteins with practical utility will be discussed, using examples and case studies taken from the current literature. Prerequisite: BMEN 6374 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>ctt130230</td>
<td>2013-12-16 11:01:00 013275 14.0501.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bmen6380 (r4) bmen6380.4</td>
<td>BMEN 6380 (EEBM 6380) Introduction to Cellular Microscopy (3 semester credit hours) Image formation, diffraction, labeling techniques, fluorescence and image processing techniques will be introduced. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-09-27 09:12:54 013276 14.0501.00.06 audit: -87.9 m index: -87.9 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bmen6381 (r5) bmen6381.8</td>
<td>BMEN 6381 (EEBM 6381) Advanced Concepts in Microscopy (3 semester credit hours) Continuation of BMEN 6380, with emphasis on advanced approaches such as vectorial diffraction, stochastic aspects of image formation and analysis. Prerequisite: BMEN 6380 or EEBM 6380 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>ctt130230</td>
<td>2013-12-16 11:02:14 013279 14.0501.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6382 (r3)</td>
<td>bmen6382.6</td>
<td>BMEN 6382 Systems Biology (3 semester credit hours) An interdisciplinary approach to biology. It explores experimental, theoretical, and computational approaches from mathematics, physics, and engineering for the understanding and analysis of biological problems. Prerequisite: BMEN 6374 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>cct130230</td>
<td>2013-12-16 11:04:22 013280 14.0501.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013280 2011-08-23 sxh121431

BMEN 6382 Systems Biology (3 semester credit hours) An interdisciplinary approach to biology. It explores experimental, theoretical, and computational approaches from mathematics, physics, and engineering for the understanding and analysis of biological problems. **Prerequisites:** Prerequisite: BMEN 6374 or instructor permission. consent required. (3-0) Y

| 2014-open | edit * | bmen6385 (r3) | bmen6385.6 | BMEN 6385 Biomedical Signals and Systems (3 semester credit hours) Time and Frequency domain analysis; continuous-time and discrete-time signals, linear-time invariant (LTI) systems and their properties. Frequency analysis of: LTI systems, continuous-time signals (Fourier series and Fourier transform) and discrete time signals [discrete Fourier series and discrete-time Fourier transform (DTFT)]. Sampling and signal reconstruction. Discrete Fourier transform (DFT) and fast Fourier transform (FFT). Filter design. MATLAB-based tutorials. Prerequisites: ENGR 2300 and EE 4310. (3-0) Y | phase: approve | cct130230 | 2014-01-15 09:11:11 013636 14.0501.00.06 audit: -87.1 m index: -87.1 m match_fail | process orion |

peoplesoft diff: 013636 2012-08-26 sxh121431

BMEN 6385 Biomedical Signals and Systems (3 semester credit hours) Time and Frequency domain analysis; continuous-time and discrete-time signals, linear-time invariant (LTI) systems and their properties. Frequency analysis of: LTI systems, continuous-time signals (Fourier series and Fourier transform) and discrete time signals [discrete Fourier series and discrete-time Fourier transform (DTFT)]. Sampling and signal reconstruction. Discrete Fourier transform (DFT) and fast Fourier transform (FFT). Filter design. MATLAB-based tutorials. Prerequisites: ENGR 2300 and EE 4310. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6386 (r3)</td>
<td>BMEN 6386 Biological Processes: Modeling and Simulation (3 semester credit hours)</td>
<td>Introduces fundamental principles to develop and simulate mathematical and computer models of biological systems. Topics include modeling principles [continuous (differential equation models), discrete (Boolean network and Markov model), probabilistic (Bayesian network) and stochastic models] and model optimization. Methods to simulate mathematical biological models using computer programming (software: MATLAB) will be introduced. Prerequisites: MATH 2419 or equivalent. (3-1) Y</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6387 (r4)</td>
<td>BMEN 6387 (BIOL 5376) Applied Bioinformatics (3 semester credit hours)</td>
<td>Genomic information content; data searches and multiple sequence alignment; mutations and distance-based phylogenetic analysis; genomics and gene recognition; polymorphisms and forensic applications; nucleic-acid and protein array analysis; structure prediction of biological macromolecules. Prerequisites: STAT 1342 and MATH 1325 and MATH 1326. (3-0) T</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013647 2012-08-26 sxh121431

peoplesoft diff: 013695 2012-08-26 sxr090100

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * bmen6388 (r4) bmen6388.14</td>
<td>BMEN 6388 (EECS 6336 and MECH 6313 and SYSE 6324) Nonlinear Systems (3 semester credit hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>cct130230 2014-02-07 10:37:48 013640 14.1001.00.06 audit: -87 m index: -87 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

BMEN 6388 (ENGR 6336, EECS 6336 and MECH 6313, 6313 and SYSE 6324) Nonlinear Control Systems (3 semester credit hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bmen6389 (r3)</td>
<td>bmen6389.9</td>
<td>BMEN 6389 (BIOL 6385) Computational Biology (3 semester credit hours) Machine learning and probabilistic graphical models have become essential tools for analyzing and understanding complex systems biology data in biomedical research. This course introduces fundamental principles and methods behind the most important high throughput data analysis tools. Applications will cover molecular evolutionary models, DNA/protein motif discovery, gene prediction, high-throughput sequencing and microarray data analysis, computational modeling gene expression regulation, and biological pathway and network analysis. Prerequisite: Some background in elementary statistics/probability or introductory bioinformatics, or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>cct130230</td>
<td>2013-12-16 13:51:58 013704 26.1201.00.02 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
</tbody>
</table>

BMEN 6389 (BIOL 6385) Computational Biology (3 semester credit hours) Using computational Machine learning and statistical methods to analyze biological data, and perform mathematical modeling and computational simulation techniques to understand the biological systems. The probabilistic graphical models have become essential tools for analyzing and understanding complex systems biology data in biomedical research. This course introduces fundamental principles and methods behind the most important high throughput data analysis tools. Applications will cover molecular evolutionary models, DNA/protein motif discovery, gene prediction, high-throughput sequencing and microarray data analysis, computational modeling gene expression regulation, and biological pathway and network analysis. Prerequisite: (BMEN 6374 and BMEN 6387) Some background in elementary statistics/probability or BIOL 5376 introductory bioinformatics, or instructor permission. consent required. (3-0) Y
<table>
<thead>
<tr>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 6390 (BIOL 6390) Metabolic Pathways for Translational Medicine (3 semester credit hours)</td>
<td>This course will provide extensive discussion of major metabolic pathways in human and other experimental models of human diseases with emphasis on biochemical understanding, roles and effects of the pathways in the entire cellular network, and potential application to medicine. Prerequisite: BMEN 6389 or BIOL 6385 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>cc130230 2013-12-16 11:09:56 013641 14.0501.00.06</td>
<td>process orion</td>
</tr>
<tr>
<td>BMEN 6391 (BIOL 6373) Proteomics (3 semester credit hours)</td>
<td>Protein identification, sequencing, and analysis of post-translational modifications by liquid chromatography/tandem mass spectrometry; determination of protein three dimensional structure by x-ray crystallography; its use in drug design; understanding protein interactions and function using protein chip microarrays. Prerequisite: Undergraduate or graduate biochemistry. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:14:49 013694 26.0406.00.02</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6392 (r4)</td>
<td>bmen6392.7</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6v40 (r3)</td>
<td>bmen6v40.9</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6v70 (r4)</td>
<td>bmen6v70.8</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6v71 (r4)</td>
<td>bmen6v71.9</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>course</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6v87</td>
<td>(r3)</td>
<td>bmen6v87.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen6v98</td>
<td>(r4)</td>
<td>bmen6v98.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen7v87</td>
<td>(r4)</td>
<td>bmen7v87.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen7v88</td>
<td>(r4)</td>
<td>bmen7v88.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bmen8v40</td>
<td>(r3)</td>
<td>bmen8v40.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * bmen8v70 (r3) bmen8v70.8</td>
<td>BMEN 8V70 Advanced Research In Biomedical Engineering (3-9 semester credit hours) Pass/ Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>cct130230</td>
<td>2014-02-01 09:42:22 013290 14.0501.00.06 audit: -87 m index: -87 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * bmen8v99 (r4) bmen8v99.8</td>
<td>BMEN 8V99 Dissertation (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>cct130230</td>
<td>2013-11-01 10:27:35 013291 14.0501.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ce5325 (r6) ce5325.6</td>
<td>CE 5325 (EEDG 5325) Hardware Modeling Using HDL (3 semester credit hours) This course introduces students to hardware description languages (HDL) beginning with simple examples and describing tools and methodologies. It covers the language, dwelling on fundamental simulation concepts. Students are also exposed to the subset of HDL that may be used for synthesis of custom logic. HDL simulation and synthesis labs and projects are performed using commercial and/or academic VLSI CAD tools. Prerequisite: EE 3320 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>cxi140030</td>
<td>2013-09-27 09:27:10 002058 14.0901.00.06 audit: -88 m index: -88 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
CE 5354 (CS 5354 and SE 5354) Software Engineering (3 semester credit hours)
Formal specification and program verification. Software life-cycle models and their stages. System and software requirements engineering; user-interface design. Software architecture, design, and analysis. Software testing, validation, and quality assurance. Prerequisite or Corequisite: CS 5343. (3-0) S

PeopleSoft Diff: 002059 2014-08-24 sxh121431

CE 5354 (CS 5354, 5354, and SE 5354) Software Engineering (3 semester credit hours) Formal specification and program verification. Software life-cycle models and their stages. System and software requirements engineering; user-interface design. Software architecture, design, and analysis. Software testing, validation, and quality assurance. Prerequisite: CS 5343 (CS 5343 can be taken before Prerequisite or at the same time as Corequisite: CS 5354) 5343. (3-0) S

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce5354 (r5)</td>
<td>ce5354.7</td>
<td>CE 5354 (CS 5354 and SE 5354) Software Engineering (3 semester credit hours) Formal specification and program verification. Software life-cycle models and their stages. System and software requirements engineering; user-interface design. Software architecture, design, and analysis. Software testing, validation, and quality assurance. Prerequisite or Corequisite: CS 5343. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:10:16 002059 14.0903.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

CE 5381 Curriculum Practical Training in Computer Engineering (3 semester credit hours)
This course is required of students who need additional training in engineering practice. May not be used to fulfill degree requirements in MS Computer Engineering. May be repeated for credit (9 semester credit hours maximum). Department consent required. (3-0) S

PeopleSoft Diff: 002060 2008-08-21 sxh121431

CE 5381 Curriculum Practical Training in Computer Engineering (3 semester credit hours) This course is required of students who need additional training in engineering practice. Credit does May not apply be used to the 33 hour M.S.C.E. requirement. Consent of Graduate Adviser required. (May fulfill degree requirements in MS Computer Engineering. May be repeated to a maximum of 9 hours) for credit (9 semester credit hours maximum). Department consent required. (3-0) S

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce5381 (r3)</td>
<td>ce5381.9</td>
<td>CE 5381 Curriculum Practical Training in Computer Engineering (3 semester credit hours) This course is required of students who need additional training in engineering practice. May not be used to fulfill degree requirements in MS Computer Engineering. May be repeated for credit (9 semester credit hours maximum). Department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-14 15:52:42 002060 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6301 (r6) ce6301.7</td>
<td>CE 6301 (EEDG 6301) Advanced Digital Logic (3 semester credit hours) Modern design techniques for digital logic. Logic synthesis and design methodology. Link between front-end and back-end design flows. Field programmable gate arrays and reconfigurable digital systems. Introduction to testing, simulation, fault diagnosis and design for testability. Prerequisite: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-25 18:31:25 002061 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6302 (r7) ce6302.9</td>
<td>CE 6302 (EEDG 6302) Microprocessor Systems (3 semester credit hours) Design of microprocessor based systems including I/O and interface devices. Microprocessor architectures. Use of emulators and other sophisticated test equipment. Extensive laboratory work. Prerequisite: EE 4304 or equivalent and background in VHDL/Verilog. (2-3) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-25 18:32:20 002062 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6303 (r6)</td>
<td>ce6303.7</td>
<td>CE 6303 (EEDG 6303) Testing and Testable Design (3 semester credit hours) Techniques for detection of failures in digital circuits and systems. Fault modeling and detection. Functional testing and algorithms for automatic test pattern generation (ATPG). Design of easily testable digital systems. Techniques for introducing built-in self test (BIST) capability. Test of various digital modules, such as PLA's, memory circuits, datapath, etc. Prerequisites: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-25 18:33:16 002063 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 002063 2013-08-25 sxh121431

CE 6303 (EEDG 6303) Testing and Testable Design (3 semester credit hours) Techniques for detection of failures in digital circuits and systems. Fault modeling and detection. Functional testing and algorithms for automatic test pattern generation (ATPG). Design of easily testable digital systems. Techniques for introducing built-in self test (BIST) capability. Test of various digital modules, such as PLA's, memory circuits, datapath, etc. Prerequisites: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) Y

| 2014-open | edit * | ce6304 (r6) | ce6304.9 | CE 6304 (CS 6304 and EEDG 6304) Computer Architecture (3 semester credit hours) Trends in processor, memory, I/O and system design. Techniques for quantitative analysis and evaluation of computer systems to understand and compare alternative design choices in system design. Components in high performance processors and computers: pipelining, instruction level parallelism, memory hierarchies, and input/output. Students will undertake a major computing system analysis and design project. Must have an understanding of C/C++. Prerequisite: CS 3340 or EE 4304. (3-0) Y | phase: approve | ddc130130 2014-01-15 16:50:45 002064 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail | ps info detail change process orion |

peoplesoft diff: 002064 2013-08-25 sxh121431

CE 6304 (CS 6304, 6304 and EEDG 6304) Computer Architecture (3 semester credit hours) Trends in processor, memory, I/O and system design. Techniques for quantitative analysis and evaluation of computer systems to understand and compare alternative design choices in system design. Components in high performance processors and computers: pipelining, instruction level parallelism, memory hierarchies, and input/output. Students will undertake a major computing system analysis and design project. Must have an understanding of C/C++. Prerequisite: CS 3340 or EE 4304. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6306</td>
<td>(r7)</td>
<td>ce6306.7</td>
<td>CE 6306 (EEDG 6306) Application Specific Integrated Circuits Design (3 semester credit hours) This course discusses the design of application specific integrated circuits (ASIC). Specific topics include: VLSI system design specification, ASIC circuit structures, synthesis, and implementation of an ASIC digital signal processing (DSP) chip. Prerequisite: EE 3320. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ce6307 (r5) ce6307.7</td>
<td>CE 6307 (EEDG 6307) Fault-Tolerant Digital Systems (3 semester credit hours) Advanced concepts in hardware and software fault tolerance. Topics include fault models, coding in computer systems, fault detection mechanisms, fault-tolerant routing, reconfiguration techniques, and software fault tolerance techniques such as recovery blocks, N-version programming, checkpointing, and application-level error resilience, etc. Survey of practical fault-tolerant systems. Prerequisites: EEDG 6301 and ENGR 3341 or equivalent. (3-0) R.</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-03 17:06:31 002067 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>peopl...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ce6324 (r4) ce6324.5</td>
<td>CE 6324 (CS 6324) Information Security (3 semester credit hours) A comprehensive study of security vulnerabilities in information systems and the basic techniques for developing secure applications and practicing safe computing. Topics include common attacking techniques such as buffer overflow, Trojan, virus, etc. UNIX, Windows and Java security. Conventional encryption. Hashing functions and data integrity. Public-key encryption (RSA, Elliptic-Curve). Digital signature. Watermarking for multimedia. Security standards and applications. Building secure software and systems. Management and analysis of security. Legal and ethical issues in computer security. Prerequisites: CS 5343 and CS 5348. (3-0) Y</td>
<td>phase: approve status: approving audit: 29</td>
<td>peoplesoft diff: 002069 2014-08-24 sxh121431</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CE 6324 (CS 6324) Information Security (3 semester credit hours) A comprehensive study of security vulnerabilities in information systems and the basic techniques for developing secure applications and practicing safe computing. Topics include common attacking techniques such as buffer overflow, Trojan, virus, etc. UNIX, Windows and Java security. Conventional encryption. Hashing functions and data integrity. Public-key encryption (RSA, Elliptic-Curve). Digital signature. Watermarking for multimedia. Security standards and applications. Building secure software and systems. Management and analysis of security. Legal and ethical issues in computer security. **Prerequisite:** CS 5348 5343 and CS 5343, 5348. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * ce6325 (r6) ce6325.8</td>
<td>CE 6325 (EECT 6325) VLSI Design (3 semester credit hours) Introduction to MOS transistors. Analysis of the CMOS inverter. Combinational and sequential design techniques in VLSI; issues in static, transmission gate and dynamic logic design. Design and layout of complex gates, latches and flip-flops, arithmetic circuits, memory structures. Low power digital design. The method of logical effort. CMOS technology. Use of CAD tools to design, layout, check, extract and simulate a small project. Prerequisites: EE 3301 and EE 3320 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-25 18:37:53 002070 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>peoplesoft diff: 002070 2013-08-25 sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ce6345 (r7) ce6345.7</td>
<td>CE 6345 (EEDG 6345) Engineering of Packet-Switched Networks (3 semester credit hours) Detailed coverage, from the point of view of engineering design, of the physical, data-link, network and transport layers of IP (Internet Protocol) networks. This course is a master's level introduction to packet networks. Prior knowledge of digital communication systems is strongly recommended. Prerequisite: EE 3350 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:29:02 002072 14.1001.00.06 audit: -88 m index: -88 m match_fail</td>
<td>peoplesoft diff: 002072 2013-08-25 sxh121431</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6352</td>
<td>CE 6352 (CS 6352) Performance of Computer Systems and Networks (3 semester credit hours) Overview of case studies. Quick review of principles of probability theory. Queuing models and physical origin of random variables used in queuing models. Various important cases of the M/M/m/N queuing system. Little's law. The M/G/1 queuing system. Simulation of queuing systems. Product form solutions of open and closed queuing networks. Convolution algorithms and Mean Value Analysis for closed queuing networks. Discrete time queuing systems. Prerequisites: ENCS majors only and a first course on probability theory. (3-0) S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r4)</td>
<td></td>
<td>phase: approve</td>
<td>2014-01-24 13:05:34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ce6352.5</td>
<td></td>
<td>status: approving</td>
<td>11.0901.00.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>11.0901.00.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6353</td>
<td>CE 6353 (CS 6353) Compiler Construction (3 semester credit hours) Lexical analyzers, context-free grammars. Top-down and bottom-up parsing; shift reduce and LR parsing. Operator-precedence, recursive-descent, predictive, and LL parsing. LR(k), LL(k) and precedence grammars will be covered. Prerequisites: CS 5343 and CS 5349. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r3)</td>
<td></td>
<td>phase: approve</td>
<td>2013-09-27 09:29:15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ce6353.3</td>
<td></td>
<td>status: approving</td>
<td>14.0901.00.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>14.0901.00.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6354 (r6)</td>
<td>ce6354.9</td>
<td>CE 6354 (CS 6354 and SE 6354) Advanced Software Engineering (3 semester credit hours) This course covers advanced theoretical concepts in software engineering and provides an extensive hands-on experience in dealing with various issues of software development. It involves a semester-long group software development project spanning software project planning and management, analysis of requirements, construction of software architecture and design, implementation, and quality assessment. The course will introduce formal specification, component-based software engineering, and software maintenance and evolution. Must have knowledge of Java. Prerequisites: CE 5354 or CS 5354 or SE 5354 or equivalent. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6363 (r2)</td>
<td>ce6363.4</td>
<td>CE 6363 (CS 6363) Design and Analysis of Computer Algorithms (3 semester credit hours) The study of efficient algorithms for various computational problems. Algorithm design techniques. Sorting, manipulation of data structures, graphs, matrix multiplication, and pattern matching. Complexity of algorithms, lower bounds, NP completeness. Prerequisites: CS 5333 and CS 5343. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ce6367 (r6) ce6367.8</td>
<td>CE 6367 (CS 6367 and SE 6367 and SYSM 6310) Software Testing, Validation and Verification (3 semester credit hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE 5354 or CS 5354 or SE 5354 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-12-19 20:37:20</td>
<td>mxv062000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CE 6367, 6367 and SE 6367, 6367 and SYSM 6310 Software Testing, Validation and Verification (3 semester credit hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE/CS/SE 5354 or CS/SE 5354 or instructor consent of instructor required. (3-0) Y</td>
<td>status: approving</td>
<td>002076</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CE 6370 (EEDG 6370) Design and Analysis of Reconfigurable Systems (3 semester credit hours) Introduction to reconfigurable computing, programmable logic: FPGAS, CPLDs, CAD issues with FPGA based design, reconfigurable systems: emulation, custom computing, and embedded application based computing, static and dynamic hardware, evolutionary design, software environments for reconfigurable systems. Prerequisite: EE 3320 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>2013-09-27 09:29:40</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CE 6370, 6370 and EE 6370, 6370 and SYSM 6310 Design and Analysis of Reconfigurable Systems (3 semester credit hours) Introduction to reconfigurable computing, programmable logic: FPGAS, CPLDs, CAD issues with FPGA based design, reconfigurable systems: emulation, custom computing, and embedded application based computing, static and dynamic hardware, evolutionary design, software environments for reconfigurable systems. Prerequisite: EE 3320 or equivalent. (3-0) R</td>
<td>status: approving</td>
<td>002077</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf 22/219
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request status</th>
<th>metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6375</td>
<td>(r6)</td>
<td>ce6375.8</td>
<td>CE 6375 (EEDG 6375) Design Automation of VLSI Systems (3 semester credit hours) This course deals with various topics related to the development of CAD tools for VLSI systems design. Algorithms, data structures, heuristics and design methodologies behind CAD tools. Design and analysis of algorithms for layout, circuit partitioning, placement, routing, chip floor planning, and design rule checking (DRC). Introduction to CAD algorithms for RTL and behavior level synthesis, module generators, and silicon compilation. Prerequisite: CS 5343. Corequisite: EECT 6325. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>002078 14.0901.00.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>-87.1 m index: -87.1 m</td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6378</td>
<td>(r4)</td>
<td>ce6378.6</td>
<td>CE 6378 (CS 6378 and TE 6378) Advanced Operating Systems (3 semester credit hours) Concurrent processing, inter-process communication, process synchronization, deadlocks, introduction to queuing theory and operational analysis, topics in distributed systems and algorithms, checkpointing, recovery, multiprocessor operating systems. Must have knowledge of C and UNIX. Prerequisite: CS 5348 or equivalent. (3-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>002079 14.0903.00.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>-87.1 m index: -87.1 m</td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ce6380</td>
<td>(r4)</td>
<td>CE 6380 (CS 6380) Distributed Computing (3 semester credit hours) Topics include distributed algorithms, election algorithms, synchronizers, mutual exclusion, resource allocation, deadlocks, Byzantine agreement and clock synchronization, knowledge and common knowledge, reliability in distributed networks, and proving distributed programs correct. Prerequisite: CS 5348. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-09-27 09:30:03 002080 11.0501.00.06 audit: -88 m index: -88 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ce6380.4</td>
<td></td>
<td>peoplesoft diff: 002080 2014-08-24 sxh121431</td>
<td>status: approving</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ce6390</td>
<td>(r4)</td>
<td>CE 6390 (CS 6390) Advanced Computer Networks (3 semester credit hours) Survey of recent advancements in high-speed network technologies. Application of quantitative approach to the study of broadband integrated networks including admission control, access control, and quality of service guarantee. Prerequisite: CS 5390. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-09-27 09:30:07 002081 11.0901.00.06 audit: -88.4 m index: -88.4 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ce6390.4</td>
<td></td>
<td>peoplesoft diff: 002081 2014-08-24 sxh121431</td>
<td>status: approving</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce6392 (r3)</td>
<td>CE 6392 (CS 6392) Mobile Computing Systems (3 semester credit hours) Topics include coping with mobility of computing systems, data management, reliability issues, packet transmission, mobile IP, end-to-end reliable communication, channel and other resource allocation, slot assignment, routing protocols, and issues in mobile wireless networks (without base stations). Prerequisite: CS 6378 or CS 6390. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>peoplesoft diff: 002082 2014-08-24 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ce6392.3</td>
<td></td>
<td></td>
<td></td>
<td>ps info</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | ce6397 (r4) | CE 6397 (CS 6397) Synthesis and Optimization of High-Performance Systems (3 semester credit hours) A comprehensive study of high-level synthesis and optimization algorithms for designing high performance systems with multiple CPUs or functional units for critical applications such as Multimedia, Signal processing, Telecommunications, Networks, and Graphics applications, etc. Topics including algorithms for architecture-level synthesis, scheduling, resource binding, real-time systems, parallel processor array design and mapping, code generations for DSP processors, embedded systems and hardware/software codesigns. Prerequisite: CS 5343. (3-0) T | phase: approve | status: approving | peoplesoft diff: 002083 2014-08-24 sxh121431 |
| | | ce6397.4 | | | | ps info |
| | | | | | | detail |
| | | | | | | change |
| | | | | | | process |
| | | | | | | orion |</p>
<table>
<thead>
<tr>
<th>req type</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>course</td>
<td>CE 6398 (CS 6398 and EEDG 6398) DSP Architectures (3 semester credit hours) Typical DSP algorithms, representation of DSP algorithms, data-graph, FIR filters, convolutions, Fast Fourier Transform, Discrete Cosine Transform, low power design, VLSI implementation of DSP algorithms, implementation of DSP algorithms on DSP processors, DSP applications including wireless communication and multimedia. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:54:47 002084 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>req type</td>
<td>CE 6398 (CS 6398, 6398 and EEDG 6398) DSP Architectures (3 semester credit hours) Typical DSP algorithms, representation of DSP algorithms, data-graph, FIR filters, convolutions, Fast Fourier Transform, Discrete Cosine Transform, low power design, VLSI implementation of DSP algorithms, implementation of DSP algorithms on DSP processors, DSP applications including wireless communication and multimedia. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:30:38 002085 14.0901.00.06 audit: -88 m index: -88 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>course</td>
<td>CE 6399 (CS 6399) Parallel Architectures and Systems (3 semester credit hours) A comprehensive study of the fundamentals of parallel systems and architecture. Topics including parallel programming environment, fine-grain parallelism such as VLIW and superscalar, parallel computing paradigm of shared-memory, distributed-memory, data-parallel and data-flow models, cache coherence, compiling techniques to improve parallelism, scheduling theory, loop transformations, loop parallelizations and runtime systems. Prerequisite: CS 5348. (3-0) T</td>
<td>phase: approve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>add_renumber *</td>
<td>ce8v98</td>
<td>CE 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ce6v98 (r1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ce6v98.1</td>
<td>CE 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce7302</td>
<td></td>
<td>CE 7302 Hardware/Software Co-design (3 semester credit hours) Fundamental concepts in the design of complex digital systems consisting of hardware and software components. Topics include system description and modeling, efficient systems partitioning, hardware/software synthesis, compilation and behavioral optimization, embedded computing systems, telecommunications systems using general-purpose and special-purpose digital signal processors, and rapid prototyping and emulation using field programmable gate arrays. Prerequisites: CE 6301 and CE 6302 and CE 6304. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ce7302.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ce7303 (r3) ce7303.4</td>
<td>CE 7303 Hardware Verification (3 semester credit hours) This course deals with advanced issues related to the formal verification of complex digital systems. Topics include Binary Decision Diagrams (BDDs) and their application to representation and verification of digital systems, use of abstraction and rigorous analysis methods to solve complicated design problems, etc. Prerequisites: CE 6301 and CE 6303 and CE 6325. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-25 18:44:55 002088 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
</tbody>
</table>

PEOPLESOFT DIFF: 002088 2014-08-24 sxh121431
<table>
<thead>
<tr>
<th>start</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce7304 (r5)</td>
<td>CE 7304 (EEDG 7304) Advanced Computer Architecture (3 semester credit hours)
Advanced research topics in multiprocessor, GPU/GPGPU, storage-class non-volatile memory, main memory, network, and reconfigurable architectures. Focuses on current research in the area of computer system architecture to prepare students for a career in computer architecture research. Course will use articles from current technical literature to discuss relevant topics, such as digital signal processors, VLIW, and SIMD architectures, GPU and non-volatile memory architectures, low-power architectures, application-specific processors, and system on chip architectures. Prerequisites: CS 5348 and EEDG 6304 and knowledge of C/C++. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-03 17:09:40 002089 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ce7325 (r6)</td>
<td></td>
<td>CE 7325 (EECT 7325) Advanced VLSI Design (3 semester credit hours) Advanced topics in VLSI design covering topics beyond the first course (EECT 6325). Topics include: use of high-level design, synthesis, and simulation tools, clock distribution and routing problems, (a)synchronous circuits, low-power design techniques, study of various VLSI-based computations, systolic arrays, etc. Discussions on current research topics in VLSI design. Prerequisite: EECT 6325 or equivalent. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ce7328 (r6)</td>
<td></td>
<td>CE 7328 (EEDG 7328) Physical Design of High-Speed VLSI Circuits (3 semester credit hours) Techniques for the physical design of high-speed VLSI circuits. Topics related to interconnection circuit modeling, performance-driven routing, buffer and wire sizing, placement and floor planning, technology mapping and performance evaluation issues encountered in high-speed VLSI circuit designs. Discussion of state-of-the-art practical industrial design examples. A project related to the development of a prototype CAD tool. Prerequisites: (CE or EECT 6325) and knowledge of programming in C. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce7v80 (r5) ce7v80.9</td>
<td>CE 7V80 Special Topics in Computer Engineering (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum.) Prerequisite: ENCS majors only and instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-24 16:47:10 002086 14.0901.00.06 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce8v40 (r4) ce8v40.8</td>
<td>CE 8V40 Individual Instruction in Computer Engineering (1-6 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 15:10:24 002092 14.0901.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce8v70 (r4) ce8v70.8</td>
<td>CE 8V70 Research in Computer Engineering (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 15:10:59 002093 14.0901.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>ce8v98 (r5) ce8v98.10</td>
<td>request to remove this course from catalog CE 8V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>mjp044000 2013-12-05 10:25:37 002094 14.0901.00.06 audit: -87.2 m index: -87.2 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ce8v99 (r5) ce8v99.9</td>
<td>CE 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 11:11:07 002095 14.0901.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 002086 2008-08-21 sxh121431
peoplesoft diff: 002092 2012-08-26 sxh121431
peoplesoft diff: 002093 2012-08-26 sxh121431
peoplesoft diff: 002095 2012-08-26 sxh121431
peoplesoft diff: 002096 2012-08-26 sxh121431
peoplesoft diff: 002097 2012-08-26 sxh121431

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf 31/219
<table>
<thead>
<tr>
<th>start</th>
<th>course req type</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs5301 (r6) cs5301.7</td>
<td>CS 5301 (EEGR 5301) Professional and Technical Communication (3 semester credit hours) This course utilizes an integrated approach to writing and speaking for the technical professions. The advanced writing components of the course focus on writing professional quality technical documents such as proposals, memos, abstracts, reports, letters, emails, etc. The advanced oral communication components of the course focus on planning, developing, and delivering dynamic, informative and persuasive presentations. Advanced skills in effective teamwork, leadership, listening, multimedia and computer generated visual aids are also emphasized. Graduate students will have a successful communication experience working in a functional team environment using a real time, online learning environment. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-12-19 20:00:30 003581 09.0908.00.01 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs5303 (r6)</td>
<td>CS 5303 Computer Science I (3 semester credit hours) Computer science problem solving. The structure and nature of algorithms and their corresponding computer program implementation. Programming in a high level block-structured language (e.g., PASCAL, Ada, C++, or JAVA). Elementary data structures: arrays, records, linked lists, trees, stacks and queues. Prerequisite: ENCS majors only. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003582 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS 5303 Computer Science I (3 semester credit hours) Computer science problem solving. The structure and nature of algorithms and their corresponding computer program implementation. Programming in a high level block-structured language (e.g., PASCAL, Ada, C++, or JAVA). Elementary data structures: arrays, records, linked lists, trees, stacks and queues. Prerequisite: ENCS majors only. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2013-12-19 21:33:23 003582 11.0701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs5330 (r6)</td>
<td>CS 5330 Computer Science II (3 semester credit hours) Basic concepts of computer organization: Numbering systems, two's complement notation, multi-level machine concepts, machine language, assembly programming and optimization, subroutine calls, addressing modes, code generation process, CPU datapath, pipelining, RISC, CISC, and performance calculation. Corequisite: CS 5303. (3-0) R</td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003585 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS 5330 Computer Science II (3 semester credit hours) Basic concepts of computer organization: Numbering systems, two's complement notation, multi-level machine concepts, machine language, assembly programming and optimization, subroutine calls, addressing modes, code generation process, CPU datapath, pipelining, RISC, CISC, and performance calculation. Co-requisite: Corequisite: CS 5303. (3-0) R</td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2014-01-25 18:47:49 003585 11.0701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs5333 (r6)</td>
<td>CS 5333 Discrete Structures (3 semester credit hours) Mathematical foundations of computer science. Logic, sets, relations, graphs and algebraic structures. Combinatorics and metrics for performance evaluation of algorithms. Prerequisite: ENCS majors only. (3-0) S</td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003586 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS 5333 Discrete Structures (3 semester credit hours) Mathematical foundations of computer science. Logic, sets, relations, graphs and algebraic structures. Combinatorics and metrics for performance evaluation of algorithms. Prerequisite: ENCS majors only. (3-0) S</td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2013-12-19 21:27:53 003586 30.0801.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs5336 (r3) cs5336.3</td>
<td>CS 5336 Programming Projects in Java (3 semester credit hours) Overview of the object-oriented philosophy. Implementation of object-oriented designs using the Java programming environment. Emphasis on using the browser to access and extend the Java class library. Prerequisite: CS 5303 or equivalent experience. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:41:34</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs5343 (r8) cs5343.12</td>
<td>CS 5343 Algorithm Analysis and Data Structures (3 semester credit hours) Formal specifications and representation of lists, arrays, trees, graphs, multilinked structures, strings and recursive pattern structures. Analysis of associated algorithms. Sorting and searching, file structures. Relational data models. Prerequisites: CS 5303 and CS 5333. (3-0) S</td>
<td>phase: approve</td>
<td>skarrah 2013-12-20 10:26:32</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>cs5348 (r3)</td>
<td>CS 5348 Operating Systems Concepts (3 semester credit hours) Processes and threads. Concurrency issues including semaphores, monitors and deadlocks. Simple memory management. Virtual memory management. CPU scheduling algorithms. I/O management. File management. Introduction to distributed systems. Must have a working knowledge of C and Unix. Prerequisite: CS 5330. Prerequisite or Corequisite: CS 5343. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-24 12:53:47 003593 14.0903.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>cs5349 (r5)</td>
<td>CS 5349 Automata Theory (3 semester credit hours) Deterministic and nondeterministic finite automata; regular expressions, regular sets, context-free grammars, pushdown automata, context free languages. Selected topics from Turing Machines and undecidability. Prerequisite: CS 5333. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:42:06 003594 11.0102.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs5354 (r5)</td>
<td>CS 5354 (CE 5354 and SE 5354) Software Engineering (3 semester credit hours) Formal specification and program verification. Software life-cycle models and their stages. System and software requirements engineering; user-interface design. Software architecture, design, and analysis. Software testing, validation, and quality assurance. Prerequisite or Corequisite: CS 5343. (3-0) S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs5354.7</td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003595 2011-08-23 sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2013-12-19 20:10:56 003595 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs5375 (r4)</td>
<td>CS 5375 Principles of UNIX (3 semester credit hours) Design and history of the UNIX operating system. Detailed study of process and file system data structures. Shell programming in UNIX. Use of process-forking functionality of UNIX to simplify complex problems. Interprocess communication and coordination. Device drivers and streams as interfaces to hardware features. TCP/IP and other UNIX inter-machine communication facilities. Prerequisite: CS 3335 or CS 5335. (3-0) S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs5375.5</td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003596 2008-08-21 sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2013-12-19 21:28:36 003596 11.0201.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>end</td>
<td>course</td>
<td></td>
<td></td>
<td></td>
<td>status</td>
<td>metadata</td>
</tr>
<tr>
<td></td>
<td>req_id</td>
<td></td>
<td></td>
<td></td>
<td>phase</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs5390 (r4)</td>
<td>cs5390.4</td>
<td>CS 5390 Computer Networks (3 semester credit hours) The design and analysis of protocols for computer networking. Topics include: network protocol design and composition via layering, contention resolution in multi-access networks, routing metrics and optimal path searching, traffic management, global network protocols; dealing with heterogeneity and scalability. Prerequisite: CS 5343. (3-0) S</td>
<td>approving</td>
<td>12:43:18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003599 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS 5390 Computer Networks (3 semester credit hours) The design and analysis of protocols for computer networking. Topics include: network protocol design and composition via layering, contention resolution in multi-access networks, routing metrics and optimal path searching, traffic management, global network protocols; dealing with heterogeneity and scalability. Prerequisite: CS 5343. (3-0) S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs5v71 (r6)</td>
<td>cs5v71.8</td>
<td>CS 5V71 Cooperative Education (1-3 semester credit hours) Placement in a faculty-supervised work environment in industry or government. Sites may be local or out-of-state. The cooperative education program provides exposure to a professional working environment, application of theory to working realities, and an opportunity to test skills and clarify goals. Experience gained may also serve as a work credential after graduation. May be repeated for credit (9 semester credit hours maximum). Prerequisites: ENCS majors only and department consent required. (1-3-0) S</td>
<td>approving</td>
<td>21:29:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003557 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CS 5V71 Cooperative Education (1-3 semester credit hours) Placement in a faculty-supervised work environment in industry or government. Sites may be local or out-of-state. The cooperative education program provides exposure to a professional working environment, application of theory to working realities, and an opportunity to test skills and clarify goals. Experience gained may also serve as a work credential after graduation. (May be repeated to a maximum of 9 for credit (9 semester credit hours maximum). Prerequisites: ENCS majors only and department consent required. (1-3-0) S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs5v81 (r5)</td>
<td>cs5v81.8</td>
<td>CS 5V81 Special Topics in Computer Science (1-9 semester credit hours) May be repeated as topics vary (9 semester credit hours maximum). Prerequisites: ENCS majors only and instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 21:29:16 003560 11.0701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6301 (r2)</td>
<td>cs6301.4</td>
<td>CS 6301 Special Topics in Computer Science (3 semester credit hours) May be repeated for credit as topics vary. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:18:16 014135 11.0701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6304 (r6)</td>
<td>cs6304.10</td>
<td>CS 6304 (CE 6304 and EEDG 6304) Computer Architecture (3 semester credit hours) Trends in processor, memory, I/O and system design. Techniques for quantitative analysis and evaluation of computer systems to understand and compare alternative design choices in system design. Components in high performance processors and computers: pipelining, instruction level parallelism, memory hierarchies, and input/output. Students will undertake a major computing system analysis and design project. Must have an understanding of C/C++. Prerequisite: CS 3340 or EE 4304. (3-0) Y</td>
<td>phase: approve</td>
<td>ddc130130 2014-01-15 16:52:22 003613 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cs6313 (r1) cs6313.3</td>
<td>CS 6313 (STAT 6313) Statistical Methods for Data Science (3 semester credit hours) Statistical methods for data science. Statistical Methods are developed at an intermediate level. Sampling distributions. Point and interval estimation. Parametric and nonparametric hypothesis testing. Analysis of variance. Regression, model building and model diagnostics. Monte Carlo simulation and bootstrap. Introduction to a statistical software package. Prerequisite: CS 3341 or SE 3341 or STAT 3341 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>skarrah 2013-12-20 10:13:34 NOLINK 30.0801.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cs6320 (r3) cs6320.3</td>
<td>CS 6320 Natural Language Processing (3 semester credit hours) This course covers state-of-the-art methods for natural language processing. After an introduction to the basics of syntax, semantic, and discourse analysis, the focus shifts to the integration of these modules into natural-language processing systems. In addition to natural language understanding, the course presents advanced material on lexical knowledge acquisition, natural language generation, machine translation, and parallel processing of natural language. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:44:53 003614 11.0401.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs6321 (r3)</td>
<td>cs6321.4</td>
<td>CS 6321 Discourse Processing (3 semester credit hours) Introduction to discourse processing from natural language texts. Automatic clustering of utterances into coherent units (segments) with hierarchical structures. State-of-the-art research in textual cohesion, coherence, and discourse understanding. Included topics are anaphoric reference and ellipsis, notion of textual context, and relationship between tense, aspect, and discourse states. Prerequisite: CS 6320 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:20:30 003615 11.0701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs6322 (r3)</td>
<td>cs6322.3</td>
<td>CS 6322 Information Retrieval (3 semester credit hours) This course covers modern techniques for storing and retrieving unformatted textual data and providing answers to natural language queries. Current research topics and applications of information retrieval in data mining, data warehousing, text mining, digital libraries, hypertext, multimedia data, and query processing are also presented. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:45:21 003616 11.0401.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6324 (r4) cs6324.5</td>
<td>CS 6324 (CE 6324) Information Security (3 semester credit hours) A comprehensive study of security vulnerabilities in information systems and the basic techniques for developing secure applications and practicing safe computing. Topics include common attacking techniques such as buffer overflow, Trojan, virus, etc. UNIX, Windows and Java security. Conventional encryption. Hashing functions and data integrity. Public-key encryption (RSA, Elliptic-Curve). Digital signature. Watermarking for multimedia. Security standards and applications. Building secure software and systems. Management and analysis of security. Legal and ethical issues in computer security. Prerequisites: CS 5343 and CS 5348. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:21:09 003617 11.0701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 003617 2008-08-21 sxh121431

CS 6324 (CE 6324) Information Security (3 semester credit hours) A comprehensive study of security vulnerabilities in information systems and the basic techniques for developing secure applications and practicing safe computing. Topics include common attacking techniques such as buffer overflow, Trojan, virus, etc. UNIX, Windows and Java security. Conventional encryption. Hashing functions and data integrity. Public-key encryption (RSA, Elliptic-Curve). Digital signature. Watermarking for multimedia. Security standards and applications. Building secure software and systems. Management and analysis of security. Legal and ethical issues in computer security. Prerequisite: Knowledge equivalent to CS 2302. (3-0) T

| 2014-open | edit * | cs6325 (r4) cs6325.5 | CS 6325 Introduction to Bioinformatics (3 semester credit hours) The course provides a broad overview of the bioinformatics field. Comprehensive introduction to molecular biology and molecular genetics for a program of study in bioinformatics. Discussion of elementary computer algorithms in biology (e.g., sequence alignment and gene finding). Biological databases, data analysis and management. Prerequisite: CS 2302 or equivalent. (3-0) T | phase: approve | mxv062000 2013-12-19 20:21:48 003618 26.1103.00.02 audit: -87.2 m index: -87.2 m match_fail | ps info detail change process orion |

peoplesoft diff: 003618 2011-08-23 sxh121431

CS 6325 Introduction to Bioinformatics (3 semester credit hours) The course provides a broad overview of the bioinformatics field. Comprehensive introduction to molecular biology and molecular genetics for a program of study in bioinformatics. Discussion of elementary computer algorithms in biology (e.g., sequence alignment and gene finding). Biological databases, data analysis and management. Prerequisite: Knowledge equivalent to CS 2302. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6327 (r1)</td>
<td>CS 6327 Video Analytics (3 semester credit hours) In-depth analysis of topics such as: video features for (human) activity and event detection; large-scale video event classification algorithms; objects-in-video counting approaches; multi-camera video handling; compressed video event detection and analyzing video in large-scale human traffic areas (such as shopping malls, airports, train-stations, etc.). Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>skarrah 2013-12-20 10:20:26</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6327.3</td>
<td></td>
<td>status: approving</td>
<td>NOLINK 11.0701.00.06</td>
<td>detail change match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td></td>
<td>orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

CS 6327 Video Analytics (3 semester credit hours) In-depth analysis of topics such as: video features for (human) activity and event detection; large-scale video event classification algorithms; objects-in-video counting approaches; multi-camera video handling; compressed video event detection and analyzing video in large-scale human traffic areas (such as shopping malls, airports, train-stations, etc.). Prerequisite: CS 5343. (3-0) Y

<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6329 (r1)</td>
<td>CS 6329 (SE 6329) Object-Oriented Software Engineering (3 semester credit hours) Concepts, methods and techniques necessary to efficiently capture software requirements in use cases and transform them into design and implementation. Use of UML in the context of an iterative, agile process with an OO model transformation approach. Use of an advanced CASE tool that allows the synchronization between the various models and the code. Prerequisites: CS 3354 or CS 5354 and knowledge of Java. (3-0) S</td>
<td>phase: approve</td>
<td>skarrah 2013-12-20 10:09:24</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6329.5</td>
<td></td>
<td>status: approving</td>
<td>NOLINK 14.0903.00.06</td>
<td>detail change match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td></td>
<td>orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

CS 6329 (SE 6329) Object-Oriented Software Engineering (3 semester credit hours) Concepts, methods and techniques necessary to efficiently capture software requirements in use cases and transform them into design and implementation. Use of UML in the context of an iterative, agile process with an OO model transformation approach. Use of an advanced CASE tool that allows the synchronization between the various models and the code. Prerequisites: CS 3354 or CS 5354 and knowledge of Java. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6332 (r1)</td>
<td>cs6332.3</td>
<td>CS 6332 Systems Security and Malicious Code Analysis (3 semester credit hours) Concepts, techniques, and tools to capture the structure, format, and representation of binary code, and transform them for higher level analysis. Use of static analysis including data-flow analysis, point-to analysis, and shape analysis to reason about the abstractions inside binary code. Use of dynamic binary instrumentation to trace the instruction level behavior of both benign and malicious programs. Use of virtual machines to observe the whole system level behavior including OS kernels. Prerequisites: CS 5343 and CS 5348 and knowledge of Assembly Code. (3-0) Y</td>
<td>phase: approve</td>
<td>skarrah</td>
<td>2013-12-20 10:45:06</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6333 (r3)</td>
<td>cs6333.3</td>
<td>CS 6333 Algorithms in Computational Biology (3 semester credit hours) The principles of algorithm design for biological datasets, and analysis of influential problems and techniques. Biological sequence analysis, gene finding, RNA folding, protein folding, sequence alignment, genome assembly, comparative genomics, phylogenetics, clustering algorithms. Prerequisite: CS 6325. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-16 12:46:09</td>
</tr>
<tr>
<td>start</td>
<td>req course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cs6343 (r1) cs6343.3</td>
<td>CS 6343 Cloud Computing (3 semester credit hours) Different layers of cloud computing, infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS). Data centers. Resource management, power management, and health monitoring in IaaS cloud. Hadoop MapReduce for big data computing. PaaS examples such as GAE, Force.com. SaaS concepts and enabling technologies. Cloud storage theory and practical solutions such as GFS, Big Table, HDFS, HBase, Dynamo, Pnuts. Erasure coding and secret sharing based cloud storage. Virtualization and emulation. Server virtualization, storage virtualization, and network virtualization. Cloud security. Prerequisites: CS 5343 and CS 5348. (3-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 9</td>
<td>skarrah 2013-12-20 10:22:04 NOLINK 11.0701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

CS 6343 Cloud Computing (3 semester credit hours) Different layers of cloud computing, infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS). Data centers. Resource management, power management, and health monitoring in IaaS cloud. Hadoop MapReduce for big data computing. PaaS examples such as GAE, Force.com. SaaS concepts and enabling technologies. Cloud storage theory and practical solutions such as GFS, Big Table, HDFS, HBase, Dynamo, Pnuts. Erasure coding and secret sharing based cloud storage. Virtualization and emulation. Server virtualization, storage virtualization, and network virtualization. Cloud security. Prerequisites: CS 5343 and CS 5348. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>cs6347</td>
<td>(r1)</td>
<td>CS 6347 Statistical Methods in AI and Machine Learning (3 semester credit hours) Introduction to the probabilistic and statistical techniques used in modern computer systems. Probabilistic graphical models such as Bayesian and Markov networks. Probabilistic inference techniques including variable elimination, belief propagation and its generalizations, and sampling-based algorithms such as importance sampling and Markov Chain Monte Carlo sampling. Statistical learning techniques for learning the structure and parameters of graphical models. Sequential models such as Hidden Markov models and Dynamic Bayesian networks. Prerequisites: CS 3341 and CS 5343 or equivalent or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 9</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6348</td>
<td>cs6348.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CS 6348 Data and Applications Security (3 semester credit hours) The course will teach principles, technologies, tools and trends for data and applications security. Topics to be covered include: confidentiality, privacy and trust management; secure databases; secure distributed systems; secure multimedia and object systems; secure data warehouses; data mining for security applications; assured information sharing; secure knowledge management; secure collaboration; secure digital libraries; trustworthy semantic web; biometrics; digital forensics; secure e-commerce; secure sensor information management and secure social networks. Students will take one system or application and develop a secure version of that system or application for the programming project.

Prerequisites: CS 5343 and department consent required. (3-0) Y

peoplesoft diff: 013705 2013-08-25 sxh121431

CS 6348 Data and Applications Security (3 semester credit hours) The course will teach principles, technologies, tools and trends for data and applications security. Topics to be covered include: confidentiality, privacy and trust management; secure databases; secure distributed systems; secure multimedia and object systems; secure data warehouses; data mining for security applications; assured information sharing; secure knowledge management; secure collaboration; secure digital libraries; trustworthy semantic web; biometrics; digital forensics; secure e-commerce; secure sensor information management and secure social networks. Students will take one system or application and develop a secure version of that system or application for the programming project.

Prerequisites: CS 5343 and department consent required. (3-0) Y

peoplesoft diff: 013705 2013-08-25 sxh121431

CS 6348 Data and Applications Security (3 semester credit hours) The course will teach principles, technologies, tools and trends for data and applications security. Topics to be covered include: confidentiality, privacy and trust management; secure databases; secure distributed systems; secure multimedia and object systems; secure data warehouses; data mining for security applications; assured information sharing; secure knowledge management; secure collaboration; secure digital libraries; trustworthy semantic web; biometrics; digital forensics; secure e-commerce; secure sensor information management and secure social networks. Students will take one system or application and develop a secure version of that system or application for the programming project.

Prerequisites: CS 5343 and department consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6349 (r7)</td>
<td>CS 6349 Network Security (3 semester credit hours) This course covers theoretical and practical aspects of network security. The topics include use of cryptography for building secure communication protocols and authentication systems; security handshake pitfalls, Kerberos and PKI, security of TCP/IP protocols including IPSec, BGP security, VPNs, IDSes, firewalls, and anonymous routing; security of TCP/IP applications; wireless LAN security; denial-of-service defense. Students are required to do a programming project building a distributed application with certain secure communication features and required to participate in several network security lab exercises and cyber war games. Prerequisites: CS 5390 and department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>ddc130130 2014-01-15 15:53:24 003620 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>peoplesoft diff: 003620 2012-08-26 sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6349.9</td>
<td>CS 6349 Network Security (3 semester credit hours) This course covers theoretical and practical aspects of network security. The topics include use of cryptography for building secure communication protocols and authentication systems; security handshake pitfalls, Kerberos and PKI, security of TCP/IP protocols including IPSec, BGP security, VPNs, IDSes, firewalls, and anonymous routing; security of TCP/IP applications; wireless LAN security; denial-of-service defense. Students are required to do a programming project building a distributed application with certain secure communication features and required to participate in several network security lab exercises and cyber war games. Prerequisites: CS 5390 and department consent required. (3-0) Y</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6350</td>
<td>(r1)</td>
<td>cs6350.3</td>
<td>CS 6350 Big Data Management and Analytics (3 semester credit hours) This course focuses on scalable data management and mining algorithms for analyzing very large amounts of data (i.e., Big Data). Included topics are: Mapreduce, NoSQL systems (e.g., key-value stores, column-oriented data stores, stream processing systems), association rule mining, large scale supervised and unsupervised learning, state of the art research in data streams, and applications including recommendation systems, web and big data security. Prerequisites: CS 6360 and Java programming. Corequisite: CS 6364 or CS 6375. (3-0) S</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

CS 6350 Big Data Management and Analytics (3 semester credit hours) This course focuses on scalable data management and mining algorithms for analyzing very large amounts of data (i.e., Big Data). Included topics are: Mapreduce, NoSQL systems (e.g., key-value stores, column-oriented data stores, stream processing systems), association rule mining, large scale supervised and unsupervised learning, state of the art research in data streams, and applications including recommendation systems, web and big data security. Prerequisites: CS 6360 and Java programming. Corequisite: CS 6364 or CS 6375. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * cs6352 (r6) cs6352.7</td>
<td>CS 6352 (CE 6352) Performance of Computer Systems and Networks (3 semester credit hours) Overview of case studies. Quick review of principles of probability theory. Queuing models and physical origin of random variables used in queuing models. Various important cases of the M/M/m/N queuing system. Little's law. The M/G/1 queuing system. Simulation of queuing systems. Product form solutions of open and closed queuing networks. Convolution algorithms and Mean Value Analysis for closed queuing networks. Discrete time queuing systems. Prerequisites: ENCS majors only and a first course on probability theory. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 21:30:31 003622 11.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cs6353 (r6) cs6353.6</td>
<td>CS 6353 (CE 6353) Compiler Construction (3 semester credit hours) Lexical analyzers, context-free grammars. Top-down and bottom-up parsing; shift reduce and LR parsing. Operator-precedence, recursive-descent, predictive, and LL parsing. LR(k), LL(k) and precedence grammars will be covered. Prerequisites: CS 5343 and CS 5349. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:47:38 003623 14.0901.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------------------------</td>
<td>--</td>
<td>---------------</td>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6354 (r9) cs6354.12</td>
<td>CS 6354 (CE 6354 and SE 6354) Advanced Software Engineering (3 semester credit hours) This course covers advanced theoretical concepts in software engineering and provides an extensive hands-on experience in dealing with various issues of software development. It involves a semester-long group software development project spanning software project planning and management, analysis of requirements, construction of software architecture and design, implementation, and quality assessment. The course will introduce formal specification, component-based software engineering, and software maintenance and evolution. Must have knowledge of Java. Prerequisite: CE 5354 or CS 5354 or SE 5354 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>ddc130130 2014-01-15 17:14:49 003624 14.0903.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *
cs6356 (r7)
cs6356.8</td>
<td>CS 6356 (SE 6356 and SYSM 6308) Software Maintenance, Evolution, and Re-Engineering (3 semester credit hours) Principles and techniques of software maintenance. Impact of software development process on software justifiability, maintainability, evolvability, and planning of release cycles. Use of very high-level languages and dependencies for forward engineering and reverse engineering. Achievements, pitfalls, and trends in software reuse, reverse engineering, and re-engineering. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>phase: approve
status: approving
audit: 30</td>
<td>mxv062000
2013-12-19
20:27:22
003626
14.0903.00.06
index: -87.2 m
match_fail</td>
<td>peoplesoft diff: 003626 2012-08-26 sxh121431</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit *
cs6359 (r4)
cs6359.5 | CS 6359 (SE 6359) Object-Oriented Analysis and Design (3 semester credit hours) Analysis and practice of modern tools and concepts that can help produce software that is tolerant of change. Consideration of the primary tools of encapsulation and inheritance. Construction of software-ICs which show the parallel with hardware construction. Prerequisites: CE 5354 or CS 5354 or SE 5354 and (CS 3335 or CS 5336). (3-0) S | phase: approve
status: approving
audit: 30 | mxv062000
2013-12-19
20:29:55
003629
14.0903.00.06
index: -87.2 m
match_fail | peoplesoft diff: 003629 2008-08-21 sxh121431 |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6360 (r6)</td>
<td>cs6360.6</td>
<td>CS 6360 (SE 6360) Database Design (3 semester credit hours) Methods, principles, and concepts that are relevant to the practice of database software design. Database system architecture; conceptual database models; relational and object-oriented databases; database system implementation; query processing and optimization; transaction processing concepts, concurrency, and recovery; security. Prerequisite: CS 5343. (3-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6361 (r5)</td>
<td>cs6361.7</td>
<td>CS 6361 (SE 6361 and SYSM 6309) Advanced Requirements Engineering (3 semester credit hours) System and software requirements engineering. Identification, elicitation, modeling, analysis, specification, management, and evolution of functional and non-functional requirements. Strengths and weaknesses of different techniques, tools, and object-oriented methodologies. Interactions and trade-offs among hardware, software, and organization. System and sub-system integration with software and organization as components of complex, composite systems. Transition from requirements to design. Critical issues in requirements engineering. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 003630 2013-08-25 sxh121431

CS 6360 (SE 6360) Database Design (3 semester credit hours) Methods, principles, and concepts that are relevant to the practice of database software design. Database system architecture; conceptual database models; relational and object-oriented databases; database system implementation; query processing and optimization; transaction processing concepts, concurrency, and recovery; security. Prerequisite: CS 5343. (3-0) S

peoplesoft diff: 003631 2012-08-26 sxh121431

CS 6361 (SE 6361 and SYSM 6309) Advanced Requirements Engineering (3 semester credit hours) System and software requirements engineering. Identification, elicitation, modeling, analysis, specification, management, and evolution of functional and non-functional requirements. Strengths and weaknesses of different techniques, tools, and object-oriented methodologies. Interactions and trade-offs among hardware, software, and organization. System and sub-system integration with software and organization as components of complex, composite systems. Transition from requirements to design. Critical issues in requirements engineering. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>6362</td>
<td>CS 6362 (SE 6362) Advanced Software Architecture and Design (3 semester credit hours) Concepts and methodologies for the development, evolution, and reuse of software architecture and design, with an emphasis on object-orientation. Identification, analysis, and synthesis of system data, process, communication, and control components. Decomposition, assignment, and composition of functionality to design elements and connectors. Use of non-functional requirements for analyzing trade-offs and selecting among design alternatives. Transition from requirements to software architecture, design, and to implementation. State of the practice and art. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>6363</td>
<td>CS 6363 (CE 6363) Design and Analysis of Computer Algorithms (3 semester credit hours) The study of efficient algorithms for various computational problems. Algorithm design techniques. Sorting, manipulation of data structures, graphs, matrix multiplication, and pattern matching. Complexity of algorithms, lower bounds, NP completeness. Prerequisites: CS 5333 and CS 5343. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6364 (r6)</td>
<td>CS 6364 Artificial Intelligence (3 semester credit hours) Design of machines that exhibit intelligence. Particular topics include: representation of knowledge, vision, natural language processing, search, logic and deduction, expert systems, planning, language comprehension, and machine learning. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:57:46</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6364.6</td>
<td>peoplesoft diff: 003634 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td>003634 14.0903.00.06</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS 6364 Artificial Intelligence (3 semester credit hours) Design of machines that exhibit intelligence. Particular topics include: representation of knowledge, vision, natural language processing, search, logic and deduction, expert systems, planning, language comprehension, and machine learning. Prerequisite: CS 5343. (3-0) Y</td>
<td>audit: 30</td>
<td>003634</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6365 (r5)</td>
<td>CS 6365 Data and Text Mining for Computational Biology (3 semester credit hours) The course introduces data and text mining as practiced currently in the bioinformatics field. Major topics include: sequence alignment for determining similarity between proteins and genes; properties of similarities and distances; genomic, proteomic, and text databases in the real world; finding patterns (motifs) in genes and proteins; differentiating between valid patterns and noise; classification; clustering and its application to phylogenetic trees; and selected topics from text mining. Prerequisite: CS 6325. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:58:04</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6365.5</td>
<td>peoplesoft diff: 003635 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td>003635 26.1101.00.02</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS 6365 Data and Text Mining for Computational Biology (3 semester credit hours) The course introduces data and text mining as practiced currently in the bioinformatics field. Major topics include: sequence alignment for determining similarity between proteins and genes; properties of similarities and distances; genomic, proteomic, and text databases in the real world; finding patterns (motifs) in genes and proteins; differentiating between valid patterns and noise; classification; clustering and its application to phylogenetic trees; and selected topics from text mining. Prerequisite: CS 6325. (3-0) Y</td>
<td>audit: 30</td>
<td>003635</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cs6366 (r6) cs6366.7</td>
<td>CS 6366 Computer Graphics (3 semester credit hours) Device and logical coordinate systems. Geometric transformations in two and three dimensions. Algorithms for basic 2-D drawing primitives, such as Brensenham's algorithm for lines and circles, Bezier and B-Spline functions for curves, and line and polygon clipping algorithms. Perspectives in 3-D, and hidden-line and hidden-face elimination, such as Painter's and Z-Buffer algorithms. Fractals and the Mandelbrot set. Prerequisites: CS 5330 and CS 5343 and MATH 2418. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:35:00 003636 14.0901.00.06 audit: -87.2 m index: -87.2 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * cs6367 (r8) cs6367.9</td>
<td>CS 6367 (CE 6367 and SE 6367 and SYSM 6310) Software Testing, Validation and Verification (3 semester credit hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE 5354 or CS 5354 or SE 5354 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:37:43 003637 14.0903.00.06 audit: -87.2 m index: -87.2 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>end</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td>cs6368 (r3) cs6368.4</td>
<td></td>
<td>CS 6368 Telecommunication Network Management (3 semester credit hours) In-depth study of network management issues and standards in telecommunication networks. OSI management protocols including CMIP, CMISE, SNMP, and MIB. ITU's TMN (Telecommunication Management Network) standards, TMN functional architecture and information architecture. NMN (Network Management Forum) and service management, service modeling and network management API. Issues of telecommunication network management in distributed processing environment. Prerequisite: CS 5390 or CS 6390 or CS 6385 or equivalent. (3-0) Y</td>
<td>phase</td>
<td>approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003638 2008-08-21 sxh121431 CS 6368 Telecommunication Network Management (3 semester credit hours) In-depth study of network management issues and standards in telecommunication networks. OSI management protocols including CMIP, CMISE, SNMP, and MIB. ITU's TMN (Telecommunication Management Network) standards, TMN functional architecture and information architecture. NMN (Network Management Forum) and service management, service modeling and network management API. Issues of telecommunication network management in distributed processing environment. Prerequisite: One of CS 5390, 5390 or CS 6390, 6390 or CS 6385 or equivalent. (3-0) Y</td>
<td>status</td>
<td>approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td>cs6369 (r7) cs6369.7</td>
<td></td>
<td>CS 6369 Complexity of Combinatorial Algorithms (3 semester credit hours) Topics include bounded reducibility and completeness, approximation algorithms and heuristics for NP-hard problems, randomized algorithms, and additional complexity classes. Prerequisite: CS 6363. (3-0) T</td>
<td>phase</td>
<td>approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003639 2012-08-26 sxh121431 CS 6369 Complexity of Combinatorial Algorithms (3 semester credit hours) Topics include bounded reducibility and completeness, approximation algorithms and heuristics for NP-hard problems, randomized algorithms, and additional complexity classes. Prerequisite: CS 6363. (3-0) T</td>
<td>status</td>
<td>approving</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6371 (r9)</td>
<td>CS 6371 Advanced Programming Languages (3 semester credit hours) Functional programming, Lambda calculus, logic programming, abstract syntax, denotational semantics of imperative languages, fixpoints semantics, verification of programs, partial evaluation, interpretation and automatic compilation, axiomatic semantics, applications of semantics to software engineering. Prerequisites: CS 5343 and CS 5349. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>peoplesoft diff: 003641 2013-08-25 sxh121431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6371.10</td>
<td>CS 6371 Advanced Programming Languages (3 semester credit hours) Functional programming, Lambda calculus, logic programming, abstract syntax, denotational semantics of imperative languages, fixpoints semantics, verification of programs, partial evaluation, interpretation and automatic compilation, axiomatic semantics, applications of semantics to software engineering. Prerequisites: CS 5343 and CS 5349. (3-0) S</td>
<td>status: approving</td>
<td>2013-12-19 20:39:46</td>
<td>003641</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>14.0901.00.06</td>
<td>003643</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td>-87.2 m</td>
<td>-87.2 m</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | cs6373 (r5) | CS 6373 Intelligent Systems (3 semester credit hours) Logical formalizations of knowledge for the purpose of implementing intelligent systems that can reason in a way that mimics human reasoning. Topics include: syntax and semantics of common logic, description logic, modal epistemic logic; reasoning about uncertainties, beliefs, defaults and counterfactuals; reasoning within contexts; implementations of knowledge base and textual inference reasoning systems; and applications. Prerequisite: CS 5343. (3-0) Y | phase: approve | cxj140030 | peoplesoft diff: 003643 2008-08-21 sxh121431 |
| | | cs6373.5 | CS 6373 Intelligent Systems (3 semester credit hours) Logical formalizations of knowledge for the purpose of implementing intelligent systems that can reason in a way that mimics human reasoning. Topics include: syntax and semantics of common logic, description logic, modal epistemic logic; reasoning about uncertainties, beliefs, defaults and counterfactuals; reasoning within contexts; implementations of knowledge base and textual inference reasoning systems; and applications. Prerequisite: CS 5343. (3-0) Y | status: approving | 2013-10-16 12:59:28 | 003643 |
| | | | | audit: 30 | 14.0901.00.06 | 003643 |
| | | | | match_fail | -87.6 m | -87.6 m |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6374 (r4)</td>
<td>cs6374.4</td>
<td>CS 6374 Computational Logic (3 semester credit hours) Methods and algorithms for the solution of logic problems. Topics include problem formulation in first order logic and extensions, theorem proving algorithms, polynomially solvable cases, logic programming, and applications. Prerequisites: CS 5343 and knowledge of C. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:59:41 003644 11.0401.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
<td>peoplesoft diff: 003644 2008-08-21 sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6375 (r7)</td>
<td>cs6375.7</td>
<td>CS 6375 Machine Learning (3 semester credit hours) Algorithms for training perceptions and multi-layer neural nets: back propagation, Boltzmann machines, and self-organizing nets. The ID3 and the Nearest Neighbor algorithms. Formal models for analyzing learnability: exact identification in the limit and probably approximately correct (PAC) identification. Computational limitations of learning machines. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 12:59:54 003645 30.0801.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>peoplesoft diff: 003645 2012-08-26 sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6376 (r5)</td>
<td>cs6376.6</td>
<td>CS 6376 Parallel Processing (3 semester credit hours) Topics include parallel processing, parallel machine models, parallel algorithms for sorting, searching and matrix operations. Parallel graph algorithms. Prerequisite: CS 6363. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:41:22 003646 11.0201.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>peoplesoft diff: 003646 2008-08-21 sxh121431</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6377 (r3)</td>
<td>cs6377.4</td>
<td>CS 6377 Introduction to Cryptography (3 semester credit hours) This course covers the basic aspects of modern cryptography, including block ciphers, pseudorandom functions, symmetric encryption, Hash functions, message authentication, number-theoretic primitives, public-key encryption, digital signatures and zero knowledge proofs. Prerequisites: CS 5333 and CS 5343 and ENCS majors only. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003647 2008-08-21 sxh121431 CS 6377 Introduction to Cryptography (3 semester credit hours) This course covers the basic aspects of modern cryptography, including block ciphers, pseudorandom functions, symmetric encryption, Hash functions, message authentication, number-theoretic primitives, public-key encryption, digital signatures and zero knowledge proofs. Prerequisites: CS 5333 and CS 6343, 5343 and ENCS majors only. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2014-open | edit * | cs6378 (r6) | cs6378.8 | CS 6378 (CE 6378 and TE 6378) Advanced Operating Systems (3 semester credit hours) Concurrent processing, inter-process communication, process synchronization, deadlocks, introduction to queuing theory and operational analysis, topics in distributed systems and algorithms, checkpointing, recovery, multiprocessor operating systems. Must have knowledge of C and UNIX. Prerequisite: CS 5348 or equivalent. (3-0) S |
| | | | | **peoplesoft diff: 003648 2008-08-21 sxh121431** CS 6378 (CE 6378 and TE 6378) Advanced Operating Systems (3 semester credit hours) Concurrent processing, inter-process communication, process synchronization, deadlocks, introduction to queuing theory and operational analysis, topics in distributed systems and algorithms, checkpointing, recovery, multiprocessor operating systems. **Prerequisites: CS 5348 or equivalent; Must have knowledge of C and UNIX. Prerequisite: CS 5348 or equivalent. (3-0) S** |

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6379 (r5)</td>
<td>cs6379.6</td>
<td>CS 6379 Biological Database Systems and Data Mining (3 semester credit hours) Relational data models and database management systems; theories and techniques of constructing relational databases to store biological data, including sequences, structures, genetic linkages and maps, and signal pathways. Introduction to a relational database query language (SQL) with emphasis on answering biologically important questions. Summary of current biological databases. Data integration from various sources and security. Novel data mining methods in bioinformatics with an emphasis on protein structure prediction, homology search, genomic sequence analysis, gene finding and gene mapping. Future directions for biological database development. Prerequisites: (BIOL 6373 or BMEN 6391) and BIOL 5381 and CS 5343 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>mxv062000 2013-12-19 20:45:20 003649 26.1103.00.02 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6380 (r3)</td>
<td>cs6380.3</td>
<td>CS 6380 (CE 6380) Distributed Computing (3 semester credit hours) Topics include distributed algorithms, election algorithms, synchronizers, mutual exclusion, resource allocation, deadlocks, Byzantine agreement and clock synchronization, knowledge and common knowledge, reliability in distributed networks, and proving distributed programs correct. Prerequisite: CS 5348. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-16 13:01:17</td>
<td>003650 11.0501.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6381 (r7)</td>
<td>cs6381.8</td>
<td>CS 6381 Combinatorics and Graph Algorithms (3 semester credit hours) Fundamentals of combinatorics and graph theory. Combinatorial optimization, optimization algorithms for graphs (max flow, shortest routes, Euler tour, Hamiltonian tour). Prerequisites: CS 5343 and CS 6363. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>2013-12-19 20:45:50</td>
<td>003651 30.0801.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6382 (r7)</td>
<td>cs6382.8</td>
<td>CS 6382 Theory of Computation (3 semester credit hours) Formal models of computation. Recursive function theory. Undecidability and incompleteness. Selected topics in theory of computation. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>2013-12-19 20:46:23</td>
<td>003652 11.0201.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 003650 2008-08-21 sxh121431

CS 6380 (CE 6380) Distributed Computing (3 semester credit hours) Topics include distributed algorithms, election algorithms, synchronizers, mutual exclusion, resource allocation, deadlocks, Byzantine agreement and clock synchronization, knowledge and common knowledge, reliability in distributed networks, and proving distributed programs correct. Prerequisite: CS 5348. (3-0) S

peoplesoft diff: 003651 2012-08-26 sxh121431

CS 6381 Combinatorics and Graph Algorithms (3 semester credit hours) Fundamentals of combinatorics and graph theory. Combinatorial optimization, optimization algorithms for graphs (max flow, shortest routes, Euler tour, Hamiltonian tour). Prerequisites: CS 5343 and CS 6363. (3-0) T

peoplesoft diff: 003652 2008-08-21 sxh121431

CS 6382 Theory of Computation (3 semester credit hours) Formal models of computation. Recursive function theory. Undecidability and incompleteness. Selected topics in theory of computation. Instructor consent required. (3-0) Y

Prerequisite: Consent of Instructor. Instructor consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6383 (r3) cs6383.3</td>
<td>CS 6383 Computational Systems Biology (3 semester credit hours) The course will provide a system-level understanding of biological systems by analyzing biological data using computational techniques. The major topics include: computational inference of biological networks (regulatory, protein interactions, and metabolic) and the effects of biological networks in cellular processes, development, and disease. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:02:10 003653 26.0401.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6384 (r5) cs6384.5</td>
<td>CS 6384 Computer Vision (3 semester credit hours) Algorithms for extracting information from digital pictures. Particular topics include: analysis of motion in time varying image sequences, recovering depth from a pair of stereo images, image separation, recovering shape from textured images and shadows, object matching techniques, model based recognition, and the Hough transform. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:02:23 003654 11.0701.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6385 (r4)</td>
<td>CS 6385 (TE 6385) Algorithmic Aspects of Telecommunication Networks (3 semester credit hours) This is an advanced course on topics related to the design, analysis, and development of telecommunications systems and networks. The focus is on the efficient algorithmic solutions for key problems in modern telecommunications networks, in centralized and distributed models. Topics include: main concepts in the design of distributed algorithms in synchronous and asynchronous models, analysis techniques for distributed algorithms, centralized and distributed solutions for handling design and optimization problems concerning network topology, architecture, routing, survivability, reliability, congestion, dimensioning and traffic management in modern telecommunication networks. Prerequisites: CS 5343 and CS 5348 and (CE 3341 or EE 3341 or TE 3341 or equivalent). (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>CS 6386 Telecommunication Software Design (3 semester credit hours) Programming with sockets and remote procedure calls, real time programming concepts and strategies. Operating system design for real time systems. Encryption, file compression, and implementation of fire walls. An in-depth study of TCP/IP implementation. Introduction to discrete event simulation of networks. Prerequisite: CS 5390. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cs6386 (r3)</td>
<td></td>
<td>status: approving</td>
<td>2013-10-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cs6386.3</td>
<td></td>
<td>audit: 30</td>
<td>13:02:46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003656 2008-08-21 sxh121431</td>
<td></td>
<td>003656</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS 6386 Telecommunication Software Design (3 semester credit hours) Programming with sockets and remote procedure calls, real time programming concepts and strategies. Operating system design for real time systems. Encryption, file compression, and implementation of fire walls. An in-depth study of TCP/IP implementation. Introduction to discrete event simulation of networks. Prerequisite: Prerequisite: CS 5390. (3-0) Y</td>
<td></td>
<td>14.0901.00.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -87.7 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>cs6387</td>
<td>CS 6387 (SE 6387) Advanced Software Engineering Project (3 semester credit hours) This course is intended to provide experience in a group project that requires advanced technical solutions, such as distributed multi-tier architectures, component-based technologies, automated software engineering, etc., for developing applications, such as web-based systems, knowledge-based systems, real-time systems, etc. The students will develop and maintain requirements, architecture and detailed design, implementation, and testing and their traceability relationships. Best practices in software engineering will be applied. Prerequisites: (CS 6381 or SE 6361) or SYSM 6309, and (CS 6362 or SE 6362). Corequisite: (CE 6367 or CS 6367 or SE 6367) or SYSM 6310. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>cs6387.6</td>
<td>peoplesoft diff: 003657 2012-08-26 sxh121431 CS 6387 (SE 6387) Advanced Software Engineering Project (3 semester credit hours) This course is intended to provide experience in a group project that requires advanced technical solutions, such as distributed multi-tier architectures, component-based technologies, automated software engineering, etc., for developing applications, such as web-based systems, knowledge-based systems, real-time systems, etc. The students will develop and maintain requirements, architecture and detailed design, implementation, and testing and their traceability relationships. Best practices in software engineering will be applied. Prerequisites: (CS 6381 or SE 6361) or SYSM 6309, and (CS 6362 or SE 6362). Corequisite: (CE 6367 or CS 6367 or SE 6367) or SYSM 6310. (3-0) S</td>
<td>status: approving</td>
<td>2013-11-17 00:48:36 003657 14.0903.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 2014-open | edity | edit * | cs6388 (r5) | cs6388.6 | CS 6388 (SE 6388) Software Project Planning and Management (3 semester credit hours) Techniques and disciplines for successful management of software projects. Project planning and contracts. Advanced cost estimation models. Risk management process and activities. Advanced scheduling techniques. Definition, management, and optimization of software engineering processes. Statistical process control. Software configuration management. Capability Maturity Model Integration (CMMI). Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) Y | phase: approve | status: approving | mxv062000 2013-12-19 20:49:39 003658 14.0901.00.06 audit: -87.2 m index: -87.2 m match_fail | ps info detail change process orion
peoplesoft diff: 003658 2014-08-24 sxh121431
CS 6388 (SE 6388) Software Project Planning and Management (3 semester credit hours) Techniques and disciplines for successful management of software projects. Project planning and contracts. Advanced cost estimation models. Risk management process and activities. Advanced scheduling techniques. Definition, management, and optimization of software engineering processes. Statistical process control. Software configuration management. Capability Maturity Model Integration (CMMI). Prerequisite: CE/CS/SECE/CS/SE 5354 or CS 5354 or SE 5354. (3-0) Y |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs6389 (r5)</td>
<td>cs6389.6</td>
<td>CS 6389 (SE 6389) Formal Methods and Programming Methodology (3 semester credit hours) Formal techniques for building highly reliable systems. Use of abstractions for concisely and precisely defining system behavior. Formal logic and proof techniques for verifying the correctness of programs. Hierarchies of abstractions, state transition models, Petri Nets, communicating processes. Operational and definitional specification languages. Applications to reliability-critical, safety-critical, and mission-critical systems, ranging from commercial computer communication systems to strategic command control systems. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:50:40 003659 11.0701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs6390 (r6)</td>
<td>cs6390.7</td>
<td>CS 6390 (CE 6390) Advanced Computer Networks (3 semester credit hours) Survey of recent advancements in high-speed network technologies. Application of quantitative approach to the study of broadband integrated networks including admission control, access control, and quality of service guarantee. Prerequisite: CS 5390. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:04:07 003660 11.0901.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>---------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs6392 (r3)</td>
<td>cs6392.3</td>
<td>CS 6392 (CE 6392) Mobile Computing Systems (3 semester credit hours) Topics include coping with mobility of computing systems, data management, reliability issues, packet transmission, mobile IP, end-to-end reliable communication, channel and other resource allocation, slot assignment, routing protocols, and issues in mobile wireless networks (without base stations). Prerequisite: CS 6378 or CS 6390. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 13:04:35 003662 11.0501.00.06 audit: -87.7 m index: -87.7 m match_fail</td>
<td>peoplesoft diff: 003662 2008-08-21 sxh121431</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs6393 (r3)</td>
<td>6393.4</td>
<td>CS 6393 Advanced Algorithms in Biology (3 semester credit hours) Recent advanced topics in algorithms in biology will be discussed. Topics will be chosen from: sorting and transformational operations on strings and permutations, structural analysis of proteins, pooling design and nonadaptive group testing, approximation algorithms, and complexity issues. Prerequisites: CS 6363 and CS 6325 and ENCS majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 21:36:00 003663 26.1103.00.02 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6395 (r4)</td>
<td>cs6395.4</td>
<td>CS 6395 Speech Recognition, Synthesis, and Understanding (3 semester credit hours) Basic speech processing techniques: isolated word recognition using dynamic time warping, acoustic modeling using hidden Markov models, statistical language modeling, search algorithms in large vocabulary continuous speech recognition, components in text-to-speech systems, and architecture and components in spoken dialog systems. Prerequisite: CS 5343. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-16 13:05:36 003665 11.0101.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 003665 2012-08-26 sxh121431

CS 6395 Speech Recognition, Synthesis, and Understanding (3 semester credit hours) Basic speech processing techniques: isolated word recognition using dynamic time warping, acoustic modeling using hidden Markov models, statistical language modeling, search algorithms in large vocabulary continuous speech recognition, components in text-to-speech systems, and architecture and components in spoken dialog systems. Prerequisite: CS 5343. (3-0) T

| 2014-open | edit * | cs6396 (r5) | cs6396.5 | CS 6396 (CE 6308 and EEDG 6308) Real-Time Systems (3 semester credit hours) Introduction to real-time applications and concepts. Real-time operating systems and resource management. Specification and design methods for real-time systems. System performance analysis and optimization techniques. Project to specify, analyze, design, implement and test small real-time system. Prerequisite: CS 5348. (3-0) R | phase: approve | cxj140030 | 2013-10-16 13:05:52 003666 14.0901.00.06 audit: -87.6 m index: -87.6 m match_fail | ps info detail change process orion |

peoplesoft diff: 003666 2010-08-18 sxh121431

CS 6396 (CE 6308 and EEDG 6308) Real-Time Systems (3 semester credit hours) Introduction to real-time applications and concepts. Real-time operating systems and resource management. Specification and design methods for real-time systems. System performance analysis and optimization techniques. Project to specify, analyze, design, implement and test small real-time system. Prerequisite: CS 5348. (3-0) R

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6397</td>
<td>(r4)</td>
<td>cs6397.4</td>
<td>CS 6397 (CE 6397) Synthesis and Optimization of High-Performance Systems (3 semester credit hours) A comprehensive study of high-level synthesis and optimization algorithms for designing high performance systems with multiple CPUs or functional units for critical applications such as Multimedia, Signal processing, Telecommunications, Networks, and Graphics applications, etc. Topics including algorithms for architecture-level synthesis, scheduling, resource binding, real-time systems, parallel processor array design and mapping, code generations for DSP processors, embedded systems and hardware/software codesigns. Prerequisite: CS 5343. (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-16 13:06:13 003667 14.0901.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>peoplesoft diff: 003667 2012-08-26 sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs6398</td>
<td>(r5)</td>
<td>cs6398.6</td>
<td>CS 6398 (CE 6398 and EEDG 6398) DSP Architectures (3 semester credit hours) Typical DSP algorithms, representation of DSP algorithms, data-graph, FIR filters, convolutions, Fast Fourier Transform, Discrete Cosine Transform, low power design, VLSI implementation of DSP algorithms, implementation of DSP algorithms on DSP processors, DSP applications including wireless communication and multimedia. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-12-19 20:54:57 003668 14.0901.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>peoplesoft diff: 003668 2012-08-26 sxh121431</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>cs6399 (r3)</td>
<td>CS 6399 (CE 6399) Parallel Architectures and Systems (3 semester credit hours) A comprehensive study of the fundamentals of parallel systems and architecture. Topics including parallel programming environment, fine-grain parallelism such as VLIW and superscalar, parallel computing paradigm of shared-memory, distributed-memory, data-parallel and data-flow models, cache coherence, compiling techniques to improve parallelism, scheduling theory, loop transformations, loop parallelizations and runtime systems. Prerequisite: CS 5348. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6399.3</td>
<td>peoplesoft diff: 003669 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td>detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS 6399 (CE 6399) Parallel Architectures and Systems (3 semester credit hours) A comprehensive study of the fundamentals of parallel systems and architecture. Topics including parallel programming environment, fine-grain parallelism such as VLIW and superscalar, parallel computing paradigm of shared-memory, distributed-memory, data-parallel and data-flow models, cache coherence, compiling techniques to improve parallelism, scheduling theory, loop transformations, loop parallelizations and runtime systems. Prerequisite: CS 5348. (3-0) T</td>
<td></td>
<td></td>
<td>change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>cs6v81 (r7)</td>
<td>CS 6V81 Independent Study in Computer Science (1-9 semester credit hours) May be repeated for credit. Prerequisite: ENCS majors only and instructor consent required. ((1-9]-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6v81.11</td>
<td>peoplesoft diff: 003610 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td>detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS 6V81 Independent Study in Computer Science (1-9 semester credit hours) Topics vary from semester to semester. May be repeated for credit. Prerequisite: ENCS majors only and instructor consent required. ((1-9]-0) S</td>
<td></td>
<td></td>
<td>change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>cs6v98 (r1)</td>
<td>CS 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. Prerequisite: ENCS majors only. ((3-9]-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cs6v98.2</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td>detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. Prerequisite: ENCS majors only. ((3-9]-0) S</td>
<td></td>
<td></td>
<td>change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs7301</td>
<td>(r5)</td>
<td>CS 7301 (SE 7301) Recent Advances in Computing (3 semester credit hours) Advanced topics and publications will be selected from the theory, design, and implementation issues in computing. May be repeated for credit as topics vary. Prerequisites: ENCS majors only and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003670 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-19 21:22:44</td>
<td>003670 11.0701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003681 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003682 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs8v02</td>
<td>(r6)</td>
<td>CS 8V02 Topics in Computer Science (1-6 semester credit hours) Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. Prerequisite: ENCS majors only. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003681 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-19 21:32:52</td>
<td>003681 11.0701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003682 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003683 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>cs8v07</td>
<td>(r6)</td>
<td>CS 8V07 Research (1-9 semester credit hours) Open to students with advanced standing subject to approval of the graduate advisor. Pass/Fail only. May be repeated for credit. Prerequisites: ENCS majors only and instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>skarrah</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003682 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-20 10:55:18</td>
<td>003682 11.0701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 003683 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove renumber *</td>
<td>cs8v98</td>
<td>(r6)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>->cs6v98</td>
<td>cs8v98.8</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-19 21:07:18</td>
<td>003683 11.0701.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>cs8v99 (r6) cs8v99.8</td>
<td>CS 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Prerequisites: ENCS majors only and instructor consent required. (1-9)-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003684 2012-08-26 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS 8V99 Dissertation (1-9 semester credit hours) (May Pass/Fail only. May be repeated for credit). Prerequisites: ENCS majors only and instructor consent required. (1-9)-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ecsc5177 (r5) ecsc5177.7</td>
<td>ECSC 5177 CS IPP Assignment (1 semester credit hour) Work in an approved, supervised, computer science position. Students will complete an IPP Work Report including a written Narrative focusing on the accomplishments and learning gained through the IPP experience. Pass/Fail only. May be repeated for credit. Instructor consent required. (1-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 004322 2009-08-19 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ECSC 5177 CS IPP Assignment (1 semester credit hour) Work in an approved, supervised, computer science position. Students will complete an IPP Work Report including a written Narrative focusing on the accomplishments and learning gained through the IPP experience. Pass/Fail only. May be repeated. repeated for credit. Instructor consent required. (1-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ecsc5179 (r5) ecsc5179.7</td>
<td>ECSC 5179 ENG IPP Assignment (1 semester credit hour) Work in an approved, supervised, engineering position. Students will complete an IPP Work Report including a written Narrative focusing on the accomplishments and learning gained through the IPP experience. Pass/Fail only. May be repeated for credit. Instructor consent required. (1-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 004323 2009-08-19 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ECSC 5179 ENG IPP Assignment (1 semester credit hour) Work in an approved, supervised, engineering position. Students will complete an IPP Work Report including a written Narrative focusing on the accomplishments and learning gained through the IPP experience. Pass/Fail only. May be repeated. repeated for credit. Instructor consent required. (1-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eebm6373 (r4)</td>
<td>EEBM 6373 (BMEN 6373) Anatomy and Human Physiology for Engineers (3 semester credit hours) This course provides an introduction to anatomy and human physiology for engineers and other non-life scientists. Topics include nervous system, muscle and cardiac function, digestive system, and immune system. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:48:59 013089 14.0501.00.06 audit: -87.7 m index: -87.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eebm6373.4</td>
<td>peoplesoft diff: 013089 2013-08-25 sxh121431 EEBM 6373 (BMEN 6373) Anatomy and Human Physiology for Engineers (3 semester credit hours) This course provides an introduction to anatomy and human physiology for engineers and other non-life scientists. Topics include nervous system, muscle and cardiac function, digestive system, and immune system. (3-0)</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eebm6374 (r4)</td>
<td>EEBM 6374 (BMEN 6374) Genes, Proteins and Cell Biology for Engineers (3 semester credit hours) This course provides an introduction to principles of modern molecular and cellular biology for engineers and other non-life scientists. Topics include genes, protein structure and function, organization of cells and cellular trafficking. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:49:12 013090 14.0501.00.06 audit: -87.7 m index: -87.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eebm6374.6</td>
<td>peoplesoft diff: 013090 2013-08-25 sxh121431 EEBM 6374 (BMEN 6374) Genes, Proteins and Cell Biology for Engineers (3 semester credit hours) This course provides an introduction to principles of modern molecular and cellular biology for engineers and other non-life scientists. Topics include genes, protein structure and function, organization of cells and cellular trafficking. (3-0)</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eebm6376 (r3)</td>
<td>EEBM 6376 (BMEN 6376) Lecture Course in Biomedical Applications of Electrical Engineering (3 semester credit hours) This course provides an introduction to different areas of biomedical applications of electrical engineering. A special emphasis will be placed on research topics that are actively pursued at UT Dallas. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-15 14:19:46 013091 14.0501.00.06 audit: -87.7 m index: -87.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eebm6376.4</td>
<td>peoplesoft diff: 013091 2013-08-25 sxh121431 EEBM 6376 (BMEN 6376) Lecture Course in Biomedical Applications of Electrical Engineering (3 semester credit hours) This course provides an introduction to different areas of biomedical applications of electrical engineering. A special emphasis will be placed on research topics that are actively pursued at UT Dallas. (3-0)</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>End</td>
<td>Req Type</td>
<td>Course</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eebm6380 (2)</td>
<td>EEBM 6380 (BMEN 6380) Introduction to Cellular Microscopy (3 semester credit hours) Image formation, diffraction, labeling techniques, fluorescence and image processing techniques will be introduced. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eebm6380.2</td>
<td></td>
<td>status: approving</td>
<td>2013-10-16 13:49:27 014131 14.0501.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014131 2012-08-26</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eebm6381 (3)</td>
<td>EEBM 6381 (BMEN 6381) Advanced Concepts in Microscopy (3 semester credit hours) Continuation of EEBM 6380, with emphasis on advanced approaches such as vectorial diffraction, stochastic aspects of image formation and analysis. Prerequisite: BMEN 6380 or EEBM 6380 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eebm6381.7</td>
<td></td>
<td>status: approving</td>
<td>2013-11-11 13:33:20 014132 14.0501.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014132 2013-08-25 sxh121431</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eebm7v87 (4)</td>
<td>EEBM 7V87 Special Topics in Biomedical Applications of Electrical Engineering (1-6 semester credit hours) May be repeated for credit (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eebm7v87.8</td>
<td></td>
<td>status: approving</td>
<td>2014-01-25 19:04:49 013092 14.0501.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013092 2013-08-25 sxh121431</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>engr5375 eecs5375 (r1) eecs5375.3</td>
<td>EECS 5375 (MECH 5308) Introduction to Robotics (3 semester credit hours) Fundamentals of robotics, rigid motions, homogeneous transformations, forward and inverse kinematics, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. Prerequisite: ENGR 2300 and Corequisite: EE 4310 or MECH 4310 or equivalent. (2-3) Y</td>
<td>phase: approve</td>
<td>2014-02-11 11:59:05</td>
<td>mjp044000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

```
peoplesoft diff: NOLINK
EECS 5375 (MECH 5308) Introduction to Robotics (3 semester credit hours) Fundamentals of robotics, rigid motions, homogeneous transformations, forward and inverse kinematics, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. Prerequisite: ENGR 2300 and Corequisite: EE 4310 or MECH 4310 or equivalent. (2-3) Y
```

| 2014-open | edit * | eecs6302 (r1) eecs6302.3 | EECS 6302 (MECH 6317 and SYSM 6302) Dynamics of Complex Networks and Systems (3 semester credit hours) Design and analysis of complex interconnected networks and systems. Basic concepts in graph theory; Eulerian and Hamiltonian graphs; traveling salesman problems; random graphs; power laws; small world networks; clustering; introduction to dynamical systems; stability; chaos and fractals. (3-0) Y | phase: approve | 2014-02-03 18:18:18 | mjp044000 | ps info detail change process orion |

```
peoplesoft diff: NOLINK
EECS 6302 (MECH 6317 and SYSM 6302) Dynamics of Complex Networks and Systems (3 semester credit hours) Design and analysis of complex interconnected networks and systems. Basic concepts in graph theory; Eulerian and Hamiltonian graphs; traveling salesman problems; random graphs; power laws; small world networks; clustering; introduction to dynamical systems; stability; chaos and fractals. (3-0) Y
```
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eecs6323</td>
<td>(r1)</td>
<td>EECS 6323 (MECH 6323 and SYSE 6323) Robust Control Systems (3 semester credit hours) Theory, methodology, and software tools for the analysis and design of model-based control systems with multiple actuators and multiple sensors. Control oriented model parameterizations and modeling errors. Definitions and criteria for robust stability and performance. Optimal synthesis of linear controllers. The loop shaping design method. Methods to simplify the control law. Mechatronic design examples. Prerequisite: MECH 4310 or equivalent and MECH 6300 or EECS 6331 or SYSM 6307 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-04 09:59:42</td>
<td>pepsoff diff: NOLINK</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eecs6324</td>
<td>(r1)</td>
<td>EECS 6324 (MECH 6324) Robot Control (3 semester credit hours) Dynamics of robots; methods of control; force control; robust and adaptive control; feedback linearization; Lyapunov design methods; passivity and network control; control of multiple and redundant robots; teleoperation. Prerequisite: EECS 6331 or MECH 6300 or SYSM 6307. (3-0) T</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-03 17:16:38</td>
<td>pepsoff diff: NOLINK</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber *</td>
<td>engr6331</td>
<td>eecs6331 (r1)</td>
<td>EECS 6331 (MECH 6300 and SYSM 6307) Linear Systems (3 semester credit hours) State space methods of analysis and design for linear dynamical systems. Coordinate transformations and tools from advanced linear algebra. Controllability and observability. Lyapunov stability analysis. Pole assignment, stabilizability, detectability. State estimation for deterministic models, observers. Introduction to the optimal linear quadratic regulator problem. Prerequisites: ENGR 2300 and EE 4310 or MECH 4310 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-03 13:06:22</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>engr6332</td>
<td>eecs6332 (r1)</td>
<td>EECS 6332 Advanced Control (3 semester credit hours) Modern control techniques in state space and frequency domain: optimal control, robust control, and stability. Prerequisite: EECS 6331. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2013-11-27 12:58:50</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>engr6336</td>
<td>eecs6336 (r1)</td>
<td>EECS 6336 (BMEN 6388 and MECH 6313 and SYSE 6324) Nonlinear Systems (3 semester credit hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-06 09:43:32</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>engr7v90</td>
<td>eecs7v90 (r1)</td>
<td>EECS 7V90 Special Topics in Control Systems (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eecs7v90.3</td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 8</td>
<td></td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -87.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -87.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eect5321</td>
<td>eect5321.5</td>
<td>EECT 5321 Introduction to Circuits and Systems (3 semester credit hours) Continuation of EEMF 5320. Topics include analog circuits, digital circuits, digital systems and communication systems. May not be used to fulfill 33 semester credit hours in MSEE degree requirements. (3-0) R</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 25</td>
<td></td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013010 2012-08-26 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -87.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -87.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eect5340</td>
<td>eect5340.3</td>
<td>EECT 5340 Analog Integrated Circuit Analysis and Design (3 semester credit hours) Application of MOSFET and BJT large-signal and small-signal models to analyze and design amplifiers, analysis and design of current mirrors and differential amplifiers, analysis of frequency response of amplifiers, and feedback theories. Prerequisite: EE 3311 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>change process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013692 2012-08-26 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -87.7 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -87.7 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match fail</td>
<td></td>
</tr>
<tr>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>--------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| remove | eect5385 | r4 | **request to remove this course from catalog**
EECT 5385 Analog Filters (3 semester hours)
This course aims at bridging the intermediate-level and the advanced-level knowledge in analog filter design. It moves from basic theory of analog passive filters to theoretical and practical aspects of active, switched-capacitor, and continuous time filters. For active solutions the focus is on integrated implementations on silicon. Prerequisites: EE 3301 and EE 3111. (3-0) Y |
| edit | eect6325 | r3 | **EECT 6325 (CE 6325) VLSI Design (3 semester credit hours)**
Introduction to MOS transistors. Analysis of the CMOS inverter. Combinational and sequential design techniques in VLSI; issues in static, transmission gate and dynamic logic design. Design and layout of complex gates, latches and flip-flops, arithmetic circuits, memory structures. Low power digital design. The method of logical effort. CMOS technology. Use of CAD tools to design, layout, check, extract and simulate a small project. Prerequisites: EE 3301 and EE 3320 or equivalent. (3-0) S |

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eect6326</td>
<td>EECT 6326 Analog Integrated Circuit Design (3 semester credit hours) Further treatment on the use of MOSFET and BJT large signal and small signal models to analyze and design analog integrated circuits. Topics include advanced current mirrors, references, frequency response of single-stage and differential amplifiers, stability and compensation of amplifiers, design of two-stage amplifiers, common mode feedback, and introduction of noise analysis. Use of CAD tools to simulate and design analog integrated circuits. Prerequisite: EE 4340 or EECT 5340. (3-0) S</td>
<td>phase: approve</td>
<td>2013-10-16 13:51:41</td>
<td>cxj140030</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eect6378</td>
<td>EECT 6378 Power Management Circuits (3 semester credit hours) This course introduces different circuits related to power management systems. Topics include analysis and design of voltage references, magnets, and different dc-dc converters including: switched-mode power converters, linear regulators and switched-capacitor charge pumps. Use of CAD tools to design and simulate power management circuits. Prerequisite: EECT 6326 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 13:51:54</td>
<td>cxj140030</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eect6379 (r2)</td>
<td>eect6379.2</td>
<td>EECT 6379 Energy Harvesting, Storage and Powering for Microsystems (3 semester credit hours) This course studies the electrical characteristics of various renewable energy sources and the corresponding approaches on harvesting and storage, with emphasis on the imposed requirements of microscale dimension. They are followed by the discussion on power conditioning and cross-layer energy/power management with circuit implementations. Prerequisite: EE 3311 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>peoplesoft diff: 014128 2012-08-26</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eect7325 (r3)</td>
<td>eect7325.3</td>
<td>EECT 7325 (CE 7325) Advanced VLSI Design (3 semester credit hours) Advanced topics in VLSI design covering topics beyond the first course (EECT 6325). Topics include: use of high-level design, synthesis, and simulation tools, clock distribution and routing problems, (a)synchronous circuits, low-power design techniques, study of various VLSI-based computations, systolic arrays, etc. Discussions on current research topics in VLSI design. Prerequisite: EECT 6325 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>peoplesoft diff: 013247 2013-08-25 sxh121431</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eect7326 (r5)</td>
<td>eect7326.5</td>
<td>EECT 7326 Advanced Analog Integrated Circuit Design (3 semester credit hours) Advanced topics in analog design including a rigorous treatment of noise, feedback and distortion in analog circuits. Selected topics from other advanced topics such as continuous-time filter, oscillator, phase-locked loop (PLL) and delay-locked loop (DLL) are also covered. Prerequisite: EECT 6326. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:52:45 013018 14.1001.00.06 audit: -87.7 m index: -87.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eect7327 (r5)</td>
<td>eect7327.6</td>
<td>EECT 7327 Data Converters (3 semester credit hours) Data converter circuits in modern mixed-signal VLSI systems. Topics include sampling, switched-capacitor amplifiers and integrators, sample-and-hold circuits, voltage comparators, Nyquist-rate and oversampling converters. Prerequisites: EECT 6325 and EECT 6326. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:53:28 013019 14.1001.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>eect7331 (r5)</td>
<td>eect7331.7</td>
<td>EECT 7331 Physics of Noise (3 semester hours) The physics of fluctuation phenomena, generically called Noise. The class will cover the fundamental physical principles underlying generation-recombination, thermal, shot, 1/f noise and other, related fluctuation phenomena. The statistical nature of these physical processes will be developed. The physics of noise in resistors, diodes, bipolar, JFETS, and MOSFETs will be discussed and how to model it in circuits. Approximately two thirds of the class will be devoted to the physics of noise and the rest will cover how to use this knowledge to design low-noise integrated circuits. Prerequisite: EECT 6326. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-03 13:09:54 013022 14.1001.00.06 audit: -87.8 m index: -87.8 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eect7v88 (r4) eect7v88.9</td>
<td>EECT 7V88 Special Topics in Circuits and Systems (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-25 19:07:23</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EECT 7V88 Special Topics in Circuits and Systems (1-6 semester hours). For letter grade credit only. (May hours) May be repeated to a maximum of 9 hours.) for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>status: approving</td>
<td>013025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EECT 7V88 Special Topics in Circuits and Systems (1-6 semester hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>audit: 30</td>
<td>14.1001.00.06</td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EECT 7V88 Special Topics in Circuits and Systems (1-6 semester hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eedd5325 (r4) eedd5325.4</td>
<td>EEDG 5325 (CE 5325) Hardware Modeling Using HDL (3 semester credit hours) This course introduces students to hardware description languages (HDL) beginning with simple examples and describing tools and methodologies. It covers the language, dwelling on fundamental simulation concepts. Students are also exposed to the subset of HDL that may be used for synthesis of custom logic. HDL simulation and synthesis labs and projects are performed using commercial and/or academic VLSI CAD tools. Prerequisite: EE 3320 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:54:20</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEDG 5325 (CE 5325) Hardware Modeling Using HDL (3 semester credit hours) This course introduces students to hardware description languages (HDL) beginning with simple examples and describing tools and methodologies. It covers the language, dwelling on fundamental simulation concepts. Students are also exposed to the subset of HDL that may be used for synthesis of custom logic. HDL simulation and synthesis labs and projects are performed using commercial and/or academic VLSI CAD tools. Prerequisite: EE 3320 or equivalent. (3-0) T</td>
<td>status: approving</td>
<td>013244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEDG 5325 (CE 5325) Hardware Modeling Using HDL (3 semester credit hours) This course introduces students to hardware description languages (HDL) beginning with simple examples and describing tools and methodologies. It covers the language, dwelling on fundamental simulation concepts. Students are also exposed to the subset of HDL that may be used for synthesis of custom logic. HDL simulation and synthesis labs and projects are performed using commercial and/or academic VLSI CAD tools. Prerequisite: EE 3320 or equivalent. (3-0) T</td>
<td>audit: 30</td>
<td>14.0901.00.06</td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEDG 5325 (CE 5325) Hardware Modeling Using HDL (3 semester credit hours) This course introduces students to hardware description languages (HDL) beginning with simple examples and describing tools and methodologies. It covers the language, dwelling on fundamental simulation concepts. Students are also exposed to the subset of HDL that may be used for synthesis of custom logic. HDL simulation and synthesis labs and projects are performed using commercial and/or academic VLSI CAD tools. Prerequisite: EE 3320 or equivalent. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eedg6301 (r4) eedg6301.4</td>
<td>EEDG 6301 (CE 6301) Advanced Digital Logic (3 semester credit hours) Modern design techniques for digital logic. Logic synthesis and design methodology. Link between front-end and back-end design flows. Field programmable gate arrays and reconfigurable digital systems. Introduction to testing, simulation, fault diagnosis and design for testability. Prerequisites: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:54:41 013222 14.0901.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eedg6302 (r5) eedg6302.6</td>
<td>EEDG 6302 (CE 6302) Microprocessor Systems (3 semester credit hours) Design of microprocessor based systems including I/O and interface devices. Microprocessor architectures. Use of emulators and other sophisticated test equipment. Extensive laboratory work. Prerequisites: EE 4304 or equivalent and background in VHDL/Verilog. (2-3) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-25 18:32:32 013223 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eddg6303</td>
<td>(r4)</td>
<td>eedg6303.5</td>
<td>EEDG 6303 (CE 6303) Testing and Testable Design (3 semester credit hours) Techniques for detection of failures in digital circuits and systems. Fault modeling and detection. Functional testing and algorithms for automatic test pattern generation (ATPG). Design of easily testable digital systems. Techniques for introducing built-in self test (BIST) capability. Test of various digital modules, such as PLA's, memory circuits, datapath, etc. Prerequisites: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | eddg6304 | (r4) | eedg6304.8 | EEDG 6304 (CE 6304 and CS 6304) Computer Architecture (3 semester credit hours) Trends in processor, memory, I/O and system design. Techniques for quantitative analysis and evaluation of computer systems to understand and compare alternative design choices in system design. Components in high performance processors and computers: pipelining, instruction level parallelism, memory hierarchies, and input/output. Students will undertake a major computing system analysis and design project. Must have an understanding of C/C++. Prerequisite: CS 3340 or EE 4304. (3-0) Y | phase: approve | status: approving | audit: 30 | ddc130130 2014-01-15 16:52:54 013261 14.0901.00.06 audit: -87.1 m index: -87.1 m match_fail | peoplesoft diff: 013261 2013-08-25 sxh121431 |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eedg6306 (r5)</td>
<td>eedg6306.5</td>
<td>EEDG 6306 (CE 6306) Application Specific Integrated Circuits Design (3 semester credit hours) This course discusses the design of application specific integrated circuits (ASIC). Specific topics include: VLSI system design specification, ASIC circuit structures, synthesis, and implementation of an ASIC digital signal processing (DSP) chip. Prerequisite: EE 3320. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 13:56:37</td>
<td>cxj140030 013226 14.0901.00.06</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | eedg6307 (r4) | eedg6307.6 | EEDG 6307 (CE 6307) Fault-Tolerant Digital Systems (3 semester credit hours)Advanced concepts in hardware and software fault tolerance. Topics include fault models, coding in computer systems, fault detection mechanisms, fault-tolerant routing, reconfiguration techniques, and software fault tolerance techniques such as recovery blocks, N-version programming, checkpointing, and application-level error resilience, etc. Survey of practical fault-tolerant systems. Prerequisites: EEDG 6301 and ENGR 3341 or equivalent. (3-0) R | phase: approve
status: approving
audit: 30 | mxv062000
2014-02-11
07:01:45
013242
14.0901.00.06
audit: -87.6 m
index: -87.6 m
match_fail | peoplesoft diff: 013242 2013-08-25 sxh121431 |
| 2014-open | edit * | eedg6308 (r4) | eedg6308.5 | EEDG 6308 (CE 6308 and CS 6396) Real-Time Systems (3 semester credit hours)Introduction to real-time applications and concepts. Real-time operating systems and resource management. Specification and design methods for real-time systems. System performance analysis and optimization techniques. Project to specify, analyze, design, implement and test small real-time system. Prerequisite: CS 5348. (3-0) R | phase: approve
status: approving
audit: 30 | mxv062000
2013-12-19
20:53:41
013272
14.0901.00.06
audit: -87.2 m
index: -87.2 m
match_fail | peoplesoft diff: 013272 2013-08-25 sxh121431 |
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * eedg6345 (r3) eedg6345.3</td>
<td>EEDG 6345 (CE 6345) Engineering of Packet-Switched Networks (3 semester credit hours) Detailed coverage, from the point of view of engineering design, of the physical, data-link, network and transport layers of IP (Internet Protocol) networks. This course is a master's level introduction to packet networks. Prior knowledge of digital communication systems is strongly recommended. Prerequisite: EE 3350 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:57:05 013227 14.1001.00.06 audit: -87.6 m index: -87.6 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eedg6370 (r4) eedg6370.4</td>
<td>EEDG 6370 (CE 6370) Design and Analysis of Reconfigurable Systems (3 semester credit hours) Introduction to reconfigurable computing, programmable logic: FPGAS, CPLDs, CAD issues with FPGA based design, reconfigurable systems: emulation, custom computing, and embedded application based computing, static and dynamic hardware, evolutionary design, software environments for reconfigurable systems. Prerequisite: EE 3320 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:58:05 013228 14.0903.00.06 audit: -87.7 m index: -87.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eedg6375 (r4)</td>
<td>eedg6375.5</td>
<td>EEDG 6375 (CE 6375) Design Automation of VLSI Systems (3 semester credit hours) This course deals with various topics related to the development of CAD tools for VLSI systems design. Algorithms, data structures, heuristics and design methodologies behind CAD tools. Design and analysis of algorithms for layout, circuit partitioning, placement, routing, chip floor planning, and design rule checking (DRC). Introduction to CAD algorithms for RTL and behavior level synthesis, module generators, and silicon compilation. Prerequisite: CS 5343. Corequisite: EECT 6325. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eedg6398 (r4)</td>
<td>eedg6398.5</td>
<td>EEDG 6398 (CE 6398 and CS 6398) DSP Architectures (3 semester credit hours) Typical DSP algorithms, representation of DSP algorithms, data-graph, FIR filters, convolutions, Fast Fourier Transform, Discrete Cosine Transform, low power design, VLSI implementation of DSP algorithms, implementation of DSP algorithms on DSP processors, DSP applications including wireless communication and multimedia. Prerequisite: CS 5343. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eddg7304 (r3)</td>
<td>eddg7304.4</td>
<td>EEDG 7304 (CE 7304) Advanced Computer Architecture (3 semester credit hours) Advanced research topics in multiprocessor, GPU/GPGPU, storage-class non-volatile memory, main memory, network, and reconfigurable architectures. Focuses on current research in the area of computer system architecture to prepare students for a career in computer architecture research. Course will use articles from current technical literature to discuss relevant topics, such as digital signal processors, VLIW, and SIMD architectures, GPU and non-volatile memory architectures, low-power architectures, application-specific processors, and system on chip architectures. Prerequisites: CS 5348 and EEDG 6304 and knowledge of C/C++. (3-0) R</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eedg328 (r4)</td>
<td>eedg7328.5</td>
<td>EEDG 7328 (CE 7328) Physical Design of High-Speed VLSI Circuits (3 semester credit hours) Techniques for the physical design of high-speed VLSI circuits. Topics related to interconnection circuit modeling, performance-driven routing, buffer and wire sizing, placement and floor planning, technology mapping and performance evaluation issues encountered in high-speed VLSI circuit designs. Discussion of state-of-the-art practical industrial design examples. A project related to the development of a prototype CAD tool. Prerequisites: (CE or EECT 6325) and knowledge of programming in C. (3-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013248 2013-08-25 sxh121431

EEDG 7328 (CE 7328) Physical Design of High-Speed VLSI Circuits (3 semester credit hours) Techniques for the physical design of high-speed VLSI circuits. Topics related to interconnection circuit modeling, performance-driven routing, buffer and wire sizing, placement and floor planning, technology mapping and performance evaluation issues encountered in high-speed VLSI circuit designs. Discussion of state-of-the-art practical industrial design examples. A project related to the development of a prototype CAD tool. Prerequisites: (CE or EECT 6325) and knowledge of programming in C. (3-0) T

2014-open		edit *	eedg7v81 (r4)	eedg7v81.9	EEDG 7V81 Special Topics in Digital Systems (1-6 semester credit hours) May be repeated for letter grade credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R			ps info
								detail
								change
								process
								orion

peoplesoft diff: 013093 2013-08-25 sxh121431

EEDG 7V81 Special Topics in Digital Systems (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * eegr5300 (r3) eegr5300.7</td>
<td>EEGR 5300 Advanced Engineering Mathematics (3 semester credit hours) Advanced mathematical topics needed in the study of engineering. Topics may include advanced differential equations, linear algebra, vector calculus, complex analysis, and numerical methods. May not be used to fulfill 33 semester credit hours in MSEE degree requirements. (3-0) R</td>
<td>phase: approve status: approving audit: 25</td>
<td>mxv062000 2014-01-24 13:28:31 012954 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eegr5301 (r4)</td>
<td>eegr5301.5</td>
<td>EEGR 5301 (CS 5301) Professional and Technical Communication (3 semester credit hours) This course utilizes an integrated approach to writing and speaking for the technical professions. The advanced writing components of the course focus on writing professional quality technical documents such as proposals, memos, abstracts, reports, letters, emails, etc. The advanced oral communication components of the course focus on planning, developing, and delivering dynamic, informative and persuasive presentations. Advanced skills in effective teamwork, leadership, listening, multimedia and computer generated visual aids are also emphasized. Graduate students will have a successful communication experience working in a functional team environment using a real time, online learning environment. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>2014-01-24 12:51:29 013270 09.0908.00.01 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eegr5365 (r3)</td>
<td>eegr5365.3</td>
<td>EEGR 5365 Engineering Leadership (3 semester credit hours) Interpersonal influence and organizational influence in leading engineering organizations. Leadership is addressed from the point of view of the technical manager as well as from that of the technical professional. Topics include staffing, motivation, performance evaluation, communication, project selection and planning, intellectual property and professional ethics. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:11:11 012955 14.1001.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eegr5381 (r3)</td>
<td>eegr5381.8</td>
<td>EEGR 5381 Curriculum Practical Training in Electrical Engineering (3 semester credit hours) This course is required of students who need additional training in engineering practice. May not be used to fulfill 33 semester credit hours in MSEE degree requirements. May be repeated for credit (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-04 10:09:34 012956 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>eegr5v80 (r3)</td>
<td>eegr5v80.6</td>
<td>EEGR 5V80 Special Topics in Electrical Engineering (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-04 17:14:35 012957 14.1001.00.06 audit: -87.1 m index: -87.1 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eegr6316 (r3)</td>
<td>EEGR 6316 Fields and Waves (3 semester credit hours) Study of electromagnetic wave propagation beginning with Maxwell's equations; reflection and refraction at plane boundaries; guided wave propagation; radiation from dipole antennas and arrays; reciprocity theory; basics of transmission line theory and waveguides. Prerequisite: EE 4301 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:17:46 012958 14.1001.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eegr6316.3</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012958 2012-08-26 sxh121431</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEGR 6316 Fields and Waves (3 semester credit hours) Study of electromagnetic wave propagation beginning with Maxwell's equations; reflection and refraction at plane boundaries; guided wave propagation; radiation from dipole antennas and arrays; reciprocity theory; basics of transmission line theory and waveguides. Prerequisite: EE 4301 or equivalent. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eegr6381 (r5)</td>
<td>EEGR 6381 (MECH 6391) Computational Methods in Engineering (3 semester credit hours) Numerical techniques and their applications in engineering. Topics will include: numerical methods of linear algebra, interpolation, solution of nonlinear equations, numerical integration, Monte Carlo methods, numerical solution of ordinary and partial differential equations, and numerical solution of integral equations. Prerequisites: ENGR 2300 and ENGR 3300 or equivalent, and knowledge of a scientific programming language. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:17:59 012961 27.0301.00.01 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eegr6381.7</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012961 2013-08-25 sxh121431</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEGR 6381 (MECH 6391) Computational Methods in Engineering (3 semester credit hours) Numerical techniques and their applications in engineering. Topics will include: numerical methods of linear algebra, interpolation, solution of nonlinear equations, numerical integration, Monte Carlo methods, numerical solution of ordinary and partial differential equations, and numerical solution of integral equations. Prerequisites: ENGR 2300 and ENGR 3300 or equivalents, equivalent, and knowledge of a scientific programming language. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------</td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | eegr6v88 | (r2) eegr6v88,6 | EEGR 6V88 Special Topics in Electrical Engineering (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R
peoplesoft diff: 014238 2013-08-25 sxh121431
EEGR 6V88 Special Topics in Electrical Engineering (1-6 semester hours). For letter grade credit only. (May hours) May be repeated to a maximum of 9 hours.) for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R | phase: approve | status: approving
audit: 30 | srx090100
2014-01-23
15:28:55
014238
14.1001.00.06
audit: -87.1 m
index: -87.1 m
match_fail | ps info detail change process orion |
| 2014-open | edit * | eegr6v98 | (r3) eegr6v98,4 | EEGR 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S
peoplesoft diff: 012962 2012-08-26 sxh121431
EEGR 6V98 Thesis (3-9 semester credit hours) May Pass/Fail only. May be repeated for credit. For pass/fail credit only. credit. Instructor consent required. ([3-9]-0) S | phase: approve | status: approving
audit: 30 | mjp044000
2013-11-11
13:36:10
012962
14.1001.00.06
audit: -87.3 m
index: -87.3 m
match_fail | ps info detail change process orion |
| 2014-open | edit * | eegr8v40 | (r3) eegr8v40,4 | EEGR 8V40 Individual Instruction in Electrical Engineering (1-6 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R
peoplesoft diff: 012963 2012-08-26 sxh121431
EEGR 8V40 Individual Instruction in Electrical Engineering (1-6 semester credit hours) May Pass/Fail only. May be repeated for credit. For pass/fail credit only. credit. Instructor consent required. ([1-6]-0) R | phase: approve | status: approving
audit: 30 | mjp044000
2013-11-11
13:36:43
012963
14.1001.00.06
audit: -87.3 m
index: -87.3 m
match_fail | ps info detail change process orion |
| 2014-open | edit * | eegr8v70 | (r3) eegr8v70,4 | EEGR 8V70 Research in Electrical Engineering (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) R
peoplesoft diff: 012964 2012-08-26 sxh121431
EEGR 8V70 Research in Electrical Engineering (3-9 semester credit hours) May Pass/Fail only. May be repeated for credit. For pass/fail credit only. credit. Instructor consent required. ([3-9]-0) R | phase: approve | status: approving
audit: 30 | mjp044000
2013-11-11
13:37:03
012964
14.1001.00.06
audit: -87.3 m
index: -87.3 m
match_fail | ps info detail change process orion |
| 2014-open | edit * | eegr8v99 | (r3) eegr8v99,4 | EEGR 8V99 Dissertation (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S
peoplesoft diff: 012966 2012-08-26 sxh121431
EEGR 8V99 Dissertation (3-9 semester credit hours) May Pass/Fail only. May be repeated for credit. For pass/fail credit only. credit. Instructor consent required. ([3-9]-0) S | phase: approve | status: approving
audit: 30 | mjp044000
2013-11-11
13:37:17
012966
14.1001.00.06
audit: -87.3 m
index: -87.3 m
match_fail | ps info detail change process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * eemf5283 (r3) eemf5283.4</td>
<td>EEMF 5283 Plasma Technology Laboratory (2 semester credit hours) Laboratory will provide a hands-on experience to accompany EEMF 5383. Topics to include: Vacuum technology [pumps, gauges, gas feed], plasma uses [etch, deposition, lighting and plasma thrusters] and introductory diagnostics. Recommended Corequisite: EEMF 7171. Corequisite: EEMF 5383. (0-2) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 00:51:18 012942 14.1001.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eemf5320 (r3) eemf5320.6</td>
<td>EEMF 5320 Introduction to Devices and Circuits (3 semester credit hours) This course provides a background in Electrical Engineering for students entering the M.S.E.E. program from other fields of science and engineering. Topics include circuit analysis and simulation, semiconductor device fundamentals and operation, and basic transistor circuits. May not be used to fulfill 33 semester credit hours in MSEE degree requirements. Prerequisite: differential equations. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-24 13:36:43 012943 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eemf5383</td>
<td>(r4)</td>
<td>EEMF 5383 (MECH 5383 and MSEN 5383 and PHYS 5383) Plasma Technology (3 semester credit hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eemf6283</td>
<td>(r4)</td>
<td>EEMF 6283 Plasma Science Laboratory (2 semester credit hours) Laboratory will provide a hands on experience to accompany EEMF 6383. Experiments will include measurements of fundamental plasma properties and understanding of important plasma diagnostics. Recommended Corequisite: EEMF 7171. Corequisite: EEMF 6383. (0-2) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eemf6319</td>
<td>(r3)</td>
<td>EEMF 6319 Quantum Physical Electronics (3 semester credit hours) Quantum-mechanical foundation for study of nanometer-scale electronic devices. Principles of quantum physics, stationary-state eigenfunctions and eigenvalues for one-dimensional potentials, interaction with the electromagnetic field, electronic conduction in solids, applications of quantum structures. Prerequisite: ENGR 3300 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eemf6320</td>
<td>EEMF 6320 (MSEN 6320) Fundamentals of Semiconductor Devices (3 semester credit hours) Semiconductor material properties, band structure, equilibrium carrier distributions, non-equilibrium current-transport processes, and recombination-generation processes. Prerequisite: EEMF 6319 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:25:12 013268 14.1001.00.06</td>
<td>[ps info detail change process orion]</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eemf6321</td>
<td>EEMF 6321 (MSEN 6321) Active Semiconductor Devices (3 semester credit hours) The physics of operation of active devices will be examined, including p-n junctions, bipolar junction transistors and field-effect transistors: MOSFETs, JFETS, and MESFETS. Active two-terminal devices and optoelectronic devices will be presented. Recommended co-requisite: EEMF 6320 or MSEN 6320. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-24 13:38:31 012946 14.1001.00.06</td>
<td>[ps info detail change process orion]</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | eemf6322 (r4) | eemf6322.7 | EEMF 6322 (MECH 6348 and MSEN 6322) Semiconductor Processing Technology (3 semester credit hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T
peoplesoft diff: 013266 2013-08-25 sxh121431 EEMF 6322 (MECH **6348**, **6348** and MSEN 6322) Semiconductor Processing Technology (3 semester credit hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T | phase: approve
status: approving
audit: 30 | mxv062000
2014-01-14
10:42:46
013266
14.1001.00.06
audit: -87.1 m
index: -87.1 m
match_fail | ps info
detail
change
process
orion |
| 2014-open | edit * | eemf6323 (r4) | eemf6323.4 | EEMF 6323 Circuit Modeling of Solid-State Devices (3 semester credit hours) Provide physical insight into the operation of MOSFETs and BJTs, with particular emphasis on new physical effects in advanced devices. Compact (SPICE-level) transistor models will be derived from basic semiconductor physics; common simplifications made in the derivations of model equations will be detailed to provide an appreciation for the limits of model capabilities. Prerequisites: EEMF 6320 and EEMF 6321. (3-0) R
peoplesoft diff: 012947 2012-08-26 sxh121431 EEMF 6323 Circuit Modeling of Solid-State Devices (3 semester credit hours) Provide physical insight into the operation of MOSFETs and BJTs, with particular emphasis on new physical effects in advanced devices. Compact (SPICE-level) transistor models will be derived from basic semiconductor physics; common simplifications made in the derivations of model equations will be detailed to provide an appreciation for the limits of model capabilities. Prerequisites: EEMF 6320 and EEMF 6321. (3-0) R | phase: approve
status: approving
audit: 30 | cxj140030
2013-10-16
14:26:01
012947
14.1001.00.06
audit: -87.7 m
index: -87.7 m
match_fail | ps info
detail
change
process
orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eemf6324</td>
<td>EEMF 6324 (MSEN 6324) Electronic, Optical and Magnetic Materials (3 semester credit hours) Foundations of materials properties for electronic, optical and magnetic applications. Electrical and thermal conduction, elementary quantum physics, modern theory of solids, semiconductors and devices, dielectrics, magnetic and optical materials properties. Prerequisite: MSEN 5300 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:26:15 013269 14.1001.00.06 audit: -87.7 m index: -87.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eemf6324.5</td>
<td></td>
<td>peoplesoft diff: 013269 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>edit *</td>
<td>eemf6327</td>
<td>EEMF 6327 (MSEN 6327) Semiconductor Device Characterization (3 semester credit hours) This course will describe the theoretical and practical considerations associated with the most common electrical and reliability characterization techniques used in the semiconductor industry. Prerequisite: (EEMF 6320 or MSEN 6320 or equivalent) or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-08 10:58:21 NOLINK 14.1801.00.06 audit: -87.8 m index: -87.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eemf6327.7</td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eemf6348 (r5)</td>
<td>EEMF 6348 (MECH 6341 and MSEN 6348) Lithography and Nanofabrication (3 semester credit hours) Study of the principles, practical considerations, and instrumentation of major lithography technologies for nanofabrication of devices and materials. Advanced photolithography, electron beam lithography, nanoimprint lithography, x-ray lithography, ion beam lithography, soft lithography, and scanning probe lithography, basic resist and polymer science, applications in nanoelectronic and biomaterials. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-14 11:11:48</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>eemf6348.6</td>
<td></td>
<td>status: approving</td>
<td>012949</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>14.1801.00.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -87.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 012949 2013-08-25 sxh121431

EEMF 6348 (MECH 6341, 6341 and MSEN 6348) Lithography and Nanofabrication (3 semester credit hours) Study of the principles, practical considerations, and instrumentation of major lithography technologies for nanofabrication of devices and materials. Advanced photolithography, electron beam lithography, nanoimprint lithography, x-ray lithography, ion beam lithography, soft lithography, and scanning probe lithography, basic resist and polymer science, applications in nanoelectronic and biomaterials. (3-0) Y

2014-open	edit *	eemf6372 (r3)	EEMF 6372 Semiconductor Process Integration (3 semester credit hours) The integration of semiconductor processing technology to yield integrated circuits. The course will emphasize MOSFET design based upon process integration, in particular as it applies to short channel devices of current interest. Process simulation will be used to study diffusion, oxidation, and ion implantation. (3-0) R	phase: approve	cxj140030 2013-10-16 14:26:33	ps info detail change process orion
		eemf6372.3		status: approving	012950	
				audit: 30	14.1001.00.06	
					index: -87.7 m	
					match_fail	

peoplesoft diff: 012950 2012-08-26 sxh121431

EEMF 6372 Semiconductor Process Integration (3 semester credit hours) The integration of semiconductor processing technology to yield integrated circuits. The course will emphasize MOSFET design based upon process integration, in particular as it applies to short channel devices of current interest. Process simulation will be used to study diffusion, oxidation, and ion implantation. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eemf6382 (r4)</td>
<td>eemf6382.6</td>
<td>EEMF 6382 (MECH 6347 and MSEN 6382) Introduction to MEMS (3 semester credit hours) Study of micro-electro-mechanical devices and systems and their applications. Microfabrication techniques and other emerging fabrication processes for MEMS are studied along with their process physics. Principles of operations of various MEMS devices such as mechanical, optical, thermal, magnetic, chemical/biological sensors/actuators are studied. Topics include: bulk/surface micromachining, LIGA, microsensors and microactuators in multiphysics domain. (3-0) T</td>
<td>phase: approve 2014-01-14 11:17:08</td>
<td>mxv062000 012951 14.0101.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eemf6383 (r4)</td>
<td>eemf6383.8</td>
<td>EEMF 6383 (MECH 6383 and PHYS 6383) Plasma Science (3 semester credit hours) Theoretically oriented study of plasmas. Topics to include: fundamental properties of plasmas, fundamental equations (kinetic and fluid theory, electromagnetic waves, plasma waves, plasma sheaths), plasma chemistry and plasma diagnostics. Prerequisite: EEGR 6316 or equivalent. (3-0) T</td>
<td>phase: approve 2014-01-11 14:12:04</td>
<td>mxv062000 013127 14.1201.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eemf7171 (r4) eemf7171.10</td>
<td>EEMF 7171 Current Topics in Plasma Processing (1 semester credit hour) Discussion of current literature on plasma processing; applications, diagnostics, sources, chemistry and technology. May be repeated for credit (9 semester credit hours maximum). Must have knowledge of plasma processing technology. Prerequisites: EEMF 6383 or MECH 6383 or PHYS 6383 or equivalent and instructor consent required. (1-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-04 17:17:34 013690 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013690 2013-08-25 sxh121431

EEMF 7171 Current Topics in Plasma Processing (1 semester credit hour) Discussion of current literature on plasma processing; applications, diagnostics, sources, chemistry and technology. Knowledge of plasma processing technology (EEMF 6383 preferred). Prerequisite: Consent of instructor. May be repeated for credit. credit (9 semester credit hours maximum). Must have knowledge of plasma processing technology. Prerequisites: EEMF 6383 or MECH 6383 or PHYS 6383 or equivalent and instructor consent required. (1-0) Y

<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * eemf7320 (r3) eemf7320.3</td>
<td>EEMF 7320 (MSEN 7320) Advanced Semiconductor Device Theory (3 semester credit hours) Quantum mechanical description of fundamental semiconductor devices; carrier transport on the submicron scale; heterostructure devices; quantum-effect devices. Prerequisites: EEMF 6320 and EEMF 6321. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:27:00 013128 14.1001.00.06 audit: -87.7 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013128 2013-08-25 sxh121431

EEMF 7320 (MSEN 7320) Advanced Semiconductor Device Theory (3 semester credit hours) Quantum mechanical description of fundamental semiconductor devices; carrier transport on the submicron scale; heterostructure devices; quantum-effect devices. Prerequisites: EEMF 6320 and EEMF 6321. (3-0) R

<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * eemf7v82 (r4) eemf7v82.8</td>
<td>EEMF 7V82 Special Topics in Microelectronics (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-23 15:31:55 013129 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013129 2013-08-25 sxh121431

EEMF 7V82 Special Topics in Microelectronics (1-6 semester hours) For letter grade credit only. (May hours) May be repeated to a maximum of 9 hours.) for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eeop6309 (r4)</td>
<td>eeop6309.5</td>
<td>EEOP 6309 Fourier Optics (3 semester credit hours) Theory of coherent optics using a linear systems approach. Application of the concepts of impulse response and transfer function to free-space wave propagation, diffraction, and image formation. Prerequisites: EE 3302 and EE 4301 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-16 14:27:37</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eeop6310 (r3)</td>
<td>eeop6310.3</td>
<td>EEOP 6310 Optical Communication Systems (3 semester credit hours) Operating principles of optical communications systems and fiber optic communication technology. Characteristics of optical fibers, laser diodes, and laser modulation, laser and fiber amplifiers, detection, demodulation, dispersion compensation, and network topologies. System topology, star network, bus networks, layered architectures, all-optical networks. Prerequisite: EE 3350 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-16 14:27:45</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eeop6311 (r1) eeop6311.2</td>
<td>EEOP 6311 Photonic Devices and Integration (3 semester credit hours) This course will discuss the design and operation of passive and active semiconductor optical devices such as waveguides, lasers and modulators, the materials used and their advantages and disadvantages, the compromises needed for integration of devices, the processes used in integration, the subsystems and systems that can be achieved through integration. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2013-11-15:32:28</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>eeop6312 (r3) eeop6312.4</td>
<td>EEOP 6312 Laser and Modern Optics (3 semester credit hours) Theory and applications of lasers, including ray and beam optics. Design issues include power maximization, noise properties, spectral purity and high-speed modulation. Particular emphasis on semiconductor lasers and their relevance to optical communications. Prerequisite: EE 4301 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2013-11-15:32:49</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eeop6313 (r4) eeop6313.4</td>
<td>EEOP 6313 (MSEN 6313) Semiconductor Opto-Electronic Devices (3 semester credit hours) Physical principles of semiconductor optoelectronic devices: optical properties of semiconductors, optical gain and absorption, wave guiding, laser oscillation in semiconductors, LEDs, physics of detectors, applications. Prerequisite: EE 3310 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:28:09</td>
<td>peoplesoft diff: 013221 2013-08-25 sxh121431</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf

108/219
<table>
<thead>
<tr>
<th>req_id</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>eeop6314</td>
<td>EEOP 6314 Principles of Fiber and Integrated Optics (3 semester credit hours) Theory of dielectric waveguides, modes of planar waveguides, strip waveguides, optical fibers, coupled-mode formalism, directional couplers, diffractive elements, switches, wavelength-tunable filters, polarization properties of devices and fibers, step and graded-index fibers, devices for fiber measurements, fiber splices, polarization properties, and fiber systems. Prerequisites: ENGR 3300 and EE 4301 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013078 2012-08-26 sxh121431

EEOP 6314 Principles of Fiber and Integrated Optics (3 semester credit hours) Theory of dielectric waveguides, modes of planar waveguides, strip waveguides, optical fibers, coupled-mode formalism, directional couplers, diffractive elements, switches, wavelength-tunable filters, polarization properties of devices and fibers, step and graded-index fibers, devices for fiber measurements, fiber splices, polarization properties, and fiber systems. Prerequisites: ENGR 3300 and EE 4301 or equivalent. (3-0) T

<table>
<thead>
<tr>
<th>req_id</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>eeop6315</td>
<td>EEOP 6315 Engineering Optics (3 semester credit hours) Fundamental concepts of geometrical optics, first-order optical system design and analysis, paraxial ray tracing, aperture and field stops. Optical materials and properties; third order aberration theory. Prerequisite: PHYS 2326 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>req_id</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>eeop6317</td>
<td>EEOP 6317 Physical Optics (3 semester credit hours) Study of optical propagation, interference, diffraction and polarization based primarily on the electromagnetic nature of light; interferometers; diffractive phenomena based on scalar formalisms; diffraction gratings; diffraction in optical instruments; interference of polarized waves; mathematical description of fully and partially polarized light; Jones and Mueller matrices. Prerequisite: EE 4301 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req course req id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>eep6328 (r3)</td>
<td>EEOP 6328 Nonlinear Optics (3 semester credit hours) Survey of nonlinear optical effects; origins of optical nonlinearities; laser-pulse propagation equations in bulk media and optical fibers; the nonlinear optical susceptibility tensor; second-order nonlinear optical effects (second harmonic generation, optical rectification, parametric mixing and amplification); third-order nonlinear optical effects in fiber optic communication systems (self-phase modulation, cross-phase modulation, stimulated Brillouin scattering, stimulated Raman scattering, four-wave mixing, nonlinear polarization mode dispersion); self-focusing and self-defocusing in bulk media; computational methods for nonlinear optics. Prerequisite: EE 4301 or equivalent; EEOP 6310 recommended. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2013-11-11 15:33:23 013081 14.1001.00.06 audit: -87.3 m index: -87.3 m</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>eep6329 (r3)</td>
<td>EEOP 6329 Optical Signal Conditioning (3 semester credit hours) Engineering principles and applications of laser beam modulation and deflection (acousto-optics and electro-optics), harmonic generation and optical parametric processes, optical pulse compression and shaping. Prerequisites: EE 4301 or equivalent and EEOP 6317 recommended. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2013-11-11 15:33:36 013082 14.1001.00.06 audit: -87.3 m index: -87.3 m</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>eep6334 (r4)</td>
<td>EEOP 6334 Advanced Geometrical and Physical Optics (3 semester credit hours) Geometrical optics as a limiting case of the propagation of electromagnetic waves; geometrical theory of optical aberrations; the diffraction theory of aberrations; image formation with partially coherent and partially polarized light; computational methods for physical optics. Other topics may be selected from the following: diffraction theory of vector electromagnetic fields, diffraction of light by ultrasonic waves, optics of metals, Lorenz-Mie theory of the scattering of light by small particles, and optics of crystals. Prerequisite: EEOP 6317. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2013-11-11 15:33:48 013083 14.1001.00.06 audit: -87.3 m index: -87.3 m</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>eep6335 (r4)</td>
<td>EEOP 6335 Engineering of Infrared Imaging Systems (3 semester credit hours) Thermal optics, review of Fourier optics, review of information theory, embedded system design principles, and system modeling. Prerequisites: EEOP 6309 or EEOP 6315 or equivalents. (3-0) T</td>
<td>phase: approve</td>
<td>mjp044000 2013-11-11 15:33:57 013084 14.1001.00.06 audit: -87.3 m index: -87.3 m</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eeop7v83 (r4)</td>
<td>EEOP 7V83 Special Topics in Optics and Fields (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-25 19:15:51 013087 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>
EEPE 6354 Power Electronics (3 semester credit hours) Power Electronics and applications; Review of power devices including wide band gap devices. Harmonics and power factor in non-sinusoidal systems. AC-DC Phase Controlled Thyristor Converters. DC-DC converters: Buck, Boost, and Buck-Boost converters. Flyback, Cuk, and Full bridge converters. DC-AC Inverters: Square wave, Sinusoidal, Space Vector PWM, and current regulated inverters. Introduction to Active Rectifiers, Resonant Converters, and Multi-level converters. Introduction to AC motor Drives Systems and control. Prerequisite: EE 3311. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eepe6356 (r2)</td>
<td>eepe6356.4</td>
<td>EEPE 6356 Adjustable Speed Motor Drives (3 semester credit hours) Steady state and dynamic performance of electric machines - induction, synchronous, reluctance, and PM machines. Two axis models of AC machines and AC drives. Control characteristics of electric machines and control methodologies. Direct torque and flux control and current regulated controllers. Field orientation control techniques - stator flux, rotor flux, and air gap flux orientation. Introduction to fault tolerant and sensorless control of machines. Prerequisite: EE 3311. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2013-12-17 10:25:48</td>
<td>ps info</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eepe6357 (r2)</td>
<td>EEPE 6357 Control, Modeling and Simulation in Power Electronics (3 semester credit hours) Principles of modeling and fundamentals of controller design for inverters, and switching dc-dc power converters will be discussed with an emphasis on generalized averaging methods. Special attention will be given to analysis and design of regulated power supplies for low power and medium power level supplies. An introduction to nonlinear phenomenon in power electronic systems and adjustable speed motor drives will be included. Finally analysis and design of multi-converter systems will be discussed and the use of advanced control methods such as Feedback linearization and sliding mode control in such systems will be explored. Prerequisite: EEPE 6354. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2013-12-17 10:27:34 014175 14.1001.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eepe6358</td>
<td>(r2) eepe6358.3</td>
<td>EEPE 6358 Electrification of Transportation (3 semester credit hours) Introduction to electric and hybrid vehicles. Hybrid vehicle architectures - series, parallel and plug-in hybrid vehicle architectures - range extender and full hybrid systems. Propulsion system analysis, powertrain component sizing, and vehicle simulation. Energy requirements, energy storage devices, and fuel cell vehicles. Power electronic converters for electric and hybrid vehicles. Energy management and control strategies. Characteristics of commercially available hybrid vehicles. Introduction to more electric aircraft and architectures. Marine electric propulsion system. Prerequisite: EEPE 6354. (3-0) T</td>
<td>phase: approve</td>
<td>mjp044000 2013-12-17 10:28:10</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eepe7356 (r2)</td>
<td>eepe7356.3</td>
<td>EEPE 7356 Computer Aided Design of Electric Machines (3 semester credit hours) Principles of force generation and distribution of electromagnetic forces within induction, permanent magnet synchronous, and reluctance machines. Introduction to finite element analysis of electric machinery. Electromagnetic, structural, and thermal fields in electric machines. Multi-physics analysis of electric machines. Optimization methodologies in multi-objective problems. Applications of artificial intelligence methods for optimal design of electric machinery. Prerequisite: EEPE 6356. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eepe7v91 (r2)</td>
<td>eepe7v91.7</td>
<td>EEPE 7V91 Special Topics in Power Electronics (1-6 semester credit hours) Advanced power electronics and drives related topics relevant to the needs for research in power/energy systems. May be repeated for credit as topics vary (12 semester credit hours maximum). Prerequisite: EEPE 6354. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EERF 5305 Radio Frequency Engineering (3 semester credit hours) Introduction to generation, transmission, and radiation of electromagnetic waves. Microwave-frequency measurement techniques. Characteristics of guided-wave structures and impedance matching. Fundamentals of antennas and propagation. Prerequisite: EE 4301 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:31:26 012968 14.1001.00.06 audit: -87.7 m index: -87.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EERF 6311 RF and Microwave Circuits (3 semester credit hours) Analysis and design of RF and microwave circuits. Topics include impedance matching, network theory, S-parameters, transmission line media (waveguide, coax, microstrip, stripline, coplanar waveguide, etc.) and passive component design (power dividers, couplers, switches, attenuators, phase shifters, etc.). Industry-standard microwave CAD tools will be used. Prerequisite: EE 4368 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:31:33 012969 14.1001.00.06 audit: -87.7 m index: -87.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eerr6330 (r4) eerr6330.5</td>
<td>EERF 6330 RF Integrated Circuit Design (3 semester credit hours) Introduction to RF and wireless systems; basic concepts of RF design: linearity, distortion, (P1dB, IIP3), sensitivity, noise figure; RF passives: Q-factors, impedance transformation, matching network; transceiver architectures: Receivers - Heterodyne, direct down-conversion, image reject receivers, direct conversion transmitter, two-step transmitter; low noise amplifier design; mixer design; oscillator design; basic architectures of power amplifiers. Industry-standard CAD tools will be used for design projects. Prerequisite: EE 4340. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-07 13:52:01</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eerr6351 (r3) eerr6351.3</td>
<td>EERF 6351 Computational Electromagnetics (3 semester credit hours) Review of Maxwell's equations; numerical propagation of scalar waves; finite-difference time-domain solutions of Maxwell's equations; numerical implementations of boundary conditions; numerical stability; numerical dispersion; absorbing boundary conditions for free space and waveguides; selected applications in telecommunications, antennas, microelectronics and digital systems. Prerequisite: EE 4301 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:31:45</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eerk6355 (r3)</td>
<td>eerk6355.3</td>
<td>EERF 6355 RF and Microwave Amplifier Design (3 semester credit hours) Design of narrow band, and broadband amplifiers. Study of stability on amplifiers. Study of noise figure, noise parameters and noise sources. Low noise amplifier design. Study of distortion on amplifiers. Introduction to power amplifiers. Microwave amplifier design in integrated circuits. Prerequisite: EERF 6311 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-04 13:48:10 012972 14.1001.00.06 audit: -87.8 m index: -87.8 m match fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

PEOPLESOFT DIFF: 012972 2012-08-26 sxh121431

EERF 6355 RF and Microwave Amplifier Design (3 semester credit hours) Design of high-frequency active circuits. Review of transmission line theory. RF and microwave matching circuits using discrete and guided wave structures. Detailed study of S-parameters. Design of narrow band, broadband and low noise broadband amplifiers. Detailed study Study of stability on amplifiers. Study of noise figure, noise parameters and stability noise sources. Low noise amplifier design. Study of RF and microwave circuits using S-parameters. distortion on amplifiers. Introduction to power amplifiers. Microwave amplifier design in integrated circuits. Prerequisite: \textit{EE-4368} EERF 6311 or equivalent. (3-0) R
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * eerf6392 (r3)</td>
<td>EERF 6392 Millimeter Wave Integrated Circuit Design (3 semester credit hours) Millimeter wave applications, silicon integrated circuits technology trends, passive components in silicon IC's for millimeter wave operation, Drude model for silicon substrate, parasitic modeling, NQS transistor model, High frequency limit for thermal noise, chip interface including packaging and antenna, comparison between RF and mm-wave circuits, techniques for extending circuit operation frequency (injection locking and frequency multiplication), and diode circuits including a parametric amplifier. Prerequisites: EECT 6325 and EERF 6311 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>mmb101000 2014-01-17 17:06:45 014090 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eerf6394 (r3)</td>
<td>EERF 6394 Antenna Engineering and Wave Propagation (3 semester credit hours) Operating principles for microwave antennas used in modern wireless communications and radar systems. Prerequisite: EEGR 6316 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:32:19 012973 14.1001.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eef6395 (r4)</td>
<td>eef6395.5</td>
<td>EERF 6395 RF and Microwave Systems Engineering (3 semester credit hours) Review of RF and microwave systems, such as cellular, point-to-point radio, satellite, RFID and RADAR. Topics include: system architectures, noise and distortion, antennas and propagation, transmission lines and network analysis, active and passive components, modulation techniques and specification flowdown. Prerequisite: EE 4368 or equivalent. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eef6396 (r3)</td>
<td>eef6396.3</td>
<td>EERF 6396 Microwave Design and Measurement (3 semester credit hours) This lecture and lab course covers the fundamentals of microwave component design and measurements, including vector impedance (scattering parameters), scalar measurements and spectrum analysis. Microwave components, such as filters, directional couplers, switches, amplifiers, and oscillators, will be designed and simulated with various CAD tools and then built and measured to compare performance with theory. Prerequisite: EE 4368 or equivalent. (2-1) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eerf7330 (r3)</td>
<td>eerf7330.4</td>
<td>EERF 7330 Advanced RF Integrated Circuit Design (3 semester credit hours) Power Amplifiers, different classes of linear (A, B, AB, C) and switching power amplifiers (E, G, H), CMOS Integrated power amplifiers, High Efficiency Power Amplifiers (Doherty Power Amplifier); Phase Locked Loops: Basic concepts of PLL, Charge pumps, Type-I and Type-II PLLs, Noise in PLLs, Phase Noise, Frequency multiplication, RF Synthesizer Architectures, Frequency Dividers, Fractional-N PLLs, Delta-Sigma based PLLs, ADPLL; Advanced RF transceivers; Wideband and multiband radio design; Complete link budget analysis for wireless systems. Design project will focus on design of the entire transmitter using Agilent ADS. Prerequisite: EERF 6330. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EERF 7330 Advanced RF Integrated Circuit Design (3 semester credit hours) Power Amplifiers, different classes of linear (A, B, AB, C) and switching power amplifiers (E, G, H), CMOS Integrated power amplifiers, High Efficiency Power Amplifiers (Doherty Power Amplifier); Phase Locked Loops: Basic concepts of PLL, Charge pumps, Type-I and Type-II PLLs, Noise in PLLs, Phase Noise, Frequency multiplication, RF Synthesizer Architectures, Frequency Dividers, Fractional-N PLLs, Delta-Sigma based PLLs, ADPLL; Advanced RF transceivers; Wideband and multiband radio design; Complete link budget analysis for wireless systems. Design project will focus on design of the entire transmitter using Agilent ADS. Prerequisite: EERF 6330. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eerf7v89 (r3)</td>
<td>eerf7v89.8</td>
<td>EERF 7V89 Special Topics in RF and Microwave Systems (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EERF 7V89 Special Topics in RF and Microwave Systems (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * eesc5350 (r3) eesc5350.3</td>
<td>EESC 5350 Signals, Systems, and Digital Communications (3 semester credit hours) Advanced methods of analysis of electrical networks and linear systems. Laplace transforms, Fourier series, and Fourier transforms. Response of linear systems to step, impulse, and sinusoidal inputs. Convolution, system functions, and frequency response. Z transforms and digital systems. Fundamentals of digital communication systems such as information, digital transmission, channel capacity, modulation and demodulation techniques are introduced. Signaling schemes and performance of binary as well as M-ary modulated digital communication systems are introduced. Overall design considerations and performance evaluation of various digital communication systems are discussed. Prerequisite: ENGR 3300 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:33:30 013028 14.1001.00.06 audit: -87.6 m index: -87.6 m match fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EESC 5350 Signals, Systems, and Digital Communications (3 semester credit hours) Advanced methods of analysis of electrical networks and linear systems. Laplace transforms, Fourier series, and Fourier transforms. Response of linear systems to step, impulse, and sinusoidal inputs. Convolution, system functions, and frequency response. Z transforms and digital systems. Fundamentals of digital communication systems such as information, digital transmission, channel capacity, modulation and demodulation techniques are introduced. Signaling schemes and performance of binary as well as M-ary modulated digital communication systems are introduced. Overall design considerations and performance evaluation of various digital communication systems are discussed. Prerequisite: ENGR 3300 or equivalent. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eesc5360 (r3)</td>
<td>eesc5360.6</td>
<td>EESC 5360 Introduction to Communications and Signal Processing (3 semester credit hours) This course is designed to provide the necessary background for someone with a technical degree to enter the MSEE program in the Communications and Signal Processing concentration. It will focus on linear systems theory, to include Fourier series, Fourier and Laplace transforms, transfer functions, frequency response, and convolution. It will also include introductions to the solution of ordinary differential equations and to communications systems. May not be used to fulfill 33 semester credit hours in MSEE degree requirements. Prerequisites: One year of calculus and one semester of probability theory. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 25</td>
<td>mxv062000 2014-01-24 13:55:20 013029 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | eesc6340 (r4) | EESC 6340 Introduction to Telecommunications Networks (3 semester credit hours) Circuit, message and packet switching. The hierarchy of the ISO-OSI Layers. The physical layer: channel characteristics, coding, and error detection. The data link control layer: retransmission strategies, framing, multiaccess protocols, e.g., Aloha, slotted Aloha, CSMA, and CSMA/CD. The network layer: routing, broadcasting, multicasting, flow control schemes. Corequisite: EESC 6349. (3-0) Y | phase: approve
status: approving
audit: 30 | mmb101000
2014-01-17
17:11:42
013031
11.0901.00.06
audit: -87.1 m
index: -87.1 m | ps info detail
change process orion |
| 2014-open | edit * | eesc6341.5 | EESC 6341 Information Theory I (3 semester credit hours) Entropy and mutual information, lossless compression, channel capacity for discrete memoryless channels and Gaussian channels, capacity under fading and multiple-input multiple-output (MIMO) channels, the multiple-access channel, the broadcast channel, the Slepian-Wolf problem. Prerequisite: ENGR 3341. (3-0) R | phase: approve
status: approving
audit: 30 | mjp044000
2013-10-04
13:50:13
013032
14.1001.00.06
audit: -87.8 m
index: -87.8 m | ps info detail
change process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eesc6343 (r4) eesc6343.4</td>
<td>EESC 6343 Detection and Estimation Theory (3 semester credit hours) Parameter estimation. Least-square, mean-square, and minimum-variance estimators. Maximum A Posteriori (MAP) and Maximum-Likelihood (ML) estimators. Bayes estimation. Cramer-Rao lower bound. BLUE estimator and Wiener filtering. Prerequisite: EESC 6349. (3-0) R</td>
<td>phase: approve</td>
<td>14:34:18</td>
<td>30</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eesc6344 (r4) eesc6344.4</td>
<td>EESC 6344 Coding Theory (3 semester credit hours) Fundamentals of linear block codes, Hamming and Reed-Muller codes, LDPC codes and message passing decoding, cyclic codes, BCH and Reed-Solomon codes, convolutional codes, introduction to coded modulation. Prerequisite: EE 4360. (3-0) R</td>
<td>phase: approve</td>
<td>13:51:27</td>
<td>30</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6349 (r4) eesc6349.7</td>
<td>EESC 6349 (MECH 6312) Random Processes (3 semester credit hours) Random processes concept. Stationarity and independence. Auto-correlation and cross-correlation functions, spectral characteristics. Linear systems with random inputs. Special topics and applications. Must have background in probability and statistics. Prerequisite: EE 3302 and ENGR 3341 or MECH 6300. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2014-02-04 17:22:36</td>
<td>peoplesoft diff: 013035 2013-08-25 sxh121431</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6350 (r4) eesc6350.4</td>
<td>EESC 6350 Signal Theory (3 semester credit hours) Signal processing applications and signal spaces, vector spaces, matrix inverses and orthogonal projections, four fundamental subspaces, least squares and minimum norm solutions, the SVD and principal component analysis, subspace approximation, infinite dimensional spaces, linear operators, norms, inner products and Hilbert spaces, projection theorems, spectral properties of Hermitian operators, Hilbert spaces of random variables, linear minimum variance estimation and the Levinson-Durbin algorithm, general optimization over Hilbert spaces, methods and applications of optimization. Prerequisite: EE 3302 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:34:42</td>
<td>peoplesoft diff: 013036 2013-08-25 sxh121431</td>
<td></td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>course</td>
<td></td>
<td>EESC 6352 Digital Communication Systems (3 semester credit hours) This course covers basic principles of digital communications. The topics include introduction to source coding, signal representations, various digital modulation and transmission schemes, demodulators and detectors, error performance evaluations, introduction to channel coding, link budget, channel capacity and system design considerations. Overviews of various communication systems and their applications are also presented. Prerequisite: EESC 6349 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 14:34:53</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>req_id</td>
<td>request</td>
<td>peoplesoft diff: 013037 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td>013037</td>
<td>14.1001.00.06</td>
<td>match_fail</td>
</tr>
</tbody>
</table>

EESC 6352 Digital Communication Systems (3 semester credit hours) This course covers basic principles of digital communications. The topics include introduction to source coding, signal representations, various digital modulation and transmission schemes, demodulators and detectors, error performance evaluations, introduction to channel coding, link budget, channel capacity and system design considerations. Overviews of various communication systems and their applications are also presented. Prerequisite: EESC 6349 or equivalent. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * eesc6353 (r3)</td>
<td>EESC 6353 Broadband Digital Communication (3 semester credit hours) Characterization of broadband wireline and wireless channels. MAP and ML detection. Intersymbol Interference (ISI) effects. Equalization methods to mitigate ISI including single-carrier and multi-carrier techniques. Equalization techniques and structures including linear, decision-feedback, precoding, zero-forcing, mean square-error, FIR versus IIR. Multi-Input Multi-Output (MIMO) Equalization. Implementation issues including complexity, channel estimation, error propagation, etc. Real-world case studies from Digital Subscriber Lines (DSL) and wireless systems. Students work individually or in small teams on project and present their findings to class. Prerequisites: EE 4360 and knowledge of MATLAB. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:35:02</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6360 (r3)</td>
<td>EESC 6360 Digital Signal Processing I (3 semester credit hours) Analysis of discrete time signals and systems, Z-transform, discrete Fourier transform, fast Fourier transform, analysis and design of digital filters. Prerequisite: ENGR 3302 or EE 4361 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:35:11</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eesc6361 (r5)</td>
<td>EESC 6361 Digital Signal Processing II (3 semester credit hours) Continuation of EESC 6360. Includes advanced topics in signal processing such as: Digital filter structures, digital filter design and implementation methods, multirate digital signal processing, linear prediction and optimum filtering, spectral analysis and estimation methods. Prerequisite: EESC 6360. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:35:33 013040 14.1001.00.06 audit: -87.6 m index: -87.6 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eesc6362 (r4)</td>
<td>EESC 6362 Introduction to Speech Processing (3 semester credit hours) Introduction to the fundamentals of speech signal processing and speech applications. Speech analysis and speech synthesis techniques, speech enhancement and speech coding techniques including ADPCM and linear-predictive based methods such as CELP. Prerequisite: EESC 6360. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:35:33 013041 14.1001.00.06 audit: -87.6 m index: -87.6 m</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6363 (r4)</td>
<td>EESC 6363 Digital Image Processing (3 semester credit hours) Image formation, image sampling, 2D Fourier transform and properties, image wavelet transform, image enhancement in spatial and frequency domains, image restoration, color image processing, image segmentation, edge detection, morphological operations, object representation and description, introduction to image compression. Prerequisites: EE 4361 or equivalent and knowledge of C or MATLAB. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:35:44 013043 14.1001.00.06 audit: -87.7 m index: -87.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>eesc6363.4</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6364 (r4)</td>
<td>EESC 6364 Pattern Recognition (3 semester credit hours) Pattern recognition system, Bayes decision theory, maximum likelihood and Bayesian parametric classifiers, linear discriminant functions and decision boundaries, density estimation and nonparametric classifiers, unsupervised classification and clustering, multilayer neural networks, decision trees, classifier comparison. Prerequisite: Knowledge of C or MATLAB. Corequisite: EESC 6349. (3-0) T</td>
<td>phase: approve</td>
<td>rmb101000 2014-01-21 10:29:52 013044 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>eesc6364.5</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013043 2013-08-25 sxh121431

peoplesoft diff: 013044 2012-08-26 sxh121431

EESC 6364 Pattern Recognition (3 semester credit hours) Pattern recognition system, Bayes decision theory, maximum likelihood and Bayesian parametric classifiers, linear discriminant functions and decision boundaries, density estimation and nonparametric classifiers, unsupervised classification and clustering, multilayer neural networks, decision trees, classifier comparison. Prerequisite: Knowledge of C or MATLAB. Co-requisite: EESC 6349. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eesc6365 (r4)</td>
<td>eesc6365.5</td>
<td>EESC 6365 Adaptive Signal Processing (3 semester credit hours) Adaptive signal processing algorithms learn the properties of their environments. Transversal and lattice versions of the Least Mean Squares (LMS) and Recursive Least Squares (RLS) adaptive filter algorithms and other modern algorithms will be studied. These algorithms will be applied to network and acoustic echo cancellation, speech enhancement, channel equalization, interference rejection, beam forming, direction finding, active noise control, wireless systems, and others. Prerequisites: EESC 6349 and EESC 6360 and knowledge of matrix algebra. (3-0) T</td>
<td>phase: approve</td>
<td>rmb101000 2014-01-21 10:31:40 013045 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>eesc6366 (r5)</td>
<td>eesc6366.5</td>
<td>EESC 6366 Speech and Speaker Recognition (3 semester credit hours) Introduction to concepts in automatic recognition methods for speech applications; the primary emphasis is for automatic speech recognition and speaker identification techniques. Topics include speech features for recognition, hidden Markov models (HMMs) for acoustic and language applications (speech recognition, dialect/language recognition), Gaussian mixture models (GMMs) for speaker characterization, robustness issues to address noise and channel conditions for automatic recognition. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:36:11 013046 14.1001.00.06 audit: -87.7 m index: -87.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eesc6367 (r3)</td>
<td>eesc6367.3</td>
<td>EESC 6367 Applied Digital Signal Processing (3 semester credit hours) Implementation of signal processing algorithms, real-time signal processing, fixed-point versus floating-point implementation, architecture of processors used for signal processing, software development tools, code optimization, application project. Prerequisites: EE 4361 or equivalent and knowledge of C. (2-3) T</td>
<td>phase: approve</td>
<td>mjp044000</td>
<td>2013-10-07 13:48:56</td>
<td>013047 14.1001.00.06 audit: -88.2 m index: -88.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eesc6368 (r3)</td>
<td>eesc6368.5</td>
<td>EESC 6368 Multimodal Signal Processing (3 semester credit hours) Theory and applications in the field of multimodal signal processing. Robustness and performance of systems by considering cross-modal integration. Statistical algorithms and machine learning methods used for fusion/fission of multimodal content at feature, decision and model level. Common graphical models used in multimodal analysis including Dynamic Bayesian Network, Product Hidden Markov Model (HMM), Multistream HMM, Coupled HMM, Factorial HMM, Input Output HMM and segmental models. Recommended Corequisite: EESC 6349. Prerequisite: ENGR 3341 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>mjp044000</td>
<td>2014-02-04 17:24:09</td>
<td>014091 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6390 (r3)</td>
<td>EESC 6390 Introduction to Wireless Communication Systems (3 semester credit hours) Principles, practice, and system overview of mobile systems. Modulation, demodulation, coding, encoding, and multiple-access techniques. Performance characterization of mobile systems. Prerequisite: EE 3350 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>cxj140030 2013-10-16 14:36:38 013048 14.1001.00.06 audit: -87.7 m index: -87.7 m match_fail ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6391 (r4)</td>
<td>EESC 6391 Signaling and Coding for Wireless Communication Systems (3 semester credit hours) Study of signaling and coding for wireless communication systems. Topics which will be covered include digital modulation schemes, digital multiple access technologies, their performance under wireless channel impairments, equalization, channel coding, interleaving, and diversity schemes. Prerequisites: EESC 6352 and EESC 6390. (3-0) T</td>
<td>phase: approve</td>
<td></td>
<td>cxj140030 2013-10-16 14:36:49 013049 14.1001.00.06 audit: -87.7 m index: -87.7 m match_fail ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6392 (r4)</td>
<td>EESC 6392 Propagation and Devices for Wireless Communications (3 semester credit hours) Mobile communication fundamentals, models of wave propagation, simulation of electromagnetic waves in the cellular environment, multipath propagation, compensation for fading, mobile and cell antenna designs, problems of interference and incompatibility, design of active and passive cellular components, comparison of analog and digital cellular designs. Prerequisites: EE 4301 or equivalent, and EESC 6390. (3-0) R</td>
<td>phase: approve</td>
<td>mmb101000 2014-01-21 11:09:33 013050 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eesc6392.5</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EESC 6392 Propagation and Devices for Wireless Communications (3 semester credit hours) Mobile communication fundamentals, models of wave propagation, simulation of electromagnetic waves in the cellular environment, multipath propagation, compensation for fading, mobile and cell antenna designs, problems of interference and incompatibility, design of active and passive cellular components, comparison of analog and digital cellular designs. Prerequisites: EE 4301 or equivalent, and EESC 6390. (3-0) R</td>
<td>phase: approve</td>
<td>mmb101000 2014-01-21 11:09:33 013050 14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * eesc6393 (r3)</td>
<td>EESC 6393 Imaging Radar Systems Design and Analysis (3 semester credit hours) Radar systems, antenna systems, the radar equation, electromagnetic waves scattering from targets, radar signal and noise, detection and extraction of signal from noise or clutter, range and Doppler profiles, radar image formation, real aperture radar imaging, synthetic aperture radar (SAR) imaging, inverse SAR (ISAR) imaging, image distortion, super resolution radar imaging techniques, and advanced holographic radar imaging techniques. Pass/Fail only. Prerequisites: EE 3350 and EE 4301 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>mjg044000 2014-02-04 17:25:42 013051 14.0101.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eesc6393.5</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EESC 6393 Imaging Radar Systems Design and Analysis (3 semester credit hours) Radar systems, antenna systems, the radar equation, electromagnetic waves scattering from targets, radar signal and noise, detection and extraction of signal from noise or clutter, range and Doppler profiles, radar image formation, real aperture radar imaging, SAR synthetic aperture radar (SAR) imaging, ISAR inverse SAR (ISAR) imaging, image distortion, super resolution radar imaging techniques, and advanced holographic radar imaging techniques. Pass/Fail only. Prerequisites: EE 3350 and EE 4301 or equivalents. (3-0) T</td>
<td>phase: approve</td>
<td>mjg044000 2014-02-04 17:25:42 013051 14.0101.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>eesc6395 (r2)</td>
<td>eesc6395.2</td>
<td></td>
<td>EESC 6395 Wireless Sensor Systems and Networks (3 semester credit hours) Sensor mote architecture and design. Sensor network types, architecture and protocol stack. Studies on and design of physical layer, data link layer, network layer, transport layer, and application layer. Time synchronization, localization, topology, mobility and task management issues in wireless sensor networks. Security and privacy issues. Case studies on applications. Prerequisite: ECS 4390 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eesc7v84 (r4)</td>
<td>eesc7v84.7</td>
<td></td>
<td>EESC 7V84 Special Topics in Telecommunications (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eesc7v85 (r4)</td>
<td>eesc7v85.8</td>
<td></td>
<td>EESC 7V85 Special Topics in Signal Processing (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>eesc7v86</td>
<td>(r4) eesc7v86.8</td>
<td>EESC 7V86 Special Topics in Wireless Communications (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-23 15:33:43</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>engr5375</td>
<td>(r2) ->eec5375 engr5375.4</td>
<td>request to remove this course from catalog ENGR 5375 Introduction to Robotics (3 semester hours) Fundamentals of robotics, rigid motions, homogeneous transformations, forward and inverse kinematics, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. Prerequisites: ENGR 2300 and EE 3302 and (EE 4310 or MECH 4310) or equivalent. (2-3) Y</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-01 10:47:46</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>engr6331</td>
<td>(r2) ->eec6331 engr6331.3</td>
<td>request to remove this course from catalog ENGR 6331 (MECH 6300, SYSM 6307) Linear Systems (3 semester hours) State space methods of analysis and design for linear dynamical systems. Coordinate transformations and tools from advanced linear algebra. Controllability and observability. Lyapunov stability analysis. Pole assignment, stabilizability, detectability. State estimation for deterministic models, observers. Introduction to the optimal linear quadratic regulator problem. Prerequisites: ENGR 2300 and EE 4310 or MECH 4310 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-03 13:06:22</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>engr6332</td>
<td>(r2) ->eec6332 engr6332.2</td>
<td>request to remove this course from catalog ENGR 6332 (MECH 6332) Advanced Control (3 semester hours) Modern control techniques in state space and frequency domain: optimal control, robust control, and stability. Prerequisite: ENGR 6331. (3-0) R</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-03 13:07:28</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>engr6336</td>
<td>(r2) ->eec6336 engr6336.2</td>
<td>request to remove this course from catalog ENGR 6336 (BMEN 6388, MECH 6313, SYSE 6324) Nonlinear Control Systems (3 semester hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>mjp044000 2013-10-03 13:08:06</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>replace_renumber</td>
<td>*</td>
<td>engr7v90 (r2)</td>
<td>-></td>
<td>eecs7v90</td>
<td>engr7v90.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>request to remove this course from catalog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENGR 7V90 Special Topics in Control Systems (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech5306 (r1)</td>
<td></td>
<td></td>
<td>MECH 5306 Mechanical Measurement Techniques (3 semester credit hours) This course presents an introduction to measurement theory and techniques. Coverage is focused on the types of measurements commonly encountered in the mechanical engineering field such as flow rate, pressure, temperature, strain, force, and displacement. The selection, use, and operating principles of instrumentation for each of the measurement categories are discussed. This course also emphasizes fundamental measurement principles such as uncertainty analysis, design and planning of experiments, data acquisition, data analysis, signal conditioning, and instrument calibration. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MECH 5306 Mechanical Measurement Techniques (3 semester credit hours) This course presents an introduction to measurement theory and techniques. Coverage is focused on the types of measurements commonly encountered in the mechanical engineering field such as flow rate, pressure, temperature, strain, force, and displacement. The selection, use, and operating principles of instrumentation for each of the measurement categories are discussed. This course also emphasizes fundamental measurement principles such as uncertainty analysis, design and planning of experiments, data acquisition, data analysis, signal conditioning, and instrument calibration. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf 140/219
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>add_renumber * mech6307 mech5307 (r1) mech5307.1</td>
<td></td>
<td></td>
<td>MECH 5307 Applied Thermodynamics (3 semester credit hours) This course extends the coverage of thermodynamics beyond that found in an introductory course. Applications are emphasized by examining the use of thermodynamic concepts to analyze various devices, systems, and processes. The course includes a more advanced treatment of fundamental thermodynamic concepts as well as an introduction to several advanced topics of relevance to mechanical engineering such as energy, reacting and non-reacting mixtures, psychrometrics, and combustion. Prerequisite: MECH 3310. (3-0) Y</td>
<td>phase: approve</td>
<td>jak120030 2014-02-10 13:28:02 NOLINK 14.1901.00.06 audit: -87.5 m index: -87.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * mech5308 (r1) mech5308.3</td>
<td></td>
<td></td>
<td>MECH 5308 (EECS 5375) Introduction to Robotics (3 semester credit hours) Fundamentals of robotics, rigid motions, homogeneous transformations, forward and inverse kinematics, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. Prerequisite: ENGR 2300 and Corequisite: EE 4310 or MECH 4310 or equivalent. (2-3) Y</td>
<td>phase: approve</td>
<td>jak120030 2014-02-11 12:05:44 NOLINK 14.1901.00.06 audit: -16.9 m index: -16.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mech5350 (r1) mech5350.4</td>
<td>MECH 5350 Introduction to Finite Element Method (3 semester credit hours) This course will provide an introduction to the basic concepts of finite element method and the techniques used for stress analysis for mechanical systems design. A simple tutorial covering the use of commercial FEM code will be provided. (3-0) Y</td>
<td>phase: approve</td>
<td>jake120030 2014-02-03 13:21:47</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mech5370 (r1) mech5370.3</td>
<td>MECH 5370 Introduction to Wind Energy (3 semester credit hours) Understanding the operational principles of modern wind turbines, including basic aerodynamics and rotor dynamics of wind turbines; wind turbine design and components; wind turbine control, electrical systems, wind characteristics and siting; system integration and grid connection; wind turbine siting; offshore wind turbine. (3-0) Y</td>
<td>phase: approve</td>
<td>jake120030 2013-11-07 16:24:52</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech5372 (r1)</td>
<td>mech5372.4</td>
<td>MECH 5372 Introduction to Compressible Fluid Mechanics (3 semester credit hours) Introduction to the theory of compressible fluid flow. Coverage of fundamental concepts such as wave propagation in compressible media, speed of sound, Mach number, and thermodynamic relationships. This course focuses on steady, one-dimensional compressible flows and the effects of variable area, friction, and heat transfer. Discussion of normal shockwaves and the use of nozzles and diffusers. The engineering applications of compressible flows. A brief introduction to more advanced topics such as oblique shocks will also be provided. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 10</td>
<td>jak120030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MECH 5372 Introduction to Compressible Fluid Mechanics (3 semester credit hours) Introduction to the theory of compressible fluid flow. Coverage of fundamental concepts such as wave propagation in compressible media, speed of sound, Mach number, and thermodynamic relationships. This course focuses on steady, one-dimensional compressible flows and the effects of variable area, friction, and heat transfer. Discussion of normal shockwaves and the use of nozzles and diffusers. The engineering applications of compressible flows. A brief introduction to more advanced topics such as oblique shocks will also be provided. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 10</td>
<td>jak120030</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech5373 (r1)</td>
<td>mech5373.4</td>
<td>MECH 5373 Thermal Management of Microelectronics (3 semester credit hours) To provide an introduction to thermal phenomena occurring in electronic equipment and to provide an understanding of how basic heat transfer principles can be applied to the thermal design of electronic packages. The course will commence with an introduction to the fundamentals of different heat transfer modes. The calculation of heat loads and temperature fields will be discussed using different cooling techniques. Includes parameter evaluation and design studies for single- and multi-chip modules, printed circuit board, and high-heat-flux cooling. (3-0) R</td>
<td>phase: approve</td>
<td>jak120030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mech5376 (r1)</td>
<td>mech5376.4</td>
<td>MECH 5376 Introduction to Computational Thermal Fluid Science (3 semester credit hours) An introduction to the study of the numerical techniques used to simulate fluid flow and heat transfer. Coverage includes the classification and numerical solution of linear and non-linear partial differential equations and the application of these techniques to the governing equations of fluid mechanics and heat transfer. Discussion of the numerical techniques used to solve the elliptic and parabolic equations required to simulate steady-state and transient heat conduction. Introduction to the fundamentals of computational fluid dynamics. (3-0) R</td>
<td>phase: approve</td>
<td>2014-01-27 16:01:13 jak120030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mech5383 (r3)</td>
<td>mech5383.5</td>
<td>MECH 5383 (EEMF 5383 and MSEN 5383 and PHYS 5383) Plasma Technology (3 semester credit hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T</td>
<td>phase: approve</td>
<td>2013-11-07 16:26:01 jak120030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech5v95 (r1)</td>
<td>mech5v95.4</td>
<td>MECH 5V95 Topics in Mechanical Engineering (1-9 semester credit hours) Selected topics in mechanical engineering are covered in organized lectures. May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (1-9-0) R</td>
<td>phase: approve</td>
<td>2014-01-27 16:07:16</td>
<td>jak120030</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

MECH 5V95 Topics in Mechanical Engineering (1-9 semester credit hours) Selected topics in mechanical engineering are covered in organized lectures. May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (1-9-0) R

| 2014-open | edit * | mech6300 (r4) | mech6300.6 | MECH 6300 (EECS 6331 and SYSM 6307) Linear Systems (3 semester credit hours) State space methods of analysis and design for linear dynamical systems. Coordinate transformations and tools from advanced linear algebra. Controllability and observability. Lyapunov stability analysis. Pole assignment, stabilizability, detectability. State estimation for deterministic models, observers. Introduction to the optimal linear quadratic regulator problem. Prerequisites: ENGR 2300 and EE 4310 or MECH 4310 or equivalent. (3-0) Y | phase: approve | 2013-10-18 11:22:21 | jak120030 | ps info detail change process orion |

peoplesoft diff: 013658 2013-08-25 sxh121431

MECH 6300 (EECS 6331 and SYSM 6307) Linear Systems (3 semester credit hours) State space methods of analysis and design for linear dynamical systems. Coordinate transformations and tools from advanced linear algebra. Controllability and observability. Lyapunov stability analysis. Pole assignment, stabilizability, detectability. State estimation for deterministic models, observers. Introduction to the optimal linear quadratic regulator problem. Prerequisites: ENGR 2300 and EE 4310 or MECH 4310 or equivalent. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6303 (r2)</td>
<td>MECH 6303 Computer Aided Design (3 semester credit hours) This course provides an introduction to design principles and methodologies for geometrical modeling, curve and surface fitting in an automated environment, CAD/CAM simulation of manufacturing, and computer-aided solid modeling. Prerequisite: MECH 3305 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 16:23:15 013637 14.1901.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mech6303.2</td>
<td>peoplesoft diff: 013637 2011-08-23</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MECH 6303 Computer Aided Design (3 semester credit hours) This course provides an introduction to design principles and methodologies for geometrical modeling, curve and surface fitting in an automated environment, CAD/CAM simulation of manufacturing, and computer-aided solid modeling. Prerequisite: MECH 3305 or equivalent. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6306 (r3)</td>
<td>MECH 6306 Continuum Mechanics (3 semester credit hours) This course provides an introduction to mechanics of continua within a rigorous mathematical framework. Topics of interest include tensor analysis, kinematics, analysis of deformation, analysis of stress, and constitutive equations. Other areas of discussion focus on material anisotropy, mechanical properties of fluids and solids, derivation of field equations, boundary conditions, and solutions of initial and boundary value problems for continua. Prerequisite: MECH 4301 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>jak120030 2013-11-27 10:54:09 013662 14.1901.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mech6306.4</td>
<td>peoplesoft diff: 013662 2012-08-26</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MECH 6306 Continuum Mechanics (3 semester credit hours) This course provides an introduction to mechanics of continua within a rigorous mathematical framework. Topics of interest include tensor analysis, kinematics, analysis of deformation, analysis of stress, and constitutive equations. Other areas of discussion focus on material anisotropy, mechanical properties of fluids and solids, derivation of field equations, boundary conditions, and solutions of initial and boundary value problems for continua. Prerequisite: MECH 4301 or equivalent. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>mech6307 (r3)</td>
<td>mech6307.5</td>
<td>request to remove this course from catalog
MECH 6307 Thermal and Energy Principles (3 semester credit hours) This course provides an extended treatment of the fundamentals of thermodynamics as related to energy conversion, storage, transmission and use. Industrial topics may include: conventional and sustainable power generation or efficiency in refrigeration, air-conditioning and heating applications. Further applications may include: studies of internal combustion engines, heat pump systems, and other energy conversion machines. Prerequisites: MECH 3320 and MECH 3315 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6311 (r3)</td>
<td>mech6311.4</td>
<td>MECH 6311 Advanced Mechanical Vibrations (3 semester credit hours) Vibration phenomena of multi-degree-of-freedom discrete and continuous systems. Lagrange's equations of motion for discrete systems. Determination of natural frequencies and mode shapes of discrete and continuous systems. Passive vibration control method. Applications of finite element methods to analysis of mechanical vibrations. Prerequisite: MECH 4340 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>jak120030
2013-10-18
11:26:16
013667
14.1901.00.06
audit: -87.6 m
index: -87.6 m
match_fail</td>
</tr>
</tbody>
</table>

MECH 6307 Thermal and Energy Principles (3 semester credit hours) This course provides an extended treatment of the fundamentals of thermodynamics as related to energy conversion, storage, transmission and use. Industrial topics may include: conventional and sustainable power generation or efficiency in refrigeration, air-conditioning and heating applications. Further applications may include: studies of internal combustion engines, heat pump systems, and other energy conversion machines. Prerequisites: MECH 3320 and MECH 3315 or equivalent. (3-0) Y

MECH 6311 Advanced Mechanical Vibrations (3 semester credit hours) Vibration phenomena of multi-degree-of-freedom discrete and continuous systems. Lagrange's equations of motion for discrete systems. Determination of natural frequencies and mode shapes of discrete and continuous systems. Passive vibration control method. Applications of finite element methods to analysis of mechanical vibrations. Prerequisite: MECH 4340 or equivalent. (3-0) T

peoplesoft diff: 013667 2012-08-26

<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6312 (r4)</td>
<td>MECH 6312 (EESC 6349) Random Processes (3 semester credit hours) Random processes concept. Stationarity and independence. Auto-correlation and cross-correlation functions, spectral characteristics. Linear systems with random inputs. Special topics and applications. Must have background in probability and statistics. Prerequisite: EE 3302 and ENGR 3341 or MECH 6300. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013668 2013-08-25 sxh121431

MECH 6312 (EESC 6349) Random Processes (3 semester credit hours) Random processes concept. Stationarity and independence. Auto-correlation and cross-correlation functions, spectral characteristics. Linear systems with random inputs. Special topics and applications. Must have background in probability and statistics. Prerequisite: EE 3302 or MECH 6300 and ENGR 3341 or equivalent background in probability and statistics. MECH 6300. (3-0) Y

| 2014-open | edit * | mech6313 (r4) | MECH 6313 (BMEN 6388 and EECS 6336 and SYSE 6324) Nonlinear Systems (3 semester credit hours) Differential geometric tools, feedback linearization, output injection, output tracking, stability. Prerequisite: EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T | phase: approve | | ps info detail change process orion |

peoplesoft diff: 013725 2013-08-25 sxh121431

MECH 6313 (BMEN 6388, ENGR 6336, 6388 and EECS 6336 and SYSE 6324) Nonlinear Control Systems (3 semester credit hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T

| 2014-open | edit * | mech6313.9 | MECH 6313 (BMEN 6388 and EECS 6336 and SYSE 6324) Nonlinear Systems (3 semester credit hours) Differential geometric tools, feedback linearization, output injection, output tracking, stability. Prerequisite: EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T | phase: approve | | ps info detail change process orion |

peoplesoft diff: 013725 2013-08-25 sxh121431

MECH 6313 (BMEN 6388, ENGR 6336, 6388 and EECS 6336 and SYSE 6324) Nonlinear Control Systems (3 semester credit hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mech6314 (r3) mech6314.5</td>
<td>MECH 6314 (BMEN 6372 and SYSM 6306) Engineering Systems: Modeling and Simulation (3 semester credit hours) This course will present principles of computational modeling and simulation of systems. General topics covered include: parametric and non-parametric modeling; system simulation; parameter estimation, linear regression and least squares; model structure and model validation through simulation; and, numerical issues in systems theory. Techniques covered include methods from numerical linear algebra, nonlinear programming and Monte Carlo simulation, with applications to general engineering systems. Modeling and simulation software is utilized (MATLAB/SIMULINK). (3-0) Y</td>
<td>phase: approve status: approving audit: 29</td>
<td>jak120030 2013-10-18 11:31:46 014089 14.2701.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6316 (r2) mech6316.4</td>
<td>MECH 6316 (SYSE 6322) Digital Control of Automotive Powertrain Systems (3 semester credit hours) Digital control systems, discretization and design by equivalents. Input-output design and discrete-time state variable estimation and control. Introduction to various control problems in automotive powertrains. Application of digital control principles to automotive powertrains for internal combustion engine idle speed control and air-to-fuel ratio control. Prerequisite: EE 4310 or MECH 4310 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6317 (r1) mech6317.3</td>
<td>MECH 6317 (EECS 6302 and SYSM 6302) Dynamics of Complex Networks and Systems (3 semester credit hours) Design and analysis of complex interconnected networks and systems. Basic concepts in graph theory; Eulerian and Hamiltonian graphs; traveling salesman problems; random graphs; power laws; small world networks; clustering; introduction to dynamical systems; stability; chaos and fractals. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mech6318 (r1)</td>
<td>mech6318.2</td>
<td>MECH 6318 (SYSM 6305) Optimization Theory and Practice (3 semester credit hours) Basics of optimization theory, numerical algorithms, and applications. The course is divided into three main parts: linear programming (simplex method, duality theory), unconstrained methods (optimality conditions, descent algorithms and convergence theorems), and constrained minimization (Lagrange multipliers, Karush-Kuhn-Tucker conditions, active set, penalty and interior point methods). Applications in engineering, operations, finance, statistics, etc. will be emphasized. Students will also use Matlab's optimization toolbox to obtain practical experience with the material. (3-0) Y</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

MECH 6318 (SYSM 6305) Optimization Theory and Practice (3 semester credit hours) Basics of optimization theory, numerical algorithms, and applications. The course is divided into three main parts: linear programming (simplex method, duality theory), unconstrained methods (optimality conditions, descent algorithms and convergence theorems), and constrained minimization (Lagrange multipliers, Karush-Kuhn-Tucker conditions, active set, penalty and interior point methods). Applications in engineering, operations, finance, statistics, etc. will be emphasized. Students will also use Matlab's optimization toolbox to obtain practical experience with the material. (3-0) Y

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mech6323 (r4) mech6323.8</td>
<td>MECH 6323 (EECS 6323 and SYSE 6323) Robust Control Systems (3 semester credit hours) Theory, methodology, and software tools for the analysis and design of model-based control systems with multiple actuators and multiple sensors. Control oriented model parameterizations and modeling errors. Definitions and criteria for robust stability and performance. Optimal synthesis of linear controllers. The loop shaping design method. Methods to simplify the control law. Mechatronic design examples. Prerequisite: MECH 4310 or equivalent and MECH 6300 or EECS 6331 or SYSM 6307 or equivalent. (3-0)</td>
<td>phase: approve</td>
<td>jake120030 2014-01-24 13:47:34 013678 14.1901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mech6324 (r3) mech6324.5</td>
<td>MECH 6324 (EECS 6324) Robot Control (3 semester credit hours) Dynamics of robots; methods of control; force control; robust and adaptive control; feedback linearization; Lyapunov design methods; passivity and network control; control of multiple and redundant robots; teleoperation. Prerequisite: EECS 6331 or MECH 6300 or SYSM 6307. (3-0)</td>
<td>phase: approve</td>
<td>jake120030 2014-01-27 16:12:33 013679 14.1901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6330 (r3)</td>
<td>mech6330.4</td>
<td></td>
<td>MECH 6330 Multiscale Design and Optimization (3 semester credit hours) Multiscale systems consist of components from two or more length scales (nano, micro, meso, or macro-scales). The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS, and carbon nano-tube assemblies. Prerequisite: MECH 6303. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 12:39:28 013680 14.1901.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>mech6332 (r5)</td>
<td>mech6332.10</td>
<td></td>
<td>MECH 6332 (ENGR 6332) Advanced Control (3 semester credit hours) Modern control techniques in state space and frequency domain: optimal control, robust control, and stability. Prerequisite: ENGR 6331. (3-0) R</td>
<td>phase: approve</td>
<td>jak120030 2013-11-06 13:13:23 012637 14.1001.00.06 audit: -87.4 m index: -87.4 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | mech6333 (r3) meh6333.4 | MECH 6333 Materials Design and Manufacturing (3 semester credit hours) This course provides an in-depth analysis of design problems faced in the development and mass manufacture of advanced materials. This course will explore the interplay among mathematical modeling, CAD, mold creation and manufacturing processes for polymers, ceramics and metals. Tradeoffs among various thermomechanical properties, cost and aesthetics will be studied. Prerequisite: MECH 6303. (3-0) T | phase: approve
status: approving
audit: 29 | cxj140030 2013-10-17 12:39:55 013696 14.1901.00.06 audit: -87.6 m index: -87.6 m match_fail | peoplesoft diff: 013696 2012-08-26 |
| 2014-open | edit * | mech6334 (r3) mech6334.4 | MECH 6334 Smart Materials and Structures (3 semester credit hours) Introduction to smart materials. Fundamental properties of smart materials including piezoelectric materials, shape memory alloys or polymers, conducting polymers, dielectric elastomers, and ionic polymer metal composites. Constitutive modeling of smart materials. Characterization techniques. Applications as sensors, actuators and in energy harvesting. Prerequisite: MECH 6306. (3-0) T | phase: approve
status: approving
audit: 30 | cxj140030 2013-10-16 16:26:16 014115 14.1901.00.06 audit: -87.6 m index: -87.6 m match_fail | peoplesoft diff: 014115 2013-08-25 sxh121431 |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6335 (r2)</td>
<td>mech6335.3</td>
<td>MECH 6335 (OPRE 6340) Flexible Manufacturing Strategies (3 semester credit hours) The use of automation in manufacturing is continuously increasing. This course covers the variety of types of flexible automation, including flexible manufacturing systems, integrated circuit fabrication and assembly, and robotics. Examples of international systems are discussed to show the wide variety of systems designs and problems. Strategic as well as economic justification issues are covered. (3-0) R</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014181 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MECH 6335 (OPRE 6340) Flexible Manufacturing Strategies (3 semester credit hours) The use of automation in manufacturing is continuously increasing. This course covers the variety of types of flexible automation, including flexible manufacturing systems, integrated circuit fabrication and assembly, and robotics. Examples of international systems are discussed to show the wide variety of systems designs and problems. Strategic as well as economic justification issues are covered. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6337 (r1)</td>
<td>mech6337.3</td>
<td>MECH 6337 (SYSM 6301) Systems Engineering, Architecture and Design (3 semester credit hours) Architecture and design of large-scale and decentralized systems from technical and management perspectives. Systems architectures, requirements analysis, design tradeoffs, and reliability through case studies and mathematical techniques. International standardization bodies, engineering frameworks, processes, notations, and tool support from both theoretical and practical perspectives. (3-0) Y</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MECH 6337 (SYSM 6301) Systems Engineering, Architecture and Design (3 semester credit hours) Architecture and design of large-scale and decentralized systems from technical and management perspectives. Systems architectures, requirements analysis, design tradeoffs, and reliability through case studies and mathematical techniques. International standardization bodies, engineering frameworks, processes, notations, and tool support from both theoretical and practical perspectives. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6341 (r4)</td>
<td>mech6341.6</td>
<td></td>
<td>MECH 6341 (EEMF 6348 and MSEN 6348) Lithography and Nanofabrication (3 semester credit hours) Study of the principles, practical considerations, and instrumentation of major lithography technologies for nanofabrication of devices and materials. Advanced photolithography, electron beam lithography, nanoimprint lithography, x-ray lithography, ion beam lithography, soft lithography, and scanning probe lithography, basic resist and polymer science, applications in nanoelectronic and biomaterials. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-18 11:48:55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>013697</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013697 2012-08-26 sxr090100</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | mech6347 (r3) | mech6347.4 | | MECH 6347 (EEMF 6382 and MSEN 6382) Introduction to MEMS (3 semester credit hours) Study of micro-electro-mechanical devices and systems and their applications. Microfabrication techniques and other emerging fabrication processes for MEMS are studied along with their process physics. Principles of operations of various MEMS devices such as mechanical, optical, thermal, magnetic, chemical/biological sensors/actuators are studied. Topics include: bulk/surface micromachining, LIGA, microsensors and microactuators in multiphysics domain. (3-0) T | phase: approve | 2013-10-18 11:49:22 | ps info detail change process orion |
| | | | | | status: approving | 013716 | 14.0101.00.06 audit: -87.6 m index: -87.6 m match_fail | |
| | | | | | | audit: 30 | | |
| | | | | | | peoplesoft diff: 013716 2013-08-25 sxh121431 | | |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mech6348 (r3)</td>
<td>MECH 6348 (EEMF 6322 and MSEN 6322) Semiconductor Processing Technology (3 semester credit hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T</td>
<td>phase: approve</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013706 2013-08-25 sxh121431 MECH 6348 (EEMF 6322, 6322 and MSEN 6322) Semiconductor Processing Technology (3 semester credit hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mech6350 (r3)</td>
<td>MECH 6350 Advanced Solid Mechanics (3 semester credit hours) This course provides a foundation for studying mechanical behavior of materials analyzing deformation and failure problems common in engineering design and materials science. Topics to be covered include elasticity, elastic stability, wave propagation, plasticity, and fracture. This course explores static and dynamic stress analysis, two- and three-dimensional theory of stressed elastic solids, analyses of structural elements with applications in a variety of fields, variational theorems and approximate solutions. Prerequisite: MECH 6306 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013723 2012-08-26 MECH 6350 Advanced Solid Mechanics (3 semester credit hours) This course provides a foundation for studying mechanical behavior of materials analyzing deformation and failure problems common in engineering design and materials science. Topics to be covered include elasticity, elastic stability, wave propagation, plasticity, and fracture. This course explores static and dynamic stress analysis, two- and three-dimensional theory of stressed elastic solids, analyses of structural elements with applications in a variety of fields, variational theorems and approximate solutions. Prerequisite: MECH 6306 or equivalent. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
</tbody>
</table>
| 2014-open | | edit * | mech6353 (r4) | mech6353.6 | MECH 6353 Computational Mechanics (3 semester credit hours) This course provides an in-depth discussion on Finite Element Method (FEMs) for solving solid mechanics problems. The course topics include total and updated Lagrangian formulations in finite element methods, variational principles in continuum mechanics, FEM/meshfree shape functions and numerical discretization, adaptivity and error estimates, explicit and implicit time integration methods, stability and convergence analysis, space-time FEM formulation, Newton's method and constraints, method of line-search and arc-length methods, impact and contact, computational elasticity and inelasticity. Prerequisites: MECH 5350 and MECH 6306 or equivalent. (3-0) T | phase: approve | status: approving | audit: 30 | 2013-10-18 11:57:15 | 013670 | 14.1901.00.06 | match_fail | ps info detail change process orion

MECH 6353 Computational Mechanics (3 semester credit hours) This course provides an introduction to nonlinear finite element methods in-depth discussion on Finite Element Method (FEMs) for solving solid mechanics problems. Topics The course topics include total and updated Lagrangian formulations in FEMs, finite element methods, variational principles in continuum mechanics, FEM/meshfree shape functions and numerical discretization, adaptivity and error estimates, explicit and implicit time integration methods, stability and convergence analysis, space-time FEM formulation, Newton's method and constraints, method of line-search and arc-length methods, impact and contact, computational elasticity and inelasticity. Prerequisites: MECH 5350 and MECH 6306 or equivalent. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6354 (r4)</td>
<td>MECH 6354 Experimental Mechanics (3 semester credit hours) This course provides students with experimental techniques for measurements of deformations and analysis of stress in engineering materials subjected to mechanical and thermal loadings. Topics include physical mechanisms associated with design-limiting behavior of engineering materials such as stiffness, strength, toughness, and durability; basic mechanical properties of engineering materials and testing procedures used to quantify these properties; criteria for materials selection in mechanical design; and modern experimental techniques such as scanning probe microscopy, optical microscopy, nanoindentation, digital image correlation, and micro-tensile testing using MEMS devices. Prerequisite: MECH 4301 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>jak120030 2013-11-27 10:54:31 013698 14.1901.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6355</td>
<td>(r3)</td>
<td>MECH 6355 Viscoelasticity (3 semester credit hours) This course provides an overview of advanced stress analysis of solids with properties strongly influenced by time, temperature, pressure, and humidity. Topics covered include: the material characterization and thermodynamic foundation of the constitutive behavior of time-dependent materials such as polymers, and composites; time-temperature superposition principle for thermorheologically simple materials; correspondence principle; integral formulation for quasi-static boundary value problems; treatment of time-varying boundary conditions; linear viscoelastic stress waves, approximate methods of linear viscoelastic stress analysis; and introduction to nonlinear viscoelastic constitutive laws. Prerequisite: MECH 6306 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 16:27:39 2013-10-16</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013699 2012-08-26

MECH 6355 Viscoelasticity (3 semester credit hours) This course provides an overview of advanced stress analysis of solids with properties strongly influenced by time, temperature, pressure, and humidity. Topics covered include: the material characterization and thermodynamic foundation of the constitutive behavior of time-dependent materials such as polymers, and composites; time-temperature superposition principle for thermorheologically simple materials; correspondence principle; integral formulation for quasi-static boundary value problems; treatment of time-varying boundary conditions; linear viscoelastic stress waves, approximate methods of linear viscoelastic stress analysis; and introduction to nonlinear viscoelastic constitutive laws. Prerequisite: MECH 6306 or equivalent. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mech6367</td>
<td>(r4)</td>
<td>MECH 6367 (MSEN 6310) Mechanical Properties of Materials (3 semester credit hours) Phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Prerequisite: MECH 2320 or MSEN 5300 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>jak120030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mech6367.7</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-11 08:55:34</td>
<td>013724 14.1901.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mech6368</td>
<td>(r3)</td>
<td>MECH 6368 Imperfections in Solids (3 semester credit hours) Point defects in semiconductors, metals, ceramics, and nonideal defect structures; nonequilibrium conditions produced by irradiation or quenching; effects of defects on electrical and physical properties, effects of defects at interfaces between differing materials. Prerequisite: MECH 6306 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>jak120030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mech6368.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-18 11:58:31</td>
<td>013700 14.1901.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mech6370 (r3) mech6370.4</td>
<td>MECH 6370 Incompressible Fluid Mechanics (3 semester credit hours) Fundamentals of fluid mechanics of Newtonian, incompressible flows in various regimes. Derivation of governing equations of motion, and introduction to viscous internal and external flows in laminar and turbulent regimes. Prerequisite: MECH 3315 or equivalent. (3-0) Y</td>
<td>phase: approve 2013-11-06 16:07:35 013665 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mech6371 (r3) mech6371.3</td>
<td>MECH 6371 Computational Fluid Dynamics (3 semester credit hours) This course presents computational methods for viscous flow, boundary layer theory and turbulence. Formulation of finite element methods and other traditional numerical techniques for analysis of dynamic problems in fluid mechanics will be examined. Prerequisite: MECH 6370 or equivalent. (3-0) T</td>
<td>phase: approve 2013-10-16 16:28:14 013701 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6372 (r1)</td>
<td>mech6372.2</td>
<td>MECH 6372 Turbulent Flows (3 semester credit hours) In the first part of the course the governing equations will be reviewed. The vorticity equation will be derived giving emphasis to the vortex stretching and vortex tilting. Classical flows such as wall bounded flows, jets, mixing layers will be reviewed and the stability of the flow and transition from laminar to turbulence will be discussed. The spectrum of turbulence kinetic energy and the budget of kinetic energy will be illustrated. The course will also cover numerical methods to simulate turbulence, including Direct Numerical Simulations (DNS), Large Eddy Simulations (LES), and Reynolds-Average Navier-Stokes (RANS) equations and models. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>jak120030 2013-11-06 16:11:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOLINK 14.1901.00.06</td>
<td>audit: -87.5 m index: -87.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6373 (r1)</td>
<td>mech6373.2</td>
<td>MECH 6373 Convective Heat Transfer (3 semester credit hours) The course begins by reviewing the equations of motion of viscous fluids. Energy equation that governs the heat transfer across a fluid layer is introduced. Discussion of exact and approximate solutions of forced and free convection is an integral part of the course. Laminar and turbulent flow regimes will be covered with discussions of turbulent transport and modeling. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>jak120030 2013-11-06 16:14:07</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOLINK 14.1901.00.06</td>
<td>audit: -87.7 m index: -87.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>req type</td>
<td>course req</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>req_id</td>
<td></td>
<td>start start end end req</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2014-open edit * mech6374 (r1) mech6374.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MECH 6374 Conductive and Radiative Heat Transfer (3 semester credit hours) Advanced conduction heat transfer followed by advanced radiation heat transfer. Emphasis on fundamental concepts of conduction/diffusion in heat and mass transfer including solving differential equations related to conduction. Radiation heat transfer covering black and non-black surfaces, shape factors, radiation exchange in gray diffuse enclosures, and solution methods for integro-differential equations. Multi-mode heat transfer combining conduction and radiation is also covered. (3-0) R</td>
<td>phase: approve status: approving audit: 9</td>
<td>jak120030 2013-11-06 16:16:59 NOLINK 14.1901.00.06 audit: -88.4 m index: -88.4 m match_fail</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2014-open edit * mech6375 (r1) mech6375.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MECH 6375 Boiling Heat Transfer and Two-Phase Flow (3 semester credit hours) Introduction to the physics and significant progresses in boiling heat transfer and two-phase flow. Boiling heat transfer will be followed by the study of two-phase flow. Boiling heat transfer includes incipience phenomena, nucleate and film boiling regimes, and critical heat flux in pool and flow boiling. Selected topics related to phase change thermal transport will also be covered. (3-0) R</td>
<td>phase: approve status: approving audit: 9</td>
<td>jak120030 2014-01-27 16:13:57 NOLINK 14.1901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>action</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>mech6377 (r1)</td>
<td>mech6377.2</td>
<td>2014-open</td>
<td>MECH 6377 Advanced Thermodynamics (3 semester credit hours) This course provides a more advanced study of engineering thermodynamics. Includes an examination of the fundamental concepts of classical, macroscopic thermodynamics at a level beyond what is covered in a first course. Coverage includes additional advanced topics such as availability (exergy), equations of state, property relationships, and mixture properties. An introduction to the microscopic aspects of thermodynamics will provide a foundation for understanding the principles of statistical thermodynamics. (3-0) R</td>
<td>phase: approve</td>
<td>2013-11-06 16:41:33</td>
<td>peoplesoft diff: NOLINK</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>remove *</td>
<td>mech6380 (r3)</td>
<td>mech6380.4</td>
<td>2014-2014</td>
<td>MECH 6380 Advanced Heat Transfer (3 semester credit hours) This course provides an introduction to fundamentals of conductive, convective and radiative heat transfer with an emphasis on numerical and analytical solutions. Steady and transient one- and multidimensional thermal conduction are described. Other topics include emphasis on analytical methods, numerical techniques and approximate solutions. Prerequisites: MECH 4350, MECH 3315 or equivalents. (3-0) T</td>
<td>phase: approve</td>
<td>2013-11-06 13:13:50</td>
<td>peoplesoft diff: NOLINK</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>Start</td>
<td>End</td>
<td>Request Type</td>
<td>Course Code</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mech6383 (r3) mech6383.5</td>
<td>MECH 6383 (EEMF 6383 and PHYS 6383) Plasma Science (3 semester credit hours) Theoretically oriented study of plasmas. Topics to include: fundamental properties of plasmas, fundamental equations (kinetic and fluid theory, electromagnetic waves, plasma waves, plasma sheaths), plasma chemistry and plasma diagnostics. Prerequisite: EEGR 6316 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:12:14 013717 14.1201.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>mech6384 (r3) mech6384.5</td>
<td>request to remove this course from catalog MECH 6384 Applied Heat Transfer (3 semester credit hours) This course provides a rigorous development of heat transfer fundamentals as applied to relevant industrial problems, including heat transfer in buildings, thermal management of electronics, air conditioning and refrigeration systems and study of various thermal mechanical equipments e.g. heat exchangers and furnaces. Prerequisite: MECH 6307 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>jak120030 2013-11-06 13:14:01 013707 14.1901.00.06 audit: -87.6 m index: -87.6 m</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 6391 (EEGR 6381) Computational Methods in Engineering (3 semester credit hours) Numerical techniques and their applications in engineering. Topics will include: numerical methods of linear algebra, interpolation, solution of nonlinear equations, numerical integration, Monte Carlo methods, numerical solution of ordinary and partial differential equations, and numerical solution of integral equations. Prerequisites: ENGR 2300 and ENGR 3300 or equivalent, and knowledge of a scientific programming language. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 16:28:58 013718 27.0301.00.01 audit: -87.6 m index: -87.6 m match_fail</td>
<td>peoplesoft diff: 013718 2013-08-25 sxh121431 ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 6V29 Special Topics in Controls and Dynamic Systems (1-6 semester credit hours) Selected advanced topics in controls and dynamic systems are covered in organized lectures. May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>jak120030 2014-01-27 16:16:18 013712 14.1901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>peoplesoft diff: 013712 2012-08-26 ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6v49 (r3)</td>
<td>mech6v49.6</td>
<td>MECH 6V49 Special Topics in Manufacturing and Design Innovation (1-6 semester credit hours) Selected advanced topics in manufacturing and design innovation are covered in organized lectures. May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>jak120030</td>
<td>ps info detail charge process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>2014-01-27 16:15:57</td>
<td>013711 14.1901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6v69 (r3)</td>
<td>mech6v69.6</td>
<td>MECH 6V69 Special Topics in Mechanics and Materials (1-6 semester credit hours) Selected topics in mechanics and materials are covered in organized lectures. May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>jak120030</td>
<td>ps info detail charge process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>2014-01-27 16:16:41</td>
<td>013710 14.1901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6v89 (r3)</td>
<td>mech6v89.6</td>
<td>MECH 6V89 Special Topics in Thermal and Fluid Sciences (1-6 semester credit hours) Selected advanced topics in thermal and fluid sciences are covered in organized lectures. May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>jak120030</td>
<td>ps info detail charge process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>2014-01-27 16:16:58</td>
<td>013709 14.1901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
<td>--</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6v96 (r1)</td>
<td>mech6v96.2</td>
<td>MECH 6V96 Individual Instruction in Mechanical Engineering (1-6 semester credit hours) Selected advanced topics in mechanical engineering. For letter grade credit only. May be repeated for credit (18 semester credit hours maximum). Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>jak120030 2013-11-06 16:48:39 NOLINK 14.1901.00.06 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>9</td>
<td>change process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -88.4 m</td>
<td></td>
<td>orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6v97 (r4)</td>
<td>mech6v97.7</td>
<td>MECH 6V97 Research in Mechanical Engineering (1-9 semester credit hours) A research project on a topic in mechanical engineering is conducted under supervision of a faculty advisor. Pass/Fail only. May be repeated for credit (18 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>jak120030 2013-11-14 16:30:33 013713 14.1901.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>29</td>
<td>change process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -87.3 m</td>
<td></td>
<td>orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech6v98 (r4)</td>
<td>mech6v98.5</td>
<td>MECH 6V8 Thesis (3-9 semester credit hours) A research project on a topic in mechanical engineering is conducted under supervision of a supervisory committee. Research findings are documented in thesis. Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>jak120030 2013-10-22 10:37:03 012909 14.1901.00.06 audit: -87.5 m index: -87.5 m match_fail</td>
<td>ps info detail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>30</td>
<td>change process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -87.5 m</td>
<td></td>
<td>orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech8v70 (r4)</td>
<td>MECH 8V70 Advanced Research in Mechanical Engineering (1-9 semester credit hours) A research project on an advanced topic in mechanical engineering is conducted under supervision of a faculty advisor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 29</td>
<td>jak120030</td>
<td>2014-01-27 16:17:15 012644 14.1901.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
<tr>
<td>rmb101000</td>
<td>peoplesoft diff: 012644 2013-08-25</td>
<td>MECH 8V70 Advanced Research in Mechanical Engineering (1-9 semester credit hours) A research project on an advanced topic in mechanical engineering is conducted under supervision of a faculty advisor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mech8v99 (r2)</td>
<td>MECH 8V99 Dissertation (1-9 semester credit hours) A research project on an advanced topic in mechanical engineering is conducted under the supervision of a supervisory committee. Research findings are documented in dissertation. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>jak120030</td>
<td>2013-10-22 10:39:44 014269 14.1901.00.06 audit: -87.5 m index: -87.5 m match_fail</td>
</tr>
<tr>
<td>mech8v99.3</td>
<td>peoplesoft diff: 014269 2013-08-25 sxh121431</td>
<td>MECH 8V99 Dissertation (1-9 semester credit hours) A research project on an advanced topic in mechanical engineering is conducted under the supervision of a supervisory committee. Research findings are documented in dissertation. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen5300</td>
<td>msen5300</td>
<td>(r5)</td>
<td>MSEN 5300 (PHYS 5376) Introduction to Materials Science (3 semester credit hours) This course provides an intensive overview of materials science and engineering and includes the foundations required for further graduate study in the field. Topics include atomic structure, crystalline solids, defects, failure mechanisms, phase diagrams and transformations, metal alloys, ceramics, polymers as well as their thermal, electrical, magnetic and optical properties. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:18:38 009294 40.0808.00.02 audit: -87.8 m index: -87.8 m match_fail</td>
<td>peoplesoft diff: 009294 2011-08-23 ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen5310</td>
<td>msen5310</td>
<td>(r4)</td>
<td>MSEN 5310 Thermodynamics of Materials (3 semester credit hours) Work, energy and the first law of thermodynamics; the second law of thermodynamics, thermodynamic potentials, the third law of thermodynamics, thermodynamic identities and their uses, phase equilibria in one-component systems, behavior and reactions of gases. Solutions, binary and multicomponent systems: phase equilibria, materials separation and purification. Electrochemistry. Thermodynamics of modern materials. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-21 14:41:54 009295 14.1801.00.06 audit: -87.5 m index: -87.5 m match_fail</td>
<td>peoplesoft diff: 009295 2011-08-23 ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>msen5320 (r4) msen5320.4</td>
<td>MSEN 5320 Materials Science for Sustainable Energy (3 semester credit hours) Sustainable energy solutions require examining current fossil fuel supply, climate change, and renewable energy source development. Fossil fuel supply and climate change are intimately related, and the global community is actively developing renewable energy source to replace the fossil fuel and minimize its impact on the climate change. Materials science will enable diverse renewable energy technologies (solar cell, biofuel, wind, geothermal etc.) and their practical utilization (energy storage, fuel cell, electrical vehicles, etc.). This course will examine energy and climate issues and sustainable energy solutions with emphasis on the role of materials science. (3-0) T</td>
<td></td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013341 2012-08-26

MSEN 5320 Materials Science for Sustainable Energy (3 semester credit hours) Sustainable energy solutions require examining current fossil fuel supply, climate change, and renewable energy source development. Fossil fuel supply and climate change are intimately related, and the global community is actively developing renewable energy source to replace the fossil fuel and minimize its impact on the climate change. Materials science will enable diverse renewable energy technologies (solar cell, biofuel, wind, geothermal etc.) and their practical utilization (energy storage, fuel cell, electrical vehicles, etc.). This course will examine energy and climate issues and sustainable energy solutions with emphasis on the role of materials science. (3-0) T

| 2014-open | | edit * | msen5331 (r6) msen5331.6 | MSEN 5331 (CHEM 5331) Advanced Organic Chemistry I (3 semester credit hours) Modern concepts of bonding and structure in covalent compounds. Static and dynamic stereochemistry and methods for study. Relationships between structure and reactivity. Prerequisite: CHEM 2325 or equivalent. (3-0) Y | | | ps info detail change process orion |

peoplesoft diff: 009296 2012-08-26

MSEN 5331 (CHEM 5331) Advanced Organic Chemistry I (3 semester credit hours) Modern concepts of bonding and structure in covalent compounds. Static and dynamic stereochemistry and methods for study. Relationships between structure and reactivity. Prerequisite: CHEM 2325 or equivalent. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * msen5333 (r6) msen5333.8</td>
<td>MSEN 5333 (CHEM 5333) Advanced Organic Chemistry II (3 semester credit hours) Application of the principles introduced in CHEM 5331, emphasizing their use in correlating the large body of synthetic/ preparative organic chemistry. Prerequisite: CHEM 5331 or MSEN 5331. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-16 11:27:17 009297 40.0504.00.02</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 009297 2011-08-23</td>
<td></td>
<td>MSEN 5333 (CHEM 5333) Advanced Organic Chemistry II (3 semester credit hours) Application of the principles introduced in CHEM 5331, emphasizing their use in correlating the large body of synthetic/ preparative organic chemistry. Prerequisite: CHEM 5331 or MSEN 5331. (3-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * msen5340 (r5) msen5340.5</td>
<td>MSEN 5340 (CHEM 5340) Advanced Polymer Science and Engineering (3 semester credit hours) Polymer structure-property relations, Linear and nonlinear viscoelasticity. Dynamic mechanical analysis, time-temperature superposition, creep and stress relaxation. Mechanical models for prediction of polymer deformation, rubber elasticity, environmental effects on polymer deformation, instrumentation for prediction of long term properties. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:19:34 009298 14.3201.00.06</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 009298 2011-08-23</td>
<td></td>
<td>MSEN 5340 (CHEM 5340) Advanced Polymer Science and Engineering (3 semester credit hours) Polymer structure-property relations, Linear and nonlinear viscoelasticity. Dynamic mechanical analysis, time-temperature superposition, creep and stress relaxation. Mechanical models for prediction of polymer deformation, rubber elasticity, environmental effects on polymer deformation, instrumentation for prediction of long term properties. (3-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * msen5341 (r7) msen5341.8</td>
<td>MSEN 5341 (CHEM 5341) Advanced Inorganic Chemistry I (3 semester credit hours) Physical inorganic chemistry addressing topics in structure and bonding, symmetry, acids and bases, coordination chemistry and spectroscopy. Prerequisite: CHEM 3341 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:10:07 009299 40.0503.00.02</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 009299 2013-08-25 sxh121431</td>
<td></td>
<td>MSEN 5341 (CHEM 5341) Advanced Inorganic Chemistry I (3 semester credit hours) Physical inorganic chemistry addressing topics in structure and bonding, symmetry, acids and bases, coordination chemistry and spectroscopy. Prerequisite: CHEM 3341 or instructor consent required. (3-0) Y</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * msen5344 (r6)</td>
<td>MSEN 5344 Thermal Analysis (3 semester credit hours) Differential scanning calorimetry; thermogravimetric analysis; dynamic mechanical and thermomechanical analysis; glass transition; melting transitions, relaxations in the glassy state, liquid crystalline phase changes. Prerequisite: MSEN 5360 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:19:55 009300 14.1801.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>msen5344.8</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 009300 2013-08-25 sxh121431</td>
<td>MSEN 5344 Thermal Analysis (3 semester credit hours) Differential scanning calorimetry; thermogravimetric analysis; dynamic mechanical and thermomechanical analysis; glass transition; melting transitions, relaxations in the glassy state, liquid crystalline phase changes. Prerequisite: MSEN 5360 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * msen5353 (r5)</td>
<td>MSEN 5353 Integrated Circuit Packaging (3 semester credit hours) Basic packaging concepts, materials, fabrication, testing, and reliability, as well as the basics of electrical, thermal, and mechanical considerations as required for the design and manufacturing of microelectronics packaging. Current requirements and future trends will be presented. General review of analytical techniques used in the evaluation and failure analysis of microelectronic packages. Prerequisite: MSEN 6324. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:20:10 009301 14.1801.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>msen5353.5</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 009301 2012-08-26</td>
<td>MSEN 5353 Integrated Circuit Packaging (3 semester credit hours) Basic packaging concepts, materials, fabrication, testing, and reliability, as well as the basics of electrical, thermal, and mechanical considerations as required for the design and manufacturing of microelectronics packaging. Current requirements and future trends will be presented. General review of analytical techniques used in the evaluation and failure analysis of microelectronic packages. Prerequisite: MSEN 6324. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * msen5355 (r6)</td>
<td>MSEN 5355 (CHEM 5355) Analytical Techniques I (3 semester credit hours) Study of fundamental analytical techniques, including optical spectroscopic techniques, mass spectrometry, and microscopic and surface analysis methods. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:20:19 009302 40.0502.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>msen5355.7</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 009302 2013-08-25 sxh121431</td>
<td>MSEN 5355 (CHEM 5355) Analytical Techniques I (3 semester credit hours) Study of fundamental analytical techniques, including optical spectroscopic techniques, mass spectrometry, and microscopic and surface analysis methods. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * msen5356 (r5) msen5356.6</td>
<td>MSEN 5356 (CHEM 5356) Analytical Techniques II (3 semester credit hours) Study of chromatography (GC, LC, CZE), statistical methods (standard tests and ANOVA), chemical problem solving, and modern bio/analytical techniques such as biochips, microfluidics, and MALDI-MS. Prerequisite: CHEM 5355 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:14:37 009303 40.0502.00.02 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 009303 2011-08-23</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSEN 5356 (CHEM 5356) Analytical Techniques II (3 semester credit hours) Study of chromatography (GC, LC, CZE), statistical methods (standard tests and ANOVA), chemical problem solving, and modern bio/analytical techniques such as biochips, microfluidics, and MALDI-MS. Prerequisite: CHEM 5355 or instructor consent or instructor. required. (3-0) R</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * msen5360 (r5) msen5360.5</td>
<td>MSEN 5360 Materials Characterization (3 semester credit hours) Survey of atomic and structural analysis techniques as applied to surface and bulk materials. Physical processes involved in the interaction of ions, electrons and photons with solids; characteristics of the emergent radiation in relation to the structure and composition. Prerequisite: MSEN 5300. Prerequisite or Corequisite: MSEN 6319 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:20:41 009304 14.1801.00.06 audit: -87.9 m index: -87.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 009304 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSEN 5360 Materials Characterization (3 semester credit hours) Survey of atomic and structural analysis techniques as applied to surface and bulk materials. Physical processes involved in the interaction of ions, electrons and photons with solids; characteristics of the emergent radiation in relation to the structure and composition. Prerequisite: MSEN 5300. Prerequisite or corequisite: Corequisite: MSEN 6319 or equivalent. (3-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | msen5361 (r4) | msen5361.4 | **MSEN 5361 Fundamentals of Surface and Thin Film Analysis (3 semester credit hours)** Survey of materials characterization techniques; Rutherford backscattering; secondary ion mass spectroscopy; ion channeling; scanning tunneling and transmission microscopy; x-ray photoelectron and Auger electron spectroscopy; x-ray and electron diffraction. Prerequisite: MSEN 5360 or equivalent. (3-0) R
peoplesoft diff: 009305 2011-08-23 | phase: approve
status: approving
audit: 29 | cxj140030
2013-10-21 14:44:56
009305
14.1801.00.06
audit: -87.6 m
index: -87.6 m
match_fail | ps info
detail
change
process
orion |
| 2014-open | edit * | msen5370 (r5) | msen5370.6 | **MSEN 5370 Ceramics and Metals (3 semester credit hours)** Emphasis on structure-property relationships: chemical bonding, crystal structures, crystal chemistry, electrical properties, thermal behavior, defect chemistry. Chemical and physical properties of metals and alloys. Topics include: powder preparation, sol-gel synthesis, densification, toughening mechanisms, crystal structure, thermodynamics, phase diagrams, phase transformations, oxidation, mechanical, electrical and magnetic properties. Prerequisites: MSEN 5300 and MSEN 5310 or equivalent. (3-0) R
peoplesoft diff: 009306 2012-08-26 | phase: approve
status: approving
audit: 30 | mxv062000
2014-01-14 11:01:27
009306
14.1801.00.06
audit: -87.2 m
index: -87.2 m
match_fail | ps info
detail
change
process
orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>msen5371 (r6)</td>
<td>msen5371.7</td>
<td>MSEN 5371 (PHYS 5371) Solid State Physics (3 semester credit hours) Symmetry description of crystals, bonding, properties of metals, electronic band theory, thermal properties, lattice vibration, elementary properties of semiconductors. Prerequisites: PHYS 5301 and PHYS 5320 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-14 10:45:42 009307 40.0808.00.02 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>msen5375 (r6)</td>
<td>msen5375.6</td>
<td>MSEN 5375 Electronic Devices Based On Organic Solids (3 semester credit hours) Solid state device physics based on organic condensed matter structures, including: OLEDs (organic light emitting diodes), organic FETs, organic lasers, plastic photocells, molecular electronic chips. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-25 09:06:59 009308 40.0808.00.02 audit: -87.5 m index: -87.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen5377 (r4)</td>
<td>msen5377.5</td>
<td></td>
<td>MSEN 5377 (PHYS 5377) Computational Physics of Nanomaterials (3 semester credit hours) This course introduces atomistic and quantum simulation methods and their applications to modeling study nanomaterials (nanoparticles, nanowires, and thin films). The course has three main parts: basic theory of materials (thermodynamics, statistical mechanics, and solid state physics), computational methods to model materials systems, and applications to practical problems. There are three main themes of the course: structure-property relationship of nanomaterials; atomistic modeling for atomic structure optimization; and quantum simulations for electronic structure study and functional property analysis. Prerequisite: MSEN 6319 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>2014-01-11 14:16:58</td>
<td>mxv062000</td>
</tr>
</tbody>
</table>

peoplesoft diff: 012658 2012-08-26

MSEN 5377 (PHYS 5377) Computational Physics of Nanomaterials (3 semester credit hours) This course introduces atomistic and quantum simulation methods and their applications to modeling study nanomaterials (nanoparticles, nanowires, and thin films). The course has three main parts: basic theory of materials (thermodynamics, statistical mechanics, and solid state physics), computational methods to model materials systems, and applications to practical problems. There are three main themes of the course: structure-property relationship of nanomaterials; atomistic modeling for atomic structure optimization; and quantum simulations for electronic structure study and functional property analysis. Prerequisite: MSEN 6319 or equivalent. (3-0) R

| 2014-open | edit * | msen5383 (r7) | msen5383.8 | | MSEN 5383 (EEMF 5383 and MECH 5383 and PHYS 5383) Plasma Technology (3 semester credit hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T | phase: approve | 2014-01-11 14:04:10 | mxv062000 | ps info detail change process orion |

peoplesoft diff: 009309 2013-08-25 sxh121431

MSEN 5383 (EEMF 5383, MECH 5383 and PHYS 5383) Plasma Technology (3 semester credit hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T
<table>
<thead>
<tr>
<th>req type</th>
<th>course request</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>edit *</td>
<td>msen5410 (r4)</td>
<td>MSEN 5410 (Biol 5410) Biochemistry (4 semester credit hours) Analysis of the structure and function of proteins and nucleic acids and of their interactions. Emphasis is on metabolic biochemistry, especially as it relates to human disease states. Prerequisite: BIOL 3361 or equivalent or instructor consent required. (4-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-08-25 keh120030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>msen5410.8</td>
<td></td>
<td>status: approving</td>
<td>2014-01-08 08:01:39 012659 26.0204.00.02 audit: -87.2 m index: -87.2 m match_fail</td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>msen5440 (r3)</td>
<td>MSEN 5440 (Biol 5440) Cell Biology (4 semester credit hours) Molecular architecture and function of cells and subcellular organelles; structure and function of membranes; hormone and neurotransmitter action; growth regulation and oncogenes; immune response; eukaryotic gene expression. Prerequisite: BIOL 5420 or equivalent or instructor consent required. (4-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-26 16:08:20 012660 26.0204.00.02 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>msen5440.5</td>
<td></td>
<td>status: approving</td>
<td>2011-08-23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>012660 26.0204.00.02</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6310 (r6)</td>
<td>msen6310.8</td>
<td>MSEN 6310 (MECH 6367) Mechanical Properties of Materials (3 semester credit hours) Phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Prerequisite: MECH 2320 or MSEN 5300 or equivalent. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6313 (r7)</td>
<td>msen6313.8</td>
<td>MSEN 6313 (EEOP 6313) Semiconductor Opto-Electronic Devices (3 semester credit hours) Physical principles of semiconductor optoelectronic devices: optical properties of semiconductors, optical gain and absorption, wave guiding, laser oscillation in semiconductors, LEDs, physics of detectors, applications. Prerequisite: EE 3310 or equivalent. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog_course_description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6319</td>
<td>(r6) msen6319.6</td>
<td>MSEN 6319 Quantum Mechanics for Materials Scientists (3 semester credit hours) Quantum-mechanical foundation for study of nanometer-scale materials. Principles of quantum physics, stationary-states for one-dimensional potentials, symmetry considerations, interaction with the electromagnetic radiation, scattering, reaction rate theory, spectroscopy, chemical bonding and molecular orbital theory, solids, perturbation theory, nuclear magnetic resonance. (3-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6320</td>
<td>(r8) msen6320.9</td>
<td>MSEN 6320 (EEMF 6320) Fundamentals of Semiconductor Devices (3 semester credit hours) Semiconductor material properties, band structure, equilibrium carrier distributions, non-equilibrium current-transport processes, and recombination-generation processes. Prerequisite: EEMF 6319 or equivalent. (3-0) Y</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 009312 2011-08-23

peoplesoft diff: 009313 2013-08-25 sxh121431
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6321 (r8) msen6321.11</td>
<td>MSEN 6321 (EEMF 6321) Active Semiconductor Devices (3 semester credit hours) The physics of operation of active devices will be examined, including p-n junctions, bipolar junction transistors and field-effect transistors: MOSFETs, JFETs, and MESFETS. Active two-terminal devices and optoelectronic devices will be presented. Recommended corequisite: EEMF 6320 or MSEN 6320. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-01-24 13:38:52</td>
<td>mxv062000 ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009314 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td>009314 14.1001.00.06</td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSEN 6321 (EEMF 6321) Active Semiconductor Devices (3 semester credit hours) The physics of operation of active devices will be examined, including p-n junctions, bipolar junction transistors and field-effect transistors: MOSFETs, JFETs, and MESFETS. Active two-terminal devices and optoelectronic devices will be presented. Recommended corequisite: EEMF 6320 or MSEN 6320. (3-0) Y</td>
<td>audit: 30</td>
<td>009314 14.1001.00.06</td>
<td>match_fail</td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | msen6322 (r7) msen6322.9 | MSEN 6322 (EEMF 6322 and MECH 6348) Semiconductor Processing Technology (3 semester credit hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T | phase: approve | 2014-01-14 10:43:07 | mxv062000 ps info detail change process orion |
| | | | peoplesoft diff: 009315 2013-08-25 sxh121431 | status: approving | 009315 14.1001.00.06 | match_fail |
| | | | MSEN 6322 (EEMF 6322 and MECH 6348) Semiconductor Processing Technology (3 semester credit hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T | audit: 30 | 009315 14.1001.00.06 | match_fail |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * msen6324 (r8) msen6324.9</td>
<td>MSEN 6324 (EEMF 6324) Electronic, Optical and Magnetic Materials (3 semester credit hours) Foundations of materials properties for electronic, optical and magnetic applications. Electrical and thermal conduction, elementary quantum physics, modern theory of solids, semiconductors and devices, dielectrics, magnetic and optical materials properties. Prerequisite: MSEN 5300 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * msen6327 (r2) msen6327.4</td>
<td>MSEN 6327 (EEMF 6327) Semiconductor Device Characterization (3 semester credit hours) This course will describe the theoretical and practical considerations associated with the most common electrical and reliability characterization techniques used in the semiconductor industry. Prerequisite: (EEMF 6320 or MSEN 6320 or equivalent) or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6330 (r5)</td>
<td>MSEN 6330 Phase Transformations (3 semester credit hours) Thermodynamic, kinetic, and structural aspects of metallic and ceramic phase transformations: mechanisms and rate-determining factors in solid-phase reactions; diffusion processes, nucleation theory, precipitations from solid solution, order-disorder phenomena, and applications of binary and ternary phase diagrams. Prerequisite: MSEN 5310 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:25:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSEN 6330 Phase Transformations (3 semester credit hours) Thermodynamic, kinetic, and structural aspects of metallic and ceramic phase transformations: mechanisms and rate-determining factors in solid-phase reactions; diffusion processes, nucleation theory, precipitations from solid solution, order-disorder phenomena, and applications of binary and ternary phase diagrams. Prerequisite: MSEN 5310 or equivalent. (3-0) R</td>
<td>status: approving</td>
<td>009317 14.1801.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSEN 6339 Nanostructured Materials: Synthesis, Properties and Application (3 semester credit hours) Exploration of the synthesis, properties and applications of quantum dots, wells, rods, wires, particles and related nanostructures. The theoretical and experimental evidence for quantum-confinement effects, which are of considerable fundamental and applied interest, will be discussed. The manipulation of surface properties of nanostructures, their incorporation into bulk nanocomposites and their application to technological devices will be discussed. Prerequisites or Corequisites: MSEN 5310 and MSEN 5360 and MSEN 6319 and MSEN 6324, or equivalent. (3-0) T</td>
<td>audit: 30</td>
<td>014288 40.1001.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6339 (r2)</td>
<td>MSEN 6339 Nanostructured Materials: Synthesis, Properties and Application (3 semester credit hours) Exploration of the synthesis, properties and applications of quantum dots, wells, rods, wires, particles and related nanostructures. The theoretical and experimental evidence for quantum-confinement effects, which are of considerable fundamental and applied interest, will be discussed. The manipulation of surface properties of nanostructures, their incorporation into bulk nanocomposites and their application to technological devices will be discussed. Prerequisites or Corequisites: MSEN 5310 and MSEN 5360 and MSEN 6319 and MSEN 6324, or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:25:43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSEN 6339 Nanostructured Materials: Synthesis, Properties and Application (3 semester credit hours) Exploration of the synthesis, properties and applications of quantum dots, wells, rods, wires, particles and related nanostructures. The theoretical and experimental evidence for quantum-confinement effects, which are of considerable fundamental and applied interest, will be discussed. The manipulation of surface properties of nanostructures, their incorporation into bulk nanocomposites and their application to technological devices will be discussed. Prerequisites or Corequisites: MSEN 5310 and MSEN 5360 and MSEN 6319 and MSEN 6324, or equivalent. (3-0) T</td>
<td>status: approving</td>
<td>014288 40.1001.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6340</td>
<td>msen6340.5</td>
<td>MSEN 6340 Advanced Electron Microscopy (3 semester credit hours) Theory and applications of scanning and transmission electron microscopy; sample preparation, ion beam and analytical techniques. Prerequisite: MSEN 5360 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-21 14:52:29 009318 14.1801.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6341</td>
<td>msen6341.6</td>
<td>MSEN 6341 Advanced Electron Microscopy Laboratory (3 semester credit hours) Lab support for MSEN 6340. Prerequisite or Corequisite: MSEN 6340. (0-3) Y</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-23 15:00:11 009319 14.1801.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6348</td>
<td>msen6348.6</td>
<td>MSEN 6348 (EEMF 6348 and MECH 6341) Lithography and Nanofabrication (3 semester credit hours) Study of the principles, practical considerations, and instrumentation of major lithography technologies for nanofabrication of devices and materials. Advanced photolithography, electron beam lithography, nanoimprint lithography, x-ray lithography, ion beam lithography, soft lithography, and scanning probe lithography, basic resist and polymer science, applications in nanoelectronic and biomaterials. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-14 11:12:11 012910 14.1801.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>msen6350</td>
<td>(r5)</td>
<td>MSEN 6350 Imperfections in Solids (3 semester credit hours) Point defects in semiconductors, metals, ceramics, and nonideal defect structures; nonequilibrium conditions produced by irradiation or quenching; effects of defects on electrical and physical properties, effects of defects at interfaces between differing materials. Prerequisites: MSEN 5310 and MSEN 6324, or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-14 11:13:15 009320 14.1801.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>msen6355</td>
<td>(r2)</td>
<td>MSEN 6355 (BMEN 6355) Nanotechnology and Sensors (3 semester credit hours) Introduction to the concept of nanotechnology, in context toward designing sensors/diagnostic devices. Identifying the impact of nanotechnology in designing "state-of-the-art" sensors for healthcare applications. Topics include: nanotechnology and nanomaterials, principles of sensing and transduction and heterogeneous integration toward sensor design. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:26:30 014087 15.1601.00.06 audit: -87.6 m index: -87.6 m match_fail</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6358 (r3)</td>
<td>msen6358.3</td>
<td>MSEN 6358 (BIOL 6358) Bionanotechnology (3 semester credit hours) Protein, nucleic acid and lipid structures. Macromolecules as structural and functional units of the intact cell. Parallels between biology and nanotechnology. Applications of nanotechnology to biological systems. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:26:40 012661 26.1201.00.02 audit: -87.6 m index: -87.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6361 (r6)</td>
<td>msen6361.7</td>
<td>MSEN 6361 Deformation Mechanisms in Solid Materials (3 semester credit hours) Linear elastic fracture mechanics, elastic-plastic fracture mechanics, time dependent failure, creep and fatigue, experimental analysis of fracture, fracture and failure of metals, ceramics, polymers and composites. Failure analysis related to material, product design, manufacturing and product application. Prerequisite: MSEN 5300 or MECH 6301 or MSEN 6310 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-14 11:15:10 009321 14.1801.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6362 (r4)</td>
<td>msen6362.4</td>
<td>MSEN 6362 Diffraction Science (3 semester credit hours) Diffraction theory; scattering and diffraction experiments; kinematic theory; dynamical theory; x-ray topography; crystal structure analysis; disordered crystals; quasi-crystals. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:26:57 009322 14.1801.00.06 audit: -87.9 m index: -87.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>---</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6371</td>
<td>(r5)</td>
<td>MSEN 6371 (PHYS 6371) Advanced Solid State Physics (3 semester credit hours) Continuation of MSEN 5371 or PHYS 5371, transport properties of semiconductors, ferroelectricity and structural phase transitions, magnetism, superconductivity, quantum devices, surfaces. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 009323 2011-08-23</td>
<td></td>
<td>msen6371.7</td>
<td>MSEN 6371 (PHYS 6371) Advanced Solid State Physics (3 semester credit hours) Continuation of MSEN 5371 or PHYS 5371, transport properties of semiconductors, ferroelectricity and structural phase transitions, magnetism, superconductivity, quantum devices, surfaces. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6374</td>
<td>(r5)</td>
<td>MSEN 6374 (PHYS 6374) Optical Properties of Solids (3 semester credit hours) Optical response in solids and its applications. Lorentz, Drude and quantum mechanical models for dielectric response function. Kramers-Kronig transformation and sum rules considered. Basic properties related to band structure effects, excitons and other excitations. Experimental techniques including reflectance, absorption, modulated reflectance, Raman scattering. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 009324 2011-08-23</td>
<td></td>
<td>msen6374.6</td>
<td>MSEN 6374 (PHYS 6374) Optical Properties of Solids (3 semester credit hours) Optical response in solids and its applications. Lorentz, Drude and quantum mechanical models for dielectric response function. Kramers-Kronig transformation and sum rules considered. Basic properties related to band structure effects, excitons and other excitations. Experimental techniques including reflectance, absorption, modulated reflectance, Raman scattering. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 009325 2013-08-25 sxh121431

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen6382 (r3)</td>
<td>msen6382.4</td>
<td>MSEN 6382 (EEMF 6382 and MECH 6347) Introduction to MEMS (3 semester credit hours) Study of micro-electro-mechanical devices and systems and their applications. Microfabrication techniques and other emerging fabrication processes for MEMS are studied along with their process physics. Principles of operations of various MEMS devices such as mechanical, optical, thermal, magnetic, chemical/biological sensors/actuators are studied. Topics include: bulk/surface micromachining, LIGA, microsensors and microactuators in multiphysics domain. (3-0) T</td>
<td>phase: approve</td>
<td>sxr062000 2014-01-14 11:17:32</td>
<td>mxv062000 2014-01-14 11:17:32</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen8v98 (r1)</td>
<td>msen6v98.2</td>
<td>MSEN 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-9)-0 S</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-23 15:01:06</td>
<td>mxv090100 2014-01-23 15:01:06</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen7v80</td>
<td>MSEN 7V80 Special Topics in Materials Science and Engineering (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) S</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-23 15:34:05 009326 14.1801.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>msen7v80.7</td>
<td>MSEN 7V80 Special Topics in Materials Science and Engineering (1-6 semester credit hours) For letter grade credit only. (May hours) May be repeated for a maximum of 9 hours. credit as topics vary (9 semester credit hours maximum). ([1-6]-0) S</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009326 2012-08-26 sxr090100 MSEN 7V80 Special Topics in Materials Science and Engineering (1-6 semester credit hours) For letter grade credit only. (May hours) May be repeated for a maximum of 9 hours. credit as topics vary (9 semester credit hours maximum). ([1-6]-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen8v40</td>
<td>MSEN 8V40 Individual Instruction in Materials Science and Engineering (1-6 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 23:03:34 009329 14.1801.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>msen8v40.7</td>
<td>MSEN 8V40 Individual Instruction in Materials Science and Engineering (1-6 semester credit hours) (May Pass/Fail only. May be repeated for credit.) For pass/fail credit only. credit. Instructor consent required. ([1-6]-0) S</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009329 2012-08-26 MSEN 8V40 Individual Instruction in Materials Science and Engineering (1-6 semester credit hours) (May Pass/Fail only. May be repeated for credit.) For pass/fail credit only. credit. Instructor consent required. ([1-6]-0) S</td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen8v70</td>
<td>MSEN 8V70 Research in Materials Science and Engineering (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 23:04:18 009330 14.1801.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>msen8v70.8</td>
<td>MSEN 8V70 Research in Materials Science and Engineering (3-9 semester credit hours) (May Pass/Fail only. May be repeated for credit.) For pass/fail credit only. credit. Instructor consent required. ([3-9]-0) S</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009330 2012-08-26 MSEN 8V70 Research in Materials Science and Engineering (3-9 semester credit hours) (May Pass/Fail only. May be repeated for credit.) For pass/fail credit only. credit. Instructor consent required. ([3-9]-0) S</td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>msen8v98</td>
<td>request to remove this course from catalog MSEN 8V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 17:13:50 009331 14.1801.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>msen8v98.9</td>
<td>MSEN 8V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009332 2012-08-26 MSEN 8V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>msen8v99</td>
<td>MSEN 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 23:05:44 009332 14.1801.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>msen8v99.8</td>
<td>MSEN 8V99 Dissertation (1-9 semester credit hours) (May Pass/Fail only. May be repeated for credit.) For pass/fail credit only. credit. Instructor consent required. ([1-9]-0) S</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009332 2012-08-26 MSEN 8V99 Dissertation (1-9 semester credit hours) (May Pass/Fail only. May be repeated for credit.) For pass/fail credit only. credit. Instructor consent required. ([1-9]-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf 192/219
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>req course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se5354 (r6) se5354.8</td>
<td></td>
<td>SE 5354 (CE 5354 and CS 5354) Software Engineering (3 semester credit hours) Formal specification and program verification. Software life-cycle models and their stages. System and software requirements engineering; user-interface design. Software architecture, design, and analysis. Software testing, validation, and quality assurance. Prerequisite or Corequisite: CS 5343. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:11:21 011372 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se5v81 (r4) se5v81.9</td>
<td></td>
<td>SE 5V81 Special Topics in Computer Science (1-9 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisites: ENCS majors only and instructor consent required. (1-9-0) S</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-23 15:34:34 011371 11.0701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se6301 (r2) se6301.3</td>
<td></td>
<td>SE 6301 Special Topics in Software Engineering (3 semester credit hours) May be repeated for credit as topics vary. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 21:12:28 014136 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se6329 (r1)</td>
<td>SE 6329 (CS 6329) Object-Oriented Software Engineering (3 semester credit hours) Concepts, methods and techniques necessary to efficiently capture software requirements in use cases and transform them into design and implementation. Use of UML in the context of an iterative, agile process with an OO model transformation approach. Use of an advanced CASE tool that allows the synchronization between the various models and the code. Prerequisites: CS 3354 or CS 5354 and knowledge of Java. (3-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>skarrah 2013-12-20 10:09:00 NOLINK 14.0903.00.06 audit: -87.2 m index: -87.2 m match fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>se6329.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * se6354 (r5) se6354.8</td>
<td>SE 6354 (CE 6354 and CS 6354) Advanced Software Engineering (3 semester credit hours) This course covers advanced theoretical concepts in software engineering and provides an extensive hands-on experience in dealing with various issues of software development. It involves a semester-long group software development project spanning software project planning and management, analysis of requirements, construction of software architecture and design, implementation, and quality assessment. The course will introduce formal specification, component-based software engineering, and software maintenance and evolution. Must have knowledge of Java. Prerequisites: CE 5354 or CS 5354 or SE 5354 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>ddc130130 2014-01-15 17:15:08 011374 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * se6356 (r6) se6356.7</td>
<td>SE 6356 (CS 6356 and SYSM 6308) Software Maintenance, Evolution, and Re-Engineering (3 semester credit hours) Principles and techniques of software maintenance. Impact of software development process on software justifiability, maintainability, evolvability, and planning of release cycles. Use of very high-level languages and dependencies for forward engineering and reverse engineering. Achievements, pitfalls, and trends in software reuse, reverse engineering, and re-engineering. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:27:36 011375 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 011375 2012-08-26</td>
<td></td>
<td>SE 6356 (CS 6356, 6356 and SYSM 6308) Software Maintenance, Evolution, and Re-Engineering (3 semester credit hours) Principles and techniques of software maintenance. Impact of software development process on software justifiability, maintainability, evolvability, and planning of release cycles. Use of very high-level languages and dependencies for forward engineering and reverse engineering. Achievements, pitfalls, and trends in software reuse, reverse engineering, and re-engineering. Prerequisite: CE/CS/SE CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>status: approving audit: 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * se6357 (r5) se6357.6</td>
<td>SE 6357 Software Quality Assurance and Metrics (3 semester credit hours) Concepts of the pervasive system attributes: reliability, efficiency, maintainability, reusability, etc. Software complexity and measures. Software process measures, product measures and resource measure. Validation of software measures. Software measures and measurement theory. Measuring, monitoring and controlling reliability. Supporting tools. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 21:13:24 011376 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 011376 2013-08-25 sxh121431</td>
<td></td>
<td>SE 6357 Software Quality Assurance and Metrics (3 semester credit hours) Concepts of the pervasive system attributes: reliability, efficiency, maintainability, reusability, etc. Software complexity and measures. Software process measures, product measures and resource measure. Validation of software measures. Software measures and measurement theory. Measuring, monitoring and controlling reliability. Supporting tools. Prerequisite: CE/CS/SE CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * se6359 (r5)</td>
<td>SE 6359 (CS 6359) Object-Oriented Analysis and Design (3 semester credit hours) Analysis and practice of modern tools and concepts that can help produce software that is tolerant of change. Consideration of the primary tools of encapsulation and inheritance. Construction of software-ICs which show the parallel with hardware construction. Prerequisites: (CE 5354 or CS 5354 or SE 5354) and (CS 3335 or CS 5336). (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>peoplesoft diff: 011377 2012-08-26</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>se6359.6</td>
<td></td>
<td>status: approving</td>
<td>2013-12-19 20:30:05</td>
<td>011377 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 6359 (CS 6359) Object-Oriented Analysis and Design (3 semester credit hours) Analysis and practice of modern tools and concepts that can help produce software that is tolerant of change. Consideration of the primary tools of encapsulation and inheritance. Construction of software-ICs which show the parallel with hardware construction. Prerequisites: CE/CS/SE (CE 5354 and either or CS 5354 or SE 5354) and (CS 3335 or CS 5336. 5336). (3-0) S</td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * se6360 (r4)</td>
<td>SE 6360 (CS 6360) Database Design (3 semester credit hours) Methods, principles, and concepts that are relevant to the practice of database software design. Database system architecture; conceptual database models; relational and object-oriented databases; database system implementation; query processing and optimization; transaction processing concepts, concurrency, and recovery; security. Prerequisite: CS 5343. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>peoplesoft diff: 011378 2013-08-25 sxh121431</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>se6360.4</td>
<td></td>
<td>status: approving</td>
<td>2013-09-30 15:21:23</td>
<td>011378 11.0701.00.06 audit: -88.2 m index: -88.2 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 6360 (CS 6360) Database Design (3 semester credit hours) Methods, principles, and concepts that are relevant to the practice of database software design. Database system architecture; conceptual database models; relational and object-oriented databases; database system implementation; query processing and optimization; transaction processing concepts, concurrency, and recovery; security. Prerequisite: CS 5343. (3-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * se6361 (r5) se6361.6</td>
<td>SE 6361 (CS 6361 and SYSM 6309) Advanced Requirements Engineering (3 semester credit hours) System and software requirements engineering. Identification, elicitation, modeling, analysis, specification, management, and evolution of functional and non-functional requirements. Strengths and weaknesses of different techniques, tools, and object-oriented methodologies. Interactions and trade-offs among hardware, software, and organization. System and sub-system integration with software and organization as components of complex, composite systems. Transition from requirements to design. Critical issues in requirements engineering. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) S</td>
<td>phase: approve status: approving audit: 29</td>
<td>mxv062000 2013-12-19 20:31:33 011379 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * se6362 (r4) se6362.5</td>
<td>SE 6362 (CS 6362) Advanced Software Architecture and Design (3 semester credit hours) Concepts and methodologies for the development, evolution, and reuse of software architecture and design, with an emphasis on object-orientation. Identification, analysis, and synthesis of system data, process, communication, and control components. Decomposition, assignment, and composition of functionality to design elements and connectors. Use of non-functional requirements for analyzing trade-offs and selecting among design alternatives. Transition from requirements to software architecture, design, and to implementation. State of the practice and art. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:33:43</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SE 6362 (CS 6362) Advanced Software Architecture and Design (3 semester credit hours) Concepts and methodologies for the development, evolution, and reuse of software architecture and design, with an emphasis on object-orientation. Identification, analysis, and synthesis of system data, process, communication, and control components. Decomposition, assignment, and composition of functionality to design elements and connectors. Use of non-functional requirements for analyzing trade-offs and selecting among design alternatives. Transition from requirements to software architecture, design, and to implementation. State of the practice and art. Prerequisite: CE/CS/SE 5354 or SE 5354. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se6367 (r5) se6367.6</td>
<td>SE 6367 (CS 6367 and SE 6367 and SYSM 6310) Software Testing, Validation and Verification (3 semester credit hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE 5354 or CS 5354 or SE 5354 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:38:02 011381 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>Start</td>
<td>Request</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * se6387 (r5) se6387.6</td>
<td>SE 6387 (CS 6387) Advanced Software Engineering Project (3 semester credit hours) This course is intended to provide experience in a group project that requires advanced technical solutions, such as distributed multi-tier architectures, component-based technologies, automated software engineering, etc., for developing applications, such as web-based systems, knowledge-based systems, real-time systems, etc. The students will develop and maintain requirements, architecture and detailed design, implementation, and testing and their traceability relationships. Best practices in software engineering will be applied. Prerequisites: (CS 6381 or SE 6361) or SYSM 6309, and (CS 6362 or SE 6362). Corequisite: (CE 6367 or CS 6367 or SE 6367) or SYSM 6310. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 00:48:31 011383 14.0903.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se6388 (r5)</td>
<td>SE 6388 (CS 6388) Software Project Planning and Management (3 semester credit hours) Techniques and disciplines for successful management of software projects. Project planning and contracts. Advanced cost estimation models. Risk management process and activities. Advanced scheduling techniques. Definition, management, and optimization of software engineering processes. Statistical process control. Software configuration management. Capability Maturity Model Integration (CMMI). Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:49:50 011384 14.0901.00.06 audit: -87.2 m index: -87.2 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>2014-open</td>
<td>se6388.6</td>
<td>SE 6388 (CS 6388) Software Project Planning and Management (3 semester credit hours) Techniques and disciplines for successful management of software projects. Project planning and contracts. Advanced cost estimation models. Risk management process and activities. Advanced scheduling techniques. Definition, management, and optimization of software engineering processes. Statistical process control. Software configuration management. Capability Maturity Model Integration (CMMI). Prerequisite: CE/CS/SE CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>------------</td>
<td>---</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se6389</td>
<td>SE 6389 (CS 6389) Formal Methods and Programming Methodology (3 semester credit hours) Formal techniques for building highly reliable systems. Use of abstractions for concisely and precisely defining system behavior. Formal logic and proof techniques for verifying the correctness of programs. Hierarchies of abstractions, state transition models, Petri Nets, communicating processes. Operational and definitional specification languages. Applications to reliability-critical, safety-critical, and mission-critical systems, ranging from commercial computer communication systems to strategic command control systems. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>se6389.5</td>
<td></td>
<td>status: approving</td>
<td>2013-12-19 20:50:48</td>
<td>011385</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>11.0701.00.06</td>
<td>-87.2 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011385 2012-08-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se6v81</td>
<td>SE 6V81 Independent Study in Software Engineering (1-9 semester credit hours) May be repeated for credit. Prerequisites: ENCS majors only and instructor consent required. (1-9-0) S</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>se6v81.10</td>
<td></td>
<td>status: approving</td>
<td>2014-01-22 14:00:37</td>
<td>011373</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>11.0701.00.06</td>
<td>-87.2 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011373 2012-08-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>se6v98</td>
<td>SE 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Prerequisites: ENCS majors only and instructor consent required. (3-9-0) S</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>se6v98.2</td>
<td></td>
<td>status: approving</td>
<td>2014-01-23 15:01:59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 10</td>
<td>11.0701.00.06</td>
<td>-87.1 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>*</td>
<td>edit</td>
<td>se7301</td>
<td>(r4)</td>
<td>SE 7301 (CS 7301) Recent Advances in Computing (3 semester credit hours) Advanced topics and publications will be selected from the theory, design, and implementation issues in computing. May be repeated for credit as topics vary. Prerequisites: ENCS majors only and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>se7301.7</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011386 2008-08-21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE 7301 (CS 7301) Recent Advances in Computing (3 semester credit hours) Advanced topics and publications will be selected from the theory, design, and implementation issues in computing. May be repeated for credit as topics vary. Prerequisite: Consent of the instructor. Prerequisites: ENCS majors only and instructor consent required. (3-0) Y</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>*</td>
<td>edit</td>
<td>se8v02</td>
<td>(r4)</td>
<td>SE 8V02 Topics in Software Engineering (1-6 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisite: ENCS majors only and instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>se8v02.9</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011387 2012-08-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE 8V02 Topics in Software Engineering (1-6 semester credit hours) (May Pass/Fail only. May be repeated to a maximum of 9 hours.) for credit as topics vary (9 semester credit hours maximum). Prerequisite: ENCS majors only and instructor consent required. ([1-6]-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>*</td>
<td>edit</td>
<td>se8v07</td>
<td>(r4)</td>
<td>SE 8V07 Research (1-9 semester credit hours) Open to students with advanced standing subject to approval of the graduate advisor. Pass/Fail only. May be repeated for credit. Prerequisites: ENCS majors only and instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>se8v07.9</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011388 2012-08-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE 8V07 Research (1-9 semester credit hours) Open to students with advanced standing subject to approval of the graduate advisor. Pass/Fail only. May be repeated for credit. (9 hours maximum). Prerequisites: ENCS majors only and instructor consent required. ([1-9]-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber</td>
<td>se8v98</td>
<td>(r5)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>se8v98.7</td>
<td></td>
<td>SE 8V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>status: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011389 2012-08-26</td>
<td>audit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE 8V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/af9295a6ec433ea2227c907e2f9cd4e3/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>se8v99 (r5) se8v99.7</td>
<td>SE 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Prerequisites: ENCS majors only and instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 21:24:56 011390 11.0701.00.06</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011390 2012-08-26 SE 8V99 Dissertation (1-9 semester credit hours) (May Pass/Fail only. May be repeated for credit. Prerequisites: ENCS majors only and instructor consent required. ([1-9]-0) S</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>syse6321 (r2) syse6321.2</td>
<td>SYSE 6321 Systems Integration (3 semester credit hours) Introduction to systems integration in complex systems using the automotive sector as an example; plan, organize and manage the integration of complex automotive systems; understand the decomposition/integration paradigm to manage complexity; define metrics to define achievement of objectives; and, demonstrate ability to work in cross-functional/multi-disciplinary teams. Features of the course include: Team approach; simulated production environment including (virtual) client and vendor interaction in the face of unpredictable (virtual) external events; cross-disciplinary. Intended for a broad audience of engineering graduate students regardless of their specific knowledge or interest in automotive systems or that industry. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 11:32:26 014140 14.2701.00.06</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014140 2012-08-26 SYSE 6321 Systems Integration (3 semester credit hours) Introduction to systems integration in complex systems using the automotive sector as an example; plan, organize and manage the integration of complex automotive systems; understand the decomposition/integration paradigm to manage complexity; define metrics to define achievement of objectives; and, demonstrate ability to work in cross-functional/multi-disciplinary teams. Features of the course include: Team approach; simulated production environment including (virtual) client and vendor interaction in the face of unpredictable (virtual) external events; cross-disciplinary. Intended for a broad audience of engineering graduate students regardless of their specific knowledge or interest in automotive systems or that industry. (3-0) T</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>match_fail</td>
</tr>
<tr>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>syse6322</td>
<td>SYSE 6322 (MECH 6316) Digital Control of Automotive Powertrain Systems (3 semester credit hours) Digital control systems, discretization and design by equivalents. Input-output design and discrete-time state variable estimation and control. Introduction to various control problems in automotive powertrains. Application of digital control principles to automotive powertrains for internal combustion engine idle speed control and air-to-fuel ratio control. Prerequisite: EE 4310 or MECH 4310 or equivalent. (3-0) T</td>
<td>approve</td>
<td>cxj140030 2013-10-17 11:31:46</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>syse6323</td>
<td>SYSE 6323 (EECS 6323 and MECH 6323) Robust Control Systems (3 semester credit hours) Theory, methodology, and software tools for the analysis and design of model-based control systems with multiple actuators and multiple sensors. Control oriented model parameterizations and modeling errors. Definitions and criteria for robust stability and performance. Optimal synthesis of linear controllers. The loop shaping design method. Methods to simplify the control law. Mechatronic design examples. Prerequisite: MECH 4310 or equivalent and MECH 6300 or EECS 6331 or SYSM 6307 or equivalent. (3-0) T</td>
<td>approve</td>
<td>kxo121030 2014-02-04 09:02:55</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * syse6324</td>
<td>(r2) syse6324.12</td>
<td>SYSE 6324 (BMEN 6388 and EECS 6336 and MECH 6313) Nonlinear Systems (3 semester credit hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>kxo121030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014263 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td>2014-01-28 09:42:47</td>
<td>014263</td>
<td>14.1001.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SYSE 6324 (BMEN 6388, ENGR 6336, 6388 and EECS 6336 and MECH 6313) Nonlinear Control Systems (3 semester credit hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR EECS 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T</td>
<td>audit: 29</td>
<td>013656</td>
<td>14.2701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * sysm6301</td>
<td>(r4) sysm6301.7</td>
<td>SYSM 6301 (MECH 6337) Systems Engineering, Architecture and Design (3 semester credit hours) Architecture and design of large-scale and decentralized systems from technical and management perspectives. Systems architectures, requirements analysis, design tradeoffs, and reliability through case studies and mathematical techniques. International standardization bodies, engineering frameworks, processes, notations, and tool support from both theoretical and practical perspectives. (3-0) Y</td>
<td>phase: approve</td>
<td>kxo121030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SYSM 6301 (MECH 6337) Systems Engineering, Architecture and Design (3 semester credit hours) Architecture and design of large-scale and decentralized systems from technical and management perspectives. Systems architectures, requirements analysis, design tradeoffs, and reliability through case studies and mathematical techniques. International standardization bodies, engineering frameworks, processes, notations, and tool support from both theoretical and practical perspectives. (3-0) Y</td>
<td>audit: 30</td>
<td>013656</td>
<td>14.2701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------</td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | sysm6302 (r4) sysm6302.9 | **SYSM 6302 (EECS 6302 and MECH 6317) Dynamics of Complex Networks and Systems**
(3 semester credit hours) Design and analysis of complex interconnected networks and systems. Basic concepts in graph theory; Eulerian and Hamiltonian graphs; traveling salesman problems; random graphs; power laws; small world networks; clustering; introduction to dynamical systems; stability; chaos and fractals. (3-0) Y | phase: approve
status: approving
audit: 30 | kxo121030
2014-01-24
13:44:05 | peoplesoft diff: 013659 2013-08-25 sxh121431 | **SYSM 6302 (EECS 6302 and MECH 6317) Dynamics of Complex Networks and Systems**
(3 semester credit hours) Design and analysis of complex interconnected networks and systems. Basic concepts in graph theory; Eulerian and Hamiltonian graphs; traveling salesman problems; random graphs; power laws; small world networks; clustering; introduction to dynamical systems; stability; chaos and fractals. (3-0) Y | | | |
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6305 (r4)</td>
<td>sysm6305.6</td>
<td>SYSM 6305 (MECH 6318) Optimization Theory and Practice (3 semester credit hours) Basics of optimization theory, numerical algorithms, and applications. The course is divided into three main parts: linear programming (simplex method, duality theory), unconstrained methods (optimality conditions, descent algorithms and convergence theorems), and constrained minimization (Lagrange multipliers, Karush-Kuhn-Tucker conditions, active set, penalty and interior point methods). Applications in engineering, operations, finance, statistics, etc. will be emphasized. Students will also use Matlab's optimization toolbox to obtain practical experience with the material. (3-0) Y</td>
<td>phase: approve</td>
<td>kxo121030</td>
<td>2013-10-23 12:14:35 013664 52.1201.00.16 audit: -87.5 m index: -87.5 m</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6306 (r3)</td>
<td>sysm6306.5</td>
<td>SYSM 6306 (BMEN 6372 and MECH 6314) Engineering Systems: Modeling and Simulation (3 semester credit hours) This course will present principles of computational modeling and simulation of systems. General topics covered include: parametric and non-parametric modeling; system simulation; parameter estimation, linear regression and least squares; model structure and model validation through simulation; and, numerical issues in systems theory. Techniques covered include methods from numerical linear algebra, nonlinear programming and Monte Carlo simulation, with applications to general engineering systems. Modeling and simulation software is utilized (MATLAB/SIMULINK). (3-0) Y</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>2014-01-23 15:02:54 013671 14.2701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013671 2012-08-26
SYSM 6306 (BMEN 6372, 6372 and MECH 6314) Engineering Systems: Modeling & and Simulation (3 semester credit hours) This course will present principles of computational modeling and simulation of systems. General topics covered include: parametric and non-parametric modeling; system simulation; parameter estimation, linear regression and least squares; model structure and model validation through simulation; and, numerical issues in systems theory. Techniques covered include methods from numerical linear algebra, nonlinear programming and Monte Carlo simulation, with applications to general engineering systems. Modeling and simulation software is utilized (MATLAB/SIMULINK). (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6307 (r3)</td>
<td>sysm6307.6</td>
<td></td>
<td>SYSM 6307 (EECS 6331 and MECH 6300) Linear Systems (3 semester credit hours) State space methods of analysis and design for linear dynamical systems. Coordinate transformations and tools from advanced linear algebra. Controllability and observability. Lyapunov stability analysis. Pole assignment, stabilizability, detectability. State estimation for deterministic models, observers. Introduction to the optimal linear quadratic regulator problem. Prerequisites: ENGR 2300 and EE 4310 or MECH 4310 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>kxo121030 2013-10-23 12:12:07 013672 14.1901.00.06 audit: -87.5 m index: -87.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6308 (r2)</td>
<td>sysm6308.4</td>
<td></td>
<td>SYSM 6308 (CS 6356 and SE 6356) Software Maintenance, Evolution, and Re-Engineering (3 semester credit hours) Principles and techniques of software maintenance. Impact of software development process on software justifiability, maintainability, evolvability, and planning of release cycles. Use of very high-level languages and dependencies for forward engineering and reverse engineering. Achievements, pitfalls, and trends in software reuse, reverse engineering, and re-engineering. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:27:53 013721 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6309 (r3) sysm6309.4</td>
<td>SYSM 6309 (CS 6361 and SE 6361) Advanced Requirements Engineering (3 semester credit hours) System and software requirements engineering. Identification, elicitation, modeling, analysis, specification, management, and evolution of functional and non-functional requirements. Strengths and weaknesses of different techniques, tools, and object-oriented methodologies. Interactions and trade-offs among hardware, software, and organization. System and sub-system integration with software and organization as components of complex, composite systems. Transition from requirements to design. Critical issues in requirements engineering. Prerequisite: CE 5354 or CS 5354 or SE 5354. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 20:31:46 013722 14.0903.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013722 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6310 (r2)</td>
<td>sysm6310.4</td>
<td>SYSM 6310 (CE 6367 and CS 6367 and SE 6367) Software Testing, Validation and Verification (3 semester credit hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE 5354 or CS 5354 or SE 5354 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 013720 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td>SYSM 6310 (CE 6367, 6367 and CS 6367, 6367 and SE 6367) Software Testing, Validation and Verification (3 semester credit hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE/CS/SE CE 5354 or CS 5354 or SE 5354 or instructor consent required. (3-0) Y</td>
<td>status: approving</td>
<td>2013-12-19 20:38:24</td>
<td>14.0903.00.06</td>
<td>index: -87.2 m match_fail</td>
</tr>
</tbody>
</table>
SYSM 6321 Financial Engineering I (3 semester credit hours) Introduction to finance and investments from an engineering perspective. Focuses on the principles underlying financial decision making which are applicable to all forms of investment: stocks, bonds, real estate, project budgeting, corporate finance, and more. Intended for students with strong technical backgrounds who are comfortable with mathematical arguments. Primary components are deterministic finance (interest rates, bonds, and simple cash flow analysis) and single period uncertainty finance (portfolios of stocks and pricing theory). Prerequisites: Calculus I and II, basic probability, and (ENGR 3341 or equivalent). (3-0) Y

SYSM 6351 (MIS 6311) Cybersecurity Fundamentals (3 semester credit hours) The course provides an overview of various technical and managerial issues associated with cyber security. The topics include risk assessment and management, cyber security programs, IT security controls and technologies, security standards and laws, IT auditing, cyber insurance, and other cyber risk mitigation strategies. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * sysm6v70 (r2) sysm6v70.4</td>
<td>SYSM 6V70 Research In Systems Engineering and Management (3-9 semester credit hours) Pass/Fail only. May be repeated for credit (15 semester credit hours maximum). Instructor consent required. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 23:57:53 014137 14.2701.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * sysm6v80 (r3) sysm6v80.7</td>
<td>SYSM 6V80 Special Topics in Systems Engineering and Management (1-6 semester credit hours) May be repeated as topics vary (9 semester credit hours maximum). Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-27 09:04:57 014138 14.2701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * sysm6v90 (r2) sysm6v90.5</td>
<td>SYSM 6V90 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit (15 semester credit hours maximum). Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-24 14:37:21 014139 14.2701.00.06 audit: -87.1 m index: -87.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>sysm7321 (r2) sysm7321.6</td>
<td>SYSM 7321 Financial Engineering II (3 semester credit hours) Advanced theory, methods, and applications of financial engineering. Major topics include: advanced theory of derivative pricing and hedging, optimal portfolio growth and general investment evaluation, and quantitative and control based methods in dynamic portfolio optimization and hedging. Computational methods and an engineering approach will be emphasized. Prerequisite: SYSM 6321 or instructor consent required. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>sx063000 2013-10-27 18:48:11 014242 52.0601.00.16 audit: -87.5 m index: -87.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 014242 2013-08-25 sxh121431
SYSM 7321 Financial Engineering II (3 semester credit hours) Advanced theory, methods, and applications of financial engineering. Major topics include: advanced theory of derivative pricing and hedging, optimal portfolio growth and general investment evaluation, and quantitative and control based methods in dynamic portfolio optimization and hedging. Computational methods and an engineering approach will be emphasized. Prerequisite: SYSM 6321 or permission of instructor. instructor consent required. (3-0) Y

| 2014-open | edit | te5341 (r4) te5341.4 | TE 5341 Probability, Statistics, and Random Processes in Engineering (3 semester credit hours) Introduction to probability modeling and the statistical analysis in engineering and computer science. Introduction to Markov chains models for discrete and continuous time queuing systems in Telecommunications. Computer simulations. Prerequisite: Undergraduate degree in engineering and computer science. (3-0) R | phase: approve status: approving audit: 30 | cxj140030 2013-09-30 15:42:29 012279 27.0501.00.01 audit: -88 m index: -88 m match_fail | ps info detail change process orion |

peoplesoft diff: 012279 2013-08-25 sxh121431
TE 5341 Probability, Statistics, and Random Processes in Engineering (3 semester credit hours) Introduction to probability modeling and the statistical analysis in engineering and computer science. Introduction to Markov chains models for discrete and continuous time queuing systems in Telecommunications. Computer simulations. Prerequisite: Undergraduate degree in engineering and computer science. (3-0) R
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*te6378 (r3) te6378.5</td>
<td>TE 6378 (CE 6378 and CS 6378) Advanced Operating Systems (3 semester credit hours) Concurrent processing, inter-process communication, process synchronization, deadlocks, introduction to queuing theory and operational analysis, topics in distributed systems and algorithms, checkpointing, recovery, multiprocessor operating systems. Must have knowledge of C and UNIX. Prerequisite: CS 5348 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>ddc130130 2014-01-15 17:19:23 012689</td>
<td>peoplesoft diff: 012689 2013-08-25 sxh121431</td>
<td></td>
</tr>
</tbody>
</table>

TE 6378 (CE 6378 and CS 6378) Advanced Operating Systems (3 semester credit hours) Concurrent processing, inter-process communication, process synchronization, deadlocks, introduction to queuing theory and operational analysis, topics in distributed systems and algorithms, checkpointing, recovery, multiprocessor operating systems. **Prerequisites:** CS 5348 or equivalent; Must have knowledge of C and UNIX. **Prerequisite:** CS 5348 or equivalent. (3-0) S
TE 6385 (CS 6385) Algorithmic Aspects of Telecommunication Networks (3 semester credit hours) This is an advanced course on topics related to the design, analysis, and development of telecommunications systems and networks. The focus is on the efficient algorithmic solutions for key problems in modern telecommunications networks, in centralized and distributed models. Topics include: main concepts in the design of distributed algorithms in synchronous and asynchronous models, analysis techniques for distributed algorithms, centralized and distributed solutions for handling design and optimization problems concerning network topology, architecture, routing, survivability, reliability, congestion, dimensioning and traffic management in modern telecommunication networks. Prerequisites: CS 5343 and CS 5348 and (CE 3341 or EE 3341 or TE 3341 or equivalent). (3-0) Y

TE 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

peoplesoft diff: NOLINK
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * te7v81 (r4) te7v81.7</td>
<td>TE 7V81 Special Topics in Telecommunications (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>rmb101000 2014-01-24 10:11:28 012281 14.1001.00.06 audit: -87.2 m index: -87.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 012281 2013-08-25 sxh121431</td>
<td></td>
<td>TE 7V81 Special Topics in Telecommunications (1-6 semester hours) For letter grade credit only. (May hours) May be repeated to a maximum of 9 hours.) for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * te8v40 (r5) te8v40.7</td>
<td>TE 8V40 Individual Instruction in Telecommunications Engineering (1-6 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 00:00:12 012282 14.1001.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 012282 2013-08-25 sxh121431</td>
<td></td>
<td>TE 8V40 Individual Instruction in Telecommunications Engineering (1-6 semester credit hours) (May Pass/Fail only. May be repeated for credit.) For pass/fail credit only. credit. Instructor consent required. ([1-6]-0) S</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * te8v70 (r4) te8v70.6</td>
<td>TE 8V70 Research in Telecommunications Engineering (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 00:00:43 012283 14.1001.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 012283 2013-08-25 sxh121431</td>
<td></td>
<td>TE 8V70 Research in Telecommunications Engineering (3-9 semester credit hours) (May Pass/Fail only. May be repeated for credit.) For pass/fail credit only. credit. Instructor consent required. ([3-9]-0) S</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * te8v98 (r4) ->te6v98 te8v98.7</td>
<td>request to remove this course from catalog TE 8V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>mjp044000 2013-12-05 10:26:38 012284 14.1001.00.06 audit: -87.3 m index: -87.3 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * te8v99 (r6) te8v99.9</td>
<td>TE 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 00:01:25 012285 14.1001.00.06 audit: -87.3 m index: -87.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 012285 2013-08-25 sxh121431</td>
<td></td>
<td>TE 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. For pass/fail credit only. Instructor consent required. ([1-9]-0) S</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>crim5381 (r2)</td>
<td>crim5381.6</td>
<td>CRIM 5381 Themes in Criminology (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Consult with an advisor to determine the appropriateness for one's degree plan and specialty areas of study. Instructor consent required. (3-0) R</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>crim6300 (r5)</td>
<td>crim6300.6</td>
<td>CRIM 6300 Proseminar in Criminology (3 semester credit hours) Introduction to graduate study in criminology through exposure to topics such as academic publishing, formulation of research questions, writing of literature reviews, career options in the discipline, professional ethics, data literacy, and vitae preparation. (3-0) Y</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>crim6303 (r5)</td>
<td>crim6303.5</td>
<td>CRIM 6303 Etiology of Crime and Criminality (3 semester credit hours) Examines the history of criminological thought incorporating the major works of such theorists as Bentham, Beccaria, Marx, Durkheim, Lombroso, Shaw and McKay, Sutherland, Becker, and Merton. (3-0) Y</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | crim6307 (r6) | CRIM 6307 Extent of Crime and Measurement (3 semester credit hours) This course will address problems in criminology. Examines the major data sources on crimes and criminals and the limitations of such data. Topics also include measurement issues and problems concerning research on the nature and extent of criminal behavior. (3-0) R | phase: approve
status: approving
audit: 30 | cxj140030
2013-10-16
11:20:04
003389
45.0401.00.01
audit: -88.8 m
index: -88.8 m
match_fail | ps info
detail
change
process
orion |
| 2014-open | edit * | crim6308 (r5) | CRIM 6308 Victimology (3 semester credit hours) Examines risks and consequences of crime for its victims. Issues considered include victim-offender relationships, characteristics of victims, the nature of the injuries they experience, and criminal justice procedures that involve them. (3-0) R | phase: approve
status: approving
audit: 30 | cxj140030
2013-10-16
11:19:52
003390
45.0401.00.01
audit: -88.8 m
index: -88.8 m
match_fail | ps info
detail
change
process
orion |
| 2014-open | edit * | crim6309 (r6) | CRIM 6309 Communities and Crime (3 semester credit hours) Examines the trends and sources of crime and social disorder across communities. The course emphasizes relationships among crime, fear of crime, neighborhood change, neighborhood responses to crime, and public policies. (3-0) R | phase: approve
status: approving
audit: 30 | cxj140030
2013-10-16
11:18:02
003391
45.0401.00.01
audit: -88.8 m
index: -88.8 m
match_fail | ps info
detail
change
process
orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>* edit</td>
<td>crim6310 (r5)</td>
<td>crim6310.5</td>
<td>CRIM 6310 Delinquency and Juvenile Justice (3 semester credit hours) Examines youth crime, child victimization, and juvenile justice. Students learn the processes by which specific behaviors are identified as delinquent, the historical evolution of the juvenile justice, and current policies and practices. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030 2013-10-16 11:17:46 003392 45.0401.00.01 audit: -88.8 m index: -88.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>* edit</td>
<td>crim6311 (r5)</td>
<td>crim6311.5</td>
<td>CRIM 6311 Crime and Justice Policy (3 semester credit hours) An introduction to crime and the efforts to control crime through public policy. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030 2013-10-16 11:17:32 003393 45.0401.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>* edit</td>
<td>crim6312 (r2)</td>
<td>crim6312.2</td>
<td>CRIM 6312 Legal Aspects of Justice Administration (3 semester credit hours) Examines key legal issues relevant to justice administration. Topics include contemporary issues in criminal law and procedure, civil liability, asset forfeiture, administrative discipline, constitutional rights of justice practitioners, employment conditions and standards, and sexual harassment policy. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030 2013-10-16 11:17:15 014183 45.0401.00.01 audit: -88.8 m index: -88.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>CRIM 6313 Corrections (3 semester credit hours) Examines the history, forms, and functions of correctional philosophies, institutions, programs, and policies. Topics include the structure and functions of prisons and jails, community corrections, intermediate sanctions, and the growth of correctional control in modern society. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 11:17:05 003394 45.0401.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 003394 2013-08-25 sxh121431

CRIM 6313 Corrections (3 semester credit hours) Examines the history, forms, and functions of correctional philosophies, institutions, programs, and policies. Topics include the structure and functions of prisons and jails, community corrections, intermediate sanctions, and the growth of correctional control in modern society. (3-0) R

| 2014-open | edit * | CRIM 6314 Policing (3 semester credit hours) Provides historical, social and political analysis of the roles and functions of policing in America. (3-0) R | phase: approve | cxj140030 2013-10-16 11:16:50 003395 45.0401.00.01 audit: -88.9 m index: -88.9 m match_fail | ps info detail change process orion |

peoplesoft diff: 003395 2013-08-25 sxh121431

CRIM 6314 Policing (3 semester credit hours) Provides historical, social and political analysis of the roles and functions of policing in America. (3-0) R

| 2014-open | edit * | CRIM 6315 Violent Crime (3 semester credit hours) Examines the sources and patterns of violent offending across time and space. Topics include conceptions and typologies of violent crimes and offenders, victim-offender relations, and efforts to predict and control violent offending. (3-0) R | phase: approve | cxj140030 2013-10-16 11:16:36 003396 45.0401.00.01 audit: -88.9 m index: -88.9 m match_fail | ps info detail change process orion |

peoplesoft diff: 003396 2013-08-25 sxh121431

CRIM 6315 Violent Crime (3 semester credit hours) Examines the sources and patterns of violent offending across time and space. Topics include conceptions and typologies of violent crimes and offenders, victim-offender relations, and efforts to predict and control violent offending. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6317 (r5)</td>
<td>crim6317.5</td>
<td>CRIM 6317 Courts (3 semester credit hours) Examines the objectives, institutions and processes involved in the adjudication of offenders. Topics address the structure and function of the judicial system and principal court actors. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 11:16:20 003397 45.0401.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6322 (r6)</td>
<td>crim6322.6</td>
<td>CRIM 6322 Crime Prevention (3 semester credit hours) Examines situational, social, and legislative approaches to the prevention of crime and delinquency. Emphasis on theories, protective factors, implementation and consequences of these approaches. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 11:16:07 003398 45.0401.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6323 (r3)</td>
<td>crim6323.4</td>
<td>CRIM 6323 Violence and Gun Control (3 semester credit hours) Examines the facts surrounding one of the most heated issues of our times: the relationship between guns, violence and gun control. The course provides a comprehensive criminological view of the topic rather than a political or legal one. Students will learn about evaluating evidence, the "stricter gun law" debate, flaws in arguments on both sides of issue, as well as tricks used by advocates to persuade people to agree with their point of view. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 11:15:49 013347 45.0401.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>status</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | crim6324 | (r5) | | CRIM 6324 Correlates of Crime and Justice (3 semester credit hours) Examines the nature of relationships among attributes and indices at the situational and aggregate levels to various forms of crime and systems of justice. (3-0) R | | phase: approve | phase: approve status: approving audit: 30 | cxj140030
2013-10-16
11:15:29
003399
45.0401.00.01
audit: -88.9 m index: -88.9 m match_fail
peoplesoft diff: 003399 2013-08-25 sxh121431 | ps info
detail
change
process
orion |
| 2014-open | edit * | crim6332 | (r6) | | CRIM 6332 (GISC 6331) GIS Applications in Criminology (3 semester credit hours) Examines spatial distributions of crime, criminals, and criminal justice interventions. Students conduct spatial analysis of point patterns and area-based data in studies of the locations of crime events and rates, offenders, police patrolling practices, judicial districts and community corrections and how they relate to physical and social characteristics of neighborhoods. (3-0) R | | phase: approve | phase: approve status: approving audit: 30 | vtt017000
2013-10-24
11:35:50
003400
45.0401.00.01
audit: -89 m index: -89 m match_fail
peoplesoft diff: 003400 2013-08-25 sxh121431 | ps info
detail
change
process
orion |
| 2014-open | edit * | crim6348 | (r5) | | CRIM 6348 Drugs and Crime (3 semester credit hours) This course provides students with a survey of the historical context of the legislative initiatives that have been attempted to combat the use of drugs, the relationship between drug use/abuse and crime, and the public policy problems surrounding the control of drugs. (3-0) R | | phase: approve | phase: approve status: approving audit: 30 | cxj140030
2013-10-16
11:14:53
003403
45.0401.00.01
audit: -88.9 m index: -88.9 m match_fail
peoplesoft diff: 003403 2013-08-25 sxh121431 | ps info
detail
change
process
orion |
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6351 (r2)</td>
<td>crim6351.6</td>
<td>CRIM 6351 (PA 6351) Introduction to Homeland Security (3 semester credit hours) This course provides a comprehensive overview of the structure of Homeland Security, its origins and developing trends and challenges. Selected material from Congress, Federal Emergency Management Agency, Department of Justice, local, state, and other government and non-government agencies will be studied. Examines both historical and contemporary Homeland Defense and Security issues. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 10:50:26 003379 45.0401.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 003379 2013-08-25 sxh121431

CRIM 6351 (PA 6351) Introduction to Homeland Security (3 semester credit hours) This course provides a comprehensive overview of the structure of Homeland Security, its origins and developing trends and challenges. Selected material from Congress, Federal Emergency Management Agency, Department of Justice, local, state, and other government and non-government agencies will be studied. Examines both historical and contemporary Homeland Defense and Security issues. (3-0) Y

| 2014-open | edit * | crim6381 (r2) | crim6381.6 | CRIM 6381 Issues in Criminology (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Consult with an advisor to determine the appropriateness for one's degree plan and specialty areas of study. Instructor consent required. (3-0) R | phase: approve | vtt017000 2014-01-23 12:16:26 014296 45.0401.00.01 audit: -88.4 m index: -88.4 m match_fail | ps info detail change process orion |

peoplesoft diff: 014296 2013-08-25 sxh121431

CRIM 6381 Issues in Criminology (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary (9 elective semester credit hours maximum). Prerequisite: Consult with an advisor to determine the appropriateness for one's degree plan and specialty areas of study. Instructor consent required. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>crim6390 (r3)</td>
<td>CRIM 6390 Administration of Justice Agencies (3 semester credit hours) This course focuses on the administrative structures, processes, and behavior in managing criminal justice agencies. The focus is on human and financial resources, organizational theory, decision-making, productivity, measurement and enhancement, organizational design, and ethics and culture in police, courts, and correctional agencies. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 11:14:33 014045 43.0113.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>crim6395.5</td>
<td>CRIM 6395 Contemporary Issues in Justice Administration (3 semester credit hours) This course explores and surveys classical and recent literature in criminal justice focused on various critical issues confronting the justice system. The course studies the trends, contemporary topics, and reform movements currently prominent in the fields of policing, courts and corrections. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 11:14:18 014129 43.0103.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6399 (r2)</td>
<td>crim6399.2</td>
<td>CRIM 6399 Capstone in Justice Administration (3 semester credit hours) The capstone in justice administration is the culminating experience for graduating Executive MS-JAL students. Students integrate knowledge from across the criminology and public affairs curriculum in an independent, faculty-directed, semester-long applied research project. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 11:14:03</td>
<td>014188 43.0103.00.01 audit: -88.9 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6v01 (r2)</td>
<td>crim6v01.7</td>
<td>CRIM 6V01 Independent Study (1-9 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Student performance is assessed by instructor. Pass/Fail only. May be repeated for elective credit. Can be applied for credit additionally at the discretion of the program on a case-by-case basis. Instructor consent required. (1-9-0) R</td>
<td>phase: approve</td>
<td>2014-01-16 15:22:17</td>
<td>014276 45.0401.00.01 audit: -88.4 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6v92 (r4)</td>
<td>crim6v92.6</td>
<td>CRIM 6V92 Research Workshop in Applied Criminology (1-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (1-9-0) R</td>
<td>phase: approve</td>
<td>2013-10-14 14:51:22</td>
<td>013368 45.0401.00.01 audit: -89.3 m</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6v96 (r6)</td>
<td>CRIM 6V96 Master Thesis Research (1-6 semester credit hours) Students conduct masters level research project under the supervision of faculty. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1]-[0]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-14 14:51:58 003384 45.0401.00.01 audit: -89.3 m index: -89.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>crim6v96.8</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 003384 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td>CRIM 6V96 Master Thesis Research (1-6 semester credit hours) Students conduct masters level research project under the supervision of faculty. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1]-[0]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6v97 (r2)</td>
<td>CRIM 6V97 Internship (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's course work. Pass/Fail only. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1]-[0]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-14 14:52:13 014277 45.0401.00.01 audit: -89.6 m index: -89.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>crim6v97.4</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 014277 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td>CRIM 6V97 Internship (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's course work. Pass/Fail only. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1]-[0]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim6v98 (r7)</td>
<td>CRIM 6V98 Analytical Writing Research (1-9 semester credit hours) Students perform independent research under the supervision of faculty. May be repeated for credit (9 semester credit hours maximum). Prerequisites: EPPS 6313 and EPPS 6316 or equivalent, plus a good working knowledge of OLS Regression and instructor consent required. ([1]-[0]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-14 14:52:53 003385 45.0401.00.01 audit: -89.3 m index: -89.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>crim6v98.9</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 003385 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td>CRIM 6V88 Analytical Writing Research (1-9 semester credit hours) Students perform independent research under the supervision of faculty. May be repeated for credit (9 semester credit hours maximum). Prerequisites: EPPS 6313 and EPPS 6316 or equivalent, plus a good working knowledge of OLS Regression and instructor consent required. ([1]-[0]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>----------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim7300 (r5)</td>
<td>CRIM 7300 Advances in Criminology Theory (3 semester credit hours) Examines contemporary criminological theories and the degree to which research has provided empirical support for explanations of crime and criminality. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 003404 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRIM 7300 Advances in Criminology Theory (3 semester credit hours) Examines contemporary criminological theories and the degree to which research has provided empirical support for explanations of crime and criminality. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim7301 (r7)</td>
<td>CRIM 7301 Seminar in Criminology Research and Analysis (3 semester credit hours) Examines a variety of quantitative methods and procedures used in criminology research. Students will plan and execute an independent research project. Working topic for dissertation and dataset is preferred. Prerequisites: EPPS 6313 and EPPS 6316 or equivalent, plus a good working knowledge of OLS Regression and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>crim7301.13</td>
<td>peoplesoft diff: 003405 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td>audit: 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRIM 7301 Seminar in Criminology Research and Analysis (3 semester credit hours) Examines a variety of quantitative methods and procedures used in criminology research. Students will plan and execute an independent research project. Working topic for dissertation and dataset is preferred. Prerequisites: EPPS 6313 and EPPS 6316 or equivalent, plus a good working knowledge of OLS Regression. Permission of Regression and instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>add *</td>
<td>crim7305 (r1)</td>
<td>CRIM 7305 Professional Development in Criminology (3 semester credit hours) This course covers career development for criminology doctoral students. Topics include career planning and options, curriculum vitae preparation, college/university teaching, academic publishing and writing, research and grant strategies, and professional ethics and responsibilities. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>crim7305.5</td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>audit: 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRIM 7305 Professional Development in Criminology (3 semester credit hours) This course covers career development for criminology doctoral students. Topics include career planning and options, curriculum vitae preparation, college/university teaching, academic publishing and writing, research and grant strategies, and professional ethics and responsibilities. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim7310 (r3)</td>
<td>CRIM 7310 Advanced Quantitative Methods in Criminology (3 semester credit hours) This course is designed to be an extension to CRIM 7301. Quantitative research techniques not covered in 7301 will be addressed in depth as they apply to longitudinal and multilevel criminological research. Topics may include, but are not limited to, structural equation modeling (SEM), multilevel growth curve modeling, growth mixture models, panel regression, propensity score matching, and latent class analysis. Topics may vary by semester and may be tailored to fit students' research needs. Recommended prerequisite: Students should have a firm understanding of varying regression techniques, etc., prior to enrolling. Prerequisites: CRIM 7301 with a B or better and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013587 2012-08-26 sxh121431

CRIM 7310 Advanced Quantitative Methods in Criminology (3 semester credit hours) This course is designed to be an extension to CRIM 7301. Quantitative research techniques not covered in 7301 will be addressed in depth as they apply to longitudinal and multilevel criminological research. Topics may include, but are not limited to, structural equation modeling (SEM), multilevel growth curve modeling, growth mixture models, panel regression, propensity score matching, and latent class analysis. Topics may vary by semester and may be tailored to fit students' research needs. **Enrollment requirements:** All students must have successfully completed CRIM 7301 with a B or better. **Recommended prerequisite:** Students should have a firm understanding of varying regression techniques, etc., prior to enrolling. Prerequisites: CRIM 7301. **Permission of 7301 with a B or better and instructor consent required.** (3-0) Y
<table>
<thead>
<tr>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>add *</td>
<td>crim7315 (r1)</td>
<td>CRIM 7315 Evidence-Based Crime Prevention (3 semester credit hours) This course explores relationships between crime policy and empirical evaluation research. Students will learn to critically analyze empirical evidence regarding specific criminal justice and crime-related policies, identify factors that influence policymaking, and describe challenges associated with evaluation research of crime-focused programs. (3-0) Y*</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td>crim7315.3</td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>2013-09-03 14:52:50</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td>NOLINK 45.0401.00.01</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -89.2 m</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -89.2 m</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>crim7342 (r4)</td>
<td>CRIM 7342 Qualitative Criminology (3 semester credit hours) Examines ethnography and other qualitative approaches to studying crime, criminals, and criminal justice, particularly participant observation and informant and respondent interviewing. Topics include phenomenology, case study, in-depth interviewing, ethnmethodology, conversation analysis, historical methods, gaining access, sampling, data collection and analysis, and legal and ethical concerns. (3-0) R*</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td>crim7342.4</td>
<td>peoplesoft diff: 013413 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td>2013-10-16 11:13:24</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>013413</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.0401.00.01</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -88.9 m</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -88.9 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * crim7351 (r4)</td>
<td>CRIM 7351 Advanced Criminological Theory Seminar (3 semester credit hours) Course focuses on various criminological theories. Consult with an advisor to determine the appropriateness for one's degree plan and specialty areas of study. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisites: CRIM 6303 and CRIM 7300 and department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-17 10:32:28 013358 45.0401.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>crim7351.6</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRIM 7351 Advanced Criminological Theory Seminar (3 semester credit hours) Topics will vary from semester to semester Course focuses on various criminological theories. May be repeated for credit as topics vary (9 elective hours maximum). Prerequisites: CRIM 6303 and CRIM 7300. Consult with an advisor to determine the appropriateness for one's degree plan and specialty areas of study. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisites: CRIM 6303 and CRIM 7300 and department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013358 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * crim7381 (r4)</td>
<td>CRIM 7381 Special Topics in Criminology (3 semester credit hours) Consult with an advisor to determine the appropriateness for one's degree plan and specialty areas of study. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-24 11:54:59 013348 45.0401.00.01 audit: -88.3 m index: -88.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>crim7381.7</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRIM 7381 Special Topics in Criminology (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary (9 elective hours maximum). Prerequisite: hours) Consult with an advisor to determine the appropriateness for one's degree plan and specialty areas of study. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>crim8v01 (r6)</td>
<td></td>
<td>CRIM 8V01 Independent Study (1-12 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Student performance is assessed by instructor. Pass/Fail only. Can be applied for credit additionally at the discretion of the program on a case-by-case basis. May be repeated for credit. Instructor consent required. ([1-12]-0) R</td>
</tr>
</tbody>
</table>

peoplesoft diff: 003407 2013-08-25 sxh121431

CRIM 8V01 Independent Study (1-12 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Student performance is assessed by instructor. Pass/Fail only. Can be applied for credit additionally at the discretion of the program on a case-by-case basis. Prerequisite: Permission of instructor. May be repeated for credit. Instructor consent required. ([1-12]-0) R |
| 2014-open | | edit * | crim8v92 (r4) | | CRIM 8V92 Independent Advanced Research (1-9 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R | phase: approve | status: approving | audit: 30 | |

peoplesoft diff: 013433 2013-08-25 sxh121431

CRIM 8V92 Independent Advanced Research (1-9 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Pass/Fail only. Consent of instructor required. May be repeated for credit (9 semester credit hours maximum). Prerequisite: Permission of instructor. Instructor consent required. ([1-9]-0) R |
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim8v98 (r2)</td>
<td></td>
<td>CRIM 8V98 Internship (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's course work. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>peoplesoft diff: 014184 2013-08-25 sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>crim8v99 (r7)</td>
<td></td>
<td>CRIM 8V99 Dissertation (1-9 semester credit hours) Provides faculty supervision of a student's dissertation research. Instructor consent required. ([1-9]-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>peoplesoft diff: 003408 2012-08-26 sxr090100</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ5321</td>
<td>(r4)</td>
<td>econ5321.4</td>
<td>ECON 5321 Microeconomic Theory for Applications (3 semester credit hours) For Master of Science students only. Modern approaches to the theory of the firm, the theory of the consumer, and formal relationships among the various economic functions developed using dual approaches to the optimization of objectives such as profit maximization, utility maximization, and cost minimization. Introduction to game theory; and market analysis through classical/neoclassical and game theoretic approaches. MSAE students who intend to enter the PhD program in ECON should take ECON 6301. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
</tbody>
</table>

peoplesoft diff: 004206 2011-08-23 sxf121431

ECON 5321 Microeconomic Theory for Applications (3 semester credit hours) For Master of Science students only. Modern approaches to the theory of the firm, the theory of the consumer, and formal relationships among the various economic functions developed using dual approaches to the optimization of objectives such as profit maximization, utility maximization, and cost minimization. Introduction to game theory; and market analysis through classical/neoclassical and game theoretic approaches. MSAE students who intend to enter the PhD program in ECON should take ECON 6301. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>econ5322 (r4)</td>
<td>ECON 5322 Macroeconomic Theory for Applications (3 semester credit hours) For Master of Science students only. Development of modern macroeconomic theory, including national income accounts and their relation to input-output tables; classical, Keynesian, and monetarist aggregate models; behavior hypotheses of consumption, investment, and government; properties and the role of money and interest; foreign trade and investment; price rigidity, price flexibility, and employment; wage-price interaction and inflation; unemployment; and ad hoc stabilization models. MSAE students who intend to enter the PhD program in ECON should take ECON 6302. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 004207 2011-08-23 sxh121431</td>
<td></td>
<td>ECON 5322 Macroeconomic Theory for Applications (3 semester credit hours) For Master of Science students only. Development of modern macroeconomic theory, including national income accounts and their relation to input-output tables; classical, Keynesian, and monetarist aggregate models; behavior hypotheses of consumption, investment, and government; properties and the role of money and interest; foreign trade and investment; price rigidity, price flexibility, and employment; wage-price interaction and inflation; unemployment; and ad hoc stabilization models. MSAE students who intend to enter the PhD program in ECON should take ECON 6302. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxv062000 2013-11-16 21:16:31</td>
<td>004209</td>
<td>45.0603.00.01</td>
<td>audit: -88.5 m</td>
<td>index: -88.5 m</td>
<td>match_fail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>econ6109 (r3)</td>
<td>ECON 6109 Econometrics I Lab (1 semester credit hour) This course uses STATA both as a data analysis tool and a programming language in econometric analysis. The course parallels ECON 6309, Econometrics I, in the topics covered in econometric data analysis. May be repeated for credit. Prerequisite or Corequisite: ECON 6309. (0-1) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 004209 2011-08-23 sxh121431</td>
<td></td>
<td>ECON 6109 Econometrics I Lab (1 semester credit hour) This course uses STATA both as a data analysis tool and a programming language in econometric analysis. The course parallels ECON 6309, Econometrics I, in the topics covered in econometric data analysis. May be repeated for credit. Prerequisite or Corequisite: ECON 6309. (0-1) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mxv062000 2013-11-16 21:16:31</td>
<td>004209</td>
<td>45.0603.00.01</td>
<td>audit: -88.5 m</td>
<td>index: -88.5 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * econ6301 (r2) econ6301.2</td>
<td>ECON 6301 Microeconomics Theory I (3 semester credit hours) Modern approaches to the theory of the firm, the theory of the consumer, and formal relationships among the various economic functions developed using dual approaches to the optimization of objectives such as profit maximization, utility maximization, and cost minimization. Introduction to game theory; and market analysis through classical/neoclassical and game theoretic approaches. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:20:42 013349 45.0601.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ6302</td>
<td>(r2)</td>
<td>ECON 6302 Macroeconomics Theory I (3 semester credit hours) This course is the first in a sequence of core graduate macroeconomic theory courses. The main aim is to introduce students to the methods of deterministic dynamic analyses in economics. The second aim is to employ those methods in understanding aggregate empirical regularities as they pertain to economic growth with standard modern macroeconomic theory. Therefore, primary course aims include a thorough discussion of non-stochastic dynamics and optimization. Next, using these methods, exogenous and endogenous growth applications that illustrate the applied general equilibrium analyses that comprise modern macroeconomic growth theory are discussed. The course concludes with an introduction to non-stochastic overlapping generations models and discusses the role of dynamic efficiency in macroeconomic theory. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 13:21:18 013344 45.0601.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 013344 2010-08-18 sxh121431</td>
<td></td>
<td></td>
<td>ECON 6302 Macroeconomics Theory I (3 semester credit hours) This course is the first in a sequence of core graduate macroeconomic theory courses. The main aim is to introduce students to the methods of deterministic dynamic analyses in economics. The second aim is to employ those methods in understanding aggregate empirical regularities as they pertain to economic growth with standard modern macroeconomic theory. Therefore, primary course aims include a thorough discussion of non-stochastic dynamics and optimization. Next, using these methods, exogenous and endogenous growth applications that illustrate the applied general equilibrium analyses that comprise modern macroeconomic growth theory are discussed. The course concludes with an introduction to non-stochastic overlapping generations models and discusses the role of dynamic efficiency in macroeconomic theory. (3-0) Y</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ6305.2</td>
<td></td>
<td>ECON 6305 Mathematical Economics (3 semester credit hours) Mathematical tools used in advanced topics model building and in the social and economic analysis of public policy. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 13:21:34 013345 45.0601.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>req_id</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ECON 6306 Applied Econometrics (3 semester credit hours) This course investigates the consequences of relaxing the classical linear regression model assumptions and explores solutions when the assumptions do not hold. Topics include a review of the Ordinary Least Squares (OLS) basics (including the assumptions, hypothesis testing, multicolinearity, dummy variables and heteroskedasticity), model specification and selection, Generalized Least Squares (GLS), maximum likelihood estimation, binary choice models, simultaneous equation models, instrumental variables, time series and fixed and random effects models. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:21:49 013360 45.0603.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ6309 (r4)</td>
<td>econ6309.5</td>
<td>ECON 6309 Econometrics I (3 semester credit hours) An introduction to econometrics, with a development of background concepts in linear algebra and statistics. The course focuses on estimation, hypothesis testing, and prediction in the classical linear regression model. Corresponding large sample issues are considered. General testing principles, such as likelihood ratio, Wald, Lagrange multiplier, and Hausman-type tests are also discussed. Other topics include model specification and nonlinear estimation issues. Recommended prerequisites: ECON 6311 or GISC 6311. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 004212 2011-08-23 sxh121431

ECON 6309 Econometrics I (3 semester credit hours) An introduction to econometrics, with a development of background concepts in linear algebra and statistics. The course focuses on estimation, hypothesis testing, and prediction in the classical linear regression model. Corresponding large sample issues are considered. General testing principles, such as likelihood ratio, Wald, Lagrange multiplier, and Hausman-type tests are also discussed. Other topics include model specification and nonlinear estimation issues. **Recommended: ECON/GISC**

Recommended prerequisites: ECON 6311 or GISC 6311. (3-0) Y

<p>| 2014-2014 | remove * | econ6311 (r4) | econ6311.5 | request to remove this course from catalog ECON 6311 (GISC 6311) Statistics for Economists (3 semester credit hours) The course introduces calculus-based statistical analysis and probability theory, providing background for econometrics and economic modeling of simple stochastic processes. Standard probability distributions are covered, including Bernoulli, binomial, negative binomial, hypergeometric, Poisson, normal, gamma, beta, t and F distributions. Estimation and hypothesis testing are discussed. Introductory asymptomatic theory, including the Law(s) of Large Numbers and the Central Limit Theorem, will be covered as well as real-world applications of probability theory as time permits. (2-3) Y | phase: approve | 2014-01-22 09:41:39 | 004214 27.0501.10.02 | audit: -88.4 m | match_fail |</p>
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * econ6316 (r4)</td>
<td>ECON 6316 Spatial Econometrics (3 semester credit hours) The application of econometric techniques to the explicit treatment of space (geography) in social science models. Covers the specification of spatial regression models, estimation and specification testing. The emphasis is on the application of spatial econometric methods to an empirical data analysis project. Prerequisite: ECON 6306 or ECON 6309. (3-0) R</td>
<td>phase: approve</td>
<td>140030</td>
<td>peoplesoft diff: 004218 2011-08-23 sxh121431 approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECON 6316 Spatial Econometrics (3 semester credit hours) The application of econometric techniques to the explicit treatment of space (geography) in social science models. Covers the specification of spatial regression models, estimation and specification testing. The emphasis is on the application of spatial econometric methods to an empirical data analysis project. Prerequisite: ECON 6306 or ECON 6309. (3-0) R</td>
<td>status: approving</td>
<td>2013-10-16</td>
<td>cxj140030 13:22:16 004218 45.0603.00.01 audit: -89 m index: -89 m match_fail process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * econ6320 (r2)</td>
<td>ECON 6320 Game Theory for the Social Sciences (3 semester credit hours) Non-technical survey of game theory and its applications in the social sciences. Introduction to concepts such as dominant strategies, Nash equilibrium, evolutionary stability, repeated games, and games with incomplete information. Applications include collective action, conflict, bargaining, the evolution of altruism and cooperation, and signaling. (3-0) R</td>
<td>phase: approve</td>
<td>140030</td>
<td>peoplesoft diff: 013361 2010-08-18 sxh121431 approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECON 6320 Game Theory for the Social Sciences (3 semester credit hours) Non-technical survey of game theory and its applications in the social sciences. Introduction to concepts such as dominant strategies, Nash equilibrium, evolutionary stability, repeated games, and games with incomplete information. Applications include collective action, conflict, bargaining, the evolution of altruism and cooperation, and signaling. (3-0) R</td>
<td>status: approving</td>
<td>2013-10-16</td>
<td>cxj140030 13:22:33 013361 45.0601.00.01 audit: -89 m index: -89 m match_fail process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * econ6321 (r3)</td>
<td>request to remove this course from catalog ECON 6321 Financial Economics I (3 semester credit hours) A course in quantitative methods for investment analysis, supplemented with detailed descriptions of the prominent players and the rules of the game which prevail in major U.S. financial markets. Security valuation, fixed income pricing formulas, and basic portfolio management are covered. The key concepts and outstanding debates surrounding the efficient market hypothesis are introduced. (3-0) R</td>
<td>phase: approve</td>
<td>017000</td>
<td>peoplesoft diff: 004219 2013-11-14 sxh121431 approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-11</td>
<td>vtt017000 14:39:45 004219 45.0601.00.01 audit: -88.6 m index: -88.6 m match_fail process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf 23/178
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove * econ6322 (r3) econ6322.4</td>
<td>request to remove this course from catalog ECON 6322 Financial Economics II (3 semester credit hours) Continuation of Financial Economics I. It covers core concepts in portfolio theory within the mean-variance framework, focusing on the problem of choosing a point on the efficient set. Additional topics to be covered include the CAPM model, arbitrage pricing theory, bond analysis, and the basics of the term structure. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-11 14:40:11 004220 45.0601.00.01 audit: -88.6 m index: -88.6 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * econ6331 (r3) econ6331.3</td>
<td>ECON 6331 Labor Economics I (3 semester credit hours) Labor economics is the branch of economics that deals with how labor markets function. Topics covered will include labor supply, retirement, wage structure, inequality in earnings, discrimination, and labor market frictions. This course is one of two courses in nonsequential course offerings in graduate labor economics. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:24:26 004222 45.0601.00.01 audit: -89 m index: -89 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * econ6332 (r3) econ6332.3</td>
<td>ECON 6332 Labor Economics II (3 semester credit hours) This course continues the study of theoretical and applied research of labor markets from Labor Economics I. Topics studied include demand for labor, wage setting institutions, wage structure, investment in human capital, and labor mobility. Labor Economics I is not a prerequisite for Labor Economics II. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:24:37 004223 45.0601.00.01 audit: -89 m index: -89 m</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 004222 2011-08-23 sxh121431

ECON 6331 Labor Economics I (3 semester credit hours) Labor economics is the branch of economics that deals with how labor markets function. Topics covered will include labor supply, retirement, wage structure, inequality in earnings, discrimination, and labor market frictions. This course is one of two courses in nonsequential course offerings in graduate labor economics. (3-0) R

peoplesoft diff: 004223 2011-08-23 sxh121431

ECON 6332 Labor Economics II (3 semester credit hours) This course continues the study of theoretical and applied research of labor markets from Labor Economics I. Topics studied include demand for labor, wage setting institutions, wage structure, investment in human capital, and labor mobility. Labor Economics I is not a prerequisite for Labor Economics II. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * econ6335 (r3) econ6335.3</td>
<td></td>
<td></td>
<td>ECON 6335 Health Economics (3 semester credit hours) Economic analysis of the health care industry to explain the demand for and supply of medical care. Includes analysis of behavior of consumers, producers, and insurers; and public policies to regulate the industry and to provide services for the various segments of the population. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-16</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * econ6336 (r3) econ6336.6</td>
<td></td>
<td></td>
<td>ECON 6336 (PPPE 7319) Economics of Education (3 semester credit hours) This seminar examines theoretical and empirical writings relating to educational policy. The issues considered will include the link between educational achievement and earnings, the role of early childhood, assessments of head start and pre-school programs, the effectiveness of compensatory education and tutoring programs, the large and persistent achievement gap between children from minority and low-income families and those from middle-income Asian and white families, a critical examination of educational production functions, the extent and consequences of school segregation, bilingual education programs, special education programs, international comparisons of student achievement and schools, school finance and an examination of various school reform proposals. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2014-01-23</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ6340 (r3)</td>
<td>ECON 6340 Industrial Organization (3 semester credit hours) Market structure, firm conduct, and economic performance of business with emphasis on firms' strategic behavior in price and nonprice competition. Topics include oligopoly pricing and production decisions, strategic entry deterrence, location strategies, product differentiation, advertising, research and development, and the effects of firms' conduct on economic welfare and market structure. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:25:12 004226 45.0601.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 004226 2011-08-23 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ6343 (r6)</td>
<td>ECON 6343 Economic Regulation of Business (3 semester credit hours) Studies the rationale for, and the history and political-economic results of, government intervention in markets in the form of (1) direct regulation of prices, quantity, entry and exit, and product quality in industries (utility, communication, and transportation), and (2) indirect intervention through antitrust laws and the regulation of advertising. Government deregulation and changes in antitrust institutions also are explored. Prerequisite: ECON 5321 or ECON 6301 or PA 7317. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:25:28 004227 52.0601.00.16 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 004227 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>econ6344 (r3)</td>
<td>ECON 6344 Transfer Pricing (3 semester credit hours) The economics of transfer pricing of goods, services, and intellectual property traded among units (divisions or affiliated firms) of a common parent company. Multidivisional firms and multinational enterprises use transfer pricing for coordination of divisional objectives, allocating internal resources, and maximizing after-tax profits, among other goals. Governments base firms' tax liability on transfer prices; so their taxing authorities operate to ensure transfer prices adequately reflect the value of goods and services, challenging firms' established transfer pricing if it is deemed necessary. Legal issues and methods used by private firms and government agencies for establishing transfer prices are explored. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:25:43 004228 45.0601.00.01 audit: -88.8 m index: -88.8 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>econ6351 (r4)</td>
<td>ECON 6351 (PPPE 6364) Development Economics (3 semester credit hours) An overview of theories of national economic growth and development in the context of developing countries. This includes macroeconomic models; the role of financial development, trade, and agriculture; domestic sectoral policy; human resource development; the environment; and poverty. (3-0)</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-16 09:36:35 004230 45.0604.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * econ6352 (r3)</td>
<td>ECON 6352 (PPPE 6352) World Political Economy (3 semester credit hours) An overview of the major economic, social, political and cultural forces that influence the nature of the international economic and political environment, as well as global economic and political relations. Topics include: theories of global political economy; economic and political transformation in Eastern Europe, China and the former Soviet Union; democratization and development in the less developed countries; military and non-military approaches to national and international security; environmentally sustainable economic development; and the international implications of technological failure. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-28 16:16:50 004231 45.0605.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * econ6355 (r3)</td>
<td>ECON 6355 International Trade (3 semester credit hours) Provides a broad overview of theory and evidence concerning international trade, direct foreign investment and trade policy. Topics include scale economies, imperfect competition, and product differentiation, trade dynamics, economic growth, trade policies, and the political process. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:26:23 004232 45.0605.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start date</td>
<td>end date</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ6356</td>
<td>(r3)</td>
<td>ECON 6356 International Finance (3 semester credit hours) Financial aspects of growth and income determination in open economies. Specific topics include financial risk in the international setting; money and exchange rate regimes; income determination and macroeconomic policy; history of international monetary arrangements, and current issues in international monetary reform. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:26:37 004233 45.0605.00.01 audit: -88.8 m index: -88.8 m match_fail</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>peopleSoft diff: 004233 2011-08-23 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ6362</td>
<td>(r3)</td>
<td>ECON 6362 (PPPE 6353) Industry, Technology, and Science Policy (3 semester credit hours) Focuses on the impact of social, economic, and political factors on industry as critical units of production, and how these interact with technology and science. Topics include availability of skilled labor, research and development in industry, business-university relationships, innovation, and international competitiveness of the U.S. economy. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:03:00 004236 52.0299.30.16 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>peopleSoft diff: 004236 2011-08-23 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ6363</td>
<td>(r6)</td>
<td>ECON 6363 Public Economics I (3 semester credit hours) Examines the economic role of government in a mixed economy. Surveys where markets fail. In particular, it studies externalities, public goods, club goods and related topics. Prerequisite: ECON 5321 or ECON 6301. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:27:06 004237 45.0601.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>peopleSoft diff: 004237 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * econ6371 (r3) econ6371.4</td>
<td>ECON 6371 (SOC 6341) Urban Economics (3-0) R presents methods and models for understanding urban growth and development processes. Topics include analysis of urban growth, land use patterns, transportation and local public good delivery systems. Welfare consequences of various urban policy options are explored.</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-23 10:50:37</td>
<td>ps info detail</td>
<td>change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * econ6372 (r3) econ6372.4</td>
<td>ECON 6372 (PA 6342) Local Economic Development (3-0) T presents methods and models for understanding urban growth and development processes. Topics include analysis of urban growth, land use patterns, transportation and local public good delivery systems. Welfare consequences of various urban policy options are explored.</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-07 11:23:19</td>
<td>ps info detail</td>
<td>change process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * econ6380 econ6380.4 | ECON 6380 Experimental Economics I (3 semester credit hours) Introduction to the methodology of laboratory experimental economics, including principles of experimental design, development of effective protocols, research with human subjects, and statistical analysis of experimental data, designing experiments to test theory, experimental measurement of preferences and attitudes, and market and institutional "wind-tunnel" design. Prerequisites: ECON 6301 and ECON 6309 or instructor consent required. (3-0) T
peoplesoft diff: 004242 2011-08-23 sxh121431 | phase: approve
status: approving
audit: 30 | vtt017000
2013-09-30
14:24:06
004242
45.0601.00.01
audit: -89.5 m
index: -89.5 m
match_fail | ps info detail change process orion |
| 2014-open | edit * econ6v00 econ6v00.3 | ECON 6V00 Tools for Economic Research (2-3 semester credit hours) First two credit hours examines single and multivariate calculus at a level appropriate for entering PhD and MS students in economics, functional areas of business, and social sciences. Includes optimization theory and matrix algebra. Those enrolled in the optional 3rd credit hour will receive basic instruction in a statistical package (e.g., STATA). Pass/Fail only. ([2-3]-0) Y
peoplesoft diff: 013589 2011-08-23 sxh121431 | phase: approve
status: approving
audit: 30 | vtt017000
2013-10-25
12:15:03
013589
45.0601.00.01
audit: -88.7 m
index: -88.7 m
match_fail | ps info detail change process orion |
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Req Type</th>
<th>Course Req Id</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>econ6v01 (r4)</td>
<td>ECON 6V01 Independent Study (1-9 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Prerequisite: Consent of instructor. Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (1-9) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-23 10:51:18 013426 45.0602.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>econ7301 (r3)</td>
<td>ECON 7301 Microeconomics Theory II (3 semester credit hours) General equilibrium theory of markets and welfare economics; discusses the problems of existence, stability, efficiency, and equity of economic equilibrium; and introduces social choice and the special problems created by public goods, externalities, and uncertainty. Recommended: ECON 6301. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:28:01 013362 45.0601.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7302</td>
<td>(r3)</td>
<td>econ7302.3</td>
<td>ECON 7302 Macroeconomics Theory II (3 semester credit hours) This course is the second in a sequence of core graduate (doctoral level) macroeconomic theory courses. The main aim is to introduce students to the methods of stochastic dynamic analyses in economics. The second aim is to employ those methods in understanding aggregate empirical regularities, for instance as they pertain to business cycles, with standard modern macroeconomic theory. Therefore, primary course aims include a thorough discussion of stochastic dynamics and optimization. Next, using these methods, applications that illustrate the applied general equilibrium analyses that comprise: modern macroeconomic business cycle theory, consumption, asset pricing and topics in 'behavioral' macroeconomics are discussed. Recommended: ECON 6302. (3-0)</td>
<td>phase: approve</td>
<td>2013-10-16 13:28:14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013363 2011-08-23 sxh121431</td>
<td>status: approving</td>
<td>013363</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7303</td>
<td>(r3)</td>
<td>econ7303.3</td>
<td>ECON 7303 Microeconomics Theory III (3 semester credit hours) Primarily a course on the role of strategic interdependence in economics using game theory. Topics include noncooperative games, simultaneous-move games and dynamic games with applications from a wide variety of fields in economics. (3-0)</td>
<td>phase: approve</td>
<td>2013-10-16 13:28:28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013418 2011-08-23 sxh121431</td>
<td>status: approving</td>
<td>013418</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>econ7309 (r2)</td>
<td></td>
<td>ECON 7309 Econometrics II (3 semester credit hours) This is the second core course in the econometrics sequence of the economics PhD program. The course extends the topics covered in the first course and covers topics such as serial correlation, unit roots, cointegration, and dynamic models; panel data; simultaneous equation models, maximum likelihood and GMM estimations methods. (3-0) Y(peoplesoft diff: 013346 2010-08-18 sxh121431) ECON 7309 Econometrics II (3 semester credit hours) This is the second core course in the econometrics sequence of the economics PhD program. The course extends the topics covered in the first course and covers topics such as serial correlation, unit roots, cointegration, and dynamic models; panel data; simultaneous equation models, maximum likelihood and GMM estimations methods. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>econ7311 (r3)</td>
<td></td>
<td>ECON 7311 Special Topics in Econometric and Spatial Analysis (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7311. (3-0) R(peoplesoft diff: 004246 2011-08-23 sxh121431) ECON 7311 Special Topics in Econometric and Spatial Analysis (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7311. (3-0) R</td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7315 (r3)</td>
<td>ECON 7315 Econometrics III (3 semester credit hours) This is the third core course in the econometrics sequence of the economics PhD program. The course extends the topics covered in the first two courses and covers topics such as Bayesian, semiparametric and nonparametric estimation approaches; discrete choice models, limited dependent variable models and duration models; and bootstrap and jackknife methods. Prerequisite: ECON 6309. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-11 14:41:22 013417 45.0603.00.01 audit: -88.6 m index: -88.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7315.5</td>
<td>ECON 7315 Econometrics III (3 semester credit hours) This is the third core course in the econometrics sequence of the economics PhD program. The course extends the topics covered in the first two courses and covers topics such as Bayesian, semiparametric and nonparametric estimation approaches; discrete choice models, limited dependent variable models and duration models; and bootstrap and jackknife methods. Prerequisite: ECON 6309. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7316 (r2)</td>
<td>ECON 7316 Game Theory (3 semester credit hours) Advanced treatment of topics in noncooperative game theory. May also include a brief survey of cooperative game theory. Major topics covered include correlated equilibrium, equilibrium refinements, evolutionary stability and dynamics, multi-level selection, revelation principle, strategic substitutes and complements, uniqueness and comparative statics. Prerequisite: GISC 7310 or EPPS 7316 or ECON 6306 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 16:29:38 013365 45.0601.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7316.3</td>
<td>ECON 7316 Game Theory (3 semester credit hours) Advanced treatment of topics in noncooperative game theory. May also include a brief survey of cooperative game theory. Major topics covered include correlated equilibrium, equilibrium refinements, evolutionary stability and dynamics, multi-level selection, revelation principle, strategic substitutes and complements, uniqueness and comparative statics. Prerequisite: GISC 7310 or EPPS 7316 or ECON 6306 or instructor consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7321</td>
<td>econ7321.4</td>
<td></td>
<td>ECON 7321 Special Topics in Labor Economics (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7321. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 004247 2011-08-23 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECON 7321 Special Topics in Labor Economics (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7321. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7331</td>
<td>econ7331.5</td>
<td></td>
<td>ECON 7331 Special Topics in Industrial Organization (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7331. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 004248 2012-08-26 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECON 7331 Special Topics in Industrial Organization (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7331. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7341</td>
<td>econ7341.4</td>
<td></td>
<td>ECON 7341 Special Topics in International Development (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7341. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 004249 2011-08-23 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECON 7341 Special Topics in International Development (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7341. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7351 (r3)</td>
<td>econ7351.5</td>
<td>ECON 7351 Special Topics in Public Economics (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7351. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 16:27:33 004250 45.0601.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7363 (r5)</td>
<td>econ7363.5</td>
<td>ECON 7363 Public Economics II (3 semester credit hours) A study of positive and normative theories of taxation, the effect of taxation on behavior, behavioral public finance and related topics. Prerequisite: ECON 6363. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 13:29:47 013364 45.0601.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7381 (r3)</td>
<td>econ7381.4</td>
<td>ECON 7381 Special Topics in Experimental and Behavioral Economics (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). However, students may not take more than 3 hours of the field requirement from ECON 7381. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 16:20:14 004251 45.0601.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7391 (r3)</td>
<td>econ7391.4</td>
<td>ECON 7391 Special Topics in Economics (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 16:19:38 004252 45.0601.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ7v01</td>
<td>ECON 7V01 Paper Seminar (3-6 semester credit hours) Students registering for this seminar work towards the completion of their literature survey requirement. Course includes oral presentations and progress reports. ([3-6]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-11 14:48:08 004243 45.0601.00.01</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v01.4</td>
<td>peoplesoft diff: 004243 2008-08-21 sxr090100 ECON 7V01 Literature Survey/Paper Paper Seminar (3 or 6 (3-6 semester credit hours) Students registering for this seminar work towards the completion of their literature survey requirement. Course includes oral presentations and progress reports. ([3 or 6]-0) ([3-6]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v01.4</td>
<td>ECON 7V01 Paper Seminar (3-6 semester credit hours) Students registering for this seminar work towards the completion of their literature survey requirement. Course includes oral presentations and progress reports. ([3-6]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v02.6</td>
<td>peoplesoft diff: 004244 2011-08-23 sxh121431 ECON 7V02 Research in Economics (3-6 semester credit hours) May be repeated for credit. Instructor consent required. ([3-6]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v02</td>
<td>ECON 7V02 Research in Economics (3-6 semester credit hours) Topics vary from semester to semester. May be repeated for credit. Prerequisite: Consent of instructor. Instructor consent required. ([3-6]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v02</td>
<td>ECON 7V02 Research in Economics (3-6 semester credit hours) May be repeated for credit. Instructor consent required. ([3-6]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v02.6</td>
<td>peoplesoft diff: 004245 2011-08-23 sxh121431 ECON 7V02 Research in Economics (3-6 semester credit hours) May be repeated for credit. Instructor consent required. ([3-6]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v03.3</td>
<td>peoplesoft diff: 004245 2011-08-23 sxh121431 ECON 7V03 Research Paper Seminar (3-6 semester credit hours) Students registering for this seminar work towards the completion of their research paper requirement. Oral presentations and progress reports. ([3-6]-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v03</td>
<td>ECON 7V03 Research Paper Seminar (3-6 semester credit hours) Students registering for this seminar work towards the completion of their research paper requirement. Oral presentations and progress reports. ([3-6]-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v03</td>
<td>ECON 7V03 Research Paper Seminar (3-6 semester credit hours) Students registering for this seminar work towards the completion of their research paper requirement. Oral presentations and progress reports. ([3-6]-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ7v03.3</td>
<td>peoplesoft diff: 004245 2011-08-23 sxh121431 ECON 7V03 Research Paper Seminar (3-6 semester credit hours) Students registering for this seminar work towards the completion of their research paper requirement. Oral presentations and progress reports. ([3-6]-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ8v01</td>
<td>peoplesoft diff: 004253 2012-08-26 sxh121431 ECON 8V01 Dissertation Seminar (3-9 semester credit hours) A seminar for students preparing proposals or writing dissertations. Pass/Fail only. May be repeated for credit. Prerequisites: Successful completion of qualifying examination and instructor consent required. ([3-9]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>econ8v01</td>
<td>ECON 8V01 Dissertation Seminar (3-9 semester credit hours) A seminar for students preparing proposals or writing dissertations. Pass/Fail only. May be repeated for credit. Prerequisites: Successful completion of qualifying examination and instructor consent required. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-23 10:53:34 004244</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ8v01.7</td>
<td>ECON 8V01 Dissertation Seminar (3-9 semester credit hours) A seminar for students preparing proposals or writing dissertations. Prerequisite: Pass/Fail only. May be repeated for credit. Prerequisites: Successful completion of qualifying examination or instructor consent of instructor. May be repeated for credit. ([3-9]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ8v01.7</td>
<td>ECON 8V01 Dissertation Seminar (3-9 semester credit hours) A seminar for students preparing proposals or writing dissertations. Prerequisite: Pass/Fail only. May be repeated for credit. Prerequisites: Successful completion of qualifying examination or instructor consent of instructor. May be repeated for credit. ([3-9]-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>econ8v02</td>
<td>ECON 8V02 Dissertation (1-9 semester credit hours) Provides faculty supervision of a student's dissertation research. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-14 15:01:14 004254</td>
<td>45.0601.00.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ8v02.4</td>
<td></td>
<td>peoplesoft diff: 004254 2012-08-26 sxh121431</td>
<td>status: approving</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECON 8V02 Dissertation (1-9 semester credit hours) Provides faculty supervision of a student's dissertation research. Pass/Fail only. May be repeated for credit. Prerequisite: Consent of instructor. Instructor consent required. ([1-9]-0) Y</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>econ8v97</td>
<td>ECON 8V97 Internship (1-9 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's course work. Internships are mainly intended for terminal Master of Science in Applied Economics (MSAE) students. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 16:17:33 004255</td>
<td>45.0601.00.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>econ8v97.6</td>
<td></td>
<td>peoplesoft diff: 004255 2012-08-26 sxh121431</td>
<td>status: approving</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECON 8V97 Internship (1-9 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's course work. Internships are mainly intended for terminal MSAE students. Prerequisite: Consent of instructor. Science in Applied Economics (MSAE) students. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
<td>audit: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps6310 (r2)</td>
<td>epps6310.2</td>
<td>EPPS 6310 Research Design I (3 semester credit hours) This course is the first in a two-course sequence devoted to the research enterprise and the study of data development strategies and techniques to facilitate effective statistical analysis. Topics generally covered include: (1) issues and techniques in social science research with emphasis on philosophy of science, theory testing, and hypothesis formulation; (2) measurement and data collection strategies, reliability and validity of measures and results, sampling, surveys; and (3) examination of qualitative versus quantitative research techniques, working with observational data, field research issues, and triangulation. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
</tbody>
</table>

EPPS 6310 Research Design I (3 semester credit hours) This course is the first in a two-course sequence devoted to the research enterprise and the study of data development strategies and techniques to facilitate effective statistical analysis. Topics generally covered include: (1) issues and techniques in social science research with emphasis on philosophy of science, theory testing, and hypothesis formulation; (2) measurement and data collection strategies, reliability and validity of measures and results, sampling, surveys; and (3) examination of qualitative versus quantitative research techniques, working with observational data, field research issues, and triangulation. (3-0) Y

peoplesoft diff: 013350 2010-08-18 sxh121431
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps6313 (r2)</td>
<td>EPPS 6313 Introduction to Quantitative Methods (3 semester credit hours) This introductory graduate-level statistics course is geared to the consumption of statistical methods commonly used in social science research. Topics include creating and interpreting graphical and tabular summaries of data, descriptive statistics, basic probability theory, sampling distributions, basic hypothesis testing (t-tests, chi-square tests, and analysis of variance), estimation of population parameters, confidence intervals and correlation. An introduction to regression analysis will also be provided. Topics are supported by computer-supported data analyses. (3-0) Y</td>
<td>phase: approve</td>
<td>013351 2013-10-16 14:46:52</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013351 2010-08-18 sxh121431

EPPS 6313 Introduction to Quantitative Methods (3 semester hours) This introductory graduate-level statistics course is geared to the consumption of statistical methods commonly used in social science research. Topics include creating and interpreting graphical and tabular summaries of data, descriptive statistics, basic probability theory, sampling distributions, basic hypothesis testing (t-tests, chi-square tests, and analysis of variance), estimation of population parameters, confidence intervals and correlation. An introduction to regression analysis will also be provided. Topics are supported by computer-supported data analyses. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps6316 (r4)</td>
<td>EPPS 6316 Applied Regression (3 semester credit hours) This course provides a survey of the bivariate and multiple regression models estimated using Ordinary Least Squares (OLS), with an emphasis on using regression models to test social and economic hypotheses. This application-focused course presents examples drawn from economics, political science, public policy and sociology, introduces the basic concepts and interpretation of regression models, and basic methods of inference. Topics are supported by computer-supported data analyses. Prerequisite: EPPS 6313 or EPPS 7313. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps6320 (r3)</td>
<td>epps6320.5</td>
<td>EPPS 6320 Short Courses in Contemporary Social Science Research Methods (3 semester credit hours) This course is comprised of three tutorial sessions that each last two full days over the course of an academic year. Each session is an intensive survey of a different modern statistical methodology that is regularly used in the social sciences. In order to get credit, the student must attend all six days. Students will need to enroll for the course in the Fall semester. Pass/Fail only. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-31 16:10:37 013673 45.0102.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps6324 (r2)</td>
<td>epps6324.3</td>
<td>EPPS 6324 Data Management for Social Science Research (3 semester credit hours) Covers the principles and practical techniques of data cleaning, data organization, quality control, and automation of research tasks. Topics covered will include data types, useful text and math functions, labeling, recoding, data documentation, merging datasets, reshaping, and programming structures such as macros, loops, and branching using Stata and R. The course will also discuss using LaTeX to automate outputting of results and graphics in publishable formats. Prerequisite: EPPS 6313 or EPPS 7313 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 16:12:11 013674 45.0102.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
</tr>
</tbody>
</table>

EPPS 6324 Data Management for Social Science Research (3 semester credit hours) Covers the principles and practical techniques of data cleaning, data organization, quality control, and automation of research tasks. Topics covered will include data types, useful text and math functions, labeling, recoding, data documentation, merging datasets, reshaping, and programming structures such as macros, loops, and branching using Stata and R. The course will also discuss using LaTeX to automate outputting of results and graphics in publishable formats. Prerequisite: EPPS 6313 or EPPS 7313 or permission of instructor. instructor consent required. (3-0) R

peoplesoft diff: 013674 2011-08-23 sxh121431
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req_type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request_status</th>
<th>request_metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps6342 (r3)</td>
<td>epps6342.4</td>
<td>EPPS 6342 Research Design II (3 semester credit hours) This course is the second in a two-course sequence devoted to the study of data development strategies and techniques to facilitate effective statistical analysis. Topics generally covered include: the logic of causal inquiry and inference in the Economic, Political and Policy Sciences, the elaboration paradigm and model specification, anticipating and handling threats to internal validity, hierarchies of design structure (experimental, quasi-experimental and non-experimental): linking design structure to effect estimation strategies and analyzing design elements in published literature. Students will be required to select a research topic in consultation with the instructor and prepare a written comparative design analysis. Recommended: EPPS 6310 or EPPS 6316 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>vtt017000 2014-01-27 09:55:01 013370 44.0501.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>peoplesoft diff: 013370 2011-08-23 sxh121431</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | epps6346 | (r2) | epps6346.2 | EPPS 6346 Qualitative Research Methods (3 semester credit hours) This course provides an overview of qualitative research in the Economic, Political and Policy Sciences. Students will investigate the assumptions underlying qualitative research approaches and critically assess the strengths and weaknesses of such approaches. Possible topics may include participant observation, ethnographic interviewing, ethnomethodology, conversation analysis, case study, and the analysis of historical documents. (3-0) T

peoplesoft diff: 013371 2010-08-18 sxh121431
EPPS 6346 Qualitative Research Methods (3 semester credit hours) This course provides an overview of qualitative research in the Economic, Political and Policy Sciences. Students will investigate the assumptions underlying qualitative research approaches and critically assess the strengths and weaknesses of such approaches. Possible topics may include participant observation, ethnographic interviewing, ethnomethodology, conversation analysis, case study, and the analysis of historical documents. (3-0) T |
| phase: approve | status: approving | audit: 30 | cxj140030 | 2013-10-16 14:47:41 | 013371 | 45.0401.00.01 | audit: -88.9 m | index: -88.9 m | match_fail |
| 2014-open | edit * | epps6352 | (r3) | epps6352.3 | EPPS 6352 Evaluation Research Methods in the Economic, Political and Policy Sciences (3 semester credit hours) A review of research methods used in program evaluation, with an emphasis on public and nonprofit social programs. Issues to be addressed include research design, appropriate performance standards, measurement and selection of individuals, sampling, data collection, and data analysis. (3-0) Y

peoplesoft diff: 013355 2011-08-23 sxh121431
EPPS 6352 Evaluation Research Methods in the Economic, Political and Policy Sciences (3 semester credit hours) A review of research methods used in program evaluation, with an emphasis on public and nonprofit social programs. Issues to be addressed include research design, appropriate performance standards, measurement and selection of individuals, sampling, data collection, and data analysis. (3-0) Y |
<p>| phase: approve | status: approving | audit: 30 | cxj140030 | 2013-10-16 14:47:50 | 013355 | 45.1101.00.01 | audit: -88.9 m | index: -88.9 m | match_fail |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>epps7304 (r3)</td>
<td>EPPS 7304 Cost-Benefit Analysis (3 semester credit hours) Examines methods for measuring costs and benefits of public projects and policies, and the application of cost-benefit analysis to areas such as economic development, water resources, recreation, transportation, regulation, and the environment. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>epps7304.3</td>
<td>peoplesoft diff: 013356 2011-08-23 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | | edit * | epps7313 (r3) | EPPS 7313 Descriptive and Inferential Statistics (3 semester credit hours) The course provides a thorough introduction to probability and statistics. Probability topics covered include random variables, expectations, and probability distributions. The heart of the course is a rigorous introduction to statistical inference: sampling theory, confidence intervals, and hypothesis tests. The final section of the course is an introduction to regression analysis, with an emphasis on interpretation of regression results, using examples from recent research. Recommended: one semester of calculus. (3-0) Y | phase: approve | status: approving | audit: 30 | cxj140030 2013-10-16 14:48:07 013352 27.0501.10.02 | |
| | | | epps7313.3 | peoplesoft diff: 013352 2011-08-23 sxh121431 | | | | |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps7316</td>
<td>(r2)</td>
<td>epps7316.2</td>
<td>EPPS 7316 Regression and Multivariate Analysis (3 semester credit hours) This course provides a detailed examination of the multiple regression models estimated using Ordinary Least Squares (OLS), with an emphasis on using regression models to test social and economic hypotheses. Also covered are several special topics in regression analysis, including violations of OLS assumptions, the use of dummy variables, and fixed effects models. The course ends with an introduction to advanced topics in regression analysis, qualitative response models, and non-OLS approaches to estimation. Topics are supported by computer-supported data analyses using application-specific software. Prerequisite: EPPS 7313. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:48:25 013354 44.0501.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>
EPPS 7318 Structural Equation and Multilevel (Hierarchical) Modeling (3 semester credit hours) An introduction to structural equation modeling (SEM) and multilevel modeling (MLM), sometimes called hierarchical linear or mixed modeling. SEM represents a general approach to the statistical examination of the fit of a theoretical model to empirical data. Topics include observed variable (path) analysis, latent variable models (e.g., confirmatory factor analysis), and latent variable SEM analyses. MLM represents a general approach to handling data that are nested within each other or have random components. Topics include dealing with two-level data that may be cross-sectional, such as students within classes, or longitudinal, such as repeated observations on individuals, firms or countries. Recommended prerequisite: EPPS 7316 or equivalent. Prerequisite: ECON 6306 or ECON 6309 or EPPS 6316 or instructor consent required. (3-0) R
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps7344 (r3)</td>
<td>EPPS 7344 Categorical and Limited Dependent Variables (3 semester credit hours) This course examines several types of advanced regression models that are frequently used in policy analysis and social science research. The key similarity of these models is that they involve dependent variables that violate one or more of the assumptions of the Ordinary Least Squares (OLS) regression model. The main models examined in the course are binary logit and probit, multinomial logit, ordinal probit, tobit, and the family of Poisson regression models. All these models are estimated using maximum likelihood estimation (MLE). The Heckman correction for selection is also addressed. Recommended: EPPS 6316 or the equivalent. (3-0)</td>
<td>phase: approve</td>
<td>2013-10-16 14:48:40 cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>epps7344.3</td>
<td></td>
<td>EPPS 7344 Categorical and Limited Dependent Variables (3 semester credit hours) This course examines several types of advanced regression models that are frequently used in policy analysis and social science research. The key similarity of these models is that they involve dependent variables that violate one or more of the assumptions of the Ordinary Least Squares (OLS) regression model. The main models examined in the course are binary logit and probit, multinomial logit, ordinal probit, tobit, and the family of Poisson regression models. All these models are estimated using maximum likelihood estimation (MLE). The Heckman correction for selection is also addressed. Recommended: EPPS 6316 or the equivalent. (3-0)</td>
<td>status: approving</td>
<td>013373</td>
<td>match_fail</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps7368 (r2)</td>
<td>EPPS 7368 Spatial Epidemiology (3 semester credit hours) Examines the conceptual and analytic tools used to understand how spatial distributions of exposure impact processes and patterns of disease. Emphasizes the special design, measurement, and analysis issues associated with spatial patterns of diseases. Contemporary diseases of public health importance are addressed, and the statistical and inferential skills are provided that can be used in understanding how spatial patterns arise and their implications for intervention. Prerequisite: EPPS 6313 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:48:48 013374 11.0401.00.02 audit: -88.9 m index: -88.9 m match_fail</td>
<td>peopless diff: 013374 2010-08-18 sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps7370 (r3)</td>
<td>EPPS 7370 Time Series Analysis (3 semester credit hours) The course considers several important topics in applied time series analysis including the specification and testing Box-Jenkins models and dynamic regressions. Other topics may include forecasting, vector autoregression models, unit root inference, cointegration, autoregressive conditional heterogeneity, Bayesian time series, and regime switching models. Students also learn how to use modern time series software. Recommended: EPPS 7316 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:48:57 013067 45.0603.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>peopless diff: 013067 2011-08-23 sxh121431</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps7386 (r3) epps7386.3</td>
<td>EPPS 7386 Survey Research (3 semester credit hours) This course exposes students to the use of survey methods in social science research. Emphasis is placed on interview and questionnaire techniques and the construction and sequencing of survey questions. Attention is also devoted to sampling theory, sampling and non-sampling errors, and the use of recent advances in fieldwork to reduce measurement error in surveys. Recommended: EPPS 6313 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:49:13 013375 44.0501.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>peoplesoft diff: 013375 2011-08-23 sxh121431</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps7390 (r2) epps7390.2</td>
<td>EPPS 7390 Bayesian Analysis for Social and Behavioral Sciences (3 semester credit hours) This course covers the theory and application of Bayesian statistics for economic, political, and other social science data. Students will learn how maximum likelihood and Bayesian estimation are related and how the latter is used to develop decision based inference. Topics include subjective probability, general linear models, posterior simulation methods, model specification and averaging, and sensitivity analysis. Prerequisite: EPPS 7316 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:49:43 013586 44.0501.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
<td>peoplesoft diff: 013586 2011-08-23 sxh121431</td>
</tr>
<tr>
<td>Start Date</td>
<td>Request Type</td>
<td>Course Code</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps7v81</td>
<td>EPPS 7V81 Special Topics in Social Science Research Methodology (1-9 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>epps7v81.2</td>
<td>people soft diff: 013681 2011-08-23 sxh121431</td>
<td>status: approving</td>
<td>2013-10-16 14:49:56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EPPS 7V81 Special Topics in Social Science Research Methodology (1-9 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>audit: 30</td>
<td>013681</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013681 2011-08-23 sxh121431</td>
<td></td>
<td>44.0501.00.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: -88.9 m index: -88.9 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps7v88</td>
<td>EPPS 7V88 Workshop in Teaching Effectiveness (1-3 semester credit hours) Workshop will focus on preparing students for positions as teaching assistants, lecturers, and those who expect to teach as a career in the social sciences. Emphasis will be placed on videotaped student presentations and feedback, guest presentations, and student visits to EPPS faculty classes. May be repeated for credit (3 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>epps7v88.4</td>
<td>people soft diff: 014047 2012-08-26 rmb101000</td>
<td>status: approving</td>
<td>2013-10-16 14:50:12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EPPS 7V88 Workshop in Teaching Effectiveness (1-3 semester credit hours) Workshop will focus on preparing students for positions as teaching assistants, lecturers, and those who expect to teach as a career in the social sciences. Emphasis will be placed on videotaped student presentations and feedback, guest presentations, and student visits to EPPS faculty classes. May be repeated for credit (3 semester credit hours maximum). (3-0) R</td>
<td>audit: 30</td>
<td>014047</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014047 2012-08-26 rmb101000</td>
<td></td>
<td>45.0101.00.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: -88.9 m index: -88.9 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>epps8v95</td>
<td>EPPS 8V95 Frontiers of Social Science Research Methods (1-6 semester credit hours) Students working on dissertations or research papers receive feedback and advice on research methods, the discussion of methods in their writing, and presentation of results. Pass/Fail only. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>epps8v95.3</td>
<td>people soft diff: 013585 2011-08-23 sxh121431</td>
<td>status: approving</td>
<td>2014-01-14 15:20:47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EPPS 8V95 Frontiers of Social Science Research Methods (1-6 semester credit hours) Students working on dissertations or research papers receive feedback and advice on research methods, the discussion of methods in their writing, and presentation of results. Pass/Fail only. (3-0) R</td>
<td>audit: 30</td>
<td>013585</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013585 2011-08-23 sxh121431</td>
<td></td>
<td>44.0501.00.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: -88.4 m index: -88.4 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * gisc5310 (r2) gisc5310.2</td>
<td>GISC 5310 (GEOS 5310) Hydrogeology (3 semester credit hours) Introduction to the principles and practice of ground- and surface-water hydrology. Study of the principles of occurrence and geologic controls of groundwater, physical flow and geochemistry of waters. Design and use of procedures for typical hydrologic investigations. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 08:51:38 014284 40.0605.00.02</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>014284 40.0605.00.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: -89.2 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>index: -89.2 m</td>
<td>index: -89.2 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 014284 2013-08-25 rmb101000</td>
<td>matchFail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * gisc5311 (r2) gisc5311.2</td>
<td>GISC 5311 (GEOS 5311) Applied Groundwater Modeling (3 semester credit hours) This course is designed to provide students with hands-on experience using the most commonly-applied groundwater flow and transport models (e.g. modflow/modpath, MT3D/RT3D, GMS). Practical application of the models and design of modeling studies is emphasized; modeling theory and mathematics is de-emphasized. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 08:51:45 014285 40.0605.00.02</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>014285 40.0605.00.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>audit: -89.3 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>index: -89.3 m</td>
<td>index: -89.3 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 014285 2013-08-25 rmb101000</td>
<td>matchFail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>gisc5319 (r2)</td>
<td>gisc5319.2</td>
<td>GISC 5319 (GEOS 5319) Principles of Environmental Health (3 semester credit hours) Introduction to epidemiology and biostatistics. U.S. regulatory agencies. Ethics, risk assessment and public policy. Diseases spread by food and water. Lung diseases associated with particles and fibers. Health significance of exposures to arsenic, cadmium, chromium, lead and mercury compounds and to chemical substances - solvents, PCBs, PBBs, dioxins, and dibenzofurans. Ionizing radiation. Health implications of global warming. (3-0) T</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 014286 2013-08-25 rmb101000

GISC 5319 (GEOS 5319) Principles of Environmental Health (3 semester credit hours) Introduction to epidemiology and biostatistics. U.S. regulatory agencies. Ethics, risk assessment and public policy. Diseases spread by food and water. Lung diseases associated with particles and fibers. Health significance of exposures to arsenic, cadmium, chromium, lead and mercury compounds and to chemical substances - solvents, PCBs, PBBs, dioxins, and dibenzofurans. Ionizing radiation. Health implications of global warming. (3-0) T

| 2014-open | 2014-open | edit * | gisc5322 (r2) | gisc5322.2 | GISC 5322 (GEOS 5322) GPS (Global Positioning System) Satellite Surveying Techniques (3 semester credit hours) The theory and application of satellite positioning utilizing the Global Positioning System Code and phase methodology in field observations, data processing and analysis of Differential GPS, high accuracy static and other rapid measurements, in real time and with post-processing. (3-0) Y | phase: approve | cxj140030 2013-09-30 08:52:55 014289 40.0601.00.02 audit: -89.3 m index: -89.3 m match_fail | ps info detail change process orion |

peoplesoft diff: 014289 2013-08-25 rmb101000

GISC 5322 (GEOS 5322) GPS (Global Positioning System) Satellite Surveying Techniques (3 semester credit hours) The theory and application of satellite positioning utilizing the Global Positioning System Code and phase methodology in field observations, data processing and analysis of Differential GPS, high accuracy static and other rapid measurements, in real time and with post-processing. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc5324 (r2)</td>
<td>GISC 5324 (GEOS 5324) 3D Data Capture and Ground Lidar (3 semester credit hours) The theory and applications of 3D data acquisition in the field for geosciences and non-geosciences studies. The basics and applications of field digital mapping with emphasis on RTK GPS, laser range finder, and terrestrial scanners (ground lidar). 3D digital photorealistic modeling with field photogrammetry and digital cameras. (3-0) T</td>
<td>phase: approve</td>
<td>0140030 2013-09-30 08:53:05 014290 40.0601.00.02 audit: -89.3 m index: -89.3 m match fail</td>
<td>ps info</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gisc5324.3</td>
<td></td>
<td>status: approving</td>
<td>cxj140030 2013-09-30 08:53:05 014290 40.0601.00.02 audit: -89.3 m index: -89.3 m match fail</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2014-open	edit *	gisc5330 (r2)	GISC 5330 (GEOS 5330) Geospatial Applications in Earth Science (3 semester credit hours) Application of geospatial techniques in solving earth science problems. Emphasis will be placed on the use of the Global Positioning System in survey and geodetic applications, airborne and ground-based LiDAR (Light Detection and Ranging), and digital acquisition and analysis techniques. Case histories will be considered and supplemented by hands-on exercises using a broad range of digital acquisition and analysis equipment and tools. (3-0) Y	phase: approve	0140030 2013-09-30 08:53:10 014292 40.0601.00.02 audit: -89.3 m index: -89.3 m match fail	ps info
		gisc5330.2		status: approving	cxj140030 2013-09-30 08:53:10 014292 40.0601.00.02 audit: -89.3 m index: -89.3 m match fail	detail
				audit: 30		change
						process
						orion

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf 56/178
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc5395 (r2) gisc5395.3</td>
<td>GISC 5395 Satellite Geophysics and Applications (3 semester credit hours) This course concerns both the theory and application of observing geophysical fields from space-borne platforms. The observation procedures including orbital mechanics are introduced and signal propagation, errors and uncertainties will be addressed. Concepts of current satellite missions such as radar and laser altimetry, space gravimetry and magnetometry, and synthetic aperture radar will be discussed. Applications of satellite geophysical observations in tectonics, geodynamics, ocean and ice surface monitoring, hydrology, and terrain modeling will be introduced through student projects and presentations. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-30 11:12:42 014293 40.0603.00.02 audit: -88.3 m index: -88.3 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014293 2013-08-25 sxh121431</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>gisc6301 (r5)</td>
<td>GISC 6301 GIS Data Analysis Fundamentals (3 semester credit hours) Statistical techniques are examined with a focus on fundamental geospatial data handling techniques and algorithms as well as applied geospatial data analysis. The underlying concepts of descriptive statistics, data visualization, and exploratory methods; probability theory, study design and sampling theory; statistical inference and simulation experiments; basic correlation and regression analyses; as well as methods of pattern analysis are discussed from a Geoinformation Sciences perspective. A course in statistics (such as EPPS 2302 or EPPS 2303) is strongly recommended. No prior GIS knowledge is required. (3-0) Y</td>
<td>phase: approve</td>
<td>peoplesoft diff: 013342 2013-08-25 rmb101000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>gisc6301.9</td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>vtt017000 2014-01-15 16:08:24 013342 11.0401.00.02 audit: -88.4 m index: -88.4 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6311 (r4)</td>
<td>gisc6311.7</td>
<td>GISC 6311 Statistics for Geospatial Science (3 semester credit hours) The course introduces calculus-based statistical analysis and probability theory, providing background for econometrics and economic modeling of simple stochastic processes. Standard probability distributions are covered, including Bernoulli, binomial, negative binomial, hypergeometric, Poisson, normal, gamma, beta, t and F distributions. Estimation and hypothesis testing are discussed. Introductory asymptotic theory, including the Law(s) of Large Numbers and the Central Limit Theorem, will be covered as well as real-world applications of probability theory as time permits. (2-3) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6317 (r3)</td>
<td>gisc6317.5</td>
<td>GISC 6317 GIS Programming Fundamentals (3 semester credit hours) General introduction to programming language and other techniques for modeling with GIS-related applications. Topics covered include fundamental data structures and algorithms, geospatial data manipulation and processing, and database management. Emphasis is placed on rapid GIS application development with hands-on experience. Students are expected to design and implement a project. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>gisc6325 (r5)</td>
<td>gisc6325.8</td>
<td>GISC 6325 (GEOS 5325) Remote Sensing Fundamentals (3 semester credit hours) Introduction to remote sensing principles, sensor technologies, image processing techniques, and applications. Topics covered include electromagnetic radiation theories, various satellite and airborne remote sensing systems, processing of remote sensing data to solve real world problems. State-of-the-art commercial software is used for class exercises. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>gisc6326 (r5)</td>
<td>gisc6326.6</td>
<td>request to remove this course from catalog GISC 6326 Geovisualization (3 semester credit hours) Examines the theoretical concepts and practical applications of cartographic and geographic visualization. Topics covered in lectures include concepts for geographic data representation, symbolization and map design, and methods for geographic visualization and display. 3D visualization, cartographic animation, and web-based mapping may also be included. Lab sessions explore the implementation of cartographic and geographic visualization with industry standard GIS software. Prerequisite: (GISC 6381 or GEOS 6381) or equivalent knowledge. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>gisc6331 (r1)</td>
<td>gisc6331.4</td>
<td>GISC 6331 (CRIM 6332) GIS Applications in Criminology (3 semester credit hours) Examines spatial distributions of crime, criminals, and criminal justice interventions. Students conduct spatial analysis of point patterns and area-based data in studies of the locations of crime events and rates, offenders, police patrolling practices, judicial districts and community corrections and how they relate to physical and social characteristics of neighborhoods. (3-0) R</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>gisc6334 (r1)</td>
<td>gisc6334.6</td>
<td>GISC 6334 (PPPE 6334) Workshop in Environmental and Health GIS/Policy (3 semester credit hours) Students join a faculty member in a research project on environmental and health policy. Specific topics vary from semester to semester, but special emphasis will be on the applications of statistical and spatial analytic methods (e.g. GIS, spatial econometrics, decision analysis, etc.) to various real-life data in the environmental and health field. Class exercises will be completed using state-of-the-art statistics and GIS software. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisite: EPPS 6313 or EPPS 7313 or GISC 6301 or GISC 6381. (3-0) Y</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6379 (r5) gisc6379.12</td>
<td>GISC 6379 Special Topics in Geographic Information Sciences (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Consult with advisor to determine appropriateness of topic for degree plan. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-12-02 14:11:07 006184 11.0401.00.02 audit: -88.5 m index: -88.5 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GISC 6379 Special Topics in Geographic Information Sciences (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary (9 semester credit hours maximum). Consult with adviser to determine appropriateness of topic for degree plan. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006184 2011-08-23 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>gisc6380 (r4) gisc6380.5</td>
<td>request to remove this course from catalog GISC 6380 Spatial Concepts and Organization (3 semester credit hours) Examines the recurring patterns of physical and human objects on the Earth's surface, the flows of circulations among them, and the spatial concepts and theories which have been advanced to help understand and explain these spatial arrangements. Provides a fundamental understanding of spatial processes, concepts, and theories. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-30 15:00:03 006185 45.0603.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006186 2013-08-25 sxr090100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6381 (r6) gisc6381.7</td>
<td>GISC 6381 (GEOS 6381) Geographic Information Systems Fundamentals (3 semester credit hours) Examines the fundamentals of Geographic Information Systems and their applications. It emphasizes the concepts needed to use GIS effectively for manipulating, querying, analyzing, and visualizing spatial-based data. Lab exercises, which use industry-standard GIS software packages, provide GIS experience to investigate real world problems including social, economic, and environmental issues. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-30 15:03:33 006186 11.0401.00.02 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006186 2013-08-25 sxr090100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * gisc6382 (r6)</td>
<td>GISC 6382 (GEOS 6383) Applied Geographic Information Systems (3 semester credit hours) Further develops hands-on skills with industry-standard GIS software for application in a wide variety of areas including urban infrastructure management, marketing and location analysis, environmental management, geologic and geophysical analysis and the Economic, Political and Policy Sciences. Prerequisite: (GISC 6381 or GEOS 6381) or equivalent with instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>gisc6382.9</td>
<td>peoplesoft diff: 006187 2013-08-25 sxh121431 GISC 6382 (GEOS 6383) Applied Geographic Information Systems (3 semester credit hours) Further develops hands-on skills with industry-standard GIS software for application in a wide variety of areas including urban infrastructure management, marketing and location analysis, environmental management, geologic and geophysical analysis and the Economic, Political and Policy Sciences. Prerequisite: (GISC 6381 or GEOS 6381) or equivalent with instructor consent required. (3-0) Y</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * gisc6383 (r5)</td>
<td>GISC 6383 Geographic Information Systems Management and Implementation (3 semester credit hours) Management strategies for GIS are examined by presenting GIS as an integrated system of people, computer hardware, software, applications and data. Implementation is examined as a systematic process of user needs assessment, system specification, database design, application development, implementation, operation, and maintenance. Includes design of implementation plans as case studies to explore various techniques associated with each step of this process. (3-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>gisc6383.5</td>
<td>peoplesoft diff: 006188 2011-08-23 sxh121431 GISC 6383 Geographic Information Systems Management and Implementation (3 semester credit hours) Management strategies for GIS are examined by presenting GIS as an integrated system of people, computer hardware, software, applications and data. Implementation is examined as a systematic process of user needs assessment, system specification, database design, application development, implementation, operation, and maintenance. Includes design of implementation plans as case studies to explore various techniques associated with each step of this process. (3-0) Y</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6384 (r6) gisc6384.9</td>
<td>GISC 6384 (GEOS 6384) Advanced Geographic Information Systems (3 semester credit hours) Treatment of more advanced GIS topics with real world applications. Topics covered include raster and vector data models, Geodatabase, map algebra, 3-D surface analysis, spatial interpolation and network analysis. Student will be acquainted with state-of-the-art software through hands-on laboratory experiences. Prerequisite: GEOS 6381 or GISC 6381. (3-0) Y</td>
<td>phase:</td>
<td>approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6385 (r6) gisc6385.11</td>
<td>GISC 6385 (GEOS 6385) GIS Theories, Models and Issues (3 semester credit hours) Provides an understanding of the underlying theories, mathematical and geometric tools, and their computational implementations that establish GIS capabilities to handle and analyze georeferenced information. Associated issues (such as uncertainty, spatial analysis and spatial data management) highlighted. Prerequisites: (GEOS 6381 or GISC 6381) and (GEOS 6383 or GISC 6382), or equivalent with instructor consent required. (3-0) Y</td>
<td>phase:</td>
<td>approve</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6387 (r5)</td>
<td>gisc6387.10</td>
<td>GISC 6387 (GEOS 6387) Geospatial Sciences Workshop (3 semester credit hours) Fulfills the research project requirement for one of the Geospatial Science graduate certificate programs, e.g. GIS, remote sensing and geospatial intelligence. Each participant develops a project which should include aspects of geospatial database design, manipulation, and analysis, and cartographic production. Projects may be designed in coordination with a local government, utility, business, or other entity that uses GIS in its operations and research. Note: Students should should take this course with varied research topics if different certificate programs are pursued. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisites: GEOS 6381 or GISC 6381. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

GISC 6387 (GEOS 6387) Geographic Information Systems Geospatial Sciences Workshop (3 semester credit hours) Provides a structured laboratory experience focused on Fulfills the students' substantive area research project requirement for one of interest. the Geospatial Science graduate certificate programs, e.g. GIS, remote sensing and geospatial intelligence. Each participant develops a project which should include aspects of geospatial database design and design, manipulation, spatial and analysis, and cartographic production. Projects may be designed in coordination with a local government, utility, business, or other entity that uses GIS in its operations and research. Note: Students should should take this course with varied research topics if different certificate programs are pursued. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisites: (GISC 6381 or GEOS 6381) and (GISC 6382 6381 or GEOS 6383). GISC 6381. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6388 (r6)</td>
<td>GISC 6388 Advanced GIS Programming (3 semester credit hours) Provides instruction and hands-on experience in specific techniques and languages for developing application systems based on GIS concepts. Students will learn to use current generation programming language to design and implement GIS applications. Class exercises further provide experience to customize and develop advanced GIS tools. Prerequisites: (GISC 6381 or GEOS 6381) and GISC 6317, or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-23 14:30:16 006193 11.0401.00.02 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc6389.15</td>
<td>GISC 6389 Geospatial Information Sciences Master's Research (3 semester credit hours) Requires completion, according to uniform guidelines established by the GIS program, of a GIS Master's Project proposal under the supervision of an advisor identified by the student. Students are also expected to conduct a majority of the research for the GIS Master's Project under the supervision of his/her advisor. Pass/Fail only. May be repeated in the following semester. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-25 12:12:57 006194 11.0401.00.02 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 006193 2013-08-25 sxh121431

peoplesoft diff: 006194 2013-08-25 sxh121431

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * gisc6v01 (r3) gisc6v01.6</td>
<td>GISC 6V01 Independent Study in GIS (1-9 semester credit hours) Provides faculty supervision for a student's individual study of a topic agreed upon by the student and the faculty supervisor. Pass/Fail only. May be repeated for credit. Instructors consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:50:36 013588 11.0401.00.02 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * gisc6v98 (r3) gisc6v98.5</td>
<td>GISC 6V98 Master's Thesis (3-9 semester credit hours) Provides faculty supervision of a student's master's thesis research. May be repeated for credit. GIS Program Head and instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-25 12:14:17 013366 40.0601.00.02 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>
GISC 7310 Advanced GIS Data Analysis (3 semester credit hours) The specification, interpretation and properties of the multiple linear regression model including spatial and aspatial regression diagnostics are examined. A detailed review of the key concepts of matrix algebra, optimization techniques and simulation experiments is given. GIS and GPS data handling procedures are discussed from a regression and linear transformation perspective. Extensions to principal component analysis, ridge regression, weighted regression, logistic and Poisson regression are provided. Practical data analysis for large Geo-referenced data sets are exercised. Prerequisite: GISC 6301 or equivalent. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc7360 (r6)</td>
<td>gisc7360.9</td>
<td>GISC 7360 GIS Pattern Analysis (3 semester credit hours) Examines transformations among geospatial object classes, topological measures, edge effects, univariate and multivariate methods for point pattern analysis, directional data, geo-statistical surface interpolations, and spatial regression models. Underlying models and data generating processes leading to spatial heterogeneity and spatially clustered/dispersed patterns are discussed and simulated. Examples of local and global spatial analyses of crime, disease, real estate or environmental patterns are discussed. Prerequisites: (GEOS 6381 or GISC 6381) and (GISC 6301 or equivalent). (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006195 2013-08-25 sxr090100</td>
</tr>
</tbody>
</table>

GISC 7360 GIS Pattern Analysis (3 semester credit hours) Examines transformations among geospatial object classes, topological measures, edge effects, univariate and multivariate methods for point pattern analysis, directional data, geo-statistical surface interpolations, and spatial regression models. Underlying models and data generating processes leading to spatially clustered spatial heterogeneity and spatially dispersed clustered/dispersed patterns are discussed. Course has particular relevance for discussed and simulated examples of local and global spatial analyses of crime, disease, real estate or environmental patterns. Prerequisites: (GEOS 6381 or GISC 6381) or (ECON 6311 or GISC 6311) and (GISC 6301 or equivalent). (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc7361 (r6)</td>
<td>gisc7361.6</td>
<td>GISC 7361 Spatial Statistics (3 semester credit hours) The application of statistical techniques to the explicit treatment of space (geography) in social science models. Covers indices of spatial autocorrelation, the specification of autoregressive models (Gaussian, Poisson, binomial/logistic), geostatistical modeling, spatial filtering, Bayesian map analysis, random effects in models, and imputation of missing geocoded data. Recommended: GISC 7360. Prerequisite: GISC 7310 or EPPS 7316 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 08:58:32</td>
<td>006196 45.0603.00.01</td>
<td>audit: -89.3 m index: -89.3 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc7363 (r4)</td>
<td>gisc7363.5</td>
<td>GISC 7363 Internet Mapping and Information Processing (3 semester credit hours) Provides a conceptual overview and hands-on experiences in Internet mapping and web-based geospatial information processing with a wide range of state-of-the-art software, including both open-source and commercial packages. Topics covered include cloud computing, client/server configuration, distributed data access and display, web-based user interaction and customization. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-01 09:12:21</td>
<td>006198 11.0401.00.02</td>
<td>audit: -88.7 m index: -88.7 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * gisc7364 (r6) gisc7364.8</td>
<td>GISC 7364 Demographic and Epidemiological Analysis and Modeling (3 semester credit hours) Examines the demographic and epidemiological terminology, key statistical measures, data sources, models, projection methods and analysis techniques of the distribution of population and its characteristics as well as disease, mortality and fertility patterns. The underlying theoretical foundations are examined and extended into the spatial domain to understand the spatio-temporal dynamics of population characteristics and disease patterns. A solid knowledge of population and disease patterns, either on a local or global level, is essential to many disciplines engaged in planning for the public and private service sectors, public health, transportation networks, migration patterns or regional development projects. Prerequisite: GISC 7310 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>2014-01-15 15:49:23</td>
<td>vtt017000</td>
<td>peoplesoft diff: 006199 2011-08-23 sxh121431</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>course</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---</td>
<td>---------</td>
<td>---------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>GISC 7365 (GEOS 5326) Advanced Remote Sensing (3 semester credit hours) Examines advanced remote sensing technologies, data processing techniques and applications. The latest remote sensors are introduced. The class will discuss how remote sensing data can be processed to extract information in support of important urban and environmental decision making. The current generation, industry standard software is used for labs and applications development. Prerequisite: GEOS 5325 or GISC 6325. (3-0) Y</td>
<td>phase: approve status: approving audit: 29</td>
<td>vtt017000 2014-01-22 10:39:00 006200 40.0601.00.02 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gisc7365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gisc7365.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>GISC 7366 (GEOS 5329) Applied Remote Sensing (3 semester credit hours) Focuses on the application of one or more specialized remote sensing techniques to solve specific real world urban and environmental problems. Prerequisite: (GISC 6325 or GEOS 5325) or (GISC 7365 or GEOS 5326). (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>vtt017000 2013-11-01 09:54:17 006201 40.0601.00.02 audit: -88.6 m index: -88.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gisc7366</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gisc7366.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GISC 7365 (GEOS 5326) Advanced Remote Sensing **Digital Image Processing** (3 semester credit hours) *Introduction to Examines advanced remote sensing digital-image technologies, data processing techniques. Topics covered include principles of remote sensing techniques and applications. The latest remote sensors, image visualization and statistics extraction, radiometric and geometric correction, image enhancement, image classification and change detection. Innovative image processing approaches sensors are introduced. The class will also discuss how remote sensing data can be introduced. State-of-the-art commercial image-processing processed to extract information in support of important urban and environmental decision making. The current generation, industry standard software is used for labs and applications development. Prerequisite: GEOS 5325 or GISC 6325. (3-0) Y

GISC 7366 (GEOS 5329) Applied Remote Sensing (3 semester credit hours) Focuses on the application of one or more specialized remote sensing techniques to solve specific real world urban and environmental problems in areas such as urban and suburban landscape, land-use and land-cover, transportation and communication, vegetation and forestry, biodiversity and ecology, water and water-quality control, soils and minerals, geology and geomorphology studies. The current generation, industry standard software is used for labs and applications development. Prerequisite: (GISC 6325 or GEOS 5325) or (GISC 7365 or GEOS 5326). (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * gisc7367 (r7) gisc7367.9</td>
<td>GISC 7367 (GEOS 7327) Remote Sensing Workshop (3 semester credit hours) An independent project is designed and conducted by the student, after instructor approval. The project develops and demonstrates student's competence in using remote sensing techniques in a substantive application to his/her field of interest. Projects may be developed in coordination with a local government, utility, business, or other entity, which uses remote sensing in its operations and research. A formal presentation and a project report are required. Prerequisite: GISC 7365 or GEOS 5326. (3-0) Y</td>
<td>phase: approve</td>
<td>cx140030 2013-09-30 08:59:12 006202 40.0601.00.02 audit: -89.4 m index: -89.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * gisc7387 (r5) gisc7387.10</td>
<td>GISC 7387 GIS Research Design (3 semester credit hours) Examines issues relative to the conduct of effective and valid research in geospatial information sciences and related fields. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-24 12:11:48 006206 40.0601.00.02 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * gisc7389 (r7) gisc7389.10</td>
<td>GISC 7389 GIS PhD Research Project (3 semester credit hours) Requires completion, according to uniform guidelines established by the GIS program, of a GIS Research Project proposal in preparation for its presentation to a committee of at least three GISC faculty. Pass/Fail only. May be repeated in the following semester. Prerequisite: completion of 24 hours of coursework in GIS PhD program. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-01 09:55:01 006207 40.0601.00.02 audit: -88.6 m index: -88.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc8320 (r4)</td>
<td>gisc8320.7</td>
<td>GISC 8320 Geospatial Sciences Seminar (3 semester credit hours) Examines selected topics in spatial analysis or GI Science. May be repeated for credit as topics vary. (3-0) R peoplesoft diff: 006214 2011-08-23 sxh121431 GISC 8320 Geospatial Sciences Seminar in Spatial Analysis (3 semester credit hours) Examines selected topics in spatial analysis or GI Science. May be repeated for credit when as topics differ. vary. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc8v27 (r6)</td>
<td>gisc8v27.7</td>
<td>GISC 8V27 Internship in GIS (1-9 semester credit hours) Provides faculty supervision for a student's internship, which must be related to GIS. Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) S peoplesoft diff: 006209 2012-08-26 sxh121431 GISC 8V27 Internship in GIS (1-9 semester credit hours) Provides faculty supervision for a student's internship, which must be related to GIS. Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc8v29 (r5)</td>
<td>gisc8v29.6</td>
<td>GISC 8V29 Research in GIS (1-9 semester credit hours) Provides faculty supervision of research conducted by a student. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S peoplesoft diff: 006210 2011-08-23 sxr090100 GISC 8V29 Research in GIS (1-9 semester credit hours) Provides faculty supervision of research conducted by a student. Prerequisite: Permission of instructor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>gisc8v99 (r6)</td>
<td>gisc8v99.7</td>
<td>GISC 8V99 Dissertation (1-9 semester credit hours) Provides faculty supervision of a student's dissertation research. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S peoplesoft diff: 006212 2012-08-26 sxh121431 GISC 8V99 Dissertation (1-9 semester credit hours) Provides faculty supervision of a student's dissertation research. Prerequisite: Permission of instructor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>req type course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ipec6v01 (r3) ipec6v01.7</td>
<td>IPEC 6V01 Independent Study (1-6 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-25 12:03:26 013627 45.1001.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013627 2012-08-26 keh120030 IPEC 6V01 Independent Study (1-6 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. This course can only be taken Pass/Fail. Prerequisite: Permission of instructor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ipec6v97 (r3) ipec6v97.6</td>
<td>IPEC 6V97 Internship (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's coursework. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-25 12:03:48 013628 45.1001.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013628 2012-08-26 keh120030 IPEC 6V97 Internship (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's coursework. This course can only be taken Pass/Fail. Prerequisite: Permission of instructor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * pa6300 (r3) pa6300.3</td>
<td>PA 6300 Quality and Productivity Improvement in Government (3 semester credit hours) Examines the implications and challenges of improving public sector quality and productivity. Provides practical methods for improving government productivity and quality efforts. Provides tools for measuring performance and for managing performance. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:25:03 012905 44.0401.00.01 audit: -89.6 m index: -89.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012905 2011-08-23 PA 6300 Quality and Productivity Improvement in Government (3 semester credit hours) Examines the implications and challenges of improving public sector quality and productivity. Provides practical methods for improving government productivity and quality efforts. Provides tools for measuring performance and for managing performance. (3-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6311</td>
<td>(r4)</td>
<td>pa6311.4</td>
<td>PA 6311 Public Management (3 semester credit hours) The application of ideas and techniques of public management and decision-making to examine the various roles of the general manager in public organizations. Utilizes the case method. (3-0) S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012900 2012-08-26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6313</td>
<td>(r4)</td>
<td>pa6313.4</td>
<td>PA 6313 Public Policymaking and Institutions (3 semester credit hours) Surveys the major institutions associated with policymaking, including Congress, the Presidency, the bureaucracy, and interest groups. These institutions are studied by linking them to the decision-making theories of organizations, social choice and incrementalism. (3-0) S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012883 2012-08-26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6314</td>
<td>(r2)</td>
<td>pa6314.3</td>
<td>PA 6314 (SOC 6316) Policy Analysis (3 semester credit hours) This course introduces students to policy analysis, exploring approaches and providing tools to analyze contemporary policy questions at various levels of governance. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014048 2012-08-26</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6315 (r1)</td>
<td>pa6315.3</td>
<td>PA 6315 (SOC 6315) Program Evaluation (3 semester credit hours) Techniques and analytical methods of assessing governmental and nonprofit program and policy success. Emphasis is placed on strategies for impact assessment, measuring efficiency, examining short-term and long-term consequences, identifying both intended and unintended impacts, and the social, political and ethical context of evaluation. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6316 (r3)</td>
<td>pa6316.3</td>
<td>PA 6316 Leadership in Public and Nonprofit Management (3 semester credit hours) This course will examine the major theories and practices of leadership in public and nonprofit organizations. Effective leaders from public and nonprofit organizations will speak to the class about the challenges of leading in complex environments. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6317 (r2)</td>
<td>PA 6317 (PSCI 6317) Intergovernmental/Intersectoral Relations and Management (3 semester credit hours) This course explores the conceptual foundations of federalism that prescribe the relationships among federal and state governments in the U.S. It considers the practice of intergovernmental administration (federal, state, local) and intersectoral management (public, private, nonprofit) including devolution, fiscal federalism, and through a review of current issues in the field. (3-0) Y</td>
<td>phase: approve</td>
<td>cx</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6318 (r3)</td>
<td>PA 6318 Information Systems in Policy Environments (3 semester credit hours) Overview of the technology, role and management of computer-based information systems in policy environments. Provides the managerial foundation for effective decision-making with respect to information technology implementation in public organizations. (3-0) Y</td>
<td>phase: approve</td>
<td>cx</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6319 (r3) pa6319.5</td>
<td>PA 6319 Topics in Public Affairs (3 semester credit hours) Topics may include areas related to environmental policy, health policy, and immigration policy and reform. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6320 (r5) pa6320.5</td>
<td>PA 6320 Organizational Theory (3 semester credit hours) Focuses on bureaucracy and rationality, formal and informal structures, and the role of the environment. Organizational factors such as technology, power, information, and culture, as well as the implications of organizational theory for public policy are examined. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6321 (r3) pa6321.3</td>
<td>PA 6321 Government Financial Management and Budgeting (3 semester credit hours) Management of government finances, including revenue collection and enforcement, cash and debt management, investments, general and special funds, controllership, financial and program audits, purchasing, financial reporting, managerial use of governmental accounting systems, GAO and professional accounting standards. (3-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>reinstate</td>
<td>*</td>
<td>pa6322</td>
<td>PA 6322 Negotiations for Effective Management (3 semester credit hours) Students in this courses will learn about negotiations, principally in the public sector, and will develop and practice skills to become more proficient negotiators and more effective managers. The course will be a combination of learning about negotiations and participating in exercises and simulated negotiations. The exercises and simulations reinforce theories about the role of negotiations in effective management and enable students to develop their own negotiation skills. (3-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pa6322.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit</td>
<td>*</td>
<td>pa6324</td>
<td>PA 6324 Urban Planning (3 semester credit hours) This course examines local issues involving growth and development on the local level of government. Specifically, it examines land use planning, zoning, subdivision regulations, and the processes that are involved with these issues. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pa6324.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>pa6326</td>
<td>(r7)</td>
<td>PA 6326 Decision Tools for Managers (3 semester credit hours) This course introduces students to the variety of analytical and mathematical tools intended to improve management decision-making. Cognitive failures in decision-making and remedies are also explored. Tools range from systems analysis to techniques of management science. Uses available software for management science studies. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-21 16:56:02</td>
<td>peoplesoft diff: 009900 2012-08-26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6326.7</td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>009900 52.0201.00.16 audit: -88.8 m index: -88.8 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove</td>
<td>remove *</td>
<td>pa6327</td>
<td>(r4)</td>
<td>PA 6327 Land Use Law and Ethics (3 semester credit hours) This course covers two key elements of the planning profession: ethics and law as they relate to plan implementation. Community planning actions and decisions can impact the social and economic welfare of people, neighborhoods, cities, and regions in nontrivial ways. Ethics play an important role in guiding the planner, telling us what we should do. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-07 11:00:26</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6327.5</td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>013420 44.0401.00.01 audit: -89.7 m index: -89.7 m</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>pa6328</td>
<td>(r6)</td>
<td>PA 6328 Management Process and Analysis (3 semester credit hours) This course examines rigorous methods for analyzing management processes and decision-making. Focuses on the examination, critique and design of management systems. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:27:01</td>
<td>peoplesoft diff: 009901 2012-08-26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6328.6</td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>009901 52.0201.00.16 audit: -89.2 m index: -89.2 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6330 (r2)</td>
<td>pa6330.2</td>
<td>PA 6330 Basics of Land Development (3 semester credit hours) Land development is the conversion of land from one use to another. This course emphasizes key concepts of land use practices utilized by local governments in the Dallas metroplex. Land use planning includes use for residential, commercial, industrial, as well as recreational, educational, social, and cultural activities. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:27:06 012920 44.0401.00.01 audit: -89.5 m index: -89.5 m match_fail</td>
<td>peoplesoft diff: 012920 2010-08-18</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6334 (r1)</td>
<td>pa6334.2</td>
<td>PA 6334 Ethics, Culture and Public Responsibility (3 semester credit hours) This course provides a general consideration of traditions of ethical thought, the interactions between personal behavior and cultural groups/norms and the implementation of public responsibility. Topics to be considered will include tensions between personal and collective goals, the nature and limits of tolerance, and the role of institutions such as the family, government, business, churches and interest groups. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-07 11:45:22 NOLINK 44.0401.00.01 audit: -89 m index: -89 m match_fail</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6335 (r3)</td>
<td>PA 6335 (SOC 6335) Resource Development for Nonprofit Organizations (3 semester credit hours) This course examines sources of revenue for nonprofit organizations. Specific topics include fundraising, grant writing, and donor dynamics. The course is designed to prepare the student to work effectively as a member of a fundraising team - either as staff or volunteer board member. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-07 11:14:07 009905 44.0401.00.01 audit: -89.7 m index: -89.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6335.4</td>
<td>peoplesofdiff: 009905 2011-08-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PA 6335 (SOC 6335) Resource Development for Nonprofit Organizations (3 semester credit hours) This course examines sources of revenue for nonprofit organizations. Specific topics include fundraising, grant writing, and donor dynamics. The course is designed to prepare the student to work effectively as a member of a fundraising team - either as staff or volunteer board member. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6336 (r4)</td>
<td>PA 6336 Bureaucracy and Public Policy (3 semester credit hours) This course examines federal agencies, which fall under the executive branch of government. The course reviews the roles of federal agencies in the policy-making process; the recruitment and retention of public managers and political appointees; the external and internal forces that shape the missions and operations of bureaucracies and their stakeholders; the creation and development of federal agencies; the sources and myths regarding red-tape; and the efficacy of various bureaucratic reform efforts in the U.S. This course is historical and theoretical, as well as a practical guide for those interested in public management or public service. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:27:19 009906 44.0401.00.01 audit: -89.6 m index: -89.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6336.5</td>
<td>peoplesofdiff: 009906 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PA 6336 Bureaucracy and Public Policy (3 semester credit hours) This course examines federal agencies, which fall under the executive branch of government. The course reviews the roles of federal agencies in the policy-making process; the recruitment and retention of public managers and political appointees; the external and internal forces that shape the missions and operations of bureaucracies and their stakeholders; the creation and development of federal agencies; the sources and myths regarding red-tape; and the efficacy of various bureaucratic reform efforts in the U.S. This course is historical and theoretical, as well as a practical guide for those interested in public management or public service. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>pa6337 (r3)</td>
<td>pa6337.4</td>
<td>request to remove this course from catalog</td>
<td>PA 6337 Capital Budgeting (3 semester credit hours) This course analyzes capital planning and budgeting as central features to economic development, transportation, communication, and to the delivery of other essential services. The course details the steps needed to provide the physical structure of local government, from selecting capital projects to planning how to pay for those projects to structuring and selling debt. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6342 (r4)</td>
<td>pa6342.5</td>
<td>PA 6342 (ECON 6372) Local Economic Development (3 semester credit hours) This class will examine the role of local governments in promoting economic development in the United States, and will analyze the economic development process. Attention will be given to economic theories of local development and practical implications of those theories. Topics include local economic development and poverty, tax incentives, infrastructure credits, firm location decisions and effects of government competition for economic activity. (3-0) S T</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>2014-</td>
<td>open</td>
<td>edit *</td>
<td>pa6344</td>
<td>PA 6344 Local Government Management (3 semester credit hours) This course examines structure of local governments, the roles of key elected and appointed officials, and numerous issues and problems that local government managers and policymakers face. It also presents for discussion and study some of the best management practices that local government managers use in achieving effective and efficient delivery of services. There is a focus on local government management in the Dallas metro area through interaction with elected and appointed officials. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6344.6</td>
<td></td>
<td>peoplesoft diff: 009911 2013-08-25 sxh121431</td>
<td>phase: approve</td>
<td>2013-11-07 11:23:43 009911 44.0401.00.01 audit: -89.7 m index: -89.7 m match_fail</td>
<td>ps info detail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PA 6344 State/Local Local Government Management (3 semester credit hours) This course examines structure of local governments, the roles of key elected and appointed officials, and numerous issues and problems that local government managers and policymakers face. It also presents for discussion and study some of the best management practices that local government managers use in achieving effective and efficient delivery of services. There is a focus on local government management in the Dallas metro area through interaction with elected and appointed officials. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012927 2011-08-23</td>
<td>phase: approve</td>
<td>2013-09-30 14:27:52 012927 44.0401.00.01 audit: -89.4 m index: -89.4 m match_fail</td>
<td>ps info detail</td>
<td></td>
</tr>
<tr>
<td>2014-</td>
<td>open</td>
<td>edit *</td>
<td>pa6345</td>
<td>PA 6345 Human Resources Management (3 semester credit hours) Examines theories, principles, and practices of human resources management in public organizations. Explores implications of social and administrative values as expressed in current human resource policies. (3-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa6345.3</td>
<td></td>
<td>peoplesoft diff: 012927 2011-08-23</td>
<td>phase: approve</td>
<td>2013-09-30 14:27:52 012927 44.0401.00.01 audit: -89.4 m index: -89.4 m match_fail</td>
<td>ps info detail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6348</td>
<td>pa6348</td>
<td>(r2)</td>
<td>PA 6348 Navigating the Government Workplace (3 semester credit hours) The governmental workplace is often a complicated work environment with numerous stakeholders. This practical course explores the challenges that public managers face at all levels of government in having successful careers. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-09-30 14:28:06</td>
<td>cxj140030 012906 44.0401.00.01 audit: -89.3 m index: -89.3 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6349</td>
<td>pa6349</td>
<td>(r1)</td>
<td>PA 6349 Municipal Governance in Seoul, Korea (3 semester credit hours) This course provides a unique opportunity to develop an understanding and appreciation for public policy implementation and management in an international context. Students will engage the policy formulation and change literatures to evaluate Seoul, Korea's municipal government process, procedures, and policy decisions as they pertain to a series of functional policy problems. A field trip to Seoul, Korea is required. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-11-07 11:31:08</td>
<td>vtt017000 44.0401.00.01 audit: -88.9 m index: -88.9 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6351</td>
<td>PA 6351 (CRIM 6351) Introduction to Homeland Security (3 semester credit hours) This course provides a comprehensive overview of the structure of Homeland Security, its origins and developing trends and challenges. Selected material from Congress, Federal Emergency Management Agency, Department of Justice, local, state, and other government and non-government agencies will be studied. Examines both historical and contemporary Homeland Defense and Security issues. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:28:16 013377 44.0401.00.01 audit: -89.2 m index: -89.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pa6351.6</td>
<td></td>
<td>peoplesoft diff: 013377 2013-08-25 rmb101000 PA 6351 (CRIM 6351) Introduction to Homeland Security (3 semester credit hours) This course provides a comprehensive overview of the structure of Homeland Security, its origins and developing trends and challenges. Selected material from Congress, Federal Emergency Management Agency, Department of Justice, local, state, and other government and non-government agencies will be studied. Examines both historical and contemporary Homeland Defense and Security issues. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6353</td>
<td>PA 6353 Emergency Management (3 semester credit hours) This course examines issues related to the management of emergencies including discussion of emergency preparedness, emergency mitigation, and emergency response. The course will also discuss the interplay of local, state, and federal actors in emergency response as well as the role of government, private, and nonprofit organizations in emergency response. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-07 11:47:04 012926 44.0401.00.01 audit: -89.3 m index: -89.3 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pa6353.4</td>
<td></td>
<td>peoplesoft diff: 012926 2011-08-23 PA 6353 Emergency Management (3 semester credit hours) This course examines issues related to the management of emergencies including discussion of emergency preparedness, emergency mitigation, and emergency response. The course will also discuss the interplay of local, state, and federal actors in emergency response as well as the role of government, private, and nonprofit organizations in emergency response. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>pa6354</td>
<td>(r3)</td>
<td>pa6354.4</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PA 6354 Transportation Planning (3 semester credit hours) Transportation planning is the process of making useful information available to decision-makers at the organizational level to better understand the characteristics and constraints of transportation systems. This class explores transportation planning processes, the characteristics of urban travel, as well as management and analytical techniques that deal with the dynamics of urbanization and land use. (3-0) R</td>
<td>status: approving</td>
<td>2013-11-07 14:43:08</td>
<td>012923</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>44.9999.32.01</td>
<td>audit: -88.8 m index: -88.8 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6369</td>
<td>(r2)</td>
<td>pa6369.2</td>
<td>PA 6369 Grant Writing and Management (3 semester credit hours) This course provides the skills and knowledge to seek, solicit, and receive grant awards from foundation and government sources to support public and nonprofit programs and projects. Also covered are the skill sets necessary to manage grants effectively to provide the greatest value to your organization and to the granting agency. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-09-30 14:28:45</td>
<td>013638</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>44.0401.00.01</td>
<td>audit: -89.4 m index: -89.4 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6370</td>
<td>(r2)</td>
<td>pa6370.2</td>
<td>PA 6370 Project and Contract Management (3 semester credit hours) This course examines issues related to the management of large projects with particular attention to the management of contracts and grants to third parties. This course will discuss the justifications for contracting out public work, methods of oversight of contracts, and the steps in planning these large projects. The course will also discuss the implications of project planning for grant writing. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-09-30 14:28:52</td>
<td>012930</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>44.0401.00.01</td>
<td>audit: -89.6 m index: -89.6 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6374 (r5)</td>
<td>pa6374.5</td>
<td>PA 6374 Financial Management for Nonprofit Organizations (3 semester credit hours) This course introduces the basic concepts of third sector financial literacy. Curriculum includes financial planning and budgeting, monitoring of contracts and grants and reporting mechanisms. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:29:00 009913 44.0401.00.01 audit: -89.6 m index: -89.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6380 (r3)</td>
<td>pa6380.4</td>
<td>PA 6380 (SOC 6380) Nonprofit Organizations (3 semester credit hours) This course examines issues related to the rise, scope, development and impact of nonprofit organizations. The course explores both the unique missions of nonprofit organizations and the management challenges posed by this expanding sector of the organizational environment. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:47:23 013385 52.0206.00.16 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa6382 (r3)</td>
<td>pa6382.3</td>
<td>PA 6382 (SOC 6381) Nonprofit Management (3 semester credit hours) This course examines issues, strategies, and techniques related to executive leadership and management in nonprofit organizations. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:29:14 013432 52.0206.00.16 audit: -89.6 m index: -89.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>add_renumber</td>
<td>pa7382</td>
<td>pa6384 (r1)</td>
<td>PA 6384 (SOC 6384) Seminar in Urban Policy (3 semester credit hours) This seminar surveys key urban policy challenges and opportunities faced by U.S. cities. The course will focus on critical analysis of a range of topics including the continuing viability of cities in the context of current economic and demographic dynamics, fiscal stress, governance, economic development, transportation, poverty and race/ethnicity, drugs, homelessness, federal urban policy, and survival strategies for declining cities. (3-0)</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2013-11-08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pa6384.1</td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>10:13:07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td></td>
<td>NOLINK</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>add_renumber</td>
<td>pa7383</td>
<td>pa6386 (r1)</td>
<td>PA 6386 (SOC 6386) Diversity in the Public and Nonprofit Sectors (3 semester credit hours) This course provides the skills and knowledge necessary to manage increasingly diverse workforces in the public and nonprofit sectors. A significant portion of the course will focus on diversity in the workplace, with particular attention given to discrimination, strategies for developing equitable public sector organizations, and the need for cultural competency among public administrators. (3-0)</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2013-11-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pa6386.1</td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>14:52:49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td></td>
<td>NOLINK</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK
<table>
<thead>
<tr>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa6387 (r1)</td>
<td>pa6387.2</td>
<td>PA 6387 Strategic Planning for Nonprofit (3 semester credit hours) This course provides an introduction to the strategic planning process for nonprofit managers or those interested in the practical aspects of nonprofit management. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-07 14:46:59 NOLINK 44.0401.00.01 audit: -89.7 m index: -89.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>pa6388 (r1)</td>
<td>pa6388.4</td>
<td>PA 6388 Readings in Public Affairs (3 semester credit hours) Individual directed reading and writing course in selected topics in public administration and public policy. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-08 11:18:59 NOLINK 44.0401.00.01 audit: -88.6 m index: -88.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>pa6399 (r2)</td>
<td>pa6399.2</td>
<td>PA 6399 Capstone in Public Affairs (3 semester credit hours) The capstone in public affairs is the culminating experience for graduating MPA students. Students integrate knowledge from across the MPA curriculum in a faculty-directed semester-long applied research project. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:29:20 014049 44.0401.00.01 audit: -89.2 m index: -89.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>req type</td>
<td>course req</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_id</td>
<td>start</td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>pa6v01 (r1)</td>
<td>pa6v01.3</td>
<td>PA 6V01 Independent Study (1-6 semester credit hours) Students will work with a faculty member to develop an individualized course of study relevant to public affairs. Pass/Fail only. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>pa6v97 (r1)</td>
<td>pa6v97.3</td>
<td>PA 6V97 Internship (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's coursework. Pass/Fail only. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>pa7305 (r5)</td>
<td>pa7305.5</td>
<td>PA 7305 Leadership and Change in Public and Nonprofit Organizations (3 semester credit hours) Examines the range of contemporary theories of leadership and change in public/ non-profit settings. Examines the set of actions and behaviors requisite for leading contemporary organizations and provides applied tools for enacting change and adapting models of change to varied organizational settings. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>pa7308 (r3)</td>
<td>pa7308.4</td>
<td>request to remove this course from catalog</td>
<td>PA 7308 Social Networks and Intelligence Led Policing (3 semester credit hours) Provides a comprehensive study of concepts and methods for adopting intelligence as a foundation of law enforcement business operations for sound decision-making. Exploiting social networks is a primary means for preventing terrorism and crime. The course explores how intelligence led policing depends on creating strong community social networks to enhance policing of criminal networks. (3-0) R</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7314 (r2)</td>
<td>pa7314.3</td>
<td>PA 7314 Advanced Policy Process, Implementation and Evaluation (3 semester credit hours) This advanced seminar provides in-depth introduction to central theories of the policy process, implementation and evaluation, reviews classic and contemporary literature in the field, and introduces students to key approaches to public policy research. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7317 (r5)</td>
<td>pa7317.9</td>
<td>PA 7317 Microeconomics and Policy Analysis (3 semester credit hours) This course draws on microeconomic theories to understand public policy analysis. Major topics include but are not limited to operation of market systems, market failure, welfare economics, public goods and cost-benefit analysis. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>pa7318 (r4)</td>
<td>pa7318</td>
<td>request to remove this course from catalog PA 7318 Ethics, Culture and Public Responsibility (3 semester credit hours) This course provides a general consideration of traditions of ethical thought, the interactions between personal behavior and cultural groups/norms and the implementation of public responsibility. Topics to be considered will include tensions between personal and collective goals, the nature and limits of tolerance, and the role of institutions such as the family, government, business, churches and interest groups. (3-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>pa7320 (r2)</td>
<td>pa7320</td>
<td>PA 7320 Advanced Human Capital Research and Theory (3 semester credit hours) This advanced seminar reviews the classic and contemporary literature on human resources management and related issues, presents key theories and explores key approaches to human capital research and analysis, and explores contemporary issues of human capital development in the public/nonprofit sectors. (3-0) Y</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove</td>
<td>*</td>
<td>pa7322 (r4)</td>
<td>pa7322</td>
<td>request to remove this course from catalog PA 7322 Negotiations for Effective Management (3 semester credit hours) Students in this course will learn about negotiations, principally in the public sector, and will develop and practice skills to become more proficient negotiators and more effective managers. The course will be a combination of learning about negotiations and participating in exercises and simulated negotiations. The exercises and simulations reinforce theories about the role of negotiations in effective management and enable students to develop their own negotiation skills. (3-0) Y</td>
</tr>
<tr>
<td>start date</td>
<td>end date</td>
<td>req type</td>
<td>course req</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>pa7325</td>
<td>pa7325.5</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PA 7325 Survey of Public Affairs (3 semester credit hours) This class examines current issues and challenges in the field of public affairs, with emphasis on the four fields that comprise the PhD program: leadership, change and conflict resolution; social policy and development; decision-making; and management and organizational analysis. The concept and practice of action research will also be explored within the context of public affairs. Open only to PhD students in Public Affairs. (3-0) Y</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>pa7328</td>
<td>pa7328.4</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PA 7328 Economic Theory for Public Affairs (3 semester credit hours) This course examines concepts and analytical tools of economics and demonstrates how these concepts are used in analyzing public policy problems and designing appropriate responses. Following an exposition of the basic theoretical and analytical concepts in a public policy context, the course examines the role and limitations of economics in public policy making. (3-0) R</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7330</td>
<td>pa7330.5</td>
<td>PA 7330 Research Design in Public Affairs (3 semester credit hours) Includes a variety of applied research techniques aimed at enhancing analysis of intra-organizational and extra-organizational settings. Both qualitative and quantitative techniques will be explored and applied. Techniques range from ethnographic analysis of organizational and social cultures to development of survey research methods for needs assessment, environmental sensing and marketing. Prerequisite: EPPS 6313 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009938 2011-08-23 PA 7330 Research Design in Public Affairs (3 semester credit hours) Includes a variety of applied research techniques aimed at enhancing analysis of intra-organizational and extra-organizational settings. Both qualitative and quantitative techniques will be explored and applied. Techniques range from ethnographic analysis of organizational and social cultures to development of survey research methods for needs assessment, environmental sensing and marketing. Prerequisite: EPPS 6313 or equivalent. (3-0) Y</td>
<td>status: approving</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf 95/178
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>pa7340 (r3)</td>
<td>pa7340.4</td>
<td>request to remove this course from catalog</td>
<td></td>
<td></td>
<td></td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td></td>
<td></td>
<td>PA 7340 (PSCI 7340) Intergovernmental and Intersectoral Relations (3 semester credit hours) This course explores the conceptual foundations of federalism that prescribe the relationships among federal and state governments in the U.S. It considers the practice of intergovernmental administration (federal, state, local) and intersectoral management (public, private, nonprofit) including devolution, fiscal federalism, and through a review of current issues in the field. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7350 (r2)</td>
<td>pa7350.3</td>
<td>PA 7350 Advanced Organizational Theory and Behavior (3 semester credit hours) This advanced seminar provides in-depth examination of key theories of organizational behavior and change, reviews classic and contemporary literature in the field, and introduces students to common approaches to organizational research. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014062 2013-08-25 sxx121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td></td>
<td></td>
<td>PA 7350 Advanced Organizational Theory and Behavior (3 semester credit hours) This advanced seminar provides in-depth examination of key theories of organizational behavior and change, reviews classic and contemporary literature in the field, and introduces students to common approaches to organizational research. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7360 (r2)</td>
<td>pa7360.4</td>
<td>PA 7360 Advanced Fiscal and Budgetary Policy (3 semester credit hours) This advanced seminar reviews central theories of public budgeting and finance, discusses roles of fiscal and political institutions in financial management, and provides a foundation for analyzing government budgets. The course helps students develop skills in reading and critically evaluating published and working papers in public affairs. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014064 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td></td>
<td></td>
<td>PA 7360 Advanced Fiscal and Budgetary Policy (3 semester credit hours) This advanced seminar reviews central theories of public budgeting and finance, reviews essential literature discusses roles of fiscal and political institutions in the field, financial management, and provides a foundation for evaluating and analyzing organizational government budgets. The course helps students develop skills in reading and critically evaluating published and working papers in public affairs. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7375</td>
<td>(r4)</td>
<td>pa7375.4</td>
<td>PA 7375 Nonprofit Organizations: Theory and Practice (3 semester credit hours) This class explores the leading theories of nonprofit organizations. Examines the unique elements of nonprofit organizations and the academic and practical challenges produced by these distinctive elements. Examines how theory is applied to the practice of management in nonprofit organizations. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7376</td>
<td>(r1)</td>
<td>pa7376.2</td>
<td>PA 7376 Presidential Decision Making (3 semester credit hours) This course examines how the presidency of the United States works. It investigates how a president uses his office and the executive branch that he oversees to meet what he believes are the expectations of the nation. Its readings and lectures include examination of the primary historical writing concerning the power of the president; analysis of the limits on this authority and discussion of the Supreme Court cases that have decided in specific cases what those limits are; and exploration of the structural and institutional tools the president has at his disposal to establish and implement national policy. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7381 (r3)</td>
<td>pa7381.6</td>
<td>PA 7381 Special Topics in Public Affairs (3 semester credit hours) Topics are rotated typically among the major fields within the program including but not limited to environmental policy, health policy, and immigration policy and reform. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:43:11 012671 44.0401.00.01 audit: -88.4 m index: -88.4 m</td>
<td>peoplesoft diff: 012671 2011-08-23</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>pa7382 (r2)</td>
<td>pa6384 pa7382.3</td>
<td>request to remove this course from catalog PA 7382 Seminar in Urban Policy (3 semester credit hours) This seminar surveys key urban policy challenges and opportunities faced by U.S. cities. The course will focus on critical analysis of a range of topics including the continuing viability of cities in the context of current economic and demographic dynamics, fiscal stress, governance, economic development, transportation, poverty and race/ethnicity, drugs, homelessness, federal urban policy, and survival strategies for declining cities. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-08 10:13:07 014190 44.0401.00.01 audit: -88.6 m index: -88.6 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>pa7383 (r2)</td>
<td>pa6386 pa7383.3</td>
<td>request to remove this course from catalog PA 7383 Diversity in the Public Sector (3 semester credit hours) This seminar is aimed at providing students with the knowledge and understanding required to meet the challenges presented by our increasingly diverse society. A significant portion of the course will focus on diversity in the workplace, with particular attention given to issues of discrimination, strategies for developing equitable public sector organizations, and the need for cultural competency among public administrators. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-07 14:52:49 014191 44.0401.00.01 audit: -88.9 m index: -88.9 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7384</td>
<td>PA 7384 Readings in Public Affairs (3 semester credit hours) Individual directed reading and writing course in selected topics of public administration and public policy. May be repeated for credit (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>peoplesoft diff: 014244 2013-08-25 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa7384.5</td>
<td></td>
<td>status: approving</td>
<td>2013-11-08</td>
<td>11:18:02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>014244</td>
<td>44.0401.00.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PA 7384 Readings in Public Affairs (3 semester credit hours) Individual directed reading and writing course in selected topics of public administration and public policy. May be repeated for credit (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td></td>
<td>audit: -88.6 m</td>
<td>index: -88.6 m</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa7v62</td>
<td>PA 7V62 Policy Research Workshop in Public Affairs (3-6 semester credit hours) Students join a faculty member in a group research project. MPA or doctoral students may not take more than 3 semester credit hours of their concentration requirement from policy research workshops and PPPE 7V76. May be repeated for credit (12 semester credit hours maximum). Instructor consent required. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>peoplesoft diff: 009923 2014-08-24 ddc130130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa7v62.10</td>
<td></td>
<td>status: approving</td>
<td>2014-01-23</td>
<td>10:59:11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 27</td>
<td>009923</td>
<td>44.0501.00.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PA 7V62 Policy Research Workshop in Public Affairs (3-9 (3-6 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (12 hours maximum). MPA or doctoral students may not take more than 3 semester credit hours of their concentration requirement from policy research workshops and POEC 7376.) ([3-9]-0) PPPE 7V76. May be repeated for credit (12 semester credit hours maximum). Instructor consent required. ([3-9]-0) R</td>
<td></td>
<td>audit: -88.4 m</td>
<td>index: -88.4 m</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa8302 (r2)</td>
<td>pa8302.5</td>
<td>PA 8302 Proseminar in Public Affairs (3 semester credit hours) All first year doctoral students are required to take this workshop in their first year in the program. The course introduces students to a range of skills needed for graduate school and features research presentations by faculty, visiting scholars, and advanced students. Pass/Fail only. Graduate Program Director consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa8330 (r1)</td>
<td>pa8330.5</td>
<td>PA 8330 Archer Center Summer Graduate Seminar (3 semester credit hours) This course competitively selects a group of UT System graduate students to spend an 11-week summer program in Washington, D.C. The course is designed to complement students' experiences at their accompanying six semester credit hour internship placement. The course provides a context for and a familiarity with the dynamics that influence all activity in the government, including meeting officials from the White House, House and Senate, nonprofits, lobbying firms, think tanks, the media, and others. Students return with a participant's understanding of the workings of the remarkable machinery of the federal government. Corequisite: PA 8630 and instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa8340 (r5)</td>
<td>PA 8340 Dissertation Seminar in Public Affairs (3 semester credit hours) Students will explore current issues in public affairs of relevance to their area of concentration. The course will focus on the identification of a specific dissertation research topic and students are expected to develop a formal research proposal. Enrollment is only permitted for students either in their final semester of coursework or who have completed all coursework requirements. Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Graduate Program Director consent required. (3-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa8340.10</td>
<td>peoplesoft diff: 009950 2011-08-23</td>
<td></td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PA 8340 Dissertation Seminar in Public Affairs (3 semester credit hours) Students will explore current issues in public affairs of relevance to their field experiences. The course will focus on the identification of these current issues as sources for a specific dissertation research topic and challenges for ongoing students are expected to develop a formal research proposal. Enrollment is only permitted for students either in public affairs, their final semester of coursework or who have completed all coursework requirements. Pass/Fail only. May be repeated for credit. Prerequisite: Permission of the credit (9 semester credit hours maximum). Graduate Program Director. Director consent required. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req_type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>pa8630 (r1)</td>
<td>pa8630.2</td>
<td>PA 8630 Archer Center Summer Graduate Internship (6 semester credit hours) Students are competitively selected to participate in an 11-week summer program in Washington, D.C. The internship experience provides students with the opportunity not only to view the activity of the government, but to participate in it as well. The internships, which are monitored by the Archer Center, integrate the student into the work of the office or agency, treating the intern like a junior staff member. Students thus participate in and come to understand the nature, the pace, the context, and the intensity of federal government policy making. The internship is complemented by a required 3-semester credit hour, academic course. Corequisites: PA 8330 and instructor consent required. (0-6) Y</td>
<td>phase: approve</td>
<td>2013-11-19 11:12:18</td>
<td>vtt017000</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>pa8v01 (r4)</td>
<td>pa8v01.6</td>
<td>PA 8V01 Independent Study (1-6 semester credit hours) Students will work with a faculty member to develop an individualized course of study relevant to public affairs. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>2013-11-11 09:29:07</td>
<td>vtt017000</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>pa8v97</td>
<td>pa8v97.7</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-11 09:29:40</td>
<td>009948</td>
<td>44.0401.00.01 audit: -88.6 m index: -88.6 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pa8v99</td>
<td>pa8v99.11</td>
<td>PA 8V99 Dissertation (1-9 semester credit hours) Students will conduct original research and write a dissertation on a public affairs topic, under the direction of his or her committee. Pass/Fail only. May be repeated for credit (18 semester credit hours maximum). Prerequisites: EPPS doctoral students only and PA 8340 and supervising professor consent required. ((1-9)-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2014-01-23 11:01:58</td>
<td>009949</td>
<td>44.0401.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>poec6301</td>
<td>poec6301.6</td>
<td>POEC 6301 Political-Economic Theories (3 semester credit hours) A critical analysis of theories of politics and economy. Focuses on such thinkers as Smith, Marx, and Keynes, and on bodies of theory about political and economic systems. Explores the controversies that have shaped the development of political economy and their implications for interdisciplinary policy analysis. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-28 12:11:37</td>
<td>010673</td>
<td>44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poec6312 (r7) ->ppe 6312 poec6312.9</td>
<td>request to remove this course from catalog POEC 6312 (SOC 6312) Social-Economic Theories (3 semester credit hours) A critical analysis of early and modern social and economic theories. Select classical works of Smith, Marx, and Weber are explored, as they pertain to Western capitalist development, along with more contemporary perspectives related to the accumulation and exchange value of human, social and cultural capital. Emphasis is placed on understanding how social relations and social institutions influence economic exchanges. (3-0) Y</td>
<td>phase: approve status: approving audit: 29</td>
<td>vtt017000 2013-10-28 12:12:20 010684 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poec6319 (r5) ->ppe 6319 poec6319.6</td>
<td>request to remove this course from catalog POEC 6319 Political Economy of MNCs (3 semester credit hours) The Political Economy of Multinational Corporations will approach the rise of international firms and their behavior from a social scientific approach, utilizing research in economics, political science, and other disciplines. In addition to the historical rise of international firms, the course covers the economic theory of the firm, MNCs as political actors, the dynamics of foreign direct investment, and the relationship of MNCs to developing countries. The aim of the course is to understand the causes and effects of the behavior of transnational corporations, particularly in regard to economic policy. (3-0) R</td>
<td>phase: approve status: approving audit: 28</td>
<td>vtt017000 2013-10-28 15:40:24 010691 45.0601.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poec6321 (r8) ->ppe 6321 poec6321.10</td>
<td>request to remove this course from catalog POEC 6321 Economics for Public Policy (3 semester credit hours) Introduces students to the use of economic methods of the analysis of public policy. The primary theoretical framework for the course is microeconomics, but the course may include macroeconomics at the discretion of the instructor. A variety of public policy topics are covered including education, employment and the labor market, taxes and redistribution, access to health care, poverty and inequality, and public assistance programs. (3-0) S</td>
<td>phase: approve status: approving audit: 29</td>
<td>vtt017000 2013-10-28 15:40:46 010776 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poem6329 (r2) ->ppe6329 poem6329.3</td>
<td>request to remove this course from catalog POEC 6329 Ethics, Culture, and Public Policy (3 semester credit hours) This course considers the principal schools of ethical thought in the world's major cultural traditions and their implications for law and public policy. Topics to be considered include tensions between personal and collective interests, the conflict between democratic and authoritarian theories and systems of law and government, the relation between morality and law, the way law itself differs in different cultural regions, and the ethical role of institutions such as the family, government, business, religion, and interest groups. (3-0) Y</td>
<td>phase: approve status: approving audit: 28</td>
<td>vtt017000 2013-10-28 15:41:10 014065 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poem6335 (r6) ->ppe6335 poem6335.7</td>
<td>request to remove this course from catalog POEC 6335 (PSCI 6335) Institutions and Development (3 semester credit hours) An overview of leading theories, institutional perspectives, issues and policy debates concerning urban, regional, national and global development. Topics may include economic growth, technology and innovation, shifts in industrial structure, spatially imbalanced change, and their welfare consequences. (3-0) Y</td>
<td>phase: approve status: approving audit: 29</td>
<td>vtt017000 2013-10-28 15:41:39 010705 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poem6347 (r3) ->ppe6347 poem6347.4</td>
<td>request to remove this course from catalog POEC 6347 (PSCI 6347) Proseminar in Political Institutions and American Politics (3 semester credit hours) Surveys the scholarly literature on major institutions associated with policymaking in the United States, including Congress, the Presidency, the bureaucracy, and interest groups. (3-0) Y</td>
<td>phase: approve status: approving audit: 29</td>
<td>vtt017000 2013-10-28 15:41:59 014068 45.1002.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poem6351 (r2) ->ppe6340 poem6351.4</td>
<td>request to remove this course from catalog POEC 6351 (SOC 6340) Domestic Social Policy (3 semester credit hours) Overview of governmental and non-governmental programs, policies, and institutions dealing with those who cannot function self-sufficiently within the American market economy, including low-income families, the elderly, the unemployed, and people with disabilities. Analyzes how social policy in the United States reflects the political economy and culture, as well as social and demographic trends. (3-0) Y</td>
<td>phase: approve status: approving audit: 28</td>
<td>vtt017000 2013-10-28 15:55:29 010790 45.1101.10.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>poec6353</td>
<td>(r6)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 14:36:22 010721 52.0299.30.16 audit: -88.7 m index: -88.7 m</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POEC 6353 (ECON 6362) Industry, Technology, and Science Policy (3 semester credit hours) Focuses on the impact of social, economic, and political factors on industry as critical units of production, and how these interact with technology and science. Topics include availability of skilled labor, research and development in industry, business-university relationships, innovation, and international competitiveness of the U.S. economy. (3-0) Y</td>
<td>status: approving</td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>poec6354</td>
<td>(r5)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-28 15:57:32 010722 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POEC 6354 Theories and Issues of Development (3 semester credit hours) In approaching development, there is an important interaction between theories and issues, each to some extent defining the other. This course will review a number of prominent instances in which we see this interaction - where theory has shaped the way people defined and approached practical problems and also where pressing practical problems have sometimes demanded new theoretical developments. Specific theories and issues discussed vary. Possible theories of interest include arguments for and against slavery, mercantilism, the idea of economic "takeoff," central planning versus pluralism, and the role of democracy and human rights. Issues include labor conditions, urban living conditions, population growth and population quality, environmental pollution and sustainability, and governmental ineffectiveness and corruption. (3-0) Y</td>
<td>status: approving</td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>*</td>
<td>poec6355</td>
<td>(r3)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-28 15:58:07 012673 45.0605.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POEC 6355 Political Economy of the Middle East (3 semester credit hours) Analysis of the interplay of cultures and conflicts in the Middle East. The course will examine ancient cultures, Islam and the Ottoman Empire, the Arab-Israeli conflict, the rise of the Oil Kingdoms, the Kurds, the Gulf wars, and terrorism in the name of Islam. The course will also focus on U.S. relations with a number of Middle Eastern countries such as Saudi Arabia, Iran, Iraq, Egypt, and Israel. (3-0) R</td>
<td>status: approving</td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>req_course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber</td>
<td>poec6357 (r3)</td>
<td>request to remove this course from catalog</td>
<td>POEC 6357 (PSCI 6357) Political Economy of Latin America (3 semester credit hours) Addresses historical and contemporary issues in Latin American political economy. Uses case studies and cross-regional comparisons to assess competing explanations. Analyzes the current political and economic situation facing Latin America in its quest for economic growth and development. The emphasis is to understand the broad patterns of development and change in the region and the physical, historical, social and economic constraints which have affected development, broadly understood. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber</td>
<td>poec6358 (r4)</td>
<td>request to remove this course from catalog</td>
<td>POEC 6358 Political Economy of South and Southeast Asia (3 semester credit hours) Political Economy of South and Southeast Asia. South Asia is the Indian peninsula. Southeast Asia is the great swath of countries from Burma and Thailand through Malaysia to Indonesia and Australia. This is a region of great cultural, political, economic, religious, and historical diversity. This course surveys the political economy of the region by selectively examining key countries and their mutual interactions. The major countries, all of which are rising military and economic powers, are Pakistan, India, Thailand, Indonesia and Australia. Additional countries, which will be included according to interest and available material, include Sri Lanka, Nepal, Bhutan, Bangladesh, Burma, Cambodia, Vietnam, Malaysia, Singapore, Papua New Guinea, East Timor and New Zealand. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber</td>
<td>poec6360 (r8)</td>
<td>request to remove this course from catalog</td>
<td>POEC 6360 (ECON 6352) World Political Economy (3 semester credit hours) An overview of the major economic, social, political and cultural forces that influence the nature of the international economic and political environment, as well as global economic and political relations. Topics include: theories of global political economy; economic and political transformation in Eastern Europe, China and the former Soviet Union; democratization and development in the less developed countries; military and non-military approaches to national and international security; environmentally sustainable economic development; and the international implications of technological failure. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>------------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber *</td>
<td>poec6361 (r4)</td>
<td>->pppe6361 poec6361.5</td>
<td>request to remove this course from catalog POEC 6361 (PSCI 6361) Political Violence and Terrorism (3 semester credit hours) In this discussion-based seminar, we will cover the topics of terrorism, political violence, and civil war. We will examine concepts, causes, and consequences of different types of political violence. Additionally, we will discuss topics relevant to research, including discussions of different approaches (quantitative, qualitative, and formal) and a perusal of different data sources. We will take advantage of literature from multiple disciplines. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber *</td>
<td>poec6362 (r6)</td>
<td>->pppe6362 poec6362.7</td>
<td>request to remove this course from catalog POEC 6362 (PSCI 6362) Political Development (3 semester credit hours) This course will survey different perspectives and theories of political development. Topics covered include the role of the state, democratization, political stability, civil society and environmental concerns, among others. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber *</td>
<td>poec6363 (r4)</td>
<td>->pppe6363 poec6363.5</td>
<td>request to remove this course from catalog POEC 6363 (PSCI 6363) Conflict and Development (3 semester credit hours) This module will explore the nexus between violent intrastate conflict and development. It will examine some of the key conceptual frameworks advanced to understand conflict and will explore specific themes that have occupied researchers and policy practitioners in recent years. In addition to assessing the economic costs of the conflicts, this course will also examine the traditional factors that have been purported to explain the prevalence of insurgency. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber *</td>
<td>poec6364 (r7)</td>
<td>->pppe6364 poec6364.8</td>
<td>request to remove this course from catalog POEC 6364 Development Economics (3 semester credit hours) An overview of theories of national economic growth and development, with emphasis on economy-wide modeling, application of micro-economic theories, and domestic sectoral policy. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-14</td>
<td>remove *</td>
<td>poec6366 (r5)</td>
<td>poec6366.6</td>
<td>request to remove this course from catalog POEC 6366 International Economics (3 semester credit hours) This course focuses on international trade theory and the ongoing process of regional integration in the Americas, with particular emphasis on the North American Free Trade Agreement. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>poec6367 (r4)</td>
<td>POEC 6367 Topical Issues in Conflict and Conflict Resolution (3 semester credit hours) This course will examine in detail three recent international or ethnic conflicts and the national and international efforts to resolve the conflicts and/or mitigate their efforts. The course will examine theories of conflict including ethnic conflict and just war theory. It will examine the historical sources of the conflicts, the regional and international dimensions, the precipitating causes and the intensification of the conflicts. Examples of conflicts that could be used include: the former Yugoslavia, India/Pakistan, Iraq and Kuwait, North Korea, Israel/Palestine and Sudan. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 13-10-09 14:14:59 010734 45.0901.00.01 audit: -89 m index: -89 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>poec6368 (r8)</td>
<td>POEC 6368 Population and Development (3 semester credit hours) Examines the relations among population, resources, economic development, and the environment in light of conflicting Malthusian and anti-Malthusian paradigms. Topics include fertility, mortality, public health, human capital, use of resources, and environmental impacts at local, regional, and global scales. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 13-10-09 14:15:49 010735 45.1101.10.01 audit: -89 m index: -89 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber</td>
<td>* poec6369 (r5)</td>
<td></td>
<td>request to remove this course from catalog POEC 6369 National and International Security Strategies and Policies (3 semester credit hours) With the end of the decades-long Cold War, the US has become the world's only superpower. But the problem of national and international security continue to be a dominant concern of national and international political and economic life, just as it has been for more than sixty years. Many nations continue to maintain high levels of military expenditure as a mainstay of their security policy. Yet, there has been a profound change in the nature of the threats to security since the Cold War. Some, like the threat of intentional full-scale global nuclear war, have receded. Others, like the threat posed by nuclear proliferation and the terrorism of mass destruction, have increased. From acute hot spots to longer-term questions of restructuring power and security arrangements in a post-Cold War world, understanding the deeper issues of national and international security is critical to understanding what lies behind the headlines -- and what strategies are likely to be effective in achieving real security. Topics include: the nature and meaning of security; security and military force; terrorism, accidents and accidental war; nuclear proliferation; the international arms trade; the experience of war; the economics of security policy; social and psychological factors; and strategies for achieving security by nonmilitary means. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 28</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber</td>
<td>* poec6371 (r2)</td>
<td></td>
<td>request to remove this course from catalog POEC 6371 Urban Development (3 semester credit hours) Explores emergence and expansion of social, political and economic forces that drive urbanization, city growth and decline, and spatial patterns of development at global, national and metropolitan scale. Focus is on understanding nature of urban development challenges around the world and on developing public and private sector interventions to address them, including those that target poverty, education, employment, shelter, transportation, land use, economic development, governance and environmental sustainability. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 28</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove_renumber</td>
<td>poec6373 (r2)</td>
<td>request to remove this course from catalog POEC 6373 Issues in Science, Technology and Society (3 semester credit hours) This course explores a number of topics related to the roles of science in society and the relationship between science, technology and society. Topics include epistemological issues having to do with the conduct of scientific research, the role of scientific objectivity and the challenges to scientific objectivity posed by politics and postmodernist influences on the scientific enterprise. The course also explores the impact of technological advances upon society in areas such as biotechnology, information technology and computing, and artificial intelligence, and nanotechnology and robotics, and what kind of policy responses, if any, to these new technologies, are appropriate. The ethical dimensions posed by the increased role of science and technology in the 21st century will be an important theme of the course. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:18:40 014193 45.0101.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove_renumber</td>
<td>poec6377 (r2)</td>
<td>request to remove this course from catalog POEC 6377 Political Economy of Africa (3 semester credit hours) Review of political and economic change in Africa, mainly south of the Sahara, from the late 19th century onward. The course explores interactions between governance mechanisms and economic growth, focusing on influences of colonization, independent authoritarian and democratic rule, and experimentation with socialist and capitalist modes of development. Contemporary themes taken up include poverty reduction, migration and remittances, economic modernization and diversification, conflict, public sector debt, foreign aid, and re-colonization by emerging and other economics. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:19:43 014194 45.1004.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove_renumber</td>
<td>poec6379 (r7)</td>
<td>request to remove this course from catalog POEC 6379 Special Topics in Development Studies (3 semester credit hours) Topics vary from semester to semester. May be repeated (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:20:39 010743 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>request to remove this course from catalog</td>
<td>poec6391 (r2)</td>
<td>POEC 6391 The Political Economy of Technology and Innovation (3 semester credit hours) An exploration of the relationships among technological advances, markets, and societal contexts, drawing on the social sciences (especially economics and sociology), engineering, and management. The economic impacts of both established and emerging technologies on firms and industries (profit and productivity), the macroeconomy, and society (employment and earnings). Special emphasis will be devoted to how advanced technologies transform both the work of - and work in - industries throughout the economy, even as they blur the distinctions among them. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:21:20 014075 45.1004.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>request to remove this course from catalog</td>
<td>poec6392 (r3)</td>
<td>POEC 6392 Practice of International Development (3 semester credit hours) This course focuses on the management of international development processes, including the role of context in development, various conceptualizations of poverty, development actors and institutions, and the challenges of development interventions in difficult environments. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:29:04 014077 45.1004.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>request to remove this course from catalog</td>
<td>poec6v81 (r4)</td>
<td>POEC 6V81 Special Topics in Political Economy (1-9 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:29:33 010670 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber</td>
<td>request to remove this course from catalog</td>
<td>poec6v91 (r5)</td>
<td>POEC 6V91 Evaluation Research (3-6 semester credit hours) Individual or group project in evaluation research performed for a public or private community organization under faculty supervision. Students will normally enroll in this course for two consecutive semesters. The first semester of enrollment will culminate in the completion of a formal evaluation research proposal; the second will end with a final research report based on conclusions of the proposed research. May be repeated (6 semester credit hours total). Prerequisite: Program Coordinator consent required. ([3-6]-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:32:19 010671 45.1101.10.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * poec7306 (r2) poec7306.3</td>
<td>request to remove this course from catalog POEC 7306 Macroeconomic Theory and Policy (3 semester credit hours) Studies various schools of macroeconomic theory, their political and economic implications and the policies that flow from them. Discusses the design and implementation of policies related to inflation, unemployment, business fluctuations and long-term economic growth. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-09 14:20:40 013422 44.0501.00.01 audit: -89.4 m index: -89.4 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poec7319 (r6) ->pppe7319 poec7319.8</td>
<td>request to remove this course from catalog POEC 7319 (ECON 6336) Economics of Education (3 semester credit hours) This seminar examines educational policy issues from an economic perspective. The issues considered include the link between educational achievement and earnings, the role of early childhood, assessments of head start and pre-school programs, the effectiveness of compensatory education and tutoring programs, the achievement gap for poor and minority children, educational production functions, the extent and consequences of school segregation, bilingual education programs, special education programs, international comparisons of student achievement and schools, school finance, and an examination of various school reform proposals. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:33:56 010777 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * poec7320 (r6) poec7320.7</td>
<td>request to remove this course from catalog POEC 7320 (PSCI 7320) International Negotiations (3 semester credit hours) This course examines both the substance and the process of international negotiations. Students study the theory and analysis of negotiations and identify issues, interests and positions of the parties. The course covers the substantive areas of arms control, trade, and environmental negotiations. The course moves from the analysis of simple, bilateral negotiations with only a few issues in contention to complex multilateral negotiations. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-09 14:23:21 010778 45.0901.00.01 audit: -89.6 m index: -89.6 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber * poec7321 (r7) ->pppe6359 poec7321.8</td>
<td>request to remove this course from catalog POEC 7321 Seminar on Business and Government (3 semester credit hours) Examines the interactions between markets and the state from a comparative and public policy perspective. Special emphasis will be placed on issues involving industry regulation/deregulation, antitrust/competition, innovation/industrial policy, infrastructure investment, intellectual property, social regulation, and global trade/investment. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:39:29 010779 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber</td>
<td>*</td>
<td>poec7327</td>
<td>(r9)</td>
<td>request to remove this course from catalog POEC 7327 Innovation Dynamics and Economic Change (3 semester credit hours) Examines the convergence of the information technology and telecom industries. Explores the role of technological innovation together with economic, institutional, and legal-regulatory issues shaping the new IT-Telecom industry within both domestic and geopolitical contexts. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:41:31 010785 11.0901.00.06 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber</td>
<td>*</td>
<td>poec7329</td>
<td>(r4)</td>
<td>request to remove this course from catalog POEC 7329 Special Topics in Industry and Public Policy (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:42:37 010787 44.0401.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber</td>
<td>*</td>
<td>poec7341</td>
<td>(r6)</td>
<td>request to remove this course from catalog POEC 7341 Health Policy (3 semester credit hours) The history and political economy of the U.S. health care system and a review of major governmental programs to expand access to appropriate services, control rising costs, ensure the quality of care, and promote health through prevention. Analysis of current and recent proposals for reform of health care policy. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:45:09 010791 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber</td>
<td>*</td>
<td>poec7359</td>
<td>(r6)</td>
<td>request to remove this course from catalog POEC 7359 Special Topics in Policy Methods (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:48:05 010802 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-14</td>
<td>remove_renumber</td>
<td>*</td>
<td>poec7v26</td>
<td>(r8)</td>
<td>request to remove this course from catalog POEC 7V26 Policy Research Workshop in Institutions and Processes (3-9 semester credit hours) Students join a faculty member in a group research project on the political economy of public policy decisions in the context of institutional settings, such as legislatures, executive or administrative agencies, courts, or metropolitan systems. May be repeated for credit (9 semester credit hours maximum). (3-9-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:48:39 010762 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber *</td>
<td>poec7v47</td>
<td>(r6)</td>
<td>request to remove this course from catalog POEC 7V47 Policy Research Workshop in Health Care Policy (3-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). ([3-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:49:47 010764 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber *</td>
<td>poec7v62</td>
<td>(r9)</td>
<td>request to remove this course from catalog POEC 7V62 Policy Research Workshop in Social Policy (3-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). ([3-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 11:27:53 010765 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber *</td>
<td>poec7v64</td>
<td>(r7)</td>
<td>request to remove this course from catalog POEC 7V64 Policy Research Workshop in Poverty Research and Policy (3-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). ([3-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 11:28:49 010766 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber *</td>
<td>poec7v76</td>
<td>(r2)</td>
<td>request to remove this course from catalog POEC 7V76 Policy Research Workshop in Development Studies (3-9 semester credit hours) Students join a faculty member in a group research project. Topics vary from semester to semester. However, students may substitute an individual Field Research Project for this workshop; the project must be approved by the faculty of the School of Economic, Political and Policy Sciences. May be repeated for credit 9 hours maximum. Prerequisites: POEC 6341 and POEC 6364, and an additional course in the concentration. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 11:30:50 013635 44.0501.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber *</td>
<td>poec7v77</td>
<td>(r2)</td>
<td>request to remove this course from catalog POEC 7V77 Research Workshop in Science and Technology Policy (1-6 semester credit hours) This workshop will provide the student with an opportunity to pursue individual and small group research under the supervision of the instructor into various policy-related dimensions of contemporary scientific research and technological advances such as biotechnology, nanotechnology, artificial intelligence and other contemporary advances, and the impact of scientific and technological advances on culture, economy and political institutions. Prerequisite: Instructor consent required. May be repeated (6 semester credit hours maximum). ([1-6]-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 11:33:18 014245 44.0401.00.01 audit: -88.7 m index: -88.7 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>poec8398 (r6)</td>
<td>-</td>
<td>POEC 8398 Dissertation Seminar (3 semester credit hours) A seminar for students preparing proposals or writing dissertations. Prerequisite: Successful completion of qualifying examination or instructor consent. May be repeated for credit. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>poec8v01 (r6)</td>
<td>-</td>
<td>POEC 8V01 Independent Study (1-9 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Prerequisite: Instructor consent required. May be repeated for credit. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>poec8v01.9 (r5)</td>
<td>-</td>
<td>POEC 8V01 Internship (1-9 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's coursework. Prerequisite: Instructor consent required. May be repeated for credit. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>poec8v01.9 (r6)</td>
<td>-</td>
<td>POEC 8V01 Independent Study (1-9 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Prerequisite: Instructor consent required. May be repeated for credit. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6301 (r1)</td>
<td>-</td>
<td>PPPE 6301 Political-Economic Theories (3 semester credit hours) A critical analysis of theories of politics and economy. Focuses on such thinkers as Smith, Marx, and Keynes, and on bodies of theory about political and economic systems. Explores the controversies that have shaped the development of political economy and their implications for interdisciplinary policy analysis. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

PPPE 6301 Political-Economic Theories (3 semester credit hours) A critical analysis of theories of politics and economy. Focuses on such thinkers as Smith, Marx, and Keynes, and on bodies of theory about political and economic systems. Explores the controversies that have shaped the development of political economy and their implications for interdisciplinary policy analysis. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6310 (r1)</td>
<td>pppe6310.2</td>
<td>PPPE 6310 Research Design I (3 semester credit hours) This course is the first in a two-course sequence devoted to the research enterprise and the study of data development strategies and techniques to facilitate effective statistical analysis. Topics generally covered include: (1) issues and techniques in social science research with emphasis on philosophy of sciences, theory testing, and hypothesis formulation; (2) measurement and data collection strategies, reliability and validity of measures and results, sampling, surveys; and (3) examination of qualitative versus quantitative research techniques, working with observational data, field research issues, and triangulation. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-12-02 14:17:55</td>
<td>NOLINK</td>
<td>44.0501.00.01 audit: -88.5 m index: -88.5 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6312 (r1)</td>
<td>pppe6312.3</td>
<td>PPPE 6312 (SOC 6312) Social-Economic Theories (3 semester credit hours) A critical analysis of early and modern social and economic theories. Select classical works of Smith, Marx, and Weber are explored, as they pertain to Western capitalist development, along with more contemporary perspectives related to the accumulation and exchange value of human, social and cultural capital. Emphasis is placed on understanding how social relations and social institutions influence economic exchanges. (3-0) T</td>
<td>phase: approve</td>
<td>2013-11-06 14:00:37</td>
<td>NOLINK</td>
<td>44.0501.00.01 audit: -89.7 m index: -89.7 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6319 (r1)</td>
<td>pppe6319.2</td>
<td>PPPE 6319 Political Economy of MNCs (3 semester credit hours) The Political Economy of Multinational Corporations will approach the rise of international firms and their behavior from a social scientific approach, utilizing research in economics, political science, and other disciplines. In addition to the historical rise of international firms, the course covers the economic theory of the firm, MNCs as political actors, the dynamics of foreign direct investment, and the relationship of MNCs to developing countries. The aim of the course is to understand the causes and effects of the behavior of transnational corporations, particularly in regard to economic policy. (3-0) R</td>
<td>phase: approve</td>
<td>2013-10-30 11:13:57</td>
<td>NOLINK</td>
<td>45.0601.00.01</td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | pppe6321 (r1) | pppe6321.2 | PPPE 6321 Economics for Public Policy (3 semester credit hours) Introduces students to the use of economic methods of the analysis of public policy. The primary theoretical framework for the course is microeconomics, but the course may include macroeconomics at the discretion of the instructor. A variety of public policy topics are covered including education, employment and the labor market, taxes and redistribution, access to health care, poverty and inequality, and public assistance programs. (3-0) S | phase: approve | 2013-10-30 11:14:09 | NOLINK | 44.0501.00.01 | audit: -88.7 m | index: -88.7 m | match_fail | peoplesoft diff: NOLINK |</p>
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * pppe6329 (r1)</td>
<td>PPPE 6329 Ethics, Culture, and Public Policy (3 semester credit hours) This course considers the principal schools of ethical thought in the world's major cultural traditions and their implications for law and public policy. Topics to be considered include tensions between personal and collective interests, the conflict between democratic and authoritarian theories and systems of law and government, the relation between morality and law, the way law itself differs in different cultural regions, and the ethical role of institutions such as the family, government, business, religion, and interest groups. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-07 11:44:56 NOLINK 44.0501.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>pppe6329.4</td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving audit: 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PPPE 6329 Ethics, Culture, and Public Policy (3 semester credit hours) This course considers the principal schools of ethical thought in the world's major cultural traditions and their implications for law and public policy. Topics to be considered include tensions between personal and collective interests, the conflict between democratic and authoritarian theories and systems of law and government, the relation between morality and law, the way law itself differs in different cultural regions, and the ethical role of institutions such as the family, government, business, religion, and interest groups. (3-0) Y

peoplesoft diff: NOLINK
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6334 (r1) pppe6334.6</td>
<td>PPPE 6334 (GISC 6334) Workshop in Environmental and Health GIS/Policy (3 semester credit hours) Students join a faculty member in a research project on environmental and health policy. Specific topics vary from semester to semester, but special emphasis will be on the applications of statistical and spatial analytic methods (e.g. GIS, spatial econometrics, decision analysis, etc.) to various real-life data in the environmental and health field. Class exercises will be completed using state-of-the-art statistics and GIS software. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisite: EPPS 6313 or EPPS 7313 or GISC 6301 or GISC 6381. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 8</td>
<td>vtt017000 2014-01-23 14:37:22 NOLINK 44.0501.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6335 (r1) pppe6335.2</td>
<td>PPPE 6335 (PSCI 6335) Institutions and Development (3 semester credit hours) An overview of leading theories, institutional perspectives, issues and policy debates concerning urban, regional, national and global development. Topics may include economic growth, technology and innovation, shifts in industrial structure, spatially imbalanced change, and their welfare consequences. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 8</td>
<td>vtt017000 2013-10-30 11:14:36 NOLINK 44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

PPPE 6334 (GISC 6334) Workshop in Environmental and Health GIS/Policy (3 semester credit hours) Students join a faculty member in a research project on environmental and health policy. Specific topics vary from semester to semester, but special emphasis will be on the applications of statistical and spatial analytic methods (e.g. GIS, spatial econometrics, decision analysis, etc.) to various real-life data in the environmental and health field. Class exercises will be completed using state-of-the-art statistics and GIS software. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisite: EPPS 6313 or EPPS 7313 or GISC 6301 or GISC 6381. (3-0) Y

PPPE 6335 (PSCI 6335) Institutions and Development (3 semester credit hours) An overview of leading theories, institutional perspectives, issues and policy debates concerning urban, regional, national and global development. Topics may include economic growth, technology and innovation, shifts in industrial structure, spatially imbalanced change, and their welfare consequences. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6340 (r1)</td>
<td>pppe6340.2</td>
<td>PPPE 6340 (SOC 6340) Domestic Social Policy
3 semester credit hours Overview of governmental and non-governmental programs, policies, and institutions dealing with those who cannot function self-sufficiently within the American market economy, including low-income families, the elderly, the unemployed, and people with disabilities. Analyzes how social policy in the United States reflects the political economy and culture, as well as social and demographic trends. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-30 11:14:48</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>audit: 8</td>
<td>45.1101.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6341 (r1)</td>
<td>pppe6341.3</td>
<td>PPPE 6341 (SOC 6357) Health Policy
3 semester credit hours The history and political economy of the U.S. health care system and a review of major governmental programs to expand access to appropriate services, control rising costs, ensure the quality of care, and promote health through prevention. Analysis of current and recent proposals for reform of health care policy. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:46:32</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>audit: 9</td>
<td>44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6342 (r1)</td>
<td>PPPE 6342 Research Design II (3 semester credit hours) This course is the second in a two-course sequence devoted to the study of data development strategies and techniques to facilitate effective statistical analysis. Topics generally covered include: the logic of causal inquiry and inference in the social sciences, the elaboration paradigm and model specification, anticipating and handling threats to internal validity, hierarchies of design structure (experimental, quasi-experimental and non-experimental); linking design structure to effect estimation strategies and analyzing design elements in published literature. Students will be required to select a research topic in consultation with the instructor and prepare a written comparative design analysis. PPPE 6310 and (EPPS 6313 or EPPS 7313) are recommended. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-12-02 14:24:37 NOLINK 44.0501.00.01 audit: -88.5 m index: -88.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe6342.2</td>
<td>NOLINK PPPE 6342 Research Design II (3 semester credit hours) This course is the second in a two-course sequence devoted to the study of data development strategies and techniques to facilitate effective statistical analysis. Topics generally covered include: the logic of causal inquiry and inference in the social sciences, the elaboration paradigm and model specification, anticipating and handling threats to internal validity, hierarchies of design structure (experimental, quasi-experimental and non-experimental); linking design structure to effect estimation strategies and analyzing design elements in published literature. Students will be required to select a research topic in consultation with the instructor and prepare a written comparative design analysis. PPPE 6310 and (EPPS 6313 or EPPS 7313) are recommended. Instructor consent required. (3-0) Y</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6343 (r1)</td>
<td>pppe6343.2</td>
<td>PPPE 6343 Global Health Policy (3 semester credit hours) This introductory but interdisciplinary course examines contemporary issues in global health policy and practices. This course helps students understand various social, economic, political and environmental determinants of health and considers evidence that inequalities in education, income and accessibility to resources influence health status. Students will develop skills in cost-effectiveness analysis, health outcome measurement and spatial analysis, using a variety of contemporary global health case studies that focus on content areas such as maternal and child health, environmental health, infectious diseases (HIV/AIDS, malaria, diarrheal diseases, etc.) and global healthcare delivery. Emphasis is placed on issues of global health inequality at various levels, exploring the nature and extent of global inequalities in health and the possible policy responses to reducing global health disparities. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 9</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>pppe6347 (r1) pppe6347.2</td>
<td>PPPE 6347 (PSCI 6347) Proseminar in Political Institutions and American Politics (3 semester credit hours) Surveys the scholarly literature on major institutions associated with policymaking in the United States, including Congress, the Presidency, the bureaucracy, and interest groups. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-30 11:15:04 NOLINK 45.1002.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>audit: 8</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>pppe6350 (r1) pppe6350.4</td>
<td>PPPE 6350 (SOC 6350) Social Stratification (3 semester credit hours) This seminar will examine the major theories and lines of research on social stratification, defined as the hierarchical ranking of groups based on the unequal distribution of societal resources and positions. Focusing primarily on the U.S. class system, topics covered include: class reproduction and mobility, the educational system and policy, empirical definitions, the implications of race and gender for social class, and forms of legitimation. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-17 10:37:48 NOLINK 44.0501.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>audit: 9</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6352 (r1)</td>
<td>pppe6352.3</td>
<td>PPPE 6352 (ECON 6352) World Political Economy (3 semester credit hours) An overview of the major economic, social, political and cultural forces that influence the nature of the international economic and political environment, as well as global economic and political relations. Topics include: theories of global political economy; economic and political transformation in Eastern Europe, China and the former Soviet Union; democratization and development in the less developed countries; military and non-military approaches to national and international security; environmentally sustainable economic development; and the international implications of technological failure. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2014-01-15 15:36:22</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6353 (r1)</td>
<td>pppe6353.2</td>
<td>PPPE 6353 (ECON 6362) Industry, Technology, and Science Policy (3 semester credit hours) Focuses on the impact of social, economic, and political factors on industry as critical units of production, and how these interact with technology and science. Topics include availability of skilled labor, research and development in industry, business-university relationships, innovation, and international competitiveness of the U.S. economy. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2013-10-30 11:15:43</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6354</td>
<td>pppe6354.2</td>
<td>PPPE 6354 Theories and Issues of Development (3 semester credit hours) In approaching development, there is an important interaction between theories and issues, each to some extent defining the other. This course will review a number of prominent instances in which we see this interaction - where theory has shaped the way people defined and approached practical problems and also where pressing practical problems have sometimes demanded new theoretical developments. Specific theories and issues discussed vary. Possible theories of interest include arguments for and against slavery, mercantilism, the idea of economic "takeoff," central planning versus pluralism, and the role of democracy and human rights. Issues include labor conditions, urban living conditions, population growth and population quality, environmental pollution and sustainability, and governmental ineffectiveness and corruption. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

PPPE 6354 Theories and Issues of Development (3 semester credit hours) In approaching development, there is an important interaction between theories and issues, each to some extent defining the other. This course will review a number of prominent instances in which we see this interaction - where theory has shaped the way people defined and approached practical problems and also where pressing practical problems have sometimes demanded new theoretical developments. Specific theories and issues discussed vary. Possible theories of interest include arguments for and against slavery, mercantilism, the idea of economic "takeoff," central planning versus pluralism, and the role of democracy and human rights. Issues include labor conditions, urban living conditions, population growth and population quality, environmental pollution and sustainability, and governmental ineffectiveness and corruption. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>pppe6355</td>
<td>edit *</td>
<td>pppe6355 (r1)</td>
<td>pppe6355.3</td>
<td>PPPE 6355 Political Economy of the Middle East (3 semester credit hours) Analysis of the interplay of cultures and conflicts in the Middle East. The course will examine ancient cultures, Islam and the Ottoman Empire, the Arab-Israeli conflict, the rise of the Oil Kingdoms, the Kurds, the Gulf wars, and terrorism in the name of Islam. The course will also focus on U.S. relations with a number of Middle Eastern countries such as Saudi Arabia, Iran, Iraq, Egypt, and Israel. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | | | Phase: approve
| | | | | | Status: approving
| | | | | | Audit: 9
| | | | | | VTT017000 2014-01-15 15:35:27
| | | | | | NOLINK 44.0504.00.01
| | | | | | Audit: -88.4 m
| | | | | | Index: -88.4 m
| | | | | | Match Fail
| | | | | | PeopleSoft Diff: NOLINK

| 2014-open | pppe6356 | edit * | pppe6356 (r1) | pppe6356.2 | PPPE 6356 (SOC 6356) Health and Illness (3 semester credit hours) A review of medical sociology and related fields, including social epidemiology and the social demography of health and illness; health and illness behavior; health institutions and professions; economic factors and trends in health care; and health policies and programs. (3-0) R |
| | | | | | Phase: approve
| | | | | | Status: approving
| | | | | | Audit: 9
| | | | | | VTT017000 2013-10-28 16:09:38
| | | | | | NOLINK 44.0501.00.01
| | | | | | Audit: -88.8 m
| | | | | | Index: -88.8 m
| | | | | | Match Fail
| | | | | | PeopleSoft Diff: NOLINK

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6357 (r1)</td>
<td>pppe6357.3</td>
<td>PPPE 6357 (PSCI 6357) Political Economy of Latin America (3 semester credit hours) Addresses historical and contemporary issues in Latin American political economy. Uses case studies and cross-regional comparisons to assess competing explanations. Analyzes the current political and economic situation facing Latin America in its quest for economic growth and development. The emphasis is to understand the broad patterns of development and change in the region and the physical, historical, social and economic constraints which have affected development, broadly understood. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:34:48 NOLINK 44.0504.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

PPPE 6357 (PSCI 6357) Political Economy of Latin America (3 semester credit hours) Addresses historical and contemporary issues in Latin American political economy. Uses case studies and cross-regional comparisons to assess competing explanations. Analyzes the current political and economic situation facing Latin America in its quest for economic growth and development. The emphasis is to understand the broad patterns of development and change in the region and the physical, historical, social and economic constraints which have affected development, broadly understood. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6358</td>
<td>r1</td>
<td>pppe6358.3</td>
<td>PPPE 6358 Political Economy of South and Southeast Asia (3 semester credit hours) Political Economy of South and Southeast Asia. South Asia is the Indian peninsula. Southeast Asia is the great swath of countries from Burma and Thailand through Malaysia to Indonesia and Australia. This is a region of great cultural, political, economic, religious, and historical diversity. This course surveys the political economy of the region by selectively examining key countries and their mutual interactions. The major countries, all of which are rising military and economic powers, are Pakistan, India, Thailand, Indonesia, and Australia. Additional countries, which will be included according to interest and available material, include Sri Lanka, Nepal, Bhutan, Bangladesh, Burma, Cambodia, Vietnam, Malaysia, Singapore, Papua New Guinea, East Timor, and New Zealand. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PPPE 6358 Political Economy of South and Southeast Asia (3 semester credit hours) Political Economy of South and Southeast Asia. South Asia is the Indian peninsula. Southeast Asia is the great swath of countries from Burma and Thailand through Malaysia to Indonesia and Australia. This is a region of great cultural, political, economic, religious, and historical diversity. This course surveys the political economy of the region by selectively examining key countries and their mutual interactions. The major countries, all of which are rising military and economic powers, are Pakistan, India, Thailand, Indonesia, and Australia. Additional countries, which will be included according to interest and available material, include Sri Lanka, Nepal, Bhutan, Bangladesh, Burma, Cambodia, Vietnam, Malaysia, Singapore, Papua New Guinea, East Timor, and New Zealand. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6359 (r1)</td>
<td>pppe6359.2</td>
<td>PPPE 6359 Political Economy of Economic Development (3 semester credit hours) Examines the interactions between markets and the state from a comparative and public policy perspective. Special emphasis will be placed on issues involving industry regulation/deregulation, antitrust/competition, innovation/industrial policy, infrastructure investment, intellectual property, social regulation, and global trade/investment. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2013-10-30 11:17:48</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6361 (r1)</td>
<td>pppe6361.2</td>
<td>PPPE 6361 (PSCI 6361) Political Violence and Terrorism (3 semester credit hours) In this discussion-based seminar, we will cover the topics of terrorism, political violence, and civil war. We will examine concepts, causes, and consequences of different types of political violence. Additionally, we will discuss topics relevant to research, including discussions of different approaches (quantitative, qualitative, and formal) and a perusal of different data sources. We will take advantage of literature from multiple disciplines. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2013-10-30 11:18:03</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * poec6362 pppe6362 (r1) pppe6362.3</td>
<td>PPPE 6362 (PSCI 6362) Political Development (3 semester credit hours) This course will survey different perspectives and theories of political development. Topics covered include the role of the state, democratization, political stability, civil society and environmental concerns, among others. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-23 11:04:20</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber * poec6363 pppe6363 (r1) pppe6363.1</td>
<td>PPPE 6363 (PSCI 6363) Conflict and Development (3 semester credit hours) This module will explore the nexus between violent intrastate conflict and development. It will examine some of the key conceptual frameworks advanced to understand conflict and will explore specific themes that have occupied researchers and policy practitioners in recent years. In addition to assessing the economic costs of the conflicts, this course will also examine the traditional factors that have been purported to explain the prevalence of insurgency. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:05:01</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>pppe6364 (r1)</td>
<td>pppe6364.3</td>
<td>PPPE 6364 (ECON 6351) Development Economics (3 semester credit hours) An overview of theories of national economic growth and development in the context of developing countries. This includes macroeconomic models; the role of financial development, trade, and agriculture; domestic sectoral policy; human resource development; the environment; and poverty. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2014-01-16 09:35:44</td>
<td>NOLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td></td>
<td>44.0501.00.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td>match_fail</td>
<td>index: -88.4 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber *</td>
<td>poec7327</td>
<td>pppe6365 (r1)</td>
<td>pppe6365.1</td>
<td>PPPE 6365 The Innovation Economy (3 semester credit hours) Examines the convergence of the information technology and telecom industries. Explores the role of technological innovation together with economic, institutional, and legal-regulatory issues shaping the new IT-Telecom industry within both domestic and geopolitical contexts. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2013-10-29 10:41:31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td></td>
<td>44.0501.00.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td>match_fail</td>
<td>index: -88.7 m</td>
</tr>
</tbody>
</table>
PPPE 6366 Law and Development (3 semester credit hours) Scholars, politicians, administrators, and the educated public in general increasingly recognize that long-term societal development must come from within a country or region. It must be "organic." Organic growth, in turn, depends on establishing an effective, responsible government, rule of law, and effective economic regulation. Moreover, this legal regime cannot be merely national; it must be international. This course reviews the experiences that lie behind this realization, the issues and organizations it involves, and the steps being taken to implement it all international and national levels. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>pppe6367 (r1)</td>
<td>PPPE 6367 Environmental Economics and Policy (3 semester credit hours) The purpose of this course is to identify various local and global environmental problems and to utilize the major analytical tools to address complex environmental management issues, particularly their impact on human health. Emphasis is placed on the use of economic tools for modeling environmental problems and their policy and management solutions. Students will be exposed to principles of microeconomic fundamentals (market models, benefit-cost analysis, etc.) and the major concepts of public goods and externality theory, which are applied to a variety of traditional and contemporary cases of environmental management and policy. Students will review and discuss scholarly research articles in the area of six major environmental research topics, such as (1) indoor air quality management, (2) outdoor air quality management, (3) water quality management, (4) hazardous solid waste management, (5) pesticides and toxic chemical management, and (6) climate change and global sustainable development. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2013-10-29 14:35:14</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

PPPE 6367 Environmental Economics and Policy (3 semester credit hours) The purpose of this course is to identify various local and global environmental problems and to utilize the major analytical tools to address complex environmental management issues, particularly their impact on human health. Emphasis is placed on the use of economic tools for modeling environmental problems and their policy and management solutions. Students will be exposed to principles of microeconomic fundamentals (market models, benefit-cost analysis, etc.) and the major concepts of public goods and externality theory, which are applied to a variety of traditional and contemporary cases of environmental management and policy. Students will review and discuss scholarly research articles in the area of six major environmental research topics, such as (1) indoor air quality management, (2) outdoor air quality management, (3) water quality management, (4) hazardous solid waste management, (5) pesticides and toxic chemical management, and (6) climate change and global sustainable development. (3-0) T
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * pppe6368 (r1) pppe6368.2</td>
<td>PPPE 6368 Political Economy of Finance (3 semester credit hours) This course analyzes the interplay between politics and finance through the lens of political-economic analysis. This class will explore the political economy of finance both within the domestic context as well as on the international level. With respect to the former, the course will explore how politics affects mortgage markets, pension systems, privatizations and financial regulation. On the international level, this course will analyze the politics of financial crises, currency unions, banking systems and exchange rates. The aim of the course is to understand how politics affects finance as well as how finance shapes politics. (3-0) T</td>
<td>phase: approve status: approving audit: 9</td>
<td>vtt017000 2013-10-29 14:47:04 NOLINK 44.0501.00.01 audit: -88.8 m index: -88.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 2014-open | | add_renumber * poec6369 pppe6369 (r1) pppe6369.1 | PPPE 6369 National and International Security Strategies and Policies (3 semester credit hours) With the end of the decades-long Cold War, the US has become the world's only superpower. But the problem of national and international security continue to be a dominant concern of national and international political and economic life, just as it has been for more than sixty years. Many nations continue to maintain high levels of military expenditure as a mainstay of their security policy. Yet, there has been a profound change in the nature of the threats to security since the Cold War. Some, like the threat of intentional full-scale global nuclear war, have receded. Others, like the threat posed by nuclear proliferation and the terrorism of mass destruction, have increased. From acute hot spots to longer-term questions of restructuring power and security arrangements in a post-Cold War world, understanding the deeper issues of national and international security is critical to understanding what lies behind the headlines -- and what strategies are likely to be effective in achieving real security. Topics include: the nature and meaning of security; security and military force; terrorism, accidents and accidental war; nuclear proliferation; the international arms trade; the experience of war; the economics of security policy; social and psychological factors; and strategies for achieving security by nonmilitary means. (3-0) T | phase: approve | status: approving | audit: 9 | vtt017000 2013-10-29 10:17:04 NOLINK 45.0901.00.01 audit: -88.7 m index: -88.7 m match_fail | ps info
detail
change
process
orion |
international arms trade; the experience of war; the economics of security policy; social and psychological factors; and strategies for achieving security by nonmilitary means. (3-0) T

2014-open edit * pppe6370 (r1) pppe6370.2

PPPE 6370 Political Economy of Natural Resources (3 semester credit hours)
This course will explore the politics of natural resources in both industrialized and developing countries. The course will explore the consequences of new resource development on politics and the economy. Similarly, the course will also explore how politics might shape natural resource discovery and depletion. In addition, the relationships between resources and conflicts will be explored. The course also discusses how renewable resources (water, forests, fisheries) differs in their politics from those of non-renewable ones (oil, gas, minerals) and why the international community has been able to solve some environmental problems but not others. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ppoe6371</td>
<td>pppe6371.2</td>
<td>PPPE 6371 Urban Development (3 semester credit hours) Explores emergence and expansion of social, political and economic forces that drive urbanization, city growth and decline, and spatial patterns of development at global, national and metropolitan scale. Focus is on understanding nature of urban development challenges around the world and on developing public and private sector interventions to address them, including those that target poverty, education, employment, shelter, transportation, land use, economic development, governance and environmental sustainability. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2014-01-23 10:26:59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>NOLINK</td>
<td>44.0501.00.01</td>
</tr>
<tr>
<td>start</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>---</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * pppe6372 (r1) pppe6372.2 | PPPE 6372 Faith, Ideology, and Development (3 semester credit hours) Connections between names or unnamed religions and socioeconomic progress have been subject to considerable speculation, early on by Livy, Tacitus, Aquinas, and Machiavelli, and then by Sombart and Weber. Although assertions about links between faith and development are weaker today, suspicion remains that religion can and does influence growth through a variety of means. This course explores several of these mechanisms, including education, health, social capital formation, wealth accumulation, and public policy influence. (3-0) T | phase: approve
status: approving
audit: 9 | vtt017000
2013-10-30
11:09:44
nOLINK
44.0501.00.01
audit: -88.7 m
index: -88.7 m
mismatch fails | ps info
detail
change
process
orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>edit *</td>
<td>pppe6373</td>
<td>(r1) pppe6373.2</td>
<td>PPPE 6373 Issues in Science, Technology and Society (3 semester credit hours) This course explores a number of topics related to the roles of science in society and the relationship between science, technology and society. Topics include epistemological issues having to do with the conduct of scientific research, the role of scientific objectivity and the challenges to scientific objectivity posed by politics and postmodernist influences on the scientific enterprise. The course also explores the impact of technological advances upon society in areas such as biotechnology, information technology and computing, and artificial intelligence, and nanotechnology and robotics, and what kind of policy responses, if any, to these new technologies, are appropriate. The ethical dimensions posed by the increased role of science and technology in the twenty-first century will be an important theme of the course. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>2013-12-03 15:11:57</td>
</tr>
</tbody>
</table>

PeopleSoft diff: NOLINK

PPPE 6373 Issues in Science, Technology and Society (3 semester credit hours) This course explores a number of topics related to the roles of science in society and the relationship between science, technology and society. Topics include epistemological issues having to do with the conduct of scientific research, the role of scientific objectivity and the challenges to scientific objectivity posed by politics and postmodernist influences on the scientific enterprise. The course also explores the impact of technological advances upon society in areas such as biotechnology, information technology and computing, and artificial intelligence, and nanotechnology and robotics, and what kind of policy responses, if any, to these new technologies, are appropriate. The ethical dimensions posed by the increased role of science and technology in the twenty-first century will be an important theme of the course. (3-0) T
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>pppe6377 (r1)</td>
<td>PPPE 6377 Political Economy of Africa (3 semester credit hours) Review of political and economic change in Africa, mainly south of the Sahara, from the late nineteenth century onward. The course explores interactions between governance mechanisms and economic growth, focusing on influences of colonization, independent authoritarian and democratic rule, and experimentation with socialist and capitalist modes of development. Contemporary themes taken up include poverty reduction, migration and remittances, economic modernization and diversification, conflict, public sector debt, foreign aid, and re-colonization by emerging and other economies. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:33:26</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe6377.3</td>
<td></td>
<td>status: approving</td>
<td>NOLINK 44.0504.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber</td>
<td>pppe6379 (r1)</td>
<td>PPPE 6379 Special Topics in Development Studies (3 semester credit hours) May be repeated as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:20:39</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe6379.1</td>
<td></td>
<td>status: approving</td>
<td>NOLINK 44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

PPPE 6377 Political Economy of Africa (3 semester credit hours) Review of political and economic change in Africa, mainly south of the Sahara, from the late nineteenth century onward. The course explores interactions between governance mechanisms and economic growth, focusing on influences of colonization, independent authoritarian and democratic rule, and experimentation with socialist and capitalist modes of development. Contemporary themes taken up include poverty reduction, migration and remittances, economic modernization and diversification, conflict, public sector debt, foreign aid, and re-colonization by emerging and other economies. (3-0) R

PPPE 6379 Special Topics in Development Studies (3 semester credit hours) May be repeated as topics vary (9 semester credit hours maximum). (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>add_renumber *</td>
<td>poec6391</td>
<td>pppe6391 (r1) pppe6391.1</td>
<td>PPPE 6391 The Political Economy of Technology and Innovation (3 semester credit hours) An exploration of the relationships among technological advances, markets, and societal contexts, drawing on the social sciences (especially economics and sociology), engineering, and management. The economic impacts of both established and emerging technologies on firms and industries (profit and productivity), the macroeconomy, and society (employment and earnings). Special emphasis will be devoted to how advanced technologies transform both the work of - and work in - industries throughout the economy, even as they blur the distinctions among them. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:21:20 NOLINK 44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber *</td>
<td>poec6392</td>
<td>pppe6392 (r1) pppe6392.1</td>
<td>PPPE 6392 Practice of International Development (3 semester credit hours) This course focuses on the management of international development processes, including the role of context in development, various conceptualizations of poverty, development actors and institutions, and the challenges of development interventions in difficult environments. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 10:29:04 NOLINK 44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>Start</td>
<td>Request course</td>
<td>Catalog course description</td>
<td>Request status</td>
<td>Request metadata</td>
<td>Actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * poec6v81 pppe6v81 (r1) pppe6v81.2</td>
<td>PPPE 6V81 Special Topics in Political Economy (1-9 semester credit hours) May be repeated for credit as topics vary. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:31:41 NOLINK 44.0501.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * poec6v91 pppe6v91 (r1) pppe6v91.2</td>
<td>PPPE 6V91 Evaluation Research (3-6 semester credit hours) Individual or group project in evaluation research performed for a public or private community organization under faculty supervision. Students will normally enroll in this course for two consecutive semesters. The first semester of enrollment will culminate in the completion of a formal evaluation research proposal; the second will end with a final research report based on conclusions of the proposed research. Pass/Fail only. May be repeated (6 semester credit hours maximum). Program Coordinator consent required. ([3-6]-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:30:07 NOLINK 44.0501.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0a8f396/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req_type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit</td>
<td>pppe7319</td>
<td>pppe7319.4</td>
<td>PPPE 7319 (ECON 6336) Economics of Education (3 semester credit hours) This seminar examines theoretical and empirical writings relating to educational policy. The issues considered will include the link between educational achievement and earnings, the role of early childhood, assessments of head start and pre-school programs, the effectiveness of compensatory education and tutoring programs, the large and persistent achievement gap between children from minority and low-income families and those from middle-income Asian and white families, a critical examination of educational production functions, the extent and consequences of school segregation, bilingual education programs, special education programs, international comparisons of student achievement and schools, school finance and an examination of various school reform proposals. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>2013-10-29</td>
<td>add_renumber</td>
<td>ppec7329</td>
<td>pppe7329.1</td>
<td>PPPE 7329 Special Topics in Industry and Public Policy (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber *</td>
<td>poec7359</td>
<td>PPPE 7359 Special Topics in Policy Methods (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe7359</td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>2013-10-29 10:48:05 NOLINK</td>
<td>44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe7359.1</td>
<td>PPPE 7359 Special Topics in Policy Methods (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>audit: 8</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe7v26</td>
<td>PPPE 7V26 Policy Research Workshop in Institutions and Processes (3-9 semester credit hours) Students join a faculty member in a group research project on the political economy of public policy decisions in the context of institutional settings, such as legislatures, executive or administrative agencies, courts, or metropolitan systems. May be repeated for credit (9 semester credit hours maximum). ([3-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe7v26.1</td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>2013-10-29 10:48:39 NOLINK</td>
<td>44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe7v47</td>
<td>PPPE 7V47 Policy Research Workshop in Health Care Policy (3-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([3-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pppe7v47.2</td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>2014-01-15 15:29:01 NOLINK</td>
<td>44.0501.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>poec7v62</td>
<td>PPPE 7V62 Policy Research Workshop in Social Policy (3-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([3-9]-0) R</td>
<td></td>
<td>PPPE 7V62 Policy Research Workshop in Social Policy (3-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([3-9]-0) R</td>
<td></td>
<td>vtt017000</td>
<td>2014-01-15 15:22:11</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>poec7v64</td>
<td>PPPE 7V64 Policy Research Workshop in Poverty Research and Policy (3-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([3-9]-0) R</td>
<td></td>
<td>PPPE 7V64 Policy Research Workshop in Poverty Research and Policy (3-9 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. ([3-9]-0) R</td>
<td></td>
<td>vtt017000</td>
<td>2014-01-15 15:21:23</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>poec7v76</td>
<td>PPPE 7V76 Policy Research Workshop in Development Studies (3-9 semester credit hours) Students join a faculty member in a group research project. Topics vary from semester to semester. However, students may substitute an individual Field Research Project for this workshop; the project must be approved by the faculty of the School of Economic, Political and Policy Sciences. May be repeated for credit as topics vary (9 semester credit hours maximum). ([3-9]-0) R</td>
<td></td>
<td>PPPE 7V76 Policy Research Workshop in Development Studies (3-9 semester credit hours) Students join a faculty member in a group research project. Topics vary from semester to semester. However, students may substitute an individual Field Research Project for this workshop; the project must be approved by the faculty of the School of Economic, Political and Policy Sciences. May be repeated for credit as topics vary (9 semester credit hours maximum). ([3-9]-0) R</td>
<td></td>
<td>vtt017000</td>
<td>2014-01-15 15:12:30</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>add_renumber</td>
<td>poec7v77</td>
<td>pppe7v77 (r1)</td>
<td>PPPE 7V77 Research Workshop in Science and Technology Policy (1-6 semester credit hours) This workshop will provide the student with an opportunity to pursue individual and small group research under the supervision of the instructor into various policy-related dimensions of contemporary scientific research and technological advances such as biotechnology, nanotechnology, artificial intelligence and other contemporary advances, and the impact of scientific and technological advances on culture, economy and political institutions. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1-6]-0) T</td>
<td>phase: approve</td>
<td>2013-10-29 11:33:18 NOLINK audit: 8 index: 44.0501.00.01 match_fail</td>
<td>peoplesoft diff: NOLINK ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit</td>
<td>poec8398</td>
<td>pppe8398 (r1)</td>
<td>PPPE 8398 Dissertation Seminar (3 semester credit hours) For students preparing proposals or writing dissertations. Pass/Fail only. May be repeated for credit. Prerequisites: Successful completion of qualifying examination and instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>2014-01-23 10:36:22 NOLINK audit: 9 index: 44.0501.00.01 match_fail</td>
<td>peoplesoft diff: NOLINK ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber * poec8v01 pppe8v01 (r1) pppe8v01.1</td>
<td>PPPE 8V01 Independent Study (1-9 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 11:49:07 NOLINK 44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber * poec8v97 pppe8v97 (r1) pppe8v97.1</td>
<td>PPPE 8V97 Internship (1-9 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's coursework. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 11:50:08 NOLINK 44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>add_renumber * poec8v99 pppe8v99 (r1) pppe8v99.1</td>
<td>PPPE 8V99 Dissertation (1-9 semester credit hours) Provides faculty supervision of a student's dissertation research. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-29 11:51:00 NOLINK 44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci5306 (r2) psci5306.3</td>
<td>PSCI 5306 The American Legal System and the Practice of Law (3 semester credit hours) The American legal system will be examined through seminar presentations by speakers experienced in judging and in legal practice. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-17 10:40:01 012934 45.1001.15.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * psci5307 (r3) psci5307.3</td>
<td>PSCI 5307 Legal Reasoning and Writing (3 semester credit hours) The process of reaching legal decisions by relying on precedent, history, policy concerns, and tradition will be studied. Additionally, techniques for researching and citing case law and statures will be examined. (3-0) Y</td>
<td>phase: approve</td>
<td>29</td>
<td>cxj140030 2013-09-30 15:01:44 013424 45.1001.01.01 audit: -89.6 m index: -89.6 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci5308 (r2) psci5308.2</td>
<td>PSCI 5308 Immigration Law (3 semester credit hours) This course will cover the core body of immigration law and regulation in the United States, with a special emphasis on asylum law. (3-0) T</td>
<td>phase: approve</td>
<td>30</td>
<td>cxj140030 2013-09-30 15:01:50 013654 45.1001.00.01 audit: -89.6 m index: -89.6 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci5381 (r2) psci5381.4</td>
<td>PSCI 5381 Special Topics in Political Science (3 semester credit hours) Topics vary semester to semester and are designed for students in one of the Master's degree programs. May be repeated for credit (6 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>30</td>
<td>cxj140030 2013-10-07 14:48:42 014246 45.1001.00.01 audit: -89.2 m index: -89.2 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci5v83</td>
<td>(r2)</td>
<td>psci5v83.5</td>
<td>PSCI 5V83 Independent Study (1-9 semester credit hours) Provides faculty supervision of student's individual study of a topic that is directly relevant to the student's Master's degree program and is agreed on by the student and the faculty supervisor. Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (1-9)-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSCI 5V83 Independent Study (1-9 semester credit hours) Provides faculty supervision of student's individual study of a topic that is directly relevant to the student's Master's degree program and is agreed on by the student and the faculty supervisor. Prerequisite: Permission of instructor. Pass/Fail only. May be repeated for credit (9 semester credit hours maximum). Instructor consent required. (1-9)-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014078 2012-08-26</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6300</td>
<td>(r3)</td>
<td>psci6300.3</td>
<td>PSCI 6300 Proseminar in Comparative Politics and International Relations (3 semester credit hours) Studies major theories of democracy, democratization, and globalization, relationships between democratization and globalization, and their implications for citizen politics, government performance, and regime legitimacy. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSCI 6300 Proseminar in Comparative Politics and International Relations (3 semester credit hours) Studies major theories of democracy, democratization, and globalization, relationships between democratization and globalization, and their implications for citizen politics, government performance, and regime legitimacy. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013059 2011-08-23</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6301</td>
<td>(r4)</td>
<td>psci6301.4</td>
<td>PSCI 6301 Constitutional Law (3 semester credit hours) This class addresses the evolution of the American Constitution. The course will examine major constitutional concepts that are important to an understanding of American government. Additionally, major interpretations of the Constitution and the role of courts in the American legal system will be explored. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSCI 6301 Constitutional Law (3 semester credit hours) This class addresses the evolution of the American Constitution. The course will examine major constitutional concepts that are important to an understanding of American government. Additionally, major interpretations of the Constitution and the role of courts in the American legal system will be explored. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011050 2012-08-26</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>psci6304 (r3)</td>
<td>psci6304.3</td>
<td>PSCI 6304 Internship in Constitutional Law Studies (3 semester credit hours) Students will gain practical legal experience by working as an intern in a law office, court, or in the office of a legal organization such as a district attorney's or public defender's office. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011053 2011-08-23 PSCI 6304 Internship in Constitutional Law Studies (3 semester credit hours) Students will gain practical legal experience by working as an intern in a law office, court, or in the office of a legal organization such as a district attorney's or public defender's office. (3-0) Y</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>psci6305 (r3)</td>
<td>psci6305.3</td>
<td>PSCI 6305 Workshop in Constitutional Law Studies (3 semester credit hours) Students will undertake a major research topic on a law-related matter which will develop skills in legal research and writing, quantitative research, or field research. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011054 2011-08-23 PSCI 6305 Workshop in Constitutional Law Studies (3 semester credit hours) Students will undertake a major research topic on a law-related matter which will develop skills in legal research and writing, quantitative research, or field research. (3-0) Y</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>psci6306 (r3)</td>
<td>psci6306.3</td>
<td>PSCI 6306 Human Rights and International Law (3 semester credit hours) This course explores international agreements and their effects on individual rights in a variety of contexts such as international conflicts, civil wars, and oppressive political regimes. (3-0) R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012680 2010-08-18 PSCI 6306 Human Rights and International Law (3 semester credit hours) This course explores international agreements and their effects on individual rights in a variety of contexts such as international conflicts, civil wars, and oppressive political regimes. (3-0) R</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6309 (r4)</td>
<td>PSCI 6309 International Political Economy (3 semester credit hours) An integration of the insights of international relations and international economics. Explores the politics of international trade and finance, or economic globalization; investigates the simultaneous pursuit of wealth and power in states and other international actors. (3-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>psci6309.4</td>
<td>peoplesoft diff: 011056 2011-08-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSCI 6309 International Political Economy (3 semester credit hours) An integration of the insights of international relations and international economics. Explores the politics of international trade and finance, or economic globalization; investigates the simultaneous pursuit of wealth and power in states and other international actors. (3-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6311 (r3)</td>
<td>PSCI 6311 Proseminar in Law and Courts (3 semester credit hours) The purpose of this graduate seminar is to survey the different areas of empirical/quantitative research in the subfield of judicial politics. The course will assess the courts as political institutions and examine the interactions between the judiciary and other institutions. We will address the core theoretical debates and assess key methodological issues concerning judicial decision-making in the U.S. context. We will also place these debates within the growing body of comparative judicial behavior literature. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>psci6311.4</td>
<td>peoplesoft diff: 013357 2011-08-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSCI 6311 Proseminar in Law and Courts (3 semester credit hours) The purpose of this graduate seminar is to survey the different areas of empirical/quantitative research in the subfield of judicial politics. The course will assess the courts as political institutions and examine the interactions between the judiciary and other institutions. We will address the core theoretical debates and assess key methodological issues concerning judicial decision-making in the U.S. context. We will also place these debates within the growing body of comparative judicial behavior literature. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6314</td>
<td>PSCI 6314 Policy Processes, Implementation and Evaluation (3 semester credit hours) Applies models of the policy system to the analysis of legislative, administrative and judicial processes at different points in the policy cycle. Uses case studies, empirical analysis, direct observation, and group projects. Prerequisite: PSCI 6313 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psci6314.5</td>
<td></td>
<td>status: approving</td>
<td>2014-01-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>14:07:02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013425 2011-08-23</td>
<td>013425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.0401.00.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -88.5 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -88.5 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6316</td>
<td>PSCI 6316 International Organizations (3 semester credit hours) An analysis of international intergovernmental organizations such as the United Nations, the International Monetary Fund, and the European Union. Topics include their historical development, internal political processes, and consequences for the international political system. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psci6316.2</td>
<td></td>
<td>status: approving</td>
<td>2013-09-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>15:03:39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013677 2011-08-23</td>
<td>013677</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.0901.00.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -89.2 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -89.2 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6317 (r2) psici6317.2</td>
<td>PSCI 6317 (PA 6317) Intergovernmental/Intersectoral Relations and Management (3 semester credit hours) This course explores the conceptual foundations of federalism that prescribe the relationships among federal and state governments in the U.S. It considers the practice of intergovernmental administration (federal, state, local) and intersectoral management (public, private, nonprofit) including devolution, fiscal federalism, and through a review of current issues in the field. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:03:47 013645 44.0401.00.01 audit: -89.4 m index: -89.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6318 (r2) psci6318.2</td>
<td>PSCI 6318 Judicial Selection (3 semester credit hours) This is a course that focuses on the ways in which political systems place judges on courts. We will focus primarily on American courts, with our time split evenly between the appointive systems used by the federal government and some states and the elective systems used by most other states. We will also discuss the methods used in other countries for the selection of judges. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:03:55 013682 45.1001.00.01 audit: -89.2 m index: -89.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6323 (r5)</td>
<td>psci6323.7</td>
<td></td>
<td>PSCI 6323 Public Choice (3 semester credit hours) This course covers the application of economic reasoning to non-market decision-making in situations involving collective choice. Topics include market and government failure, collective action, properties of different voting rules, design of constitutions, and the behavior of candidates, elected officials, bureaucrats, and voters. Recommended prerequisites: POEC 7317 or PA 7317 or equivalent. (3-0) R</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6324 (r5)</td>
<td>psci6324.5</td>
<td></td>
<td>PSCI 6324 Local and State Government and Politics (3 semester credit hours) Examines public policy institutions and processes at the local and state levels in the United States, with particular attention to developments in the Dallas-Fort Worth metroplex and the State of Texas. Addresses issues of policy convergence, divergence, and representation. (3-0) R</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6325 (r6) psci6325.6</td>
<td>PSCI 6325 Decision Theory (3 semester credit hours) Explores the development of decision-making models and theories across organizational and institutional environments. Includes details analysis of decision-making under conditions of certainty, risk and uncertainty. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:04:12 011060 52.0206.00.16 audit: -89.5 m index: -89.5 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6330 (r3) psci6330.3</td>
<td>PSCI 6330 Campaigns and Elections (3 semester credit hours) This course surveys the state of the art research on campaigns and elections in American politics with a focus on Congressional and Presidential elections. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:04:20 011064 45.1001.00.01 audit: -89.4 m index: -89.4 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6331 (r5) psci6331.5</td>
<td>PSCI 6331 Executives, Legislatures and Public Policy (3 semester credit hours) An investigation of the role played by executives and legislatures in shaping public policy in the United States. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:04:26 011065 44.0501.00.01 audit: -89.7 m index: -89.7 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6332 (r3)</td>
<td>psci6332.3</td>
<td></td>
<td>PSCI 6332 The U.S. Congress (3 semester credit hours) This course examines the most recent research on the legislative branch of the United States. We examine the role of parties, incumbency, elections, and organized interests on who gets elected to Congress, how Congress organizes itself, and how Congress makes public policy. (3-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6333 (r4)</td>
<td>psci6333.4</td>
<td></td>
<td>PSCI 6333 Political and Civic Organizations (3 semester credit hours) An institutional perspective on political parties, interest groups, and other organizations such as labor unions and nonprofit organizations that are important actors in political and civic affairs. The emphasis is on internal operations of organizations, their strategic behavior, and interactions with government, including both regulation by the state and attempts to influence public decision makers. (3-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6335 (r6) psci6335.7</td>
<td>PSCI 6335 (PPPE 6335) Institutions and Development (3 semester credit hours) An overview of leading theories, institutional perspectives, issues and policy debates concerning urban, regional, national and global development. Topics may include economic growth, technology and innovation, shifts in industrial structure, spatially imbalanced change, and their welfare consequences. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-23 10:37:14 011068 44.0501.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6337 (r4) psci6337.4</td>
<td>PSCI 6337 Comparative Institutions (3 semester credit hours) A comparative analysis of political and economic institutions in different settings. Includes a consideration of different theoretical approaches to the comparative study and design of institutions in the United States and elsewhere. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:04:54 011070 45.1001.00.01 audit: -89.2 m index: -89.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6339 (r3) psci6339.3</td>
<td>PSCI 6339 Election Law and Electoral Systems (3 semester credit hours) An examination of election law in America from redistricting to ballot access to campaign finance. We also spend time looking at different electoral systems in the U.S. and around the world. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:05:00 011071 45.1001.00.01 audit: -89.5 m index: -89.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6341 (r4) psci6341.4</td>
<td>PSCI 6341 Texas Legislative Process (3 semester credit hours) This course examines the legislative process in the Texas Legislature. Students will learn the intricacies of passing legislation by examining the constitutional rules of Texas' lawmaking and the evolution of each chamber's parliamentary rules. Students will have the opportunity to examine specific case studies to illustrate the importance of legislative process in Texas. (3-0) R</td>
<td>phase: approve</td>
<td>2013-09-30 15:05:06 011073 45.1002.00.01 audit: -89.6 m index: -89.6 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6342 (r2) psci6342.3</td>
<td>PSCI 6342 Comparative Courts and Law (3 semester credit hours) The purpose of this graduate seminar is to survey the growing body of comparative research on courts, law and justice issues. The course will examine a selection of topics within this broadly defined field. The course will examine both qualitative and quantitative work. These examinations will span comparative politics, international relations, and the broader sub-field of public law. (3-0) R</td>
<td>phase: approve</td>
<td>2014-01-17 10:41:02 014079 45.1001.00.01 audit: -88.4 m index: -88.4 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6343 (r3) psci6343.3</td>
<td>PSCI 6343 Law and The Policy Process (3 semester credit hours) Provides the legal perspective on public policy and emphasizes the role of the judicial system in the recent evolution of public policy in selected problem areas. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:05:17 013423 44.0501.00.01 audit: -89.5 m index: -89.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6347 (r3) psci6347.4</td>
<td>PSCI 6347 (PPPE 6347) Proseminar in Political Institutions and American Politics (3 semester credit hours) Surveys the scholarly literature on major institutions associated with policymaking in the United States, including Congress, the Presidency, the bureaucracy, and interest groups. (3-0) Y</td>
<td>phase: approve</td>
<td>vtt01700 2013-10-28 15:42:17 014070 45.1002.00.01 audit: -88.8 m index: -88.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6350 (r3) psci6350.3</td>
<td>PSCI 6350 Logic, Methodology, and Scope of Political Science (3 semester credit hours) Promotes understanding of how and why research projects are conducted, and when and why research programs cease to contribute to knowledge production. Attention also is paid to major modes of analysis in political science, the state of the discipline, and future directions in field-specific, cross-field, and cross-disciplinary research. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:05:30 012935 45.1001.00.01 audit: -89.6 m index: -89.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6352 (r3) psci6352.3</td>
<td>PSCI 6352 Empirical Democratic Theory (3 semester credit hours) This course covers major issues in normative democratic theory; seeks to understand how this theory has shaped empirical investigations in contemporary political science; and asks how the empirical realities of democracy in practice have contributed to normative theories and models of democracy. (3-0) T</td>
<td>phase: approve status: approving audit: 30 cxj140030 2013-09-30 15:05:45 012936 45.1001.15.01 audit: -89.2 m index: -89.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci6353 (r3) psci6353.3</td>
<td>PSCI 6353 Mathematical Models in Political and Social Science (3 semester credit hours) Introduces students to a variety of models in the Economic, Political and Policy Sciences, including primarily rational choice approaches but also some computational work. The course will allow students to understand and compose rudimentary models, including prisoner's dilemma, assurance games, and strategic voting. (3-0) R</td>
<td>phase: approve status: approving audit: 30 cxj140030 2013-09-30 15:05:53 012941 45.1001.00.01 audit: -89.5 m index: -89.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6357</td>
<td>PSCI 6357 (PPPE 6357) Political Economy of Latin America (3 semester credit hours) Addresses historical and contemporary issues in Latin American political economy. Uses case studies and cross-regional comparisons to assess competing explanations. Analyzes the current political and economic situation facing Latin America in its quest for economic growth and development. The emphasis is to understand the broad patterns of development and change in the region and the physical, historical, social and economic constraints which have affected development, broadly understood. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>2013-10-28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>012684</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012684 2011-08-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSCI 6357 (POEC (PPPE 6357) Political Economy of Latin America (3 semester credit hours) Addresses historical and contemporary issues in Latin American political economy. Uses case studies and cross-regional comparisons to assess competing explanations. Analyzes the current political and economic situation facing Latin America in its quest for economic growth and development. The emphasis is to understand the broad patterns of development and change in the region and the physical, historical, social and economic constraints which have affected development, broadly understood. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6358</td>
<td>PSCI 6358 Refugee and Migration Policy (3 semester credit hours) This course will examine core policy issues related to refugees, migration, trafficking, forced migration, and internally displaced persons. The course will survey relevant political and social science literature and seek to understand these issues in the context of theories within international relations, comparative politics, and international law. (3-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>2013-09-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>013657</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013657 2011-08-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSCI 6358 Refugee and Migration Policy (3 semester credit hours) This course will examine core policy issues related to refugees, migration, trafficking, forced migration, and internally displaced persons. The course will survey relevant political and social science literature and seek to understand these issues in the context of theories within international relations, comparative politics, and international law. (3-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6361 (r3)</td>
<td>PSCI 6361 (PPPE 6361) Political Violence and Terrorism (3 semester credit hours) In this discussion-based seminar, we will cover the topics of terrorism, political violence, and civil war. We will examine concepts, causes, and consequences of different types of political violence. Additionally, we will discuss topics relevant to research, including discussions of different approaches (quantitative, qualitative, and formal) and a perusal of different data sources. We will take advantage of literature from multiple disciplines. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-28 16:18:18 012685 45.1001.00.01 audit: -88.8 m index: -88.8 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6362 (r5)</td>
<td>PSCI 6362 (PPPE 6362) Political Development (3 semester credit hours) This course will survey different perspectives and theories of political development. Topics covered include the role of the state, democratization, political stability, civil society and environmental concerns, among others. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-23 11:03:38 011074 45.1001.15.01 audit: -88.4 m index: -88.4 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci6363</td>
<td>r4</td>
<td>psci6363.5</td>
<td>PSCI 6363 (PPPE 6363) Conflict and Development (3 semester credit hours) This module will explore the nexus between violent intrastate conflict and development. It will examine some of the key conceptual frameworks advanced to understand conflict and will explore specific themes that have occupied researchers and policy practitioners in recent years. In addition to assessing the economic costs of the conflicts, this course will also examine the traditional factors that have been purported to explain the prevalence of insurgency. (3-0) R</td>
</tr>
</tbody>
</table>

PSCI 6363 (POEC PPPE 6363) Conflict and Development (3 semester credit hours) This module will explore the nexus between violent intrastate conflict and development. It will examine some of the key conceptual frameworks advanced to understand conflict and will explore specific themes that have occupied researchers and policy practitioners in recent years. In addition to assessing the economic costs of the conflicts, this course will also examine the traditional factors that have been purported to explain the prevalence of insurgency. (3-0) R

| 2014-open | edit * | psci6364 | r2 | psci6364.2 | PSCI 6364 Public Opinion and Survey Research (3 semester credit hours) Introduces students to the principles and practices of survey research. Topics include the selection of an appropriate survey method, questionnaire design and testing, response problems, interviews and surveys, and the analysis of survey data, including those on political attitudes and public opinion dynamics. Also examines how these data are used in developing successful political campaign strategies (3-0) T | phase: approve | cxj140030 2013-09-30 15:06:31 013056 45.1001.00.01 audit: -89.6 m index: -89.6 m match_fail | peoplesoft diff: 013056 2010-08-18 |

PSCI 6364 Public Opinion and Survey Research (3 semester credit hours) Introduces students to the principles and practices of survey research. Topics include the selection of an appropriate survey method, questionnaire design and testing, response problems, interviews and surveys, and the analysis of survey data, including those on political attitudes and public opinion dynamics. Also examines how these data are used in developing successful political campaign strategies (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>psci6v42 (r2)</td>
<td></td>
<td>PSCI 6V42 Legislative Affairs Internship (1-6 semester credit hours) Students will work with the professor to identify with a relevant government office approved by the professor. Students will be asked to participate in the daily operations of that office and learn the intricacies of staffing from a first-hand perspective. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ([1-6]-0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psci6v42.3</td>
<td></td>
<td>S</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td>013661 45.1001.00.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>audit: -89.5 m</td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>index: -89.5 m</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>psci7320 (r5)</td>
<td></td>
<td>PSCI 7320 (POEC 7320) International Negotiations (3 semester credit hours) This course examines both the substance and the process of international negotiations. Students study the theory and analysis of negotiations and identify issues, interests and positions of the parties. The course covers the substantive areas of arms control, trade, and environmental negotiations. The course moves from the analysis of simple, bilateral negotiations with only a few issues in contention to complex multilateral negotiations. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psci7320.6</td>
<td></td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>vtt017000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>2013-10-09 14:23:52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td>011078 45.0901.00.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>audit: -89.1 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>index: -89.1 m</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci7330 (r2)</td>
<td>psci7330.2</td>
<td>PSCI 7330 Contemporary International Security (3 semester credit hours) An examination of current research on security and interstate conflict, with emphasis on social-scientific explanations for why wars occur and how they can be prevented. The course begins with theories of war and models of crisis bargaining, then proceeds to empirical analysis of how war-making is affected by such factors as regime type, domestic audiences, economic interdependence, multinational production, balances of power, environmental and demographic pressures, intergovernmental organizations, American hegemony, international hierarchies, and social networks. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:06:53 013666 45.1001.00.01 audit: -89.5 m index: -89.5 m match fail</td>
<td>peoplesoft diff: 013666 2011-08-23</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci7335 (r2)</td>
<td>psci7335.2</td>
<td>PSCI 7335 Theories of International Relations (3 semester credit hours) An examination of major theories of international relations. Includes coverage of the dominant realist, liberal, and constructivist approaches, as well as coverage of more specific topics, such as norms and international society, pluralist theories of foreign policy, theories of sovereignty, political psychology, bargaining and international institutions, and network theories. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:07:01 014247 45.0901.00.01 audit: -89.6 m index: -89.6 m match fail</td>
<td>peoplesoft diff: 014247 2013-08-25 sxr090100</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci7340 (r3)</td>
<td>psci7340.4</td>
<td>PSCI 7340 Intergovernmental and Intersectoral Relations (3 semester credit hours) This course explores the conceptual foundations of federalism that prescribe the relationships among federal and state governments in the U.S. It considers the practice of intergovernmental administration (federal, state, local) and intersectoral management (public, private, nonprofit) including devolution, fiscal federalism, and through a review of current issues in the field. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-08 12:13:37 014054 44.0401.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci7350 (r4)</td>
<td>psci7350.4</td>
<td>PSCI 7350 Institutions and Citizen Behavior (3 semester credit hours) Examines the major theories, concepts and models associated with relationships between public institutions and citizen behavior, particularly how such institutions as elections, interest groups, political parties and social movements mobilize behavior and how behavior, in turn, influences institutional processes and outcomes. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:07:15 011081 45.1001.00.01 audit: -89.5 m index: -89.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>psci7352 (r6)</td>
<td>psci7352.6</td>
<td>PSCI 7352 Choice and Decision Making (3 semester credit hours) This course integrates theories of political choice with models of decision-making in the fields of social cognition, economics, and consumer behavior. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:07:23 011082 45.1001.00.01 audit: -89.6 m index: -89.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci7372 (r4) psci7372.4</td>
<td>PSCI 7372 Game Theory for Political Scientists (3 semester credit hours) An introduction to formal models with more than one decision-maker, this course will cover basic solution concepts in game theory. The course will pay particular attention to applications in political science, rather than the foundational models in economics. (3-0) R</td>
<td>phase: approve 2013-09-30 15:07:30 011084 45.1001.00.01 audit: -89.5 m index: -89.5 m match_fail peoplesoft diff: 011084 2013-08-25 sxh121431 PSCI 7372 Game Theory for Political Scientists (3 semester credit hours) An introduction to formal models with more than one decision-maker, this course will cover basic solution concepts in game theory. The course will pay particular attention to applications in political science, rather than the foundational models in economics. (3-0) R</td>
<td>168/178</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci7381 (r4) psci7381.5</td>
<td>PSCI 7381 Special Topics in Political Science (3 semester credit hours) Topics vary semester to semester and are rotated typically among the three fields of the program. May be repeated for credit (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve 2013-10-07 14:53:54 011086 45.1001.00.01 audit: -89.6 m index: -89.6 m match_fail peoplesoft diff: 011086 2011-08-23 PSCI 7381 Special Topics in Political Science (3 semester credit hours) Topics vary semester to semester and are rotated typically among the three fields of the program. May be repeated for credit (9 semester credit hours maximum). (3-0) R</td>
<td>168/178</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * psci7v83 (r5) psci7v83.7</td>
<td>PSCI 7V83 Independent Study (1-9 semester credit hours) Provides faculty supervision of student's individual study of a topic that is directly relevant to dissertation or practicum research and is agreed on by the student and the faculty supervisor. Pass/Fail only. May be repeated for credit. Instructor consent required ([1-9]-0) R</td>
<td>phase: approve 2013-11-16 23:25:21 011077 45.1001.00.01 audit: -88.6 m index: -88.6 m match_fail peoplesoft diff: 011077 2012-08-26 PSCI 7V83 Independent Study (1-9 semester credit hours) Provides faculty supervision of student's individual study of a topic that is directly relevant to dissertation or practicum research and is agreed on by the student and the faculty supervisor. Prerequisite: Permission of instructor. Pass/Fail only. May be repeated for credit. Instructor consent required ([1-9]-0) R</td>
<td>168/178</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | psci8381 (r4) | psci8381.6 | PSCI 8381 Research Seminar in Political Science (3 semester credit hours) Promotes faculty-student research collaboration and students' dissertation or practicum and professional development. Pass/Fail only. May be repeated for credit. (3-0) Y

peoplesoft diff: 011088 2014-08-24 sxh121431

PSCI 8381 Research Seminar in Political Science (3 semester credit hours) Promotes faculty-student research collaboration and students' dissertation or practicum and professional development. Pass/Fail only. May be repeated for credit. (3-0) Y | phase: approve | metadata: 011088 2013-11-16 23:25:54 011088 45.1001.00.01 audit: -88.6 m index: -88.6 m match_fail | ps info change process orion |

| 2014-open | edit * | psci8v99 (r6) | psci8v99.8 | PSCI 8V99 Dissertation or Practicum (1-9 semester credit hours) Provides faculty supervision of a student's dissertation research. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S

peoplesoft diff: 011087 2012-08-26

PSCI 8V99 Dissertation or Practicum (1-9 semester credit hours) Provides faculty supervision of a student's dissertation research. Prerequisite: Permission of instructor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S | phase: approve | metadata: 011087 2013-10-14 15:27:53 011087 45.1001.00.01 audit: -89.7 m index: -89.7 m match_fail | ps info change process orion |

| 2014-open | edit * | soc5v91 (r5) | soc5v91.8 | SOC 5V91 Independent Study in Applied Sociology (1-6 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. May be repeated for credit. Instructor consent required. ([1-6]-0) R

peoplesoft diff: 011633 2012-08-26

SOC 5V91 Independent Study in Applied Sociology (1-6 semester credit hours) Provides faculty supervision for student's individual study of a topic agreed upon by the student and the faculty supervisor. Prerequisite: Permission of instructor. May be repeated for credit. ([1-6]-0) R | phase: approve | metadata: 011633 2013-11-06 13:56:30 011633 45.1101.10.01 audit: -89 m index: -89 m match_fail | ps info change process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * soc5v92 (r5) soc5v92.8</td>
<td>SOC 5V92 Internship in Applied Sociology (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be related to the student's course work. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 28</td>
<td>vtt017000 2013-11-06 13:57:41 011634 45.1101.10.01 audit: -89.7 m index: -89.7 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011634 2012-08-26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * soc6312 (r5) soc6312.7</td>
<td>SOC 6312 (PPPE 6312) Social-Economic Theories (3 semester credit hours) A critical analysis of early and modern social and economic theories. Select classical works of Smith, Marx, and Weber are explored, as they pertain to Western capitalist development, along with more contemporary perspectives related to the accumulation and exchange value of human, social and cultural capital. Emphasis is placed on understanding how social relations and social institutions influence economic exchanges. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>vtt017000 2013-11-06 13:58:58 011651 44.0501.00.01 audit: -89 m index: -89 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011651 2013-08-25 sxr090100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf 170/178
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>soc6315 (r1) soc6315.3</td>
<td>SOC 6315 (PA 6315) Program Evaluation (3 semester credit hours) Techniques and analytical methods of assessing governmental and nonprofit program and policy success. Emphasis is placed on strategies for impact assessment, measuring efficiency, examining short-term and long-term consequences, identifying both intended and unintended impacts, and the social, political and ethical context of evaluation. (3-0) T</td>
<td>phase: approve</td>
<td>2013-11-07 11:41:44</td>
<td>NOLINK 45.1101.00.01</td>
<td>audit: -97.7 m</td>
<td>index: -97.7 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>soc6316 (r1) soc6316.2</td>
<td>SOC 6316 (PA 6314) Policy Analysis (3 semester credit hours) This course introduces students to policy analysis, exploring approaches and providing tools to analyze contemporary policy questions at various levels of governance. (3-0) R</td>
<td>phase: approve</td>
<td>2013-11-07 11:19:33</td>
<td>NOLINK 45.1101.00.01</td>
<td>audit: -89 m</td>
<td>index: -89 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>soc6335 (r1) soc6335.2</td>
<td>SOC 6335 (PA 6335) Resource Development for Nonprofit Organizations (3 semester credit hours) This course examines sources of revenue for nonprofit organizations. Specific topics include fundraising, grant writing, and donor dynamics. The course is designed to prepare the student to work effectively as a member of a fundraising team - either as staff or volunteer board member. (3-0) R</td>
<td>phase: approve</td>
<td>2013-11-07 11:13:46</td>
<td>NOLINK 45.1101.00.01</td>
<td>audit: -89.7 m</td>
<td>index: -89.7 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * soc6340 (r5) soc6340.8</td>
<td>SOC 6340 (PPPE 6340) Domestic Social Policy (3 semester credit hours) Overview of governmental and non-governmental programs, policies, and institutions dealing with those who cannot function self-sufficiently within the American market economy, including low-income families, the elderly, the unemployed, and people with disabilities. Analyzes how social policy in the United States reflects the political economy and culture, as well as social and demographic trends. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>vtt017000 2013-12-02 14:08:40 011659 45.1101.10.01 audit: -88.6 m index: -88.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 011659 2013-08-25 sxr090100

SOC 6340 (POEC 6351) (PPPE 6340) Domestic Social Policy (3 semester credit hours) Overview of governmental and non-governmental programs, policies, and institutions dealing with those who cannot function self-sufficiently within the American market economy, including low-income families, the elderly, the unemployed, and people with disabilities. Analyzes how social policy in the United States reflects the political economy and culture, as well as social and demographic trends. (3-0) Y |

SO 2014-open edit * soc6341 (r5) soc6341.7 | SOC 6341 (ECON 6371) Urban Economics (3 semester credit hours) Presents methods and models for understanding urban growth and development processes. Topics include analysis of urban growth, land use patterns, transportation and local public good delivery systems. Welfare consequences of various urban policy options are explored. (3-0) R | phase: approve status: approving audit: 30 | vtt017000 2014-01-23 10:49:27 011660 45.1201.00.01 audit: -88.4 m index: -88.4 m match_fail | ps info detail change process orion |

peoplesoft diff: 011660 2011-08-23

SOC 6341 (ECON 6371) Urban Economics (3 semester credit hours) Presents methods and models for understanding urban growth and development processes. Topics include analysis of urban growth, land use patterns, transportation and local public good delivery systems. Welfare consequences of various urban policy options are explored. (3-0) R |

peoplesoft diff: 011661 2011-08-23

SOC 6344 Gender and Policy (3 semester credit hours) Explores issues of gender and public policy in the U.S. Topics include poverty, politics, and workplace and family issues. (3-0) R | phase: approve status: approving audit: 29 | cxj140030 2013-09-30 15:26:49 011661 44.0501.00.01 audit: -89.6 m index: -89.6 m match_fail | ps info detail change process orion |

peoplesoft diff: 011661 2011-08-23

SOC 6344 Gender and Policy (3 semester credit hours) Explores issues of gender and public policy in the U.S. Topics include poverty, politics, and workplace and family issues. (3-0) R |
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
</table>
| 2014-open | edit * | soc6348 (r2) | soc6348.2 | **SOC 6348 Immigration Policy (3 semester credit hours)** This course examines immigration policy, focusing on U.S. immigration law, within the context of changing U.S. social institutions and society. The course gives special attention to immigration policy centered on immigrants arriving after 1965. (3-0) R
peoplesoft diff: 014081 2012-08-26
SOC 6348 Immigration Policy (3 semester credit hours) This course examines immigration policy, focusing on U.S. immigration law, within the context of changing U.S. social institutions and society. The course gives special attention to immigration policy centered on immigrants arriving after 1965. (3-0) R | phase: approve
status: approving
audit: 30 | cxj140030
2013-09-30
15:26:55
014081
45.1101.00.01
audit: -89.5 m
index: -89.5 m
match_fail | ps info
detail
change
process
orion |
| 2014-open | edit * | soc6350 (r5) | soc6350.8 | **SOC 6350 (PPPE 6350) Social Stratification (3 semester credit hours)** This seminar will examine the major theories and lines of research on social stratification, defined as the hierarchical ranking of groups based on the unequal distribution of societal resources and positions. Focusing primarily on the U.S. class system, topics covered include: class reproduction and mobility, the educational system and policy, empirical definitions, the implications of race and gender for social class, and forms of legitimation. (3-0) Y
peoplesoft diff: 011662 2011-08-23
SOC 6350 (PPPE 6350) Social Stratification (3 semester credit hours) This seminar will examine the major theories and lines of research on social stratification, defined as the hierarchical ranking of groups based on the unequal distribution of societal resources and positions. Focusing primarily on the U.S. class system, topics covered include: class reproduction and mobility, the educational system and policy, empirical definitions, the implications of race and gender for social class, and forms of legitimation. (3-0) Y | phase: approve
status: approving
audit: 27 | vtt017000
2014-01-17
10:38:11
011662
45.1101.00.01
audit: -88.4 m
index: -88.4 m
match_fail | ps info
detail
change
process
orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>soc6355 (r4) soc6355.5</td>
<td>SOC 6355 Race and Ethnic Relations (3 semester credit hours) Considers historical and contemporary constructions of race and ethnicity. Issues include the formation and maintenance of individual and group identity, racialized patterns of stratification, intergroup conflict, and the causes and consequences of public policy. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-11 09:59:20 011666 45.1101.00.01 audit: -88.6 m index: -88.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>soc6356 (r4) soc6356.5</td>
<td>SOC 6356 (PPPE 6356) Health and Illness (3 semester credit hours) A review of medical sociology and related fields, including social epidemiology and the social demography of health and illness; health and illness behavior; health institutions and professions; economic factors and trends in health care; and health policies and programs. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-10-28 16:00:14 011667 45.1101.10.01 audit: -88.8 m index: -88.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * soc6357 (r5) soc6357.7</td>
<td>SOC 6357 (PPPE 6341) Health Policy (3 semester credit hours) The history and political economy of the U.S. health care system and a review of major governmental programs to expand access to appropriate services, control rising costs, ensure the quality of care, and promote health through prevention. Analysis of current and recent proposals for reform of health care policy. (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2013-11-11 10:00:36 011668 44.0501.00.01 audit: -88.7 m index: -88.7 m match_fail</td>
<td>peoplesoft diff: 011668 2011-08-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * soc6370 (r3) soc6370.8</td>
<td>SOC 6370 Special Topics in Applied Sociology (3 semester credit hours) Topics may include education policy, global health, and environmental policy. May be repeated for credit as topics vary (6 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:14:14 013367 45.1101.00.01 audit: -88.5 m index: -88.5 m match_fail</td>
<td>peoplesoft diff: 013367 2011-08-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * soc6380 (r4) soc6380.5</td>
<td>SOC 6380 (PA 6380) Nonprofit Organizations (3 semester credit hours) This course examines issues related to the rise, scope, development and impact of nonprofit organizations. The course explores both the unique missions of nonprofit organizations and the management challenges posed by this expanding sector of the organizational environment. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2014-01-15 15:47:40 013384 52.0206.00.16 audit: -88.5 m index: -88.5 m match_fail</td>
<td>peoplesoft diff: 013384 2011-08-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * soc6381 (r4) soc6381.4</td>
<td>SOC 6381 (PA 6382) Nonprofit Management (3 semester credit hours) This course examines issues, strategies, and techniques related to executive leadership and management in nonprofit organizations. (3-0) R</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013428 2011-08-23</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOC 6381 (PA 6382) Nonprofit Management (3 semester credit hours) This course examines issues, strategies, and techniques related to executive leadership and management in nonprofit organizations. (3-0) R</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * soc6384 (r1) soc6384.2</td>
<td>SOC 6384 (PA 6384) Seminar in Urban Policy (3 semester credit hours) This seminar surveys key urban policy challenges and opportunities faced by U.S. cities. The course will focus on critical analysis of a range of topics including the continuing viability of cities in the context of current economic and demographic dynamics, fiscal stress, governance, economic development, transportation, poverty and race/ethnicity, drugs, homelessness, federal urban policy, and survival strategies for declining cities. (3-0) R</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOC 6384 (PA 6384) Seminar in Urban Policy (3 semester credit hours) This seminar surveys key urban policy challenges and opportunities faced by U.S. cities. The course will focus on critical analysis of a range of topics including the continuing viability of cities in the context of current economic and demographic dynamics, fiscal stress, governance, economic development, transportation, poverty and race/ethnicity, drugs, homelessness, federal urban policy, and survival strategies for declining cities. (3-0) R</td>
<td>audit: 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>soc6386</td>
<td>(r1)</td>
<td>SOC 6386 (PA 6386) Diversity in the Public and Nonprofit Sectors (3 semester credit hours) This course provides the skills and knowledge necessary to manage increasingly diverse workforces in the public and nonprofit sectors. A significant portion of the course will focus on diversity in the workplace, with particular attention given to discrimination, strategies for developing equitable public sector organizations, and the need for cultural competency among public administrators. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>soc6386.2</td>
<td></td>
<td></td>
<td>vs</td>
<td>vs</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove</td>
<td>*</td>
<td>soc6v91</td>
<td>(r4)</td>
<td>SOC 6V91 Evaluation Research (3-6 semester credit hours) Individual or group project in evaluation research performed for a public or private community organization under faculty supervision. Students will normally enroll in this course for two consecutive fall/spring semesters. The first semester of enrollment will culminate in the completion of a formal evaluation research proposal; the second will end with a final research report based on conclusions of the proposed research. Students also are expected to participate in a weekly seminar on topics in evaluation research featuring faculty and student presentations, guest speakers, and group discussion. Prerequisite: Program Coordinator consent required. May be repeated for credit (6 semester credit hours maximum). ([3-6]-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>soc6v91.9</td>
<td></td>
<td></td>
<td>vs</td>
<td>vs</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/adaf01421a9f55f6ce51082c0af8f396/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>soc6v92 (r5) soc6v92.9</td>
<td>SOC 6V92 Research Workshop in Applied Sociology (3-6 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ((3-6)-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011642 2012-08-26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOC 6V92 Research Workshop in Applied Sociology (3-6 semester credit hours) Students join a faculty member in a group research project. May be repeated for credit (6 semester credit hours maximum). Instructor consent required. ((3-6)-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>soc6v98 (r3) soc6v98.6</td>
<td>SOC 6V98 Master's Thesis (3-6 semester credit hours) Provides faculty supervision of a student's master's thesis research. Completion of all, or concurrent enrollment in, major requirements. Pass/Fail only. May be repeated for credit (6 semester credit hours maximum). Program Coordinator consent required. ((3-6)-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013653 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOC 6V98 Master's Thesis (3-6 semester credit hours) Provides faculty supervision of a student's master's thesis research. Completion of all, or concurrent enrollment in, major requirements. Prerequisite: Permission of Program Coordinator. Pass/Fail only. May be repeated for credit (6 semester credit hours maximum). Program Coordinator consent required. ((3-6)-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
School of Interdisciplinary Studies (GENS)
2014-15 Graduate Catalog – Courses
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * ed5318 (r7) ed5318.9</td>
<td>ED 5318 Supervised Teaching Internship (3 semester credit hours) Students are hired by a partner school district as a teacher of record with university supervision, workshops, and mentoring during the two semesters they are enrolled in this course. Prerequisites: Admission to internship program. Students will also enroll in ED 5319 the second semester of the Internship. Passing scores on both state required TExES examinations. Internship consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 11:25:46 004477 13.1299.10.04 audit: -90.1 m index: -90.1 m match_fail</td>
<td>peoplesoft diff: 004477 2013-08-25 rmb101000</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ed5319 (r6) ed5319.7</td>
<td>ED 5319 Supervised Teaching Internship II (3 semester credit hours) The second semester of supervised teaching internship. Prerequisite: successful completion of ED 5318 and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-17 11:26:11 004478 13.0406.00.04 audit: -90.1 m index: -90.1 m match_fail</td>
<td>peoplesoft diff: 004478 2012-08-26 sxh121431</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ed5320</td>
<td>ED 5320 Issues in Educational Technology (3 semester credit hours) This course addresses two key technological issues that directly impact education: information overload and nonlinear processing. These same challenges offer the key to effective design and integration of web-based media into the classroom learning environment. Teachers, administrators, researchers, and curriculum developers will learn how to select/apply appropriate tools to enhance classroom teaching and school management. This course is offered in an online format only. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-19 09:29:59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>004479</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.0101.00.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| peoplesoft diff: 004479 2013-08-25 rmb101000 |

ED 5320 Issues in Educational Technology (3 semester credit hours) This course addresses two key technological issues that directly impact education: information overload and nonlinear processing. These same challenges offer the key to effective design and integration of web-based media into the classroom learning environment. Teachers, administrators, researchers, and curriculum developers will learn how to select/apply appropriate tools to enhance classroom teaching and school management. This course is offered in an online format only. Instructor consent required. (3-0) Y

2014-open	edit *	ed5344	ED 5344 Chess I: Introduction (3 semester credit hours) A consideration of methods for using chess to teach critical thinking, math, and reading skills in the elementary classroom, based upon the curricular model developed by McNeil. This course is also appropriate for chess instructors who wish to incorporate additional academic and humanistic goals into their programs. No previous knowledge of chess is required. This course is offered in an online format only. Instructor consent required. (3-0) R	phase: approve	mxv062000	ps info
				status: approving	2013-12-19 09:31:44	detail
				audit: 30	004489	change
					13.0101.00.04	process
						orion

| peoplesoft diff: 004489 2013-08-25 rmb101000 |

ED 5344 Chess I: Introduction (3 semester credit hours) A consideration of methods for using chess to teach critical thinking, math, and reading skills in the elementary classroom, based upon the curricular model developed by McNeil. This course is also appropriate for chess instructors who wish to incorporate additional academic and humanistic goals into their programs. No previous knowledge of chess is required. This course is offered in an online format only. Instructor consent required. (3-0) R
<table>
<thead>
<tr>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
</table>
| 2014-open edit * ed534 (r6) ed5345.7 | **ED 5345 Chess II: Institutional and Cultural Contexts of Chess** *(3 semester credit hours)* A consideration of the role of chess historically and in contemporary culture. This course explores chess research and educational resources. Analysis of the interactions of women and chess through the ages. Each student prepares a proposal based on the curriculum model of Ralph W. Tyler, for chess at an institution. No previous knowledge of chess is required. This course is offered in an online format only. Instructor consent required. *(3-0) R*

peoplesoft diff: 004490 2013-08-25 rmb101000 | phase: approve
status: approving
audit: 30 | mxv062000
2013-12-19
09:30:16
004490
13.0101.00.04
audit: -90.1 m
index: -90.1 m | ps info detail change process orion |
| 2014-open edit * ed535 (r6) ed5353.7 | **ED 5353 Teaching English as a Second Language** *(3 semester credit hours)* The investigation of modern techniques of teaching English to speakers of other languages. Students will develop materials relating to language learning, language testing, and analyzing differences among languages. *(3-0) Y*

peoplesoft diff: 004491 2012-08-26 sxh121431 | phase: approve
status: approving
audit: 30 | rwis
2013-12-02
16:08:06
004491
13.1401.00.01
audit: -90.9 m
index: -90.9 m | ps info detail change process orion |
| 2014-open edit * ed5v01 (r4) ed5v01.5 | **ED 5V01 Independent Study** *(1-6 semester credit hours)* May be repeated for credit. Instructor consent required. *(1-6)-0) R*

peoplesoft diff: 004458 2008-08-21 sxh121431 | phase: approve
status: approving
audit: 30 | mxv062000
2013-11-16
21:34:33
004458
13.0101.00.04
audit: -90.1 m
index: -90.1 m | ps info detail change process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ed5v02 (r3)</td>
<td>ED 5V02 Special Topics in Education (1-3 semester credit hours) May be repeated for credit (9 semester credit hours maximum). (1-3)-0 R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 21:35:11 004459 13.0101.00.04 audit: -90.1 m index: -90.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ed5v02.4</td>
<td>ED 5V02 Special Topics in Education (1-3 semester credit hours) May be repeated for credit to a maximum of 9 hours. (9 semester credit hours maximum). (1-3)-0 R</td>
<td>status: approving</td>
<td>peoplesoft diff: 004459 2008-08-21 sxh121431</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>mais5300 (r4)</td>
<td>MAIS 5300 Interdisciplinary Seminar (3 semester credit hours) May be repeated as topics vary. (3-0) S</td>
<td>phase: approve</td>
<td>nwis 2013-10-29 16:30:36 008175 24.0101.00.01 audit: -90.3 m index: -90.3 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mais5300.5</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mais5301 (r7)</td>
<td>MAIS 5301 Seminar on Close Relationships (3 semester credit hours) An examination of the psychological, sociological, economic, and philosophical approaches to the study of close relationships. Specific issues that will be discussed include male-female differences, intimacy and self-disclosure, loneliness, conflict. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 13:23:57 008176 30.999.01.01 audit: -91.2 m index: -91.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mais5301.7</td>
<td>MAIS 5301 Seminar on Close Relationships (3 semester credit hours) An examination of the psychological, sociological, economic, and philosophical approaches to the study of close relationships. Specific issues that will be discussed include male-female differences, intimacy and self-disclosure, loneliness, conflict. (3-0) Y</td>
<td>status: approving</td>
<td>peoplesoft diff: 008176 2008-08-21</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mais5302 (r6)</td>
<td>MAIS 5302 Capstone Seminar (3 semester credit hours) The seminar includes discussion of interdisciplinary theory and preparation for a research project. Topics may vary. Must be taken in the student's next-to-last semester. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 09:31:11 008177 24.0101.00.01 audit: -90.1 m index: -90.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mais5302.7</td>
<td>MAIS 5302 Capstone Seminar (3 semester credit hours) Topics will vary. The seminar includes discussion of interdisciplinary theory and preparation for a research project. Topics may vary. Must be taken in the student's next-to-last semester. Instructor consent required. (3-0) S</td>
<td>status: approving</td>
<td>peoplesoft diff: 008177 2008-08-21 keh120030</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | mais5303 | MAIS 5303 Research Project (3 semester credit hours) Completion of an interdisciplinary research project. Prerequisite: MAIS 5302 and good academic standing. (3-0) S | phase: approve
status: approving
audit: 30 | mxv062000
2013-12-19
09:32:34
008178
30.9999.01.01
audit: -90 m
index: -90 m match_fail | ps info
detail
change
process
orion |
| | mais5303.5 | | peoplesoft diff: 008178 2008-08-21 keh120030 | | | |
| 2014-2014 | remove * | mais5313 | MAIS 5313 Doing Business in Greater China (3 semester credit hours) A study of Mainland China, Taiwan, and Hong Kong with the focus on economic development and current participation in the global economy. The course reviews the experience of multinational corporations and examines strategies of doing business in Greater China. The course also explores how the digital revolution reshapes the three economies. (3-0) R | phase: approve
status: approving
audit: 30 | rwis
2013-10-29
16:31:19
008188
52.1101.00.16
audit: -90.3 m
index: -90.3 m | ps info
detail
change
process
orion |
| | mais5313.5 | | request to remove this course from catalog | | | |
| 2014-open | edit * | mais5315 | MAIS 5315 Globalization and Economic Crisis (3 semester credit hours) Studies the development of globalization and its impact on different economies and cultures. Also, the course will concentrate on the various waves of economic crisis with a historical depth and a global perspective. The main focus is on the United States, China, India, Japan, the Middle East, Russia and Western Europe. (3-0) T | phase: approve
status: approving
audit: 30 | cxj140030
2013-09-30
13:24:48
008190
52.1101.00.16
audit: -91.2 m
index: -91.2 m match_fail | ps info
detail
change
process
orion |
| | mais5315.5 | | peoplesoft diff: 008190 2014-08-24 sxh121431 | | | |
| 2014-2014 | remove * | mais5316 | MAIS 5316 Managing The Digital Economy (3 semester credit hours) Examines how the digital economy (chip-making, computing, IT services, and telecommunications) has transformed American business. Knowledge workers need to cultivate skills in leadership, communication, entrepreneurship, finance, and project/workplace management. (3-0) Y | phase: approve
status: approving
audit: 30 | rwis
2013-10-29
16:31:56
008191
30.9999.01.01
audit: -90.3 m
index: -90.3 m | ps info
detail
change
process
orion |
| | mais5316.4 | | request to remove this course from catalog | | | |

http://coursebook.utdallas.edu/catbookreport/4caf68bd96b9ec5897f2ccd065dcff0/makepdf

5/9
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * mais5320 (r4) mais5320.8</td>
<td></td>
<td>MAIS 5320 Special Topics in Interdisciplinary Studies (3 semester credit hours) May be repeated for credit as topics vary. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 14:08:14 008192 24.0101.00.01</td>
<td>peoplesoft diff: 008192 2014-08-24 sxh121431 ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * mais5321 (r2) mais5321.3</td>
<td></td>
<td>MAIS 5321 Library Research Skills (3 semester credit hours) Through this online course, graduate students will develop the skills to identify what information is needed for their research, how to find and evaluate scholarly resources, and how to organize the information for a thesis or dissertation. Primary, secondary, and tertiary sources; identifying appropriate research methodologies; assessing quantity, quality and relevance of search results and citation management will be included. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 13:25:21 014198 25.0101.00.10</td>
<td>peoplesoft diff: 014198 2013-08-25 keh120030 ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * mais5333 (r3) mais5333.3</td>
<td></td>
<td>MAIS 5333 Developmental Characteristics of 9-14 Year Olds (3 semester credit hours) This course is designed for students interested in gaining knowledge and in developing their understanding of the middle school aged child, the issues both physical and emotional, attached to this stage. Concepts in adolescent development and current research regarding children aged 9-14 years are examined. Various perspectives on strategies and techniques in working with adolescents are also a focus in this course. (3-0) T</td>
<td>phase: approve</td>
<td>cjx140030 2013-09-30 13:25:30 013607 30.1701.00.01</td>
<td>peoplesoft diff: 013607 2012-08-26 keh120030 ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mais5335</td>
<td>(r3) mais5335.6</td>
<td>MAIS 5335 Crisis Communication in Schools and Organizations (3 semester credit hours) An advanced in depth look into crisis communication, strategies and management focusing on organizational and educational institutional responses in crisis situations. Specific past crisis events are examined, positive and negative responses are dissected, lessons learned are investigated and future management strategies for organizations, agencies and schools are formulated so that students may take these skills back to their respective current and future employment environments and implement these strategies. (3-0)</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 09:33:41 013608 43.0302.00.19 audit: -90.1 m index: -90.1 m match_fail</td>
<td>peoplesoft diff: 013608 2012-08-26 keh120030</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mais5336</td>
<td>(r2) mais5336.3</td>
<td>MAIS 5336 Qualitative Research Methods (3 semester credit hours) This is a hands-on, practically-oriented, how-to-do-it seminar that is ideal for those who intend to utilize qualitative research methods in their research or simply wish to gain further insight into how qualitative data is gathered and analyzed. The primary objective of this course is to mutually explore learn a range of skills, methods, techniques, and "tricks of the trade" that will facilitate successful data gathering. The course provides a solid analytical background while also exposing participants to qualitative methodology through facilitations of a team-based qualitative research project. (3-0)</td>
<td>phase: approve</td>
<td>rwis 2014-01-15 13:49:13 014042 30.9999.01.01 audit: -90 m index: -90 m match_fail</td>
<td>peoplesoft diff: 014042 2012-08-26</td>
</tr>
<tr>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>MAIS 5337 Library Research Skills (3 semester credit hours) This course uses assignments to focus on the most important aspects of learning to conduct library research in preparation for conducting a literature review. The primary goal is to help students learn to identify their information needs and to know how to fulfill those needs by being able to find, critically evaluate, and successfully apply the information found using library resources. (3-0) S</td>
<td>phase: approve</td>
<td>rwis</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAIS 5337 Library Research Skills (3 semester credit hours) This course uses assignments to focus on the most important aspects of learning to conduct library research in preparation for conducting a literature review. The primary goal is to help students learn to identify their information needs and to know how to fulfill those needs by being able to find, critically evaluate, and successfully apply the information found using library resources. (3-0) S</td>
<td>status: approving</td>
<td>2013-12-19 09:38:19</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAIS 5338 Co-Op Education (1-3 semester credit hours) Students completing this course will integrate academic learning with their co-op work experience. To attain this goal, students will keep a journal of their workplace experience, maintain contact with the instructor, and prepare a written report that focuses on the accomplishments and insights gained through their co-op experience. May be repeated for credit as topics vary (6 semester credit hours maximum). Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>rwis</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAIS 5338 Co-Op Education (1-3 semester credit hours) Students completing this course will integrate academic learning with their co-op work experience. To attain this goal, students will keep a journal of their workplace experience, maintain contact with the instructor, and prepare a written report that focuses on the accomplishments and insights gained through their co-op experience. May be repeated for credit as topics vary (6 semester credit hours maximum). Instructor consent required. ([1-3]-0) S</td>
<td>status: approving</td>
<td>2013-12-19 09:39:41</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mais5390</td>
<td>MAIS 5390 Costa Rica Experience (3 semester credit hours) Costa Rica is world famous for its dedication to the concept of sustainability. This field trip class will visit different locations in Costa Rica to better understand the diversity of its environment, its non-human primates, its practices that of course may vary from year to year but the major emphasis is sustainability. This course has a service learning component. Student must be in good standing. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 16:47:52 013629 30.2001.00.01 audit: -90.2 m index: -90.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mais5390.4</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mais5v04</td>
<td>MAIS 5V04 Independent Study (1-6 semester credit hours) Available only to meet particular curricular needs of an individual degree plan. May be repeated for credit as topics vary. Instructor and MAIS advisor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 09:37:03 008171 30.9999.01.01 audit: -90 m index: -90 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mais5v04.7</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acct6193 (r3)</td>
<td>acct6193.9</td>
<td>ACCT 6193 Professional Accounting - Regulation (1 semester credit hour) This course is designed to help students prepare for careers in professional accounting and professional examinations. Prerequisites: (ACCT 3350 or ACCT 3351 or ACCT 6350) and ACCT 6353. (1-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-27 11:53:58 014005 52.0301.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acct6194 (r3)</td>
<td>acct6194.7</td>
<td>ACCT 6194 Professional Accounting - Business (1 semester credit hour) This course is designed to help students prepare for careers in professional accounting and professional examinations. Prerequisites: (ACCT 4336 or ACCT 6344) and (ACCT 4342 or ACCT 6343) and (ACCT 3341 or ACCT 6341). (1-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-27 09:20:47 014006 52.0301.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6201 (r4) acct6201.7</td>
<td>ACCT 6201 Introduction to Financial Accounting (2 semester credit hours) This course explores the role of financial accounting information in the economy and explains how accounting information found in financial statements and annual reports is used in decision-making by investors, analysts, creditors and managers. This course is an MS Accounting program prerequisite and cannot be used for MS Accounting degree credit. (2-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACCT 6201 Introduction to Financial Accounting (2 semester credit hours) This course explores the role of financial accounting information in the economy and explains how accounting information found in financial statements and annual reports is used in decision-making by investors, analysts, creditors and managers. May-not This course is an MS Accounting program prerequisite and cannot be taken used for MS Accounting program degree credit. (2-0) S</td>
<td></td>
<td>peoplesoft diff: 013477 2013-08-25 adp130030</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6202 (r4) acct6202.7</td>
<td>ACCT 6202 Introduction to Managerial Accounting (2 semester credit hours) This course presents a detailed study of how managerial accounting information is prepared and how it supports the operational and strategic needs of the enterprise. Managers use accounting information for decision-making, planning, evaluating and controlling activities within organizations. This course is an MS Accounting program prerequisite and cannot be used for MS Accounting degree credit. (2-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACCT 6202 Introduction to Managerial Accounting (2 semester credit hours) This course presents a detailed study of how managerial accounting information is prepared and how it supports the operational and strategic needs of the enterprise and how managers enterprise. Managers use accounting information for decision-making, learning, planning, planning, evaluating and controlling activities within organizations. May-not This course is an MS Accounting program prerequisite and cannot be taken used for MS Accounting program degree credit. (2-0) S</td>
<td></td>
<td>peoplesoft diff: 013478 2013-08-25 adp130030</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * acct6203 (r2) acct6203.3</td>
<td>request to remove this course from catalog ACCT 6203 Professional Accounting Communications (2 semester credit hours) This course is designed to improve accounting students' language and communications skills through lectures, readings, presentations and directed individualized study. Prerequisites: none. (2-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-27 09:26:45 013479 52.0501.00.16 audit: -91.3 m index: -91.3 m</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * acct6286 (r3) acct6286.6</td>
<td>request to remove this course from catalog ACCT 6286 Governance, Risk Management and Compliance (2 semester credit hours) Examines how corporate directors, senior officers, professional service providers, and consultants design, develop, and implement systems of corporate governance. Various experts in the field speak to the class on the relationship between corporate governance and risk management, compliance, regulations, regulatory reporting, ethics and corporate culture. Prerequisites: ACCT 6201 and ACCT 6202. (2-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-27 09:27:11 014016 52.0301.00.16 audit: -91.3 m index: -91.3 m</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6287 (r1) acct6287.3</td>
<td>ACCT 6287 Board Membership, Risk Management and Compliance (2 semester credit hours) Executive Education Course. This course will consider the functions of the board of directors. Topics include strategy, risk management and compliance. (2-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 09:46:09 NOLINK 52.0301.00.16 audit: -91.2 m index: -91.2 m</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6291 (r3) acct6291.7</td>
<td>ACCT 6291 Professional Accounting - Financial (2 semester credit hours) This course is designed to help students prepare for careers in professional accounting and professional examinations. Prerequisites: (ACCT 3331 or ACCT 6330) and (ACCT 3332 or ACCT 6332) and (ACCT 6333 or ACCT 6365). (2-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 19:21:17 014007 52.0301.00.16 audit: -91.1 m index: -91.1 m</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

ACCT 6291 Professional Accounting - Financial (2 semester credit hours) This course is designed to help students prepare for careers in professional accounting and professional examinations. Prerequisites: (ACCT 3331 or ACCT 6330) and (ACCT 3332 or ACCT 6332) and (ACCT 6333 or ACCT 6365). (2-0) R

peoplesoft diff: 014007 2013-08-25 adp130030

ACCT 6291 Professional Accounting - Financial (2 semester credit hours) This course is designed to help students prepare for careers in professional accounting and professional examinations. Prerequisites: (ACCT 3331 or ACCT 6330 or ACCT 6330) and (ACCT 3332 or ACCT 6332) or (ACCT 6333 or ACCT 6365). (2-0) R

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6292</td>
<td>(r3) acct6292.5</td>
<td>ACCT 6292 Professional Accounting - Audit (2 semester credit hours) This course is designed to help students prepare for careers in professional accounting and professional examinations. Prerequisites: (ACCT 4334 or ACCT 6334), and ACCT 6335. (2-0) R peoplesoft diff: 014008 2013-08-25 adp130030 ACCT 6292 Professional Accounting - Audit (2 semester credit hours) This course is designed to help students prepare for careers in professional accounting and professional examinations. Prerequisites: ACCT 3334 (ACCT 4334 or ACCT 6334, 6334), and ACCT 6335. (2-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-20 16:51:01 014008 52.0301.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6305</td>
<td>(r6) acct6305.9</td>
<td>ACCT 6305 Accounting for Managers (3 semester credit hours) Fundamental concepts in accounting and financial reporting are presented from the perspective of business managers. May not be taken used to fulfill degree requirements in MS Accounting. Credit cannot be received for both courses, (ACCT 6201 or ACCT 6202) and ACCT 6305. (3-0) S peoplesoft diff: 000114 2013-08-25 adp130030 ACCT 6305 Accounting for Managers (3 semester credit hours) Fundamental concepts in accounting and financial reporting are presented from the perspective of business managers. May not be used to fulfill degree requirements in MS Accounting. Credit cannot be received for both courses, (ACCT 6201 or ACCT 6202) and ACCT 6305. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-16 08:55:42 000114 52.0301.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6309 (r2) acct6309.12</td>
<td>ACCT 6309 (MIS 6309 and OPRE 6391) Business Data Warehousing (3 semester credit hours) This course provides the student with in depth knowledge of data warehousing principles, data warehouse techniques, and business intelligence systems. The course introduces the topics of data warehouse design, Extract-Transform-Load (ETL), data cubes, and data marts. Students will create business intelligence using data warehouses with several OLAP and analytical tools. SAP, Business Objects, Cognos, or other data warehousing tools will be used to illustrate data warehousing concepts. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxao63000 2013-10-20 17:57:30 014279 52.1201.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 014279 2013-08-25
rmb101000

ACCT 6309 (MIS 6309, 6309, and OPRE 6391) Business Data Warehousing (3 semester credit hours) This course provides the student with in depth knowledge of data warehousing principles, data warehouse techniques, and business intelligence systems. The course introduces the topics of data warehouse design, Extract-Transform-Load (ETL), data cubes, and data marts. Students will create business intelligence using data warehouses with several OLAP and analytical tools. The course currently uses SAP BW, SAP BEx, SAP Data Mining Workbench, and SAP SAP. Business Objects as Objects, Cognos, or other data warehousing tools will be used to illustrate these data warehousing concepts. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6320</td>
<td>ACCT 6320 (MIS 6320 and OPRE 6393) Database Foundations (3 semester credit hours) The course is designed to provide database knowledge for non-MIS business students to function effectively in their functional area. The course covers fundamentals of relational databases, relational database structure, database queries, and reports. Structured Query Language will be used extensively. Applications of databases for accounting, finance, marketing, and other areas of business will be emphasized. May not be used to fulfill degree requirements in MS Information Technology and Management. Credit cannot be received for both courses, MIS 6320 and MIS 6326. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxao63000</td>
<td>2013-12-01 17:24:53</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6330 (r4) acct6330.6</td>
<td>ACCT 6330 Intermediate Financial Accounting I (3 semester credit hours) A study of external financial reporting, including measurement and reporting of cash, receivables, inventories, property, plant, and equipment, and intangibles. Financial statement presentation issues are analyzed to gain an appreciation for the impact of generally accepted accounting principles on business decisions. May not be used to fulfill degree requirements in MS Accounting program because it is a program prerequisite. Prerequisite: ACCT 6201 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-19 17:07:19 000116 52.0301.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6331 (r7) acct6331.9</td>
<td>ACCT 6331 Cost Accounting (3 semester credit hours) Nature, measurement and analysis of accounting data appropriate to managerial decision making, and comprehensive budgeting; statistical cost estimation; cost-volume-profit analysis; gross profit analysis; application of probability to cost control; capital planning. May not be used to fulfill degree requirements in MS Accounting program because it is a program prerequisite. Prerequisites: ACCT 6202 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-19 17:07:58 000117 52.0301.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f2b2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Req Type</th>
<th>Course Code</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6332 (r10) acct6332.12</td>
<td>ACCT 6332 Intermediate Financial Accounting II (3 semester credit hours) This course is a continuation of topics in external financial reporting, including: issues related to the measurement and reporting of current liabilities and contingencies, bonds, leases, deferred taxes, pensions, stock-based compensation plans, shareholders equity, earnings per share, accounting changes, and cash flows. Current generally accepted accounting principles for financial reporting are analyzed. May not be used to fulfill degree requirements in MS Accounting program because it is a program prerequisite. Prerequisite: ACCT 6330 or equivalent. (3-0) S</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-12-20 08:25:54 000118 52.0301.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6333 (r10) acct6333.12</td>
<td>ACCT 6333 Advanced Financial Reporting (3 semester credit hours) The application of accounting principles in complex settings is studied. Topics include accounting for business combinations, consolidated entities, partnerships, transactions in foreign currency, hedging of foreign currency and translation of financial statements reported in foreign currency. Prerequisite: ACCT 6332. (3-0) S</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-10-20 12:40:11 000119 52.0301.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acct6334 (r8) acct6334.8</td>
<td>ACCT 6334 Auditing (3 semester credit hours) This course introduces the basic concepts, philosophy, standards, procedures, and practices of auditing. Topics include generally accepted auditing standards, the changing role of the independent auditor, professional conduct and ethics, auditor's reporting responsibilities, risk assessment, internal control, evidential matter, and management fraud. Prerequisite: ACCT 6330 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:33:55 000120 52.0303.00.16 audit: -92.1 m index: -92.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acct6335 (r5) acct6335.5</td>
<td>ACCT 6335 Ethics for Professional Accountants (3 semester credit hours) Ethical reasoning, integrity, objectivity, independence and other core values as defined by the American Institute of Certified Public Accountants are presented. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:34:02 000121 52.0301.00.16 audit: -92.1 m index: -92.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6336 (r10)</td>
<td>acct6336.11</td>
<td>ACCT 6336 (HMGT 6336) Information Technology Audit and Risk Management (3 semester credit hours) Management's role in designing and controlling information technology used to process data is studied. Topics include the role of internal and external auditors in systems development, information security, business continuity, information technology, internet, change management and operations. Focus is placed on the assurance of controls over information technology risks and covers topics directly related to the Certified Information Systems Auditor (CISA) exam. (3-0)</td>
<td>Y</td>
<td>phase: approve</td>
<td>2013-09-26 15:34:13 000122 52.0302.00.16 audit: -92.1 m index: -92.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6338 (r8)</td>
<td>acct6338.11</td>
<td>ACCT 6338 (MIS 6338) Accounting Systems Integration and Configuration (3 semester credit hours) Using SAP or similar software, this course focuses on accounting information systems as part of integrated enterprise systems and modern systems analysis and design of integrated accounting systems. Emphasis will be on integrated business processes and related financial transaction flows, system analysis and design methods in SAP with focus on configuration methods. Prerequisite or Corequisite: ACCT 6202 or ACCT 6305 or equivalent. (3-0)</td>
<td>R</td>
<td>phase: approve</td>
<td>2013-11-29 19:24:16 000124 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 000122 2013-08-25
adp130030

ACCT 6336 (HMGT 6336) Information Technology Audit and Risk Management (3 semester credit hours) Management's role in designing and controlling information technology used to process data is studied. Topics include the role of internal and external auditors in systems development, information security, business continuity, information technology, internet, change management and operations. Focus is placed on the assurance of controls over information technology risks and covers topics directly related to the Certified Information Systems Auditor (CISA) exam. (3-0) Y

peoplesoft diff: 000124 2013-08-25
adp130030

ACCT 6338 (MIS 6338) Accounting Systems Integration and Configuration (3 semester credit hours) Using SAP or similar software, this course focuses on accounting information systems as part of integrated enterprise systems and modern systems analysis and design of integrated accounting systems. Emphasis will be on integrated business processes and related financial transaction flows, system analysis and design methods in SAP with focus on configuration methods. Prerequisite or Corequisite: ACCT 6202 or ACCT 6305 or equivalent. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>req type course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2014</td>
<td>remove * acct6339 (r7) acct6339.8</td>
<td>request to remove this course from catalog ACCT 6339 Financial Reporting using XBRL and XML (3 semester credit hours) Using case studies reflecting different ways of collecting and analyzing financial and managerial information, students are introduced to enterprise software, financial reporting using XBRL, XML, and the importance of multiple views of accounting data for decision-making. Relevant e-business aspects will be covered. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-27 09:27:40 000125 52.0305.00.16 audit: -91.3 m index: -91.3 m</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6340 (r5) acct6340.6</td>
<td>ACCT 6340 (MIS 6308) System Analysis and Project Management (3 semester credit hours) Provides the student with an in-depth knowledge of object oriented systems analysis and design procedures. Software project management techniques will be introduced. At the end of the course, the student will be able to analyze business solutions and design computer based information systems using object-oriented methodologies. Prerequisite or Co/Prerequisite: MIS 6326. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-30 10:32:14 000126 52.1206.00.16 audit: -91.1 m index: -91.1 m</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 000126 2012-08-26 sxh121431 ACCT 6340 (MIS 6308) System Analysis and Project Management (3 semester credit hours) Provides the student with an in-depth knowledge of object oriented systems analysis and design procedures. Software project management techniques will be introduced. At the end of the course, the student will be able to analyze business solutions and design computer based information systems using object-oriented methodologies. Co/Prerequisite: Prerequisite or Co/Prerequisite: MIS 6326. (3-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6341 (r6) acct6341.8</td>
<td>ACCT 6341 Planning, Control and Performance Evaluation (3 semester credit hours) The application of management accounting for planning, control and performance evaluation is studied for various business situations. Topics include planning, budgeting, performance evaluation, centers of responsibility, modern control methods, management compensation, and transfer pricing. Extensive use of cases is used to demonstrate apply strategic management accounting concepts. Prerequisite: ACCT 6202 or ACCT 6305 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-20 12:49:45 000127 52.0301.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6342 (r11) acct6342.12</td>
<td>ACCT 6342 Strategic Cost Management (3 semester credit hours) Cost analysis is integrated with strategic analysis to understand the role of financial and non-financial information in operational and strategic decision-making. Topics may include strategic value chain analysis, strategic positioning analysis, activity based management, line of business evaluation, life cycle costing, technology costing, target costing, quality cost management, balanced scorecard and sustainability reporting. Prerequisite: ACCT 6202 or ACCT 6305 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-20 12:51:04 000128 52.0301.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | acct6343 (r11) acct6343.15 | ACCT 6343 Accounting Information Systems (3 semester credit hours) Managing the design, control and operation of accounting information systems in a computerized organizational environment is studied. The emphasis is on identifying the information needs of decision makers and developing appropriate business process control in the design of accounting information systems. Prerequisite: ACCT 6201 or ACCT 6305 or equivalent. (3-0) S | phase: approve
status: approving
audit: 30 | sxao63000
2013-11-30
11:17:16
000129
52.1201.00.16
audit: -91.1 m
index: -91.1 m
match_fail | process onion |
| 2014-open | edit * | acct6344 (r6) acct6344.7 | ACCT 6344 Financial Statement Analysis (3 semester credit hours) Analysis of financial statements for evaluating firm performance and risk. Topics include interpretation of financial statements and footnotes, managers' incentives for earnings manipulation, comparative analysis of firms, and ethics in financial reporting. Prerequisite: ACCT 6201 or ACCT 6305 or equivalent. (3-0) S | phase: approve
status: approving
audit: 30 | sxao63000
2013-10-20
12:52:23
000130
52.0301.00.16
audit: -91.4 m
index: -91.4 m
match_fail | process onion |
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6345 (r5)</td>
<td>ACCT 6345 Business Valuation (3 semester credit hours) Financial statement based valuation models are studied. Topics include earnings management, income measurement and profitability assessment, discounted cash flow, and accounting-based valuation models. Prerequisite: ACCT 6201 or ACCT 6305 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-20 12:53:02 000131 52.0301.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6349.5</td>
<td>ACCT 6349 (MIS 6302) Information Technology Strategy and Management (3 semester credit hours) This course explores the strategic management and control issues associated with information technology. It provides a framework to understand how IT strategy aligns with business strategy and focuses on developing an understanding of the key information requirements for developing an IT strategy and systems architecture. This includes conducting IT sourcing analysis, and managing IT investments effectively to maximize business value. The course will consist of a mix of real-world case studies on IT strategy development across different industries. Credit cannot be received for both ACCT 6349 and MIS 6302. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-29 19:25:17 013555 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>acct6350 (r2)</td>
<td>acct6350.2</td>
<td>ACCT 6350 Fundamentals of Taxation I (3 semester credit hours) Introduction to the role of taxes in today's society and their impact on individuals and business entities; emphasis on federal individual income taxation. Prerequisite: ACCT 6201 or equivalent. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 014264 2013-08-25 sxr090100</td>
<td></td>
<td></td>
<td>ACCT 6350 Fundamentals of Taxation I (3 semester credit hours) Introduction to the role of taxes in today's society and their impact on individuals and business entities; emphasis on federal individual income taxation. Prerequisite: ACCT 6201 or equivalent. (3-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>acct6351 (r8)</td>
<td>acct6351.9</td>
<td></td>
<td>request to remove this course from catalog ACCT 6351 Individual Taxation (3 semester credit hours) Taxation principles and concepts for individual income taxation are studied. Prerequisite: ACCT 6201 or equivalent. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 000135 2013-10-27 09:28:04 sxr063000 52.1601.00.16 audit: -91.3 m index: -91.3 m</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>acct6352 (r7)</td>
<td>acct6352.8</td>
<td></td>
<td>request to remove this course from catalog ACCT 6352 Corporate Taxation (3 semester credit hours) Income taxes on corporations and associations, reorganizations, and corporate distributions are examined. The role of taxes in business decisions and business strategy is emphasized. Prerequisite: ACCT 6350 or ACCT 6351 or equivalent. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 000136 2013-10-27 09:28:29 sxr063000 52.1601.00.16 audit: -91.3 m index: -91.3 m</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f2b2c37a6ff775e1ca/makepdf 15/258
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
</table>
| 2014-open | edit * acct6353 (r6) acct6353.8 | ACCT 6353 Fundamentals of Taxation II (3 semester credit hours) Certain common and special Federal tax laws for individuals, partnerships, corporations, estates, trusts, and miscellaneous entities. Topics include income tax returns for partnerships and business corporations. Survey coverage of corporate tax issues, IRS audits, and exposure to partnerships, estate and gifts and international taxation. Prerequisite: ACCT 6350 or ACCT 3350 or ACCT 3351 or equivalent. (3-0) S
peoplesoft diff: 000137 2013-08-25
adp130030
ACCT 6353 Fundamentals of Taxation II (3 semester credit hours) Certain common and special Federal tax laws for individuals, partnerships, corporations, estates, trusts, and miscellaneous entities. Topics include income tax returns for partnerships and business corporations. Survey coverage of corporate tax issues, IRS audits, and exposure to partnerships, estate and gifts and international taxation. Prerequisite: ACCT 6350 or ACCT 6351 or ACCT 3350 or ACCT 3351 or equivalent. (3-0) S | phase: approve
status: approving
audit: 30 | sxao63000
2013-11-27
11:37:55
000137
52.1601.00.16
adit: -91.1 m
index: -91.1 m
match_fail | process orion |
| 2014-open | edit * acct6354 (r6) acct6354.7 | ACCT 6354 Partnership Taxation (3 semester credit hours) The tax law is studied as it relates to the formation of a partnership, the determination of the taxable income of the partnership and the distributive shares of the partners, the tax consequences of distributions by a partnership and of transfers of interests in a partnership. Prerequisite: ACCT 6350 or equivalent. (3-0) S
peoplesoft diff: 000136 2013-08-25
adp130030
ACCT 6354 Partnership Taxation (3 semester credit hours) The tax law is studied as it relates to the formation of a partnership, the determination of the taxable income of the partnership and the distributive shares of the partners, the tax consequences of distributions by a partnership and of transfers of interests in a partnership. Prerequisite: ACCT 6350 or equivalent. (3-0) S | phase: approve
status: approving
audit: 30 | sxao63000
2013-11-27
11:41:38
000138
52.1601.00.16
adit: -91.1 m
index: -91.1 m
match_fail | process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6356 (r7) acct6356.9</td>
<td>ACCT 6356 Tax Research (3 semester credit hours) Identification and evaluation of legal authorities applicable to tax issues for individual and business taxpayers are studied. Application of research in tax planning and administrative procedures in a tax practice, emphasizing the structure of the Internal Revenue Service and its impact on a tax practitioner. Prerequisite: ACCT 6350 or ACCT 3350 or ACCT 3351 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-27 11:40:17 000140 52.1601.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | acct6359 (r1) acct6359.4 | ACCT 6359 Accounting Policy and Research (3 semester credit hours) This course enables students to develop their knowledge and appreciation of current debates that surround the accounting profession. Students sharpen their critical thinking skills in the context of these issues and form and defend opinions about contemporary regulatory and market issues. The course exposes students to important academic research in accounting and the primary methods underlying it. The course focuses on in-class discussions and presentations, features guest lecturers, consists of a significant amount of reading material and requires class participation. Prerequisites: ACCT 6330 and ACCT 6332. (3-0) R | phase: approve | sxa063000 2013-11-29 19:26:53 NOLINK 52.0305.00.16 audit: -91.1 m index: -91.1 m match_fail | process orion |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6362 (r7) acct6362.9</td>
<td>ACCT 6362 International Accounting (3 semester credit hours) Accounting and auditing functions and activities in various international environments are evaluated also in the context of international accounting and auditing harmonization. Causes of international differences and international classification efforts are examined. Comparison between International Financial Reporting Standards (IFRS) and prevailing US Accounting Principles (FASB) and contemplated convergence between the two systems are appraised. Accounting concepts, standards, methods and practices in foreign environments and their relationship to US accounting are assessed. Topics include foreign currency translation, consolidation, performance measurement of international entities, accounting for international operations, comparative accounting systems, transfer pricing and financial reporting of foreign and multinational corporations. Prerequisite: ACCT 6201 or ACCT 6305 or equivalent or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
</tbody>
</table>

peoplesoft diff: 000145 2011-08-23 sxh121431

ACCT 6362 International Accounting (3 semester credit hours) Accounting and auditing functions and activities in various international environments are evaluated also in the context of international accounting and auditing harmonization. Causes of international differences and international classification efforts are examined. Comparison between International Financial Reporting Standards (IFRS) and prevailing US Accounting Principles (FASB) and contemplated convergence between the two systems are appraised. Accounting concepts, standards, methods and practices in foreign environments and their relationship to US accounting are assessed. Topics include foreign currency translation, consolidation, performance measurement of international entities, accounting for international operations, comparative accounting systems, transfer pricing and financial reporting of foreign and multinational corporations. Prerequisite: ACCT 6201 or ACCT 6305 or equivalent or instructor consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6365 (r6) acct6365.10</td>
<td>ACCT 6365 Governmental and Not-For-Profit Accounting (3 semester credit hours) Accounting practices for governmental and not-for-profit organizations are studied, including accounting requirements for institutions, municipalities, and state and federal government. Topics include performance budgeting, systems analysis, and accounting implications of economic decisions. Prerequisite: (ACCT 6201 and ACCT 6202) or ACCT 6305 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>sxa063000 2013-12-16 08:56:19 000148 52.0301.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6366 (r1) acct6366.3</td>
<td>ACCT 6366 Special Topics in Taxation (3 semester credit hours) This course builds upon topics taught throughout the required tax curriculum. Topics will be determined based on current tax events and issues and may delve into advanced problems in areas such as international taxation, state and local tax, as well as other current and relevant tax topics. This course provides students with the opportunity to integrate and apply their tax knowledge through problem solving based on hypothetical taxpayers. Prerequisite: ACCT 6353. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>sxa063000 2013-11-29 19:18:31 NOLINK 52.0305.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6370 (r6)</td>
<td>acct6370.6</td>
<td></td>
<td>ACCT 6370 Business Law (3 semester credit hours) Laws affecting business organizations and laws influencing managerial decision-making are examined. Topics include contract law, law of agency, law of commercial transactions, and the uniform commercial code and the laws relating to the formation and operation of corporations. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 000149 2012-08-26 sxh121431

ACCT 6370 Business Law (3 semester credit hours) Laws affecting business organizations and laws influencing managerial decision-making are examined. Topics include contract law, law of agency, law of commercial transactions, and the uniform commercial code and the laws relating to the formation and operation of corporations. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>course req type</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6377</td>
<td>acct6377.5</td>
<td>ACCT 6377 Corporate Governance (3 semester credit hours) Corporate governance is a system of policies and processes established and maintained by a board of directors and top management to oversee an organization's strategic activities and resulting performance. The system seeks to ensure proper accountability, probity, and openness in the conduct of an organization's business for the long-term benefit of its shareholders by causing the right questions to be asked and by placing checks and balances in place to ascertain the answers reflect reality. Thus, corporate governance focuses on enhancing the relationships among a company's board of directors, top management, investors (particularly institutional investors), and other stakeholders. Each session has two themes: issues are addressed academically by the instructor and pragmatically by prominent practitioners. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-20 13:07:59 013481 52.0305.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

ACCT 6377 Corporate Governance (3 semester credit hours) Corporate governance is a system of policies and processes established and maintained by a board of directors and top management to oversee an organization's strategic activities and resulting performance. The system seeks to ensure proper accountability, probity, and openness in the conduct of an organization's business for the long-term benefit of its shareholders by causing the right questions to be asked and by placing checks and balances in place to ascertain the answers reflect reality. Thus, corporate governance focuses on enhancing the relationships among a company's board of directors, top management, investors (particularly institutional investors), and other stakeholders. Each session has two themes: issues are addressed academically by the instructor and pragmatically by prominent practitioners. **Prerequisites:** ACCT 6201 and ACCT 6202. Course open to all JSOM masters' candidates. (3-0) S
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * acct6380 (r3) acct6380.5</td>
<td>ACCT 6380 (HMGT 6380) Internal Audit (3 semester credit hours) The course covers internal audit from a broad perspective that includes information technology, business processes, and accounting systems. Topics include internal auditing standards, risk assessment, governance, ethics, audit techniques, consulting and emerging internal audit issues. This is the first course leading to Internal Auditing Education Partnership (IAEP) Certificate and prepares students for the Certified Internal Auditor Exam. Students work on internal audits as part of class along with learning the latest internal audit techniques. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:38:04 013497 52.0303.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * acct6382 (r4) acct6382.8</td>
<td>ACCT 6382 (HMGT 6382) Advanced Auditing (3 semester credit hours) This course provides an indepth view of issues related to internal and external audit. Current and emerging issues such as Enterprise Risk Management, Advanced Communication Techniques, Managing the Audit Group, and Quality Assessment Reviews are all covered as part of the class. Weekly assignments and case studies are discussed in detail in class along with a major project with practitioners. The course covers topics necessary for students to work as an auditor in charge. Prerequisite: ACCT 6334 or ACCT 6380 or HMGT 6380 or ACCT 4334. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-19 17:20:58 013567 52.0303.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
</tbody>
</table>

ACCT 6382 (HMGT 6382) Advanced Auditing (3 semester credit hours) This course provides an indepth view of issues related to internal and external audit. Current and emerging issues such as Enterprise Risk Management, Advanced Communication Techniques, Managing the Audit Group, and Quality Assessment Reviews are all covered as part of the class. Weekly assignments and case studies are discussed in detail in class along with a major project with practitioners. The course covers topics necessary for students to work as an auditor in charge. **Prerequisites:** ACCT 6334 or ACCT 6380 or HMGT 6380. 6380 or ACCT 4334. (3-0) R

peoplesoft diff: 013567 2013-08-25 adp130030
ACCT 6383 Fraud Examination (3 semester credit hours) This course will include a review of techniques used in solving financial crimes including: interviewing techniques, rules of evidence, sources of information, forensic accounting procedures and current issues in financial investigations. The course will include the criminal statutes related to financial crimes. Case studies will be used to discuss interviewing techniques and other indirect methods of proof in resolving financial crimes. Various financial documents and instruments will be discussed and reviewed as part of the documentary evidence to support financial investigations. Prerequisites: ACCT 6330 and ACCT 6332 or equivalent. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>acct6384 (r3)</td>
<td>acct6384.3</td>
<td>ACCT 6384 Analytical Reviews Using Audit Software (3 semester credit hours) This course will introduce students to the theory and tools used to leverage automated auditing software, such as ACL and IDEA. It will include an analytical review of accounting and operational data for internal auditors. The course includes hands-on use of audit software and the development of an audit dashboard. The course will also explore ways to leverage the enterprise technology and use available technology to monitor controls and detect fraud. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:38:30 013484 52.0303.00.16 audit: -92 m index: -92 m</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>acct6385 (r2)</td>
<td>acct6385.4</td>
<td>ACCT 6385 Managerial Accounting in Enterprise Systems (3 semester credit hours) This course will cover the complexity and functionality of managerial accounting systems within Enterprise Systems. Cost center accounting, profitability analysis, product costing, profit center accounting and reporting related to managerial decision-making will be covered. Use of SAP or similar software will be used to demonstrate concepts. Prerequisite: (ACCT 6201 and ACCT 6202) or ACCT 6305. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-16 08:56:52 013485 52.0305.00.16 audit: -91 m index: -91 m</td>
<td>process orion</td>
</tr>
<tr>
<td>start<sup>end</sup></td>
<td>req type</td>
<td>course<sup>req_id</sup></td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6386 (r4) acct6386.5</td>
<td>ACCT 6386 Governance, Risk Management and Compliance (GRC) (3 semester credit hours) GRC examines, from the perspective of corporate directors, senior officers, professional service providers, and consultants the relationship between Corporate Governance and selected components: risk management, compliance, regulations, and regulatory reporting. In addition, these will be linked to two other aspects of Corporate Governance: ethics and corporate culture. Experts in the field provide insights into how systems of corporate governance are designed, developed, and implemented. GRC benefits graduates interested in pursuing careers as auditors (external and internal), consultants, forensic accountants, risk management experts, compliance officers, and ethics officers. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-10-20 13:12:58 013486 52.0305.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>peoplesoft diff: 013486 2013-08-25 adp130030</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog_course_description</td>
<td>request_status</td>
<td>request_metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6387 (r2) acct6387.2</td>
<td>ACCT 6387 Executive Compensation and Shareholder Returns (3 semester credit hours) Covers issues related to executive compensation and its impact on shareholder wealth. Students review the history of executive compensation and the relationship of executive pay to average employee pay, as well as data on whether there is alignment between current compensation methods and shareholder returns. This will include study of the corporate scandals which led to the Sarbanes-Oxley Act of 2002, the proliferation of golden parachutes, pending legislation and regulations such as "say on pay" and increasing federal involvement in compensation issues, e.g. the appointment of a federal "pay czar" at the Department of the Treasury to manage executive salaries at companies receiving federal bailout money. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>cxj140030 2013-09-26 15:39:14 013545 52.0301.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6388 (r2) acct6388.3</td>
<td>ACCT 6388 Accounting Communications (3 semester credit hours) This course is designed to improve accounting students' language and communication skills through lectures, readings, presentations, and assignments. Introduction to various types of professional accounting-related communication, both written and oral. Students apply effective communication skills in various assignments such as memos, emails, professional branding, proposals, presentations and interviews. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-20 13:14:22 014206 52.0305.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * acct6389 (r2) acct6389.3</td>
<td>ACCT 6389 Volunteer Income Tax Assistance Practicum (3 semester credit hours) This course is designed to provide students with an opportunity to expand and apply their tax compliance skills in a community service environment through the execution of the Volunteer Income Tax Assistance (VITA) program through a combination of in-class seminars and out-of-classroom application. Prerequisite: ACCT 3350 or ACCT 3351 or ACCT 6350. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-27 11:43:29 014207 52.0305.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6v98 (r2)</td>
<td>acct6v98.12</td>
<td>ACCT 6V98 Accounting Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). JSOM Internship Coordinator consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2013-12-20 08:40:41</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct6v99 (r2)</td>
<td>acct6v99.6</td>
<td>ACCT 6V99 Special Topics in Accounting (1-4 semester credit hours) May be lecture, readings or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2013-12-01 19:06:39</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct7313 (r2)</td>
<td>acct7313.5</td>
<td></td>
<td>ACCT 7313 Contemporary Research in Accounting and Economics (3 semester credit hours) This course will introduce analytical and empirical methods appropriate for addressing accounting questions in the capital markets arena. The emphasis will be to provide a foundation for research methods in accounting. Topics will include use of accounting information for valuation, value relevance, earnings management, accounting and audit as corporate mechanisms and some anomalies. May be repeated for credit as topics vary. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-22 08:33:55 013488 52.0601.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct7314 (r2)</td>
<td>acct7314.4</td>
<td></td>
<td>ACCT 7314 Empirical Research in Financial Reporting (3 semester credit hours) Presents current areas of research in the area of financial reporting. Emphasis is ongoing and recently completed research studies, including understanding of their antecedents and research methodologies. Capital market based empirical research topics will be covered. In particular, the role of analysts as financial information intermediaries will be examined. May be repeated for credit as topics vary. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-22 08:34:42 013489 52.0801.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct7323</td>
<td>acct7323.3</td>
<td>ACCT 7323 Empirical Research in Accounting and Economics (3 semester credit hours) This course is designed to further the ability of the students to critically analyze completed research efforts, to provide insight into how a given stream of research (e.g. earnings return association studies, trading volume) develops over time and to further the students' knowledge of academic accounting research in the area of financial accounting/reporting. May be repeated for credit as topics vary. (3-0) T</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-20 16:58:08 013490 52.0601.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct7324</td>
<td>acct7324.2</td>
<td>ACCT 7324 Empirical Research in Financial Accounting (3 semester credit hours) Presents a detailed study of past and current empirical research in the areas of financial accounting and other related fields. Emphasis is on a clear understanding of hypothesis formulation, research design, sample selection and statistical techniques used in these studies. Topics include financial reporting, valuation and analyst forecast. May be repeated for credit as topics vary. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:41:45 013632 52.0304.00.16 audit: -92.2 m index: -92.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>req course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct7333 (r2)</td>
<td>acct7333.2</td>
<td>ACCT 7333 Analytical Research in Accounting and Economics (3 semester credit hours) Presents a detailed study of economics based analytical research in accounting. Emphasis is on a clear understanding of theoretical paradigms, modeling issues, interpretation of the results, and empirical applications of analytical models. Topics will include the role of information for valuation, contracting, and performance evaluation, and analysis of financial and non-financial performance measurement. May be repeated for credit as topics vary. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030 2013-09-26 15:41:54 013491 52.0601.00.16 audit: -92.1 m index: -92.1 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013491 2011-08-23 sxh121431

ACCT 7333 Analytical Research in Accounting and Economics (3 semester credit hours) Presents a detailed study of economics based analytical research in accounting. Emphasis is on a clear understanding of theoretical paradigms, modeling issues, interpretation of the results, and empirical applications of analytical models. Topics will include the role of information for valuation, contracting, and performance evaluation, and analysis of financial and non-financial performance measurement. May be repeated for credit as topics vary. (3-0) T

| 2014-open | edit * | acct7334 (r2) | acct7334.2 | ACCT 7334 Research Foundations in Accounting (3 semester credit hours) Presents a detailed study of economics based research in financial accounting reporting. Emphasis is on providing an understanding of the current research in capital market based financial accounting. This course provides a platform for supplementing and integrating the students' knowledge of basic research methods and tools and requires the students to identify an accounting topic that they are interested in and to write a research paper in that topic. May be repeated for credit as topics vary. (3-0) T | phase: approve | status: approving | audit: 30 | cxj140030 2013-09-26 15:42:04 013492 52.0301.00.16 audit: -92.1 m index: -92.1 m match_fail | |

peoplesoft diff: 013492 2011-08-23 sxh121431

ACCT 7334 Research Foundations in Accounting (3 semester credit hours) Presents a detailed study of economics based research in financial accounting reporting. Emphasis is on providing an understanding of the current research in capital market based financial accounting. This course provides a platform for supplementing and integrating the students' knowledge of basic research methods and tools and requires the students to identify an accounting topic that they are interested in and to write a research paper in that topic. May be repeated for credit as topics vary. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct7343 (r3)</td>
<td>acct7343.3</td>
<td>ACCT 7343 Empirical Research in Managerial Accounting (3 semester credit hours) Presents a detailed study of empirical research in the area of managerial accounting. Emphasis in on providing an understanding of the current research in managerial accounting. Topics covered include managerial incentives, design of compensation contracts, performance measurement and cost management. May be repeated for credit as topics vary. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:42:10</td>
<td>013493 52.0301.00.16 audit: -92.1 m index: -92.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acct7344 (r2)</td>
<td>acct7344.2</td>
<td>ACCT 7344 Advanced Research in Accounting (3 semester credit hours) This course exposes the students to a wide range of empirical research methodologies including large sample archival research. Emphasis is on providing a clear understanding of the research methods including the theoretical aspects that underlie. May be repeated for credit as topics vary. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:42:19</td>
<td>013494 52.0301.00.16 audit: -92.1 m index: -92.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps6151 (r1)</td>
<td>bps6151.4</td>
<td>BPS 6151 Executive Study Trip - Americas (1 semester credit hour) Executive Education Course. This course focuses on economic and political strategy. Considers international business, political, and cultural issues for doing business globally. Instructor consent required. (1-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 19:32:16</td>
<td>NOLINK 52.1101.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>bps6250 (r2)</td>
<td>request to remove this course from catalog BPS 6250 Business Transformation Project I (2 semester credit hours) This two hour course will immerse the student in an initial examination and/or design of a substantial project within a corporation intended to raise corporate value by transforming the business. The emphasis will be on new uses of assets and resources, not the improved management of existing activities. This is intended to develop the executive capacity of the individual student. (2-0) Y</td>
<td>phase: approve</td>
<td>sx063000 2013-11-10 09:05:30 013061 52.0201.00.16 audit: -91.2 m index: -91.2 m</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bps6251 (r3)</td>
<td>BPS 6251 Capstone: Integration Enterprise (2 semester credit hours) Executive Education Course. This 2-hour course will immerse the student in an initial examination and/or design of a substantial project within a corporation intended to raise corporate value by transforming the business. The emphasis will be on new uses of assets and resources, not the improved management of existing activities. This is intended to develop the executive capacity of the individual student. (2-0) Y</td>
<td>phase: approve</td>
<td>sx063000 2013-12-16 08:57:40 014101 52.0201.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>bps6252 (r2)</td>
<td>request to remove this course from catalog BPS 6252 Executive Study Trip: Washington DC (2 semester credit hours) This course focuses on economic and policy strategy and management as it related to governmental processes nationally and internationally. Considering business, political, and cultural issues related to conducting business in the United States and around the world, this course goes behind the scenes to learn the processes needed to effectively identify, understand and capture policy and regulatory efforts at early stages. All this is pertinent to business decision making and management anywhere in the world. (2-0) Y</td>
<td>phase: approve</td>
<td>sx063000 2013-10-25 09:03:45 014102 52.0201.00.16 audit: -91.5 m index: -91.5 m</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps6253 (r2)</td>
<td>bps6253.2</td>
<td>BPS 6253 Strategic Leadership (2 semester credit hours) Addresses the challenge of leading organizations in dynamic and challenging environments. Overall goal is to not only question one's assumptions about leadership, but also enhance skills and acquire new content knowledge. Topics include visionary and transformational leadership; post-heroic leadership; empowerment; leveraging and combining resources; designing organizations; and ethics. (2-0) Y</td>
<td>phase: approve</td>
<td>2013-09-27 09:16:54 014214</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps6254 (r1)</td>
<td>bps6254.4</td>
<td>BPS 6254 Enterprise Transformation (2 semester credit hours) Executive Education Course. Provides students with a toolbox of strategy models to develop corporate strategies and implement corporate transformation. Instructor consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>2013-10-31 13:37:13 NOLINK</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps6255 (r1)</td>
<td>bps6255.6</td>
<td>BPS 6255 Field Project (2 semester credit hours) Executive Education Course. Students work with a local business to understand and evaluate current corporate issues. Students develop a transformational strategy and present their findings to corporate sponsors and faculty. Prerequisites: BPS 6254 and instructor consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>2013-12-20 11:40:15 NOLINK</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>bps6256</td>
<td>BPS 6256 C-Suite Leadership (2 semester credit hours) Executive Education Course. This course explores the leadership of executive officers in influencing and implementing public policy; creating the public image of the firm; and corporate social responsibility. Instructor consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-29 19:35:21 52.0201.00.16 NOLINK audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bps6256.4</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>audit: 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BPS 6256 C-Suite Leadership (2 semester credit hours) Executive Education Course. This course explores the leadership of executive officers in influencing and implementing public policy; creating the public image of the firm; and corporate social responsibility. Instructor consent required. (2-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove</td>
<td>*</td>
<td>bps6260</td>
<td>BPS 6260 Readings in Management (2 semester credit hours) Examination of the development of management thought and practice as business developed into a major institution in our society. Readings in management thought assignments to accomplish this purpose. Each student is expected to develop his/her own written philosophy of management as a major objective of the course. May be repeated for credit as topics vary. Prerequisite: BPS 6310. (2-0) T</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-10 09:05:46 001980 52.0201.00.16 audit: -91.2 m index: -91.2 m</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bps6260.10</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>request to remove this course from catalog</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove</td>
<td>*</td>
<td>bps6301</td>
<td>BPS 6301 The Environment of Business (3 semester credit hours) An examination of the relationship between the management of micro-organizational units (corporations, non-business entities, and government agencies) and the larger social environment of which they are a part. (3-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-10 09:06:09 001982 52.0201.00.16 audit: -91.2 m index: -91.2 m</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bps6301.5</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>request to remove this course from catalog</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>--</td>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>BPS 6302 Strategic Business Communications (3 semester credit hours) The ability to communicate clearly and persuasively is the hallmark of a successful leader. Students in this course will get hands-on experience working through communication challenges in a realistic and dynamic class setting, and will learn the importance of communication for problem solving and decision-making in business. Material emphasizes both written and oral presentation skills and the use of media/technology. For students in all business areas. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-22 21:59:08 013507 52.0501.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>BPS 6305 Ethical Issues in International Business (3 semester credit hours) Examines ethical concepts such as justice, equality, freedom, and responsibility as they relate to the functioning of an economic system. Specific problems facing the global business organization will be discussed from an ethical perspective. Articulation of management philosophy incorporating the ethical dimension. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:18:16 001983 52.0201.00.16 audit: -92.1 m index: -92.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>--</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps6310 (r5)</td>
<td>bps6310.9</td>
<td></td>
<td>BPS 6310 Strategic Management (3 semester credit hours) Strategic management consists of the analysis, decisions, and actions that organizations take to create sustainable competitive advantages. The course examines a variety of issues including environmental, competitor, and stakeholder analysis; strategy formulation; and strategy implementation and control. The central role of ethics and corporate governance as well as global issues will be addressed. Prerequisite: OB 6301 or MKT 6301 or ACCT 6201 or ACCT 6202 or FIN 6301 or instructor consent required. (3-0) S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 001984 2011-08-23 sxh121431 BPS 6310 Strategic Management (3 semester credit hours) Strategic management consists of the analysis, decisions, and actions that organizations take to create sustainable competitive advantages. The course examines a variety of issues including environmental, competitor, and stakeholder analysis; strategy formulation; and strategy implementation and control. The central role of ethics and corporate governance as well as global issues will be addressed. Prerequisites: Prerequisite: OB 6301, MKT 6301 or ACCT 6201, ACCT 6202, FIN 6301 or instructor consent of instructor. required. (3-0) S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps6311 (r3)</td>
<td>bps6311.4</td>
<td></td>
<td>BPS 6311 Strategy Implementation (3 semester credit hours) Implementation issues of strategic planning. Topics include: planning system design, organizing for planning, situation analysis, and corporate/divisional relationships. Cases and selected readings illustrate the key planning concepts. Prerequisite: BPS 6210 or BPS 6310 or instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 001985 2008-08-21 sxh121431 BPS 6311 Strategy Implementation (3 semester credit hours) Implementation issues of strategic planning. Topics include: planning system design, organizing for planning, situation analysis, and corporate/divisional relationships. Cases and selected readings illustrate the key planning concepts. Prerequisite: BPS 6210 or BPS 6310 or instructor consent of instructor. required. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bps6312 (r5)</td>
<td>bps6312.6</td>
<td>BPS 6312 Advanced Multinational Business Seminar (3 semester credit hours) This seminar aims at the broadening of business strategy horizons to include the international dimension applied to topical business problems. It also responds to the recent findings of the US Management schools that precepts of corporate strategy for national markets are subject to many exceptions and require much supplementation when applied to multinational markets. This course also aims at providing support for the Dallas metroplex area business organizations for designing and implementing their strategies in general, multinational strategies in particular. This course will investigate topical and sector-based implementation problems derived from the participants' own companies or current business media. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-22 22:08:39 001986 52.0301.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>bps6320 (r4)</td>
<td>bps6320.5</td>
<td>request to remove this course from catalog BPS 6320 Government Regulation of Business (3 semester credit hours) Impact of U.S. federal and state agencies on business as well as international legal issues. Emphasis is on a strategic approach to the principle regulatory issues facing business today. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-10 09:06:28 001987 52.0301.00.16 audit: -91.2 m index: -91.2 m</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>bps6321</td>
<td>(r4)</td>
<td>bps6321.5</td>
<td>request to remove this course from catalog
BPS 6321 Contemporary Business Issues and Strategy (3 semester credit hours) This course focuses on the factors that affect economic growth, contractions and cycles and how they affect specific industries, firm profitability, security of investment, job growth and individual career opportunities. Students make connections between the fundamentals of the global economy, national corporate policy and companies' strategies. These strategies should determine long-term objectives, the adoption of courses of action and the allocation of corporate resources in an evolving complex competitive environment. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-10 09:07:14 001988 52.0201.00.16 audit: -91.2 m index: -91.2 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps6332</td>
<td>(r4)</td>
<td>bps6332.5</td>
<td>BPS 6332 (SYSM 6320) Strategic Leadership (3 semester credit hours) Addresses the challenge of leading organizations in dynamic and challenging environments. Overall goal is to not only question one's assumptions about leadership, but also enhance skills and acquire new content knowledge. Topics include visionary and transformational leadership, post-heroic leadership, empowerment, leveraging and combining resources, designing organizations and ethics. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-25 09:28:15 001991 52.0201.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 001991 2011-08-23 sxh121431
BPS 6332 (SYSM 6320) Strategic Leadership (3 semester credit hours) Addresses the challenge of leading organizations in dynamic and challenging environments. Overall goal is to not only question one’s assumptions about leadership, but also enhance skills and acquire new content knowledge. Topics include visionary and transformational leadership; leadership, post-heroic leadership; empowerment; leadership, empowerment, leveraging and combining resources; organizations, designing organizations and ethics. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * bps6340 (r4) bps6340.4</td>
<td>BPS 6340 Accountability and Ethics in Corporate Governance (3 semester credit hours) This course addresses the issues faced by top management teams and boards of directors, including compensation, investor relations, social responsibility, and accountability in the context of ethical strategic policy making. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:19:45 001992 52.0301.00.16 audit: -91.9 m index: -91.9 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * bps6351 (r5) bps6351.7</td>
<td>BPS 6351 Business Transformation Project II (3 semester credit hours) This three hour course will immerse the student in an initial examination and/or design of a substantial project within a corporation intended to raise corporate value by transforming the business. The emphasis will be on new uses of assets and resources, not the improved management of existing activities. This is intended to develop the executive capacity of the individual student. Department consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-16 08:58:06 001995 52.0201.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>2014-open</td>
<td>edit * bps6360 (r4) bps6360.5</td>
<td>BPS 6360 Management and Organizational Consulting: Theory and Practice (3 semester credit hours) Management consulting now accounts for more than $120 billion in global annual revenues. In addition to these full-time consultants, more and more employees are also in roles of a consultative nature, as the knowledge-intensive nature of work increases. This course will begin with a review of the theoretical foundations of the client-consultant relationship, drawing from counseling psychology and other disciplines, then broaden to cover theories of Organizational Behavior, Organizational Learning and Strategy. Through various workshops and hands-on exercises, participants will apply these theories in a number of scenarios relevant for consulting. Special attention will be given to prepare students to become confident practitioners, by bridging the theory-practice gap in the practice of management and organizational consulting. Prerequisite: OB 6301. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
</tbody>
</table>

peoplesoft diff: 001996 2012-08-26 sxh121431

BPS 6360 Management and Organizational Consulting: Theory and Practice (3 semester credit hours) Management consulting now accounts for more than $120 billion in global annual revenues. In addition to these full-time consultants, more and more employees are also in roles of a consultative nature, as the knowledge-intensive nature of work increases. This course will begin with a review of the theoretical foundations of the client-consultant relationship, drawing from counseling psychology and other disciplines, then broaden to cover theories of Organizational Behavior, Organizational Learning and Strategy. Through various workshops and hands-on exercises, participants will apply these theories in a number of scenarios relevant for consulting. Special attention will be given to prepare students to become confident practitioners, by bridging the theory-practice gap in the practice of management and organizational consulting. Prerequisite: OB 6301. (3-0) T
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * bps6379 (r2) bps6379.3</td>
<td>BPS 6379 Business Strategies for Sustainability (3 semester credit hours) The course introduces student to sustainable business practices. The role of legislation and its impact on business practices as well as proactive business strategies firms use to differentiate themselves and obtain a competitive advantage will also be addressed. By viewing a firm through an environmental lens, managers find opportunities to reduce risks, drive down costs, and create intangible value. Further, firms can build stronger connections with a broad range of stakeholders. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxao63000 2013-10-25 09:30:03 013390 52.0201.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * bps6385 (r7) bps6385.9</td>
<td>request to remove this course from catalog BPS 6385 Entrepreneurial Business Strategies (3 semester credit hours) This course is an advanced course in strategic management, with an emphasis on business strategies for entrepreneurial firms. Within this framework, the course addresses the most recent approaches and perspectives on strategies management in rapidly changing environments. Topics include the formulation and evaluation of strategy in emerging industries, strategies for market entry and competition against established incumbents, the role of technology standards, the technology adoption life cycle model, theories of disruptive innovation, and the use of creative imitation, speed and agility to prevail over established competitors. Prerequisites: ENTP 6370 and BPS 6310 or instructor consent required. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxao63000 2013-10-22 22:02:01 001999 52.0701.00.16 audit: -91.3 m index: -91.3 m</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps6v99 (r3)</td>
<td>bps6v99.10</td>
<td></td>
<td>BPS 6V99 Special Topics in Business Policy and Strategy (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013062 2014-08-24 sxh121431 BPS 6V99 Special Topics in Business Policy and Strategy (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps7300 (r4)</td>
<td>bps7300.5</td>
<td></td>
<td>BPS 7300 Advanced Strategic Management Seminar I (3 semester credit hours) This is the first of a two-part series of PhD seminars in strategic management that (1) expose students to various theories and topics in strategic management research, and (2) train students to become informed researchers who will be able to contribute to this literature. This seminar covers the major theories in current research addressing strategy formulation and implementation. Prerequisite: OB 7300. (3-0) T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 002003 2009-08-19 sxh121431 BPS 7300 Advanced Strategic Management Seminar I (3 semester credit hours) This is the first of a two-part series of PhD seminars in strategic management that (1) expose students to various theories and topics in strategic management research, and (2) train students to become informed researchers who will be able to contribute to this literature. This seminar covers the major theories in current research addressing strategy formulation and implementation. Prerequisite: OB 7300. (3-0) T</td>
</tr>
<tr>
<td>start end</td>
<td>req course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * bps7301 (r3) bps7301.5</td>
<td>BPS 7301 Advanced Strategic Management Seminar II (3 semester credit hours) This is the second of the two-part series of PhD seminars in strategic management. Together the two seminars (1) expose students to various theories and topics in strategic management research, and (2) train students to become informed researchers who will be able to contribute to this literature. Seminar II focuses more on the empirical research in major topics such as strategic alliances, networks, competitive dynamics and knowledge management. Students learn to use the different theories introduced in the previous seminar as tools for analyzing strategic business phenomena. Prerequisite: BPS 7300. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-25 09:30:57</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * bps7302 (r2) bps7302.2</td>
<td>BPS 7302 Research Methodology (3 semester credit hours) The aim of this course is to lay the foundations for good empirical research in the social sciences and to introduce students to the assumptions and logic underlying social research. Students become acquainted with a variety of approaches to research design, and are helped to develop their own research projects and to evaluate the products of empirical research. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:20:28</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bps7303</td>
<td>(r2)</td>
<td>BPS 7303 Doctoral Teaching and Writing Seminar (3 semester credit hours) Provides the tools necessary for beginning academics to think critically about teaching and writing to enable them to be successful researchers and effective teachers. Students will not only be exposed to research on effective writing and teaching, but will also work actively with classmates both within and across areas to improve their ability to write clearly and teach well. The course will require students to assess both their own writing and the writing of others. Students will practice putting together a syllabus, creating assignments for students, and presenting explanations of difficult concepts. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bps7303.3</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013063 2014-08-24 sxh121431

BPS 7303 Doctoral Teaching and Writing Seminar (3 semester credit hours) Provides the tools necessary for beginning academics to think critically about teaching and writing to enable them to be successful researchers and effective teachers. Students will not only be exposed to research on effective writing and teaching, but will also work actively with classmates both within and across areas to improve their ability to write clearly and teach well. The course will require students to assess both their own writing and the writing of others. Students will practice putting together a syllabus, creating assignments for students, and presenting explanations of difficult concepts. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>bps7307 (r1) bps7307.2</td>
<td>BPS 7307 Management Scholarship (3 semester credit hours) As management scholars, why do we do what we do? What is it that we do? How do we do a better job? How do we make stronger contributions not only to academia but also to society? The short-run aim of this course is to familiarize PhD students with the various rules of the game associated with our profession. Its long-run aim is to enhance PhD students' odds for success as management scholars. Although designed primarily for PhD students, interested master's students can enroll. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 07:41:26 NOLINK 52.0201.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

BPS 7307 Management Scholarship (3 semester credit hours) As management scholars, why do we do what we do? What is it that we do? How do we do a better job? How do we make stronger contributions not only to academia but also to society? The short-run aim of this course is to familiarize PhD students with the various rules of the game associated with our profession. Its long-run aim is to enhance PhD students' odds for success as management scholars. Although designed primarily for PhD students, interested master's students can enroll. (3-0) T

| 2014-open | | edit * | entp6311 (r4) entp6311.8 | ENTP 6311 (FIN 6311) Valuation Models and Practices (3 semester credit hours) This course examines different models and practices for valuing firms (both public and private), pricing IPOs, and valuing and structuring mergers and acquisitions. Prerequisite: FIN 6301. (3-0) S | phase: approve | sxa063000 2013-10-22 10:21:38 013565 52.0201.00.16 audit: -91.4 m index: -91.4 m match_fail | process orion |

peoplesoft diff: 013565 2012-08-26 sxh121431

ENTP 6311 (FIN 6311) Valuation Models and Practices (3 semester credit hours) This course examines different models and practices for valuing everything from R&D investments to firms, both firms (both public and private). Prerequisite: FIN 6301 private), pricing IPOs, and valuing and structuring mergers and Co/Prerequisite: acquisitions. Prerequisite: FIN 6306. 6301. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>req course course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ENTP 6315 (FIN 6315) Entrepreneurial Finance (3 semester credit hours) The objective of this course is to build skills and knowledge in the financing of entrepreneurial ventures. Entrepreneurial Finance concerns not only the process of financing and investing in start-up companies, but also the changes to the initial financing mix that may be required as start-up companies mature and grow. Topics include: valuation, capital structure, forecasting, the markets for venture capital and private equity, the decision to go public or remain private, alternative financing arrangements, and the differential marketability and liquidity of the securities used to finance non-public firms. Credit cannot be received for both courses, ENTP 6315 and FIN 6315. Prerequisite: FIN 6301. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-30 10:27:11 005252 52.0701.00.16 audit: -91.1 m index: -91.1 m</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>entp6315 (r5) entp6315.8</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTP 6315 (FIN 6315) Entrepreneurial Finance (3 semester credit hours) The objective of this course is to build skills and knowledge in the financing of entrepreneurial ventures. Entrepreneurial Finance concerns not only the process of financing and investing in start-up companies, but also the changes to the initial financing mix that may be required as start-up companies mature and grow. Topics include: valuation, capital structure, forecasting, the markets for venture capital and private equity, the decision to go public or remain private, alternative financing arrangements, and the differential marketability and liquidity of the securities used to finance non-public firms. This course is equivalent to FIN Credit cannot be received for both courses, ENTP 6315 and only one of these may be counted toward a degree. FIN 6315. Prerequisite: FIN 6301. (3-0) Y
<table>
<thead>
<tr>
<th>Start End</th>
<th>Req Type</th>
<th>Course Req Id</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6316 (r4)</td>
<td>ENTP 6316 (FIN 6316) Private Equity Finance (3 semester credit hours) This course will cover the investment of capital in the equity of private companies to fund growth or in public companies to take them private. This course includes the study of a broad spectrum of private equity investments, investing in established private firms, buyouts, financial restructuring of distressed firms, and private equity financing by public firms. Prerequisite: FIN 6311 or ENTP 6311 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-15 18:09:56 012572 52.0807.00.16 audit: -91.6 m index: -91.6 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>entp6316.6</td>
<td>peoplesoft diff: 012572 2011-08-23 sxh121431</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>entp6350 (r3)</td>
<td>ENTP 6350 SIFE Entrepreneurial Practice (3 semester hours) Students will develop entrepreneurial service and education program projects that focus on six core areas: market economics, entrepreneurship, financial literacy, success skills, environmental sustainability, and business ethics. The student teams and the target beneficiary organizations will jointly develop student project objectives and deliverables supervised by faculty. Students will then present project results to the community and will gather data on how much the target group learned from the project. The students will prepare presentations based on this data for the regional SIFE competition. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-09 20:41:33 013069 52.0701.00.16 audit: -91.2 m index: -91.2 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>entp6350.4</td>
<td>request to remove this course from catalog</td>
<td>status: approving</td>
<td>audit: 110</td>
<td></td>
</tr>
<tr>
<td>Start end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * entp6351</td>
<td>(r3) entp6351.8</td>
<td>ENTP 6351 International Entrepreneurship and Innovation (3 semester credit hours) Executive Education Course. This course is an introduction to the international business plan and provides an introduction to entrepreneurship with an emphasis on identifying, evaluating and developing new venture opportunities for international markets. Topics include opportunity identification and evaluation, startup strategies, business valuation, business plan development, financing the venture, managing the growing business and exit strategies. Prerequisites: (IMS 5200 or MKT 6301 or FIN 6301 or ACCT 6201) and BPS 6310 and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sx063000</td>
<td>2013-11-29 19:45:20 012762 52.0701.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6352</td>
<td>(r2) entp6352.6</td>
<td>ENTP 6352 International Business Plan (3 semester credit hours) Executive Education Course. This course is a capstone that requires the development of a comprehensive business plan for market entry into a foreign country or region. The construct builds upon the core business and international coursework including the successful completion of key courses in accounting, finance, marketing and strategy, as well as, the international entrepreneurship and innovation. The course consists of lectures, research, and faculty coaching and guidance. Prerequisite: ENTP 6351 and instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxa063000</td>
<td>2013-11-29 19:49:07 012775 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td>http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f2c37a6ff775e1ca/makepdf</td>
</tr>
<tr>
<td>start</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6360 (r5)</td>
<td>ENTP 6360 Startup Launch I (3 semester credit hours) This course is designed to refine and validate a specific business concept based upon a student's new venture idea. The course utilizes a structured customer discovery/validation methodology that requires early customer engagement and the development and validation of a comprehensive business model. Key assumptions will be validated utilizing primary and secondary market research, interviews with prospective customers and other industry participants, and field testing of Minimum Viable Products. Students or student teams will be selected and enrolled on the basis of a business concept proposal approved by the faculty. Multiple projects will proceed through the course as a cohort, guided by faculty and mentored by experienced entrepreneurs. Cubicle space in the Venture Development Center may be applied for. ENTP 6360 utilizes the same customer discovery/validation process used in ENTP 6365. Credit cannot be received for both courses, ENTP 6360 and ENTP 6365. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 19:50:47 005253 52.0701.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6361</td>
<td>ENTP 6361</td>
<td>(r2)</td>
<td>ENTP 6361 Startup Launch II (3 semester credit hours) Faculty mentored development of a business concept initiated in ENTP 6360. Prerequisites: ENTP 6360 and instructor consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENTP 6361 Start-up Startup Launch II (3 semester credit hours) Faculty mentored development of a business concept initiated in ENTP 6360. Prerequisites: ENTP 6360 and instructor consent required. (3-0) R</td>
<td>audit: 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014220 2013-08-25 adp130030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-open</td>
<td>edit *</td>
<td>ENTP 6362</td>
<td>(r2)</td>
<td>ENTP 6362 Startup Launch III-IV (3 semester credit hours) Faculty mentored development of a business concept initiated in ENTP 6360. Students in the startup launch track may repeat this course once. Prerequisites: ENTP 6361 and instructor consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td>entp6362.7</td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014220 2013-08-25 adp130030</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENTP 6362 Start-up Startup Launch III-IV (3 semester credit hours) Faculty mentored development of a business concept initiated in ENTP 6360. Students in the start-up startup launch option track may repeat this course once. Prerequisites: ENTP 6361 and instructor consent of the instructor required. (3-0) R</td>
<td>audit: 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014220 2013-08-25 adp130030</td>
<td></td>
</tr>
<tr>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>ENTP 6365 Business Concept Validation (3 semester credit hours) This course is designed to refine and validate a specific business concept based upon a UT Dallas technology currently resident in the Venture Development Center (VDC) or developed by an external organization. The course utilizes a structured customer discovery/validation methodology that requires early customer engagement and the development and validation of a comprehensive business model. Key assumptions will be validated utilizing primary and secondary market research, interviews with prospective customers and other industry participants, and field testing of Minimum Viable Products. Student teams will be selected and assigned to a project based on relevant experience and qualifications. Multiple projects will proceed through the course as a cohort, guided by the faculty and the inventor/researcher. This course may be repeated one time for course credit. ENTP 6365 utilizes the same customer discovery/validation process used in ENTP 6360. Credit cannot be received for both courses, ENTP 6360 and ENTP 6365. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-06 13:33:39 014291 52.0701.00.16 audit: -92.2 m index: -92.2 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6370 (r6)</td>
<td>entp6370.6</td>
<td>ENTP 6370 Entrepreneurship (3 semester credit hours) This course provides an introduction to entrepreneurship, with an emphasis on identifying, evaluating and developing new venture opportunities. Topics include opportunity identification and evaluation, startup strategies, business valuation, business plan development, attracting stakeholders, financing the venture, managing the growing business and exit strategies. Case studies and guest lectures by entrepreneurs and venture capital partners provide a real-world perspective. The major deliverable of this course is an early stage feasibility analysis of a venture of the student's choosing. Topics may vary. (3-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>cxj140030</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>entp6375 (r8)</td>
<td>ENTP 6375 (OPRE 6394 and SYSM 6332) Technology and New Product Development (3 semester credit hours) This course addresses the strategic and organizational issues confronted by firms in technology-intensive environments. The course reflects six broad themes: (1) managing firms in technology-intensive industries; (2) forecasting key industry and technology trends; (3) linking technology and business strategies; (4) using technology as a source of competitive advantage; (5) organizing firms to achieve these goals; and (6) implementing new technologies in organizations. Students will analyze actual situations in organizations and summarize their findings and recommendations in an in-depth term paper. Case studies and class participation are stressed. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-22 20:33:51 005255 52.0701.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>entp6375.11</td>
<td>ENTP 6375 (OPRE 6394, 6394 and SYSM 6332) Technology and New Product Development (3 semester credit hours) This course addresses the strategic and organizational issues confronted by firms in technology-intensive environments. The course reflects six broad themes: (1) managing firms in technology-intensive industries; (2) forecasting key industry and technology trends; (3) linking technology and business strategies; (4) using technology as a source of competitive advantage; (5) organizing firms to achieve these goals; and (6) implementing new technologies in organizations. Students will analyze actual situations in organizations and summarize their findings and recommendations in an in-depth term paper. Case studies and class participation are stressed. (3-0) Y</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6378 (r5)</td>
<td>entp6378.6</td>
<td>ENTP 6378 Managing the Emerging Enterprise (3 semester credit hours) The course focuses on the challenges of growing a small company from early startup to a professionally managed business, as the entrepreneur struggles to maintain the entrepreneurial spirit of the firm while introducing the professional management disciplines essential to sustained and profitable growth. Topics include shaping and communicating the entrepreneur's vision, developing a viable business model, positioning products and services in a broader market, implementing business strategies, building an organization and infrastructure, molding the culture, developing and managing critical relationships with banks, suppliers and customers, and managing growth with limited resources. The course makes extensive use of case studies and visiting lectures by entrepreneurs. Prerequisite: ENTP 6370 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-15 18:12:40 005256 52.0701.00.16 audit: -91.9 m index: -91.9 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

ENTP 6378 Managing the Emerging Enterprise (3 semester credit hours) The course focuses on the challenges of growing a small company from early startup to a professionally managed business, as the entrepreneur struggles to maintain the entrepreneurial spirit of the firm while introducing the professional management disciplines essential to sustained and profitable growth. Topics include shaping and communicating the entrepreneur's vision, developing a viable business model, positioning products and services in a broader market, implementing business strategies, building an organization and infrastructure, molding the culture, developing and managing critical relationships with banks, suppliers and customers, and managing growth with limited resources. The course makes extensive use of case studies and visiting lectures by entrepreneurs. Prerequisite: ENTP 6370 or instructor consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6380 (r5)</td>
<td>entp6380.8</td>
<td>ENTP 6380 (MKT 6380) Market Entry Strategies (3 semester credit hours) This course addresses the marketing challenges facing the entrepreneurial firm, with specific emphasis on the choice and implementation of an initial market entry strategy. This choice typically involves multiple decisions, each based on critical assumptions about customers, markets and competitors. Early validation of these key assumptions is an essential element of the strategic decision process. Topics include understanding the context and the customer, developing and validating the business concept, defining the product/service offering and customer value proposition, positioning, creating awareness, and developing and implementing the market entry strategy. Credit cannot be received for both courses, ENTP 6380 and MKT 6380. Prerequisite: ENTP 6370 or MKT 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 29</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6382 (r5)</td>
<td>entp6382.5</td>
<td>ENTP 6382 (MKT 6382) Professional Selling (3 semester credit hours) Examines the theory and practical application of the principles and art of professional selling. The course places special emphasis on mapping the sales process for new companies and new products. The method of instruction will include case studies as well as learning by doing live case instruction. This course will include the following advanced concepts in sales: Major account acquisition, government markets, global markets, request for information, request for proposal, product line sales, adaptive product and service solutions, team selling, long sales cycles, prospecting and networking strategies, implementation and analysis of prospecting strategies, and sales management strategies for the early stage of the product lifecycle. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTP 6382 (MKT 6382) Professional Selling (3 semester credit hours) Examines the theory and practical application of the principles and art of professional selling. The course places special emphasis on mapping the sales process for new companies and new products. The method of instruction will include case studies as well as learning by doing live case instruction. This course will include the following advanced concepts in sales: Major account acquisition, government markets, global markets, request for information, request for proposal, product line sales, adaptive product and service solutions, team selling, long sales cycles, prospecting and networking strategies, implementation and analysis of prospecting strategies, and sales management strategies for the early stage of the product lifecycle. (3-0) Y

peoplesoft diff: 013070 2013-08-25

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>enp6388 (r6)</td>
<td>entp6388.6</td>
<td>ENTP 6388 (SYSM 6316) Managing Innovation within the Corporation (3 semester credit hours) Innovators and entrepreneurs within established corporations combine innovation, creativity and leadership to develop and launch new products, new product lines and new business units that grow revenues and profits from within. The course seeks to equip students with the skills and perspectives required to initiate new ventures and create viable businesses in dynamic and uncertain environments in the face of organizational inertia and other sources of resistance to innovation. Course topics include the elements of strategic analysis and positioning for competitive advantage in dynamic markets, and the structuring, utilization and mobilization of the internal resources of existing firms in the pursuit of growth and new market opportunities. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-16 14:44:35</td>
</tr>
</tbody>
</table>

ENTP 6388 (SYSM 6316) Managing Innovation within the Corporation (3 semester credit hours) Innovators and entrepreneurs within established corporations combine innovation, creativity and leadership to develop and launch new products, new product lines and new business units that grow revenues and profits from within. The course seeks to equip students with the skills and perspectives required to initiate new ventures and create viable businesses in dynamic and uncertain environments in the face of organizational inertia and other sources of resistance to innovation. Course topics include the elements of strategic analysis and positioning for competitive advantage in dynamic markets, and the structuring, utilization and mobilization of the internal resources of existing firms in the pursuit of growth and new market opportunities. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * entp6390 (r6)</td>
<td>ENTP 6390 Business Model Innovation (3 semester credit hours) Business model innovation is a logical and internally consistent approach to the design and operations of a new venture, capturing the essence of how the business will be focused and providing a concise representation of how an interrelated set of decision variables will be addressed to create sustainable competitive advantage. This course will explore the range and diversity of existing business models and the analytical tools essential to their understanding, define a logical and internally consistent approach to the choice or development of an appropriate business model for a new enterprise and demonstrate the application of these tools and techniques through case studies and exercises. Prerequisite: ENTP 6370 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-15 18:13:50 005260 52.0701.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 005260 2013-08-25 adp130030

ENTP 6390 Business Model Innovation (3 semester credit hours) Business model innovation is a logical and internally consistent approach to the design and operations of a new venture, capturing the essence of how the business will be focused and providing a concise representation of how an interrelated set of decision variables will be addressed to create sustainable competitive advantage. This course will explore the range and diversity of existing business models and the analytical tools essential to their understanding, define a logical and internally consistent approach to the choice or development of an appropriate business model for a new enterprise and demonstrate the application of these tools and techniques through case studies and exercises. Prerequisite: ENTP 6370 or instructor consent of the instructor required. (3-0) R
<table>
<thead>
<tr>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open edit *</td>
<td>entp6392 (r3)</td>
<td>ENTP 6392 Entrepreneurship in the Social Sector (3 semester credit hours) This course will explore the role and importance of the non-profit sector and the unique place it occupies in twenty-first century life. The course will develop theoretical and conceptual frameworks appropriate for understanding the processes and challenges of non-profit ventures in the social sector. Student teams will work with selected non-profits in the local community, focusing on the issues and challenges of mission definition, service delivery, business practices, fund-raising and governance. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-03 12:51:34 013073 52.0701.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open edit *</td>
<td>entp6395.10</td>
<td>ENTP 6395 Seminar - Topics in Innovation and Entrepreneurship (3 semester credit hours) This course will explore special topics of interest to students of Innovation and Entrepreneurship. The content will vary, exploring such topics as opportunities for innovation in Biotechnology, Information Technology, Nanotechnology, and other fields. Extensive use of outside speakers, special readings, and field and library research will be involved. Prerequisites: ENTP 6370 and consent of the instructor. May be repeated for credit as topics vary. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 19:05:58 005261 52.0701.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>2014-08</td>
<td>open</td>
<td>edit *</td>
<td>entp6398 (r7)</td>
<td>entp6398.8</td>
<td>ENTP 6398 (SYSM 6315) The Entrepreneurial Experience (3 semester credit hours) This course is designed to provide student teams with practical experience in the investigation, evaluation and recommendation of technology and/or market entry strategies for a significant new business opportunity. Projects will be defined by the faculty and will generally focus on emerging market opportunities defined by new technologies of interest to a sponsoring corporate partner. Teams will be comprised of management and engineering graduate students, mentored by faculty and representatives of the partnering company. Evaluation will be based on papers, presentations and other deliverables defined on a case-by-case basis. Instructor consent required. (3-0) R</td>
</tr>
</tbody>
</table>

ENTP 6398 (SYSM 6315) The Entrepreneurial Experience (3 semester credit hours) This course is designed to provide student teams with practical experience in the investigation, evaluation and recommendation of technology and/or market entry strategies for a significant new business opportunity. Projects will be defined by the faculty and will generally focus on emerging market opportunities defined by new technologies of interest to a sponsoring corporate partner. Teams will be comprised of management and engineering graduate students, mentored by faculty and representatives of the partnering company. Evaluation will be based on papers, presentations and other deliverables defined on a case-by-case basis. **Prerequisite:** ENTP 6370 or Instructor consent of the instructor. required. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>req course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6v97 (r3)</td>
<td>entp6v97.6</td>
<td></td>
<td>ENTP 6V97 Entrepreneurial Internship (1-3 semester credit hours) Student will gain experience and improve skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of the Naveen Jindal School of Management's Internship Coordinator is required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 19:05:42 013728 52.0701.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>entp6v99 (r4)</td>
<td>entp6v99.8</td>
<td></td>
<td>ENTP 6V99 Special Topics in Entrepreneurship (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 19:05:22 013074 52.0701.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * fin6150 (r3) fin6150.4</td>
<td>request to remove this course from catalog</td>
<td>FIN 6150 The Financial Crisis (1 semester credit hour) The reasons for the financial crisis of 2008-2009 will be examined. Then, the focus investigates tie-ins to the subsequent economic downturn. Finally, implications for future management strategy and corporate governance will be explored. Executive Education Course. (1-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-05 09:42:10 013106 52.0801.00.16 audit: -91.2 m index: -91.2 m</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * fin6250 (r3) fin6250.4</td>
<td>request to remove this course from catalog</td>
<td>FIN 6250 Case Studies in Finance (2 semester credit hours) Executive Education Course. This course builds on the Financial Management course and stresses the application of analytical tools and concepts learned there. It uses real-life case studies as the learning vehicle and stresses analysis, decision making, and the use of managerial judgment. Prerequisites: ACCT 6201 and FIN 6301. (2-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-24 14:34:24 012776 52.0801.00.16 audit: -91.3 m index: -91.3 m</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * fin6251 (r3) fin6251.4</td>
<td>request to remove this course from catalog</td>
<td>FIN 6251 Strategic Financial Management and Valuation I (2 semester credit hours) This is a second level finance course stressing the linkages of corporate strategy, financial strategy and market valuation. Different methodologies of valuation will be covered. Executive Education Course. (2-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-24 14:34:47 013107 52.0801.00.16 audit: -91.3 m index: -91.3 m</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin6252 (r1) fin6252.5</td>
<td>FIN 6252 Creating Value through Mergers, Acquisitions and Private Equity (2 semester credit hours) Executive Education Course. Explores strategic financial management of the firm. Considers creation of value using mergers, acquisitions and private capital. Prerequisites: FIN 6301 and instructor consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-31 13:49:19 NOLINK 52.0801.00.16 audit: -91.2 m index: -91.2 m match_FAIL</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * fin6300</td>
<td>FIN 6300 Personal Finance (3 semester credit hours) Examination of personal financial management issues and planning techniques. Provides a consumer-side view of credit management, budgeting, personal financial statement analysis, insurance planning, retirement planning, investment planning, asset accumulation and distribution planning, tax planning, estate planning and employee benefits planning. May not be used to fulfill requirements for Master of Science in Finance degree. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 19:59:46 013633 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin6301</td>
<td>FIN 6301 (SYSM 6312) Financial Management (3 semester credit hours) Develops the basic concepts of finance with particular attention to their application to the financial management of companies. Prerequisites or Corequisites: OPRE 6301 and (ACCT 6201 or ACCT 6305). (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 20:01:01 005300 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin6306 (r3)</td>
<td>FIN 6306 Quantitative Methods in Finance (3 semester credit hours) The objective of this course is to develop students' ability to use quantitative methods in financial decision-making. Particular attention is paid to the quantitative topics covered in the Chartered Financial Analyst (CFA) and Financial Risk Manager (FRM) exams. Prerequisites: FIN 6301 and (OPRE 6303 or equivalent). (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 20:01:52 005302 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fin6306.6</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 005302 2012-08-26 sxhr121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIN 6306 Quantitative Methods in Finance (3 semester credit hours) The objective of this course is to develop students' ability to use quantitative methods and software (particularly spreadsheet) in financial decision-making. Particular attention is paid to the quantitative topics covered in the Chartered Financial Analyst (CFA) and Financial Risk Manager (FRM) exams. Prerequisites: FIN 6301 and Calculus (MATH 5304 or MATH 1325 (OPRE 6303 or an equivalent course). (2-1) equivalent). (3-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin6308 (r4)</td>
<td>FIN 6308 Regulation of Business and Financial Markets (3 semester credit hours) The objective of this course is to develop a student's understanding of the laws and regulations which govern businesses and financial markets. In addition, this course considers the ethical issues that financial analysts and financial planners face. Prerequisite or Corequisite: FIN 6301. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-30 10:33:39 005303 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fin6308.5</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 005303 2012-08-26 sxhr121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIN 6308 Regulation of Business and Financial Markets (3 semester credit hours) The objective of this course is to develop a student's understanding of the laws and regulations which govern businesses and financial markets. In addition, this course considers the ethical issues that financial analysts and financial planners face. Co/Prerequisite: Prerequisite or Corequisite: FIN 6301. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6310</td>
<td>(r7)</td>
<td>fin6310.11</td>
<td>FIN 6310 Investment Management (3 semester credit hours) The course is intended to provide an understanding of the role of modern financial theory in portfolio management and to present a framework for addressing current issues in the management of financial assets. Topics to be covered during the semester include trading, valuation, active portfolio management, asset allocation, global diversification, performance measurement, financial derivatives and fixed income securities. Prerequisite: FIN 6301. Prerequisite or Corequisite: FIN 6306. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005304 2012-08-26 sxh121431</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6311</td>
<td>(r4)</td>
<td>fin6311.7</td>
<td>FIN 6311 (ENTP 6311) Valuation Models and Practices (3 semester credit hours) This course examines different models and practices for valuing firms (both public and private), pricing IPOs, and valuing and structuring mergers and acquisitions. Prerequisite: FIN 6301. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013566 2012-08-26 rmb101000</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6314</td>
<td>(r3)</td>
<td>fin6314.4</td>
<td>FIN 6314 Fixed Income Securities (3 semester credit hours) Examines fixed income securities, their derivatives, and the management of fixed income portfolios. Prerequisite: FIN 6306. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005306 2010-08-18 sxh121431</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f2c37a6ff775e1ca/makepdf 68/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6315 (r9)</td>
<td>fin6315.10</td>
<td>FIN 6315 (ENTP 6315) Entrepreneurial Finance (3 semester credit hours) The objective of this course is to build skills and knowledge in the financing of entrepreneurial ventures. Entrepreneurial Finance concerns not only the process of financing and investing in start-up companies, but also the changes to the initial financing mix that may be required as start-up companies mature and grow. Topics include: valuation, capital structure, forecasting, the markets for venture capital and private equity, the decision to go public or remain private, alternative financing arrangements, and the differential marketability and liquidity of the securities used to finance non-public firms. Credit cannot be received for both courses, ENTP 6315 and FIN 6315. Prerequisite: FIN 6301. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 005307 2012-08-26 sxh121431
FIN 6315 (ENTP 6315) Entrepreneurial Finance (3 semester credit hours) The objective of this course is to build skills and knowledge in the financing of entrepreneurial ventures. Entrepreneurial Finance concerns not only the process of financing and investing in start-up companies, but also the changes to the initial financing mix that may be required as start-up companies mature and grow. Topics include: valuation, capital structure, forecasting, the markets for venture capital and private equity, the decision to go public or remain private, alternative financing arrangements, and the differential marketability and liquidity of the securities used to finance non-public firms. **This course is equivalent to** Credit cannot be received for both courses, ENTP 6315 and only one of these may be counted toward a degree. FIN 6315. Prerequisite: FIN 6301. (3-0) Y | phase: approve | sxao63000 2013-11-30 10:25:14 005307 52.0701.00.16 audit: -91.1 m index: -91.1 m match_fail | process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6316 (r3)</td>
<td>fin6316.3</td>
<td>FIN 6316 (ENTP 6316) Private Equity Finance (3 semester credit hours) This course will cover the investment of capital in the equity of private companies to fund growth or in public companies to take them private. This course includes the study of a broad spectrum of private equity investments, investing in established private firms, buyouts, financial restructuring of distressed firms, and private equity financing by public firms. Prerequisite: FIN 6311 or ENTP 6311 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>2013-10-15 18:19:38 005308 52.0807.00.16 audit: -91.9 m index: -91.9 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fin6320 (r5)</td>
<td>fin6320.7</td>
<td>FIN 6320 Financial Markets and Institutions (3 semester credit hours) Financial behavior in relation to production and consumption decisions. Banking, financial intermediation, flows of funds, regulation and structure of financial markets. Selected topics of current interest. Prerequisite: FIN 6301 or MECO 6303. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>2013-11-29 20:04:56 005309 52.0801.00.16 audit: -91.1 m index: -91.1 m matchFail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6321 (r5)</td>
<td>fin6321.5</td>
<td>FIN 6321 (REAL 6321) Introduction to Real Estate (3 semester credit hours) Overview of various aspects of real estate markets, including marketing, finance, taxation, development, law, appraisal, investment, valuation and real estate participants. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 14:55:16 013414 52.1501.00.16 audit: -91.5 m index: -91.5 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FIN 6321 (REAL 6321) Introduction to Real Estate (3 semester credit hours) Overview of various aspects of real estate markets, including marketing, finance, taxation, development, law, appraisal, investment, valuation and real estate participants. (3-0) S</td>
<td>status: approving</td>
<td>sxa063000 2013-10-22 10:23:11 013415 52.1501.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6322 (r5)</td>
<td>fin6322.8</td>
<td>FIN 6322 (REAL 6322) Real Estate Finance and Investment (3 semester credit hours) This course covers commercial real estate investment analysis and instruments used in its finance. Topics include: real estate valuation, loan structures, syndication, securitization, and developments in capital markets affecting real estate developments. Prerequisite: FIN 6301. (3-0) R</td>
<td>phase: approve</td>
<td>adp130030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FIN 6322 (REAL 6322) Real Estate Finance and Investment (3 semester credit hours) This course covers commercial real estate investment analysis and instruments used in its finance. Topics include: real estate valuation, loan structures, syndication, securitization, and developments in capital markets affecting real estate developments. Prerequisite: FIN 6301. (3-0) R</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf 71/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6323</td>
<td></td>
<td>FIN 6323 (REAL 6323) Real Estate Market Analysis and Investment (3 semester credit hours) This course provides insight into market analysis and research including local and economic base analysis with case studies on specific commercial investment property types. This course also applies modern technologies to assist in performing these analyses. Prerequisite or corequisite: FIN 6321 or REAL 6321 or FIN 6322 or REAL 6322. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-16 09:01:05 013416 52.1501.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6324</td>
<td></td>
<td>FIN 6324 (REAL 6324) Real Estate Development (3 semester credit hours) An in depth course covering issues faced in the development process including market analysis, government approvals, financing and risk assessment. Prerequisite: FIN 6321 or FIN 6322 or REAL 6321 or REAL 6322. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:18:42 013508 52.1501.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6325</td>
<td></td>
<td>FIN 6325 Macroeconomics and Financial Markets (3 semester credit hours) This course examines the relationship between macroeconomics and financial markets, and how they influence one another. Prerequisite: FIN 6301 or permission of instructor. instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 20:07:23 014017 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6326 (r2)</td>
<td>fin6326.5</td>
<td>FIN 6326 (REAL 6326) Real Estate Law and Contracts (3 semester credit hours) Study of the legal principles governing real estate transactions, with an emphasis on promulgated contracts. Topics include contract law, tax law, leases, estates in land, types of ownership, deeds, mortgages, title insurance, agency and homestead. Prerequisite or Corequisite: FIN 6321 or FIN 6322 or REAL 6321 or REAL 6322. (3-0) R</td>
<td>phase: approve</td>
<td>sxar063000 2013-12-20 08:28:01 014295 52.1501.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 014295 2013-08-25 sxr090100

FIN 6326 (REAL 6326) Real Estate Law and Contracts (3 semester credit hours) Study of the legal principles governing real estate transactions, with an emphasis on promulgated contracts. Topics include contract law, tax law, leases, estates in land, types of ownership, deeds, mortgages, title insurance, agency and homestead. Prerequisite or Corequisite: (FIN 6321 or REAL 6321) or (FIN 6322 or REAL 6322). 6321 or REAL 6322. (3-0) R

| 2014-open | edit * | fin6328 (r2) | fin6328.4 | FIN 6328 (REAL 6328) Real Estate Valuation (3 semester credit hours) This capstone real estate course provides an in-depth study, application and evaluation of the theory and methods of residential and commercial property valuation and appraisal. Topics include the three major approaches to appraising real estate, regression analysis, market analysis, highest and best use analysis and capitalization techniques, with an emphasis on income properties. Several cases and problems are presented and solved. Prerequisite: FIN 6321 or FIN 6322 or REAL 6321 or REAL 6322. (3-0) R | phase: approve | sxar063000 2013-12-20 08:19:05 014297 52.1501.00.16 audit: -91 m index: -91 m match_fail | process orion |

peoplesoft diff: 014297 2013-08-25 adp130030

FIN 6328 (REAL 6328) Real Estate Valuation (3 semester credit hours) This capstone real estate course provides an in-depth study, application and evaluation of the theory and methods of residential and commercial property valuation and appraisal. Topics include the three major approaches to appraising real estate, regression analysis, market analysis, highest and best use analysis and capitalization techniques, with an emphasis on income properties. Several cases and problems are presented and solved. Prerequisite: (FIN 6321 or REAL 6321) or (FIN 6322 or REAL 6322). 6321 or REAL 6322. (3-0) R
<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>FIN 6330 Behavioral Finance (3 semester credit hours) This course describes how individuals and firms make financial decisions, how those decisions might deviate from those predicted by traditional financial or economic theory and the consequences of these deviations for financial markets. The course examines how the insights of behavioral finance complement the traditional finance paradigm. Students will gain an understanding of how individuals actually make financial decisions (descriptive) and guidance on how to improve financial decision-making (prescriptive) in themselves and others. Prerequisite: FIN 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-22 11:40:26</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>005310</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>52.0801.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>index: -91.4 m</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 005310 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIN 6330 Behavioral Finance (3 semester credit hours) This course describes how individuals and firms make financial decisions, how those decisions might deviate from those predicted by traditional financial or economic theory and the consequences of these deviations for financial markets. The course examines how the insights of behavioral finance complement the traditional finance paradigm. Students will gain an understanding of how individuals actually make financial decisions (descriptive) and guidance on how to improve financial decision-making (prescriptive) in themselves and others. Prerequisite: FIN 6301 or permission of instructor. Instructor consent required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>FIN 6335 Energy Finance (3 semester credit hours) This course focuses on the issues associated with investing in and financing energy projects as well as managing energy risks. Case studies are drawn from the oil, natural gas, electricity and renewables sectors. Prerequisite: MECO 6301. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-22 10:43:35</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>NOLINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 10</td>
<td>52.0801.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>index: -91.4 m</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIN 6335 Energy Finance (3 semester credit hours) This course focuses on the issues associated with investing in and financing energy projects as well as managing energy risks. Case studies are drawn from the oil, natural gas, electricity and renewables sectors. Prerequisite: MECO 6301. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6340</td>
<td>FIN 6340 Management of Financial Institutions (3 semester credit hours) Study of the financial management of commercial banks and other financial intermediaries, with special attention to risk management issues. Prerequisite: FIN 6325 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 20:08:09 005311 52.0803.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fin6340.8</td>
<td></td>
<td>status: approving audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005311 2011-08-23 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FIN 6340 Management of Financial Institutions (3 semester credit hours) Study of the financial management of commercial banks and other financial intermediaries, with special attention to risk management issues. Prerequisites: FIN 6306 6325 or permission of instructor. instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6341</td>
<td>FIN 6341 Energy Risk Management (3 semester credit hours) This course focuses on the special issues associated with energy risk management, from hedging oil price risk to weather risk. Prerequisite: FIN 6360 or FIN 6381 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 20:08:56 NOLINK 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fin6341.3</td>
<td></td>
<td>status: approving audit: 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FIN 6341 Energy Risk Management (3 semester credit hours) This course focuses on the special issues associated with energy risk management, from hedging oil price risk to weather risk. Prerequisite: FIN 6360 or FIN 6381 or instructor consent required. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6342</td>
<td>FIN 6342 Insurance and Risk Management (3 semester credit hours) Study of risk management techniques for individuals and enterprises with an emphasis on insurance. Topics include life insurance, property and casualty insurance, liability insurance, disability insurance, health insurance, employer-based group insurance, long-term care insurance, worker's compensation, and governmental benefit programs. Prerequisite: FIN 6301. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 20:09:36 NOLINK 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fin6342.4</td>
<td></td>
<td>status: approving audit: 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FIN 6342 Insurance and Risk Management (3 semester credit hours) Study of risk management techniques for individuals and enterprises with an emphasis on insurance. Topics include life insurance, property and casualty insurance, liability insurance, disability insurance, health insurance, employer-based group insurance, long-term care insurance, worker's compensation, and governmental benefit programs. Prerequisite: FIN 6301. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6350</td>
<td>(r8)</td>
<td>fin6350.10</td>
<td>FIN 6350 Advanced Financial Management (3 semester credit hours) Advanced analysis of topics in financial management. Capital structure, dividend policy, incentives, and risk management. Prerequisite: FIN 6301. (3-0)</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6351</td>
<td>(r3)</td>
<td>fin6351.4</td>
<td>FIN 6351 Strategic Financial Management and Valuation II (3 semester credit hours) Executive Education Course. This is a second level finance course stressing the linkages of corporate strategy, financial strategy and market valuation. Different methodologies of valuation will be covered. Department consent required. (3-0)</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6352</td>
<td>(r4)</td>
<td>fin6352.6</td>
<td>FIN 6352 Financial Modeling (3 semester credit hours) This course focuses on financial modeling using computer software (spreadsheet, etc.) and their uses in financial decision making. Prerequisite: FIN 6301. (3-0)</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>fin6355</td>
<td>FIN 6355 Corporate Finance and Policy (3 semester credit hours) Cases involving financial situations encountered by managers that require the application of financial management skills. Special emphasis is placed on strategy. Prerequisite or Corequisite: FIN 6350. (3-0) R peoplesoft diff: 005313 2012-08-26 sxh121431</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fin6355.6</td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>fin6356</td>
<td>FIN 6356 Mergers and Acquisitions (3 semester credit hours) Examines mergers and acquisitions paying particular attention to how they are structured, valued, and financed. Prerequisite: FIN 6311 or instructor consent required. (3-0) R peoplesoft diff: 013110 2011-08-23 sxh121431</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fin6356.5</td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>fin6357</td>
<td>FIN 6357 Corporate Restructuring and Turnarounds (3 semester credit hours) Examines the issues and strategies associated with restructuring a corporation to turn it around, either when in distress or in bankruptcy. Prerequisite: FIN 6311 or instructor consent required. (3-0) T peoplesoft diff: 013111 2011-08-23 sxh121431</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fin6357.3</td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6360 (r7)</td>
<td>fin6360.8</td>
<td>FIN 6360 Options and Futures Markets (3 semester credit hours) Examines the valuation of derivative securities such as options and futures contracts, as well as the use of these instruments in managing business and financial risks. The topics to be covered include pricing of futures contracts, swaps, and options, the use of derivative instruments in hedging, portfolio insurance, exotic options, and the valuation of options on debt instruments. Prerequisite: FIN 6306. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6364 (r3)</td>
<td>fin6364.3</td>
<td>FIN 6364 Advanced Investment Management (3 semester credit hours) This course builds on the basic ideas underlying portfolio optimization covered in FIN 6301 and FIN 6310. It emphasizes the application of modern portfolio theory using quantitative methods. At the completion of this course, students will be able to analyze market data using the latest investment management tools, to formulate theoretical models, and to implement appropriate investment strategies. Prerequisite: FIN 6310. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>edit *</td>
<td>fin6366 (r5)</td>
<td>FIN 6366 International Financial Management (3 semester credit hours) Study of world financial markets and institutions, foreign exchange exposure and management, foreign direct investment, and a variety of issues involved in the financial management of multinational firms. Credit cannot be received for both courses, FIN 6336 and IMS 6320. Note: IMS 6320 may not be used to fulfill degree requirements for MS in Finance. Prerequisite: FIN 6301. (3-0) T</td>
<td>phase: approve</td>
<td>sx063000 2013-11-30 10:40:18 005317 52.0806.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>edit *</td>
<td>fin6368.3</td>
<td>FIN 6368 Financial Information and Trading (3 semester credit hours) This course examines the different sources of financial data and their use in investment analysis and trading. The course also examines the market structure of different security markets and their implications for the pricing of securities. Prerequisite: FIN 6306. (3-0) T</td>
<td>phase: approve</td>
<td>sx063000 2013-10-22 11:45:04 014224 52.0801.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6370 (r7)</td>
<td>fin6370.10</td>
<td>FIN 6370 The Theory of Finance and Its Applications (3 semester credit hours) A survey of financial theories and their application to various financial decisions and issues. Topics will include the theory of portfolio choices, asset pricing, derivative pricing, asymmetric information theories, and firm financing issues. Prerequisite: FIN 6310 or FIN 6350 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>fin6375 (r6)</td>
<td>fin6375.8</td>
<td>FIN 6375 Finance Workshop (3 semester credit hours) Forum for faculty and students to present recent developments in the finance literature. Presentation and discussion of published and unpublished papers of researchers with various affiliations. May be repeated for credit. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>fin6378 (r2)</td>
<td>fin6378.5</td>
<td>FIN 6378 Emerging Market Investment Analysis (3 semester credit hours) This course applies the tools of investment analysis to the evaluation of emerging markets and their securities. Prerequisite: FIN 6310 and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6380 (r5)</td>
<td>fin6380.7</td>
<td>FIN 6380 Global Fund Management (3 semester credit hours) For students involved in the practice of managing a fund of global investments. May be repeated for credit (6 semester credit hours maximum). Prerequisites: FIN 6310 and instructor consent required. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6381 (r5)</td>
<td>fin6381.6</td>
<td>FIN 6381 Introductory Mathematical Finance (3 semester credit hours) Introduction to the mathematical methods of continuous time finance (Ito calculus, stochastic dynamic optimization, etc.). Prerequisite: OPRE 7310 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6382 (r5)</td>
<td>fin6382.8</td>
<td>FIN 6382 Numerical Methods in Finance (3 semester credit hours) Introduction to the use of numerical methods in various financial applications. Prerequisite: FIN 6360 or FIN 6381 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin6383 (r5)</td>
<td>fin6383.7</td>
<td>FIN 6383 Financial Risk Management (3 semester credit hours) Study of financial risk management and its applications. Prerequisite: FIN 6360 or FIN 6381 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin6v98 (r3) fin6v98.15</td>
<td>FIN 6V98 Finance Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of the School of Management's Internship Coordinator is required. Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). JSOM Internship Coordinator consent required. (1-3)-0 S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:40:09 013729 52.0801.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin6v99 (r2) fin6v99.6</td>
<td>FIN 6V99 Special Topics in Finance (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. (1-4)-0 S</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-30 11:18:27 013639 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin7310 (r5) fin7310.8</td>
<td>FIN 7310 Seminar in Contemporary Finance (3 semester credit hours) Issues in current financial research. May be repeated for credit as topics vary. Instructor consent required. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-12-01 18:54:11 005325 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin7330 (r4) fin7330.11</td>
<td>FIN 7330 Topics in Theoretical Asset Pricing (3 semester credit hours) Advanced studies in the theory of asset pricing. Provides a foundation for advanced research in financial theory and empirical tests of asset pricing models. Topics include utility theory, mean-variance portfolio analysis, state preference models, continuous time portfolio selection, and the term structure of interest rates. May be repeated for credit with the permission of the instructor. as topics vary. Prerequisites: MECO 6345 or its equivalents. equivalent and instructor consent required. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-12-20 08:19:26 005326 52.0801.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * fin7335 (r4) fin7335.6</td>
<td>FIN 7335 Topics in Empirical Asset Pricing (3 semester credit hours) Study of the methods used to empirically test asset pricing theories and/or models. May be repeated for credit as topics vary. Prerequisite or Corequisite: FIN 7330 and instructor consent required. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-12-01 19:03:36 005327 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>req type</td>
<td>req course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>course req_id</td>
<td>phase</td>
<td>status</td>
<td>audit</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>FIN 7340 Topics in Theoretical Corporate Finance (3 semester credit hours) Empirical and theoretical analysis of corporate financial decision-making. Topics include the theory of the firm, initial public offerings, ownership and control, managerial incentives, risk management, and financing and investment decisions. May be repeated for credit as topics vary. Prerequisites: MECO 6345 or equivalent and instructor consent required. (3-0) T</td>
<td>approve</td>
<td>2013-12-20 14:38:08 005328 52.0801.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>fin7340</td>
<td>FIN 7340 Topics in Theoretical Corporate Finance (3 semester credit hours) Empirical and theoretical analysis of corporate financial decision-making. Topics include the theory of the firm, initial public offerings, ownership and control, managerial incentives, risk management, and financing and investment decisions. Prerequisites: MECO 6345 or its equivalents. May be repeated for credit with permission of instructor as topics vary. Prerequisites: MECO 6345 or equivalent and instructor consent required. (3-0) T</td>
<td>approve</td>
<td>2013-12-01 18:53:06 005329 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>(r5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fin7340.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>FIN 7345 Topics in Empirical Corporate Finance (3 semester credit hours) Study of the methods used to empirically test corporate finance theories and/or models. May be repeated for credit as topics vary. Prerequisite or Corequisite: FIN 7340 or instructor consent required. (3-0) T</td>
<td>approve</td>
<td>2013-12-20 14:38:08 005328 52.0801.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>fin7345</td>
<td>FIN 7345 Topics in Empirical Corporate Finance (3 semester credit hours) Study of the methods used to empirically test corporate finance theories and/or models. Corequisite: FIN 7340. May be repeated for credit with the permission of the instructor as topics vary. Prerequisite or Corequisite: FIN 7340 or instructor consent required. (3-0) T</td>
<td>approve</td>
<td>2013-12-01 18:53:06 005329 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>(r4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fin7345.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>fin7375 (r1)</td>
<td>FIN 7375 Finance Workshop (3 semester credit hours) Forum for faculty and students to present recent developments in the finance literature. Presentation and discussion of published and unpublished papers of researchers with various affiliations. May be repeated for credit as topics vary. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 18:52:48 NOLINK 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>fin7375.3</td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>FIN 7375 Finance Workshop (3 semester credit hours) Forum for faculty and students to present recent developments in the finance literature. Presentation and discussion of published and unpublished papers of researchers with various affiliations. May be repeated for credit as topics vary. Instructor consent required. (3-0) T</td>
<td>audit: 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmgt6320 (r3)</td>
<td>HMGT 6320 The American Healthcare System (3 semester credit hours) Examines the structure, financing and operation of the US healthcare industry. It analyzes how priorities are established, how services are organized and delivered, factors that influence the cost, quality and availability of healthcare, and opposing positions on the future of healthcare reform. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-30 11:59:06 006969 51.2211.00.14 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>hmgt6320.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 006969 2008-08-21 keh120030</td>
<td>HMGT 6320 The American Healthcare System (3 semester hours, credit hours) Examines the structure, financing and operation of the US healthcare industry. It analyzes how priorities are established, how services are organized and delivered, factors that influence the cost, quality and availability of healthcare, and opposing positions on the future of healthcare reform. This course serves as an introduction for healthcare majors. (3-0) T</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmgit6321 (r4)</td>
<td>HMGIT 6321 Strategic Leadership of Healthcare Organizations (3 semester credit hours)</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-04 13:45:45 006970 51.2211.00.14 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmgit6321.5</td>
<td>Explores how healthcare organizations can create sustainable competitive advantage in a volatile, reimbursement driven industry. Topics include external and internal environmental analysis, strategy formulation, organizational design and control and the impact of mergers and alliances on industry performance. Healthcare case studies are used to illustrate key concepts. Prerequisite: HMGIT 6320. (3-0) T*</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006970 2012-08-26 keh120030</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HMGIT 6321 Strategic Leadership of Healthcare Organizations (3 semester credit hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Explores how healthcare organizations can create sustainable competitive advantage in a volatile, reimbursement driven industry. Topics include external and internal environmental analysis, strategy formulation, organizational design and control and the impact of mergers and alliances on industry performance. Healthcare case studies are used to illustrate key concepts. Prerequisite: HMGIT 6320. (3-0) T*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmgit6322 (r4)</td>
<td>HMGIT 6322 Healthcare Cost Management and Control (3 semester credit hours)</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-27 21:19:00 006971 51.2211.00.14 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmgit6322.5</td>
<td>Examines how healthcare organizations allocate and report costs and use that information for managerial decision-making. Additional topics include how activity based costing can be used to more accurately determine the true cost of medical services and the use of the balanced scorecard to manage the conflicting imperatives of controlling costs and improving care. Prerequisite: ACCT 6201 or ACCT 6202. (3-0) T*</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006971 2011-08-23 keh120030</td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HMGIT 6322 Healthcare Cost Management and Control (3 semester credit hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examines how healthcare organizations allocate and report costs and use that information for managerial decision-making. Additional topics include how activity based costing can be used to more accurately determine the true cost of medical services and the use of the balanced scorecard to manage the conflicting imperatives of controlling costs and improving care. Prerequisite: either ACCT 6201 or ACCT 6202. (3-0) T*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>hmgt6323 (r7)</td>
<td>hmgt6323.8</td>
<td>HMGT 6323 (MIS 6317) Healthcare Informatics (3 semester credit hours) Examines the unique challenges of clinical and patient care delivery in the healthcare industry, including the role of data management, emerging data standards and information technology in improving the quality and cost associated with healthcare. The focus of the course will be on healthcare IT including issues related to governance, data integration, and selection and management of healthcare IT. Credit cannot be received for both courses, HMGT 6323 and MIS 6317. (3-0) T</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 006972 2013-08-25

adp130030

HMGT 6323 (MIS 6317) Healthcare Informatics (3 semester credit hours) Examines the unique challenges of clinical and patient care delivery in the healthcare industry, including the role of data management, emerging data standards and information technology in improving the quality and cost associated with healthcare. The focus of the course will be on healthcare IT including issues related to governance, data integration, and selection and management of healthcare IT. This course is equivalent to MIS 6317 Credit cannot be received for both courses, HMGT 6323 and only one of these may count toward a degree. MIS 6317. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmgit6324</td>
<td>HMGT 6324 (MECO 6352 and OB 6332 and OPRE 6396 and SYSM 6313) Healthcare Negotiation and Dispute Resolution (3 semester credit hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hmgit6324.16</td>
<td></td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 18:15:38 006973 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-08-25 peoplesoft diff: 006973 adp130030</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td>hmgt6325</td>
<td>(r6)</td>
<td>HMGT 6325 (OPRE 6325) Healthcare Operations Management (3 semester credit hours) Explores how effectively managing and continuously improving the end-to-end health care supply chain provides a competitive advantage. Topics include supply chain fundamentals, key players in the health care supply chain and their challenges, how the health care supply chain works, impact of technology on supply chain performance, and lean six sigma methodology. Simulations and case studies will reinforce the learning. (3-0) T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmgt6325.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006974 2011-08-23 keh120030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HMGT 6325 (OPRE 6325) Healthcare Operations Management (3 semester credit hours) Explores how effectively managing and continuously improving the end-to-end health care supply chain provides a competitive advantage. Topics include supply chain fundamentals, key players in the health care supply chain and their challenges, how the health care supply chain works, impact of technology on supply chain performance, and lean six sigma methodology. Simulations and case studies will reinforce the learning. (3-0) T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td>hmgt6327</td>
<td>(r3)</td>
<td>HMGT 6327 Information and Knowledge Management in Healthcare (3 semester credit hours) An interactive, experiential course in which students will utilize hands-on, practice-oriented opportunities to learn the core components of clinical information systems used by major health care systems in the United States. The course will include a substantial lab-based component in which students will follow guided exercises and assignments using a leading EMR software. The semester-long course will include a mix of classroom lectures, lab-based software exercises, and case analyses. Prerequisite: HMGT 6323. (3-0) Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmgt6327.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012585 2012-08-26 keh120030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HMGT 6327 Information and Knowledge Management in Healthcare (3 semester credit hours) An interactive, experiential course in which students will utilize hands-on, practice-oriented opportunities to learn the core components of clinical information systems used by major health care systems in the United States. The course will include a substantial lab-based component in which students will follow guided exercises and assignments using a leading EMR software. The semester-long course will include a mix of classroom lectures, lab-based software exercises, and case analyses. A prerequisite for this class is Prerequisite: HMGT 6323: Healthcare Informatics, a core course required for all MS in HMGT students. 6323. (3-0) Y</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>hmg6329</td>
<td>(r6) hmg6329.8</td>
<td>HMGT 6329 Seminar in Healthcare Management (3 semester credit hours) This course features guest lecturers from the healthcare community giving students insight into many diverse career fields. Speakers will offer advice about career preparation, job interviewing, and important skills needed for success. Interaction with the speakers offers a valuable networking experience and an opportunity for mentoring advice. Employment opportunities discussed have included hospital administration, home health agencies, medical group practice, dental practices, governmental agencies, and consulting firms. Prerequisite: HMGT 6320. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 006975 2013-08-25
rmb101000

HMGT 6329 Seminar in Healthcare Management (3 semester credit hours) This course features guest lecturers from the healthcare community giving students insight into many diverse career fields. Speakers will offer advice about career preparation, job interviewing, and important skills needed for success. Interaction with the speakers offers a valuable networking experience and an opportunity for mentoring advice. Employment opportunities discussed have included hospital administration, home health agencies, medical group practice, dental practices, governmental agencies, and consulting firms. Prerequisite: HMGT 6320. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmg6330</td>
<td>(r3)</td>
<td>HMGT 6330 Healthcare Law, Policy and Regulation (3 semester credit hours) This course examines how healthcare laws and regulations are enacted, and their impact on providers, payers, and patients. Topics include: Stark prohibitions on provider self-referral, federal regulation of fraud and abuse, the Emergency Treatment and Active Labor Act (EMTALA), and the Health Insurance Portability and Accountability Act (HIPPA). It also examines the process by which Congressional legislation is transformed into day-to-day industry regulation. Prerequisite: HMGT 6320. (3-0)</td>
<td>phase: approve</td>
<td>sxao6300</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmg6330.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-04</td>
<td>13:46:04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>51.0701.00.14</td>
<td>peoplesoft diff: 012743 2012-08-26 keh120030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.1 m</td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmg6331</td>
<td>(r2)</td>
<td>HMGT 6331 Healthcare Economics (3 semester credit hours) This course applies the tools of economic analysis to the challenges and opportunities faced by managers and policy makers in the health sector. Topics covered include: measuring the benefits of healthcare, the role of insurance in spreading risk and altering incentives, the production of healthcare, price and non-price competition among providers, international comparisons of healthcare systems, and proposed policies that are intended to expand access and contain cost. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmg6331.2</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-09-30</td>
<td>09:49:47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>51.0701.00.14</td>
<td>peoplesoft diff: 012742 2009-08-19 keh120030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -92.1 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>req_id</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hmtg6332</td>
<td>HMGT 6332 Quality Improvement in Healthcare: Six Sigma and Beyond (3 semester credit hours) The course will explore applications of quality improvement measures to the healthcare environment. Applications including the Demming method, QI, and CQI will be studied. Application of other industrial quality improvement methodology including Six Sigma and Toyota Lean will be covered. Prerequisite: HMGT 6320. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>2013-11-30 10:54:09</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hmtg6332.3</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>013116</td>
<td>51.0701.00.14 audit: -91.1 m index: -91.1 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hmtg6333</td>
<td>HMGT 6333 Ethics in Healthcare Management (3 semester credit hours) This course explores ethical issues specific to the healthcare industry including: fraud and abuse, rationing, uninsured treatment, the role of government, and end of life decisions. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-16 16:00:05</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hmtg6333.3</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>013122</td>
<td>51.3201.00.01 audit: -91.5 m index: -91.5 m match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013116 2010-08-18 keh120030

peoplesoft diff: 013122 2010-08-18 keh120030
HMGT 6334 Healthcare Analytics (3 semester credit hours) This course covers theories and applications of business intelligence. The focus is on extracting business intelligence from firm’s business yet to find ways to make best use of existing data for various applications, including (but not limited to) customer segmentation, customer relationship management (CRM), personalization, online recommendation systems, web mining and product assortment. The emphasis will be placed on the ‘know-how’—knowing how to extract improve care, reduce costs, and apply provide more accessible care. This course introduces the use of business intelligence to improve business decision-making, and decision sciences in healthcare industry. Students will also acquire develop a conceptual understanding of data mining techniques and decision analysis and hands-on experience with several analytics software such as XL miner, SAS Enterprise Miner and SQL Server2008 (depending which may include coding in R, Rattle, and WEKA (as needed and depending on availability). This class is required for the SAS certificate in data mining. Prerequisite: MIS 6326, OPRE 6301. (3-0) Y

peoplesoft diff: 013250 2013-08-25
adp130030
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmg16336</td>
<td>HMGT 6336 (ACCT 6336) Information Technology Audit and Risk Management (3 semester credit hours) Management's role in designing and controlling information technology used to process data is studied. Topics include the role of internal and external auditors in systems development, information security, business continuity, information technology, internet, change management and operations. Focus is placed on the assurance of controls over information technology risks and covers topics directly related to the Certified Information Systems Auditor (CISA) exam. (3-0)</td>
<td>phase: approve
status: approving
audit: 30</td>
<td>cxj140030
2013-09-30
09:50:21 013387 52.0302.00.16 audit: -91.9 m index: -91.9 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hmg16336.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013387 2013-08-25

adp130030
<table>
<thead>
<tr>
<th>req type course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>HMGT 6380 (ACCT 6380) Internal Audit (3 semester credit hours) The course covers internal audit from a broad perspective that includes information technology, business processes, and accounting systems. Topics include internal auditing standards, risk assessment, governance, ethics, audit techniques, consulting and emerging internal audit issues. This is the first course leading to Internal Auditing Education Partnership (IAEP) Certificate and prepares students for the Certified Internal Auditor Exam. Students work on internal audits as part of class along with learning the latest internal audit techniques. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-09-30 09:51:07</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>audit: 30</td>
<td>013388</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52.0303.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: -92 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>index: -92 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013388 2013-08-25

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmg6382 (r5)</td>
<td>HMGT 6382 (ACCT 6382) Advanced Auditing (3 semester credit hours) This course provides an in-depth view of issues related to internal and external audit. Current and emerging issues such as Enterprise Risk Management, Advanced Communication Techniques, Managing the Audit Group, and Quality Assessment Reviews are all covered as part of the class. Weekly assignments and case studies are discussed in detail in class along with a major project with practitioners. The course covers topics necessary for students to work as an auditor in charge. Prerequisite: ACCT 6334 or ACCT 6380 or HMGT 6380 or ACCT 4334. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:25:04 013389 52.0303.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hmg6382.11</td>
<td>peoplesoft diff: 013389 2013-08-25 adp130030 HMGT 6382 (ACCT 6382) Advanced Auditing (3 semester credit hours) This course provides an in-depth view of issues related to internal and external audit. Current and emerging issues such as Enterprise Risk Management, Advanced Communication Techniques, Managing the Audit Group, and Quality Assessment Reviews are all covered as part of the class. Weekly assignments and case studies are discussed in detail in class along with a major project with practitioners. The course covers topics necessary for students to work as an auditor in charge. Prerequisites: Prerequisite: ACCT 6334 or ACCT 6380 or HMGT 6380. 6380 or ACCT 4334. (3-0) R</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>req course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmgt6401</td>
<td>HMGT 6401 Negotiation and Conflict Management in Healthcare (4 semester credit hours) Exec</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>utive Education Course. Develops critical negotiating and conflict management skills to</td>
<td>status: approving</td>
<td>2013-11-03</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>significantly improve the quality of life within a medical organization. Topics include</td>
<td>audit: 30</td>
<td>10:30:44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>recognizing the difference between constructive and disruptive conflict, developing</td>
<td></td>
<td>006976</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>systems that handle conflict at the least disruptive level, mediating disagreements</td>
<td></td>
<td>52.0205.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>among colleagues, negotiating against a stronger opponent and dealing with disruptive</td>
<td></td>
<td>audit: -91.2 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>or impaired colleagues. (4-0) T</td>
<td></td>
<td>index: -91.2 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006976 2012-08-26 keh120030</td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmgt6402</td>
<td>HMGT 6402 Financial Management of Healthcare Organizations (4 semester credit hours)</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Executive Education Course. Develops the critical skills needed to make financial</td>
<td>status: approving</td>
<td>2013-11-03</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>decisions that reduce risk and increase the economic value of a healthcare organization.</td>
<td>audit: 30</td>
<td>10:31:15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Topics include how to read and interpret healthcare financial statements, how to</td>
<td></td>
<td>006977</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>manage financial risk, determining an medical organization's cost of capital, using</td>
<td></td>
<td>52.0801.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>net present value to make value creating investment decisions; and evaluating the</td>
<td></td>
<td>audit: -91.2 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ability to attract and retain capital. (4-0) T</td>
<td></td>
<td>index: -91.2 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006977 2012-08-26 keh120030</td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmgit6403</td>
<td>(r4) hmgit6403.5</td>
<td>HMGT 6403 Medical Cost and Performance Management (4 semester credit hours) Executive Education Course. Develops powerful tools to measure and control healthcare costs and improve operating performance. Topics include identifying and controlling important medical cost drivers, using flexible budgeting to improve operating performance, measuring the profitability of individual medical services and developing both financial and non-financial measures of organizational performance. (4-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -91.2 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.2 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006978 2012-08-26 keh120030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HMGT 6403 Medical Cost and Performance Management (4 semester credit hours) Executive Education Course. Develops powerful tools to measure and control healthcare costs and improve operating performance. Topics include identifying and controlling important medical cost drivers, using flexible budgeting to improve operating performance, measuring the profitability of individual medical services and developing both financial and non-financial measures of organizational performance. (4-0) T</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmgit6404</td>
<td>(r3) hmgit6404.5</td>
<td>HMGT 6404 Quality and Performance Improvement in Healthcare (4 semester credit hours) Executive Education Course. Provides the tools physicians need to grow their practices by improving the quality of their patient service processes. Topics include how to identify and improve key service processes, redesigning critical service processes to improve operating efficiency, and developing products and services that add patient value. (4-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -91.2 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.2 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006979 2008-08-21 keh120030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HMGT 6404 Service Quality Improvement and Patient Satisfaction Performance Improvement in Healthcare (4 semester credit hours) Executive Education Course. Provides the tools physicians need to grow their practices by improving the quality of their patient service processes. Topics include how to identify and improve key service processes, redesigning critical service processes to improve operating efficiency, and developing products and services that add patient value. (4-0) T</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmg6405 (r4)</td>
<td>hmg6405.6</td>
<td>HMG6405 Healthcare Information Management and Technology (4 semester credit hours) Executive Education Course. Examines the critical success factors for the specification, selection and implementation of a healthcare IT system. Topics include analyzing healthcare IT architectures, developing an IT implementation plan and budget, and developing the governance and oversight requirements of a major IT project. (4-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmg6406 (r4)</td>
<td>hmg6406.5</td>
<td>HMG6406 Strategic Management of Healthcare Organizations (4 semester credit hours) Executive Education Course. Develops the strategic thinking skills required to create sustainable competitive advantage in a healthcare organization. Topics include critically assessing a medical organization's competitive strengths and weaknesses, analyzing competitive threats to long-term survival, strategy formulation and the identification of potential strategic partners. (4-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmg6407 (r4)</td>
<td>HMGT 6407 Healthcare Policy and Regulation (4 semester credit hours) Executive Education Course. Examines the social, political and economic forces that are shaping US healthcare policy. Analyzes the federal government's role in the financing and regulation of healthcare, discusses the government's enforcement role with Center for Medicare (CMS) and the Office of Inspector General (OIG) and analyzes the prospects for healthcare reform. This class is held in Washington, DC. (4-0) T</td>
<td>phase: approve</td>
<td>sax063000 2014-01-13 13:13:49 006982 52.0201.00.16 audit: 30 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmg6408 (r4)</td>
<td>HMGT 6408 Motivational Leadership in Healthcare Organizations (4 semester credit hours) Executive Education Course. Analyzes the types of behaviors which lead to high performance within healthcare organizations. Topics include individual behavior and motivation, behavioral job requirements and job/person matching, the differences between leadership and managerial behavior; and how to establish and maintain a high performance work climate. (4-0) T</td>
<td>phase: approve</td>
<td>sax063000 2013-11-03 10:33:12 006983 52.0201.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmg6410</td>
<td>HMGT 6410 Coaching as a Leadership Style (4 semester credit hours) Executive Education Course. Develops highly effective coaching skills for fostering positive change in both individuals and teams. Topics include developing an effective coaching relationship through intelligent listening and authentic feedback, assessing an individual's readiness for change and helping to increase colleagues' personal and professional effectiveness. (4-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmg6410.5</td>
<td></td>
<td>phase: approve</td>
<td>2013-11-03 10:33:29 006985 52.0101.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006985 2013-08-25 adp130030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmg6v10</td>
<td>HMGT 6V10 Special Topics in Healthcare Management (1-3 semester credit hours) Issues in current Healthcare Management. May be repeated for credit as topics vary (6 semester credit hours maximum). ([1-3]-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmg6v10.6</td>
<td></td>
<td>phase: approve</td>
<td>2013-11-04 10:01:46 006967 52.0201.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 006967 2008-08-21 keh120030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>hmg6v15</td>
<td>HMGT 6V15 Self-Directed Field Study (1-4 semester credit hours) Executive Education Course. A self-directed, faculty supervised field study of the participant's practice or medical organization using the knowledge and skills acquired in the residential program. This course is non-residential. May be repeated for credit as topics vary. Department consent required. ([1-4]-0) S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hmg6v15.6</td>
<td></td>
<td>phase: approve</td>
<td>2013-12-01 19:05:07 013114 51.0701.00.14 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013114 2010-08-18 keh120030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmg6v98</td>
<td>(r2)</td>
<td>hmg6v98.10</td>
<td>HMGT 6V98 Healthcare Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of the School of Management required. Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). JSOM Internship Coordinator consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>hmg6v99</td>
<td>(r3)</td>
<td>hmg6v99.9</td>
<td>HMGT 6V99 Special Topics in Healthcare Management (1-4 semester credit hours) May be lecture, readings or individualized study. May be repeated for credit as topics vary. Instructor consent is required. ([1-4]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove</td>
<td>*</td>
<td>ims6150</td>
<td>(r3)</td>
<td>IMS 6150 International Business Management - EMBA (1 semester credit hour) Considers the role of general managers (CEO and country/ regional managers) in multi-national companies and the working relationship of subsidiary and home offices in such companies. Topics include business strategies, control/cooperative systems, the dynamics of addressing local and global concerns, and corporate learning. Changes brought about by modern information technology are also considered. Executive Education Course. (1-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>ims6151</td>
<td>(r3)</td>
<td>IMS 6151 Global Business Ethics (1 semester credit hour) This course examines practical issues in global business ethics, including compliance requirements and their application, effective reactions to global ethical dilemmas and best practices in global and multicultural environments. (1-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>ims6204</td>
<td>(r3)</td>
<td>IMS 6204 Global Business (2 semester credit hours) Provides an introduction to the fundamental concepts of international business, covering macro-level environmental factors that affect international business today. Topics include globalization, country environments, culture, international trade and investment, regional economic integration, and the global monetary system. Students may not receive credit Credit cannot be received for both courses, IMS 5200 and IMS 6204. (2-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>IMS 6205 Export Market Planning (2 semester credit hours) A combination of lectures on the foundations of export marketing, combined with classroom presentations by experts from the North Texas District Export Council on their work in the global marketplace. Covers choosing an exportable product and market, and adapting marketing mix variables in the context of export marketing. Students prepare and present a market entry report, and are awarded a certificate from the US Department of Commerce upon completion. (2-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-15 18:39:16 014021 52.1101.00.16 audit: -91.6 m index: -91.6 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>IMS 6212 Global Communication and Negotiations (2 semester credit hours) Executive Education Course. This course focuses on understanding national culture and cultural issues in international business. It emphasizes the importance of managing cultural differences to enhance communication, negotiation, leadership, and group dynamics in an international work environment. (2-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 09:31:06 014229 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 014021 2012-08-26
IMS 6205 Export Market Planning (2 semester credit hours) A combination of lectures on the foundations of export marketing, combined with classroom presentations by experts from the North Texas District Export Council on their work in the global marketplace. Covers choosing an exportable product and market, and adapting marketing mix variables in the context of export marketing. Students prepare and present a market entry report, and are awarded a certificate from the US Department of Commerce upon completion.

Prerequisite: None

(2-0) R

peoplesoft diff: 014229 2013-08-25
IMS 6212 Global Communication and Negotiations (2 semester credit hours) Executive Education Course. This course focuses on understanding national culture and cultural issues in international business. It emphasizes the importance of managing cultural differences to enhance communication, negotiation, leadership, and group dynamics in an international work environment. (2-0) Y

peoplesoft diff: 014229 2013-08-25
IMS 6212 Global Communication & and Negotiations (2 semester credit hours) Executive Education Course. This course focuses on understanding national culture and cultural issues in international business. It emphasizes the importance of managing cultural differences to enhance communication, negotiation, leadership, and group dynamics in an international work environment. (2-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req_type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6213</td>
<td>IMS 6213 Global Politics in Business (2 semester credit hours) Politics is a common challenge for multinational companies. This course will provide a comprehensive study of global business and politics. It examines regulatory compliance, ideology, government policies, ethical conflicts, environmental and resource issues at a global level. (2-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 12:59:04 014230 52.1101.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ims6213.2</td>
<td>peoplesoft diff: 014230 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ims6214</td>
<td>IMS 6214 Global Mergers and Acquisitions (2 semester credit hours) This course will examine mergers and acquisitions in the global scale, including identifying targets; valuing the targets; negotiating the deals, and structuring the post-deal integration. It will also cover the legal, organizational and strategic issues that impact the acquisition process. (2-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 10:26:31 014231 52.1101.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ims6214.3</td>
<td>peoplesoft diff: 014231 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMS 6213 Global Politics in Business (2 semester credit hours) Politics is a common challenge for multinational companies. This course will provide a comprehensive study of global business and politics. It examines regulatory compliance, ideology, government policies, ethical conflicts, environmental and resource issues at a global level. (2-0) Y

IMS 6214 Global Mergers and Acquisitions (2 semester credit hours) This course will examine mergers and acquisitions in the global scale, including identifying targets; valuing the targets; negotiating the deals, and structuring the post-deal integration. It will also cover the legal, organizational and strategic issues that impact the acquisition process. (2-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>IMS 6250 Executive Study Trip - Mexico (2 semester credit hours) Executive Education Course. This course focuses on NAFTA and the business, political, and cultural issues related to conducting business in Mexico. It involves a trip to an important business center where students visit companies, participate in classes at Mexican universities, and have cultural experiences pertinent to business decision-making and management in Mexico. Instructor consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-30 11:03:45 012755 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 012755 2012-08-26 keh120030

IMS 6250 Executive Study Trip - Mexico (2 semester credit hours) Executive Education Course. This course focuses on NAFTA and the business, political, and cultural issues related to conducting business in Mexico. It involves a trip to an important business center where students visit companies, participate in classes at Mexican universities, and have cultural experiences pertinent to business decision-making and management in Mexico. **Executive Education Course.** Instructor consent required. (2-0) Y

| 2014-open | edit * | IMS 6252 International Business Management (2 semester credit hours) Considers the role of general managers (CEO and country/regional managers) in multi-national companies and the working relationship of subsidiary and home offices in such companies. Topics include business strategies, control/cooperative systems, the dynamics of addressing local and global concerns, and knowledge transfer. Changes brought about by modern information technology are also considered. (2-0) Y | phase: approve | sxao063000 2013-11-30 11:05:44 NOLINK 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail | process orion |

peoplesoft diff: NOLINK

IMS 6252 International Business Management (2 semester credit hours) Considers the role of general managers (CEO and country/regional managers) in multi-national companies and the working relationship of subsidiary and home offices in such companies. Topics include business strategies, control/cooperative systems, the dynamics of addressing local and global concerns, and knowledge transfer. Changes brought about by modern information technology are also considered. (2-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6300 (r5) ims6300.5</td>
<td>IMS 6300 The Multinational Firm (3 semester credit hours) Examines how multinational firms adapt to the international environment. Topics include the management of human resources, finance and the supply chain within the multinational firm. Special attention is given to the strategy and structure of multinational operations. Prerequisite: IMS 6204. (2-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 12:59:36</td>
<td>peoplesoft diff: 007558 2011-08-23 keh120030</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IMS 6300 The Multinational Firm (3 semester credit hours) Examines how multinational firms adapt to the international environment. Topics include the management of human resources, finance and the supply chain within the multinational firm. Special attention is given to the strategy and structure of multinational operations. Prerequisite: IMS 6204. (2-0) Y</td>
<td>status: approving</td>
<td>007558 52.1101.00.16 audit: -92.1 m index: -92.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6302 (r5) ims6302.7</td>
<td>IMS 6302 Legal Aspects of International Business Transactions (3 semester credit hours) The legal environment and framework of international business, legal aspects and implications of international trade and the establishment and operation of business abroad, moving goods across national borders, immigration, joint ventures, licensing, setting up and financing operations abroad, negotiating an international deal, resolving disputes, international corruption, bribery and crime. Prerequisite: IMS 6204 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-15 18:39:43</td>
<td>peoplesoft diff: 007560 2013-08-25 adp130030</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IMS 6302 Legal Aspects of International Business Transactions (3 semester credit hours) The legal environment and framework of international business, legal aspects and implications of international trade and the establishment and operation of business abroad, moving goods across national borders, immigration, joint ventures, licensing, setting up and financing operations abroad, negotiating an international deal, resolving disputes, international corruption, bribery and crime. Prerequisite: IMS 6204 or instructor consent of the instructor required. (3-0) T</td>
<td>status: approving</td>
<td>007560 52.1101.00.16 audit: -91.6 m index: -91.6 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit *
im36310 (r5)
im36310.6 | IMS 6310 International Marketing (3 semester credit hours) This course aims at preparing students to appreciate the international marketing by understanding both theoretical and practical issues involved. This course covers the fundamentals and evolution of international marketing, the environment of international marketing, foreign entry methods, evaluation of market potential, management of international marketing mix, consumer behavior and international strategic marketing planning. Students will also learn the reasons why international marketing is important for success in international business and for finding personal career opportunities. Prerequisite: MKT 6301 or instructor consent required. (3-0) Y | phase: approve
status: approving
audit: 30 | sxa063000
2013-10-15
18:39:56
007562
52.1101.00.16
audit: -91.6 m
index: -91.6 m
match_fail | process orion |

peoplesoft diff: 007562 2008-08-21

IMS 6310 International Marketing (3 semester credit hours) This course aims at preparing students to appreciate the international marketing by understanding both theoretical and practical issues involved. This course covers the fundamentals and evolution of international marketing, the environment of international marketing, foreign entry methods, evaluation of market potential, management of international marketing mix, consumer behavior and international strategic marketing planning. Students will also learn the reasons why international marketing is important for success in international business and for finding personal career opportunities. Prerequisite: MKT 6301 or instructor consent of instructor. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>IMS 6312 International Advertising (3 semester credit hours) This course will aim at preparing the students to understand theoretical and practical aspects of international advertising within the context of global marketing communications. The basic principles of the course will include global versus local creative strategies and executions, international media opportunities, and global research methods. It will aim to equip the students with an understanding of the basic principles of advertising, including the various and differing cultural, economic and political factors that impact international marketing communications with a view to get employment in international advertising. Prerequisite: MKT 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-15 18:40:07 007564 52.1101.00.16 audit: -91.6 m index: -91.6 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

IMS 6312 International Advertising (3 semester credit hours) This course will aim at preparing the students to understand theoretical and practical aspects of international advertising within the context of global marketing communications. The basic principles of the course will include global versus local creative strategies and executions, international media opportunities, and global research methods. It will aim to equip the students with an understanding of the basic principles of advertising, including the various and differing cultural, economic and political factors that impact international marketing communications with a view to get employment in international advertising. Prerequisite: MKT 6301 or instructor consent required. (3-0) T
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
</table>
| 2014-open | edit * ims6314 (r3) | IMS 6314 Global E-Business Marketing (3 semester credit hours) This course aims at preparing the students for managing global e-business activities within the framework of accelerated trends for globalization. International aspects of e-business have become more important due to the variables in legal and regulatory regimes, the state of the communications infrastructure and differences in culture; including language and perception of the benefits of the Internet. Students will be prepared to understand the worldwide unevenness in the adoption and use of e-business globally and develop ability to customize and personalize the Internet experience to use at their employment in the field. Prerequisite: MKT 6301 or instructor consent required. (3-0) T | phase: approve
status: approving
audit: 30 | sxa063000
2013-11-30
11:07:43
007565
52.1101.00.16
audit: -91.1 m
index: -91.1 m
match_fail | process orion |

peoplesoft diff: 007565 2008-08-21 keh120030

IMS 6314 Global E-Business Marketing (3 semester credit hours) This course aims at preparing the students for managing global e-business activities within the framework of accelerated trends for globalization. International aspects of E-business have become more important due to the variables in legal and regulatory regimes, the state of the communications infrastructure and differences in culture; including language and perception of the benefits of the Internet. Students will be prepared to understand the worldwide unevenness in the adoption and use of E-business globally and develop ability to customize and personalize the Internet experience to use at their employment in the field. Prerequisite: MKT 6301 or instructor consent required. (3-0) T

| 2014-open | edit * ims6320 (r4) | IMS 6320 International Corporate Finance (3 semester credit hours) Financial policies and practices of companies involved in multinational operations. The course considers management of working capital and permanent assets. Investment practices and capital budgeting for the global firm. Credit cannot be received for both courses, IMS 6320 and FIN 6366. Prerequisite: FIN 6301. (3-0) Y | phase: approve
status: approving
audit: 30 | sxa063000
2013-11-30
11:08:20
007567
52.0806.00.16
audit: -91.1 m
index: -91.1 m
match_fail | process orion |

peoplesoft diff: 007567 2010-08-18 keh120030

IMS 6320 International Corporate Finance (3 semester credit hours) Financial policies and practices of companies involved in multinational operations. The course considers management of working capital and permanent assets. Investment practices and capital budgeting for the global firm. Credit cannot be received for both courses, IMS 6320 and FIN 6366. Prerequisite: FIN 6301. (3-0) Y

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f2c37a6ff775e1ca/makepdf

110/258
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6340 (r2)</td>
<td>IMS 6340 Managing Strategy and People in International Techno-Creative Industries (3 semester credit hours) "Techno-Creative" industries (game design, animation and social media) have become important global industries. This course will apply principles from strategic management and international HRM to prepare professional to work in and "add value" in these industries. Game design, and related industries will be used in this course as a platform for hands on learning. Case studies, speakers and projects will be used to bring to life principles of strategy and human resource management. No prior interest or experience in game design or related industries is required, but will be welcome. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 13:00:48 014300 52.1101.00.16 audit: -92.2 m index: -92.2 m match_fail</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

IMS 6340 Managing Strategy and People in International Techno-Creative Industries (3 semester credit hours) "Techno-Creative" industries (game design, animation and social media) have become important global industries. This course will apply principles from strategic management and international HRM to prepare professional to work in and "add value" in these industries. Game design, and related industries will be used in this course as a platform for hands on learning. Case studies, speakers and projects will be used to bring to life principles of strategy and human resource management. No prior interest or experience in game design or related industries is required, but will be welcome. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6341 (r2)</td>
<td>ims6341.3</td>
<td>IMS 6341 International Human Resource Management (3 semester credit hours) This course will focus on the impact of globalization on managing international human resources. The central aim of this course is to identify the challenges of managing diverse manpower in an international set up and to teach students how to effectively manage diverse manpower in rapidly changing global business environments. Students will learn how to develop an effective human resource management strategy by incorporating cultural, legal and social aspects of a host country. The course also introduces comparative HR practices in the process of expatriates' selection, training and managing of cultural shocks and reverse cultural shocks. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 13:00:55 014301 52.1101.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014301 2013-08-25 adp130030</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6343 (r2)</td>
<td>IMS 6343 Sustainability in a Global Business Environment (3 semester credit hours) This course is expected to enhance global awareness and discovery of how local businesses and organizations can create sustainable value for people and planet. This course will cover basic concepts in business sustainability and organizational management, such as leadership, social capital, and organizational design. Students will have a better understanding of the opportunities and challenges of businesses in a diverse environment challenged by globalization pressures. The course will be offered as part of an interdisciplinary field study program. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-09-30 13:01:02 014303 52.1101.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ims6343.3</td>
<td></td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 014303 2013-08-25 adp130030

IMS 6343 Sustainability in a Global Business Environment (3 semester credit hours) This course is expected to enhance global awareness and discovery of how local businesses and organizations can create sustainable value for people and planet. This course will cover basic concepts in business sustainability and organizational management, such as leadership, social capital, and organizational design. Students will have a better understanding of the opportunities and challenges of businesses in a diverse environment challenged by globalization pressures. The course will be offered as part of an interdisciplinary field study program. (3-0) Y

<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6350 (r2)</td>
<td>IMS 6350 Management Consulting and Research (3 semester credit hours) Executive Education Course. This is a course taken under the supervision of an assigned faculty member. The student conducts a field consulting or research project on a topic that is approved and supervised by the faculty sponsor. The course is intended to develop deep knowledge and skill in an area that the student believes will enhance his or her job performance and that is academically rigorous. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-11-04 10:15:31 012765 52.1101.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ims6350.3</td>
<td></td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 012765 2009-08-19 keh120030

IMS 6350 Management Consulting and Research (3 semester credit hours) Executive Education Course. This is a course taken under the supervision of an assigned faculty member. The student conducts a field consulting or research project on a topic that is approved and supervised by the faculty sponsor. The course is intended to develop deep knowledge and skill in an area that the student believes will enhance his or her job performance and that is academically rigorous. Instructor consent required. (3-0) Y
IMS 6351 Executive International Study Trip - EMBA

Course Description:
IM 6351 Executive International Study Trip - EMBA (3 semester credit hours) Executive Education Course. This course consists of a ten day international trip. The destinations are chosen to relate to an international emphasis and its themes of managing for change, the strategic perspective, and leadership effectiveness. While abroad, participants visit and hear presentations from local university faculty, local business executives, and expert panels. Participants are also expected to identify important cultural variables that impact business decision making and management in the countries visited. Instructor consent required. (3-0) Y

Actions:
- **Phase:** approve
- **Status:** approving
- **Audit:** 29

IMS 6353 International Study Tour - GLE MBA

Course Description:
IM 6353 International Study Tour - GLE MBA (3 semester credit hours) This course investigates the political, economic, social and cultural forces in countries that attract foreign business investment, as well as, the experiences of local and foreign enterprises doing business in that country. Executive Education Course. Prerequisite: IM 6204. (3-0) Y

Actions:
- **Phase:** approve
- **Status:** approving
- **Audit:** 30

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f02c37a6ff775e1ca/makepdf

114/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
</table>
| 2014-open | | edit * | | IMS 6354 Global Marketing (3 semester credit hours) Executive Education Course. This course promotes an appreciation and understanding of theoretical and practical issues involved in marketing products and services in the international context. This course covers the fundamentals and evolution of international marketing, the environment of international marketing, foreign entry methods, evaluation of market potential, management of international marketing mix, consumer behavior and international strategic marketing planning. Prerequisite: MKT 6301. (3-0) Y
peoplesoft diff: 012763 2009-08-19 keh120030
IMS 6354 Global Marketing (3 semester credit hours) Executive Education Course. This course promotes an appreciation and understanding of theoretical and practical issues involved in marketing products and services in the international context. This course covers the fundamentals and evolution of international marketing, the environment of international marketing, foreign entry methods, evaluation of market potential, management of international marketing mix, consumer behavior and international strategic marketing planning. Prerequisite: MKT 6301 or consent of instructor. Executive Education Course. 6301. (3-0) Y | phase: approve | 2013-11-03 10:25:13 012763 52.1101.00.16 audit: -91.2 m index: -91.2 m match_fail | process orion |
| 2014-open | | edit * | | IMS 6355 Global Communications and Negotiations (3 semester credit hours) Executive Education Course. This course focuses on understanding national culture and cultural issues in international business. It emphasizes the importance of managing cultural differences to enhance communication, negotiation, leadership, and group dynamics in an international work environment. Instructor consent required. (3-0) Y
peoplesoft diff: 012759 2009-08-19 keh120030
IMS 6355 Global Communications and Negotiations (3 semester credit hours) Executive Education Course. This course focuses on understanding national culture and cultural issues in international business. It emphasizes the importance of managing cultural differences to enhance communication, negotiation, leadership, and group dynamics in an international work environment. Instructor consent required. Executive Education Course. 6301. (3-0) Y | phase: approve | 2013-11-29 19:15:11 012759 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail | process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6360</td>
<td>IMS 6360 International Strategic Management (3 semester credit hours) This course examines the strategic challenges that multinational firms face. Issues such as managing across national boundaries, responding to environmental challenges, managing international joint ventures and strategic alliances, managing headquarters-subsidiary relationships, and developing global capabilities will be discussed. Prerequisite: IMS 6204. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-09-30 13:02:26</td>
<td>007572 52.1101.00.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r5)</td>
<td>ims6360.5</td>
<td>peoplesoft diff: 007572 2011-08-23 keh120030</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS 6360 International Strategic Management (3 semester credit hours) This course examines the strategic challenges that multinational firms face. Issues such as managing across national boundaries, responding to environmental challenges, managing international joint ventures and strategic alliances, managing headquarters-subsidiary relationships, and developing global capabilities will be discussed. Prerequisite: IMS 6204. (3-0) Y</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6365</td>
<td>IMS 6365 (OPRE 6397) Cross-Culture Communication and Management (3 semester credit hours) This course focuses on understanding national culture and cultural issues in international business. It emphasizes the importance of managing cultural differences to enhance communication, negotiation, leadership, and group dynamics in an international work environment. Further, the course describes methods to develop effective selection and training programs for international assignments. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-09-30 13:03:22</td>
<td>007574 52.1101.00.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r6)</td>
<td>ims6365.6</td>
<td>peoplesoft diff: 007574 2013-08-25 adp130030</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS 6365 (OPRE 6397) Cross-Culture Communication and Management (3 semester credit hours) This course focuses on understanding national culture and cultural issues in international business. It emphasizes the importance of managing cultural differences to enhance communication, negotiation, leadership, and group dynamics in an international work environment. Further, the course describes methods to develop effective selection and training programs for international assignments. (3-0) Y</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IMS 6370 Seminar in International Operations Management (3 semester credit hours) One of two capstone courses designed around a study tour to an international location where students attend courses at a local university with local students, interact with managers from local companies regarding business practices, and study the culture of the country they are visiting. Prerequisites: ACCT 6201 and FIN 6301 and MKT 6301 and OPRE 6362 and department consent required. (3-0) Y

IMS 6371 Seminar in International Strategic Management (3 semester credit hours) One of two capstone courses designed around a study tour to an international location where students attend courses at a local university with local students, interact with managers from local companies regarding business practices, and study the culture of the country they are visiting. Prerequisites: ACCT 6201 and FIN 6301 and MKT 6301 and OPRE 6362 and department consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6v91</td>
<td>IMS 6V91 Regional Area Studies: Latin America (1-3 semester credit hours) History of economic development and overview of current participation of firms in Latin America and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. ([1-3]-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r2)</td>
<td>peoplesoft diff: 014304 2014-08-24 sxh121431</td>
<td></td>
<td>sxa063000 2013-12-01 16:35:32 014304 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6v92</td>
<td>IMS 6V92 Regional Area Studies: Western Europe (1-3 semester credit hours) History of economic development and overview of current participation of firms in Western Europe and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. ([1-3]-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r2)</td>
<td>peoplesoft diff: 014305 2013-08-25 adp130030</td>
<td></td>
<td>sxa063000 2013-12-01 16:36:02 014305 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>IMS 6V93 Regional Area Studies: Asia (1-3 semester credit hours) History of economic development and overview of current participation of firms in Asia and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. (1-3)-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ims6v93 (r2)</td>
<td>rmb101000</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ims6v93.7</td>
<td>2013-11-29 19:16:24</td>
<td>status: approving</td>
<td>014306</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>52.1101.00.16</td>
<td>audit: 30</td>
<td>19:16:24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>014306</td>
<td>audit: -91.2 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>index: -91.2 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>IMS 6V94 Regional Area Studies: Africa (1-3 semester credit hours) History of economic development and overview of current participation of firms in Africa and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. (1-3)-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ims6v94 (r2)</td>
<td>adp130030</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ims6v94.7</td>
<td>2013-12-01 16:36:26</td>
<td>status: approving</td>
<td>014314</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>52.1101.00.16</td>
<td>audit: 30</td>
<td>16:36:26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: -91.1 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>index: -91.1 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMS 6V93 Regional Area Studies: Asia (1-3 semester credit hours) History of economic development and overview of current participation of firms in Asia and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. (1-3)-0

IMS 6V94 Regional Area Studies: Africa (1-3 semester credit hours) History of economic development and overview of current participation of firms in Africa and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. (1-3)-0
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6v95</td>
<td>(r2)</td>
<td>IMS 6V95 Regional Area Studies: North America (1-3 semester credit hours) History of economic development and overview of current participation of firms in North America and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. ([1-3]-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 16:36:48 014316 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ims6v95.7</td>
<td></td>
<td></td>
<td>status: approving audit: 30</td>
<td>peoplesoft diff: 014316 2013-08-25 rmb101000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS 6V95 Regional Area Studies: North America (1-3 semester credit hours) History of economic development and overview of current participation of firms in North America and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. ([1-3]-0) T</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ims6v96</td>
<td>(r2)</td>
<td>IMS 6V96 Regional Area Studies: Eastern Europe (1-3 semester credit hours) History of economic development and overview of current participation of firms in Eastern Europe and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. ([1-3]-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 16:37:11 014317 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ims6v96.7</td>
<td></td>
<td></td>
<td>status: approving audit: 30</td>
<td>peoplesoft diff: 014317 2013-08-25 adp130030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMS 6V96 Regional Area Studies: Eastern Europe (1-3 semester credit hours) History of economic development and overview of current participation of firms in Eastern Europe and their place in the world economy. May be repeated for credit as topics vary (3 semester credit hours maximum). Instructor consent required. ([1-3]-0) T</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ims6v98 (r2) ims6v98.6</td>
<td>IMS 6V98 International Management Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). JSOM Internship Coordinator consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:37:46 013733 52.1101.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ims6v99 (r2) ims6v99.6</td>
<td>IMS 6V99 Special Topics in International Management Studies (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:30:25 014022 52.1101.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | ims7300 (r3) | ims7300.6 | | IMS 7300 International Management (3 semester credit hours) Current theory and research on international management, multinational corporations, and government policies affecting international business. Prerequisites: International Management Studies PhD majors only and instructor consent required. (3-0) Y | phase: approve
status: approving
audit: 30 | sxa063000
2013-12-20
08:22:39
007594
52.1101.00.16
audit: -91 m
index: -91 m
match_fail | process orion |
| 2014-open | edit * | ims7301 (r7) | ims7301.7 | | IMS 7301 International Business (3 semester credit hours) Current theories in international business, and the formal and informal institutions affecting international business. (3-0) Y | phase: approve
status: approving
audit: 30 | cxj140030
2013-09-30
13:05:31
007595
52.1101.00.16
audit: -92.2 m
index: -92.2 m
match_fail | process orion |
| 2014-open | edit * | ims8399 (r6) | ims8399.10 | | IMS 8399 Dissertation (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) S | phase: approve
status: approving
audit: 30 | sxa063000
2014-01-14
08:23:11
007634
52.1101.00.16
audit: -91 m
index: -91 m
match_fail | process orion |
| 2014-open | edit * | ims8v40 (r6) | ims8v40.8 | | IMS 8V40 Seminar in International Business (2, 3 or 6 semester credit hours) Discussion of selected concepts and theories in international business. Pass/Fail only. May be repeated for credit as topics vary. ([2, 3, or 6]-0) T | phase: approve
status: approving
audit: 30 | sxa063000
2013-12-20
08:23:20
007612
52.1101.00.16
audit: -91 m
index: -91 m
match_fail | process orion |
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * ims8v60 (r5)</td>
<td>IMS 8V60 Readings in International Business (2, 3 or 6 semester credit hours) Investigation into the literature of topical areas in international business. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, or 6]-0) T</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 007613 2013-08-25 adp130030</td>
<td>status: approving</td>
<td>2013-11-04 11:05:54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMS 8V60 Readings in International Business (2, 3 or 6 semester credit hours) Investigation into the literature of topical areas in international business. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, or 6]-0) T</td>
<td>audit: 30</td>
<td>007613</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMS 8V80 Research Series in International Business (2, 3 or 6 semester credit hours) Investigation into the literature of topical areas in international business. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, or 6]-0) T</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 007614 2013-08-25 adp130030</td>
<td>status: approving</td>
<td>2013-12-01 16:46:01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMS 8V80 Research Series in International Business (2, 3 or 6 semester credit hours) Investigation into the literature of topical areas in international business. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, or 6]-0) T</td>
<td>audit: 30</td>
<td>007614</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMS 8V99 Dissertation (1-9 semester credit hours) Investigation into the literature of topical areas in international business. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012793 2013-08-25 sxr090100</td>
<td>status: approving</td>
<td>2013-12-01 18:51:26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMS 8V99 Dissertation (1-9 semester credit hours) Investigation into the literature of topical areas in international business. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-9]-0) S</td>
<td>audit: 30</td>
<td>012793</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas6101</td>
<td>(r2)</td>
<td>MAS 6101 Legal Considerations in Project Management (1 semester credit hour) Executive Education Course. This course provides an overview of legal issues encountered during the life of a project. Includes discussion of civil and criminal law; OSHA, safety, environmental and real estate law. Department consent required. (1-0) Y</td>
<td>phase:</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas6308</td>
<td>(r4)</td>
<td>MAS 6308 Business Communication and Leadership (3 semester credit hours) This course helps students improve their professional communication and leadership skills. Through readings, class discussion, group projects, presentations, and writing activities, students are placed in realistic work settings and challenged to see how effective communication and leadership behaviors are not only important for personal success but required by twenty-first century organizations. (3-0) Y</td>
<td>phase:</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas6v00</td>
<td>(r4)</td>
<td>MAS 6V00 Special Topics in Management Science (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Department consent required. ([1-4]-0) S</td>
<td>phase:</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mas6v01 (r5) mas6v01.9</td>
<td>MAS 6V01 Special Topics in Management (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve status: approving audit: 28</td>
<td>sxa063000 2013-12-01 16:55:13 008228 52.1301.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mas6v02 (r5) mas6v02.8</td>
<td>MAS 6V02 Special Topics in Organizational Behavior (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve status: approving audit: 28</td>
<td>sxa063000 2013-12-01 16:55:52 008229 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mas6v03 (r4) mas6v03.7</td>
<td>MAS 6V03 Special Topics in Business Policy and Strategy (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve status: approving audit: 26</td>
<td>sxa063000 2013-12-01 16:56:10 008230 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mas6v04 (r5) mas6v04.8</td>
<td>MAS 6V04 Special Topics in International Management (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve status: approving audit: 28</td>
<td>sxa063000 2013-12-01 16:56:26 008231 52.1101.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf

125/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mas6v05 (r4) mas6v05.7</td>
<td>MAS 6V05 Special Topics in Marketing Management (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 16:56:41 008232 52.1401.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mas6v06 (r4) mas6v06.7</td>
<td>MAS 6V06 Special Topics in Finance (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 16:56:57 008233 52.0801.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mas6v07 (r4) mas6v07.7</td>
<td>MAS 6V07 Special Topics in Managerial Economics (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 16:57:13 008234 52.0601.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mas6v08 (r4) mas6v08.7</td>
<td>MAS 6V08 Special Topics in Operations Research (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 16:57:31 008235 52.1301.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mas6v09 (r6) mas6v09.9</td>
<td>MAS 6V09 Special Topics in Accounting and Information Management (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 16:57:47 008236 11.0201.00.06 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mas6v10 (r4) mas6v10.7</td>
<td>MAS 6V10 Special Topics in Management Information Systems (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 16:58:03 008237 11.0201.00.06 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8113 (r7)</td>
<td>mas8113.9</td>
<td>MAS 8113 Practicum in Management (1 semester credit hour) Course develops a student's business knowledge through appropriate developmental work experiences in a real business environment. Student is required to identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective, via involvement or observation. At semester end, student prepares an oral presentation, reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of instructor required. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. (1-0) S</td>
<td>phase: approve</td>
<td>saxa063000 2013-12-01 17:11:15 008393 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8399 (r9)</td>
<td>mas8399.14</td>
<td>MAS 8399 Dissertation (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-08 11:26:27 008492 52.1301.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v00 (r5)</td>
<td>mas8v00.9</td>
<td>MAS 8V00 Special Topics in Management Science (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>saxa063000 2013-12-01 17:06:43 008342 52.1302.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>req type</td>
<td>req course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>MA5 8V01 Management Internship (1-3 semester credit hours) Course develops a student's business knowledge through appropriate developmental work experiences in a real business environment. Student is required to identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective, via involvement or observation. At semester end, student prepares an oral presentation, reflecting on the work experience. Student performance is evaluated by the work supervisor. Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours). Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>2014-01-22 14:01:37 008343 52.1201.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 008343 2012-08-26 keh120030

MA5 8V01 Management Internship (1-3 semester credit hours) Course develops a student's business knowledge through appropriate developmental work experiences in a real business environment. Student is required to identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective, via involvement or observation. At semester end, student prepares an oral presentation, reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of instructor Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours). Instructor consent required. Topics may vary. ([1-3]-0) S

| 2014-open | edit * | **MA5 8V02 Special Topics in Organizational Behavior** (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S | phase: approve | 2014-01-12 16:43:41 008344 52.1003.00.16 audit: -91 m index: -91 m match_fail | process orion |

peoplesoft diff: 008344 2014-08-24 sxh121431

MA5 8V02 Special Topics in Organizational Behavior (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v03 (r4) mas8v03.9</td>
<td>MAS 8V03 Special Topics in Business Policy and Strategy (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:45:06 008345 52.0201.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008345 2008-08-21 keh120030</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAS 8V03 Special Topics in Business Policy & Strategy (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>audit: 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v04 (r4) mas8v04.8</td>
<td>MAS 8V04 Special Topics in International Management (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:45:45 008346 52.1101.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008346 2008-08-21 keh120030</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAS 8V04 Special Topics in International Management (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>audit: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v05 (r5) mas8v05.8</td>
<td>MAS 8V05 Special Topics in Marketing Management (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:46:17 008347 52.1401.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008347 2008-08-21 keh120030</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAS 8V05 Special Topics in Marketing Management (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>audit: 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v06 (r4) mas8v06.7</td>
<td>MAS 8V06 Special Topics in Finance (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:46:49 008348 52.0801.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008348 2008-08-21 keh120030</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAS 8V06 Special Topics in Finance (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>audit: 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v07 (r5)</td>
<td>mas8v07.8</td>
<td>MAS 8V07 Special Topics in Managerial Economics (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:47:14 008349 52.0601.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008349 2012-08-26 keh120030</td>
<td>status: approving</td>
<td>auditor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008349 2012-08-26 keh120030</td>
<td>audit: 29</td>
<td>auditor</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v08 (r4)</td>
<td>mas8v08.7</td>
<td>MAS 8V08 Special Topics in Operations Research (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:02:49 008350 52.1301.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008350 2008-08-21 keh120030</td>
<td>status: approving</td>
<td>auditor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008350 2008-08-21 keh120030</td>
<td>audit: 28</td>
<td>auditor</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v09 (r5)</td>
<td>mas8v09.8</td>
<td>MAS 8V09 Special Topics in Accounting and Information Management (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:07:36 008351 52.0301.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008351 2008-08-21 keh120030</td>
<td>status: approving</td>
<td>auditor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008351 2008-08-21 keh120030</td>
<td>audit: 28</td>
<td>auditor</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v10 (r5)</td>
<td>mas8v10.8</td>
<td></td>
<td>MAS 8V10 Special Topics in Management Information Systems (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

 | peoplesoft diff: 008352 2013-08-25
adp130030 |

 | MAS 8V10 Special Topics in Management Information Systems (1-3 semester credit hours) May be lecture, seminar, readings or individualized study. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-3]-0) S |

| 2014-open | edit * | mas8v20 (r6) | mas8v20.10 | | **MAS 8V20 Readings Series in Management Science - Operations Research (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S** | phase: approve | mxv062000 | process orion |

 | peoplesoft diff: 008353 2013-08-25
adp130030 |

 | MAS 8V20 Readings Series in Management Science - Operations Research (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S |

| 2014-open | edit * | mas8v21 (r6) | mas8v21.9 | | **MAS 8V21 Readings Series in Management Science - Management Information Systems (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S** | phase: approve | mxv062000 | process orion |

 | peoplesoft diff: 008354 2013-08-25
adp130030 |

<p>| MAS 8V21 Readings Series in Management Science - Management Information Systems (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v22 (r5) mas8v22.6</td>
<td>MAS 8V22 Readings Series in Management Science - Organizational Behavior (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 11:38:22 008355 52.1003.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v23 (r6) mas8v23.8</td>
<td>MAS 8V23 Readings Series in Management Science - Business Systems: Marketing (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics may vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 11:38:49 008356 52.1401.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v24 (r5) mas8v24.6</td>
<td>MAS 8V24 Readings Series in Management Science - Business Systems: Financial (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 11:39:27 008357 52.0801.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v25</td>
<td>(r5)</td>
<td>mas8v25.8</td>
<td>MAS 8V25 Readings Series in Management Science - Operations Management (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 11:39:54 008358 52.1301.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v30</td>
<td>(r6)</td>
<td>mas8v30.7</td>
<td>MAS 8V30 Readings Series in Management Science - Accounting and Information Management (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 11:40:25 008359 52.0301.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v31</td>
<td>(r6)</td>
<td>mas8v31.9</td>
<td>MAS 8V31 Readings Series in Management Science - Strategic Management (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 11:41:14 008360 52.0201.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v32 (r6)</td>
<td>mas8v32.7</td>
<td></td>
<td>MAS 8V32 Readings Series in Management Science - Business Economics (2, 3, 6 or 9 semester credit hours) Investigation into the literature of topical areas of management. Pass/ Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 11:41:45 008361 52.0601.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v40 (r5)</td>
<td>mas8v40.8</td>
<td></td>
<td>MAS 8V40 Seminar Series in Management Science - Operations Research (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/ Fail only. May be repeated for credit as topics vary. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:12:18 008362 52.1301.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v41 (r4)</td>
<td>mas8v41.6</td>
<td></td>
<td>MAS 8V41 Seminar Series in Management Science - Management Information Systems (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/Fail only. May be repeated for credit as topics vary. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:47:51 008363 52.1201.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v42 (r5)</td>
<td>mas8v42.7</td>
<td></td>
<td>MAS 8V42 Seminar Series in Management Science - Organizational Behavior (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/ Fail only. May be repeated for credit as topics vary. $(2, 3, 6$ or $9)-0$ S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:48:14 008364 52.1003.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v43 (r5)</td>
<td>mas8v43.7</td>
<td></td>
<td>MAS 8V43 Seminar Series in Management Science - Business Systems: Marketing (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/ Fail only. May be repeated for credit as topics vary. $(2, 3, 6$ or $9)-0$ S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:48:34 008365 52.1401.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v44 (r5)</td>
<td>mas8v44.7</td>
<td></td>
<td>MAS 8V44 Seminar Series in Management Science - Business Systems: Financial (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/ Fail only. May be repeated for credit as topics vary. $(2, 3, 6$ or $9)-0$ S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:50:04 008366 52.0801.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v45 (r5) mas8v45.7</td>
<td>MAS 8V45 Seminar Series in Management Science - Operations Management (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/Fail only. May be repeated for credit as topics vary. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:50:24 008367 52.1301.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v50 (r7) mas8v50.9</td>
<td>MAS 8V50 Seminar Series in Management Science - Accounting and Information Management (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/Fail only. May be repeated for credit as topics vary. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:50:47 008368 52.0301.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v51 (r5) mas8v51.7</td>
<td>MAS 8V51 Seminar Series in Management Science - Strategic Management (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/Fail only. May be repeated for credit as topics vary. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:52:22 008369 52.0201.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v52 (r6) mas8v52.8</td>
<td>MAS 8V52 Seminar Series in Management Science - Business Economics (2, 3, 6 or 9 semester credit hours) Discussion of selected concepts and theories in management. Pass/Fail only. May be repeated for credit as topics vary. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:51:08 008370 52.0601.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v80 (r4) mas8v80.6</td>
<td>MAS 8V80 Research Series in Management Science - Operations Research (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:13:14 008371 52.1301.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v81 (r4) mas8v81.6</td>
<td>MAS 8V81 Research Series in Management Science - Management Information Systems (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:13:26 008372 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v82 (r4) mas8v82.6</td>
<td>MAS 8V82 Research Series in Management Science - Organizational Behavior (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:13:39 008373 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mas8v83 (r4)</td>
<td>MAS 8V83 Research Series in Management Science - Business Systems: Marketing (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mas8v83.6</td>
<td>peoplesoft diff: 008374 2008-08-21</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAS 8V83 Research Series in Management Science - Business Systems: Marketing (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008375 2008-08-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mas8v84 (r4)</td>
<td>MAS 8V84 Research Series in Management Science - Business Systems: Financial (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mas8v84.6</td>
<td>peoplesoft diff: 008376 2008-08-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAS 8V84 Research Series in Management Science - Business Systems: Financial (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008377 2012-08-26</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mas8v85 (r4)</td>
<td>MAS 8V85 Research Series in Management Science - Operations Management (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mas8v85.6</td>
<td>peoplesoft diff: 008378 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAS 8V85 Research Series in Management Science - Operations Management (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008379 2012-08-26</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mas8v90 (r6)</td>
<td>MAS 8V90 Research Series in Management Science - Accounting and Information Management (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mas8v90.8</td>
<td>peoplesoft diff: 008380 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAS 8V90 Research Series in Management Science - Accounting and Information Management (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mas8v91 (r4) mas8v91.6</td>
<td>MAS 8V91 Research Series in Management Science - Strategic Management (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 17:14:29 008378 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mas8v92 (r4) mas8v92.6</td>
<td>MAS 8V92 Research Series in Management Science - Business Economics (2, 3, 6 or 9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([2, 3, 6 or 9]-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 17:14:41 008379 52.0601.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mas8v99 (r5) mas8v99.9</td>
<td>MAS 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 17:14:59 012794 52.1301.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * meco6303 (r5) meco6303.9</td>
<td>MECO 6303 (SYSM 6319) Business Economics (3 semester credit hours) Foundations of the economic analysis of business problems, with special emphasis on the operation of markets and the macroeconomy. Prerequisite: OPRE 6303 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-30 11:45:04 008882 52.0601.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco6311</td>
<td>(r3)</td>
<td>meco6311.6</td>
<td>MECO 6311 Economics of Information Goods (3 semester credit hours) Analysis of the creation, production, pricing and distribution of products that are mainly informational in nature such as software, television, and web pages. Network effects, path dependence, the choice of standards, and the problems of public goods will be analyzed. Includes examination of the roles of patent and copyright laws in the creation of these goods and the impacts of unauthorized copying. Several case studies will be examined in detail. Prerequisite: (MECO 6303 or SYSM 6319) or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>2013-12-09 11:54:32</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco6312</td>
<td>(r7)</td>
<td>meco6312.12</td>
<td>MECO 6312 Applied Econometrics and Time Series Analysis (3 semester credit hours) A survey of techniques used in analyzing cross-sectional, time series and panel data with special emphasis on time series methods. Prerequisite: (OPRE 6301 or SYSM 6303) or FIN 6306 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>2014-01-30 10:24:53</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco6313</td>
<td>(r3)</td>
<td>meco6313.3</td>
<td>MECO 6313 The Business of Entertainment (3 semester credit hours) This course examines the economic factors at work in the entertainment industry. The revenue generation models used by the producers of motion pictures, programming for television, radio, and cable TV, as well as videogames and book publishing will be studied in detail. The impact of digitization on costs, the role of copying and copyright, network effects, peer-to-peer file sharing, the labyrinth of property rights, and digital rights management will be examined through the lens of economics. (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-16 16:31:29</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>008886</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>52.0201.00.16</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.5 m</td>
<td>match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco6315</td>
<td>(r5)</td>
<td>meco6315.5</td>
<td>MECO 6315 Approaches to Statistical Inference (3 semester credit hours) Theory and methods of statistical inference. Classical estimation theory, classical hypothesis testing, Bayesian and alternative approaches to statistical inference, general linear model with applications, and computational methods. Prerequisite: OPRE 7310. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 08:47:10</td>
<td>sxa063000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td>008887</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>52.0201.00.16</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.5 m</td>
<td>match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>meco6318</td>
<td>MECO 6318 Energy Economics (3 semester credit hours) This course provides students with a comprehensive understanding of energy fundamentals through a detailed examination of the history, structure and functioning of modern energy markets. Topics include models of supply, demand, and transportation; market structure; game theoretic strategies and risk management; environmental issues; and policy and regulation. Prerequisite: MECO 6303 or SYSM 6319. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-09 11:55:51 NOLINK 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meco6318.3</td>
<td></td>
<td>status: approving</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>audit:</td>
<td>52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>meco6320</td>
<td>MECO 6320 Econometrics (3 semester credit hours) Estimation and testing of multivariate econometric models; sets of regression relationships; simultaneous equation systems; applications of methods and models in the analysis of business and economic data. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 16:31:41 008888 audit: -91.7 m index: -91.7 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meco6320.4</td>
<td></td>
<td>status: approving</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008888 2008-08-21</td>
<td>audit:</td>
<td>008888 52.0601.00.16 audit: -91.7 m index: -91.7 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>meco6345</td>
<td>(r4) meco6345.7</td>
<td>MECO 6345 Advanced Managerial Economics (3 semester credit hours) Advanced economic analysis of consumer theory, production theory, exchange, and market interactions. Managerial topics such as comparable worth, product standardization, environmental spillover effects, and imperfect competition. Prerequisites: MECO 6303 and instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>*</td>
<td>meco6350</td>
<td>(r1) meco6350.5</td>
<td>MECO 6350 Game Theory (3 semester credit hours) This course introduces game theory, a set of analytical tools used to study the strategic interactions of individuals and institutions. The course covers static and dynamic games, both under complete and incomplete information. Applications include cooperation, price setting under imperfect competition, trust and reputation building, bargaining, auctions, signaling, social preferences and matching markets. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco6352</td>
<td>MECO 6352 (HMGT 6324 and OB 6332 and OPRE 6396 and SYSM 6313) Financial Negotiation and Dispute Resolution (3 semester credit hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-22 23:01:24</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>meco6352.5</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>audit: 9</td>
<td>Sxa063000 2013-10-22 23:01:24</td>
</tr>
<tr>
<td></td>
<td>meco6355</td>
<td></td>
<td>MECO 6355 Experimental Management Sciences (3 semester credit hours) This course focuses on the design, conduct, and analysis of economic experiments with particular relevance to management sciences. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-22 13:02:32</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>meco6355.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>audit: 9</td>
<td>Sxa063000 2013-10-22 13:02:32</td>
</tr>
<tr>
<td>http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87b2c37a6ff775e1ca/makepdf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco6360 (r4)</td>
<td>meco6360.6</td>
<td>MECO 6360 Topics in Industrial Organization (3 semester credit hours) Issues in current research on the operation of firms and markets. May be repeated for credit as topics vary. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:18:41 008892 52.0601.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco6v99 (r3)</td>
<td>meco6v99.7</td>
<td>MECO 6V99 Special Topics in Managerial Economics (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. (1-4)-0 S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:19:25 013132 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco7311 (r1)</td>
<td>meco7311.5</td>
<td>MECO 7311 Advanced Game Theory (3 semester credit hours) This course covers the Nash-equilibrium based solution concepts in Nash and Bayesian-Nash games, including sub-game perfection, forward and backward induction, trembling hand perfection, sequential equilibrium, and the intuitive criterion with applications to discrete and continuous action games. Prerequisites: MECO 6345 or equivalent and MECO 6350 or equivalent and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:17:21 NOLINK 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf 146/258
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco7320 (r4)</td>
<td>MECO 7320 Advanced Econometrics (3 semester credit hours) Rigorous treatment of traditional econometrics methods, and introduction to both modern time-series econometrics and advanced non-linear models. Prerequisite: MECO 6320. (3-0) T</td>
<td>phase: approve</td>
<td>140030</td>
<td>2013-10-16 16:32:03 008894 52.0201.00.16 audit: -91.7 m index: -91.7 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meco7320.4</td>
<td>peoplesoft diff: 008894 2008-08-21</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MECO 7320 Advanced Econometrics (3 semester credit hours) Rigorous treatment of traditional econometrics methods, and introduction to both modern time-series econometrics and advanced non-linear models. Prerequisite: MECO 6320. (3-0) T</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>meco7360 (r3)</td>
<td>MECO 7360 Topics in Econometrics (3 semester credit hours) Issues in current econometric research and practice. May be repeated for credit as topics vary. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2013-12-01 17:19:07 008897 52.0601.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meco7360.5</td>
<td>peoplesoft diff: 008897 2008-08-21</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MECO 7360 Topics in Econometrics (3 semester credit hours) Issues in current econometric research and practice. May be repeated for credit as topics vary. Instructor consent required. (3-0) T</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6204 (r4)</td>
<td>MIS 6204 Information Technology and MIS Fundamentals (2 semester credit hours) Necessary background to understand the role of information technology and Management Information Systems in today's business environment. Topics include: strategic role of information, organization of information, information decision making requirements, telecommunications and networking, managing information resources, distributed processing, and current information systems/technology issues. May not be used to fulfill degree requirements in MS Information Technology and Management. (2-0) S</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2013-12-01 17:20:39 008992 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mis6204.6</td>
<td>peoplesoft diff: 008992 2012-08-26</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIS 6204 Information Technology and MIS Fundamentals (2 semester credit hours) Necessary background to understand the role of information technology and Management Information Systems in today's business environment. Topics include: strategic role of information, organization of information, information decision making requirements, telecommunications and networking, managing information resources, distributed processing, and current information systems/technology issues. May not be used to fulfill degree requirements in MS Information Technology and Management. (2-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6302 (r8)</td>
<td>mis6302.12</td>
<td>MIS 6302 (ACCT 6349) Information Technology Strategy and Management (3 semester credit hours) This course explores the strategic management and control issues associated with information technology. It provides a framework to understand how IT strategy aligns with business strategy and focuses on developing an understanding of the key information requirements for developing an IT strategy and systems architecture. This includes conducting IT sourcing analysis, and managing IT investments effectively to maximize business value. The course will consist of a mix of real-world case studies on IT strategy development across different industries. Credit cannot be received for both ACCT 6349 and MIS 6302. (3-0) Y.</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 16:54:05 008994 52.1201.00.16 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request_metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mis6308</td>
<td>(r9)</td>
<td>MIS 6308 (ACCT 6340) System Analysis and Project Management (3 semester credit hours) Provides the student with an in-depth knowledge of object oriented systems analysis and design procedures. Software project management techniques will be introduced. At the end of the course, the student will be able to analyze business solutions and design computer based information systems using object-oriented methodologies. Prerequisite or Corequisite: MIS 6326. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008999 2012-08-26 MIS 6308 (ACCT 6340) System Analysis and Project Management (3 semester credit hours) Provides the student with an in-depth knowledge of object oriented systems analysis and design procedures. Software project management techniques will be introduced. At the end of the course, the student will be able to analyze business solutions and design computer based information systems using object-oriented methodologies. Co/Prerequisite: Prerequisite or Corequisite: MIS 6326. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mis6309</td>
<td>(r6)</td>
<td>MIS 6309 (ACCT 6309 and OPRE 6391) Business Data Warehousing (3 semester credit hours) This course provides the student with in depth knowledge of data warehousing principles, data warehouse techniques, and business intelligence systems. The course introduces the topics of data warehouse design, Extract-Transform-Load (ETL), data cubes, and data marts. Students will create business intelligence using data warehouses with several OLAP and analytical tools. SAP, Business Objects, Cognos, or other data warehousing tools will be used to illustrate data warehousing concepts. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009000 2013-08-25 MIS 6309 (ACCT 6309 and OPRE 6391) Business Data Warehousing (3 semester credit hours) This course provides the student with in depth knowledge of data warehousing principles, data warehouse techniques, and business intelligence systems. The course introduces the topics of data warehouse design, Extract-Transform-Load (ETL), data cubes, and data marts. Students will create business intelligence using data warehouses with several OLAP and analytical tools. The course currently uses SAP BW, SAP BEx, SAP Data Mining Workbench, and SAP SAP. Business Objects as Objects, Cognos, or other data warehousing tools will be used to illustrate these data warehousing concepts. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>request type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6311 (r1)</td>
<td>MIS 6311 (SYSM 6351) Cybersecurity Fundamentals (3 semester credit hours) The course provides an overview of various technical and managerial issues associated with cyber security. The topics include risk assessment and management, cyber security programs, IT security controls and technologies, security standards and laws, IT auditing, cyber insurance, and other cyber risk mitigation strategies. (3-0) S</td>
<td>phase: approve</td>
<td>2014-02-11 08:35:21 NOLINK 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mis6311.4</td>
<td>peoplesoft diff: NOLINK MIS 6311 (SYSM 6351) Cybersecurity Fundamentals (3 semester credit hours) The course provides an overview of various technical and managerial issues associated with cyber security. The topics include risk assessment and management, cyber security programs, IT security controls and technologies, security standards and laws, IT auditing, cyber insurance, and other cyber risk mitigation strategies. (3-0) S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>mis6314 (r3)</td>
<td>request to remove this course from catalog MIS 6314 System ReEngineering (3 semester credit hours) This course utilizes Information Engineering Methodology to plan, analyze, design, and construct a working system. Students are members of a project team which will complete an advanced application execution of a real world development problem. Prerequisite: MIS 6308. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-30 15:10:53 009003 11.0501.00.06 audit: -91.3 m index: -91.3 m</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mis6314.4</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6316 (r7)</td>
<td>MIS 6316 Data Communications (3 semester credit hours) This course covers the fundamentals of telecommunications, including: transmission, switching, throughput and capacity, error rates and checking, and security and policy issues. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-01-29 11:05:41 009005 14.9999.01.06 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mis6316.8</td>
<td>peoplesoft diff: 009005 2013-08-25 rmb101000 MIS 6316 Data Communications (3 semester credit hours) This course covers the fundamentals of telecommunications, including: transmission, switching, throughput and capacity, error rates and checking, and security and policy issues. The course includes demonstration and 'hands on' exercises using the SAP ECC ERP system. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf 150/258
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>MIS 6317 (HMGT 6323) Healthcare Informatics (3 semester credit hours) Examines the unique challenges of clinical and patient care delivery in the healthcare industry, including the role of data management, emerging data standards and information technology in improving the quality and cost associated with healthcare. The focus of the course will be on healthcare IT including issues related to governance, data integration, and selection and management of healthcare IT. Credit cannot be received for both courses, HMGT 6323 and MIS 6317. (3-0)</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:22:23 009006 51.2211.00.14 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>mis6317</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(r6)</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mis6317.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 009006 2010-08-18</td>
<td>MIS 6317 (HMGT 6323) Healthcare Informatics (3 semester credit hours) Examines the unique challenges of clinical and patient care delivery in the healthcare industry, including the role of data management, emerging data standards and information technology in improving the quality and cost associated with healthcare. The focus of the course will be on healthcare IT including issues related to governance, data integration, and selection and management of healthcare IT. This course is equivalent to Credit cannot be received for both courses, HMGT 6323 and only one of these may count toward a degree. MIS 6317. (3-0)</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>MIS 6319 (OPRE 6390) Enterprise Resource Planning (3 semester credit hours) Examines the role of enterprise systems in organizations. It will focus on business processes, business process integration, and information technology for enabling the integration. The course also covers selection and implementation of ERP systems. A part of the course will be set aside for demonstration and 'hands on' exercises with one of the available ERP software. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:05:05 009008 52.1206.00.16 audit: -91.7 m index: -91.7 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>mis6319</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(r6)</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mis6319.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 009008 2013-08-25</td>
<td>MIS 6319 (OPRE 6390) Enterprise Resource Planning (3 semester credit hours) Examines the role of enterprise systems in organizations. It will focus on business processes, business process integration, and information technology for enabling the integration. The course also covers selection and implementation of ERP systems. A part of the course will be set aside for demonstration and 'hands on' exercises with one of the available ERP software. (3-0)</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adp130030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6320</td>
<td>(r7)</td>
<td>mis6320.12</td>
<td>MIS 6320 (ACCT 6320 and OPRE 6393) Database Foundations (3 semester credit hours) The course is designed to provide database knowledge for non-MIS business students to function effectively in their functional area. The course covers fundamentals of relational databases, relational database structure, database queries, and reports. Structured Query Language will be used extensively. Applications of databases for accounting, finance, marketing, and other areas of business will be emphasized. May not be used to fulfill degree requirements in MS Information Technology and Management. Credit cannot be received for both courses, MIS 6320 and MIS 6326. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009009 2013-08-25 rmb101000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**MIS 6320 (OPRE 6393, ACCT 6320) (ACCT 6320 and OPRE 6393) Database Foundations (3 semester credit hours) The course is designed to provide database knowledge for non-MIS business students to function effectively in their functional area. The course covers fundamentals of relational databases, relational database structure, database queries, and reports. Structured Query Language will be used extensively. Applications of databases for accounting, finance, marketing, and other areas of business will be emphasized. Cannot May not be used to satisfy the fulfill degree requirements of in MS ITM degree. Information Technology and Management. Credit cannot be received for both courses, MIS 6320 and MIS 6326 cannot both be used to satisfy degree requirements. 6326. (3-0) Y****peoplesoft diff: 009012 2011-08-23 rmb101000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIS 6323 Object Oriented Programming (3 semester credit hours) This course includes the fundamentals of Java programming, writing applets for web-based systems, and business application programming using Java. (3-0) Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009012 2011-08-23</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6324</td>
<td>mis6324.9</td>
<td>MIS 6324 (OPRE 6399) Business Intelligence Software and Techniques (3 semester credit hours) This course covers theories and applications of business intelligence. The focus is on extracting business intelligence from firms' business data for various applications, including (but not limited to) customer segmentation, customer relationship management (CRM), personalization, online recommendation systems, web mining and product assortment. The emphasis will be placed on the 'know-how' -- knowing how to extract and apply business intelligence to improve business decision-making. Students will also acquire hands-on experience with several business intelligence software such as XL miner, SAS Enterprise Miner and SQL Server2008 (depending on availability). This class is required for the SAS certificate in data mining. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 009013 2013-08-25 adp130030

MIS 6324 (OPRE 6399) Business Intelligence Software and Techniques (3 semester credit hours) This course covers theories and applications of business intelligence. The focus is on extracting business intelligence from firms' business data for various applications, including (but not limited to) customer segmentation, customer relationship management (CRM), personalization, online recommendation systems, web mining and product assortment. The emphasis will be placed on the 'know-how' -- knowing how to extract and apply business intelligence to improve business decision-making. Students will also acquire hands-on experience with several business intelligence software such as XL miner, SAS Enterprise Miner and SQL Server2008 (depending on availability). This class is required for the SAS certificate in data mining. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6326 (r8)</td>
<td>mis6326.12</td>
<td>MIS 6326 Data Management (3 semester credit hours) Database theory and tools used to manage accounting data and other information are introduced. Topics include relational database theories, Structured Query Language (SQL), database design and conceptual/semantic data modeling. A client/server database environment is developed with a selected SQL server and a database application development tool. MIS 6320 and MIS 6326 cannot both be used to satisfy degree requirements. Prerequisite: MS ITM Major or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-16 08:49:40 009015 52.1206.00.16 audit: -92.2 m index: -92.2 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 009015 2013-08-25 adp130030

MIS 6326 Data Management (3 semester credit hours) Database theory and tools used to manage accounting data and other information are introduced. Topics include relational database theories, Structured Query Language (SQL), database design and conceptual/semantic data modeling. A client/server database environment is developed with a selected SQL server and a database application development tool. MIS 6320 and MIS 6326 cannot both be used to satisfy degree requirements. Prerequisite: MS ITM Major or permission of instructor. instructor consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6330</td>
<td>mis6330.6</td>
<td>MIS 6330 Information Technology Security (3 semester credit hours) With the advances in information technology, security of information assets has become a keenly debated issue for organizations. While much focus has been paid to technical aspects of the problem, managing information security requires more than technology. Effective information security management demands a clear understanding of technical as well as socio-organizational aspects of the problem. The purpose of this course is to prepare business decision makers to recognize the threats and vulnerabilities present in current information systems and who know how to design and develop secure systems. This course (1) uses lectures to cover the different elements of information security, (2) utilizes business cases and academic research studies to discuss information security issues faced by today's businesses, (3) keeps in touch with the security market and practices through webcasts, and (4) presents strategies and tools to develop an information security program within the organization. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009019 2012-08-26</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * | mis6332 (r4) | mis6332.5 | **MIS 6332 Advanced ERP: Sales and Distribution** *(3 semester credit hours)* The class focuses on advanced process and configuration issues related to ERP implementation. The functional side of sales, distribution, delivery and billing as well as integration with materials management, production, financial and management accounting is emphasized. SAP is currently used to discuss and provide hands-on experience with key ideas. Some sales theory will also be discussed. Prerequisite: MIS 6319 or instructor consent required. *(3-0)* Y

<p>| phase: | approve | sxa063000 | 2013-10-16 | 08:50:05 | 012739 | 52.1201.00.16 | audit: -91.5 m | index: -91.5 m | match_fail | process | orion | 156/258 |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6334 (r5)</td>
<td>mis6334.5</td>
<td>MIS 6334 Advanced Business Intelligence (3 semester credit hours) This course is SAS based and is part of the 4-course curriculum for the SAS data mining certificate program. It will cover the topics as required by the SAS certificate program including data manipulation, imputation, variable selection, SAS/STA, SAS/ETS, SAS/QC (DOE) and various SAS stat modules. Students will also learn various advanced business intelligence topics including business data analytics, model analytics, customer analytics, web intelligence analytics, business performance analytics and decision-making analytics. Tool to be used include SAS, Weka and spreadsheet modeling. Prerequisites: OPRE 6301 and MIS 6324. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-17 09:07:53 012745 52.1201.00.16 audit: -91.5 m index: -91.5 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 012745 2012-08-26

MIS 6334 Advanced Business Intelligence (3 semester credit hours) This course is SAS based and is part of the 4-course curriculum for the SAS data mining certificate program. It will cover the topics as required by the SAS certificate program including data manipulation, imputation, variable selection, SAS/STA, SAS/ETS, SAS/QC (DOE) and various SAS stat modules. Students will also learn various advanced business intelligence topics including business data analytics, model analytics, customer analytics, web intelligence analytics, business performance analytics and decision-making analytics. Tool to be used include SAS, Weka and spreadsheet modeling. Prerequisites: OPRE 6301 and MIS 6324. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mis6338 (r3) mis6338.5</td>
<td>MIS 6338 (ACCT 6338) Accounting Systems Integration and Configuration (3 semester credit hours) Using SAP or similar software, this course focuses on accounting information systems as part of integrated enterprise systems and modern systems analysis and design of integrated accounting systems. Emphasis will be on integrated business processes and related financial transaction flows, system analysis and design methods in SAP with focus on configuration methods. Prerequisite or Corequisite: ACCT 6202 or ACCT 6305 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014025 2012-08-26 sxr090100 MIS 6338 (ACCT 6338) Accounting Systems Integration and Configuration (3 semester credit hours) Using SAP or similar software, this course focuses on accounting information systems as part of integrated enterprise systems and modern systems analysis and design of integrated accounting systems. Emphasis will be on integrated business processes and related financial transaction flows, system analysis and design methods in SAP with focus on configuration methods. Prerequisite or Corequisite: ACCT 6202 or ACCT 6305 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * mis6344 (r2) mis6344.2 | MIS 6344 Web Analytics (3 semester credit hours) The course examines the technologies, tools, and techniques to maximize return from web sites. The course includes topics related to web site design issues, web data collection tools and techniques, measurement and analysis of web traffic, visitor tracking, search engine optimization, visitor acquisition, conversion and retention, key performance indicators for web sites, and measurement of online marketing campaigns. The use of web analytics tools such as Google Analytics will be an integral part of the course. (3-0) Y |
| | | | | peoplesoft diff: 013133 2010-08-18 MIS 6344 Web Analytics (3 semester credit hours) The course examines the technologies, tools, and techniques to maximize return from web sites. The course includes topics related to web site design issues, web data collection tools and techniques, measurement and analysis of web traffic, visitor tracking, search engine optimization, visitor acquisition, conversion and retention, key performance indicators for web sites, and measurement of online marketing campaigns. The use of web analytics tools such as Google Analytics will be an integral part of the course. (3-0) Y |</p>
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mis6352 (r5) mis6352.5</td>
<td>MIS 6352 Web Systems Design and Development (3 semester credit hours) Provides an in depth examination of web application design evaluation practices and web application development techniques. A Rich Internet Application (RIA) is developed using an agile, team based, software development methodology leveraging a combination of CSS, HTML, JavaScript, XHR, DOM, PHP, and MySQL. Emphasis is given to hands on application of course material through development of a web application prototype under conditions simulating a business environment. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:08:44 009027 11.0202.00.06 audit: -91.7 m index: -91.7 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mis6360 (r6) mis6360.7</td>
<td>MIS 6360 Agile Software Project Management (3 semester credit hours) Provides an in depth examination of project management principles and agile software development practices. The five process groups and ten knowledge areas of the Project Management Body of Knowledge (PMBOK) are examined in the context of agile systems development life cycles. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-29 11:07:19 009031 14.9999.01.06 audit: -91 m index: -91 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>req_type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>edit *</td>
<td>mis6362</td>
<td>MIS 6362 Service Oriented Computing (3 semester credit hours) Examines the service orientation of technology to serve business. The course will explore Service Oriented Architecture (SOA) fundamentals from application as well as infrastructure perspective and study its impact to business. The course will examine the evolution of service orientation over computing eras leading up to current practices and cutting edge trends in global industry. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:10:22</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013134 2013-08-25</td>
<td>status: approving</td>
<td>013134 52.1201.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>adp130030</td>
<td>audit: 30</td>
<td>audit: -91.5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>index: -91.5 m</td>
<td>match_fail</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>edit *</td>
<td>mis6363</td>
<td>MIS 6363 Cloud Computing (3 semester credit hours) This course is designed as a primer for cloud computing which many believe is the third major wave of computing, after mainframe and client-server computing. The course examines this technology from a business perspective. The course is designed to deliver a holistic and balanced view of business model, technological infrastructure, and security issues of cloud computing useful for the technology student to understand the business challenges and the business student to understand the technology challenges. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:10:33</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013513 2012-08-26</td>
<td>status: approving</td>
<td>013513 52.1201.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sxr090100</td>
<td>audit: 30</td>
<td>audit: -91.5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>index: -91.5 m</td>
<td>match_fail</td>
<td>match_fail</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf

160/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6364 (r2)</td>
<td>mis6364.2</td>
<td></td>
<td>MIS 6364 Enterprise IT Architecture (3 semester credit hours) Enterprise IT Architecture (EA) provides a roadmap for the analysis and design of an enterprise in its current and future states from a strategy, business and technology perspective. The emphasis is on the alignment between IT and organizational objectives through the integration of business architectures, data and information architecture, application architecture, technology architecture, interfaces and infrastructure. While the course introduces many EA frameworks, it uses TOGAF extensively. Prerequisite: MIS 6308 (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014026 2012-08-26 sxr090100</td>
<td>status: approving</td>
<td>2013-10-21 14:31:53</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIS 6364 Enterprise IT Architecture (3 semester credit hours) Enterprise IT Architecture (EA) provides a roadmap for the analysis and design of an enterprise in its current and future states from a strategy, business and technology perspective. The emphasis is on the alignment between IT and organizational objectives through the integration of business architectures, data and information architecture, application architecture, technology architecture, interfaces and infrastructure. While the course introduces many EA frameworks, it uses TOGAF extensively. Prerequisites: Prerequisite: MIS 6308 (3-0) R</td>
<td>audit: 30</td>
<td>014026</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.1201.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.4 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6369 (r4)</td>
<td>mis6369.5</td>
<td>MIS 6369 (OPRE 6369) Supply Chain Software (3 semester credit hours) The course teaches planning and execution of supply chains with software such as SAP's ERP (R3) and Advanced Planning and Optimization (APO). This software is used in lab exercises that provide students with hands-on, experimental learning. The focus is on the supply planning function of supply chain management. Topics include: fundamentals of ERP and SAP, master and transaction data, MRP, forecasting, supply and demand matching, and integration of ERP and APO modules. This course is intended for graduate students with interests in software-based supply chain management. No SAP experience is required. (3-0) S</td>
<td>phase: approve</td>
<td></td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

MIS 6369 (OPRE 6369) Supply Chain Software (3 semester credit hours) The course teaches planning and execution of supply chains with software such as SAP's ERP (R3) and Advanced Planning and Optimization (APO). This software is used in lab exercises that provide students with hands-on, experimental learning. The focus is on the supply planning function of supply chain management. Topics include: fundamentals of ERP and SAP, master and transaction data, MRP, forecasting, supply and demand matching, and integration of ERP and APO modules. This course is intended for graduate students with interests in software-based supply chain management. No SAP experience is required. (3-0) S
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mis6372 (r4)</td>
<td>MIS 6372 IT Services Management (3 semester credit hours) The purpose of this course is to examine and explain how organizations engage and manage their IT services throughout the IT services lifecycle. The course covers topics related to service strategy, service design, service transition, service operation and continuous improvement. It also includes managing outsourced IT services and the organizational, technological and economical aspects associated with the outsourcing of IT services and functions. The course uses ITIL framework to illustrate various concepts. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 20:00:21 013136 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mis6373 (r2)</td>
<td>MIS 6373 Social Media and Business (3 semester credit hours) Social media represents one of the most significant changes on the Internet. This course is to familiarize students with the newly emerging social media and Web 2.0 landscape and its underlying concepts. The course covers essential skills to analyze, evaluate, and develop the Web 2.0 business models as well as marketing strategies. Different social media and Web 2.0 applications (e.g., Flickr, YouTube, Twitter, Facebook, Groupon, and Blogs) and their multi-disciplinary implications will be discussed. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:11:18 014028 52.0101.00.16 audit: -91.5 m index: -91.5 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf 163/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mis6378</td>
<td>MIS 6378 (MKT 6338) Enterprise Systems and CRM (3 semester credit hours) The objective of the course is to increase practical skills and conceptual knowledge related to Customer Relationship Management (CRM) utilizing the mySAP.com CRM application and the data mining workbench. Students will garner knowledge of operational, analytical, and collaborative CRM. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012650 2013-08-25 sxr090100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mis6378.6</td>
<td>MIS 6378 (MKT 6338) Enterprise Systems and CRM (3 semester credit hours) The objective of the course is to increase practical skills and conceptual knowledge related to Customer Relationship Management (CRM) utilizing the mySAP.com CRM application and the data mining workbench. Students will garner knowledge of operational, analytical, and collaborative CRM. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | | edit * | mis6379 | MIS 6379 SAP ABAP Programming (3 semester credit hours) This course provides a thorough understanding of the role of ABAP programming, SAP's programming language, in the implementation and use of enterprise systems. Components of the course include: complex report development, SAP query, dialog programming, ABAP Objects, transaction development, EDI/ALE and BAPI development, Business Add-ins (BADIs) and output processing. (3-0) R |
| | | | | peoplesoft diff: 012651 2013-08-25 adp130030 | | | |
| | | | mis6379.5 | MIS 6379 SAP ABAP Programming (3 semester credit hours) This course provides a thorough understanding of the role of ABAP programming, SAP's programming language, in the implementation and use of enterprise systems. Components of the course include: complex report development, SAP query, dialog programming, ABAP Objects, transaction development, EDI/ALE and BAPI development, Business Add-ins (BADIs) and output processing. (3-0) R |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6390 (r1)</td>
<td>mis6390.3</td>
<td>MIS 6390 Analytics Practicum (3 semester credit hours) Student gains experience and improves analytics skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. Student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation or a written paper reflecting on the work experience. (3-0) S</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>2013-11-04 09:14:29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 10</td>
<td>52.1201.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6v98 (r2)</td>
<td></td>
<td></td>
<td>MIS 6V98 Information Systems Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of the School of Management's Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). JSOM Internship Coordinator consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:41:33 013732 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mis6v98.6</td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 013732 2011-08-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIS 6V98 Information Systems Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of the School of Management's Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). JSOM Internship Coordinator consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:41:33 013732 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis6v99 (r4)</td>
<td></td>
<td></td>
<td>MIS 6V99 Special Topics in Management Information Systems (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:26:18 013137 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mis6v99.7</td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 013137 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIS 6V99 Special Topics in Management Information Systems (1-4 semester credit hours) May be lecture, readings, or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:26:18 013137 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * mis7220 (r2) mis7220.3</td>
<td>MIS 7220 Colloquium in Management Information Systems (3 semester credit hours) Issues in current information systems research. May be repeated for credit as topics vary. Instructor consent required. (2-0) R</td>
<td>phase: approve status: approving audit: 28</td>
<td>peoplesoft diff: 013138 2010-08-18</td>
<td>sxa063000 2013-11-30 11:40:22 013138 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * mis7310 (r3) mis7310.3</td>
<td>MIS 7310 Advanced Topics in Knowledge Management (3 semester credit hours) The course will discuss knowledge representations and reasoning techniques. It will focus on (1) conceptual models of knowledge in IT-based systems, (2) automated reasoning mechanisms that are enabled by such representations, and (3) automated discovery of knowledge from data. Applications in decision support systems, expert systems, and personalization and recommendation systems will be discussed. Necessary background in data models and information theory will be provided. (3-0) T</td>
<td>phase: approve status: approving audit: 29</td>
<td>peoplesoft diff: 009032 2012-08-26</td>
<td>cxj140030 2013-10-17 09:12:27 009032 52.1201.00.16 audit: -91.5 m index: -91.5 m match_fail</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f2b2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis7330 (r3)</td>
<td>mis7330.6</td>
<td>MIS 7330 MIS Teaching Practicum (3 semester credit hours) Individual sessions with a supervising coach. The student will have responsibility for handling all of the instructional duties for a course, including designing the syllabus, and all assessment. Feedback and guidance will help the student develop their teaching skills. May be repeated for credit as topics vary. Department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>Sxa063000 2013-12-01 17:28:06 012652 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis7340 (r2)</td>
<td>mis7340.5</td>
<td>MIS 7340 Independent Study in MIS (3 semester credit hours) The student studies in depth a topic of interest to them in MIS (Management Information Systems) under the guidance of an instructor. May be repeated for credit as topics vary. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>Sxa063000 2013-12-09 12:11:17 012653 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mis7420 (r2)</td>
<td>mis7420.4</td>
<td>MIS 7420 Seminar in Management Information Systems (4 semester credit hours) Survey of theoretical issues and research in information systems. May be repeated for credit as topics vary. Instructor consent required. (4-0) S</td>
<td>phase: approve</td>
<td>Sxa063000 2013-11-30 11:39:53 012654 52.1201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>Start End</td>
<td>Req Type</td>
<td>Req Course</td>
<td>Req Id</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6301</td>
<td>r10</td>
<td>MKT 6301 (SYSM 6318) Marketing Management (3 semester credit hours) Overview of marketing management methods, principles and concepts including product, pricing, promotion and distribution decisions as well as segmentation, targeting and positioning. (3-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-26 13:00:01 009060 52.1401.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mkt6301.13</td>
<td></td>
<td>peoplesoft diff: 009060 2012-08-26</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6309</td>
<td>r6</td>
<td>MKT 6309 Marketing Research (3 semester credit hours) Methods employed in market research to understand consumer behavior to enable better marketing decision-making. Topics include focus groups, understanding different sources of secondary data, questionnaire design, design of experiments, sampling plans, and data analysis using statistical techniques. In addition, the course will cover attitude measurement, and market research on the Internet. Prerequisites: (MKT 6301 and OPRE 6301) or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 17:29:28 009061 52.1402.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mkt6309.8</td>
<td></td>
<td>peoplesoft diff: 009061 2012-08-26</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mkt6310 (r7) mkt6310.7</td>
<td>MKT 6310 Consumer Behavior (3 semester credit hours) An exposition of the theoretical perspectives of consumer behavior along with practical marketing implication. Study of psychological, sociological and behavioral findings and frameworks with reference to consumer decision-making. Topics will include the consumer decision-making model, individual determinants of consumer behavior and environmental influences on consumer behavior and their impact on marketing. Prerequisite: MKT 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-16 08:53:14 009062 52.1401.00.16 audit: -91.5 m index: -91.5 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * mkt6320 (r5) mkt6320.6</td>
<td>request to remove this course from catalog MKT 6320 New Technology Forecasting (3 semester credit hours) Market analysis and demand forecasting of new technologies. Diffusion theory including Bass Model and extensions: multiple generations of technologies, effects of decision variables, and learning. Applications to new and developing high technology products and services. Use of software and computer programs. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-06 15:34:12 009064 14.9999.01.06 audit: -91.4 m index: -91.4 m</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6321 (r3)</td>
<td>mkt6321.6</td>
<td>MKT 6321 Interactive and Digital Marketing (3 semester credit hours) Introduction to the theory and practice of interactive and digital marketing. Topics covered include: online-market research, consumer behavior and segmentation considerations; websites, search advertising, search engine marketing, email, mobile, video and social networks. Prerequisite: MKT 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 013514 2012-08-26</td>
<td>MKT 6321 Interactive & and Digital Marketing (3 semester credit hours) Introduction to the theory and practice of interactive and digital marketing. Topics covered include: online-market research, consumer behavior and segmentation considerations; websites, search advertising, search engine marketing, email, mobile, video and social networks. This class is required for the Academic Certificate in Marketing Analytics and Market Research. Prerequisite: MKT 6301 or instructor consent of instructor. required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open| edit * | mkt6322 (r3) | mkt6322.4 | MKT 6322 Internet Business Models (3 semester credit hours) Topics to be covered are: consumer behavior on the Internet, advertising on the Internet, competitive strategies, market research using the Internet, brand management, managing distribution and supply chains, pricing strategies, electronic payment systems, and developing virtual organizations. Further, students learn auction theory, web content design, and clickstream analysis. Prerequisite: MKT 6301 or instructor consent required. (3-0) Y | phase: approve | sxao63000 2013-11-30 11:39:11 009065 52.1401.00.16 audit: -91.1 m index: -91.1 m match_fail | process orion |
| | peoplesoft diff: 009065 2008-08-21 | MKT 6322 Internet Business Models (3 semester credit hours) Topics to be covered are: consumer behavior on the Internet, advertising on the Internet, competitive strategies, market research using the Internet, brand management, managing distribution and supply chains, pricing strategies, electronic payment systems, and developing virtual organizations. Further, students learn auction theory, web content design, and clickstream analysis. Prerequisites: Prerequisite: MKT 6301 or instructor consent of instructor. required. (3-0) Y | | | | | |</p>
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mkt6323 (r4)</td>
<td>MKT 6323 Database Marketing (3 semester credit hours) Techniques to analyze, interpret, and utilize marketing databases of customers to identify a firm's best customers, understanding their needs, and targeting communications and promotions to retain such customers. Topics include: handling, creating and reading datasets, LifeTime Value, RFM and response analysis. In addition, students will learn to use SAS software. Prerequisites: (MKT 6301 and OPRE 6301) or instructor consent required. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-12-01 17:38:04 009066 52.1402.00.16 audit: -91.1 m index: -91.1 m match Fail</td>
<td>process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 009066 2012-08-26</td>
<td></td>
<td>MKT 6323 Database Marketing (3 semester credit hours) Techniques to analyze, interpret, and utilize marketing databases of customers to identify a firm's best customers, understanding their needs, and targeting communications and promotions to retain such customers. Topics include: handling, creating and reading datasets, LifeTime Value, RFM and response analysis. In addition, students will learn to use SAS software. This class is required for the Academic Certificate in Marketing Analytics and Market Research. Prerequisites: MKT 6301 or OPRE 6301 or instructor consent of instructor required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mkt6328 (r3)</td>
<td>MKT 6328 Product Management (3 semester credit hours) Introduction to the theory and practice of product management. The course covers the management and marketing of new or existing products. Topics include: considerations and managing of the product, pricing, promotions and placement throughout a products lifecycle; competitive analysis and strategies; budgeting and forecasting; product line extensions and portfolio management. Prerequisite: MKT 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-12-01 17:38:23 013515 52.1401.00.16 audit: -91.1 m index: -91.1 m match Fail</td>
<td>process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 013515 2012-08-26</td>
<td></td>
<td>MKT 6328 Product Management (3 semester credit hours) Introduction to the theory and practice of product management. The course covers the management and marketing of new or existing products. Topics include: considerations and managing of the product, pricing, promotions and placement throughout a products lifecycle; competitive analysis and strategies; budgeting and forecasting; product line extensions and portfolio management. This class is required for the Academic Certificate in Product Management. Prerequisite: MKT 6301 or instructor consent of instructor required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6329</td>
<td>r7</td>
<td>MKT 6329 New Product Development (3 semester credit hours) Development and introduction of new products. Topics include product positioning, screening, concept development, test marketing, and branding strategies. Further students will learn to use conjoint analysis for new product development, measurement of brand equity, product line extensions, and management of services. Prerequisite: MKT 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mkt6329.8</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009067 2012-08-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MKT 6329 New Product Development (3 semester credit hours) Development and introduction of new products. Topics include product positioning, screening, concept development, test marketing, and branding strategies. Further students will learn to use conjoint analysis for new product development, measurement of brand equity, product line extensions, and management of services. This class is required for the Academic Certificate in Product Management. Prerequisite: MKT 6301 or instructor consent of instructor. required. (3-0) Y</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6330</td>
<td>r6</td>
<td>MKT 6330 Brand Management (3 semester credit hours) To study the role and philosophy of brand management in the strategic marketing process and the resulting effects on strategic and marketing decisions. Topics will include the strategic brand building process, segmentation and positioning for building brands, consumer behavior, brand information systems, building brand equity and the application of brand management using marketing principles. Prerequisite: MKT 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mkt6330.7</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009068 2012-08-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MKT 6330 Brand Management (3 semester credit hours) To study the role and philosophy of brand management in the strategic marketing process and the resulting effects on strategic and marketing decisions. Topics will include the strategic brand building process, segmentation and positioning for building brands, consumer behavior, brand information systems, building brand equity and the application of brand management using marketing principles. This class is required for the Academic Certificate in Product Management. Prerequisite: MKT 6301 or instructor consent of instructor. required. (3-0) Y</td>
<td></td>
</tr>
</tbody>
</table>
MKT 6331 Building and Managing Professional Sales Organizations (3 semester credit hours)
The focus of this course is on the development and management of a professional sales organization. The course will explore the different strategies needed for different markets (consumer, business, government, and global). While the course will examine the various training programs available, there will be relatively little emphasis on sales techniques (this is not a course to learn basic selling concepts). We examine issues related to building and managing the sales effort at various stages of the company and product lifecycle, hiring and training sales personnel, compensation and incentive plans, sales forecasting, addressing multiple product lines, multiple channels and multiple geographic regions, and developing strategic alliances. Prerequisite: MKT 6301 or instructor consent required. (3-0)
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mk6332 (r6)</td>
<td>mkt6332.6</td>
<td>MKT 6332 Advertising and Promotional Strategy (3 semester credit hours) The process of formulating promotional strategy with particular emphasis on advertising and sales promotions. Topics include behavioral theories of communication, budgeting, media selection, scheduling of advertisements, measurement of advertising effectiveness, and management different types of sales promotions. Students analyze grocery scanner data to evaluate the effectiveness of promotions. Prerequisite: MKT 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-16 08:54:50 009070 52.1402.00.16 audit: -91.5 m index: -91.5 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mk6333 (r4)</td>
<td>mkt6333.5</td>
<td>MKT 6333 Channels of Distribution and Retailing (3 semester credit hours) This course will study the design and implementation of channels of distribution, with particular emphasis on retailing, including electronic retailing. Topics covered will include channel coverage strategies, pricing and promotion in channels, retail services, location decisions, franchising and legal issues in channels. Prerequisite: MKT 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-20 19:33:43 009071 52.1401.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mkt6334 (r1)</td>
<td>MKT 6334 Digital Sales Strategy (3 semester credit hours) The course explores three distinct areas within marketing and sales namely, digital marketing, traditional sales prospecting, and executive sales organization and strategy. The continuing convergence of the digital marketing and sales funnels has created a strategic continuum from digital lead generation to digital sales. The course identifies the current composition of this digital continuum while providing opportunities to evaluate sales and marketing digital strategies. The course will cover concepts including the difference between inbound and outbound digital marketing strategies, tracking CRM inquiries in the funnel, and lead scoring. Prerequisite or Corequisite: MKT 6301 and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2014-01-12 17:00:12 NOLINK 52.1401.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mkt6334.4</td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MKT 6334 Digital Sales Strategy (3 semester credit hours) The course explores three distinct areas within marketing and sales namely, digital marketing, traditional sales prospecting, and executive sales organization and strategy. The continuing convergence of the digital marketing and sales funnels has created a strategic continuum from digital lead generation to digital sales. The course identifies the current composition of this digital continuum while providing opportunities to evaluate sales and marketing digital strategies. The course will cover concepts including the difference between inbound and outbound digital marketing strategies, tracking CRM inquiries in the funnel, and lead scoring. Prerequisite or Corequisite: MKT 6301 and instructor consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mkt6335 (r4) mkt6335.4</td>
<td>MKT 6335 Advertising Research (3 semester credit hours) An introduction to advertising research designs and procedures. Topics include the acquisition, evaluation, and analysis of information needed for informed advertising decision making and planning. Also covered are methods used in developmental advertising research, pretesting advertising messages, post campaign (tracking studies) testing, concept testing, surveys, focus groups, attitude change studies and sources of secondary data. Prerequisite: MKT 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-16 08:55:02</td>
<td>sxa063000 52.1402.00.16 audit: -91.5 m index: -91.5 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mkt6336 (r5) mkt6336.7</td>
<td>MKT 6336 Pricing (3 semester credit hours) Techniques to price durable goods, packaged goods and services. Topics include: perceived value pricing, bundling, price discrimination, product-line pricing, dynamic pricing over the products' life-cycle, pricing through the marketing channel, and competitive pricing. In addition to microeconomic approaches to pricing, behavioral approaches to pricing will also be covered. Pricing decisions will be analyzed using spreadsheet analysis. Prerequisite: MKT 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>2014-01-29 11:02:20</td>
<td>sxa063000 52.1402.00.16 audit: -91 m index: -91 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 009072 2011-08-23

MKT 6335 Advertising Research (3 semester credit hours) An introduction to advertising research designs and procedures. Topics include the acquisition, evaluation, and analysis of information needed for informed advertising decision making and planning. Also covered are methods used in developmental advertising research, pretesting advertising messages, post campaign (tracking studies) testing, concept testing, surveys, focus groups, attitude change studies and sources of secondary data. Prerequisite: MKT 6301 or instructor consent required. (3-0) T

peoplesoft diff: 009073 2012-08-26

MKT 6336 Pricing (3 semester credit hours) Techniques to price durable goods, packaged goods and services. Topics include: perceived value pricing, bundling, price discrimination, product-line pricing, dynamic pricing over the products' life-cycle, pricing through the marketing channel, and competitive pricing. In addition to microeconomic approaches to pricing, behavioral approaches to pricing will also be covered. Pricing decisions will be analyzed using spreadsheet analysis. This class is required for the Academic Certificate in Product Management. Prerequisites: Prerequisite: MKT 6301 or instructor consent of instructor. required. (3-0) T

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf

177/258
<table>
<thead>
<tr>
<th>start</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6337 (r3)</td>
<td>MKT 6337 Marketing Analytics Using SAS (3 semester credit hours) This course is designed for a career in marketing analytics in which students analyze data from large databases to make important marketing decisions. These methods are commonly employed in online marketing, in grocery stores, and in financial markets. Students will acquire knowledge about the tools and software that are used to understand issues such as who the profitable customers are, how to acquire them, and how to retain them. The tools can also be used to manage brand prices and promotions using scanner data as is done in supermarkets. Prerequisites: (MKT 6301 and OPRE 6301) or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 17:40:26 013139 52.1402.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6338 (r4)</td>
<td>MKT 6338 (MIS 6378) Enterprise Systems and CRM (3 semester credit hours) The objective of the course is to increase practical skills and conceptual knowledge related to Customer Relationship Management (CRM) utilizing the mySAP.com CRM application and the data mining workbench. Students will garner knowledge of operational, analytical, and collaborative CRM. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-26 13:05:07 013140 52.1201.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>mkt6339</td>
<td>(r3) mkt6339.6</td>
<td>MKT 6339 Capstone Marketing Decision Making (3 semester credit hours) This is a simulation based course where students form groups and compete for market share, profits, and stock price in a competitive fictional market. Teams make tactical decisions about production quantity, price, advertising, sales force allocation and develop new product specifications to compete with other teams for different segments in the market place. The course provides a hands-on experience in marketing decision-making and allows students to integrate the knowledge they learned to make more effective decisions. Prerequisites: MKT 6301 and MKT 6309 and MKT 6310. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013141 2012-08-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>mkt6340</td>
<td>(r3) mkt6340.8</td>
<td>MKT 6340 Marketing Projects (3 semester credit hours) Sponsored by local industries, these projects provide the students an opportunity to apply the skills and knowledge gained to solve real world challenging problems in the area of marketing. Students work in a team environment, interact with industry leaders and gain some industry specific knowledge. Prerequisites: MKT 6301 and (MKT 6309 or MKT 6310) or instructor consent required. (3-0) T Subject to availability, check with Marketing Area before enrolling. Prerequisites: MKT 6301, 6309, 6310 6301 and MKT 6309 or MKT 6310 or instructor consent of instructor required. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013516 2012-08-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mkt6350 (r3)</td>
<td>mkt6350.4</td>
<td>MKT 6350 Competitive Marketing Strategy (3 semester credit hours) Students learn how firms develop their marketing strategy to compete effectively in different situations. Using game theory principles, they will be exposed to competitive strategies in new emerging markets, mature markets, and on the Internet. Prerequisite: MKT 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>people soft diff: 009074 2008-08-21</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>index: -91.1 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>mkt6351 (r2)</td>
<td>mkt6351.4</td>
<td>MKT 6351 Capstone Business Game (3 semester credit hours) Executive Education Course. Students work in teams and compete against each other in a computer simulation business game in which each team manages a company. The team makes decisions on a new product development, pricing, advertising, sales force management, and production planning to generate superior performance. The course is designed to further develop the executive perspective and to integrate the knowledge and skills gained in the core curriculum. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>request to remove this course from catalog</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>index: -91.7 m</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6360 (r2)</td>
<td>mkt6360.2</td>
<td>MKT 6360 Services Marketing (3 semester credit hours) To study the growing field of services marketing as a separate and distinct area of marketing thought and practice and its influence in competitive markets. The focus will be on three main services marketing areas, the service customer, the service company and the integration of marketing, human resources and operations within the service system. The course is intended to help analyze and judge the merits of services marketing strategies and assist in making strategic decisions in both business and consumer services industries. Topics will include: relationship marketing and the customer mix, understanding the service customer, external service quality: service design and delivery, the service brand, service strategy; technology and innovation, international services marketing, pricing and promotion of services. Prerequisite: MKT 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-16 08:56:37 009075 52.1401.00.16 audit: -91.7 m index: -91.7 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009075 2008-08-21</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>course</td>
<td>req_id</td>
<td>course description</td>
<td>status: approving</td>
<td>phase: approve</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mkt6362 (r4) mkt6362.7</td>
<td>MKT 6362 Marketing Models (3 semester credit hours) This course teaches quantitative models that are necessary when implementing marketing strategy such as segmentation, positioning, product portfolios and marketing mix variables. Companies are increasingly using and applying the modeling approach to marketing decision making. Topics and tools covered include: forecasting, product diffusion and advertising, sales force allocation and sizing models, analysis of scanner data in brand choice models, promotional profitability and more. Students will be given a rudimentary knowledge of SAS and other commercially-used software. Prerequisites: (MKT 6301 and OPRE 6301) or instructor consent required. (3-0) Y</td>
<td>status: approving</td>
<td>phase: approve</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

2014-open edit * mkt6362 (r4) mkt6362.7 MKT 6362 Marketing Models (3 semester credit hours) This course teaches quantitative models that are necessary when implementing marketing strategy such as segmentation, positioning, product portfolios and marketing mix variables. Companies are increasingly using and applying the modeling approach to marketing decision making. Topics and tools covered include: forecasting, product diffusion and advertising, sales force allocation and sizing models, analysis of scanner data in brand choice models, promotional profitability and more. Students will be given a rudimentary knowledge of SAS and other commercially-used software. This class is required for the Academic Certificate in Product Management. Prerequisites: MKT 6301 and OPRE 6301 or instructor consent of instructor. required. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6363 (r2)</td>
<td>mkt6363.2</td>
<td>MKT 6363 Advanced Marketing Research with SAS (3 semester credit hours) An overview of marketing research with an emphasis on statistical analysis of marketing data sets using the SAS statistical package. This course will provide fundamental grounding in the interface between the SAS data step, which is the environment for accessing, structuring, formatting and manipulating data, and SAS procedures, including: summarize, analyze, and display. Special attention will be given to marketing data collection and analysis with an emphasis on demand forecasting and customer segmentation. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-17 09:17:08</td>
<td>009077</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>52.1402.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -91.7 m</td>
<td>match _fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.7 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 009077 2008-08-21
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request</th>
<th>request</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6365 (r3)</td>
<td>MKT 6365 Marketing Digital Applications (3 semester credit hours) This course provides hands on training with different applications frequently used by marketing/advertising companies and agencies. The course covers social media listening platforms, conducting user experience (UX) web and mobile testing, data visualization, website creation, video editing, mobile QR codes, web based apps, search engine optimization and paid search campaigns (i.e. Google AdWords). Prerequisites: (MKT 6301 and MKT 6321) or instructor consent required. (3-0) T</td>
<td>status: approving</td>
<td>sxa063000</td>
<td>process orion</td>
</tr>
</tbody>
</table>

MKT 6365 Marketing Digital **Lab** Applications (3 semester credit hours) This course provides hands on training with different applications frequently used by marketing/advertising companies and agencies. The **lab** course covers social media listening **platforms** (i.e. NetBase), **platforms**, conducting user experience (UX) web and mobile testing, data visualization, **content management** (i.e. Wordpress), website creation, **video**, video **editing**, mobile QR codes, **web based** apps, search engine optimization and paid search campaigns (i.e. Google AdWords). Prerequisites: MKT (MKT 6301 and MKT 6321) or consent of the instructor (0-3) consent required. (3-0) T

peoplesoft diff: 014030 2013-08-25
adp130030
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6380 (r6)</td>
<td>rmb101000</td>
<td>MKT 6380 (ENTP 6380) Market Entry Strategies (3 semester credit hours) This course addresses the marketing challenges facing the entrepreneurial firm, with specific emphasis on the choice and implementation of an initial market entry strategy. This choice typically involves multiple decisions, each based on critical assumptions about customers, markets and competitors. Early validation of these key assumptions is an essential element of the strategic decision process. Topics include understanding the context and the customer, developing and validating the business concept, defining the product/service offering and customer value proposition, positioning, creating awareness, and developing and implementing the market entry strategy. Credit cannot be received for both courses, ENTP 6380 and MKT 6380. Prerequisite: ENTP 6370 or MKT 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2013-11-29 19:53:41</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6382 (r2)</td>
<td>MKT 6382 (ENTP 6382) Professional Selling (3 semester credit hours) Examines the theory and practical application of the principles and art of professional selling. The course places special emphasis on mapping the sales process for new companies and new products. The method of instruction will include case studies as well as learning by doing live case instruction. This course will include the following advanced concepts in sales: Major account acquisition, government markets, global markets, request for information, request for proposal, product line sales, adaptive product and service solutions, team selling, long sales cycles, prospecting and networking strategies, implementation and analysis of prospecting strategies, and sales management strategies for the early stage of the product lifecycle. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-17 09:17:21 014257 52.0701.00.16 audit: -91.7 m index: -91.7 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 014257 2013-08-25
adp130030
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6383 (r1)</td>
<td>mkt6383.2</td>
<td>MKT 6383 Professional Selling II (3 semester credit hours) This course uses a case based experiential approach to learning the sales process. Advanced approaches used in business mid-market to enterprise and government sales will be introduced. Students will explore inside sales, outside sales, request for information and request for proposal methods of account acquisition and management. This course will focus on both products and services in the later stage of the product lifecycle. Students will practice multi-visit role-plays in a team sales setting with existing partners of the JSOM Center for Professional Selling. (3-0) Y</td>
<td>phase: approve</td>
<td>sx063000</td>
<td>2013-10-27 08:24:26</td>
<td>NOLINK</td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

MKT 6383 Professional Selling II (3 semester credit hours) This course uses a case based experiential approach to learning the sales process. Advanced approaches used in business mid-market to enterprise and government sales will be introduced. Students will explore inside sales, outside sales, request for information and request for proposal methods of account acquisition and management. This course will focus on both products and services in the later stage of the product lifecycle. Students will practice multi-visit role-plays in a team sales setting with existing partners of the JSOM Center for Professional Selling. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * mkt6v98 (r2) mkt6v98.7</td>
<td>MKT 6V98 Marketing Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). JSOM Internship Coordinator consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:41:55 013731 52.1401.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt6v99 (r3)</td>
<td>MKT 6V99 Special Topics in Marketing (1-4 semester credit hours) Study of rapidly emerging or changing areas within marketing. The specific topic will fall under one of the following categories: advertising, branding, digital marketing, product management, sales, marketing management or marketing analytics and market research. The course may consist of participation in one or more major marketing competitions. May be lecture, readings, individualized study or team based competitions. May be repeated for credit as topics vary. Prerequisites: (MKT 6301 or MKT 6309) and MKT 6310 or instructor consent required. (1-4) Y</td>
<td>phase:</td>
<td>sxo063000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mkt6v99.8</td>
<td></td>
<td>status:</td>
<td>2013-12-01 17:51:45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit:</td>
<td>013142</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -91.1 m</td>
<td>52.0201.00.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.1 m</td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013142 2011-08-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt7314 (r5)</td>
<td>MKT 7314 Marketing Models I (3 semester credit hours) Study of mathematical models used in solving marketing problems including brand switching, new product adoption, and competitive strategy models. Prerequisites: (OPRE 6302 and MKT 6301) or instructor consent required. (3) Y</td>
<td>phase:</td>
<td>sxo063000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mkt7314.7</td>
<td></td>
<td>status:</td>
<td>2013-10-26 13:10:43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit:</td>
<td>009093</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -91.4 m</td>
<td>52.1401.00.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.4 m</td>
<td>match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009093 2012-08-26 sxr090100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mkt7315(r6)</td>
<td>mkt7315.8</td>
<td>MKT 7315 Marketing Models II (3 semester credit hours) Advanced study of mathematical models used in solving marketing problems including brand switching, new product adoption, and competitive strategy models. Prerequisites: (OPRE 6302 and MKT 6301) or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>mkt7316(r4)</td>
<td>mkt7316.7</td>
<td>MKT 7316 Marketing Models III (3 semester credit hours) Study of mathematical and statistical models used in the analysis of markets and marketing problems including dynamic models of marketing mix, applications of econometric methods in marketing. Prerequisites: (OPRE 6301 and MKT 6301) or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>mkt7317(r3)</td>
<td>mkt7317.6</td>
<td>MKT 7317 Marketing Models IV (3 semester credit hours) Advanced study of mathematical models used in the analysis of markets and marketing problems including use of game theory and modeling uncertainty. Prerequisites: (OPRE 6301 and MKT 6301) or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>mkt7318(r3)</td>
<td>mkt7318.5</td>
<td>MKT 7318 Marketing Models V (3 semester credit hours) Study of models relating to strategic issues in marketing including first mover advantages, interface of technology and marketing and management of novel technologies. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mkt7v12 (r4) mkt7v12.5</td>
<td>MKT 7V12 Research Applications in Marketing (3-4 semester credit hours) Application of multivariate methods in statistics to marketing problems including discriminant analysis, logit/probit analysis, and other multivariate applications. May be repeated for credit as topics vary. Prerequisites: (OPRE 6301 and MKT 6301) or instructor consent required. (3-4)-0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009079 2008-08-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MKT 7V12 Research Applications in Marketing (3-4 semester credit hours) Application of multivariate methods in statistics to marketing problems including discriminant analysis, logit/probit analysis, and other multivariate applications. Prerequisites: OPRE 6301 and MKT 6301, or consent of instructor. May be repeated for credit as topics vary. Prerequisites: (OPRE 6301 and MKT 6301) or instructor consent required. (3-4)-0</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>ob6150 (r2) ob6150.4</td>
<td>request to remove this course from catalog OB 6150 Functions of the Executive (1 semester credit hour) Executive Education Course. This course is based primarily on the work of Harvard's legendary Professor Chester Barnard and utilizes case studies. It seeks to help students identify, understand and apply the various mindsets, decisions and actions that effective executives employ. (1-0) Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OB 6150 Functions of the Executive (1 semester credit hour) Executive Education Course. This course is based primarily on the work of Harvard's legendary Professor Chester Barnard and utilizes case studies. It seeks to help students identify, understand and apply the various mindsets, decisions and actions that effective executives employ. (1-0) Y</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6152 (r1) ob6152.5</td>
<td>OB 6152 Executive Coaching (1 semester credit hour) Executive Education Course. This is a one-on-one, developmental experience with a professional, ICF certified executive coach. The goal of the coaching experience is to develop the soft skills required for leadership positions including executive presence, strategic self-awareness, social networking, political intelligence, and social intelligence. Instructor consent required. (1-0) Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OB 6152 Executive Coaching (1 semester credit hour) Executive Education Course. This is a one-on-one, developmental experience with a professional, ICF certified executive coach. The goal of the coaching experience is to develop the soft skills required for leadership positions including executive presence, strategic self-awareness, social networking, political intelligence, and social intelligence. Instructor consent required. (1-0) Y</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6248 (r2)</td>
<td>ob6248.5</td>
<td>OB 6248 Coaching Practice Lab I (2 semester credit hours) Executive Education Course. Small group practice sessions for the purpose of applying and deepening the principles and techniques learned throughout the coaching classes. The purpose of this class is to engage in applied learning through peer-to-peer interaction with instructor feedback. (2-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6249 (r2)</td>
<td>ob6249.4</td>
<td>OB 6249 Coaching Practice Lab II (2 semester credit hours) Executive Education Course. Small group practice sessions for the purpose of applying and deepening the principles and techniques learned throughout the coaching classes. The purpose of this advanced class is to engage in applied learning through peer-to-peer interaction with instructor feedback. (2-0) S</td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>edit</td>
<td>ob6253</td>
<td>OB 6253 Coaching Practicum (2 semester credit hours) Executive Education Course. Individual sessions with a supervising coach and small-group supervised sessions. For the individual sessions, students will be required to submit recordings for review or provide for real-time attendance by the supervising coach so that an evaluation of their coaching competence can occur. Feedback and guidance will help students develop their coaching skills. A comprehensive exam will be used to evaluate coaching competency. The exam will test for their knowledge, skills, and abilities as an executive and professional coach. Instructor consent required. (2-0) T</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>sxa063292 2010-08-18 process orion</td>
</tr>
<tr>
<td></td>
<td>ob6253.4</td>
<td></td>
<td>status: approving</td>
<td>2013-11-03 11:23:56</td>
<td>013292 52.0101.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 013292 2010-08-18</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove</td>
<td>ob6260</td>
<td>OB 6260 Executive Coaching (2 semester credit hours) This is a one-on-one, developmental experience with a professional, executive coach. The goals of the coaching experience are: to help the student learn as much as possible from the EMBA program and from working in student teams; to identify the student's strengths and weaknesses and to develop the person in relevant areas; to focus on career development issues unique to the individual; and to instruct the student on the principles and practices of coaching as a leadership style. Executive Education Course. (2-0) Y</td>
<td>phase: approve</td>
<td>sxao63000</td>
<td>sxa0632749 2013-10-24 process orion</td>
</tr>
<tr>
<td></td>
<td>ob6260.3</td>
<td></td>
<td>status: approving</td>
<td>2013-10-24 16:23:47</td>
<td>012749 52.1003.00.16 audit: -91.4 m index: -91.4 m</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>req course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6261 (r2)</td>
<td>OB 6261 Executive Workshop (2 semester credit hours) Executive Education Course. New students begin the Executive MBA program by attending this workshop and completing the follow-up assignments. The course focuses primarily on lectures and experiential learning exercises conducted by the Leadership Center at UT Dallas and other Centers of Excellence from Jindal School of Management. Instructor consent required. (2-0) Y</td>
<td>phase: approve</td>
<td>sxao063600 2013-12-01 18:09:12 012752 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ob6261.3</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6301 (r6)</td>
<td>OB 6301 (SYSM 6333) Organizational Behavior (3 semester credit hours) The study of human behavior in organizations. Emphasizes theoretical concepts and practical methods for understanding, analyzing, and predicting individual, group, and organizational behavior. Topics include work motivation, group dynamics, decision making, conflict and negotiation, leadership, power, and organizational culture. Ethical and international considerations are also addressed. (3-0) S</td>
<td>phase: approve</td>
<td>sxao063600 2013-10-27 16:56:23 009695 52.1003.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ob6301.10</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87f2c37a6ff775e1ca/makepdf 194/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6303 (r4)</td>
<td>OB 6303 Managing Organizations (3 semester credit hours) Macro-management: managing internal organizational processes such as restructuring, and external network relationships such as strategic alliances. Applications to current management issues. Prerequisite: OB 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxa063000 2013-10-24 16:50:08 009696 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 009696 2008-08-21

| 2014-open | edit * | ob6305 (r5) | OB 6305 Foundations of Work Behavior (3 semester credit hours) Individual work behaviors such as organizational choice, motivation, performance, turnover, and absenteeism. Motivational processes which support such behaviors and the personal reactions of persons to them. Prerequisite: OB 6301. (3-0) Y | phase: approve | status: approving | audit: 30 | sxa063000 2013-10-24 16:50:27 009697 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail | process orion |

peoplesoft diff: 009697 2008-08-21

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6307 (r5)</td>
<td>OB 6307 Strategic Human Resource Management (3 semester credit hours) Theories, concepts, and procedures involved in managing human resources. Examination of the correspondence between organizational strategies and human resources needed to carry out those strategies. Topics include job analysis, compensation and benefits, performance management, succession planning, career development issues, legal considerations, and international issues. Prerequisite: OB 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2013-10-24 16:50:53 009698 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>request to remove this course from catalog</td>
<td>ob6308.3</td>
<td>OB 6308 Contemporary Business Ethics and Social Responsibility (3 semester credit hours) The purpose of the course is to enable students to engage in a systematic examination of current ethical issues and problems relevant to the decision making in the organization and management of business enterprises in a complex, dynamic, and global environment. Students will be expected to reflect on question-raising situations that demand careful, informed moral deliberation and examine whether business decisions/practices have ethical consequences. The course combines readings, guest speakers, lectures, and activities that focus on the roles, activities, and ethical choices of managers as they direct organizations within the context of our contemporary society. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2013-10-27 16:53:34 014234 52.1003.00.16 audit: -91.3 m index: -91.3 m</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6321</td>
<td>OB 6321 Principles of Leadership (3 semester credit hours) Theories and techniques of leadership, emphasizing the complementary roles of management and leadership in organizations. The course will address emotional intelligence, leadership styles, communications and leadership processes, focusing on how leaders turn challenging opportunities into successes and get extraordinary things done in organizations. Self-assessment exercises will focus on the development of individual leadership skills. Prerequisite: OB 6301 or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-24 16:51:17 009699 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6322</td>
<td>OB 6322 Interpersonal Dynamics (3 semester credit hours) Structures and processes governing interactions among persons in small groups, linking individuals into social units. Structures of power, leadership, norms, roles and status. Processes of intimacy, influence, communication, decision making, cooperation/conflict and change. Prerequisite: OB 6301. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-21 16:05:15 009700 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 009699 2008-08-21

peoplesoft diff: 009700 2008-08-21
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6326</td>
<td>(r6)</td>
<td>OB 6326 Organizations and Organizing (3 semester credit hours) Means by which people create, maintain, and change organized work structures. Resulting alternative organizational forms are examined. Prerequisite: OB 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-24 16:51:43 009704 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ob6326.7</td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 009704 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6331</td>
<td>(r3)</td>
<td>OB 6331 Power and Politics in Organizations (3 semester credit hours) Political processes and the development and use of power in organizations including the role of power in decision-making, sources of power, conditions for the use of power, assessing power in organizations; political strategies and tactics; political language and symbols, and applications to budgeting, careers and organizational structure. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-21 16:07:33 012781 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ob6331.3</td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012781 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog_course_description</td>
<td>request_status</td>
<td>request_metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ob6332 (r6) ob6332.13</td>
<td>OB 6332 (HMGT 6324 and MECO 6352 and OPRE 6396 and SYSM 6313) Negotiation and Dispute Resolution (3 semester credit hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>sxao63000</td>
<td>2013-12-01 18:16:41</td>
<td>009705 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
</tbody>
</table>

OB 6332 (OPRE 6396, HMGT 6324, (HMGT 6324 and MECO 6352 and OPRE 6396 and SYSM 6313) Negotiation and Dispute Resolution (3 semester credit hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6333 (r5)</td>
<td>ob6333.6</td>
<td>OB 6333 Managerial Decision Making (3 semester credit hours) Normative and descriptive examination of managerial decision making at the individual, group, and organizational levels. Exploration of cognitive heuristics, rational and non-rational decision making, temporal decision processes, and strategic decision processes under the influence of uncertainty and ambiguity of organizational contexts. Prerequisite: OB 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-24 16:52:21 009706 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 009706 2008-08-21

| 2014-open | edit * | ob6334 (r2) | ob6334.4 | OB 6334 Foundations of Organizational Development (3 semester credit hours) Explores the foundations and role of organizational development. Topics include: emergence and development of the field and its role in twenty-first century organizations; major macro-level organizational concepts such as organizational strategy, structure, culture, innovation, and globalization; and the role of organizational development in change management, intervention strategies and group process. (3-0) R | phase: approve | sxa063000 2013-12-03 13:47:35 012737 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail | process orion |

peoplesoft diff: 012737 2009-08-19

<p>| 2014-open | edit * | ob6334 (r2) | ob6334.4 | OB 6334 Foundations of Organizational Development (3 semester credit hours) Explores the foundations and role of organizational development. Topics include: emergence and development of the field and its role in twenty-first century organizations; major macro-level organizational concepts such as organizational strategy, structure, culture, innovation, and globalization; and the role of organizational development in change management, intervention strategies and group process. (3-0) R | phase: approve | sxa063000 2013-12-03 13:47:35 012737 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail | process orion |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request</th>
<th>request</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6335</td>
<td>(r3) ob6335.8</td>
<td>OB 6335 Organizational Development Process and Practice (3 semester credit hours) Explores the functions and practices of organizational development. Topics include establishing vision and mission and strategic alignment, conducting inquiry and addressing resistance, engaging leaders and supporting participants, and small scale change - individuals and groups. Prerequisite: OB 6334 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 28</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 012789 2012-08-26

OB 6335 Organizational Development Process and Practice (3 semester credit hours) Explores the functions and practices of organizational development. Topics include: establishing vision and mission and strategic alignment, conducting inquiry and addressing resistance, engaging leaders and supporting participants, and small scale change - individuals and groups. Prerequisite: OB 6334 or instructor consent required. (3-0) R

| 2014-2014 | | remove * | ob6336 | (r2) ob6336.4 | OB 6336 Individual Difference, Self-Motivation and Employee Development (3 semester credit hours) This course starts with a survey of personality theories with a special emphasis on cognitive models of learning and motivation at work. Relevant topics of personality psychology and social psychology will be introduced to clarify the applied concepts which are useful in employee and organizational development. This will prepare students and practicing managers to be more effective in areas such as general management, consulting, self-development, coaching & mentoring, team building and organizational development. This course will take students one level above what is covered under OB 6301 and also gives them a deep grounding in social and cognitive psychology of organizational behavior. Special attention will be given to Humanistic/ Existential theories and Cognitive Social Learning theories and will relate this to current understanding of organizational neuroscience. Prerequisite: OB 6301. (3-0) Y | phase: approve | status: approving | audit: 29 | process orion |

request to remove this course from catalog
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>OB 6337 Motivational Leadership in Organizations (3 semester credit hours)</td>
<td>OB 6337 (r2)</td>
<td>OB 6337.2</td>
<td>Analyzes the types of behaviors which lead to high performance within healthcare organizations. Topics include individual behavior and motivation, behavioral job requirements and job/person matching, the differences between leadership and managerial behavior; and how to establish and maintain a high performance work climate. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-21 16:15:12 013145 52.1003.00.16 audit: -91.7 m index: -91.7 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>OB 6338 Coaching as a Leadership Style (3 semester credit hours) Executive Education Course</td>
<td>OB 6338 (r2)</td>
<td>OB 6338.3</td>
<td>Develops highly effective coaching skills for fostering positive change in both individuals and teams. Topics include developing an effective coaching relationship through intelligent listening and authentic feedback, assessing an individual's readiness for change and helping to increase colleagues' personal and professional effectiveness. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-10 09:44:53 013146 52.1003.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------</td>
<td>--</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6339 (r1)</td>
<td>ob6339.6</td>
<td>OB 6339 Negotiations and Contracts (3 semester credit hours) Executive Education Course. This course addresses contracts and explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. Instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

OB 6339 Negotiations and Contracts (3 semester credit hours) Executive Education Course. This course addresses contracts and explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. Instructor consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6340</td>
<td>(r4)</td>
<td>OB 6340 Leading Strategic Change Processes in an International Environment (3 semester credit hours) This course emphasizes practical skills required to be an effective change agent. Topics include entry in change projects, negotiating role expectations, contracting, diagnostic interviewing, motivating system change and overcoming resistance, group dynamics and large group interventions, and intercultural differences in leadership expectations. All participants will be involved in a change project as part of the course. Prerequisite: OB 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-24 15:50:38 009707 52.1003.00.16 audit: -92.2 m index: -92.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6347</td>
<td>(r2)</td>
<td>OB 6347 Performance Management Systems (3 semester credit hours) A systematic approach is taken to show how performance management adds value to the organization. Emphasis is on the manager-employee communication process involved in establishing clear expectations and understanding about the job. Job functions, the role of the job in reaching organizational goals, performance appraisal techniques and uses, and performance improvement issues are addressed. Prerequisite: OB 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-24 15:50:57 014107 52.1003.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ob6350 (r3) ob6350.4</td>
<td>OB 6350 Introduction to Executive and Professional Coaching (3 semester credit hours) Executive Education Course. The class provides students with a study of the origins and structure of coaching. Topics include the current status of coaching, the history of coaching as a profession, basic coaching principles, ethics and standards, the core competencies of coaching, and basic coaching techniques and practices. It also addresses the role of personal style in coaching and how to adjust coaching behavior to fit the coaching requirements of clients. (3-0) T</td>
<td>phase: approve status: approving audit: 29</td>
<td>sxao63000 2013-11-03 11:24:24 009709 52.0101.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ob6351 (r3) ob6351.5</td>
<td>OB 6351 Coaching in the Business or Organizational Setting (3 semester credit hours) Executive Education Course. This course prepares coaches to work with individuals and teams in a corporate or business environment. Topics include: 1) coaching and organizational behavior theories and models that facilitate client change within an organizational setting; 2) coaching executives with an emphasis on achieving business results; 3) coaching methods for teams and groups; and 4) coaching clients through career transitions. (3-0) T</td>
<td>phase: approve status: approving audit: 29</td>
<td>sxao63000 2013-11-03 11:24:45 009710 52.0101.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>------------</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob6352 (r3)</td>
<td>ob6352.4</td>
<td>OB 6352 Advanced Coaching Models and Methods (3 semester credit hours) Executive Education Course. The course provides students with advanced principles and practices for coaching individuals within the corporate setting. Topics include appreciative inquiry models and techniques, a survey of evidence-based coaching models, the use of language to promote change, research practices, the basics of clinical diagnosis and how to respond as a coach when clients display clinical symptoms. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 11:25:03 009711 52.0101.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009711 2008-08-21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-open</td>
<td>edit *</td>
<td>ob6354 (r2)</td>
<td>OB 6354 Organizations and Environments (3 semester credit hours) This course covers the analysis of organization-environment relations, with special emphasis on managing the organization for strategic advantage. Theories and concepts will be drawn from the fields of organizational sociology, industrial organization economics, and strategic management. Topics include mergers, acquisitions, and divestitures, regulation and deregulation, the role of boards of directors, the diffusion of organizational innovations, collective organizational actions such as joint ventures, the formation of trade associations, and industry evolution. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-27 17:05:23 013143 52.1003.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ob6354.3</td>
<td></td>
<td>peoplesoft diff: 013143 2010-08-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OB 6354 Organizations and Environments (3 semester credit hours) Analysis This course covers the analysis of organization-environment relations, with special emphasis on managing the organization for strategic advantage. Theories and concepts will be drawn from the fields of organizational sociology, industrial organization economics, and strategic management. Topics include mergers, acquisitions, and divestitures, regulation and deregulation, the role of boards of directors, the diffusion of organizational innovations, collective organizational actions such as joint ventures, the formation of trade associations, and industry evolution. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-27 17:05:23 013143 52.1003.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6355 (r2) ob6355.3</td>
<td>OB 6355 Capstone in Organizational Behavior and Coaching (3 semester credit hours) The capstone course is the culmination of the program. Students are required through research to integrate the major theories and principles of the entire curriculum. Students further develop their knowledge of organizational behavior and executive coaching through application of field experiences. Department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 18:11:02 014032 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>ob6360 (r5) ob6360.6</td>
<td>OB 6360 Information Processing and Interpersonal Skills (3 semester credit hours) Communication theory and application including decoding/listening, processing/analyzing, and encoding/speaking and writing. Prerequisite: OB 6301. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-10 09:14:46 009713 52.1003.00.16 audit: -91.2 m index: -91.2 m</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>ob6v99 (r5) ob6v99.7</td>
<td>OB 6V99 Special Topics in Organizational Behavior (1-4 semester credit hours) May be lecture, readings or individualized study. May be repeated for credit as topics vary. Instructor consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxao63000 2013-12-01 18:11:45 013147 52.1003.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob7300 (r3)</td>
<td>ob7300.6</td>
<td>OB 7300 Organization Theory (3 semester credit hours) Survey of major theoretical perspectives and current research in organization theory. Prerequisite: International Management Studies PhD majors only and instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 17:02:40 009717 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob7302 (r3)</td>
<td>ob7302.6</td>
<td>OB 7302 Organization Behavior (3 semester credit hours) This course is designed to expose students to a variety of Organizational Behavior/Human Resource Management topics and data gathering techniques. Different procedures for gathering research data, usually within the context of the papers will be critiqued and a term paper is required. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 18:12:16 012741 52.1003.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ob7303 (r6) ob7303.6</td>
<td>OB 7303 Research Methodology in Behavioral Sciences (3 semester credit hours) Advantages and disadvantages of research based on field experiments, field studies, survey analyses, laboratory experiments, participant observation, content analyses, interviewing, cross-cultural studies, simulations, demographic and data archive methods. Integration of research designs and multimethod techniques. Topics may vary. (3-0) T.</td>
<td>phase: approve</td>
<td></td>
<td>process</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 009718 2008-08-21</td>
<td>status: approving</td>
<td>audit: 29</td>
<td>orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OB 7303 Research Methodology in Behavioral Sciences (3 semester credit hours) Advantages and disadvantages of research based on field experiments, field studies, survey analyses, laboratory experiments, participant observation, content analyses, interviewing, cross-cultural studies, simulations, demographic and data archive methods. Integration of research designs and multimethod techniques. Topics may vary. (3-0) T.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 009718 2008-08-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * ob7306 (r5) ob7306.6</td>
<td>OB 7306 Macro-Organizational Empirical Investigation (3 semester credit hours) PhD seminar in the process of empirical research on organizations including formulation of a research question; the development and application of theory leading to the construction of models and the formulation of hypotheses; the design of a study; identification of data sources and the collection of data; computer analysis of data to test hypotheses; and the presentation of the study in a research paper. Emphasis will be given to linear models, archival data, and regression analysis, but other approaches will be discussed. Topics may vary. Prerequisite: OB 7300 or equivalent or instructor consent required. (3-0) R.</td>
<td>phase: approve</td>
<td></td>
<td>process</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 009719 2008-08-21</td>
<td>status: approving</td>
<td>audit: 29</td>
<td>orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OB 7306 Macro-Organizational Empirical Investigation (3 semester credit hours) PhD seminar in the process of empirical research on organizations including formulation of a research question; the development and application of theory leading to the construction of models and the formulation of hypotheses; the design of a study; identification of data sources and the collection of data; computer analysis of data to test hypotheses; and the presentation of the study in a research paper. Emphasis will be given to linear models, archival data, and regression analysis, but other approaches will be discussed. Topics may vary. Prerequisite: OB 7300 or equivalent or instructor consent required. (3-0) R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob7310 (r4)</td>
<td>OB 7310 Theory and Research in Group and Intergroup Processes (3 semester credit hours)</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ob7310.6</td>
<td>Current theories of group processes and group development in different social contexts. Work and non-work, intergroup relationships, group task and process issues, stages of group development, group norms, group roles, group structure, leadership, group cohesion, intergroup conflict and cooperation, intergroup interdependencies and organizational structure, boundary roles, intergroup communication, power, organizational politics and managing intergroup differences. Prerequisites: (OB 6301 or OB 6303) and OB 6322 or instructor consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 009720 2008-08-21

OB 7310 Theory and Research in Group and Intergroup Processes (3 semester credit hours)
Current theories of group processes and group development in different social contexts. Work and non-work, intergroup relationships, group task and process issues, stages of group development, group norms, group roles, group structure, leadership, group cohesion, intergroup conflict and cooperation, intergroup interdependencies and organizational structure, boundary roles, intergroup communication, power, organizational politics and managing intergroup differences. Prerequisites: (OB 6301 or OB 6303) and OB 6322 or instructor consent required. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>ob7312 (r3)</td>
<td>ob7312.5</td>
<td>OB 7312 Social Network Theory (3 semester credit hours) Social network theory focuses on structural relations among people and organizations. As one of the fastest growing paradigms originated from anthropology and sociology, it has gained enormous popularity within the broad field of organizational management. This course provides a systematic introduction to social network theory by reviewing its basic history, philosophy, theories, and methodologies. The course also explores how social network theory can be applied to addressing various management issues such as knowledge diffusion, social capital, strategic alliance, and network dynamics. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 012740 2012-08-26

OB 7312 Social Network Theory (3 semester credit hours) Social network theory focuses on structural relations among people and organizations. As one of the fastest growing paradigms originated from anthropology and sociology, it has gained enormous popularity within the broad field of organizational management. This Ph.D.-level course intends to provide a systematic introduction to social network theory by reviewing its basic history, philosophy, theories, and methodologies. We will explore how social network theory can be applied to addressing various management issues such as knowledge diffusion, social capital, strategic alliance, and network dynamics. (3-0) R |
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * ob7313 (r3) ob7313.4</td>
<td>OB 7313 Seminar on Organizational Decision Making (3 semester credit hours) This seminar provides a systematic and up-to-date literature background for academic research in this area. This course covers normative, descriptive, and non-rational aspects of decision making at the individual, group, and organizational/strategic levels. The course also examines the impact of contextual factors such as uncertainty, ambiguity, environment, structure, process, information technology, international culture, and ethics on organizational decision making. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-27 17:12:18 013517 52.1003.00.16</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * opre6250 (r2) opre6250.5</td>
<td>OPRE 6250 Global Supply Chain Management (2 semester credit hours) Executive Education Course. This course addresses the design and management of global supply chain including international sourcing, integration of suppliers and distribution channels. Prerequisite: OPRE 6201 or OPRE 6302. (2-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 09:47:01 012750 14.3701.00.06</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6271 (r5)</td>
<td>opre6271.6</td>
<td>OPRE 6271 Project Overview, Strategic and Process Management (2 semester credit hours) Executive Education Course. Introduces the project lifecycle, typical project management processes, leadership and teaming in project management, the relevance of business process analysis, strategic alignment of projects, and financial considerations in project selection. (2-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6301 (r6)</td>
<td>opre6301.6</td>
<td>OPRE 6301 (SYSM 6303) Quantitative Introduction to Risk and Uncertainty in Business (3 semester credit hours) Introduction to statistical and probabilistic methods and theory applicable to situations faced by managers. Topics include: data presentation and summarization, regression analysis, fundamental probability theory and random variables, introductory decision analysis, estimation, confidence intervals, hypothesis testing, and One Way ANOVA (Some sections of this class may require a laptop computer). (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6302 (r3)</td>
<td>OPRE 6302 Operations Management (3 semester credit hours) Operations Management integrates all of the activities and processes that are necessary to provide products and services. This course overviews methods and models that help managers make better operating decisions over time. How these methods will allow firms to operate both manufacturing and service facilities in order to compete in a global environment will also be discussed. Prerequisite: OPRE 6301 (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:16:09 009743 14.3701.00.06 audit: -92.1 m index: -92.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opre6302.3</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 009743 2008-08-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6303 (r2)</td>
<td>OPRE 6303 Quantitative Foundations of Business (3 semester credit hours) This course discusses the applications of some basic mathematical concepts necessary for the business environment. Students are introduced to selected topics, including those in college algebra, matrix algebra, calculus, and optimization, and their usage in the context of managerial decision-making. MS Excel is used to illustrate and understand the core concepts. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:16:16 014035 52.0201.00.16 audit: -91.8 m index: -91.8 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opre6303.2</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014035 2012-08-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>opre6311 (r7)</td>
<td>opre6311.10</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

OPRE 6311 Game Theory (3 semester credit hours) This course provides a graduate level introduction to game theory, a set of analytical tools used to study the strategic interactions of individuals and institutions. The course covers static and dynamic games, both under complete and incomplete information. Applications include cooperation, price setting under imperfect competition, trust and reputation building, bargaining, auctions, signaling, social preferences and matching markets. (3-0) R

| 2014-open | edit * | opre6325 (r2) | opre6325.3 | OPRE 6325 (HMGT 6325) Healthcare Operations Management (3 semester credit hours) Explores how effectively managing and continuously improving the end-to-end health care supply chain provides a competitive advantage. Topics include supply chain fundamentals, key players in the health care supply chain and their challenges, how the health care supply chain works, impact of technology on supply chain performance, and lean six sigma methodology. Simulations and case studies will reinforce the learning. (3-0) T | phase: approve | status: approving | audit: 29 | sxa063000 2013-10-22 22:39:08 013568 51.0701.00.14 audit: -91.4 m index: -91.4 m match_fail | process orion |

OPRE 6325 (HMGT 6325) Healthcare Operations Management (3 semester credit hours) Explores how effectively managing and continuously improving the end-to-end health care supply chain provides a competitive advantage. Topics include supply chain fundamentals, key players in the health care supply chain and their challenges, how the health care supply chain works, impact of technology on supply chain performance, and lean six sigma methodology. Simulations and case studies will reinforce the learning. (3-0) T

peoplesoft diff: 013568 2011-08-23
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6332 (r5)</td>
<td>OPRE 6332 Spreadsheet Modeling and Analytics (3 semester credit hours) This course explains the concepts of effective spreadsheet design and model building utilizing the electronic spreadsheet as the principal device. The course helps students to take an analytic view and acquire knowledge about specific decision making techniques for business, such as optimization and simulation, building spreadsheet models to identify choices, formalize trade-offs, specify constraints, perform sensitivity analyses, and analyze the impact of uncertainty. The course also examines the applications in finance, economics, marketing, and operations. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-22 22:41:01 009751 14.3701.00.06 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6335 (r5)</td>
<td>OPRE 6335 (SYSM 6304) Risk and Decision Analysis (3 semester credit hours) This course provides an overview of the main concepts and methods of risk assessment, risk management, and decision analysis. The methods used in industry, such as probabilistic risk assessment, six sigma, and reliability, are discussed. Advanced methods from economics and finance (decision optimization and portfolio analysis) are presented. Prerequisite: OPRE 6301 or SYSM 6303. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-30 11:30:00 009752 14.3701.00.06 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * opre6340 (r6)</td>
<td>OPRE 6340 (MECH 6335) Flexible Manufacturing Strategies (3 semester credit hours) The use of automation in manufacturing is continuously increasing. This course covers the variety of types of flexible automation, including flexible manufacturing systems, integrated circuit fabrication and assembly, and robotics. Examples of international systems are discussed to show the wide variety of systems designs and problems. Strategic as well as economic justification issues are covered. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-27 19:51:07</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>009753 14.3701.00.06 audit: -91.3 m index: -91.3 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>opre6340.8</td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 009753 2013-08-25 sxh121431

OPRE 6340 (MECH 6335) Flexible Manufacturing Strategies (3 semester credit hours) The use of automation in manufacturing is continuously increasing. This course covers the variety of types of flexible automation, including flexible manufacturing systems, integrated circuit fabrication and assembly, and robotics. Examples of international systems are discussed to show the wide variety of systems designs and problems. Strategic as well as economic justification issues are covered. (3-0) R

2014-open	edit * opre6341 (r1)	OPRE 6341 Retail Operations (3 semester credit hours) This course will examine new developments in retailing and the application of operations management principles to those developments. Topics include demand forecasting methods, responsive supply chains, incentives, store execution, assortment planning, in-store experiments, retailing in emerging markets, online retailing, innovation, use of technology such as radio frequency identification (RFID), growth and risk management, performance assessment, and impact on financial performance. Special attention will be given to the global nature of the retail industry and its development in emerging markets. (3-0) Y	phase: approve	sxa063000 2014-01-12 17:04:11	process orion
			status: approving	52.1803.00.16 audit: -91.1 m index: -91.1 m match_fail	
	opre6341.4		audit: 9		

peoplesoft diff: NOLINK

OPRE 6341 Retail Operations (3 semester credit hours) This course will examine new developments in retailing and the application of operations management principles to those developments. Topics include demand forecasting methods, responsive supply chains, incentives, store execution, assortment planning, in-store experiments, retailing in emerging markets, online retailing, innovation, use of technology such as radio frequency identification (RFID), growth and risk management, performance assessment, and impact on financial performance. Special attention will be given to the global nature of the retail industry and its development in emerging markets. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>opre6342 (r1)</td>
<td>opre6342.4</td>
<td>OPRE 6342 Special Topics in Product Lifecycle and Supply Chain Management (3 semester credit hours) Executive Education Course. This course introduces selected topics in product lifecycle and supply chain management. Students will be exposed to technology solutions, value management and business simulations to learn the interactions and challenges in decision making in a real world supply chain environment. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 9</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>opre6360 (r5)</td>
<td>opre6360.6</td>
<td>request to remove this course from catalog OPRE 6360 Operations Strategy (3 semester credit hours) This course provides an overview of the key concepts that comprise manufacturing and service strategy. It assumes, in broad terms, overall corporate or business unit strategy as an input and focuses on building distinctive competencies within manufacturing and services. It deals specifically with resource allocation and reallocation - relating and combining corporate strategy, manufacturing strategy and service strategy. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove *</td>
<td>opre6361 (r7)</td>
<td>opre6361.9</td>
<td>request to remove this course from catalog OPRE 6361 Production Planning and Control (3 semester credit hours) Analysis of the production system of a manufacturing organization. Classical modeling and decision methods including simulation methods for stochastic models and exact and heuristic solutions of deterministic models. Material Requirement Planning systems and Flexible Manufacturing systems. Prerequisite: OPRE 6302 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | opre6362 (r9) | OPRE 6362 (SYSM 6311) Project Management in Engineering and Operations (3 semester credit hours) Project management is the discipline of planning, organizing and managing resources to bring about the successful completion of specific project goals and objectives. The course will cover various aspects of managing projects in engineering and operations environments including the critical path methods for planning and controlling projects, time and cost tradeoffs, resource utilization, organizational design, conflict resolution and stochastic considerations. (3-0) S | phase: approve
status: approving
audit: 30 | cxj140030
2013-09-30
14:17:18
009756
52.0211.00.16 | process onion |
| 2014-open | edit * | opre6363 (r6) | OPRE 6363 Inventory Control (3 semester credit hours) Analysis of deterministic and simple stochastic inventory models. Stochastic periodic reorder models with simple deterministic and simulation solutions. Lot size models and their extensions, reordering point determination, price break, Wagner-Whitin, Modigliani-Holn models. Prerequisite: OPRE 6302 or instructor consent required. (3-0) R | phase: approve
status: approving
audit: 30 | sxa063000
2013-10-16
09:09:55
009757
14.3701.00.06 | process onion |
<table>
<thead>
<tr>
<th>start end</th>
<th>request</th>
<th>req_type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6364</td>
<td>(r8)</td>
<td>OPRE 6364 Quality Control (Lean Six Sigma) (3 semester credit hours) Concepts and theory of quality control in manufacturing and service operations. Analysis of product design, process capability studies, statistical process control, and acceptance sampling. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:17:34 009758 14.3701.00.06 audit: -91.8 m index: -91.8 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>opre6365</td>
<td>(r5)</td>
<td>OPRE 6365 Managing Inventory (3 semester credit hours) This course teaches students to view inventory control as a competitive strategy. The emphasis is on analysis and application of deterministic and simple stochastic inventory models. Students learn concepts through a combination of theory, problem solving, and case discussion. Prerequisite: OPRE 6302 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 18:13:58 009759 14.3701.00.06 audit: -91.3 m index: -91.3 m</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6366</td>
<td>(r6)</td>
<td>OPRE 6366 Global Supply Chain Management (3 semester credit hours) Key issues associated with the design and management of industrial supply chains. The efficient integration of suppliers, factories, warehouses, and stores so that products are distributed to global customers in the right quantity and at the right time. Prerequisite: OPRE 6302 or instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-16 09:10:30 009760 14.3701.00.06 audit: -91.5 m index: -91.5 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * opre6367 (r6) opre6367.11 | OPRE 6367 Capstone Projects in Supply Chain Management (3 semester credit hours) Capstone projects are sponsored by local industries and provide the students an opportunity to apply the skills and knowledge gained to solve real world challenging problems in the area of supply chain management. Students work in a team environment, interact with industry leaders and gain some industry specific knowledge. Prerequisites: OPRE 6366 and OPRE 6370 and instructor consent required. (3-0) Y

peoplesoft diff: 009761 2013-08-25 adp130030
<table>
<thead>
<tr>
<th>phase: approve</th>
<th>status: approving</th>
<th>audit: 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>sxao63000</td>
<td>2014-01-07</td>
<td>19:25:14</td>
</tr>
<tr>
<td>14.3701.00.06</td>
<td>audit: -91.1 m</td>
<td>index: -91.1 m match_fail</td>
</tr>
<tr>
<td>process orion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2014-open | edit * opre6368 (r6) opre6368.7 | OPRE 6368 Industrial Applications in Supply Chains (3 semester credit hours) The course discusses and reviews major supply chain challenges and relevant decision making tools used in the industry. The course proceeds with the analysis of real-life cases during which the students obtain industry specific knowledge. Some of the industries of interest are Telecommunications, High-tech Electronics, Semiconductors, Consumer Goods and Retail. Topics may vary. Prerequisite: OPRE 6366 or instructor consent required. (3-0) R

peoplesoft diff: 009762 2013-08-25 adp130030
<table>
<thead>
<tr>
<th>phase: approve</th>
<th>status: approving</th>
<th>audit: 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>sxao63000</td>
<td>2013-10-16</td>
<td>09:10:59</td>
</tr>
<tr>
<td>14.3701.00.06</td>
<td>audit: -91.5 m</td>
<td>index: -91.5 m match_fail</td>
</tr>
<tr>
<td>process orion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPRE 6369 (MIS 6369) Supply Chain Software (3 semester credit hours) The course teaches planning and execution of supply chains with software such as SAP’s ERP (R3) and Advanced Planning and Optimization (APO). This software is used in lab exercises that provide students with hands-on, experimental learning. The focus is on the supply planning function of supply chain management. Topics include: fundamentals of ERP and SAP, master and transaction data, MRP, forecasting, supply and demand matching, and integration of ERP and APO modules. This course is intended for graduate students with interests in software-based supply chain management. No SAP experience is required. (3-0) S
<p>| start end | req type course req_id | catalog course description | request status | request metadata | actions |
|------------|------------------------|---|
| 2014-open | edit * opre6370 (r4) | OPRE 6370 Global Logistics and Transportation (3 semester credit hours) This course focuses on the design and analysis of global logistics, transportation and supply chain systems including the components such as suppliers, warehouse, packaging and material handling, customers, production, inventory, orders, transportation, and information systems. The course also discusses the interactions between these components; models and techniques for the analysis of logistics systems as well as the strategic financial outcomes influenced by the logistics decisions. Prerequisite: OPRE 6302 or instructor consent required. (3-0) S | phase: approve | sxa063000 | process orion |
| | opre6370.9 | peoplesoft diff: 009764 2013-08-25 sx090100 | status: approving | 2014-01-31 08:50:06 | |
| | | OPRE 6370 Logistics, Distribution Global Logistics and Warehousing Transportation (3 semester credit hours) This course focuses on the design and analysis of global logistics, transportation and supply chain systems including the components such as suppliers, warehouse, packaging and material handling, customers, production, inventory, orders, transportation, and information systems. The course also discusses the interactions between these components; models and techniques for the analysis of logistics systems as well as the strategic financial outcomes influenced by the logistics decisions. Prerequisites: Prerequisite: OPRE 6302 or instructor consent of the instructor. required. (3-0) S | audit: 29 | 009764 | |
| | | peoplesoft diff: 012665 2013-08-25 adp130030 | | 14.3701.00.06 | |
| | | OPRE 6371 Purchasing, Sourcing and Contract Management (3 semester credit hours) Basic concepts and processes in purchasing, sourcing and contract management are introduced in this course. It teaches global sourcing techniques and the application of various management tools and quality tools in purchasing. Focus is on the proactive and planned analysis of supply markets and the selection of suppliers, with the objective of delivering solutions to meet pre-determined and agreed organizational needs. (3-0) S | phase: approve | cxj140030 | process orion |
| | edit * opre6371 (r3) | | status: approving | 2013-09-30 14:18:27 | |
| | opre6371.4 | | audit: 30 | 012665 | |
| | | peoplesoft diff: 012665 2013-08-25 adp130030 | | 14.3701.00.06 | |
| | | OPRE 6371 Purchasing, Sourcing and Contract Management (3 semester credit hours) Basic concepts and processes in purchasing, sourcing and contract management are introduced in this course. It teaches global sourcing techniques and the application of various management tools and quality tools in purchasing. Focus is on the proactive and planned analysis of supply markets and the selection of suppliers, with the objective of delivering solutions to meet pre-determined and agreed organizational needs. (3-0) S | | | |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req_id</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6372 (r5)</td>
<td>opre6372.7</td>
<td>OPRE 6372 Project Initiation (3 semester credit hours) Executive Education Course. Explores project manager credentialing, professional ethics, and project management in a global environment; then bridges from strategy to project definition with a discussion of project selection and a focus on determining project requirements and managing changes. Course delivery is integrated with relevant modules from OB 6301 Organizational Behavior. Prerequisite: OPRE 6271. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 10:16:04 009765 14.3701.00.06 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6373 (r6)</td>
<td>opre6373.9</td>
<td>OPRE 6373 Project Planning (3 semester credit hours) Executive Education Course. Continues from project initiation and covers the initial stages of planning a project, including scope management, quality planning, project team building, dealing with conflict, and negotiation. Course delivery is integrated with relevant modules from OB 6301 Organizational Behavior. Prerequisite: OPRE 6372. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 10:16:26 009766 14.3701.00.06 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>opre6374</td>
<td>(r5)</td>
<td>OPRE 6374 Project Planning and Execution (3 semester credit hours) Executive Education Course. Continues the discussion of planning techniques from OPRE 6373 and introduces execution phase processes. Topics include scheduling, resource planning, budgeting, negotiation skills development, and risk management. Prerequisite: OPRE 6373. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 10:16:48 009767 14.3701.00.06 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>opre6375</td>
<td>(r5)</td>
<td>OPRE 6375 Project Execution and Closeout (3 semester credit hours) Executive Education Course. Continues the discussion of planning and execution techniques from OPRE 6374 and discusses project closeout. Topics include project procurement management, earned value management, lean and six sigma methodologies, and project execution and control. Prerequisite: OPRE 6374. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 10:17:04 009768 14.3701.00.06 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>opre6376</td>
<td>r5</td>
<td>OPRE 6376 Advanced Project Management and Simulation (3 semester credit hours) Executive Education Course. Explores project organizational competence, maturity models, project portfolio management, program management, PM offices, alternate project management methodologies including Agile and simulates a project lifecycle. Prerequisite: OPRE 6375. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 10:17:19 009769 14.3701.00.06 audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 009769 2013-08-25 adp130030

| 2014-open | | edit * | opre6377 | r4 | OPRE 6377 Demand and Revenue Management (3 semester credit hours) This course focuses on the expense involved in managing conventional and idiosyncratic demand through the supply process. Demand for a single unit or an assembly (network) of units requires forecasting that incorporates prices and macroeconomic factors. Perishable supplies are optimally priced by considering their amount (inflated in overbooking), location, vintage, and customer classes. This approach is relevant for airlines, hotels, parks, rental cars, broadcasters, art/sport events, and retailers. (3-0) Y | phase: approve | cxj140030 2013-09-30 14:19:07 012666 14.3701.00.06 audit: -91.8 m index: -91.8 m match_fail | process orion |

peoplesoft diff: 012666 2013-08-25 adp130030

OPRE 6377 Demand and Revenue Management (3 semester credit hours) This course focuses on the expense involved in managing conventional and idiosyncratic demand through the supply process. Demand for a single unit or an assembly (network) of units requires forecasting that incorporates prices and macroeconomic factors. Perishable supplies are optimally priced by considering their amount (inflated in overbooking), location, vintage, and customer classes. This approach is relevant for airlines, hotels, parks, rental cars, broadcasters, art/sport events, and retailers. (3-0) Y

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf

226/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
</table>
| 2014-open | | edit * opre6378 (r3) opre6378.12 | OPRE 6378 Supply Chain Strategy (3 semester credit hours) The success of a product (and a firm) in today's global marketplace depends on activities of firms in the product's supply chain. Students will learn how to develop strategies to create value through supply chain design, how to better structure a company's global operations strategy, how to develop guidelines for making strategic sourcing and make-buy decisions, how to deploy operations for successful turnarounds and how to effectively use information technology to synchronize and manage global supply chains. Case studies will cover recent trends in supply chain strategy and key competencies required to be successful in a global marketplace. Prerequisite: OPRE 6301 or equivalent or instructor consent required. (3-0) Y | phase: approve | status: approving | audit: 30 | phase: approve | status: approving | audit: 30 | action: process orion | http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf

OPRE 6378 Supply Chain Strategy (3 semester credit hours) The success of a product (and a firm) in today's global marketplace depends, to a large extent, on activities of firms in the product's supply chain and their processing of information. This course chain. Students will focus on the learn how to develop strategies to create value of information and technology, and effective ways through supply chain design, how to use that information in optimizing better structure a company's global operations and information. The course will cover some analytical methods strategy, how to quantify the costs develop guidelines for making strategic sourcing and make-buy decisions, how to deploy operations for successful turnarounds and benefits of how to effectively use information and the technology used to obtain information in synchronize and manage global supply chain improvement initiatives or supply-chain restructuring opportunities, chains. Case studies will be used to discuss the role of information technology (e.g. RFID) and innovative processes, (e.g. CPFR), cover recent trends in functional areas such as new product development, manufacturing outsourcing, supply chain strategy and distribution operations, key competencies required to be successful in a global marketplace. Prerequisite: OPRE 6301 or equivalent or instructor consent of the instructor, required. (3-0) Y | action: process orion | http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf

2013-10-30 | 08:04:13 | phase: approve | status: approving | audit: 30 | phase: approve | status: approving | audit: 30 | phase: approve | status: approving | audit: 30 | action: process orion | http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6379</td>
<td>(r4)</td>
<td>OPRE 6379 Product Lifecycle Management (3 semester credit hours) This course provides a management approach to new product development, product lifecycle management and its impact on supply chain management. Topics include the management of product portfolio transitions, resources, schema and modeling for bills of materials, change management, and product cost management. (3-0) R</td>
<td>phase: approve</td>
<td>cx140030 2013-09-30 14:19:28 013391 52.0201.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>opre6385</td>
<td>(r7)</td>
<td>OPRE 6385 Scheduling (3 semester credit hours) Concepts and theory of scheduling problems with business applications. Combinatorial approaches for simple systems, and queuing/simulation methods for large and/or complex systems. Prerequisite: 6302 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxa063000 2014-02-07 14:25:29 009772 14.3701.00.06 audit: -91.1 m index: -91.1 m</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>opre6386</td>
<td>(r4)</td>
<td>OPRE 6386 Applied Programming Languages (3 semester credit hours) An introduction to various mathematical, simulation and statistical software such as Mathematica, Gauss, SAS, and CPLEX. Students will use these package programs to solve problems in various business disciplines. Prerequisites: OPRE 6302, STAT 5352, or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 18:14:16 009773 52.1201.00.16 audit: -91.3 m index: -91.3 m</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * opre6387 (r1) opre6387.2</td>
<td>OPRE 6387 Models of Energy Markets (3 semester credit hours) Covers market models of energy markets for oil, natural gas and electricity. A balance of theory and case study analysis is employed to give students an understanding of how theoretically formulated models can be applied to real world circumstances, and especially to current issues in global energy markets. Topics include models of supply and demand, market structure, transportation models, game theory strategies, risk management, environmental issues, policy and regulation, and dynamic optimization. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-01 10:57:28</td>
<td>NOLINK 52.1206.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: NOLINK

OPRE 6387 Models of Energy Markets (3 semester credit hours) Covers market models of energy markets for oil, natural gas and electricity. A balance of theory and case study analysis is employed to give students an understanding of how theoretically formulated models can be applied to real world circumstances, and especially to current issues in global energy markets. Topics include models of supply and demand, market structure, transportation models, game theory strategies, risk management, environmental issues, policy and regulation, and dynamic optimization. (3-0) R

| 2014-open | edit * opre6388 (r3) opre6388.4 | OPRE 6388 Engineering Packaged Goods Distribution (3 semester credit hours) This course covers both warehouse and DSD models of distribution common in CPG industry, in which network engineering design, distribution and replenishment planning and transportation planning / execution are performed. Students will also learn about unique distribution engineering aspects of returns, recycling, variety and display products and push/pull/hybrid delivery. In addition, this class focuses heavily on the practical operational aspects of distribution management through discussion and case studies. (3-0) Y | phase: approve | cxj140030 2013-10-17 10:29:57 014037 52.0203.00.16 audit: -91.5 m index: -91.5 m match_fail |

peoplesoft diff: 014037 2012-08-26 sxr090100

OPRE 6388 Engineering Packaged Goods Distribution (3 semester credit hours) This course covers both warehouse and DSD models of distribution common in CPG industry, in which network engineering design, distribution & and replenishment planning and transportation planning / execution are performed. Students will also learn about unique distribution engineering aspects of returns, recycling, variety and display products and push/pull/hybrid delivery. In addition, this class focuses heavily on the practical operational aspects of distribution management through discussion and case studies. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6389 (r2)</td>
<td>OPRE 6389 Managing Energy: Risk, Investment, Technology (MERIT) (3 semester credit hours) MERIT is designed for students or professionals interested in the energy sector. Energy sector houses applications from several academic disciplines: operations management, engineering and technology, risk management, economics and finance. Students currently involved in these and similar academic programs can take MERIT to learn the fundamentals of the energy sector. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-01 10:57:16 014235 52.1206.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>opre6389.5</td>
<td></td>
<td></td>
<td>peoplesoft diff: 014235 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6390 (r2)</td>
<td>OPRE 6390 (MIS 6319) Enterprise Resource Planning (3 semester credit hours) Examines the role of enterprise systems in organizations. It will focus on business processes, business process integration, and information technology for enabling the integration. The course also covers selection and implementation of ERP systems. A part of the course will be set aside for demonstration and 'hands on' exercises with one of the available ERP software. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:20:22 014321 52.1206.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>opre6390.4</td>
<td></td>
<td></td>
<td>peoplesoft diff: 014321 2013-08-25 adp130030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6391 (r2)</td>
<td>opre6391.9</td>
<td>OPRE 6391 (ACCT 6309 and MIS 6309) Business Data Warehousing (3 semester credit hours) This course provides the student with in depth knowledge of data warehousing principles, data warehouse techniques, and business intelligence systems. The course introduces the topics of data warehouse design, Extract-Transform-Load (ETL), data cubes, and data marts. Students will create business intelligence using data warehouses with several OLAP and analytical tools. The course currently uses SAP BW, SAP BEx, SAP Data Mining Workbench, and SAP S/4. Business Objects, Cognos, or other data warehousing tools will be used to illustrate data warehousing concepts. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao1230 2013-10-20 17:57:12</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>opre6392 (r2)</td>
<td>opre6392.5</td>
<td>OPRE 6392 IT Services Management (3 semester credit hours) The purpose of this course is to examine and explain how organizations engage and manage their IT services throughout the IT services lifecycle. The course covers topics related to service strategy, service design, service transition, service operation and continuous improvement. It also includes managing outsourced IT services and the organizational, technological and economical aspects associated with the outsourcing of IT services and functions. The course uses ITIL framework to illustrate various concepts. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao1230 2013-12-01 20:01:40</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * opre6393 (r2) opre6393.10</td>
<td>OPRE 6393 (ACCT 6320 and MIS 6320) Database Foundations (3 semester credit hours) The course is designed to provide database knowledge for non-MIS business students to function effectively in their functional area. The course covers fundamentals of relational databases, relational database structure, database queries, and reports. Structured Query Language will be used extensively. Applications of databases for accounting, finance, marketing, and other areas of business will be emphasized. May not be used to fulfill degree requirements in MS Information Technology and Management. Credit cannot be received for both courses, MIS 6320 and MIS 6326. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 17:25:51 014273 52.1201.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPRE 6393 (MIS-6320, ACCT (ACCT 6320 and MIS 6320) Database Foundations (3 semester credit hours) The course is designed to provide database knowledge for non-MIS business students to function effectively in their functional area. The course covers fundamentals of relational databases, relational database structure, database queries, and reports. Structured Query Language will be used extensively. Applications of databases for accounting, finance, marketing, and other areas of business will be emphasized. May not be used to satisfy the fulfill degree requirements of in MS ITM degree. Information Technology and Management. Credit cannot be received for both courses, MIS 6320 and MIS 6326 cannot both be used to satisfy degree requirements. 6326. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td></td>
<td>opre6394 (r2)</td>
<td>OPRE 6394 (ENTP 6375 and SYSM 6332) Technology and New Product Development (3 semester credit hours) This course addresses the strategic and organizational issues confronted by firms in technology-intensive environments. The course reflects six broad themes: (1) managing firms in technology-intensive industries; (2) forecasting key industry and technology trends; (3) linking technology and business strategies; (4) using technology as a source of competitive advantage; (5) organizing firms to achieve these goals; and (6) implementing new technologies in organizations. Students will analyze actual situations in organizations and summarize their findings and recommendations in an in-depth term paper. Case studies and class participation are stressed. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>2013-12-01 18:13:46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>opre6394.5</td>
<td></td>
<td>status: approving</td>
<td>014315</td>
<td>52.0701.00.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014315 2013-08-25</td>
<td>audit: 30</td>
<td>Peoplesoft diff: 014315 2013-08-25</td>
<td>rmb101000</td>
</tr>
<tr>
<td>start end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6395 (r2) opre6395.2</td>
<td>OPRE 6395 (SYSM 6317) The Management of High Tech Products (3 semester credit hours) Building on the premise that successful product management involves getting the right product to the right customer at the right price at the right time, the course will teach techniques in product identification and requirements; product development; management of internal resources, including manufacturing, sales and management; costing and pricing decisions; product planning and winning the right design win. (3-0) Y</td>
<td>phase: approve</td>
<td>.cxj140030 2013-09-30 14:21:02 014274 52.0701.00.16 audit: 29</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

OPRE 6395 (SYSM 6317) The Management of High Tech Products (3 semester credit hours) Building on the premise that successful product management involves getting the right product to the right customer at the right price at the right time, the course will teach techniques in product identification and requirements; product development; management of internal resources, including manufacturing, sales and management; costing and pricing decisions; product planning and winning the right design win. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>course</th>
<th>catalog course description</th>
<th>request</th>
<th>request</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>opre6396 (r2)</td>
<td>OPRE 6396 (HMGT 6324 and MECO 6352 and OB 6332 and SYSM 6313) Negotiation and Dispute Resolution (3 semester credit hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td>opre6396.10</td>
<td></td>
<td>status: approving</td>
<td>2013-12-01 18:18:22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>014327</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.1003.00.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -91.2 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.2 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
</tbody>
</table>

**peoplesoft diff: 014327 2013-08-25
adp130030**

OPRE 6396, OB 6324, HMGT 6324, MECO 6352, OB 6332, and SYSM 6313) Negotiation and Dispute Resolution (3 semester credit hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>req course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6397 (r2)</td>
<td></td>
<td>OPRE 6397 (IMS 6365) Cross-Culture Communication and Management (3 semester credit hours) This course focuses on understanding national culture and cultural issues in international business. It emphasizes the importance of managing cultural differences to enhance communication, negotiation, leadership, and group dynamics in an international work environment. Further, the course describes methods to develop effective selection and training programs for international assignments. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:21:17 014256 52.1101.00.16 audit: 30 match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre6398 (r1)</td>
<td></td>
<td>OPRE 6398 Prescriptive Analytics (3 semester credit hours) Introduction to decision analysis and optimization techniques. Topics include: linear programming, decision analysis, integer programming, and other optimization models. Applications of these models to business problems will be emphasized. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 18:18:58 NOLINK 14.3701.00.06 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opr6399 (r1)</td>
<td>opr6399.3</td>
<td>OPRE 6399 (MIS 6324) Business Intelligence Software and Techniques (3 semester credit hours) This course covers theories and applications of business intelligence. The focus is on extracting business intelligence from firms’ business data for various applications, including (but not limited to) customer segmentation, customer relationship management (CRM), personalization, online recommendation systems, web mining and product assortment. The emphasis will be placed on the 'know-how' -- knowing how to extract and apply business intelligence to improve business decision-making. Students will also acquire hands-on experience with several business intelligence software such as XL miner, SAS Enterprise Miner and SQL Server2008 (depending on availability). This class is required for the SAS certificate in data mining. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-10 08:45:13 NOLINK 11.0401.00.02 audit: -91.3 m index: -91.3 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

OPRE 6399 (MIS 6324) Business Intelligence Software and Techniques (3 semester credit hours) This course covers theories and applications of business intelligence. The focus is on extracting business intelligence from firms’ business data for various applications, including (but not limited to) customer segmentation, customer relationship management (CRM), personalization, online recommendation systems, web mining and product assortment. The emphasis will be placed on the 'know-how' -- knowing how to extract and apply business intelligence to improve business decision-making. Students will also acquire hands-on experience with several business intelligence software such as XL miner, SAS Enterprise Miner and SQL Server2008 (depending on availability). This class is required for the SAS certificate in data mining. (3-0) Y
<table>
<thead>
<tr>
<th>Start</th>
<th>Request</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>OPRE 6V98 Supply Chain Management Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). JSOM Internship Coordinator consent required. ([1-3]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-20 08:42:14 013735 14.3701.00.06 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>OPRE 6V99 Special Topics in Operations Research (1-4 semester credit hours) May be lecture, readings or individualized study. May be repeated for credit as topics vary. Department consent required. ([1-4]-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 18:20:07 013149 52.0201.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre7309 (r2)</td>
<td>opre7309.5</td>
<td>OPRE 7309 Behavioral Operations Management (3 semester credit hours) This course covers various topics in behavioral operations management including introduction to using laboratory experiments in operations, individual decisions, supply chain contracts and behavioral marked design in a seminar format. The main goal of the course is to expose students to behavioral research and gain deeper understanding of the limitations of the standard operations management paradigm. The main deliverable in the course will be a proposal for a laboratory study, including hypotheses, treatments and factors. Those who wish to pursue this research further will have an opportunity to conduct their studies with human subjects. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre7310 (r3)</td>
<td>opre7310.5</td>
<td>OPRE 7310 Probability and Stochastic Processes (3 semester credit hours) Basic concepts and methods from probability theory that are useful in the modeling of complex systems. Topics include Poisson and renewal processes, discrete and continuous-time Markov chains, semi-Markov processes, and various concepts of stochastic ordering. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf 239/258
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre7311 (r7)</td>
<td>opre7311.9</td>
<td>OPRE 7311 Stochastic Models in Operations Research (3 semester credit hours) This course is a systematic study of important classes of stochastic models in operation research. Topics include renewal theory, Markov chains, semi-Markov processes, queuing models, stochastic ordering concepts, and Brownian motion. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 29</td>
<td>peoplesoft diff: 009774 2011-08-23</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre7313 (r6)</td>
<td>opre7313.6</td>
<td>OPRE 7313 Network Flow (3 semester credit hours) Network flow models and solution algorithms. Matrix representations and properties, max-flow algorithms, min-cost flow algorithms, circulation and feasibility theorems, sensitivity analysis, integrality property of solutions, shortest route methods. Problems with special structure. CPT-PERT, multicommodity flows, matching, traveling salesperson problem. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>peoplesoft diff: 009776 2010-08-18</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * opre7315 (r5)</td>
<td>OPRE 7315 Dynamic Programming (3 semester credit hours) This course is an introduction to both deterministic and stochastic dynamic programming. The basic ideas of recursion and functional equation will be introduced. A wide variety of applications will be used to illustrate these concepts. Specific topics include: Markov and Semi-Markov decision processes, principle of optimality, structure of optimal policies under various cost criteria, LP formulations, and policy-improvement techniques. Prerequisite: OPRE 6331 or instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxao63000 2013-11-30 11:22:57 009778 14.3701.00.06 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * opre7320 (r6)</td>
<td>OPRE 7320 Optimal Control Theory and Applications (3 semester credit hours) This course is an introduction to Optimal Control Theory and a survey of its selected applications in finance, production, marketing and economics. Relationships to dynamic programming and Kuhn-Tucker conditions are also pointed out. emphasis is on modeling and not on mathematical rigor. Students should have two semesters of calculus including some knowledge of differential equations and linear algebra or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxao63000 2013-10-22 23:07:54 009781 14.3701.00.06 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * | opre7330 (r5) | opre7330.6 | OPRE 7330 Deterministic Models in Operations Research (3 semester credit hours) Topics include linear programming, sensitivity analysis and duality, assignment problems, network models, integer programming, nonlinear programming, sequencing and scheduling models. (3-0) Y
peoplesoft diff: 009782 2008-08-21
OPRE 7330 Deterministic Models in Operations Research. Research (3 semester credit hours)
Deterministic models in operations research.
Topics include linear programming, sensitivity analysis and duality, assignment problems, network models, integer programming, nonlinear programming, sequencing and scheduling models. (3-0) Y |
| | | | | phase: approve
status: approving
audit: 29 | | sxa063000 2013-12-01 18:23:29
14.3701.00.06
audit: -91.2 m
index: -91.2 m
match_fail | process |
| | | | | | | sxa063000 2013-12-01 18:23:29
14.3701.00.06
audit: -91.2 m
index: -91.2 m
match_fail | orion |
| 2014-open | edit * | opre7346 (r4) | opre7346.5 | OPRE 7346 Differential Games and Applications (3 semester credit hours) Concepts and methods of game theory and differential games are presented, including both deterministic and stochastic models. The theory of necessary conditions, dynamic programming, and Nash equilibrium are discussed. Applications to economics and management are presented. Prerequisite: OPRE 7320 or instructor consent required. (3-0) T
peoplesoft diff: 009786 2008-08-21 sxr090100
OPRE 7346 Differential Games and Applications (3 semester credit hours)
Concepts and methods of game theory and differential games are presented, including both deterministic and stochastic models. The theory of necessary conditions, dynamic programming, and Nash equilibrium are discussed. Applications to economics and management are presented. Prerequisite: OPRE 7320 or instructor consent required. (3-0) T |
| | | | | phase: approve
status: approving
audit: 30 | | sxa063000 2013-10-16 09:24:48
14.3701.00.06
audit: -91.7 m
index: -91.7 m
match_fail | process |
| | | | | | | sxa063000 2013-10-16 09:24:48
14.3701.00.06
audit: -91.7 m
index: -91.7 m
match_fail | orion |
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * opre7351 (r2)</td>
<td>OPRE 7351 Seminar in Operations Management (3 semester credit hours) This seminar covers topics of current research in the area of operations management. Research papers are presented on a variety of topics including: supply chain management, inventory models, production planning and control, design and scheduling of cellular manufacturing systems, and decision and risk analysis. Pass/ Fail only. May be repeated for credit as topics vary. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 17:08:36 012667 14.3701.00.06 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * opre7352 (r2)</td>
<td>OPRE 7352 Teaching Practicum in Operations Management (3 semester credit hours) Under the supervision of a faculty member, student assumes all instructional responsibilities for a course, including: developing the syllabus, delivering the lectures and grading. Pass/ Fail only. May be repeated for credit as topics vary. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-12-01 18:24:26 012668 14.3701.00.06 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre7353 (r1)</td>
<td>OPRE 7353 Optimization (3 semester credit hours) The course covers the fundamentals of optimization theory and introduces linear algebra and real analysis. Topics include existence of an optimal solution, unconstrained and constrained optima, convexity and quasi-convexity, and linear programming. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-03 07:45:49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opre7353.4</td>
<td>peoplesoft diff: NOLINK</td>
<td>status: approving</td>
<td>14.3701.00.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OPRE 7353 Optimization (3 semester credit hours) The course covers the fundamentals of optimization theory and introduces linear algebra and real analysis. Topics include existence of an optimal solution, unconstrained and constrained optima, convexity and quasi-convexity, and linear programming. Instructor consent required. (3-0) Y</td>
<td>audit: 9</td>
<td>audit: -91.3 m index: -91.3 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>opre7372 (r6)</td>
<td>OPRE 7372 Advanced Topics in Supply Networks - Advanced Risk Analysis (3 semester credit hours) This course will focus on probabilistic, statistical and optimization techniques needed in risk analysis and decision-making. The domain is in full development and appropriate for active research. The methods are generic and applicable in finance as well as in operations management. Prerequisites: OPRE 6302 and OPRE 6330 and OPRE 6366 and instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-12 17:09:32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opre7372.10</td>
<td>peoplesoft diff: 009787 2012-08-26</td>
<td>status: approving</td>
<td>009787 14.3701.00.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OPRE 7372 Advanced Topics in Supply Networks - Advanced Risk Analysis (3 semester credit hours) This course will focus on probabilistic, statistical and optimization techniques needed in risk analysis and decision-making. The domain is in full development and appropriate for active research. The methods are generic and applicable in finance as well as in operations management. Prerequisites: OPRE 6302, 6302 and OPRE 6330 and OPRE 6366 or and instructor consent of the instructor required. (3-0) R</td>
<td>audit: 29</td>
<td>audit: -91.1 m index: -91.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>real6321 (r2)</td>
<td>real6321.2</td>
<td>REAL 6321 (FIN 6321) Introduction to Real Estate (3 semester credit hours) Overview of various aspects of real estate markets, including marketing, finance, taxation, development, law, appraisal, investment, valuation and real estate participants. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>real6322 (r3)</td>
<td>real6322.7</td>
<td>REAL 6322 (FIN 6322) Real Estate Finance and Investment (3 semester credit hours) This course covers commercial real estate investment analysis and instruments used in its finance. Topics include: real estate valuation, loan structures, syndication, securitization, and developments in capital markets affecting real estate developments. Prerequisite: FIN 6301. (3-0) R</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 014104 2013-08-25
rmb101000

REAL 6321 (FIN 6321) Introduction to Real Estate (3 semester credit hours) Overview of various aspects of real estate markets, including marketing, finance, taxation, development, law, appraisal, investment, valuation and real estate participants. (3-0) S

peoplesoft diff: 014015 2013-08-25
rmb101000

REAL 6322 (FIN 6322) Real Estate Finance and Investment (3 semester credit hours) This course covers commercial real estate investment analysis and instruments used in its finance. Topics include: real estate valuation, loan structures, syndication, securitization, and developments in capital markets affecting real estate developments. Prerequisite: FIN 6301. (3-0) R

peoplesoft diff: 014015 2013-08-25
adp130030

REAL 6322 (FIN 6322) Real Estate Finance and Investment (3 semester credit hours) This course covers commercial real estate investment analysis and instruments used in its finance. Topics include: real estate valuation, loan structures, syndication, securitization, and developments in capital markets affecting real estate developments. Prerequisite: FIN 6301. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>real6323 (r1)</td>
<td>real6323.4</td>
<td>REAL 6323 (FIN 6323) Real Estate Market Analysis and Investment (3 semester credit hours) This course provides insight into market analysis and research including local and economic base analysis with case studies on specific commercial investment property types. This course also applies modern technologies to assist in performing these analyses. Prerequisite or Corequisite: FIN 6321 or REAL 6321 or FIN 6322 or REAL 6322. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014282 2013-08-25 sxr090100</td>
<td></td>
<td>sxa063000</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REAL 6323 (FIN 6323) Real Estate Market Analysis and Commercial Investment (3 semester credit hours) This course provides insight into market analysis and research including local and economic base analysis with case studies on specific commercial investment property types. This course also applies modern technologies to assist in performing these analyses. Prerequisite or Corequisite: FIN 6321 or REAL 6321 or FIN 6322 or REAL 6322. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014-open</td>
<td>edit *</td>
<td>real6324 (r2)</td>
<td>real6324.4</td>
<td>REAL 6324 (FIN 6324) Real Estate Development (3 semester credit hours) An in depth course covering issues faced in the development process including market analysis, government approvals, financing and risk assessment. Prerequisite: FIN 6321 or FIN 6322 or REAL 6321 or REAL 6322. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014106 2013-08-25 sxr090100</td>
<td></td>
<td>sxa063000</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REAL 6324 (FIN 6324) Real Estate Development (3 semester credit hours) An in depth course covering issues faced in the development process including market analysis, government approvals, financing and risk assessment. Prerequisite: (REAL FIN 6321 or FIN 6321) or (REAL 6322 or FIN 6322) or REAL 6321 or REAL 6322. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>real6326 (r1)</td>
<td>REAL 6326 (FIN 6326) Real Estate Law and Contracts (3 semester credit hours) Study of the legal principles governing real estate transactions, with an emphasis on promulgated contracts. Topics include contract law, tax law, leases, estates in land, types of ownership, deeds, mortgages, title insurance, agency and homestead. Prerequisite or Corequisite: FIN 6321 or FIN 6322 or REAL 6321 or REAL 6322. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>real6326.4</td>
<td></td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-20 08:29:50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>014038</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.1501.00.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -91.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>real6328 (r2)</td>
<td>REAL 6328 (FIN 6328) Real Estate Valuation (3 semester credit hours) This capstone real estate course provides an in-depth study, application and evaluation of the theory and methods of residential and commercial property valuation and appraisal. Topics include the three major approaches to appraising real estate, regression analysis, market analysis, highest and best use analysis and capitalization techniques, with an emphasis on income properties. Several cases and problems are presented and solved. Prerequisite: FIN 6321 or FIN 6322 or REAL 6321 or REAL 6322. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>real6328.5</td>
<td></td>
<td>phase: approve</td>
<td>sxa063000</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-12-20 08:29:12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>014333</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.1501.00.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -91.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -91.1 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6303 (r4)</td>
<td>SYSM 6303 (OPRE 6301) Quantitative Introduction to Risk and Uncertainty in Business (3 semester credit hours) Introduction to statistical and probabilistic methods and theory applicable to situations faced by managers. Topics include: data presentation and summarization, regression analysis, fundamental probability theory and random variables, introductory decision analysis, estimation, confidence intervals, hypothesis testing, and One Way ANOVA (Some sections of this class may require a laptop computer). (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-10-30 09:15:44</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sysm6303.5</td>
<td></td>
<td>SYM6303 (OPRE 6301) Quantitative Introduction to Risk and Uncertainty in Business (3 semester credit hours) Introduction to statistical and probabilistic methods and theory applicable to situations faced by managers. Topics include: data presentation and summarization, regression analysis, fundamental probability theory and random variables, introductory decision analysis, estimation, confidence intervals, hypothesis testing, and One Way ANOVA (Some sections of this class may require a laptop computer). (3-0) S</td>
<td>status: approving</td>
<td>013660 52.0201.00.16 audit: -91.3 m index: -91.3 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6311 (r5)</td>
<td>SYSM 6311 (OPRE 6362) Systems Project Management in Engineering and Operations (3 semester credit hours) Project management is the discipline of planning, organizing and managing resources to bring about the successful completion of specific project goals and objectives. The course will cover various aspects of managing projects in engineering and operations environments including the critical path methods for planning and controlling projects, time and cost tradeoffs, resource utilization, organizational design, conflict resolution and stochastic considerations. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:38:34</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sysm6311.6</td>
<td></td>
<td>SYSM 6311 (OPRE 6362) Systems Project Management in Engineering and Operations (3 semester credit hours) Project management is the discipline of planning, organizing and managing resources to bring about the successful completion of specific project goals and objectives. The course will cover various aspects of managing projects in engineering and operations environments including the critical path methods for planning and controlling projects, time and cost tradeoffs, resource utilization, organizational design, conflict resolution and stochastic considerations. (3-0) S</td>
<td>status: approving</td>
<td>013401 52.0211.00.16 audit: -91.8 m index: -91.8 m match_fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/f3bc6c0a2479a87fb2c37a6ff775e1ca/makepdf 248/258
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * sysm6312 (r5) sysm6312.14</td>
<td>SYSM 6312 (FIN 6301) Systems Financial Management (3 semester credit hours) Develops the basic concepts of finance with particular attention to their application to the financial management of companies. Prerequisites or Corequisites: OPRE 6301 and (ACCT 6201 or ACCT 6305). (3-0) S</td>
<td>phase: approve status: approving audit: 30</td>
<td>sxa063000 2013-12-01 18:26:30 013404 52.0801.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6313 (r4)</td>
<td>sysm6313.13</td>
<td>SYSM 6313 (HMGT 6324 and MECO 6352 and OB 6332 and OPRE 6396) Systems Negotiation and Dispute Resolution (3 semester credit hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y</td>
<td>phase: approve</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013405 2013-08-25 sxr090100

SYSM 6313 (OPRE 6396, (HMGT 6324 and MECO 6352 and OB 6332, HMGT 6324) 6332 and OPRE 6396) Systems Negotiation and Dispute Resolution (3 semester credit hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * sysm6314 (r5) sysm6314.9</td>
<td>SYSM 6314 Manufacturing and Service Systems Planning and Analysis (3 semester credit hours) Manufacturing and Service Systems Planning and Analysis is the study of management related to transforming inputs to outputs for both manufacturing and service organizations. Its fundamental purpose is the adding of value to inputs - materials, labor, capital and management - to create outputs - products or services which customers want - throughout the supply chain. Department consent required. (3-0) Y</td>
<td>phase: approve
status: approving
audit: 29</td>
<td>sxao63000
2013-12-01
18:29:55
013406
52.1206.00.16
audit: -91.2 m
index: -91.2 m
match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013406 2013-08-25
adp130030

SYSM 6314 Manufacturing & and Service Systems Planning & and Analysis (3 semester credit hours) Manufacturing & and Service Systems Planning & and Analysis is the study of management related to transforming inputs to outputs for both manufacturing and service organizations. Its fundamental purpose is the adding of value to inputs - materials, labor, capital and management - to create outputs - products or services which customers want - throughout the supply chain. **Prerequisites:** Special Registration required with department Department consent required. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req_type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * syms6315 (r5) syms6315.9</td>
<td></td>
<td></td>
<td>SYSM 6315 (ENTP 6398) The Entrepreneurial Experience (3 semester credit hours) This course is designed to provide student teams with practical experience in the investigation, evaluation and recommendation of technology and/or market entry strategies for a significant new business opportunity. Projects will be defined by the faculty and will generally focus on emerging market opportunities defined by new technologies of interest to a sponsoring corporate partner. Teams will be comprised of management and engineering graduate students, mentored by faculty and representatives of the partnering company. Evaluation will be based on papers, presentations and other deliverables defined on a case-by-case basis. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxa063000 2014-01-14 14:19:41 013407 52.0701.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

SYSM 6315 (ENTP 6398) The Entrepreneurial Experience (3 semester credit hours) This course is designed to provide student teams with practical experience in the investigation, evaluation and recommendation of technology and/or market entry strategies for a significant new business opportunity. Projects will be defined by the faculty and will generally focus on emerging market opportunities defined by new technologies of interest to a sponsoring corporate partner. Teams will be comprised of management and engineering graduate students, mentored by faculty and representatives of the partnering company. Evaluation will be based on papers, presentations and other deliverables defined on a case-by-case basis. **Prerequisite:** ENTP 6370 or Instructor consent of the instructor. required. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>req course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>sysm6316 (r4)</td>
<td>sysm6316.5</td>
<td>SYSM 6316 (ENTP 6388) Managing Innovation within the Corporation (3 semester credit hours) Innovators and entrepreneurs within established corporations combine innovation, creativity and leadership to develop and launch new products, new product lines and new business units that grow revenues and profits from within. The course seeks to equip students with the skills and perspectives required to initiate new ventures and create viable businesses in dynamic and uncertain environments in the face of organizational inertia and other sources of resistance to innovation. Course topics include the elements of strategic analysis and positioning for competitive advantage in dynamic markets, and the structuring, utilization and mobilization of the internal resources of existing firms in the pursuit of growth and new market opportunities. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:39:06 013392 52.0701.00.16 audit: -91.8 m index: -91.8 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013392 2013-08-25
adp130030

SYSM 6316 (ENTP 6388) Managing Innovation within the Corporation (3 semester credit hours) Innovators and entrepreneurs within established corporations combine innovation, creativity and leadership to develop and launch new products, new product lines and new business units that grow revenues and profits from within. The course seeks to equip students with the skills and perspectives required to initiate new ventures and create viable businesses in dynamic and uncertain environments in the face of organizational inertia and other sources of resistance to innovation. Course topics include the elements of strategic analysis and positioning for competitive advantage in dynamic markets, and the structuring, utilization and mobilization of the internal resources of existing firms in the pursuit of growth and new market opportunities. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6317 (r5)</td>
<td>sysm6317.7</td>
<td>SYSM 6317 (OPRE 6395) The Management of High Tech Products (3 semester credit hours) Building on the premise that successful product management involves getting the right product to the right customer at the right price at the right time, the course will teach techniques in product identification and requirements; product development; management of internal resources, including manufacturing, sales and management; costing and pricing decisions; product planning and winning the right design win. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:39:12 013393 52.0701.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6318 (r5)</td>
<td>sysm6318.6</td>
<td>SYSM 6318 (MKT 6301) Marketing Management (3 semester credit hours) Overview of marketing management methods, principles and concepts including product, pricing, promotion and distribution decisions as well as segmentation, targeting and positioning. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:39:26 013394 52.1401.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6319 (r4) sysm6319.8</td>
<td>SYSM 6319 (MECO 6303) Business Economics (3 semester credit hours) Foundations of the economic analysis of business problems, with special emphasis on the operation of markets and the macroeconomy. Prerequisite: OPRE 6303 or equivalent. (3-0) S</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-30 11:20:28 013395 52.0601.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6320 (r4) sysm6320.8</td>
<td>SYSM 6320 (BPS 6332) Strategic Leadership (3 semester credit hours) Addresses the challenge of leading organizations in dynamic and challenging environments. Overall goal is to not only question one's assumptions about leadership, but also enhance skills and acquire new content knowledge. Topics include visionary and transformational leadership, post-heroic leadership, empowerment, leveraging and combining resources, designing organizations and ethics. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-11-29 19:40:30 013396 52.0201.00.16 audit: -91.2 m index: -91.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sysm6332(r2)</td>
<td>sysm6332.7</td>
<td>SYSM 6332 (ENTP 6375 and OPRE 6394) Technology and New Product Development (3 semester credit hours) This course addresses the strategic and organizational issues confronted by firms in technology-intensive environments. The course reflects six broad themes: (1) managing firms in technology-intensive industries; (2) forecasting key industry and technology trends; (3) linking technology and business strategies; (4) using technology as a source of competitive advantage; (5) organizing firms to achieve these goals; and (6) implementing new technologies in organizations. Students will analyze actual situations in organizations and summarize their findings and recommendations in an in-depth term paper. Case studies and class participation are stressed. (3-0) Y</td>
<td>phase: approve</td>
<td>sxa063000 2013-10-22 20:33:40 014319 52.0701.00.16 audit: -91.4 m index: -91.4 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

SYSM 6332 (ENTP 6375 and OPRE 6394) Technology and New Product Development (3 semester credit hours) This course addresses the strategic and organizational issues confronted by firms in technology-intensive environments. The course reflects six broad themes: (1) managing firms in technology-intensive industries; (2) forecasting key industry and technology trends; (3) linking technology and business strategies; (4) using technology as a source of competitive advantage; (5) organizing firms to achieve these goals; and (6) implementing new technologies in organizations. Students will analyze actual situations in organizations and summarize their findings and recommendations in an in-depth term paper. Case studies and class participation are stressed. (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * sysm6333 (r2) sysm6333.6</td>
<td>SYSM 6333 (OB 6301) Systems Organizational Behavior (3 semester credit hours) The study of human behavior in organizations. Emphasizes theoretical concepts and practical methods for understanding, analyzing, and predicting individual, group, and organizational behavior. Topics include work motivation, group dynamics, decision making, conflict and negotiation, leadership, power, and organizational culture. Ethical and international considerations are also addressed. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:40:05 014262 52.1003.00.16 audit: -92 m index: -92 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 014262 2013-08-25 sxh121431

SYSM 6333 (OB 6301) Systems Organizational Behavior (3 semester credit hours) The study of human behavior in organizations. Emphasizes theoretical concepts and practical methods for understanding, analyzing, and predicting individual, group, and organizational behavior. Topics include work motivation, group dynamics, decision making, conflict and negotiation, leadership, power, and organizational culture. Ethical and international considerations are also addressed. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>req course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * sysm6v98 (r3) sysm6v98.11</td>
<td>SYSM 6V98 Systems Management Internship (1-3 semester credit hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of the Pass/Fail only. May be repeated for credit as topics vary (3 semester credit hours maximum). SEM Program Director, the School of Engineering Internship Coordinator, and JSOM Internship Coordinator consent required.</td>
<td>phase: approve status: approving audit: 29</td>
<td>sxao63000 2013-12-20 08:42:38 013734 52.0201.00.16 audit: -91.1 m index: -91.1 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>
School of Natural Sciences and Mathematics (NSM)
2014-15 Graduate Catalog – Courses
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>acts6301</td>
<td>(r2)</td>
<td>ACTS 6301 Theory of Actuarial Models: Life Contingencies I (3 semester credit hours) The purpose of this class is to develop the student's knowledge of the theoretical basis of life contingent actuarial models and the application of those models to insurance and other financial risks. Life contingencies, survival models, life insurances, annuities and premiums will be studied. This class covers parts of CAS Exam 3L and SOA Exam MLC. Prerequisite: STAT 5351 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:23:20 014307 52.1304.00.16 audit: -1.9 m index: -1.9 m match_fail</td>
<td>peoplesoft diff: 014307 2013-08-25 rmb101000 ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit</td>
<td>acts6302</td>
<td>(r2)</td>
<td>ACTS 6302 Theory of Actuarial Models: Financial Economics (3 semester credit hours) This course develops the student's knowledge of the theoretical basis of certain actuarial models and the application of those models to insurance and other financial risks. The topics discussed include interest rate models, rational valuation of derivative securities, mathematical and probabilistic foundation of risk management. This class covers parts of CAS exam 3F and SOA exam MFE. Prerequisite: STAT 5351 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 14:18:36 014308 52.1304.00.16 audit: -1.4 m index: -1.4 m match_fail</td>
<td>peoplesoft diff: 014308 2013-08-25 sxx121431 ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>course req_type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acts6303 (r2)</td>
<td>ACTS 6303 Theory of Actuarial Models: Life Contingencies II (3 semester credit hours) The purpose of this class is to develop the student's knowledge of the theoretical basis of life contingent actuarial models for multiple lives and the application of those models to insurance and other financial risks. Reserves, life contingencies for multiple lives, expenses and stochastic processes will be studied. This class covers parts of CAS Exam 3L and SOA Exam MLC. Prerequisite: ACTS 6301 or instructor consent required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>acts6303.3</td>
<td>ACTS 6303 Theory of Actuarial Models: Life Contingencies II (3 semester credit hours) The purpose of this class is to develop the student's knowledge of the theoretical basis of life contingent actuarial models for multiple lives and the application of those models to insurance and other financial risks. Reserves, life contingencies for multiple lives, expenses and stochastic processes will be studied. This class covers parts of CAS Exam 3L and SOA Exam MLC. Prerequisite: ACTS 6301 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>acts6304 (r2)</td>
<td>acts6304.2</td>
<td>ACTS 6304 Construction and Evaluation of Actuarial Models I (3 semester credit hours) Introduction to useful frequency and severity models beyond those covered in Theory of Actuarial Models. Discussion of the steps involved in the modeling process and how to carry out these steps in solving business problems. At the end of the course the students should be able to: 1) analyze data from an application in a business context; 2) determine a suitable model including parameter values; and 3) provide measures of confidence for decisions based upon the model. This class also provides an introduction to a variety of tools for the calibration and evaluation of the models. This class covers parts of CAS Exam 4/SOA Exam C. Prerequisite: STAT 5351 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-26 15:28:34 014310 52.1304.00.16 audit: -2 m index: -2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff: 014310 2013-08-25 rmb101000

ACTS 6304 Construction and Evaluation of Actuarial Models I (3 semester credit hours) Introduction to useful frequency and severity models beyond those covered in Theory of Actuarial Models. Discussion of the steps involved in the modeling process and how to carry out these steps in solving business problems. At the end of the course the students should be able to: 1) analyze data from an application in a business context; 2) determine a suitable model including parameter values; and 3) provide measures of confidence for decisions based upon the model. This class also provides an introduction to a variety of tools for the calibration and evaluation of the models. This class covers parts of CAS Exam 4/SOA Exam C. Prerequisite: STAT 5351 or instructor consent required. (3-0) T

| 2014-open | edit * | acts6305 (r2) | acts6305.4 | ACTS 6305 Construction and Evaluation of Actuarial Models II (3 semester credit hours) Introduction to useful frequency and severity models beyond those covered in Principles of Actuarial Models. The topics discussed include parametric models, credibility and simulation. This class covers parts of CAS Exam 4/SOA Exam C. Prerequisite: ACTS 6304 or instructor consent required. (3-0) T | phase: approve | cxj140030 2013-09-26 15:28:46 014311 52.1304.00.16 audit: -2 m index: -2 m match_fail | ps info detail change process orion |

peoplesoft diff: 014311 2013-08-25 sxr090100

ACTS 6305 Construction and Evaluation of Actuarial Models II (3 semester credit hours) Introduction to useful frequency and severity models beyond those covered in Principles of Actuarial Models. The topics discussed include parametric models, credibility and simulation. This class covers parts of CAS Exam 4/SOA Exam C. Prerequisite: ACTS 6304 or instructor consent required. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>acts6306 (r2)</td>
<td>acts6306.4</td>
<td>ACTS 6306 Advanced Actuarial Applications (3 semester credit hours) This class covers parts of CAS Exam 5 (Basic Techniques for Ratemaking and Estimating Claim Liabilities)/SOA Exam FAP (Fundamentals of Actuarial Practice). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>lantoine 2013-12-20 10:51:19 014312 52.1304.00.16 audit: -1.4 m index: -1.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014312 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTS 6306 Advanced Actuarial Applications (3 semester credit hours) Special topics in actuarial science will be discussed. This class covers parts of CAS Exam 5 (Basic Techniques for Ratemaking and Estimating Claim Liabilities)/SOA Exam FAP (Fundamentals of Actuarial Practice). Prerequisite: Instructor consent required. (3-0) R

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>acts6308 (r2)</td>
<td>acts6308.5</td>
<td>ACTS 6308 Actuarial Financial Mathematics (3 semester credit hours) The purpose of this course is to provide an understanding of the fundamental concepts of financial mathematics, and how those concepts are applied in calculating present and accumulated values for various streams of cash flows as a basis for future use in: reserving, valuation, pricing, asset/liability management, investment income, capital budgeting, and valuing contingent cash flows. The students will also be given an introduction to financial instruments, including derivatives, and the concept of no-arbitrage as it relates to financial mathematics. This class covers topics of Exam 2/FM. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-19 14:21:37 014313 52.1304.00.16 audit: -1.4 m index: -1.4 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 014313 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTS 6308 Actuarial Financial Mathematics (3 semester credit hours) The purpose of this course is to provide an understanding of the fundamental concepts of financial mathematics, and how those concepts are applied in calculating present and accumulated values for various streams of cash flows as a basis for future use in: reserving, valuation, pricing, asset/liability management, investment income, capital budgeting, and valuing contingent cash flows. The students will also be given an introduction to financial instruments, including derivatives, and the concept of no-arbitrage as it relates to financial mathematics. This class covers topics of Exam 2/FM. Prerequisite: Instructor consent required. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5375 (r2)</td>
<td>biol5375.3</td>
<td>BIOL 5375 Genes to Genomes (3 semester credit hours) is an expansive coverage of molecular genetics with emphasis on genomes rather than genes. Students will gain a new perspective on how genes function together and in concert in living cells, focusing at the genome level. Students also will learn how to study genomes, inspect genome anatomies, analyze how genomes function and determine how genomes replicate and evolve. The course is structured to involve students directly in individual topics by class discussions of research papers and reviews, the latest advances in genome science and new and innovative techniques. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:03:36 013618 26.0804.00.02 audit: -1.6 m index: -1.6 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013618 2011-08-23 sxh121431 BIOL 5375 Genes to Genomes (3 semester credit hours) is an expansive coverage of molecular genetics with emphasis on genomes rather than genes. Students will gain a new perspective on how genes function together and in concert in living cells, focusing at the genome level. Students also will learn how to study genomes, inspect genome anatomies, analyze how genomes function and determine how genomes replicate and evolve. The course is structured to involve students directly in individual topics by class discussions of research papers and reviews, the latest advances in genome science and new and innovative techniques. Instructor consent required. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5376 (r4)</td>
<td>biol5376.6</td>
<td>BIOL 5376 (BMEN 6387) Applied Bioinformatics (3 semester credit hours) Genomic information content; data searches and multiple sequence alignment; mutations and distance-based phylogenetic analysis; genomics and gene recognition; polymorphisms and forensic applications; nucleic-acid and protein array analysis; structure prediction of biological macromolecules. Prerequisites: STAT 1342 and MATH 1325 and MATH 1326. (3-0) T</td>
<td>phase: approve</td>
<td>sxs067400 2013-12-19 14:07:23 001867 26.0804.00.02 audit: -1.4 m index: -1.4 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 001867 2012-08-26 sxh121431 BIOL 5376 (BMEN 6387) Applied Bioinformatics (3 semester credit hours) Genomic information content; data searches and multiple sequence alignment; mutations and distance-based phylogenetic analysis; genomics and gene recognition; polymorphisms and forensic applications; nucleic-acid and protein array analysis; structure prediction of biological macromolecules. Prerequisites: STAT 1342 (introductory statistics) and MATH 1325 and MATH 1326 (2 semesters of calculus). 1326. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5381</td>
<td>(r3)</td>
<td></td>
<td>BIOL 5381 Genomics (3 semester credit hours) Genome sequence acquisition and analysis; genomic identification; biomedical genome research; DNA microarrays and their use in applied and healthcare research. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-10-01 08:37:35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>001868</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.0804.00.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 001868 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOL 5381 Genomics (3 semester credit hours) Genome sequence acquisition and analysis; genomic identification; biomedical genome research; DNA microarrays and their use in applied and healthcare research. (3-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5410</td>
<td>(r5)</td>
<td></td>
<td>BIOL 5410 (MSEN 5410) Biochemistry (4 semester credit hours) Analysis of the structure and function of proteins and nucleic acids and of their interactions. Emphasis is on metabolic biochemistry, especially as it relates to human disease states. Prerequisite: BIOL 3361 or equivalent or instructor consent required. (4-0) Y</td>
<td>phase: approve</td>
<td>sxs067400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-05 15:04:32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>001870</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.0204.00.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 001870 2013-08-25 keh120030</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOL 5410 (MSEN 5410) Biochemistry (4 semester credit hours) Analysis of the structure and function of proteins and nucleic acids and of their interactions. Metabolic Emphasis is on metabolic biochemistry, especially as it relates to human disease states. Prerequisite: BIOL 3361 (biochemistry) or equivalent, equivalent or instructor consent required. (4-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5420</td>
<td>(r4)</td>
<td></td>
<td>BIOL 5420 Molecular Biology (4 semester credit hours) Genetic analysis of gene structure (mutations and their analysis, complementation, and recombination), gene expression (transcription, RNA processing, translation), and the regulation of gene expression in selected model systems (viral, prokaryotic, organelar, eukaryotic); principles of genetic engineering (cloning and recombinant DNA technology). (4-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-11 08:27:34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 28</td>
<td>001871</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.0204.00.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 001871 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOL 5420 Molecular Biology (4 semester credit hours) Genetic analysis of gene structure (mutations and their analysis, complementation, and recombination), gene expression (transcription, RNA processing, translation), and the regulation of gene expression in selected model systems (viral, prokaryotic, organelar, eukaryotic); principles of genetic engineering (cloning and recombinant DNA technology). (4-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5440 (r4)</td>
<td>biol5440.5</td>
<td></td>
<td>BIOL 5440 (MSEN 5440) Cell Biology (4 semester credit hours) Molecular architecture and function of cells and subcellular organelles; structure and function of membranes; hormone and neurotransmitter action; growth regulation and oncogenes; immune response; eukaryotic gene expression. Prerequisite: BIOL 5420 or equivalent or instructor consent required. (4-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5460 (r2)</td>
<td>biol5460.3</td>
<td></td>
<td>BIOL 5460 Quantitative Biology (4 semester credit hours) Fundamental mathematical and statistical concepts; hypothesis testing. Quantitative approaches to studying gene expression and protein-DNA interactions. Prerequisites: MATH 2417 (calculus) and PHYS 1301 (general physics). (4-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5v00 (r5)</td>
<td>biol5v00.10</td>
<td></td>
<td>BIOL 5V00 Topics in Biological Sciences (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. ([1-6]-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5v01</td>
<td>(r5)</td>
<td>BIOL 5V01 Topics in Biological Sciences (1-6 semester credit hours) Includes a laboratory component. May be repeated for credit as topics vary (9 semester credit hours maximum). (1-[0-10]) Y</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>biol5v01.10</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2014-01-23 15:58:17</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>001858</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.0101.00.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -1.4 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -1.4 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 001858 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol5v95</td>
<td>(r5)</td>
<td>BIOL 5V95 Advanced Topics in Molecular and Cell Biology: Individual instruction (1-6 semester credit hours) May be repeated for credit. Instructor consent required. ([1-6]-0) Y</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>biol5v95.8</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-16 20:30:03</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td>001862</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.0101.00.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -1.5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -1.5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 001862 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>bio6121</td>
<td>(r3)</td>
<td>BIOL 6121 Biotechnology I (1 semester credit hour) Gene cloning, nucleotide sequencing and other aspects of genetic engineering. This course has between one and five components, which will be offered sequentially and which may therefore be taken independently. Instructor consent required. (0-2) Y</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>ps info process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bio6121.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-01 14:04:07</td>
<td>change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>001895</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.0804.00.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -1.6 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index: -1.6 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 001895 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6122 (r3)</td>
<td>biol6122.4</td>
<td>BIOL 6122 Biotechnology II (1 semester credit hour) Gene cloning, nucleotide sequencing and other aspects of genetic engineering. This course has between one and five components, which will be offered sequentially and which may therefore be taken independently. Instructor consent required. (0-2) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:05:39 001896 26.0804.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6123 (r3)</td>
<td>biol6123.5</td>
<td>BIOL 6123 Biotechnology III (1 semester credit hour) Gene cloning, nucleotide sequencing and other aspects of genetic engineering. This course has between one and five components, which will be offered sequentially and which may therefore be taken independently. Instructor consent required. (0-2) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:06:02 001897 26.0804.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6150 (r3)</td>
<td>biol6150.6</td>
<td>BIOL 6150 Current Research in Molecular and Cell Biology (1 semester credit hour) Analysis of recent developments in molecular and cell biology. Students will attend presentations of current research literature. Pass/Fail only. May be repeated for credit (4 semester credit hours maximum). (1-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-12 15:53:47 001898 26.0406.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6193 (r4) biol6193.6</td>
<td>BIOL 6193 Colloquium in Molecular and Cell Biology (1 semester credit hour) Required for all degree students except non-thesis M.S., MS, to be taken before a Supervising Committee is appointed. Pass/Fail only. (1-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-12 15:54:21 001900 26.0406.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6211 (r3) biol6211.3</td>
<td>BIOL 6211 Posttranscriptional Regulation of Gene Expression (2 semester credit hours) Emphasis on current research in regulation of gene expression involving posttranscriptional mechanisms. Topics include translational regulation of gene expression, protein and messenger RNA turnover, regulation of protein folding and localization, protein phosphorylation, and the formation of active and inactive protein complexes. (2-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:41:50 001901 26.0406.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>biol6227 (r4)</td>
<td>BIOL 6227 RNA World (2 semester credit hours) The nature of modern RNA suggests a prebiotic RNA world. This course will begin with a presentation of the arguments that a RNA world existed before the evolution of protein synthesis. Additional topics will include RNA evolution, the origin and evolution of introns, RNA replication, the evolution and involvement of tRNAs and rRNAs in protein synthesis, the structure and mechanism of large catalytic RNAs such as Group I and Group II introns and the RNase P RNA, the structure and mechanism of small nuclear RNAs such as hammerheads and hairpins, RNA editing, and the mechanism of telomerase. (2-0) T</td>
<td>phase: approve</td>
<td>2013-10-01 08:41:57 001902 26.0804.00.02</td>
<td>peoplesoft diff: 001902 2011-08-23 sxh121431</td>
</tr>
<tr>
<td></td>
<td></td>
<td>edit *</td>
<td>biol6228 (r3)</td>
<td>BIOL 6228 Prokaryotic Gene Expression (2 semester credit hours) Principles of gene regulation in bacteria are discussed. The readings consist of recent developments described in the research literature. Topics will vary, but will include bacterial chromosome structure, function and structure of RNA polymerase and promoters, the mechanism of action of various repressors and activators, the coordination of gene expression in phage lambda, during nitrogen limitation, and during sporulation. (2-0) T</td>
<td>phase: approve</td>
<td>2013-10-01 08:42:04 001903 26.0804.00.02</td>
<td>peoplesoft diff: 001903 2008-08-21 sxh121431</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6252 (r3)</td>
<td>BIOL 6252 Current Research in Molecular Biology (2 semester credit hours) Recent developments in biosynthesis, structure, function and expression of nucleic acids in prokaryotes and eukaryotes. Students will participate in a critical analysis of current research publications. Pass/Fail only. May be repeated for credit (8 semester credit hours maximum). (2-0) S</td>
<td>phase: approve</td>
<td>sxs067400 2014-01-08 11:38:16 001904 26.0204.00.02 audit: -1.4 m index: -1.4 m match fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6335 (r3)</td>
<td>BIOL 6335 Graduate Medical Microbiology (3 semester credit hours) This course exposes students to advanced concepts and principles of medical microbiology. In addition, the course will deal with mechanisms associated with disease processes, microbial virulence, the control of bacterial growth, and host responses to infection. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:42:25 001905 26.0502.00.02 audit: -2.2 m index: -2.2 m match fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6336 (r3)</td>
<td>BIOL 6336 Parasitology (3 semester credit hours) A look at the molecular level at microorganisms that live at the expense of higher eukaryotes. Emphasis will be given to the latest scientific literature describing these important pathogenic interactions. Therapeutic treatments and preventive methods will also be covered. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:42:31 001906 26.0502.00.02 audit: -2.2 m index: -2.2 m match fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6337 (r3)</td>
<td>BIOL 6337 Regulation of Gene Expression (3 semester credit hours) An in depth look at how the cell makes use of its genetic information, with a primary focus on the mechanisms of transcription regulation. The course emphasizes a critical discussion of techniques and results from the recent scientific literature. Topics are taken from eukaryotic and/or prokaryotic systems and typically cover areas such as promoter organization, RNA polymerase and transcription factor structure and function, the organization and packaging of chromosomes, whole-genome analyses, and the pathways that control gene expression during growth and development. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:42:37 001907 26.0802.00.02</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>biol6337.3</td>
<td>peoplesoft diff: 001907 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 6337 Regulation of Gene Expression (3 semester credit hours) An in depth look at how the cell makes use of its genetic information, with a primary focus on the mechanisms of transcription regulation. The course emphasizes a critical discussion of techniques and results from the recent scientific literature. Topics are taken from eukaryotic and/or prokaryotic systems and typically cover areas such as promoter organization, RNA polymerase and transcription factor structure and function, the organization and packaging of chromosomes, whole-genome analyses, and the pathways that control gene expression during growth and development. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6338 (r4)</td>
<td>BIOL 6338 Symbiotic Interactions (3 semester credit hours) An in depth look, at the molecular level, of well characterized symbiotic interactions between prokaryotes and eukaryotes. This course makes use of recent scientific literature and the latest discoveries in the area of symbiosis. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:42:44 001908 26.0502.00.02</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>biol6338.4</td>
<td>peoplesoft diff: 001908 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 6338 Symbiotic Interactions (3 semester credit hours) An in depth look, at the molecular level, of well characterized symbiotic interactions between prokaryotes and eukaryotes. This course makes use of recent scientific literature and the latest discoveries in the area of symbiosis. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>biol6340</td>
<td>(r3)</td>
<td>BIOL 6340 Developmental Neurobiology (3 semester credit hours) The course will cover the molecular and cellular mechanisms underlying key processes in the development of the vertebrate nervous system such as neural induction, k morphogenesis of the neural tube, patterning of the brain, differentiation and migration of neurons, axon guidance, synaptogenesis and the regulation of neuronal survival. The course is designed to be interactive and will include lectures, student presentations, and discussion of important discoveries in the area. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>biol6345</td>
<td>(r5)</td>
<td>BIOL 6345 Molecular Basis of Acquired Immune Deficiency Syndrome (3 semester credit hours) Topics include an analysis of the molecular basis of the infection of target cells by HIV, the intracellular replication of retroviruses, with special attention given to the HIV tat and rev genes, and an analysis of the roles of the HIV accessory genes: vif, vpr, vpu and nef. The immunological response of the host to HIV is considered, as is the biological basis for the ultimate failure of the immune system to contain this virus, with attendant immune collapse. The molecular basis of a variety of existing and potential anti-retroviral therapies is considered. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbceeb74d94346/makepdf
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * biol6351 (r4)</td>
<td>BIOL 6351 Cellular and Molecular Biology of the Immune System (3 semester credit hours) Innate and adaptive immunity. Structure and function of immunoglobulins and MHC molecules, and their role in the adaptive immune response. Function of the primary and secondary lymphoid tissues, and the role of professional antigen presenting cells. The molecular basis for the generation of diversity during cellular development of B and T lymphocytes. The role of complement in innate immunity, and details of T cell and B cell mediated immunity. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:43:04 001912 26.0401.00.02 audit: -2 m index: -2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>biol6351.4</td>
<td>peoplesoft diff: 001912 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 6351 Cellular and Molecular Biology of the Immune System (3 semester credit hours) Innate and adaptive immunity. Structure and function of immunoglobulins and MHC molecules, and their role in the adaptive immune response. Function of the primary and secondary lymphoid tissues, and the role of professional antigen presenting cells. The molecular basis for the generation of diversity during cellular development of B and T lymphocytes. The role of complement in innate immunity, and details of T cell and B cell mediated immunity. (3-0) Y</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6352 (r3)</td>
<td>BIOL 6352 Modern Biochemistry I (3 semester credit hours) Structure and function of proteins, including enzyme kinetics and catalytic mechanisms; structure and metabolism of carbohydrates, including oxidative phosphorylation and electron transport mechanisms. For students who have not had undergraduate biochemistry. (3-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-11 08:27:56 001913 26.0202.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>biol6352.5</td>
<td>peoplesoft diff: 001913 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 6352 Modern Biochemistry I (3 semester credit hours) Structure and function of proteins, including enzyme kinetics and catalytic mechanisms; structure and metabolism of carbohydrates, including oxidative phosphorylation and electron transport mechanisms. For students who have not had undergraduate biochemistry. (3-0) S</td>
<td>audit: 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>biol6353 (r3)</td>
<td>biol6353.5</td>
<td>BIOL 6353 Modern Biochemistry II (3 semester credit hours) Continuation of BIOL 6352. Structure and metabolism of lipids, including membrane structure and function. Nitrogen metabolism: amino acids and nucleotides. Polynucleotide replication, transcription, and translation. For students who have not had undergraduate biochemistry. (3-0) Y</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>biol6354 (r3)</td>
<td>biol6354.5</td>
<td>BIOL 6354 Microbial Physiology (3 semester credit hours) Microbial physiology considers the basic processes of microbes, especially those variations that are unique to microbes: energy generation, fermentations, and other pathways specific to bacteria, cellular structure and differentiation, and bacterial responses to the environment. (3-0) Y</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>biol6356 (r3)</td>
<td>biol6356.5</td>
<td>BIOL 6356 Eukaryotic Molecular and Cell Biology (3 semester credit hours) Regulation of cellular activities in eukaryotic cells; structural and molecular organization of eukaryotic cells; molecular basis of cell specialization; membranes and transport. For students who have not had undergraduate cell biology. (3-0) S</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6357 (r3)</td>
<td>biol6357.3</td>
<td>BIOL 6357 Cell Signaling (3 semester credit hours) This course will provide information on signal transduction pathways controlling growth, development and diseases. Students will be required to present research papers and discuss experimental data. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6358 (r3)</td>
<td>biol6358.3</td>
<td>BIOL 6358 (MSEN 6358) Bionanotechnology (3 semester credit hours) Protein, nucleic acid and lipid structures. Macromolecules as structural and functional units of the intact cell. Parallels between biology and nanotechnology. Applications of nanotechnology to biological systems. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6359 (r2)</td>
<td>biol6359.3</td>
<td>BIOL 6359 Medical Cell Biology for MAT (3 semester credit hours) Organization of cells, structure and function of DNA and proteins, gene therapy, regenerative medicine, and the endocrine system. Designed for students who are pursuing a MAT degree. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>Start</td>
<td>Request Course</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6360 (r2)</td>
<td>BIOL 6360 Medical Cell Biology for Biotechnology (3 semester credit hours) This course will explore cell structure, the structure of DNA, mutations in DNA, gene therapy, stem cells, cell signaling, and the immune system etc. Emphasis will be placed on understanding the cellular and molecular basis of health and disease. For students who have not had undergraduate cell biology and/or molecular genetics. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:07:14 013620 26.1201.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * biol6373 (r6)</td>
<td>BIOL 6373 (BMEN 6391) Proteomics (3 semester credit hours) Protein identification, sequencing, and analysis of post-translational modifications by liquid chromatography/tandem mass spectrometry; determination of protein three dimensional structure by x-ray crystallography; its use in drug design; understanding protein interactions and function using protein chip microarrays. Prerequisite: Undergraduate or graduate biochemistry. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:44:08 001920 26.0406.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>biol6384</td>
<td>(r4)</td>
<td>biol6384.5</td>
</tr>
</tbody>
</table>

peoplesoft diff: 001921 2012-08-26 sxh121431

BIOL 6384 Biotechnology Laboratory *(3 semester credit hours)* Laboratory instruction in LC/MS/MS mass spectral analysis of protein sequence, ICAT (isotope coded affinity tag) reagents, and MS analysis of cellular proteomes, PCR and DNA Sequencing, and DNA microarray analysis; fluorescence and confocal microscopy and fluorescence activated cell sorting. Instructor may require students to demonstrate adequate laboratory skills in order to enroll. *(1-2) Y* | phase: approve | status: approving | audit: 30 | cxj140030 2013-10-01 08:44:19 001921 26.1201.00.02 audit: -2 m index: -2 m match_fail | ps info detail change process orion |
<table>
<thead>
<tr>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>BIOL 6385 (BMEN 6389) Computational Biology (3 semester credit hours) Machine learning and probabilistic graphical models have become essential tools for analyzing and understanding complex systems biology data in biomedical research. This course introduces fundamental principles and methods behind the most important high throughput data analysis tools. Applications will cover molecular evolutionary models, DNA/protein motif discovery, gene prediction, high-throughput sequencing and microarray data analysis, computational modeling gene expression regulation, and biological pathway and network analysis. Prerequisite: Some background in elementary statistics/probability or introductory bioinformatics, or instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>sxs067400 2013-12-18 05:38:47 013531 26.1201.00.02 audit: -1.4 m index: -1.4 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013531 2013-08-25 sxh121431

BIOL 6385 (BMEN 6389) Computational Biology (3 semester credit hours) Using computational Machine learning and statistical methods to analyze biological data, and perform mathematical modeling and computational simulation techniques to understand the biological systems. The probabilistic graphical models have become essential tools for analyzing and understanding complex systems biology data in biomedical research. This course introduces fundamental principles and methods in behind the most important high throughput data analysis tools. Applications will cover molecular evolutionary models, DNA/protein motif discovery, gene prediction, high-throughput sequencing and microarray data analysis, computational modeling gene expression regulation, and biological pathway and network analysis. Prerequisite: (BMEN 6374 and BMEN 6387) Some background in elementary statistics/probability or BIOL 5375 introductory bioinformatics, or instructor permission consent required. (3-0) Y
<table>
<thead>
<tr>
<th>req type</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>start end</td>
<td>start</td>
<td>end</td>
<td>req_id</td>
<td>course</td>
<td>course</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6390 (r2)</td>
<td>biol6390.4</td>
<td>BIOL 6390 (BMEN 6390) Metabolic Pathways for Translational Medicine (3 semester credit hours) This course will provide extensive discussion of major metabolic pathways in human and other experimental models of human diseases with emphasis on biochemical understanding, roles and effects of the pathways in the entire cellular network, and potential application to medicine. Prerequisite: BMEN 6389 or BIOL 6385 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v00 (r5)</td>
<td>biol6v00.7</td>
<td>BIOL 6V00 Topics in Biological Sciences (1-6 semester credit hours) May be repeated for credit (9 semester credit hours maximum). Department consent required. (1-[6]-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v01 (r4)</td>
<td>biol6v01.6</td>
<td>BIOL 6V01 Topics in Biological Sciences (1-6 semester credit hours) Includes a laboratory component. May be repeated for credit (9 semester credit hours maximum). (1-[0-10]) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v02 (r5)</td>
<td>biol6v02.7</td>
<td>BIOL 6V02 The Art of Scientific Presentation (1-2 semester credit hours) Students learn how to give an effective seminar by reading scientific articles on a central theme in biology and then delivering a presentation, first to their classmates, followed by another presentation to the Molecular and Cell Biology faculty and students. While learning the focused theme, students acquire skill sets in critical reading of scientific literature and oral presentation. Required for all PhD students. Pass/Fail only. (1-2-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v03 (r3)</td>
<td>biol6v03.4</td>
<td>BIOL 6V03 Research in Molecular and Cell Biology (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (1-9-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v04 (r3)</td>
<td>biol6v04.6</td>
<td>BIOL 6V04 Biology Seminar (1-6 semester credit hours) May be repeated for credit (6 semester credit hours maximum). (1-6-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v19 (r5)</td>
<td>biol6v19.7</td>
<td>BIOL 6V19 Topics in Biochemistry (2-5 semester credit hours) May be repeated for credit (9 semester credit hours maximum). (2-5-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v28 (r3)</td>
<td>biol6v28.3</td>
<td>BIOL 6V28 DNA Replication, Recombination, and Repair (2-3 semester credit hours) Focuses on central aspects of DNA enzymology and metabolism. The mechanisms of DNA replication, recombination, and repair are fundamental to understanding many principles of molecular biology, genetics, molecular medicine, and evolution. This course is mechanistically oriented and will provide a strong working knowledge of these processes through an extensive overview, which includes discussions of some of the most recent publications on these topics. ([2-3]-0) T</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v29 (r5)</td>
<td>biol6v29.7</td>
<td>BIOL 6V29 Topics in Molecular Biology (2-5 semester credit hours) May be repeated for credit (9 semester credit hours maximum). ([2-5]-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v30 (r3)</td>
<td>biol6v30.3</td>
<td>BIOL 6V30 Biopolymers (2-4 semester credit hours) Structure and properties of biologically important macromolecules. ([2-4]-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v31 (r4)</td>
<td>BIOL 6V31 Molecular Genetics (3-4 semester credit hours) A graduate survey of the phenomena and mechanisms of heredity, its cytological and molecular basis, with a focus on bacterial and model eukaryotic systems. Topics will include fundamentals of Mendelian Genetics, genetic recombination and genetic linkage, as well as gene structure and replication, gene expression and the transfer of genetic information, mutation and mutagenesis, and applications of recombinant DNA techniques to genetic analysis. For students who have not had undergraduate genetics. ([3-4]-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-11 08:26:27 001883 26.0802.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>biol6v31.6</td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 28</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 001883 2008-08-21 sxh121431

BIOL 6V31 Molecular Genetics (3-4 semester credit hours) A graduate survey of the phenomena and mechanisms of heredity, its cytological and molecular basis, with a focus on bacterial and model eukaryotic systems. Topics will include fundamentals of Mendelian Genetics, genetic recombination and genetic linkage, as well as gene structure and replication, gene expression and the transfer of genetic information, mutation and mutagenesis, and applications of recombinant DNA techniques to genetic analysis. For students who have not had undergraduate genetics. ([3-4]-0) Y

2014-open	edit *	biol6v32 (r4)	BIOL 6V32 Electron Microscopy (2-3 semester credit hours) Theory and practice of electron microscopy. The laboratory section includes specimen preparation, operation of the electron microscope, and darkroom work. ([1-2]-2) R	phase: approve	cxj140030 2013-10-01 08:46:11 001884 26.0101.00.02 audit: -2.2 m index: -2.2 m match_fail	ps info detail
		biol6v32.4		status: approving		change process
				audit: 30		orion

peoplesoft diff: 001884 2008-08-21 sxh121431

BIOL 6V32 Electron Microscopy (2-3 semester credit hours) Theory and practice of electron microscopy. The laboratory section includes specimen preparation, operation of the electron microscope, and darkroom work. ([1-2]-2) R

<p>| | | | | | | |
| | | | | | | |
| | | | | | | |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v33 (r5)</td>
<td>biol6v33.7</td>
<td>2014-open</td>
<td>BIOL 6V33 Biomolecular Structure (2-3 semester credit hours) This course includes a discussion of DNA structures, protein structures, the folding and stability of domains, and the binding of proteins to DNA. Methods used to investigate the relation of structure to function are emphasized. Types of protein structures whose structure and function are considered include transcription factors, proteinases, membrane proteins, proteins in signal transduction, proteins on the immune system, and engineered proteins. ([2-3]-0) Y</td>
<td>phase: approve</td>
<td>2013-11-11 08:26:44 001885 26.0204.00.02</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v34 (r4)</td>
<td>biol6v34.6</td>
<td>2014-open</td>
<td>BIOL 6V34 Quorum Sensing (2-3 semester credit hours) The focus of this course is the analysis of quorum sensing and its role in pathogenic and symbiotic interactions. This course makes use of recent scientific literature and the latest discoveries in the area of population density dependent gene expression. ([2-3]-0) R</td>
<td>phase: approve</td>
<td>2013-11-11 08:27:02 001886 26.0101.10.02</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v39 (r5)</td>
<td>biol6v39.7</td>
<td>2014-open</td>
<td>BIOL 6V39 Topics in Biophysics (2-5 semester credit hours) May be repeated for credit (9 semester credit hours maximum). Department consent required. ([2-5]-0) T</td>
<td>phase: approve</td>
<td>2013-10-31 17:41:55 001887 26.0203.00.02</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>

<p>| 2014-open | | edit * | biol6v42 (r3) | | BIOL 6V42 Membrane Biology I (2-4 semester credit hours) Membrane traffic in the secretory pathway. Topics covered include insertion of proteins into membranes, the mechanism of vesicular traffic from the rough endoplasmic reticulum through the Golgi apparatus to the plasma membrane, protein sorting during secretion and membrane biogenesis. ([2-4]-0) T | phase: approve | cxj140030 | 2013-10-01 08:46:51 001889 26.0401.00.02 audit: -2.2 m index: -2.2 m match_fail | ps info detail change process orion |
| | | | | | peoplesoft diff: 001889 2008-08-21 sxh121431 BIOL 6V42 Membrane Biology I (2-4 semester credit hours) Membrane traffic in the secretory pathway. Topics covered include insertion of proteins into membranes, the mechanism of vesicular traffic from the rough endoplasmic reticulum through the Golgi apparatus to the plasma membrane, protein sorting during secretion and membrane biogenesis. ([2-4]-0) T | phase: approve | cxj140030 | 2013-10-01 08:46:51 001889 26.0401.00.02 audit: -2.2 m index: -2.2 m match_fail | ps info detail change process orion |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v43 (r3)</td>
<td>biol6v43.3</td>
<td></td>
<td>BIOL 6V43 Membrane Biology II (2-4 semester credit hours) Membrane traffic in the endocytic pathway. Topics covered include the structure, function and sorting of membrane receptors, the formation and function of clathrin-coated pits, membrane recycling and the biogenesis of endosomes and lysosomes. ([2-4]-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:46:59 001890 26.0401.00.02 audit: -2.2 m index: -2.2 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v44 (r3)</td>
<td>biol6v44.3</td>
<td></td>
<td>BIOL 6V44 Animal Cell Culture (2-4 semester credit hours) Theory and practice of the growth of animal cells in culture. Topics include: the isolation and characterization of mammalian cell mutants, chromosome mapping, the use of somatic cell hybrids to investigate eukaryotic gene regulation, gene transfer into animal cells, gene targeting and production of gene knockouts. ([2-4]-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-01 08:47:06 001891 26.0401.00.02 audit: -2.2 m index: -2.2 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v49 (r5)</td>
<td>biol6v49.7</td>
<td></td>
<td>BIOL 6V49 Topics in Cell Biology (2-5 semester credit hours) May be repeated for credit (9 semester credit hours maximum). Department consent required. ([2-5]-0) Y</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 17:42:16 001892 26.0401.00.02 audit: -1.6 m index: -1.6 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v50 (r3)</td>
<td>biol6v50.6</td>
<td>BIOL 6V50 Internship in Biotechnology/ Biomedicine (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be in an area relevant to the student's coursework for the MS in Biotechnology. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:08:53</td>
<td>013533 26.1201.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013533 2013-08-25 rmb10100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOL 6V50 Internship in Biotechnology/ Biomedicine (1-6 semester credit hours) Provides faculty supervision for a student's internship. Internships must be in an area relevant to the student's coursework for the MS in Biotechnology. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v92 (r4)</td>
<td>biol6v92.4</td>
<td>BIOL 6V92 Readings in Molecular and Cell Biology (3-9 semester credit hours) Instructor consent required. ([3-9]-0) Y</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 17:43:27</td>
<td>001893 26.0204.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 001893 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOL 6V92 Readings in Molecular and Cell Biology (3-9 semester credit hours) Instructor consent required. ([3-9]-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v95 (r5)</td>
<td>biol6v95.8</td>
<td>BIOL 6V95 Advanced Topics in Molecular and Cell Biology (Individual Instruction) (1-6 semester credit hours) May be repeated for credit. Instructor consent required. ([1-6]-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 09:11:23</td>
<td>001894 26.0101.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 001894 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOL 6V95 Advanced Topics in Molecular and Cell Biology (Individual Instruction) (1-6 semester credit hours) May be repeated for credit. Instructor consent required. ([1-6]-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol6v98 (r4)</td>
<td>biol6v98.7</td>
<td>BIOL 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:09:15</td>
<td>013534 26.0101.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013534 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOL 6V98 Thesis (3-9 semester credit hours) (May Pass/Fail only. May be repeated for credit.) Instructor consent required. ([3-9]-0) S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf 28/154
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol7450 (r3)</td>
<td>biol7450.7</td>
<td>BIOL 7450 Research Seminar in Molecular and Cell Biology (4 semester credit hours) Presentation and analysis of ongoing independent research projects, accompanied by evaluation of recent related literature. Pass/Fail only. May be repeated for credit. (4-0) S</td>
<td>phase: approve</td>
<td></td>
<td>sxs067400 2014-01-08 11:37:36 001926 26.0406.00.02 audit: -1.4 m index: -1.4 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol7v10 (r3)</td>
<td>biol7v10.7</td>
<td>BIOL 7V10 Research Seminar in Biochemistry (2-5 semester credit hours) Presentation and analysis of ongoing independent research projects, accompanied by evaluation of recent related literature. Pass/Fail only. May be repeated for credit. ([2-5]-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>sxs067400 2014-01-08 11:36:23 001922 26.0202.00.02 audit: -1.4 m index: -1.4 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>biol7v20 (r3)</td>
<td>biol7v20.7</td>
<td>BIOL 7V20 Research Seminar in Molecular Biology (2-5 semester credit hours) Presentation and analysis of ongoing independent research projects, accompanied by evaluation of recent related literature. Pass/Fail only. May be repeated for credit. ([2-5]-0) Y</td>
<td>phase: approve</td>
<td></td>
<td>sxs067400 2014-01-08 11:37:01 001923 26.0204.00.02 audit: -1.4 m index: -1.4 m match_fail</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>biol7v30</td>
<td>(r3)</td>
<td>BIOL 7V30 Research Seminar in Biophysics (2-5 semester credit hours) Presentation and analysis of ongoing independent research projects, accompanied by evaluation of recent related literature. Pass/Fail only. May be repeated credit. ([2-5]-0) R</td>
<td>phase: approve</td>
<td>sxs067400 2014-01-08 11:35:26 001924 26.0203.00.02 audit: -1.4 m index: -1.4 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>biol7v40</td>
<td>(r3)</td>
<td>BIOL 7V40 Research Seminar in Cell Biology (2-5 semester credit hours) Presentation and analysis of ongoing independent research projects, accompanied by evaluation of recent related literature. ([2-5]-0) Y</td>
<td>phase: approve</td>
<td>sxs067400 2014-01-08 11:33:02 001925 26.0401.00.02 audit: -1.4 m index: -1.4 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>biol8v01</td>
<td>(r4)</td>
<td>BIOL 8V01 Research in Molecular and Cell Biology (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:09:35 001927 26.0406.00.02 audit: -1.6 m index: -1.6 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>biol8v99</td>
<td>(r5)</td>
<td>BIOL 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:11:10 001929 26.0101.00.02 audit: -1.6 m index: -1.6 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>chem5314 (r4) chem5314.4</td>
<td>CHEM 5314 Advanced Physical Chemistry (3 semester credit hours) Modern concepts from the three pillars of physical chemistry: quantum mechanics, thermodynamics/statistical mechanics, and kinetics. Prerequisite: CHEM 3322 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:35:52 002224 40.0599.10.02 audit: -2 m index: -2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>chem5331 (r3) chem5331.3</td>
<td>CHEM 5331 (MSEN 5331) Advanced Organic Chemistry I (3 semester credit hours) Modern concepts of bonding and structure in covalent compounds. Static and dynamic stereochemistry and methods for study. Relationships between structure and reactivity. Prerequisite: CHEM 2325 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-27 09:36:03 002225 40.0504.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>chem5333 (r3) chem5333.4</td>
<td>CHEM 5333 (MSEN 5333) Advanced Organic Chemistry II (3 semester credit hours) Application of the principles introduced in CHEM 5331, emphasizing their use in correlating the large body of synthetic/preparative organic chemistry. Prerequisite: CHEM 5331 or MSEN 5331. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-12-16 11:26:45 002226 40.0504.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | | edit * | chem5340 | CHEM 5340 (MSEN 5340) Advanced Polymer Science and Engineering (3 semester credit hours) Polymer structure-property relations, Linear and nonlinear viscoelasticity. Dynamic mechanical analysis, time-temperature superposition, creep and stress relaxation. Mechanical models for prediction of polymer deformation, rubber elasticity, environmental effects on polymer deformation, instrumentation for prediction of long term properties. (3-0) R
peoplesoft diff: 012908 2014-08-24 sxh121431
CHEM 5340 (MSEN 5340) Advanced Polymer Science and Engineering (3 semester credit hours) Polymer structure-property relations, Linear and nonlinear viscoelasticity. Dynamic mechanical analysis, time-temperature superposition, creep and stress relaxation. Mechanical models for prediction of polymer deformation, rubber elasticity, environmental effects on polymer deformation, instrumentation for prediction of long term properties. (3-0) R
peoplesoft diff: 012908 2014-08-24 sxh121431
CHEM 5340 (MSEN 5340) Advanced Polymer Science and Engineering (3 semester credit hours) Polymer structure-property relations, Linear and nonlinear viscoelasticity. Dynamic mechanical analysis, time-temperature superposition, creep and stress relaxation. Mechanical models for prediction of polymer deformation, rubber elasticity, environmental effects on polymer deformation, instrumentation for prediction of long term properties. (3-0) R
peoplesoft diff: 012908 2014-08-24 sxh121431 |
| 2014-open | | edit * | chem5341 | CHEM 5341 (MSEN 5341) Advanced Inorganic Chemistry I (3 semester credit hours) Physical inorganic chemistry addressing topics in structure and bonding, symmetry, acids and bases, coordination chemistry and spectroscopy. Prerequisite: CHEM 3341 or instructor consent required. (3-0) Y
peoplesoft diff: 002227 2012-08-26 sxh121431
CHEM 5341 (MSEN 5341) Advanced Inorganic Chemistry I (3 semester credit hours) Physical inorganic chemistry addressing topics in structure and bonding, symmetry, acids and bases, coordination chemistry and spectroscopy. Prerequisite: CHEM 3341 or instructor consent required. (3-0) Y
peoplesoft diff: 002227 2012-08-26 sxh121431 |
| 2014-open | | edit * | chem5343 | CHEM 5343 Advanced Inorganic Chemistry II (3 semester credit hours) Builds on CHEM 5341 to explore the synthesis and reactivity of inorganic/organometallic molecules. Practical applications will be demonstrated by discussing industrial processes catalyzed by metal complexes. Prerequisite: CHEM 5341. (3-0) R
peoplesoft diff: 002228 2008-08-21 sxh121431
CHEM 5343 Advanced Inorganic Chemistry II (3 semester credit hours) Builds on CHEM 5341 to explore the synthesis and reactivity of inorganic/organometallic molecules. Practical applications will be demonstrated by discussing industrial processes catalyzed by metal complexes. Prerequisite: CHEM 5341. (3-0) R
peoplesoft diff: 002228 2008-08-21 sxh121431 |

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbbcebb74d94346/makepdf
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Req Type</th>
<th>Req Id</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
</table>
| 2014-open | edit | chem5355 (r4) | chem5355.4 | CHEM 5355 (MSEN 5355) Analytical Techniques I (3 semester credit hours) Study of fundamental analytical techniques, including optical spectroscopic techniques, mass spectrometry, and microscopic and surface analysis methods. (3-0) Y
peoplesoft diff: 002229 2013-08-25 sxh121431
CHEM 5355 (MSEN 5355) Analytical Techniques I (3 semester credit hours) Study of fundamental analytical techniques, including optical spectroscopic techniques, mass spectrometry, and microscopic and surface analysis methods. (3-0) Y | phase: approve
status: approving
audit: 30 | cxj140030
2013-09-27
09:36:43
002229
40.0502.00.02
audit: -2.2 m
index: -2.2 m
match_fail | ps info
detail
change
process
orion |
| 2014-open | edit | chem5356 (r3) | chem5356.4 | CHEM 5356 (MSEN 5356) Analytical Techniques II (3 semester credit hours) Study of chromatography (GC, LC, CZE), statistical methods (standard tests and ANOVA), chemical problem solving, and modern bio/analytical techniques such as biochips, microfluidics, and MALDI-MS. Prerequisite: CHEM 5355 or instructor consent required. (3-0) R
peoplesoft diff: 002230 2008-08-21 sxh121431
CHEM 5356 (MSEN 5356) Analytical Techniques II (3 semester credit hours) Study of chromatography (GC, LC, CZE), statistical methods (standard tests and ANOVA), chemical problem solving, and modern bio/analytical techniques such as biochips, microfluidics, and MALDI-MS. Prerequisite: CHEM 5355 or instructor consent required. (3-0) R | phase: approve
status: approving
audit: 30 | mxv062000
2014-01-11
14:14:24
002230
40.0502.00.02
audit: -1.4 m
index: -1.4 m
match_fail | ps info
detail
change
process
orion |
| 2014-open | edit | chem5357 (r3) | chem5357.4 | CHEM 5357 Process Analytical Chemistry (3 semester credit hours) An introduction to process analytical chemistry as practiced in the chemical process and other industries. Includes process control, instrumental techniques, sample and conditioning systems, project integration, and chemometrics. Prerequisite: CHEM 5355 or instructor consent required. (3-0) R
peoplesoft diff: 002231 2008-08-21 sxh121431
CHEM 5357 Process Analytical Chemistry (3 semester credit hours) An introduction to process analytical chemistry as practiced in the chemical process and other industries. Includes process control, instrumental techniques, sample and conditioning systems, project integration, and chemometrics. Prerequisite: CHEM 5355 or instructor consent required. (3-0) R | phase: approve
status: approving
audit: 30 | mxv062000
2013-12-19
14:32:33
002231
40.0502.00.02
audit: -1.5 m
index: -1.5 m
match_fail | ps info
detail
change
process
orion |
<table>
<thead>
<tr>
<th>start</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * chem5v84 (r4) chem5v84.9</td>
<td>CHEM 5V84 Special Topics in Chemistry - Science and Mathematics Education (1-9 semester credit hours) Various special topics in chemistry of interest to teachers will be discussed. May not be used to fulfill degree requirements for the MS or PhD degrees except those in the Master of Arts in Teaching (MAT) program. May be repeated for credit. Instructor consent required. ((1%-9%)) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 29</td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * chem5v87 (r4) chem5v87.7 | CHEM 5V87 Independent Study in Chemistry (1-9 semester credit hours) In conjunction with a member of the Chemistry faculty, the student will develop a paper or project which emphasizes the ways in which chemical knowledge is confirmed and extended or which leads to improved instruction in chemistry. May not be counted as credit toward used to fulfill degree requirements for the M.S. MS or PhD degrees except those in the Master of Arts in Teaching (MAT) program. May be repeated for credit. Instructor consent required. ((1%-9%)) R | phase: approve | status: approving | audit: 30 | sxh121431 | 2013-11-01 14:13:29 002222 30.0101.00.02 | audit: -1.6 m index: -1.6 m | match_fail | peoplesoft diff: 002222 2008-08-21 sxh121431 |</p>
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6100 (r3)</td>
<td>CHEM 6100 Chemistry Department Seminar (1 semester credit hour) A weekly seminar that features accounts of current research by outstanding investigators in chemistry and related scientific areas. Course not eligible for audit. Pass/Fail only. May be repeated for credit. Prerequisite: Graduate standing in chemistry. (1-0) S</td>
<td>phase: approve</td>
<td>sxr090100</td>
<td>ps info detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chem6100.5</td>
<td>peoplesoft diff: 013634 2011-08-23 sxr090100</td>
<td>status: approving</td>
<td>2014-01-14 12:37:51 013634 40.0502.00.02 audit: -1.4 m index: -1.4 m match_fail</td>
<td>change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHEM 6100 Chemistry Department Seminar (1 semester [credit hour] A weekly seminar that features accounts of current research by outstanding investigators in chemistry and related scientific areas. Course not eligible for audit. Pass/Fail only. May be repeated for credit. Prerequisite: graduate Graduate standing in chemistry. (May be repeated for credit.) (1-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 002239 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chem6317 (r3)</td>
<td>CHEM 6317 Industrial Chemistry (3 semester credit hours) Survey of chemical industry including commodities, chemical processes, scale-up and process development, environmental concerns, patents. Study of chemical engineering principles. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chem6317.3</td>
<td>peoplesoft diff: 002239 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td>2013-09-27 09:38:19 002239 40.0506.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td>change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHEM 6317 Industrial Chemistry (3 semester [credit hours] Survey of chemical industry including commodities, chemical processes, scale-up and process development, environmental concerns, patents. Study of chemical engineering principles. (3-0) R</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 002240 2008-08-21 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chem6361 (r3)</td>
<td>CHEM 6361 Physical Biochemistry (3 semester credit hours) Protein structure, fundamental metabolism, structures and properties of macromolecules, interactions with electromagnetic radiation, thermodynamics of macromolecular solutions, transport processes, and other topics. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chem6361.4</td>
<td>peoplesoft diff: 002240 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td>2013-10-22 10:18:36 002240 40.0506.00.02 audit: -1.7 m index: -1.7 m match_fail</td>
<td>change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHEM 6361 Physical Biochemistry (3 semester [credit hours] Protein structure, fundamental metabolism, structures and properties of macromolecules, interactions with electromagnetic radiation, thermodynamics of macromolecular solutions, transport processes, and other topics. [Prerequisite: Consent of instructor. Instructor consent required.] (3-0) R</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6372 (r3)</td>
<td>chem6372.4</td>
<td>CHEM 6372 Materials Science (3 semester credit hours) Relationship between the properties and behavior of materials and their internal structure. Treatment of the mechanical, thermal and electrical properties of crystalline and amorphous solids including metals, ceramics, synthetic polymers and composites. Instructor consent required. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 002241 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -1.7 m</td>
<td>index: -1.7 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6383 (r3)</td>
<td>chem6383.4</td>
<td>CHEM 6383 Computational Chemistry (3 semester credit hours) The application of computer techniques to the understanding of molecular structure and dynamics: force field, semi-empirical, ab initio, and molecular dynamics techniques. Information retrieval from large structural databases and use of this information. Instructor consent required. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 002242 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -1.7 m</td>
<td>index: -1.7 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6389 (r3)</td>
<td>chem6389.3</td>
<td>CHEM 6389 Scientific Literature and Communication Skills (3 semester credit hours) Acquaints students with techniques for searching the scientific literature using hard copy and electronic approaches. Introduces students to important steps in creating and improving technical communications in both written and oral formats. (3-0) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 002243 2008-08-21 sxh121431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -2.2 m</td>
<td>index: -2.2 m</td>
<td>match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6v19</td>
<td>(r4)</td>
<td>chem6v19.6</td>
<td>CHEM 6V19 Special Topics in Physical Chemistry (1-9 semester credit hours) Examples of topics include spectroscopy, quantum mechanics, computational chemistry, and surface chemistry. May be repeated for credit as topics vary. Prerequisite: CHEM 5314 or instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6v39</td>
<td>(r5)</td>
<td>chem6v39.8</td>
<td>CHEM 6V39 Special Topics in Organic Chemistry (1-9 semester credit hours) Subject matter will vary and the course may be repeated for credit. Examples of topics include organic photochemistry, organometallic chemistry, homogeneous and heterogeneous catalysis, solid state, polymer chemistry, and advanced NMR techniques. May be repeated for credit as topics vary Prerequisite: CHEM 5331 and instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6v49</td>
<td>(r5)</td>
<td>chem6v49.9</td>
<td>CHEM 6V49 Special Topics in Inorganic Chemistry (1-9 semester credit hours) Subject matter will vary and the course may be repeated for credit. Examples of topics include physical methods of inorganic chemistry, and bioinorganic chemistry. May be repeated for credit as topics vary. Prerequisite: CHEM 5341 and instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6v59 (r5)</td>
<td>chem6v59.7</td>
<td>CHEM 6V59 Special Topics in Analytical Chemistry (1-9 semester credit hours) Examples of topics include NMR, X-ray crystallography. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisite: CHEM 5355 and instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:42:18 002235 40.0501.00.02 audit: -1.4 m index: -1.4 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6v69 (r4)</td>
<td>chem6v69.8</td>
<td>CHEM 6V69 Special Topics in Biochemistry (1-9 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:16:02 002236 26.0202.00.02 audit: -1.6 m index: -1.6 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>chem6v79 (r3)</td>
<td>chem6v79.8</td>
<td>CHEM 6V79 Special Topics in Materials Chemistry (1-9 semester credit hours) Examples of topics include polymers, membrane technology, zeolites, nanoscience and technology. May be repeated as topics vary (9 semester credit hours maximum). Instructor consent required. ([1-9]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:43:02 002237 40.0501.00.02 audit: -1.4 m index: -1.4 m</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td>---</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 2014- | open | edit | * | chem6v84 | **CHEM 6V84 Special Topics in Applied Chemistry** *(1-9 semester credit hours)* May be repeated for credit as topics vary *(9 semester credit hours maximum). Instructor consent required.* *(1-9-0) R*

peoplesoft diff: 002238 2008-08-21 sxh121431
CHEM 6V84 Special Topics in Applied Chemistry *(1-9 semester credit hours)* Subject matter will vary and may be repeated for credit to a maximum of 9 hours. Prerequisite: Consent of instructor, as topics vary *(9 semester credit hours maximum). Instructor consent required.* *(1-9-0) R*

phase: approve
status: approving
audit: 30
mxiv062000 2013-11-04 13:47:12
002238 40.0501.00.02
audit: -1.6 m
index: -1.6 m
match_fail
ps info
detail
change
process
orion |
| 2014- | open | edit | * | chem8398 | **CHEM 8398 Thesis** *(3 semester credit hours)* Pass/Fail only. May be repeated for credit. Instructor consent required. *(3-0) S*

peoplesoft diff: 002245 2012-08-26 sxh121431
CHEM 8398 Thesis *(3 semester credit hours)* Pass/Fail only. May be repeated for credit. Instructor consent required. *(3-0) S*

phase: approve
status: approving
audit: 30
mxiv062000 2013-12-02 16:56:34
002245 40.0501.00.02
audit: -1.5 m
index: -1.5 m
match_fail
ps info
detail
change
process
orion |
| 2014- | open | edit | * | chem8399 | **CHEM 8399 Dissertation** *(3 semester credit hours)* Pass/Fail only. May be repeated for credit. Instructor consent required. *(3-0) S*

peoplesoft diff: 002246 2012-08-26 sxh121431
CHEM 8399 Dissertation *(3 semester credit hours)* Pass/Fail only. May be repeated for credit. Instructor consent required. *(3-0) S*

phase: approve
status: approving
audit: 30
sxh121431 2013-11-01 14:17:35
002246 40.0501.00.02
audit: -1.6 m
index: -1.6 m
match_fail
ps info
detail
change
process
orion |
| 2014- | open | edit | * | chem8v91 | **CHEM 8V91 Research in Chemistry** *(2-9 semester credit hours)* Pass/Fail only. May be repeated for credit. Instructor consent required. *(2-9-0) S*

peoplesoft diff: 002244 2008-08-21 sxh121431
CHEM 8V91 Research in Chemistry *(2-9 semester credit hours)* Pass/Fail only. May be repeated for credit. Instructor consent required. *(2-9-0) S*

phase: approve
status: approving
audit: 30
mxiv062000 2013-11-04 14:42:17
002244 40.0501.00.02
audit: -2.2 m
index: -2.2 m
match_fail
ps info
detail
change
process
orion |
| 2014- | 2014 | remove | * | chem8v99 | **request to remove this course from catalog**
CHEM 8V99 Dissertation *(1-9 semester credit hours)* Pass/Fail only. May be repeated for credit. Instructor consent required. *(1-9-0) S*

phase: approve
status: approving
audit: 30
mxiv062000 2014-01-13 13:52:24
012791 40.0501.00.02
audit: -1.4 m
index: -1.4 m
match_fail
ps info
detail
change
process
orion |

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbbcebb74d94346/makepdf 39/154
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove * geos5100 (r3) geos5100.5</td>
<td>request to remove this course from catalog GEOS 5100 Introductory Graduate Seminar (1 semester credit hour) Presentations of current research by the Geosciences faculty members and orientation for new graduate students. Pass/Fail only. (1-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>mxv062000 2014-01-30 08:54:14 005674 40.0601.00.02 audit: -1.4 m index: -1.4 m</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * geos5101 (r2) geos5101.5</td>
<td>GEOS 5101 Internship in Geosciences (1 semester credit hour) An internship in which a student gains experience through temporary employment at a geosciences based company or government organization. The activity must be monitored by one of the Geosciences faculty members and must be approved in advance of the employment. The student must provide regular progress updates and a final report to the faculty monitor. Pass/Fail only. May be repeated for credit (5 semester credit hours maximum). Instructor consent required. (1-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>sxh121431 2013-11-01 14:19:37 014199 40.0601.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * geos5301 (r6) geos5301.6</td>
<td>GEOS 5301 Geology of the Metroplex (3 semester credit hours) Lithologic constituents, stratigraphic history, and geologic environments of the greater Dallas-Fort Worth metropolitan area. Special emphasis is given to the Cretaceous sediments that underlie Tarrant and Dallas Counties, with a secondary focus on the broader geologic environment. Three to four 1-day (Saturday) field trips. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>cxj140030 2013-10-16 15:27:52 005694 40.0601.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * geos5302 (r7) geos5302.12</td>
<td>request to remove this course from catalog</td>
<td>GEOS 5302 Ocean Science (3 semester credit hours) Overview of geological, chemical, physical and biological aspects of oceanography, marine resources and environmental concerns. This course is for students seeking the MAT degree. May not be used to fulfill degree requirements in geosciences. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * geos5303 (r9) geos5303.11</td>
<td>request to remove this course from catalog</td>
<td>GEOS 5303 Computing for Geoscientists (3 semester credit hours) Application of computer techniques in solving geological problems. Includes instruction in the MATLAB (r) software, plotting facilities, introductory matrix theory, and statistics. Students will examine problems in basic statistical analysis, graphics, and mapping of geological and geophysical data. Development of programming skills in areas directly related to thesis and dissertation research is encouraged. Serves as introduction to UNIX and the U.T. Dallas computing facility. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * geos5304 (r6) geos5304.8</td>
<td>request to remove this course from catalog</td>
<td>GEOS 5304 Geosciences Field Trip (3 semester credit hours) A study of the geology of a selected region within North America and the Caribbean followed by a field trip to the selected region in order to study the relationships of geologic features within that region. This course can only be used to partially satisfy the field experience requirement and breadth requirement for geosciences majors. Field trip course. May be repeated for credit. Instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>geos5306 (r6)</td>
<td>geos5306.6</td>
<td>GEOS 5306 Data Analysis for Geoscientists (3 semester credit hours) Advanced statistical techniques with important applications in Earth science. Topics include robust statistics, exploratory data analysis, surface modeling and contouring, Kriging, analysis of point patterns and directional data. Factor, cluster and time series analysis may also be considered. Emphasis will be on application and theoretical understanding. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 005699 2013-08-25 keh120030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOS 5306 Data Analysis for Geoscientists (3 semester credit hours) Advanced statistical techniques with important applications in Earth science. Topics include robust statistics, exploratory data analysis, surface modeling and contouring, Kriging, analysis of point patterns and directional data. Factor, cluster and time series analysis may also be considered. Emphasis will be on application and theoretical understanding. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>geos5310 (r7)</td>
<td>geos5310.7</td>
<td>GEOS 5310 (GISC 5310) Hydrogeology (3 semester credit hours) Introduction to the principles and practice of ground- and surface-water hydrology. Study of the principles of occurrence and geologic controls of groundwater, physical flow and geochemistry of waters. Design and use of procedures for typical hydrologic investigations. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 005703 2013-08-25 rmb101000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOS 5310 (GISC 5310) Hydrogeology (3 semester credit hours) Introduction to the principles and practice of ground- and surface-water hydrology. Study of the principles of occurrence and geologic controls of groundwater, physical flow and geochemistry of waters. Design and use of procedures for typical hydrologic investigations. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * geos5311 (r5) geos5311.5</td>
<td>GEOS 5311 (GISC 5311) Applied Groundwater Modeling (3 semester credit hours) This course is designed to provide students with hands-on experience using the most commonly-applied groundwater flow and transport models (e.g. modflow/modpath, MT3D/RT3D, GMS). Practical application of the models and design of modeling studies is emphasized; modeling theory and mathematics is de-emphasized. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 15:28:40</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>005704 40.0605.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOS 5311 (GISC 5311) Applied Groundwater Modeling (3 semester credit hours) This course is designed to provide students with hands-on experience using the most commonly-applied groundwater flow and transport models (e.g. modflow/modpath, MT3D/RT3D, GMS). Practical application of the models and design of modeling studies is emphasized; modeling theory and mathematics is de-emphasized. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * geos5313 (r5) geos5313.5</td>
<td>GEOS 5313 Applied Surface Water Modeling (3 semester credit hours) The development and application of watershed models emphasizing runoff, stormflow and stormwater management design. This class combines aspects of GIS, remote sensing and surface water hydrology from an applied modeling perspective, using commonly applied computer models (e.g. Rational Method, TR-20, HEC-1) to address drainage problems related to urbanization and land-use changes. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 15:28:49</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>005706 40.0605.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOS 5313 Applied Surface Water Modeling (3 semester credit hours) The development and application of watershed models emphasizing runoff, stormflow and stormwater management design. This class combines aspects of GIS, remote sensing and surface water hydrology from an applied modeling perspective, using commonly applied computer models (e.g. Rational Method, TR-20, HEC-1) to address drainage problems related to urbanization and land-use changes. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>Request Type</td>
<td>Course Code</td>
<td>Catalog Course Description</td>
<td>Request Status</td>
<td>Request Metadata</td>
<td>Actions</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 2014-open | edit * geos5315 (r2) geos5315.2 | GEOS 5315 The Earth: An Overview (3 semester credit hours) Nucleosynthetic processes, condensation of the solar system and the formation of the Earth-Moon system. Tectonic and magmatic processes driven by internal heat. The minerals of igneous rocks. Modes of emplacement and eruption of igneous rocks. Rock weathering and the external, sun-driven processes of erosion, transport and deposition. Biogenic sediments. Continental collisions, mountain building, rock deformation and metamorphism. Methods of dating and correlating rocks. A history of the Earth through time. Current problems and trends in the geosciences. Field trip. (3-0) Y | phase: approve | cxj140030 2013-10-16 15:29:00 013231 40.0601.00.02 audit: -1.8 m index: -1.8 m match_fail | peoplesoft diff: 013231 2010-08-18 sxh121431
| 2014-open | edit * geos5317 (r2) geos5317.4 | GEOS 5317 Natural Resources (3 semester credit hours) Overview of the exploration for and exploitation of petroleum, mineral and geothermal resources. Characteristics of natural resources and design of exploration programs through integration of geophysical and geochemical methods. Emphasis on student projects and presentations. (3-0) T | phase: approve | cxj140030 2013-10-16 15:29:09 014200 40.0601.00.02 audit: -1.7 m index: -1.7 m match_fail | peoplesoft diff: 014200 2013-08-25 keh120030

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>geos5322 (r4)</td>
<td>geos5322.5</td>
<td>GEOS 5322 (GISC 5322) GPS (Global Positioning System) Satellite Surveying Techniques (3 semester credit hours) The theory and application of satellite positioning utilizing the Global Positioning System Code and phase methodology in field observations, data processing and analysis of Differential GPS, high accuracy static and other rapid measurements, in real time and with post-processing. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-16 15:29:25</td>
<td>cxj140030 2013-08-25 rmb101000 ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5324</td>
<td>(r6)</td>
<td>geos5324.6</td>
<td>GEOS 5324 (GISC 5324) 3D Data Capture and Ground Lidar (3 semester credit hours) The theory and applications of 3D data acquisition in the field for geosciences and non-geosciences studies. The basics and applications of field digital mapping with emphasis on RTK GPS, laser range finder, and terrestrial scanners (ground lidar). 3D digital photorealistic modeling with field photogrammetry and digital cameras. (3-0) T</td>
<td>phase: approve</td>
<td>2013-10-16 15:29:33</td>
<td>005712 40.0601.00.02 audit: -1.7 m index: -1.7 m match Fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5325</td>
<td>(r7)</td>
<td>geos5325.10</td>
<td>GEOS 5325 (GISC 6325) Remote Sensing Fundamentals (3 semester credit hours) Introduction to remote sensing principles, sensor technologies, image processing techniques, and applications. Topics covered include electromagnetic radiation theories, various satellite and airborne remote sensing systems, processing of remote sensing data to solve real world problems. State-of-the-art commercial software is used for class exercises. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-01-23 15:48:57</td>
<td>005713 40.0699.02.02 audit: -1.4 m index: -1.4 m match Fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * geos5326 (r7) geos5326.11 | GEOS 5326 (GISC 7365) Advanced Remote Sensing (3 semester credit hours) Examines advanced remote sensing technologies, data processing techniques and applications. The latest remote sensors are introduced. The class will discuss how remote sensing data can be processed to extract information in support of important urban and environmental decision making. The current generation, industry standard software is used for labs and applications development. Prerequisite: GEOS 5325 or GISC 6325. (3-0) Y
peoplesoft diff: 005714 2013-08-25 sxh121431
GEOS 5326 (GISC 7365) Advanced Remote Sensing Digital Image Processing (3 semester credit hours) Introduction to Examines advanced remote sensing digital image technologies, data processing techniques. Topics covered include principles of remote sensing techniques and applications. The latest remote sensors, image visualization and statistics extraction, radiometric and geometric correction, image enhancement, image classification and change detection. Innovative image processing approaches are introduced. The class will also discuss how remote sensing data can be introduced. State-of-the-art commercial image processing processed to extract information in support of important urban and environmental decision making. The current generation, industry standard software is used for labs and applications development. Prerequisite: GEOS 5325 or GISC 6325. (3-0) Y
peoplesoft diff: 005717 2013-08-25 sxh121431 | phase: approve
status: approving
audit: 29 | mxv062000
2014-01-23 15:45:30
005714
40.0601.00.02
audit: -1.4 m
index: -1.4 m
match_fail | ps info detail change process orion |
| 2014-open | edit * geos5329 (r8) geos5329.9 | GEOS 5329 (GISC 7366) Applied Remote Sensing (3 semester credit hours) Focuses on the application of one or more specialized remote sensing techniques to solve specific real world urban and environmental problems. Prerequisite: (GISC 6325 or GEOS 5325) or (GISC 7365 or GEOS 5326). (3-0) Y
peoplesoft diff: 005717 2013-08-25 sxh121431
GEOS 5329 (GISC 7366) Applied Remote Sensing (3 semester credit hours) Focuses on the application of one or more specialized remote sensing techniques to solving specific real world urban and environmental problems in areas such as urban and suburban landscape, land use and land cover, transportation and communication, vegetation and forestry, biodiversity and ecology, water and water quality control, soils and minerals, geology and geomorphology studies. The current generation, industry standard software is used for labs and applications development. Prerequisite: (GISC 6325 or GEOS 5325) or (GISC 7365 or GEOS 5326). (3-0) Y | phase: approve
status: approving
audit: 30 | mxv062000
2014-01-11 15:52:56
005717
40.0601.00.02
audit: -1.4 m
index: -1.4 m
match_fail | ps info detail change process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove</td>
<td>geos5330 (r3)</td>
<td></td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-30 08:55:56 013232 40.0601.00.02 audit: -1.4 m index: -1.4 m</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>geos5330.5</td>
<td></td>
<td>GEOS 5330 (GISC 5330) Geospatial Applications in Earth Science (3 semester credit hours) Application of geospatial techniques in solving earth science problems. Emphasis will be placed on the use of the Global Positioning System in survey and geodetic applications, airborne and ground-based LiDAR (Light Detection and Ranging), and digital acquisition and analysis techniques. Case histories will be considered and supplemented by hands-on exercises using a broad range of digital acquisition and analysis equipment and tools. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit</td>
<td>geos5350 (r2)</td>
<td></td>
<td>GEOS 5350 Geoinformatics of Igneous Rocks (3 semester credit hours) How geochemical and isotopic databases (EarthChem) can be used to understand the origin and evolution of igneous rocks from different tectonic environments. Project oriented. GEOS 5352 and GEOS 5356 recommended. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:22:24 014201 40.0601.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>geos5350.5</td>
<td></td>
<td>GEOS 5350 Geoinformatics of Igneous Rocks (3 semester credit hours) How geochemical and isotopic databases (EarthChem) can be used to understand the origin and evolution of igneous rocks from different tectonic environments. Project oriented. GEOS 5352 and GEOS 5356 recommended. Instructor consent required. (3-0) T</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit</td>
<td>geos5352 (r5)</td>
<td></td>
<td>GEOS 5352 Geochemistry of Igneous Rocks (3 semester credit hours) Chemical composition of igneous rocks and the major processes that control the distribution of the elements in silicate melts. Topics to be covered include the composition of the earth, the structure of silicate melts, trace element partitioning between crystals and melts, and the use of major and trace elements in deciphering the formation and evolution of silicate melts. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 15:31:42 005728 40.0602.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>geos5352.5</td>
<td></td>
<td>GEOS 5352 Geochemistry of Igneous Rocks (3 semester credit hours) Chemical composition of igneous rocks and the major processes that control the distribution of the elements in silicate melts. Topics to be covered include the composition of the earth, the structure of silicate melts, trace element partitioning between crystals and melts, and the use of major and trace elements in deciphering the formation and evolution of silicate melts. (3-0) T</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf 48/154
<table>
<thead>
<tr>
<th>start</th>
<th>request type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5356 (r6)</td>
<td>GEOS 5356 Isotope Geochemistry (3 semester credit hours) Synthesis of the elements in stars and chronologies for the galaxy. Isotope systematics in meteorites, abundance anomalies, cosmogenic nuclides, and solar system chronologies. The development of the modern multi-collector mass spectrometer. Mass fractionation laws, double spiking techniques, and high precision isotope ratio measurements. Isotope geochemistry of noble gases and radiogenic nuclides as pertaining to the composition and history of the mantle and crust. Application of stable isotopes to studies of diagenesis and water-rock interaction, groundwater management, paleoceanography and secular variations in the isotopic composition of seawater. High-temperature and, where applicable, low-temperature water-rock interactions pertaining to the origin of igneous rocks. The evolution of radiogenic Sr in sea water. Radiometric age dating as applied to the solution of geologic problems. (3-0) R</td>
<td>phase: approve</td>
<td>005732 2013-10-16 15:31:53 40.0602.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
<td>ps info</td>
</tr>
</tbody>
</table>

peoplesoft diff: 005732 2008-08-21 sxh121431

GEOS 5356 Isotope Geochemistry (3 semester credit hours) Synthesis of the elements in stars and chronologies for the galaxy. Isotope systematics in meteorites, abundance anomalies, cosmogenic nuclides, and solar system chronologies. The development of the modern multi-collector mass spectrometer. Mass fractionation laws, double spiking techniques, and high precision isotope ratio measurements. Isotope geochemistry of noble gases and radiogenic nuclides as pertaining to the composition and history of the mantle and crust. Application of stable isotopes to studies of diagenesis and water-rock interaction, groundwater management, paleoceanography and secular variations in the isotopic composition of seawater. High-temperature and, where applicable, low-temperature water-rock interactions pertaining to the origin of igneous rocks. The evolution of radiogenic Sr in sea water. Radiometric age dating as applied to the solution of geologic problems. (3-0) R
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5369</td>
<td>(r2)</td>
<td>GEOS 5369 Volcanic Successions (3 semester credit hours) Terrestrial volcanism is considered from the perspective of volcanic processes, and the properties, products and deposits of volcanic eruptions, all in the context of definable facies models. The effects of subsequent sedimentological processes are also considered. Volcanic settings are explored in detail as they are related to their plate tectonic settings. Recognition of volcanically derived deposits are emphasized using the facies model concepts, and are considered with respect to their geological and economic significance. Students will perform case studies on select volcanic environments to gain a thorough understanding of the specific processes, products and deposits associated with a diverse range of volcanic terranes. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>cxj140030 2013-10-16 15:32:05 014202 40.0601.00.02 audit: -1.8 m index: -1.8 m</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

PEOPLESOF DIFF: 014202 2013-08-25 keh120030

GEOS 5369 Volcanic Successions (3 semester credit hours) Terrestrial volcanism is considered from the perspective of volcanic processes, and the properties, products and deposits of volcanic eruptions, all in the context of definable facies models. The effects of subsequent sedimentological processes are also considered. Volcanic settings are explored in detail as they are related to their plate tectonic settings. Recognition of volcanically derived deposits are emphasized using the facies model concepts, and are considered with respect to their geological and economic significance. Students will perform case studies on select volcanic environments to gain a thorough understanding of the specific processes, products and deposits associated with a diverse range of volcanic terranes. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5373</td>
<td>(r4)</td>
<td>GEOS 5373 Physical Properties of Rocks (3 semester credit hours) This course provides an understanding of the physical phenomena and processes that determine properties of rocks and soils. Topics include porosity and permeability; surface energy, roughness, and absorption; percolation, fractures and heterogeneous media; problems of scale; mechanical behavior of dry and fluid saturated rocks; elasticity; viscoelasticity, and plasticity; acoustic, electric, dielectric, thermal, and magnetic properties. The approach is practical, with emphasis on understanding why rocks behave as they do, and how simple physical principles can be used to predict rock and soil properties under various conditions. Suitable for graduate students in any branch of geosciences who wish to obtain a broad introduction to physical properties as they pertain to lab and field measurements, and are applied to reservoir, engineering, and environmental problems. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>2013-10-16 15:32:13 40.0603.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5375</td>
<td>(r6)</td>
<td>GEOS 5375 Tectonics (3 semester credit hours) Study of the earth's present tectonic environments, including geochemistry, sedimentology, and structure; application of present tectonic environments towards the reconstruction of ancient crustal events; consideration of temporal aspects of crustal evolution. Oral and written presentations required. (3-0) Y</td>
<td>phase: approve</td>
<td>gje071000</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5376</td>
<td>(r6)</td>
<td>GEOS 5376 Tectonics and Evolution of the Gulf of Mexico Region (3 semester credit hours) Study of how the Gulf of Mexico formed and evolved from Precambrian times to the present, including plate tectonic environments, evolution of sedimentary basins, igneous activity and hydrocarbon resources. Oral and written presentations will be required. Prerequisite: GEOS 5375 and instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>sxh121431</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5380</td>
<td>(r6)</td>
<td>GEOS 5380 Seismic Interpretation (3 semester credit hours) Seismic reflection profiling as it is used to map the distribution of sedimentary layers and faults in the subsurface. Special emphasis is given to applications in hydrocarbon exploration. Extensive use is made of software processing packages. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>geos5381 (r4)</td>
<td>geos5381.5</td>
<td>GEOS 5381 Digital Geophysical Signal Processing (3 semester credit hours) Principles of the analysis of geophysical signals in both time and space. Includes integral transforms, spectral analysis, linear filter theory and deconvolution techniques. Computer applications are emphasized. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005749 1990-08-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 5381 Digital Geophysical Signal Processing (3 semester credit hours) Principles of the analysis of geophysical signals in both time and space. Includes integral transforms, spectral analysis, linear filter theory and deconvolution techniques. Computer applications are emphasized. (3-0) R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>reinstate *</td>
<td>geos5384 (r4)</td>
<td>geos5384.4</td>
<td>GEOS 5384 Near-Surface Geophysical Imaging (3 semester credit hours) This course covers theoretical and practical aspects of Ground Penetrating Radar (GPR) data applications. It is a "hands-on" course that covers the physical basis, rock properties, equipment, planning and execution of small scale surveys, data processing and interpretation. Examples of applications include reservoir analogs, and engineering, groundwater and environmental site evaluations. Techniques include low and high frequency, single and multi-channel ground-penetrating radar. A one-day field trip for collection of GPR data from the Woodbine formation at Grapevine Lake is the basis of the laboratory report. A background in calculus and general physics is required. Instructor consent required. (2-3) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005752 1984-08-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 5384 Near-Surface Geophysical Imaging (3 semester credit hours) This course covers theoretical and practical aspects of Ground Penetrating Radar (GPR) data applications. It is a "hands-on" course that covers the physical basis, rock properties, equipment, planning and execution of small scale surveys, data processing and interpretation. Examples of applications include reservoir analogs, and engineering, groundwater and environmental site evaluations. Techniques include low and high frequency, single and multi-channel ground-penetrating radar. A one-day field trip for collection of GPR data from the Woodbine formation at Grapevine Lake is the basis of the laboratory report. A background in calculus and general physics is required. Instructor consent required. (2-3) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * geos5387 (r6)</td>
<td>GEOS 5387 Applied Geophysics (3 semester credit hours) This is the Geosciences core graduate course in geophysics. Emphasis is on the application of geophysical methods to the solution of geological problems and the connection between geophysical measurements and the physical properties of Earth materials. Topics include seismology; gravity; magnetics; electromagnetics; resistivity; ground penetrating radar; and well logging. Case histories will be considered in addition to the technical aspects of data collection, processing and interpretation. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>peoplesoft diff: 005755 2010-08-18 sxh121431</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * geos5395 (r3)</td>
<td>GEOS 5395 (GISC 5395) Satellite Geophysics and Applications (3 semester credit hours) This course concerns both the theory and application of observing geophysical fields from space-borne platforms. The observation procedures including orbital mechanics are introduced and signal propagation, errors and uncertainties will be addressed. Concepts of current satellite missions such as radar and laser altimetry, space gravimetry and magnetometry, and synthetic aperture radar will be discussed. Applications of satellite geophysical observations in tectonics, geodynamics, ocean and ice surface monitoring, hydrology, and terrain modeling will be introduced through student projects and presentations. (3-0) Y</td>
<td>phase: approve status: approving audit: 29</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove * geos5400 (r5)</td>
<td>GEOS 5400 Earth Science (4 semester credit hours) A review of Earth processes as a whole: time and geology; igneous and sedimentary processes and products; metamorphism; structure; evolution of continents and oceans. This course is open only to those students whose major undergraduate study was in subjects other than geology. Laboratory and field trip course. (3-3) R</td>
<td>phase: approve status: approving audit: 30</td>
<td></td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit *
| | geos5441 (r5)
| | geos5441.6 | GEOS 5441 Stratigraphy and Sedimentology (4 semester credit hours) Origin and classification of sedimentary rocks, reconstruction of ancient environments, and basic principles of modern stratigraphic nomenclature. Concepts of space and time in the rock record and methods of stratigraphic correlation. Integrated stratigraphic techniques. Study of sedimentary rocks in hand specimen and outcrop. Laboratory course. Field trips. Course is directed to graduate students not majoring in geology and is meant to provide a practical overview of sedimentary geology. Instructor consent required. (3-3) Y | phase: approve
| | | status: approving
| | | audit: 30 | sxh121431
| | | 2013-11-01
| | | 14:26:04 | 005779
| | | 40.0601.00.02 | audit: -1.6 m
| | | index: -1.6 m | match_fail | peoplesoft diff: 005779 2008-08-21 sxh121431 | ps info
| | | detail
| | | change
| | | process
| | | orion |----------|----------|----------|
| 2014-open | edit *
| | geos5470 (r6)
| | geos5470.6 | GEOS 5470 Structural Geology (4 semester credit hours) Examination of stress and strain, failure criteria, fault analysis, rheologic properties of geologic materials, fold analysis, and a survey of major structural provinces in North America, with supplemental readings. Laboratory includes map interpretation, standard graphical techniques, and use of stereographic projections, oral presentations, and problem sets. Laboratory and field trip course. Prerequisite: PHYS 1301 or equivalent. (3-3) Y | phase: approve
| | | status: approving
| | | audit: 30 | cxj140030
| | | 2013-10-16
| | | 15:34:21 | 005795
| | | 40.0601.00.02 | audit: -1.8 m
| | | index: -1.8 m | match_fail | peoplesoft diff: 005795 2008-08-21 sxh121431 | ps info
| | | detail
| | | change
| | | process
<p>| | | orion |----------|----------|----------|</p>
<table>
<thead>
<tr>
<th>start end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>geos5481 (r7)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>geos5481.8</td>
<td></td>
<td>GEOS 5481 Digital Geophysical Signal Processing (4 semester credit hours) Principles of the analysis of geophysical signals in both time and space. Includes integral transforms, spectral analysis, linear filter theory and deconvolution techniques. Computer applications are emphasized. Laboratory course. Prerequisite: GEOS 5303 or equivalent may be taken concurrently. (3-3) R</td>
<td>status: approving</td>
<td>2014-01-30 09:24:21 005798 40.0603.00.02 audit: -1.4 m index: -1.4 m</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>geos5484 (r5)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>geos5484.7</td>
<td></td>
<td>GEOS 5484 Near-Surface Geophysical Imaging (4 semester credit hours) This course concerns the theoretical and practical aspects of geophysical data collection. The planning and execution of small-scale surveys, of the type employed in engineering, groundwater and environmental site evaluations, is featured. Techniques covered include both refraction and reflection seismology and both low and high frequency, single and multi-channel ground-penetrating radar. Advantage is taken of both the similarities and complementary behaviors of seismic and radar waves. An integration, of both seismic and radar data is emphasized in interpretation. A background in calculus (MATH 2417) and general physics (PHYS 1301) is required. Instructor consent required. (3-3) T</td>
<td>status: approving</td>
<td>2014-02-11 13:49:56 005801 40.0603.00.02 audit: -1.5 m index: -1.5 m</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>geos5490 (r2)</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>geos5490.3</td>
<td></td>
<td>GEOS 5490 Applied Geophysics (4 semester credit hours) The theoretical basis and practical aspects of the collection, processing and interpretation of geophysical data. A broad range of methods will be discussed including: gravity, magnetic, electrical and seismic. Applications to geologic problems at a variety of scales from the near surface to continental will be considered. A laboratory will feature geophysical data acquisition and interpretation for a specific local geological target. (3-3) Y</td>
<td>status: approving</td>
<td>2014-01-14 09:42:39 012576 40.0603.00.02 audit: -1.4 m index: -1.4 m</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos5v08</td>
<td>(r6)</td>
<td>GEOS 5V08 Special Topics in Geosciences (1-9 semester credit hours) Courses dealing with a variety of topics including new techniques and specific problems in rapidly developing areas of the science. Hours vary depending on course requirements. May be repeated for credit as topics vary. Instructor consent required. ([1-9]-[0-9]) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos6381</td>
<td>(r5)</td>
<td>GEOS 6381 (GISC 6381) Geographic Information Systems Fundamentals (3 semester credit hours) Examines the fundamentals of Geographic Information Systems and their applications. It emphasizes the concepts needed to use GIS effectively for manipulating, querying, analyzing, and visualizing spatial-based data. Lab exercises, which use industry-standard GIS software packages, provide GIS experience to investigate real world problems including social, economic, and environmental issues. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos6382 (r6)</td>
<td>geos6382.6</td>
<td>GEOS 6382 Geophysical Inversion Theory (3 semester credit hours) Theoretical and practical aspects of fitting mathematical models to data in geophysics. Topics covered include the inversion of both discrete systems and integral equations, for linear and non-linear relationships between data and parameters. Particular attention is paid to assessment of model accuracy and uniqueness. Prerequisites: Advanced calculus (MATH 2419) and linear algebra (MATH 2418) or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
</tbody>
</table>

peoplesoft diff: 005849 2008-08-21 sxh121431
GEOS 6382 Geophysical Inversion Theory (3 semester credit hours) Theoretical and practical aspects of fitting mathematical models to data in geophysics. Topics covered include the inversion of both discrete systems and integral equations, for linear and non-linear relationships between data and parameters. Particular attention is paid to assessment of model accuracy and uniqueness. Prerequisites: Advanced calculus (MATH 2419) and linear algebra (MATH 2418) or equivalent. (3-0) R

| 2014-open | edit * | geos6383 (r3) | geos6383.6 | GEOS 6383 (GISC 6382) Applied Geographic Information Systems (3 semester credit hours) Further develops hands-on skills with industry-standard GIS software for application in a wide variety of areas including urban infrastructure management, marketing and location analysis, environmental management, geologic and geophysical analysis and the Economic, Political and Policy Sciences. Prerequisite: (GISC 6381 or GEOS 6381) or equivalent with instructor’s permission. (3-0) Y | phase: approve | status: approving | audit: 30 |

peoplesoft diff: 005850 2013-08-25 sxh121431
GEOS 6383 (GISC 6382) Applied Geographic Information Systems (3 semester credit hours) Further develops hands-on skills with industry-standard GIS software for application in a wide variety of areas including urban infrastructure management, marketing and location analysis, environmental management, geologic and geophysical analysis and the Economic, Political and Policy Sciences. Prerequisite: (GISC 6381 or GEOS 6381) or equivalent with instructor’s permission. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos6384 (r5)</td>
<td>geos6384.9</td>
<td>GEOS 6384 (GISC 6384) Advanced Geographic Information Systems (3 semester credit hours) Treatment of more advanced GIS topics with real world applications. Topics covered include raster and vector data models, Geodatabase, map algebra, 3-D surface analysis, spatial interpolation and network analysis. Student will be acquainted with state-of-the-art software through hands-on laboratory experiences. Prerequisite: GEOS 6381 or GISC 6381. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 16:00:21 005851 11.0401.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos6385 (r5)</td>
<td>geos6385.8</td>
<td>GEOS 6385 (GISC 6385) GIS Theories, Models and Issues (3 semester credit hours) Provides an understanding of the underlying theories, mathematical and geometric tools, and their computational implementations that establish GIS capabilities to handle and analyze georeferenced information. Associated issues (such as uncertainty, spatial analysis and spatial data management) highlighted. Prerequisites: (GEOS 6381 or GISC 6381) and (GEOS 6383 or GISC 6382), or equivalent with instructor consent required. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 16:46:27 005852 11.0401.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos6387 (r5)</td>
<td>geos6387.8</td>
<td>GEOS 6387 (GISC 6387) Geospatial Sciences Workshop (3 semester credit hours) Fulfills the research project requirement for one of the Geospatial Science graduate certificate programs, e.g. GIS, remote sensing and geospatial intelligence. Each participant develops a project which should include aspects of geospatial database design, manipulation, and analysis, and cartographic production. Projects may be designed in coordination with a local government, utility, business, or other entity that uses GIS in its operations and research. Note: Students should should take this course with varied research topics if different certificate programs are pursued. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisites: GEOS 6381 or GISC 6381. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-01-23 15:42:35</td>
<td>mxv062000</td>
<td>11.0401.00.02</td>
</tr>
</tbody>
</table>

GEOS 6387 (GISC 6387) Geographic Information Systems Geospatial Sciences Workshop (3 semester credit hours) Provides a structured laboratory experience focused on fulfilling the students’ substantive area research project requirement for one of interest. the Geospatial Science graduate certificate programs, e.g. GIS, remote sensing and geospatial intelligence. Each participant develops a project which should include aspects of geospatial database design and design, manipulation, spatial and analysis, and cartographic production. Projects may be designed in coordination with a local government, utility, business, or other entity that uses GIS in its operations and research. Note: Students should should take this course with varied research topics if different certificate programs are pursued. May be repeated for credit as topics vary (9 semester credit hours maximum). Prerequisites: (GEOS GEOS 6381 or GISC 6381) and (GEOS 6383 or GISC 6382), 6381. (3-0) Y
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Req Type</th>
<th>Course</th>
<th>Req ID</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>geos6392 (r6)</td>
<td></td>
<td>GEOS 6392 Reflection Seismology (3 semester credit hours) Theoretical and practical aspects of seismic reflection data acquisition and processing. Includes the wave equation, the convolutional model, coded sources, the array response, velocity estimation, statics, filtering, pre- and post-stack migration, and direct and indirect detection of hydrocarbons, VSPs, AVO and 3-D processing. Prerequisites: GEOS 5481, and GEOS 5392 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>geos6393 (r10)</td>
<td></td>
<td>GEOS 6393 Computational Seismology (3 semester credit hours) Principles of parallel computing with applications to seismology. Includes overviews of current computer cluster and switch architectures, writing and debugging parallel code, characterization of machine performance, fast Fourier transforms, Radon transforms, solution of matrix and wave equations. Laboratory course. Prerequisites: GEOS 5303, GEOS 5481, and any numerical analysis course. (2-3) R</td>
<td>phase: approve</td>
<td></td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>---------------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos6395 (r5)</td>
<td>geos6395.5</td>
<td>GEOS 6395 Seismic Modeling (3 semester credit hours) Theory and application of the major techniques for computation of synthetic seismograms. Topics include asymptotic ray theory, spectral and slowness methods, finite differences, finite elements, Kirchhoff, and boundary integral methods. Readings will be drawn from the literature. Prerequisites: GEOS 5392 and any two graduate seismology courses. (3-0) R.</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 15:37:05</td>
<td>peoplesoft diff: 005861 2008-08-21 sxh121431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 6395 Seismic Modeling (3 semester credit hours) Theory and application of the major techniques for computation of synthetic seismograms. Topics include asymptotic ray theory, spectral and slowness methods, finite differences, finite elements, Kirchhoff, and boundary integral methods. Readings will be drawn from the literature. Prerequisites: GEOS 5392 and any two graduate seismology courses. (3-0) R.</td>
<td>status: approving</td>
<td>005861 40.0603.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos6396 (r5)</td>
<td>geos6396.5</td>
<td>GEOS 6396 Seismic Inversion (3 semester credit hours) Theory and application of the major techniques for inversion of seismic data. Topics include linear and nonlinear matrix methods, Wiechert-Herglotz integration, extremal inversion, migration, wavefield imaging of body and surface waves, and tomography, imaging of VSPs, and Born inversion. Readings will be drawn from the literature. Prerequisite: Any two graduate seismology courses. (3-0) R.</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 15:37:12</td>
<td>peoplesoft diff: 005862 2008-08-21 sxh121431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 6396 Seismic Inversion (3 semester credit hours) Theory and application of the major techniques for inversion of seismic data. Topics include linear and nonlinear matrix methods, Wiechert-Herglotz integration, extremal inversion, migration, wavefield imaging of body and surface waves, and tomography, imaging of VSPs, and Born inversion. Readings will be drawn from the literature. Prerequisite: Any two graduate seismology courses. (3-0) R.</td>
<td>status: approving</td>
<td>005862 40.0603.00.02 audit: -1.7 m index: -1.7 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>reinstate *</td>
<td>geos6398 (r4)</td>
<td>geos6398.4</td>
<td>GEOS 6398 Thesis (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) S.</td>
<td>phase: approve</td>
<td>mxi062000 2014-02-11 11:05:45</td>
<td>peoplesoft diff: 005864 1988-08-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 6398 Thesis (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) S.</td>
<td>status: approving</td>
<td>005864 40.0601.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>geos7110 (r3)</td>
<td>geos7110.3</td>
<td>GEOS 7110 Workshop in Environmental Geosciences (1 semester credit hour) Discussion of current topics in environmental geoscience, including student and faculty research, scientific literature, and advanced techniques in environmental geosciences. (1-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-25 09:03:59 005889 40.0601.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005889 2008-08-21 sxh121431</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>geos7170 (r3)</td>
<td>geos7170.3</td>
<td>GEOS 7170 Workshop in Structure/Tectonics (1 semester credit hour) Presentation and discussion of current research with emphasis on problems, techniques, and recent literature. May be repeated for credit. (1-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-25 09:04:15 005891 40.0601.00.02 audit: -1.8 m index: -1.8 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005891 2008-08-21 sxh121431</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>geos7190 (r5)</td>
<td>geos7190.6</td>
<td>GEOS 7190 Workshop in Seismology (1 semester credit hour) Informal presentation and discussion of current research of graduate students and faculty, of new computing equipment and software, and of current research literature. Pass/Fail only. May be repeated for credit. (1-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-12 15:58:45 005892 40.0603.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005892 2008-08-21 sxh121431</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos7327 (r6)</td>
<td>geos7327.7</td>
<td>GEOS 7327 (GISC 7367) Remote Sensing Workshop (3 semester credit hours) An independent project is designed and conducted by the student, after instructor approval. The project develops and demonstrates student's competence in using remote sensing techniques in a substantive application to his/her field of interest. Projects may be developed in coordination with a local government, utility, business, or other entity, which uses remote sensing in its operations and research. A formal presentation and a project report are required. Prerequisite: GISC 7365 or GEOS 5326. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-16 15:37:23</td>
<td>peoplesoft diff: 005900 2013-08-25 sxh121431</td>
<td>ps info process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos7v00 (r5)</td>
<td>geos7v00.6</td>
<td>GEOS 7V00 Research and Literature Seminar (1-2 semester credit hours) Presentations and critical analysis of independent work and of the recent literature. Pass/Fail only. May be repeated for credit. Instructor consent required. (1-2) Y</td>
<td>phase: approve</td>
<td>sxh121431 2013-11-01 14:29:25</td>
<td>peoplesoft diff: 005887 2008-08-21 sxh121431</td>
<td>ps info process orion</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>geos8398 (r5)</td>
<td>geos8398.8</td>
<td>request to remove this course from catalog GEOS 8398 Thesis (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-02-11 11:06:45</td>
<td></td>
<td>peoplesoft diff: 005961 2014-02-11 11:06:45</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td>------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos8399 (r4)</td>
<td>geos8399.6</td>
<td>GEOS 8399 Dissertation (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 22:01:50 005962 40.0601.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005962 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 8399 Dissertation (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos8v10 (r4)</td>
<td>geos8v10.6</td>
<td>GEOS 8V10 Research in Hydrogeology-Environmental Geosciences (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 14:52:10 005916 40.0605.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005916 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 8V10 Research in Hydrogeology-Environmental Geosciences (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos8v21 (r4)</td>
<td>geos8v21.6</td>
<td>GEOS 8V21 Research in Remote Sensing, GIS and GPS (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 14:52:30 005918 40.0601.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005918 2012-08-26 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 8V21 Research in Remote Sensing, GIS and GPS (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos8v50 (r3)</td>
<td>geos8v50.4</td>
<td>GEOS 8V50 Research in Geochemistry (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 14:51:50 005921 40.0602.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005921 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 8V50 Research in Geochemistry (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos8v70 (r3)</td>
<td>geos8v70.4</td>
<td>GEOS 8V70 Research in Structural Geology-Tectonics (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 14:53:00 005923 40.0601.00.02 audit: -1.7 m index: -1.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 005923 2008-08-21 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOS 8V70 Research in Structural Geology-Tectonics (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request</td>
<td>request</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos8v80</td>
<td>(r5)</td>
<td>geosv80.6</td>
<td>GEOS 8V80 Research in Geophysics (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>geos8v90</td>
<td>(r4)</td>
<td>geosv90.5</td>
<td>GEOS 8V90 Research in Seismology (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>geos8v99</td>
<td>(r4)</td>
<td>geosv99.9</td>
<td>request to remove this course from catalog GEOS 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math5301</td>
<td>(r6)</td>
<td>math5301.7</td>
<td>MATH 5301 Elementary Analysis I (3 semester credit hours) Real numbers, differentiation, integration, metric spaces, basic point set topology, power series, analytic functions, Cauchy's theorem. Prerequisite: MATH 2451 and MATH 3310 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math5302</td>
<td>(r5)</td>
<td>math5302.5</td>
<td>MATH 5302 Elementary Analysis II (3 semester credit hours) Continuation of MATH 5301. Prerequisite: MATH 5301. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>math5304</td>
<td>(r6) math5304.9</td>
<td>MATH 5304 Applied Mathematical Analysis for Non-Majors (3 semester credit hours) Techniques of mathematical analysis applicable to the social, behavioral and management sciences. Differential and integral calculus of one and many variables. May not be used to fulfill degree requirements. Prerequisite: MATH 1314. (3-1) S</td>
<td>phase: approve</td>
<td>lantoine 2013-11-27 10:08:49 008744 27.0301.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>math5305</td>
<td>(r7) math5305.9</td>
<td>MATH 5305 Higher Geometry for Teachers (3 semester credit hours) Topics in modern Euclidean geometry including distinguished points of a triangle, circles including the nine-point circle, cross ratio, transformations; introduction to projective geometry. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Prerequisite: Junior-level mathematics course. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-12 09:55:33 008745 27.0101.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math5306 (r6)</td>
<td>math5306.8</td>
<td>MATH 5306 Non-Euclidean Geometry for Teachers (3 semester credit hours) The relations among elliptic, Euclidean and hyperbolic geometries, Euclidean models of elliptic and hyperbolic geometries. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Prerequisite: Junior-level mathematics course. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:47:53 008746 27.0101.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
<td>peoplesoft diff: 008746 2008-08-21 ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math5313 (r7)</td>
<td>math5313.9</td>
<td>MATH 5313 Modern Algebra for Teachers (3 semester credit hours) Study of modern algebra involving groups, rings, fields and Galois Theory. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Prerequisite: Junior-level mathematics course. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:48:48 008750 27.0101.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
<td>peoplesoft diff: 008750 2008-08-21 ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math5390 (r6)</td>
<td>math5390.8</td>
<td>MATH 5390 Topics in Mathematics - Level 5 (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 14:54:37 008761 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>peoplesoft diff: 008761 2013-08-25 keh120030 ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6301</td>
<td>(r6)</td>
<td>math6301.7</td>
<td>MATH 6301 Real Analysis (3 semester credit hours) Lebesgue measure in finite- dimensional spaces, Abstract measures, measurable functions, convergence a.e., Egorov's Theorem, convergence in measure, Lebesgue integral, Lebesgue's bounded convergence theorem, Levi's monotone convergence theorem, Fatou's Lemma, Fubini's theorem, Lp-spaces. Prerequisite: MATH 5302. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-31 14:54:52 008774 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>lantoine</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6302</td>
<td>(r5)</td>
<td>math6302.6</td>
<td>MATH 6302 Functional Analysis I (3 semester credit hours) Banach and Hilbert spaces, classical theorems of functional analysis, compact operators, Fredholm operators, elements of spectral theory, introduction to unbounded operators. Prerequisite: MATH 6301. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-10-31 14:56:55 008775 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>lantoine</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math6303 (r4)</td>
<td>MATH 6303 Theory of Complex Functions I (3 semester credit hours) Complex integration, Cauchy's theorem, calculus of residues, power series, entire functions, Riemann mapping theorems. Riemann surfaces, conformal mapping with applications. Prerequisite: MATH 4301 and MATH 4302. (3-0) Y</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 16:45:36 008776 27.0301.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>math6303.6</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 008776 2008-08-21</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 6303 Theory of Complex Functions I (3 semester credit hours) Complex integration, Cauchy's theorem, calculus of residues, power series, entire functions, Riemann mapping theorems. Riemann surfaces, conformal mapping with applications. Prerequisite: Undergraduate analysis (e.g., MATH 4301-2). 4301 and MATH 4302. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math6304 (r5)</td>
<td>MATH 6304 Theory of Complex Functions II (3 semester credit hours) Riemann surfaces, meromorphic and holomorphic functions and differentials, the normalization theorem, the Riemann-Roch theorem, Abel theorem, applications to nonlinear equations. Prerequisite: MATH 6303. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-10-31 14:58:17 008777 27.0301.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>math6304.6</td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 008777 2008-08-21</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 6304 Theory of Complex Functions II (3 semester credit hours) Riemann surfaces, meromorphic and holomorphic functions and differentials, the normalization theorem, the Riemann-Roch theorem, Abel theorem, applications to nonlinear equations. Prerequisite: MATH 6303. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6305 (r4)</td>
<td>math6305.5</td>
<td>MATH 6305 Mathematics of Signal Processing (3 semester credit hours) The course is devoted to a mathematical foundation of some of the key topics in signal processing: discrete and continuous signal transforms, least squares methods and adaptive filtering, compressed sensing and related topics. Prerequisites: (MATH 2418 and MATH 2451) or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-10-31 15:01:58 008778 27.0301.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>peoplesoft diff: 008778 2012-08-26</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove *</td>
<td>math6306 (r8)</td>
<td>math6306.9</td>
<td>MATH 6306 Topology and Geometry (3 semester credit hours) Topics in topology, differential geometry and their applications to areas such as biological sciences and engineering. Prerequisite: Undergraduate analysis (MATH 4301-2 or MATH 5301-2) or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 15:19:42 008779 27.0101.00.01 audit: -1.6 m index: -1.6 m</td>
<td>peoplesoft diff: 008780 2008-08-21</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6307 (r5)</td>
<td>math6307.6</td>
<td>MATH 6307 Wavelets and Their Applications (3 semester credit hours) An introduction to windowed Fourier and continuous wavelet transforms, generalized frames, discrete wavelet frames, multiresolution analysis, Daubechies' orthogonal wavelet bases, and their applications in partial differential equations and signal processing. Prerequisite: (MATH 2418 and MATH 2420) or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 15:35:04 008780 27.0301.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>peoplesoft diff: 008780 2008-08-21</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6308</td>
<td>(r3) math6308.4</td>
<td>MATH 6308 Inverse Problems and Applications (3 semester credit hours) Exact and approximate methods of nondestructive inference, such as tomography and inverse scattering theory in one and several dimensions, with applications in physical and biomedical sciences and engineering. Prerequisite: (MATH 2418 and MATH 2420) or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 15:35:44 008781 27.0301.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6309</td>
<td>(r1) math6309.2</td>
<td>MATH 6309 Differential Geometry (3 semester credit hours) Smooth manifolds, tangent bundles, smooth partitions of unity, submanifolds, Sard's theorem, transversality, embeddings, Whitney theorem, differential forms, Frobenius Theorem, de Rham cohomology, degree theory on manifolds, Riemannian metric, Gauss-Bonnet theorem. Prerequisite: MATH 4301 or MATH 5301. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 14:49:06 NOLINK 27.0104.00 01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 008781 2008-08-21

peoplesoft diff: NOLINK
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6310 (r1)</td>
<td>math6310.2</td>
<td>MATH 6310 Topology (3 semester credit hours) Metric spaces, introduction to topology, elements of homotopy theory, covering spaces, fundamental group, homotopy groups, fibrations, simplicial complexes and CW-complexes, degree theory. Prerequisite: MATH 4301 or MATH 5301. (3-0) Y</td>
<td>phase: approve</td>
<td>lantoine</td>
<td>2013-11-08 14:43:41 NOLINK 27.0105.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6311 (r5)</td>
<td>math6311.6</td>
<td>MATH 6311 Abstract Algebra I (3 semester credit hours) Basic properties of groups, rings, fields, and modules. Prerequisite: MATH 3311 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>lantoine</td>
<td>2013-11-08 15:36:25 008782 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6313 (r7)</td>
<td>math6313.8</td>
<td>MATH 6313 Numerical Analysis (3 semester credit hours) A study of numerical methods including the numerical solution of non-linear equations, linear systems of equations, interpolation, iterative methods and approximation by polynomials. Prerequisites: Knowledge of a high-level programming language and MATH 2418 and MATH 2451. (3-0) Y</td>
<td>phase: approve</td>
<td>lantoine</td>
<td>2013-11-08 15:37:20 008784 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math6315</td>
<td>MATH 6315 Ordinary Differential Equations (3 semester credit hours) The study of ordinary differential equations with emphasis on existence, uniqueness, linear systems, boundary value problems, and stability. Prerequisites: [MATH 2418 or equivalent and MATH 2420 and (MATH 4301 and MATH 4302)] or (MATH 5301 and MATH 5302). (3-0) Y</td>
<td>phase: approve</td>
<td>lantoine 2014-01-27 15:38:26</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(r7) math6315.9</td>
<td></td>
<td>status: approving</td>
<td>008786 27.0101.00.01 audit: -1.4 m index: -1.4 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 008786 2014-08-24 sxl21431 MATH 6315 Ordinary Differential Equations (3 semester credit hours) The study of ordinary differential equations with emphasis on existence, uniqueness, linear systems, boundary value problems, and stability. Prerequisites: Undergraduate course in linear algebra (MATH 2418) [MATH 2418 or equivalent; undergraduate analysis equivalent and MATH 2420 and (MATH 4301-2 4301 and MATH 4302)] or Math 5301/5302; undergraduate course in ordinary differential equations (MATH 2420); 5301 and MATH 5302). (3-0) Y</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math6316</td>
<td>MATH 6316 Differential Equations (3 semester credit hours) Continuation of MATH 6315 and an introduction to partial differential equations. Prerequisite: MATH 6315. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 13:45:23</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(r6) math6316.6</td>
<td></td>
<td>status: approving</td>
<td>008787 27.0101.00.01 audit: -2.1 m index: -2.1 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 008787 2008-08-21 MATH 6316 Differential Equations (3 semester credit hours) Continuation of MATH 6315 and an introduction to partial differential equations. Prerequisite: MATH 6315. (3-0) T</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6318 (r4)</td>
<td>math6318.5</td>
<td>MATH 6318 Numerical Analysis of Differential Equations (3 semester credit hours) Practical and theoretical aspects of numerical methods for both ordinary and partial differential equations are discussed. Topics selected from: initial value problems for ordinary differential equations, two-point boundary value problems, projection methods, finite difference, finite element and boundary element approximations for partial differential equations. Application of methods will be illustrated using Matlab. Prerequisite: MATH 6313 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 29</td>
<td>lantoine 2013-10-31 15:04:44 008789 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6319 (r5)</td>
<td>math6319.6</td>
<td>MATH 6319 Principles and Techniques in Applied Mathematics I (3 semester credit hours) Mathematical methods usually used in applied sciences and engineering. Topics chosen from advanced linear algebra; Hilbert spaces; positivity; quaternions; integral equations; Fourier analysis; distributions; convexity; asymptotic methods; special functions. Prerequisites: MATH 2418 and MATH 2420 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>lantoine 2013-11-08 15:43:19 008790 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6320 (r5)</td>
<td>MATH 6320 Principles and Techniques in Applied Mathematics II (3 semester credit hours) Continuation of Math 6319. Prerequisite: MATH 6319. (3-0) T</td>
<td>phase: approve</td>
<td>cx140030 2013-09-30 13:45:50 008791 27.0101.00.01 audit: -2.1 m index: -2.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math6320.5</td>
<td>MATH 6320 Principles and Techniques in Applied Mathematics II (3 semester credit hours) Continuation of Math 6319. Prerequisite: MATH 6319. (3-0) T</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008791 2012-08-26</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MATH 6320 Principles and Techniques in Applied Mathematics II (3 semester credit hours) Continuation of Math 6319. Prerequisite: MATH 6319. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6321 (r3)</td>
<td>MATH 6321 Optimization (3 semester credit hours) Introduction to theoretical and practical concepts of optimization in finite and infinite dimensional setting, least-squares estimation, optimization of functionals, local and global theory of constrained optimization, iterative methods. Prerequisites: MATH 2420 and MATH 2418. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 15:44:02 008792 27.0301.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math6321.4</td>
<td>MATH 6321 Optimization (3 semester credit hours) Introduction to theoretical and practical concepts of optimization in finite and infinite dimensional setting, least-squares estimation, optimization of functionals, local and global theory of constrained optimization, iterative methods. Prerequisites: MATH 2420 and MATH 2418. (3-0) T</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008792 2008-08-21</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MATH 6321 Optimization (3 semester credit hours) Introduction to theoretical and practical concepts of optimization in finite and infinite dimensional setting, least-squares estimation, optimization of functionals, local and global theory of constrained optimization, iterative methods. Prerequisites: Undergraduate course in ordinary differential equations (MATH 2420) MATH 2420 and linear algebra (MATH 2418). MATH 2418. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6331 (r7)</td>
<td>MATH 6331 Linear Systems and Signals (3 semester credit hours) Basic principles of systems and control theory: state space representations, stability, observableness, controllability, realization theory, transfer functions, feedback. Prerequisites: (MATH 2418 and MATH 2451) or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-10-31 15:03:34 008795 27.0301.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math6331.8</td>
<td>MATH 6331 Linear Systems and Signals (3 semester credit hours) Basic principles of systems and control theory: state space representations, stability, observableness, controllability, realization theory, transfer functions, feedback. Prerequisites: Undergraduate course in linear algebra (MATH 2418) and undergraduate analysis course (MATH 4301/4302) MATH 2418 and linear algebra (MATH 2418). MATH 2418. (3-0) T</td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008795 2012-08-26</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MATH 6331 Linear Systems and Signals (3 semester credit hours) Basic principles of systems and control theory: state space representations, stability, observableness, controllability, realization theory, transfer functions, feedback. Prerequisites: Undergraduate course in linear algebra (MATH 2418) and undergraduate analysis course (MATH 4301/4302) MATH 2418 and linear algebra (MATH 2418). MATH 2418. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math6332 (r5) math6332.5</td>
<td>MATH 6332 Advanced Control (3 semester credit hours) Theoretical and practical aspects of modern control methodologies in state space and frequency domain, in particular LQG and H-infinity control: coprime factorizations, internal stability, Kalman filter, optimal regulator, robust control, sensitivity minimization, loop shaping, model reduction. Prerequisite: MATH 6331. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 13:46:11 008796 27.0301.00.01 audit: -2.1 m index: -2.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math6336 (r4) math6336.5</td>
<td>MATH 6336 Nonlinear Control Systems (3 semester credit hours) Differential geometric tools, input-output maps, feedback linearization, nonlinear observers, input-output linearization, output tracking, and regulation, passivity based control, control systems on Lie groups. Prerequisites: (MATH 6315 and MATH 6331) or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-10-31 15:07:54 008799 27.0301.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start date</td>
<td>req type</td>
<td>course code</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6339</td>
<td>MATH 6339 Control of Distributed Parameter Systems (3 semester credit hours) Theoretical and technical issues for control of distributed parameter systems in the context of linear infinite dimensional dynamical systems: Evolution equations and control on Euclidean space, elements of functional analysis, semigroups of linear operators, abstract evolution equations, control of linear infinite dimensional dynamical systems, approximation techniques. Prerequisites: MATH 4362 and MATH 4301. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math6339.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 008800 2012-08-26 MATH 6339 Control of Distributed Parameter Systems (3 semester credit hours) Theoretical and technical issues for control of distributed parameter systems in the context of linear infinite dimensional dynamical systems: Evolution equations and control on Euclidean space, elements of functional analysis, semigroups of linear operators, abstract evolution equations, control of linear infinite dimensional dynamical systems, approximation techniques. Prerequisites: Undergraduate course in partial differential equations (MATH 4362) MATH 4362 and analysis (MATH 4301). MATH 4301. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6340</td>
<td>MATH 6340 Numerical Linear Algebra (3 semester credit hours) Topics include direct and iterative methods for solving linear systems; vector and matrix norms; condition numbers; least squares problems; orthogonalization, singular value decomposition; computation of eigenvalues and eigenvectors; conjugate gradients; preconditioners for linear systems; computational cost of algorithms. Topics will be supplemented with programming assignments. Recommended Prerequisites: MATH 4334 or equivalent and a prior programming course. Prerequisite: MATH 2418. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math6340.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK MATH 6340 Numerical Linear Algebra (3 semester credit hours) Topics include direct and iterative methods for solving linear systems; vector and matrix norms; condition numbers; least squares problems; orthogonalization, singular value decomposition; computation of eigenvalues and eigenvectors; conjugate gradients; preconditioners for linear systems; computational cost of algorithms. Topics will be supplemented with programming assignments. Recommended Prerequisites: MATH 4334 or equivalent and a prior programming course. Prerequisite: MATH 2418. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6341 (r3)</td>
<td>MATH 6341 Bioinformatics (3 semester credit hours) Fundamental mathematical and algorithmic theory behind current bioinformatics techniques are covered and implemented. They include hidden Markov models, dynamic programming, genetic algorithms, simulated annealing, neural networks, cluster analysis, and information theory. Prerequisites: Knowledge of Unix and a high level programming language. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>008801 2013-09-30 13:46:28 26.1103.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6342 (r1)</td>
<td>MATH 6342 Scientific Computing (3 semester credit hours) Introduction to scientific computing through projects in computational science and engineering. Topics include mathematical modeling; theoretical analysis of such models; numerical and symbolic computation; verification and validation; computational simulation. Representative projects will include applications of dynamical systems, Monte Carlo simulations, numerical optimization, and linear and nonlinear partial differential equations. The course includes an introduction to symbolic computation and to programming in MATLAB, Python, and/or C. Some prior programming experience is recommended. Prerequisites: MATH 4334 and MATH 4362 and MATH 6315 or instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 9</td>
<td>lantoine 2014-01-27 15:41:03 NOLINK 27.0304.00 01 audit: -1.4 m index: -1.4 m match_fail</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math6343 (r3)</td>
<td>MATH 6343 Computational Biology (3 semester credit hours) Mathematical and computation methods and techniques to analyze and understand problems in molecular biology are covered. Topics include sequence homology and alignment, genetic mapping, protein folding, and DNA computing. Prerequisite: MATH 2418 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 13:46:34 008802 26.1103.00.02</td>
<td>peoplesoft diff: 008802 2008-08-21 ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>math6343.3</td>
<td></td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 6343 Computational Biology (3 semester credit hours) Mathematical and computation methods and techniques to analyze and understand problems in molecular biology are covered. Topics include sequence homology and alignment, genetic mapping, protein folding, and DNA computing. Prerequisite: MATH 2418 or equivalent. (3-0) T</td>
<td>audit: -2.2 m index: -2.2 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math6345 (r5)</td>
<td>MATH 6345 Mathematical Methods in Medicine and Biology (3 semester credit hours) Introduction to the use of mathematical techniques in solving biologically important problems. Some examples of topics that might be covered are biochemical reactions, ion channels, cellular signaling mechanisms, kidney function, and nerve impulse propagation. Recommended Prerequisite: MATH 2420. Prerequisites: MATH 2417 and MATH 2419. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2014-01-27 16:40:56 008803 26.1103.00.02</td>
<td>peoplesoft diff: 008803 2012-08-26 ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>math6345.8</td>
<td></td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 6345 Mathematical Methods in Medicine and Biology (3 semester credit hours) Introduction to the use of mathematical techniques in solving biologically important problems. Some examples of topics that might be covered are biochemical reactions, ion channels, cellular signaling mechanisms, kidney function, and nerve impulse propagation. Recommended Prerequisite: MATH 2420. Prerequisites: MATH 2417, 2417 and MATH 2419. (MATH 2420 recommended) (3-0) T</td>
<td>audit: -1.4 m index: -1.4 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6350 (r1)</td>
<td>math6350.3</td>
<td>MATH 6350 Quantum Computation and Information (3 semester credit hours) Quantum states, channels, measurements; entropy, subadditivity; entanglement measures, discord; teleportation, dense coding, quantum key distribution; Shor's algorithm, Grover's search algorithm, hidden subgroup algorithms. Prerequisite: MATH 2418 and instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine</td>
<td>2014-01-27 16:04:44</td>
<td>NOLINK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH 6350 Quantum Computation and Information (3 semester credit hours) Quantum states, channels, measurements; entropy, subadditivity; entanglement measures, discord; teleportation, dense coding, quantum key distribution; Shor's algorithm, Grover's search algorithm, hidden subgroup algorithms. Prerequisite: MATH 2418 and instructor consent required. (3-0) T</td>
<td>status: approving</td>
<td>27.0304.00 01</td>
<td>audit: -1.4 m</td>
<td>index: -1.4 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6364 (r3)</td>
<td>math6364.4</td>
<td>MATH 6364 Stochastic Calculus in Finance (3 semester credit hours) Brownian Motion, Ito Calculus, Feynman-Kac formula and an outline of Stochastic Control, Black Scholes Analysis, Transaction Costs, Optimal Portfolio Investment. Prerequisites: STAT 4351 or equivalent and MATH 2451 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine</td>
<td>2013-11-08 15:47:29</td>
<td>008807</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH 6364 Stochastic Calculus in Finance (3 semester credit hours) Brownian Motion, Ito Calculus, Feynman-Kac formula and an outline of Stochastic Control, Black Scholes Analysis, Transaction Costs, Optimal Portfolio Investment. Prerequisites: STAT 4351 or equivalent, equivalent and MATH 2451 or equivalent. (3-0) T</td>
<td>status: approving</td>
<td>27.0301.00.01</td>
<td>audit: -1.6 m</td>
<td>index: -1.6 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6390 (r6)</td>
<td>math6390.9</td>
<td>MATH 6390 Topics in Mathematics - Level 6 (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>2013-11-04 14:55:02</td>
<td>008810</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH 6390 Topics in Mathematics - Level 6 (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>status: approving</td>
<td>27.0101.00.01</td>
<td>audit: -1.6 m</td>
<td>index: -1.6 m</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td>-------------</td>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6v81</td>
<td>(r5)</td>
<td>MATH 6V81 Special Topics in Mathematics - Level 6 (1-9 semester credit hours) May be repeated for credit as topics vary. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 14:55:34 008773 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math6v81.6</td>
<td></td>
<td>MATH 6V81 Special Topics in Mathematics - Level 6 (1-9 semester credit hours) Topics vary from semester to semester. May be repeated for credit as topics vary. Instructor consent required. ([1-9]-0) S</td>
<td>status: approving</td>
<td>peoplesoft diff: 008773 2013-08-25 keh120030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math6v98</td>
<td>(r1)</td>
<td>MATH 6V98 Masters Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>sxr090100 2014-01-13 08:40:00 NOLINK 27.0101.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info change</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math6v98.2</td>
<td></td>
<td>MATH 6V98 Masters Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>status: approving</td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math7313</td>
<td>(r5)</td>
<td>MATH 7313 Partial Differential Equations I (3 semester credit hours) Classical and modern solution techniques for initial and boundary value problems for parabolic, elliptic, and hyperbolic linear partial differential equations. Existence, uniqueness, well-posedness, fundamental solutions, and Green's functions. First-order nonlinear equations, scalar conservation laws, and the method of characteristics. An introduction to weak solutions and the theory of Sobolev spaces. Prerequisite: MATH 6301 and Math 6315 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-10-31 16:28:47 008813 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math7313.6</td>
<td></td>
<td>MATH 7313 Partial Differential and Integral Equations I (3 semester credit hours) Topics include theory of partial differential and integral equations. Classical and modern solution techniques to linear for initial and nonlinear boundary value problems for parabolic, elliptic, and hyperbolic linear partial differential equations. Existence, uniqueness, well-posedness, fundamental solutions, and boundary value problems. Introduction Green's functions. First-order nonlinear equations, scalar conservation laws, and the method of characteristics. An introduction to weak solutions and the theory of Sobolev spaces. Prerequisite: MATH 6316 recommended, 6301 and Math 6315 or equivalent. (3-0) T</td>
<td>status: approving</td>
<td>peoplesoft diff: 008813 2012-08-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------------</td>
<td>--</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math7314 (r5)</td>
<td>MATH 7314 Partial Differential Equations II (3 semester credit hours) Continuation of MATH 7313. Prerequisite: MATH 7313. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-10-31 16:36:33 008814 27.0101.00.01 audit: -1.6 m index: -1.6 m match fail</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math7314.6</td>
<td>peoplesoft diff: 008814 2008-08-21 MATH 7314 Partial Differential and Integral Equations II (3 semester credit hours) Continuation of MATH 7313. General theory of partial differential and integral equations, with emphasis on existence, uniqueness and qualitative properties of solutions. Prerequisite: MATH 7313. (3-0) T</td>
<td>status: approving</td>
<td></td>
<td>change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math7316 (r3)</td>
<td>MATH 7316 Wave Propagation with Applications (3 semester credit hours) Study of the wave equation in one, two and three dimensions, the Helmholtz equation, associated Green's functions, asymptotic techniques for solving the propagation problems with applications in physical and biomedical sciences and engineering. Prerequisites: MATH 6303 and MATH 6318. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 15:49:22 008816 27.0101.00.01 audit: -1.6 m index: -1.6 m match fail</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math7316.5</td>
<td>peoplesoft diff: 008816 2008-08-21 MATH 7316 Wave Propagation with Applications (3 semester credit hours) Study of the wave equation in one, two and three dimensions, the Helmholtz equation, associated Green's functions, asymptotic techniques for solving the propagation problems with applications in physical and biomedical sciences and engineering. Prerequisites: MATH 6303, 6303 and MATH 6318. (3-0) T</td>
<td>status: approving</td>
<td></td>
<td>change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math7319 (r6)</td>
<td>MATH 7319 Functional Analysis II (3 semester credit hours) Topological vector spaces, locally convex spaces, Fréchet spaces, test function spaces and tempered distributions, Fourier transforms and applications to differential equations. Recommended Prerequisite: MATH 6303. Prerequisites: MATH 6301 and MATH 6302. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2014-01-27 16:06:37 008819 27.0301.00.01 audit: -1.4 m index: -1.4 m match fail</td>
<td>ps info</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>math7319.8</td>
<td>peoplesoft diff: 008819 2012-08-26 MATH 7319 Functional Analysis II (3 semester credit hours) Elements of operator theory, spectral theory, topics in Banach Topological vector spaces, locally convex spaces, Fréchet spaces, test function spaces and operator algebras, tempered distributions, Fourier transforms and applications to differential equations. Prerequisites: MATH 6303. Prerequisites: MATH 6304/6302. 6301 and MATH 6303 recommended. 6302. (3-0) T</td>
<td>status: approving</td>
<td></td>
<td>change process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math7390 (r6)</td>
<td>MATH 7390 Topics in Mathematics - Level 7 (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 14:56:30 008821 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math8v02 (r5)</td>
<td>MATH 8V02 Individual Instruction in Mathematics (1-6 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 14:57:06 008822 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math8v04 (r5)</td>
<td>MATH 8V04 Topics in Mathematics - Level 8 (1-6 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary. Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-22 12:45:55 008823 27.0101.00.01 audit: -1.4 m index: -1.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * math8v07 (r4)</td>
<td>MATH 8V07 Research (1-9 semester credit hours) Open to students with advanced standing subject to approval of the Graduate Advisor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 15:00:01 008824 27.0101.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>remove_renumber * math8v98 (r6) ->math6v98</td>
<td>MATH 8V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 15:23:22 008825 27.0101.00.01 audit: -1.5 m index: -1.5 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>math8v99 (r7)</td>
<td>math8v99.10</td>
<td>MATH 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. Prerequisite: Open to PhD students only. ([1-9]-0) S</td>
<td>phase: approve status: approving audit: 30</td>
<td>lantoine 2014-01-27 16:39:18 008826 27.0101.00.01 audit: -1.4 m index: -1.4 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mthe5321 (r3)</td>
<td>mthe5321.6</td>
<td>MTHE 5321 Problems Using Algebra (3 semester credit hours) Analysis of the relationship of "school algebra" to "abstract algebra," solving non-routine problems involving these concepts and adapting them for classroom use. The role of functions, the relationships between the verbal, visual, and symbolic representations of algebraic concepts, and the role of technology in learning algebra will be emphasized. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Recommended Prerequisite: A junior-level mathematics course. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>mxv062000 2014-01-11 16:19:40 013455 13.1311.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 008826 2012-08-26

peoplesoft diff: 013455 2013-08-25 sxh121431
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mthe5322</td>
<td>(r3)</td>
<td>MTHE 5322 Problems Using Geometry (3 semester credit hours) Analysis of the relationship of "school geometry" to "college geometry," solving non-routine problems involving these concepts, and adapting them for classroom use. Topics include the van Hiele levels of reasoning, geometric transformations, the role of conjecture and proof, applications of geometry, and the role of technology in learning geometry. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Recommended Prerequisite: A junior-level mathematics course. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
<td>mxv062000</td>
<td>2014-01-11 16:20:19 013456 13.1311.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>mthe5323 (r3)</td>
<td>MTHE 5323 Problems Using Pre-calculus (3 semester credit hours) Analysis of the relationship of pre-calculus to real analysis, solving non-routine problems involving these concepts and adapting them for classroom use. The role of functions will be emphasized. Topics include functions [polynomial, rational, trigonometric, exponential, logarithmic], measurement trigonometry, vector functions [parametric equations], conic sections, real-world applications, and the role of technology in learning pre-calculus. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Recommended Prerequisite: A junior-level mathematics course. (3-0)</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mthe5323.5</td>
<td>peoplesoft diff: 013457 2013-08-25 sxh121431</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MTHE 5323 Problems Using Pre-calculus (3 semester credit hours) Analysis of the relationship of pre-calculus to real analysis, solving non-routine problems involving these concepts and adapting them for classroom use. The role of functions will be emphasized. Topics include functions [polynomial, rational, trigonometric, exponential, logarithmic], measurement trigonometry, vector functions [parametric equations], conic sections, real-world applications, and the role of technology in learning pre-calculus. **No credit allowed** May not be used to fulfill degree requirements for mathematical sciences majors except those in **M.A.T.** the Master of Arts in Teaching (MAT) program. **Recommended** Prerequisite: A junior-level mathematics course. (3-0)
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mthe5324</td>
<td>mthe5324.6</td>
<td>MTHE 5324 Problems Using Discrete Mathematics (3 semester credit hours) Selected concepts in discrete mathematics. Solving non-routine problems and adapting them for classroom use and incorporating topics from discrete mathematics into existing high school courses. Topics include number theory, combinatorics, probability, and applications of matrices. Appropriate technology will be used. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Recommended Prerequisite: A junior-level mathematics course. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 16:22:09 013458 13.1311.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013458 2013-08-25 sxh121431</td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mthe5325 (r4) mthe5325.6</td>
<td>MTHE 5325 Problems Using Mathematical Modeling (3 semester credit hours) Selected concepts in mathematical modeling. Solving non-routine problems and adapting them for classroom use and incorporating topics from mathematical modeling into existing high school courses. Topics include the construction, use, and analysis of empirical and analytical mathematical models, using modeling tools such as functions, curve fitting, simulation, matrices, difference and differential equations, finite graph theory. Appropriate technology will be used. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Recommended Prerequisite: A junior-level mathematics course. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 16:23:04 013459 13.1311.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>process orion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MTHE 5325 Problems Using Mathematical Modeling (3 semester credit hours) Selected concepts in mathematical modeling. Solving non-routine problems and adapting them for classroom use and incorporating topics from mathematical modeling into existing high school courses. Topics include the construction, use, and analysis of empirical and analytical mathematical models, using modeling tools such as functions, curve fitting, simulation, matrices, difference and differential equations, finite graph theory. Appropriate technology will be used. **No credit allowed** May not be used to fulfill degree requirements for mathematical sciences majors except those in the **M.A.T.** the Master of Arts in Teaching (MAT) program. **Recommended** Prerequisite: A junior-level mathematics course. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mthe5326</td>
<td>(r3)</td>
<td>mthe5326.5</td>
<td>MTHE 5326 Problems Using Statistics and Probability (3 semester credit hours) Selected concepts in statistics and probability. Solving non-routine problems and adapting them for classroom use and incorporating topics from statistics, probability, and data analysis into existing high school courses. Topics include describing patterns in data and their variability, sampling and experimental design, exploring random phenomena using probability and simulation, and statistical inference. Appropriate technology will be used. May not be used to fulfill degree requirements for mathematical sciences majors except those in the Master of Arts in Teaching (MAT) program. Recommended Prerequisite: A junior-level mathematics course. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 16:23:42 013460 13.1311.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013460 2013-08-25 sxh121431

MTHE 5326 Problems Using Statistics and Probability (3 semester credit hours) Selected concepts in statistics and probability. Solving non-routine problems and adapting them for classroom use and incorporating topics from statistics, probability, and data analysis into existing high school courses. Topics include describing patterns in data and their variability, sampling and experimental design, exploring random phenomena using probability and simulation, and statistical inference. Appropriate technology will be used. **No credit allowed** May not be used to fulfill degree requirements for mathematical sciences majors except those in **M.A.T. the Master of Arts in Teaching (MAT) program.** **Recommended Prerequisite:** A junior-level mathematics course. (3-0) T
<table>
<thead>
<tr>
<th>Start</th>
<th>Req Type</th>
<th>Course Code</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mtthe5327 (r2)</td>
<td>MTHE 5327 Functions and Modeling (3 semester credit hours) Explorations and lab activities designed to strengthen and expand knowledge of topics taught in middle school mathematics using functions as a basis for real world application models in science, engineering and technology. Emphasis on models involving proportional reasoning. Analysis of relationships between analogous topics in middle school and high school/college mathematics. Approaches may include lecture, explorations, laboratory activities, technology use, and problem based learning. May not be used to fulfill degree requirements for mathematical sciences majors except those in MAT program. Department consent required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mtthe5327.5</td>
<td>No credit allowed May not be used to fulfill degree requirements for mathematical sciences majors except those in M.A.T. MAT program. Department consent required.</td>
<td>phase: approve</td>
<td>2013-11-04 15:03:07 014205 13.1311.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 014205 2013-08-25 keh120030

<table>
<thead>
<tr>
<th>Start</th>
<th>Req Type</th>
<th>Course Code</th>
<th>Catalog Course Description</th>
<th>Request Status</th>
<th>Request Metadata</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>mtthe5v06 (r4)</td>
<td>MTHE 5V06 Special Topics in Mathematics Education (1-3 semester credit hours) May not be used to fulfill degree requirements within the MS or PhD degrees in Mathematical Sciences. May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required.</td>
<td>phase: approve</td>
<td>2014-01-22 12:52:29 009333 13.1311.00.02 audit: -1.4 m index: -1.4 m match_fail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mtthe5v06.8</td>
<td>May be repeated for a maximum of 9 hours (May May not be counted as credits toward used to fulfill degree requirements within the M.S. MS or Ph.D. PhD degrees in Mathematical Sciences.) Sciences. May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required.</td>
<td>status: approving</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * mthe5v09 (r4)</td>
<td>MTHE 5V09 Math Ed Independent Study (1-6 semester credit hours) Faculty-supervised independent study in mathematics education and mathematics education research. May be repeated for credit regardless of topics (12 semester credit hours maximum). Instructor consent required. (1-6) [Y]</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-01 14:40:01 013605 13.1311.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 013605 2012-08-26 sxr090100</td>
<td></td>
<td>phase: approve</td>
<td>mxv062000 2013-12-02 13:57:14 010305 40.0801.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5301 (r6)</td>
<td>PHYS 5301 Mathematical Methods of Physics I (3 semester credit hours) Vector analysis (and index notation); orthogonal coordinates; Sturm-Liouville theory; Legendre and Bessel functions; integral transforms; differential equations (including Green functions). (3-0) [Y]</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:37:12 010306 40.0810.00.02 audit: -2 m index: -2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 010305 2012-08-26</td>
<td></td>
<td>phase: approve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5302 (r6)</td>
<td>PHYS 5302 Mathematical Methods of Physics II (3 semester credit hours) Functions of complex variable (including contour integration and the residue theorem); tensor analysis; gamma and beta functions; probability. (3-0) [Y]</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:37:12 010306 40.0810.00.02 audit: -2 m index: -2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 010306 2012-08-26</td>
<td></td>
<td>phase: approve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5303 (r4)</td>
<td>PHYS 5303 Mathematical Methods of Physics III (3 semester credit hours) Continuation and extension of topics from PHYS 5301 and 5302 with applications related to problems and techniques encountered in physical sciences. (3-0) [R]</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:37:19 010307 40.0801.01.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peoplesoft diff: 010307 2010-08-18</td>
<td></td>
<td>phase: approve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>phys5305 (r5)</td>
<td>PHYS 5305 Monte Carlo Simulation Method and its Application (3 semester credit hours) An introductory course on the method of Monte Carlo simulation of physical events. This course covers the generation of 0-1 random number, simulation of arbitrary distributions, modeling, simulation and statistical analysis of experimental activities in physics research and engineering studies. As a comparison the concepts and applications of the Neural Networks will be discussed. Prerequisites: MATH 2417 or STAT 1342 or CS 3335 or FORTRAN programming languages. (3-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>mxv062000 2014-01-11 16:25:34 010309 40.0801.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>phys5311 (r8)</td>
<td>PHYS 5311 Classical Mechanics (3 semester credit hours) A course that aims to provide intensive training in problem solving. Rigorous survey of Newtonian mechanics of systems, including its relativity principle and applications to cosmology; the ellipsoid of inertia and its eigenstructure, with applications, Poinsot's theorem; Euler's equations, spinning tops; Lagrangian and Hamiltonian formalism with applications; chaos, small oscillations, velocity dependent potentials, Lagrange multipliers and corresponding constraint forces, canonical transformations, Lagrange and Poisson brackets, Hamilton-Jacobi theory. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>cxj140030 2013-09-30 14:37:31 010313 40.0801.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>phys5313 (r8)</td>
<td>phys5313.8</td>
<td>PHYS 5313 Statistical Physics (3 semester credit hours) Phase space, distribution functions and density matrices; microcanonical, canonical and grand canonical ensembles; partition functions; principle of maximum entropy; thermodynamic potentials and laws of thermodynamics; classical and quantum ideal gases; non-interacting magnetic moments; phonons and specific heat of solids; degenerate electron gas, its specific heat and magnetism; statistics of carriers in semiconductors; Bose-Einstein condensation; Black-body radiation; Boltzmann transport equation and H-theorem; relaxation time and conductivity; Brownian motion, random walks and Langevin equation; Einstein's relation; fluctuations in ideal gases; linear response and fluctuation-dissipation theorem; virial and cluster expansions, van der Waals equation of state; Poisson-Boltzmann and Thomas-Fermi equations; phases, phase diagrams and phase transitions of the first and second order; lattice spin models; ordering, order parameters and broken symmetries; Mean-field theory of ferromagnetism; Landau and Ginzburg-Landau theories; elements of modern theory of critical phenomena. (3-0) Y</td>
<td>phase: approve</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5314 (r3) phys5314.3</td>
<td>PHYS 5314 Applied Numerical Methods (3 semester credit hours) Core course for Applied Physics Concentration. A hands-on approach to the development and use of computational tools in solving problems routinely encountered in upper level applied physics and engineering. Main topics include curve fitting and regression analysis, significance tests, principles of numerical modeling, verification and validation of numerical algorithms, and nonlinear model building. Examples from real world applications will be presented and discussed to illustrate the appropriate use of numerical techniques. Prerequisites: PHYS 5301 or equivalent, and proficiency in a programming language. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-09-30 14:37:55 cxj140030 40.0801.01.02 audit: -1.9 m index: -1.9 m match_fail</td>
<td>peoplesoft diff: 013271 2011-08-23</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5315 (r6) phys5315.7</td>
<td>PHYS 5315 Scientific Computing (3 semester credit hours) An introduction to computational methods for solving systems of ordinary and partial differential equations using numerical techniques. Prerequisite or Corequisite: PHYS 5301. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-01-11 16:26:19 mxv062000 40.0801.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>peoplesoft diff: 010315 2012-08-26</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5317 (r4)</td>
<td>PHYS 5317 Atoms, Molecules and Solids I (3 semester credit hours) Core course for Applied Physics Concentration. Fundamental physical description of microsystems starting with the need for quantum mechanics and proceeding through the application of quantum mechanics to atomic systems. Emphasis will be on a physical understanding of the principles which apply to technologically important devices. Computer simulations will be used to focus the student on the important physical principals and not on detailed exact solutions to differential equations. Topics covered include: justification for quantum mechanics, application of quantum mechanics to one-electron problems, application to multi-electron problems in atomic systems. Prerequisites: MATH 2451 and PHYS 2325 and (PHYS 2326 or PHYS 2327). (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 16:27:36 010317 40.0801.00.02 audit: -1.5 m</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

PHYS 5317 Atoms, Molecules and Solids I (3 semester credit hours) Core course for Applied Physics Concentration. Fundamental physical description of microsystems starting with the need for quantum mechanics and proceeding through the application of quantum mechanics to atomic systems. Emphasis will be on a physical understanding of the principles which apply to technologically important devices. Computer simulations will be used to focus the student on the important physical principals and not on detailed exact solutions to differential equations. Topics covered include: justification for quantum mechanics, application of quantum mechanics to one-electron problems, application to multi-electron problems in atomic systems. Prerequisites: MATH 2451, 2451 and PHYS 2325 and PHYS (PHYS 2326 or PHYS 2327). (3-0) Y
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * phys5318 (r5) phys5318.5</td>
<td>PHYS 5318 Atoms, Molecules and Solids II (3 semester credit hours) Core course for Applied Physics Concentration. Application of quantum mechanics to molecules and solids. Topics in solids include optical, thermal, magnetic and electric properties, impurity doping and its effects on electronic properties, superconductivity, and surface effects. Various devices, such as transistors, FETs, quantum wells, detectors and lasers will also be discussed. Prerequisite: PHYS 5317, or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>2013-09-30 14:38:15 010318 40.0801.00.02</td>
<td>peoplesoft.diff: 010318 2012-08-26</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5319 (r3) phys5319.3</td>
<td>PHYS 5319 (SCI 5326) Astronomy: Our Place in Space (3 semester credit hours) Focus is on developing student understanding of how our planet fits within a larger astronomical context. Topics include common misconceptions in astronomy, scale in the Solar System and beyond, phases of the Moon, seasons, navigating the night sky, our Sun as a star, space weather, properties and lifecycles of stars, galaxies, and cosmology. (3-0) T</td>
<td>phase: approve</td>
<td>2013-09-30 14:38:22 013613 40.0201.00.02</td>
<td>peoplesoft.diff: 013613 2012-08-26</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5320 (r4) phys5320.4</td>
<td>PHYS 5320 Electromagnetism I (3 semester credit hours) Electrostatic boundary value problems, uniqueness theorems, method of images, Green's functions, multipole potentials, Legendre polynomials and spherical harmonics, dielectric and magnetic materials, magnetostatics, time-varying field and Maxwell's equations, energy and momentum of the field, Lienard-Wiechert potentials, electromagnetic radiation, polarization, refraction and reflection at plane interfaces. (3-0) Y</td>
<td>phase: approve status: approving audit: 30</td>
<td>cxa140030 2013-09-30 14:38:29 013312 40.0801.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td>peoplesoft diff: 013312 2013-08-25 sxh121431</td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * phys5321 (r4) phys5321.4 | PHYS 5321 Experimental Operation and Data Collection Using Personal Computers (3 semester credit hours) Computer interfacing to physical experiments using high level interface languages and environments. The student will have the opportunity to learn how to develop data acquisition software using LabView and LabWindows/CVI as well as how to write drivers to interface these languages to devices over the general purpose interface buss (GPIB). A laboratory is provided for hands-on training in these devices. (3-0) R | phase: approve status: approving audit: 30 | cxa140030 2013-09-30 14:38:36 010319 11.0701.00.06 audit: -2 m index: -2 m match_fail | peoplesoft diff: 010319 2012-08-26 |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>phys5322</td>
<td>phys5322.10</td>
<td>PHYS 5322 Electromagnetism II (3 semester credit hours) Fields and potentials, Gauge transformations and the wave equation. Electromagnetic waves in unbounded media - non-dispersive and dispersive media. Boundary conditions at interfaces. Solutions to the wave equation in rectangular cylindrical and spherical coordinates. Electromagnetic waves in bonded media - waveguides and resonant cavities. Radiating systems - electric and magnetic dipole radiation, electric quadruple radiation. Fundamentals of scattering and scalar diffraction. Lorentz transformation and covariant forms for Maxwell's equations. Radiation from moving charges - Synchrotron, Cherenkov and Bremsstrahlung Radiation. Prerequisite: PHYS 5320 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>phys5323</td>
<td>phys5323.6</td>
<td>PHYS 5323 Virtual Instrumentation with Biomedical Clinical and Healthcare Applications (3 semester credit hours) The application of the graphical programming environment of LabView will be demonstrated with examples related to the health care industry. Examples will be provided to highlight the use of the personal computer as a virtual instrument in the clinical and laboratory environment. A laboratory is provided for hands-on training to augment the lecture. (3-0) R</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 29</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>end</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5327 (r7)</td>
<td>2014-open</td>
<td>phys5327.7</td>
<td>PHYS 5327 (SCI 5327) Comparative Planetology (3 semester credit hours) Every world in the solar system is unique, but none more so than our own planet Earth. The course is an exploration of the astrophysical, chemical, and geological processes that have shaped each planet, moons and the myriad of rocky and icy bodies in our solar system with a special emphasis on what each tells us about Earth, and what discoveries of worlds orbiting other stars may tell us about our planetary system and home world. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:38:53 010325 40.0203.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5331 (r4)</td>
<td>2014-open</td>
<td>phys5331.5</td>
<td>PHYS 5331 (SCI 5331) Conceptual Physics I: Force and Motion (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics, emphasizing its applicability to the pre-college and undergraduate classroom. Uses inquiry-based approaches including examples of physics in the everyday world and connections to other fields of science. Topics include foundational concepts of forces, Newton's laws, energy, and momentum. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-01 14:39:31 010327 40.0801.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5332 (r2) phys5332.3</td>
<td>PHYS 5332 (SCI 5332) Conceptual Physics II: Particles and Systems (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics emphasizing its applicability to the pre-college and undergraduate classroom. Uses an inquiry-based approach including examples of physics in the everyday world and connections to other fields of science. This second class in the Conceptual Physics series builds on concepts from SCI 5331 to explore transfers of energy and forces within and between systems of particles. Topics include states of matter, fluids, waves and sound, and thermodynamics. Instructor consent required. (3-0) T</td>
<td>phase: approve status: approving audit: 29</td>
<td>cxj140030 2013-11-01 14:39:06 013614 40.0801.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>peoplesoft diff: 013614 2011-08-23 ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013614 2011-08-23

PHYS 5332 (SCI 5332) Conceptual Physics II: Particles and Systems (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics emphasizing its applicability to the pre-college and undergraduate classroom. Uses an inquiry-based approach including examples of physics in the everyday world and connections to other fields of science. This second class in the Conceptual Physics series builds on concepts from SCI 5331 to explore transfers of energy and forces within and between systems of particles. Topics include states of matter, fluids, waves and sound, and thermodynamics. **Instructor consent required. (3-0) T**
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5333</td>
<td>(r3)</td>
<td>PHYS 5333 (SCI 5333) Conceptual Physics III: Atoms, Charges, and Interactions (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics, emphasizing critical thinking and applications to the pre-college and undergraduate classroom. Uses inquiry-based approaches including examples of physics in the everyday world and connections to other fields of science. This third class in the Conceptual Physics series builds on concepts from SCI 5331 and SCI 5332 to explore interactions between particles of matter. Topics include inter- and intra-molecular forces, light, electricity and magnetism, and the nature of the atom. (3-1) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:39:11 013615 40.0801.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5335</td>
<td>(r2)</td>
<td>PHYS 5335 Remote Sensing of the Earth (3 semester credit hours) This course covers the basic physical principles and applications of remote sensing of the earth system (air, land and sea), covering the types of platforms (satellites and aerial vehicles) and sensors used (UV/Visible, IR, Microwave, Radio). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:39:18 014210 40.0801.00.02 audit: -2 m index: -2 m match_fail</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5341 (r6)</td>
<td>PHYS 5341 (SCI 5341) Astrobiology (3 semester credit hours) The ultimate integrated science, astrobiology brings together cutting-edge research from the fields of astrophysics, planetary science, terrestrial geosciences, and biology, to build understanding of how the history and diversity of life on our own planet relates to the possibilities for life on other worlds. This graduate-level survey course is designed to challenge participants of all backgrounds in a thoughtful and scientifically-based exploration of the young and dynamic multidisciplinary field of astrobiology. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000</td>
<td>ps info detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phys5341.7</td>
<td></td>
<td>status: approving</td>
<td>2014-01-11 16:28:29</td>
<td>change process</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>010328</td>
<td>orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 010328 2011-08-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 5341 (SCI 5341) Astrobiology (3 semester credit hours) The ultimate integrated science, astrobiology brings together cutting-edge research from the fields of astrophysics, planetary science, terrestrial geosciences, and biology, to build understanding of how the history and diversity of life on our own planet relates to the possibilities for life on other worlds. This graduate-level survey course is designed to challenge participants of all backgrounds in a thoughtful and scientifically-based exploration of the young and dynamic multidisciplinary field of astrobiology. Instructor consent required. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys5367 (r5)</td>
<td>PHYS 5367 Photonic Devices (3 semester credit hours) Basic principles of Photophysics of Condensed Matter with application to devices. Topics covered include photonic crystals, PBG systems, low threshold lasers, photonic switches, super-prisms and super-lenses. Photodetectors and photocells. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phys5367.5</td>
<td></td>
<td>status: approving</td>
<td>2013-09-30 14:39:34</td>
<td>change process</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>010342</td>
<td>orion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 010342 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 5367 Photonic Devices (3 semester credit hours) Basic principles of Photophysics of Condensed Matter with application to devices. Topics covered include photonic crystals, PBG systems, low threshold lasers, photonic switches, super-prisms and super-lenses. Photodetectors and photocells. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>course</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5371</td>
<td>phys5371</td>
<td>phys5371.9</td>
<td>PHYS 5371 (MSEN 5371) Solid State Physics (3 semester credit hours) Symmetry description of crystals, bonding, properties of metals, electronic band theory, thermal properties, lattice vibration, elementary properties of semiconductors. Prerequisites: PHYS 5301 and PHYS 5320 or equivalent. (3-0) Y</td>
<td>phase: approve</td>
<td>2014-01-14 10:45:58</td>
</tr>
</tbody>
</table>
| | | | | | **peoplesoft diff: 010345 2010-08-18**
PHYS 5371 (MSEN 5371) Solid State Physics (3 semester credit hours) Symmetry description of crystals, bonding, properties of metals, electronic band theory, thermal properties, lattice vibration, elementary properties of semiconductors. Prerequisites: PHYS 5301 and PHYS 5320 or equivalent. (3-0) Y | status: approving | 010345 | 40.0808.00.02 | audit: -1.5 m index: -1.5 m match_fail |
| 2014-open | edit * | phys5372 | phys5372 | phys5372.6 | PHYS 5372 Solid State Devices (3 semester credit hours) Basic concepts of solid state physics with application to devices. Topics covered include semiconductor homojunctions and heterojunctions, low dimensional physics, one and two dimensional electron gases, hot electron systems, semiconductor lasers, field effect and heterojunction transistors, microwave diodes and infrared and solar devices. Prerequisite: PHYS 5318. (3-0) R | phase: approve | 2013-09-30 14:39:47 | cxj140030 | ps info detail change process orion |
| | | | | | **peoplesoft diff: 010346 2008-08-21**
PHYS 5372 Solid State Devices (3 semester credit hours) Basic concepts of solid state physics with application to devices. Topics covered include semiconductor homojunctions and heterojunctions, low dimensional physics, one and two dimensional electron gases, hot electron systems, semiconductor lasers, field effect and heterojunction transistors, microwave diodes and infrared and solar devices. Prerequisite: PHYS 5318. (3-0) R | status: approving | 010346 | 40.0808.00.02 | audit: -2.2 m index: -2.2 m match_fail |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5376 (r4)</td>
<td>phys5376.4</td>
<td>PHYS 5376 (MSEN 5300) Introduction to Materials Science (3 semester credit hours) This course provides an intensive overview of materials science and engineering and includes the foundations required for further graduate study in the field. Topics include atomic structure, crystalline solids, defects, failure mechanisms, phase diagrams and transformations, metal alloys, ceramics, polymers as well as their thermal, electrical, magnetic and optical properties. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_type</td>
<td>course</td>
<td>req_id</td>
<td>catalog_course_description</td>
<td>request_status</td>
<td>request_metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5377 (r5)</td>
<td>phys5377.5</td>
<td>PHYS 5377 (MSEN 5377) Computational Physics of Nanomaterials (3 semester credit hours) This course introduces atomistic and quantum simulation methods and their applications to modeling study nanomaterials (nanoparticles, nanowires, and thin films). The course has three main parts: basic theory of materials (thermodynamics, statistical mechanics, and solid state physics), computational methods to model materials systems, and applications to practical problems. There are three main themes of the course: structure-property relationship of nanomaterials; atomistic modeling for atomic structure optimization; and quantum simulations for electronic structure study and functional property analysis. Prerequisite: MSEN 6319 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>2013-09-30 14:40:02</td>
<td>010349 40.0801.00.02</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5381 (r9)</td>
<td>phys5381.9</td>
<td>PHYS 5381 Space Science (3 semester credit hours) Introduction to the dynamics of the middle and upper atmospheres, ionospheres and magnetospheres of the earth and planets and the interplanetary medium. Topics include: turbulence and diffusion, photochemistry, aurorae and airglow, space weather and the global electric circuit. (3-0) R</td>
<td>phase: approve</td>
<td>2013-09-30 14:40:08</td>
<td>010350 40.0801.00.02</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5382</td>
<td>phys5382.5</td>
<td></td>
<td>PHYS 5382 Space Science Instrumentation (3 semester credit hours) Design, testing and operational criteria for space flight instrumentation including retarding potential analyzers, drift meters, neutral and ion mass spectrometers, auroral particle spectrometers, fast ion mass spectrometers, Langmuir probes, and optical spectrometers; ground support equipment; microprocessor design and operations. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:40:14 010351 40.0401.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5383</td>
<td>phys5383.9</td>
<td></td>
<td>PHYS 5383 (EEMF 5383 and MECH 5383 and MSEN 5383) Plasma Technology (3 semester credit hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:04:41 010352 40.0805.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phy5385 (r5)</td>
<td>phys5385.5</td>
<td>PHYS 5385 Natural And Anthropogenic Effects on The Atmosphere (3 semester credit hours) An examination of the physical, chemical and electrical effects on the atmosphere and clouds due to varying solar photon and solar wind inputs; and of the physical and chemical effects on ozone and atmospheric temperature following anthropogenic release of CFC's and greenhouse gases into the atmosphere. Suitable for Science Education and other non-physics majors. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:40:27 010354 40.0401.00.02 audit: -2 m index: -2 m match_fail</td>
<td>ps info detail change process orion peoplesoft diff: 010354 2012-08-26</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phy5391 (r7)</td>
<td>phys5391.7</td>
<td>PHYS 5391 Relativity I (3 semester credit hours) Mach's principle and the abolition of absolute space; the principle of relativity; the principle of equivalence; basic cosmology; four-vector calculus; special relativistic kinematics, optics, mechanics, and electromagnetism; basic ideas of general relativity. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:40:33 010355 40.0801.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td>ps info detail change process orion peoplesoft diff: 010355 2008-08-21</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phy5392 (r8)</td>
<td>phys5392.8</td>
<td>PHYS 5392 Relativity II (3 semester credit hours) Tensor calculus and Riemannian geometry; mathematical foundation of general relativity; the crucial tests; fundamentals of theoretical relativistic cosmology; the Friedmann model universes; comparison with observation. Normally follows PHYS 5391. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:40:41 010356 40.0801.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion peoplesoft diff: 010356 2008-08-21</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5395</td>
<td>(r4)</td>
<td>phys5395.4</td>
<td>PHYS 5395 Cosmology (3 semester credit hours) The course is an overview of contemporary cosmology including: cosmological models of the universe and their parameters; large scale structure of the universe; dark matter; cosmological probes and techniques such as gravitational lensing, cosmic microwave background radiation, and supernova searches; very early stages of the universe; dark energy and recent cosmic acceleration. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:40:48 010358 40.0201.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5v48</td>
<td>(r3)</td>
<td>phys5v48.8</td>
<td>PHYS 5V48 Topics in Physics (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-22 13:45:46 013688 40.0801.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys5v49</td>
<td>(r6)</td>
<td>phys5v49.11</td>
<td>PHYS 5V49 Special Topics in Physics (1-6 semester credit hours) Pass/Fail only. May be repeated for credit as topics vary (9 semester credit hours maximum). ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 16:30:11 010297 40.0801.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6300 (r9)</td>
<td>PHYS 6300 Quantum Mechanics I (3 semester credit hours) Dirac formalism, kets, bras, operators and position, momentum, and matrix representations, change of basis, Stern-Gerlach experiment, observables and uncertainty principle, translations, wave functions, time evolution, the Schrodinger and Heisenberg pictures, simple harmonic oscillator, wave equation, WKB approximation, rotations, angular momentum, spin, Clebsch-Gordan coefficients, perturbation theory, variational methods. Prerequisite: PHYS 5311 or consent of instructor. (3-0) Y</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6300.9</td>
<td>PHYS 6300 Quantum Mechanics I (3 semester credit hours) Dirac formalism, kets, bras, operators and position, momentum, and matrix representations, change of basis, Stern-Gerlach experiment, observables and uncertainty principle, translations, wave functions, time evolution, the Schrodinger and Heisenberg pictures, simple harmonic oscillator, wave equation, WKB approximation, rotations, angular momentum, spin, Clebsch-Gordan coefficients, perturbation theory, variational methods. Prerequisite: PHYS 5311 or consent of instructor. (3-0) Y</td>
<td>status: approving</td>
<td>2013-09-30 14:41:31 010382 40.0801.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6301</td>
<td>(r12)</td>
<td>phys6301.12</td>
<td>PHYS 6301 Quantum Mechanics II (3 semester credit hours) Non-relativistic many-particle systems and their second quantization description with creation and annihilation operators; Interactions and Hartree-Fock approximation, quasi-particles; attraction of fermions and superconductivity; repulsion of bosons and super fluidity; lattice systems, classical fields and canonical quantization of wave equations; free electromagnetic field, gauges and quantization; photons; coherent states; Interaction of light with atoms and condensed systems: emission, absorption and scattering; vacuum fluctuations and Casimir force; elements of relativistic quantum mechanics: Klein-Gordon and Dirac equations; particles and antiparticles; spin-orbit coupling; fine structure of the hydrogen atom; micro-causality and spin-statistics theorem; non-relativistic scattering theory: scattering amplitudes, phase shifts, cross-section and optical theorem; Born series; inelastic and resonance scattering; perturbative analysis of the interacting fields: Time evolution and interaction representation, S-matrix and Feynman diagrams; simple scattering processes; Dyson’s equation, self-energy and renormalization. Prerequisite: PHYS 6300. (3-0)</td>
<td>phase: approve</td>
<td>cxj140030</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHYS 6301 Quantum Mechanics II (3 semester credit hours) Non-relativistic many-particle systems and their second quantization description with creation and annihilation operators; Interactions and Hartree-Fock approximation, quasi-particles; attraction of fermions and superconductivity; repulsion of bosons and super fluidity; lattice systems, classical fields and canonical quantization of wave equations; free electromagnetic field, gauges and quantization; photons; coherent states; Interaction of light with atoms and condensed systems: emission, absorption and scattering; vacuum fluctuations and Casimir force; elements of relativistic quantum mechanics: Klein-Gordon and Dirac equations; particles and antiparticles; spin-orbit coupling; fine structure of the hydrogen atom; micro-causality and spin-statistics theorem; non-relativistic scattering theory: scattering amplitudes, phase shifts, cross-section and optical theorem; Born series; inelastic and resonance scattering; perturbative analysis of the interacting fields: Time evolution and interaction representation, S-matrix and Feynman diagrams; simple scattering processes; Dyson’s equation, self-energy and renormalization. Prerequisite: PHYS 6300. (3-0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6302</td>
<td>phys6302.6</td>
<td>PHYS 6302 Quantum Mechanics III (3 semester credit hours) Advanced topics in quantum mechanics. Prerequisite: PHYS 6300 and 6301 (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30</td>
<td>ps info change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>14:41:50</td>
<td>010384 40.0801.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peoplesoft diff: 010384 2010-08-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2014-open | edit * | phys6303 | phys6303.10 | PHYS 6303 Applications of Group Theory In Physics (3 semester credit hours) Group representation theory and selected applications in atomic, molecular and elementary-particle physics. Survey of abstract group theory and matrix representations of SU(2) and the rotation group, group theory and special functions, the role of group theory in the calculation of energy levels, matrix elements and selection rules, Abelian and non-Abelian gauge field theories, the Dirac equation, representations of SU(3), and the standard model of elementary-particle physics. Prerequisite: PHYS 5301. (3-0) R | phase: approve | cxj140030 2013-09-30 | ps info change process orion |
| | | | | | status: approving | 14:42:01 | 010385 40.0801.00.02 audit: -1.9 m index: -1.9 m match_fail |
| | | | | | audit: 30 | | |
| peoplesoft diff: 010385 2012-08-26 |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>open</td>
<td>edit *</td>
<td>phys6313 (r6)</td>
<td>phys6313.6</td>
<td>PHYS 6313 Elementary Particles (3 semester credit hours) Elementary particles and their interaction; classification of elementary particles; fermions and bosons; particles and antiparticles; leptons and hadrons; mesons and baryons; stable particles and resonances; hadrons as composites of quarks and antiquarks; fundamental interactions and fields; electromagnetic, gravitational, weak and strong interactions; conservation laws in fundamental interactions; parity, isospin, strangeness, G-parity; helicity and chirality; charge conjugation and time reversal; strong reflection and CPT theorem; gauge invariance; quarks and gluons; discovery of c, b and t quarks and the W+ and Zo particles; recent discoveries. (Normally follows PHYS 6300 or 6301.) (3-0) T</td>
<td>phase: approve</td>
<td></td>
<td>ps info</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>phys6314 (r6)</td>
<td>phys6314.6</td>
<td>PHYS 6314 High Energy Physics (3 semester credit hours) Electromagnetic and nuclear interactions of particles with matter; particle detectors; accelerators and colliding beam machines; invariance principles and conservation laws; hadron-hadron interactions; static quark model of hadrons; weak interactions; lepton-quark interactions; the parton model of hadrons; fundamental interactions and their unification; generalized gauge invariance; the Weinberg-Salam Model and its experimental tests: quantum chromodynamics; quark-quark interactions; grand unification theories; proton decay, magnetic monopoles, neutrino oscillations and cosmological aspects; supersymmetries. (3-0) R</td>
<td>phase: approve</td>
<td>2013-09-30 14:42:20</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>phys6339 (r8)</td>
<td>phys6339.9</td>
<td>PHYS 6339 Special Topics In Quantum Electronics (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>2013-10-07 14:34:28</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6341 (r5)</td>
<td>phys6341.5</td>
<td>PHYS 6341 Nuclear Physics I: The Principles of Nuclear Physics (3 semester credit hours) Atomic physics; atomic spectra, x-rays and atomic structure. The constitution of the nucleus; isotopes, natural radioactivity, artificial nuclear disintegration and artificial radioactivity; alpha-, beta-, and gamma-decay; nuclear reactions, nuclear forces and nuclear structure. Nuclear models, neutron physics and nuclear fission. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:42:48 010417 40.0806.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6342 (r7)</td>
<td>phys6342.7</td>
<td>PHYS 6342 Nuclear Physics II: Physics and Measurement Of Nuclear Radiations (3 semester credit hours) Interaction of nuclear radiation with matter; electromagnetic interaction of electrons and photons; nuclear interactions. Operation and construction of counters and particle track detectors; electronic data acquisition and analysis systems. Statistical evaluation of experimental data. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:42:54 010418 40.0806.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6349 (r5)</td>
<td>phys6349.6</td>
<td>PHYS 6349 Special Topics in High Energy Physics (3 semester credit hours) Topics vary from semester to semester. May be repeated for credit (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-10-07 14:35:02 010419 40.0804.00.02 audit: -2.1 m index: -2.1 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys6353 (r10)</td>
<td>PHYS 6353 Atomic and Molecular Processes (3 semester credit hours) Study of theory and experimental methods applied to elastic scattering, excitation and ionization of atoms and molecules by electron and ion impact, electron attachment and detachment, and charge transfer processes. (3-0) R</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 14:43:23 010422 40.0801.00.02 audit: -2.1 m index: -2.1 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phys6353.10</td>
<td>peoplesoft diff: 010422 2012-08-26</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 6353 Atomic and Molecular Processes (3 semester credit hours) Study of theory and experimental methods applied to elastic scattering, excitation and ionization of atoms and molecules by electron and ion impact, electron attachment and detachment, and charge transfer processes. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys6369 (r8)</td>
<td>PHYS 6369 Special Topics in Optics (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 17:47:03 010430 40.0807.00.02 audit: -1.7 m index: -1.7 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phys6369.10</td>
<td>peoplesoft diff: 010430 2012-08-26</td>
<td>status: approving audit: 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 6369 Special Topics in Optics (3 semester credit hours) Topics vary from semester to semester. (May be repeated for credit to a maximum of 9 hours.) as topics vary (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys6371 (r6)</td>
<td>PHYS 6371 (MSEN 6371) Advanced Solid State Physics (3 semester credit hours) Continuation of MSEN 5371 or PHYS 5371, transport properties of semiconductors, ferroelectricity and structural phase transitions, magnetism, superconductivity, quantum devices, surfaces. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>mvx062000 2014-01-11 14:21:20 010431 40.0808.00.02 audit: -1.5 m index: -1.5 m</td>
<td>ps info detail change process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phys6371.9</td>
<td>peoplesoft diff: 010431 2012-08-26</td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 6371 (MSEN 6371) Advanced Solid State Physics (3 semester credit hours) Continuation of MSEN 5371 or PHYS 5371, transport properties of semiconductors, ferroelectricity and structural phase transitions, magnetism, superconductivity, quantum devices, surfaces. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6372 (r5)</td>
<td>phys6372.5</td>
<td>PHYS 6372 Physical Materials Science (3 semester credit hours) Advanced concepts of Materials Science. New directions in fabrication routes and materials design, such as biologically-inspired routes to electronic materials. Advanced materials and device characterization. Prerequisite: PHYS 5376 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>2013-09-30 14:43:56 010432 40.0808.00.02</td>
<td>cxj140030</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 010432 2008-08-21</td>
<td>PHYS 6372 Physical Materials Science (3 semester credit hours) Advanced concepts of Materials Science. New directions in fabrication routes and materials design, such as biologically-inspired routes to electronic materials. Advanced materials and device characterization. Prerequisite: PHYS 5376 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys6374 (r9)</td>
<td>phys6374.11</td>
<td>PHYS 6374 (MSEN 6374) Optical Properties of Solids (3 semester credit hours) Optical response in solids and its applications. Lorentz, Drude and quantum mechanical models for dielectric response function. Kramers-Kronig transformation and sum rules considered. Basic properties related to band structure effects, excitons and other excitations. Experimental techniques including reflectance, absorption, modulated reflectance, Raman scattering. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R</td>
<td>phase: approve</td>
<td>2014-01-11 14:25:52 010434 40.0807.00.02</td>
<td>mxv062000</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 010434 2012-08-26</td>
<td>PHYS 6374 (MSEN 6474) 6374) Optical Properties of Solids (3 semester credit hours) Optical response in solids and its applications. Lorentz, Drude and quantum mechanical models for dielectric response function. Kramers-Kronig transformation and sum rules considered. Basic properties related to band structure effects, excitons and other excitations. Experimental techniques including reflectance, absorption, modulated reflectance, Raman scattering. Prerequisite: PHYS/MSEN MSEN 5371 or PHYS 5371 or equivalent. (3-0) R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>

peoplesoft diff: 010437 2013-08-25 sxh121431

2014-open | edit * phys6379 (r8) phys6379.8 | PHYS 6379 Special Topics in Solid State Physics (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Department consent required. (3-0) R | phase: approve | sxr090100 2013-10-31 | 16:25:03 | 010438

peoplesoft diff: 010438 2008-08-21

PHYS 6379 Special Topics in Solid State Physics (3 semester credit hours) Topics vary from semester to semester. (May be repeated for credit to a maximum of 9 hours.) as topics vary (9 semester credit hours maximum). Department consent required. (3-0) R | status: approving | 010438 | 40.0801.00.02 | audit: -1.6 m index: -1.6 m match_fail | |
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * phys6383 (r12) phys6383.15</td>
<td>PHYS 6383 (EEMF 6383 and MECH 6383) Plasma Science (3 semester credit hours) Theoretically oriented study of plasmas. Topics to include: fundamental properties of plasmas, fundamental equations (kinetic and fluid theory, electromagnetic waves, plasma waves, plasma sheaths), plasma chemistry and plasma diagnostics. Prerequisite: EEGR 6316 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 14:12:27 010439 14.1201.00.06 audit: -1.5 m index: -1.5 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys6388 (r4) phys6388.5</td>
<td>PHYS 6388 Ionospheric Electrodynamics (3 semester credit hours) Generation of electric fields in the earth's ionosphere. The role of internal dynamos and external generators from the interaction of the earth with the solar wind. Satellite and ground-based observations of ionospheric phenomena such as ExB drift, the polar wind and plasma instabilities. Prerequisites: PHYS 5320 and PHYS 6383. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 16:30:50 010444 40.0801.00.02 audit: -1.5 m index: -1.5 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * phys6389 (r11) phys6389.11</td>
<td>PHYS 6389 Special Topics in Space Physics (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Department consent required. (3-0) S</td>
<td>phase: approve</td>
<td>sxr090100 2013-10-31 16:25:58 010445 40.0801.00.02 audit: -1.9 m index: -1.9 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>add_renumber *</td>
<td>phys8398</td>
<td>PHYS 6398 Thesis (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phys6398 (r1)</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phys6398.1</td>
<td></td>
<td></td>
<td>audit: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHYS 6398 Thesis (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>phys6399</td>
<td>PHYS 6399 Special Topics in Relativity (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phys6399.9</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 010450 2012-08-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHYS 6399 Special Topics in Relativity (3 semester credit hours) Topics vary from semester to semester. (May vary to a maximum of 9 hours.) as topics vary (9 semester credit hours maximum). Department consent required. (3-0) R</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>phys7v10</td>
<td>PHYS 7V10 Internal Research (3-6 semester credit hours) On campus research for Masters in Applied Physics. May be repeated for credit. Instructor consent required. ([3-6]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phys7v10.5</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 010453 2008-08-21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHYS 7V10 Internal Research (3-6 Semester Hours) semester credit hours) On campus research for Masters in Applied Physics. May be repeated for credit. Instructor consent required. ([3-6]-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>phys7v20</td>
<td>PHYS 7V20 Industrial Research (3-6 semester credit hours) Industrial research for Masters in Applied Physics. May be repeated for credit. Instructor consent required. ([3-6]-0) S</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phys7v20.5</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 010454 2008-08-21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHYS 7V20 Industrial Research (3-6 Semester Hours) semester credit hours) Industrial research for Masters in Applied Physics. May be repeated for credit. Instructor consent required. ([3-6]-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td></td>
<td>remove_renumber</td>
<td>phys8398</td>
<td>PHYS 8398 Thesis (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phys8398.11</td>
<td></td>
<td></td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2014-2014</td>
<td>2014-2014</td>
<td>remove *</td>
<td>phys8399 (r6)</td>
<td>phys8399.8</td>
<td>PHYS 8399 Dissertation (3 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. (3-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v10 (r4)</td>
<td>phys8v10.5</td>
<td>PHYS 8V10 Research in High Energy Physics and Elementary Particles (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v20 (r4)</td>
<td>phys8v20.5</td>
<td>PHYS 8V20 Research in Cosmology and Astrophysics (3-9 semester credit hours) Pass/ Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v30 (r4)</td>
<td>phys8v30.5</td>
<td>PHYS 8V30 Research in Quantum Electronics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
</tr>
<tr>
<td>2014-open</td>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v40 (r4)</td>
<td>phys8v40.6</td>
<td>PHYS 8V40 Research in Applied Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v50</td>
<td>phys8v50.5</td>
<td>PHYS 8V50 Research in Atomic and Molecular Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v60</td>
<td>phys8v60.5</td>
<td>PHYS 8V60 Research in Optics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v70</td>
<td>phys8v70.8</td>
<td>PHYS 8V70 Research in Materials Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v80</td>
<td>phys8v80.5</td>
<td>PHYS 8V80 Research in Atmospheric and Space Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>phys8v90</td>
<td>phys8v90.7</td>
<td>PHYS 8V90 Research in Mathematical Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 010459 2012-08-26
PHYS 8V50 Research in Atomic and Molecular Physics (3-9 semester credit hours) (P/F grading). (May Pass/Fail only. May be repeated for credit.) credit. Instructor consent required. ([3-9]-0) S

peoplesoft diff: 010460 2012-08-26
PHYS 8V60 Research in Optics (3-9 semester credit hours) (P/F grading). (May Pass/Fail only. May be repeated for credit.) credit. Instructor consent required. ([3-9]-0) S

peoplesoft diff: 010461 2012-08-26 sxr090100
PHYS 8V70 Research in Materials Physics (3-9 semester credit hours) P/F grading. Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

peoplesoft diff: 010462 2012-08-26
PHYS 8V80 Research in Atmospheric and Space Physics (3-9 semester credit hours) P/F grading. Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

peoplesoft diff: 010463 2013-08-25 keh120030
PHYS 8V90 Research in Mathematical Physics (3-9 semester credit hours) P/F grading. Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbbcebb74d94346/makepdf
<table>
<thead>
<tr>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 8V99</td>
<td>Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-04 15:14:11</td>
<td>ps info process orion</td>
</tr>
<tr>
<td>SCE 5334</td>
<td>Instructional Strategies in Science (3 semester credit hours) Designed for the master teacher/department leader, strategies for fostering an integrated science program based on national and Texas curriculum and assessment standards are presented through hands-on activities. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:15:12</td>
<td>process orion</td>
</tr>
<tr>
<td>SCE 5V06</td>
<td>Special Topics in Science Education (1-3 semester credit hours) May be repeated for credit (9 semester credit hours maximum). ([1-3]-0) S</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-06 10:05:11</td>
<td>process orion</td>
</tr>
<tr>
<td>SCE 5V07</td>
<td>Independent Study in Science Education (1-6 semester credit hours) Individual independent study in science education under the supervision of a faculty member. May be repeated for credit (12 semester credit hours maximum). Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 23:30:18</td>
<td>process orion</td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * sci5322 (r9) sci5322.10</td>
<td>SCI 5322 Basis of Evolution (3 semester credit hours) From Assembling the Tree of Life to new drug developments, evolution theory is at the core of biology advancements. The concept of evolution is discussed for its relevance as a basic understanding for a scientifically literate society and processes and mechanisms of natural selection are examined. Topics include pertinent history, the fossil record, extinction, emergent species, the human experience, and applied evolution technologies. Students will explore the origins of evolution theory, public misconceptions, teaching, and evolution education research. An intensive scientific argumentation component (rather than debate) through discourse, advanced readings, presentations, panel discussions, and formal writing is required. Viewpoints examined include those of evolutionary biologists and research scientists. (3-0) T</td>
<td>phase: approve</td>
<td>rmb101000 2013-11-18 14:01:43</td>
</tr>
</tbody>
</table>

peoplesoft diff: 011332 2012-08-26

SCI 5322 Basis of Evolution (3 semester credit hours) From Assembling the Tree of Life to new drug developments, evolution theory is at the core of biology advancements. The concept of evolution is discussed for its relevance as a basic understanding for a scientifically literate society and processes and mechanisms of natural selection are examined. Topics include pertinent history, the fossil record, extinction, emergent species, the human experience, and applied evolution technologies. Students will explore the origins of evolution theory, public misconceptions, teaching, and evolution education research. An intensive scientific argumentation component (rather than debate) through discourse, advanced readings, presentations, panel discussions, and formal writing is required. Viewpoints examined include those of evolutionary biologists and research scientists. (3-0) T
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * sci5323 (r7) sci5323.8</td>
<td></td>
<td>SCI 5323 Laboratories and Demonstrations for Middle School Science Teachers (3 semester credit hours) This course will emphasize ways that laboratory work and demonstrations help pre-high school students to acquire lasting understanding of concepts in chemistry and physics. Through a variety of laboratory exercises and demonstrations, teachers will be encouraged to select appropriate materials for their curriculum. Development of laboratory and demonstration presentation skills as well as new modules will be included in the course work. (2-3) Y</td>
<td>phase: approve</td>
<td>011333 2013-11-18 14:16:59 011333 40.0101.00.02 audit: -1.5 m index: -1.5 m match_fail</td>
<td>process orion</td>
</tr>
</tbody>
</table>

SCI 5323 Laboratories and Demonstrations for Middle School Science Teachers (3 semester credit hours) This course will emphasize ways that laboratory work and demonstrations help pre-high school students to acquire lasting understanding of concepts in chemistry and physics. Through a variety of laboratory exercises and demonstrations, teachers will be encouraged to select appropriate materials for their curriculum. Development of laboratory and demonstration presentation skills as well as new modules will be included in the course work. (2-3) Y
SCI 5324 Ecology (3 semester credit hours)
Ecology is the study of the interrelationships and patterns of organisms and their environments. Students will examine general ecological principles as related to productivity, population diversity, communities and ecosystem functions. Hands-on activities explore plant/insect interactions through traditional research and digital field sampling methods. This inquiry-based introductory course is aligned with instructional technology and ecology science teaching standards in the context of real-world constructivist practices. Participants will conduct student designed scientific investigations, including research question development, field collections, data analysis methods, and scientific writing. Students will prepare and submit a scientific journal manuscript. Includes a major field study component with daily and overnight off-campus field trips. Viewpoints examined include those of ecologists, entomologists, environmental scientists, and teachers. (2-3) T
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sci5326 (r8)</td>
<td>sci5326.10</td>
<td>SCI 5326 (PHYS 5319) Astronomy: Our Place in Space (3 semester credit hours) Focus is on developing student understanding of how our planet fits within a larger astronomical context. Topics include common misconceptions in astronomy, scale in the Solar System and beyond, phases of the Moon, seasons, navigating the night sky, our Sun as a star, space weather, properties and lifecycles of stars, galaxies, and cosmology. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011336 2012-08-26</td>
<td>status: approving</td>
<td>2013-11-18 14:17:12</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>011336</td>
<td>40.0201.00.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -1.6 m</td>
<td>index: -1.6 m</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sci5327 (r6)</td>
<td>sci5327.7</td>
<td>SCI 5327 (PHYS 5327) Comparative Planetology (3 semester credit hours) Every world in the solar system is unique, but none more so than our own planet Earth. The course is an exploration of the astrophysical, chemical, and geological processes that have shaped each planet, moons and the myriad of rocky and icy bodies in our solar system with a special emphasis on what each tells us about Earth, and what discoveries of worlds orbiting other stars may tell us about our planetary system and home world. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030</td>
<td>process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011337 2011-08-23</td>
<td>status: approving</td>
<td>2013-11-18 14:17:18</td>
<td>orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td>011337</td>
<td>40.0203.00.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: -1.6 m</td>
<td>index: -1.6 m</td>
<td>match_fail</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>sci5328</td>
<td>(r5) sci5328.6</td>
<td>SCI 5328 Marine Science (3 semester credit hours) Acquaint STEM teachers with basic principles of marine science and with issues surrounding our use of the oceans and their resources. Students will also gain experience in conducting research, presenting results, and developing lessons for their students. (2-3) Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>sci5329</td>
<td>(r4) sci5329.5</td>
<td>SCI 5329 Bioethics (3 semester credit hours) Bioethics incorporates philosophy and values that are at the heart of emerging technology, research, public understanding, and government policy. Focus on issues related to biotechnology in health care, ecology, agriculture and environmental disciplines including genetic transference, applied evolution technologies, assisted suicide, and new reproductive technologies. Students explore hypothetical and actual cases of bioethical dilemmas. Intensive writing component and discussion of teaching and policy development. Viewpoints examined include those of scientists, health professionals, theologians, policymakers and laypeople. (3-0) T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>sci5330 (r7)</td>
<td>sci5330.8</td>
<td>SCI 5330 Emerging Topics in Biology (3 semester credit hours) The media frequently announce biology advancements and research that affect human health, basic living needs, and biology education without critical analysis, often resulting in confusing the public and curtailing scientific literacy. Examination of resources and methods to critically evaluate biological information and scientific articles for sound theory development, research methods, and practical application. Topics include recent discoveries in the life sciences that meet the needs of society, health, and environmental issues. Although the topics build on emerging issues, they may include content areas such as cell and molecular biology, agriculture, epidemiology, and global warming. Students will examine effective ways to bring in new curricula into established course settings. Advanced curriculum writing component focused on science literacy. Viewpoints include those of biological research scientists, health professionals, and science education researchers. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 011339 2011-08-23</td>
<td></td>
<td>cxj140030</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course req</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sci5331 (r7) sci5331.9</td>
<td>SCI 5331 (PHYS 5331) Conceptual Physics I: Force and Motion (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics, emphasizing its applicability to the pre-college and undergraduate classroom. Uses inquiry-based approaches including examples of physics in the everyday world and connections to other fields of science. Topics include foundational concepts of forces, Newton's laws, energy, and momentum. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-18 14:17:46 011340 40.0801.00.02 audit: -1.5 m index: -1.5 m</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sci5332 (r6) sci5332.8</td>
<td>SCI 5332 (PHYS 5332) Conceptual Physics II: Particles and Systems (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics emphasizing its applicability to the pre-college and undergraduate classroom. Uses an inquiry-based approach including examples of physics in the everyday world and connections to other fields of science. This second class in the Conceptual Physics series builds on concepts from SCI 5331 to explore transfers of energy and forces within and between systems of particles. Topics include states of matter, fluids, waves and sound, and thermodynamics. Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-11-18 14:18:00 011341 40.0801.00.02 audit: -1.6 m index: -1.6 m</td>
<td>process orion</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>sci5333 (r7) sci5333.8</td>
<td>SCI 5333 (PHYS 5333) Conceptual Physics III: Atoms, Charges, and Interactions (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics, emphasizing critical thinking and applications to the pre-college and undergraduate classroom. Uses inquiry-based approaches including examples of physics in the everyday world and connections to other fields of science. This third class in the Conceptual Physics series builds on concepts from SCI 5331 and SCI 5332 to explore interactions between particles of matter. Topics include inter- and intra-molecular forces, light, electricity and magnetism, and the nature of the atom. (3-1) T</td>
<td>phase: approve</td>
<td>2013-11-18 14:18:09 011342 40.0801.00.02 audit: -1.6 m index: -1.6 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>sci5337 (r3) sci5337.4</td>
<td>SCI 5337 Rockin' Around Texas (3 semester credit hours) Provides greater familiarity with earth science and a bank of resources and instructional materials needed to lead geology field trips anywhere in Texas. Teachers will participate in extensive field, laboratory, and class work mostly conducted in a problem-based learning format. (2-3) T</td>
<td>phase: approve</td>
<td>2013-11-06 10:06:37 013686 13.1316.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>process orion</td>
</tr>
<tr>
<td>req type</td>
<td>course</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>course</td>
<td>req_id</td>
<td>description</td>
<td>phase</td>
<td>status</td>
<td>audit</td>
<td>phase</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sci5340 (r3) sci5340.4</td>
<td>SCI 5340 Statistics for Science/Mathematics Education (3 semester credit hours) Understanding and application of statistical techniques needed in design and interpretation of research in Science/Mathematics Education. Includes descriptive and inferential statistics, computer-based tools, and other appropriate topics. (3-0) Y</td>
<td>phase:</td>
<td>approve</td>
<td>cxj140030</td>
<td>2013-11-18</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>sci5341 (r2) sci5341.4</td>
<td>SCI 5341 (PHYS 5341) Astrobiology (3 semester credit hours) The ultimate integrated science, astrobiology brings together cutting-edge research from the fields of astrophysics, planetary science, terrestrial geosciences, and biology, to build understanding of how the history and diversity of life on our own planet relates to the possibilities for life on other worlds. This graduate-level survey course is designed to challenge participants of all backgrounds in a thoughtful and scientifically-based exploration of the young and dynamic multidisciplinary field of astrobiology. Instructor consent required. (3-0)</td>
<td>phase:</td>
<td>approve</td>
<td>mxv062000</td>
<td>2013-11-04</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| 2014-open | edit * sci5342 (r2) sci5342.4 | SCI 5342 Research Methods in STEM (3 semester credit hours) An introduction research process used by faculty in STEM disciplines. Through examples and/or projects, students will see the STEM research process, including conception, design, experimentation, analysis of results, and writing/publication. Instructor consent required. (3-0) T | phase: approve
status: approving
audit: 30 | | mxv062000 2013-11-04 15:16:25 014040 13.1316.00.02 audit: -1.6 m index: -1.6 m match_fail | process orion |
| 2014-open | edit * sci5v06 (r5) sci5v06.7 | SCI 5V06 Special Topics in Science (1-3 semester credit hours) May be repeated for credit. (9 semester credit hours maximum). ([1-3]-1) S | phase: approve
status: approving
audit: 30 | | mxv062000 2013-11-16 23:30:40 011327 13.1316.00.02 audit: -1.6 m index: -1.6 m match_fail | process orion |
| 2014-open | edit * sci5v08 (r4) sci5v08.9 | SCI 5V08 Independent Study in Science (1-6 semester credit hours) Faculty-supervised independent study in science content areas. May be repeated for credit regardless of topics (12 semester credit hours maximum). Instructor consent required. ([1-6]-0) Y | phase: approve
status: approving
audit: 30 | | mxv062000 2014-01-11 16:31:49 013609 13.1316.00.02 audit: -1.5 m index: -1.5 m match_fail | process orion |
| 2014-2014 | remove * smed5100 (r3) smed5100.7 | SMED 5100 Introductory Graduate Seminar (1 semester credit hour) An introduction to the resources and opportunities available within the Master of Arts in Teaching (MAT) degree programs and the University of Texas at Dallas. (1-0) S | phase: approve
status: approving
audit: 27 | | mxv062000 2014-02-18 13:38:42 013461 13.1316.00.02 audit: -2.1 m index: -2.1 m | process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>smed5301 (r3)</td>
<td>smed5301.4</td>
<td>SMED 5301 Science, Mathematics, and Society (3 semester credit hours) Exploration of the state of the world as informed by STEM issues in society. Students make connections to global STEM topics as they explore the importance of universal citizen involvement in the learning, teaching, and application of science and mathematics. International topics include current research into sustainability, development, climate change, security, resources, and innovation. (3-0) Y</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
</tbody>
</table>

peoplesoft diff: 013462 2013-08-25 sxh121431

SMED 5301 Science, Mathematics, and Society (3 semester credit hours) An exploration of the state of the world as informed by STEM issues in society that impact the teaching of science and mathematics. Students define researchable science and mathematics questions, set up research studies, use mathematics and technology in context, make applications connections to global STEM issues in society, and study topics as they explore the importance of universal citizen involvement in the learning, teaching, and teaching application of science and mathematics. International topics include current research into sustainability, development, climate change, security, resources, and innovation. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>smed5302 (r3)</td>
<td>smed5302.7</td>
<td>SMED 5302 Teaching and Learning of Science and Mathematics (3 semester credit hours) Includes the history of science and mathematics education with emphasis on the continuing struggle to improve classroom practice. Learning theories are explored with a focus on cognitive studies and application in the classroom. The importance of learning environments, problem solving and assessment strategies are also emphasized. Teaching strategies and the research behind those strategies will be evaluated. (3-0) Y</td>
<td>phase: approve</td>
<td>2013-11-13 14:34:36</td>
<td>mont</td>
</tr>
</tbody>
</table>

SMED 5302 Teaching and Learning of Science and Mathematics (3 semester credit hours)

Theories include the history of learning and teaching in science and mathematics are explored through the lens of metacognition. Students apply metacognition theory and education research techniques with emphasis on the continuing struggle to their own learning. Topics include student motivation, causation vs. correlation, improve classroom practice. Learning theories are explored with a focus on cognitive studies and psychological development (brain research), qualitative and quantitative research methods, validity and reliability of research, ethics application in the classroom. The importance of research with human subjects, learning environments, problem solving and decision-making assessment strategies are also emphasized. Teaching strategies for education issues and policies, the research behind those strategies will be evaluated. (3-0) Y
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit * smed5303 (r4) smed5303.6</td>
<td>SMED 5303 Introduction to Research and Evaluation in Science and Mathematics Education (3 semester credit hours) Expansion of students' knowledge and application of STEM education research including research approaches to evaluation of curricula and student achievement. Focus on designing research questions concerning current understanding in science and mathematics education and questions for future investigations. For the major project, students explore the appropriateness of action research in answering practical questions. Prerequisite: SMED 5302. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td>status: approving</td>
<td>audit: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mont 2013-11-06 10:43:41 013464 13.1316.00.02 audit: -1.9 m index: -1.9 m match_fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 013464 2013-08-25 rmb101000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SMED 5303 Introduction to Research and Evaluation in Science and Mathematics Education (3 semester credit hours) Expansion of students' knowledge and application of STEM education research including research approaches to evaluation of curricula and student achievement. Focus on designing research questions concerning current understanding in science and mathematics education and questions for future investigations. What we can know through research and what research cannot/do not tell For the teacher will be central to the course. Students major project, students explore the appropriateness of specific methods of doing education action research in answering particular questions and developing creative education research (as opposed to replication of previous research), practical questions. Prerequisite: SMED 5302. (3-0) Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit * smed5304 (r4) smed5304.6</td>
<td>SMED 5304 Research Methods in Science and Mathematics (3 semester credit hours) Open-ended, inquiry projects grounded in critical and logical thinking that involve observations, research, investigation planning, data collection with instruments or surveys, analysis and interpretation of data, proposing explanations, considering alternatives, generating predictions, and conveying results in student peer-reviewed papers and presentations appropriate for a professional forum. Students conduct open-ended research into subjects of their choosing. Students develop and pursue inquiries based on original ideas, literature research, discussions with experts, and via trial and error. Recommended Prerequisite: SMED 5303. (3-0) Y</td>
<td>phase: approve</td>
<td>mont 2013-11-06 10:45:16 013465 13.1316.00.02 audit: -2.2 m index: -2.2 m match_fail</td>
<td>process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 013465 2013-08-25
rmb101000

SMED 5304 Reflections on Research Methods in Science and Mathematics Education (3 semester credit hours) Critical reflection on prior courses Open-ended, inquiry projects grounded in the Science/Mathematics Education core sequence emphasizing metacognition and STEM education research. Students reflect on themselves as teachers, critical and learners, on research-based strategies for overcoming challenges in teaching, logical thinking that involve observations, research, investigation planning, data collection with instruments or surveys, analysis and interpretation of data, proposing explanations, considering alternatives, generating predictions, and learning, conveying results in student peer-reviewed papers and on their own potential presentations appropriate for impacting education as individual practitioners and researchers. All students will conduct a small professional forum. Students conduct open-ended research study, into subjects of their choosing. Students develop and pursue inquiries based on original ideas, literature research, discussions with experts, and via trial and error. Recommended Prerequisite: SMED 5303. (3-0) Y |

| 2014-open | edit * smed6v98 (r4) smed6v98.7 | SMED 6V98 Thesis Research (3-6 semester credit hours) May be repeated for credit. Instructor consent required. (3[3]-6[3]) Y | phase: approve | mxv062000 2014-01-12 09:50:15 013466 13.1316.00.02 audit: -1.5 m index: -1.5 m match_fail | process orion |

peoplesoft diff: 013466 2013-08-25 sxh121431

SMED 6V98 Thesis Research (3-6 semester credit hours) May be repeated. May be repeated for credit. Instructor consent required. (3[3]-6[3]) Y |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat5191</td>
<td>(r5)</td>
<td>stat5191.8</td>
<td>STAT 5191 Statistical Computing Packages (1 semester credit hour) Introduction to use of major statistical packages such as SAS, BMD, and Minitab. Based primarily on self-study materials. May not be used to fulfill degree requirements. Prerequisites: One semester of statistics and instructor consent required. (1-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-12 09:58:12 012137 27.0501.00.01 audit: -1.5 m index: -1.5 m</td>
<td>peoplesoft diff: 012137 2008-08-21</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat5351</td>
<td>(r5)</td>
<td>stat5351.6</td>
<td>STAT 5351 Probability and Statistics I (3 semester credit hours) A mathematical treatment of probability theory. Random variables, distributions, conditioning, expectations, special distributions and the central limit theorem. The theory is illustrated by numerous examples. This is a basic course in probability and uses calculus extensively. Prerequisite: MATH 2451. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 15:50:22 012145 27.0501.00.01 audit: -1.6 m index: -1.6 m</td>
<td>peoplesoft diff: 012145 2008-08-21</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat5352</td>
<td>(r5)</td>
<td>stat5352.5</td>
<td>STAT 5352 Probability and Statistics II (3 semester credit hours) Theory and methods of statistical inference. Sampling, estimation, confidence intervals, hypothesis testing, analysis of variance, and regression with applications. Prerequisite: STAT 5351. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:30:59 012146 27.0501.00.01 audit: -2.2 m index: -2.2 m</td>
<td>peoplesoft diff: 012146 2008-08-21</td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat5390 (r6)</td>
<td>stat5390.9</td>
<td>STAT 5390 Topics in Statistics - Level 5 (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-05 13:54:04 012151 27.0501.00.01 audit: -1.7 m index: -1.7 m match_fail</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 012151 2013-08-25 keh120030

STAT 5390 Topics in Statistics - Level 5 (3 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (3-0) R

| 2014-open | edit * | stat6313 (r1) | stat6313.3 | STAT 6313 (CS 6313) Statistical Methods for Data Science (3 semester credit hours) Statistical methods for data science. Statistical Methods are developed at an intermediate level. Sampling distributions. Point and interval estimation. Parametric and nonparametric hypothesis testing. Analysis of variance. Regression, model building and model diagnostics. Monte Carlo simulation and bootstrap. Introduction to a statistical software package. Prerequisite: CS 3341 or SE 3341 or STAT 3341 or equivalent. (3-0) S | phase: approve | mxv062000 2014-01-22 13:53:38 NOLINK 30.0801.00.06 audit: -1.5 m index: -1.5 m match_fail | ps info detail change process orion |

peoplesoft diff: NOLINK

STAT 6313 (CS 6313) Statistical Methods for Data Science (3 semester credit hours) Statistical methods for data science. Statistical Methods are developed at an intermediate level. Sampling distributions. Point and interval estimation. Parametric and nonparametric hypothesis testing. Analysis of variance. Regression, model building and model diagnostics. Monte Carlo simulation and bootstrap. Introduction to a statistical software package. Prerequisite: CS 3341 or SE 3341 or STAT 3341 or equivalent. (3-0) S
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>stat6326 (r6)</td>
<td>STAT 6326 Sampling Theory (3 semester credit hours) Introduction to sampling theory and methods. Statistical inference for the popular sampling designs. Simple random sampling; stratified, systematic, cluster, unequal probability, multistage, and spatial sampling designs. Statistical methods for a finite population. Use of auxiliary data. Optimal allocation. Capture-recapture methods. Detectability. Multiplicity. Prerequisite: STAT 5351 and an undergraduate course in Statistics (STAT 2332 or STAT 3341 or STAT 3360 or equivalent). (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-27 09:57:42 012165 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>edit *</td>
<td>stat6329 (r7)</td>
<td>STAT 6329 Applied Probability and Stochastic Processes (3 semester credit hours) Basic random processes used in stochastic modeling, including Poisson, Gaussian, and Markov processes with an introduction to renewal processes and queuing theory. Measure theory not required. Prerequisite: STAT 5351. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:31:39 012166 27.0501.00.01 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat6331</td>
<td>(r6)</td>
<td>stat6331.7</td>
<td>STAT 6331 Statistical Inference I (3 semester credit hours) Introduction to fundamental concepts and methods of statistical modeling and decision making. Basic distribution theory. Decision theory. Exponential families of models. Sufficiency. Estimation and hypothesis testing. Likelihood methods and optimality. Large sample approximations. Prerequisites: (STAT 5352 or equivalent) and (MATH 5302 or equivalent). (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 16:33:08 012167 27.0501.00.01 audit: -1.5 m index: -1.5 m</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat6332</td>
<td>(r5)</td>
<td>stat6332.6</td>
<td>STAT 6332 Statistical Inference II (3 semester credit hours) Elementary and advanced asymptotic methods, treating sample quantiles, U-statistics, differentiable statistical functions, and influence curves, the MLE, L-statistics, M-statistics, and the bootstrap. Advanced aspects of statistical inference, likelihood-based inference, robust statistics. General forms of Neyman-Pearson Lemma. Metrics on spaces of probability distributions. Prerequisite: STAT 6331. Prerequisite or Corequisite: STAT 6344. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-08 15:53:32 012168 27.0501.00.01 audit: -1.6 m index: -1.6 m</td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req_id</td>
<td>course</td>
<td>request</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>

peoplesoft diff: 012169 2010-08-18

| 2014-open | edit * | stat6338 (r5) | stat6338.6 | phase: approve | STAT 6338 Advanced Statistical Methods II (3 semester credit hours) This course continues STAT 6337. Topics include one-way and multi-way analysis of variance, general and generalized linear models with fixed, random, and mixed effects, diagnostics, and implementation of statistical methods using statistical software. Prerequisite: STAT 6337. (3-0) T | lantoine | 2013-11-01 14:07:18 | 012170 27.0501.00.01 | audit: -1.6 m index: -1.6 m match_fail |

peoplesoft diff: 012170 2010-08-18

STAT 6338 Advanced Statistical Methods II (3 semester credit hours) This course continues STAT 6337. Topics include one-way and multi-way analysis of variance, general and generalized linear models with fixed, random, and mixed effects, diagnostics, and implementation of statistical methods **in SAS**, using statistical software. Prerequisite: STAT 6337. (3-0) T

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf 143/154
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td></td>
<td>edit *</td>
<td>stat6339</td>
<td>(r5)</td>
<td>STAT 6339 Linear Statistical Models (3 semester credit hours) Theoretical treatment of general and generalized linear models. Topics include random vectors; multivariate normal distribution; distributions of quadratic forms; general linear models for normal data; extension to generalized linear models for non-normal data such as binary, polytomous and count data; point and interval estimation; and hypothesis testing. Prerequisite: STAT 6331 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>lantoine 2013-11-01 14:08:44 012171 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stat6339.6</td>
<td></td>
<td>STAT 6339 Linear Statistical Models (3 semester credit hours) Vectors Theoretical treatment of general and generalized linear models. Topics include random variables, vectors; multivariate normal distribution, quadratic forms. Theoretical treatment distribution; distributions of quadratic forms; general linear models, including the Gauss-Markov theorem, estimation, hypothesis testing, and polynomial regression. Introduction models for normal data; extension to the analysis of variance generalized linear models for non-normal data such as binary, polytomous and analysis of covariance. Prerequisite: count data; point and interval estimation; and hypothesis testing. Prerequisite: STAT 6331 and MATH 2418 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>status: approving</td>
<td>cxj140030 2013-09-30 15:32:26 012173 27.0501.00.01 audit: -2.2 m index: -2.2 m match_fail</td>
</tr>
</tbody>
</table>

<p>| 2014-open | | edit * | stat6341 | (r7) | STAT 6341 Numerical Linear Algebra and Statistical Computing (3 semester credit hours) A study of computational methods used in statistics. Topics to be covered include the simulation of stochastic processes, numerical linear algebra, QR decomposition and least squares regression, SV decomposition and multivariate data, statistical programming languages, and graphical methods. Prerequisite: STAT 5352 or STAT 6337. (3-0) T | phase: approve | status: approving | cxj140030 2013-09-30 15:32:26 012173 27.0501.00.01 audit: -2.2 m index: -2.2 m match_fail | peoplessoft diff: 012173 2014-08-24 sxh121431 |
| | | | stat6341.7 | | STAT 6341 Numerical Linear Algebra and Statistical Computing (3 semester credit hours) A study of computational methods used in statistics. Topics to be covered include the simulation of stochastic processes, numerical linear algebra, QR decomposition and least squares regression, SV decomposition and multivariate data, statistical programming languages, and graphical methods. Prerequisite: STAT 5352 or STAT 6337. (3-0) T | phase: approve | status: approving | cxj140030 2013-09-30 15:32:26 012173 27.0501.00.01 audit: -2.2 m index: -2.2 m match_fail | peoplessoft diff: 012173 2014-08-24 sxh121431 |</p>
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request</th>
<th>request</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat6343 (r3)</td>
<td>STAT 6343 Experimental Design (3 semester credit hours) Basic design principles; sample size computation; crossed and nested treatment factors; confounding; inference on contrasts; analysis of variance; analysis of covariance; designs such as completely randomized designs, factorial designs, complete block designs, incomplete block designs, Latin square designs, crossover designs, repeated measures designs and split plot designs; fractional replication in factorial experiments; variance components models; and implementation of statistical methods using a statistical software package. Prerequisite: STAT 6337 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td>stat6343.4</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>2013-11-01 14:10:32 012174 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 012174 2008-08-21

STAT 6343 Experimental Design (3 semester credit hours) This course focuses on the planning, development, implementation Basic design principles; sample size computation; crossed and nested treatment factors; confounding; inference on contrasts; analysis of data collected under controlled experimental conditions. Repeated measures variance; analysis of covariance; designs such as completely randomized designs, Graeco-Latin square factorial designs, randomized complete block designs, balanced incomplete block Latin square designs, crossover designs, repeated measures designs and split plot designs; fractional replication in factorial experiments; variance components models; and confounding. The course requires substantial use implementation of computer facilities, statistical methods using a statistical software package. Prerequisite: STAT 6338 6337 or equivalent knowledge of fixed and random effects crossed ANOVA designs. equivalent. (3-0) T
<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat6344 (r8)</td>
<td>stat6344.9</td>
<td>STAT 6344 Probability Theory I (3 semester credit hours) Measure theoretic coverage of probability theory. Topics include: Axioms of probability, Integration; Distributions and moments; Probability Inequalities; Convergence of probability measures; Laws of large numbers; Central limit theorem; Three-series theorem; Zero-one laws; Glivenko-Cantelli theorem; Law of iterated logarithm; Conditional probability and expectation; Introduction to martingales. Prerequisite: MATH 5302 or equivalent. (3-0) T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 012175 2013-08-25 keh120030

STAT 6344 Probability Theory I (3 semester credit hours) Measure theoretic coverage of probability theory. Topics include: Axioms of probability, Integration; Distributions and moments; Probability Inequalities; Convergence of probability measures; Laws of large numbers; Central limit theorem; Three-series theorem; Zero-one laws; Glivenko-Cantelli theorem; Law of iterated logarithm; Conditional probability and expectation; Introduction to martingales. Prerequisite: MATH 5302 or equivalent. (3-0) T | phase: approve | status: approving | audit: 30 | cxj140030 2013-09-30 15:32:41 012175 27.0501.00.01 audit: -2.2 m index: -2.2 m match_fail | ps info detail change process orion |
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type</th>
<th>course</th>
<th>req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat6347 (r6)</td>
<td>stat6347.7</td>
<td></td>
<td>STAT 6347 Applied Time Series Analysis (3 semester credit hours) Introduction to time series data; autocorrelation function; stationarity; classical decomposition of a time series; linear processes; forecasting stationary time series; basic time series models such as autoregressive models, moving average models, ARMA models, ARIMA models and seasonal ARIMA models; model fitting; model checking; model-based forecasting; regression with ARMA errors; spectral analysis; multivariate time series; and implementation of statistical methods using a statistical software package. Prerequisite: STAT 6337 or equivalent. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-01 14:11:50 012176 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * stat6348 (r6)</td>
<td>STAT 6348 Applied Multivariate Analysis (3 semester credit hours)</td>
<td>phase: approve</td>
<td>lantoine 2013-11-01 14:16:26</td>
<td>ps info detail change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistical methods used in analysis of multivariate data. Topics include</td>
<td>status: approving</td>
<td>012177 27.0501.00.01 audit: -1.6 m</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hotelling's T test, the multivariate ANOVA, principal components analysis, factor analysis,</td>
<td>audit: 30</td>
<td>index: -1.6 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster analysis, discriminant analysis, classification problems, graphics and visualization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tools. Emphasis on computations with R or other software. Additional topics may be covered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>as time allows. Prerequisite: STAT 5352 or STAT 6331. Corequisite: STAT 6337.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stat6348.7</td>
<td>(3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012177 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STAT 6348 Applied Multivariate Analysis (3 semester credit hours) Currently Statistical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>methods used techniques in analysis of multivariate data. Topics include</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hotelling's T test, the multivariate linear model, ANOVA, principal components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>analysis, factor analysis, cluster analysis, discriminant analysis, classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>problems, graphics and visualization tools. Emphasis on computations with R or other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>software. Additional topics may be covered based on current research of the instructor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>as time allows. Prerequisite: STAT 5352 or STAT 6331. Corequisite: STAT 6337.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * stat6365 (r4)</td>
<td>STAT 6365 Statistical Quality and Process Control (3 semester credit hours) Statistical</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:33:02</td>
<td>ps info detail change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>methodology of monitoring, testing, and improving the quality of goods and services is</td>
<td>status: approving</td>
<td>012178 27.0501.00.01 audit: -1.9 m</td>
<td>process orion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>developed at the intermediate level. Topics include control charts for variables and</td>
<td>audit: 29</td>
<td>index: -1.9 m match_fail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>attributes, assessment of process stability and capability, construction and interpretation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of CUSUM, moving average charts and V-masks, optimal sampling techniques, and evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of operating-characteristic curves and average time to detection. Prerequisite: STAT 5351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or equivalent. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stat6365.4</td>
<td>peoplesoft diff: 012178 2010-08-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STAT 6365 Statistical Quality and Process Control (3 semester credit hours) Statistical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>methodology of monitoring, testing, and improving the quality of goods and services is</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>developed at the intermediate level. Topics include control charts for variables and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>attributes, assessment of process stability and capability, construction and interpretation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of CUSUM, moving average charts and V-masks, optimal sampling techniques, and evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of operating-characteristic curves and average time to detection. Prerequisite: STAT 5351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or equivalent. (3-0) T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>req type</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat6390 (r7)</td>
<td>stat6390.9</td>
<td>STAT 6390 Topics in Statistics - Level 6 (3 semester credit hours) Topics selected from but not limited to choices such as spatial statics, nonparametric curve estimation, functional data analysis, statistical learning and data mining, actuarial science, sampling theory, statistical quality and process control, sequential analysis, survival analysis, longitudinal data analysis, categorical data analysis, and clinical trials, for example. May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-16 23:39:12 012179 27.0501.00.01</td>
<td>ps info detail change process orion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: 012179 2013-08-25 keh120030</td>
<td></td>
<td></td>
<td>status: approving</td>
<td>audit: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat6v98 (r1)</td>
<td>stat6v98.2</td>
<td>STAT 6V98 Masters Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S</td>
<td>phase: approve</td>
<td>srx090100 2014-01-13 09:20:13 NOLINK</td>
<td>ps info detail change</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td>audit: 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peoplesoft diff: NOLINK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbbcebb74d94346/makepdf
<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat6v99 (r5) stat6v99.7</td>
<td>STAT 6V99 Statistical Consulting (1-3 semester credit hours) Practical experience in collaboration with individuals who are working on problems which are amenable to statistical analysis. Problem formulation, statistical abstraction of the problem, and analysis of the data. May be repeated for credit. Only a maximum of three semester credit hours may be used to fulfill the master's degree. Instructor consent required. ([1-3]-0) T</td>
<td>phase: approve status: approving audit: 30</td>
<td>mxv062000 2014-01-11 16:36:04 012161 27.0501.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
<td>peoplediff: 012161 2008-08-21</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat7330 (r5) stat7330.6</td>
<td>STAT 7330 Decision Theory and Bayesian Inference (3 semester credit hours) Statistical decision theory and Bayesian inference are developed at an intermediate mathematical level. Topics include utility theory; Bayesian estimation, hypothesis testing, and prediction; empirical and hierarchical Bayes rules; Bayesian robustness; admissibility; minimax decisions and introduction to game theory. Prerequisite: STAT 6331. (3-0) T</td>
<td>phase: approve status: approving audit: 29</td>
<td>lantoine 2013-11-01 14:19:07 012182 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>peoplediff: 012182 2010-08-18</td>
</tr>
<tr>
<td>start end</td>
<td>req type</td>
<td>course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stat7331.6</td>
<td>.peoplesoft diff: 012183 2010-08-18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peoplesoft diff: 012183 2010-08-18

<table>
<thead>
<tr>
<th>start</th>
<th>req type</th>
<th>course</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>peoplesoft diff: 012184 2014-08-24 sxh121431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat7338</td>
<td>STAT 7348 Time Series Modeling and Filtering (3 semester credit hours) Theory of correlated observations observed sequentially in time. Stationary processes, Autocovariance function. ARMA models. Optimal forecasting in time domain and in frequency domain. Spectral representation. Estimation and model selection. Nonstationary time series models. Prerequisite: STAT 6331. (3-0) T</td>
<td>phase: approve</td>
<td>cxj140030 2013-09-30 15:34:16 012186 27.0501.00.01 audit: -2.2 m index: -2.2 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>peoplesoft diff: 012186 2012-08-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>req type course req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
<td>actions</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------------------------</td>
<td>--</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat7345 (r5) stat7345.6</td>
<td>STAT 7345 Advanced Probability and Stochastic Processes (3 semester credit hours) Taught as a continuation of STAT 6344. Exponential probability inequalities. Large deviation theory. Martingales, sub- and supermartingales, random walk, Markov chains, Yule and Poisson processes, the general birth and death process, shot noise, branching processes, renewal processes, Brownian motion and diffusion, stationary processes, and the empirical process. Selected other topics. Prerequisite: STAT 6344. (3-0) T</td>
<td>phase: approve</td>
<td>lantoine 2013-11-04 11:03:55 012187 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat7390 (r7) stat7390.10</td>
<td>STAT 7390 Topics in Statistics - Level 7 (3 semester credit hours) Topics selected from but not limited to choices such as spatial statistics, nonparametric curve estimation, functional data analysis, statistical learning and data mining, actuarial science, sampling theory, statistical quality and process control, sequential analysis, survival analysis, longitudinal data analysis, categorical data analysis, and clinical trials, for example. May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. (3-0) T</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-05 13:55:17 012188 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>start</td>
<td>req course</td>
<td>course</td>
<td>req_id</td>
<td>catalog course description</td>
<td>request status</td>
<td>request metadata</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat8v02 (r5)</td>
<td>stat8v02.6</td>
<td>STAT 8V02 Individual Instruction in Statistics (1-6 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-05 13:55:54 012189 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012189 2008-08-21</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2014-01-11 16:37:14 012190 27.0501.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2013-11-05 13:56:39 012191 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2014-01-11 15:25:42 012192 27.0501.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mxv062000 2013-11-05 13:57:36 012193 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>phase: approve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat8v03 (r4)</td>
<td>stat8v03.8</td>
<td>STAT 8V03 Advanced Topics in Statistics (1-6 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-05 13:55:54 012189 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012190 2008-08-21</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat8v07 (r4)</td>
<td>stat8v07.5</td>
<td>STAT 8V07 Research in Statistics (1-9 semester credit hours) Open to students with advanced standing, subject to approval of the graduate advisor. Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-05 13:56:39 012191 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012191 2008-08-21</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
<tr>
<td>2014-2014</td>
<td>remove_renumber *</td>
<td>stat8v98 (r5)</td>
<td>stat8v98.8</td>
<td>request to remove this course from catalog</td>
<td>phase: approve</td>
<td>mxv062000 2014-01-11 15:25:42 012192 27.0501.00.01 audit: -1.5 m index: -1.5 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 28</td>
<td></td>
</tr>
<tr>
<td>2014-open</td>
<td>edit *</td>
<td>stat8v99 (r6)</td>
<td>stat8v99.8</td>
<td>STAT 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S</td>
<td>phase: approve</td>
<td>mxv062000 2013-11-05 13:57:36 012193 27.0501.00.01 audit: -1.6 m index: -1.6 m match_fail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>peoplesoft diff: 012193 2012-08-26</td>
<td>status: approving</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>audit: 30</td>
<td></td>
</tr>
</tbody>
</table>

http://coursebook.utdallas.edu/catbookreport/345609499f35291f0dbcebb74d94346/makepdf
Additions / Deletions

The following course has been added to the graduate course inventory: PPPE 6313 Human Organizations and Social Theory

The following course have been removed from the graduate course inventory: CS 6394 Digital Telephony
<table>
<thead>
<tr>
<th>start end</th>
<th>req type course req_id</th>
<th>catalog course description</th>
<th>request status</th>
<th>request metadata</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2014</td>
<td>remove * cs6394 (r4) cs6394.6</td>
<td>request to remove this course from catalog CS 6394 Digital Telephony (3 semester credit hours) Introduction and overview emphasizing the advantages of digital voice networks. Voice digitization. Digital transmission, multiplexing, and switching. Rearrangeable switching networks. Digital modulation for radio systems. Network operation issues: synchronization, control; integration of voice and data, packet switching and traffic analysis. Prerequisite: ENCS majors only. (3-0) Y</td>
<td>phase: approve</td>
<td>mxv062000 2014-02-19 16:33:46 003664 14.0901.00.06 audit: -0 m index: -0 m</td>
<td>ps info detail change process orion</td>
</tr>
<tr>
<td>2014-open</td>
<td>edit * pppe6313 (r1) pppe6313.2</td>
<td>PPPE 6313 Human Organizations and Social Theory (3 semester credit hours) This is a course in empirical social theory as described in Human Organizations and Social Theory. The theory can be characterized as empirical-formal. The theory recognizes that human societies are inherently pluralistic. They are organized with several distinct kinds of cultural phenomena: language, social idea systems, technical idea systems, organizational charters, and institutions. These are used to produce organizations. Organizations produce the society's adaptation. The adaptation, if successful, preserves the cultural systems. The course reviews the methods for eliciting these cultural systems as well as the types of formal analysis needed to describe them and their uses. (3-0) T</td>
<td>phase: approve</td>
<td>vtt017000 2014-02-26 14:37:52 44.0501.00.01 audit: -0 m index: -0 m</td>
<td>ps info detail change process orion</td>
</tr>
</tbody>
</table>

peoplesoft diff:

PPPE 6313 Human Organizations and Social Theory (3 semester credit hours) This is a course in empirical social theory as described in Human Organizations and Social Theory. The theory can be characterized as empirical-formal. The theory recognizes that human societies are inherently pluralistic. They are organized with several distinct kinds of cultural phenomena: language, social idea systems, technical idea systems, organizational charters, and institutions. These are used to produce organizations. Organizations produce the society's adaptation. The adaptation, if successful, preserves the cultural systems. The course reviews the methods for eliciting these cultural systems as well as the types of formal analysis needed to describe them and their uses. (3-0) T
Academic Certificate Programs - UTDPP1001

Policy Statement

An academic certificate program, for the purposes of this policy document, is a prescribed set of graded, organized courses, offered for academic credit, the satisfactory completion of which entitles a student to a certificate of completion, but not a degree.

The courses taken for an academic certificate program may be used in partial fulfillment of the requirements for a degree, to the extent that is permitted by the requirements of the cognate degree program. Admission to an academic certificate program does not constitute admission to a degree program.

Approvals

Before an academic certificate program that meets this definition can be advertised or students enrolled, the program must be approved by the school’s curriculum committee as outlined in the school’s bylaws, the Office of the Executive Vice President and Provost, the Graduate Council or Council on Undergraduate Education, as appropriate, the Committee on Educational Policy, and the Academic Senate. Academic Senate, following review by the Committee on Educational Policy and either the Graduate Council or the Council on Undergraduate Education, as appropriate. An assessment plan must accompany every proposal request for an academic certificate program. In addition, all graduate academic certificate programs that require more than 15 semester credit hours of graded, organized courses, and all undergraduate academic certificate programs that require more than 20 hours of graded, organized courses, are subject to review and prior approval by The University of Texas System and the Texas Higher Education Coordinating Board. Certificate programs, regardless of semester credit hour length, may only be offered in areas and at levels authorized by an institution's table of programs.

Templates for academic certificates and for assessment plans can be found online on the Provost’s Office Academic Forms and Templates website at: http://provost.utdallas.edu/home/academic-program-proposals

Recognition of Certificate Completion on Student Transcripts

Undergraduate certificates: The student’s transcript will reflect that the student has completed the undergraduate level academic certificate program, if the student (a) has a grade point average of at least 2.0 in the organized courses that constitute the graduate academic certificate program, (b) meets all academic standards as required by the school and stated in the catalog, (c) the certificate program and the courses constituting such program are listed in the catalog, and (d) the student declares to the RUO of the Program his/her intent to complete the certificate.

Graduate certificates: The student’s transcript will reflect that the student has completed the graduate level academic certificate program, if the student (a) has a grade point average of at least 3.0 in the organized courses that constitute the graduate academic certificate program, (b) meets all academic standards as required by the school and stated in the catalog, (c) the certificate program and the courses constituting such program are listed in the catalog, and (d) the student declares to the RUO of the Program his/her intent to complete the certificate.

Closing a Certificate Program

In accordance with university procedures to be in compliance with the SACS Commission on Colleges Substantive Change Policy, a certificate program may not be closed until UT Dallas has received prior SACS approval of a teach-out plan. The dean of the school must submit to the Provost’s Office a memo that includes a teach-out plan. The Provost’s Office will submit the request to the SACS Commission on Colleges.
Reporting

At the end of every semester, for each academic certificate program, the cognizant School or Department/Program must report the number of students enrolled in the program and the number of students completing the program to the Office of Academic Records.

The courses taken for an academic certificate program may be used in partial fulfillment of the requirements for a degree, to the extent that is permitted by the requirements of the cognate degree program. Admission to an academic certificate program does not constitute admission to a degree program.

Policy History

- Issued: February 14, 2007
- Revised: February 2, 2009

Policy Links

- Permalink for this policy: http://policy.utdallas.edu/utdpp1001
- Link to PDF version: http://policy.utdallas.edu/pdf/utdpp1001
- Link to printable version: http://policy.utdallas.edu/print/utdpp1001
Committee on School and Department Procedures

The purpose of the Committee on School and Department Procedures is to hear and resolve complaints regarding departures from school and departmental bylaws.

Membership: The Committee shall have five members. Two members shall be deans of schools. Two members shall be faculty nominated by the Committee on Committees and approved by the Academic Senate. One member shall be the chair of the Committee on Faculty Standing and Conduct, ex officio with a vote only to break a tie. The term of service is two years. Terms should be staggered so one Dean and one faculty member is appointed each year.

Principle:

As a matter of general principle, bylaws of schools and departments describe internal operating procedures, so disputes regarding their meaning should be resolved by the unit whose bylaws they are. Sometime, however, this cannot be arranged. In such cases, the disagreement or allegation should be presented to the University Committee on School and Department Bylaws.

Procedures:

Complaints may originate either from administrators or from faculty. Complaints should not be made without first seeking to discuss the conduct complained of with the person engaging in it.

If an administrator in a school refuses to follow the bylaws of the school, the refusal should be referred to the dean of the school. If the dean cannot resolve the disagreement or in turn refuses to support the bylaws, the disagreement should be referred to the University Committee on School and Department Bylaws.

If a faculty body within the school refuses to follow the bylaws of the school and the dean cannot bring about compliance, and if the faculty as a whole also cannot resolve the problem, the disagreement should be referred to the University Committee on School and Department Bylaws.

Allegations regarding failure to follow bylaws should be in writing, directed to the Chair of the Committee on School and Department Bylaws. The Chair will notify the Committee, and the Committee will decide how to proceed. If the Committee determines that there is a significant failure to adhere to the bylaws, it should seek a solution. The committee may consult with any university officers or committees that it thinks may be useful. If the Committee cannot bring about agreement and compliance, it should refer the problem to the Academic Council, reporting what it had attempted.
TO: Murray Leaf, Speaker of the Faculty Senate
FROM: Theresa Town, Chair, Committee on Effective Teaching
RE: Final Report

Pursuant to its charge, the Senate’s Committee on Effective Teaching met four times during this academic year: 15 October and 28 November 2012 and 6 February and 6 March 2013. During these meetings we discussed the items on the agenda I submitted to you in a memo dated 16 October 2012. Below are those agenda items and the conclusions reached in our deliberations.

1. Continue the 2011-12 CET investigation and evaluation of the roles played by School-level teaching effectiveness committees.
 We discovered large discrepancies between each School’s officially designated procedures and the actual practices of evaluating teaching. We decided that rather than try to design one set of evaluation procedures for the University, we would be more effective to encourage each School to revisit those procedures, refine them as necessary to be both practical to implement and fair to individual instructors, and then follow their own guidelines.

2. Investigate and define the degree and kind of CET’s participation in the nomination and awarding of the Regents’ Teaching Awards.
 We agreed that CET should vet the list of Regents’ Award nominees in conjunction with the Office of Undergraduate Education. Dean Piner subsequently forwarded the list of nominees to us, and several of us agreed to read and rank individual application files.

3. Investigate and evaluate the means by which Schools monitor the teaching effectiveness of part-time instructors, including graduate teaching assistants.
 We discovered a wide range of practices, some of which were outlined in School bylaws and some of which were not. We agreed that the evaluation of part-time faculty is vital, especially in light of the University’s increasing dependence on adjuncts. We recommend that the Senate encourage individual Schools to evaluate and keep records on the teaching of adjunct faculty.

4. Investigate, with the help of the Provost’s technical team, ongoing issues of access to teaching evaluations and their relationships to student grades, including but not limited to: the linking of student access to course grades and the submission of course evaluations; associate dean access to written comments on course evaluations for the purpose of evaluating part-time instructors; and numbers of and statistical trends in course evaluations over time.
 We discussed these issues at every meeting and, with the help of the Provost’s technical team, finally concluded that the issue of the accuracy of student evaluations is a moving target. Much anecdotal evidence was offered by committee members and the general faculty, and many statistics were offered. We conclude that CET will always discuss these issues as technical elements of evaluations evolve and will never, in fact, conclude anything about them. I would like to acknowledge the expertise of Mr. Simon Kane and his help during our discussions.

5. Investigate the feasibility of establishing a video library or Wiki of resources for faculty addressing common questions and problems encountered in the classroom, including the challenges faced by teachers of online courses, with particular attention to the content rather than the technical aspects of such questions.
We concluded that this is one area in which the University would be the proper venue for such materials. See item 6 below.

6. Investigate the feasibility and desirability of establishing a University-wide Center for Teaching and Learning, such as those presently in operation at Harvard, MIT, and UT-Austin, for example.

We invited Professors Patricia Michaelson and Homer Montgomery to our meeting on 6 February to explain to us the role of such centers on other campuses and the more general benefits of having on campus specialists in the scholarship of teaching and learning. We saw these easily and agreed to address the Senate directly to explain them; Professors Michaelson, Montgomery, Karen Huxtable-Jester, and I attended the Senate meeting on 20 February and at the request of that body submitted a motion to create and staff a campus Teaching and Learning Center. The Senate unanimously approved that motion at its next meeting, and President Daniel advised creating a place marker for it in the pending budget.

John D. Newman
4 April 2013