TO: Academic Senate Members
FROM: Office of Academic Governance
Vicki Carlisle, Academic Governance Secretary
RE: Academic Senate Meeting

The Academic Senate will meet on Wednesday, April 21 at 2:00 p.m. in the T.I. Auditorium, ECS South 2.102.

Please bring the agenda packet with you to this meeting. If you cannot attend, please notify me at x6751.

Attachments

dx: David Daniel
 Hobson Wildenthal
 Andrew Blanchard
 Serenity King

 James Marquart
 John Wiorkowski
 Calvin Jamison
 Inga Musselman

 Larry Redlinger
 Darrelene Rachavong
 Abby Kratz
 Rhonda Blackburn

 Daniel Calhoun
 Chief Larry Zacharias
 Deans
 Diana Kao, SGA President

2009-2010 Academic Senate

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, Mark</td>
<td>Izen, Joseph</td>
<td>Kieschnick, Robert</td>
<td>Kumar, Nanda</td>
</tr>
<tr>
<td>Andreeescu, Titu</td>
<td>Leaf, Murray*</td>
<td>Leaf, Murray*</td>
<td>Leaf, Murray*</td>
</tr>
<tr>
<td>Beron, Kurt</td>
<td>Leaf, Murray*</td>
<td>Leaf, Murray*</td>
<td>Leaf, Murray*</td>
</tr>
<tr>
<td>Bhattia, Dinesh</td>
<td>Leaf, Murray*</td>
<td>Leaf, Murray*</td>
<td>Leaf, Murray*</td>
</tr>
<tr>
<td>Boots, Denise</td>
<td>Leaf, Murray*</td>
<td>Leaf, Murray*</td>
<td>Leaf, Murray*</td>
</tr>
<tr>
<td>Breen, Gail</td>
<td>Miller, Dennis</td>
<td>Murthi, B.P.S.</td>
<td>Nielsen, Steven</td>
</tr>
<tr>
<td>Burr, John</td>
<td>Miller, Dennis</td>
<td>Murthi, B.P.S.</td>
<td>Nielsen, Steven</td>
</tr>
<tr>
<td>Cantrell, Cyrus</td>
<td>Prakash, Ravi</td>
<td>Prakash, Ravi</td>
<td>Prakash, Ravi</td>
</tr>
<tr>
<td>Chandrasekaran, R.</td>
<td>Redman, Timothy</td>
<td>Redman, Timothy</td>
<td>Redman, Timothy</td>
</tr>
<tr>
<td>Cordell, David**</td>
<td>Rosen, Mark</td>
<td>Rosen, Mark</td>
<td>Rosen, Mark</td>
</tr>
<tr>
<td>Dieckmann, Greg</td>
<td>Ryu, Young</td>
<td>Ryu, Young</td>
<td>Ryu, Young</td>
</tr>
<tr>
<td>Dowling, Jay</td>
<td>Ryu, Young</td>
<td>Ryu, Young</td>
<td>Ryu, Young</td>
</tr>
<tr>
<td>Durbin, Kelly</td>
<td>Ryu, Young</td>
<td>Ryu, Young</td>
<td>Ryu, Young</td>
</tr>
<tr>
<td>Hoffman, John</td>
<td>Scotch, Richard</td>
<td>Scotch, Richard</td>
<td>Scotch, Richard</td>
</tr>
<tr>
<td>Holmes, Jennifer</td>
<td>Sriskandarajah, Chelliah</td>
<td>Sriskandarajah, Chelliah</td>
<td>Sriskandarajah, Chelliah</td>
</tr>
<tr>
<td>Holub, Shayla</td>
<td>Stern, Robert</td>
<td>Stern, Robert</td>
<td>Stern, Robert</td>
</tr>
<tr>
<td>Huxtable-Jester, Karen</td>
<td>Stern, Robert</td>
<td>Stern, Robert</td>
<td>Stern, Robert</td>
</tr>
<tr>
<td>Ishak-Boushaki, Mustapha</td>
<td>Thompson, Lucien</td>
<td>Thompson, Lucien</td>
<td>Thompson, Lucien</td>
</tr>
</tbody>
</table>

*Speaker
**Secretary
AGENDA
ACADEMIC SENATE MEETING
April 21, 2010

1. CALL TO ORDER, ANNOUNCEMENTS & QUESTIONS DR. WILDENTHAL
2. APPROVAL OF THE AGENDA DR. LEAF
3. APPROVAL OF MINUTES DR. LEAF
 MARCH 24, 2010 Meeting
4. SPEAKER’S REPORT DR. LEAF
5. UTD SUSTAINABILITY POLICY DONNA RIHA
6. DRAFT UTD POLICY ON FINANCIAL EXIGENCY DR. LEAF
7. CEP PROPOSALS – CERTIFICATE IN SUPPLY CHAIN MANAGEMENT, BSBME DEGREE PLAN, UNDERGRADUATE CATALOG DR. CANTRELL
8. CANDIDATES FOR GRADUATION DR. LEAF
9. RESULTS OF SENIOR LECTURER ELECTION DR. CORDELL
10. ADJOURNMENT DR. WILDENTHAL
UNAPPROVED AND UNCORRECTED MINUTES

These minutes are disseminated to provide timely information to the Academic Senate. They have not been approved by the body in question, and, therefore, they are not official minutes.

ACADEMIC SENATE MEETING
March 24, 2010

PRESENT: Kurt Beron, Dinesh Bhatia, Denise Boots, Gail Breen, John Burr, Cy Cantrell, R. Chandrasekaran, David Cordell, Dreg Dieckmann, Kelly Durbin, John Hoffman, Jennifer Holmes, Karen Huxtable-Jester, Joe Izen, Marilyn Kaplan, Nanda Kumar, Murray Leaf, Syam Menon, Dennis Miller, Simeon Ntafos, Ravi Prakash, Tim Redman, Mark Rosen, Richard Scotch, Chelliah Sriskandarajah, Tonja Wissinger

ABSENT: Mark Anderson, Titu Andreescu, Jay Dowling, Shayla Holub, Steven Nielson, Young Ryu, Robert Stern, Lucien Thompson

VISITORS: David Daniel, Hobson Wildenthal, Andrew Blanchard, Serenity King, Austin Cunningham, Michael Coleman, Abby Kratz, Julie Haworth, Daniel Calhoun, Chris Parr, Diana Kao

1. CALL TO ORDER, ANNOUNCEMENTS AND QUESTIONS
 President Daniel called the meeting to order. There were no announcements or questions.

2. APPROVAL OF THE AGENDA
 Since the information regarding the Exigency Policy, Item #8 on the agenda, was not circulated prior to the meeting, Speaker Leaf asked for a motion to table that item. Cy Cantrell made the motion. Jennifer Holmes seconded. The agenda was approved as amended. Speaker Leaf noted that the Council had voted to put the Sustainability Policy on the agenda for today’s meeting as well, but since today’s meeting is restricted to one hour; he felt that there would not be adequate time to discuss it. This item will be on the agenda for next month’s meeting, but no motion is required since it was not on the circulated agenda for today’s meeting.

3. APPROVAL OF MINUTES
 Cy Cantrell made a motion to approve the minutes as circulated. Tim Redman seconded. The motion carried.

4. SPEAKER’S REPORT
 Speaker Leaf noted that the email ballot held to approve the President’s Draft Strategic Plan received 29 votes in favor and 1 abstaining vote. That constitutes a quorum and a positive vote. Speaker Leaf has informed President Daniel that according to the interpretation put on the motion at the previous Senate meeting, the Senate not only approves his draft but deems it consistent with earlier faculty-developed strategic plans.
It was noted that 35 nominating petitions were received for the coming Senate. Since this was less than the 45 seats that we sought to fill but enough for a good representative body, the nominations have been declared closed and there is no need to circulate ballots. Everyone who was nominated has been elected. Ms. Carlisle has appended the list of the Senate-elect to the list of Senators on the website. The Senior Lecturer election is still going on.

5. **UTD RESPONSE TO STATE LEADERSHIP REQUEST FOR UNIVERSITY BUDGET CUTS**

President Daniel addressed the 5% cut in state spending requested by the Governor for this academic year and next academic year. Our state appropriation is approximately 40% of our core operating capital. The remaining 60% of our capital is essentially derived from student tuition and fees. Theoretically when you have a 5% cut on 40% of your budget you have a 2% cut. In actuality it is a little worse than that because when faculty and staff are appointed on state funds, fringe benefits, which are about 30% of salary, are paid from a different fund. He had hoped that UT System might be able to mitigate the hit somewhat by using some potential savings off of our debt funded by the state, such as capital programs funded by the state, but that does not seem to be the case right now.

This did not come as a surprise and UTD does have a plan in place for this. Our enrollment growth continues to be strong – estimate 5%-6% growth next year. We have budgeted for a little less than that so Dr. Daniel is hopeful that there will be a little residual surplus. We have been aggressive on tuition anticipating that state budgets would be stretched, and that puts us in a relatively good position. There is no plan for any layoffs, but of course that cannot be guaranteed. He commended Dr. Wildenthal and Dr. Jamison for their work in managing the budget and noted that we continue to search for economies that are not academically related.

When asked how the budget cuts would affect the summer session, President Daniel called on Provost Wildenthal to answer. Dr. Wildenthal stated that there should not be any effect and faculty should plan to have a strong summer session as usual. Dr. Daniel reiterated that his primary concern is that our core academic mission is what is to be protected. It is his belief that no student should ever be delayed in graduation through any reductions. Dr. Wildenthal noted that in future budget planning summer sessions will be specifically budgeted in advance.

Dr. Izen asked what the priorities are for addressing the space allocation problem currently experienced in the Physics department – specifically how to get students and faculty together in the same building. Dr. Daniel acknowledged the desirability of keeping people together but noted that there was so much flux currently on campus with space issues that it simply is not possible to address this until some of the construction is completed and moves begin taking place.

6. **APPROVAL OF SENATE BUDGET ADVISORY COMMITTEE MEMBERS**

Speaker Leaf called for a motion to approve the nominees and to amend the charge in accordance with the recommendation of the Academic Council. The amendment proposed by the Council is to make the Speaker of the faculty a voting ex-officio member in place of one of the two at-large members. The description of membership in the charge as amended will then be:
The Committee shall have nine voting members. One voting member shall be appointed from the faculty of each School and one voting member shall be chosen from the faculty at large for special expertise or interest in institutional budgeting. The Speaker of the faculty shall be a voting member ex officio. Members shall serve staggered three-year terms, except that in the first year three of the nine members shall be appointed for one year, three for two years and three for three years. The Associate Vice President for Budget and Resource Planning shall serve as member ex officio and assure that the Committee receives information on the budget in a form the Committee finds usable. Voting members shall be appointed according to the procedures in the Handbook of Operating Procedures III.21.IV.B Vacancies that arise from resignation or departure shall be filled in the same manner.

The nominees to be approved are:
- Dr. Robert Kieschnick (Chair), (SOM)
- Dr. Timothy Redman, (A&H)
- Dr. Richard Scotch (EPPS)
- Dr. D.T. Huynh (ECS)
- Dr. Mark Anderson (SOM)
- Dr. Robert Serfling (NS&M)
- Dr. Jay Dowling (BBS)
- Dr. Elizabeth Salter (IS)
- Dr. Murray Leaf (Speaker of the Faculty, ex officio)

Marilyn Kaplan moved to approve the nominees of the Senate Advisory Committee on the University Budget. Cy Cantrell seconded the motion. There was no discussion. The motion carried.

Richard Scotch made a motion to approve the amended charge as stated. Jennifer Holmes seconded. There was no further discussion and the motion carried.

7. CEP PROPOSALS – NEW DEGREE PLANS, GRADUATE AND UNDERGRADUATE CATALOG

7.1 Professor Cantrell made an omnibus motion to approve three new degree proposals from the School of Management: Bachelor of Science in Global Business; Bachelor of Science in Management Information Systems; and Bachelor of Science in Marketing. Marilyn Kaplan seconded the motion. Dr. Cantrell asked if anyone from SOM would care to make comments regarding these proposals. Marilyn Kaplan stated that all three of these degrees had formerly been concentrations for several years in the Business Administration degree. These are not new courses. It is felt that having these more specific degrees will give our students a competitive edge in the job market.

7.2 Professor Cantrell moved to approve the undergraduate catalog as circulated. Dean Coleman explained the changes. All the programs and the first forty pages had been previously approved. The portion that has not been previously approved consists of the program descriptions and the course descriptions. The Council on Undergraduate Education and the office of the Registrar have systematically gone through the catalog to rationalize the course numbers and titles, as well as to incorporate the new degree programs. Courses that are properly lower level courses but had been offered as upper
level as a legacy of the time before we had lower level programs have been renumbered. New minors have been included. New prefixes have been added for new programs, and inconsistencies in naming and numbering been new and old programs have been reconciled. Professor Scotch Seconded the motion. The motion carried.

7.3 Professor Cantrell moved to approve the Graduate Catalog. Dean Cunningham explained the changes, which paralleled those in the undergraduate program and included a reconciliation between the catalog copy and our new graduate application form that replaces the Apply Texas common application. A number of modifications, previously approved by the Senate, were to bring us into compliance with the requirements of the Southern Association of Colleges and Schools. Richard Scotch seconded. Before voting, Professor Cantrell circulated additional material from the School of Management that was approved by the CEP but not included in the agenda packet. There being no further discussion Speaker Leaf called for a vote.

8. **ADJOURNMENT**

There being no further business, President Daniel adjourned the meeting.

APPROVED: ___________________________ DATE: ____________________

Murray J. Leaf
Speaker of the Academic Senate
The University of Texas at Dallas Sustainability Policy

Policy

The University of Texas at Dallas aspires to be one of the nation’s best public research universities focused on research and education in emerging areas of technology, science, and learning. This includes excellence in advancing environmental stewardship and sustainability on our campus, in our academic and research programs, and in our public service and outreach activities. Efficient energy and water use is central to this objective and energy-conservation efforts provide a means to save money, foster environmental awareness, reduce the environmental consequences of University activities, and provide educational leadership for the 21st century.

To accomplish this goal, the University shall establish procedures to consider conservation of utilities’ use and sustainability in the design and operation of University facilities in the most economical and environmentally friendly manner possible, educate the University community on sustainability measures, and consider conservation in purchasing decisions and transportation. Our day-to-day decisions and actions will be guided by the University’s Sustainability Policy.

Rationale

This policy promotes efforts to support initiatives that increase efficiency, reduce emissions, promote sustainability and contribute meaningfully to the environment, while achieving the mission of the University.

Scope

This policy applies to the University main campus and other University-owned facilities in the Dallas Metroplex.

Definition

Sustainability refers to societal efforts that meet the needs of present users without compromising the ability of future generations to meet their own needs. This is accomplished through teaching, research, service, and administrative efforts that benefit our various communities.
Implementation

Education:
The University will integrate the Sustainability Policy in educating faculty, staff, and students, promote the development and expansion of sustainability-related research and curriculum, support sustainability-related service and learning opportunities on and off campus, and encourage sustainability-themed programming opportunities and events.

Campus Operations:
In campus planning, operations and activities, the University will use resources in a manner that takes into consideration environmental, social and economic impacts. The University will seek to integrate sustainability considerations into all business decisions including but not limited to:
- Energy and water management
- Procurement
- Materials and resource management
- Landscaping and grounds maintenance
- Transportation
- Dining
- Building construction, renovation, operation, and maintenance

Community Engagement:
The University will seek to establish partnerships with government, business and community organizations that strive to foster environmental consciousness and lead to the betterment of our campus and surrounding communities, encourage research by faculty that benefits the local community, share experiences and provide outreach to the community wherever feasible, increase awareness and inform the community on sustainability-related issues
Establishment of a UT Dallas Sustainability Committee

UT Dallas' Sustainability Committee's mission is to foster a culture of environmental responsibility in which the entire UTD community is aware of, engaged in and committed to advancing environmental awareness and sustainable practices through education, research, operations, and community service activities.

The University Sustainability Committee's purpose is to bring together stakeholders who will champion the University's efforts of promoting environmental awareness and sustainability throughout our campus community. The Committee will develop and recommend to the President short-, mid-, and long-term sustainability measures which can be implemented within budgetary, legal, regulatory and programmatic constraints. All recommendations will be evaluated on a Life Cycle Cost Basis.

The Committee members will consist of the following seven representatives:

Chair
 Tenured faculty, preferably one actively engaged in academic pursuit of sustainability curriculum or research

Two Faculty Members
 One from NS&M or Engineering (alternating)
 One from EPPS or Business or Arts & Humanities (alternating)

Two Staff
 Assistant Director of Procurement
 Representative of Staff Council

Two Student Members
 One from the Office of Student Government
 One from a student group/club supportive of sustainability initiatives

Ex Officio Members
 Vice President of Business Affairs
 Assistant Vice President of Facilities Management
 Energy Conservation and Sustainability Manager
 Assistant Vice President of Communications
Preamble

The enunciation of a policy in Rule 31003, Section 1, of the Regents' Rules and Regulations (http://www.utsystem.edu/bor/rules.htm#A4) concerning the Abandonment of Academic Positions or Programs calls for the President of the University to determine institutional procedures for an in-depth review to inform and guide decisions on these matters. Section 2 concerns elimination for “Academic Reasons.” Section 3 concerns elimination due to financial exigency. In accord with Rule 31003, U. T. Dallas policy and procedures relating to Section 3 are as follow.

GENERAL POLICY ON INTERPRETATION OF REGENT’S RULES

Regents Rule 31003, abandonment of academic positions or programs must be interpreted in the light of Rule 40101 which gives faculty the “major role” in regard to “general academic policies and welfare” and related matters and in the light of the further provisions that assign these faculty responsibilities to the faculty governance organization and require that the organization and procedures of the governance organization be set out in the university Handbook of Operating Procedures and subject to governance review and approval. In addition, the University accepts the recommendations regarding declarations of exigency in the American Association of University Professors “Recommended Institutional Regulations on Academic Freedom and Tenure.”

The term “faculty committee” as used in Regents Rules section 31003 shall be understood here as meaning the Academic Senate of the University of Texas at Dallas, the regular committees of the Senate, or any ad hoc committee that the Senate may assign responsibilities to in order to respond to the exigency. It does not include committees that the Senate does not constitute or approve.

INITIAL DECLARATION OF FINANCIAL EXIGENCY

Financial Exigency: a demonstrably bona fide financial crisis that adversely affects an institution as a whole and that, after considering other cost-reducing measures, including ways to cut faculty costs, requires consideration of terminating appointments held by tenured faculty. Financial exigency is an imminent financial crisis that threatens the survival of the institution as a whole and that cannot be alleviated by less drastic means. Whenever there is reason to anticipate that the University is sufficiently threatened by financial exigency, declines in enrollment, or changes in educational needs to endanger the continuance of the University's obligations to faculty members with tenure or those on tenure-track regular academic appointments, the President at the earliest date possible shall inform the Faculty Senate and all potentially affected budgetary units of the problem.

The President shall consult with the Senate and the concerned budgetary units to determine the nature and seriousness of the problem, the most appropriate of the possible courses of action to be taken, and the means of safeguarding faculty rights and interests, including tenure rights. In
solving such a problem, the University shall make every reasonable effort to reassign affected faculty members to other suitable work and to aid them in finding other employment.

On the basis of these deliberations, the President shall write an Initial Declaration of Financial Exigency giving the extent and scope of the emergency and the general approach to be taken to respond to it.

CONCURRENCE OF THE SENATE

The President shall submit the Initial Declaration of Exigency to the Senate for advice and concurrence. Concurrence requires a majority vote of the Senate. This process may involve amendments, mutually agreed upon. Concurrence will result in a joint Senate-presidential Exigency Plan. The joint Plan shall include a formula for the membership of the committee “composed of faculty and administrative personnel to make recommendations to the president as to which academic positions and/or academic programs should be eliminated as a result of the financial exigency” in accordance with rule 3.1, as well as the general criteria the committee should apply in making its recommendations.

PROCEDURE FOR ELIMINATING POSITIONS

Upon concurrence, the Senate shall nominate faculty to serve on the committee to review the President’s declaration, assure that there is no alternative to the proposed actions, and develop a process to make the needed decisions as outlined in Regents Rules 31003, Section Part 2, Sections 3.2 to 3.5, provided that:

For section 3.1, the “committee composed of faculty and administrative personnel” the general size and composition of the committee shall be agreed upon by the Senate and the President, provided that it has at least seven members, of whom will be faculty. Once this is done, the Senate will nominate the faculty members. At least a majority of the faculty nominated will be tenured. The nominations should seek to represent the university as a whole, not just programs initially slated to be reduced or just those not so slated, and at least some of them will have served on the Committee for Qualifications of Academic Personnel. The President shall not appoint faculty to the committee who are not nominated by the Senate. This committee shall be called hereafter the Exigency Committee.

For section 3.2, assessment of academic programs. The Exigency Committee will provide a written report of its analysis of programs, which shall be submitted to the Senate for review and response before recommendations are made for specific positions to be eliminated. As stated in the Rule, “The committee will review and assess the academic programs of the institution and identify those academic positions that may be eliminated with minimum effect upon the degree programs that should be continued and upon other critical components of the institution’s mission. The review will include, but not be limited to, an examination of the course offerings, degree programs, supporting degree programs, teaching specialties, and semester credit hour production; an evaluation of the quality, centrality, and funding of research activities; and/or an assessment of the productivity, community service, and quality of clinical services (in relation to teaching, healthcare delivery, and scholarly activity).” The Committee shall consider and may offer advice on all avenues by
which terminations of faculty members can be avoided or minimized, and, as well, by which the negative effects of any necessary terminations can be mitigated. Unless an extension is approved by the President, the Committee shall submit its recommendations in writing complete its work in a period of time no longer than 60 days.

In section 3.3, Review Consideration. After the President approves the recommendations regarding programs to be cut, the Exigency Committee next recommends specific positions to be eliminated. These recommendations should also be contained in a written report. The recommendations should be related to the Exigency Committee’s assessment of programs. If other officers of the university, such as deans or program chairs, are involved in identifying individuals whose appointments are to terminated, the process for obtaining these recommendations should be described in the report. The Exigency Committee will have available the personnel records of those being considered including current curriculum vitae, annual reports, promotion committee reports and recommendations, and results of periodic performance reviews. It will have access to full personnel files. Faculty whose positions would be jeopardized by the proposed actions will be provided the opportunity to contribute meaningfully to the Committee's review process.

For section 3.4, Tenure Preference. The Exigency Committee should not apply an unduly narrow interpretation of the idea that two candidates should be “equally qualified” before preference is given to one with tenure over one without. Preference should be given to tenured faculty over non-tenured if they are have approximately the same qualifications and prospects, and to more senior faculty over less senior provided that their accomplishments are roughly proportional to their relative academic lifetimes. The decisions should be consistent with the general principle that greater contributions will gain greater recognition.

In section 3.5, Recommendation. According to the Rule, “upon completion of its review,” the Exigency Committee “shall promptly recommend in writing to the president those persons who may be terminated, ranked in order of priority, with the reasons for their selection. The president shall, with such consultation with institutional administrative officers as they may deem appropriate, determine which academic positions are to be terminated because of the financial exigency and shall give the holders of these positions written notice of the decision.” The Exigency Committee recommendations to the President shall be made in writing. Unless an extension is approved by the President, the Committee shall complete its work in a period of time no longer than 60 days from the submission of the initial report, specified in section 3.2, recommendations identifying the programs or positions to reduce or eliminate.

PROCEDURE FOR NOTICE AND APPEAL

A faculty member whose position has been eliminated is entitled to appeal the decision, subject to the requirements of Regents’ Rules 31003 section 3.8.

The issues in this hearing may include:
ITEM #6

(a) The existence and extent of the exigency. The burden will rest on the administration to prove the existence and extent of the condition. The findings of other hearing involving the same issue may be introduced.

(b) The validity of the educational judgments and the criteria for identification for termination, although the panel should give presumptive weight to the previous judgments of the Senate and the exigency committee.

(c) Whether the criteria developed by the exigency committee are being properly applied in the individual case.

The hearing shall be held before a panel consisting of full-time faculty drawn from the list of faculty in the pool approved for service on hearing tribunals in accordance with the UTD Policy on Hearing Tribunal Selection Procedures, provided that such faculty are not in the academic programs affected by the decision. At least half of the membership of such panels shall be from faculty recommended by the Senate. The size of such appeals panels shall be determined as part of the guidelines for the declaration of exigency. The Hearing Panel shall elect its own Chair. The hearing must be held no later than 30 days after a written request is submitted to the President's office.

The employment of a tenured faculty member who is to be terminated under this policy shall extend only to the termination of his/her academic to the end of his or her current academic term; faculty will be allowed reasonable time to close down laboratories, complete teaching assignments, and transfer their responsibilities program. If an entire program or part of a program is cut, employment of all faculty in that program will terminate when the program itself is terminated, and will not extend beyond the termination of the program. During this period of employment and for 3 additional years, the terminated faculty member shall have the right to first consideration among equally qualified candidates for any faculty position at U. T. Dallas for which a recruitment and hiring process is conducted and for which the faculty member in question formally applies. In addition, the considerations noted in Rule 31003, Section 2, Subsections 2.6 - 2.11 of the Regents' Rules and Regulations will be extended to the faculty member to be terminated.

NO CONCURRENT REPLACEMENTS

If appointments are terminated, the University will not at the same time make new appointments except in extraordinary circumstances where a serious distortion in the academic program would otherwise result. Similarly, the appointment of a faculty member with tenure will not be terminated in favor of retaining a faculty member without tenure, except in extraordinary circumstances where a serious distortion of the academic program would otherwise result.
Academic Focus of the Program:

The Graduate Certificate Program will focus on educating executives and industry sponsors on how to develop, implement, execute, and expand their business strategies. The program will employ lectures, case studies, and assignments to help students understand the importance of effective product lifecycle management. Students will learn how to identify and prioritize the needs of their organization, and how to effectively manage the lifecycle of their products to ensure success. The program will also cover the principles of effective supply chain management, and how to use this knowledge to improve the performance of their organizations. The program will also cover the importance of effective project management, and how to use this knowledge to improve the performance of their organizations. The program will also cover the principles of effective project management, and how to use this knowledge to improve the performance of their organizations.

Introduction/Description:

Implementation Date: Fall 2020

Contact: Dr. Dwayne Redman, dwayne@utdallas.edu

School: School of Management

Title: Graduate Certificate in Product Lifecycle and Supply Chain Management

Proposal Academic Certificate Program
Course Offerings and Site Locations (note new courses with an asterisk):

Working professionals — Thursday, Friday and Saturday — all day, once a month.
The Graduate Certificate Program classes will start in September each year. Classes are held in a convenient schedule for
combining theory and practice. Graduate Certificate is earned after completing 15 credit hours in 9-12 months.
The Graduate Certificate provides comprehensive training in Product Lifecycle and Supply Chain Management,

Credit Hours and Degree Programs:

Management, UT Dallas.

Networks in partnership with the Project Management Program in Executive Education Department at School of

The Graduate Certificate in Product Lifecycle & Supply Chain Management is offered by the Center for Intelligent Supply

Organizational Arrangements:

Three reference recommendations.

Personal Goal Statement.

GMAT or GRE not required.

Significant Professional Experience.

Acceptable undergraduate degree.

Admission Policy:

Students in the first year and steadily grow to between 30-40 students.

are and more than 2,000 regional and corporate headquarters operations. We expect to enroll between 10-15
Transportation, Energy and Defense. There are approximately more than 1,000 businesses in the Dallas/Fort Worth
industries include: Telecommunications, Hardware, Manufacturing, Systems Integration, Software / Services,

community — DFW area. The regional heartland and diverse business base can “evergreen” any investment dramatically.

complex of major multidisciplinary technological corporations known as Telecom Corridor, and serves the greatest

The UT-Dallas School of Management is located at the convergence of Richardson, Plano and Dallas in the heart of the

Global capabilities, gaining a cross-functional knowledge and manage projects across multiple functions and extended global enterprises.

aspires to become a product manager, operations manager, general manager, business partner and is interested in
product development, procurement, distribution, warehousing, logistics, information technology and consulting.

Target Audience — A typical student is an expert in one or more functional areas such as engineering, manufacturing,

Job Market for the Certificate:

and “relevant” to the hiring organizations.

management and industry leaders/facilitators to deliver the program. The program will be “excellent” to the students
interact classroom learning with work projects. The program will leverage the world-class faculty in the operations
<table>
<thead>
<tr>
<th>% Time</th>
<th>Program Assigned to</th>
<th>Course Assigned In</th>
<th>Institution</th>
<th>Highest Degree and Awarding Faculty Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>Sigma</td>
<td>OPRE 6364: Lean & Six Sigma</td>
<td>University of Illinois at Urbana-Champaign, USA - Ph.D.</td>
<td>Senior Lecturer - Dr. Kamran Hamamatein</td>
</tr>
<tr>
<td>20%</td>
<td>Lifecycle Management</td>
<td>OPRE 6370: Product Management</td>
<td>University of Windsor, Canada - Ph.D.</td>
<td>Clinical Professor - Dr. Dwaker Raghnanil</td>
</tr>
<tr>
<td>20%</td>
<td>Purchasing Management</td>
<td>OPRE 6371: Sourcing and Purchasing Management</td>
<td>Grenoble, France - Ph.D.</td>
<td>Associate Professor - Dr. Chelliah Subramaniam</td>
</tr>
<tr>
<td>30%</td>
<td>Distribution and Logistics</td>
<td>OPRE 6370: Logistics and Distribution</td>
<td>Carnegie Mellon University, USA - Ph.D.</td>
<td>Associate Professor - Dr. Metin Dogandemre</td>
</tr>
<tr>
<td>30%</td>
<td>Management</td>
<td>OPRE 6366: Supply Chain Management</td>
<td>Cornell University, USA - Ph.D.</td>
<td>Faculty Rank - Dr. Metin Dogandemre</td>
</tr>
</tbody>
</table>

Faculty/Staffing (assign each course to a faculty member): **LOCATION:** All classes are scheduled to be offered at School of Management, University of Texas at Dallas.

New Course:

<table>
<thead>
<tr>
<th>Credit Hours</th>
<th>Course Name</th>
<th>Course No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lean and Six Sigma</td>
<td>OPRE 6364</td>
</tr>
<tr>
<td>3</td>
<td>Product Lifecycle Management</td>
<td>OPRE 6370</td>
</tr>
<tr>
<td>3</td>
<td>Purchasing and Sourcing Management</td>
<td>OPRE 6371</td>
</tr>
<tr>
<td>3</td>
<td>Logistics and Distribution</td>
<td>OPRE 6370</td>
</tr>
<tr>
<td>3</td>
<td>Supply Chain Management</td>
<td>OPRE 6366</td>
</tr>
</tbody>
</table>

Graduate Certificate in Product Lifecycle & Supply Chain Management (15 credit hours)

The following are the course numbers, name and credit hours.
Subject: Gradute Certificate Program
To: [Recipient Email]

[Recipient Name] may be interested in a Graduate Certificate Program in Product Lifecycle and Supply Chain Management from [Institution Name].

[Body of the email]

Additional Information:
Subject: SVP Distribution & Logistics, Blockbuster Inc.

William J. Wissinger

Vice President, Logistics

Vice President, Logistics

By working across all disciplines to maximize the productivity potential of the company, this program allows professionals to not only have the academic credentials to cross silos but also have the practical experience. This program will allow professionals to be strong in business to thrive. It is essential that individuals understand product lifecycles and supply chain management to develop a global perspective.

The proposed certificate program is on track for what is needed now and well into the future.

Subject: Global Supply Chain Solutions LLC

To: Paul Peck

From: Bill Wissinger

CEO, Global Supply Chain Solutions LLC

Subject: UT-Dallas quote

To: Paul Peck

From: Paul Peck

There is going to be increasing demand for supply chain professionals everywhere, building anywhere, deliver anywhere, deliver anywhere. Effective supply chain management is critical to any manufacturer or distributor. It drives cost of sales - that big number that appears just below the top line, in the new world order of design anywhere, build anywhere, deliver anywhere.

Subject: Global Supply Chain Solutions LLC

To: Paul Peck

From: Bill Wissinger

CEO, Global Supply Chain Solutions LLC
Graduate Certificate in Product Lifecycle and Supply Chain Management

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Learn supply chain management techniques</td>
</tr>
<tr>
<td>2.</td>
<td>Assignments</td>
</tr>
<tr>
<td>3.</td>
<td>Case discussions and presentations</td>
</tr>
<tr>
<td>4.</td>
<td>Projects and presentations</td>
</tr>
</tbody>
</table>

Methods chosen in the assessment determined by their combined assessment success will be:

- Procedures/Methodology
- Quiz and/or Exams

Certificate Program

Approximate Credit Hours:

Class Hours: Thursday, Friday, and Saturday – all days, once a month

Mission Statement:
The Graduate Certificate Program will focus on educating executives and industry-sponsored employees in the disciplines of product lifecycle and supply chain management, combining theory and practice. They will be trained to effectively problem solve and continuously improve the product performance and supply chain efficiency. The Program will employ lectures, case studies, the visits in classroom learning with work projects. The Program will reserve the best faculty in the operations management and industry.

Email: dresser@udallas.edu
Phone: 972-883-4843
Start Date: Sep 2010

Program: Graduate Certificate in Product Lifecycle and Supply Chain Management

Program Head: Dr. David Kaysen
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of each</td>
<td>Student success will be determined by the combined assessment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Improvement

- Effector problems solving techniques and tools for improving processes.
- Lean and Six Sigma.
AMED's educational objectives are essential for the development of new technologies in biomedical engineering, which is a field that integrates engineering and science to improve human health. The University of Texas at Dallas offers a Bachelor of Science in Biomedical Engineering program that meets the design, development, and application needs of local and state biomedical engineers.

The proposed Bachelor of Science in Biomedical Engineering program will address and strengthen the recently approved educational objectives of the Bachelor's degree program in Biomedical Engineering. The educational objectives of the Bachelor's degree program are to:

1. Describe the program and the educational objectives:

 - 1.09.00, Biomedical Engineering

2. Program Name - Show how the program would appear on the coordinating board's

3. Proposal Code:

 - 3.0691.00, Biomedical Engineering (B.S.B.E.)

4. Program Description - Describe the program and the educational objectives:

 Bachelor of Science in Biomedical Engineering (B.S.B.E.)

 Program overview: The Bachelor of Science in Biomedical Engineering degree prepares students for careers in biomedical engineering, which is a field that applies engineering and science to improve human health. The program is designed to meet the educational and professional needs of local and state biomedical engineers.

 The program is accredited by the Accreditation Board for Engineering and Technology (ABET), which is a national organization that accredits engineering programs in the United States. ABET accreditation is a mark of quality and signifies that the program meets the standards set by the engineering profession.

 The program curriculum includes courses in mathematics, biology, chemistry, physics, and computer science, as well as courses in biomedical engineering. The curriculum is designed to provide students with a strong foundation in the basic sciences and to prepare them for careers in biomedical engineering.

 The program requires 120 credit hours of coursework, which includes 42 credit hours of required courses and 36 credit hours of elective courses. Students must maintain a minimum GPA of 2.0 in all required courses and must pass all courses with a grade of C or better.

 The program requires the completion of a capstone project, which is a comprehensive project that integrates the knowledge and skills gained throughout the program. The capstone project is designed to provide students with hands-on experience in the design and development of biomedical engineering solutions.

 The program is suitable for students who are interested in careers in biomedical engineering, such as research and development, product design, and clinical engineering. The program is also suitable for students who are interested in pursuing graduate studies in biomedical engineering or related fields.

 The program is delivered in a traditional classroom setting, with lectures, laboratory experiments, and group projects. The program is available on a full-time and part-time basis, and students can choose to complete the program in four years or five years, depending on their course load.

 The program is accredited by the Accreditation Board for Engineering and Technology (ABET), which is a national organization that accredits engineering programs in the United States. ABET accreditation is a mark of quality and signifies that the program meets the standards set by the engineering profession.

 The program curriculum includes courses in mathematics, biology, chemistry, physics, and computer science, as well as courses in biomedical engineering. The curriculum is designed to provide students with a strong foundation in the basic sciences and to prepare them for careers in biomedical engineering.

 The program requires 120 credit hours of coursework, which includes 42 credit hours of required courses and 36 credit hours of elective courses. Students must maintain a minimum GPA of 2.0 in all required courses and must pass all courses with a grade of C or better.

 The program requires the completion of a capstone project, which is a comprehensive project that integrates the knowledge and skills gained throughout the program. The capstone project is designed to provide students with hands-on experience in the design and development of biomedical engineering solutions.

 The program is suitable for students who are interested in careers in biomedical engineering, such as research and development, product design, and clinical engineering. The program is also suitable for students who are interested in pursuing graduate studies in biomedical engineering or related fields.

 The program is delivered in a traditional classroom setting, with lectures, laboratory experiments, and group projects. The program is available on a full-time and part-time basis, and students can choose to complete the program in four years or five years, depending on their course load.

 The program is accredited by the Accreditation Board for Engineering and Technology (ABET), which is a national organization that accredits engineering programs in the United States. ABET accreditation is a mark of quality and signifies that the program meets the standards set by the engineering profession.
The proposed B.S.E.E. degree program will provide the necessary foundational education to allow graduates to contribute to challenging projects that will require knowledge of the fundamentals of the design of engineering and biological systems.

5. Administrative Unit - Identify where the program would fit within the organizational structure of the university (e.g., The Department of Electrical Engineering within the College of Engineering).

The Department of Bioengineering within the School of Engineering and Computer Science. The creation of this department was approved by THECB in January 2010.

6. Proposed Implementation Date - Report the first semester and year that students would enter the program:

Spring 2011

7. Contact Person - Provide contact information for the person who can answer specific questions about the program:

Name: Dr. Mark Spong

Title: Dean of Engineering and Computer Science and Lars Magnus Ericsson Professor

E-mail: "spong, mark w", mwos01000@utdallas.edu"

Phone: 972 883-2974
Biomedical engineers through 2016. In 2010, the BLR radically revised their projection.

Statistics of the U.S. Department of Labor projected a growth of 21% in job openings for biomedical engineers will increase by 30% from 2006 to 2016. In 2006, the Bureau of Labor Statistics revealed the demand for biomedical engineers according to the Texas Workforce Commission’s website. The demand for biomedical engineers is growing for the following reasons:

- Long-term need

Courses focusing on biological and biomedical applications of engineering.

A strong foundation in mechanical and electrical engineering, as well as projects and courses focusing on biology and medical applications.

In addition to the U.T. Dallas Biomedical Engineering Program, the following careers are recommended to enter this field:

- Biomedical engineering
- Biochemistry
- Biology
- Biotechnology
- Pre-med
- Dentistry
- Medical imaging
- Research

The principal areas of focus of the Career Center of the Biomedical Engineering Society

- Rehabilitation engineering
- Orthopedic engineering
- Medical applications of imaging
- Clinical engineering
- Medical equipment
- Cellular/tissue engineering
- Biomechanics
- Biomaterials
- Neural engineering
- Nanotechnology
- Bioelectronics
- Bioinformatics

The following are the principal areas of focus of the Career Center of the Biomedical Engineering Society:

- Rehabilitation engineering
- Orthopedic engineering
- Medical applications of imaging
- Clinical engineering
- Medical equipment
- Cellular/tissue engineering
- Biomechanics
- Biomaterials
- Neural engineering
- Nanotechnology
- Bioelectronics
- Bioinformatics

The following are the principal areas of focus of the Career Center of the Biomedical Engineering Society:

- Rehabilitation engineering
- Orthopedic engineering
- Medical applications of imaging
- Clinical engineering
- Medical equipment
- Cellular/tissue engineering
- Biomechanics
- Biomaterials
- Neural engineering
- Nanotechnology
- Bioelectronics
- Bioinformatics

The following are the principal areas of focus of the Career Center of the Biomedical Engineering Society:

- Rehabilitation engineering
- Orthopedic engineering
- Medical applications of imaging
- Clinical engineering
- Medical equipment
- Cellular/tissue engineering
- Biomechanics
- Biomaterials
- Neural engineering
- Nanotechnology
- Bioelectronics
- Bioinformatics

1. Program Information

- Bachelor’s and Master’s Degrees
- New Program Request Form
biomedical engineering. Approximately half of the 2000 Duke engineering freshmen wanted to major in biomedical engineering. The first degree class in biomedical engineering, a class they capped at 35 places, in 2004, exceeded the number of applications for the University of Texas at Austin. Specific growth in biomedical engineering degrees awarded at the undergraduate level at U.T. Dallas. This growth is likely to continue in the future due to the high demand for biomedical engineers. The accompanying chart of U.S. bachelor's enrollment in biomedical engineering shows substantial demand.

Short-term demand

Engineering by prospective students.

Established biomedical engineering programs in universities and universities have been established with much greater annual growth rates of biomedical engineering degrees granted in biomedical engineering new degree programs. On the other hand, the number of biomedical engineering degrees earned in the United States has grown at a rate of 12.3%. This rate of growth is much slower than the growth rate of other engineering fields. For example, the number of mechanical engineering degrees earned in the United States has grown at a rate of 6.7%.

Biomedical engineering is by far the most rapidly growing biomedical discipline in terms of student enrollment and degree growth. For example, the number of biomedical engineering degrees earned in the United States has grown at a rate of 12.3%. This rate of growth is much slower than the growth rate of other engineering fields. For example, the number of mechanical engineering degrees earned in the United States has grown at a rate of 6.7%.

Long-term demand

The Program

Engineering.

Co-op positions and internships for the U.T. Dallas Biomedical Engineering program. The program has been designed to provide students with a strong foundation in the sciences and technology, as well as hands-on experience in the field. The program offers a variety of tracks, including biomedical engineering, bioinformatics, and biotechnology.

Page 5

New Program Request Form
graduation.

The years of the program (including majors only and consider attention and headcount and full-time student equivalent (FTSE) enrollment for the first cumulative enrollment projections – use this table to show the estimated cumulative undergraduate population of 100 to 150. The finding profile will be sufficient to support an undergraduate biomedical engineering degree.

Undergraduate programs in Texas, U.T. Dallas receives 40 to 50 inquiries per year regarding an undergraduate biomedical engineering degree. Dallas will help to meet student demand in Texas for additional high-quality undergraduate programs in the state. Thus, the creation of a B.S.B.M.E. program at U.T. Dallas will complement the programs at the University of Houston and the University of Texas at Austin and will serve the needs of students who are offered admission generally come from the top 3% of their high school classes. Texas A&M University and the University of Houston are the only other two biomedical engineering programs in Texas. A strong indicator of short-term demand. The U.T. Austin undergraduate program in a strong indicator of short-term demand. The U.T. Austin undergraduate program in

Page 6

Bachelor's and Master's Degrees

New Program Request Form for
<table>
<thead>
<tr>
<th>Category</th>
<th>Hours</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (not included)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Major Required Courses</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Preclinical Electives</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>General Education Core Curriculum</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

The proposed B.S.B.M.E. program provides a solid foundation for both graduate study and medical school while requiring fewer hours than combinations of other engineering degree programs with the pre-medical.

Graduation with a B.S.B.M.E. degree as described in Section C.

preclinical and medical school admission, as in the following table, they will meet both the exclusive of mathematics and science. If students take in additional 8 SCH advanced biology requirement for medical school admission.

The Texas engineering degree, BME, and BME are included to satisfy the program, (Modifying the table as needed; if necessary, replicate the table for more than one option).

Degree Requirements - Use this table to show the degree requirements of

Bachelor's and Master's Degrees
<table>
<thead>
<tr>
<th>SCh</th>
<th>General Education Core Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Chemistry 1 Laboratory</td>
</tr>
<tr>
<td></td>
<td>CHEM 1111</td>
</tr>
<tr>
<td>1</td>
<td>Physics Laboratory 2</td>
</tr>
<tr>
<td></td>
<td>PHYS 2126</td>
</tr>
<tr>
<td>3</td>
<td>Electromagnetism and Waves</td>
</tr>
<tr>
<td></td>
<td>PHYS 2326</td>
</tr>
<tr>
<td>1</td>
<td>Physics Laboratory 1</td>
</tr>
<tr>
<td></td>
<td>PHYS 2126</td>
</tr>
<tr>
<td>3</td>
<td>Mechanics and Heat</td>
</tr>
<tr>
<td></td>
<td>PHYS 2325</td>
</tr>
<tr>
<td>3</td>
<td>Preparation Courses: See Table Below</td>
</tr>
<tr>
<td></td>
<td>Calculus 2 (1 SCh is Counted in Major</td>
</tr>
<tr>
<td></td>
<td>MATH 2419</td>
</tr>
<tr>
<td>3</td>
<td>Preparation Courses: See Table Below</td>
</tr>
<tr>
<td></td>
<td>Calculus 1 (1 SCh is Counted in Major</td>
</tr>
<tr>
<td></td>
<td>MATH 2417</td>
</tr>
<tr>
<td>3</td>
<td>Exploration of the Humanities</td>
</tr>
<tr>
<td></td>
<td>HUMA 1301</td>
</tr>
<tr>
<td>3</td>
<td>Exploration of the Arts</td>
</tr>
<tr>
<td></td>
<td>ARTS 1301</td>
</tr>
<tr>
<td>3</td>
<td>Social Issues and Ethics in Computer Science</td>
</tr>
<tr>
<td></td>
<td>ECS 3361</td>
</tr>
<tr>
<td>6</td>
<td>American History</td>
</tr>
<tr>
<td></td>
<td>HIST (various)</td>
</tr>
<tr>
<td>3</td>
<td>Political Institutions in the U.S. and Texas</td>
</tr>
<tr>
<td></td>
<td>GOVT 2302</td>
</tr>
<tr>
<td>3</td>
<td>Behavior in the U.S. and Texas</td>
</tr>
<tr>
<td></td>
<td>GOVT 2301</td>
</tr>
<tr>
<td>3</td>
<td>Constitutional Foundations and Political</td>
</tr>
<tr>
<td></td>
<td>GOVT 3390</td>
</tr>
<tr>
<td>3</td>
<td>Professional and Technical Communication</td>
</tr>
<tr>
<td></td>
<td>ECS 1302</td>
</tr>
<tr>
<td>3</td>
<td>Rhetoric</td>
</tr>
<tr>
<td></td>
<td>RETH 1302</td>
</tr>
</tbody>
</table>

(If applicable, replicate the table for different tracks/options.)

Note that each course is identified by the required courses and prefixes. Each course has a specific number of credits assigned.
<table>
<thead>
<tr>
<th>SCH</th>
<th>Major Preparatory Courses</th>
<th>Total Major Preparatory Course Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B101, B102, B211, B212,</td>
<td>2281</td>
</tr>
<tr>
<td></td>
<td>B2312, B2311, CS 1337,</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CHEM 1111, CHEM 1112,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 1311, MATH 2417,</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MATH 2419, MATH 2420</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Education Core Curriculum</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- MATH: Mathematics
- CHEM: Chemistry
- B101, B102, B211, B212, B2312, CS 1337: General Chemistry
- Education Core Curriculum, Calculus 1 and 2, Introduction to Modern Biology I and II, Computer Science I: Major Preparatory Courses
- SCH: Semester Hour Credit

Note:
- Calculus 2 (3 SCH are counted in the General Education Core Curriculum; see table above)
- Education Core Curriculum: See table above
<table>
<thead>
<tr>
<th>SCH</th>
<th>Major Required Courses</th>
<th>Prefix</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bioengineering Laboratory</td>
<td>ENGR</td>
<td>3160</td>
</tr>
<tr>
<td></td>
<td>biomedical Component and System Design</td>
<td>BMEN</td>
<td>3180</td>
</tr>
<tr>
<td></td>
<td>Engineering Physiology Laboratory</td>
<td>BMEN</td>
<td>3340</td>
</tr>
<tr>
<td></td>
<td>Probability Theory and Statistics</td>
<td>ENGR</td>
<td>3380</td>
</tr>
<tr>
<td></td>
<td>Engineering Fundamentals</td>
<td>BMEN</td>
<td>3130</td>
</tr>
<tr>
<td></td>
<td>Engineering of the Human Body</td>
<td>BMEN</td>
<td>3330</td>
</tr>
<tr>
<td></td>
<td>Engineering Circuits and Instrumentation</td>
<td>BMEN</td>
<td>3120</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Thermodynamics</td>
<td>BMEN</td>
<td>3310</td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics and Transport Processes</td>
<td>BMEN</td>
<td>3310</td>
</tr>
<tr>
<td></td>
<td>Signals and Systems Laboratory</td>
<td>EE</td>
<td>3310</td>
</tr>
<tr>
<td></td>
<td>Signals and Systems</td>
<td>EE</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>Biomechanics Laboratory</td>
<td>BMEN</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>Introduction to Biomechanics</td>
<td>BMEN</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>Advanced Engineering Mathematics</td>
<td>ENGR</td>
<td>3310</td>
</tr>
<tr>
<td></td>
<td>Statics and Rigid-Body Dynamics</td>
<td>Mech</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>Applied Linear Algebra for Engineers</td>
<td>ENGR</td>
<td>1120</td>
</tr>
<tr>
<td></td>
<td>Introduction to Biomedical Engineering</td>
<td>BMEN</td>
<td>1120</td>
</tr>
<tr>
<td>Prefix and Number</td>
<td>Major Prescribed Electives (6 SCH)</td>
<td>Total Major Prescribed Elective Hours</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>BMEN 4310 BMEN 4312</td>
<td>Intermediate Electrical systems BMEN 4320 *Advanced Engineering Physiology of the BMEN 4330 *Human Body BMEN 4350 *Applied Sensor technology</td>
<td>6 3 3 6</td>
<td></td>
</tr>
<tr>
<td>3 1 3 3 3</td>
<td>Students must take two of the following three (6 SCH)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Major Required Course Hours: 52
<table>
<thead>
<tr>
<th>SC</th>
<th>Optional Organic Chemistry Courses (8)</th>
<th>Total Optional Organic Chemistry Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Introduction Organic Chemistry Laboratory II</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Introduction Organic Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Introduction Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>Introduction Organic Chemistry Laboratory I</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Introduction Organic Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Introduction Organic Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>

Prefix Number

Page 12
Bachelor's and Master's Degrees
New Program Request Form
<table>
<thead>
<tr>
<th>Name of Core and Faculty Rank</th>
<th>Highest Degree and Awarding Institution</th>
<th>Courses Assigned in Program</th>
<th>% Time Assigned To Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vidyasegar, Asst. Professor</td>
<td>Ph.D. in Electrical Engineering, Univ. of Wisconsin (Madison), 1969</td>
<td>MG200, MG285, MG824 (Lab Only)</td>
<td>50%</td>
</tr>
<tr>
<td>Mathukumalli, Prof.*</td>
<td>Ph.D. in Molecular Genetics, Univ. of Texas at Dallas</td>
<td>BMEN 4310, BMEN 4110</td>
<td>33.3%</td>
</tr>
<tr>
<td>Bhavani, Dinesh, Asst. Professor</td>
<td>Ph.D. in Computer Science, U.T. Dallas</td>
<td>BMEN 3320, BMEN 3120, BMEN 4350</td>
<td>33.3%</td>
</tr>
<tr>
<td>Nam, Hyunjoo, Asst. Professor</td>
<td>Ph.D. in Developmental Biology, Harvard University</td>
<td>BMEN 1308, BMEN 4340</td>
<td>33.3%</td>
</tr>
<tr>
<td>*New Faculty in Year 2010</td>
<td>Ph.D. in Biomedical Engineering</td>
<td>BMEN 3310, BMEN 3110</td>
<td>33.3%</td>
</tr>
<tr>
<td>New Faculty in Year 2010</td>
<td>Ph.D. in Biomedical Engineering</td>
<td>BMEN 1102, BMEN 3302</td>
<td>33.3%</td>
</tr>
<tr>
<td>New Faculty in Year 2011</td>
<td>Ph.D. in Biomedical Engineering</td>
<td>BMEN 3350, BMEN 3150, BMEN 4110</td>
<td>33.3%</td>
</tr>
<tr>
<td>New Faculty in Year 2011</td>
<td>Ph.D. in Biomedical Engineering</td>
<td>ENGR 4388, ENGR 4389</td>
<td>33.3%</td>
</tr>
<tr>
<td>New Faculty in Year 2011</td>
<td>Ph.D. in Mechanical Engineering</td>
<td>MECH 3305, MECH 3105</td>
<td>33.3%</td>
</tr>
<tr>
<td>Program To Assign</td>
<td>Assign Program</td>
<td>% Time</td>
<td>Assign Highest Degree and Institution</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Elementary</td>
<td>BREN 430</td>
<td>16.7%</td>
<td>Engineering, University of Illinois-UIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineering, Georgia Tech M.ECH 4360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineering, University of Rhode Island</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineering, Georgia Tech M.ECH 4370</td>
</tr>
<tr>
<td></td>
<td>BREN 420</td>
<td>16.7%</td>
<td>Engineering, Georgia Tech M.ECH 4360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineering, University of Rhode Island</td>
</tr>
<tr>
<td></td>
<td>BREN 2300</td>
<td>16.7%</td>
<td>Engineering, Georgia Tech M.ECH 4370</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineering, Georgia Tech M.ECH 4360</td>
</tr>
<tr>
<td></td>
<td>BREN 3341</td>
<td>16.7%</td>
<td>Engineering, University of Rhode Island</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineering, Georgia Tech M.ECH 4370</td>
</tr>
<tr>
<td></td>
<td>BREN 4310</td>
<td>16.7%</td>
<td>Engineering, Georgia Tech M.ECH 4360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineering, Georgia Tech M.ECH 4370</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Engineering, Georgia Tech M.ECH 4360</td>
</tr>
</tbody>
</table>

Presented in order of proposals. B.S., B.M.E., M.S., M.E., and Ph.D. M.E.

*This assignment updates the faculty time assignments of engineering degree programs with 16.7% assignments to each of the component degrees. Support faculty in Bimodal Engineering are assigned 50% to the suite of Bimodal Bachelor's and Master's Degrees.

New Program Request Form for
Imaging and Biomedical Engineering Strategic Plan.

In keeping with the initiative set forth in the National Institute of Biomedical Imaging and Bioengineering Management and the Vice President for Diversity, U. T. Dallas, efforts to involve underrepresented populations in biomedical research and recognize the office of the office of the Dean of Engineering at the University of Texas at Dallas. The expanded curriculum will be shaped and operated in the Ewing Johnson School, University, especially historically minority institutions. The expanded curriculum on engineering graduate students beyond our current master of engineering support and recruitment, U. T. Dallas will broaden and deepen its efforts with respect to students from underrepresented groups in postgraduate studies.

Going forward, it is clear that no engineering school can afford to limit its underrepresented groups to apply to U. T. Dallas.

maintaining a reputation that will encourage students from expanded post-graduate programs will be essential in academic Bridge Program. Under the leadership of Dean George Fair, regions of recruitment and retention of minority students through the underrepresented level, U. T. Dallas has established a strong reputation in organizations such as the Society of Women Engineers. At the welcome culture and a strong system of support through student organizations, the national average is 19.9%. We attribute this relatively modest success to a degree in Electrical Engineering at U. T. Dallas were Women: the national average in both Electrical Engineering and Computer Science.

(12.1%) and Mechanical Engineering (11.9%), graduation in other engineering disciplines such as Electrical Engineering 2008, 36% of the Bachelor degrees granted in biomedical engineering U.S. Biomedical engineers in particular appear strongly to women. In the U.S. the number of engineers available to all jobs in Texas and the nation depends on success in engineering. The historically underrepresented groups in engineering include African-American, Hispanics-Americans and women. The curvature of engineering:

The historically underrepresented groups in engineering include African American, Hispanics-Americans and women. The difficulty of engineering:

Students – Describe general recruitment efforts and admission requirements. In accordance with the institution’s admission and recruitment strategies, describe plans to recruit, retain, and graduate students.
ABET requires that the Biomedical Engineering program must...

The Accreditation Board of Engineering and Technology (ABET) is responsible for accreditation of undergraduate engineering programs in the United States.

Accreditation is a process to obtain accreditation or provide a rationale for not pursuing accreditation. If the discipline has a national accrediting body, describe available.

Assessment of Undergraduate Laboratories can also be made through advisory boards, etc. Space for undergraduate laboratories is a key element in each department. The laboratory must be available in the existing facility or in a new facility.

This amount of space can be measured available. At U.T. Dallas, a minimum of 5000 sq ft of gross area is available. An additional 10,000 sq ft of gross area is available in the new facility.

The addition of 5 new FTE faculty members will require about 20,000 square feet of classroom space. The average space requirement for new classroom space is 400 sq ft per assistant, assistant, and office space for the addition of 5 new faculty members.

The U.T. Dallas strategic plan for institutional growth estimates that...

Equipment and Facilities

- Describe the availability and adequacy of...

Future plans for facilities and equipment to support the program. Describe plans for new faculty and equipment required to support the program. Describe plans to build the library holdings...

Library - Provide the library director's assessment of library resources and new program request form for...

Bachelor's and Master's Degrees
necessary for engineering practice.

An ability to use the techniques, skills, and modern engineering tools

A knowledge of contemporary issues

Learning

An understanding of the need for, and an ability to engage in lifelong learning

Solutions in a global, economic, environmental, and societal context

The broad education necessary to understand the impact of engineering

An ability to communicate effectively

An understanding of professional and ethical responsibility

An ability to identify, formulate, and solve engineering problems

An ability to function on multidisciplinary teams

Professional, ethical, health, and safety, environmental, and societal needs within realistic constraints such as economic, environmental, social, political, health and safety, and other collateral issues

An ability to design a system, component, or process to meet desired

An ability to design and conduct experiments, as well as to analyze and

An ability to apply knowledge of mathematics, science, and engineering

Students attain the following outcomes:

ABET requires that each engineering degree program demonstrate that its

Address specific CLOs

Student performance on tests, quizzes, or homework problems that directly

CLOs is assessed for each class section through quantitative measures of

What are the same for all instructors.

The achievement of the

Course level, as well as the assessment of both quality and efficiency in the E&K

ABET-17 accreditation guidelines for engineering degree programs require

The quality and effectiveness of the new degree program.

Evaluation – Describe the evaluation process that will be used to assess

When students are ready to graduate.

Mechanical Engineering Program at the end of its fourth academic year, or

ABET-accredited, we will request that ABET evaluate the undergraduate

The B.S.’M.E. Program at U. T. Dallas, which was new in 2008, is not yet

ABET will not accredit an engineering program unless and until students

The next ABET accreditation cycle for U. T. Dallas will occur in 2011-12.

Electrical Engineering and Computer Science are currently accredited by ABET. The

The U. T. Dallas baccalaureate programs in Computer Engineering,
In the Erik Jonsson School, each CLO in every course is mapped to one of the program outcomes (a–k). The statistics on CLO attainment gathered from a selected set of core courses are used to assess the attainment of the program outcomes.

In addition to demonstrating attainment of program-level outcomes, every ABET-accredited engineering program must define a set of program educational objectives (PEOs) and demonstrate that the alumni of the program attain the PEOs within 3–5 years after graduation.

ABET also requires that every engineering degree program demonstrate that it is engaged in continuous improvement using feedback from students, faculty, alumni, employers and industrial advisory boards. The assessment process and results must be documented in self-study reports.

In addition, all UT Dallas degree programs are reviewed at least every five years per UT Dallas Policy Memorandum 94-III.24-63 Academic Program Review. The review committee includes both external and internal members.

III. Costs and Funding

Five-Year Costs and Funding Sources - Use this table to show five-year costs and sources of funding for the program.

<table>
<thead>
<tr>
<th>Five-Year Costs</th>
<th>Five-Year Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel¹</td>
<td>$2.525M</td>
</tr>
<tr>
<td>Facilities and Equipment</td>
<td>$0</td>
</tr>
<tr>
<td>Library, Supplies, and Materials</td>
<td>$0</td>
</tr>
<tr>
<td>Other²</td>
<td>$.35M</td>
</tr>
<tr>
<td>Total Costs</td>
<td>$2.875M</td>
</tr>
</tbody>
</table>

1. 3 new T/T faculty members will be added to support the B.S.B.M.E. programs, at an average annual cost of $125,000 each. A total of 2 FTE-years of senior lecturer/part-time lecturer personnel will be added at an average annual cost of $65,000, beginning with 2 FTEs in year 1.
2. Administrative staff costs ($0.14M); travel ($0.06M); accreditation ($0.15M).
3. Indicate formula funding for students new to the institution because of the program; formula funding should be included only for years three through five of the program and should reflect enrollment projections for years three through five.
4. Designated tuition and fees, $8.56M; PUF, $10M.
On behalf of the Board of Regents, I certify that the new program meets the criteria.

1. Adequacy of Funding - The chief executive officer shall sign the following statement:

2. Board of Regents or Designee Approval - A member of the Board of Regents or the assistant commissioner for academic affairs and research, the board of commissioners, or the Regents or designee must certify that the new program meets the eight criteria.

3. Date

4. Chief Executive Officer - The chief executive officer shall sign the following statement:

5. Applicant's application and the degree programs that are comparable to those of high-quality programs in the same or similar disciplines at other institutions:

6. The minimum denial of basic educational degree programs at the institution:

7. No unnecessary duplication of existing programs at other institutions:

8. New five-year costs that would not exceed $2 million:

Board of Regents (Designee)
CEP PROPOSAL – FIRST 40 PAGES OF UNDERGRADUATE CATALOG

The course description section of the catalog has already been reviewed and approved by the Senate. *Please use the link below to review the catalog.*

/undergrad/2010 Catalog/Front 40:
https://pluto.utdallas.edu/xythoswfs/webui/_xy-6190_1-s_tUlHmkNi

The password is CEP (case sensitive)