Erik Jonsson School of Engineering and Computer Science Interdisciplinary Programs

Computer Engineering (B.S.C.E.)

Educational Objectives for the Computer Engineering Program

Graduates of the Computer Engineering program should:

  • Have a successful, long-lived engineering based career path
  • Meet the needs of industry
  • Contribute to, and/or lead engineering based teams
  • Actively pursue continuing (lifelong) learning

High School Preparation

Engineering education requires a strong high school preparation. Pre-engineering students should have high school preparation of at least one-half year in trigonometry and at least one year each in elementary algebra, intermediate and advanced algebra, plane geometry, chemistry, and physics, thus developing their competencies to the highest possible levels and preparing them to move immediately into demanding college courses in calculus, calculus-based physics, and chemistry for science majors. Pre-Computer Engineering students should have some experience with elementary programming in a high level language such as C, C++, or Java. It is also essential that pre-engineering students have the competence to read rapidly and with comprehension, and to write clearly and correctly.

Lower-Division Study

All lower-division students in Computer Engineering concentrate on mathematics, science, and introductory engineering courses, building competence in these cornerstone areas for future application in upper-division engineering courses. The following requirements apply both to students seeking to transfer to UT Dallas from other institutions as well as to those currently enrolled at UT Dallas, whether in another school or in the Erik Jonsson School of Engineering and Computer Science.

ABET Requirements

All engineering degree plans must satisfy the requirements specified by the Accreditation Board for Engineering and Technology (ABET). The course work must include at least:

  • One year (32 SCH) of an appropriate combination of mathematics and basic sciences
  • One and one-half years (48 SCH) of engineering topics
  • A general education component that complements the technical content

Although the computer engineering curriculum that follows has been designed to meet these criteria, students have the responsibility, in consultation with an advisor, to monitor their own choice of courses carefully to be certain that all academic requirements for graduation are being satisfied.

Academic Progress in Computer Engineering

In order to make satisfactory academic progress as a Computer Engineering major, a student must meet all University requirements for academic progress, and must earn a grade of C- or better in each of the major core courses. No “Major Requirement” course (as listed under Section II of the B.S.C.E. degree requirement) may be taken until the student has obtained a grade of C- or better in each of the prerequisites (if a higher grade requirement is stated for a specific class, the higher requirement applies).

Bachelor of Science in Computer Engineering Degree Requirements (126 hours)

I. Core Curriculum Requirements1: 42 hours

  1. Communication (6 hours)
    3 hours Communication (RHET 1302)
    3 hours Professional and Technical Communication (ECS 3390)
  2. Social and Behavioral Sciences (15 hours)
    6 hours Government (GOVT 2301 and GOVT 2302)
    6 hours American History
    3 hours Social and Behavioral Science elective (ECS 3361)
  3. Humanities and Fine Arts (6 hours)
    3 hours Fine Arts (ARTS 1301)
    3 hours Humanities (HUMA 1301)
  4. Mathematics and Quantitative Reasoning (6 hours)
    6 hours Calculus (MATH 2417 and MATH 2419) 2
  5. Science (9 hours)
    8 hours Physics (PHYS 2325, PHYS 2125, PHYS 2326 and PHYS 2126) or (PHYS 2421 and PHYS 2422)
    1 hour Science (ENGR 1202)3

1 Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education with the approval of an advisor. The courses listed in parentheses are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

2 Six hours of Calculus are counted under the Mathematics Core (D) above, and two hours of Calculus are counted as Major Preparatory Courses.

3 One hour of ENGR 1202 is counted under the Science Core (E) above, and one hour is counted as Major Preparatory Courses.

II. Major Requirements: 75 hours

Major Preparatory Courses (22 hours including 3 listed above in Core Curriculum)

ECS 1337 Computer Science I
ENGR 1202 Introduction to Engineering
ENGR 2300 Linear Algebra for Engineers
ECS 2305 Discrete Mathematics I
CE 2310 Introduction to Digital Systems
ECS 2336 Computer Science II
MATH 2420 Differential Equations with Applications

Major Core Courses (53 hours beyond Core Curriculum)

ENGR 3101 Electrical Network Analysis Laboratory
ENGR 3102 Signals and Systems Laboratory
CE 3110 Electronic Devices Laboratory
CE 3111 Electronic Circuits Laboratory
CE 3120 Digital Circuits Laboratory
ENGR 3300 Advanced Engineering Mathematics
ENGR 3301 Electrical Network Analysis
ENGR 3302 Signals and Systems
CE 3310 Electronic Devices
CE 3311 Electronic Circuits
CE 3320 Digital Circuits
ENGR 3341 Probability Theory and Statistics
ECS 3345 Data Structures and Introduction to Algorithmic Analysis
ECS 3354 Software Engineering
CE 4304 Computer Architecture
CE 4337 Organization of Programming Languages
ECS 4348 Operating Systems Concepts
CE 4370 Embedded Microprocessor Systems
ENGR 4388 Senior Design Project I
ENGR 4389 Senior Design Project II
ECS 4390 Computer Networks

III. Elective Requirements: 9 hours

Advanced Electives (6 hours) All students are required to take at least six hours of advanced electives outside their major field of study. These must be either upper-division classes or lower-division classes that have prerequisites.

Free Electives (3 hours) Both lower-and upper division courses may count as free electives, but students must complete at least 51 hours of upper-division credit to qualify for graduation.

Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the University can be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.

Fast Track Baccalaureate/Master’s Degrees

In response to the need for advanced education in computer engineering, a Fast Track program is available to exceptionally well-qualified UT Dallas undergraduate students who meet the requirements for admission to the graduate school. The Fast Track program is designed to accelerate a student’s education so that both a B.S.C.E. and an M.S.C.E. degree can be earned in five years of full-time study. This is accomplished by (1) taking courses (typically electives) during one or more summer semesters, and (2) beginning graduate course work during the senior year. Details of the requirements for admission to this program are available from the Associate Dean for Undergraduate Education.

Honors Program

The Computer Engineering Program offers upper-division Honors for outstanding students in the B.S. Computer Engineering degree program. This program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to the Honors programs requires a 3.50 or better GPA in at least 30 hours of coursework. Graduation with Honors requires a 3.50 or better GPA and completion of at least 6 honors classes. These honors classes must include either Senior Honors in Computer Engineering (CE 4399) or Undergraduate Research in Computer Engineering (CE 4V98) and a Senior Honors Thesis must be completed within one of those two classes. (While the topics may be related, the Senior Thesis does not replace the need for the student to complete a regular Senior Design Project.) The other 5 honors classes can come from a mixture of Graduate level (up to a count of 4) classes and special honor sections of regular undergraduate CE classes (up to a count of 2). Current undergraduate honors courses include but are not limited to: CE 2310(H), CE 4334, CE 4372, CE 4399, and CE 4V98. Course grades in the 6 honor classes used to determine Honors status must be B- or higher to qualify.

Departmental Honors with Distinction may be awarded to students whose Senior Honors Thesis is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to M.S. Theses in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.


The School of Engineering and Computer Science does not offer a minor in Computer Engineering at this time.