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Overall Model Definition

T he four main elements of the COCOMO II strategy are:

 •  Preserve the openness of the original COCOMO;
 •  Key the structure of COCOMO II to the future software marketplace sectors described earlier;
 •  Key the inputs and outputs of the COCOMO II submodels to the level of information available;
 •  Enable the COCOMO II submodels to be tailored to a project's particular process strategy.

COCOMO II follows the openness principles used in the original COCOMO. Thus, all of its relationships and
algorithms will be publicly available. Also, all of its interfaces are designed to be public, well-defined, and parametrized, so
that complementary preprocessors (analogy, case-based, or other size estimation models), post-processors (project planning
and control tools, project dynamics models, risk analyzers), and higher level packages (project management packages,
product negotiation aids), can be combined straightforwardly with COCOMO II.

To support the software marketplace sectors above, COCOMO II provides a family of increasingly detailed software
cost estimation models, each tuned to the sectors' needs and type of information available to support software cost estimation.

COCOMO II Models for the Software Marketplace Sectors

The COCOMO II capability for estimation of Application Generator, System Integration, or Infrastructure developments is
based on two increasingly detailed estimation models for subsequent portions of the life cycle, Early Design and Post-
Architecture.

COCOMO II Model Rationale and Elaboration

The rationale for providing this tailorable mix of models rests on three primary premises.
First, unlike the initial COCOMO situation in the late 1970's, in which there was a single, preferred software life cycle

model, current and future software projects will be tailoring their processes to their particular process drivers. These process
drivers include COTS or reusable software availability; degree of understanding of architectures and requirements; market
window or other schedule constraints; size; and required reliability (see [Boehm 1989, pp. 436-37] for an example of such
tailoring guidelines).

Second, the granularity of the software cost estimation model used needs to be consistent with the granularity of the
information available to support software cost estimation. In the early stages of a software project, very little may be known
about the size of the product to be developed, the nature of the target platform, the nature of the personnel to be involved in
the project, or the detailed specifics of the process to be used.



Figure I-1, extended from [Boehm 1981, p. 311], indicates the effect of project uncertainties on the accuracy of
software size and cost estimates. In the very early stages, one may not know the specific nature of the product to be developed
to better than a factor of 4. As the life cycle proceeds, and product decisions are made, the nature of the products and its
consequent size are better known, and the nature of the process and its consequent cost drivers1 are better known. The earlier
“completed programs” size and effort data points in Figure I-1 are the actual sizes and efforts of seven software products built
to an imprecisely-defined specification [Boehm et. al. 1984]2. The later “USAF/ESD proposals” data points are from five
proposals submitted to the U.S. Air Force Electronic Systems Division in response to a fairly thorough specification [Devenny
1976].

Third, given the situation in premises 1 and 2, COCOMO II enables projects to furnish coarse-grained cost driver
information in the early project stages, and increasingly fine-grained information in later stages. Consequently, COCOMO II

does not produce point estimates of software cost and effort, but rather range estimates tied to the degree of definition of the
estimation inputs. The uncertainty ranges in Figure I-1 are used as starting points for these estimation ranges.

With respect to process strategy, Application Generator, System Integration, and Infrastructure software projects will
involve a mix of three major process models, The appropriate models will depend on the project marketplace drivers and
degree of product understanding.

The Early Design model involves exploration of alternative software/system architectures and concepts of operation. At
this stage, not enough is generally known to support fine-grain cost estimation.   The corresponding COCOMO II capability
involves the use of function points and a course-grained set of 7 cost drivers (e.g. two cost drivers for Personnel Capability
and Personnel Experience in place of the 6 COCOMO II Post-Architecture model cost drivers covering various aspects
of personnel capability, continuity, and experience).

The Post-Architecture model involves the actual development and maintenance of a software product. This stage
proceeds most cost-effectively if a software life-cycle architecture has been developed; validated with respect to the system's
mission, concept of operation, and risk; and established as the framework for the product. The corresponding COCOMO II
model has about the same granularity as the previous COCOMO and Ada COCOMO models. It uses source instructions and /
or function points for sizing, with modifiers for reuse and software breakage; a set of 17 multiplicative cost drivers; and a set
of 5 factors determining the project's scaling exponent. These factors replace the development modes (Organic,

                                                          
1 A cost driver refers to a particular characteristic of the software development that has the effect of increasing or decreasing the amount of

development effort, e.g. required product reliability, execution time constraints, project team application experience.
2 These seven projects implemented the same algorithmic version of the Intermediate COCOMO cost model, but with the use of different

interpretations of the other product specifications: produce a “friendly user interface” with a “single-user file system.”

Figure  I-1:  Software Costing and Sizing Accuracy vs. Phase



Semidetached, or Embedded) in the original COCOMO model, and refine the four exponent-scaling factors in Ada
COCOMO.

To summarize, COCOMO II provides the following three-stage series of models for estimation of Application
Generator, System Integration, and Infrastructure software projects:

 1.  The earliest phases or spiral cycles will generally involve prototyping, using the Application Composition model
capabilities. The COCOMO II Application Composition model supports these phases, and any other prototyping
activities occurring later in the life cycle.

 2.  The next phases or spiral cycles will generally involve exploration of architectural alternatives or incremental
development strategies. To support these activities, COCOMO II provides an early estimation model called the Early
Design model. This level of detail in this model is consistent with the general level of information available and the
general level of estimation accuracy needed at this stage.

 3.  Once the project is ready to develop and sustain a fielded system, it should have a life- cycle architecture, which
provides more accurate information on cost driver inputs, and enables more accurate cost estimates. To support this
stage, COCOMO II provides the Post-Architecture model.

The above should be considered as current working hypotheses about the most effective forms for COCOMO II. They
will be subject to revision based on subsequent data analysis. Data analysis should also enable the further calibration of the
relationships between object points, function points, and source lines of code for various languages and composition systems,
enabling flexibility in the choice of sizing parameters.

Development Effort Estimates

In COCOMO II effort is expressed as Person Months (PM). person month is the amount of time one person spends
working on the software development project for one month. This number is exclusive of holidays and vacations but accounts
for weekend time off. The number of person months is different from the time it will take the project to complete; this is
called the development schedule. For example, a project may be estimated to require 50 PM of effort but have a schedule of
11 months.

Equation I-1 is the base model for the Early Design and Post-Architecture cost estimation models. The inputs are the
Size of software development, a constant, A, and a scale factor, B. The size is in units of thousands of source lines of code
(KSLOC). This is derived from estimating the size of software modules that will constitute the application program. It can
also be estimated from unadjusted function points (UFP), converted to SLOC then divided by one thousand. Procedures for
counting SLOC or UFP are explained in the chapters on the Post- Architecture and Early Design models respectively.

The scale (or exponential) factor, B, accounts for the relative economies or diseconomies of scale encountered for
software projects of different sizes [Banker et al 1994a]. The constant, A, is used to capture the multiplicative effects on effort
with projects of increasing size. The nominal effort for a given size project and expressed as person months (PM) is given by
Equation I-1.

(EQ I-1)
B

nominal SizeAPM )(��

Software Economies and Diseconomies of Scale

Software cost estimation models often have an exponential factor to account for the relative economies or diseconomies
of scale encountered in different size software projects. The exponent, B, in Equation I-1 is used to capture these effects.

If B < 1.0, the project exhibits economies of scale. If the product's size is doubled, the project effort is less than
doubled. The project's productivity increases as the product size is increased. Some project economies of scale can be
achieved via project-specific tools (e.g., simulations, testbeds) but in general these are difficult to achieve. For small projects,



fixed start-up costs such as tool tailoring and setup of standards and administrative reports are often a source of economies of
scale.

If B = 1.0, the economies and diseconomies of scale are in balance. This linear model is often used for cost estimation
of small projects. It is used for the COCOMO II Applications Composition model.

If B > 1.0, the project exhibits diseconomies of scale. This is generally due to two main factors: growth of interpersonal
communications overhead and growth of large-system integration overhead. Larger projects will have more personnel, and
thus more interpersonal communications paths consuming overhead. Integrating a small product as part of a larger product
requires not only the effort to develop the small product, but also the additional overhead effort to design, maintain, integrate,
and test its interfaces with the remainder of the product.

See [Banker et al 1994a] for a further discussion of software economies and diseconomies of scale.

Previous Approaches

The data analysis on the original COCOMO indicated that its projects exhibited net diseconomies of scale. The projects
factored into three classes or modes of software development (Organic, Semidetached, and Embedded), whose exponents B
were 1.05, 1.12, and 1.20, respectively. The distinguishing factors of these modes were basically environmental: Embedded-
mode projects were more unprecedented, requiring more communication overhead and complex integration; and less flexible,
requiring more communications overhead and extra effort to resolve issues within tight schedule, budget, interface, and
performance constraints.

The scaling model in Ada COCOMO continued to exhibit diseconomies of scale, but recognized that a good deal of the
diseconomy could be reduced via management controllables. Communications overhead and integration overhead could be
reduced significantly by early risk and error elimination; by using thorough, validated architectural specifications; and by
stabilizing requirements. These practices were combined into an Ada process model [Boehm and Royce 1989, Royce 1990].
The project's use of these practices, and an Ada process model experience or maturity factor, were used in Ada COCOMO to
determine the scale factor B.

Ada COCOMO applied this approach to only one of the COCOMO development modes, the Embedded mode. Rather
than a single exponent B = 1.20 for this mode, Ada COCOMO enabled B to vary from 1.04 to 1.24, depending on the
project's progress in reducing diseconomies of scale via early risk elimination, solid architecture, stable requirements, and
Ada process maturity.

COCOMO II combines the COCOMO and Ada COCOMO scaling approaches into a single rating-driven model. It is
similar to that of Ada COCOMO in having additive factors applied to a base exponent B. It includes the Ada COCOMO
factors, but combines the architecture and risk factors into a single factor, and replaces the Ada process maturity factor with a
Software Engineering Institute (SEI) process maturity factor (The exact form of this factor is still being worked out with the
SEI). The scaling model also adds two factors, precedentedness and flexibility, to account for the mode effects in original
COCOMO, and adds a Team Cohesiveness factor to account for the diseconomy-of-scale effects on software projects whose
developers, customers, and users have difficulty in synchronizing their efforts. It does not include the Ada COCOMO
Requirements Volatility factor, which is now covered by increasing the effective product size via the Breakage factor.

Scaling Drivers

Equation I-2 defines the exponent, B, used in Equation I-1. Table I-1 provides the rating levels for the COCOMO II
scale drivers. The selection of scale drivers is based on the rationale that they are a significant source of exponential variation
on a project’s effort or productivity variation. Each scale driver has a range of rating levels, from Very Low to Extra High.
Each rating level has a weight, W, and the specific value of the weight is called a scale factor. A project's scale factors, Wi, are
summed across all of the factors, and used to determine a scale exponent, B, via the following formula:

(EQ I-2)
(EQ I-2)



For example, if scale factors with an Extra High rating are each assigned a weight of (0), then a 100 KSLOC project with
Extra High ratings for all factors will have�Wi = 0, B = 1.01, and a relative effort E = 1001.01= 105 PM. If scale factors with
Very Low rating are each assigned a weight of (5), then a project with Very Low (5) ratings for all factors will have�Wi= 25,
B = 1.26, and a relative effort E = 331 PM.  This represents a large variation, but the increase involved in a one-unit change
in one of the factors is only about 4.7%.

Table  I-1 : Scale Factors for COCOMO II Early Design and Post-Architecture Models

Scale
Factors ( Wi)

Very Low Low Nominal High Very High Extra High

PREC thoroughly
unprecedented

largely
unprecedented

somewhat
unprecedented

generally
familiar

largely famil-
iar

throughly
familiar

FLEX rigorous occasional
relaxation

some

relaxation

general

conformity

some

conformity

general goals

RESL3
little (20%) some (40%) often (60%) generally

(75%)
mostly (90%) full (100%)

TEAM very difficult
interactions

some difficult
interactions

basically
cooperative
interactions

largely

cooperative

highly

cooperative

seamless
interactions

PMAT Weighted average of “Yes” answers to CMM Maturity Questionnaire

Precedentedness (PREC) and Development Flexibility (FLEX)

These two scale factors largely capture the differences between the Organic, Semidetached and Embedded modes of the
original COCOMO model [Boehm 1981]. Table I-2 reorganizes [Boehm 1981, Table 6.3] to map its project features onto the
Precedentedness and Development Flexibility scales. This table can be used as a more in depth explanation for the PREC and
FLEX rating scales given in Table I-1.

Table  I-2 : Scale Factors Related to COCOMO Development Modes

Feature Very Low Nominal / High Extra High

Precedentedness

Organizational understanding of product
objectives

General Considerable Thorough

Experience in working with related software
systems

Moderate Considerable Extensive

Concurrent development of associated new
hardware and operational procedures

Extensive Moderate Some

Need for innovative data processing
architectures, algorithms

Considerable Some Minimal

Development Flexibility

Need for software conformance with pre-
established requirements

Full Considerable Basic

Need for software conformance with external
interface specifications

Full Considerable Basic

                                                          
3 % significant module interfaces specified,% significant risks eliminated.



Premium on early completion High Medium Low

Architecture / Risk Resolution (RESL)

This factor combines two of the scale factors in Ada COCOMO, “Design Thoroughness by Product Design Review (PDR)”
and “Risk Elimination by PDR” [Boehm and Royce 1989; Figures 4 and 5]. Table I-3 consolidates the Ada COCOMO ratings
to form a more comprehensive definition for the COCOMO II RESL rating levels. The RESL rating is the subjective
weighted average of the listed characteristics.



Table  I-3 : RESL Rating Components

Characteristic Very Low Low Nominal High Very High Extra
High

Risk Management Plan
identifies all critical risk items,
establishes milestones for
resolving them by PDR.

None Little Some Generally Mostly Fully

Schedule, budget, and internal
milestones through PDR
compatible with Risk
Management Plan

None Little Some Generally Mostly Fully

Percent of development
schedule devoted to establishing
architecture, given general
product objectives

5 10 17 25 33 40

Percent of required top software
architects available to project

20 40 60 80 100 120

Tool support available for
resolving risk items, developing
and verifying architectural specs

None Little Some Good Strong Full

Level of uncertainty in Key
architecture drivers: mission,
user interface, COTS, hardware,
technology, performance.

Extreme Significant Consider-
able

Some Little Very Little

Number and criticality of risk
items

> 10
Critical

5-10
Critical

2-4
Critical

1
Critical

> 5Non-
Critical

< 5 Non-
Critical

Team Cohesion (TEAM)

The Team Cohesion scale factor accounts for the sources of project turbulence and entropy due to difficulties in
synchronizing the project’s stakeholders: users, customers, developers, maintainers, interfacers, others. These difficulties may
arise from differences in stakeholder objectives and cultures; difficulties in reconciling objectives; and stakeholder’s lack of
experience and familiarity in operating as a team. Table I-4 provides a detailed definition for the overall TEAM rating levels.
The final rating is the subjective weighted average of the listed characteristics.



Table  I-4 : TEAM Rating Components

Characteristic Very Low Low Nominal High Very High Extra HIgh

Consistency of stakeholder
objectives and cultures

Little Some Basic Consider-
able

Strong Full

Ability, willingness of
stakeholders to accommodate
other stakeholders’ objectives

Little Some Basic Consider-
able

Strong Full

Experience of stakeholders in
operating as a team

None Little Little Basic Consider-
able

Extensive

Stakeholder teambuilding to
achieve shared vision and
commitments

None Little Little Basic Consider-
able

Extensive

Process Maturity (PMAT)

The procedure for determining PMAT is organized around the Software Engineering Institute’s Capability Maturity
Model (CMM). The time period for rating Process Maturity is the time the project starts. There are two ways of rating Process
Maturity. The first captures the result of an organized evaluation based on the CMM.

Overall Maturity Level

p CMM Level 1 (lower half)
p CMM Level 1 (upper half)
p CMM Level 2
p CMM Level 3
p CMM Level 4
p CMM Level 5

Key Process Areas

The second is organized around the 18 Key Process Areas (KPAs) in the SEI Capability Maturity Model [Paulk et al.
1993, 1993a]. The procedure for determining PMAT is to decide the percentage of compliance for each of the KPAs. If the
project has undergone a recent CMM Assessment then the percentage compliance for the overall KPA (based on KPA Key
Practice compliance assessment data) is used. If an assessment has not been done then the levels of compliance to the KPA’s
goals are used (with the Likert scale below) to set the level of compliance. The goal-based level of compliance is determined
by a judgement-based averaging across the goals for each Key Process Area. If more information is needed on the KPA goals,
they are listed in Appendix C of this document.



Table  I-5

Key Process Areas Almost
Always
(>90%)

Often
(60-90%)

About
Half

(40-60%)

Occasion
-ally

(10-40%)

Rarely If
Ever

(<10%)

Does Not
Apply

Don’t
Know

Requirements Management � � � � � � �

Software Project Planning � � � � � � �

Software Project Tracking and Oversight � � � � � � �

Software Subcontract Management � � � � � � �

Software Quality Assurance � � � � � � �

Software Configuration Management � � � � � � �

Organization Process Focus � � � � � � �

Organization Process Definition � � � � � � �

Training Program � � � � � � �

Integrated Software Management � � � � � � �

Software Product Engineering � � � � � � �

Intergroup Coordination � � � � � � �

Peer Reviews � � � � � � �

Quantitative Process Management � � � � � � �

Software Quality Management � � � � � � �

Defect Prevention � � � � � � �

Technology Change Management � � � � � � �

Process Change Management � � � � � � �

 •  Check Almost Always when the goals are consistently achieved and are well established in standard operating procedures
(over 90% of the time).

 •  Check Frequently when the goals are achieved relatively often, but sometimes are omitted under difficult circumstances
(about 60 to 90% of the time).

 •  Check About Half when the goals are achieved about half of the time (about 40 to 60% of the time).
 •  Check Occasionally when the goals are sometimes achieved, but less often (about 10 to 40% of the time).
 •  Check Rarely If Ever when the goals are rarely if ever achieved (less than 10% of the time).
 •  Check Does Not Apply when you have the required knowledge about your project or organization and the KPA, but you

feel the KPA does not apply to your circumstances.
 •  Check Don’t Know when you are uncertain about how to respond for the KPA.

After the level of KPA compliance is determined each compliance level is weighted and a PMAT factor is calculated, as
in Equation I-3. Initially, all KPAs will be equally weighted.

(EQ I-3)

Adjusting Nominal Effort

Cost drivers are used to capture characteristics of the software development that affect the effort to complete the
project. Cost drivers that have a multiplicative effect on predicting effort are called Effort Multipliers (EM). Each EM has a
rating level that expresses the impact of the multiplier on development effort, PM. These rating can range from Extra Low to
Extra High. For the purposes of quantitative analysis, each rating level of each EM has a weight associated with it. The
nominal or average weight for an EM is 1.0. If a rating level causes more software development effort, then its corresponding
EM weight is above 1.0. Conversely, if the rating level reduces the effort then the corresponding EM weight is less than 1.0.



The selection of effort-multipliers is based on a strong rationale that they would independently explain a significant source of
project effort or productivity variation.

Early Design Model

This Early Design model is used in the early stages of a software project when very little may be known about the size
of the product to be developed, the nature of the target platform, the nature of the personnel to be involved in the project, or
the detailed specifics of the process to be used. This model could be employed in either Application Generator, System
Integration, or Infrastructure development sectors.

The Early Design model adjusts the nominal effort using 7 EMs, Equation I-4. Each multiplier has 7 possible weights.
The cost drivers for this model are explained in the later.

(EQ I-4)

Post-Architecture Model

The Post-Architecture model is the most detailed estimation model and it is intended to be used when a software life-
cycle architecture has been developed. This model is used in the development and maintenance of software products in the
Application Generators, System Integration, or Infrastructure sectors.

The Post-Architecture model adjusts nominal effort using 17 effort multipliers. The larger number of multipliers takes
advantage of the greater knowledge available later in the development stage. The Post-Architecture effort multipliers are
explained later.

(EQ I-5)

Development Schedule Estimation

COCOMO II provides a simple schedule estimation capability similar to those in COCOMO and Ada COCOMO. The initial
baseline schedule equation for all three COCOMO II stages is:

(EQ I-6)



where TDEV is the calendar time in months from the determination of a product’s requirements baseline to the completion of
an acceptance activity certifying that the product satisfies its requirements. PM is the estimated person-months excluding the
SCED effort multiplier, B is the sum of project scale factors (discussed in the next chapter) and SCED% is the compression /
expansion percentage in the SCED effort multiplier in Table I-1.

As COCOMO II evolves, it will have a more extensive schedule estimation model, reflecting the different classes of
process model a project can use; the effects of reusable and COTS software; and the effects of applications composition
capabilities.



Using COCOMO II

Determining Size

Lines of Code

In COCOMO II, the logical source statement has been chosen as the standard line of code. Defining a line of code is
difficult due to conceptual differences involved in accounting for executable statements and data declarations in different
languages. The goal is to measure the amount of intellectual work put into program development, but difficulties arise when
trying to define consistent measures across different languages. To minimize these problems, the Software Engineering
Institute (SEI) definition checklist for a logical source statement is used in defining the line of code measure. The Software
Engineering Institute (SEI) has developed this checklist as part of a system of definition checklists, report forms and
supplemental forms to support measurement definitions [Park 1992, Goethert et al. 1992].

Figure II-1 shows a portion of the definition checklist as it is being applied to support the development of the
COCOMO II model. Each checkmark in the “Includes” column identifies a particular statement type or attribute included in
the definition, and vice-versa for the excludes. Other sections in the definition clarify statement attributes for usage, delivery,
functionality, replications and development status. There are also clarifications for language specific statements for ADA, C,
C++, CMS-2, COBOL, FORTRAN, JOVIAL and Pascal.



Some changes were made to the line-of-code definition that depart from the default definition provided in [Park 1992].
These changes eliminate categories of software which are generally small sources of project effort. Not included in the
definition are commercial-off-the-shelf software (COTS), government furnished software (GFS), other products, language
support libraries and operating systems, or other commercial libraries. Code generated with source code generators is not
included though measurements will be taken with and without generated code to support analysis.

The “COCOMO II line-of-code definition” is calculated directly by the Amadeus automated metrics collection tool
[Amadeus 1994] [Selby et al. 1991], which is being used to ensure uniformly collected data in the COCOMO II data

Figure II-1: Definition Checklist for Source Statements Counts
Definition name: __Logical Source Statements___Date:________________

________________(basic definition)__________Originator:_COCOMO II____

Measurement unit: Physical source lines
Logical source statements 4

Statement type Definition 4 Data Array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence 1 4

2 Nonexecutable
3 Declarations 2 4

4 Compiler directives 3 4

5 Comments
6 On their own lines 4 4

7 On lines with source code 5 4

8 Banners and non-blank spacers 6 4

9 Blank (empty) comments 7 4

10 Blank lines 8 4

11
12
How produced Definition 4 Data array Includes Excludes
1 Programmed 4

2 Generated with source code generators 4

3 Converted with automated translators 4

4 Copied or reused without change 4

5 Modified 4

6 Removed 4

7
8
Origin Definition 4 Data array Includes Excludes
1 New work: no prior existence 4

2 Prior work: taken or adapted from
3 A previous version, build, or release 4

4 Commercial, off-the-shelf software (COTS), other than libraries 4

5 Government furnished software (GFS), other than reuse libraries 4

6 Another product 4

7 A vendor-supplied language support library (unmodified) 4

8 A vendor-supplied operating system or utility (unmodified) 4

9 A local or modified language support library or operating system 4

10 Other commercial library 4

11 A reuse library (software designed for reuse) 4

12 Other software component or library 4

13
14



collection and analysis project. We have developed a set of Amadeus measurement templates that support the COCOMO II
data definitions for use by the organizations collecting data, in order to facilitate standard definitions and consistent data
across participating sites.

To support further data analysis, Amadeus will automatically collect additional measures including total source lines,
comments, executable statements, declarations, structure, component interfaces, nesting, and others. The tool will provide
various size measures, including some of the object sizing metrics in [Chidamber and Kemerer 1994], and the COCOMO
sizing formulation will adapt as further data is collected and analyzed.

Function Points

The function point cost estimation approach is based on the amount of functionality in a software project and a set of
individual project factors [Behrens 1983] [Kunkler 1985] [IFPUG 1994]. Function points are useful estimators since they are
based on information that is available early in the project life cycle. A brief summary of function points and their calculation
in support of COCOMO II is as follows.

Function points measure a software project by quantifying the information processing functionality associated with
major external data or control input, output, or file types. Five user function types should be identified as defined in Table II-
1.

Table  II-1 : User Function Types

External Input (Inputs) Count each unique user data or user control input type that (i) enters the
external boundary of the software system being measured and (ii) adds or
changes data in a logical internal file.

External Output (Outputs)Count each unique user data or control output type that leaves the external
boundary of the software system being measured.

Internal Logical File
(Files)

Count each major logical group of user data or control information in the
software system as a logical internal file type. Include each logical file (e.g.,
each logical group of data) that is generated, used, or maintained by the
software system.

External Interface Files
(Interfaces)

Files passed or shared between software systems should be counted as
external interface file types within each system.

External Inquiry (Queries)Count each unique input-output combination, where an input causes and
generates an immediate output, as an external inquiry type.

Each instance of these function types is then classified by complexity level. The complexity levels determine a set of
weights, which are applied to their corresponding function counts to determine the Unadjusted Function Points quantity. This
is the Function Point sizing metric used by COCOMO II. The usual Function Point procedure involves assessing the degree of
influence (DI) of fourteen application characteristics on the software project determined according to a rating scale of 0.0 to



0.05 for each characteristic. The 14 ratings are added together, and added to a base level of 0.65 to produce a general
characteristics adjustment factor that ranges from 0.65 to 1.35.

Each of these fourteen characteristics, such as distributed functions, performance, and reusability, thus have a maximum
of 5% contribution to estimated effort. This is inconsistent with COCOMO experience; thus COCOMO II uses Unadjusted
Function Points for sizing, and applies its reuse factors, cost driver effort multipliers, and exponent scale factors to this sizing
quantity.

Counting Procedure for Unadjusted Function Points

The COCOMO II procedure for determining Unadjusted Function Points is described here. This procedure is used in
both the Early Design and the Post-Architecture models.

1. Determine function counts by type. The unadjusted function counts should be counted by a lead technical person based
on information in the software requirements and design documents. The number of each of the five user function types
should be counted (Internal Logical File4 (ILF), External Interface File (EIF), External Input (EI), External Output
(EO), and External Inquiry (EQ)).

2. Determine complexity-level function counts. Classify each function count into Low, Average and High complexity levels
depending on the number of data element types contained and the number of file types referenced. Use the following
scheme:

Table  II-2

For ILF and EIF For EO and EQ For EI
Record

Element s
Data Elements File

Types
Data Elements File

Types
Data Elements

1 - 19 20 - 50 51+ 1 - 5 6 - 19 20+ 1 - 4 5 - 15 16+

1 Low Low Avg 0 or 1 Low Low Avg 0 or 1 Low Low Avg

2 - 5 Low Avg High 2 - 3 Low Avg High 2 - 3 Low Avg High

6+ Avg High High 4+ Avg High High 3+ Avg High High

 1.  Apply complexity weights. Weight the number in each cell using the following scheme. The weights reflect the relative
value of the function to the user.

Table  II-3

Function Type Complexity-Weight
Low Average High

Internal Logical Files 7 10 15

External Interfaces Files 5 7 10

External Inputs 3 4 6

External Outputs 4 5 7

External Inquiries 3 4 6

                                                          
4 Note: The word file refers to a logically related group of data and not the physical implementation of those groups of data



 2.  Compute Unadjusted Function Points. Add all the weighted functions counts to get one number, the Unadjusted
Function Points.

Converting Function Points to Lines of Code

To determine the nominal person months for the Early Design model, the unadjusted function points have to be
converted to source lines of code in the implementation language (assembly, higher order language, fourth-generation
language, etc.) in order to assess the relative conciseness of implementation per function point. COCOMO II does this for
both the Early Design and Post-Architecture models by using tables such as those found in [Jones 1991] to translate
Unadjusted Function Points into equivalent SLOC.

Table  II-4  : Converting Function Points to Lines of Code

Language SLOC /
UFP

Ada 71

AI Shell 49

APL 32

Assembly 320

Assembly (Macro) 213

ANSI/Quick/Turbo Basic 64

Basic - Compiled 91

Basic - Interpreted 128

C 128

C++ 29

ANSI Cobol 85 91

Fortan 77 105

Forth 64

Jovial 105

Lisp 64

Modula 2 80

Pascal 91

Prolog 64

Report Generator 80

Spreadsheet 6

Breakage



COCOMO II uses a breakage percentage, BRAK, to adjust the effective size of the product. Breakage reflects the
requirements volatility in a project. It is the percentage of code thrown away due to requirements volatility. For example, a
project which delivers 100,000 instructions but discards the equivalent of an additional 20,000 instructions has a BRAK value
of 20. This would be used to adjust the project’s effective size to 120,000 instructions for a COCOMO II estimation. The
BRAK factor is not used in the Applications Composition model, where a certain degree of product iteration is expected, and
included in the data calibration.

Adjusting for Reuse

COCOMO adjusts for the reuse by modifying the size of the module or project. The model treats reuse with function
points and source lines of code the same in either the Early Design model or the Post-Architecture model.

Nonlinear Reuse Effects

Analysis in [Selby 1988] of reuse costs across nearly 3000 reused modules in the NASA Software Engineering
Laboratory indicates that the reuse cost function is nonlinear in two significant ways (see Figure II-2):

 •  It does not go through the origin. There is generally a cost of about 5% for assessing, selecting, and assimilating the
reusable component.
 •  Small modifications generate disproportionately large costs. This is primarily due to two factors: the cost of
understanding the software to be modified, and the relative cost of interface checking.

[Parikh and Zvegintzov 1983] contains data indicating that 47% of the effort in software maintenance involves understanding
the software to be modified. Thus, as soon as one goes from unmodified (black-box) reuse to modified-software (white-box)

Figure  II-2 . Nonlinear Reuse Effects



reuse, one encounters this software understanding penalty. Also, [Gerlich and Denskat 1994] shows that, if one modifies k out
of m software modules, the number N of module interface checks required is N = k * (m-k) + k * (k-1)/2.
Figure II-3 shows this relation between the number of modules modified k and the resulting number of module interface
checks required.

The shape of this curve is similar for other values of m. It indicates that there are nonlinear effects involved in the module
interface checking which occurs during the design, code, integration, and test of modified software.

The size of both the software understanding penalty and the module interface checking penalty can be reduced by good
software stucturing. Modular, hierarchical structuring can reduce the number of interfaces which need checking [Gerlich and
Denskat 1994], and software which is well structured, explained, and related to its mission will be easier to understand.
COCOMO II reflects this in its allocation of estimated effort for modifying reusable software.

A Reuse Model

The COCOMO II treatment of software reuse uses a nonlinear estimation model, Equation II-1. This involves
estimating the amount of software to be adapted, ASLOC, and three degree- of-modification parameters: the percentage of
design modified (DM), the percentage of code modified (CM), and the percentage of modification to the original integration
effort required for integrating the reused software (IM).
The Software Understanding increment (SU) is obtained from Table II-5. SU is expressed quantitatively as a percentage. If
the software is rated very high on structure, applications clarity, and self-descriptiveness, the software understanding and
interface checking penalty is 10%. If the software is rated very low on these factors, the penalty is 50%. SU is determined by
taking the subjective average of the three categories.

Table  II-5 : Rating Scale for Software Understanding Increment SU

Very Low Low Nom High Very High
Structure Very low cohesion,

high coupling, spa-
ghetti code.

Moderately low
cohesion, high
coupling.

Reasonably well-
structured; some
weak areas.

High cohesion, low
coupling.

Strong modularity,
information hiding
in data / control
structures.

Application
Clarity

No match between
program and appli-
cation world views.

Some correlation
between program
and application.

Moderate correla-
tion between pro-
gram and
application.

Good correlation
between program
and application.

Clear match
between program
and application
world-views.

Self- DescriptivenessObscure code; docu- Some code com- Moderate level of Good code com- Self-descriptive

Figure  II-3 . Number of Module Interface Checks vs. Fraction Modified



mentation missing,
obscure or obsolete

mentary and
headers; some
useful documen-
tation.

code commentary,
headers, docu-
mentations.

mentary and
headers; useful
documentation;
some weak areas.

code; documenta-
tion up-to-date,
well-organized,
with design ratio-
nale.

SU Increment to
ESLOC

50 40 30 20 10

I
The other nonlinear reuse increment deals with the degree of Assessment and Assimilation (AA)  needed to determine whether
a fully-reused software module is appropriate to the application, and to integrate its description into the overall product
description. Table II-6 provides the rating scale and values for the assessment and assimilation increment. AA is a percentage.

Table  II-6 : Rating Scale for Assessment and Assimilation Increment (AA)

AA Increment Level of AA Effort
0 None
2 Basic module search and documentation
4 Some module Test and Evaluation (T&E), documentation
6 Considerable module T&E, documentation
8 Extensive module T&E, documentation

The amount of effort required to modify existing software is a function not only of the amount of modification (AAF)
and understandability of the existing software (SU), but also of the programmer’s relative unfamiliarity with the software
(UNFM). The UNFM parameter is applied multiplicatively to the software understanding effort increment. If the programmer
works with the software every day, the 0.0 multiplier for UNFM will add no software understanding increment. If the
programmer has never seen the software before, the 1.0 multiplier will add the full software understanding effort increment.
The rating of UNFM is in Table II-7.

Table II-7 : Rating Scale for Programmer Unfamiliarity (UNFM)

UNFM Increment Level of Unfamiliarity
0.0 Completely familiar
0.2 Mostly familiar
0.4 Somewhat familiar
0.6 Considerably familiar
0.8 Mostly unfamiliar
1.0 Completely unfamiliar

(EQ II-1)

Equation II-1 is used to determine an equivalent number of new instructions, equivalent source lines of code (ESLOC).
ESLOC is divided by one thousand to derive KESLOC which is used as the COCOMO size parameter. The calculation of



ESLOC is based on an intermediate quantity, the Adaptation Adjustment Factor (AAF). The adaptation quantities, DM, CM,
IM are used to calculate AAF where :

� DM: Percent Design Modified. The percentage of the adapted software’s design which is modified in order to adapt it to
the new objectives and environment. (This is necessarily a subjective quantity.)

� CM: Percent Code Modified. The percentage of the adapted software’s code which is modified in order to adapt it to the
new objectives and environment.

� IM: Percent of Integration Required for Modified Software. The percentage of effort required to integrate the adapted
software into an overall product and to test the resulting product as compared to the normal amount of integration and test
effort for software of comparable size.

If there is no DM or CM (the component is being used unmodified) then there is no need for SU. If the code is being
modified then SU applies.

Adjusting for Re-engineering or Conversion

The COCOMO II reuse model needs additional refinement to estimate the costs of software re-engineering and
conversion. The major difference in re-engineering and conversion is the efficiency of automated tools for software
restructuring. These can lead to very high values for the percentage of code modified (CM in the COCOMO II reuse model),
but with very little corresponding effort. For example, in the NIST re-engineering case study [Ruhl and Gunn 1991], 80% of
the code (13,131 COBOL source statements) was re-engineered by automatic translation, and the actual re-engineering effort,
35 person months, was a factor of over 4 lower than the COCOMO estimate of 152 person months.

The COCOMO II re-engineering and conversion estimation approach involves estimation of an additional parameter,
AT, the percentage of the code that is re-engineered by automatic translation. Based on an analysis of the project data above,
the productivity for automated translation is 2400 source statements / person month. This value could vary with different
technologies and will be designated in the COCOMO II model as ATPROD. In the NIST case study ATPROD = 2400.
Equation II-2 shows how automated translation affects the estimated nominal effort, PM.

(EQ II-2)

The NIST case study also provides useful guidance on estimating the AT factor, which is a strong function of the
difference between the boundary conditions (e.g., use of COTS packages, change from batch to interactive operation) of the
old code and the re-engineered code. The NIST data on percentage of automated translation (from an original batch
processing application without COTS utilities) are given in Table II-8 [Ruhl and Gunn 1991].

Table  II-8 : Variation in Percentage of Automated Re-engineering

Re-engineering Target AT (% automated translation)

Batch processing 96%

Batch with SORT 90%

Batch with DBMS 88%

Batch, SORT, DBMS 82%

Interactive 50%



Applications Maintenance

COCOMO II uses the reuse model for maintenance when the amount of added or changed base source code is less than
or equal to 20% or the new code being developed. Base code is source code that already exists and is being changed for use in
the current project. For maintenance projects that involve more than 20% change in the existing base code (relative to new
code being developed) COCOMO II uses maintenance size. An initial maintenance size is obtained in one to two ways,
Equation II-3 or Equation II-5. Equation II-3 is used when the base code size is known and the percentage of change to the
base code is known.

(EQ II-3)

The percentage of change to the base code is called the Maintenance Change Factor (MCF). The MCF is similar to the
Annual Change Traffic in COCOMO 81, except that maintenance periods other than a year can be used. Conceptually the
MCF represents the ratio in Equation II-4:

(EQ II-4)

Equation II-5 is used when the fraction of code added or modified to the existing base code during the maintenance
period is known. Deleted code is not counted.

(EQ II-5)

The size can refer to thousands of source lines of code (KSLOC), Function Points, or Object Points. When using
Function Points or Object Points, it is better to estimate MCF in terms of the fraction of the overall application being changed,
rather than the fraction of inputs, outputs, screens, reports, etc. touched by the changes. Our experience indicates that counting
the items touched can lead to significant over estimates, as relatively small changes can touch a relatively large number of
items.

The initial maintenance size estimate (described above) is adjusted with a Maintenance Adjustment Factor (MAF),
Equation II-6. COCOMO 81 used different multipliers for the effects of Required Reliability (RELY) and Modern
Programming Practices (MODP) on maintenance versus development effort. COCOMO II instead used the Software
Understanding (SU) and Programmer Unfamiliarity (UNFM) factors from its reuse model to model the effects of well or
poorly structured/understandable software on maintenance effort.

(EQ II-6)

The resulting maintenance effort estimation formula is the same as the COCOMO II Post- Architecture development
model:

(EQ II-7)



The COCOMO II approach to estimating either the maintenance activity duration, TM, or the average maintenance
staffing level, FSPM, is via the relationship:

(EQ II-8)

Most maintenance is done as a level of effort activity. This relationship can estimate the level of effort, FSPM, given TM

(as in annual maintenance estimates, where TM = 12 months), or vice-versa (given a fixed maintenance staff level, FSPM,
determine the necessary time, TM, to complete the effort).

Effort Multipliers

Early Design

The Early Design model uses KSLOC for size. Unadjusted function points are converted to the equivalent SLOC and
then to KSLOC. The application of project scale factors is the same for Early Design and the Post-Architecture models. In the
Early Design model a reduced set of cost drivers are used. The Early Design cost drivers are obtained by combining the Post-
Architecture model cost drivers from Table II-9. Whenever an assessment of a cost driver is between the rating levels always
round to the Nominal rating, e.g. if a cost driver rating is between Very Low and Low, then select Low.

Table  II-9 : Early Design and Post-Architecture Effort Multipliers

Early Design Cost Driver Counterpart Combined
Post-Architecture Cost Drivers

RCPX RELY, DATA, CPLX, DOCU

RUSE RUSE

PDIF TIME, STOR, PVOL

PERS ACAP, PCAP, PCON

PREX AEXP, PEXP, LTEX

FCIL TOOL, SITE

SCED SCED

Overall Approach: Personnel Capability (PERS) Example

The following approach is used for mapping the full set of Post-Architecture cost drivers and rating scales onto their
Early Design model counterparts. It involves the use and combination of numerical equivalents of the rating levels.
Specifically, a Very Low Post-Architecture cost driver rating corresponds to a numerical rating of 1, Low is 2, Nominal is 3,
High is 4, Very High is 5, and Extra High is 6. For the combined Early Design cost drivers, the numerical values of the
contributing Post-Architecture cost drivers, Table II-9, are summed, and the resulting totals are allocated to an expanded



Early Design model rating scale going from Extra Low to Extra High. The Early Design model rating scales always have a
Nominal total equal to the sum of the Nominal ratings of its contributing Post-Architecture elements.

An example will illustrate this approach. The Early Design PERS cost driver combines the Post-Architecture cost
drivers analyst capability (ACAP), programmer capability (PCAP), and personnel continuity (PCON). Each of these has a
rating scale from Very Low (=1) to Very High (=5). Adding up their numerical ratings produces values ranging from 3 to 15.
These are laid out on a scale, and the Early Design PERS rating levels assigned to them, as shown in Table II-16.

Table  II-10 : PERS Rating Levels

Extra
Low

Very Low Low Nominal High Very High Extra
High

Sum of ACAP, PCAP,
PCON Ratings

3, 4 5, 6 7, 8 9 10, 11 12, 13 14, 15

Combined ACAP and
PCAP Percentile

20% 39% 45% 55% 65% 75% 85%

Annual Personnel
Turnover

45% 30% 20% 12% 9% 5% 4%

The Nominal PERS rating of 9 corresponds to the sum (3 + 3 + 3) of the Nominal ratings for ACAP, PCAP, and PCON,
and its corresponding effort multiplier is 1.0. Note, however that the Nominal PERS rating of 9 can result from a number of
other combinations, e.g. 1 + 3 + 5 = 9 for ACAP = Very Low, PCAP = Nominal, and PCON = Very High.

The rating scales and effort multipliers for PCAP and the other Early Design cost drivers maintain consistent
relationships with their Post-Architecture counterparts. For example, the PERS Extra Low rating levels (20% combined
ACAP and PCAP percentile; 45% personnel turnover) represent averages of the ACAP, PCAP, and PCON rating levels
adding up to 3 or 4.

Maintaining these consistency relationships between the Early Design and Post-Architecture rating levels ensures
consistency of Early Design and Post-Architecture cost estimates. It also enables the rating scales for the individual Post-
Architecture cost drivers, Table II-16, to be used as detailed backups for the top-level Early Design rating scales given below.

Product Reliability and Complexity (RCPX)

This Early Design cost driver combines the four Post-Architecture cost drivers Required Software Reliability (RELY),
Database size (DATA), Product complexity (CPLX), and Documentation match to life-cycle needs (DOCU). Unlike the
PERS components, the RCPX components have rating scales with differing width. RELY and DOCU range from Very Low to
Very High; DATA ranges from Low to Very High, and CPLX ranges from Very Low to Extra High. The numerical sum of
their ratings thus ranges from 5 (VL, L, VL, VL) to 21 (VH, VH, EH, VH).

Table II-16 assigns RCPX ratings across this range, and associates appropriate rating scales to each of the RCPX
ratings from Extra Low to Extra High. As with PERS, the Post- Architecture RELY, DATA CPLX, and DOCU rating scales
in Table II-16 provide detailed backup for interpreting the Early Design RCPX rating levels.

Table  II-11 : RCPX Rating Levels

Extra Very Low Nomina l High Very Extra



Low Low High High

Sum of RELY, DATA,
CPLX, DOCU Ratings

5, 6 7, 8 9 - 11 12 13 - 15 16 - 18 19 - 21

Emphasis on reliability,
documentation

Very
little

Little Some Basic Strong Very
Strong

Extreme

Product complexity Very
simple

Simple Some Moderate Complex Very
complex

Extremely
complex

Database size Small Small Small Moderate Large Very
Large

Very Large

Required Reuse (RUSE)

This Early Design model cost driver is the same as its Post-Architecture counterpart, which is covered in the chapter on
the Post-Architecture model. A summary of its rating levels is given below and in Table II-16.

Table  II-12 : RUSE Rating Level Summary

Very Low Low Nominal High Very High Extra High

RUSE None across project across pro-
gram

across product
line

across mul-
tiple product
lines

Platform Difficulty (PDIF)

This Early Design cost driver combines the three Post- Architecture cost drivers execution time (TIME), main storage
constraint (STOR), and platform volatility (PVOL). TIME and STOR range from Nominal to Extra High; PVOL ranges from
Low to Very High. The numerical sum of their ratings thus ranges from 8 (N, N, L) to 17 (EH, EH, VH).

Table II-16 assigns PDIF ratings across this range, and associates the appropriate rating scales to each of the PDIF
rating levels. The Post-Architecture rating scales in Table II-16 provide additional backup definition for the PDIF ratings
levels.

Table  II-13 : PDIF Rating Levels

Low Nominal High Very High Extra High

Sum of TIME, STOR, and
PVOL ratings

8 9 10 - 12 13 - 15 16, 17

Time and storage constraint � 50% � 50% 65% 80% 90%

Platform volatility Very stable Stable Somewhat
volatile

Volatile Highly
volatile



Personnel Experience (PREX)

This Early Design cost driver combines the three Post-Architecture cost drivers application experience (AEXP),
platform experience (PEXP), and language and tool experience (LTEX). Each of these range from Very Low to Very High; as
with PERS, the numerical sum of their ratings ranges from 3 to 15.

Table II-16 assigns PREX ratings across this range, and associates appropriate effort multipliers and rating scales to
each of the rating levels.

Table  II-14 : PREX Rating Levels

Extra
Low

Very
Low

Low Nomina l High Very
High

Extra
High

Sum of AEXP, PEXP, and
LTEX ratings

3, 4 5, 6 7, 8 9 10, 11 12, 13 14, 15

Applications, Platform,
Language and Tool Experi-
ence

� 3 mo. 5 months 9 months 1 year 2 years 4 years 6 years

Facilities (FCIL)

This Early Design cost driver combines the two Post-Architecture cost drivers: use of software tools (TOOL) and
multisite development (SITE). TOOL ranges from Very Low to Very High; SITE ranges from Very Low to Extra High. Thus,
the numerical sum of their ratings ranges from 2 (VL, VL) to 11 (VH, EH).

Table II-16 assigns FCIL ratings across this range, and associates appropriate rating scales to each of the FCIL rating
levels. The individual Post-Architecture TOOL and SITE rating scales in Table II-16 again provide additional backup
definition for the FCIL rating levels.

FCIL Rating Levels

Extra Low Very Low Low Nominal High Very High Extra High

Sum of TOOL and
SITE ratings

2 3 4, 5 6 7, 8 9, 10 11

TOOL support Minimal Some Simple
CASE tool
collection

Basic life-
cycle tools

Good;
moderately
integrated

Strong;
moderately
integrated

Strong; well
integrated

Multisite
conditions

Weak sup-
port of
complex
multisite
develop-
ment

Some sup-
port of
complex
M/S devel.

Some sup-
port of
moderately
complex
M/S devel.

Basic sup-
port of
moderately
complex
M/S devel.

Strong
support of
moderately
complex
M/S devel.

Strong
support of
simple M/ S
devel.

Very strong
support of
collocated or
simple M/S
devel.

Schedule (SCED)

The Early Design cost driver is the same as its Post-Architecture counterpart. A summary of its rating levels is given in
Table II-16 below.



SCED Rating Level Summary

Very Low Low Nominal High Very High Extra High

SCED 75% of nom-
inal

85% 100% 130% 160%

Post-Architecture

These are the 17 effort multipliers used in COCOMO II Post-Architecture model to adjust the nominal effort, Person
Months, to reflect the software product under development. They are grouped into four categories: product, platform,
personnel, and project. Table II-16 lists the different cost drivers with their rating criterion (found at the end of this section).
Whenever an assessment of a cost driver is between the rating levels always round to the Nominal rating, e.g. if a cost driver
rating is between High and Very High, then select High. The counterpart 7 effort multipliers for the Early Design model are
discussed in the chapter explaining that model

Product Factors

Required Software Reliability (RELY)

This is the measure of the extent to which the software must perform its intended function over a period of time. If the
effect of a software failure is only slight inconvenience then RELY is low. If a failure would risk human life then RELY is
very high.

Very Low Low Nominal High Very High Extra High

RELY slight incon
venience

low, easily
recoverable
losses

moderate,
easily recov
erable losses

high finan cial
loss

risk to human
life

Data Base Size (DATA)

This measure attempts to capture the affect large data requirements have on product development. The rating is
determined by calculating D/P. The reason the size of the database is important to consider it because of the effort required to
generate the test data that will be used to exercise the program.

(EQ II-9)

DATA is rated as low if D/P is less than 10 and it is very high if it is greater than 1000.

Very Low Low Nominal High Very High Extra High

DATA DB bytes/
Pgm SLOC <
10

10 � D/P <
100

100 � D/P <
1000

D/P � 1000

Product Complexity (CPLX)



Table II-15 (found at the end of this section) provides the new COCOMO II CPLX rating scale. Complexity is divided
into five areas: control operations, computational operations, device-dependent operations, data management operations, and
user interface management operations. Select the area or combination of areas that characterize the product or a sub-system of
the product. The complexity rating is the subjective weighted average of these areas.

Table  II-15 : Module Complexity Ratings versus Type of Module

Control Operations Computational
Operations

Device-
dependent
Operations

Data
Management
Operations

User Interface
Managemen t

Operations

Very
Low

Straight-line code with a
few non-nested struc-
tured programming
operators: DOs, CASEs,
IFTHENELSEs. Simple
module composition via
procedure calls or simple
scripts.

Evaluation of
simple expressions:
e.g., A=B+C*(D-
E)

Simple read, write
statements with
simple formats.

Simple arrays in
main memory.
Simple COTS-DB
queries, updates.

Simple input forms,
report generators.

Low Straightforward nesting
of structured pro-
gramming operators.
Mostly simple predicates

Evaluation of
moderate-level
expressions: e.g.,
D=SQRT(B**2-
4.*A*C)

No cognizance
needed of particu-
lar processor or I/
O device charac-
teristics. I/O done
at GET/PUT level.

Single file subset-
ting with no data
structure changes,
no edits, no inter-
mediate files.
Moderately com-
plex COTS-DB
queries, updates.

Use of simple graphic
user interface (GUI)
builders.

Nomina
l

Mostly simple nesting.
Some intermodule con-
trol. Decision tables.
Simple callbacks or
message passing,
including middleware-
supported distributed
processing

Use of standard
math and statistical
routines. Basic
matrix/vector
operations.

I/O processing
includes device
selection, status
checking and error
processing.

Multi-file input and
single file output.
Simple structural
changes, simple
edits. Complex
COTS-DB queries,
updates.

Simple use of widget set.

High Highly nested structured
programming operators
with many compound
predicates. Queue and
stack control.
Homogeneous, dis-
tributed processing.
Single processor soft

Basic numerical
analysis: multi-
variate interpola-
tion, ordinary
differential equa-
tions. Basic trun-
cation, roundoff
concerns.

Operations at
physical I/O level
(physical storage
address transla-
tions; seeks, reads,
etc.). Optimized
I/O overlap.

Simple triggers
activated by data
stream contents.
Complex data
restructuring.

Widget set development
and extension. Simple
voice I/O, multimedia.



real-time control.

Very
High

Reentrant and recursive
coding. Fixed-priority
interrupt handling. Task
synchronization,
complex callbacks, het-
erogeneous distributed
processing. Single-pro-
cessor hard real-time
control.

Difficult but
structured numer-
ical analysis: near-
singular matrix
equations, partial
differential
equations. Simple
parallelization.

Routines for inter-
rupt diagnosis,
servicing, masking.
Communication
line handling.
Performance-
intensive embed-
ded systems.

Distributed data-
base coordination.
Complex triggers.
Search
optimization.

Moderately complex
2D/ 3D, dynamic
graphics, multimedia.

Extra
High

Multiple resource
scheduling with dynam-
ically changing priori-
ties. Microcode-level
control. Distributed hard
real-time control.

Difficult and
unstructured
numerical analysis:
highly accurate
analysis of noisy,
stochastic data.
Complex
parallelization.

Device timing-
dependent coding,
micro-programmed
operations. Per-
formance-critical
embedded systems.

Highly coupled,
dynamic relational
and object
structures. Natural
language data
management.

Complex multimedia,
virtual reality.

Required Reusability (RUSE)

This cost driver accounts for the additional effort needed to construct components intended for reuse on the current or
future projects. This effort is consumed with creating more generic design of software, more elaborate documentation, and
more extensive testing to ensure components are ready for use in other applications.

Very Low Low Nominal High Very High Extra High

RUSE none across project across pro
gram

across prod
uct line

across mul
tiple prod
uct lines

Documentation match to life-cycle needs (DOCU)

Several software cost models have a cost driver for the level of required documentation. In COCOMO II, the rating
scale for the DOCU cost driver is evaluated in terms of the suitability of the project’s documentation to its life-cycle needs.
The rating scale goes from Very Low (many life-cycle needs uncovered) to Very High (very excessive for life-cycle needs).

Very Low Low Nominal High Very High Extra High

DOCU Many life-
cycle needs
uncovered

Some life-
cycle needs
uncovered.

Right-sized to
life-cycle
needs

Excessive for
life-cycle
needs

Very exces
sive for life-
cycle needs

Platform Factors

The platform refers to the target-machine complex of hardware and infrastructure software (previously called the virtual
machine). The factors have been revised to reflect this as described in this section. Some additional platform factors were
considered, such as distribution, parallelism, embeddedness, and real-time operations. These considerations have been
accommodated by the expansion of the Module Complexity ratings in Equation II-15.



Execution Time Constraint (TIME)

This is a measure of the execution time constraint imposed upon a software system. The rating is expressed in terms of
the percentage of available execution time expected to be used by the system or subsystem consuming the execution time
resource. The rating ranges from nominal, less than 50% of the execution time resource used, to extra high, 95% of the
execution time resource is consumed.

Very Low Low Nominal High Very High Extra High

TIME � 50% use of
available
execution time

70% 85% 95%

Main Storage Constraint (STOR)

This rating represents the degree of main storage constraint imposed on a software system or subsystem. Given the
remarkable increase in available processor execution time and main storage, one can question whether these constraint vari-
ables are still relevant. However, many applications continue to expand to consume whatever resources are available, making
these cost drivers still relevant. The rating ranges from nominal, less that 50%, to extra high, 95%.

Very Low Low Nominal High Very High Extra High

STOR � 50% use of
available
storage

70% 85% 95%

Platform Volatility (PVOL)

“Platform” is used here to mean the complex of hardware and software (OS, DBMS, etc.) the software product calls on
to perform its tasks. If the software to be developed is an operating system then the platform is the computer hardware. If a
database management system is to be developed then the platform is the hardware and the operating system. If a network text
browser is to be developed then the platform is the network, computer hardware, the operating system, and the distributed
information repositories. The platform includes any compilers or assemblers supporting the development of the software
system. This rating ranges from low, where there is a major change every 12 months, to very high, where there is a major
change every two weeks.

Very Low Low Nominal High Very High Extra High

PVOL major change
every 12 mo.;
minor change
every 1 mo.

major: 6 mo.;
minor: 2 wk.

major: 2 mo.;

minor: 1 wk.

major: 2 wk.;

minor: 2 days

Personnel Factors

Analyst Capability (ACAP)

Analysts are personnel that work on requirements, high level design and detailed design. The major attributes that
should be considered in this rating are Analysis and Design ability, efficiency and thoroughness, and the ability to



communicate and cooperate. The rating should not consider the level of experience of the analyst; that is rated with AEXP.
Analysts that fall in the 15th percentile are rated very low and those that fall in the 95th percentile are rated as very high.

Very Low Low Nominal High Very High Extra High

ACAP 15th percentile35th percentile55th percentile75th percentile90th percentile

Programmer Capability (PCAP)

Current trends continue to emphasize the importance of highly capable analysts. However the increasing role of
complex COTS packages, and the significant productivity leverage associated with programmers’ ability to deal with these
COTS packages, indicates a trend toward higher importance of programmer capability as well.

Evaluation should be based on the capability of the programmers as a team rather than as individuals. Major factors
which should be considered in the rating are ability, efficiency and thoroughness, and the ability to communicate and
cooperate. The experience of the programmer should not be considered here; it is rated with AEXP. A very low rated
programmer team is in the 15th percentile and a very high rated programmer team is in the 95th percentile.

Very Low Low Nominal High Very High Extra High

PCAP 15th percentile35th percentile 55th percentile75th percentile90th percentile

Applications Experience (AEXP)

This rating is dependent on the level of applications experience of the project team developing the software system or
subsystem. The ratings are defined in terms of the project team’s equivalent level of experience with this type of application.
A very low rating is for application experience of less than 2 months. A very high rating is for experience of 6 years or more.

Very Low Low Nominal High Very High Extra High

AEXP  2 months 6 months 1 year 3 years 6 years

Platform Experience (PEXP)

The Post-Architecture model broadens the productivity influence of PEXP, recognizing the importance of
understanding the use of more powerful platforms, including more graphic user interface, database, networking, and
distributed middleware capabilities.

Very Low Low Nominal High Very High Extra High

PEXP  2 months 6 months 1 year 3 years 6 year

Language and Tool Experience (LTEX)

This is a measure of the level of programming language and software tool experience of the project team developing the
software system or subsystem. Software development includes the use of tools that perform requirements and design
representation and analysis, configuration management, document extraction, library management, program style and
formatting, consistency checking, etc. In addition to experience in programming with a specific language the supporting tool
set also effects development time. A low rating given for experience of less than 2 months. A very high rating is given for
experience of 6 or more years.



Very Low Low Nominal High Very High Extra High

LTEX  2 months 6 months 1 year 3 years 6 year

Personnel Continuity (PCON)

The rating scale for PCON is in terms of the project’s annual personnel turnover: from 3%, very high, to 48%, very low.

Very Low Low Nominal High Very High Extra High

PCON 48% / year 24% / year 12% / year 6% / year 3% / year

Project Factors

Use of Software Tools (TOOL)

Software tools have improved significantly since the 1970’s projects used to calibrate COCOMO. The tool rating
ranges from simple edit and code, very low, to integrated lifecycle management tools, very high.

Very Low Low Nominal High Very High Extra High

TOOL edit, code,
debug

simple, fron
tend, back end
CASE, little
integra tion

basic lifecy cle
tools,
moderately
integrated

strong, mature
life cycle
tools,
moderately
integrated

strong, mature,
pro active
lifecy cle
tools, well inte
grated with
processes,
methods, reuse

Multisite Development (SITE)

Given the increasing frequency of multisite developments, and indications that multisite development effects are
significant, the SITE cost driver has been added in COCOMO II. Determining its cost driver rating involves the assessment
and averaging of two factors: site collocation (from fully collocated to international distribution) and communication support
(from surface mail and some phone access to full interactive multimedia).

Very Low Low Nominal High Very High Extra High

SITE:
Communica
tions

Some phone,
mail

Individual
phone, FAX

Narrowband
email

Wideband
electronic
communica
tion.

Wideband
elect. comm,
occasional
video conf.

Interactive
multimedia



Required Development Schedule (SCED)

This rating measures the schedule constraint imposed on the project team developing the software. The ratings are
defined in terms of the percentage of schedule stretch-out or acceleration with respect to a nominal schedule for a project
requiring a given amount of effort. Accelerated schedules tend to produce more effort in the later phases of development
because more issues are left to be determined due to lack of time to resolve them earlier. A schedule compress of 74% is rated
very low. A stretch-out of a schedule produces more effort in the earlier phases of development where there is more time for
thorough planning, specification and validation. A stretch-out of 160% is rated very high.

Very Low Low Nominal High Very High Extra High

SCED 75% of nom
inal

85% 100% 130% 160%

Table  II-16 : Post-Architecture Cost Driver Rating Level Summary

Very Low Low Nominal High Very High Extra High

RELY slight inconve-
nience

low, easily
recoverable
losses

Moderate, eas-
ily recoverable
losses

high financial
loss

risk to human
life

DATA DB bytes/Pgm
SLOC < 10

10 � D/P < 100 100 � D/P <
1000

D/P � 1000

CPLX see Table II-15

RUSE none Across project across program across product
line

across multi-
ple product
lines

DOCU Many life-cycle
needs
uncovered

Some life-cycle
needs
uncovered.

Right-sized to
life-cycle needs

Excessive for
life-cycle needs

Very exces sive
for life-cycle
needs

TIME  50% use of
available exe
cution time

70% 85% 95%

STOR  50% use of
available stor
age

70% 85% 95%

PVOL major change
every 12 mo.;
minor change
every 1 mo.

major: 6 mo.;
minor: 2 wk.

major: 2 mo.;

minor: 1 wk.

major: 2 wk.;

minor: 2 days

ACAP 15th percentile 35th percentile 55th percentile 75th percentile 90th percentile

PCAP 15th percentile 35th percentile 55th percentile 75th percentile 90th percentile

PCON 48% / year 24% / year 12% / year 6% / year 3% / year

AEXP � 2 months 6 months 1 year 3 years 6 years

PEXP � 2 months 6 months 1 year 3 years 6 year

LTEX � 2 months 6 months 1 year 3 years 6 year

TOOL edit, code, simple, fron basic lifecycle strong, mature strong, mature,



debug tend, backend
CASE, little
integration

tools, moder
ately inte grated

lifecycle tools,
moderately
integrated

proactive life
cycle tools, well
inte grated with
processes,
methods, reuse

SITE:
Colloc
ation

International Multi-city and
Multi-com pany

Multi-city or
Multi-com pany

Same city or
metro. area

Same building
or complex

Fully collo
cated

SITE:
Comm
unicati
ons

Some phone,
mail

Individual
phone, FAX

Narrowband
email

Wideband
electronic
communica
tion.

Wideband elect.
comm,
occasional
video conf.

Interactive
multimedia

SCED 75% of nomi
nal

85% 100% 130% 160%


