
DESIGN AND ANALYSIS OF MULTILEVEL CODED MODULATION FOR

MULTI-NODE NETWORKS

by

Ahmed Attia Abotabl

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Aria Nosratinia, Chair

Dr. John P. Fonseka

Dr. Naofal Al-Dhahir

Dr. Hlaing Minn



Copyright c⃝ 2017

Ahmed Attia Abotabl

All rights reserved



To Marwa Fahim.



DESIGN AND ANALYSIS OF MULTILEVEL CODED MODULATION FOR

MULTI-NODE NETWORKS

by

AHMED ATTIA ABOTABL, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

December 2017



ACKNOWLEDGMENTS

I owe my sincere gratitude to my PhD adviser Dr. Aria Nosratinia for his wisdom, endless

support and teaching me the art of research. I appreciate the valuable remarks of my PhD

committee members, Drs. Naofal Al-Dhahir, Hlaing Minn and John P. Fonseka. I am also

indebted to Dr. Matthieu Bloch of Georgia Tech, for interesting conversations about my

research.

I am thankful to my colleagues who encouraged and supported me during my studies: Ahmed

Hindy, Mohamed Fadel, Ahmed Helmy, Ahmed Omar, Ahmed El-Samadouny, Mohamed

Mokhtar, Noha Helal, Hussein Saad, Ahmed Hesham, Ahmed Gomaa, Fan Zhang and Hassan

Zivari-Fard. My dear friends Joseph Beshay, Mohamed Hafez, Mohamed El-habbab, Ahmed

Samy, Ahmed Farid and Ibrahim Ezzat. Their friendship has been a great asset during my

graduate studies.

Finally, I am grateful to my family: my father, mother and brother, who have been a constant

source of motivation.

June 2017

v



DESIGN AND ANALYSIS OF MULTILEVEL CODED MODULATION FOR

MULTI-NODE NETWORKS
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The University of Texas at Dallas, 2017

Supervising Professor: Dr. Aria Nosratinia, Chair

During the last several decades, information theory has made significant advances in the

analysis of the limits of communication in multi-node networks and the methods that can

approach those limits. This dissertation studies new multi-level architectures for coded

modulation in multi-node networks that aim to approach, in the practical realm, the capacity

limits unveiled by information theory.

For the two-user additive white Gaussian noise (AWGN) broadcast channel, a multi-level

coding architecture is proposed whose performance can approach the entire capacity region,

and whose attractive features include a convenient partition of the two users’ data so that

one and only one of the modulation bit levels (and the corresponding encoder) must contend

with both users’ data. Practical aspects of the problem, including allocation of levels to

users and finding level-wise code rates, have been addressed.

For the full-duplex decode-forward relay channel, a pragmatic yet capacity-approaching con-

struction is proposed that synthesizes the components of full-duplex transmission via distinct

signal levels of a multi-level code at the source and at the relay. The rate penalty due to

linearity of component codes is analyzed and to avoid it, a solution is proposed involving the

labeling of signal constellations. Simulations show that the proposed architecture together

with good point-to-point codes can achieve excellent performance.

vi



For the full-duplex decode-compress-forward relay channel, a mutli-level coding architecture

is proposed and analyzed that achieves rates very close to the best known (information

theoretic) achievable rates. The performance of the proposed architecture is evaluated using

a combination of low-density parity-check (LDPC) codes and polar codes.

For the design of coded modulation for the discrete-input, Gaussian noise wiretap channels,

a rate splitting method is proposed to allow a convenient construction of wiretap channel

codes via a combination of two separate encoders operating on the data and the dither

components. This technique leads naturally to the construction of multilevel codes for the

AWGNwiretap channel where the message and the dither are encoded through separate levels

without compromising secrecy. The effect of maximum likelihood decoding and multistage

decoding at the legitimate receiver, as well as the effect of modulation labeling, are studied.
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CHAPTER 1

INTRODUCTION

1.1 Background

The last two decades have witnessed an enormous progress in network information theory.

The capacity and achievable rates of many communications networks such as the broadcast,

the relay and the wiretap channels have been studied [1]. In spite of this progress, practical

implementation of such techniques is not very well understood to date.

Much of the existing work in coding for multi-node networks concentrates on binary-input

channels. Some of the examples are for the broadcast channel [2, 3], the relay channel [4, 5, 6]

and the wiretap channel [7, 8, 9, 10]. However, a more general class of coded modulations

for medium and high-SNR applications has proved more challenging.

While point-to-point coded modulation is a mature topic with excellent results reported,

e.g., trellis coded modulation (TCM) [11, 12, 13] and bit-interleaved coded modulation

(BICM) [14, 15], it is well-known that high performance in the physical layer of multi-

node networks is not always made possible by patching together independent point-to-point

links. Therefore, the extension of point-to-point codes to the multi-node networks is not

straightforward.

We propose a set of multilevel coding (MLC) [16] architectures for efficient communication

over several multi-node networks. In doing so, we are motivated by several facts. To begin

with, it is well known that a multilevel coding decomposition does not suffer from any

capacity loss in the point-to-point channel, subject to certain symmetry conditions [17].

Second, recent developments in information theory for bounding the capacity of several multi-

node networks have utilized a multilevel approximation of the physical channels, known as the

deterministic model [18]. By approximating the physical channel into parallel, independent

binary channels (levels), and furthermore approximating these levels to be either completely

1



free of noise or completely lost in noise, these deterministic models have been able to produce

powerful insights into the calculation of the capacity of multi-node networks. The central

idea of this dissertation is that a coded modulation strategy that is inspired and motivated by

a similar multilevel architecture can hope to approach the capacity of multi-node networks,

if the approximations are stripped away and the true effect of the noise and the interaction

between levels is accounted for.

1.2 Contributions

For the two-user additive white Gaussian noise (AWGN) broadcast channel, a multi-level

coding architecture is proposed whose performance can approach the entire capacity region,

and whose attractive features include a convenient partition of the two users’ data so that

one and only one of the modulation bit levels (and the corresponding encoder) must contend

with both users’ data. Practical aspects of the problem, including allocation of levels to

users and finding level-wise code rates, have been addressed.

For the full-duplex decode-forward relay channel, a pragmatic yet capacity-approaching

construction is proposed that synthesizes the components of full-duplex transmission via dis-

tinct signal levels of a multi-level code at the source and at the relay. The rate penalty due to

linearity of component codes is analyzed and to avoid it, a solution is proposed involving the

labeling of signal constellations. Simulations show that the proposed architecture together

with good point-to-point codes can achieve excellent performance.

For the full-duplex decode-compress-forward relay channel, a mutli-level coding architec-

ture is proposed and analyzed that achieves rates very close to the best known (information

theoretic) achievable rates. The performance of the proposed architecture is evaluated using

a combination of low-density parity-check (LDPC) codes and polar codes.

For the design of coded modulation for the discrete-input, Gaussian noise wiretap chan-

nels, a rate splitting method is proposed to allow a convenient construction of wiretap chan-

2



nel codes via a combination of two separate encoders operating on the data and the dither

components. This technique leads naturally to the construction of multilevel codes for the

AWGN wiretap channel where the message and the dither are encoded through separate

levels without compromising secrecy. The effect of maximum likelihood decoding and mul-

tistage decoding at the legitimate receiver, as well as the effect of modulation labeling, are

studied.

1.3 Preliminaries

This section provides a brief summary of the main concepts used in this dissertation.

1.3.1 Channel Capacity

Any channel is defined by the conditional distribution PY |X(y|x) of the output Y given the

input X. The input-output relationship for the AWGN point-to-point channel is

Y = X +N (1.1)

where N is zero-mean, Gaussian noise with variance σ2. The capacity of this channel is given

by

C = log(1 + SNR) (1.2)

where SNR is the signal-to-noise ratio. The optimal input distribution to this channel is

Gaussian with zero-mean and variance equals to P where P is the transmitter power.

1.3.2 Constellation-Constrained Capacity

The constellation constrained capacity of the point-to-point AWGN channel is given by the

following optimization problem:

C = max
PX(x)

I(X;Y ) (1.3)

3
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Figure 1.1. The constellation constrained capacity of several constellations in the point-to-
point AWGN channel compared with the Gaussian input capacity.

However, it does not have a closed form expression. What makes it even more complicated

is that the input optimal distribution depends on the channel quality which is the SNR in

the case of the AWGN channel.

Exhaustive search for the optimal input distribution for the constellation constrained

channel can be complicated specially for large constellations. For example, the design vari-

able of the optimization problem in (1.3) is m − 1 dimensional for m-ary constellation.

Balhut-Arimoto algorithm [19, 20] facilitates this problem and presents an algorithm to

find the optimal input distribution of the point-to-point channel. Several constellation con-

strained capacity are shown in Fig. 1.1.

1.3.3 Coded Modulation

Coded modulation in the point-to-point channel has a long history and has been studied in

great detail [11, 12, 13]. The celebrated work of Ungerboeck [11] presented the trellis-coded
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modulation (TCM) where a finite-state machine encodes the input bits and the output bits

are mapped to a channel input symbol via a modulation mapper. The finite-state machine

is then designed to maximize the minimum distance between every two possible sequences.

However, as the data rate gets higher, the design of the trellis gets harder.

Another important coded modulation is bit-interleaved coded modulation (BICM) [15].

BICM was first introduced by Zehavi [14] and later studied extensively in [15]. In BICM, the

information is encoded via a binary encoder that is followed by an infinite depth interleaver

and then every group of bits is mapped to a channel input symbol. It was shown that BICM

can get rates that are very close to the constellation constrained capacity however, it does

not achieve the capacity. Part of the loss in BICM is that every input to the mapper is

treated in the same exact way.

Multilevel coding [16] is a close relative to BICM where every input to the mapper is

encoded independently with its own rate. In the point-to-point channel, binary component

multilevel coding (see Fig. 1.2) is implemented by splitting the data stream into m = log2(q)

sub-streams for a q-ary constellation. Each sub-stream i is encoded independently with rate

Ri. At each time instance, the outputs of the (binary) encoders are combined to construct

the vector [B1, B2, . . . Bm] which is then mapped to a constellation point X and transmitted

over. The channel is described by the conditional distribution PY |X(y|x) where Y is the

output of the channel. The mutual information between the input and output is given by

I(X;Y ) = I(B1, B2, . . . , Bm;Y ) =
m∑
i=1

I(Bi;Y |Bi−1) (1.4)

with the definition Bi−1 , [B1, B2, . . . , Bi−1] with B0 representing a constant, and us-

ing the chain rule for mutual information and the one-to-one relationship between X and

[B1, B2, . . . , Bm]. This equation suggests a multistage decoding where the codeword of level

i is decoded using the output of the decoders of the preceding levels. A necessary and suffi-

cient condition for multilevel coding achieving the constellation constrained capacity is that
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the optimal distribution P ∗
B1,...,Bm

(b1, . . . , bm) must be independent across its components,

i.e., (with a slight abuse of notation) [17]:

PB1,...,Bm(b1, . . . , bm) =
m∏
i=1

PBi
(bi) (1.5)

A brief background survey on multilevel coding is as follows: Multilevel coding was

proposed by Imai and Hirakawa in [16]. More details about the performance and the design

of MLC can be found in [21, 22, 23]. Duan et al. [24] showed that MLC with linear mapping

does not require active shaping to achieve the capacity. The MLC error exponent was

analyzed by Ingber and Feder [17]. MLC was extended to the MIMO transmission [25], was

used for diversity coding [26, 27, 28, 29] and in data storage [30]. Much less is known about

MLC in the context of multi-node networks. A notable exception is [31] which used MLC

in the context of compute and forward. But in general the optimality and efficient design of

MLC for a variety of channels, including in particular the broadcast channel, relay channel

and the wiretap channel has been for the most part an open problem.
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CHAPTER 2

CODED MODULATION FOR THE BROADCAST CHANNEL

2.1 Introduction

The capacity of the AWGN broadcast channel is achieved via superposition coding [32,

1], but superposition of coded modulations is in general a modulation with much bigger

size, and growth in the cardinality of constellation has practical costs that get progressively

worse with more users. Quite aside from questions of cardinality, a superposition of coded

modulations yields an irregular modulation constellation, with associated inconvenience and

computational issues for the calculation of LLRs in hardware or firmware. Finally, the

configuration of a superposition of constellations does not stay fixed throughout the rate

region, in particular the peak-to-average power ratio (PAPR) [33], an important parameter

for the efficiency of power amplifiers, becomes a variable quantity thus creating complications

in the design of the transmitter.

Thus, broadcast coded modulation subject to a pre-determined transmit constellation

is an important problem1. Coded modulation in the point-to-point channel has a long

history and has been studied in great detail [11, 12, 13], but in the multi-node scenario,

coded modulation introduces new and interesting phenomena and despite some progress,

the design of capacity-approaching coded modulation for the broadcast channel under a

channel-input constellation constraint has remained an essentially open problem. An outline

of related work is as follows. Taubin [34] proposed the transmission of a weighted sum of two

independent bit interleaved coded modulations and Sun et al. [35] proposed superposition

Turbo TCM for the broadcast channel. Neither of these strategies obey a channel-input

constellation constraint. A related area is the so-called single-user broadcasting [36], where

1 c⃝[2017] IEEE.Reprint, with permission, from [Ahmed Abotabl and Aria Nosratinia, Broadcast Coded
Modulation: Multilevel and Bit-Interleaved Construction, IEEE Transactions on Communications, March,
2017]
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two streams are transmitted into a single-user channel with unequal-error protection (UEP).

Earlier work in this area include Ramchandran et al. [37], on UEP modulation, however,

the focus of their work is on providing variable error rates and not on capacity-approaching

performance (see [37, Table II]).

This chapter addresses the design of multilevel coding (MLC) for the two-user AWGN

broadcast channel under fixed constellation in size and shape at the channel input. In

addition, a relative of MLC, the bit-interleaved coded modulation (BICM) [15] is employed

for efficient implementation. For a two-user broadcast channel, we refer to the superposition

code component for the weak user (experiencing lower signal-to-noise ratio) as the “outer

code” and for the strong user as the “inner code.” We show that for the inner code to be

decomposable to multilevel code, necessary and sufficient conditions are essentially similar

to the point-to-point scenario. We then show the optimality conditions for a multilevel

decomposition of the outer code, and finally we highlight the optimality conditions for the

(simultaneous) multilevel decomposition of the inner and outer codes. We show via numerical

results that separating the two users’ signals into distinct levels is in general insufficient to

approach capacity. As mentioned earlier, this is the approach most commonly taken by

the unequal error protection modulation schemes. Since mixing of the two users’ signals

is unavoidable, this chapter proposes a simple level-wise concatenation of user’s codewords

that closely approaches the capacity limit. The mixing of the two users’ data can be limited

to only one of the levels. We also propose a hybrid MLC-BICM that further simplifies the

design, yet has excellent performance. Finally, we show that good point-to-point codes can

be used as component codes for the multilevel encoder with excellent performance. For

more than two-users, there will be more than two layers of encoders. Each layer encodes the

information of a different receiver. Necessary and sufficient conditions for the decomposition

of each layer into multilevel decomposition is a straight forward extensions of the results of

this chapter. However, the design of bit-wise combining of more than two messages and the

rate allocation per user at each level is not considered in this chapter.
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Figure 2.1. Broadcast channel with MLC for the inner code

Throughout the chapter, the SNR of a point-to-point AWGN channel is denoted by ρ and

the SNR of the weak and the strong receivers of the AWGN broadcast channel are denoted

by ρ1 and ρ2 respectively. Also, the noise variance at the weak and the strong receivers are

denoted by σ2
1 and σ2

2.

2.2 Analysis of Multilevel Superposition Coded Modulation

2.2.1 Multilevel Inner Code

We begin by investigating multilevel decomposition of the inner code (see Fig. 2.1). The

message w1 is encoded with the outer code which is generated according to a distribution

pU(u) to give the cloud centers of the superposition code (the codewords that will be decoded

at both receivers). The message w2 is split into m sub-messages. Sub-message i is encoded

with inner code at level i that is generated according to a distribution PBi|U(bi|u). The

inner code obeys an alphabet constraint on X as well as a multilevel coding constraint

on the individual bits representing X, while the outer code in this case is unconstrained.

The question is: under what conditions can such a decomposition meet the constellation

constrained capacity?

The channel input X is constrained to a specific constellation via a one-to-one function

f : [B1, · · · , Bm] → X whose domain is a vector of coded bits [B1, · · · , Bm]. The achievable
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rate region of the broadcast channel subject to multilevel coding constraint on the inner code

can be characterized by the following collection of weighted sum rates:

R = max∏m
i=1 PBi|U (bi|u)PU (u)

{θI([B1, · · · , Bm];Y2|U) + (1− θ)I(U ;Y1)} (2.1)

where θ ∈ [0, 1] is a parameter indicating the point achieved on the boundary of the rate

region.

The modulation-constrained sum rate for the two-user degraded broadcast channel with-

out any multilevel coding constraints is given by

R = max
PB1,··· ,Bm|U (b1,··· ,bm|u)PU (u)

{θI([B1, · · · , Bm];Y2|U) + (1− θ)I(U ;Y1)} (2.2)

where the difference of (2.1) and (2.2) is that the former is optimized over a product condi-

tional distribution for B1, · · · , Bm, whereas the latter is optimized over a general distribution.

If the two sum-rate expressions are identical for all values of θ, it follows that the capacity

regions must be identical.

Theorem 1. A multilevel inner code achieves the constellation constrained capacity of the

degraded broadcast channel if the capacity-achieving distributions on the individual bits of

the modulation are conditionally independent, i.e.,

P ∗
B1,··· ,Bm|U(b1, · · · , bm|u) =

m∏
i=1

P ∗
Bi|U(bi|u) (2.3)

This optimality result is the counterpart of the point-to-point optimality result of Ingber

and Feder [17]. The individual rates can be calculated using the usual peeling decoder for the

strong user. When the outer decoder is implemented via multistage decoding, the achievable

rates are:

R1 ≤ I(U ;Y1) (2.4)

R2 ≤ I(X;Y2|U) (2.5)
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Figure 2.2. Broadcast channel with multilevel coding for the outer code

=
m∑
i=1

I(Bi;Y2|U,Bi−1) (2.6)

It follows that multistage decoding of the inner code is possible when

R2i ≤ I(Bi;Y2|U,Bi−1) (2.7)

where R2i is the rate of the inner encoder at level i.

2.2.2 Multilevel Outer Code

We now consider the case when the inner code is unconstrained, but the outer code is a

multilevel code (see Fig. 2.2). The outer code represents the cloud centers and is generated

by the auxiliary random variable U , whose cardinality is enough to be bounded by the

cardinality of X for optimality. The question is: when can the outer code be decomposed

into independently encoded levels?

We now argue that it is always possible to produce a multilevel decomposition of the

outer code with arbitrarily small loss, as long as it is permissible to increase the number of

coding levels.
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Consider a set of binary variables C1, . . . , Ck representing the levels of the inner code,

drawn independently according to Bernoulli-1
2
. We now aim to find a mapping g : [C1, · · · , Ck] →

U such that pU(u) approximates the capacity-optimizing distribution p∗U(u). Since each re-

alization of Ck has probability 2−k, the design of g(·) consists of crafting a many-to-one

mapping from the bit vector to U so that

2−k
∣∣{[c1, · · · , ck] : g(c1, · · · , ck) = ui}

∣∣ ≈ P ∗
U(ui)

where | · | stands for the cardinality of the set it contains, and PU∗(u) is the optimal dis-

tribution of PU(u). It is not difficult to see that one is guaranteed to get to within 2−k of

approximating each pU(u).

The individual rates are therefore:

R1 ≤ I(U ;Y1) (2.8)

=
k∑

i=1

I(Ci;Y1|Ci−1) (2.9)

R2 ≤ I(X;Y2|Ck) (2.10)

where U = g([C1, · · · , Ck]). Multistage decoding of the outer code at both receivers is subject

to the following individual rate constraints

R1i ≤ I(Ci;Y1|Ci−1) (2.11)

where R1i is the rate of the encoder in level i of the outer encoder. Intuitively, if the weak

receiver can do multistage decoding at a certain set of rates, so can the strong receiver at

the same set of rates, because the strong receiver is less noisy. Formal derivation of this fact

is straightforward and is relegated to Appendix 2.6.2.
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Figure 2.3. Broadcast channel with full multilevel superposition coding

2.2.3 Full Multilevel Superposition Coding

We now consider the case when the outer and the inner codes are decomposed to multilevel

construction (see Fig. 2.3). Each encoder in the inner code depends on its message and the

output of all the encoders of the outer code. The maximum achievable sum rate is given by

R = max∏m
i=1 PBi|Ck (bi|ck)PCi

(ci)
θI([B1, . . . , Bm];Y2|U) + (1− θ)I([C1, . . . , Ck];Y1) (2.12)

Denote the optimal distribution under the channel input constraint X = f(B1, · · · , Bm) with

P ∗
X|U(x|u)PU(u) = P ∗

B1,··· ,Bm|U(b1, · · · , bm|u)PU(u). A necessary and sufficient condition for

the constellation-constrained optimality of a multilevel decomposition is that there exists a

(potentially many-to-one) function g(·) so that for every u,

P ∗
B1,··· ,Bm|U(b1, · · · , bm|u)PU(u) =

∑
g(ck)=u

m∏
i=1

PBi|Ck(bi|ck)
k∏

j=1

PCj
(cj) (2.13)

This means that the capacity achieving distribution on the coded bits B1, · · · , Bm can be

constructed by, firstly, cloud centers generated via independent binary variables C1, . . . , Ck

together with a mapping g : Ck → U , and secondly coded bits B1, . . . , Bm that are indepen-

dent conditioned on C1, . . . , Ck. Using arguments similar to the ones in Section 2.2.2 and
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Appendix 2.6.2, one can show that the conditions on the outer code can be satisfied to any

required degree of approximation via increasing k, the number of the levels of the outer code.

Under this condition, the individual rates are:

R1 ≤ I(U ;Y1) (2.14)

=
k∑

i=1

I(Ci;Y1|Ci−1) (2.15)

R2 ≤ I(X;Y2|Ck) (2.16)

=
m∑
j=1

I(Bj;Y2|Bj−1, Ck) (2.17)

Multistage decoding of the outer and inner codes at both receivers is subject to the following

individual rate constraints

R1i ≤ I(Ci;Y1|Ci−1) 1 ≤ i ≤ k (2.18)

R2j ≤ I(Bj;Y2|Bj−1, Ck) 1 ≤ j ≤ m (2.19)

2.3 Design of Multilevel Superposition Coded Modulation

The results of the previous section show the conditions under which broadcast capacity can be

achieved by multilevel coding. The remainder of this chapter shows that even in the absence

of optimality conditions, MLC can still achieve rates very close to the boundary of the

capacity region. This section produces a design methodology for multilevel broadcast coded

modulation via a simple coding framework that greatly facilitates the design process and yet

induces little or no performance penalty (allows near-optimal performance). Subsequently,

we solve the problem of rate allocation between the users and layers of the multilevel code

in the context of the proposed framework, thus completing the design process.
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2.3.1 Bit-Additive Superposition Coding

In the multilevel decomposition considered so far, each of the inner encoder levels depends

on the code vector produced by all the outer encoders. The cross dependency of multiple

codes is difficult to implement in practice, therefore it is natural to seek encoding methods

whose levels are decoupled from each other for both users, especially considering that the

notion of decoupling of levels is at the heart of motivation for the point-to-point multilevel

codes [16]. This means that level-i encoder of the inner code reads only the output of level-

i outer encoder, which leads to a bit-wise superposition. This can be optimal only if, in

addition to the condition (2.13), we also have:

PBi|Ck(bi|ck) = PBi|Ci
(bi|ci) ∀i (2.20)

For most modulations used commonly in practice, this condition cannot be met precisely.

Nevertheless, it is possible to achieve performance very close to capacity via an encod-

ing method that decouples the bit levels from each other, and furthermore implements the

superposition at each level by a simple binary additive operation. We call this simple multi-

level superposition strategy the bit-additive superposition. We now proceed to describe this

method and demonstrate its performance.
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Fig. 2.4 shows the outline of the proposed method. The outer codes are generated

independently according to Bernoulli-1
2
distribution, each with a prescribed rate R1i, and are

represented with variable Ci. The inner codes are represented by Ui, which are generated

independently according to the distribution Bernoulli-αi with αi ∈ [0, 0.5]. Bit-additive

superposition is achieved via Bi = Ci ⊕ Ui where ⊕ represents the binary XOR operation.

When αi = 0, we have Bi = Ci so we have R2i = 0. When αi = 0.5, Bi is independent of

Ci and R1i = 0. This method of binary superposition is mentioned, among others, in [1,

Chapter 5] and [38].

The proposed bit-additive superposition can be implemented in the following manner: a

binary linear code is chosen for each level of the outer code since linear codes have uniform

distribution. For the encoders of the inner code, we need a code with distribution Bernoulli-

αi. Such a code can be generated from a linear code which has a uniform distribution and

set the bits at randomly chosen locations with zero. For example, if the required distribution

is Bernoulli-αi, then the number of bits set to zero (regardless of their original value) should

be

N = 2(1/2− αi)n (2.21)

where n is the block-length of the code.

2.3.2 Performance of Bit-Additive Superposition

We now provide numerical examples for a wide variety of modulations to demonstrate the

efficacy of the proposed bit-additive superposition. The general setup for these numerical

studies is as follows.

The baseline for comparisons in each case is the constellation constrained capacity, which

is calculated using the modified Blahut-Arimoto algorithm [39]. In each case, the achievable

rate region for the proposed bit-additive superposition is obtained in the following manner:

For each level i, a uniformly distributed codeword is generated for the weak receiver and a
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codeword with distribution Bernoulli-αi for the strong receiver. The input to the mapper

at level i is the XOR between the weak receiver codeword at level i and the strong receiver

codeword at level i. Each value of the vector [α1, α2, . . . , αm] gives a certain rate pair (R1, R2).

For every value of the vector [α1, α2, . . . , αm], the mutual informations

I(C1, . . . , Cm;Y1)

I(B1, . . . , Bm;Y2|C1, . . . , Cm)

are calculated. These mutual informations give an achievable rate pair R1 and R2 respec-

tively.

Numerical results show a very small gap between the constellation constrained capacity

and the proposed bit-additive superposition. In particular Fig. 2.5, Fig. 2.6, and Fig. 2.7

shows the performance of bit-additive superposition for 4-PAM, 8-PAM, 16-QAM and 8-

PSK constellations. Simulations show the same achievable rate region via Gray and natural

mapping.
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Fig. 2.5 also shows comparisons to a bit-allocation strategy often used by the Unequal-

Error Protection (UEP) modulations [37, 40], i.e., the higher-order bit levels are assigned to

one data category and the lower-order bit levels to the other data category.

Fig. 2.5 represents 4-PAM modulation, and the UEP-type modulation curves represent

the two possibilities of level-1 (respectively level-2) being assigned to weak (respectively

strong) user, or vice versa. In the former case, we see that this assignment meets the

capacity outer bound only at one point, otherwise it can be far from capacity. Reversing the

assignment of modulation index to the users results in even worse performance.

It has been noted by [41, 42, 43] that in the UEP approach one may allocate each

modulation index to one message at a time, but then allow time sharing between all such

strategies. Thus one may achieve the convex hull of all points on such individual rate

assignments, as well as the single-user rates. This can provide a performance closer to

capacity, but requires buffering with its associated additional delay.

Remark 1. For a fixed channel SNR and for a fixed rate pair, the larger the modulation

size, the smaller is the gap-to-capacity for a static assignment of messages to modulation

indices.

Remark 2. In Fig. 2.7 and even more so in Fig. 2.5, there is a very small gap between the

modulation-constrained capacity and the multilevel coding rates, especially close to the vertical

axis (when the weak user mostly occupies the channel). This can be clarified by looking at the

single-user optimality condition of multilevel coding [17], finding that it is not met for PAM

with natural labeling. For the single-user 8-PAM modulation under natural labeling, Fig. 2.8

shows the relationship of constellation constrained capacity and MLC achievable rate. 8-PAM

experiences a MLC penalty that is more severe at low SNR,2 therefore the slight separation

2In the point-to-point channel this penalty goes away if at lower SNRs one uses a lower order modulation.
Using a higher order modulation and requiring that all modulation points be used with equal probability
(linear component codes) produces the rate penalty. In the broadcast channel this small penalty is not as
easily avoidable because the same modulation is used to transmit to both users.
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Figure 2.8. The penalty for using multilevel linear coding (equi-probable zeros and ones) in
a single-user channel under 8-PAM with natural labeling

of rate curves in Figs. 2.5, and 2.7 is explained especially at the point where the weak user

occupies the channel.

2.3.3 A Pragmatic Rate Allocation Algorithm

To achieve a desired broadcast rate pair (R1, R2) in the context of multilevel coding, it is

necessary to identify the relevant codes at each layer, which begins by specifying the code

rates R1i, R2i for all levels i. In this subsection, we present a pragmatic solution to this

problem that in addition to its modest computational requirement, serves to reveal interac-

tions between the rate constraints at different bit levels as well as interesting connections

to the familiar single-user MLC mutual information curves. It will be demonstrated via

simulations that this pragmatic method operates very close to the capacity region for most

familiar modulations and mappings. Subsequently, we will discuss the rare cases where this
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pragmatic method may lead to a slight departure from optimality, and propose a general

(but not as computationally thrifty) algorithm for rate allocation in such cases.

We begin by casting the rate allocation problem in the form of the following optimization,

where θ parametrizes the boundary of the broadcast rate region:

max
ΠiPBi|Ck (bi|ck)ΠjPCj

(cj)
θ
∑
i

R1i + (1− θ)
∑
j

R2j

Subject to R1i ≤ I(Ci;Y1|Ci−1) 1 ≤ i ≤ k

R2j ≤ I(Bj;Y2|Bj−1, Ck) 1 ≤ j ≤ m

R1i ≥ 0 R2j ≥ 0 ∀i, j

We will come back to a version of this general rate allocation problem in the sequel, but for

now we concentrate on bit-additive superposition, where the rate allocation problem reduces

to the following:

max
ΠiPUi

(ui)PCi
(ci)

∑
i

θR1i + (1− θ)R2i (2.22)

Subject to R1i ≤ I(Ci;Y1|C i−1) 1 ≤ i ≤ m (2.23)

R2i ≤ I(Ui;Y2|U i−1, Ck) 1 ≤ i ≤ m (2.24)

R1i ≥ 0 R2i ≥ 0

The key difference is that the maximization is now over independent distributions, therefore

the utility function can now be decomposed into the sum of m non-negative level-wise utility

functions.

Having arrived at a simplified utility function, we now concentrate on the constraints

by highlighting the shape of the feasible rate regions at each individual level, which can be

thought of as cross sections of the overall feasible rate region. For insight, we look into the

specific example of 8-PAM with natural labeling, where the level-wise rate constraints are

shown3 in Fig. 2.9.
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Figure 2.9. Rate constraints for the levels of 8-PAM constellation assuming natural labeling
and decoding order from MSB to the LSB with ρ1 = 5dB and ρ2 = 10dB.
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The first interesting feature of the bit-level constraints is that, under most bit mappings

including natural and Gray mapping, the binary rate constraint at each level is largely

insensitive to the parameters pertaining to other levels. For example, please see Fig. 2.10,

where in an 8-PAM multilevel coded modulation, the sensitivity of the rate constraints in

levels 2, 3 at the set point R22 = R32 = 0 is demonstrated subject to a complete sweep of the

rate pair R11, R12. From this observation rises a pragmatic assumption: that at optimality,

one may assume that the constraints at different levels are approximately independent.4

This approximation leads to a complete decomposition of the optimization into level-wise

optimizations whose only coupling is through the parameter θ, namely, for each i = 1, . . . ,m,

max
PUi

(ui)PCi
(ci)

θR1i + (1− θ)R2i (2.25)

Subject to gi(R1i, R2i) ≤ 0 (2.26)

R1i ≥ 0 R2i ≥ 0 (2.27)

where gi(·, ·) is the rate constraint at each level whose dependence explicitly on R1i, R2i

and omission of other variables is meant to highlight the approximate independence of the

constraints at each level. Solving a typical rate allocation problem in the aforementioned

example involves pushing a line with a slope determined by θ outward on the three levels

mentioned above. An example is shown in Fig. 2.11, where the individual rate constraints

for the three levels are shown in solid lines and the parallel dotted lines represent, for a fixed

θ, the lines θR1i+(1− θ)R2i = αi, and the maximization of αi corresponds to the movement

of the dotted lines as shown by arrows.

The result of this rate allocation is that Level 1 is dedicated to User 1, and levels 2

and 3 are dedicated to User 2. Note that the rate constraint curves were calculated under

3For each i, we have set the rates in other levels j ̸= i so that R1j = 0.

4This approximation has been verified for all natural and Gray labeling for a variety of PAM, PSK, and
QAM type modulations. There exist some irregular labeling for which this assumption fails. That case will
be discussed separately in the sequel.
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Figure 2.11. Rate allocation via optimization at each level

the operating regime that all three levels are assigned to User 2. To take into account the

(small) sensitivity of the individual rate regions to the operating point of other levels, one

may update the three rate curves once more and verify that optimality conditions remain

satisfied at the proposed optimal point. The update may slightly adjust the intercept points.

We now consider a second empirical property of level-wise binary rate regions: that they

are very nearly affine. This feature has been experimentally observed across modulations,

bit level mappings, and various channel SNRs. The outcome of this second observation is

that near optimal rate allocation can be achieved while allocating all the bits in each level

to either one or the other user. This produces 2m rate pairs that are close to the boundary

of the rate region. Rate pairs in between can be achieved by dividing the rate in one of the

levels (whose achievable rate slope is closest to θR1 + (1− θ)R2 between the two users.

This approach yields results that are practically indistinguishable from optimal rate allo-

cation, with very few exceptions that are discussed in the next subsection. The performance

of this method is illustrated, for the case of a 8-PAM modulation with natural mapping,
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in Fig. 2.12. In this figure, the normalized SNR of the two users are respectively 5dB and

15dB. The dotted line shows the Gaussian capacity without a modulation constraint. The

red curve shows the modulation-constrained capacity that has been calculated via a variation

of the Blahut-Arimoto algorithm. The achievable rate of the bit-additive multilevel coding is

shown with the green plot, which is obtained by a full-search optimization for rate-allocation,

potentially yielding a solution where each user’s data is transmitted at all levels. The result

of pragmatic rate allocation is shown with the blue plot, which is indistinguishable from the

fully optimal rate allocation.

As noted earlier, the pragmatic rate allocation will result in a solution where most of the

layers are allocated to one user or another, and potentially one level sees the data of both

users. This will results in a solution that is shown in Fig. 2.13.

To summarize the developments so far: a pragmatic near-optimal rate allocation algo-

rithm is being developed to allow the implementation of superposition coding in practical

applications. So far, it was shown that the overall rate utility function as well as the con-

straints can be decomposed to level-wise utility and constraint functions that are minimally

coupled (only through the shared parameter θ). The main remaining computational aspect

is the calculation of the level-wise constraints. Fortunately, the affine approximation allows

us to characterize the level-wise constraints via their two end-points, and the insensitivity

of each constraint to other levels’ parameters allows us to obtain these end points from the

single-user mutual information curves of multilevel modulations. We produce in Fig.2.14

a series of such curves for PAM, PSK, and QAM type modulations. These curves may be

pre-calculated and stored via lookup tables. Then the rate constraints at each level may be

obtained by reading the values off these curves at the respective SNRs for the two channels.

2.3.4 Exceptions to the Decoupling of Bit-level Rate Constraints

The performance of the proposed rate allocation algorithm is virtually indistinguishable

from optimal for many practical cases including many familiar modulations under natural
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Figure 2.14. Single-user MLC mutual information curves for a variety of PAM, PSK and
QAM-type constellations with natural mapping. MLC mutual information depends on de-
coding order, which in the case of these curves has been from the most to least significant bit
of the modulation mapping. The broadcast users “see” such channels at respective operating
points ρ1 and ρ2.
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and Gray mapping. The excellent performance was explained via the insensitivity of the bit-

level rate constraints to the operating point in the other bit-levels. A key remaining question

is: how prevalent is this insensitivity (decoupling) condition, and what is the performance

penalty of the proposed algorithm when this condition does not hold? To our experience,

counter-examples to this insensitivity condition are very rare and involve irregular mappings

or constellations. As an example, we offer a Gray-like mapping for 8-PAM as shown in

Fig. 2.15.

000 110 100 101 111001 011 010

Figure 2.15. 8-PAM constellation with Gray-like mapping.

The sensitivity of the bit-level broadcast rate constraints for this modulation are demon-

strated in Fig. 2.16. It is observed that unlike the previous cases, the bit-level constraint of

level 3 is sensitive to the bit-level constraint in level 1. This sensitivity manifests itself in a

(slight) sub-optimality of the pragmatic rate allocation technique introduced in the previous

subsection. Despite the apparent sensitivity, the resulting sub-optimality is slight and is

demonstrated in Fig. 2.17.

Of course an example does not make a general case, therefore in the interest of complete-

ness, we outline in the remainder of this subsection a relaxation method can be used for

allocating each level’s rates to the two users, with no pre-determined constraints on the out-

come of the rate allocation. Although it is our understanding that the previous subsection’s

pragmatic method should be sufficient for almost all practical cases.

The desired solution can be characterized in the form of two vectors R1,R2 whose com-

ponents carry the components of the rates in individual levels dedicated to User 1 and

User 2.
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Figure 2.16. Bit-level rate constraints for the Gray-like mapping of Fig 2.15.
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One way to think about solving this optimization problem is as follows. First, we assign

all the rate to one of the receivers (without loss of generality receiver 2), such that

R1 = [0 . . . 0]

R2 = [C21 . . . C2m]

where C1i and C2i denote the point-to-point capacity of level-i for the weak receiver and the

strong receiver respectively.

In order to move on the boundary of the capacity region so that receiver 1 is assigned a

portion of the rate, each step should maximize the gain in R1 while maintaining minimum

loss to R2.

This can be done by incrementing one of the entries of R1, i.e., increasing R1i for some

i. However, the corresponding loss in R2i depends on the bit constraint of level i. Thus, it is

reasonable to increment R1 through level i that provides maximum gain in R1 given a fixed

loss in R2. The remaining task is finding a plausible choice of level i as follows. First the

bit-level constraint for each level i and its slope denoted by f̄i are calculated at the current

rate assignment. Note that f̄i represents the gain in R1i normalized to the loss in R2i. The

level i∗ that results in the maximum gain in R1 satisfies

|f̄i∗| > |f̄j| ∀j. (2.28)

Therefore, moving close to the boundary of the capacity region can be realized by increas-

ing R1 through increasing R1i∗ and fixing R1j ∀j ̸= i∗ until either R1i∗reaches its maximum

value C1i∗ or the inequality (2.28) is violated. In either case, the same procedure is then

repeated until the desired rate pair is achieved.

2.3.5 Multilevel BICM Construction

BICM is a close relative of MLC in the point-to-point channel, where the bits from multiple

levels are encoded using not only the same code rate, but together as one code word. In
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Figure 2.18. Hybrid MLC-BICM superposition

our proposed multilevel superposition coding with the efficient structure shown in Fig. 2.13,

there are m encoders: some of them carry information for the weak receiver, some of them

carry information for the strong receiver and at most one encoder that carries information for

both receivers. We propose to combine all the encoders that carry information for a certain

receiver in one BICM encoder as shown in Fig. 2.18. This way of transmission reduces

the number of encoders significantly especially for big constellations. For example, for a

64-QAM constellation, the multilevel coding structure will require at least six encoders and

by combining all the encoders that send to the same receiver into one BICM encoder, the

number of encoders can be reduced to at most three encoders but with longer block length.

We call this technique the hybrid technique since it uses multilevel coding in the sense of

encoding the information independently and BICM encoder to encode the information that

belong to the same receiver.

The rate of the BICM encoder and the serial to parallel conversion depends on the

number of levels that the encoder feeds. The rate achieved by the hybrid transmission is

shown in Fig. 2.19 for Gray and natural mappings. The achievable rate region of the hybrid

transmission is in general smaller than the achievable rate region of the multilevel coding

scheme since BICM is not capacity achieving. The maximum loss in rate is the point-to-

point transmission since the encoding becomes completely point-to-point BICM encoding;
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Figure 2.19. MLC and hybrid superposition achievable rates under 8-PAM, ρ1 = 5dB,
ρ2 = 15dB.

however, when the rates of the weak and the strong receivers are not equal to zero, the

transmission becomes closer to the multilevel superposition transmission. For example for

the 8-PAM constellation, there is a stage in which the MLC and Hybrid schemes will be

the same. This is the point when the level that carries information for both receivers is the

middle level.

2.4 Simulations

Because the broadcast channel involves simultaneously two rates and two SNRs, error plots

are generated for the broadcast channel by applying slight modifications to the standard

methods used for plotting errors in point-to-point coding literature. For broadcasting the

relative quality of the channels, indicated by the noise variances, remains fixed in the simu-

lations, while the transmit power is allowed to increase. The rate of the two codes is chosen

according to a rate pair on the boundary of the capacity region. In each plot, the value of
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the transmit power corresponding to the capacity rate pair is clearly marked, a point that is

the counterpart to the “capacity threshold” in the single-user error curves seen in the coding

literature. A comparison between this point and the waterfall region of the error curves is

an indicator of how far from optimality is the system operating.

The DVB-S2 LDPC codes are used as component codes for each of the levels to examine

the performance of the proposed MLC and the hybrid (MLC-BICM) transmissions. The

block length of the codes is n = 64k. Fig. 2.20 shows the performance of 4-PAM MLC

superposition for rates (R2 = 0.5, R1 = 0.6) with natural mapping. The information of

the weak receiver is sent over level-1 and the information of the strong receiver is sent over

level-2. This is considered an extreme case where each level is assigned to either the weak or

the strong receiver. The bit error rate (BER) and frame error rate (FER) for each receiver

are shown. The gap to capacity is approximately 0.5-dB at 10−5 FER, which is the similar

to the gap to capacity of the DVB code in the point-to-point channel, thus suggesting that

the FER gap is mostly due to the limitations of the code as opposed to the MLC.

Fig. 2.21 shows the performance of 8-PAM constellation where one bit level is shared

between the weak and the strong receiver. The rates assigned are R1 = 0.6 and R2 = 1.4.

Level-1 carries information only for the weak receiver, level-2 is shared, and level-3 carries

information only for the strong receiver. In the shared level, the weak and the strong

receivers messages are encoded independently using the DVB-S2 LDPC codes and combined

after setting some bits of the strong receiver codeword to zeros as described in Section 2.3.1.

Fig. 2.22 shows the BER and FER of the proposed hybrid MLC-BICM (Fig. 2.18) trans-

mission compared with the MLC transmission (Fig. 2.13) for an 8-PAM constellation with

Gray mapping. Level-1 carries information for the weak receiver and the other two levels

carry information for the strong receiver. The rates are R1 = 0.5 and R2 = 1.5. In the hybrid

transmission, a BICM encoder is used with double the length of the one used in level-1 and

the output of the BICM encoder is partitioned into two streams and fed to the two least
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Figure 2.22. Performance of the hybrid MLC-BICM scheme for 8-PAM constellation where
σ2
1 = 8.5, σ2

2 = 1

significant bits. Simulation show that the hybrid scheme has a performance very close to

that of MLC.

Fig. 2.23 shows the error performance of 8-PSK constellation with natural mapping where

level-1 carries information for the weak receiver, level-3 carries information for the strong

receiver and level-2 carries information for both receivers. The rates are R1 = 0.4 and

R2 = 1.6. The gap to capacity is around 0.5-dB at bit error probability of 10−5.

Fig. 2.24 shows the performance of 16-QAM constellation with natural labeling where

level-1 carries information for the weak receiver, level-2 for both receivers, and levels 3 and

4 carry information for the strong receiver. The rates are R1 = 1.2 and R2 = 1.8 and noise

variances at the two receivers are σ2
1 = .64 and σ2

2 = .18. The simulations show that the

proposed scheme has a gap of around 0.4-dB from the constellation constrained capacity at

bit error probability of 10−5. The figure also shows the performance of the Hybrid MLC-

35



7.7 7.8 7.9 8 8.1 8.2 8.3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Tx Power (dB)

E
rr

or
 p

ro
ba

bi
lit

y

 

 
BER

1

FER
1

BER
2

FER
2

8−PSK
capacity

Figure 2.23. Performance of the MLC proposed transmission for 8-PSK constellation where
σ2
1 = 2.2, σ2

2 = 1
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BICM transmission where the two encoders of the two least significant bits are combined in

one BICM encoder while using Gray mapping.

2.5 Conclusion

This chapter studied coded modulation for the AWGN broadcast channel. multilevel cod-

ing (MLC) and bit-interleaved coded modulation (BICM) are explored under channel-input

modulation constraints. It was shown that the assignment of receivers information to dis-

tinct inputs to the mapper does not approach the capacity uniformly. A bit-wise multilevel

superposition transmission is proposed. Furthermore, a hybrid MLC-BICM with lower com-

plexity is proposed. The achievable rate region of the proposed transmission is very close to

the boundary of the constellation constrained capacity of the broadcast channel. Simulation

results showed an excellent performance using good point-to-point codes.

2.6 Appendix

2.6.1 Degradedness of bit channels

Consider the following Markov process due to the degradedness of the channel

U → X → Y2 → Y1

U has a multi-digit characterization [C1, . . . , Cm].

for a specific value of Ci−1 = ci−1, due to the degradedness of the channel we have

I(Ci;Y1|Ci−1 = ci−1) ≤ I(Ci;Y2|Ci−1 = ci−1) (2.29)

The mutual information I(Ci;Y1|Ci−1) and I(Ci;Y2|Ci−1) are

I(Ci;Y1|Ci−1) = ECi−1 [I(Ci;Y1|Ci−1 = ci−1)] (2.30)

I(Ci;Y2|Ci−1) = ECi−1 [I(Ci;Y2|Ci−1 = ci−1)] (2.31)
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where E[.] is the expectation operation. The expectation operation is a convex combination

for all the values that Ci−1 can take. Since the inequality (2.29) holds for any value of C i−1

then it holds for any convex combination of the values of Ci−1, therefore:

I(Ci;Y1|C i−1) ≤ I(Ci;Y2|Ci−1)

2.6.2 Multilevel Decomposition of the Outer Code

Consider the auxiliary random variable U representing the message to the weak user. To

achieve capacity, the outer code is drawn i.i.d. according to pU(u). In the following we assume

the cardinality |U | = M . The objective is to produce multilevel codes whose empirical

distribution approaches pU(u). We now consider an m-dimensional binary vector V whose

components are i.i.d. Bernoulli-1
2
. Equivalently, V can be considered a random variable

uniformly distributed over an alphabet size of 2m. This is the random variable generating

the m-level multilevel code. Consider the design of a mapping U ′ = f(V ) so that the random

variable U ′, in distribution, is close to the capacity-maximizing U . We start with:

pU(u) = [p1 · · · , pM ]

Rounding down each of the probabilities to a multiple of 2−m via Q(pi) , 2−m⌊2mpi⌋, and

distributing the remaining probability 1 −
∑

i Q(pi) over the first K , 2m(1 −
∑

i Q(pi))

components, we arrive at the following probability distribution for U ′:

pU ′(i) =


Q(pi) + 2−m i ≤ K

Q(pi) i > K
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Defining ki , 2mpU ′(i), the function f(·) given below maps the multilevel binary generator

variable V to the (approximate) capacity achieving distribution U ′:

f(j) =



1 1 ≤ j < k1

2 k1 ≤ j < k1 + k2

· · ·

M k1 + · · ·+ kM−1 ≤ j < k1 + · · ·+ kM

In the following, we assume that none of the entries of pU are zero, and also that m is

large enough so that none of the entries of pU ′ are zero. A sufficient condition is m >

− log2 mini pU(i).

Now, it is straightforward to bound the divergence between pU and pU ′ :

D(pU ||pU ′) =
∑
i

PU(i) log
PU(i)

PU ′(i)

≤
∑
i

PU(i) log
PU ′(i) + 2−m

PU ′(i)

(a)

≤
∑
i

PU(i)
2−m

PU ′(i)

(b)

≤ M2−m+1

where (a) follows from log(1 + x) ≤ x and (b) follows from pU (i)
pU′ (i)

≤ pU (i)
Q(pU (i))

≤ 2.

Therefore, it follows that for a fixed M , by increasing the number of levels m one can

very quickly get close to the capacity optimizing distribution.
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CHAPTER 3

CODED MODULATION FOR THE FULL-DUPLEX RELAY CHANNEL

3.1 Introduction

Recent advancement in hardware design and signal processing have put full-duplex operation

back on the map as a potentially viable alternative [44, 45, 46, 47], and much research is on-

going in the area of full-duplex link implementation [48, 49, 50]. The credit for this resurgence

of interest goes to the new research in mitigating the so-called loop-back interference (self-

interference) at the full-duplex transmitter, represented by [51, 52, 53, 54] among many

others.

Focusing our attention on full-duplex relays, we find that while early theoretical results

were on full-duplex [55], subsequent coding and signal processing results have concentrated

for the most part on half-duplex scenarios, in particular low-SNR (binary) signaling [4, 5, 6].

Exceptions do exist, e.g., lattice codes for the full-duplex relay channel [56] but a nontrivial

gap to capacity remains and, in the most general setting, the problem of capacity-approaching

coding and modulation for the full-duplex relay channel remains open. We address this

problem via multilevel coding, providing well-defined and systematic design principles that

lead to near-capacity performance.

The key advantage of multilevel coding [16, 21] is that it uses binary codes whose design is

by now very well understood. Moreover, the multiple binary encoders that feed the bit-levels

of the modulation can operate independently, but for optimal performance some coupling

between the bit-level decoders is necessary, e.g., successive decoding.

Further related results in the relay literature are as follows. Several contributions for

the bandwidth limited relay channel focused on the two way relay channel. Ravindran et.

al [57] studied LDPC codes with higher order modulation for the two way relay channel.

Chen and Liu [58] analyzed different coded modulation transmissions for the two way relay

40



channel. Chen et. al [59] studied multilevel coding in the two-way relay channel. Hern and

Narayanan [31] studied multilevel coding in the context of compute-and-forward. However,

the two-way relay channel does not consider the direct link like in the conventional relay

channel, and hence, the coded modulation techniques that are considered in the literature

cannot be used for the three-nodes full-duplex relay channel.

A key contribution of this chapter is, first, to elucidate conditions under which multilevel

coding for the relay channel achieves the constellation-constrained capacity. Second, to

highlight the challenges involved in meeting this bound. Third, to propose solutions for

these challenges, and demonstrate the performance of the proposed solutions. The bit-

additive superposition used in this chapter was introduced for the broadcast channel in [60].

A preliminary version of some of the results of this chapter have appeared in a conference [61],

and a related paper [62] addresses multilevel coding for the half-duplex relay channel.

We propose a simple multilevel full-duplex relay transmission. The straightforward appli-

cation of multilevel coding to the relay channel would result in code specifications that require

multiple inter-layer correlations between the source and relay codes. Our work produces a

streamlined coding procedure where the dependencies are limited to pairwise correlation

between the source/relay codes at each individual layer. Moreover, we provide a simple

implementation of this idea via a binary addition between conventionally designed codes.

Numerical results show that the performance of the proposed technique is almost as good

as the best known decode-and-forward performance (with Gaussian codewords). We show

that linearity of the source-to-relay code may impose a performance penalty. We propose

a solution that minimizes this performance penalty using a proper labeling design. The

error exponent of the proposed transmission is studied under sliding window decoding. Sim-

ulation results show that good point-to-point codes (DVB-S2 codes) produce performance

that is very close to the fundamental limits when used in the proposed transmission. In

addition, two methods are experimentally verified for directly approaching the performance
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of non-linear codes in full-duplex relays: insertion of randomly located zeros into DVB-S2

codewords (using pseudo-random generators whose seed is known at source and destination),

and inserting zeros at fixed locations that are determined via a puncture optimization strat-

egy [63], resulting in a degenerate linear code. The relative performance of the two methods

is discussed.

3.2 Preliminaries

Although the capacity of the full-duplex relay channel is in general unknown, we know

the rates supported by several specific transmission schemes, including decode-and-forward

which achieves the capacity of the degraded relay channel, partial decode-and-forward and

compress-and-forward. In this chapter we consider only the decode-and-forward transmis-

sion.

The decode-and-forward transmission uses block Markov encoding. Throughout the chap-

ter we denote the signal transmitted from the source node and the relay node in block t by

X
(t)
1 and X

(t)
2 . We begin by modeling the received signal at the relay, which experiences

self-interference:

Y
(t)
2 = H12X

(t)
1 + n2 + ns

where H12 is the channel from the source to the relay, n2 is the additive Gaussian (thermal)

noise at the receiver, and ns is the sampled residual self-interference. The area of model-

ing and analyzing loop-back or self-interference has experienced rapid growth in the past

few years. Several methods for mitigating self-interference are now in place, among them

antenna design and placement (including passive components), as well as echo cancellation

in the amplifier stage, as well as digital signal processing after down-conversion and sam-

pling [51]. The collection of these methods have allowed the residual self-interference to

be reduced significantly. The residue of self-interference, ns, is the component that is seen

by the relay decoder. Several works to date [51, 64, 65] have used a Gaussian model for
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Figure 3.1. Full-Duplex relay channel.

ns, an approximation that is confirmed by various measurements [66, 67]. Therefore, the

combination ñ2 = n2 + ns is also Gaussian with appropriate variance.

Thus, the received signal at the relay and destination in block t are respectively given by

Y
(t)
2 = H12X

(t)
1 + ñ2 (3.1)

Y
(t)
3 = H13X

(t)
1 +H23X

(t)
2 + n3 (3.2)

where H12, H13 and H23 are the fading channel coefficients as illustrated in Fig. 3.1.

The destination uses either backward decoding where the destination waits until the

reception of the last transmission block or a sliding window decoder where the decoder uses

L blocks for decoding where L is the window size.

3.3 Multilevel Decode and Forward

Subject to the channel probability distribution PY2,Y3|X1,X2(y2, y3|x1, x2), the decode-and-

forward achievable rate is

R ≤ max
PX1,X2

(x1,x2)
min{I(X1;Y2|X2), I(X1, X2;Y3)} (3.3)

where the channel coefficients are implicitly included in the expression for any ergodic

channel as follows:

I(X1;Y2|X2) = EH12,H23,H13 [I(X1;Y2|X2, H12, H13, H23)]

I(X1, X2;Y3) = EH12,H23,H13 [I(X1, X2;Y3|H12, H13, H23)]
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The design variable of this optimization problem is the joint distribution PX1,X2(x1, x2).

Assuming that |Xi| is the cardinality of the variable Xi, this joint distribution can be rep-

resented by a matrix with dimensions |X1| × |X2|. The element in row j and column k of

this matrix is PX1,X2(xj, xk). This optimization problem is hard to solve specially when the

cardinalities |X1| and |X2| are large. Moreover, it leaves open the question of a practical

encoding with codebook that meets or approximates this distribution. In this section, we

address the optimization of codebook distributions in the context of multilevel coding, and

also examine its consequences on the decoder side.

3.3.1 Encoding

For ease of exposition we consider the case where the source and the relay multilevel codes

have the same number of levels m, a restriction that does not lead to any loss in generality

as described in Remark. 5. As shown in Fig. 3.2, the signals X1, X2 at the source and the

relay respectively are represented by their modulation-constrained index variables Bm =

[B1, . . . , Bm] and Cm = [C1, . . . , Cm] respectively; The relay and the source can use different

sets of encoders. The source uses block-Markov superposition, therefore Cm and Bm are

dependent. This dependence can be shown in Fig. 3.2 through the delay operation Z−nR

which is a delay of one transmission block. The two inputs of each encoder at the source are

the current block message and the previous block message which is assumed to be known

at the relay after successful decoding in the previous block. The two messages are encoded

jointly using a generic encoder defined over a finite field. A special form of this generic

encoder is shown in Fig. 3.3. The rate in (3.3) is equivalent to

R ≤ max
PBm,Cm (bm,cm)

min{I(Bm;Y2|Cm), I(Bm, Cm;Y3)} (3.4)

The design variable PBm,Cm(bm, cm) implies that the vectors Bm and Cm can be generated

with any joint distribution which implies any dependency between Bis and Cis. Multilevel
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Figure 3.2. MLC and MSD in the Relay channel with regular successive decoding

coding introduces an additional constraint: that Bis should be encoded independently and

Cis should be also encoded independently. However, the dependency between Bm and Cm

is necessary for the superposition coding. This independence between the entries of Bm and

Cm introduces a constraint on the optimization, resulting in the following rate:

R ≤ max∏m
i=1 PBi|Cm (bi|cm)PCi

(ci)
min{I(Bm;Y2|Cm), I(Bm, Cm;Y3)} (3.5)

Multilevel coding is optimal if the new constraint is not active, i.e., if the unconstrained

optimization already satisfies the constraint:

P ∗
Bm,Cm(bm, cm) =

m∏
i=1

P ∗
Bi|Cm(bi|cm)P ∗

Ci
(ci) (3.6)

where P ∗() is the optimal distribution.

So far we borrowed ideas from the point-to-point channel [68], but this is not enough

to produce a multilevel scheme in the usual sense for the relay channel, because the cross-

dependence of the source and relay transmissions still binds the source streams together. In

other words, the source streams up to this point are only conditionally independent. We

now proceed to address this issue via a framework allowing each level of the source signal to

depend on the relay signal only at the same level, i.e., allowing each Bi to depend only on

Ci. Then the achievable rate is

R ≤ max∏m
i=1 PBi|Ci

(bi|ci)PCi
(ci)

min{I(Bm;Y2|Cm), I(Bm, Cm;Y3)} (3.7)
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A sufficient condition for this to be capacity optimal is:

P ∗
Bi|Cm(bi|cm) = P ∗

Bi|Ci
(bi|ci) ∀i (3.8)

It remains an open question exactly which channels and which modulations satisfy this

sufficient condition. However, in this work we show via numerical results that this approach

produces rates that are close to the constellation constrained capacity.

Remark 3. For generality, the mutual information expressions in this section do not show

explicit dependence on channel statistics. For additive Gaussian channels, Y2 and Y3 depend

on the input variables via AWGN. In a pure line-of-sight model, the dependence is via a path

loss exponent and AWGN. We consider first a path loss model with AWGN to explain the

main ideas of the proposed work while a generalization of our work to the slow fading and

fast fading cases are studied in the sequel. In a rich scattering (Rayleigh) model, the mutual

information expressions also involve integration over fading states. Both the path loss and

the Rayleigh model make an appearance in the sequel.

Remark 4. Coded modulation for the relay is attempting to implement a Gaussian codebook,

which for the decode-and-forward consists of a superposition whose cloud centers are the

relay codebook, and the satellites are the source codebook. The cloud centers are transmitted

cooperatively to the destination. The satellite codewords (conditioned on the cloud center)

send the relay the new information for the next transmission block. To implement this

cooperative transmission, the source and the relay may use either the same modulation or

two modulations from the same family (for example 16QAM and 64QAM).

Remark 5. The expressions above where developed for identical modulation constellation at

the source and the relay. These expressions can be modified without difficulty to apply to two

different modulations of the same modulation family by forcing certain Bi or Ci to be trivial

random variables (constant).
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3.3.2 Multistage Decoding

Multistage decoding is simpler than joint decoding and is optimal in the point-to-point chan-

nel [68]. To investigate this issue in the relay channel, we focus on the decoding requirement

at both the relay and the destination. For relay decoding, we must have at each level i:

Ri ≤ I(Bi;Y2|Bi−1, Cm) (3.9)

So the relay is able to do multistage decoding in a straightforward matter. At the destination,

the multistage decoding depends on the two possible relaying strategies [55]: in the first

strategy, the relay transmits a hash at a rate supported by the relay-destination link (with

partial interference from source considered as noise). The destination first decodes the hash

and then the overall received signal is decoded with the help of the hash. In this case, the

destination successively decodes the relay signal and then the source signal (Fig. 3.2) which

requires the rates to satisfy:

Ri ≤ I(Bi;Y3|Bi−1, Cm) (3.10)

Rri ≤ I(Ci;Y3|Ci−1) (3.11)

where Rri is the rate of level i at the relay. Combining the rate constraints we obtain

R ≤ max∏m
i=1 PBi|Ci

(bi|ci)PCi
(ci)

min{
m∑
i=1

I(Bi;Y2|Cm, Bi−1),

m∑
i=1

I(Ci;Y3|Ci−1) + I(Bi;Y3|Bi−1, Cm)} (3.12)

In the second strategy, the relay codebook has rate that may be above the capacity of the

relay-destination link, but is still decodable at the destination when joined with the source

signal. The multistage version of this joint decoding is shown in Fig. 3.3 and requires the

individual levels to obey the following rate constraints:

R ≤ max∏m
i=1 PBi|Ci

(bi|ci)PCi
(ci)

min{
m∑
i=1

I(Bi;Y2|Cm, Bi−1),
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Figure 3.3. MLC and MSD in the Relay channel with level by level decoding

m∑
i=1

I(Bi, Ci;Y3|Bi−1, Ci−1)} (3.13)

Both (3.12) and (3.13) result in the same overall rate. However, level-wise rate allocations

will be different according to the different strategies.

3.4 Code Design

Fig. 3.3 shows a block diagram of multilevel encoders and multistage decoders according to

the principles outlined in the previous sections. The data is fed into the encoder in blocks

of size k. Each block-Markov transmission is dependent on two successive data blocks.

These two data blocks (the present and the past) are demultiplexed into levels Vi and Ui,

respectively. At each level i, the two data components are encoded via superposition coding

(not necessarily with XOR operation as shown in Fig. 3.3) to produce the mapping indices

Bi. V̂i represents the relay’s estimate of Vi which is correct under decode-and-forward. Ci

is the level-i relay codeword, whose data word Ui is known via relay reception at time t− 1,

i.e., V
(t)
i = U

(t−1)
i .
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3.4.1 Bit-Additive Superposition

For superposition we propose to use a modulo-2 addition of constituent binary codes for each

level, see [1, Chapter 5] and [38]. The result is shown in Fig. 3.3, where for each level i the

demultiplexed data streams Ui and Vi are separately encoded into Ci and Fi, respectively,

and then the input to the modulation mapper is obtained by Bi = Ci ⊕ Fi. The achievable

rates under this condition can be characterized by:

R ≤ max∏m
i=1 PBi|Ci

(bi|ci)PCi
(ci)

min{
m∑
i=1

I(Bi;Y2|Cm, Bi−1),
m∑
i=1

I(Bi, Ci;Y3|Bi−1, Ci−1)}

subject to PBi|Ci
(bi|ci) = PBi|Ci

(b̄i|c̄i) (3.14)

The constraint Bi = Ci ⊕ Fi for some Bernoulli random variable Fi is equivalent to the

constraint PBi|Ci
(bi|ci) = PBi|Ci

(b̄i|c̄i) on the distribution of Bi, Ci, where b̄i denotes the

logical complement of bi. Clearly this is a restrictive constraint as it reduces the degrees

of freedom in the joint distribution of Bi, Ci. However, as will be shown in the sequel, this

superposition structure does not induce a rate penalty.

Subsequently, we introduce a linearity constraint on the code with code bits Ci. Subject

to this new constraint, the achievable rate will be:

R ≤ max∏m
i=1 PBi|Ci

(bi|ci)PCi
(ci)

min{
m∑
i=1

I(Bi;Y2|Cm, Bi−1),
m∑
i=1

I(Bi, Ci;Y3|Bi−1, Ci−1)}

subject to PBi|Ci
(bi|ci) = PBi|Ci

(b̄i|c̄i)

PCi
(1) =

1

2
(3.15)

Once again, numerical results show that this new constraint introduces no rate penalty.

Finally, we look at the case where both codes Fi, Ci are linear and full-rank.1 Then the

achievable rates are obtained via:

R ≤ max∏m
i=1 PBi|Ci

(bi|ci)PCi
(ci)

min{
m∑
i=1

I(Bi;Y2|Cm, Bi−1),
m∑
i=1

I(Bi, Ci;Y3|Bi−1, Ci−1)}

1A code is linear when the codewords constitute a vector space.
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subject to PBi|Ci
(bi|ci) = PBi|Ci

(b̄i|c̄i)

PCi
(1) =

1

2

PBi=Ci
∈
{1
2
, 1
}

(3.16)

If the optimization results in a level i having bi = ci, it means that level i is only used

to help the relay-destination transmission through increasing the correlation between X1

and X2, and carries no new information for the relay. Case studies show that Eq. (3.16)

may introduce a nontrivial rate penalty compared with (3.15), especially in lower-order

modulations (Fig. 3.4).

Remark 6. We introduced constraints one-by-one to shed light on exactly which one of the

practical constraints introduces rate loss. It so happens that both the XOR superposition as

well as linearity of the relay code are harmless, but introducing linearity in both codes in

certain cases has a cost.
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The behavior of linear codes and XOR superposition structure can be explained as follows:

To begin with, assume that the distance between the source and the destination is 4 and

that the distance between the source and the relay is d. When d is negative this means

that the source node is between the relay and the destination and when d is positive this

means that the relay is between the source and destination. In order to simply show the

effect of XOR superposition and linearity, assume only a path-loss channel model with path-

loss exponent α = 2. Fig. 3.4 shows that linearity of the codes induces no rate loss when

the relay is close to the destination. These are locations where source-relay link is the

bottleneck and therefore the correlation between the source signal and the relay signal is

not highly important. Conversely, when the relay is far from the destination and close to

the source, the source should help the relay transmission to the destination, and hence, high

correlation is required, and in that regime Fig. 3.4 shows linear codes can induce a rate loss,

which we explain and analyze below.

The linearity of the binary code implies that the symbols are zero and one with equal

probability, except for the trivial all-zero code. When Fi is always equal to zero, level i does

not transmit any information to the relay. When Fi is either one or zero with a uniform

distribution, Bi is independent of Ci. Therefore, under linear codes each level i can be used

for only one of two purposes: either it transmits data to the relay, or it is used to help the

relay transmission toward the destination via correlation (beamforming when the channel

is known at the transmitter), but not both. So at each level, we must either give up the

perfect allocation of rate to the relay, or give up correlation. This tension, which does not

exist with nonlinear codes, gives rise to the rate loss in linear codes especially at low-order

modulations. Fig. 3.5 shows this phenomenon in 4-PAM where P1 is the transmission power

of the source node and P2 is the transmission power of the relay node.

It is observed that when the relay is far from the destination, for linear codes one of the

levels transmits zero rate to the relay so that it is available for generating correlation with
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the relay signal. The zero-rate assignment to some levels in this figure is due to the small

constellation size of 4-PAM and because the uniform distribution constraint forces each level

to either send new information or do beamforming with the source. Because of interference

between the levels, the optimal strategy might abruptly change with small changes in the

channel gains.

Discontinuities can be observed in the figure and this is because the 4-PAM constellation

does not behave continuously due to the small discrete size. This phenomena is more obvious

in the bottom figure and this is because of the added constraint of the uniform distribution.

This constraint enforces each level to either send new information to the relay or provides

gain to the relay-destination transmission. When the relay moves a small distance, the

optimal strategy might change because the achievable rate of each level from the source to

the relay change and it might be better to switch the roles of each level while the relay

moves.

Remark 7. When the modulation order is large compared with the capacity of the channel,

this effect is much reduced. The reason is that the rate allocated to some layers will be small,

therefore it is possible to use those layers purely for correlation without a loss of efficiency

for transmission to the relay. This insight will be used subsequently to design labellings that

reduce the rate loss.

3.4.2 Labeling Design For Linear Coding

Linear codes constrain the marginal distributions that can be supported, which may not

include (or be close to) the optimum.The idea of this section is to select a modulation

labeling whose corresponding (optimal) input distributions is as close to uniform as possible,

and therefore are suitable for use with linear codes.

This section is based on the idea that for an optimal code, changing the modulation

labeling will (potentially) change the marginal distribution of the (correspondingly optimal)
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binary codes that feed the modulation. Among these different modulation labelings, some of

them induce optimal input distributions that are closer to those available via linear codes.

In this section, we search for and study modulation labelings that are suitable for linear

coding.

The bit-additive structure under linear coding admits 2m different correlations;2 examples

for 4-PAM are shown in Table 3.1 where ρ1 and ρ2 are the correlations of the first level and

the second level. The table shows the available source-relay correlations if the choices at

each modulation are limited to ρi = 1 or ρi = 0. The corresponding source-relay rates are

shown in Fig. 3.6.

The two parameters in the labeling that determine the total transmission rate are the

correlation achieved by each level (if the level is used for correlation) and the source-relay

2Because at each level, the bit-additive linear codes can produce correlation zero or one.
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Table 3.1. Correlation achieved by linear codes for different labellings

[ρ1, ρ2] [0,0] [0,1] [1,0] [1,1]

Natural {00,01,10,11} 0 0.2 0.8 1
Gray {00,01,11,10} 0 0.19 0.79 1
Custom {00,11,10,01} 0 0.41 0.51 1
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Figure 3.6. The point-to-point achievable rate for 4-PAM under different labellings

rate through each level (if the level is used for sending new information to the relay). For ease

of exposition we consider a source-relay code implemented using a 4-PAM modulation, where

we are free to use any modulation labeling of our choice. The two parameters discussed earlier

are the available point-to-point (source-relay) rate shown in Fig. 3.6 for natural labeling and

a custom labeling (00,11,01,10). This shows that different labellings correspond to different

mutual information curves for each level under a fixed sum-rate for all labellings. For the

custom labeling, the rate for the two levels is separated more than for the natural labeling.

The second parameter that affects the rate which is the total source-relay correlations that
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can be achieved by all different combinations of bit-level correlations are given in Table. 3.1

for different labellings.

Therefore, if the position of the destination requires a modest amount of beamforming,

there are two cases. Firstly, if the source-relay channel is very strong, this means the SNR

at the relay node is very high and the achievable rates of both levels for the two different

labellings is almost the same. From the perspective of the source-relay rate, the two labellings

are equivalent however, the beamforming gain will be different. From Table. 3.1, it is shown

that the maximum correlation other than one3 can be obtained by using natural labeling

and assigning the most significant bit for full correlation.

Secondly, as the relay moves far from the source, the SNR value at the relay goes down

(which leads to difference in the levels between the natural labeling and the custom labeling)

and the required value of the correlation between the source and the relay also goes down.

To accommodate source-relay rate, it is better to use the custom labeling and assign the

least significant bit for beamforming because it already has a small rate penalty compared

to natural labeling. From a beamforming point-of-view, Table. 3.1 shows that assigning the

least significant bit of the custom labeling for beamforming will provide higher correlation

than that of the natural labeling.

As explained earlier, there are also cases where beamforming is unimportant (e.g., relay

very close to destination) in which case either of the labellings will perform the same.

To illustrate the effect of the choice of labeling on the performance of linear codes, we use

again the 4-PAM modulation with the three labellings shown in Table 3.1. The throughput

of a decode-and-forward relay is optimized subject to these labellings and under a linear

coding constraint, with the results shown in Fig. 3.7, assuming the same system model with

d13=4.

3Maximum correlation between the source and the relay cannot be one because this means that zero rate
will be transmitted to the relay node, leading to zero total transmission rate.
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Figure 3.7. Multilevel coding transmission rate for different labellings, P1 = P2 = 10dB

Several different regions of operation clearly stand out. First, when relay is close to the

destination, beamforming is not required and in fact linear coding does not incur a rate

penalty. For other source-relay-destination configurations, either a natural labeling or the

custom labeling performs best.

Remark 8. We observe that the Gray labeling is never the best labeling in 4-PAM MLC

in the relay channel. This is because the mutual information curves for Gray labeling are

exactly the same as natural labeling, however, Gray labeling produces smaller correlation

than natural labeling. We also observe that natural and Gray labeling perform very well for

−1 < d < 1. This is because in this setting, the relay is so close to the source which makes

the multiple-access phase to be the bottleneck of the transmission. Therefore, high correlation

between the source and the relay is required. Table 3.1 shows that natural and Gray labeling

can provide higher source-relay correlation.
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Remark 9. In this Section, it was assumed that the same modulation constellation is used

at the source and the relay, including the labeling. A non-identical labeling will interfere with

the level-wise beamforming and does not confer any obvious advantages.

Remark 10. Optimization of labeling can be performed via exhaustive search for small con-

stellations. For large constellations, as mentioned earlier, the performance penalty of linear

codes is vanishingly small (due to availability of a large set of feasible correlation values),

therefore any labeling (e.g., natural labeling) works well and there is no need for optimizing

the labeling.

3.4.3 Slow Fading Relay Channel

In this section, we consider that the channel coefficients are fixed over each transmission

block and the channel state information is known at the receiver (CSIR). In this case, the

information that can be transferred form the source node to the destination node is

I = min{I(X1;Y2|X2, H12), I(X1, X2;Y3|H23, H13)} (3.17)

and the mutual information between level i at the source and level i at the destination is

Ii = min{I(Bi;Y2|Bi−1, X2, H12), I(Bi, Ci;Y3|Bi−1, C i−1, H23, H13)} (3.18)

Assuming that the transmission rate of level i is Ri, the outage event of level i is Ii < Ri.

The outage probability is then given by

Poutage =
∪
i

Pr(Ii < Ri) (3.19)

≤
∑
i

Pr(Ii < Ri) (3.20)

where the last inequality is from the union bound. Each of the mutual information Ii can

be calculated numerically in a similar manner to the curves in Fig. 3.6.
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3.4.4 Fast Fading Relay Channel

In this section, we show the applicability of our analysis and design to the Rayleigh fading

channel with channel state at the receivers. Assume that the fading coefficient between node

i and node j is Hij. The three channel gains are all independent and identically distributed

with a normal distribution N (0, 1). In this case, the decode-and-forward transmission rate

is

R ≤ max
PX1,X2

(x1,x2)
min

{
EH12{I(X1;Y2|X2, H12)},EH13,H23{I(X1, X2;Y3|H13, H23)}

}
(3.21)

where E is the expectation operator. Therefore, the multilevel decomposition in (3.14) is

still valid, given the following averaging over the channel coefficients:

I(Bi;Y2|Cm, Bi−1) = EH12{I(Bi;Y2|Cm, Bi−1, H12)} (3.22)

I(Bi, Ci;Y3|Bi−1, C i−1) = EH13,H23{I(Bi;Y2|Cm, Bi−1, H13, H23)} (3.23)

The code design criteria described earlier depends on prior knowledge of the point-to-

point mutual information curves in Fig. 3.6 and the correlation supported by each level in

Table 3.1. These metrics will change in a fading environment however, it can be easily

obtained by averaging over the normally distributed fading coefficient. Having reached to

these quantities, the design will follow directly the same steps described earlier.

3.4.5 Multi-Antenna Relay

Assume that the relay node has N receive antennas and M transmit antennas. Also, assume

that the channel state is known at all nodes. The bold letters in this subsection represent

the vector version of the variable. In this subsection, we show that the proposed multilevel

transmission and code design follows directly in this case. We start with the source relay
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transmission. The only difference in this case is that the relay receives multiple versions of

the transmitted symbol and can combine them with any of the existing techniques such as

maximum ratio combining. The transmission rate from the source to the relay in this case

becomes

RSR ≤ I(X1;Y 2|X2, H
(1)
12 , . . . , H

(N)
12 ) (3.24)

= I(Bm;Y 2|X2, H
(1)
12 , . . . , H

(N)
12 ) (3.25)

=
m∑
i=1

I(Bi;Y 2|X2, B
i−1, H

(1)
12 , . . . , H

(N)
12 ) (3.26)

which implies that the transmission rate of level i at the source is upper bounded by

Ri ≤
m∑
i=1

I(Bi;Y 2|X2, B
i−1, H

(1)
12 , . . . , H

(N)
12 ) (3.27)

Now, we show that the relay-destination transmission can be modeled as a single antenna

transmission. Assume that the channel from the ith antenna at the relay node to the

destination node is H
(i)
23 . To show that the system can be modeled as a single antenna relay,

we assume a Gaussian input relay channel. The relay can use the M transmit antennas to

provide beamforming gain by sending the same signal X2 from all the antennas. Assuming

that the transmit power of each antenna is P
(i)
2 , we have the following constraint

M∑
i=1

P
(i)
2 ≤ P2. (3.28)

The received signal at the destination is

Y3 =
m∑
i=1

H
(i)
23

√
P

(i)
2 X2 +H13

√
P1(X1 +X2) + n3 (3.29)

= (
m∑
i=1

H
(i)
23

√
P

(i)
2 +H13

√
P1)X2 +H13

√
P1X1 + n3 (3.30)
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which is equivalent to single antenna relay channel where the channel gain from the relay to

the destination is

m∑
i=1

H
(i)
23

√
P

(i)
2 +H13

√
P1. (3.31)

This requires an optimization over the powers of the transmit antenna at the relay however,

once the power allocation is optimized, the problem becomes similar to the single relay

antenna transmission.

3.5 Error Exponent Analysis

In this section we analyze the asymptotic error performance of the proposed transmission

scheme via error exponents.The error exponents give exponential lower and upper bounds on

the probability of error as a function of the blocklength and is used to understand how fast

the probability of error will be vanish as the blocklength increases [69, 70]. In a point-to-point

channel, the error exponent upper bound takes the form

Pe ≤ e−nE(R) (3.32)

where n is the blocklength and E(R) is the error exponent as a function of the transmission

rate. The error exponent depends on the channel-input distribution and a tilting parameter

both to be optimized.

In this section we derive an upper bound error exponent for the proposed transmission

and compare it with the error exponent of the channel with no restrictions on the input.

The error exponent of the full-duplex decode and forward relay channel was studied by Li

and Georghiades [71] under backward decoding. Bradford and Laneman studied the error

exponent of the full-duplex relay channel under sliding window decoding [72]. Tan [73]

produced the full-duplex relay error exponent for partial decode and forward and compress

and forward under backward decoding. We study the error exponent of multilevel coding in
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full-duplex relay under sliding window decoding; the backward decoding analysis is similar

and is omitted for brevity.

The error event in the relay channel has two components, the decoding error at the relay

and the decoding error at the destination node. An error at the relay node will lead to an

error at the destination with very high probability. For the sake of clarity, we need to define

two error probabilities at each node, ϵR is the probability of error at the relay given that the

previous block was decoded successfully and ϵD is the probability of error at the destination

given that the current block is decoded successfully at the relay and the previous block is

decoded successfully at the destination. These error probabilities are defined conditioned

on a previously successful decoding to simplify the analysis. It was shown by Bradford and

Laneman [72] that the probability of error in the full-duplex relay communications can be

upper bounded by

Pe ≤ (B − 1)(ϵR + ϵD) (3.33)

where B is the number of blocks.

Since each probability of error at each node has an associated error exponent that de-

termines an upper bound on the probability of error, each error probability can be upper

bounded by it’s error exponent. This leads to the random coding error exponent of the entire

transmission,

E(R) ≥ 1

B
min{ER(R), ED(R)} − log 2(B − 1)

D
(3.34)

where ER(R) and ED(R) are the random coding error exponents corresponding to ϵR and ϵD

respectively and D is the total number of transmission symbols in the B blocks (D = nR)

where n is the blocklength.

In the rest of this section, for the sake of completeness we state the error exponents

in (3.34) for the probability of error at each node under no encoding restriction. Conse-

quently, we present the same error exponents under multilevel coding and finally for the

multilevel coding with multistage decoding. In the following, for brevity and clarity of

61



exposition, probability distributions are distinguished by their respective arguments. The

reader is reminded that superscripted variables are vectors (e.g., Bm = [B1, . . . , Bm] and

bi−1 = [b1, . . . , bi−1]). Summations are over the entire defined range of their subscript vari-

able (or vector).

The error exponent for the probability of error at the relay, ER(R), is given by

ER(R) = max
P (x),ρe

[E01(ρe, P (x))− ρeR] (3.35)

where ρe is the random coding error exponent tilting parameter and

E01 =− log
∑
x2

∫
P (x2)

[∑
x1

P (x1|x2)P (y2|x1, x2)
1

1+ρe

]1+ρe
dy2 (3.36)

In order to obtain the error exponent of the proposed multilevel encoding, we replace X1

and X2 by Bm and Cm and using the independence between the components of Bm and Cm,

we find

E01 =− log
∑
cm

∫ ∏
i

P (ci)
[∑

bm

∏
j

P (bj|cj)P (y2|bm, cm)
1

1+ρe

]1+ρe
dy2 (3.37)

The error exponent under multistage decoding is more complicated. For this part, we

model the multilevel encoding under multistage decoding as multiple channels with side

information as follows: Multilevel coding under multistage decoding can be thought of as a

decomposition of the channel from (B1, . . . , Bm) to Y2 into a series of channels from Bi to

Y2. Considering a successful decoding at all the decoders preceding decoder i, decoder i will

have an access to Bi−1. Therefore, the sub-channel between Bi and Y2 can be thought of as a

channel with a “state” known at the receiver where the state of the channel is Bi−1. Ingber

and Feder [74] derived a random coding error exponent for channels with side information

at the receiver

E(ρe) = − logE[2−Es(ρe)], (3.38)
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where s is the state of the channel. Similarly, Calculating the error exponent under multi-

stage decoding at level i will require averaging over Bi−1 since at level i, the decoder knows

the outputs Bi−1 of the preceding decoders. Therefore, E01 of level i is given by

Ei
01 =− log

∑
cm,bi−1

∫
P (cm, bi−1)

[∑
bi

P (bi|cm, bi−1)P (y2|bm, cm)
1

1+ρe

]1+ρe
dy2 (3.39)

Now, we are left with combining the error exponents in all the levels to obtain E01

under multistage decoding. In a point-to-point channel, Ingber and Feder derived a random

coding error exponent of multilevel coding and multistage decoding as a function of the error

exponent of the individual sub-channels “with state known at the receiver” as mentioned

earlier [68, Theorem 3]. The main idea is that the total error exponent is dominated by the

minimum error exponent of all the levels. Inspired by their bound, the error exponent of the

decoder at the relay ER(R) under multistage decoding is

EMSD
R (R) = max

Ri,P (bi,ci)∀i
min

l
max

ρ
[El

01 − ρeRl] (3.40)

The error exponent at the destination, ED(R), is more complicated as it involves sliding

window decoding. Bradford and Laneman [72] decomposed this error exponent to rely on

the window size L and two other metrics, namely

E0(ρe, P (x1, x2)) = − log

∫ [∑
x1,x2

P (x1, x2)P (y3|x1, x2)
1

1+ρe

]1+ρe
dy3 (3.41)

E02(ρe,P (x1, x2)) = − log
∑
x2

∫
P (x2)

[∑
x1

P (x1|x2)P (y3|x1, x2)
1

1+ρe

]1+ρe
dy3 (3.42)

Obtaining these two parameters for the proposed multilevel transmission will require

replacing X1 and X2 with Bm and Cm respectively to give

E0(ρe, P (bm, cm)) = − log

[ ∫ [ ∑
bm,cm

P (bm, cm)P (y3|bm, cm)
1

1+ρe

]1+ρe
dy3

]
(3.43)
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Figure 3.8. Error exponent for bit-additive MLC versus unconstrained coding for 4-PAM
transmission and P=20

E02(ρe,P (bm, cm)) = − log

[∑
cm

∫ ∏
i

P (ci)
[∑

bm

∏
j

P (bj|cj)P (y3|bm, cm)
1

1+ρe

]1+ρe
dy3

]
(3.44)

Under multistage decoding, Bi−1 will be decoded and passed to decoder i before it starts

decoding Bi. Therefore, the error exponent should be averaged over Bi−1 in (3.43) and (3.44)

to evaluate the error exponent while decoding level i. This gives

Ei
0(ρe, P (bm, cm)) = − log

∑
bi−1

∫ [∑
bi,cm

P (bi, cm|bi−1)P (y3|bi, cm)
1

1+ρe

]1+ρe
dy3

Ei
02(ρe, P (bm, cm)) = − log

∑
cm,bi−1

∫
P (cm, bi−1)

[∑
bi

P (bi|cm, bi−1)P (y3|bi, cm)
1

1+ρe

]1+ρe
dy3
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Figure 3.9. Error exponent for bit-additive MLC versus unconstrained coding for 4-PAM
transmission and P=10

We now numerically compare the error exponent of the proposed transmission under

multistage decoding with the general error exponent of the channel with no restrictions on

the encoding or decoding. These results where obtained by exhaustive search over the input

distributions PBi|Ci
(bi|ci) and PCi

(ci) and the tilting parameter ρe to find the maximum error

exponent. Please note that the random variables Bi and Ci are binary random variables,

therefore, the exhaustive search includes one number that takes values between 0 and 1

for each variable. For the case with no restriction on the encoding or decoding, the error

exponent was found by exhaustive search over the input constellation distribution which

requires a large computational power. Fig. 3.8 and Fig. 3.9 show the error exponent of

the proposed multilevel transmission under multistage decoding at the relay and destination

when the window size is L = 3. The input channel constellation was 4-PAM. The figures

show two cases, first, when the window size is not effective, Fig. 3.8, the error exponent

is very close to the general encoding at the source and the relay nodes. Second, when the
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window size is effective, Fig. 3.9, there is an obvious loss in the error exponent. However,

as the window size increases, the error exponent of the proposed transmission gets closer to

that of the general encoding at the source and relay nodes.

3.6 Simulations

3.6.1 Modulation Constellations and Achievable Rates

We assume equal transmit power and the source and the relay nodes, P1 = P2 = P , and

unit variance noise at the relay and destination. The noise power at the relay node includes

the thermal noise and the residual self-interference. To demonstrate the performance of the

relay channel in a variety of link SNRs, we assume a path loss model following the setting

of the well-known work of Kramer et al [75], with a path loss exponent α = 4. The source,

relay and destination are aligned on a line, with source-destination distance d13, source-relay

distance d, and relay-destination distance d23 = d13 − d. In our simulations we take d13 = 4.

The link gains are therefore hij = ( 1
dij

)α/2.

The figures also include, for comparison purposes, the achievable rates for the uncon-

strained Gaussian relay channel:

RDF = max
0≤ρ≤1

min

{
1

2
log

(
1 + |H12|2P1(1− |ρ|2)

)
,
1

2

log

(
1 + |H13|2P1 + |H23|2P2 + 2ρ

√
|H13|2P1|H23|2P2

)}

The transmission rates of the proposed multilevel coding are shown in Fig. 3.10 for one

and two dimensional constellation at different source and relay powers. The transmission

rates where obtain by exhaustive search over the input distribution to obtain the maximum

achievable rate. The results show that the gap between the transmission rate of the proposed

transmission and the Gaussian input transmission rate is very small and gets smaller with
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larger constellation size. The gap is smaller when the relay is far from the source and the

source-relay link has smaller SNR.

Fig. 3.11 shows the degradation in the achievable rates when the source is enforced to

use linear component codes. This implies that in the full-duplex relay, the achievable rates

are sensitive to the correlation, which is unlike the half-duplex relay case reported in [76].

The 8-PAM constellation achieves significantly higher rates when the relay is close to the

source, where the signaling calls for strong correlation, because the 8-PAM has a bigger set

of feasible correlations under the linear coding constraint.

3.6.2 Error Rate Simulations

The DVB-S2 LDPC codes are used as component codes for each of the levels at the source

node and the relay node to examine the performance of the proposed multilevel transmission.

The rates of the LDPC codes are chosen according to the design criteria in Section 3.4. The

blocklength of the component codes is n = 64k. Both the relay and destination nodes used

belief propagation decoding at each level where the maximum number of iterations is set to

50.

The decoding at the relay node is performed as follows: While decoding level i of the

signal X1 at the relay, the relay knows two parts of X1 already. The first is the vector Um

which is the cloud center of X1 and the second is the vector V i−1 which is the output of the

preceding decoders, assuming correct decoding. Therefore, the LLR of level i at the relay is

LLRr = log
P (y2|um, vi−1, 0)

P (y2|um, vi−1, 1)
(3.45)

where

P (y2|um, vi−1, vi) =
1

P (um, vi−1, vi)

∑
vmi+1

P (y2|um, vm)
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The decoding at the destination node is performed as follows: Assuming that the desti-

nation node will decode the signal from the relay node and then decode the signal from the

source node, the LLR of level i of the relay at the destination node is

LLRRD = log
P (y3|ci−1, 0)

P (y3|ci−1, 1)
(3.46)

where

P (y3|ci−1, ci) =
1

P (ci−1, ci)

∑
bm,cmi+1

P (y3|bm, cm)

The next step is to decode the signal from the source given the transmitted signal from

the relay with

LLRSD = log
P (y3|cm, bi−1, 0)

P (y3|cm, bi−1, 1)
(3.47)

where

P (y3|cm, bi−1, bi) =
1

P (cm, bi−1, bi)

∑
bmi+1

P (y3|bm, cm)

and Cm carries all the information about the cloud center of the source signal.

In each of the error plots, a capacity threshold is marked that corresponds to the relay

constellation constrained capacity in each case. The source and relay powers are identical

throughout all simulations, enabling the use of a single scale for power (dB) in the error

curves. In each of the simulations, the rates at each level are found by exhaustive search so

that the sum-rate is maximized.

Fig. 3.12 shows the bit error probability and frame error probability for 4-PAM multilevel

transmission at d12 = 1 and α = 2. The figure shows the performance of the three labellings

shown in Table 3.1. The total transmission rate is R = 0.8. In general, for each labeling,

the bit-wise correlation is not the same. However, for the current channel parameters, the

bit wise correlations used in these simulations were ρ1 = 0 and ρ2 = 1 which means that
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Figure 3.12. Performance of Multilevel superposition for 4-PAM constellation where d = 1

the least significant bit provides beamforming gain to the relay transmission and the most

significant bit sends new information to the relay.

Fig. 3.13 shows the bit error probability and frame error probability of 8-PAM multilevel

transmission at d12 = 2.5 with α = 4. The total rate transmitted from the source node to

the destination node is R = 2.28. The optimal value of the bit-wise correlations using linear

codes in the current channel conditions are ρ1 = 0, ρ2 = 0 and ρ3 = 0 which is the same as

the general encoding case ρ = 0. This is because the relay-destination channel is very strong

and does not need any beamforming gain from the source.

We show the performance of a 16-QAM constellation in Fig. 3.14 where d12 = 1.5 and

α = 2. The total rate transmitted from the source node to the destination node is R = 3.5.

In this case, we used non-linear codes only at one of the least significant bits to provide the

necessary gain and linear codes at the other three levels.

Fig. 3.15 shows the result for 4-PAM transmission under fast fading relay channel where

d = 1 and the total transmission rate is 1.5 bits/transmission.
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Figure 3.15. Proposed transmission under fast fading channel, 4-PAM constellation.

Remark 11. As mentioned earlier, to avoid rate loss, the source-relay codes need a non-

uniform marginal distribution, which is not available via a (full-rank) linear code. In this

section, we used DVB-S2 codewords in which a prescribed number of randomly-located bi-

nary symbols were converted to zero. A practical implementation of this scheme requires a

pseudo-random number generator at the transmitter and receiver and the maintenance of

synchrony between them.4 An alternative approach is non-random assignment of zeros using

a puncture design method [63]. Fig. 3.12, Fig. 3.13, and Fig. 3.14 present simulations where

superposition codes were constructed with DVB-S2 codes together with random zero assign-

ment; parallel experiments with puncturing design resulted in roughly similar performance,

i.e., within 0.2 to 0.3dB of the experiments with random zero assignment.

4Decoder knowledge of location of these zeros is worth 1 to 1.5dB in performance.
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3.7 Discussion and Conclusion

Multilevel coding in the decode and forward relay channel is studied. A coded modulation

technique is proposed where the correlation between the source signal and the relay signal is

controlled by the pairwise correlation between each level in the source and the correspond-

ing level at the relay. Multistage decoding is studied and the necessary rates of each level

for two different ways of multistage decoding are derived. A simple implementation of the

proposed transmission using binary addition is presented. The labeling design is addressed

and guidelines for it are presented. The error exponent of the proposed transmission is

also studied, showing the loss in error exponent due to the proposed transmission is small.

Numerical results show that the proposed multilevel coded modulation enjoys capacity ap-

proaching performance. From the implementation viewpoint, it is shown that a performance

that is very close to the constellation constrained capacity is obtained by using standard

point-to-point LDPC codes as component multi-level codes for the relay channel.

One of the main features of the present work is that it provides a systematic design process

that is easily adapted to a variety of channel conditions (SNRs and rates). Furthermore, since

the design of the coded modulation is reduced to the design of point-to-point binary codes,

it enjoys a number of advantages including availability at a wide range of block lengths.
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CHAPTER 4

CODED MODULATION FOR THE DECODE-COMPRESS-FORWARD

RELAY CHANNEL

4.1 Introduction

Shortly after the introduction of the three-node relay channel by Van Der Meulen [77], Cover

and El-Gamal [55] proposed and analyzed block-Markov encoded decode-forward (DF) and

compress-forward (CF) for the relay channel [78, 75, 79].

Decode-forward is capacity achieving for the degraded relay channel, but due to the relay

decoding constraint, it does not perform well when the source-relay link is weak. Compress-

forward can also be optimal under certain conditions [80], but it also falls short under

certain other conditions [78, 75]. This motivated a generalization of DF and CF into a

hybrid technique by Cover and El-Gamal [55, Theorem 7], which is denoted decode-compress-

forward. This technique, its performance and implementation via coded modulation, are the

subjects of this chapter. Other hybrid relaying protocols include hybrid Decode-forward and

Amplify-forward [81], and also a variation of DCF has appeared in the context of selective

cooperation [82].

The known achievable rate of DCF in the AWGN full-duplex relay channel reduces to

either DF or CF achievable rates. This is a result due to [83] that we re-derive in the following

under backward decoding. In the discrete input full-duplex relay channel, DCF performance

can exceed both DF and CF.

A coding implementation for the DCF in the AWGN channel is then proposed based on

multilevel coding (MLC). At the source and the relay, the proposed DCF multilevel coding

decomposes the overall coded modulation into a group of binary codes, each either operating

via a DF or a CF protocol. The mapper combines these constituent level-wise codes into a

hybrid DF-CF coded modulation. The assignment of each level to either DF or CF and the
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rate allocation to each level is an optimization problem. We demonstrate the operation of

this system by an implementation that employs for the DF components the DVB-S2 LDPC

codes [84], and for the CF components a group of polar codes that are designed according

to Blasco-Serrano [85, 86].

4.2 Decode-Compress-Forward

In this section, we re-derive Theorem 7 [55] for the discrete memoryless relay channel under

backward decoding and obtain the DCF achievable rate for the AWGN relay channel as well

as the constellation constrained AWGN relay channel.

4.2.1 Discrete Memoryless Full-Duplex Relay

Block Markov-encoding for the DCF is shown in Fig. 4.1 over four transmission blocks. In

each transmission block, the source and the relay send a compress-forward component that

is superimposed on a decode-forward component. A detailed system design and analysis is

explained as follows:

In g transmission blocks or ng transmissions, a sequence of (g − 1) i.i.d. messages Wj ∈

[1, 2nR], i ∈ [1 : g − 1]. Each message Wj is split into two messages Wdj ∈ [1, 2nRd ] and

Wcj ∈ [1, 2nRc ] for j ∈ [1, g − 1]. This implies that R = Rd +Rc.

Codebook generation:

For each block j ∈ [1 : g], randomly and independently generate 2nRd sequences Un
2d(wd(j−1))

according to

n∏
i=1

PU2d
(u2di)

For each wd(j−1) ∈ [1 : 2nRd ], randomly and conditionally independently generate 2nR
′

sequences Xn
2 (lj−1|wd(j−1)), lj−1 ∈ [1 : 2nR

′
], each according to
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n∏
i=1

PX2|U2d
(x2i|u2di(wd(j−1)))

For each lj−1 ∈ [1 : 2nR
′
], randomly and conditionally independently, generate 2nR

′′

sequences Ŷ n
2 (kj|lj−1), kj ∈ [1 : 2nR

′′
] each according to

n∏
i=1

PŶ2|X2i
(ŷ2i|x2i(lj−1|wd(j−1))

Also, for each wd(j−1), randomly and conditionally independently generate 2nRd sequences

Un
1d(wdj|wd(j−1)), wdj ∈ [1 : 2nRd ], each according to

n∏
i=1

PU1d|U2d
(u1di|u2di(wd(j−1)))

Finally, for each pair of messages wd(j−1) and wd(j), randomly and conditionally indepen-

dent generate 2nRc sequences Xn
1 (wcj|wd(j), wd(j−1)), each according to

n∏
i=1

PX1|U2d,U1d
(x1i|u2di((wd(j−1))), u2di((wd(j−1))))

This defines the codebooks

Cj = {xn
1 (wcj|wdj, wd(j−1)), x

n
2 (lj|wd(j−1))}, j ∈ [1 : g]

The source node:

In block j, the pair of messages wdj and wcj are to be transmitted. The encoder at the

source node chooses x1(wcj|wdj, wd(j−1)) from codebook Cj. The messages of the last block

are considered to be wcg = wdg = 1.
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Figure 4.1. Decode-Compress-Forward transmission over four transmission blocks.

The relay node:

The decoding phase of the relay uses typicality decoding as follows: First, assume that

w̃d0 = 1. Second, at the end of block j, the relay finds a unique w̃dj such that

(xn
1 (wcj|w̃dj, w̃d(j−1)), x

n
2 (lj−1|w̃d(j−1)), y

n
2 (j)) ∈ τ (n)ϵ

for any wcj where τ
(n)
ϵ denotes the jointly typical sets of the corresponding random vari-

ables.

The relay then finds kj such that

(yn2 (j), ŷ
n
2 (kj|lj−1), x

n
2 (lj−1)) ∈ τ (n)ϵ

and if there is more than one kj, the relay selects one at random and if the relay does

not find any kj then, it selects one uniformly at random from [1 : 2nR
′′
]. Based on kj, the

relay determines lj as it is the bin index of kj.

In the transmission phase, in block j, the relay chooses x2(lj−1|wd(j−1)) from codebook

Cj.

The destination node:
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The destination uses backward decoding so, it waits until the reception of the g blocks

and then starts decoding from the last block and successively towards the first block. For

j = g − 1, g − 2, . . . , 1, The destination finds estimates ŵd(j) and l̂j such that

(xn
1 (ŵc(j+1)|ŵd(j+1), ŵd(j)), x

n
2 (l̂j|ŵd(j)), y

n
3 (j + 1)) ∈ τnϵ

where wcg = wdg = 1. The destination then finds an estimate ŵcj such that

(x1(ŵc(j)|ŵd(j), ŵd(j−1)), x2(l̂j−1|ŵd(j−1)), ŷ
n
2 (k̂j|l̂j−1)) ∈ τnϵ

for some k̂j that belongs to the bin l̂j.

Probability of error analysis

Without loss of generality, we always assume that the source messages are wdj = wcj = 1

for j ∈ [1, g]. In block j, there are two error events at the relay, an error when the relay does

not decode wdj correctly and another when the relay makes an error in the compress-forward

part. The two errors at the relay in block j are defined as follows:

Ẽ1(j) = {Ŵdj ̸= 1} (4.1)

Ẽ2(j) = {(Xn
2 (Lj−1|Wd(j−1)), Ŷ

n
2 (kj|Lj−1), Y

n
2 (j)) /∈ τnϵ for all kj ∈ [1 : 2nR

′′
]} (4.2)

while the error events at the destination are defined as follows:

E(j + 1) = {(Wd(j+1) ̸= 1) ∪ (Wc(j+1) ̸= 1)} (4.3)

E ′(j + 1) = {Lc(j+1) ̸= 1} (4.4)

E1(j) = {(Xn
1 (Ŵc(j+1)|Ŵd(j+1), Ŵdj), X

n
2 (L̂j|Ŵdj), Y

n
3 (j + 1)) /∈ τnϵ } (4.5)
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E2(j) = {(Xn
1 (Ŵc(j+1)|Ŵd(j+1), ŵdj), X

n
2 (l̂j|ŵdj), Y

n
3 (j + 1)) ∈ τnϵ for some ŵdj ̸= 1, l̂j ̸= 1}

(4.6)

E3(j) = {(Xn
1 (Ŵc(j+1)|Ŵd(j+1), Ŵdj), X

n
2 (l̂j|Ŵdj), Ŷ

n
2 (K̂j|L̂j−1)) /∈ τnϵ } (4.7)

E4(j) = {(Xn
1 (wc(j+1)|Ŵd(j+1), Ŵdj), X

n
2 (l̂j|Ŵdj), Ŷ

n
2 (K̂j|L̂j−1)) ∈ τnϵ for some wc(j+1) ̸= 1}

(4.8)

The probability of error is then

E(j) = P (Ẽ1(j) ∪ Ẽ2(j) ∪ E(j + 1) ∪ E ′(j + 1) ∪ E1(j) ∪ E2(j) ∪ E3(j) ∪ E4(j)) (4.9)

≤ P (Ẽ1(j)) + P (Ẽ2(j)) + P (E(j + 1)) (4.10)

+ P ((E1(j) ∪ E3(j)) ∩ Ẽc
1(j) ∩ Ẽc

2(j) ∩ Ec(j + 1) ∩ E ′c(j + 1))

+ P (E2(j)) + P (E4(j)) (4.11)

By the LLN and the packing lemma, P (Ẽ1(j)) → 0 as n → ∞ if

Rd ≤ I(U1d;Y2|U2d) (4.12)

By independence of the codebooks and the covering lemma, the term P (Ẽ2(j)) → 0 as

n → ∞ if

R′′ ≥ I(Ŷ2;Y2|X2) (4.13)

For P (E(j+1)), since the messages of the last block is known exactly to be 1, by induction

and satisfying the other constraints, P (E(j + 1)) → 0 as n → ∞.

By the independence of the codebooks and the LLN, the term P ((E1(j)∪E3(j))∩ Ẽc
1(j)∩

Ẽc
2(j) ∩ Ec(j + 1) ∩ E ′c(j + 1)) → 0 as n → ∞. The term P (E2(j)) → 0 as n → ∞ if

79



Rd ≤ I(U1d, U2d;Y3) (4.14)

R′ ≤ I(X2;Y3|U2d) (4.15)

Rc ≤ I(X1; Ŷ2, Y3|X2, U1d) (4.16)

Eventually, the total transmission rate is Rd + Rc, by combining the previous rate con-

straints, we obtain the following theorem

Theorem 2. The achievable rate of decode-compress-forward is given by

R ≤ min
{
I(U1d;Y2|U2d), I(U1d, U2d;Y3)

}
+ I(X1; Ŷ2, Y3|X2, U1d) (4.17)

subject to

I(Y2; Ŷ2|X2, U1d) ≤ I(X2;Y3)− I(U2d;Y3) (4.18)

where

PY3,Y2,Ŷ2,U1d,U2d,X1,X2
(y3, y2, ŷ2, u1, u2, x1, x2)

=PU2(u2)PU1d|U2d
(u1d|u2d)PX1|U1d

(x1|u1)PX2|U2d
(x2|u2)PY2|X1(y2|x1).

PŶ2|U1d,X2,Y2
(ŷ2|u1, x2, y2)pY3|X1,X2(y3|x1, x2) (4.19)

4.2.2 AWGN Full-Duplex Relay

Assume that all the variables in the Section 4.2.1 are Gaussian, 1 and the source and relay

have an average power constrained by P1 and P2 respectively. A block-Markov encoding of

1Gaussian random variables are not necessarily optimal, therefore, the achievable rate is only a lower
bound
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Figure 4.2. Decode-compress-forward transmission for the AWGN full-duplex relay channel
over four blocks.

DCF in the AWGN channel is shown in Fig. 4.2 under four transmission blocks. The source

and relay signals are given by

X1 = U1d + βU2d + U1c (4.20)

X2 = U2d + U2c (4.21)

respectively.

Each of the codewords U1d, U2d, U1c and U2c are normally distributed. The term βU2d

represents the assistance that the source provides for the relay destination transmission.

This assistance depends on the correlation between U1d + βU2d and U2d which is denoted by

ρ.

Remark 12. In DCF, normally one can optimize the power allocation of each code at the

source and the relay. We fix the power of one of the DF signals U1d and the CF signal U1c.

The power of the remaining signals can be obtained as a function of the power of U1d and U1c

and the power constraint at the source and relay nodes. Consequently, the design variables

of the rate maximization problem become the power of U1d, U1c and the correlation ρ.

Assuming that the power of U1d is P1d and the power of U1c is P1c, the power of U2d is

then given by

P2d =
P1 − P1d − P1c

β2
(4.22)
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and consequently, the power of U2c is

P2c = P2 − P2d

= P2 −
P1 − P1d − P1c

β2
(4.23)

where

ρ =
E[(U1d + βU2d)U2d]√

(P1d + β2P2d)P2d

(4.24)

β =

√
ρ2P1dP2d

P 2
2d(1− ρ2)

(4.25)

The signals Y2, Ŷ2 and Y3 are given by

Y2 = H12X1 + n2 (4.26)

Ŷ2 = Y2 + n̂ (4.27)

Y3 = H13X1 +H23X2 + n3 (4.28)

where n2, n3 and n̂ are zero mean Gaussian noise with variance σ2
2, σ

2
3 and N̂ respectively.

Based on the previous characterization for each of the distributions of the variables

involved in calculating the transmission rate, the achievable rate for the AWGN relay channel

is given by the following theorem.

Theorem 3. The DCF achievable rate in the AWGN relay channel with all codewords nor-

mally distributed is given by

R ≤ min

{
1

2
log
(
1 +

|H12|2P1d

|H12|2P1c + σ2
2

)
,
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1

2
log
(
1 +

(P1d + β2P2c)|H13|2

σ2
3

+
P2d|H23|2

σ2
3

+ 2ρ

√
(P1d + β2P2)P2d|H13|2|H23|2

σ4
3

)}

+
1

2
log

(
(|H12|2P1c + σ2

3 + N̂)(|H13|2P1c + σ2
3)− (|H12|2|H13|2)P 2

1c

(σ2
3 + N̂)σ2

3

)
(4.29)

where

N̂ =
(|H12|2P1c + σ2

2)(|H13|2(P1d + P1c) + σ2
2)

|H23|2P2c

(4.30)

Proof. See Appendix 4.6.1.

To illustrate the performance of DCF, we adopt the approach taken in [78] and to show

the dependence of performance on the location of the relay, we calculate the achievable

rate as a function of relay position on a line extending from the source to destination. For

simplicity, a path-loss model is considered with the channel coefficient Hij = 1/dαij where dij

is the distance between node i and node j and α is the path-loss coefficient which is usually

between 2 and 4. The distance between the source and the destination is fixed to d13 = 1

while the distances d12 and d23 depend on the relay location where d23 = 1−d12. In Fig. 4.3,

we draw the achievable rate of different transmission technique as a function of the distance

between the source and the relay d12. Negative values of d12 mean that the relay is on the

side of the source that is far from the destination and positive values mean that the relay is

between the source and destination.

Fig. 4.3 shows that the achievable rate of DCF in the AWGN relay channel reduces to

either DF rate or CF rate. In other words, optimizing DCF results in either DF or CF.

4.2.3 Constellation-Constrained Full-Duplex relay

For the discrete input AWGN relay channel, the rate expressions in Theorem 2 can be cal-

culated via numerical integrations. The optimizing distribution may require an exhaustive
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Figure 4.3. The achievable rate of different transmission techniques in the AWGN full-duplex
relay channel.

search. As shown in many point-to-point and multi-user scenarios [39, 60], when the constel-

lation becomes large enough, the achievable rate under a constrained constellation becomes

very close to the Gaussian input rate.

However, the main difficulty comes from the restriction in (4.18) which is now even harder

to satisfy since the mutual information I(X2;Y3) is no longer equal to

1

2
log

(
1 +

|H23|2P2

N3

)

and is limited by the cardinality of the input size |X2|. The exact value of the constellation

constrained capacity [11], I(X2;Y3), can be obtained from

I(X2;Y3) = max
PX2

(x2)

∑
X2

PX2(x2)

∫
y3

PY3|X2(y3|x2) log

(
PY3|X2(y3|x2)

PY3(y3)

)
dy3 (4.31)
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An accurate approximation for I(X2;Y3) under constrained constellation can be obtained

using the Blahut-Arimoto algorithm [19, 20]. Constellation constrained point-to-point chan-

nel capacity for various constellations is shown in Fig. 1.1.

By calculating the value of I(X2;Y3), one can find the achievable rate of compress-forward

and DCF. In the following, we give an upper bound on the achievable rate of DCF under

discrete relay-destination input X2. The upper bound is based on bounding I(X2;Y3) by

either the cardinality of X2 or the Gaussian capacity

I(X2;Y3) ≤ min

{
|X2|, log

(
1 +

|H23|2P2

σ2
3

)}
(4.32)

Therefore, the constraint in (4.18) becomes

I(Y2; Ŷ2|X2, U1d) ≤ min

{
|X2|, log2

(
1 +

|H23|2P2

σ2
3

)}
− I(U2d;Y3) (4.33)

By using the bound in (4.33), one can find an upper bound on the DCF as follows:

R ≤ min
{
I(U1d;Y2|U2d), I(U1d, U2d;Y3)

}
+ I(X1; Ŷ2, Y3|X2, U1d) (4.34)

subject to

I(Y2; Ŷ2|X2, U1d) ≤ min

{
1

2
log2

(
1 +

|H23|2P2

σ2
3

)
, |X2|

}
− I(U2d;Y3) (4.35)

The capacity of the decode-compress-forward technique can be obtained by evaluating

these expressions using numerical integrations and exhaustive search for the optimal distri-

bution.

In a similar manner to the Section 4.2.2, we show the achievable rate of different strategies

under a constrained constellation in Fig. 4.4. Fig. 4.4 shows that when the relay is close to the
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Figure 4.4. The achievable rate of different transmission techniques in the AWGN relay
channel under a constrained constellation of 16-PAM at the source and 4-PAM at the relay.

destination, CF suffers a rate penalty while DCF does not suffer from this penalty. Therefore,

DCF has a higher rate than DF and CF rates in this region. An intuitive explanation for

this observation is as follows: Consider a 4-PAM constellation that consists of two bits with

different reliability. Under certain conditions, the relay can decode the most reliable bit but

not the least reliable bit. DF enforces the source to send with low rate such that the relay

can decode the two bits while CF does not let the relay to decode any bit. DCF allows the

relay to decode one of the bits, leading to more flexibility and higher rate. This is different

from the continuous case in that the different levels have different reliabilities that are not

very close to each other.

Remark 13. compress-forward works well when the source-relay channel is weak but the

relay destination channel is very strong so that it can send a precise enough estimate of

Y2. However, when the relay is constellation constrained, even if the quality of the relay-

destination link is good, the relay cannot send a precise estimate of Y2.
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Table 4.1. The achievable rate of different strategies in the relay channel under different
values of channel coefficients

H12 H23 H13 RNoRelay RDF RCF RDCF Upper bound

1 100 1 1.7 1.7 1.9 2.1 2.19
1 100 2 2.19 1.7 2.3 2.45 2.47

Clearly, the channel model of the relay channel that is considered in Fig. 4.4, does not

represent every possible scenario for the relay channel. Therefore, we show two more results

in Table 3.1 that cannot be observed in Fig. 4.4. The table shows different values of the

channel coefficients and the achievable rates using DF, CF and DCF.

4.3 Multilevel Decode, Compress and Forward

The proposed multilevel coding is shown in Fig. 4.5, over one transmission block. The

message at the source, W (t), is divided into two parts, W
(t)
d which is to be transmitted using

decode-forward and W
(t)
c which is to be transmitted using compress-forward. As shown in

the figures, each level at the source and the relay is responsible for either DF or CF.

Relay transmission

The levels at the relay are divided into two sets, first set sends the message W
(t−1)
d . The

second set sends the quantized version of Y2 after removing the effect of Wd, namely, Ŷ2.

Source transmission

The levels at the source are divided into three sets. The first set sends the message W
(t−1)
d

cooperatively with the relay to the destination node. The second set sends the message W
(t)
d

to be decoded at the relay. The third set of levels sends the message W
(t)
c .

The achievable rate of the multilevel coding DCF is given by

R ≤ max
B̂,B̄,Ĉ,C̄

min{I(B̂;Y2|Ĉ)}, I(B̂, Ĉ;Y3)}
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+ I(B̂, B̄; Ŷ2, Y3|Ĉ, C̄, B̂) (4.36)

subject to

I(Y2; Ŷ2|Ĉ, C̄) ≤ I(Ĉ, C̄;Y3)− I(Ĉ;Y3) (4.37)

where B̂ = [B1, . . . , Bj] are the source levels that are responsible for the decode-forward

part. B̄ = [Bj+1 . . . Bm] are the source levels responsible for the compress-forward part.

Similarly, Ĉ = [C1, . . . Cl] and C̄ = [Cl+1, . . . Cm] are the levels responsible for the DF part

and CF part respectively.

The question now is how to allocate the rate in each level at the source and the relay?

This is determined through the following steps.

1. The optimal function of each level (being a DF or a CF level) at the source and the

relay depends on the constellation and the channel conditions. Using an exhaustive

search to optimize (4.36), one can find the best set of levels for decode-forward and for

compress-forward at the source and the relay.

2. The number of bits of W
(t)
d and W

(t)
c depends on the rate of the decode-forward and

compress-forward components given by

Rd = min{I(B̂;Y2|Ĉ)}+ I(B̂, Ĉ;Y3)} (4.38)

and

Rc = I(B̂, B̄; Ŷ2, Y3|Ĉ, C̄, B̂) (4.39)

respectively.

So Wd has rate nRd and Wc has rate nRc.
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Figure 4.5. Multilevel coding of DCF in the Full-duplex relay

Remark 14. In the proposed multilevel DCF, we assume that each level is responsible for a

specific task. This is a restriction since a more general case can allow each level to perform

both techniques. This restriction potentially might lead to a performance penalty. However,

we have verified via extensive simulations that when DCF outperforms DF and CF, this

restriction does not negatively affect the DCF rate.

Remark 15. In addition to level-assignment, other labeling variations are also possible, e.g.,

natural versus Gray labeling. Simulations in the sequel indicate that natural labeling is in

general preferable to Gray labeling.
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4.4 Simulations

In this section, we produce bit error rate (BER) and frame error rate (FER) to assess the

performance of the proposed multilevel coding.

In general, any kind of code can be used to implement the individual encoders at the

source and the relay nodes. For the decode-forward components, we use the DVB-S2 LDPC

codes. For the compress-forward components, we use the polar codes designed for compress-

forward by Blasco-Serrano [85, 86]. The optimal code rate of each level is obtained via an

exhaustive search to maximize the rate. The blocklength of the component codes is n = 64k.

Both the relay and destination nodes used belief propagation decoding at each level where

the maximum number of iterations is set to 50.

For simplicity of notations, in the following, we use P (x) to denote PX(x). While decoding

level i of the signal X1 at the relay, the relay knows two parts of X1 already. The first is the

source assistance to the relay and the second is the output of the preceding decoders at the

relay, assuming correct decoding. Therefore, the LLR of level i at the relay is

LLRr = log
P (y2|ck, bi−1, 0)

P (y2|ck, bi−1, 1)
(4.40)

where

P (y2|ĉ, bi−1, bi) =
1

P (ĉ, bi−1, bi)

∑
bmi+1

P (y2|ĉ, b̂)

The relay removes the effect of W
(t−1)
d and W

(t)
d from Y2 by first encoding them and

removing their effect from X1.

The decoding at the destination node is performed as follows: After the last transmission

block, the destination decodes the decode-forward signal from the relay and then decode the

signal from the source node, the LLR of level i of the relay at the destination node is
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LLRRD = log
P (y3|ci−1, 0)

P (y3|ci−1, 1)
(4.41)

where

P (y3|ci−1, ci) =
1

P (ci−1, ci)

∑
bm,cmi+1

P (y3|bm, cm) (4.42)

The next step is to decode the signal from the source given the transmitted signal from

the relay with

LLRSD = log
P (y3|cm, bi−1, 0)

P (y3|cm, bi−1, 1)
(4.43)

where

P (y3|cm, bi−1, bi) =
1

P (cm, bi−1, bi)

∑
bmi+1

P (y3|bm, cm)

In each of the error plots, a capacity threshold is marked that corresponds to the relay

DCF constellation constrained capacity. The source and relay powers are identical through-

out all simulations, enabling the use of a single scale for power (dB) in the error curves.

Fig. 4.6 shows the bit error probability and frame error probability for a 16-QAM source

and QPSK relay. The figure compares the performance of DCF under different labelings.

The system model is the same as the one considered in Fig. 4.4 where the source, relay and

destination are all on one line. The distance between the source and relay is 0.8, the distance

between the relay and destination is 0.2 and the distance between the source and destination

is 1. The path-loss coefficient is α = 2.

The total transmission rate is 2.2 bits/s/Hz. The four levels of the source operate as

follows: The most significant bit transmits the same information of the most significant
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Figure 4.6. Performance of Multilevel superposition for 8-PAM constellation where d = 2.5

bit of the relay to provide a beamforming gain to the relay-destination transmission. The

following two levels at the source transmit new information to be decodable at the relay

while the last level transmits a compress-forward component.

Fig. 4.7 shows the bit error probability and frame error probability for a 16-QAM source

and QPSK relay. The model that is considered this time is given by the channel gains, more

specifically, H12 = 1, H23 = 100 and H13 = 1. This figure compares the proposed DCF with

DF and CF. The rate is 2 bits/s/Hz. The figure shows that DCF outperforms DF and CF.

4.5 Discussion

The present work studied the hybrid decode-forward compress-forward strategy. This work

showed certain cases where this combination can actually exceed the rates of decode-forward

and compress-forward leading to higher rates in the constellation constrained full-duplex

relay channel.
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This work presented a multilevel coding that systematically implements decode-compress-

forward. The proposed multilevel coding was shown to approach the rates achieved by

decode-compress-forward in the constellation constrained AWGN full-duplex relay channel.

The main points of this chapter can be summarized as follows: Each of the two widely

known transmission techniques, decode-forward and compress-forward impose their own con-

straints that limit the rate under certain channel conditions. The decode-forward technique

enforces the source to transmit the message with a rate that allows the relay to decode its

message. Compress-forward enforces the relay not to decode the received signal even if the

relay can actually decode it or partially remove the noise. Decode-compress-forward let the

source split the message so that part of it to be decoded at the relay and the other part to

be compressed.

This chapter studied one case where decode-compress-forward can improve the coopera-

tion however, it is interesting to explore other cases of network cooperation and see if this

technique can actually provide higher rates.
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4.6 Appendix

4.6.1 Achievable Rate of DCF in the AWGN Relay Channel

First we start by obtaining the optimal value of N̂ . In the AWGN relay channel with all

codewords normally distributed, the compress-forward constraint in (4.18) becomes

1

2
log
(
1 +

|H12|2P1c + σ2
2

N̂

)
≤ 1

2
log
(
1 +

|H23|2P2c

|H13|2(P1d + P1c) + σ2
3

)
(4.44)

The following value N̂ is the value that satisfies (4.44) with equality [87, 88], and hence,

N̂ =
(|H12|2P1c + σ2

2)(|H13|2(P1d + P1c) + σ2
2)

|H23|2P2c

(4.45)

Now, we calculate the two terms that represent the decode-forward bound. Given that

Y2 = H12X1 + n2,

I(U1d;Y2|U2d) = h(Y2|U2d)− h(Y2|U1d, U2d)

= h(U1d + U1c)− h(U1c)

=
1

2
log
(
1 +

|H12|2P1d

|H12|2P1c + σ2
2

)
(4.46)

The other term in the decode-forward bound is I(U1d + βu2d, U2d;Y3). Given that Y3 =

H13X1 +H23X2 + n3, this term can be obtain evaluated as follows:

I(U1d + βU2d, U2d;Y3) = h(Y3)− h(Y3|U1d, U2d)

=
1

2
log

(
|H12|2P1 + |H23|2P2 + σ2

3

|H13|2P1c + |H23|2P2c + σ2
3

)
(4.47)

after some mathematical manipulations, we can write
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I(U1d + βU2d, U2d; y3) =

1

2
log
(
1 +

(P1d + β2P2c)|H13|2

σ2
3

+
P2d|H23|2

σ2
3

+ 2ρ

√
(P1d + β2P2)P2d|H13|2|H23|2

σ4
3

)}
(4.48)

The rate of the compress-forward part is given by

I(X1; Ŷ2, Y3|X2, U1d) = h(Ŷ2, Y3|X2, U1d)− h(Ŷ2, Y3|X2, U1d, X1) (4.49)

where U1d is in the given expression because the assumption of decoding the decode-

forward part first. By treating [Ŷ2Y3] as a random vector, from the covariance matrix, the

entropies in (4.49) can be calculating and give

I(X1; Ŷ2, Y3|X2, U1d) =

1

2
log
((|H12|2P1c + σ2

3 + N̂)(|H13|2P1c + σ2
3) + (|H12|2|H13|2)P 2

1c

(σ2
3 + N̂)σ2

3

)
(4.50)

By combining these mutual informations and substituting in the rate described in 4.17,

we obtain the rate in Theorem 3.
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CHAPTER 5

CODED MODULATION FOR THE WIRETAP CHANNEL

5.1 Introduction

Perfect secrecy can be achieved by sharing a secret key k with number of bits equal to the

number of bits in the transmitted message W [89]. However, if the transmitter can securely

share with the receiver a key that has the same quantity of information in the message, then

it is better to send the message instead of the key. For that reason, practical secrecy involved

variations of this technique that maximizes the effort and time required by the eavesdropper

in order to decode the message. Wyner [90] has introduced the wiretap channel, Fig. 5.1, and

showed that it is possible that Alice sends a message to Bob and Eve get zero information

without sharing a secret key.

Similar to Shannon’s random coding argument, Wyner showed that secrecy can be

achieved by random binning. Guidelines for designing practical codes has been a research

interest. The design criteria is based on two metrics:

• Reliability

Bob should be able to recover the message with arbitrarily low error probability

limn→∞P (Ŵ ̸= W ) → 0 (5.1)

• Secrecy

Eve should not reveal any information about the transmitted message

H(W |Zn) = H(W ) (5.2)

The reliability of practical codes has been studied in depth for different classes of codes.

For example, density evolution and EXIT charts can predict the performance of the LDPC
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codes. However, the secrecy metric is more complicated since the calculation of the entropy of

the transmitted message is not easy to calculate specially that the secrecy condition assumes

infinite computational power at the eavesdropper. Therefore, this conditional entropy should

be calculated under maximum likelihood decoding.

Thangaraj et al. [7] showed that nested codes can be used to achieve the secrecy capacity

and gave examples for constructing such codes from LDPC ensambles. Rathi et al. [8]

presented a method for constructing nested LDPC codes through multi-edge type LDPC

codes. The main idea in these techniques is that the reliability can be understood from the

existing techniques in the literature and the secrecy can be understood from the conditional

entropy in (5.2). For the binary erasure channel, the conditional entropy can be calculated

by the so called Maxwell construction [91]. LDPC codes have been also used to achieve the

strong secrecy capacity of the binary erasure channel [9].

For the AWGN wiretap channel, the bit-error rate was used as a metric to design the

codes [10] and analyzing the security gap that was first introduced in [92]. The security gap

is defined as the difference between the minimum SNR required by the legitimate receiver

to decode the message reliably and the maximum SNR at the eavesdropper that derives the

bit error rate to 0.5. Examples of the techniques that were designed according to this metric

with the aim of minimizing the security gap are puncturing [10], scrambling of systematic

codes [93] and a combination of scrambling, concatenation and hybrid automatic retransmis-

sion request (HARQ) [94]. Other techniques such as polar codes [95] have used the stronger

metric of the weak secrecy, namely, the leakage in the mutual information to build codes

for the wiretap channel [96, 97]. However, polar codes have an error exponent that scales

with
√
n where n is the block length. For the non-binary input, lattice codes were studied

for the AWGN wiretap channel [98, 99] and they were also considered for the cooperative

jamming [100].

Coded modulation in the wiretap channel remains an open problem that we try to solve

in this chapter. Different techniques of coded modulation can be used. BICM [15] and
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multilevel coding [16, 21]. In BICM the binary data is first encoded and then the codeword

is randomly interleaved before it is mapped to symbols from the constellation. This implies

that if BICM is to be used for the wiretap channel, binary encoding is necessary and it can

follow any of the previously mentioned approaches.

In this chapter we use multilevel coding in the wiretap channel to achieve the constellation

constrained capacity of the wiretap channel. We show that under multilevel coding, it is

possible to achieve perfect secrecy of each binary level even if all the other levels are known

to the wiretapper. We present an explicit transmission that uses only point-to-point codes

in each level without nesting and achieves the entire rate-equivocation region. Simulation

results show that good point-to-point LDPC codes can be used as component codes in

multilevel coding and achieves very good performance.

The chapter is organized as follows: In Section 5.2, we present a systematic way of

splitting the message from the randomness during the encoding and show that it achieves

the rate-equivocation region of the general wiretap channel. In Section 5.3, we present a

multilevel coded modulation structure that achieves the rate-equivocation region by encoding

the message and the randomness through distinct levels. In Section 5.4 we present simulation

results using point-to-point LDPC codes.

5.2 Independent Encoding of the Message and Randomness

The rate splitting technique is shown in Fig. 5.2, briefly, the message W and the randomness

D are encoded independently with rates R and Re producing two independent codewords
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Un and V n respectively. The outputs of the encoders at each time instant are combined with

the function f : U × V → X to produce the vector Xn where U , V and X are the alphabets

of U, V and X respectively. The goal of this Section is to show that encoding the message

and the randomness does not incur any loss in the achievable rate-equivocation region of the

wiretap channel. The following Theorem presents the main result of this Section.

Theorem 4. The rate-equivocation region of the independently encoded message and ran-

domness is given by

R =
∪

PUPX|UPY Z|X



(R,Re)

R ≤ I(U ;Y )

Re ≤ R

Re ≤ I(U ;Y )− I(U ;Z)


(5.3)

Proof. Since independent encoding of W and D is one special case of encoding in the wiretap

channel, the best upper bound on the rate-equivocation region is also an upper bound on

the rate-equivocation region under independent encoding. Therefore, we consider the same

converse proof of the general wiretap channel which is omitted for brevity.

The Achievability proof is more involved and follows the following codebook construction,

reliability analysis and equivocation analysis.

Codebook Generation:

Construct the codebooks

Cu = {Un
i , i = 1, . . . , 2n(I(X;Y )−I(X;Z))} (5.4)
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Cv = {V n
j , j = 1, . . . , 2nI(X;Z)} (5.5)

According to the distribution

PUn
i
(un) =

∏
j

PUij(uj) (5.6)

PV n
i
(vn) =

∏
j

PVij(vj) (5.7)

respectively. Therefore, un ∈ T n
ϵ (PUn) and vn ∈ T n

ϵ (PV n) mean that un is strongly typical

according to PUn and vn is strongly typical according to PV n . The function f maps each

vector Un and V n into a vector Xn. This mapping leads to a codebook Cx that contains all

the possible codewords Xn.

Encoding:

For a given message w ∈ [1 : 2nR], a codeword Un(w) is selected. In each transmission,

a uniformly distributed random variable d ∈ [1 : 2nRe ] is generated and mapped to the

codeword V n(d). The random variable D represents the randomness in the transmission. A

function f : (ui, vi) → xi combines the vectors Un and V n to generate Xn based on a sample

by sample mapping.

Decoding:

The legitimate receiver obtains the vector Y n and find an estimate to the message ŵ and

the random variable d̂ such that

(Un(ŵ), V n(d̂), Y n) (5.8)

are jointly typical for some ŵ and d̂.

Probability of Error Analysis:

According to the LLN and the covering lemma, the probability of decoding error at the

legitimate receiver Pe → 0 as n → ∞ as long as

R +Re ≤ I(X;Y ) (5.9)
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which is satisfied in this case.

Equivocation Calculations:

The equivocation at the eavesdropper is

H(W |Zn) = H(W,Zn)−H(Zn) (5.10)

= H(W,Zn, Xn)−H(Xn|W,Zn)−H(Zn) (5.11)

= H(W,Xn) +H(Zn|W,Xn)−H(Xn|W,Zn)−H(Zn) (5.12)

≥ H(Xn) +H(Zn|Xn)−H(Xn|W,Zn)−H(Zn) (5.13)

Now, we study the four terms in (5.13).

For the first term in (5.13), we need the following Lemma from [101].

Lemma 1. Consider a discrete random variable X taking on the mass points x1, . . . , xm

with probability mass function satisfying

Pr{X = xi}
Pr{X = xj}

≤ 2× 2δ, ∀i, j ∈ [1, . . . , k]. (5.14)

Then,

H(X) ≥ log k − δ − 1 (5.15)

Assuming that the function f leads to a one-to-one mapping from Un × V n → Xn, then

all codewords in Xn are equi-probable if Cu and Cv have equi-probable codewords. Under

this assumption,

Pr{Xn = xn}
Pr{Xn = x′n}

≤ 2 ∀xn, x′n ∈ Cx (5.16)

therefore,

1

n
H(Xn) ≥ 1

n
log |Cu|+

1

n
log |Cv| −

1

n
(5.17)

= I(X;Y )− 1

n
(5.18)
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Remark 16. Please note that the bound (5.18) depends only on the distribution of the

codewords Xn in the codebook Cx. The one-to-one mapping Un×V n → Xn is only a sufficient

condition for (5.16) but not necessary. One can find a function f that does not follow the

one-to-one mapping property and still obtain (5.16) but the appropriate number of vectors

Un and V n.

For the second term,

1

n
H(Zn|Xn) =

1

n

∑
xn

Pr{Xn = xn}H(Zn|Xn = xn) (5.19)

=
1

n

∑
xn

Pr{Xn = xn}
∑
a∈X

N(a|xn)
∑
z

−P (z|a) log p(z|a) (5.20)

≥
∑
xn

Pr{Xn = xn}
∑
a∈X

(P (X = a)− ϵ) (5.21)

×
∑
z

−P (z|a) logP (z|a) (5.22)

=
∑
xn

Pr{Xn = xn}(H(Z|X)−O(ϵ)) (5.23)

= H(Z|X)−O(ϵ) (5.24)

Please note that (5.24) does not depend on the function f .

For the third term, in a manner similar to [102] define

ρ(W,Zn) =


xn
w,d if ∃d s.t. (xn

w,d, z
n) ∈ T n

ϵ (PXZ)

arbitrary, otherwise

(5.25)

Then

Pr{Xn ̸= ρ(W,Zn)} =
∑
w,b

Pr{xn
w,d}Pr{xn

w,d ̸= ρ(W, zn)|W,D} (5.26)

= λ1 ≤ ϵ (5.27)

and by Fano’s inequality, we obtain

1

n
H(Xn|W,Zn) ≤ 1

n
(1 + λ1I(X;Y )) < ϵ2 (5.28)
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The last inequality means that if the wiretapper have an access to the message W , then

no more ambiguity is left in Xn.

For the fourth term,

1

n
H(Zn) ≤ 1

n
log |T n

ϵ (PZ)| (5.29)

≤ H(Z) + ϵ (5.30)

By substitution in (5.13), we have

1

n
H(W |Zn) ≥ I(X;Y ) +H(Z|X)−H(Z)− ϵ4 (5.31)

= I(X;Y )− I(X;Z)− ϵ4 (5.32)

Finally, we get

Re ≤ I(X;Y )− I(X;Z) (5.33)

By now, we can show that the following rate-equivocation region is achievable

R =
∪

PXPY Z|X



(R,Re)

R ≤ I(X;Y )

Re ≤ R

Re ≤ I(X;Y )− I(X;Z)


(5.34)

Consider a DMC from U to X with the conditional distribution PU |X , one can show that

the rate-equivocation region is now

R =
∪

PUPX|UPY Z|X



(R,Re)

R ≤ I(U ;Y )

Re ≤ R

Re ≤ I(U ;Y )− I(U ;Z)


(5.35)
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Please note that this is the same expression for the rate-equivocation region for the

general wiretap channel however, the input distribution PUPX|U is restricted due to the

proposed structure. Therefore, if the optimizing input distribution for the general wiretap

channel can be achieved under this restriction, then independent encoding of the message and

randomness will achieve the same rate-equivocation region of the general wiretap channel.

Another way to think about the condition on the function f to obtain weak secrecy can

be described in the following argument. The weak secrecy condition is equivalent to having

1
n
I(Un;Zn) = 0 since H(W ) = H(Un). Therefore,

I(Xn;Zn) = I(Un;Zn|V n) (5.36)

H(Xn)−H(Xn|Zn) = H(Un|V n)−H(Un|Zn, V n) (5.37)

H(Xn)−H(Xn|Zn) = H(Un)−H(Un|Zn, V n) (5.38)

H(Xn)−H(Xn|Zn) = H(Un) +H(V n)−H(Xn|Zn) (5.39)

and hence,

H(Xn) = H(Un) +H(V n) (5.40)

where the condition (5.40) implies that the function f should lead to a one-to-one mapping

from Un and V n to Xn.

The following is an example that shows the existence of such a function f that satisfies

the conditions in Theorem 4.

Example 1. Assume that

U = V = X = {0, 1}

and that the function f =XOR(U, V ). The codebook Cx should be optimal for the legitimate

receiver to be able to decode W and D. In addition, according to the enhanced decoder
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concept, the codebook Cu should be optimal for the eavesdropper given D. Now, assume that

the optimal input distribution to both the legitimate receiver channel and the eavesdropper

channel is uniform then, a proper choice for PU is to be uniform which will lead to uniform

input distribution. Now, it remains to show that the mapping Un × V n → Xn is a one-to-

one mapping. This will depend on the distribution of the bits in V n because V n should be

sufficiently sparse.

The previous example shows that encoding for the binary input wiretap channel can take

the form of a superposition code where the cloud centers of the code represent the source of

randomness while the satellite codewords represent the message.

Remark 17. Another perspective at the proposed independent encoding of the message and

randomness can be looked at as a rate-splitting approach. The splitting of the message and

randomness creates two multiple-access channels. The first MAC is given by PY |U,V and

the second MAC is given by PZ|U,V . The capacity region of each multiple access channel

is shown in Fig. 5.3. Every point on the boundary of the capacity region of the legitimate

receiver represents a point on the rate-equivocation region. For example, point (a) represents

the secrecy capacity rate.

RM = I(X;Y )− I(X;Z) (5.41)

RD = I(X;Z) (5.42)

Any point on the boundary of the capacity region of the legitimate receiver to the right of point

(a) represents more transmission rate and less security while any point to the 45 degrees line

in the equivocation region. This different perspective shows that the proper rate allocation

between the message and the randomness determines which point on the rate-equivocation

region the system is operating. For example, to operate at the secrecy capacity This shows

that the independent encoding of the message and the randomness provides a systematic way
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Figure 5.3. Message, Randomness rate-region with the corresponding equivocation region

of operating at any point on the rate-equivocation region by using the appropriate code rates

at each encoder.

Independent encoding of the message and the randomness can have several benefits such

as using point-to-point codes which are easier to design than nested codes. It can also have

benefits in encoding for multi-node networks with a wiretapper.

5.3 Multilevel Coding in the Wiretap Channel

In a general sense, multilevel coding in the wiretap channel can split the actual message W

and the randomness W̄ into m sub-streams. Each pair of streams Wi and W̄i are encoded

by encoder i whose output drives the ith input to the mapper where i ∈ {1, . . . ,m}. Each

encoder i should take into account the reliability and secrecy conditions. As mentioned in

the introduction, it is challenging to design such codes that require mixing of information

and randomness in the same codeword with a guarantee on the equivocation in the AWGN

channel. Even if this difficulty is ignored, there is another important task which is to find the

optimal rate ofWi and W̄i, for every level i. The most optimistic solution to this optimization
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problem is to isolate the message sub-streams in certain levels and the randomness sub-

streams in the other levels so that we can avoid the joint design of binary codes that satisfy

reliability and secrecy conditions. Formally speaking,

Ri = 0 for i ∈ S̄ (5.43)

R̄i = 0 for i ∈ S (5.44)

for some set of levels S and its complement S̄ where Ri is the transmission rate of Wi and

R̄i is the transmission rate of W̄i.

Due to the very attractive features of the construction resulting from the optimistic

solution described earlier, we adopt this construction and show that it can be designed such

that the possible rate loss is negligible.

The optimality of such construction can be understood by modeling the multilevel coding

as a multiple-access channel and highlighting the difference. The multiple-access wiretap

channel was introduced by Tekin and Yener [103, 104]. The strong secrecy capacity region of

the multiple access wiretap channel was studied by Yassaee and Aref [105]. In these results,

the secrecy conditions for a two-user multiple-access channel with messages W1 and W2 are

H(W1,W2|Zn) = H(W1,W2) (5.45)

H(W1|Zn) = H(W1) (5.46)

H(W2|Zn) = H(W2) (5.47)

The intuitive idea that makes the proposed solution achieves the secrecy rate can be

explained as follows: assume first a rate pair in the secrecy capacity region of the multiple-

access wiretap channel, this rate pair can be achieved via sending the necessary randomness

through each transmitter. However, if the sum-rate is all what matters then, the necessary

randomness can be sent from any set of transmitters as long as the channel from these

transmitters to the legitimate receiver can support the encoding rate of the randomness.
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Since the levels of a multilevel encoder act in an independent manner, the multilevel coding

transmitter can be modeled as the set of transmitters in a multiple-access channel with

the number of transmitters equal to the number of levels. The corner points of the capacity

region of this multiple access channel represent different decoding orders of the levels. Unlike

the multiple-access channel, only the sum-rate matters. This is what allows the simple

construction described earlier, in other words, it does not matter which level is sending the

information and which level is sending randomness therefore, the necessary randomness,

with rate I(X;Z), can be sent through a subset of levels while the other levels send only

information.

The question now is under what conditions there exists a set of levels that can support

the necessary rate of the randomness? We begin by showing, in the following theorem, that

if such condition exists, secrecy capacity is achieved and then present the cases under which

these conditions are satisfied.

Theorem 5. Multilevel coding can achieve the secrecy capacity via encoding the information

and the randomness through distinct levels as long as:

I(X;Z) = I(BS̄;Y |BK) (5.48)

for some set of levels S and K ⊂ S where S̄ is the complement of S.

Proof. The converse proof has two components. The first component is to show that any rate

higher than the secrecy rate will not result in a vanishing error probability. This component

follows directly from the standard converse proof of the wiretap channel and is omitted for

brevity.

The second component is to show that if the condition in (5.48) is not satisfied, then

encoding the message and the randomness through distinct levels will not be possible to

achieve the secrecy capacity. In order to prove this part, we first explain the roles of the sets
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S and K. Assuming that the message and the randomness will be encoded through distinct

levels S and S̄ respectively. Then, the capacity between the levels S̄ and the legitimate

receiver should be equal to I(X;Z) in order to accommodate the rate of the randomness.

However, the capacity between the set of levels S̄ and the legitimate receiver depends on the

decoding order at the receiver. Assuming that the legitimate receiver will decode the levels

in the set K first and conditionally decode S̄, then the capacity between the set of levels S̄

and the legitimate receiver is given by

CS̄ = I(BS̄;Y |BK) (5.49)

for some set K ⊂ S.

The achievability proof on the other hand is as follows: Assume that the input levels to

the mapper are divided into two sets, S and its compliment S̄, assume also for simplicity

that the set S = {1, 2, . . . , |S|} and S̄ = {|S|+1, . . . ,m}. This last assumption will simplify

the notation in the rest of the proof and does not restrict the construction since the indexes

in S and S̄ can represent any level.

Codebook Generation:

Construct the following codebooks,

C(i)
g = {B(i)n

g , g = 1, . . . , Gi} for i ∈ S

C(i)
h = {B(i)n

h , h = 1, . . . , Hi} for i ∈ S̄

Each codeword in every codebook is generated independently according to

P
B

(i)n
g

=
n∏

j=1

P
B

(i)
gj
(b

(i)
gj ) (5.50)

where B
(i)
gj is the symbol in location j in the vector B

(i)n
g . Please note that the subscripts g

and h in the codebooks are to distinguish between the codebooks that will be used for the
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transmission of the message M , sub-scripted with g and the codebooks that will be used for

the transmission of the randomness D, sub-scripted with h.

The size of each codebook is restricted by the following:

1

n
logHi ≤ I(B(i);Y |B(1), . . . , B(i−1), B(i+1), B(k)) (5.51)

1

n
logGi ≤I(B(|S|+i);Y |

B(1), . . . , B(|S|+i−1), B(|S|+i+1), B(k)) (5.52)

1

n

∑
i

logGi = I(X;Y )− I(X;Z) (5.53)

1

n

∑
i

logHi = I(X;Z) (5.54)

The last two inequalities guarantee that no level will transmit above its capacity.

Encoding:

Split the message W ∈ [1 : 2nR] into |S| sub-message Wi ∈ [1 : 2nRi ] where i ∈ S and

encode Wi through level i into a codeword B
(i)n
g (Wi). Split the random sequence D ∈ [1 :

2nR2 ] into |S̄| sub-sequences Dj ∈ [1 : 2nRj ] where j ∈ S̄ and encode Dj through level j

into a codeword B
(j)n
g (Dj). The mapper then generates Xn via one-to-one mapping from

B
(i)n
h (Wi) and B

(j)n
g (Dj).

Decoding:

The legitimate decoder decodes the transmitted message by finding jointly typical se-

quences

(
B(1)n(ŵ1), . . . , B

(|S|)n(ŵ|S|),

B(|S|+1)n(d̂|S|+1), . . . , B
(m)n(d̂m), Y

n
)

for some estimates m̂i and d̂i
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Reliability Analysis: According to the LLN and the covering Lemma, the probability

of decoding error at the legitimate receiver Pe → 0 as n → ∞ as long as

R +R2 ≤ I(X;Y ) (5.55)

which is satisfied by the codebook construction.

Equivocation Analysis:

The equivocation at the eavesdropper is

H(W |Zn) = H(W,Zn)−H(Zn) (5.56)

= H(W,Zn, Xn)−H(Xn|W,Zn)−H(Zn) (5.57)

= H(W,Xn) +H(Zn|W,Xn)−H(Xn|W,Zn)

−H(Zn) (5.58)

≥ H(Xn) +H(Zn|Xn)−H(Xn|W,Zn)

−H(Zn) (5.59)

Now, we study the four terms in (5.59).

To upper bound the first term in (5.59), we use lemma 1 from [101]. Since the messages

Wis and the random sequences Dis are uniformly distributed and the mapping function is

one-to-one, the codebook Xn has equally probable codewords and hence,

Pr{Xn = xn}
Pr{Xn = x′n}

≤ 2 ∀xn, x′n ∈ X (5.60)

therefore,

1

n
H(Xn) ≥ 1

n

∑
i

logGi +
1

n

∑
i

logHi −
1

n
(5.61)

= I(X;Y )− 1

n
(5.62)

Please note that the restriction on the mapping function requires a one-to-one mapping

between the vectors B
(i)n
g and B

(i)n
h to the vector Xn and not a one-to-one mapping from
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the individual samples. This means that the mapping function might not be a one-to-one

function on a sample by sample basis and still satisfies the conditions necessary for the

previous upper bound. An example of such function is an XOR function used for binary

superposition in the broadcast channel [1].

For the second term,

1

n
H(Zn|Xn) =

1

n

∑
xn

Pr{Xn = xn}H(Zn|Xn = xn) (5.63)

=
1

n

∑
xn

Pr{Xn = xn}

×
∑
a∈X

N(a|xn)
∑
z

−P (z|a) log p(z|a) (5.64)

≥
∑
xn

Pr{Xn = xn}
∑
a∈X

(P (X = a)− ϵ)

×
∑
z

−P (z|a) logP (z|a) (5.65)

=
∑
xn

Pr{Xn = xn}(H(Z|X)−O(ϵ)) (5.66)

= H(Z|X)−O(ϵ) (5.67)

The previous bound does not depend on the mapping function but depends only on the

distribution of Xn and the channel. The distribution of Xn is restricted by the distribution

of the inputs to the mapper as well as the mapping function. However, as will be shown in

the sequel, in most of practical cases, the mapping function does not impose any penalty on

the optimal distribution of Xn.

For the third term in (5.59), in a manner similar to [102] define

ρ(W, zn) =


zn, if ∃b s.t. (xn, zn) ∈ T n

ϵ (PXZ)

arbitrary, otherwise

(5.68)

Then

Pr{Xn ̸= ρ(W,Zn)} =
∑
w,d

Pr{xn} (5.69)
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× Pr{xn ̸= ρ(w, zn)|w, d} (5.70)

= λ1 ≤ ϵ (5.71)

and by Fano’s inequality, we obtain

1

n
H(Xn|W,Zn) ≤ 1

n
(1 + λ1 log(AB)) < ϵ2 (5.72)

The last inequality means that if the wiretapper have an access to the message W , then

no more ambiguity is left in Xn.

For the fourth term,

1

n
H(Zn) ≤ 1

n
log |T n

ϵ (PZ)| (5.73)

≤ H(Z) + ϵ (5.74)

By substitution in (5.59), we have

1

n
H(W |Zn) ≥ I(X;Y ) +H(Z|X)−H(Z)− ϵ4 (5.75)

= I(X;Y )− I(X;Z)− ϵ4 (5.76)

= H(W )− ϵ4 (5.77)

The condition in (5.48) implies that there is a set of levels S̄ that can support the

necessary rate of the randomness. This implies that the complement of this set, S, can

support a message with a rate of I(X;Y )− I(X;Z).

Theorem 5 shows that it is possible to encode the messages Wis and the randomness

Dis through distinct levels while the eavesdropper is asymptotically ignorant about the

transmitted messages. The following Corollary shows that Theorem 5 is also true under a

stronger secrecy condition.
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Corollary 1. Theorem 5 is also true under the following stronger secrecy condition:

H(Wi|Zn,W1, . . . ,Wi−1,Wi+1, . . . ,Wm) = H(Wi). (5.78)

Proof.

1

n
I(Wi;Z

n|W1, . . . ,Wi−1,Wi+1, . . . ,Wm)

=
1

n
I(W ;Zn)− 1

n
I(W1, . . . ,Wi−1,Wi+1, . . . ,Wm;Z

n) (5.79)

= − 1

n
I(W1, . . . ,Wi−1,Wi+1, . . . ,Wm;Z

n) (5.80)

= −I(B2;Z) (5.81)

= 0 (5.82)

where the last equality is due to the positivity of the mutual information.

The stronger secrecy definition in Corollary 1 goes back to the original secrecy definition

by Shannon [89] which implies that having an access to part of the message does not reveal

any information about the rest of the message at the Eavesdropper.

In the following, we study the proposed transmission and the conditions under which (5.48)

is satisfied under joint decoding and multistage decoding at the legitimate receiver while we

always consider maximum likelihood decoding at the wiretapper.

What makes a difference in the achievable secrecy rates between the decoding strategies

is the rate that can be supported by each level under different decoding strategies. For

example, under joint decoding, each level can support any rate as long as it belongs to the

capacity region of the equivalent MAC channel. Under multistage decoding on the other

hand, the individual levels can only support the rates on the corner points of the capacity

region. In the following, we consider only two levels at the transmitter for simplicity while

the generalization to any number of levels is straightforward.
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R1

R2

I(B1;Y)

I(B2;Y)

I(B2;Y|B1)

I(B1;Y|B2)

Figure 5.4. The capacity region for the channel between two-levels MLC to the legitimate
receiver.

5.3.1 Proposed Transmission Under Joint Decoding

Assuming only two levels with outputs B1 and B2, the capacity region from these two levels

to the legitimate receiver is shown in Fig. 5.4. For optimality of multilevel coding, the

transmission rate is equal to what the channel of the legitimate receiver can support, in

other words, the sum-rate constraint should be active. This means that the transmission

rate pair should be any point on the line connecting the corner points in Fig. 5.4. The rates

of the individual levels under joint decoding while the sum-rate constraint is active are

R1 ∈ [I(B1;Y ), I(B1;Y |B2)] (5.83)

R2 = I(X;Y )−R1 (5.84)

or

R2 ∈ [I(B2;Y ), I(B2;Y |B1)] (5.85)

R1 = I(X;Y )−R2 (5.86)

This means that if I(X;Z) belongs to the set in (5.83) or (5.85), then a randomness with

rate I(X;Z) can occupy the first or second level respectively and the other level can send

real information with rate I(X;Y ) − I(X;Z). The problem arises when I(X;Z) does not

belong to any of the sets, approximations should be made at this point.
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There are two cases when this can happen. First, when

I(X;Z) < min
i

I(Bi;Y ) (5.87)

which means that the amount of necessary randmness is less than the rate that can be carried

by the smallest-rate level. This means that this level will be wasted in sending randomness.

The rate loss in this case is:

min
i
{I(Bi;Y )} − I(X;Z) ≤ 1 (5.88)

Second, when

I(X;Z) > max{I(B1;Y |B2), I(B2;Y |B1)} (5.89)

which means that the necessary randomness is more than the rate that the largest rate level

can support. In both cases, the loss is upper bounded by 1 since the rate-loss is bounded by

the largest rate that a level can support.

5.3.2 Proposed Transmission Under Multistage Decoding

Unlike joint decoding, multistage decoding can only achieve the corner points on the capacity

region. Therefore, the rate pairs that can be supported are:

R1 = I(B1;Y ) (5.90)

R2 = I(B2;Y |B1) (5.91)

or

R1 = I(B1;Y |B2) (5.92)

R2 = I(B2;Y ) (5.93)

depending on the decoding order. Clearly, this is a huge restriction over the joint decoding

case. Assuming that each level is either going to carry actual information or randomness
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but not both, the necessary randomness rate I(X;Z) should be equal to any of the rates

in (5.90) to (5.93). If this equality is not satisfied, some approximations should be made as

the joint decoding case and secrecy capacity will not be achieved.

The decoding order at the legitimate receiver depends on the value of I(X;Z). For

example, assume that

I(X;Z) ≈ I(B2;Y ) (5.94)

then, the corner point defined by the rate pair (I(B1;Y |B2), I(B2;Y )) will be active where

the first level carries the message and the second level carries the randomness. The legitimate

receiver then decodes the second level and then the first level. However, if

I(X;Z) ≈ I(B2;Y |B1) (5.95)

then, the corner point defined by the rate pair (I(B1;Y ), I(B2;Y |B1)) will be active where

the first level carries the message and the second level carries the randomness. The legitimate

receiver then decodes level-1 first. It is worth noting here that the legitimate receiver does

not need to decode the randomness which makes the proposed transmission even simpler.

Remark 18. Iterative decoding of multilevel coding can approximate the joint decoding and

achieve any point on the sum-rate constraint of the capacity region. Therefore, iterative

decoding of the proposed transmission has the same treatment as joint decoding.

Remark 19. Increasing the constellation size leads to finer distribution of the total rate on

the levels which allows more flexibility that helps the existence of the condition in (5.48).

Therefore, as the constellation size increases, more available secrecy rates can be obtained.

The question now is whether or not we can increase the set of achievable secrecy rates

for a given constellation size. In the following, we show that the labeling design can play a

very important role in increasing the set of achievable secrecy rates.
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R1

R2 Natural Labeling

{00, 11, 01, 10}

Figure 5.5. The capacity region for the channel between two-levels MLC to the legitimate
receiver under two different labelings.

In order to explain this point, we need to shed the light on the fact that different labelings

for the constellation might have different distribution of the total rate across the levels while

maintaining the sum-rate. This observation can be shown in Fig. 3.6 where the rate of each

level in a 4-PAM constellation in a point-to-point channel is shown for two different labelings.

This leads to more degrees of freedom that can consequently reduce the rate loss.

Formally speaking, the two labelings described in Fig. 3.6 lead to different equivalent

MAC channels as shown in Fig. 5.5. The capacity region of the two MAC channels have the

sum-rate but different corner points. This leads to more possible corner points and hence,

more possible values for the rates (5.90) through 5.93.

Remark 20. Increasing the constellation size does not only result in a finer distribution of

the total rate across the levels but also results in more possible labelings that lead to different

equivalent MAC channels with different corner points. Therefore, increasing the constellation

size leads to increasing the set of available secrecy rates.

In Fig. 5.6, we find the achievable secrecy rate of the proposed multilevel coding for an

8-PAM transmission versus the power of the transmitter in dB while fixing the noise power

at the legitimate receiver and the eavesdropper at 1 and 2 respectively. Please note that the

constellation constrained secrecy capacity goes does after a certain value of the transmission
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Figure 5.6. Achievable secrecy rate of the proposed multilevel coding under joint decoding
and multi-stage decoding

power since the transmitted sequence becomes clear to both the legitimate receiver and

the eavesdropper as noted in [106]. As the figure shows, the proposed multilevel coding

achieves the constellation constrained secrecy capacity under joint decoding until the power,

P = 25dBw. This is because after this point, the value of I(X;Z) needs all the levels to be

carried over the channel. The figure also shows that depending on the channel conditions,

different labelings will provide different secrecy rates under multi-stage decoding as explained

earlier.

5.3.3 The Rate-Equivocation Region

In this Section, we present how the proposed multilevel coding can extend to the entire rate-

equivocation region. This needs to prove the achievable rate-equivocation region however,

the proof goes along the same lines of the proof of Theorem 5 and we only present a sketch

of the proof in this Section. The rate-equivocation region (see Fig. 5.7) consists of two

parts: rates that are less than the secrecy capacity represented in the 45 degrees line and
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rates that are larger than the secrecy capacity represented by the horizontal line. To extend

the proposed multilevel coding to the rate-equivocation region, we start from the secrecy

capacity point and move in both directions.

First, assume that the maximum secrecy rate achieved by the proposed multilevel coding

is CMLC which is, as explained earlier, is within 1 bit from the secrecy capacity. Clearly,

any rate below CMLC can be achieved by reducing the rate that is transmitted from the set

S, the levels that are responsible for transmitting the message, while keeping the rate that

is transmitted from S̄, the levels that are responsible for transmitting the randomness, the

same.

Second, in order to show that the proposed multilevel coding can achieve rates that are

higher than CMLC , consider for simplicity that we have two levels while the generalization

is straightforward. Assume that at the achievable secrecy rate, level 1 is assigned to encode

the message with rate R1 = CMLC while level 2 is assigned to encode the randomness with

rate I(X;Y )− I(X;Z). Under joint decoding, R1 is upper bounded by

R1 ≤ I(B1;Y |B2) (5.96)

therefore, R1 can increase up to the bound I(B1;Y |B2) while decreases until it becomes

equal to I(B2;Y ). In order to increase the rate beyond this point, level 2 also should be used

to send message bits as well. However, if level 2 is also used to send the message, H(D) = 0

which means that an infinitesimally small increase in the message rate beyond I(B1;Y |B2)

will lead to a loss in the equivocation. This loss will linearly be reduced as the information

rate increases till I(X;Y ).

The number of alternations that we see in Fig. 5.7 is equal to the number of levels in S̄.

Each alternation spans the rate of each level in S̄. As the number of levels increases, the

capacity of each level goes down which means that every alternation will span a very small

range. Therefore, as the number of levels increases, the entire rate-equivocation region is

achieved.
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Figure 5.7. The constellation constrained rate-equivocation region versus the multilevel
coding rate-equivocation region.

Under multi-stage decoding at the legitimate receiver, increasing the rate beyond CMLC

requires adding a new level in the set S directly since R1 can take only one of two values.

This makes the alternation that we see in Fig. 5.7 starts from the secrecy rate CMLC .

5.4 Simulations

In the simulations, we use the DVB-S2 LDPC codes with length of 64800. The bit-error

rate and the frame-error rate are obtain for different transmission power P under fixed noise

variance at the legitimate receiver σ2
1 and the Eavesdropper σ2

2. Each level is either driven

by a message or by randomness. We show the error-rate curves at both the legitimate

receiver and the eavesdropper. However, observing the error-rate curve at the eavesdropper

is not the best indication about the quality of the codes. We only show the error-rate curve

at the eavesdropper as an available indication while the best indication is simulating the

equivocation which is not easy to simulate.

Fig. 5.8 shows the performance of the proposed transmission under 16-QAM. The trans-

mission power is changing while the noise variance at the legitimate receiver and the eaves-

dropper are σ2
1 = 1 and σ2

2 = 2 respectively. The first level encodes the message with rate

0.6 while the second level encodes the dither with rate 0.4. The figure shows a separation of
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Figure 5.8. Error-rate at the legitimate receiver and the wiretapper under 16-QAM constel-
lation.

3dB between the two frame-error rate curves which means that the eavesdropper will have

high probability of error until it has the minimum SNR that the legitimate receiver needs to

be able to decode.

5.5 Conclusion

In this chapter, we showed that multilevel coding can achieve the secrecy capacity of the

constellation constrained wiretap channel. An explicit construction of multilevel coding

where the message and the randomness are encoded through distinct levels is shown to

achieve the secrecy capacity under certain conditions. The proposed construction was studied

under joint decoding and multistage decoding at the legitimate receiver. The labeling design

was shown to play an important role in the design if multistage decoding is to be used at

the legitimate receiver. Simulation results show good codes that are designed for the point-
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to-point channel can be used in the proposed construction and achieve both reliability and

secrecy.
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CHAPTER 6

CONCLUSION

This dissertation studied multilevel coded modulation for multi-node networks. Multilevel

coding for the AWGN broadcast channel was studied. Necessary and sufficient conditions for

optimality of multilevel coding in the AWGN broadcast channel were presented. A pragmatic

rate allocation that achieves rate pairs that are very close to the constellation constrained

capacity were presented. Surprisingly, it was shown that to achieve any rate pair that is

very close to the constellation constrained capacity, mixing of the user information is not

necessary except in one level.

Multilevel coding was also studied for the full-duplex relay channel. First, necessary and

sufficient conditions for optimality of multilevel coding to achieve the decode-and-forward

rate were studied. The effect of linear codes and the labeling design were investigated. The

error exponent of the system was studied. Furthermore, multilevel coding for the hybrid

decode-compress-forward was proposed. It is shown that the proposed multilevel coding can

achieve rates that are very close to the achievable rates under Gaussian input.

Finally, coding for the wiretap channel was studied. Independent encoding of the message

and randomness was studied for the discrete memory-less as well as the AWGN wiretap

channel showing that it can still achieve the rate-equivocation region. A multilevel coding

for the wiretap channel where the message and the randomness are encoded through distinct

levels is proposed. The proposed multilevel coding was shown to achieve the secrecy capacity

of the constellation constrained AWGN wiretap channel.
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