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This work studies several relay network geometries whose opportunistic diversity-multiplexing

tradeoff (DMT) has been unknown. In the past, opportunistic analysis has been applied to

multiuser diversity and relay selection based on methods of order statistics. These techniques

rely on assumptions that break down in other interesting and useful network topologies, for

example the opportunistic user selection in a n×n network with a relay (among many others).

This work presents techniques that expand opportunistic analysis to a wider set of networks.

New opportunistic methods are proposed for several network geometries and analyzed in the

high signal noise ration (SNR) regime. For each of the relay geometries in the work, we

study the opportunistic DMT of several relaying protocols, including amplify-and-forward,

decode-and-forward, compress-and-forward, non-orthogonal amplify-forward, and dynamic

decode-forward. Among the highlights of the results: in a variety of multi-user single-relay

networks, simple user selection strategies are developed and shown to be DMT-optimal. It is

shown that compress-forward relaying achieves the DMT upper bound for the opportunistic

multiple-access relay channel as well as in the n×n user network with relay. Other protocols,

e.g. dynamic decode-forward, are shown to be near optimal in several cases. Finite-precision

feedback is analyzed for the opportunistic multiple-access relay channel, the opportunistic
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broadcast relay channel, and the opportunistic gateway channel, and is shown to be almost

as good as full channel state information. In heterogeneous relay channels, it is shown that

mixing relays with simple protocols, like amplify and forward, with relays with more compli-

cated protocols, like dynamic decode and forward or compress and forward, can help achieve

gains from both types of relays. For the bi-directional multi-relay channel with a direct link

between the two sources, we propose a dynamic-decode and forward opportunistic scheme

and prove that it is optimal at high multiplexing gains.
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CHAPTER 1

INTRODUCTION

Opportunistic communication is generally defined as a method, often applied in the physical

layer of communication networks, that chooses the best out of multiple communication alter-

natives at each point in time. One of the earliest examples of opportunistic communication

was developed for the multiple-access quasi-static fading channels, where the channel gains

of individual users follow independent distributions [1]. Under this scenario, it is throughput-

optimal to allow the user with the best channel to the base station to transmit, while all

other users are silent. Thus, at each point in time, the “best” user is selected to transmit to

the base station.

Relay selection is an example of opportunistic communication. An early example of

relay selection appeared in [2]. Bletsas et al [3, 4, 5] investigated amplify-and-forward (AF)

relay selection, followed by several other works including [6, 7, 8, 9]. Decode-and-forward

(DF) relay selection has also received attention [10, 11, 12, 13, 14, 15, 16]. The diversity

multiplexing tradeoff (DMT) for relay selection has been investigated in relatively few works

including [17] for addressing the multiplexing loss of DF relaying, and [9] for a combination

of antenna selection and AF relay selection.

Despite its rapid growth, the literature on opportunistic cooperation has focused on

a relatively restricted set of conditions. Broadly speaking, the scope of previous work has

been on geometries and protocols where node selection can be reduced to scalar comparisons

of statistically independent link gains (or simple scalar functions thereof). For example, DF

relay selection compares the relay-destination links of relays that have decoded the source

1
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Figure 1.1. The opportunistic modes in the multiple-access relay channel.

message. In the case of AF relaying, the end-to-end SNR (or a proxy, e.g. in [3]) is used to

select relays, which is again a scalar comparison among independent random variables.

This leaves open a significant set of problems for whose analysis the existing ap-

proaches are insufficient. Among them one may name even some seemingly simple problems,

e.g. the DMT of the orthogonal relay on/off problem in the single-relay channel, which has

been unsolved until now.

To shed light on the key difficulties, consider the example of the opportunistic multiple-

access relay channel (Figure 1.1). Two users transmit messages to the base station with the

assistance of a relay. During each transmission interval the system operates in one of two

opportunistic modes. In one mode, user 1 transmits and user 2 is silent, while in the other,

user 2 transmits and user 1 is silent. The main challenge in the analysis of this system is

twofold:

1. The selection is a complex function of multiple link gains, i.e., it is not immediately

clear how to select the “better” node in an easy and straight forward way. Not only do

all the five link gains participate in this decision, but also the capacity of the component

relay networks is generally unknown, and even the achievable rates are only known as

expressions that involve nontrivial optimizations. Because the performance analysis

must take into account the selection function, the complexity of analysis can quickly
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get out of hand with increasing number of nodes.

2. The relay-destination link is shared among the two opportunistic modes, therefore

the decision variables for the two modes are not statistically independent. The order

statistics of dependent random variables are complicated and often not computable in

closed form.

One of the contributions of this work is to address or circumvent the above mentioned

difficulties. This work analyzes the diversity and multiplexing gain of a variety of oppor-

tunistic relay systems whose asymptotic high-SNR performance has to date been unknown.

We study various networks in this work that can have multi-sources, multi-destination or

multi-relays under opportunistic access schemes. Among the network geometries that have

been studied are the opportunistic multiple-access and broadcast relay channels and several

variations of the opportunistic n× n user network with a relay. In the n× n network with a

relay, if nodes communicate pairwise while crosslink gains cannot be ignored, the links and

communication structure resemble an interference channel with a relay, therefore we call it

an opportunistic interference relay channel.1 When the crosslink gains can be ignored, we

denote it the opportunistic shared relay channel. If all transmitters have data for all receivers,

we denote the scenario as opportunistic X-relay channel. The gateway channel represents a

scenario where the only path between sources and destination is through a relay. broadcast

relay channel, and the opportunistic gateway channel, and is shown to be almost as good as

full channel state information. The Heterogeneous relay networks are networks of a single-

source and a single-destination where multiple relays with different protocols can co-exist. If

both communicating nodes have independent messages to transmits to each other, we denote

it the bi-directional multi-relay channel.

1The naming is for convenience purposes and only reflects the presence of links not the
operation of the network. In opportunistic operation there is no interference among users.
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To summarize, the main results of this work are as follows:

• To begin with, the DMT of the opportunistic single-relay on/off problem is calculated

under DF and AF. This simple result can be used as a building block for the study of

larger networks.

• The diversity-multiplexing tradeoff of the opportunistic interference relay channel is

calculated under orthogonal AF and DF, as well as non-orthogonal amplify and forward

(NAF), dynamic decode and forward (DDF), and non-orthogonal compress and forward

(CF). The nonorthogonal CF is shown to achieve the DMT upper bound.

• For the shared relay channel, an upper bound for the DMT under opportunistic chan-

nel access is calculated. Furthermore, it is shown that for the shared relay channel

at low multiplexing gain, the DDF outperforms the NAF and CF while at medium

multiplexing gains, the CF is the best. At high multiplexing gain, the relay should not

be used.

• For the multiple access relay channel, a simple selection scheme based on the source-

destination link gains is shown to be optimal for several protocols. Specifically, under

the simple selection mechanism, the CF nonorthogonal relaying is shown to achieve

the genie-aided DMT upper bound, and the NAF and the DDF also achieve their

respective optimal DMTs (in the sense that more general selection schemes do not

yield a better DMT).

• For the X-relay channel, an opportunistic scheme is presented that meets the DMT

upper bound under the CF protocol. For other relaying protocols, the DMT regions

are calculated.

• The results for the opportunistic broadcast relay channel follow from the opportunistic

multiple-access relay channel.
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• For the gateway channel, the superposition as well as the orthogonal channel access is

studied in the absence of transmit CSI, showing that the latter is almost as good as

the former. Then, the opportunistic channel access is fully characterized.

• Finite precision feedback is investigated for the multiple access relay channel (and by

implication the broadcast relay channel), as well as the gateway channel. The DMT

with finite-precision feedback for several other relay channels remains an open problem.

• For the parallel relay channel with n relays of the same type in the presence of a

direct source-destination link, the orthogonal opportunistic relaying protocols achieve

the same DMT as non-orthogonal opportunistic AF. At low multiplexing gains the

DDF relay selection achieves the MISO upper bound. For high multiplexing gains, CF

relay selection outperforms both DDF and NAF relay selection. DDF and CF relay

selection outperform NAF relay selection at all multiplexing gains.

• For the parallel relay channel with n heterogeneous relays, we observe that the DMT

of heterogeneous orthogonal opportunistic relaying is similar to the DMT of the cor-

responding homogeneous AF or DF opportunistic relay systems. For heterogeneous

non-orthogonal relaying we consider NAF, DDF, and CF. Relay selection among NAF

and DDF relays gives maximal performance at high multiplexing gains, while providing

diversity somewhere between that of NAF and DDF at low multiplexing gains. Relay

selection among CF and NAF relays achieves a diversity that scales with the number

of relays at high multiplexing gain as opposed to the fixed diversity for NAF.

• For the bi-directional relay channel with a direct link between the two sources, we

propose a DDF opportunistic scheme that is proved to be optimal in a one-relay bi-

directional channel for high multiplexing gains and provide a diversity of 1 for low

multiplexing gains. For multi-relay bi-directional channel, the DDF bi-directional relay

selection outperforms the DF bi-directional relay selection for high multiplexing gain



6

whereas at low multiplexing gains the DF bi-directional relaying outperforms the DDF

bi-directional relaying. The DDF bi-directional relaying is optimal at mid multiplexing

gains. It is also shown that for the DF bi-direction relaying, selecting two relays

where each relay helps one of the sources provides no extra diversity gain compared to

selecting one relay to help both sources. If there is no direct link between the sources,

the AF bi-directional relaying outperforms the DF and the adaptive DF bi-directional

relaying.

The organization is as follows: in Chapter 2; we describe the system model, provide

the main tool for calculating the diversity multiplexing tradeoff for an opportunistic system

switching between different access modes and solve the problem of a single-relay opportunistic

on/off problem. Then, a succession of DMT analysis is presented for a number of network

geometries and relaying protocols: in Chapter 3; for various networks of multi-source, multi-

destination such as the interference relay channel in Section 3.1, the shared relay channel in

Section 3.2, the X-relay channel in Section 3.3 and the gateway channel in Section 3.4, in

Chapter 4; for the multiple access relay channel, in Chapter 5; for the heterogeneous relay

channel with direct link and in chapter 6; for the bi-directional multi-relay channel. We

conclude our work in Chapter 7.



CHAPTER 2

SYSTEM MODEL AND BASIC RESULTS FOR DMT ANALYSIS

2.1 System Model

All the nodes in the network are single-antenna and due to practical limitations,

nodes cannot transmit and receive at the same time (half duplex). The channel between any

two nodes experiences flat, quasi-static block fading whose coefficients are known perfectly

at the receiver. The opportunistic selection mechanism also has access to channel gains,

either in full or quantized. The length of the fading states (coherence length) is such that

the source message is transmitted and received within one coherence interval. Furthermore,

each transmission can accommodate a codeword of sufficient length so that standard coding

arguments apply.

The various networks considered in this work may have either multiple sources, multi-

ple destinations, or both. In all scenarios in this work, except for the parallel relay channel,

there is one relay. For the the parallel relay channel with direct link, the network has n

relays. The channel coefficients between transmitter i and receiver j is denoted with hij.

Channel gains to or from a relay are shown with hir or hrj. When the network has only

one source, a symbolic index s is used for it; similarly if a network has no more than one

destination, the index d will be used for it. For example, in a simple relay channel the links

are denoted hsr, hrd, hsd. For the parallel relay channel, hsi and hid represent the channel

gains from the source to relay i and form relay i to the destination, respectively. Channel

gains are assumed independent identically distributed circularly symmetric complex Gaus-

sian random variables. The received signals are corrupted by additive white Gaussian noise

7
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(AWGN) which is nr ∼ CN (0, N) at the relay(s) and nj ∼ CN (0, Nj) at the destinations.

Without loss of generality, in the following we assume all noises have unit variance, i.e.,

N = Nj = 1 ∀j. The transmitter nodes, the sources and the relay, have short-term indi-

vidual average power constraints for each transmitted codeword. The transmit-equivalent

signal-to-noise ratio (SNR) is denoted by ρ. Due to the normalization of noise variance, the

SNR ρ also serves as a proxy for transmit power.

In the original definitions of opportunistic communication, e.g. multi-user diversity,

only one transmitter is active during each transmission interval. For the relay networks

considered in this work, the definition is slightly generalized in the following manner:

Definition 1 Opportunistic communication is defined as a strategy where the received signal

at each user during each transmission interval is independent of all but one of the transmitted

messages. In other words, during each transmission interval, each receiver in the network

hears only one message stream unencumbered by other message streams. The target message

stream may originate from a source, a relay, or both.

This definition maintains the spirit of opportunistic communication while allowing

various non-orthogonal relaying strategies. It is noteworthy that with this generalized def-

inition, in some networks (e.g. shared relay channel) more than one message may be in

transit at the same time.

Definition 2 An opportunistic communication mode is the set of active transmitters, re-

ceivers, and respective links in the network during a given transmission interval.

This work studies the high-SNR behavior of opportunistic relay channels via the

diversity-multiplexing tradeoff (DMT), in a manner similar to [18]. Each transmitter i is

allocated a family of codes Ci(ρ) indexed by the SNR, ρ. The rate Ri(ρ) denotes the data
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rate in bits per second per hertz and is a function of the SNR. The multiplexing gain per

user ri is defined as [18]

ri = lim
ρ→∞

Ri(ρ)

log ρ
. (2.1)

The selection strategy in the opportunistic relay network yields an effective end-to-end chan-

nel. The attempted rate into this effective channel is Ri ≈ ri log ρ. The error probability

subject to this rate is denoted Pe(ρ) and the diversity gain is defined as follows.

d = − lim
ρ→∞

logPe(ρ)

log ρ
, (2.2)

For the purposes of this study, since the transmission intervals are sufficiently long, the

diversity can be equivalently calculated using the outage probability.

In principle, the high-SNR study of a network can generate a multiplicity of diversities

and multiplexing gains. In this work we pursue the symmetric case, i.e., all opportunistic

modes the have the same diversity gain d (in a manner similar to [19]) and also are required to

support the same multiplexing gain ri, where ri = r/n and r is the overall (sum) multiplexing

gain.

Finally a few points regarding notation: The probability of an event is denoted with

P(·). We say two functions f(x) and g(x) are exponentially equal if

lim
x→∞

log f(x)

log g(x)
= 1 ,

and denote it with f(x)
.
= g(x). The exponential order of a random variable X with respect

to SNR ρ is defined as

v = − lim
ρ→∞

logX

log ρ
, (2.3)

and denoted by X
.
= ρ−v, ≤̇ and ≥̇ follow the same definition.



10

2.2 Basic Results for DMT Analysis

Consider an abstraction of a wireless network, shown in Figure 2.1, consisting of a set

of sources, a set of destinations, and a number of data-supporting paths between them. Each

of these paths may connect one or more source to one or more destination, and may consist

of active wireless links as well as (possibly) relay nodes. Recall that the each collection of

active paths and nodes is called an opportunistic mode. A concrete example of opportunistic

modes was shown in Figure 1.1, where Source 1, Relay, Destination, and corresponding links

make one mode, and Source 2, Relay, Destination, and corresponding links form the second

mode. For the purposes of this section, the geometry of the links and relays that compose

each mode is abstracted away. However, the DMT supported by each of the modes1 is

assumed to be known. Furthermore, it is assumed that only one mode can be active at any

given time, i.e., we select one mode during each transmission interval.

Mode 1

Mode 2

Mode n

ReceiversTransmitters

Figure 2.1. General opportunistic wireless scenario model. Each mode consists of active
links, potentially including a relay.

We now produce a simple but useful result.

Lemma 1 Consider a system that opportunistically switches between n paths (modes) whose

1The multiplexing gain of each mode can be defined as the prelog of the overall rate
carried by that mode, and similarly the diversity defined as the slope of the corresponding
aggregate error rate of the data.
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conditional DMT is given by d′i(r). The overall DMT is bounded by:

d(r) ≤ d′1(r) + d′2(r) + . . .+ d′n(r), (2.4)

where d′i(r) is defined as

d′i(r) = − lim
ρ→∞

logP(ei|ei−1, . . . , e1)

log ρ
, (2.5)

and P(ei|ei−1, . . . , e1) is the probability of error in access mode i given that all the previous

access modes are in error.

Proof: We demonstrate the result for a two-user network, generalization for n users follows

directly.

The total probability of error when switching between two subsystems is

Pe = P(e1, e2) + P(U1, e1, e
c
2) + P(U2, e

c
1, e2), (2.6)

where e1 and e2 are the events of error in decoding User 1 and User 2 data, respectively, the

complements of error events are denoted with a superscript c, and U1, U2 are the events of

opportunistically choosing User 1 and User 2, respectively. The event characterized by the

probabilities P(U1, e1, e
c
2) and P(U2, e

c
1, e2) represents the error due to wrong selection.

We can upper bound Pe as

Pe ≥ P(e1, e2)

= P(e1)P(e2|e1)
.
= ρ−d′1(r)ρ−d′2(r), (2.7)

which implies that

d(r) ≤ d′1(r) + d′2(r), (2.8)

where d′i(r) is given by Equation (2.5). This completes the proof. �
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Specializing Lemma 1 to the case of independent error probabilities directly yields

the following.

Lemma 2 A DMT upper bound for opportunistically switching between n independent wire-

less subsystems is given by d(r) where

d(r) ≤ d1(r) + d2(r) + . . .+ dn(r), (2.9)

and di(r) is the DMT of the subsystem i.

Lemma 3 The upper bounds of Lemma 1 and Lemma 2 are tight if the following two con-

ditions are asymptotically satisfied:

1. Each selected subsystem uses codebooks that achieve its individual DMT.

2. The selection criterion is such that the system is in outage only when all subsystems

are in outage, i.e., P(U1, e1, e
c
2) = P(U2, e

c
1, e2) = 0.

Throughout the remainder of the work, we assume that appropriate codebooks are designed

and used, therefore the first condition is satisfied. The second condition would be satisfied

by selecting access modes according to their instantaneous end-to-end mutual information.

For practical reasons, we may consider simpler selection criteria, in which case the tightness

of the bounds above is not automatically guaranteed.

2.3 Opportunistic One-Relay Selection

In this section we consider a simple orthogonal relaying scenario with one source, one

relay and one destination. During each transmission interval, the source transmits during

the first half-interval. In the second half-interval, either the relay transmits, or the relay
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remains silent and the source continues to transmit (see Figure 2.2). The decision between

these two options is made opportunistically based on the channel gains.2

The question is: how should the relay on/off decision be made, and what is the

resulting high-SNR performance (DMT). The apparent simplicity of the problem can be

deceiving, because the random variables representing the performances of our two choices

are not independent.

Theorem 1 The DMT of a three-node simple relay channel, under either AF or DF, subject

to opportunistic relay selection, is given by:

d(r) = (1− r)+ + (1− 2r)+. (2.10)

Proof: The proof is somewhat involved and is therefore relegated to Appendices A and B.

An outline of the proof is as follows. The DMT of a point-to-point non-relayed link is

d(r) = (1− r)+. DF and AF orthogonal relaying [20] have the DMT d(r) = (1−2r)+. Using

the techniques described in the previously, these two DMTs are combined. The main part of

the proof is to establish that the conditional DMT of the relay channel subject to the direct

link being in outage is d(r) = (1 − 2r)+, similar to its unconditional DMT, therefore the

overall result follows from Lemma 1. �

This result will be used in the upcoming composite relay channels.

Remark 1 For the simple relay channel shown above, opportunistic CF, DDF and NAF are

not investigated for the following reason. In both NAF and DDF, it can be shown that the

end-to-end mutual information is never increased by removing the relay from the network.

Channel state information is already incorporated into the operation of NAF and DDF in such

2Recall that both half-intervals are within the same coherence interval, i.e., the entire
operation observes one set of channel realizations.
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Figure 2.2. The opportunistic modes in the simple orthogonal relay channel.

a way that the usage of the relay automatically adjusts to the quality of the links. Similarly, in

non-orthogonal compress-and-forward the mutual information is never increased by removing

the relay.

Remark 2 The opportunistic orthogonal amplify-and-forward attains the same DMT as the

non-orthogonal amplify-and forward (NAF). The NAF has decoding complications arising

from self-interference while the opportunistic orthogonal AF requires a small exchange of

channel state information for opportunistic relaying (1-bit feedback from the destination node

to the source and the relay).



CHAPTER 3

MULTI-SOURCE MULTI-DESTINATION CHANNELS

3.1 Opportunistic Interference Relay Channel

This chapter is dedicated to the study of a n× n network with a relay in the oppor-

tunistic mode. The topology of the links in this network is identical to an interference relay

channel, therefore this structure is called an opportunistic interference relay channel. The

naming is a device of convenience inspired by the topology of the network.

For reference purposes, we briefly outline the background of non-opportunistic inter-

ference relay channel. The interference channel [21, 22] together with a relay was introduced

by Sahin and Erkip [23] (Figure 3.1) who present achievable rates using full duplex relaying

and rate splitting. Sridharan et al. [24] present an achievable rate region using a combina-

tion of the Han-Kobayashi coding scheme and Costa’s dirty paper coding, and calculate the

degrees of freedom. Maric et al. [25] study a special case where the relay can observe the

signal from only one source and forward the interference to the other destination. Tannious

and Nosratinia [17] show that the degrees of freedom for a MIMO interference relay channel

with number of antennas at the relay matching or exceeding the number of users, is k/2

where k is the number of users.

As mentioned earlier, opportunistic modes are defined such that the data streams do

not interfere, i.e., each receiving node is exposed to one data stream at a time. Therefore,

the two-user interference relay channel has up to four access modes1 as shown in Figure 3.2.

1In non-orthogonal CF, DDF, and NAF relaying protocols, the non-relayed modes never

15
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Figure 3.1. Interference relay channel.

The system selects one of the modes based on the instantaneous link gains. In the following

we analyze the network under various relaying protocols and calculate the DMT in each case.

We start by developing a simple genie upper bound. Consider a genie that provides

the relay with perfect knowledge of the messages of the transmitting sources. Thus access

modes (c) and (d) are transformed into a MISO channel with a DMT of 2(1 − r)+. If the

genie-aided access mode (c) and (d) are in outage, then access modes (a) and (b) will be

in outage as well, therefore they need not be considered. Applying Lemma 1, the DMT of

the 2× 2 user opportunistic interference relay channel is upper bounded by 4(1− r)+. This

genie upper bound directly extends to 2n(1− r)+ for the n× n user topology.

3.1.1 Orthogonal Relaying

Orthogonal relaying supports the full set of four access modes in Figure 3.2. Two of

the modes do not involve the relay. In the relay-assisted modes, a source transmits during

the first half of the transmission interval and the relay transmits in the second half of the

transmission interval.

support higher rates than the relayed modes. Therefore in CF, DDF, NAF some of these
modes are never selected and can be ignored.
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(a) (b) (c) (d)

Figure 3.2. The opportunistic access modes for the interference relay channel with orthogonal
relaying.

3.1.1.1 Amplify and Forward Orthogonal Relaying

In the relay-assisted modes, the relay amplifies the received signal and forwards it

to the destination. We select the mode that minimizes the outage probability. The instan-

taneous mutual information of the non-relay access modes is given by Ii = log(1 + |hii|2ρ)

where i = 1, 2. The instantaneous mutual information for the relay-assisted modes under

orthogonal AF is given by [20, 26]

Ii+2 =
1

2
log(1 + |hii|2ρ+ f(|hir|2ρ, |hri|2ρ)), i = 1, 2, (3.1)

where f(x, y) = xy
x+y+1

. The selection criterion is as follows. We first check the direct links.

If none of the direct links can support the rate r log ρ, we check the access modes (c) and

(d). Using Lemma 1, the total DMT is given by

d(r) = d′1(r) + d′2(r) + d′3(r) + d′4(r), (3.2)

where

d′1(r) = lim
ρ→∞

logP(e1)
log ρ

, d′2(r) = lim
ρ→∞

logP(e2)
log ρ

,

d′3(r) = lim
ρ→∞

logP(e3|e1)
log ρ

, d′4(r) = lim
ρ→∞

logP(e4|e2)
log ρ

,

It is easy to verify that e1 and e3 are independent from e2 and e4. Using techniques similar

to the proof of Theorem 1, the outage probability of the opportunistic orthogonal AF 2× 2
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interference relay channel at high SNR is given by

P(I < r log ρ) ≈
(
e−2ρ2r−1 − e−ρr−1 − e−2ρ2r−1+ρr−1

+ 1

1− e−ρr−1

)2

(1− e−ρr−1

)2.

The total DMT can be shown to be:

d(r) = 2(1− r)+ + 2(1− 2r)+. (3.3)

Generalization to n source-destination pairs follows easily; the corresponding DMT is d(r) =

n(1− r)+ + n(1− 2r)+.

3.1.1.2 Decode and Forward Orthogonal Relaying

We use the same selection technique used in the orthogonal AF relaying. The instan-

taneous mutual information for the relay-assisted modes is given by by [20]

Ii+2 =
1

2
log

(
1 + ρUi

)
, i = 1, 2 (3.4)

where

Ui =

{
2|hii|2 |hir|2 < ρ2r−1

ρ

|hii|2 + |hri|2 |hir|2 ≥ ρ2r−1
ρ

(3.5)

With the same type of argument used to calculate the DMT for the opportunistic orthogonal

AF interference relay channel and Appendix A, the outage probability of the opportunistic

orthogonal 2× 2 DF interference relay channel at high SNR is given by

P(I < r log ρ) ≈
(
1− e−ρ2r−1

+
(1− e−ρr−1 − ρr−1e−ρ2r−1

)e−ρ2r−1

1− e−ρr−1

)2

(1− e−ρr−1

)2.

It can be shown that the DMT in case of orthogonal DF is

d(r) = n(1− r)+ + n(1− 2r)+. (3.6)
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3.1.2 Non-Orthogonal Relaying

In the non-orthogonal protocols considered in this section, the source transmits

throughout the transmission interval, while the relay transmits during part of the transmis-

sion interval. The source and relay signals are (partially) superimposed at the destination.

Note that this superposition does not violate our working definition of opportunistic com-

munication, which states that received signals at the destinations are independent of all but

one of the transmitted messages.

Under the non-orthogonal relaying protocols, the interference relay channel has only

two access modes, Figure 3.2 (c) and (d). Access modes (a) and (b) are not considered,

because it can be shown that in non-orthogonal relaying, the end-to-end mutual information

of the relay-assisted modes is always greater than the corresponding non-relayed modes.

3.1.2.1 Non-Orthogonal Amplify and Forward

For half the transmission interval, the received signal at the destination and at the

relay are given by [27]

y1i =
√
ρ hii x1i + n1i, y1r =

√
ρ hir x1i + n1r,

The variables x, y, n have two subscripts indicating the appropriate half-interval and node

identity, respectively. For example, y1r is the received signal during the first half-interval

at the relay, while x1i is the transmit signal at the first half-interval from source i. At the

second half of the transmission interval the relay normalizes the received signal (to satisfy

the relay power constraint) and retransmits it. The destination received signal in the second

half is given by

y2i =
√
ρ hii x2i +

√
ρ hri√

ρ|hir|2 + 1
y1r + n2i,

where a similar notation holds, for example x2i is signal transmitted in the second half-

interval from source node i. The effective destination noise during this time is
√
ρhri√

ρ|hir|2+1
n1r+
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n2i. For convenience, in a manner following [27] we divide y2i by a constant factor to

normalize the effective noise variance to unity, while not otherwise affecting the SNR. We

can write the received signal at destination node i as follows

Yi = HiXi +N, (3.7)

where Xi = [x1i x2i]
t is a vector of the transmit signals the two half-intervals, N is the vector

of Gaussian noise in the two half-intervals, which is (subject to the latest normalization) a

circularly symmetric complex Gaussian random variable, and Hi is the effective channel gain

matrix:

Hi =

 √
ρ hii 0

ρ hrihir√
ρ|hir|2+1

√
ρ|hri|2

ρ|hir |2+1
+1

√
ρ hii√

ρ|hri|2

ρ|hir |2+1
+1

 . (3.8)

The instantaneous mutual information is given by

Ii =
1

2
log

∣∣∣I+HiH
∗
i

∣∣∣
=

1

2
log

(
1 + |hii|2ρ+

|hri|2|hir|2ρ2

|hri|2ρ+ |hir|2ρ+ 1
+

|hii|2(|hir|2ρ+ 1)ρ

|hri|2ρ+ |hir|2ρ+ 1
+

|hii|4(|hir|2ρ+ 1)ρ2

|hri|2ρ+ |hir|2ρ+ 1

)
.

(3.9)

User i∗ is selected to maximize the mutual information, which at high SNR can be shown to

lead to the following selection rule:

i∗ = argmax
i

Ii = argmax
i

{
|hii|4|hir|2

|hri|2 + |hir|2

}
. (3.10)

Using our knowledge of the DMT of non-opportunistic NAF [28] which is given by

d(r) = (1 − r)+ + (1 − 2r)+, and applying Lemmas 2, 3 and using the selection criterion

i∗ from Equation (3.10), the DMT of opportunistic NAF interference relay channel with n

source-destination pairs is

d(r) = n(1− r)+ + n(1− 2r)+. (3.11)



21

3.1.2.2 Dynamic Decode and Forward

The relay listens to the source until it has enough information to decode. The relay

re-encodes the message using an independent Gaussian codebook and transmits it during the

remainder of the transmission interval. The time needed for the relay to decode the message

depends on the quality of the source-relay channel. Using [28] and Lemma 1, the DMT of

the optimal opportunistic DDF interference relay channel is as follows:

d(r) =

{
2n(1− r) 0 ≤ r ≤ 1

2
,

n1−r
r

1
2
< r ≤ 1.

(3.12)

Compared to the other protocols considered for the interference relay channel, the

DDF mutual information for each node has a more complex expression. This provides an

impetus for the analysis of simpler selection scenarios. It has been observed elsewhere in

this work that selection based on source-destination link gains sometimes may perform well,

therefore we consider that choice function for the DDF interference relay channel. Following

the same technique as [29], the resulting DMT can be shown to be

d(r) =

{
(n+ 1)(1− r) 0 ≤ r < n

n+1

n1−r
r

n
n+1

≤ r ≤ 1
(3.13)

It is observed that for DDF, selection based on direct link gains is clearly suboptimal, espe-

cially at low multiplexing gains.

3.1.2.3 Compress and Forward

Following [30], the relay listens to the selected source for a percentage t of the trans-

mission interval. The source and the relay perform block Markov superposition coding, and

the destination employs backward decoding [31]. The relay performs Wyner-Ziv compres-

sion, exploiting the destination’s side information. This ensures that the relay message can

be received error free at the receiver. The relay compression ratio must satisfy

I(ŷr; yr|xr, yd) ≤ I(xr; yd). (3.14)
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Figure 3.3. Diversity multiplexing trade-off for a 4 source-destination pairs interference relay
channel using different opportunistic relaying schemes.

Yuksel and Erkip [30] show that the optimal DMT, d(r) = 2(1− r)+, is achieved when the

relay listens for half the transmission interval and transmits during the remainder of time in

the interval2.

For opportunistic compress and forward interference relay channel, the user i∗ =

argmaxi Ii is selected, where Ii is the mutual information for each access mode. At high-

2The work in [30] assumes transmit channel state information at the relay to insure that
the relay’s message reaches the destination error free. Recent work [32] proves that the
same DMT can be achieved using quantize-and-forward relaying with only receivers channel
state information. Another relaying protocol, dynamic compress-and-forward, is analyzed
in [33] without direct link and is shown to achieve the optimal DMT without channel state
information at the relay.
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Figure 3.4. Shared relay channel.

SNR, using results from [30], the selected user i∗ can be proved to be

i∗ =argmax
i

(|hsi,r|2 + |hsi,di|2)(|hr,di|2 + |hsi,di|2)|hsi,di|2

(|hsi,r|2 + |hsi,di|2) + (|hr,di|2 + |hsi,di|2)
.

Each mode can achieve a DMT d(r) = 2(1 − r)+, hence the opportunistic system with n

source-destination pairs can achieve the DMT d(r) = 2n(1− r)+.

Figure 3.3 compares the DMT of various relaying schemes for the interference re-

lay channel with four source-destination pairs. The optimal opportunistic DDF relaying is

denoted by DDF1 and DDF relaying with the simple selection criterion (based on source-

destination link gains) is denoted by DDF2. Compress and forward achieves the optimal

DMT but requires full CSI at the relay.

3.2 Opportunistic Shared Relay Channel

The shared relay channel (SRC) (Figure 3.4) was introduced in [34] with the sources

using TDMA channel access and orthogonal source and relay transmissions. In [35], based

on superposition and dirty paper coding, lower and upper bounds on the capacity of additive

white Gaussian noise (AWGN) MIMO shared relay channel are presented.

In the shared relay channel, the direct link between each source and its destination is

free from interference from the other source, however, the relay can cause indirect interference

if it assists both sources at the same time. Therefore, in the opportunistic mode the relay

should either assist one of the users or none of them (Figure 3.5). We assume the access
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(c)(b)(a)

Figure 3.5. Opportunistic access modes for the shared relay channel.

mode that minimizes the outage probability is chosen. In our analysis, access modes support

equal rate, thus in the first two access modes, one source transmits at rate R = r log ρ, while

in the third access mode both sources transmit, each with a rate Ri = r/2 log ρ.

3.2.1 DMT Upper Bound

First we use Lemma 1 to derive an upper bound. This bound will be tightened

subsequently.

Theorem 2 An upper bound for the opportunistic shared relay channel with the access modes

shown in Figure 3.5 is given by

d(r) ≤


2n r < n

2n2+1

(2n+ 1)− (2n+ 1
n
)r n

2n2+1
≤ r < 1

(1− r
n
) 1 ≤ r ≤ n.

(3.15)

Proof: The proof uses Lemma 1, adding the DMT of the three access modes and the fact

that the maximum diversity order for the shared relay channel cannot exceed 2n. Details of

the proof are given in Appendix C. �

A tighter upper bound can be found by assuming a genie that provides the relay with the

source information. In Figure 3.5, we call modes (a) and (b) relay-assisted access modes

while denoting mode (c) a non-relayed access mode. Thus, in the presence of a genie, the

relay-assisted access modes are essentially equivalent to MISO links. The non-relay access

mode is obviously not affected by the genie.



25

Theorem 3 A DMT upper bound for the genie aided opportunistic shared relay channel is

given by

d(r) ≤
(
1− r

n

)+
+ (2n− 1)(1− r)+ (3.16)

=

{
2n− (2n− 1 + 1

n
)r 0 ≤ r ≤ 1

(1− r
n
) 1 < r ≤ n

(3.17)

Proof: The proof uses Lemma 1 taking into account the dependency between the different

access modes. Details of the proof are given in Appendix D. �

We notice that for high multiplexing gain, r > 1, the first and second access modes

do not contribute to the diversity gain where the third mode is always active. For low

multiplexing gain, r ≤ 1, the three access modes are contributing to the total diversity gain

of the system and switching between the three access modes should be considered.

For clarity of exposition, we assume two source-destination pairs in the remainder of

the analysis. However, the analysis is expandable to any number of node pairs in a manner

that is straightforward.

3.2.2 Achievable DMT

If we allow ourselves to be guided by the upper bound above, it is reasonable to use

the non-relay access mode for high multiplexing gains (r > 1). This makes intuitive sense,

since relayed access modes cannot support high multiplexing gains. For multiplexing gains

less than 1, switching between the three access mode should be considered.

In the following we sometimes consider a simplified selection by partitioning the

decision space: in one partition choosing only among relayed access modes (easier due to

their independence) and in another partition using only the non-relayed mode. We shall see

that sometimes this easier switching scheme suffices and one can thus avoid the cost of the

comparison among all three modes.
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The following DMT are subject to the two conditions mentioned in Lemma 3.

3.2.2.1 Non-Orthogonal Amplify and Forward

First consider NAF relaying while using only the two relayed opportunistic modes

(ignoring for the moment the non-relay mode). Using Lemma 1 and the results in [28] one

can show:

d(r) = 2(1− r)+ + 2(1− 2r)+. (3.18)

The non-relayed mode achieves the following DMT

d(r) = (1− r

2
)+. (3.19)

To begin with, consider a hybrid scheme that chooses between the two relay-assisted access

modes when r < 2
3
, and uses the non-relayed mode when r ≥ 2

3
. It is easy to obtain the

DMT of this strategy, since the only opportunistic action is between independent modes.

This strategy leads to the following DMT

d(r) =max

{
2(1− r)+ + 2(1− 2r)+,

(
1− r

2

)+
}

=


4− 6r 0 ≤ r ≤ 0.5,
2(1− r) 0.5 ≤ r ≤ 2

3

(1− r
2
) 2

3
< r ≤ 2.

(3.20)

Naturally, there is no guarantee that the above strategy is optimal. For the best

results, once must compare directly the three opportunistic modes, but then the DMT re-

quires nontrivial calculations, as characterized by the following result. We note that the

comparison of mutual informations for the amplify-and-forward strategy in the high-SNR

regime has been characterized earlier.

Theorem 4 The overall DMT for the opportunistic shared relay channel under NAF relay-
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ing protocol is given by

d(r) = 2(1− 2r)+ + (1− r

2
)+ + (1− r)+

=


4− 11

2
r 0 ≤ r ≤ 0.5

2− 3
2
r 0.5 < r ≤ 1

1− r
2

1 < r ≤ 2.
(3.21)

Proof: The proof uses Lemma 1 and results from MIMO point to point communication [18]

and NAF relaying [28] taking into account the dependency between the different access

modes. Details are given in Appendix E. �

3.2.2.2 Dynamic Decode and Forward

We saw that a simple hybrid method using the relay-assisted modes at low r and the

non-relay mode at high r achieves a reasonable (although suboptimal) DMT for NAF, so we

begin by investigating a similar strategy for the DDF. Using Lemma 1 and [28], opportunistic

communication using only the relay-assisted modes has at best the following DMT

d(r) =

{
4(1− r) 0 ≤ r ≤ 0.5
21−r

r
0.5 < r ≤ 1.

(3.22)

The DMT of the non-relayed scheme is (1 − r
2
)+. We now choose at each r the better of

the non-relayed DMT or opportunistic relay-assisted DMT of Equation (3.22). This hybrid

(partitioned) strategy will yield:

d(r) =


4(1− r) 0 ≤ r ≤ 0.5

21−r
r

0.5 < r ≤ 3−
√
5

1− r
2

3−
√
5 < r ≤ 2.

(3.23)

Although this strategy is simple and easy to analyze, it can be shown that it is sub-

optimal for the DDF. For some values of r < 1, in DDF it is advantageous to make all three

access modes available to the selection algorithm. This result is developed in the following

theorem.
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Theorem 5 The overall DMT for the opportunistic shared relay channel under DDF relay-

ing protocol is given by

d(r) =


(
1− r

1−r

(
1− r

2

))
+ 2(1− r) +

(
1− r

2

)
, 0 ≤ r ≤ 0.5

2 (1−r)
r

, 0.5 < r ≤ 2−
√
2

(1−r)
r

+
(
1− r

2

)
, 2−

√
2 < r ≤ 1,(

1− r
2

)
, 1 < r ≤ 2.

(3.24)

Proof: The proof uses Lemma 1 and results for DDF relaying [28], while taking into account

the dependency between the three access modes. Details are given in Appendix G. �

3.2.2.3 Compress and forward

Using the CF scheme in [30], optimally selecting among the two relay-assisted modes

can achieve d(r) = 4(1 − r)+. In a manner similar to NAF and DDF cases above, we can

consider relay-assisted opportunistic DMT and non-relay mode DMT, and take the maximum

of the two expressions at each value of r. This hybrid strategy yields the following DMT.

d(r) =

{
4(1− r), 0 ≤ r ≤ 6

7

(1− r
2
), 6

7
< r ≤ 2

(3.25)

One can show that optimization between all three access modes at each r cannot yield

a better DMT under CF relaying, therefore the result above cannot be improved upon. The

proof is given in Appendix H.

Remark 3 The trivial hybrid scheme of using the relay-assisted modes at low multiplexing

gains and the direct links at high multiplexing links is not always suboptimal. It is shown that

for NAF and DDF, better performance is achieved by considering the three access modes at

low multiplexing gains. For CF relaying, the non-relayed access mode is not helping at low

multiplexing gains, hence, the hybrid scheme is optimal.
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Figure 3.6. Diversity multiplexing trade-off for a 2-pair shared relay channel, demonstrating
the performance of various protocols.
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Remark 4 Using the same technique used to prove the DMT of the orthogonal opportunistic

simple relay channel, Appendix A and B, and Lemma 1, one can show that the DMT of the

opportunistic shared relay channel under either orthogonal AF or orthogonal DF is given by

d(r) = 2(1− 2r)+ + (1− r/2)+, (3.26)

where the access modes are defined as before and the relay always transmits orthogonal to

the sources.

To summarize the results, as seen in Figure 3.6, for the opportunistic shared relay

channel, a brief comparison between three relaying protocols NAF, DDF, and CF is as follows.

At low multiplexing gain the DDF outperforms NAF and CF. At medium multiplexing gains,

the relay does not have enough time to fully forward the decoded message to the destination

and the CF in this case outperforms the DDF. At multiplexing gains above 1, it does not

matter which relaying protocol is used since the DMT-optimal strategy uses direct (non-

relayed) mode.

3.3 Opportunistic X-Relay Channel

The X-relay channel is defined as a n× n node wireless network with a relay, where

each of the n sources has messages for each of the n destinations (see Figure 3.7). The sources

are not allowed to cooperate with each other, but the relay cooperates with all sources.

There are only a few results available on the X channel, among them, it has been

shown [36] that the X-channel with no relay has exactly 4
3
degrees of freedom when the

channels vary with time and frequency. The X-relay channel introduces a relay to the X

channel for improved performance.

The opportunistic X-relay channel has four access modes as shown in Figure 3.8.

These modes avoid interference across different message streams and satisfy our working
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Figure 3.7. The X-relay channel.

definition of opportunistic modes in relay networks.

3.3.1 DMT Upper Bound

To find an upper bound for the DMT of opportunistic X-relay channel, we assume

a genie transfers the data from the sources to the relay and also allows the sources to

know each other’s messages. For the upper bound we also allow the destinations to fully

cooperate, noting that it can only improve the performance. Figure 3.9 shows the genie-aided

opportunistic modes, where the two-sided arrows indicate the free exchange of information

by the genie. From this figure, it is easy to see that the genie-aided X-relay channel is

equivalent to a MIMO system with 3 transmit antennas and 2 receive antennas.

The performance of the opportunistic X-relay channel is therefore upper bounded by

a 3× 2 MIMO system with antenna selection, choosing for each codeword two transmitting

and one receiving antennas. It is noteworthy that the 3 × 2 antenna selection allows one

configuration that does not have a counterpart in the opportunistic modes in the X-relay

channel, therefore due to the extra flexibility the MIMO system with antenna selection upper

bounds the performance of the genie-aided opportunistic X-relay channel.

Using the result from Equation (4.1), a 3×2 MIMO system with two antennas selected

from the transmitter side and one antenna selected from the receiver side has a DMT that

is upper bounded by d(r) = 6(1 − r)+. This in turn is an upper bound to the performance
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(c) (d)

(b)(a)

Figure 3.8. Opportunistic modes of the X-
relay channel

(c) (d)

(b)(a)

Figure 3.9. Opportunistic modes of genie-
aided X-relay channel.

of the opportunistic X-relay channel.

3.3.2 Achievable DMT

For deriving achievable rates, we consider the following simplified opportunistic scheme.

First, we choose between the two access modes (a) and (b) in Figure 3.8. If both these two

modes are in outage, we consider only the direct link of the two access modes (c) and (d),

i.e., the relay is not allowed to cooperate in modes (c) and (d). Note that this is only a

simplification for the purposes of achievable-DMT analysis, the idea being that if the relay

is useful in neither of the access modes (a) and (b), it is unlikely to be useful at all. The

approximation involving the conditional removal of the relay from (c) and (d) allows the

access modes to become independent and simplifies the analysis. The resulting achievable

rate is tight against the upper bound for compress-forward, as seen in the sequel, but not

demonstrably so for other protocols.

Access modes (a) and (b) do not share any common links, therefore their statistics are

independent. Each of them is an ordinary relay channel which can achieve d(r) = 2(1− r)+

via the CF protocol [30]. The (c) and (d) access modes, which were reduced to a single link,
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each achieves the DMT d(r) = (1−r)+. Furthermore, the source-destination links in (c) and

(d) are disjoint from the links in (a) and (b), therefore the statistics are independent and

we can use Lemma 1 to find the overall DMT d(r) = 6(1 − r)+. Note that this achievable

DMT meets the upper bound, therefore the DMT of the X-relay channel under CF is exactly

d(r) = 6(1− r)+.

Achievability results for relaying protocols other than CF can be obtained along the

same lines. We begin with NAF. Recall that the DMT of a simple relay network (source,

relay, destination) under NAF is d(r) = (1 − r)+ + (1 − 2r)+. Combining the four access

modes (a), (b), (c), (d) mentioned earlier for the X-relay channel together with the NAF

protocol results in:

dXNAF (r) = 2(1− r)+ + 2
[
(1− r)+ + (1− 2r)+

]
= 4(1− r)+ + 2(1− 2r)+ (3.27)

A similar result exists for the DDF where the DMT is given by

dXDDF (r) =

{
6(1− r) 0 ≤ r < 1

2

21−r
r

+ 2(1− r) 1
2
≤ r ≤ 1

(3.28)

Applying the same analysis to orthogonal AF and DF yields a diversity d(r) = 2(1− r)+ +

4(1 − 2r)+, but there is more to be said for orthogonal transmission. In orthogonal trans-

mission it may be beneficial at high multiplexing gains to shut down the relay, therefore a

complete analysis requires two more opportunistic modes that are derived by shutting down

the relay from modes (a) and (b). Using this extended set of six access modes, the DMT of

the opportunistic X-relay channel with orthogonal AF or orthogonal DF is

d(r) = 4(1− r)+ + 2(1− 2r)+ (3.29)

which matches the DMT of NAF.

Thus far, to find achievable DMTs for the X relay channel we used simplified selection

rules and access modes. In the case of CF, this simplified achievable DMT is in fact optimal
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since it matches the genie upper bound. Other protocols do not meet the genie-aided bound,

therefore the question of the optimality of simplified selection for other protocols is more

involved. Nevertheless, for NAF and DDF also, no DMT gains can be obtained by more

sophisticated selection rules and access modes, as outlined below.

To find the overall optimal DMT without the simplifications, we need to solve a linear

optimization problem similar to (4.27) where

do(r) = inf
(v

(ij)
1 ,v

(rj)
2 ,u(jr))∈O, i,j∈{1,2}

2∑
j=1

( 2∑
i=1

v
(ij)
1 + v

(rj)
2 + u(jr)

)
, (3.30)

where v
(ij)
1 , v

(rj)
2 and u(jr) represent the exponential order of 1/|hij|2, 1/|hrj|2 and 1/|hjr|2,

respectively. The outage event O is characterized by O+
1 ∩O+

2 ∩O+
3 ∩O+

4 , i.e., the system is

in outage if all access modes are in outage. The outage event is given by Equation (4.29) for

NAF and Equation (4.31) for DDF. In a straight forward manner, the optimization above

gives the same DMTs found by the simplified selection criterion, therefore the calculated

DMTs cannot be improved upon and are optimal. A comparison between all these relaying

schemes is shown in Figre 3.10.

3.4 The Gateway Channel

The gateway channel [37] is a multi-node network with M source-destination pairs

that communicate with the help of a relay (see Figure 3.11). Each source communicates

only with its corresponding destination. A two-hop communication scheme is used, where at

the first hop the sources transmit to the relay and at the second hop the relay transmits to

the destinations. No direct link exists between the sources and destinations, therefore if the

relay is in outage the destination will surely be in outage. Under these conditions, the most

natural mode of operation is decode-and-forward, although amplify-and-forward may also

be considered due to practical limitations. In this work we concentrate on the DF gateway

channel.
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Figure 3.10. The DMT of the opportunistic X-relay channel under various relaying protocols

We do not require data buffering at the relay. With an infinite buffer at the relay, the

gateway channel decomposes into a concatenation of a MAC and a broadcast channel. An

infinite buffer would thus simplify the analysis but also increase the overall latency and relay

complexity. One of the interesting outcomes of the forthcoming analysis is that that data

buffering in the asymptotic high-SNR regime does not provide a performance advantage (in

the sense of DMT).

We start with the non-opportunistic gateway channel, and then move to the oppor-

tunistic scheme.

3.4.1 No Transmit CSI

We first consider the case where all nodes have receive-side CSI, but the nodes, and in

particular the relay, do not have transmit-side CSI. Under these conditions, we cannot choose
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Figure 3.11. The gateway channel.

source-destination pairs according to their SNR. Then the choice of transmission strategies

on the MAC and broadcast side of the network are as follows.

On the broadcast side, the channel gains are random and unknown to the relay. In

light of symmetric rate requirements, the transmit strategy must be symmetric with respect

to the destinations. Under this symmetry, the best achievable rate is according to orthogonal

transmission [38] and superposition coding does not give better results.

For the multiple-access side, under symmetric rate requirement, both orthogonal and

superposition channel access are viable. It has been shown that superposition access gives

slightly better performance at medium SNR, while at high and low SNR the two methods

have asymptotically the same capacity under symmetric rates [38, pp. 243-245].

In the absence of transmit-side CSI, and with symmetric rate requirements, the net-

work does indeed decompose into a cascade of a multiple-access and a broadcast subnetworks,

and the overall outage probability is given by:

PO = 1− (1− PMAC)(1− PBC)

= PMAC + PBC − PMACPBC . (3.31)

Where PMAC (respectively PBC) denotes the outage of the MAC (respectively broadcast

channel), defined as the probability that one or more of the users in the MAC (respectively

broadcast channel) cannot support rate R. In a slowly fading environment, for a power
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allocation vector Ps = (P1, . . . , PM) and a fading state H = (h1r, . . . , hMr), the following

rates are achievable for the MAC under superposition coding

CMAC(H,P ) =

{
R̄ :

∑
i∈S

Ri ≤
1

2
log

(
1 +

1

N

∑
i∈S

|hir|2Pi

)}
, (3.32)

where R̄ is the rate vector and S ⊆ {1, . . . ,M}. The outage is:

PMAC = P
(
R̄ /∈ CMAC

)
= P

(
|S|R >

1

2
log

(
1 + ρ

∑
i∈S

|hir|2
))

= P
(∑

i∈S

|hir|2 <
22|S|R − 1

ρ

)
, (3.33)

where |S| denotes the cardinality of the set S. From Equation (3.33), with the assumption

of independent identically distributed Rayleigh fading coefficients, the outage probability in

the MAC can be shown to be

PMAC = 1−
M∏
i=1

P
(
|hir|2 ≥

ρ2r − 1

ρ

)

×
M∏
k=2

 P
(∑k

j=1 |hjr|2 ≥ 22kR−1
ρ

)
P
(∑k

j=1 |hjr|2 ≥
(

22(k−1)R−1
ρ

)
k

k−1

)

(Mk )

= 1−
(
e

(
−λ ρ2r−1

ρ

))M

×
M∏
k=2

 1− γ
(
k, λ22kR−1

ρ

)
1− γ

(
k, k

k−1
λ22(k−1)R−1

ρ

)
(Mk )

, (3.34)

where λ = 1 is the exponential parameter of the distribution of |hir|2 and |hri|2, the function

γ(i, x)
△
= 1

Γ(i)

∫ x

0
ti−1e−tdt = 1− e−x

∑i−1
k=0

xk

k!
is the (lower) incomplete gamma function, and

Γ(·) is the Gamma function. The above outage was calculated using superposition coding.
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With a time-sharing MAC, the outage probability is:

PMAC = P
({

Ri >
1

2M
log

(
1 + ρ|hir|2

)
, i = 1, . . . ,M

})
= 1− exp

(
−Mλ

22MR − 1

ρ

)
(3.35)

On the broadcast side, the following rates are achievable in the fading state hrd =

(hr1, . . . , hrM) by time sharing

CBC(hrd) =

{
R̄ : Ri ≤

1

2M
log

(
1 + ρ|hri|2

)}
, (3.36)

Thus the outage is

PBC = P
(
R̄ /∈ CBC

)
= P

({
Ri >

1

2M
log

(
1 + ρ|hri|2

)
, i = 1, . . . ,M

})
= P

({
|hri|2 ≤

22MR − 1

ρ
, i = 1, . . . ,M

})
= 1−

(
e

(
−λ 22MR−1

ρ

))M

. (3.37)

Without transmit CSI, the DMT is the minimum of the DMT of the MAC and the

broadcast channel. For the MAC channel, it has been shown [19] that for multiplexing gains

r ≤ M
M+1

, the diversity d = 1 − r/M is achievable, while for higher rates M
M+1

< r ≤ 1, the

diversity of d = M(1− r) is obtained.

For the broadcast channel, since time sharing achieves the maximum sum-rate bound,

the broadcast DMT is similar to the single-user DMT. The DMT of the network is bounded

by the DMT of the broadcast part of the network. Thus, including the half-duplex consid-

eration, the best achievable DMT is

d(r) = (1− 2r)+. (3.38)

The same DMT can be obtained with orthogonal channel access; superposition coding has

no effect on the DMT.
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3.4.2 Opportunistic Channel Access

In this scenario, the relay is assumed to have channel state information (either perfect

or incomplete) about its incoming and outgoing links. Using this information, during each

transmission interval the relay selects the best overall source-destination pair and gives it

access to the channel. Form Lemma 1, it is easy to see that the DMT of an opportunistic

gateway channel is upper bounded by d(r) ≤ n(1− 2r)+. We start by assuming perfect CSI

at the relay.

3.4.2.1 Full CSI at the Relay

We start by defining

γi
△
= min(|hir|2, |hri|2) .

In the decode-and-forward protocol, end-to-end data transmission is feasible if and only if

both source-relay and relay-destination links can support the desired rate, therefore γi is the

effective channel gain that governs the rate supported by a DF protocol for any node pair

i. In the opportunistic mode, we would like to support the maximum instantaneous rate,

therefore user i∗ will be selected such that:

i∗ = argmax
i

γi, (3.39)

We now investigate the statistics of γi∗ . Since the channel fading coefficients hri and hir

are complex Gaussian random variables, the channel gains |hri|2 and |hir|2 obey exponential

distributions with exponential parameters 1
E[|hri|2] and

1
E[|hir|2] , respectively. It is known that

the minimum of M exponential random variables with parameters λk is an exponential ran-

dom variable with parameter
∑M

k=1 λk, therefore the pdf of γi is an exponential distribution

with parameter λ = 2. Therefore, the cdf of the maximum SNR for all the source-relay-

destinations links γi∗ is

Fγi∗ (x) =
(
1− e−2x

)M
(3.40)
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The network is considered in outage when none of the source-destination pairs can support

the desired transmission rate R. The outage condition is therefore:

PO = P
(
R >

1

2
log

(
1 + ργi∗)

)
= P

(
γi∗ <

ρ2r − 1

ρ

)
=

(
1− exp

(
− 2

ρ2r − 1

ρ

))M

. (3.41)

The block sizes in our analysis are large enough so that the error events are dominated

by outage events, therefore the probability of error can be approximated by the outage

probability. Using the Taylor approximation 1− exp(−x) ≈ x, we get:

Pe
.
=

(ρ2r − 1

ρ

)M

.
= ρ−M(1−2r) . (3.42)

where the Taylor approximation is valid for 2r < 1. Hence, the opportunistic gateway

channel achieves the following DMT

d(r) = M(1− 2r)+. (3.43)

Remark 5 If the path selection criterion uses one set of channel gains, i.e. either {hir}

alone or {hri} alone, no diversity gain would result. For example, selecting on the MAC

side of the network would give γi = min(|hi∗r|2, |hri∗|2) where i∗ = argmax |hir|2. Since the

channel gains on the two sides are independent, |hri∗|2 is still exponential and dominates the

diversity order.

Remark 6 The outage calculations assume that upon selection each source must be con-

nected to its corresponding destination within one transmission interval, implying that no

long-term storage and buffering is taking place at the relay. In addition to simplifying the

relay, this is also helpful in terms of reducing the end-to-end delay due to opportunistic

communication.
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Remark 7 An infinite buffer at the relay may increase the throughput, but it does not im-

prove the DMT. If the relay can hold onto the data, the incoming packets could wait indefi-

nitely until the path to their destination is dominant. Under this condition, the opportunistic

MAC and opportunistic broadcast operations can be performed independently, each giving

rise to a diversity d = M(1− 2r)+, thus the overall diversity would also be d = M(1− 2r)+.

However, this is no more than the diversity obtained without the buffer.

To summarize, a buffer would not improve the DMT, however, it would allow us to

achieve the optimal DMT via local decision making (using MAC information on the MAC

side, and broadcast channel information on the broadcast side). Without buffering, the relay

must make decisions jointly in order to achieve optimal DMT.

3.4.2.2 Limited Feedback

We now assume the relay does not have perfect CSI but rather has access to one bit of

information per node from each destination and is further able to send one bit of information

per node to each of the sources. We wish to explore the DMT of this network under the

one-bit feedback strategy.

Each destination node knows its incoming channel gain via the usual channel esti-

mation techniques. Each destination compares its incoming channel gain to a threshold α,

reporting the result via the one-bit feedback to the relay. The k destination nodes that

report “1”(and their respective channels) are characterized as eligible for data transmission

in that interval. From among these k eligible destinations, the relay chooses the one whose

corresponding source-relay channel is the best.

The network is considered in outage if there is no source-relay-destination link that

can support the target rate R. We design the threshold of the second hop of the network

such that each destination reports “1” if the corresponding relay-destination link can support
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this rate R, i.e., α = ρ2r−1
ρ

. The outage event occurs if no destination reports positively, or if

some destinations are eligible, but none of the corresponding source-relay links can support

the rate R. If according to this methodology the relay detects more than one end-to-end

path that can support the rate R, the relay selects one of them randomly.

We define Am as the event of m destinations reporting “1”, and P(e|Am) as the

probability of error given that m destinations report “1”. This is the probability that none

of the m eligible relay-destination channels have a corresponding source-relay link that can

support the rate R. The probability of outage in this case is

PO = P(A0) +
M∑

m=1

P(Am)P(e|Am). (3.44)

The probability of m destinations reporting “1” and M − i destinations reporting “0” is

P(Am) =

(
M

m

)
Fγ(α)

m
(
1− Fγ(α)

)M−m

=

(
M

m

)(
e−λα

)m(
1− e−λα

)M−m
, (3.45)

where Fγ(x) is the cdf of the channel gains γ = |h|2, which is exponentially distributed with

parameter λ = 1. The probability of error given that m destinations report “1” is

P(e|Am) = P
(
max
j∈S

|hjr|2 ≤ α
)

=
(
1− Fγ(α)

)m
=

(
1− e−λα

)m
, (3.46)

where S ⊂ {1, . . . ,M}, |S| = m, and we use the fact that source-relay and relay-destination

channel gains have the same distribution Fγ. Assuming non-identical exponential distribu-

tions introduces more variables into analysis but the end results will be identical. Substitut-

ing (3.45), (3.46) in (3.44), the outage probability becomes

PO =
(
1− e−λα

)M
+

M∑
m=1

(
M

m

)(
e−λα

)m(
1− e−λα

)M−m(
1− e−λα

)m
=

M∑
m=0

(
M

m

)(
e−λgα

)m(
1− e−λα

)M−m(
1− e−λα

)m
. (3.47)
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To calculate the DMT, from (3.44), the outage probability is

PO = P
(
1

2
log

(
1 + max

i
|hri|2ρ

)
≤ r log ρ

)
+

M∑
m=1

(
M

m

)
P
(
1

2
log

(
1 + |hrd|2

)
≤ r log ρ

)M−m

× P
(
1

2
log

(
1 + |hrd|2

)
≥ r log ρ

)m

P
(
1

2
log

(
1 + max

j∈S,|S|=m
|hjr|2

)
≤ r log ρ

)
.
= P

(
max

i
|hri|2 ≤ ρ2r−1

)
+

M∑
m=1

P
(
|hrd|2 ≤ ρ2r−1

)M−mP
(
|hrd|2 ≥ ρ2r−1

)m
× P

(
max

j∈S,|S|=m
|hjr|2 ≤ ρ2r−1

)
.
=

M∑
m=1

(
e−λρ2r−1)m(

1− e−λρ2r−1)M−m(
1− e−λρ2r−1)m

.
= ρM(2r−1). (3.48)

So we have:

d(r) = M(1− 2r)+. (3.49)

Thus, even 1-bit feedback is enough to achieve optimal DMT.



CHAPTER 4

OPPORTUNISTIC MULTIPLE ACCESS AND BROADCAST

RELAY CHANNELS

The multiple access relay channel (MARC) [39] consists of the standard multiple access

channel together with one relay (see Figure 4.1). No results for the DMT of the opportunistic

MARC have been available until now, but its non-opportunistic DMT under superposition

coding with single-antenna nodes is analyzed in [40, 41, 42, 30]. The following results are

known for the non-opportunistic MARC: It is known that the dynamic decode and forward

is DMT optimal for low multiplexing gain [40]. The compress and forward protocol achieves

a significant portion of the half duplex DMT upper bound for high multiplexing gain [30]

but suffers from diversity loss in the low multiplexing regime. The multiple-access relay

amplify and forward (MAF) is proposed in [42], it dominates the CF and outperform the

DDF protocol in high multiplexing regime.

The broadcast relay channel (BRC) was introduced independently in [43] and [44]. As-

suming single-antenna nodes, the opportunistic BRC is identical to the opportunistic MARC

save for certain practicalities in the exchange of channel state information, which does not

Figure 4.1. The multiple access relay channel.

44
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make a difference at the abstraction level of the models used in this work. Therefore for the

demonstration purposes we focus on MARC; the results carry over to the BRC directly.

4.1 DMT Upper Bound

In order to calculate a DMT upper bound for the opportunistic MARC, we assume

a genie gives the relay an error-free version of the messages originating from all the sources.

We also assume full cooperation on the transmit side. Under these conditions, the source

that maximizes the instantaneous end-to-end mutual information is selected. Each of the

n sources has an independent link to the destination and they all share the same relay-

destination link. The opportunistic modes are demonstrated in Figure 4.2. The genie-aided

MARC is equivalent to a MISO system with n+1 transmit antennas and one receive antenna.

The performance of the opportunistic genie-aided MARC is therefore upper bounded

by a (n+ 1)× 1 MISO system with antenna selection that chooses for each codeword trans-

mission two transmit antennas. The (n+1)× 1 antenna selection allows configurations that

do not have a counterpart in the opportunistic modes in the MARC channel, therefore due to

the extra flexibility the MISO system with antenna selection upper bounds the performance

of the genie-aided opportunistic MARC channel.

The DMT of a M × N MIMO link with Lt < M selected transmit antennas and

Lr < N selected receive antennas is upper bounded by a piecewise linear function obtained

by connecting the following K + 2 points [45]{(
n, (Mr − n)(Mt − n)

)}K

n=0
,
(
min(Lr, Lt), 0

)
, (4.1)

where

K =argmin
k∈Z

(Mr − k)(Mt − k)

min(Lr, Lt)− k
,

subject to 0 ≤ k ≤ min(Lr, Lt)− 1
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Figure 4.2. Opportunistic access modes for the genie-aided multiple access relay channel.

Using this result, a (n+1)×1 MISO system with two selected transmit antennas has a DMT

that is upper bounded by

d(r) = (n+ 1)(1− r)+. (4.2)

This represents our genie-aided upper bound for opportunistic MARC.

4.2 Achievable DMT

In this section, we propose a node selection rule and calculate the corresponding

achievability results for a number of relaying protocols in opportunistic MARC and BRC.

As mentioned earlier, one of the difficulties in the computation of DMT in opportunistic

scenarios is the dependencies among the statistics of the node selections, which itself is a

result of selection rules. To circumvent these difficulties, we propose a selection rule that

relies only on the source-destination links in the MARC. Because this method does not

observe the shared link in the system, the resulting node statistics are independent and

many of the computational difficulties disappear.

We shall see that this simplified selection works surprisingly well in the high-SNR

regime. It will be shown that for some relaying protocols this selection algorithm yields

achievable DMT that is tight against the upper bound.

The proposed schemes for the MARC can be also be used for the BRC, therefore



47

for demonstration purposes we limit ourselves to MARC. The only difference is that for the

BRC the CSI must be fed back to the source to make the scheduling decision.

4.2.1 Orthogonal Amplify and Forward

The maximum instantaneous mutual information between the inputs and the output

is

IAF =
1

2
log

(
1 + ρ|hi∗d|2 + f(ρ|hi∗r|2, ρ|hrd|2)

)
, (4.3)

where i∗ = argmaxi |hid|. The outage probability is given by

PAF = P
(
IAF < r log ρ

)
= P

(
|hi∗d|2 +

1

ρ
f(ρ|hi∗r|2, ρ|hrd|2) <

ρ2r − 1

ρ

)
. (4.4)

Since channel coefficients hij are complex Gaussian, |hij|2 obey exponential distributions.

We therefore use the following result to characterize (4.4) in the high-SNR regime.

Lemma 4 Assume random variables ui, v and w follow exponential distributions with pa-

rameters λu, λv and λw, respectively, and ϵ is a constant and f(x, y) = xy
x+y+1

.

lim
ρ→∞

1(
ρ2r−1

ρ

) P
(
ui <

ρ2r − 1

ρ

)
= λu (4.5)

lim
ρ→∞

1(
ρ2r−1

ρ

)n P
(
max

i
ui <

ρ2r − 1

ρ

)
= λn

u (4.6)

lim
ρ→∞

1(
ρ2r−1

ρ

)n+1 P
(
max

i
ui + v <

ρ2r − 1

ρ

)
=

λvλ
n
u

n+ 1
, (4.7)

lim
ρ→∞

1(
ρ2r−1

ρ

)n+1 P
(
max

i
ui + f(

v

ϵ
,
w

ϵ
) <

ρ2r − 1

ρ

)
=

λn
u(λv + λw)

2
, (4.8)

Proof: Expression (4.5) is proved in [20]. The proof of the other expressions is similar (with

slight modifications). �
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From (4.4) and (4.8), the probability of outage at high SNR is

PAF
.
=

1

2
λn
i∗d

(
λi∗r + λrd

)(ρ2r − 1

ρ

)n+1

(4.9)

where λi∗r, λrd, λi∗d are the exponential parameters of the channel gains for the links corre-

sponding to the selected opportunistic mode. It follows that the DMT of the opportunistic

n-user MARC with orthogonal amplify-and-forward, under a selection rule based on the

source-destination channel gain, is given by

d(r) = (n+ 1)(1− 2r)+. (4.10)

4.2.2 Orthogonal Decode and Forward

With the orthogonal DF protocol, outage happens if either of the following two sce-

narios happen: (1) the relay cannot decode and the direct source-destination channel is in

outage, or (2) the relay can decode but the source-destination and relay-destination links

together are not strong enough to support the required rate. In other words:

PDF = P
(
|hi∗r|2 ≥

ρ2r − 1

ρ

)
P
(
|hi∗d|2 + |hrd|2 <

ρ2r − 1

ρ

)
+ P

(
|hi∗r|2 <

ρ2r − 1

ρ

)
P
(
|hi∗d|2 <

ρ2r − 1

ρ

)
.
= P

(
|hi∗r|2 ≥ ρ2r−1

)
P
(
|hi∗d|2 + |hrd|2 < ρ2r−1

)
+ P

(
|hi∗r|2 < ρ2r−1

)
P
(
|hi∗d|2 < ρ2r−1

)
. (4.11)

Using Lemma 4 (specifically equations (4.5), (4.6), (4.7)) the outage probability can

be approximated thus:

PDF
.
=

(
λn
i∗dλrd

n+ 1
+ λn

i∗dλrd

)
ρ(n+1)(2r−1) (4.12)

It follows directly that the n-user opportunistic MARC, subject to selection based on source-

destination channel gains and operating with orthogonal DF, has the following DMT

d(r) = (n+ 1)(1− 2r)+. (4.13)
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Remark 8 We know that an orthogonal relay may not be helpful in high multiplexing gains,

but the above orthogonal MARC dedicates time to the relay, therefore it may be improved.

To do that, we add to the system n unassisted modes, where the relay does not play a role.

For an opportunistic MARC that can choose between 2n opportunistic modes, one can show

that the maximum achieved DMT is d(r) = n(1− r)+ + (1− r/2)+. A simple selection rule

achieves this DMT: take the best source-destination link. If it is viable without the relay, use

it without relay, otherwise use it with the relay.

4.2.3 Non-Orthogonal Amplify and Forward

In this protocol, the source with the maximum source-destination channel coefficient is

selected. Recall that the index of this source is denoted i∗. This source continues transmitting

throughout the transmission interval.

The DMT of the MARC with n sources and opportunistic channel access based on

the source-destination channel gain using NAF relaying is

d(r) = n(1− r) + (1− 2r)+. (4.14)

This result indicates that at multiplexing gains r > 0.5 the relay does not play any role;

the only available diversity at r > 0.5 is that of multiuser diversity generated by selection

among n sources.

To prove the result, we make use of the calculation method in [18, 28]. An outline of

the proof is as follows. We assume that v1 is the exponential order of the random variable

1
|hi∗d|2

, i.e.

v1 = − log(|hi∗d|2)
log ρ

. (4.15)

The probability density function of the exponential order is

pv = n ln(ρ)ρ−ve−ρ−v

(1− e−ρ−v

)n−1, (4.16)
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which, asymptotically,

pv
.
=

{
0, v < 0
ρ−nv, v ≥ 0.

(4.17)

The probability of outage can be characterized by PO
.
= ρ−do where

do = inf
(v1,v2,u)∈O+

nv1 + v2 + u, (4.18)

where v2 and u are the exponential order of 1/|hi∗r|2 and 1/|hrd|2, respectively. The set

O characterizes the outage event and O+ is O
∩
R3+. Optimization problems of this form

have been solved in [28] and also in the context of opportunistic relay networks we have

demonstrated a solution in Appendix E for the shared relay channel, therefore we omit a

similar solution here in the interest of brevity.

4.2.4 Dynamic Decode and Forward

The DMT of the opportunistic DDF MARC, where the selection is based on the

source-destination channel gain, is given by

d(r) =

{
(n+ 1)(1− r), n

n+1
≥ r ≥ 0

n (1−r)
r

, 1 ≥ r ≥ n
n+1

.
(4.19)

The proof follows [18, 28] together with the basic Lemmas of this work and the NAF MARC

proof. The DDF achieves the optimal trade-off (the genie-aided DMT) for n
n+1

≥ r ≥ 0.

For multiplexing gains r > n
n+1

the relay does not have enough time to perfectly help the

selected source. However, as n grows, the DMT approaches the upper bound (genie-aided).

4.2.5 Compress and Forward

The node selected by the opportunistic algorithm has index i∗. The system will be

in outage if the transmission rate r log ρ is less than the instantaneous mutual information

I(xi∗ ; ŷr, yd|xr), where ŷr represents the compressed signal at the relay, yr and yd are the

received signals at the relay and the destination, respectively, and xi∗ and xr are the source
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and relay transmitted signals, respectively. Using selection scheme based on the direct link

only and applying the same techniques as in [30], it follows that the CF protocol achieves

the following DMT

d(r) = min
(
dBC(r), dMAC(r)

)
, (4.20)

where dBC , dMAC correspond to the outage of broadcast and MAC cutsets, as follows:

dBC(r)
△
= − lim

ρ→∞

min
p(xi∗ ,xr)

P(I(xi∗ ; yryd|xr) < r log ρ)

log ρ

= − lim
ρ→∞

P
(
log

∣∣I + ρHBCH
†
BC | < r log ρ

)
log ρ

(4.21)

dMAC(r)
△
= − lim

ρ→∞

min
p(xi∗ ,xr)

P(I(xi∗xr; yd) < r log ρ)

log ρ

= − lim
ρ→∞

P
(
log

∣∣I + 2ρHMACH
†
MAC

∣∣ < r log ρ
)

log ρ
, (4.22)

The transmit signals xi∗ and xr are from random codebooks that are drawn according to

complex Gaussian distributions with zero mean and variance
√
ρ. We define HBC

△
=

[
hi∗r

hi∗d

]
,

HMAC
△
= [hi∗d hrd] and ( )† denotes the Hermitian operator. The derivation of Equa-

tions (4.21), (4.22) uses the fact that a constant scaling in the transmit power does not

change the DMT [18].

Using the techniques in [18, 28] and following the NAF MARC DMT proof, it is

possible to calculate the following:

dBC(r) =


(n+ 1)− r

t
, r ≤ t < 1

n+1

n (1−r)
(1−t)

, t < min(r, 1
n+1

)

(n+ 1)(1− r), t ≥ 1
n+1

(4.23)

dMAC(r) =


(n+ 1)− r

1−t
, 1− r ≥ t > n

n+1

n (1−r)
t

, t > max{1− r, n
n+1

}
(n+ 1)(1− r), t ≤ n

n+1

(4.24)

Details of the derivation are similar to, e.g., Theorem 5.
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From Equations (4.20)-(4.24), it follows that the genie aided DMT upper bound can

be achieved for any value of 1
n+1

≤ t ≤ n
n+1

. The maximum achieved DMT is given by

d(r) = (n+ 1)(1− r)+ (4.25)

4.3 Optimality of the Achievable DMTs

Although the previous DMTs were calculated using simplified selection schemes that

only observed the source-destination direct link, one can show that for each of the relaying

protocols, no improvement in DMT is possible by more sophisticated selection schemes.

This fact is self-evident for the CF relaying result, since it meets the genie-aided

upper bound. The NAF and DDF do not meet the genie-aided bound, therefore it is not

obvious that they perform optimally under the simplified selection scheme. We now proceed

to investigate this question for DDF and NAF.

The DMT of the multiple access relay channel with opportunistic user selection is

given by

d(r) = lim
ρ→∞

logP(O1, . . . ,On)

log ρ
, (4.26)

where Oi represents the outage event for the access mode characterized by source i trans-

mitting to the destination with the help of the relay.

In a manner similar to [28] and Equation (E.6), the probability of outage P(O1, . . . ,On)

can be expressed as follows

P(O1, . . . ,On)
.
= ρ−do(r),

where

do(r) = inf
(v

(1)
1 ,u(1),...,v

(n)
1 ,u(n),v2)∈O

v2 +
n∑

j=1

(
v
(j)
1 + u(j)

)
. (4.27)
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The random variables v
(j)
1 , u(j) and v2 represent the exponential order of 1/|hjd|2, 1/|hjr|2

and 1/|hrd|2, respectively. Each of these random variables has a probability density function

that is asymptotically equal to

p(x)
.
=

{
0 x < 0
ρ−x x ≥ 0.

(4.28)

The set O represents the outage event for the opportunistic network. We know O = O+
1 ∩

. . .∩O+
n , i.e, the opportunistic system is considered in outage when no access mode is viable.

For NAF the outage region is defined by [28]

O+
j =

{(
v
(j)
1 , v2, u

(j)
)
∈ R3+

∣∣∣(l − 2m)(1− v
(j)
1 )+ +mmax{2(1− v

(j)
1 ),

1− (v2 + u(j))})+ < rl
}
, (4.29)

where m is rank of the relay amplification matrix and l is the block length. The solution

to Equations (4.27) and (4.29) is facilitated by the knowledge that do(r) is maximized when

m = l/2, leading to:

dNAF (r) = n(1− r) + (1− 2r), (4.30)

This is the best diversity obtained for NAF, which is similar to the simplified selection based

on the source-destination link. Therefore the optimality of the simplified selection rule is

established for NAF.

For DDF the outage region is defined by [28]

O+
j =

{(
v
(j)
1 , v2, u

(j)
)
∈ R3+

∣∣∣t(j)(1− v
(j)
1 )+ + (1− t(j))(1−min(v

(j)
1 , v2))

+ < r
}
, (4.31)

where t(j) is the listening-time ratio of the half-duplex relay when source j is transmitting,

with r ≤ t(j) ≤ 1. In the following we outline the solution of Equations (4.27) and (4.31) for

a two-user MARC. The generalization to n users is straight forward.
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Our strategy for solving the optimization problem is to partition the optimization

space into eight regions, solve the optimization problem over each region as a function of

t(1) and t(2), maximize over t(1) and t(2) and then find the minimum of the eight solutions.

The eight regions correspond to the Cartesian product of whether each of the three positive

variables v
(1)
1 , v

(2)
1 , v2 is greater than or less than 1. Following the calculations, which are

straight forward, the DMT for DDF is

dDDF (r) =

{
(n+ 1)(1− r) n

n+1
≥ r ≥ 0

n1−r
r

1 ≥ r > n
n+1

,
(4.32)

which matches the DMT of simplified selection based on the source-destination links. There-

fore the optimality of simplified selection for the DDF is established.

Figure 4.3 shows a comparison between the various studied relaying schemes for the

opportunistic N-user multiple-access relay channel. The insert shows the point at which the

DDF is no longer achieving the channel upper bound, r = n
n+1

. The CF is shown to achieve

the upper bound for all multiplexing gain. The NAF outperforms the orthogonal AF and

the orthogonal DF for all multiplexing gains.

We can follow essentially the same steps for the broadcast relay channel and obtain

the same DMTs for both the NAF and DDF. The optimization problem in the broadcast

case is slightly different: the shared link in BRC is the source-relay channel while it is the

relay-destination channel in the MARC. Nevertheless, very similar strategies follow through

for the BRC with only small adjustments.
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Figure 4.3. DMT for a N-user opportunistic multiple-access relay channel. The insert shows
the high-multiplexing gain region.



CHAPTER 5

HETEROGENEOUS RELAY CHANNEL

In a multi-relay scenario, relay selection can harvest diversity with relatively modest re-

quirements compared with alternatives such as distributed space-time codes or distributed

beamforming. An early example of cooperative selection appeared in [2]. Bletsas et al [3]

investigated amplify-and-forward (AF) relay selection, followed by many other works includ-

ing [6, 7, 8]. Decode-and-forward (DF) relay selection has also received attention, e.g. [11]

and many others [10, 11, 13]. The diversity multiplexing tradeoff (DMT) for relay selection

has been investigated in [46] for addressing the multiplexing loss of DF relaying, and [9] for

a combination of antenna selection and AF relay selection.

This chapter studies the performance of relay selection in heterogeneous relay net-

works where relays with different protocols co-exist. For example, a heterogeneous network

may contain both DF relays and AF relays, or in the non-orthogonal transmission mode, the

network may include dynamic decode-forward (DDF) relays and non-orthogonal amplify-

forward (NAF) relays. We study a system of one source, one destination and n relays, all

half-duplex single-antenna nodes, see Figure 5.1. There is a viable link between the source

and destination.

In the process of developing heterogeneous relay selection results, a long-standing

restriction on relay selection networks is relaxed and removed: In relay selection the source-

destination link introduces dependencies among decision variables1 and because of that pre-

vious works on relay selection often assumed the direct link to be non-existent, i.e., they

1With rare exceptions, e.g. [46]

56
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Figure 5.1. Multi-relay channel with direct link, relays can be of different types.

assumed a two-hop geometry. However, ignoring the direct link is in general wasteful, and in

particular interferes with the operation of compress-forward (CF), one of the more powerful

relaying protocols.2 So there is ample motivation to produce analysis that can account for

the direct link.

A heterogeneous network (Figure 5.1) where one relay is selected for each transmission

interval is studied. In particular, the following combinations are analyzed: mixture of DF

relays and AF relays, a mixture of NAF relays and DDF relays, and a mixture of NAF

relays and CF relays. The diversity-multiplexing tradeoff of heterogeneous relay selection is

analyzed in each of these cases.

A brief overview of our results is as follows: in a network of n relays of the same

type in the presence of a direct source-destination link, the orthogonal relaying protocols

achieve the same DMT as non-orthogonal amplify-forward. At low multiplexing gains the

dynamic decode-forward achieves the MISO upper bound. For high multiplexing gains, CF

relay selection outperforms both DDF and NAF. DDF and CF relay selection outperform

NAF at all multiplexing gains.

2With no direct link and one selected relay, the destination is in outage if the relay cannot
decode (due to cutset bound). So compress-forward is not particularly useful in a two-hop
network.
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We observe that the DMT of heterogeneous orthogonal relaying is similar to the

DMT of the corresponding homogeneous AF or DF relay systems. For heterogeneous non-

orthogonal relaying we consider NAF, DDF, and CF. Relay selection among NAF and DDF

relays gives maximal performance at high multiplexing gains, while providing diversity some-

where between that of NAF and DDF at low multiplexing gains. Relay selection among CF

and NAF relays achieves a diversity that scales with the number of relays at high multiplexing

gain as opposed to the fixed diversity for NAF.

An interesting direction that on first sight may seem related to this work is hybrid

relaying, where a relay adaptively changes its relaying protocol (e.g. AF/DF) [47, 48, 49,

50]. This class of work describes a new type of relay that obeys a complex decoding law.

But this is distinct from a system containing multiple relays of different kind, which we

call a heterogeneous system. True heterogeneous schemes have appeared very rarely in the

literature: Jeong et al. [51] studied a system with multiple AF and DF relays without a

direct link. Lusina et al. [52] presented a variation of the slotted Amplify-Forward (SAF)

scheme of Yang and Belfiore [53] with two relays, where one of the relays is AF while the

other (unlike [53]) is DF.

A relay is allowed to opportunistically access the channel and assist the source by

transmitting to the destination. This generates various ways to access the channel (access

modes), as seen in Figure 5.2. The source and destination can communicate without a relay,

as shown in the first access mode, or a relay can forward a version of the signal received

from the source. Since the source-destination link is shared among the relays, the selection

process is much more complicated than the two-hop variety. More importantly, the shared

link introduces dependency between the decision variables and this complicates the analysis.

Lemma 3 provide a technique to analyze such a system by providing a method to combine

the conditional DMTs of each access mode to produce the overall DMT. Naturally this is

useful only if the conditional DMTs are tractable. For n relay, n+1 access mode are defined
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Figure 5.2. The opportunistic modes for the multi-relay channel with non-orthogonal access
scheme.

and the DMT of the system is given by

d(r) = d1(r) + d′2(r) + . . .+ d′n(r), (5.1)

where d′i(r) is conditional DMT for access mode i and defined as Equation (2.5).

5.1 Orthogonal Relaying

A system is considered with n orthogonal relays that are AF, DF, or a combination.

The selection criterion is as follows. If the direct link alone can support the transmission rate,

no relay will be selected. Otherwise, the transmission will be assisted by a single selected

relay, in which case the source transmits for half the transmission interval and the relay

transmits for the second half of the transmission interval.

This creates n+ 1 access modes, where n is the total number of relays in the system

(Figure 5.2). The first access mode, the non-relayed access mode, is relay-free. The remaining

relay-assisted access modes each involves a relay in the usual two-interval orthogonal relay

framework. Some of these access modes may be AF and some of them may be DF. Each

will have an end-to-end mutual information calculated according to its own protocol.
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Figure 5.3. The genie upper bound opportunistic modes for the multi-relay channel

5.1.1 Upper Bound

Assume a genie provides the relays with a noise-free, error-free copy of the source

message. Thus the source-relay channel is removed from the picture (effectively replaced

with a perfect wire), and each selected relay together with the source will constitute a 2× 1

MISO channel (Figure 5.3). Recall that there are n different ways to select a relay, each

corresponding to a relay-assisted mode, all of them sharing one link: the source destination

link. The non-relayed mode is not affected by the genie.

Theorem 6 An upper bound for the opportunistic parallel relay channel with n orthogonal

relays is

d(r) = (n+ 1)(1− r)+. (5.2)

Proof: Using Lemma 1 and Lemma 3 tightness conditions, the genie upper bound DMT is

d(r) = d0(r) + d′1(r) + . . .+ d′n(r), (5.3)

where d0(r) is the DMT of the non-relay mode (denoted Mode 0). This mode consists of a

simple direct link whose DMT is d0(r) = (1− r)+ and d′i(r), i = 1, . . . , n, are the conditional

DMTs of the relay-assisted modes that are given by Equation (2.5).

For the first relay-assisted access mode (denoted Mode 1), the DMT is given by

d′1(r) =− lim
ρ→∞

logP(O1|O0)

log ρ
, (5.4)
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where Oi represents the outage event for Mode i. The outage probability of Mode 1 given

that Mode 0 is in outage

P(O1|O0) = P
(
{log(1 + (|hsd|2 + |h1d|2)ρ) < r log ρ}

∣∣{log(1 + |hsd|2ρ) < r log ρ}
)

= P
({

|hsd|2 + |h1d|2 <
ρr − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
,

where Mode 1 is equivalent to a 2 × 1 MISO channel and the conditioning means that one

of its links is not capable of supporting the whole transmission rate. Using results from

the Appendix I and defining α = g1(r, ρ) =
ρr−1
ρ

, the conditional outage probability can be

calculated as follows

P(O1|O0) =

∫ g1(r,ρ)

0

fZ|B(z)dz =

∫ g1(r,ρ)

0

ze−z

1− eg1(r,ρ)
dz

.
=

1− e−ρr−1 − ρr−1e−ρr−1

1− e−ρr−1

.
= ρr−1. (5.5)

Hence, d′1(r) = (1− r)+. For Modes i > 1, one can show that

P(Oi|O0, . . . ,Oi−1)
.
= P

(
|hsd|2 + |hid|2 < ρr−1

∣∣∣O0, . . . ,Oi−1

)
≤̇P

(
|hid|2 < ρr−1

∣∣∣O0, . . . ,Oi−1

)
= P

(
|hid|2 < ρr−1

)
. (5.6)

At the same time, P(Oi|O0, . . . ,Oi−1) is lower bounded by P(Oi|O0), which can be calculated

using the same technique used for P(O1|O0), i.e.,

P
(
|hid|2 < ρr−1

)
≥̇P(Oi|O0, . . . ,Oi−1) ≥ P(Oi|O0)

ρr−1≥̇P(Oi|O0, . . . ,Oi−1)≥̇ρr−1. (5.7)

Hence, d′i(r) = (1−r)+ for 1 < i ≤ n. Substituting the conditional DMTs into Equation (5.1)

completes the proof. �

Note that the above selection procedures are designed to be DMT-optimal and to

simplify the analysis. Selecting the mode i∗ = arg max
i∈{0,...,n}

Ii gives the same DMT.
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5.1.2 Opportunistic Amplify and Forward Orthogonal Relaying

If the direct link is in outage, the selected relay amplifies its received signal during

the first half-interval and forwards it to the destination in the second half-interval. The

instantaneous mutual information of the non-relay mode is given by I0 = log(1+|hsd|2ρ). The

end-to-end instantaneous mutual information for the relay-assisted modes under orthogonal

AF is given by [20, 26]

Ii =
1

2
log(1 + |hsd|2ρ+ f(|hir|2ρ, |hri|2ρ)), i = 1, . . . , n,

where f(x, y) = xy
x+y+1

. At high SNR, f(|hir|2ρ, |hri|2ρ) can be approximated to |hir|2|hri|2ρ
|hir|2+|hri|

and relay i∗ is selected such that i∗ = argmaxi
|hir|2|hri|2
|hir|2+|hri|2 .

Theorem 7 The DMT of the orthogonal opportunistic AF parallel relay channel with direct

link between the source and the destination is given by

d(r) = (1− r)+ + n(1− 2r)+. (5.8)

Proof: The overall DMT in terms of individual conditional DMTs is given by Equation (5.1).

To calculate the right hand side, we start with the non-relay mode (Mode 0) whose DMT is

d0(r) = (1− r)+. At high SNR, the conditional outage of Mode 1 is

P(O1|O0)
.
= P

({
|hsd|2 +

|hs1|2|h1d|2

|hs1|2 + |h1d|2
<

ρ2r − 1

ρ

}∣∣∣ {|hsd|2 <
ρr − 1

ρ

})
. (5.9)

In order to calculate the conditional outage probability distribution, we first calculate the

conditional density function of Z = |hsd|2 + V where V = |hs1|2|h1d|2
|hs1|2+|h1d|2

. The term |hs1|2|h1d|2
|hs1|2+|his|2

represents half the harmonic mean of two independent exponential random variables. Using

a result of [54], the harmonic mean of two exponential random variables with parameters λ

can be approximated by an exponential random variable with parameter λ+ λ = 2λ.
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Using results from the Appendix I and defining α = g1(r, ρ) = ρr−1
ρ

and g2(r, ρ) =

ρ2r−1
ρ

, the conditional outage probability is

P(O1|O0) =

∫ g2(r,ρ)

0

fZ|B(z)dz
.
= 2

∫ g1(r,ρ)

0

e−2z(ez − 1)

1− e−g1(r,ρ)
dz + 2

∫ g2(r,ρ)

g1(r,ρ)

e−2z
(
eg1(r,ρ) − 1

)
1− e−g1(r,ρ)

dz

=
e−2ρ2r−1 − e−ρr−1 − e−2ρ2r−1+ρr−1

+ 1

1− e−ρr−1

.
= ρ2r−1. (5.10)

From Equations (5.10) and (5.4), d′1(r) = (1− 2r)+.

For Mode 2, the conditional outage can be shown to be

P(O2|O1,O0) ≥P(O2|O0)
.
= ρ2r−1, (5.11)

where (5.11) follows the same proof as P(O1|O0). Also one can show

P(O2|O1,O0)=̇P
({

|hsd|2 + f
(
|hs2|2, |h2d|2

)
< ρ2r−1

}∣∣∣ O1,O0

)
(5.12)

≤̇P
({

f
(
|hs2|2, |h2d|2

)
< ρ2r−1

}∣∣∣ O1,O0

)
(5.13)

≤̇P
(
f
(
|hs2|2, |h2d|2

)
< ρ2r−1

)
.
= ρ2r−1.

Hence, P(O2|O1,O0)
.
= ρ2r−1 and d′2(r) = (1 − 2r)+. Following similar steps, one can show

that d′i(r) = (1− 2r)+ for i = 3, . . . , n. Substituting conditional DMTs into Equation (5.1)

completes the proof. �

5.1.3 Opportunistic Decode and Forward Orthogonal Relaying

If the direct link is not capable of supporting the transmission rate, the transmission

interval is divided into two intervals. In the first transmission interval, the source transmits.

If some relays decode the source message, then a relay will forward the decoded message to

the destination in the second half of the transmission interval and the source remains silent.

If neither the non-relayed mode nor any relayed mode is capable of supporting the desired

rate, the system is in outage.
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Theorem 8 The DMT of the orthogonal opportunistic DF parallel relay channel with direct

link between the source and the destination is given by

d(r) = (1− r)+ + n(1− 2r)+. (5.14)

Proof: The total DMT as a function of conditional DMTs is given by Equation (5.1) and

d0(r) = (1− r)+. The conditional outage probability of the first relay-assisted mode is given

by

P(O1|O0) =P
({1

2
log(1 + U1ρ) < r log ρ

}∣∣∣ { log(1 + |hsd|2ρ) < r log ρ
})

, (5.15)

where the random variable U1 is defined as

Ui =

{
|hsd|2 |hsi|2 < ρ2r−1

ρ

|hsd|2 + |hid|2 |hsi|2 ≥ ρ2r−1
ρ

.
(5.16)

P(O1|O0) =P
({

|hsd|2 <
ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
P
(
|hs1|2 <

ρ2r − 1

ρ

)
+ P

({
|hsd|2 + |h1d|2 <

ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
P
(
|hs1|2 ≥

ρ2r − 1

ρ

)
.

(5.17)

One can show that ρ2r−1
ρ

>̇ρr−1
ρ

, therefore

P
({

|hsd|2 <
ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
.
= 1. (5.18)

Using results from the Appendix I and defining g1(r, ρ)
△
= ρr−1

ρ
and g2(r, ρ)

△
= ρ2r−1

ρ

P
({

|hsd|2 + |h1d|2 < g2(r, ρ)
}∣∣∣{|hsd|2 < g1(r, ρ)

})
=

∫ g1(r,ρ)

0

ze−z

1− e−g1(r,ρ)
dz +

∫ g2(r,ρ)

g1(r,ρ)

g1(r, ρ)e
−z

1− e−g1(r,ρ)
dz

.
=

1− e−ρr−1 − ρr−1e−ρ2r−1

1− e−ρr−1

.
= ρ2r−1. (5.19)
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Substituting (5.18) and (5.19) into (5.17), the conditional probability of outage is

given by

P(O1|O0)
.
=ρ2r−1 + ρ2r−1(1− ρ2r−1)

.
= ρ2r−1. (5.20)

Hence, the conditional DMT for the first relay-assisted access mode is d′1(r) = (1−2r)+. Us-

ing the same argument as the orthogonal AF, it follows that P(Oi|O0, . . . ,Oi−1)
.
= ρ2r−1 and

hence d′i(r) = (1− 2r)+ for i = 2, . . . , n. Substituting conditional DMTs into Equation (5.1)

completes the proof. �

5.1.4 Heterogeneous Network with AF and DF Orthogonal Relays

In this scenario both AF and DF relays are present in the network. At high SNR,

the selected relay i∗ is such that i∗ = argmaxi{γDF
i∈D, γ

AF
i∈A}, where D and A represent the DF

and AF relays set, respectively, and γi is the SNR at the destination when Relay i is active.

Theorem 9 The DMT of the orthogonal opportunistic relay selection with N AF relay and

M DF relays channel and a direct link between the source and the destination is given by

d(r) = (1− r)+ + (N +M)(1− 2r)+. (5.21)

Proof: The total DMT as a function of conditional DMTs is given by Equation (5.1). As

mentioned earlier for the non-relay mode (Mode 0) DMT is d0(r) = (1− r)+.

We know there is at least one AF and one DF relay in this network. For the purposes

of exposition, we assign Mode 1 to an AF relay and Mode 2 to a DF relay. For Mode 1, At

high SNR, the analysis is identical to Mode 1 analysis in Section 5.1.2. From Equation (5.10),

the conditional outage P(O1|O0)
.
= ρ2r−1, hence for Mode 1, the conditional DMT is d′1(r) =

(1− 2r)+.
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For Mode 2, we first bound the conditional outage from below:

P(O2|O1,O0) ≥P(O2|O0). (5.22)

The calculation of P(O2|O0) is similar to Equation (5.20) and can be shown to be

P(O2|O0) =P
({1

2
log(1 + U2ρ) < r log ρ

}∣∣∣{ log(1 + |hsd|2ρ) < r log ρ
})

.
=ρ2r−1. (5.23)

Now, we bound P(O2|O1,O0) from above, using the same technique used in Equation (5.6)

P(O2|O1,O0)≤̇P
(
U2 < ρ2r−1

)
.
= ρ2r−1. (5.24)

Thus, using a sandwich argument, we have P(O2|O1,O0)
.
= ρ2r−1, indicating the conditional

DMT of Mode 2 is d′2(r) = (1− 2r)+. Following the same steps, one can show that d′i(r) =

(1 − 2r)+ for i = 3, . . . , N + M . Substituting the conditional DMTs into Equation (5.1)

completes the proof. �

5.2 Non-Orthogonal Relaying

In this scenario the source transmits throughout the transmission interval. The relays

listens for a portion of the transmission interval and then, depending on the channel con-

ditions, one of the relays may transmit simultaneously with the source for a portion of the

transmission interval. The destination receives the source signal, potentially superimposed

with the relay signal. Since in non-orthogonal modes the end-to-end mutual information

always improves with a relay, there is no need to consider a non-relay access mode for the

purposes of DMT calculation. Thus in the analysis of non-orthogonal protocols, the system

has n access modes as opposed to n+ 1 in the case of orthogonal relaying.
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5.2.1 Upper Bound

For the calculation of the upper bound we assume a genie provides the relays with

a noise-free and error-free version of the source message. We also assume full cooperation

between the source and the relays. The relay that maximizes the instantaneous end-to-end

mutual information is selected to transmit simultaneously with the source. Each of the

n relays has an independent link to the destination and they all share the same source-

destination link. Subject to the genie information, the distinction between relay types (AF,

DF, CF) goes away and therefore the upper bound is equally valid for any set of n non-

orthogonal relays.

Theorem 10 An upper bound for the opportunistic parallel relay channel with n non-orthogonal

relays is

d(r) = (n+ 1)(1− r)+. (5.25)

Proof: The genie-aided opportunistic parallel relay channel is equivalent to a MISO system

with n+1 transmit antennas and one receive antenna. The performance of the opportunistic

genie-aided relay selection is therefore upper bounded by a (n + 1) × 1 MISO system with

antenna selection that chooses for each codeword transmission two transmit antennas. The

(n + 1) × 1 antenna selection allows configurations that do not have a counterpart in the

opportunistic modes in our channel, therefore in addition to the genie we have allowed a

second relaxation of conditions for the computation of the upper bound in this theorem.

The DMT of a M × N MIMO link with Lt < M selected transmit antennas and

Lr < N selected receive antennas is upper bounded by a piecewise linear function obtained

by connecting the following K + 2 points [45]{(
n, (Mr − n)(Mt − n)

)}K

n=0
,
(
min(Lr, Lt), 0

)
, (5.26)
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where

K =argmin
k∈Z

(Mr − k)(Mt − k)

min(Lr, Lt)− k
,

subject to 0 ≤ k ≤ min(Lr, Lt)− 1

Using this result, a (n+1)×1 MISO system with two selected transmit antennas has a DMT

that is upper bounded by

d(r) = (n+ 1)(1− r)+. (5.27)

This represents our genie-aided upper bound. �

5.2.2 Non-Orthogonal Amplify and Forward

For half the transmission interval, the received signal at the destination and at Relay

i are given by

y1i =
√
ρ hii x1i + n1i, y1r =

√
ρ hir x1i + n1r.

The variables x, y, n represent source transmitted signal, received signal and the noise, re-

spectively. The variable have two subscripts indicating the appropriate half-interval and

node identity, respectively. At the second half of the transmission interval the relay normal-

izes the received signal and retransmits it. The destination received signal in the second half

is

y2i =
√
ρ hii x2i +

√
ρ hri√

ρ|hir|2 + 1
y1r + n2i.

At the destination Y = HiX +N where Xi = [x1i x2i]
t is the transmitted signals vector, N

is the noise vector, and Hi is the effective channel gain matrix [27].

Hi =

 √
ρ hii 0

ρ hrihir√
ρ|hir|2+1

√
ρ|hri|2

ρ|hir |2+1
+1

√
ρ hii√

ρ|hri|2

ρ|hir |2+1
+1

 . (5.28)
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The instantaneous mutual information is given by

Ii =
1

2
log

∣∣∣I+HiH
∗
i

∣∣∣
=

1

2
log

(
1 + |hii|2ρ+

|hri|2|hir|2ρ2

|hri|2ρ+ |hir|2ρ+ 1
+

|hii|2(|hir|2ρ+ 1)ρ

|hri|2ρ+ |hir|2ρ+ 1
+

|hii|4(|hir|2ρ+ 1)ρ2

|hri|2ρ+ |hir|2ρ+ 1

)
.

Relay i∗ is selected to maximize the mutual information, which at high SNR is:

i∗ = argmax
i

Ii = argmax
i

{
|hir|2

|hri|2

}
. (5.29)

Theorem 11 The maximum DMT for n parallel relay channel with opportunistic NAF relay

selection is

d(r) = (1− r)+ + n(1− 2r)+. (5.30)

Proof: The DMT of a system that switches between n dependent access modes is given by

d(r) = − lim
ρ→∞

logP(O1, . . . ,On)

log ρ
. (5.31)

In a manner similar to [28], the probability of outage P(O1, . . . ,On) can be expressed as

follows

P(O1, . . . ,On)
.
= ρ−do(r), (5.32)

do(r) = inf
(v1,u(1),v

(1)
2 ,...,u

(n)
1 ,v

(n)
2 )∈O

v1 +
n∑

i=1

(
u(i) + v

(i)
2

)
. (5.33)

The random variables v1, u
(i) and v

(i)
2 represent the exponential order of 1/|hsd|2, 1/|hsi|2

and 1/|hid|2, respectively. Each of these random variables has a probability density function

p(x) that is asymptotically equal to ρ−x for x ≥ 0 and 0 otherwise [28]. The set O represents

the outage event for the network. The network is considered in outage when no access mode

is viable, i.e., O = O+
1 ∩ . . . ∩O+

n . For NAF, the outage region for Mode i is defined by [28]

O+
i =

{(
v1, v

(i)
2 , u(i)

)
∈ R3+

∣∣∣(l − 2m(i))(1− v1)
+ +m(i)max{2(1− v1), 1− (v

(i)
2 + u(i))})+ < rl

}
,

(5.34)
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where m(i) is rank of the amplification matrix and l is the block length. The solution to

the optimization problem in Equations (5.33) and (5.34) is facilitated by the knowledge that

do(r) is maximized when m(i) is maximum, i.e, m(i) = l/2, thus leading to the result. �

5.2.3 Dynamic Decode and Forward

In this scenario the selected relay listens to the source until it has enough information

to decode the message. From that point on, the relay uses the remainder of the transmission

interval to send the decoded information to the destination. The selection criterion is, once

again, according to the maximum end-to-end mutual information.

Theorem 12 The maximum DMT for the n parallel relay channel with opportunistic DDF

relay selection is

dDDF (r) =


(n+ 1)(1− r) 1

n+1
≥ r ≥ 0

(n+ 1)− n r
1−r

1
2
≥ r > 1

n+1
1−r
r

r ≥ 1
2
.

(5.35)

Proof: Following Equations (5.31), (5.32), and (5.33), for the relay channel characterized

by Relay i, the outage region under DDF can be shown to be [28]

O+
i =

{(
v1, v

(i)
2 , u(i)

)
∈ R3+

∣∣∣ti(1− v1)
+ + (1− ti)(1−min(v1, v

(i)
2 ))+ < r

}
, (5.36)

where ti is the listening-time ratio of the relay i, with r ≤ ti ≤ 1. In the following we outline

the solution of Equations (5.33) and (5.36) for a two-relay channel. The generalization to n

users follows the same lines.

Our strategy for solving the optimization problem is to partition the optimization

space into eight regions, solve the optimization problem over each region as a function of t1

and t2, maximize over t1 and t2 and then find the minimum of the eight solutions. The eight

regions correspond to the Cartesian product of whether each of the three positive variables

v
(1)
1 , v

(2)
1 , v2 is greater than or less than 1. Following the calculations, which are omitted due

to their length, the DMT for DDF is established. �
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5.2.4 Compress and Forward

In this scenario, following [30], the selected relay uses Wyner-Ziv compression and the

destination uses the received signal from the source as side information to decode the signal.

The compression rate ensures that the compressed signal is decoded at the destination error-

free. Yuksel and Erkip [30] show that the one-relay compress-forward achieves the DMT

d(r) = 2(1− r)+, which coincides with the MISO upper bound.

The relay i∗ = argmaxi Ii is selected which at high-SNR, using results from [30], is:

i∗ =argmax
i

(|hsi|2 + |hsd|2)(|hid|2 + |hsd|2)
(|hsi|2 + |hsd|2) + (|hid|2 + |hsd|2)

.

Following [30], the DMT for the n parallel relay channel with opportunistic CF relay selection

can be shown to be

d(r) = max
t

min(dMAC(r, t), dBC(r, t)), (5.37)

dMAC = − lim
ρ→∞

logminp(xs,xr|q) P
(
IMAC < r log ρ

)
log ρ

,

dBC = − lim
ρ→∞

logminp(xs,xr|q) P
(
IBC < r log ρ

)
log ρ

,

where t is the the time ratios vector, t = [t1, . . . , tn], q represents the state of the relay

(listening vs. transmitting), p(xs, xr| q) is the probability density according to which the

random codebooks are generated for the source and the relay, and IBC and IMAC represent

the total mutual information across the source and the destination cutsets, respectively. We

have:

IMAC ≤(1− ti∗) log(1 + |hsd|2ρ) + ti∗ log(1 + (|hsd|2 + |hi∗d|2)ρ).

We can show that P
(
IMAC < r log ρ

) .
= ρ−dMAC(r) where

dMAC(r) = inf
(v1,v

(1)
2 ,...,v

(n)
2 )∈O

v1 +
n∑

i=1

v
(i)
2 , (5.38)
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and the outage event O+
i is defined as

O+
i =

{
(v1, v

(i)
2 ) ∈ R2+

∣∣∣(1− ti)(1− v1)
+ + ti

(
1−min(v1, v

(i)
2 )

)+ ≤ r
}
. (5.39)

Solving the optimization problem in (5.38), the DMT for the destination cutset is:

dMAC(r, t1, . . . , tn) =


(n+ 1)(1− r)

∑n
i=1

ti
1−ti

< 1

1 +
∑

ti∈Γ(1−
r

1−ti
)

∑
ti∈Γ

ti
1−ti

> 1 , Γ ̸= ∅
1−r
ti

+
∑

tj<ti
1−r
1−tj

(
1− tj

ti

)
ti > 1− r , 1−2ti

1−ti
<

∑
tj<ti

tj
1−tj

< 1

where Γ = {ti : ti < 1 − r}, and the third line in the equation above represents multiple

expressions, one for each ti that satisfies the corresponding condition. The details of the

optimization are omitted for complying with the length requirement of this manuscript.

Similarly, the source cutset DMT can be obtained by replacing ti with 1− ti. Maxi-

mizing over t, the minimum of the two DMT cutsets gives the DMT of the system.

Thus, the DMT for arbitrary number of relays is a composite expression which does

not reduce to a more compact form as long as the number of relays remains a variable.

However, for any fixed number of relays the results are more streamlined. For example, for

selection among three CF relays:

dCF (r) =

{
4− 6r r < 1

3

3(1− r) 1
3
≤ r ≤ 1

(5.40)

5.2.5 Mixture of NAF and DDF Relays

Now consider a scenario consisting ofN NAF relays andM DDF relays. If the selected

relay is an NAF relay, the relay will listen for half the transmission interval and transmits

simultaneously with the source in the second half of the transmission interval. If the selected

relay is a DDF relay, the relay listens to the source until it has enough information to decode

the message, then transmits during the remainder of the transmission interval.
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Theorem 13 The DMT for an opportunistic multiple relay channel with N NAF relays and

M DDF relays is given by

d(r) =


(M + 1)(1− r) +N(1− 2r) 1

M+1
≥ r ≥ 0

(M + 1)− Mr
1−r

+N(1− 2r) 1
2
≥ r ≥ 1

M+1
1−r
r

1 ≥ r ≥ 1
2
.

(5.41)

Proof: The DMT of a system that switches between N + M dependent access modes is

given by

d(r) = − lim
ρ→∞

logP(O1, . . . ,ON+M)

log ρ
. (5.42)

In a manner similar to [28], the probability of outage P(O1, . . . ,On) can be expressed as

follows

P(O1, . . . ,On)
.
= ρ−do(r), (5.43)

where

do(r) = inf
(v1,u(1),v

(1)
2 ,...,u

(N+M)
1 ,v

(N+M)
2 )∈O

v1 +
N+M∑
i=1

(
u(i) + v

(i)
2

)
, (5.44)

where O = O+
1 ∩ . . . ∩ O+

N+M .

For the purposes of exposition, the NAF access modes are indexed as Mode i where

i = 1, . . . , N . The outage region can be shown to be [28]

O+
i =

{(
v1, v

(i)
2 , u(i)

)
∈ R3+

∣∣∣(l − 2m(i))(1− v1)
+ +m(i)max{2(1− v1), 1− (v

(i)
2 + u(i))})+ < rl

}
,

(5.45)

where m(i) is rank of the amplification matrix and l is the block length.

The DDF access modes are indexed as Mode i where i = N + 1, . . . , N + M . The

outage region can be shown to be [28]

O+
i =

{(
v1, v

(i)
2 , u(i)

)
∈ R3+

∣∣∣ti(1− v1)
+ + (1− ti)(1−min(v1, v

(i)
2 ))+ < r

}
, (5.46)
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where ti is the listening-time ratio of the relay i, with r ≤ ti ≤ 1.

The DMT is found by solving the optimization problem in Equation (5.44) over the

union of the regions defined in Equations (5.45) and (5.46). The details of the optimization

are omitted for brevity. �

5.2.6 Mixture of NAF and CF Relays

In this scenario we have N NAF relays and M CF relays. The NAF relays work

as mentioned in the previous subsection. For CF relays, we again follow [30] where the

CF relays use Wyner-Ziv compression and the destination uses the received signal from the

source as side information to decode the signal. As mentioned earlier, a single-relay CF

channel achieves the DMT d(r) = 2(1− r)+.

The relay i∗ = argmaxi Ii is selected. At high-SNR, using results from [30] and [27],

the selected user i∗ is

i∗ =argmax
i

{{
|hsi|2

|hid|2

}
i=1,...,N

,

{
(|hsi|2 + |hsd|2)(|hid|2 + |hsd|2)

(|hsi|2 + |hsd|2) + (|hid|2 + |hsd|2)

}
i=N+1,...,N+M

}
,

where without loss of generality we have indexed the relays so that the first N relays are

NAF and the following M relays are CF.

We provide a sketch of the technique used to arrive at the DMT. Following [30], the

DMT for the multiple relay channel with opportunistic relay selection can be shown to be

d(r) = max
t

min(dCF (r, t), dBC(r, t)), (5.47)

dMAC = − lim
ρ→∞

logP
(
ICF−MAC < r log ρ, INAF < r log ρ

)
log ρ

,

dBC = − lim
ρ→∞

logP
(
ICF−BC < r log ρ, INAF < r log ρ

)
log ρ

,

where t is the the time ratios vector, t = [tN+1, . . . , tN+M ], for the CF relays, and IBC and

IMAC represent the total mutual information across the source and the destination cutsets
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considering one CF relay active, respectively. It can be shown that

ICFMAC ≤(1− ti∗) log(1 + |hsd|2ρ) + ti∗ log(1 + (|hsd|2 + |hi∗d|2)ρ).

The probability of outage P
(
IMAC < r log ρ, INAF < r log ρ

)
can be expressed as

P
(
ICFMAC < r log ρ, INAF < r log ρ

) .
= ρ−d(r), (5.48)

where

d(r) = inf
(v1,v

(1)
2 ,...,v

(N+M)
2 ,u(1),...,u(N))∈O

v1 +
N∑
i=1

u(i) +
N+M∑
i=1

v
(i)
2 , (5.49)

For i = 1, . . . , N , the NAF relay-assisted modes, the outage event O+
i is defined as given

by Equation (5.45). For i = {N + 1, . . . , N +M}, the CF relay-assisted modes, the outage

event O+
i is defined as

O+
i =

{
(v1, v

(i)
2 ) ∈ R2+

∣∣∣(1− ti)(1− v1)
+ + ti

(
1−min(v1, v

(i)
2 )

)+ ≤ r
}
. (5.50)

We provide the solution for the optimization problem for the case of 2 CF relays and N NAF.

the generalization to the M CF relays follows along the same lines.

d(r) =


(3− 4r) +N(1− 2r) 3

7
≥ r ≥ 0

9
4
(1− r) +N(1− 2r) 1

2
≥ r ≥ 3

7
9
4
(1− r) 1 ≥ r ≥ 1

2
.

(5.51)

Figure 5.4 compares the opportunistic DMT of a system consists of one source, one

destination and two relays with a direct link between the source and the destination. Fig-

ure 5.5 shows the DMT for the case of three relays, where various combination of three

available relays are analyzed. Figure 5.6 considers a configuration with four relays, where

the relays can be all ODF, all OAF, all NAF, all DDF, a mix of 2 OAF and 2 ODF, a mix

of 2 NAF and 2 DDF, or a mix of 2 NAF and 2 CF. These figures serve to highlight the

relative advantage and disadvantage of hybrid relay configurations at various transmission

rates (multiplexing gains).
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Figure 5.4. The DMT of hybrid relay selection from among two relays
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CHAPTER 6

BI-DIRECTIONAL MULTI-RELAY CHANNEL

A bi-directional multi-relay channel consists of two source nodes trying to exchange messages

through wireless links. Multiple relays exist to help both nodes delivering their messages

to their intended receivers. The relays can listen to the messages from both sources and

forward the received signal to any of these two nodes or both of them. There is a viable link

between the two nodes, see Figure 6.1.

The channel coefficients for the direct link between the two sources is given by hs1s2

and hs2s1 for the reverse channel. The channel between the first source, s1, and Relay i, ri,

is represented by hs1ri and hris1 for its reverse channel, respectively. The channel between

the second source, s2, and Relay i, ri, is represented by hs2ri and hris2 for its reverse channel,

respectively. As mentioned before, for simplicity, we assume that both nodes have the same

multiplexing gain r1 = r2 = r and the total multiplexing gain in the system should be

rt = 2r.

There are various ways the sources can exchange their messages in a bi-directional

Figure 6.1. Bi-directional multi-relay channel with direct link.
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Figure 6.2. Bi-directional multi-relay channel access modes, one relay helping.

Figure 6.3. Bi-directional multi-relay channel access modes, two relays helping.

multi-relay channel with relay selection. If there is a viable link between the sources, the

sources can communicate with each other directly without help from the relays. Another

way is through the relays. A one relay can be selected to help both sources or two relays

can be selected where each relay is responsible for helping a specific source node. In the

network under study, the direct communication between the two source where no relay is

helping represents an access modes and is refereed to as Mode 0. More access modes can be

defined by allowing a relay or more to take part in helping the source nodes, see Figure 6.2

for the access modes for a one-relay selection scheme and Figure 6.3 for the access modes for

a two-relay selection scheme.

The probability of error in each of the previously defined access modes, Mode i, con-

ditioned on the previous modes in error, P(ei|ei−1, . . . , e0) is used to calculate the conditional
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DMT for that mode. The total DMT for the opportunistic system is given by

d(r) = d0(r) + d′1(r) + · · ·+ d′n(r) (6.1)

where d′i(r) is defined as

d′i(r) = − lim
ρ→∞

logP (ei|ei−1, . . . , e1)

log ρ
, (6.2)

6.1 With a Direct Link Between the Sources

The selection process is as follow. Access mode 0, direct transmission with no relay,

is checked. If this mode is in outage, a relay-assisted access mode where a relay or two relays

are helping the sources is checked. The process of checking all the defined relay-assisted

access modes continues until all have been checked. The system is declared in outage if

all access modes are in outage. This selection process is still equivalent to the regular relay

selection technique, selecting the ”best” relay, but this formulation helps making the analysis

easier.

Depending on the channel conditions, the sources use Mode 0 or one of the relay-

assisted access modes to exchange their messages. If it is Mode 0, the transmission interval

is split into two phases where in Phase 1, s1 transmits and s2 listens and in Phase 2, s2

transmits and s1 listens. Due to the symmetry of the channel and the assumption of equal

sources transmit rate r log ρ, the two phases are equal in time and each occupies half the

transmission interval. If a relay-assisted access mode is used, the transmission interval is

split into three Phases. The three phases are as follows. In Phase 1, s1 transmits while s2

and the active relay(s) listen. In Phase 2, s2 transmits while s1 and the active relay(s) listen.

In Phase 3, the active relay(s) transmit while the s1 and s2 listen.
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6.1.1 Upper Bound

An easy upper bound can be calculated by assuming a genie that provides the relays

with either s1 or s2 message. This makes the network equivalent to a point to point bi-

directional channel where one of the sources has N + 1 antennas and the other source has

only one antenna. The relay selection process is equivalent to selecting two antennas out

of the N + 1 available antennas at one of the sources. One of the selected antenna should

be the direct link antenna though. One of the sources is equivalent to a MISO system with

n+ 1 transmit antennas and one receive antenna. The performance of that source is upper

bounded by the performance of a (n+1)×1 MISO system with antenna selection that chooses

two antennas for each codeword transmission. This is an upper bound since the antenna

selection process results in some configurations that do not have a counterpart in the relay

system under study. On the other hand, the other source under the same assumption is

equivalent to a SIMO system with one transmit antenna and n + 1 receive antennas. The

performance of that source is upper bounded by the performance of a 1 × (n + 1) SIMO

system with antenna selection that chooses two antennas for each codeword reception.

The DMT of a M × N MIMO link with Lt < M selected transmit antennas and

Lr < N selected receive antennas is upper bounded by a piecewise linear function obtained

by connecting the following K + 2 points [45]{(
j, (Mr − j)(Mt − j)

)}K

j=0
,
(
min(Lr, Lt), 0

)
, (6.3)

where

K =argmin
k∈Z

(Mr − k)(Mt − k)

min(Lr, Lt)− k
,

subject to 0 ≤ k ≤ min(Lr, Lt)− 1

Using this result, the (n+ 1)× 1 MISO system with two selected transmit antennas as well

as the 1× (n+1) SIMO system with two selected receive antennas have a DMT that equals



82

to d(r) = (n+ 1)(1− r)+. Hence the upper bound for the bi-directional multi-relay channel

with opportunistic selection is

d(r) = (n+ 1)(1− r)+. (6.4)

6.1.2 Decode and Forward Relaying

We define two ways of relaying the communicating nodes messages under decode and

forward relaying. The first relaying method is based on a one relay helping both sources, see

Figure 6.2. The second relaying method is based on two relays helping the sources where

each one is dedicated to helping one of the sources, see Figure 6.3. Selecting two relays to

help both sources allows to select the best relay for each source while selecting one relay

requires optimization of this selection decision for both sources.

6.1.2.1 One Relay Selection

We define n+ 1 acces modes. Mode 0 is the two phases direct communication access

mode. The n relay-assisted access modes are defined such that at each mode a relay is

helping the sources, see Figure 6.2. If the sources messages can not be exchanged through

the direct link, Mode 0, a relay is used to forward the messages to the communicating nodes.

This is refereed to as Mode i where i ∈ {1, . . . , n} and Relay i is helping both sources. In

any of these relay-assisted modes, the exchange of information is done through a 3-phases

relaying scheme, see Figure 6.4. During the first and second phases, one of the sources nodes

transmits and the other source node and the associated relay for this access mode listen. The

relay associated with this access mode tries to decode both messages transmitted in the first

and second phases and forwards the superposition of both messages during the third phase

to s1 and s2. In the third phase, the relay transmits and the sources nodes listen. Each

of the communicating nodes can subtract its own message away from the received signal

and decodes the other source message interference free. If the relay could not decode both
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Figure 6.4. An access mode in a 3-phase bi-directional relaying scheme, one relay helping.

messages after Phase 1 and Phase 2 , it transmits nothing in the third phase. At the end

of the transmission interval, If any of the transmitting node, s1 or s2, could not decode the

other source message, that access mode is declared in outage.

Note that since the sources are assumed to use the same transmission rate, a com-

mon codebook can be used at both sources and the relay can use a simple network coding

technique, for example encoding the module sum of the decoded messages. However, this

requires each source at the end of Phase 3 to decode the sum separtly without using the

information received in Phase 1 and 2. Superposition, however, does not require separte

decoding where the source can substract its message and use the information received in the

previous phases to decode. In addition, superposition is more general and can be used if the

results needed to be extended to non equal transmission rates.

Theorem 14 The DMT of an opportunistic bi-directional multi-relay channel with one-relay

selection, a direct link between the two sources and DF relaying is given by

d(r) = (1− 2r) +N(1− 3r) (6.5)

Proof: Mode 0 is a direct transmission access mode; the first source transmits for half the

transmission interval and the second source listens. In the second half of the transmission
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interval, the second source transmits and the first source listens. One can show that the

DMT of Mode 0 is d0(r) = 1− 2r.

Mode i, where i > 0, is a 3-phase relay-assisted access mode. The fractional timing

of the three phases are assumed equal. In Mode 1, the first source transmits for 1/3 of

the transmission interval . The second third of the transmission interval the second source

transmits. The last third of the transmission interval, Relay 1 forwards the superposition

of the two messages to both communicating nodes. Mode 1 is in outage if s1 or s2 are

not capable of decoding the message sent to it from the other source by the end of the

transmission interval. To calculate the total DMT of the system, we begin by calculating

the conditional DMT of each of the access modes. Due to symmetry, the outage event is

calculated for s1 and the calculation of the outage for s2 should be identical. If S1 and S2

represent the outage event for s1 and s2 in Mode 1, respectively, one can show that

P(O1|O0) = P(S1|O0) + P(S2|O0)
.
= P(S1|O0). (6.6)

The probability of outage in Mode 1 given that Mode 0 is in outage is given by

P(O1|O0) =P
({1

3
log(1 + U1ρ) < r log ρ

}∣∣∣ {1

2
log(1 + |hs1s2 |2ρ) < r log ρ

})
, (6.7)

where for Relay i, the random variable Ui is defined as

Ui =

{
|hs1s2 |2 |hs1ri|2 <

ρ3r−1
ρ

|hs1s2 |2 + |hris2 |2 |hs1ri|2 ≥
ρ3r−1

ρ
.

(6.8)

P(O1|O0) =P
({

|hs1s2|2 <
ρ3r − 1

ρ

}∣∣∣{|hs1s2 |2 <
ρ2r − 1

ρ

})
P
(
|hs1r1 |2 <

ρ3r − 1

ρ

)
+ P

({
|hs1s2 |2 + |hr1s2 |2 <

ρ3r − 1

ρ

}∣∣∣{|hs1s2 |2 <
ρ2r − 1

ρ

})
P
(
|hs1r1 |2 ≥

ρ3r − 1

ρ

)
.

(6.9)

One can show that ρ3r−1
ρ

>̇ρ2r−1
ρ

, therefore

P
({

|hs1s2 |2 <
ρ3r − 1

ρ

}∣∣∣{|hs1s2 |2 <
ρ2r − 1

ρ

})
.
= 1. (6.10)
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Using results from the Appendix I and defining g1(r, ρ)
△
= ρ2r−1

ρ
and g2(r, ρ)

△
= ρ3r−1

ρ

P
({

|hs1s2 |2 + |hr1s2 |2 < g2(r, ρ)
}∣∣∣{|hs1s2|2 < g1(r, ρ)

})
=

∫ g1(r,ρ)

0

ze−z

1− e−g1(r,ρ)
dz +

∫ g2(r,ρ)

g1(r,ρ)

g1(r, ρ)e
−z

1− e−g1(r,ρ)
dz

.
=

1− e−ρ2r−1 − ρ2r−1e−ρ3r−1

1− e−ρ2r−1

.
= ρ3r−1. (6.11)

Substituting (6.10) and (6.11) into (6.9), the conditional probability of outage is given

by

P(O1|O0)
.
=ρ3r−1 + ρ3r−1(1− ρ3r−1)

.
= ρ3r−1. (6.12)

Hence, the conditional DMT for the first relay-assisted access mode is d1(r) = (1 − 3r)+.

For Mode 2, the conditional outage can be shown to be

P(O2|O1,O0) ≥P(O2|O0)
.
= ρ3r−1, (6.13)

where (6.13) follows the same proof as P(O1|O0). Also one can show

P(O2|O1,O0)=̇P
({

|hs1s2 |2 <
ρ3r − 1

ρ

}∣∣∣O1,O0

)
P
(
|hs1r2 |2 <

ρ3r − 1

ρ

)
+ P

({
|hs1s2 |2 + |hr2s2 |2 <

ρ3r − 1

ρ

}∣∣∣O1,O0

)
P
(
|hs1r2|2 ≥

ρ3r − 1

ρ

)
≤̇P

(
|hs1r2 |2 <

ρ3r − 1

ρ

)
+ P

({
|hr2s2 |2 <

ρ3r − 1

ρ

}∣∣∣O1,O0

)
P
(
|hs1r2 |2 ≥

ρ3r − 1

ρ

)
≤̇P

(
|hs1r2 |2 <

ρ3r − 1

ρ

)
+ P

({
|hr2s2 |2 <

ρ3r − 1

ρ

})
P
(
|hs1r2 |2 ≥

ρ3r − 1

ρ

)
.
= ρ3r−1 + ρ3r−1(1− ρ3r−1)

.
= ρ3r−1. (6.14)

From (6.13) and (6.14), the conditional outage of the second access mode is bounded from

above and below such that

ρ3r−1≤̇P(O2|O1,O0)≤̇ρ3r−1 (6.15)

Hence, P(O2|O1,O0)
.
= ρ3r−1 and d2(r) = (1 − 3r)+. Following similar steps, one can show

that di(r) = (1− 2r)+ for i = 3, . . . , n. Substituting conditional DMTs into Equation (6.1),

the DMT is d(r) = (1− 2r) + n(1− 3r). �
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Figure 6.5. An access mode in a 3-phase bi-directional relaying scheme, two relays helping.

6.1.2.2 Two Relays Selection

For the relay-assisted access modes, we release the condition that one relay should

help both messages. The sources s1 and s2 transmit their messages during Phase 1 and

Phase 2. In the Phase 3, a relay is selected from the set of relays that decoded s1 message to

forward s1 message to s2 and another relay is selected from the set of relays that decoded s2

message to forward s2 message to s1, Figure 6.5. This can result in two relays active where

each is forwarding one of the sources messages. It can happen as well that only one relay is

selected to help both sources if that relay decoded both messages and was the optimal relay

for both sources.

In Modes i where i > 1, a relay or two relays are assumed active helping the

communicating nodes. For n relays network, the number of possible access modes are

n(n− 1) + n+1 = n2 +1, where this represents the one non-relay assisted access mode, the

n one-relay assisted access modes and n(n− 1) possible two-relay assisted access modes.

To calculate the total DMT, the access modes are ordered such that

d(r) = d0(r) + d′1(r) + · · ·+ d′n(r) + d′n+1(r) + · · ·+ d′n2+1 (6.16)

where d0(r) represents the non-relayed direct communication access mode and d′i(r), i ∈

{1, . . . , n}, is the DMT for the one-relay assisted access modes and the rest of the conditional

DMTs are for the two-relay assisted access modes.
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The calculation of the conditional DMT for the one-relay assisted access mode, d′i(r)

where i ∈ {0, . . . , n}, is identical to the calculation of the DMTs in the one relay selection

problem. For the two-relay assisted access modes, we start by calculating the conditional

DMT for mode n+1 where this access mode is defined such that Relay 1 decodes the message

from s1 and Relay 2 decodes the message from s2.

To make the analysis easier we look at the case where n = 2, the generalization to

n > 2 should follow along. The system has a total of 5 access modes in this case. Mode 0

is the direct link, Mode 1 is Relay 1 helping both sources, Mode 2 is Relay 2 helping both

sources, Mode 3 is Relay 1 helping s1 and Relay 2 helping s2, and Mode 4 is Relay 1 helping

s2 and Relay 2 helping s1. In access Mode 3, outage is guaranteed to happen if Relay 1

in Mode 1 could not decode the message from Source 1 or if Relay 2 in Mode 2 could not

decode the message from Source 2. Note that the conditional outage of Mode 3 assumes that

Mode 0 is in outage. As a result, a relay failure to decode in Mode 3 will result in outage

since the direct link is already weak. Some other condition can case outage in Mode 1 and

2 and should not affect Mode 3. The conditional outage of Mode 3 is given by

P(O3|O0,O1,O2) =
6∑

i=1

P(O3|O0,O1,O2, Ai)P(Ai|O0,O1,O2) (6.17)

where α = ρ3r−1
ρ

and the events Ai where i ∈ {1, . . . , 6} are defined such that

P(A1) =P({|hs1r1 |2 < α})

P(A2) =P({|hs1r1 |2 > α}, {|hr2s2 |2 < α})

P(A3) =P({|hs1r1 |2 > α}, {|hr2s2 |2 > α}, {|hr1s2 |2 < α}, {|hs2r2 |2 < α})

P(A4) =P({|hs1r1 |2 > α}, {|hr2s2 |2 > α}, {|hr1s2|2 < α}, {|hs2r2 |2 > α})

P(A5) =P({|hs1r1 |2 > α}, {|hr2s2 |2 > α}, {|hr1s2|2 > α}, {|hs2r2 |2 < α})

P(A6) =P({|hs1r1 |2 > α}, {|hr2s2 |2 > α}, {|hr1s2|2 > α}, {|hs2r2 |2 > α}) (6.18)
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For the event A1, one can show that

P(A1|O0,O1,O2) = P(A1|O1) =
P(O1|A1)P(A1)

P(O1)
=̇1, (6.19)

where it is easy to show that

P(O1|A1)
.
= ρ3r−1

P(A1)
.
= ρ3r−1

P(O1)
.
= ρ2(3r−1)

The conditional outage P(O3|O0,O1,O2, A1) is given by

P(O3|O0,O1,O2, A1) = P
({

|hs1s2 |2 <
ρ3r − 1

ρ

}∣∣∣O0,O1,O2

)
= P

({
|hs1s2 |2 <

ρ3r − 1

ρ

}∣∣∣O0

)
.
= P

({
|hs1s2 |2 <

ρ3r − 1

ρ

}∣∣∣{|hs1s2 |2 <
ρ2r − 1

ρ

})
.
= 1, (6.20)

where ρ3r−1
ρ

>̇ρ2r−1
ρ

. From (6.17), (6.19) and (6.20), the conditional outage of Mode 3 is given

by

P(O3|O0,O1,O2)=̇1 (6.21)

and the conditional DMT d′3(r) = 0. Using the same steps, one can show that access mode 4

would not add any gain to the system, d′4(r) = 0 and the total DMT for two-relay selection

is equivalent to the a one-relay selection. The same analysis can be shown to generalize that

for the case of n relay.

6.1.2.3 Adaptive Decode and Forward

An Adaptive decode and forward relaying scheme for a half duplex bi-directional

relay channel with one relay and direct link between the two sources and various amount

of channel state information at the transmitter has been proposed in [55]. In an adaptive
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decode and forward relaying scheme with no CSI at the transmitter, the first and second

phases where s1 and s2 transmit to each other and the relay each use a fraction t of the

time interval. If the relay fails to decode any of the sources messages in the first two phases,

it will transmit nothing in the third phase and the system will be in outage. The third

phase where the relay broadcast to both sources uses a fraction 1 − 2t of the transmission

interval. Phase one and phase two have the same fractional time allocated to both of them

due to the network symmetry, same channel statistics and equal transmit rate requirments

for both sources, r log ρ. The allocated The time for each of the phases does not depend on

the channel coefficients and depends on the multiplexing gain. For each multiplexing gain, t

is kept fixed however. Each of the sources can use a transmit power of ρ
t
to not violate the

power constraint, but since t is not a function of the transmit power and the fact that the

transmit power goes to infinity in the DMT analysis, the DMT is exactly the same when the

transmit power is ρ. The same argument applies to the relay transmit power.

Theorem 15 The DMT for a bi-directional one relay channel scheme with adaptive decode

and forward relaying scheme is [55]

d(r) =

{
2− 5r r < 1

5
2(1−2r)
1+r

r ≥ 1
5

(6.22)

where the optimal fraction of channel use is

t =

{
2
5

r < 1
5

5+2r
3

r ≥ 1
5

(6.23)

In a network of n relays, we extend the previous scheme to an opportunistic multi-

relay bi-directional channel. In the first and second phases, one of the sources tranmists

while the other source and the relays listen. The relays try to decode both messages from

s1 and s2. In the third phase, one of the relays is selected to transmit to both sources. The

fractional time of each phase depends on the multiplexing gain and the number of relays. It

is however fixed for each multiplexing gain.
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Theorem 16 The DMT for a bi-directional multi-relay channel with opportunistic adaptive

decode and forward relay selection is given by

d(r) =

{
(n+ 1)− (3n+ 2)r r < n

3n+2
(n+1)(1−2r)

1+nr
r ≥ n

3n+2

(6.24)

where the optimal fraction time of channel use is

t =

{
n+1
3n+2

r < n
3n+2

1+nr
n+2

r ≥ 1+nr
n+2

(6.25)

Proof: We define n aceess modes where each access mode represents the use of a different

relay through the the previously illustrated three phase communication scheme.

The DMT of a system that switches between n dependent access modes is given by

d(r) = − lim
ρ→∞

logP(O1, . . . ,On)

log ρ
, (6.26)

where the system is in outage if all access modes are in outage. In a manner similar to [28],

the probability of outage P(O1, . . . ,On) can be expressed as follows

P(O1, . . . ,On)
.
= ρ−d(r). (6.27)

Due to Symmetry, we consider the event that the channel does not support the rate

for s1. The probability of outage is given by

P(O1, . . . ,On) =
n∑

i=0

(
n

i

)
P(Ri)P(O|Ri), (6.28)

where P(Ri) is the probability of i relays decoding the source message and n− i relays not

decoding the source message. There are
(
n
i

)
such events. The System outage expresion in

Equation (6.28) has n terms each has an exponent di where i ∈ {0, . . . , n}. For a given t,

the outage exponent from Equations (6.27) and (6.28) can be written as

d(r, t) = min{d0, . . . , dn}, (6.29)
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where di represents the exponent of each of the n terms in Equation (6.27).

The probability of Relay j not decoding the source message is P
(
t log(1+ |hs1rj |2ρ) <

r log ρ
)

.
= ρ

r
t
−1 and the probability of Relay j decoding is P

(
t log(1+|hs1rj |2ρ) ≥ r log ρ

)
.
= 1,

hence

P(Ri)
.
= ρ(n−i)( r

t
−1). (6.30)

The conditional outage probability P(O|Ri) represents the probability of the whole system

being in outage given that there are i relays decoding the source message and n − i relays

not decoding the source message. For the first term, non of the relay decoded the signal and

the conditional outage is given by

P(O|R0) = P(t log(1 + |hs1s2 |2ρ) < r log ρ)
.
= ρ(

r
t
−1), (6.31)

From Equations (6.30) and (6.31), the exponent of the first term in Equation (6.28) is given

by

d0 = (n+ 1)

(
1− r

t

)
. (6.32)

For the other n− 1 terms, if any of the relays could not decode the signal from the source,

the acces mode relates to this relay would be in outage. The conditional outage for m > 0

can be shown to be

P(O|Rm) = P
({

f log(1 + |hs1s2 |2ρ) + (1− 2f) log(1 + |hs1r′1
|2ρ) < r log ρ

}
, . . . ,

{
f log(1 + |hs1s2 |2ρ) + (1− 2f) log(1 + |hs1r′m|

2ρ) < r log ρ

})
(6.33)

where the set of relays {r′1, . . . , r′m} represents the set of the m relays that decoded the source

message. The conditional outage can be expressed as

P(O|Rm)
.
= ρ−d′m(r), (6.34)

d′m = inf
(v1,v

(1)
2 ,...,v

(m)
2 )∈O

v1 +
m∑
i=1

v
(i)
2 . (6.35)
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The random variables v1 and v
(i)
2 represent the exponential order of 1/|hs1s2|2, 1/|hs1r′i

|2 and

1/|hr′is2
|2, respectively. Each of these random variables has a probability density function

p(x) that is asymptotically equal to ρ−x for x ≥ 0 and 0 otherwise [28]. The set O represents

the conditional outage event where O = O+
1 ∩ . . . ∩ O+

n and O+
i is defined as

O+
i =

{(
v1, v

(i)
2

)
∈ R3+

∣∣∣t(1− v1)
+ + (1− 2t)(1− v

(i)
2 )+ < r

}
, (6.36)

where with r ≤ ti ≤ 1
2
. The solution to this linear programming problem in (6.35) have the

explicit solution

d′m =


(n+ 1)− r

f
r < t < 1

3

(n+ 1)− nr
1−2t

max{r, 1
3
} ≤ t < 1−r

2
1−t−r

t
t ≥ max{r, 1

3
, 1−r

2
}

(6.37)

From Equation (6.30), (6.34), (6.37), the exponent of the ith term in (6.28) for i > 0 is given

by

di =


(i+ 1)− r

f
+ (n− i)

(
1− r

f

)
r < t < 1

3

(i+ 1)− ir
1−2t

+ (n− i)
(
1− r

f

)
max{r, 1

3
} ≤ t < 1−r

2
1−t−r

t
+ (n− i)

(
1− r

f

)
t ≥ max{r, 1

3
, 1−r

2
}

(6.38)

Substituting Equations (6.32) and (6.38) in Equation (6.29) and optimizing over

f ∈
[
r, 1

2

]
, the DMT can be given as

d(r) = sup
f∈[r, 1

2
]

min{d0, . . . , dn}. (6.39)

Solving the optimaization problem, the DMT of the system can be found. �

Figure 6.6 shows the DMT for an opportunistic adaptive DF bi-directional channel

with number of relays varies from 1 to 5. It is shown that as the number of relays increases,

the gain achieved at low multiplexing gains is more than that achieved at high multiplexing

gains. The adaptive decode and forward does not benifit from increasing the number of

relays at high multiplexing gain compared to low multiplexing gains.
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Figure 6.6. DMT for the opportunistic adaptive DF bi-directional multi-relay channel with
various number of relays.

6.1.3 Dynamic Decode and Forward Relaying

We introduce the DDF relaying protocol to a bi-directional multi-relay channel with

direct link between the sources. We first study a one relay channel and extend the results

to the case of n relays. For a one relay bi-directional channel, the communication is done

through a three phase communication scheme. In the first phase, s1 transmits until the relay

can decode the message. In the second phase, s2 transmits until the relay can decode the

message. The relay broadcast the superposition of the two decoded message in the third

phase. If the relay did not decode any of the sources messages, the receiver of this message

should rely only on the information it got from the phase where the source was transmitting.

Theorem 17 The maximum DMT for a bi-directional relay channel with a viable direct link
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between the two sources and DDF relaying is

d(r) =

{
1 0 ≤ r ≤ 1

4

2(1− 2r) 1
4
< r ≤ 1

2

(6.40)

Proof: Due to the symmetry of the network and the separation between the signal transmit-

ted from s1 and s2, we consider the outage event for one source and it follows that the second

source outage is identical. Also because the the similarity between the channels statistics of

a message traveling from s1 to s2 and a message traveling from s2 to s1 and the assumption of

equal transmission rates, r log ρ, for both sources, it is valid to assume that both users should

equally share the resources. On the other hand, since the fractional time use of the channel

for each source is not a function of the channel coefficients and is actually a function of the

channel statistics and the transmission rate, r log ρ, Phase 1 and Phase two are assumed to

take same fraction of the transmission interval. If t is the relay listening-time ratio in Phase

1, Phase 2 should use the same listening-time ration t and Phase 3 uses 1− 2t of the whole

transmission interval. Neither Phase 1 nor Phase 2 are allowed to take more than half the

transmission interval.

In a manner similar to [28], the DMT can be given as follows

d(r) = − lim
ρ→∞

logP(O)

log ρ
, (6.41)

where the probability of outage P(O) can be expressed as follows

P(O)
.
= ρ−d(r), (6.42)

d(r) = inf
(v1,v2,u)∈O

v1 + v2 + u . (6.43)

The random variables v1, u and v2 represent the exponential order of 1/|hs1s2 |2, 1/|hs1r|2 and

1/|hrs2 |2, respectively. Each of these random variables has a probability density function p(x)
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Figure 6.7. DMT for a one relay bi-directional relay channel with various relaying schemes.

that is asymptotically equal to ρ−x for x ≥ 0 and 0 otherwise. The set O represents the

outage event for the network and can be shown to be defined as

O+ =
{(

v1, v2, u
)
∈ R3+

∣∣∣t(1− v1)
+ + (1− 2t)(1− v2)

+ < r
}
, (6.44)

Solving the optimization problem and taking into account the u = 1− r
f
, one can show that

Equation (6.40) is the diversity achieved by the DDF. �

Figure 6.7 shows a comparison between some relaying schemes for the bi-directional one-

relay channel and the DDF relaying scheme. The DDF scheme is optimal for multiplexing

gains higher than .25, however, for low multiplexing gain the diversity is limited to 1. The

DMT of a DF or AF protocol with fixed t = 1/3 can be easily calculated and gives a DMT

d(r) = 2(1 − 3r). An Opportunistic DF protocol where the relay is allowed to be switched

on and off depending on the channel conditions outperforms the regular DF protocol. The

DMT of the opportunistic DF protocol can be found by substituting n = 1 in Equation (6.5).
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An Adaptive DF scheme where t is allowed to be a function of the rate r and optimized to

maximize the DMT is proposed in [55]. The adaptive DF outperforms the regular, t = 1/3,

DF protocol and the DDF for r < 1/5 and r < 1/4, respectively, while the DDF outperforms

the adaptive DF for r > 1/4. It is also noted that the opportunistic DF is identical to the

adaptive DF for r < 1/5 while for r > 1/5 the adaptive DF provide more diversity.

The DMT of the DDF is limited to one at low multiplexing gain. The reason for that is

that the relay decodes the source message early and the source stops trasnmitting afterwards.

Since the source stops transmitting that early and never get the chance to transmits again

and the relay does not actually need all the remaining time, the diversity is limited to 1.

In the third phase, the relay transmits and the source listen. If we compare this scheme

to the one-way DDF relay channel, the source is transmitting througout the transmission

interval and never stops transmitting. The half duplex constraint on the source node, where

it can not transmit during Phase 2 and Phase 3 ( since its listening to s2 and the relay) is

the reason for that loss in performance compared to the one-way DDF performance. On the

other hand, at high multiplexing gains, the DDF in the bi-directional channel achieves the

upper bound. This does not happen in a one-way DDF scheme. In the bi-directional DDF

relaying, sharing the third phase between the two sources is equivalent to giving the channel

access to any of the sources for more than half the transmission interval. This gives the relay

more time to forward the decoded message to the source.

The adaptive decode and forward outperforms the DDF for r < .2 since the optimized

time for Phase 1 in the adaptive DF is shown to be fixed and equals to 2/5. This gives time

for the source to transmit to the other source even if the relay already decoded the message

compared to the DDF where the time for Phase 1 is the time for the relay to decode.

Theorem 18 The maximum DMT for a bi-directional multi-relay channel with a viable
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direct link between the two sources and n DDF relays is

d(r) =


n 0 ≤ r ≤ 1

2

(
1− n

n+1

)
(n+ 1)(1− 2r) 1

2

(
1− n

n+1

)
< r ≤ 1

n+1
1−2r
r

1
n+1

< r ≤ 1
2

(6.45)

Proof: The DMT of a system that switches between n dependent access modes is given by

d(r) = − lim
ρ→∞

logP(O1, . . . ,On)

log ρ
, (6.46)

where the system is in outage if all access modes are in outage. In a manner similar to [28],

the probability of outage P(O1, . . . ,On) can be expressed as follows

P(O1, . . . ,On)
.
= ρ−do(r), (6.47)

do(r) = inf
(v1,u(1),v

(1)
2 ,...,u

(n)
1 ,v

(n)
2 )∈O

v1 +
n∑

i=1

(
u(i) + v

(i)
2

)
. (6.48)

The random variables v1, u
(i) and v

(i)
2 represent the exponential order of 1/|hs1s2|2, 1/|hs1ri|2

and 1/|hris2 |2, respectively. Each of these random variables has a probability density function

p(x) that is asymptotically equal to ρ−x for x ≥ 0 and 0 otherwise [28]. The set O represents

the outage event for the network. The network is considered in outage when no access mode

is viable, i.e., O = O+
1 ∩. . .∩O+

n . Following simillar steps as [28] and exchanging the variables

in the the outage formula, the outage region under DDF for access mode i can be shown to

be

O+
i =

{(
v1, v

(i)
2 , u(i)

)
∈ R3+

∣∣∣ti(1− v1)
+ + (1− 2ti)(1− v

(i)
2 )+ < r

}
, (6.49)

where ti is the listening-time ratio of the relay i with r ≤ ti ≤ 1
2
and u = 1 − r

f
. In the

following we outline the solution of Equations (6.48) and (6.49) for a two-relay channel.

Solving the linear optimization problem, the DMT for DDF is established. �
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Figure 6.8. DMT for the opportunistic DDF bi-directional multi-relay channel with various
number of relays.
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Figure 6.8 shows the DMT for an opportunistic DDF bi-directional channel with number of

relays from 1 to 5. It is shown that as the number of relays increases in the system, the

diversity gain achieved by increasing the number of relays is only seen at low multiplexing

gains only. At low multiplexing gain the diversity is limited to the total number of relays

in the system. This is as discussed in the one relay bi-directional DDf channel due to the

the source stopping trnasmission easrly in the transmission interval. The DMT is always

optimal at the mid-multiplexing gains while at high multiplexing gains, the diversity gain is

not a function of the number of relays and does not scale with the number of relays in the

system.

6.1.4 Amplify and Forward Relaying

The two sources try first to communicate through the direct link using the same

procedure discussed before, Mode 0. If Mode 0 is in outage, a three phase communication

scheme is used where a relay is helping the two sources. In Phase 1, s1 transmits and s2 and

the relays listen. In Phase 2, s2 transmits and s1 and the relays listen. In Phase 3, the relay

adds the two signals received during the first and second phase, amplifies the signal to meet

its power constraint and broadcasts it to the two sources. The fractional time of each of

these phases is assumed equal, t = 1
3
. Each source can subtract its message from the signal

received in the third phase and decode the other source message interference free.

Theorem 19 The DMT of an opportunistic bi-directional multi-relay channel with a direct

link between the two sources and AF relaying is given by

d(r) = (1− 2r) +N(1− 3r) (6.50)

Proof: We define N + 1 access modes where the first access mode is the non-relayed access

mode, Mode 0, and the other are the relay-assisted access modes. The DMT of the system is
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given by equation (6.1). Due to the symmetry of the network , the outage event is calculated

for one source only and should be identical for the other source. The DMT of Mode 0 can be

shown to be d0(r) = 1−2r. For the relayed access modes, the conditional outage probability

can be calculated as follows. For Mode 1, the conditional outage is given by

P(O1|O0) = P(S1|O0) + P(S2|O0)
.
= P(S1|O0) (6.51)

where S1 and S2 represent the outage event for s1 and s2 in Mode 1. The probability of

Mode 1 being in outage given that Mode 0 is in outage is given by

P(O1|O0)=̇P
({

|hs1s2 |2 +
|hs1r1 |2|hr1s2 |2

|hs1r1 |2 + |hr1s2 |2
<

ρ3r − 1

ρ

}∣∣∣∣{|hs1s2 |2 <
ρ2r − 1

ρ

})
(6.52)

In order to calculate the conditional outage probability distribution, we first calculate the

conditional density function of Z = |hs1s2 |2 + V where V =
|hs1r1 |

2|hr1s2 |
2

|hs1r1 |2+|hr1s2 |2
. The term

|hs1r1 |
2|hr1s2 |

2

|hs1r1 |2+|hr1s2 |2
represents half the harmonic mean of two independent exponential random

variables. Using a result of [54], the harmonic mean of two exponential random variables

with parameters λ can be approximated by an exponential random variable with parameter

λ+ λ = 2λ.

Using results from the Appendix I and defining α = g1(r, ρ) =
ρ2r−1

ρ
and g2(r, ρ) =

ρ3r−1
ρ

, the conditional outage probability is

P(O1|O0) =

∫ g2(r,ρ)

0

fZ|B(z)dz
.
= 2

∫ g1(r,ρ)

0

e−2z(ez − 1)

1− e−g1(r,ρ)
dz + 2

∫ g2(r,ρ)

g1(r,ρ)

e−2z
(
eg1(r,ρ) − 1

)
1− e−g1(r,ρ)

dz

=
e−2ρ3r−1 − e−ρ2r−1 − e−2ρ3r−1+ρ2r−1

+ 1

1− e−ρ2r−1

.
= ρ3r−1. (6.53)

Hence, d′1(r) = 1 − 3r. To calculate the DMT for the other access modes, we upper bound

and lower bound the conditional probability in a matter similar to (6.15). For Mode i where

2 < i ≤ n

P
({

|hs1ri|2|hris2 |2

|hs1ri|2 + |hris2 |2
<

ρ3r − 1

ρ

}∣∣∣∣O0, . . . ,Oi−1

)
≥ P(Oi|O0, . . . ,Oi−1) ≥ P(Oi|O0)

ρ3r−1 ≥ P(Oi|O0, . . . ,Oi−1) ≥ ρ3r−1 (6.54)
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Figure 6.9. DMT for an opportunistic four-relay bi-directional channel with direct link
between the sources and various relaying schemes.

Hence, P(Oi|O0, . . . ,Oi−1)=̇ρ3r−1 and d′i(r) = 1 − 3r. The total DMT is the summation of

the conditional DMTs and Mode 0 DMT and is given by d(r) = (1− 2r) +M(1− 3r). �

Figure 6.9 shows a comparison between the DMT of a bi-directional channel with four relays

and a direct link between the sources under various relaying protocols. As noted in the one

relay DDF channel, the diversity of the DDF is limited by the number of relays, maximum

diversity of 4 in the example, at low multiplexing gains. The reason for that is that the

source stops transmitting very early and this limits the maximum diversity that can be

achieved. However, the DDF is optimal at mid multiplexing gains and outperforms the

AF and DF opportunistic relaying as well as the adaptive DF relaying at high multiplexing

gains. One can propose a hybrid scheme where at multiplexing gains r ≤ 1
3n+2

the adaptive

opportunistic DF, the opportunistic DF or the opportunistic AF relaying scheme is used

(all have the same performace) and at multiplexing gains r > 1
3n+2

the DDF opportunistic
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scheme is used. This will achieve the maximum diversity gain of all proposed schemes.

6.2 No Direct Link Between the Sources

In case of no viable link between the two sources, the two sources are enforced to

communicate through the relays in a 2-phase communicating scheme. In Phase 1, the two

sources transmit and the relays listen. In the second phase one of the relays broadcasts and

both sources listens, see Figure 6.10. The system will be in outage if one or both sources is

not capable of decoding the other source message.

For n relays system, one can define n access modes. Mode i represents an access mode

where the sources are using the help of Relay i in the two phase scheme described above.

The analysis of such case is simple where all the defined access modes are independent (no

direct link like to cause dependency between access modes). The DMT of such opportunistic

system is given by Equation (6.1) and because of the independency between access modes,

the conditional DMTs is replaced by the DMTs of the access modes. Since all access modes

are identical, the DMT is given by

d(r) = ndi(r), (6.55)

where di(r) is the DMT of any Mode i ∈ {1, . . . , N} since all access modes DMTs are equal

in this case.

For one of the access modes, a one relay channel, an easy upper bound can be found

by assuming a genie that gives the relay the message of one source. The upper bound for any

of the access modes is 1 − 2r and by opportunistically switching between n of such access

modes, the DMT upper bound of the opportunistic system is N(1− 2r).
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Figure 6.10. 2-phase bi-directional relaying scheme, one relay helping.

6.2.1 Decode and Forward Relaying

The DMT of a single DF bi-directional relay channel with no direct link has been

studied in [55]. It was found that the DMT of such system is given by

d(r) = min
{
1− r

t
, 2− 4r

t
, 1− r

1− t

}
(6.56)

where Phase 1 occupies a fractional of the transmission interval time equals to t and t ∈

[ r
2
, 1− r] while Phase 2 occupies a fractional of the transmission interval time equals to 1− t.

If t is assumed to equal to 1
2
, equal time for Phase 1 and Phase 2, the DMT is given by

d(r) =

{
1− 2r 0 ≤ r < 1

6

2− 8r 1
6
≤ r ≤ 1

3

(6.57)

If t is optimized and allowed to depend on the multiplexing gain r, it is shown in [55] that

the optimal DMT is given by

d(r) =

{
1− 2r 0 ≤ r < 1

6

2− 4r
t

1
6
≤ r ≤ 1

3

(6.58)

and the optimal fractional time t∗ is

t∗(r) =

{
1
2

0 ≤ r < 1
6

5r+1−
√

(5r+1)2−16r

2
1
6
≤ r ≤ 1

3

(6.59)

For the opportunistic system with N relay, if t is fixed to 1/2 of the transmission

interval, the DMT of the opportunity system is

d(r) =

{
N(1− 2r) 0 ≤ r < 1

6

N(2− 8r) 1
6
≤ r ≤ 1

3

(6.60)
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If t is allowed to be a function of the multiplexing gain and optimized to achieve maximum

diversity gain, the DMT of the opportunity system is

d(r) =

{
N(1− 2r) 0 ≤ r < 1

6

N(2− 4r
t∗ )

1
6
≤ r ≤ 1

3

(6.61)

where t∗ is defined in (6.59).

6.2.2 Amplify and Forward Relaying

For any of the defined access modes, in the first phase, the two sources transmit

simultaneously while the relays listen. In the second phase, the selected relay transmits

an amplified version of the received signal at the first phase while the sources listen. Each

source can subtract its own message and decode the sent message interference free. It is

straight forward to show that for access mode i the DMT of that access mode is given by

di(r) = (1 − 2r). The total DMT of the opportunistic system with n AF relays is given by

Equation (6.55) and is equal to d(r) = (n+1)(1− 2r). This DMT achieves the upper bound

and hence selecting more than one relay would give no extra gain.

Figure 6.11 shows the DMT for a 4-relay bi-directional channel with no direct link.

The AF outperforms all the DF protocols. DF relaying is constraint by the first phase where

the relay decodes both messages transmitted simultaneously by the two sources. In Contrast,

AF relaying does not require the relay to decode and the relay forwards all the received

signal to the sources without decoding. Each source can easily subtract the interference and

decode its message interference free. The adaptive DF as expected outperforms the t = 1
2

DF protocol.
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link between sources and various relaying schemes.



CHAPTER 7

CONCLUSION

The high-SNR performance of opportunistic relay networks are investigated. Except for a

handful of simple relay selection scenarios, there are two main difficulties in the analysis

of opportunistic relay networks: (1) the decision variables often depend on more than one

link gain, complicating the performance analysis and (2) the opportunistic modes may share

links and thus are statistically dependent, which complicates the order statistics that govern

the performance of opportunistic systems.

In this work, several relaying geometries are studied and the corresponding DMTs are

developed for a number of well-known relaying protocols, including the AF, DF, CF, NAF,

and DDF. We studied the simple relay channel, one-source, one-destination and one-relay,

in the opportunistic mode. We analyze the network in the opportunistic mode where the

relay is allowed to be active or to stay inactive according to the channel conditions. Using

opportunistic channel access scheme, we study the interference relay channel, the shared

relay channel, the multiple access relay channel, the broadcast relay channel, the X-relay

channel, the gateway channel, the parallel relay channel, the heterogeneous relay channel

and the bi-directional multi-relay channel. In several instances, selection schemes based on

the direct source-destination links are shown to achieve optimal performance, for example

the CF multiple access channel. In some network geometries, opportunistic selection using

1-bit feedback is shown to achieve the optimal DMT performance. It is hoped that the

approaches developed in this work may be applied towards the analysis of opportunistic

communication in a wider class of network geometries.
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APPENDIX A

OPPORTUNISTIC DF ORTHOGONAL RELAYING OVER A SIMPLE

RELAY CHANNEL

The DMT of the opportunistic orthogonal relaying is given by

d(r) = d1(r) + d2(r), (A.1)

where

d1(r) = lim
ρ→∞

logP(e1)
log ρ

, (A.2)

d2(r) = lim
ρ→∞

logP(e2|e1)
log ρ

. (A.3)

The events e1 and e2 represent the error in the non-relay and the relay-assisted modes,

respectively. The non-relay access mode is a simple direct link, whose DMT is d1(r) =

(1 − r)+. The DMT of the relay-assisted access mode is known, however, the DMT of the

relay channel conditioned on the outage event of the direct link requires new calculations.

Recall that the orthogonal DF relaying works as follows: The transmission interval

is divided into two halves. In the first half, the source transmits. If the relay cannot decode

the source message, it will remain silent and the source will continue to transmit into the

second half-interval. If the relay decodes the source message, the relay forwards the decoded

message to the destination in the second half of the transmission interval and the source

remains silent.

Because of orthogonality and with the use of long codewords, it is trivial to see that

error is dominated by outage. The conditional outage probability of the relay-assisted mode
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is given by

P(O2|O1) = P
({1

2
log(1 + Uρ) < r log ρ

}∣∣∣{ log(1 + |hsd|2ρ) < r log ρ
})

(A.4)

= P
({

U <
ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
, (A.5)

where the random variable U is given by

U =

{
2|hsd|2 |hsr|2 < ρ2r−1

ρ

|hsd|2 + |hrd|2 |hsr|2 ≥ ρ2r−1
ρ

.
(A.6)

The cdf of U is given by

FU(u) = P
(
|hsd|2 <

u

2

)
P
(
|hsr|2 <

ρ2r − 1

ρ

)
+ P

(
|hsd|2 + |hrd|2 < u

)
P
(
|hsr|2 ≥

ρ2r − 1

ρ

)
.

Hence,

P(O2|O1) =P
({

|hsd|2 <
1

2

ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
P
(
|hsr|2 <

ρ2r − 1

ρ

)
+ P

({
|hsd|2 + |hrd|2 <

ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
P
(
|hsr|2 ≥

ρ2r − 1

ρ

)
(A.7)

One can show that 1
2

ρ2r−1
ρ

>̇ρr−1
ρ

, therefore

P
({

|hsd|2 <
1

2

ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
.
= 1. (A.8)

To analyze the second conditional term in Equation (A.7), we begin with the pdf

of Z = |hsd|2 + |hrd|2 conditioned on the event B =
{
|hsd|2 < ρr−1

ρ

}
. The channel gain

γ
△
= |hsd|2 has the following conditional distribution

fγ|B(x) =

{
e−x

1−e
− ρr−1

ρ

x ≤ ρr−1
ρ

,

0 x > ρr−1
ρ

.
(A.9)

Defining g1(r, ρ)
△
= ρr−1

ρ
and g2(r, ρ)

△
= ρ2r−1

ρ
, the conditional pdf of Z = |hsd|2 + |hrd|2 is

calculated as follows, for z ≤ g1(r, ρ)

fZ|B(z) =

∫ z

0

e−(z−x) e−x

1− e−g1(r,ρ)
dx

=
ze−z

1− e−g1(r,ρ)
. (A.10)
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For z > g1(r, ρ), the conditional pdf of Z = |hsd|2 + |hrd|2 is given by

fZ|B(z) =

∫ g1(r,ρ)

0

e−(z−x) e−x

1− e−g1(r,ρ)
dx

=
g1(r, ρ)e

−z

1− e−g1(r,ρ)
. (A.11)

The conditional probability of outage is calculated as follows

P
({

|hsd|2 + |hrd|2 < g2(r, ρ)
}∣∣∣{|hsd|2 < g1(r, ρ)

})
=

∫ g1(r,ρ)

0

ze−z

1− e−g1(r,ρ)
dz +

∫ g2(r,ρ)

g1(r,ρ)

g1(r, ρ)e
−z

1− e−g1(r,ρ)
dz

=
1− e−g1(r,ρ) − g1(r, ρ)e

−g2(r,ρ)

1− e−g1(r,ρ)

.
= 1− ρr−1e−ρ2r−1

1− e−ρr−1

.
= ρ2r−1. (A.12)

Substituting (A.8) and (A.12) into (A.5), the conditional probability of outage is given by

P (O2|O1)
.
=ρ(2r−1) + ρ(2r−1)(1− ρ(2r−1))

.
=ρ(2r−1). (A.13)

Using Equations (A.1), (A.2), (A.3) and (A.13), the DMT of the orthogonal opportunistic

DF relaying is given by

d(r) = (1− r)+ + (1− 2r)+. (A.14)



APPENDIX B

OPPORTUNISTIC AF ORTHOGONAL RELAYING OVER A SIMPLE

RELAY CHANNEL

The outage probability of the relay-assisted mode, given that the non-relay mode is in outage

is given by

P(O2|O1) = P
({1

2
log

(
1 + |hsd|2ρ+ f

(
|hsr|2ρ, |hrd|2ρ

))
< r log ρ

}∣∣∣{ log(1 + |hsd|2ρ) < r log ρ
})

(B.1)

= P
({

|hsd|2 +
1

ρ
f
(
|hsr|2ρ, |hrd|2ρ

)
<

ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
, (B.2)

At high SNR, Equation (B.2) can be approximated by

P(O2|O1) = P
({

|hsd|2 +
|hsr|2|hrd|2

|hsr|2 + |hrd|2
<

ρ2r − 1

ρ

}∣∣∣{|hsd|2 <
ρr − 1

ρ

})
(B.3)

where |hsr|2|hrd|2
|hsr|2+|hrs|2 represents the harmonic mean of two independent exponential random

variables. Using the result of [54], the harmonic mean of two exponential random variables

with exponential parameters λ can be approximated by an exponential random variable with

exponential parameter 2λ.

In order to calculate the conditional outage probability distribution, we first calculate

the conditional density function of Z = |hsd|2 + V where V = |hsr|2|hrd|2
|hsr|2+|hrs|2 . Again, we are

assuming g1(r, ρ) =
ρr−1
ρ

, g2(r, ρ) =
ρ2r−1

ρ
, and conditioning is over the event B =

{
hsd| <

ρr−1
ρ

}
. The conditional probability density function of Z = |hsd|2 + V is given by

fZ|B(z) =


2e−2z(ez−1)

1−e−g1(r,ρ)
z ≤ g1(r, ρ)

2e−2z
(
eg1(r,ρ)−1

)
1−e−g1(r,ρ)

z > g1(r, ρ).
(B.4)
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The conditional probability of outage is calculated as follows

P
(
|hsd|2 + |hrd|2 < g2(r, ρ)

∣∣∣|hsd|2 < g1(r, ρ)
)

= 2

∫ g1(r,ρ)

0

e−2z(ez − 1)

1− e−g1(r,ρ)
dz + 2

∫ g2(r,ρ)

g1(r,ρ)

e−2z
(
eg1(r,ρ) − 1

)
1− e−g1(r,ρ)

dz

=
e−2g2(r,ρ) − e−g1(r,ρ) − e−2g2(r,ρ)+g1(r,ρ) + 1

1− e−g1(r,ρ)

.
= 1 + e−2ρ2r−1 1− eρ

r−1

1− e−ρr−1

.
= ρ2r−1. (B.5)

Using Equations (A.1), (A.2), (A.3), and (B.5), the DMT of the orthogonal opportunistic

AF relaying is given by

d(r) = (1− r)+ + (1− 2r)+. (B.6)



APPENDIX C

DMT UPPER BOUND FOR THE SHARED RELAY CHANNEL

In this appendix, we prove Theorem 2 for n = 2; the generalization for n > 2 follows along

the same lines. Using Lemma 1, we can upper bound the DMT of the opportunistic shared

relay network as follows

d(r) ≤ d1(r) + d2(r) + d3(r), (C.1)

where

d1(r) = − lim
ρ→∞

logP(e1)
log ρ

, (C.2)

d2(r) = − lim
ρ→∞

logP(e2|e1)
log ρ

, (C.3)

d3(r) = − lim
ρ→∞

logP(e3|e1, e2)
log ρ

. (C.4)

The events e1, e2 and e3 are the error events in the three access modes (a), (b) and (c)

shown in Figure 3.5. The error events e2 and e1 are independent, and the error events in the

network is dominated by the outage events, therefore we can calculate d1(r), d2(r) and d3(r)

as follows

d1(r) = − lim
ρ→∞

logP(O1)

log ρ
, (C.5)

d2(r) = − lim
ρ→∞

logP(O2)

log ρ
, (C.6)

d3(r) = − lim
ρ→∞

logP(O3|O1,O2)

log ρ
, (C.7)

where O1,O2 and O3 are the outage events for the three access modes (a), (b) and (c).

Access mode (c) is a parallel Rayleigh channel. The outage of a parallel Rayleigh channel,
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P(O3), is given by

P(O3) = P(O31) + P(O32) + P(O33), (C.8)

where O31,O32 and O33 partition the outage event O3 according to whether the first, the

second, or both direct links are in outage.

P(O31) = P
(
log(1 + |h11|2ρ) <

r

2
log ρ

)
P
(
log(1 + |h22|2)ρ ≥ r

2
log ρ

)
(C.9)

P(O32) = P
(
log(1 + |h11|2ρ) ≥

r

2
log ρ

)
P
(
log(1 + |h22|2)ρ <

r

2
log ρ

)
(C.10)

P(O33) = P
(
log(1 + |h11|2ρ) <

r

2
log ρ

)
P
(
log(1 + |h22|2)ρ <

r

2
log ρ

)
. (C.11)

The outage event O3 is independent of the channel gains |hir|2 and |hri|2 where i ∈ {1, 2},

hence

P(O3 | O1,O2) ≥ P(O31 | O1,O2) = P(O31 | O1) ≥ P(O31)
.
= ρr/2−1, (C.12)

We are now ready to assemble the components of inequality (C.1) to get the final result.

The inequality (C.12) shows that the conditional outage of mode (c) is dominated by its

unconditional outage, therefore d3(r) ≤ (1− r
2
)+. The remaining two modes are independent

of each other and each can be upper bounded using the MISO upper bound of 2(1 − r)+.

Together, we have

d(r) ≤ 2(1− r)+ + 2(1− r)+ + (1− r/2)+, (C.13)

Since the total number of paths between the inputs and the outputs are 4, then the diversity

order cannot be greater than 4. This constraint together with the above inequality completes

the proof.



APPENDIX D

GENIE-AIDED DMT UPPER BOUND FOR THE SHARED RELAY

CHANNEL

The indexing of the access modes does not affect the problem, therefore we can order the

conditional events in Lemma 1, 2 arbitrarily. In the following, we index the outage events

according to the order of selection that is described below, which is designed to sort out the

dependencies in a way to make computations tractable.

The selection algorithm is as follows: If the non-relayed configuration (shown in

Figure 3.5 part (c)) can support the required rate R = r log ρ, it is selected. We shall call

this Mode 1 in the remainder of appendices. If Mode 1 is in outage (an event denoted by U1)

we will check to see if either of the two direct links can individually support half the rate,

i.e., R = r
2
log ρ. If one of the direct links can support this reduced rate, we consider the

relayed mode sharing that direct link. (If none of the direct links can even support half the

rate, we can consider either one at random.) This relayed mode shall be called Mode 2. If

Mode 2 can support the full required rate, it is selected. The outage of Mode 2 is denoted U2.

If both Modes 1, 2 are in outage, the remaining relayed mode, which will be denoted Mode

3, is selected. The outage of Mode 3 is denoted U3 in this and the following appendices. The

error events corresponding to the three modes are denoted e′1, e
′
2, e

′
3 in this and subsequent

appendices.

The total DMT of the genie-aided system is

d(r) = d′1(r) + d′2(r) + d′3(r), (D.1)
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where

d′1(r) = − lim
ρ→∞

logP(e′1)
log ρ

, (D.2)

d′2(r) = − lim
ρ→∞

logP(e′2|e′1)
log ρ

, (D.3)

d′3(r) = − lim
ρ→∞

logP(e′3|e′2, e′1)
log ρ

. (D.4)

Although the expressions above are in terms of error events, in the remainder of this

appendix the diversities are expressed in terms of outage events instead of error events due

to the fact that the genie-aided modes are equivalent to MISO channels and the codewords

are assumed to be long enough.

Mode 1, access mode (c), represents a parallel Rayleigh channel. The outage of a

parallel Rayleigh channel, P(O3), is given by Equation (C.8). Therefore, in the asymptote

of high SNR:

P (O3)
.
= ρr/2−1 + ρr/2−1 + ρr−2 .

= ρr/2−1 (D.5)

The unconditional DMT of the non-relayed mode

d′1(r) = (1− r

2
)+. (D.6)

To calculate d′2(r) and d′3(r), we study the outage of the respective access modes. We

start by calculating the conditional outage of Mode 3 and use the result to calculate the

conditional outage for Mode 2.

P(U3|U2,U1) = P
({

log
(
1 + (|hii|2 + |hri|2)ρ

)
< r log ρ

} ∣∣∣{
|hjj|2 < f−1

2 (R, |hr,dj |2)
}
,
{
|h11|2 <

ρr/2 − 1

ρ

}
,
{
|h22|2 <

ρr/2 − 1

ρ

})
.
= P

({
|hii|2 + |hri|2 <

ρr − 1

ρ

} ∣∣∣ {|hii|2 <
ρr/2 − 1

ρ

})
, (D.7)
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where i is the index of the source selected in Mode 3 and j is the index of the source selected

in Mode 2. The channel gain γii
△
= |hii|2, conditioned on the event B =

{
|hii| < ρr/2−1

ρ

}
has

the following conditional distribution

fγii|B(x) =


e−x

1−e
− ρr/2−1

ρ

x ≤ ρr/2−1
ρ

0 x > ρr/2−1
ρ

(D.8)

Defining g1(r, ρ)
△
= ρr/2−1

ρ
and g2(r, ρ)

△
= ρr−1

ρ
, the conditional probability density

function of Z = |hii|2 + |hri|2 is

fZ|B(z) =

{
ze−λz

1−e−g1(r,ρ)
z ≤ g1(r, ρ)

g1(r,ρ)e−z

1−e−g1(r,ρ)
z > g1(r, ρ).

(D.9)

The probability of outage P(U3|U2,U1) can be calculated as follows

P(U3|U2,U1) =

∫ g1(r,ρ)

0

ze−z

1− e−g1(r,ρ)
dz +

∫ g2(r,ρ)

g1(r,ρ)

g1(r, ρ)e
−z

1− e−g1(r,ρ)
dz

=
1− e−g1(r,ρ) − g1(r, ρ)e

−g2(r,ρ)

1− e−g1(r,ρ)

.
= 1− ρr/2−1e−ρr−1

1− e−ρr/2−1

.
= ρr−1. (D.10)

To facilitate the analysis of the conditional outage of Mode 2, we introduce a partition

of U1. Define V as the event that at least one of the direct links can support half the desired

rate, i.e. r
2
log ρ, and introduce:

V1 = V ∩ U1 V2 = V̄ ∩ U1 (D.11)

Thus, V1 is the event that the non-relayed Mode 1 is in outage, and yet at least one of the

two direct links can support at least half the desired rate, i.e., r
2
log ρ.

P(U2|U1) =
P(U2,U1)

P(U1)

=
P(U2|V1)P(V1) + P(U2|V2)P(V2)

P(V1) + P(V2)

.
=

ρ2(r−1)2ρ(
r
2
−1) + ρ(r−1)ρ2(

r
2
−1)

2ρ(
r
2
−1) + ρ2(

r
2
−1)

.
= ρ2(r−1), (D.12)
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where P(V1) = P(O31) + P(O32)
.
= 2ρ(r/2−1) from Equation (C.9) and (C.10), P(V2) =

P(O33)
.
= ρ2(r/2−1) from Equation (C.11). The probability of U2 conditioned on V2 is equiv-

alent to Equation (D.7) and hence P(U2|V2)
.
= ρ(r−1). The conditional probability P(U2|V1)

is given by

P(U2|V1) =P
({

|hii|2 + |hri|2 <
ρr − 1

ρ

} ∣∣∣ {|hii|2 >
ρr/2 − 1

ρ

})
. (D.13)

We notice that

P
({

|hii|2+|hri|2 <
ρr − 1

ρ

})
=P

({
|hii|2 + |hri|2 <

ρr − 1

ρ

} ∣∣∣ {|hii|2 <
ρr/2 − 1

ρ

})
P
({

|hii|2 <
ρr/2 − 1

ρ

})
+ P

({
|hii|2 + |hri|2 <

ρr − 1

ρ

} ∣∣∣ {|hii|2 >
ρr/2 − 1

ρ

})
P
({

|hii|2 >
ρr/2 − 1

ρ

})
.

(D.14)

At high SNR, using result from Equation (D.10), Equation (D.14) leads to

ρ2(r−1) .
= ρ(r−1)ρ(r/2−1) + P

({
|hii|2 + |hri|2 <

ρr − 1

ρ

} ∣∣∣ {|hii|2 >
ρr/2 − 1

ρ

})
, (D.15)

where the random variable |hii|2 + |hri|2 has Gamma distribution. Using Equation (D.13)

and (D.15), one can see that P(U2|V1) = ρ2(r−1).

Equations (D.12) and (D.10) indicate that

d′2(r) = 2(1− r)+, (D.16)

d′3(r) = (1− r)+. (D.17)

The DMT of the genie aided system is given by

d(r) = (1− r

2
)+ + 2(1− r)+ + (1− r)+ (D.18)

=

{
4− 7

2
r, 0 ≤ r ≤ 1

(1− r
2
), 1 < r ≤ 2.

(D.19)



APPENDIX E

NAF ACHIEVABLE DMT FOR THE SHARED RELAY CHANNEL

The DMT of the NAF protocol for the shared relay channel will be calculated according

to the selection algorithm developed in Appendix D, which we invite the reader to review

before continuing with the present appendix.

The overall diversity is governed by Equation (D.1), and we need to calculate d′1(r), d
′
2(r), d

′
3(r).

To begin with, the DMT of the non-relayed mode does not depend on the relaying

protocol, so there is no need to calculate it again: it is d′1(r) = (1 − r
2
)+ as calculated in

expression (D.6).

For calculating d′3(r), the equivalence of error and outage analysis is nontrivial and

will be relegated to Appendix F. In this appendix we analyze the conditional outage of Mode

3:

P(U3|U2,U1)
.
=

1

2
P
(
I1 < R | V̄ , I2 < R

)
+

1

2
P
(
I2 < R | V̄ , I1 < R

)
.
= P

(
I1 < R

∣∣∣ {|h11|2 <
ρr/2 − 1

ρ

})
, (E.1)

where I1 and I2 are the instantaneous mutual information of the simple relay channel for

User 1 and User 2, respectively. The symmetry arguments has been used to simplify the

expression. We will use the exponential order of channel gains, defined thus

v = − lim
ρ→∞

log |h|2

log ρ
, (E.2)

where v itself is a random variable. Recall that the conditional pdf of the source-destination

channel gain |h11|2, subject to h11 not supporting rate r
2
log ρ, is given by Equation (D.8).
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The exponential order of this conditional random variable is denoted v1 whose pdf can be

calculated as follows

f(v1) =

 ln ρ ρ−v1 e−ρ−v1

1−e
− ρr/2−1

ρ

v1 ≥ 1− r
2
,

0 v1 < 1− r
2
.

(E.3)

As ρ → ∞ we can show that

f(v1)
.
=

{
ρ−v1−(r/2−1) v1 ≥ 1− r

2
,

0 v1 < 1− r
2
.

(E.4)

Also, the channel gains |hr1|2 and |h1r|2 (exponentially distributed, unconditioned)

have exponential orders that are denoted v2 and v3, respectively. Furthermore, the pdf of

v1, v2, v3 are in turn characterized by their asymptotic exponential orders f(vi)
.
= ρ−ui , over

their respective regions of support.

In a manner similar to [28], the outage region is more conveniently addressed in the

space of the exponential orders, i.e.

O = {(v1, v2, v3) : I < r log ρ}, (E.5)

We can now calculate:

P(I < r log ρ) =

∫∫∫
O

f(v1, v2, v3) dv1 dv2 dv3

=

∫∫∫
O′
log ρ ρ−v1

e−ρ−v1

1− e−
ρr/2−1

ρ

log ρ ρ−v2e−ρ−v2

× log ρ ρ−v3e−ρ−v3dv1 dv2 dv3

.
=

∫∫∫
O′
ρ−

∑
uidv1 dv2 dv3

.
= ρ−do , (E.6)

where O′ is the intersection of O and the support of f(v1, v2, v3), and

do = inf
(v1,v2,v3)∈O′

n∑
j=1

ui,

= inf
(v1,v2,v3)∈O′

v1 + (r/2− 1) + v2 + v3 (E.7)



120

Following the same steps as those used in the proof of [28, Theorem 2],

O′ =
{
(v1, v2, v3) ∈ R3+, v1 ≥

(
1− r

2

)
,
[
max

(
(1− v1),

1

2
(1− (v2 + v3)

)]+
< r

}
(E.8)

Solving (E.7), we can show that

d0 = (1− 2r)+ (E.9)

It remains to show that d′3(r) = d0, which will be done in Appendix F.

For calculating d′2(r), we follow steps essentially similar to those leading to Equa-

tion (D.12), except this time we need to make explicit the relationship between outage and

error events.

P(e′2|e′1)
.
= P(e′2|U1) (E.10)

=
P(e′2,U1)

P(U1)

=
P(e′2|V1)P(V1) + P(e′2|V2)P(V2)

P(V1) + P(V2)

.
=

ρ(r−1)ρ(2r−1)2ρ(
r
2
−1) + ρ(2r−1)ρ2(

r
2
−1)

2ρ(
r
2
−1) + ρ2(

r
2
−1)

(E.11)

.
= ρ−(1−r)+−(1−2r)+ . (E.12)

where (E.10) is true because e′1 is the error of a non-relayed link therefore, with long code-

words, it is exponentially equivalent to the outage event U1. Equation (E.11) is derived by

substituting the known error exponents and noting that the third term is dominated by the

first two in both the numerator and denominator. Overall, d′2(r) = (1− r)+ + (1− 2r)+ can

be obtained.

To summarize, we have calculated d′1(r), d
′
2(r) and d3(r).



APPENDIX F

RELATION OF OUTAGE AND ERROR EVENTS FOR THE SHARED

RELAY CHANNEL

In this appendix, we show that the outage and error events have the same exponential order.

The approach follows [28, Theorem 3] and is adapted to the specific case at hand. We need

to show P(e)≤̇P(O) and P(e)≥̇P(O). The former is a straightforward application of [18,

Lemma 5]. For showing the latter inequality, note that

P(e) = P(O)P(e|O) + P(e, Ō)

≤ P(O) + P(e, Ō)

.
= P(O) (F.1)

where the last equation is valid whenever P(e, Ō)≤̇P(O), whose verification is the subject of

the remainder of this appendix. The pairwise error probability conditioned on the channel

coefficients is given by

Pc→e|hsd,hsr,hrd
≤ det

(
I2 +

1

2
ΣsΣ

−1
n

)−ℓ/2

(F.2)

where ℓ is the codebook codeword length and Σs and Σn are the covariance matrices of the

received signal and the noise, respectively. The pair wise error probability is given by

Pc→e|v1,v2,v3≤̇ ρ−
l
2
max(2(1−v1),1−(v2+v3))+ , (F.3)

where

(v1, v2, v3) ∈ R3+ ∩
{
v1 ≥

(
1− r

2

)}
. (F.4)
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The total probability of error is

Pe|v1,v2,v3≤̇ρ−
l
2
([max(2(1−v1),1−(v2+v3))]+−2r), (F.5)

The probability of error while no outage P(e, Ō) satisfies

P(e, Ō)≤̇
∫∫∫

O′′
Pe|v1,v2,v3P((v1, v2, v3) ∈ Ō) dv1 dv2 dv3

=

∫∫∫
O′′

ρ−
l
2
([max(2(1−v1),1−(v2+v3))]+−2r)+v1+( r

2
−1)+v2+v3 dv1 dv2 dv3. (F.6)

where O′′ = {(v1, v2, v3) ∈ R+ : (v1, v2, v3) /∈ O′}, the area in the positive quadrant that

is the complement of O′. Recall that O′ is the outage region in the space of exponents, as

defined in (E.8). The integral is dominated by the minimum value of the SNR exponent over

Ō, i.e,

P(e, Ō)≤̇ρ−d1(r), (F.7)

where

d1(r) = inf
v1,v2,v3∈O′′

ℓ

2

([
max(2(1− v1), 1− (v2 + v3))

]+ − 2r
)
+ v1 + (r/2− 1) + v2 + v3.

(F.8)

Note that the multiplier of ℓ is positive throughout the region O′′. Now recall from the

previous appendix that the outage probability is:

P(O)
.
= ρ−d0(r), (F.9)

where

d0(r) = inf
(v1,v2,v3)∈O′

v1 + (r/2− 1) + v2 + v3 (F.10)

The expression for d1(r) has one extra term compared with d0(r) which, as mentioned above,

is positive and can be made as large as desired by choosing ℓ to be large enough. Therefore

the condition P(e, Ō)≤̇P(O) is established, therefore we have P(e)≤̇P(O), which completes

the proof that the probability of error and outage events are exponentially equivalent.



APPENDIX G

DMT FOR DDF OPPORTUNISTIC SHARED RELAY CHANNEL

We derive an achievable DMT for the DDF opportunistic shared relay channel, employing

the mode selection rule defined in Appendix D. The DMT is given by Equations (D.1),

(D.2), (D.3) and (D.4). The reader is referred to Appendix D for the definition of the access

modes as well as the selection rule.

The DMT for Mode 1 is not affected by the relay and is given by d′1(r) = (1− r/2)+,

as seen in previous appendices. For Mode 2 one can employ the techniques of Appendix D to

show that outage is dominated by the event of one link being in outage, hence using results

from [28], one can prove that

d′2(r) =

{
2(1− r) 0 ≤ r ≤ 1

2
1−r
r

1
2
≤ 1

To calculate d′3(r), we consider the conditional outage of Mode 3; the equivalence of

error and outage analysis can be shown in a manner similar to Appendix F and [28]. In

the following we directly derive diversity from the outage events. The conditional outage of

Mode 3 was calculated in Equation (E.1):

P(U3|U2,U1)
.
= P

(
I1 < R

∣∣∣ {|h11|2 <
ρr/2 − 1

ρ

})
Given that |h11|2 < ρr/2−1

ρ
, the exponential order of |h11|2 is proved in (E.4) to have the

following distribution at high SNR

f(vi)
.
=

{
ρ−vi−(r/2−1) vi ≥ 1− r

2
,

0 vi < 1− r
2
.

(G.1)
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The outage as shown in Equation (E.6) is given by

P(U3|U2,U1)
.
= ρ−d′3(r), (G.2)

where

d′3(r) = inf
(v1,v2,v3)∈O′

v1 + (r/2− 1) + v2 + v3. (G.3)

Following the same steps of the proof of [28, Theorem 5], the outage event O′ is defined as

O′ =
{
(v1, v2, v3) ∈ R3+ , v1 ≥ (1− r/2) , t(1− v1)

+ + (1− t)
(
1−min(v1, v2)

)+ ≤ r
}
,

(G.4)

where t is the listening-time ratio of the half-duplex relay, with r ≤ t ≤ 1.

To get the DMT, we need to solve the optimization problem of (G.2), (G.4). Solving

the above optimizations and combining the results, the DMT is given by

d′3(r) =


1− r

1−r

(
1− r

2

)
, 0 ≤ r ≤ 0.5

(1−r)
r

−
(
1− r

2

)
, 0.5 < r ≤ 2−

√
2

0, 2−
√
2 < r ≤ 1.

(G.5)

Adding d′1(r), d
′
2(r) and d′3(r) completes the proof.



APPENDIX H

DMT FOR CF OPPORTUNISTIC SHARED RELAY CHANNEL

The methods of this appendix closely follow [30], with the notable exception of implementing

the effects of our selection algorithm and the dependence between the nodes.

We use the selection criterion defined in Appendix D, and the DMT is given by

Equations (D.1), (D.2), (D.3) and (D.4). The DMT of non-relayed Mode 3 is given by

d′1(r) = (1 − r/2)+, as seen several times already, since it is not contingent on the relay

protocol.

To calculate d′2(r) and d′3(r), we borrow the following result from [30]. For the random

half-duplex single-antenna relay channel, the dynamic-state CF protocol is DMT optimal and

by random here we mean that the random binary state of the relay (listen/transmit) is used

as a channel input and used in designing codebooks to convey information through the state

of the relay.

For Mode 2, one can employ the techniques of Appendix D to show that outage is

dominated by the event of one link being in outage, hence using results from [30], one can

prove that

d′2(r) = 2(1− r)+

For Mode 3, the DMT is given by

d′3(r) = max
t

min(dMAC(r, t), dBC(r, t)), (H.1)
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where

dBC = − lim
ρ→∞

logminp(xs,xr|q) P
(
IBC < r log ρ|U2,U1

)
log ρ

,

dMAC = − lim
ρ→∞

logminp(xs,xr|q) P
(
IMAC < r log ρ|U2,U1

)
log ρ

,

where q represents the state of the relay (listening vs. transmitting), p(xs, xr|q) is the

probability density of the codebooks generated for the source and the relay, and IBC and

IMAC represent the total mutual information across the source cutset and the destination

cutset, respectively. It can be shown [30] that

IBC ≤(1− t) log(1 + (|hs∗d∗|2 + |hs∗r|2)ρ) + t log(1 + |hs∗d∗|2ρ)

IMAC ≤(1− t) log(1 + |hs∗d∗|2ρ) + t log(1 + (|hs∗d∗|2 + |hrd∗|2)ρ)

where s∗ and d∗ are the selected source and destination for Mode 3. Using the same technique

as in Appendix G, we have

P
(
IBC < r log ρ|U2,U1

) .
= ρ−dBC(r), (H.2)

where

dBC(r) = inf
(v1,v3)∈O′

v1 + (r/2− 1) + v3, (H.3)

and the outage event O′ is defined as

O′ =
{
(v1, v3) ∈ R2+, v1 ≥ (1− r/2) , (1− t)(1− v1)

+ + t
(
1−min(v1, v3)

)+ ≤ r
}
. (H.4)

Solving the optimization problem, the DMT for the source cutset is given by

dBC =



1− r
t

(
1− 1−t

2

)
t > 1

2
, r ≤ 1−(1−t)

1−(1−t)/2

0 t > 1
2
, r > 1−(1−t)

1−(1−t)/2

1− r
(

1
t
− 1

2

)
t ≤ 1

2
, r ≤ t

1−r
1−t

+ r
2
− 1 t ≤ 1

2
, 1−(1−t)

1−(1−t)/2
≥ r > t

0 t ≤ 1
2
, r > 1−(1−t)

1−(1−t)/2
.

(H.5)
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Similarly, The DMT for the destination cutset is given by

dMAC =



1− r
1−t

(
1− t

2

)
t < 1

2
, r ≤ 1−t

1−t/2

0 t < 1
2
, r > 1−t

1−t/2

1− r
(

1
1−t

− 1
2

)
t ≥ 1

2
, r ≤ (1− t)

1−r
t

+ r
2
− 1 t ≥ 1

2
, 1−t

1−t/2
≥ r > (1− t)

0 t ≥ 1
2
, r > 1−t

1−t/2
.

(H.6)

The two functions are equal at t = 1
2
and that gives the maximum DMT. The DMT

is given by

d′3(r) =
(
1− 3

2
r
)+

. (H.7)

Adding the DMT of the three modes completes the proof.



APPENDIX I

SUM OF AN EXPONENTIAL AND A CLIPPED EXPONENTIAL

RANDOM VARIABLES

Define Z = X + Y , where X and Y are exponential random variables with exponential

parameters λ1 and λ2, respectively. Conditioned on the event B = {Y < α}, the conditional

pdf of Y is given by

fY |B(y) =

{
λ2

e−λ2y

1−e−λ2α
y ≤ α

0 y > α.
(I.1)

The pdf of Z = X + Y conditioned on the event B is as follows.

fZ|B(z) =

{ ∫ z

0
λ1e

−λ1(z−x) λ2e−λ2x

1−e−λ2α
dx z ≤ α∫ α

0
λ1e

−λ1(z−x) λ2e−λ2x

1−e−λ2α
dx z > α.

(I.2)

Hence, if λ1 ̸= λ2, the conditional pdf of Z = X + Y is

fZ|B(z) =

{
λ1λ2

e−λ1z(e(λ1−λ2)z−1)

(λ1−λ2)(1−e−λ2α)
z ≤ α

λ1λ2
e−λ1z(e(λ1−λ2)α−1)

(λ1−λ2)(1−e−λ2α)
z > α.

(I.3)

If λ1 = λ2 = λ, the conditional pdf of Z is

fZ|B(z) =

{
λ2 ze−λz

(1−e−λα)
z ≤ α

λ2 αe−λz

(1−e−λα)
z > α.

(I.4)
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