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Supervising Professor: Aria Nosratinia, Chair

Despite significant progress in the area of lattice coding and decoding, their operation under

ergodic fading has been mostly unexplored. In this dissertation, lattice coding and decoding

are studied for several ergodic fading scenarios, and their performance is analyzed. Specifi-

cally, the multiple-input-multiple-output (MIMO) point-to-point channel, the multiple-access

channel (MAC), the dirty paper channel, the broadcast channel and the interference channel are

studied under stationary and ergodic fading, with channel state information available only at the

receiver (CSIR), or channel state also available at the transmitter (CSIT). For the point-to-point

channel, the case of noisy channel state information at the receiver is also considered. Motivated

by practical considerations, the proposed decoding rules are only a function of channel statistics

and do not depend on the instantaneous realizations of the channel. When the channel state

information is available at all communication nodes, it is shown that lattice codes achieve the

capacity of the MIMO point-to-point channel as well as the K-user broadcast channel. When

channel state information is available at the receiver, it is shown that the gap to capacity is

a constant that diminishes with the number of receive antennas, even at finite signal-to-noise

ratio (SNR) under Rayleigh fading. Single-input-single-output (SISO) channels are also consid-

ered, where the decoding process is simpler and the gap to capacity is shown to be bounded

by a constant for a wide range of fading distributions. The same conclusion follows for the

MAC. Additionally, an alternative decoding approach is presented for block-fading SISO point-
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to-point channels that are drawn from a discrete distribution, where channel-matching decision

regions are proposed. The gap to capacity is shown to be a constant that diminishes under mild

conditions. The fading MIMO dirty paper channel with CSIR is also studied, where a lattice

coding/decoding scheme achieves a constant gap to capacity. An inner bound for the dirty

paper channel is also developed using Gaussian codebooks in conjunction with random binning.

Results are extended to MIMO broadcast channels with CSIR, and are compared to newly devel-

oped outer bounds for the broadcast channel. Finally, the two-user fading interference channel

is studied under the ergodic strong regime. The capacity region of this channel is calculated

using Gaussian codebooks. In addition, a lattice coding/decoding scheme is proposed, and its

achievable rate region is computed, whose gap to capacity is shown to be small.

.
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CHAPTER 1

INTRODUCTION

In practical applications, structured codes are favored due to computational complexity issues;

lattice codes are an important class of structured codes that has gained special interest in

the last few decades. An early attempt to characterize the performance of lattice codes in

the additive white Gaussian noise (AWGN) channel was made by de Buda [1]; a result that

was later corrected by Linder et al. [2]. Subsequently, Loeliger [3] showed the achievability of

1
2
log(SNR) with lattice coding and decoding. Urbanke and Rimoldi [4] showed the achievability

of 1
2
log(1 + SNR) with maximum-likelihood decoding. Erez and Zamir [5] demonstrated that

lattice coding and decoding achieve the capacity of the AWGN channel using a method involving

common randomness via a dither variable and minimum mean-square error (MMSE) scaling at

the receiver. Subsequently, Erez et al. [6] proved the existence of lattices with good properties

that achieve the performance promised in [5]. El Gamal et al. [7] showed that lattice codes

achieve the capacity of the AWGN MIMO channel, as well as the optimal diversity-multiplexing

tradeoff under quasi-static fading. Prasad and Varanasi [8] developed lattice-based methods

to approach the diversity of the MIMO channel with low complexity. Dayal and Varanasi [9]

developed diversity-optimal codes for Rayleigh fading channels using finite-constellation integer

lattices and maximum-likelihood decoding. Zhan et al. [10] introduced integer-forcing linear

receivers as an efficient decoding approach that exploits the linearity of lattice codebooks. Or-

dentlich and Erez [11] showed that in conjunction with precoding, integer-forcing can operate

within a constant gap to the MIMO channel capacity. So far lattice coding results have mostly

addressed channel coefficients that are either constant or quasi-static. Vituri [12] study the

performance of lattice codes with unbounded power constraint under regular fading channels.

Recently, Luzzi and Vehkalahti [13] showed that a class of lattices belonging to a family of divi-

sion algebra codes achieve rates within a constant gap to the ergodic capacity at all SNR, where

the gap depends on the algebraic properties of the code as well as the antenna configuration.
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Unfortunately, the constant gap in [13] can be shown to be quite large at many useful antenna

configurations, in addition to requiring substantial transmit power to guarantee any positive

rate. Liu and Ling [14] showed that polar lattices achieve the capacity of the i.i.d. SISO fading

channel. Campello et al. [15] also proved that algebraic lattices achieve the ergodic capacity of

the SISO fading channel.

Going beyond the point-to-point channel, Song and Devroye [16] investigated the perfor-

mance of lattice codes in the Gaussian relay channel. Nazer and Gastpar [17] introduced the

compute-and-forward relaying strategy based on the decoding of integer combinations of interfer-

ing lattice codewords from multiple transmitters. Compute-and-forward was also an inspiration

for the development of integer-forcing [10]. Özgür and Diggavi [18] showed that lattice codes

can operate within a constant gap to the capacity of Gaussian relay networks. Ordentlich et

al. [19] proposed lattice-based schemes that operate within a constant gap to the sum capacity

of the K-user MAC, and the sum capacity of a class of K-user symmetric Gaussian interference

channels. In [20], Lin et al. proposed a version of the lattice coding and decoding scheme in [7]

for the fading MIMO dirty paper channel, where a decoding rule that depends on the channel

realizations is used. The proof in [7], originally derived for quasi-static MIMO channels, uses the

Minkowski-Hlawka Theorem to prove the existence of a codebook with negligible error probabil-

ity for a given channel state. However, the existence of a universal codebook that achieves the

same error probability over all channel states is not guaranteed and hence the achievable rates

in [20] remain under question. Recently, versions of the fading dirty paper channel have been

studied where the signal and dirt incur different fading processes. Bergel et al. [21] proposed a

lattice coding scheme for the fading dirty paper channel with non-causal noisy channel knowl-

edge, which is tight at small enough error variance. Recently, lattice codes have been proposed

for Gaussian interference channels. This is in part motivated by [22], showing that a naive

extension of the Han-Kobayashi scheme with Gaussian codes is suboptimal for the Gaussian

interference channel with more than two users, and that linear codes (more specifically lattice

codes) outperform Gaussian codes in such case. Following this result, Jafar and Vishwanath [23]

2



showed that the generalized Degrees-of-Freedom of the K-user symmetric Gaussian interference

channel is achieved via lattice codes.

This dissertation investigates the rates achieved by lattice coding and decoding under sta-

tionary and ergodic conditions in multiple-antenna wireless networks. A brief outline of related

results on the ergodic capacity of these channels is as follows. The ergodic capacity of the Gaus-

sian fading channel was established by McEliece and Stark [24]. Goldsmith and Varaiya [25]

extended the result to the full CSIT case. The capacity of the ergodic MIMO channel was

established by Telatar [26] and Foschini and Gans [27]. Channels with imperfect channel state

information have been studied in the literature. Medard [28] computed bounds on the achiev-

able rates for a given channel estimation error variance at the receiver. The capacity region of

the ergodic MIMO MAC was found by Shamai and Wyner [29]. Li and Goldsmith derived the

capacity of the ergodic fading broadcast channel with channel state information at all nodes [30].

The surveys by Biglieri et al. [31] and Goldsmith et al. [32] provide a broader view of the fading

channels literature.

On the other hand, several works have addressed extensions of Costa’s “Writing on dirty

paper” [33]. Erez et al. [34] generalized Costa’s work to non-Gaussian states via dithered lattice

codes and minimum mean-square error (MMSE) estimation. Recently, Renyi and Shamai [35]

considered a variation where the state is multiplied by a time-varying channel coefficient that

is known exclusively at the receiver. Weingarten et al. showed that dirty paper coding achieves

the capacity region of the Gaussian MIMO broadcast channel [36].

More generally, the problem of channels with state has been subject to extensive research

in the literature. Shannon studied the discrete-memoryless channel with state known causally

at the transmitter [37]. Gel’fand and Pinsker [38] studied the discrete-memoryless channel with

the state known non-causally at the transmitter. Costa [33] solved the same problem when both

the state and the noise are additive and Gaussian, and showed that the capacity is unaffected

by the additive state (dirt). Jafar [39] studied various channels with state, where he compared

the impact on the capacity of causal and non-causal channel knowledge at the transmitter.

3



Several results exist for the ergodic fading broadcast channel with receive channel state

information. Li and Goldsmith derived the capacity of the ergodic fading broadcast channel

with channel state information at all nodes [30]. Tuninetti and Shamai [40] derived an inner

bound for the rate region that is based on random coding and joint decoding at one of the

receivers. Tse and Yates [41] derived inner and outer bounds for the fading broadcast channel.

The bounds provided are solutions of integrals. Jafarian and Vishwanath [42] computed outer

bounds that are valid when the fading coefficients are drawn from a discrete distribution. Jafar

and Goldsmith [43] proved that increasing the number of transmit antennas in an isotropic

fading SISO broadcast channel with CSIR does not increase the capacity.

For the two-user Gaussian interference channel, the best known inner bound to date is that

of Han and Kobayashi [44], which meets the capacity region under strong interference. The

capacity region of the strong interference channel was also derived in [45]. A notable result due

to Etkin et al. [46], showed that a special case of the inner bound in [44] is within one bit of

capacity. Most of the results on the Gaussian interference channel to date focus on scenarios

without channel fading. Recently, a few papers addressed stationary and ergodic channel fading

coefficients. In [47] Sankar et al. considered the two-user ergodic fading interference channel with

channel state information available at all nodes, where Gaussian codes were shown to achieve the

sum capacity under some scenarios, namely the ergodic very strong (a mix of strong and weak

fading states satisfying specific strict fading average conditions) and uniformly strong, (every

cross fading coefficient is larger in magnitude than its corresponding direct fading coefficient)

interference regimes. Farsani [48] also studied a variant of the latter problem with partial channel

state information at the transmitters.

The contributions of this dissertation are as follows.

• MIMO Point-to-point Channel with CSIR. In this dissertation we propose a lattice

coding and decoding strategy and analyze its performance for a variety of MIMO ergodic

channels, showing that the gap to capacity is small at both high and low SNR. The fading
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processes in this paper are finite-variance stationary and ergodic. First, we present a lattice

coding scheme for the MIMO point-to-point channel under isotropic fading, whose main

components include the class of nested lattice codes proposed in [5] in conjunction with

a time-varying MMSE matrix at the receiver. The proposed decision regions are spheri-

cal and depend only on the channel distribution, and hence the decision regions remain

unchanged throughout subsequent codeword transmissions.1 The relation of the proposed

decoder with Euclidean lattice decoding is also discussed. The rates achieved are within

a constant gap to the ergodic capacity for a broad class of fading distributions. Under

Rayleigh fading, a bound on the gap to capacity is explicitly characterized which vanishes

as the number of receive antennas grows. Similar results are also derived for the fading

K-user MIMO MAC. The proposed scheme provides useful insights on the implementation

of MIMO systems under ergodic fading. First, the results reveal that structured codes can

achieve rates within a small gap to capacity. Moreover, channel-independent decision re-

gions approach optimality when the number of receive antennas is large. Furthermore, for

the special case of SISO channels the gap to capacity is characterized for all SNR values

and over a wide range of fading distributions. Unlike [13], the proposed scheme achieves

positive rates at low SNR where the gap to capacity vanishes. At moderate and high

SNR, the gap to capacity is bounded by a constant that is independent of SNR and only

depends on the fading distribution. In the SISO channel under Rayleigh fading, the gap

is a diminishing fraction of the capacity as the SNR increases.

Moreover, an alternative decoding approach is proposed for MIMO block-fading channels

drawn from a discrete distribution. We show that when the decision regions are designed

to match the channel realizations, the gap to capacity is a constant that depends on the

channel coherence length as well as the fading distribution size. Special cases where the

gap to capacity vanishes are also provided.

1Although the decision regions are designed independently of the channel realizations, the received signal
is multiplied by an MMSE matrix prior to decoding the signal, and hence channel knowledge at the receiver
remains necessary for the results in this paper.
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• MIMO Point-to-point Channel with CSIT. Under fading and in the presence of

CSIT, the most straight forward capacity approaching schemes employ separable coding,

i.e., coding independently and in parallel over different fading states of the channel [25, 32].

Unfortunately, separable coding causes significant delay and requires large memory at both

the transmitter and receiver. Also, separable encoding in practice forces a low-probability

fading state to either cause huge delays, small block-length effects, or the symbols in

that fading state to be ignored with associated rate loss. As a result, achieving the ergodic

capacity of block-fading channels without separable coding (i.e., with coding across states)

remains an important theoretical and practical question.2 In this dissertation we show

that non-separable lattice coding achieves the ergodic capacity of the block fading SISO

channel. At the transmitter, the symbols of the codeword are permuted across time

using a linear permutation matrix. Time-varying MMSE scaling is used at the receiver,

followed by a decoder that is universal for all fading realizations drawn from a given fading

distribution. Hence, the codebook design and decision regions are fixed across different

transmissions; the only channel-dependent blocks are the permutation and MMSE scaling

functions. We first highlight the main ideas of the proposed scheme in the context of a

heuristic channel model whose behavior approximates the ergodic fading channel. We then

generalize the solution to all fading distributions whose realizations are robustly typical,

and to continuous distributions via a bounding argument. The results are then extended

to MIMO block-fading channels.

• Point-to-point Channel with imperfect CSIR. Under imperfect channel state infor-

mation at the receiver, bounds on the achievable rates using lattice coding and decoding

are derived for a given channel estimation error variance, similar to the approach adopted

in Medard’s work [28]. Nested lattice codes are used whereas the decision regions proposed

2It was pointed out in [31] that under maximum likelihood decoding the ergodic capacity of point-to-point
channels with CSIT can be attained using Gaussian signaling without separable coding. However, the same
result is not necessarily true for non-Gaussian (structured) codebooks.
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depend on the statistics of the fading channel and not the actual channel realizations. This

offers a notable advantage from the perspective of decoding complexity, since the decision

regions remain fixed for a given fading distribution. For a wide range of fading distribu-

tions, the gap between the rates achieved using lattice codebooks compared to Gaussian

codebooks is a constant that does not depend on the channel estimation error variance

nor the input power. As a byproduct, we use the Generalized Degrees-of-Freedom [46] as

a performance metric for channels with estimation error, where it is shown that the lattice

scheme achieves the same GDoF as Medard’s Gaussian-input scheme.

• Ergodic MIMO Multiple-Access Channel. The point-to-point scheme under CSIR

is extended to the K-user ergodic multiple-access channel. Similar to the point-to-point

case, the rates achieved are within a constant gap to the sum capacity for a class of fading

distributions. Under Rayleigh fading, this gap vanishes when the number of antennas

at the receiver is large: a result that may have direct applications to massive MIMO

systems [49].

• MIMO Dirty paper channel with CSIR. A modified version of Costa’s dirty paper

problem is studied. In the model under study, both the input signal and the state are

multiplied by the same time-varying channel coefficient, which is known only at the re-

ceiver. Explicit capacity expressions of the problem are non-trivial since the knowledge

of the states is distributed among the transmitter and the receiver (the transmitter has

non-causal knowledge of the dirt while the receiver has knowledge of the channel). Follow-

ing similar steps to the work in [34], a lattice coding and decoding scheme is proposed for

the fading dirty paper channel under study. As will be shown, both the encoding process

and decoding process involve significantly reduced complexity, compared to the random

binning and maximum likelihood decoding techniques used in Costa’s results [33]. More-

over, the state distribution is allowed to be more general, and is not necessarily Gaussian.

Under a wide range of fading distributions, the gap to capacity is shown to be a constant
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that does not depend on either the signal or state power. The results are also extended

to the MIMO dirty paper channels, where it is shown that the gap to capacity diminishes

with the number of receive antennas.

Moreover, the results are applied to a class of broadcast channels with ergodic fading and

receive channel state information. Under certain SNR regimes, the rate region achieved

by the proposed schemes are close to the capacity region.

• MIMO Broadcast channel with CSIR. One advantage of the dirty paper model is

its straightforward extension to the broadcast channel with CSIR, where each receiver

decodes a signal contaminated by interference stemming from the same source, and hence

the desired signal and interference undergo the same fading process. Hence, we apply

the dirty paper channel results to a two-user MIMO BC with different fading dynamics,

where the fading process is stationary and ergodic for one receiver and quasi-static for the

other receiver. In addition, the case where both users experience ergodic fading processes

that are independent of each other is also studied. Unlike conventional broadcast channel

techniques, the proposed scheme does not require any receiver to know the codebooks of

the interference signals. Performance is compared with a version of dirty paper coding

under non-causal CSIT. For the cases under study, the lattice coding scheme achieves

rates very close to dirty paper coding over most of the rate region.

• Broadcast channel with CSIT. The K-user ergodic broadcast channel with full CSI

is also studied, using a variant of the point-to-point scheme. The proposed approach is

based on lattice coding and decoding in conjunction with separable coding. It is shown

that this approach achieves the capacity region of the broadcast channel.

• Ergodic Strong Interference Channel. In this paper, the two-user ergodic fading

Gaussian interference channel is considered under ergodic strong conditions, i.e., a mix of

strong and weak fading states where the cross-fading coefficient is statistically stronger
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than the direct-fading coefficient, where channel state information is available only at the

receivers. To the best of our knowledge, this is the first result on ergodic strong interfer-

ence channels in the literature, which obviously includes the uniformly strong and ergodic

very strong interference channels as special cases. First, an outer bound of the capac-

ity region is established, which can be achieved via Gaussian codes. Moreover, a lattice

coding and decoding scheme is proposed, which is based on nested lattice codes at the

transmitters and MMSE scaling in conjunction with lattice decoding at the receivers. The

decoding rule proposed is universal for all realizations of a given fading distribution, and

hence offering significant advantages in terms of computational complexity.

Notation

Boldface lowercase letters denote column vectors and boldface uppercase letters denote matri-

ces. The set of real numbers, complex numbers and positive integers are denoted R,C,Z+,

respectively. AT ,AH denote the transpose and Hermitian transpose of matrix A, respectively.

ai denotes element i of a. A(i, :) is row i in A. ai denotes element i of a. δ
(n)
k is a length n

column vector whose entry k is one, with all other entries being zero. A � B indicates that

A − B is positive semi-definite. det(A) and tr(A) denote the determinant and trace of A,

respectively. B(q) is an n-dimensional ball of radius q and the volume of shape A is denoted

Vol(A). log, ln represent logarithms in base 2 and the natural logarithm, respectively. We

define j =
√
−1. Real and imaginary parts of a complex number are shown with superscripts R

and I , respectively. 1n is the length n all ones column vector. P,E denote the probability and

expectation operators, respectively. κ+ denotes max{κ, 0}. |A| denotes the number of elements

in set A.
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CHAPTER 2

PRELIMINARIES

2.1 Lattice Codes

A lattice Λ is a discrete subgroup of Rn which is closed under reflection and real addition. The

fundamental Voronoi region V of the lattice Λ is defined by

V =
{
s : argmin

λ∈Λ
||s− λ|| = 0

}
. (2.1)

The second moment per dimension of Λ is defined as

σ2
Λ =

1

nVol(V)

∫

V
||s||2ds, (2.2)

and the normalized second moment G(Λ) of Λ is

G(Λ) =
σ2
Λ

Vol
2
n (V)

, (2.3)

where G(Λ) > 1
2πe

for any lattice in R
n.

Every s ∈ R
n can be uniquely written as s = λ + e where λ ∈ Λ, e ∈ V . The quantizer is

then defined by

QV(s) = λ , if s ∈ λ+ V . (2.4)

Define the modulo-Λ operation corresponding to V as follows

[s] modΛ , s−QV(s). (2.5)

The mod Λ operation also satisfies

[
s+ t

]
modΛ =

[
s+ [t] modΛ

]
modΛ ∀s, t ∈ R

n. (2.6)

The lattice Λ is said to be nested in Λ1 if Λ ⊆ Λ1.

We employ the class of nested lattice codes proposed in [5]. The transmitter constructs a

codebook L1 = Λ1 ∩ V , whose rate is given by

R =
1

n
log

Vol(V)
Vol(V1)

. (2.7)
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The coarse lattice Λ has an arbitrary second moment Px and is good for covering and

quantization, whereas the fine lattice Λ1 is good for AWGN coding, where both are construction-

A lattices [3, 5]. The existence of such lattices has been proven in [6].

A lattice Λ is good for covering if

lim
n→∞

1

n
log

Vol(Bn(Rc))

Vol(Bn(Rf ))
= 0, (2.8)

where the covering radius Rc is the radius of the smallest sphere spanning V and Rf is the radius

of the sphere whose volume is equal to Vol(V). In other words, for a good nested lattice code

with second moment Px, the Voronoi region V approaches a sphere of radius
√
nPx. A lattice Λ

is good for quantization if

lim
n→∞

G(Λ) =
1

2πe
. (2.9)

A key ingredient of the lattice coding scheme in [5] is using common randomness (dither) d

in conjunction with the lattice code at the transmitter. d is also known at the receiver, and is

drawn uniformly over V .

Lemma 1. [5, Lemma 1] If t ∈ V is independent of d, then x is uniformly distributed over V

and independent of the lattice point t.

Lemma 2. [50, Theorem 1]. An optimal lattice quantizer with second moment σ2
Λ is white, and

the autocorrelation of its dither dopt is given by E[doptd
T
opt] = σ2

ΛIn.

Note that the optimal lattice quantizer is a lattice quantizer with the minimum G(Λ). Since

the proposed class of lattices is good for quantization, the autocorrelation of d approaches that

of dopt as n increases.

For a more comprehensive review on lattice codes see [51].

2.2 Robust Typicality

Let x be a random variable with finite support {α1, . . . , αχ} according to a probability distribu-

tion P, and let x = [x1, . . . , xn] be a sequence of independent samples/realizations of x. Denote
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by nk the number of occurrences of the outcome αk. Orlitsky and Roche [52] introduced the

notion of robust typicality, where the sequence x is said to be δ-robustly typical for δ > 0 if for

all k ∈ {1, . . . , χ},

|nk − nPk| ≤ δnPk. (2.10)

where Pk is a short-hand notation for P(αk). In words, (2.10) implies that for small values of δ

a sequence is δ-robustly typical if the number of occurrences of αk is not too far from npk for

all k. The following lemma, proved in [52], reveals that when the random sequence x drawn

from P is long enough, then it is robustly typical with high probability.

Lemma 3. [52, Lemma 17] The probability of a sequence x of length n being not δ-robustly

typical is upper bounded by

P(x /∈ Tδ) ≤
χ

∑

k=1

P
(
|nk − nPk| > δnPk

)
≤ 2χe−δ2µn/3, (2.11)

where Tδ is the set of typical sequences defined for the probability distribution P, and µ , minPk

is the smallest non-zero probability in P.
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CHAPTER 3

ERGODIC POINT-TO-POINT CHANNEL

3.1 Point-to-point Channel with CSIR

3.1.1 MIMO Channel with Isotropic Fading1

Consider a MIMO point-to-point channel with Nt transmit antennas and Nr receive antennas.

The received signal at time instant i is given by

yi = H ixi +wi, (3.1)

where H i is an Nr ×Nt matrix denoting the channel coefficients at time i. The channel is zero-

mean with strict-sense stationary and ergodic time-varying gain. Moreover, H is isotropically

distributed, i.e., P(H) = P(HV ) for any unitary matrix V independent of H . We first consider

real-valued channels; the extension to complex-valued channels will appear later in this section.

The receiver has instantaneous channel knowledge, whereas the transmitter only knows the

channel distribution. xi ∈ R
Nt is the transmitted vector at time i, where the codeword

x , [xT
1 ,x

T
2 , . . . ,x

T
n ]

T (3.2)

is transmitted throughout n channel uses and satisfies E[||x||2] ≤ nPx. The noise w ∈ R
Nrn

defined by wT , [wT
1 ,w

T
2 , . . . ,w

T
n ]

T is a zero-mean i.i.d. Gaussian noise vector with covariance

INrn, and is independent of the channel realizations. For convenience, we define the SNR per

transmit antenna to be ρ , Px/Nt.

Theorem 1. For the ergodic fading MIMO channel with isotropic fading, any rate R satisfying

R < −1

2
log det

(

E
[
(INt

+ ρHTH)−1
])

(3.3)

is achievable using lattice coding and decoding.

1 c© 2017 IEEE. Reprinted, with permission, from A. Hindy and A. Nosratinia, Lattice Coding and Decoding
for Multiple-Antenna Ergodic Fading Channels, IEEE Transactions on Communications, May 2017
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Proof. Encoding: Nested lattice codes Λ ⊆ Λ1 are used. The transmitter emits a lattice point t ∈

Λ1 that is dithered with d which is drawn uniformly over V . Λ has a second moment Px and

is good for covering and quantization. Λ1 is good for AWGN coding. Both are construction-A

lattices [3, 5]. The dithered codeword is then as follows

x =
[
t− d

]
modΛ = t− d+ λ , (3.4)

where λ = −QV(t−d) ∈ Λ from (2.5). The coarse lattice Λ ∈ R
Ntn has a second moment ρ. The

codeword is composed of n vectors xi, each of length Nt as shown in (3.2), which are transmitted

throughout n channel uses.

Decoding: The received signal can be expressed in the form y = Hsx +w, where Hs is a

block-diagonal matrix whose diagonal block i is H i. The received signal y is multiplied by a

matrix U s ∈ R
Nrn×Ntn and the dither is removed as follows

y′ ,UT
s y + d

=x+ (UT
s Hs − INtn)x+UT

s w + d

=t+ λ+ z, (3.5)

where

z , (UT
s Hs − INtn)x+UT

s w, (3.6)

and t is independent of z, according to Lemma 1. The matrix U s that minimizes E
[
||z||2

]
is

then a block-diagonal matrix whose diagonal block i is the Nt × Nr MMSE matrix at time i

given by

U i = ρ(INr
+ ρH iH

T
i )

−1H i. (3.7)

From (3.6),(3.7), the equivalent noise at time i, i.e., zi ∈ R
Nt , is expressed as

zi =
(

ρHT
i (INr

+ ρH iH
T
i )

−1H i − INt

)

xi + ρHT
i (INr

+ ρH iH
T
i )

−1wi

=− (INt
+ ρHT

i H i)
−1xi + ρHT

i (INr
+ ρH iH

T
i )

−1wi, (3.8)
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where (3.8) holds from the matrix inversion lemma, and z , [zT
1 , . . . , z

T
n ]

T . Naturally, the

distribution of z conditioned on H i (which is known at the receiver) varies across time. To

avoid complications arising from known but variable channel gains, we ignore the instantaneous

channel knowledge, i.e., the receiver considers H i a random matrix after equalization. The

following lemma highlights certain geometric properties of z in the Ntn-dimensional space.

Lemma 4. Let Ω be a sphere defined by

Ω , {v ∈ R
Ntn : ||v||2 ≤ (1 + ǫ)tr(Σ̄)}, (3.9)

where Σ̄ , ρE
[
(INtn + ρHT

s Hs)
−1
]
. Then, for any ǫ > 0 and γ > 0, there exists nγ,ǫ such that

for all n > nγ,ǫ,

P
(
z /∈ Ω

)
< γ. (3.10)

Proof. See Appendix A.1.

We apply a version of the ambiguity decoder proposed in [3] defined by the spherical decision

region Ω in (3.9).2 The decoder chooses t̂ ∈ Λ1 if the received point falls inside the decision

region of the lattice point t̂, but not in the decision region of any other lattice point.

Error Probability: As shown in [3, Theorem 4], on averaging over the set of all good

construction-A fine lattices C of rate R, the probability of error can be bounded by

1

|C|
∑

Ci∈C
Pe < P(z /∈ Ω) + (1 + δ)

Vol(Ω)

Vol(V1)
= P(z /∈ Ω) + (1 + δ)2nR

Vol(Ω)

Vol(V) , (3.11)

for any δ > 0, where (3.11) follows from (2.7). This is a union bound involving two events: the

event that the noise vector is outside the decision region, i.e., z /∈ Ω and the event that the

post-equalized point is in the intersection of two decision regions, i.e.,
{
y′ ∈ {t1+Ω}∩{t2+Ω}

}
,

where t1, t2 ∈ Λ1 are two distinct lattice points. Owing to Lemma 4, the probability of the first

event vanishes with n. Consequently, the error probability can be bounded by

1

|C|
∑

Ci∈C
Pe < γ + (1 + δ)2nR

Vol(Ω)

Vol(V) , (3.12)

2Ω satisfies the condition in [3] of being a bounded measurable region of RNtn, from (3.9).
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for any γ, δ > 0. For convenience define Ψ = ρΣ̄
−1
. The volume of Ω is given by

Vol(Ω) = (1 + ǫ)
Ntn

2 Vol
(
BNtn(

√

Ntnρ)
)
det

(
Ψ

−1
2

)
. (3.13)

The second term in (3.12) is bounded by

(1 + δ)2nR(1 + ǫ)Ntn/2
Vol(BNtn(

√
Ntnρ))

Vol(V) det
(
Ψ

−1
2

)

=(1 + δ)2
−Ntn

(

− 1
Ntn

log
(

Vol(BNtn
(
√

Ntnρ))

Vol(V)

)
+ξ

)

, (3.14)

where

ξ ,
−1

2
log(1 + ǫ)− 1

2Ntn
log det(Ψ−1)− 1

Nt

R

=
−1

2
log(1 + ǫ)− 1

2Nt

log det
(
E
[
(INt

+ ρHTH)−1
])

− 1

Nt

R. (3.15)

From (2.8), since the lattice Λ is good for covering, the first term of the exponent in (3.14)

vanishes. From (3.14), whenever ξ is a positive constant we have Pe → 0 as n → ∞, where ξ is

positive as long as

R < −1

2
log det

(

E
[
(INt

+ ρHTH)−1
])

− 1

2
log(1 + ǫ)− ǫ′,

where ǫ, ǫ′ are positive numbers that can be made arbitrarily small by increasing n. From (3.5),

the outcome of the decoding process in the event of successful decoding is t̂ = t+ λ, where the

transformation of t by λ ∈ Λ does not involve any loss of information. Hence, on applying the

modulo-Λ operation on t̂

[t̂] modΛ = [t+ λ] modΛ = t, (3.16)

where the second equality follows from (2.6) since λ ∈ Λ. Since the probability of error in (3.12)

is averaged over the set of lattices in C, there exists at least one lattice that achieves the same

(or less) error probability. Following in the footsteps of [5, 7], the existence of a sequence of

covering-good coarse lattices with second moment ρ that are nested in Λ1 can be shown. The

final step required to conclude the proof is extending the result to Euclidean lattice decoding,

which is provided in the following lemma.
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Lemma 5. The error probability of the Euclidean lattice decoder given by3

t̂ =
[
argmin

t∈Λ1

||y′ − t′||2
]
modΛ (3.17)

is upper-bounded by that of the ambiguity decoder in (3.9).

Details of the proof of Lemma 5 is provided in Appendix A.2, whose outline is as follows.

For the cases where the ambiguity decoder declares a valid output (y′ lies exclusively within

a unique decision sphere), both the Euclidean lattice decoder and the ambiguity decoder with

spherical regions would be identical, since a sphere is defined by the Euclidean metric. However,

when the ambiguity decoder fails to declare an output (ambiguity or atypical received sequence),

the Euclidean lattice decoder still yields a valid output, and hence is guaranteed to achieve the

same (or better) error performance, compared to the ambiguity decoder. This concludes the

proof of Theorem 1.

We extend the results to complex-valued channels using a similar technique to that in [17,

Theorem 6].

Theorem 2. For the ergodic fading MIMO channel with complex-valued channels H̃ that are

known at the receiver, any rate R satisfying

R < − log det
(

E
[
(INt

+ ρH̃
H
H̃)−1

])

(3.18)

is achievable using lattice coding and decoding.

Proof. A sketch of the components of the proof specific to complex-valued channels is provided.

Other parts follow the proof of Theorem 1 for real-valued channel coefficients.

Encoding: Since the channel is complex-valued, two independent codewords are selected from

the same nested lattice code Λ′
1 ⊇ Λ′ where Λ′ has a second moment ρ/2. The transmitted signal

is the combination of the two dithered lattice codewords,

x̃ =
[
t′ − d′]modΛ′ + j

[
t′′ − d′′]modΛ′, (3.19)

3The Euclidean decoder in (3.17) does not involve the channel realizations, unlike that in [7, 13].
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with E
[
||x̃||2

]
≤ nPx, and the dithers d′,d′′ are independent. Note that the independence of

the dithers is crucial for successful encoding.

Decoding: The MMSE matrix at time i is given by

Ũi = ρH̃
H

i (ρH̃ iH̃
H

i + INr
)−1. (3.20)

Following MMSE scaling and dither removal similar to (3.5), the real and imaginary equiv-

alent channels at the receiver are as follows

ỹ′R = t′ + λ′ + z̃R,

ỹ′I = t′′ + λ′′ + z̃I , (3.21)

where λ′,λ′′ ∈ Λ′. z̃R and z̃I are the equivalent noise components over the real and imaginary

channels, respectively. The autocorrelation of each is given by

Σii = E[zR
i (z

R
i )

H ] = E[zI
i (z

I
i )

H ] =
ρ

2
E
[
(INt

+ ρH̃
H
H̃)−1

]
. (3.22)

The decoder then recovers the lattice points t′ and t′′ independently over the real and imaginary

domains. Hence, the complex-valued channel is transformed to two parallel real-valued channels

at the receiver, where reliable rates can be achieved on each channel as long as

Ř < −1

2
log det

(

E
[
(INt

+ ρH̃
H
H̃)−1

])

, (3.23)

and double the rate in (3.23) is the achievable rate in (3.18) for the complex-valued MIMO

channel.

We compare the achievable rate in (3.18) with the ergodic capacity for isotropic MIMO

channels, given by [26]

C = E
[
log det(INt

+ ρH̃
H
H̃)

]
. (3.24)

Corollary 1. The gap ∆ between the rate of the lattice scheme (3.18) and the ergodic capacity

in (3.24) for the Nt ×Nr ergodic fading MIMO channel is upper bounded by
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Figure 3.1. Gap to capacity under Rayleigh fading MIMO vs. division algebra lattices, for all
ρ ≥ 1.

• Nr ≥ Nt and ρ ≥ 1: For any channel for which all elements of E
[
(H̃

H
H̃)−1

]
< ∞

∆ < log det
((

INt
+ E[H̃

H
H̃ ])E

[
(H̃

H
H̃)−1

])

. (3.25)

• Nr > Nt and ρ ≥ 1: When H̃ is i.i.d. complex Gaussian with zero mean and unit variance,

∆ < Nt log
(
1 +

Nt + 1

Nr −Nt

)
. (3.26)

• Nt = 1 and and ρ < 1
E[||h̃||2] : When E

[
||h̃||4

]
< ∞,

∆ < 1.45E
[
||h̃||4

]
ρ2. (3.27)

Proof. See Appendix A.3.

The expression in (3.26) for Rayleigh fading is depicted in Figure 3.1 for a number of antenna

configurations. The gap-to-capacity vanishes with Nr for any ρ ≥ 1. This result has two crucial

implications. First, under certain antenna configurations, lattice codes approximate the capacity

19



-20 0 20 40 60 80 100 120

ρ (dB)

0

10

20

30

40

50

60

70

80

R
at

e 
(b

/s
/H

z)

(a)

Ergodic capacity
Proposed
D.A. Lattice

-20 0 20 40 60 80 100 120

ρ (dB)

0

2

4

6

8

10

12

G
ap

 to
 c

ap
ac

ity
 (

b/
s/

H
z)

(b)

Proposed
D.A. Lattice

Figure 3.2. Rates achieved by the proposed scheme vs. ergodic capacity under i.i.d. Rayleigh
fading with Nt = Nr = 2.

at finite SNR. Moreover, channel-independent decision regions approach optimality for large Nr.

The results are also compared with that of the class of division algebra lattices proposed in [13]

(denoted D.A. lattice), whose gap-to-capacity is both larger and insensitive to Nr. For the

square MIMO channel with Nt = Nr = 2, the throughput of the proposed lattice scheme is

plotted in Figure 3.2 and compared with that of [13]. The gap to capacity is also plotted, which

show that for the proposed scheme the gap also saturates when Nt = Nr.

Remark 1. Division algebra codes in [13] guarantee non-zero rates only above a per-antenna

SNR threshold that is no less than 21Nt − 1 when Nt < Nr and E[H̃
H
H̃ ] = INt

, e.g., an SNR

threshold of 10 dB for a 1× 2 channel. Our results guarantee positive rates at all SNR; for the

single-input multiple-output (SIMO) channel at low SNR the proposed scheme has a gap on the

order of ρ2. Since at ρ ≪ 1 we have C ≈ ρE
[
||h̃||2

]
log e, the proposed scheme can be said to

asymptotically achieve capacity at low SNR. Our results also show the gap diminishes to zero

with increasing the number of receive antennas under Rayleigh fading.
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3.1.2 SISO channel

When each node has one antenna, we find tighter bounds on the gap to capacity for a wider

range of fading distributions. Without loss of generality let E[|h̃|2] = 1. The gap to capacity is

given by

∆ = E
[
log (1 + ρ|h̃|2)

]
+ log

(
E[

1

1 + ρ|h̃|2
]
)
. (3.28)

In the following, we compute bounds on this gap for a wide range of fading distributions, at

both high and low SNR values.

Corollary 2. When Nt = Nr = 1, the gap to capacity ∆ is upper bounded as follows

• ρ < 1: For any fading distribution where E
[
|h̃|4

]
< ∞,

∆ < 1.45E
[
|h̃|4

]
ρ2. (3.29)

• ρ ≥ 1: For any fading distribution where E
[

1
|h̃|2

]
< ∞,

∆ < 1 + log
(

E
[ 1

|h̃|2
])

. (3.30)

• ρ ≥ 1: Under Nakagami-m fading with m > 1,

∆ < 1 + log
(
1 +

1

m− 1

)
. (3.31)

• ρ ≥ 1: Under Rayleigh fading,

∆ < 0.48 + log
(
log(1 + ρ)

)
. (3.32)

Proof. See Appendix A.4.

Although the gap depends on the SNR under Rayleigh fading, ∆ is a vanishing fraction

of the capacity as ρ increases, i.e., limρ→∞
∆
C

= 0. Simulations are provided to give a better

view of Corollary 2. First, the rate achieved under Nakagami-m fading with m = 2 and the

corresponding gap to capacity are plotted in Figure 3.3. The performance is compared with

that of the division algebra lattices from [13]. Similar results are also provided under Rayleigh

fading in Figure 3.4.
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Figure 3.3. (a) Rates achieved vs. division algebra lattices for SISO Nakagami-m fading channels
with m = 2. (b) Comparison of the gap to capacity.
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Figure 3.4. (a) Rates achieved vs. division algebra lattices for SISO Rayleigh fading channels.
(b) Comparison of the gap to capacity.
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Remark 2. A closely related problem appears in [7], where lattice coding and decoding were

studied under quasi-static fading for MIMO channels with CSIR, and a realization of the class

of construction-A lattices in conjunction with channel-matching decision regions (ellipsoidal

shaped) was proposed. Unfortunately, this result by itself does not apply to ergodic fading be-

cause the application of the Minkowski-Hlawka Theorem [3, Theorem 1], on which the existence

argument of [7] depend,s only guarantees the existence of a lattice for each channel realization,

and is silent about the existence of a universal single lattice that is suitable for all channel real-

izations. This universality requirement is the key challenge under ergodic fading. The essence

of the proposed lattice scheme in this section is approximating the ergodic fading channel (subse-

quent to MMSE equalization) with a non-fading additive-noise channel with lower SNR ρ′ , αρ,

where α ≤ 1. The distribution of the (equivalent) additive noise term, z, in the approximate

model depends on the fading distribution but not on the realization, which allows fixed decision

regions for all fading realizations. The SNR penalty factor α incurred from this approximation

for the special case of Nt = Nr = 1 is given by

α = E
[ |h̃|2
ρ|h̃|2 + 1

] /
E[

1

ρ|h̃|2 + 1
]. (3.33)

As shown in the gap analysis in this section, the loss caused by this approximation is small

under most settings.

3.1.3 MIMO Channel with Block Fading4

Although the lattice scheme presented in the previous section approaches the ergodic capacity

under several fading scenarios, one still hopes to tighten the gap to capacity, as well as extend

the results to non-isotropic fading. In this section we propose an alternative decoding approach

for the lattice coding scheme that approaches the capacity under numerous scenarios, including

4 c© 2017 IEEE. Reprinted, with permission, from A. Hindy and A. Nosratinia, On the Universality of Lattice
Codes for a Class of Ergodic Fading Channels, in IEEE International Symposium on Information Theory (ISIT),
June 2017
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MIMO channels with non-isotropic fading. For ease of exposition we limit our study to real-

valued point-to-point channels under block fading, i.e., The channel coherence length is b with

n′ independent fading blocks, such that n = n′b. The temporal covariance of each antenna pair

link is then given by

Σh = σ2
h












1b 0b . . . 0b

0b 1b . . . 0b

. . .

0b 0b . . . 1b












. (3.34)

Before we proceed, we present a more general form of the capacity expression in (3.24) for

non-isotropic real-valued channels, given by [26]

C =
1

2
max

tr(Kx)≤Ntρ
EH

[
log det(INr

+HKxH
T )
]
, (3.35)

where Kx is the covariance matrix of each super-symbol xi.

Lemma 6. Consider a MIMO channel y = Hsx + w, where Hs , diag
(
H1, . . . ,Hn

)
, and

H1, . . . ,Hn are realizations of a stationary and ergodic process, and is only known at the re-

ceiver. Then there exists at least one lattice codebook that achieves all rates satisfying

R <
1

2
E
[
log det(INt

+ ρHTH)
]
. (3.36)

Proof. The encoding process is identical to that in (3.2). The received signal is also multiplied

by the MMSE equalization matrix U i and the dither is removed as shown in (3.5),(3.7).

Following these steps a different version of the ambiguity decoder is applied, defined by an

ellipsoidal decision region Ω ∈ R
Ntn,

Ω ,

{

v ∈ R
Ntn : vTΣ−1

s v ≤ (1 + γ)Ntn
}

, (3.37)

where Σs is a block-diagonal matrix, whose diagonal block i, Σi, is given by

Σi , ρ
(
INt

+ ρHT
i H i

)−1
. (3.38)
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The volume of Ω is then

Vol(Ω) = (1 + γ)
Ntn

2 Vol
(
BNtn(

√

Ntnρ)
)

n∏

i=1

det(Ψi)
−1
2 , (3.39)

where Ψi , INt
+ ρHT

i H i.

Error Probability: Similar to the proof of Theorem 1, on averaging over the set of all fine

lattices C of rate R, the probability of error can be bounded by

1

|C|
∑

Ci∈C
Pe < P(z /∈ Ω) + (1 + δ)

Vol(Ω)

Vol(V1)

= P(z /∈ Ω) + (1 + δ)2nR
Vol(Ω)

Vol(V) , (3.40)

for any δ > 0.

The following lemma addresses the error event represented by the first term.

Lemma 7. For any ǫ′ > 0, there exists nǫ′ such that for all n > nǫ′, P (z /∈ Ω) < ǫ′.

Proof. See Appendix A.5.

Consequently, the error probability can be bounded by

ǫ′′ ,
1

|C|
∑

Ci∈C
Pe < ǫ′ + (1 + δ)2nR

Vol(Ω)

Vol(V) , (3.41)

for any γ, δ > 0. For convenience define Ψi = ρΣ−1
i .

The second term in (3.41) is then

ǫavg , 2
−n

(

−R+ 1
2n

∑n
i=1 log det(Ψi)−ǫ′′′

)

, (3.42)

where

ǫ′′′ ,
1

n
log

(Vol(BNtn(
√
Ntnρ))

Vol(V)
)
+ log(1 + γ)

Nt
2 +

1

n
log(1 + δ) (3.43)

From (2.8), the first term in (3.43) vanishes, and so do the second and third terms as n increases.

Since the probability of error averaged over the codebooks in C is bounded by

ǫ′′ , ǫ′ + ǫavg, (3.44)
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there exists at least one codebook that achieves R < 1
2n

∑n
i=1 log det(Ψi), which converges

to (3.36). The existence of a nested lattice that achieves the average performance follows from

the proof of Theorem 1. Following in the footsteps of [7], it can be shown that the ellipsoidal

decision region in (3.37) achieves the same (or higher) error probability as the Euclidean lattice

decoder, given a fixed transmission rate. The Euclidean lattice decoder is given by

t̂ =
[

arg min
t′∈Λ1

||Σ−1
2 (y′ − t′)||2

]

modΛ . (3.45)

This concludes the proof of Lemma 6.

Note that Lemma 6 does not imply the rate in (3.36) is universally achievable, since it does

not guarantee the existence of a single codebook that achieves this rate. The following theorem

establishes the rates achieved using a universal codebook.

Theorem 3. For a stationary and ergodic block-fading Nt ×Nr MIMO channel with coherence

interval b whose fading coefficients are drawn from a discrete distribution with finite support |H|,

lattice codes achieve rates within a constant gap ∆ , NtNr

b
log |H| bits per channel use of the

ergodic capacity.

Proof. Lemma 6 assures the existence of one codebook in C that achieves the rate in (3.36) with

error probability that is less than ǫ′′. We now show that if we allow a multiplicative increase in

the error probability, numerous codebooks in C can support the rate R in (3.36).

Lemma 8. For the channel in Lemma 6, at least κ−1
κ

|C| codebooks in C achieve the rate R

in (3.36) with at most κǫ′′ error probability, for any κ ∈ Z
+ where κ < |C|.

Proof. We expurgate codebooks from C as follows. First, arrange the codebooks in descending

order of the error probability (with respect to the channel defined in Lemma 6). Then, throw

away the first 1
κ
|C| codebooks. For the κ−1

κ
|C| remaining codebooks, the error probability of each
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codebook is then bounded by ǫ′ + κǫavg, from (3.44). This can be explained as follows5

|C|ǫavg =
|C|/κ
∑

ℓ=1

ǫℓ + ǫ1+|C|/κ +

|C|
∑

ℓ=2+|C|/κ
ǫℓ

≥
|C|/κ
∑

ℓ=1

ǫℓ + ǫ1+|C|/κ

≥ (1 +
1

κ
|C|) ǫ1+|C|/κ , (3.46)

where ǫℓ is the error probability incurred by codebook Cℓ. Hence,

ǫ1+|C|/κ ≤ κ

1 + κ
|C|

ǫavg < κ ǫavg. (3.47)

Since ǫl+|C|/κ ≤ ǫ1+|C|/κ for any ℓ > 1, each of the last κ−1
κ

|C| codebooks in C have error probability

that does not exceed ǫ′ + κǫ < κǫ′′.

To summarize, Lemma 8 shows that given a channel matrix Hs, a constant fraction of all

codebooks in C achieves the rate in (3.36). For example, if κ = 100, then at least 99% of the

codebooks in C incur no more than 100ǫ′′ error probability, where ǫ′′ can be made arbitrarily

small by increasing n. Note that the proof technique in Lemma 8 is not limited to lattice codes,

and can be used whenever error calculations are averaged over an ensemble of codebooks.

Now, assume we have a block-fading MIMO channel with n′ independent blocks, where each

fading element is drawn from a discrete distribution with finite support of size |H|. The number

of all possible matrices Hs is then |H|Mn′
, where M , NtNr. We aim at answering the following

question: under what rates can a single codebook in C achieve vanishing error probability for

all possible channel matrices Hs?

With a slight abuse of notation, denote by Cj the set of codebooks that achieve at most κǫ′′

error probability for the channel matrix H(j)
s indexed by j. Recall the cardinality of each of

5Recall that the first term in (3.40) is independent of the codebook. Hence, it remains constant for all
codebooks.
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these sets is κ−1
κ

|C|. The event that no codebook is universal over all possible fading vectors

can be represented by either of the following equivalent set equalities

C1 ∩ C2 ∩ . . . ∩ C|Hs|Mn′ = φ,

Cc
1 ∪ Cc

2 ∪ . . . ∪ Cc
|Hs|Mn′ = C, (3.48)

where Ac denotes the complement of the set A. Hence, it can be shown via a union bound that

|Cc
1 ∪ . . . ∪ Cc

|Hs|Mn′ | ≤ 1

κ
|C| |H|Mn′

. (3.49)

Hence, from (3.48) a universal codebook with negligible error probability is guaranteed to exist,

as long as κ > |H|Mn′
. On substituting in (3.41), (3.42),

Pe < ǫ′ + κǫ

< ǫ′ + 2−n
(
−R+ 1

2
E

[
log det(INt

+ρHTH)
]
−Mn′

n
log |H|−ǫ′′′

)

, (3.50)

and reliable rates can be achieved as long as

R <
1

2
E
[
log det(INt

+ ρHTH)
]
− M

b
log |H| − ǫ′′′, (3.51)

where ǫ′′′ can be made arbitrarily small by increasing n. Since the second term in (3.50) decreases

with n, there exists nǫ ∈ Z
+ such that for all n > nǫ, Pe in (3.50) satisfies Pe < 2ǫ′. The final

step to complete the proof is showing that the number of possible channel matrices Hs does not

exhaust |C|, otherwise κ > |H|Mn′
cannot be guaranteed. From the lattice construction in [6,

Section III], there exists at least qn generator matrices that generate unique lattices, where q is

the size of the prime field from which the lattice is drawn. Since
√
n/q → 0 as n → ∞, a lower

bound on |C| is nn/2. Since the number of possible channels cannot exceed |H|Mn where |H|M

is fixed, there exists ň ∈ Z
+ such that for all n > ň, nn/2 > |H|Mn. Hence, κ > |H|Mn′

is

guaranteed for large enough n.

The previous result concludes the gap to capacity for channels with isotropic fading, whose

optimal input signal covariance is ρINt
. The extension to general channel distributions is
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straightforward. Let Kx
∗ denote the optimal input covariance matrix, i.e., Kx

∗ = argmax C

given in (3.35). The transmitted codeword is then

x̌ , [Kx
∗ 1
2xT

1 , . . . ,Kx
∗ 1
2xT

n ]
T , (3.52)

where x is drawn from a nested lattice code whose coarse lattice Λ ∈ R
Ntn has a unit second

moment. Hence, the received signal can be expressed by

yi = H iKx
∗ 1
2xi +wi

, Ȟ ixi +wi, (3.53)

where Ȟ i , H iKx
∗ 1
2 . Given the equivalent channel in (3.53) the following rates can be shown

to be achievable

R <
1

2
E

[

log det
(
INt

+ Ȟ
T
Ȟ

)]

− M

b
log |H|

=
1

2
E

[

log det
(
INr

+ ȞȞ
T )

]

− M

b
log |H|

=
1

2
E

[

log det
(
INr

+HKx
∗HT

)]

− M

b
log |H|,

which is the optimal value of the expression in (3.35). This concludes the proof of Theorem 3.

One can regard the gap ∆ is a rate penalty that is incurred by the universality constraint.

Numerical examples of ∆ in bits per channel use are as follows,

• Case 1: For the binary fast fading channel with Nr = Nt = 1, b = 1 and H = {0, a} for

a 6= 0, ∆ < 1.

• Case 2: For a 2× 2 MIMO block-fading channel with b = 20 and |H| ≤ 103, ∆ < 2.

• Case 3: For any Nt × Nr MIMO block-fading channel with n′ = O(n1−δ) and 0 < δ < 1,

∆ → 0 as n → ∞.
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Note that in Case 1 the single-antenna lattice scheme in Section 3.1.1 achieves no more than

1 bit per channel use,6 whereas the gap to capacity of the MIMO scheme in [13] is more than

4 and 10 bits per channel use for Case 1 and Case 2 respectively.7 Interestingly, the mod-Λ

lattice scheme achieves the ergodic capacity in Case 3, which is analogous to the case where

the codeword transmission is interleaved over b channel realizations such that both b and n′ are

sufficiently large [53].

3.2 MIMO Channel with CSIT8

For the band-limited Additive White Gaussian Noise (AWGN) channel, approaching capacity

with manageable complexity has been extensively studied [54, 55, 56, 57, 58, 59, 60, 61]. Under

fading and in the presence of CSIT, the most straight forward capacity approaching schemes

employ separable coding, i.e., coding independently and in parallel over different fading states of

the channel [25, 32]. Unfortunately, separable coding causes significant delay and requires large

memory at both the transmitter and receiver. Also, separable encoding in practice forces a low-

probability fading state to either cause huge delays, small block-length effects, or the symbols

in that fading state to be ignored with associated rate loss. As a result, achieving the ergodic

capacity of block-fading channels without separable coding (i.e., with coding across states) re-

mains an important theoretical and practical question.9 This section shows that non-separable

lattice coding achieves the ergodic capacity of the block fading SISO channel. At the transmit-

ter, the symbols of the codeword are permuted across time using a linear permutation matrix.

6The fading distribution in Case 1 is not regular, and hence a constant gap is not guaranteed.

7In Case 2, for a channel with E[HTH] = INt
, the minimum power (per antenna) required to achieve positive

rates is 0 dB using the proposed scheme, compared to 16 dB for the scheme in [13].

8 c© 2016 IEEE. Reprinted, with permission, from A. Hindy and A. Nosratinia, The capacity of fast fading
channels using lattice codes: Is separability necessary?, in International Symposium on Information Theory and
its Applications (ISITA), November 2016

9It was pointed out in [31] that under maximum likelihood decoding the ergodic capacity of point-to-point
channels with CSIT can be attained using Gaussian signaling without separable coding. However, the same result
is not necessarily true for non-Gaussian (structured) codebooks.
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Time-varying Minimum Mean-Square Error (MMSE) scaling is used at the receiver, followed

by a decoder that is universal for all fading realizations drawn from a given fading distribution.

Hence, the codebook design and decision regions are fixed across different transmissions; the

only channel-dependent blocks are the permutation and MMSE scaling functions.

We first highlight the main ideas of the proposed scheme in the context of a heuristic channel

model whose behavior approximates the ergodic fading channel. We then generalize the solution

to all fading distributions whose realizations are robustly typical, and to continuous distributions

via a bounding argument. The results are then extended to MIMO block-fading channels.

First, we start with the SISO case. Consider a real-valued single antenna point-to-point

channel with block-fading and i.i.d. Gaussian noise. The received signal is given by yi = hixi+wi,

where communication occurs over n channel uses. For convenience, we represent the entire

received symbols in a single equation

y = Hx+w, (3.54)

where H is an n × n diagonal matrix whose diagonal entries are hi, which are drawn from

a discrete distribution of finite support H similar to the channel model in Section 3.1.3, with

channel coherence length is b with n′ independent fading blocks, such that n = n′b. Both the

transmitter and receiver have full knowledge of the channel state information. The noise w ∈ R
n

is a zero-mean i.i.d. Gaussian vector with covariance In and is independent of H . The vector

x ∈ R
n is the transmitted codeword satisfying an average power constraint E

[
||x||2

]
≤ nρ.

Under CSIT, the ergodic capacity of the real-valued point-to-point channel is given by [25]

C =
1

2
Eh

[

log
(
1 + h2ρ∗(h)

)]

, (3.55)

where ρ∗(h) denotes the channel-dependent waterfilling power allocation [25], which satisfies Eh

[
ρ∗(h)

]
=

ρ.10 To highlight the essential ideas of the proposed technique, we first address the problem over

a heuristic channel model, and then extend to arbitrary channel distributions under SISO and

MIMO.

10Waterfilling power allocation is provided in more detail in Section 3.2.4.
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3.2.1 The Random Location Channel

Assume a heuristic channel model, whose channel coefficients hi take on values from set H ,

{h1, . . . , h|H|}, arranged in ascending order of the magnitudes. Let h , [h1, . . . , hn] denote a

realization of the channel coefficient values incurred by an arbitrary codebook transmission.

The transmitter knows non-causally a shuffled version of h, i.e., the transmitter knows that hk

occurs exactly nk times, where
∑|H|

k=1 nk = n, however, the locations of these coefficients are only

known causally at the transmitter and receiver. This channel model approximates the stationary

ergodic fading process so as to simplify the counting of the number of occurrences of each fading

state, and is denoted the random location channel. We acknowledge that in this model, the n

fading coefficients are not fully independent; in that sense this model approximates, but is not

precisely the same as, the usual ergodic fading model.

Theorem 4. For the random location channel defined above, the rates

R <
1

2n

n∑

i=1

log
(
1 + h2

i ρ
∗(hi)

)
(3.56)

are achievable using lattice codes, where ρ∗(h) represents the waterfilling power allocation strategy

for the channel drawn from H.

Proof. Encoding: Nested lattice codes are used where Λ ⊆ Λ1. The transmitter emits a lattice

point t ∈ Λ1 that is dithered with d which is drawn uniformly over V . The dithered codeword

is as follows

x =
[
t− d

]
modΛ

=t− d+ λ, (3.57)

where λ = −QV(t− d) ∈ Λ from (2.5). The coarse lattice Λ ∈ R
n has a second moment ρ. The

codeword is then multiplied by two cascaded matrices as follows

x′ = DV x, (3.58)
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where V is a permutation matrix andD is a diagonal matrix withDii =
√

ρ∗(hi)/ρ, where ρ
∗(hi)

is the optimal waterfilling power allocation for the fading coefficient |hi|, as given in [25]. As a

short-hand, we rewrite ρ∗(hi) as ρ
∗
i . Note that E[

∑n
i=1 D

2
ii] = 1. Hence, 1

n
E[||x′||2] < ρ is also

guaranteed.

Decoding: The received signal y is multiplied by a receiver matrix U ∈ R
n×n cascaded with

an inverse permutation V T and the dither is removed as follows

y′ =V TUy + d

=x+ (V TUHDV − In)x+ V TUw + d

=t+ λ+ (V TUHDV − In)x+ V TUw,

=t+ λ+ z, (3.59)

where

z , (V TUHDV − In)x+ V TUw, (3.60)

and z is independent of t from Lemma 1.

The receiver matrix U is chosen to be the MMSE matrix given by

U = ρHD(In + ρH2D2)−1. (3.61)

U is diagonal, where Uii = ρDiihi/(1 + ρD2
iih

2
i ). Now, the diagonal elements of U are

Uii =

√
ρρ∗ihi

1 + ρ∗ih
2
i

. (3.62)

With a slight abuse of notation, let π be a permutation function that orders channel realization

such that (hπ(1), hπ(2), . . . , hπ(n)) represent the channel coefficients arranged in ascending order

of the magnitudes. We pick the permutation matrix V such that Hπ , V THV , where the

diagonal entries of Hπ are hπ(i). The structure of V is given in Appendix A.6. From (3.60) and

(3.61), zi are given by 11

zi =
−1

ρ∗
π(i)h

2
π(i) + 1

xi +

√

ρρ∗
π(i)hπ(i)

ρ∗
π(i)h

2
π(i) + 1

wπ(i). (3.63)

11Since waterfilling dedicates more power to channels with larger magnitude, h2
i ≥ h2

j implies ρ∗i h
2
i ≥ ρ∗jh

2
j [25].
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Now, we apply a version of the ambiguity decoder defined by an ellipsoidal decision region,

given by

Ω1 , {s ∈ R
n : sTΣ−1s ≤ (1 + ǫ)n}, (3.64)

where Σ is a diagonal matrix whose diagonal elements are given by

Σii =
ρ

ρ∗
π(i)h

2
π(i) + 1

. (3.65)

The decoder chooses t̂ ∈ Λ1 if and only if the received point falls exclusively within the decision

region of the lattice point t̂, i.e., y′ ∈ t̂+ Ω1.

Probability of error: On averaging over the set of all fine lattices C of rate R, the probability

of error can be bounded by

1

|C|
∑

Ci∈C
Pe = P(z /∈ Ω1) + (1 + δ)2nR

Vol(Ω1)

Vol(V) , (3.66)

for any δ > 0. Following in the footsteps in Appendix A.5, it can be shown that P(z /∈ Ω1) < γ

for any γ > 0 for large n. Consequently, the error probability can be bounded by

1

|C|
∑

Ci∈C
Pe < γ + (1 + δ)2nR

Vol(Ω1)

Vol(V) , (3.67)

for any γ, δ > 0. The volume of Ω1 is given by

Vol(Ω1) = (1 + ǫ)
n
2Vol

(
B(√nρ)

)(
n∏

i=1

1

ρ∗ih
2
i + 1

) 1
2
. (3.68)

The second term in (3.67) is then bounded by

(1 + δ)2nR(1 + ǫ)n/2
( n∏

i=1

1

ρ∗ih
2
i + 1

) 1
2 Vol(B(√nρ))

Vol(V)

= (1 + δ)2
−n

(

− 1
n
log

(
Vol(B(

√
nρ))

Vol(V)

)
+ξ

)

, (3.69)

where

ξ ,
−1

2
log(1 + ǫ)− 1

2n
log

( n∏

i=1

1

ρ∗ih
2
i + 1

)

−R

=
−1

2
log(1 + ǫ) +

1

2n

n∑

i=1

log(1 + ρ∗ih
2
i )−R. (3.70)
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From (2.8), since the lattice Λ is good for covering, the first term of the exponent in (3.69)

vanishes. From (3.69), whenever ξ is a positive constant we have limn→∞ Pe = 0. Hence,

positive ξ can be achieved as long as

R <
1

2n

n∑

i=1

log (1 + h2
i ρ

∗
i ))−

1

2
log(1 + ǫ)− ǫ′, (3.71)

where ǫ, ǫ′ are positive numbers that can be made arbitrarily small by increasing n. The

remainder of the proof follows that in Section 3.1.3. This concludes the proof of Theorem 4.

3.2.2 Channel with Discrete Fading

Now, we are ready to address the ergodic fading channel whose channel coefficients are drawn

from an arbitrary discrete distribution. Unlike the random location channel discussed earlier,

the number of occurrences of αk in any given block length is not fixed.

Theorem 5. Lattice codes achieve the ergodic capacity of the fast fading channel with channel

state information available at all nodes.

Proof. The proof appears in Appendix A.7. In a nutshell, we follow a best effort approach

in designing the permutation matrix V . In order to account for the ordering errors, we use

a fixed decision region Ω̃1 that is slightly larger than Ω
(p)
1 (the decision region resulting from

perfect channel ordering, which is non-realizable due to the causality of the channel knowledge).

However, when the channel is robustly typical, the total number of ordering errors is negligible

at large n, and hence the rate loss incurred by using larger decision regions vanishes.

The extension of Theorem 5 to complex-valued channels is straightforward, using techniques

similar to that in Theorem 2. The channel would then be ordered with respect to the magnitude,

|h̃i|.
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3.2.3 Extension to Continuous-valued Fading

In order to extend the arguments to continuous-valued fading channels, we assume the channel is

block-faded with independent fading, and that the fading distribution possesses a finite second

moment. We note that in the case of full CSI, the information density contributed by each

transmission is a strictly increasing function of the absolute value of the fading coefficient.

First, let g̃ , |h|2ρh/ρ denote the squared channel gain times the normalized waterfilling power

allocation for such gain. Thus, we can partition the continuous values g̃ into L + 1 sets Gℓ ,

[gℓ−1, gℓ], where g0 , 0 and gL+1 = ∞. For any sequence of channel gains g̃ drawn from

a continuous distribution, we quantize g̃ to the lower limit of the bracket Gi into which it

belongs, producing a discrete valued sequence. The independence of the continuous-valued

fading realizations guarantee the independence of the discrete-valued counterparts, and hence

robust typicality would still apply. We show that the rate R supported by such sequence is

within a gap to capacity that can be bounded as follows

C −R =E[log(1 + ρg̃)] − E[log(1 + ρg)]

= E[log(1 +
1 + ρg̃

1 + ρg
)|g̃ ≤ gL]P(g ≤ gL) + E[log(

1 + ρg̃

1 + ρgL
)|g̃ > gL]P(g̃ > gL)

< max
{

log(
1 + ρgℓ
1 + ρgℓ−1

)
}L

ℓ=1
,+E[log(

1 + ρg̃

1 + ρgL
)|g̃ > gL]P(g̃ > gL)

< max
{

log(1 +
ρ(gℓ − gℓ−1)

1 + ρgℓ−1

)
}L

ℓ=1
,+E[log(1 +

ρ(g̃ − gL)

1 + ρgL
)|g̃ > gL]P(g̃ > gL)

< max
{

log
(
1 + ρ(gℓ − gℓ−1)

)}L

ℓ=1
,+E[log(1 +

ρ(g̃ − gL)

1 + ρgL
)|g̃ > gL]P(g̃ > gL) (3.72)

<γ1 + E[log(1 +
g̃ − gL
gL

)|g̃ > gL]P(g̃ > gL)

= γ1 + E[log(
g̃

gL
)|g̃ > gL]P(g̃ > gL)

<γ1 + c (
E[g̃|g̃ > gL]

gL
− 1)P(g̃ > gL) (3.73)

<γ1 + c (
E[g̃]

gLP(g̃ > gL)
− 1)P(g̃ > gL) (3.74)

<γ1 +
cE[g̃]

gL
, γ1 + γ2 , (3.75)
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where c , log e, and γ1 , max
{

log
(
1 + ρ(gℓ − gℓ−1)

)}L

ℓ=1
. (3.73) follows since loge(x) <

x − 1 for all x > 0 and (3.74) follows from the law of total expectation. γ1 vanishes when

max{gℓ − gℓ−1}Li=1 ≪ 1
ρ
, while γ2 vanishes when gL ≫ E[g̃]. Note that a necessary condition for

γ2 to vanish is that the second moment of g̃ is finite.

Note that the gap can be made tighter when the distribution of g̃ has a vanishing tail. For

instance, when g̃ is exponential,

C −R <γ1 + c (
E[g̃|g̃ > gL]

gL
− 1)P(g̃ > gL)

<γ1 + c (
E[g̃ + gL]

gL
− 1)P(g̃ > gL) (3.76)

<γ1 +
cE[g̃]

gL
e−

gL
E[g̃] , (3.77)

which vanishes exponentially with gL. Note that (3.76) follows since g̃ is exponentially dis-

tributed and hence memoryless.

The argument for the bounding above can be summarized is as follows. There are L + 1

quantization bins, we bound the total rate loss due to quantization by the rate loss in each of

the bins. The first L terms bound the amount of loss in rate by the input-output information

density at the highest versus the lowest channel gain in each bracket G1, . . . , GL. This strategy

will not work for the final bin because the channel gain in GL+1 is unbounded, therefore instead

we use the total rate contributed by the bin GL+1 as a bound. Fortunately, this term also

vanishes at large gL since the probability of occurrence of such fading values is small enough.

3.2.4 Extension to MIMO Channels

The result in Theorem 5 can be extended to an Nt × Nr MIMO channel with full CSIT. The

received signal at time instant i is given by

yi = H ixi +wi, (3.78)

where we denote by H i ∈ R
Nr×Nt the channel-coefficient matrix at time i, with a slight abuse

of notation.
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Theorem 6. Lattice codes achieve the ergodic capacity of the block fading channel in (3.78)

with channel state information available at all nodes.

Proof. The proof can be summarized as follows. Since H i is known perfectly, the transmitter

and receiver can transform the MIMO channel into S , min{Nt, Nr} SISO parallel channels

via singular value decomposition, whose individual capacities can be achieved as shown in Sec-

tion 3.2.2. Let the singular value decomposition of H i be H i = BiLiF
T
i , where Bi ∈ R

Nr×Nr ,

F i ∈ R
Nt×Nt are orthonormal matrices representing the left and right eigenvalue matrices of H i,

respectively. Li is an Nr ×Nt rectangular diagonal matrix with S non-zero values on the main

diagonal. Hence, at the receiver, the received signal is spatially equalized as follows

ỹi = BT
i yi, (3.79)

and at the transmitter, the signal is spatially precoded such that

xi = F ix̃i. (3.80)

From (3.78),(3.80),(3.79), ỹi can be represented by

ỹi = Lix̃i + w̃i, (3.81)

where w̃i , BT
i wi ∈ R

Nr is i.i.d. Gaussian, since Bi is orthonormal. Each element in ỹi ∈ R
Nr

is then

ỹ
(s)
i = ℓ

(s)
i x̃

(s)
i + w̃

(s)
i , s = 1, . . . ,S, (3.82)

where ℓ
(1)
i , ℓ

(2)
i , . . . , ℓ

(S)
i represent the singular values of H i in descending order. The received

signal in (3.82) is nothing but a set of S parallel channels, whose individual capacities can be

achieved similar to that in Section 3.2.2 via transmitting S simultaneous lattice codebooks across

space. The final step is allocating the power optimally, which can be achieved via waterfilling

over time and space [53, Section 8.2.3]. Assuming that the joint probability distribution of

ℓ(1), . . . , ℓ(S) is known, the power of stream s at time instant i is given by

P
(s)
i = {c− 1

(ℓ
(s)
i )2

}+, (3.83)
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where c is chosen such that

c ,

S∑

s=1

E
[
{c− 1

(ℓ
(s)
i )2

}+
]
= P, (3.84)

where P is the average power constraint for the MIMO system. This concludes the proof of

Theorem 6.

3.3 Point-to-point Channel with imperfect CSIR12

Channels with imperfect channel state information have been studied extensively in the liter-

ature. Medard [28] computed bounds on the achievable rates for a given channel estimation

error variance at the receiver. Hassibi and Hochwald [62] computed the optimal training time,

power and signaling that maximize the throughput of MIMO channels. Most of the results to

date concentrate on fading channels with Gaussian inputs. The performance of linear codes

under imperfect channel state information has been largely unexplored. In [63], Pappi et al. [63]

derived an expression for the compute-and-forward rates for a non-fading model with fixed error

values. The extension to time-varying channels is not straightforward.

In this section, we compute bounds on the achievable rates using lattice coding and decoding

as a function of channel estimation error variance, similar to Medard’s approach [28]. Nested

lattice codes are used where the decision regions proposed depend on the statistics of the fading

channel and not the actual channel realizations. This offers a notable advantage from the

perspective of decoding complexity, since the decision regions are not a function of channel

realizations. For a wide range of fading distributions, the gap between the rates achieved using

lattice codebooks compared to Gaussian codebooks is a constant that does not depend on

the channel estimation error variance nor the input power. As a byproduct, we calculate the

Generalized Degrees-of-Freedom [46] for channels with estimation error, where it is shown that

the lattice scheme achieves the same GDoF as Medard’s Gaussian-input scheme.

12 c© 2016 IEEE. Reprinted, with permission, from A. Hindy and A. Nosratinia, Lattice codes under imperfect
channel state information, in International Symposium on Information Theory and its Applications (ISITA),
November 2016
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3.3.1 Achievable scheme

Consider a single antenna point-to-point channel with stationary and ergodic time-varying gain

and i.i.d. Gaussian noise. Real-valued channels are considered. The received signal is given by

yi = hixi + wi. The vector x ∈ R
n is the transmitted codeword with average power ρ. The

noise w ∈ R
n is zero-mean i.i.d. Gaussian with covariance In and is independent of h.

In order to account for channel estimation errors, the actual channel coefficients hi are

decomposed into two components hi = ĥi + h̃i, where ĥi is the channel estimate available at the

receiver, and h̃i is the zero-mean channel estimation error with variance σ2
h, which is independent

of ĥi.

The following theorem is the main result of this section.

Theorem 7. For the ergodic fading point-to-point channel with partial channel state information

at the receiver, any rate

R < −1

2
log

(

E
[ 1

1 + ρĥ2

1+ρσ2
h

])

(3.85)

is achievable using lattice coding and decoding.

Proof. Encoding: The emitted lattice codeword is given by

x = [t− d] modΛ,

= t+ λ− d, (3.86)

where λ = −QV(t − d) ∈ Λ. The dither d is uniform over V , and t is a lattice point drawn

from Λ1 ⊇ Λ. As shown previously, the dither guarantees that x and t are independent.

Decoding: The received signal is multiplied by an equalization matrix U and the dither is

removed as follows

y′ =Uy + d

=x+ (UH − In)x+Uw + d

=t+ λ+ z, (3.87)
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where

z , (UĤ +UH̃ − In)x+Uw, (3.88)

and z is independent of t from Lemma 1.

The matrix U that minimizes E[zTz] is the MMSE matrix given by

U = ρĤ
(
ρĤ

2
+ (1 + σ2

h)In

)−1
. (3.89)

U is diagonal, with the following diagonal elements

Uii =
ρĥi

ρĥ2
i + ρσ2

h + 1
. (3.90)

From (3.88) and (3.90)

zi =
ρĥih̃i − ρσ2

h − 1

ρĥ2
i + ρσ2

h + 1
xi +

ρĥi

ρĥ2
i + ρσ2

h + 1
wi. (3.91)

Obviously, zi depends on the channel estimates ĥi, causing the covariance of the noise to

vary over time. In order to simplify decoding, we ignore the instantaneous channel knowledge

subsequent to MMSE scaling. We then apply a version of the ambiguity decoder with a spherical

decision region Ω as follows

Ω , {v ∈ R
n : vTv ≤ (1 + ǫ)nE

[ ρ(σ2
hρ+ 1)

ρĥ2 + ρσ2
h + 1

]
}, (3.92)

where ǫ is an arbitrary positive constant.

Probability of error: The probability of error can be bounded by

1

|C|
∑

Ci∈C
Pe = P(z /∈ Ω) + (1 + δ)2nR

Vol(Ω)

Vol(V) , (3.93)

for any δ > 0. Following in the footsteps of Lemma 4, it can be shown that P(z /∈ Ω) < γ for

any γ > 0 at large n. Consequently, the error probability can be bounded by

1

|C|
∑

Ci∈C
Pe < γ + (1 + δ)2nR

Vol(Ω)

Vol(V) , (3.94)
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for any γ, δ > 0. The volume of Ω is given by

Vol(Ω) = (1 + ǫ)
n
2

(σ2
z

ρ

)n
2Vol

(
B(√nρ)

)
. (3.95)

The second term in (3.94) is then bounded by

(1 + δ)2nR(1 + ǫ)
n
2

(σ2
z

ρ

)n
2
Vol(B(√nρ))

Vol(V)

= (1 + δ)2
−n

(

− 1
n
log

(
Vol(B(

√
nρ))

Vol(V)

)
+ξ

)

, (3.96)

where

ξ ,
−1

2
log(1 + ǫ)− 1

2
log

(

E
[ σ2

hρ+ 1

ρĥ2 + ρσ2
h + 1

])

−R . (3.97)

From (2.8), since the lattice Λ is good for covering, the first term of the exponent in (3.96)

vanishes. From (3.96), whenever ξ is a positive constant we have limn→∞ Pe = 0. Hence,

R < −1

2
log

(

E
[ 1

1 + ρĥ2

ρσ2
h
+1

])

− 1

2
log(1 + ǫ)− ǫ′, (3.98)

is achievable where ǫ, ǫ′ can be made arbitrarily small by increasing n. The remainder of the

proof follows that of Theorem 10. This completes the proof of Theorem 7.

For complex-valued channels, the results can be extended in a manner similar to that in

Theorem 2, stated below without proof.

Theorem 8. The rate achieved for the complex-valued ergodic fading channel with imperfect

channel state information is given by

R < − log
(

E
[ 1

1 + ρ|ĥ|2
ρσ2

h
+1

])

. (3.99)

In [28], it was shown that using Gaussian inputs, the following rates are achievable

RG ≤ E

[

log
(
1 +

ρ|ĥ|2
1 + ρσ2

h

)]

. (3.100)

We compute the gap between the lattice coding rates in (3.99) and Medard’s rates with

Gaussian inputs (3.100). Without loss of generality let E[|ĥ|2] = 1.
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Figure 3.5. Rates under Nakagami-m fading with m = 2 and channel estimation error vari-
ance σ2

h = 0.1.

Corollary 3. When σ2
h ≤ ρ−1

ρ
The gap ∆ between the rate expressions in (3.99) and (3.100) is

upper bounded by

• When E
[

1

|ĥ|2
]
< ∞: ∆ < 1 + E

[
1

|ĥ|2
]
.

• Nakagami-m fading with m > 1: ∆ < 1 + log
(
1 + 1

m−1

)
.

• Rayleigh fading: ∆ < 0.48 + log
(

log
(
1 + 1

σ2
h

))

.

Proof. See Appendix A.8.

In Figure 3.5, the rates in (3.99) and (3.100) are plotted as a function of SNR under

Nakagami-m fading with m = 2 and σ2
h = 0.1. The rates are plotted under Rayleigh fading in

Figure 3.6.

3.3.2 Generalized Degrees-of-Freedom Approach

The rates in (3.99), (3.100) are significantly impacted by the self interference resulting from

the channel estimation error, causing both rate expressions to be upper-bounded by a con-

stant E
[
log(1 + ĥ

σ2
h

)
]
that does not depend on the SNR. However, the previous observation

43



-20 -10 0 10 20 30 40 50

ρ (dB)

0

0.5

1

1.5

2

2.5

3

R
at

e 
(b

/s
/H

z)

Gaussian codes
Lattice codes

Figure 3.6. Rates under Rayleigh fading and channel estimation error variance σ2
h = 0.1.

overlooks a crucial aspect of practical systems: the channel estimation error variance is itself a

function of the operating SNR [62]. Hence, a new figure of merit that captures the dependence

of σ2
h on the SNR is needed. This is reminiscent of the analysis of the capacity region of the

interference channel in [46], where the GDoF was introduced to measure the performance for a

fixed ratio of the logarithms of the self interference to the desired signal power at high SNR. We

follow a similar approach for channels with estimation errors at the receiver, where a modified

version of the GDoF metric is used, as follows

D(α) , lim
SNR,INR→∞;α

R(INR, SNR)

E[log SNR]
, (3.101)

where α ,
log INR

E[log SNR]
, INR = ρσ2

h and SNR = ρ|ĥ|2. We assume E[log SNR] > log INR.

Corollary 4. Under Rayleigh fading and Nakagami-m fading with m > 1, the GDoF of the

lattice scheme and Medard’s Gaussian-input scheme is the same for a given α, given by

D(α) = 1− α . (3.102)

Proof. See Appendix A.9.
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CHAPTER 4

ERGODIC MULTIPLE-ACCESS CHANNEL1

4.1 MIMO Multiple-Access Channel

Consider a K-user MIMO MAC with Nr receive antennas and Ntk antennas at transmitter k.

The received signal at time i is given by

ỹ∗
i = H̃

∗
1,ix̃

∗
1,i + H̃

∗
2,ix̃

∗
2,i + . . .+ H̃

∗
K,ix̃

∗
K,i + w̃i, (4.1)

where H̃
∗
1, . . . , H̃

∗
K are stationary and ergodic processes with zero-mean and complex-valued

coefficients. The noise w̃ is circularly-symmetric complex Gaussian with zero mean and unit

variance, and user k has a total power constraint Ntkρ
∗
k. An achievable strategy for the K-user

MIMO MAC is independent encoding for each antenna, i.e., user k demultiplexes its data to Ntk

data streams, and encodes each independently and transmits it through one of its antennas. The

channel can then be analyzed as a single-input multiple-output (SIMO) MAC with L ,
∑K

k=1Ntk

virtual users. The received signal is then given by

ỹi = h̃1,ix̃1,i + h̃2,ix̃2,i + . . .+ h̃L,ix̃L,i + w̃i, (4.2)

where h̃ν(k)+1,i, . . . ,hν(k)+Ntk
,i denote the Ntk column vectors of H̃

∗
k,i, and ν(k) ,

∑k−1
j=1 Ntj .

The virtual user ℓ in (4.2) has power constraint ρl, such that

ρν(k)+1 + . . .+ ρν(k)+Ntk
= Ntkρ

∗
k , k = 1, 2, . . . , K. (4.3)

The MAC achievable scheme largely depends on the point-to-point lattice coding scheme

proposed in Section 3.1.1, in conjunction with successive decoding. For the L-user SIMO MAC,

there are L! distinct decoding orders, and the rate region is the convex hull of the L! corner

points. We define the one-to-one function π(ℓ) ∈ {1, 2, . . . , L} that depicts a given decoding

order. For example, π(1) = 2 means that the codeword of user two is the first codeword to be

decoded.

1 c© 2017 IEEE. Reprinted, with permission, from A. Hindy and A. Nosratinia, Lattice Coding and Decoding
for Multiple-Antenna Ergodic Fading Channels, IEEE Transactions on Communications, May 2017
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Theorem 9. For the L-user SIMO MAC with ergodic fading and complex-valued channel coef-

ficients, lattice coding and decoding achieve the following rate region

RMAC ,Co

(
⋃

π

{

(R1, . . . , RL) : Rπ(ℓ) ≤ − log
(

E
[ 1

1 + ρπ(ℓ)h̃
H

π(ℓ)F̃
−1

π(ℓ)h̃π(ℓ)

])}
)

, (4.4)

where

F̃ π(ℓ) , INr
+

L∑

j=ℓ+1

ρπ(j)h̃π(j)h̃
H

π(j), (4.5)

and Co(·) represents the convex hull of its argument, and the union is over all permutations
(
π(1), . . . , π(L)

)
.

Proof. For ease of exposition we first assume the received signal is real-valued in the form

yi =
∑L

ℓ=1 hℓ,ixℓ,i +wi.

Encoding: The transmitted lattice codewords are given by

xℓ = [tℓ − dℓ] modΛ(ℓ) ℓ = 1, 2, . . . , L, (4.6)

where each lattice point tl is drawn from Λ
(ℓ)
1 ⊇ Λ(ℓ), and the dithers dℓ are independent and

uniform over V (ℓ). The second moment of Λ(ℓ) is ρℓ. Note that since transmitters have different

rates and power constraints, each transmitter uses a different nested pair of lattices. The inde-

pendence of the dithers across different users is necessary so as to guarantee the L transmitted

codewords are independent of each other.

Decoding: The receiver uses time-varying MMSE equalization and successive cancellation

over L stages, where in the first stage xπ(1) is decoded in the presence of xπ(2), . . . ,xπ(L) as

noise, and then hπ(1),ixπ(1),i is subtracted from yi for i = 1, . . . , n. Generally, in stage ℓ, the

receiver decodes xπ(ℓ) from yπ(ℓ), where yπ(ℓ),i , yi−
∑ℓ−1

j=1 hπ(j),ixπ(j),i. Note that at stage ℓ the

codewords xπ(1), . . . ,xπ(ℓ−1) had been canceled-out in previous stages, whereas xπ(ℓ+1), . . . ,xπ(L)

are treated as noise. The MMSE vector at time i, uπ(ℓ),i, is given by

uπ(ℓ),i = ρπ(ℓ)
(
INr

+
L∑

j=ℓ

ρπ(j)hπ(j),ih
T
π(j),i

)−1
hπ(ℓ),i , (4.7)
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and the equalized signal at time i is expressed as follows

y′π(ℓ),i = uT
π(ℓ),iyπ(ℓ),i + dπ(ℓ),i = tπ(ℓ),i + λπ(ℓ),i + zπ(ℓ),i, (4.8)

where λπ(ℓ) ∈ Λ(π(ℓ)), and

zπ(ℓ),i =
(
uT

π(ℓ),ihπ(ℓ),i − 1
)
xπ(ℓ),i +

L∑

j=ℓ+1

uT
π(ℓ),ihπ(j),ixπ(j),i + uT

π(ℓ),iwi. (4.9)

Similar to the point-to-point scheme in Section 3.1.1, we ignore the instantaneous channel

state information subsequent to the MMSE equalization step. In order to decode xπ(ℓ) at stage ℓ,

we apply an ambiguity decoder defined by a spherical decision region

Ω(π(ℓ)) ,

{

v ∈ R
n : ||v||2 ≤ (1 + ǫ)nρπ(ℓ) E

[ 1

1 + ρπ(ℓ)h
T
π(ℓ)F

−1
π(ℓ)hπ(ℓ)

]

In

}

. (4.10)

where ǫ is an arbitrary positive constant.

Error Probability: For an arbitrary decoding stage ℓ, the probability of error is bounded by

1

|C|
∑

C
P
(π(ℓ))
e <P(zπ(ℓ) /∈ Ω(π(ℓ))) + (1 + δ)2nŘπ(ℓ)

Vol(Ω(π(ℓ)))

Vol(V (π(ℓ)))
, (4.11)

for some δ > 0. Following in the footsteps of the proof of Lemma 4, it can be shown that

P(zπ(ℓ) /∈ Ω(π(ℓ))) < γ, where γ vanishes with n; the proof is therefore omitted for brevity.

From (4.10),

Vol
(
Ω(π(ℓ))

)
=(1 + ǫ)

n
2Vol

(
Bn(

√
nρπ(ℓ))

) (

E

[ 1

1 + ρπ(ℓ)h
T
π(ℓ)F

−1
π(ℓ)hπ(ℓ)

])n
2
. (4.12)

The second term in (4.11) is then bounded by

(1 + δ)2
−n

(

− 1
n
log

(Vol(Bn(
√

nρπ(ℓ)))

Vol(V(π(ℓ)))

)
+ξ

)

, (4.13)

where

ξ = − 1

2
log

(

E
[ 1

1 + ρπ(ℓ)h
T
π(ℓ)F

−1
π(ℓ)hπ(ℓ)

])

− Řπ(ℓ) −
1

2
log(1 + ǫ). (4.14)

47



The first term of the exponent in (4.13) vanishes since Λ(π(ℓ)) is covering-good. Then, the error

probability vanishes when

Řπ(ℓ) < −1

2
log

(

E
[ 1

1 + ρπ(ℓ)h
T
π(ℓ)F

−1
π(ℓ)hπ(ℓ)

])

(4.15)

for all ℓ ∈ {1, 2, . . . , L}. The achievable rate region can then be extended to complex-valued

channels, such that

Rπ(ℓ) < − log
(

E
[ 1

1 + ρπ(ℓ)h̃
H

π(ℓ)F̃
−1

π(ℓ)h̃π(ℓ)

])

, ℓ = 1, .., L. (4.16)

This set of rates represents one corner point of the rate region. The whole rate region is

characterized by the convex hull of the L! corner points that represent all possible decoding

orders, as shown in (4.4). This concludes the proof of Theorem 9.

Returning to the MIMO MAC model in (4.1), it is straightforward that the rate achieved by

user k would then be

R∗
k =

Ntk∑

j=1

Rν(k)+j, (4.17)

where Rj are the rates given in (4.16). Now we compare Rsum ,
∑K

k=1 R
∗
k with the sum capacity

of the MIMO MAC model in (4.1). We focus our comparison on the case where the channel

matrices have i.i.d. complex Gaussian entries and all users have the same number of transmit

antennas as well as power budgets, i.e., Ntk = Nt, ρ
∗
k = ρ for all k ∈ {1, 2, . . . , K}. The optimal

input covariance is then a scaled identity matrix [26] and the sum capacity is given by [32]

Csum = E

[

log det
(
INr

+
K∑

k=1

ρH̃
∗
kH̃

∗H
k

)]

. (4.18)

Corollary 5. For the K-user fading MIMO MAC in (4.1), when H̃
∗
k is i.i.d. complex Gaussian

and Nr > KNt, the gap between the sum rate of the lattice scheme and the sum capacity at ρ ≥ 1

is upper bounded by

∆ <
NtK∑

ℓ=1

log
(
1 +

ℓ+ 1

Nr − ℓ

)
. (4.19)
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(a) Two-user MIMO MAC
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(b) K-user SIMO MAC
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Figure 4.1. The upper bound on the gap to sum capacity of the MIMO MAC vs. Nr.

Proof. See Appendix B.1.

Similar to Corollary 1, the gap to capacity vanishes at finite SNR as Nr grows, i.e., ∆ → 0 as

Nr → ∞. The expression in (4.19) is plotted in Figure 4.1 for K = 2, as well as for the K-user

SIMO MAC.

4.2 SISO Multiple-Access Channel

For the two-user MAC with Nr = Nt = 1, the rate region in (4.4) can be expressed by 2

R1 <− γ1 ,

R2 <− γ2 ,

(γ4 − γ2)R1 + (γ3 − γ1)R2 < (γ1γ2 − γ3γ4), (4.20)

where

γ1 = log
(
E
[ 1

1 + ρ1|h̃1|2
])

, γ2 = log
(
E
[ 1

1 + ρ2|h̃2|2
])

,

γ3 = log
(
E
[ 1

1 + ρ1|h̃1|2
1+ρ2|h̃2|2

])
, γ4 = log

(
E
[ 1

1 + ρ2|h̃2|2
1+ρ1|h̃1|2

])
.

2Unlike the two-user MAC capacity region, the sum rate does not necessarily have a unit slope.
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For the case where all nodes are equipped with a single antenna, we characterize the gap to

sum capacity of the two-user MAC for a wider range of distributions and over all SNR values. For

ease of exposition we assume h̃1 and h̃2 are identically distributed with E[|h̃1|2] = E[|h̃2|2] = 1.

∆ is then given by

∆ ,E
[
log (1 + ρ|h̃1|2 + ρ|h̃2|2)

]
+ log

(

E
[ 1 + ρ|h̃1|2
1 + ρ|h̃1|2 + ρ|h̃2|2

]
E
[ 1

1 + ρ|h̃1|2
])

. (4.21)

Corollary 6. The gap to capacity of the two-user MAC given in (4.21) is upper-bounded as

follows

• ρ < 1
2
: For any fading distribution where E

[
|h̃1|4

]
< ∞,

∆ < 1.45
(

1 + 2E
[
|h̃1|4

])

ρ2. (4.22)

• ρ ≥ 1
2
: For any fading distribution where E

[
1

|h̃1|2
]
< ∞,

∆ < 2 + log
(

E
[ 1

|h̃1|2
])

. (4.23)

• ρ ≥ 1
2
: Under Nakagami-m fading with m > 1,

∆ < 2 + log
(
1 +

1

m− 1

)
. (4.24)

• ρ ≥ 1
2
: Under Rayleigh fading,

∆ < 1.48 + log
(
log(1 + ρ)

)
. (4.25)

Proof. See Appendix B.2.

In Figure 4.2, the sum rate of the two-user MAC lattice scheme is compared with the sum

capacity under Nakagami-m fading with m = 2, as well as under i.i.d. Rayleigh fading. It can

be shown that the gap to sum capacity is small in both cases. We plot the rate region under

Rayleigh fading at ρ = −6 dB per user in Figure 4.3. The rate region is shown to be close to

the capacity region, indicating the efficient performance of the lattice scheme at low SNR.
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Figure 4.2. The two-user MAC sum rate vs. sum capacity.
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Figure 4.3. The two-user MAC rate region vs. ergodic capacity at ρ = −6 dB under Rayleigh
fading.
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CHAPTER 5

ERGODIC DIRTY PAPER AND BROADCAST CHANNELS1

Costa’s work on the dirty paper channel [33] has been an influential result in the realm of

information theory. Recently, variants of the dirty paper channel have been addressed in the

literature. Vaze and Varanasi [64] studied the fading MIMO dirty paper channel with partial

channel state information at the transmitter, where a scheme was derived that is optimal in

the high-SNR limit. For the same setting Bennatan andErgodic Fading MIMO Dirty Paper

and Broadcast Channels: Capacity Bounds and Lattice Strategies Burshtein [65] proposed a

numeric approach that achieves capacity under certain design constraints. The results in [65]

were also applied to the fading MIMO broadcast channel. For the single-antenna fading dirty

paper channel with receiver channel knowledge, Zhang et al. [66] showed that a variant of Costa’s

scheme is optimal at both high and low SNR.2

This chapter addresses the fading MIMO dirty paper channel in the absence of CSIT, where

the dirt is white, stationary and ergodic. The desired signal and dirt undergo the same fading

state, which represents the case where the sources of the desired signal and interference are co-

located at the same node. We show that dirty paper coding is within a constant gap to ergodic

capacity for all SNR and all dirt power. This improves on the result in [66] since the gap to

capacity is computed analytically for all SNR and all antenna configurations. Moreover, a lattice

coding and decoding scheme is proposed, where the class of nested lattice codes proposed in [5]

are used at the transmitter, and the decision regions are universal for almost all realizations of

a given fading distribution.

1 c© 2017 IEEE. Reprinted, with permission, from A. Hindy and A. Nosratinia, Ergodic Fading MIMO Dirty
Paper and Broadcast Channels: Capacity Bounds and Lattice Strategies, IEEE Transactions on Wireless Com-
munications, to appear

2In [20], Lin et al. proposed a version of the lattice coding and decoding scheme in [7] for the fading MIMO
dirty paper channel, where a decoding rule that depends on the channel realizations is used. The proof in [7],
originally derived for quasi-static MIMO channels, uses the Minkowski-Hlawka Theorem to prove the existence
of a codebook with negligible error probability for a given channel state. However, the existence of a universal
codebook that achieves the same error probability over all channel states is not guaranteed and hence the
achievable rates in [20] remain under question.
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One advantage of the fading dirty paper model is its straightforward extension to the broad-

cast channel with CSIR, where the desired signal and interference stem from the same source

and therefore undergo the same fading process. We apply the dirty paper channel results to a

two-user MIMO broadcast channel with different fading dynamics, where the fading process is

stationary and ergodic for one receiver and quasi-static for the other receiver. In addition, the

case where both users experience ergodic fading processes that are independent of each other is

also studied. Unlike conventional broadcast channel techniques, the proposed scheme does not

require any receiver to know the codebooks of the interference signals. Performance is compared

with a version of dirty paper coding under non-causal CSIT.

5.1 Dirty Paper Channel: System Model

Consider a MIMO point-to-point channel with Gaussian noise and Nt, Nr antennas at the trans-

mitter and receiver sides, respectively. The fading process is stationary and ergodic, where the

random channel matrix is denoted by H . The received signal is impeded not only by Gaus-

sian noise, but also by another channel impediment s that experiences the same fading as the

information-bearing signal x, as follows

yi = H ixi +H isi +wi, (5.1)

where the channel coefficient matrices H i ∈ C
Nr×Nt at time i = 1, . . . , n denote realiza-

tions of the random matrix H . Moreover, H is zero mean and isotropically distributed, i.e.,

P (H) = P (HV ) for any unitary matrix V independent of H . The unordered eigenvalues of

the Hermitian random matrix HHH , denoted by σ2
1, σ

2
2, . . . , σ

2
M , are also random, and their

distribution is characterized by the distribution of H . The receiver has instantaneous chan-

nel knowledge, whereas the transmitter only knows the channel distribution. xi ∈ C
Nt is the

transmitted vector at time i, where the codeword

x , [xH
1 xH

2 , . . .x
H
n ]

H (5.2)
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is transmitted throughout n channel uses and satisfies E[||x||2] ≤ nPx. The noise w ∈ C
Nrn

defined by w , [wH
1 , . . . ,w

H
n ]

H is a circularly-symmetric zero-mean i.i.d. Gaussian noise vector

with covariance PwINrn, and is independent of the channel coefficients. s ∈ C
Ntn, where s ∈

[sH1 , . . . , s
H
n ]

H represents the state (dirt) that is independent of H and w and is known non-

causally at the transmitter. Unless otherwise stated, we assume s is a stationary and ergodic

sequence whose elements have zero-mean and variance Ps.

An intuitive outer bound for the rates of the channel in (5.1) would be the point-to-point

channel capacity in the absence of the state s, as follows

C ≤ E

[

log det
(
INt

+
Px

NtPw

HHH
)]

. (5.3)

Had the channel coefficients been known non-causally at the transmitter, the rate in (5.3) would

have been achieved in a straightforward manner from Costa’s result since the new state s̃i ,

H isi would be known at the transmitter [67, Chapter 9.5]. However, in the present model H

is unknown at the transmitter, causing the problem to become more challenging. In the sequel,

two different inner bounds are studied that approach the outer bound in (5.3).

5.2 Dirty Paper Coding Inner Bound

In this section we aim at deriving an achievable scheme for the channel in (5.1), that is as close

as possible to capacity. The channel in (5.1) is a variation of Gel’fand and Pinsker’s discrete

memoryless channel with a state known non-causally at the transmitter [38], whose capacity

can be expressed by

C = max
PV,X|S

I(V ;Y,H)− I(V ;S), (5.4)

where S represents the state and V is an auxiliary random variable. Y and H represent the

receiver observation and the available channel state information at the receiver, respectively.

Unfortunately the single-letter capacity optimization in (5.4) is not tractable. In [33], Costa

studied the non-fading dirty paper channel with additive Gaussian noise, where he showed that
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the point-to-point capacity can be achieved and the impact of s can be entirely eliminated. In

the sequel we propose an achievable scheme for the fading MIMO dirty paper channel.

Theorem 10. For the ergodic fading MIMO dirty paper channel in (5.1), any rate satisfying

R ≤
(

E
[
log det (

Px

Px +NtPs

INt
+

Px

NtPw

HHH)
])+

, (5.5)

is achievable, as long as the elements of s are i.i.d. Gaussian.

Proof. We first consider real-valued channels. We follow in the footsteps of the encoding and

decoding schemes in [33, 64], where random binning at the encoder and typicality decoding were

used. Details are as follows.

Encoding: The transmitted signal of length Mn is in the form x = v−Us, where v is drawn

from a codebook consisting of 2nR̃ codewords for some R̃ > 0, each of length Ntn. The codewords

are drawn from a Gaussian distribution with zero mean and covariance Px

Nt
INtn+PsUUT , where

U ∈ R
Ntn×Ntn will be determined later. These codewords are randomly assigned to 2nR bins

for some 0 < R < R̃, so that each bin will contain approximately 2n(R̃−R) codewords. As

long as 2n(R̃−R) > 2nI(V ;S), typicality arguments guarantee the existence of a codeword v0 in

each bin that is jointly typical with the state s0, i.e., vo −Uso is nearly orthogonal to so [33].

The bin index is chosen according to the message to be transmitted, and from that bin the

appropriate codeword is transmitted that is jointly typical with the state. The transmitter

emits xo , vo − Uso, which satisfies the power constraint, E[||x||2] ≤ nPx (recall xo, so are

orthogonal).

Decoding: Given the occurrence of state so, the received signal is given by

y =Hdxo +Hdso +wo

=Hdvo + (INtn −U )Hdso +w, (5.6)

where Hd , diag{H1, . . . ,Hn}, and the receiver knows the codebook of v. From standard

typicality arguments, vo can be decoded reliably as long as 2nR̃ < 2nI(V ;Y,H) for sufficiently

large n.
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Rate analysis: Based on the encoding and decoding procedures, the number of distinguishable

messages that can be transmitted is equal to the number of bins 2nR. The achievable rate can

then be analyzed as follows

nR < I(V ;Y,H)− I(V ;S)

= h(V ) + h(Y |H)− h(Y, V |H)− h(V ) + h(V |S)

= h(Y |H) + h(V − αS|S)− h(Y, V |H)

= h(Y |H) + h(X)− h(Y, V |H)

=
1

2
log

(
(2πe)Ntn det (Q)

)
+

1

2
log

(
(2πe)Ntn det (

Px

Nt

INtn)
)

− 1

2
log

(
(2πe)(Nt+Nr)n det (Q) det

(Px

Nt

INtn + PsUUT

− (
Px

Nt

INtn + PsU )HT
dQ

−1Hd(
Px

Nt

INtn + PsU
T )
))
, (5.7)

where Q , Px

Nt
HdH

T
d + PsHdH

T
d + PwINrn. On choosing U = INtn,

R <
1

2n

n∑

i=1

log det
( Px

Px +NtPs

INt
+

Px

NtPw

HT
i H i

)]

. (5.8)

From the law of large numbers, the rate bound in (5.8) converges to

R <
1

2
E

[

log det
( Px

Px +NtPs

INt
+

Px

NtPw

HTH
)]

− ǫ (5.9)

with probability 1, where ǫ vanishes as n → ∞. Finally, the result can be extended to the

complex-valued channel model through the following equivalent channel model

ỹi = H̃ ix̃i + H̃ is̃i + w̃i, (5.10)

where

H̃ i ,






H
(R)
i −H

(I)
i

H
(I)
i H

(R)
i




 (5.11)

is a 2Nr × 2Nt real-valued channel matrix and x̃i , [x
(R)T
i x

(I)T
i ]T and similarly for s̃i, w̃i, and

the rate can then be expressed by the form in (5.5). This concludes the proof of Theorem 10.
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In the following we bound the gap between the inner and outer bounds in (5.3),(5.5). We

assume Nt ≤ Nr.

Corollary 7. The rate achieved in (5.5) is within Nt bits of the capacity.

Proof. The gap between the capacity outer bound in (5.3) and (5.5) is bounded by

∆ ,C −R

≤E
[
log det (INt

+
Px

NtPw

HHH)
]
−

(

E
[
log det (

Px

Px +NtPs

INt
+

Px

NtPw

HHH)
])+

≤E
[
log det (INt

+
Px

NtPw

HHH)
]
− E

[
log det (

Px

Px +NtPs

INt
+

Px

NtPw

HHH)
]

=E
[

Nt∑

j=1

log(1 +
Px

NtPw

σ2
j )
]
− E

[
Nt∑

j=1

log(
Px

Px +NtPs

+
Px

NtPw

σ2
j )
]

(5.12)

=
Nt∑

j=1

Eσj

[

log(1 +
Px

NtPw

σ2
j )− log(

Px

Px +NtPs

+
Px

NtPw

σ2
j )
]

=
Nt∑

j=1

(

P
( Px

NtPw

σ2
j ≥ 1

)
E

[

log(1 +
Px

NtPw

σ2
j )− log(

Px

Px +NtPs

+
Px

NtPw

σ2
j )
∣
∣
∣

Px

NtPw

σ2
j ≥ 1

]

+ P
( Px

NtPw

σ2
j < 1

)
E

[

log(1 +
Px

NtPw

σ2
j )− log(

Px

Px +NtPs

+
Px

NtPw

σ2
j )
∣
∣
∣

Px

NtPw

σ2
j < 1

])

(5.13)

<
Nt∑

j=1

(

P
( Px

NtPw

σ2
j ≥ 1

)
E

[

1 + log(
Px

NtPw

σ2
j )− log(

Px

Px +NtPs

+
Px

NtPw

σ2
j )
∣
∣
∣

Px

NtPw

σ2
j ≥ 1

]

+ P
( Px

NtPw

σ2
j < 1

)
E

[

1 − log(
Px

Px +NtPs

+
Px

NtPw

σ2
j )
∣
∣
∣

Px

NtPw

σ2
j < 1

])

<

Nt∑

j=1

(

P
( Px

NtPw

σ2
j ≥ 1

)
E
[
1
∣
∣

Px

NtPw

σ2
j ≥ 1

]
+ P

( Px

NtPw

σ2
j < 1

)
E
[
1
∣
∣

Px

NtPw

σ2
j < 1

])

=Nt , (5.14)

where σ2
j are the eigenvalues of HHH for j = 1, . . . , Nt, as explained in Section 5.1, and

hence (5.12) is an alternative representation of the expressions in (5.3),(5.5) in terms of the

channel eigenvalues. (5.13) follows from the law of total expectation on each of the rate expres-

sions. The gap to capacity is then shown to be bounded from above by Nt bits.
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Remark 3. The rates achieved in [64, Section IV] were shown to approach capacity at high

SNR, i.e., ∆ → 0 as Px → ∞. Meanwhile, Corollary 1 bounds the gap to capacity within a

constant number of bits, irrespective of the values of Px, Ps as well as the fading distribution.

This result does not contradict with that in [64], however. For instance, when Nr = Nt = 1 and

Pw = 1, the gap to capacity would be as follows

∆ ≤ E
[
log(1 + Px|h|2)

]
− E

[
log(

Px

Px + Ps

+ Px|h|2)
]

= E
[
log(1 +

Ps

Px+Ps

Px

Px+Ps
+ |h|2Px

)
]

< E
[
log(1 +

1

|h|2Px

)
]
, (5.15)

which vanishes as Px → ∞, confirming the result in [64].

5.3 Lattice coding inner bound

Although the scheme proposed in Section 5.2 achieves rates that are close to capacity, it has

large computational complexity at both the transmitter and receiver since it uses a Gaussian

codebook. In this section a lattice coding and decoding scheme is proposed that transmits a

dithered lattice codeword and at the receiver uses a single-tap equalizer and lattice decoding,

similar to [5, 34]. In our scheme the use of CSIR is limited to the equalizer and the lattice

decision regions do not depend on the instantaneous realizations of the fading channel.

Theorem 11. For the ergodic fading MIMO dirty paper channel given in (5.1), any rate

R <

(

− log det
(

E
[( Px

Px +NtPs

IM +
Px

NtPw

HHH
)−1]

))+

(5.16)

is achievable using lattice coding and decoding.

Proof. We first consider real-valued channels, where H i ∈ R
Nr×Nt and the elements of w are

zero-mean i.i.d. Gaussian with variance Pw.
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Encoding: Nested lattice codes are used where Λ ⊆ Λ1. The transmitter emits a signal x as

follows

x = [t−Bs− d] modΛ,

= t+ λ−Bs− d, (5.17)

where t ∈ L1 is a point drawn from a nested lattice code with Λ ⊆ Λ1, dithered with d which is

drawn uniformly over V , and λ = −QV(t−Bs− d) ∈ Λ from (2.5). B ∈ R
Ntn×Ntn is a matrix

to be chosen in the sequel.3 Note from Lemma 1 that the dither guarantees the independence

of x from both t and s.

Decoding: The received signal in (5.1) is multiplied by a single-tap equalization matrix U d

and the dither is removed as follows

y′ =UT
d y + d

=UT
dHdx+UT

dHds+UT
dw + d

=x+ (UT
dHd − INtn)x+UT

dHds+UT
dw + d

=t+ λ+ z, (5.18)

where

z , (UT
dHd − INtn)x+ (UT

dHd −B)s+UT
dw (5.19)

is independent of t according to Lemma 1. For the special case Hd = INtn, the problem

reduces to the non-fading dirty paper channel, where U d = B = Px

Px+Pw
INtn is optimal and

the point-to-point channel capacity can be achieved via the lattice coding and decoding scheme

in [34]. However, this scheme cannot be directly extended to ergodic fading, since the channel

realizations are unknown at the transmitter. We choose B = INtn so that

z , (UT
dHd − INtn) (x+ s) +UT

dw. (5.20)

3Note that B must be independent of the channel realizations.
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The motivation is to align the dirt and self-interference terms in (5.19). The equalization

matrix U d is then chosen to minimize E
[
||z||2

]
, which is a block-diagonal matrix whose diagonal

block i, U i is given by4

U i = (
Px

Nt

+ Ps)
(
(
Px

Nt

+ Ps)H iH
T
i + PwINr

)−1
H i. (5.21)

From (5.20) and (5.21)

zi =−
(
INt

+
1

Pw

(
Px

Nt

+ Ps)H
T
i H i

)−1
(xi + si)

+ (
Px

Nt

+ Ps)H
T
i ((

Px

Nt

+ Ps)H iH
T
i + PwINr

)−1wi. (5.22)

Naturally, the distribution of z conditioned on H i (which is known at the receiver) varies

across time. This variation produces complications, so in order to simplify the decoding process,

we ignore the instantaneous channel knowledge at the decoder following the equalization step,

i.e., after equalization the receiver considers H i a random matrix. The same approach has been

adopted in the point-to-point scheme in Section 3.1.1.

Lemma 9. For any ǫ > 0 and γ > 0, there exists nγ,ǫ such that for all n > nγ,ǫ,

P
(
z /∈ Ω

)
< γ, (5.23)

where Ω is the following sphere

Ω ,

{

v ∈ R
Ntn : ||v||2 ≤ (1 + ǫ)n tr

(
E
[
Σ̄]

)}

, (5.24)

and Σ̄ , E

[(
1

Px
Nt

+Ps
INt

+ 1
Pw

HTH
)−1

]

is a scaled identity matrix, and ǫ is an arbitrary positive

constant.

Proof. See Appendix C.1.

4Unlike [5, 34], U i is not the MMSE equalization matrix of the channel in (5.1).
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Now, we apply an ambiguity decoder with a spherical decision region Ω in (5.24). The

decoder decides t̂ ∈ Λ1 if and only if the received point falls exclusively within the decision

region of the lattice point t̂, i.e., y′ ∈ t̂+ Ω.

Probability of error: On averaging over the set of all fine lattices C of rate R whose construc-

tion follows that in Section 2.1, the probability of error can be bounded by

1

|C|
∑

Ci∈C
Pe < P(z /∈ Ω) + (1 + δ)2nR

Vol(Ω)

Vol(V) , (5.25)

for any δ > 0. From Lemma 9, the first term in (5.25) vanishes with n. For convenience

define Ψ = Px

Nt
Σ̄

−1
. The volume of Ω is given by

Vol(Ω) = (1 + ǫ)
Ntn

2 Vol
(
BNtn(

√

nPx)
)
det

(
Ψ

−1
2

)
. (5.26)

The second term in (5.25) is bounded by

(1+δ)2nR(1 + ǫ)Ntn/2
Vol(BNtn(

√
nPx))

Vol(V) det
(
Ψ

−1
2

)

= (1 + δ)2
−Ntn

(

− 1
Ntn

log
(

Vol(BNtn
(
√
nPx))

Vol(V)

)
+ξ

)

, (5.27)

where

ξ ,
−1

2
log(1 + ǫ)− 1

Nt

R− 1

2Ntn
log det(Ψ−1)

=
−1

2
log(1 + ǫ)− 1

Nt

R− 1

2Nt

log det
(

E
[( Px

Px +NtPs

INt
+

Px

NtPw

HTH
)−1]

)

. (5.28)

From (2.8), since the lattice Λ is good for covering, the first term of the exponent in (5.27)

vanishes. From (5.27), Pe → 0 as n → ∞ whenever ξ > 0. A sufficient condition for positive ξ

is

R <
−1

2
log det

(

E
[( Px

Px +NtPs

INt
+

Px

NtPw

HTH
)−1]

)

− 1

2
log(1 + ǫ)− ǫ′,

where ǫ, ǫ′ are positive numbers that can be made arbitrarily small by increasing n. The existence

of at least one lattice Ci ∈ C that achieves (5.25) is straightforward. For the coarse lattice, any
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covering-good lattice from C with second moment Px can be picked, e.g., a pair of self-similar

lattices can be used for the coarse and fine lattices.

In the event of successful decoding, from (5.18) the outcome of the decoding process would

be t̂ = t+ λ. On applying the modulo-Λ operation on t̂,

[t̂] modΛ = [t+ λ] modΛ = t, (5.29)

where the second equality follows from (2.6) since λ ∈ Λ. This concludes the proof for real-valued

channels.

For complex-valued channels, we follow in the footsteps of Theorem 2, therefore only a sketch

of the proof is provided. With a slight abuse of notation, we denote the complex-valued elements

by a superscript ∼ .

Encoding: Since the channel is complex-valued, two independent codewords are selected from

the same nested lattice code Λ̃1 ⊇ Λ̃ where Λ̃ has a second moment Px/2. The transmitted signal

is the combination of the two lattice codewords

x̃ =
[
t̃
(R) − s̃(R) − d̃

(R)]
modΛ̃ + j

[
t̃
(I) − s̃(I) − d̃

(I)]
modΛ̃, (5.30)

with E
[
||x̃||2

]
≤ nPx, and the dithers d̃

(R)
, d̃

(I)
are independent.

Decoding: The equalization matrix at time i is given by

Ũ i = (
Px

Nt

+ Ps)
(
(
Px

Nt

+ Ps)H̃ iH̃
H

i + PwINtn

)−1
H̃ i. (5.31)

Following MMSE equalization and dither removal similar to (5.18), the real and imaginary

equivalent channels at the receiver are as follows

ỹ′(R) = t̃
(R)

+ λ′ + z̃(R) , ỹ′(I) = t̃
(I)

+ λ′′ + z̃(I), (5.32)

where λ′,λ′′ ∈ Λ̃. z̃(R), z̃(I) are the equivalent noise components over the real and imaginary

channels, respectively. Hence, the complex-valued channel is transformed to two parallel real-

valued channels at the receiver, where the decoder recovers the lattice points t̃
(R)

and t̃
(I)
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independently over the real and imaginary domains using the following decision regions

Ω(R) = Ω(I) ,

{

v ∈ R
Ntn : ||v||2 ≤ (1 + ǫ)

n

2
tr
(

E

[( 1
Px

Nt
+ Ps

INt
+

1

Pw

H̃
H
H̃

)−1
])}

, (5.33)

where reliable rates can be achieved on each channel as long as

R̃(R) = R̃(I) <

(−1

2
log det

(

E
[( Px

Px +NtPs

INt
+

Px

NtPw

H̃
H
H̃

)−1]
))+

, (5.34)

and R̃ , R̃(R) + R̃(I) is the achievable rate for the complex-valued channel given in (5.16).

Finally, utilizing Lemma 5, it can be shown that a Euclidean lattice decoder achieves the

same (or less) error probability under the same transmission rate. This concludes the proof of

Theorem 11.

We compute bounds on the gap between the outer and inner bounds of the capacity in (5.3)

and (5.16). The gap results are computed under different antenna configurations and fading

distributions. For convenience we define the SNR per transmit antenna ρ , Px

NtPw
.

Corollary 8. For the ergodic fading dirty paper channel given in (5.1), the gap between the

lattice coding inner bound in (5.16) and the outer bound of the capacity in (5.3) for any Ps > 0

is upper bounded by

• Nr ≥ Nt and ρ ≥ 1: For any channel for which all elements of E
[
(HHH)−1

]
< ∞

∆ < log det
((

INt
+ E[HHH ])E

[
(HHH)−1

])

. (5.35)

• Nr > Nt and ρ ≥ 1: When the elements of H are i.i.d. complex Gaussian with zero mean

and unit variance,

∆ < Nt log
(
1 +

Nt + 1

Nr −Nt

)
. (5.36)

• Nr = Nt = 1: Under Nakagami-m fading with m > 1 and E[|h|2] = 1,

∆ < 1 + log
(
1 +

1

m− 1

)
. (5.37)
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Figure 5.1. The upper bound on the gap to capacity of the MIMO Dirty paper channel vs. Nr,
for ρ ≥ 1.

• Nr = Nt = 1: Under Rayleigh fading with E[|h|2] = 1,

∆ < 1.48 + log
(
log(1 + κ)

)
, (5.38)

where κ , max{ Px

Pw
, Ps

Pw
, 1}.

Proof. See Appendix C.2.

Under Rayleigh fading with M = N = 1 the gap expression in (5.38) varies with Px, Ps.

However, it can be shown that limPx→∞
∆
C

→ 0 for any fixed ratio Px

Ps
. When Nt < Nr, ∆ is

independent of Px, Ps , and also vanishes when Nr ≫ Nt even at finite Px. This result implies

that lattice coding and decoding- along with a channel independent decision rule- approach the

capacity of the Rayleigh-fading MIMO channel with Nr > Nt.

In Figure 5.1, a bound on the gap to capacity is plotted for various antenna configurations,

subject to ρ ≥ 1. The gap bound diminishes as Nr grows beyond Nt. For the square MIMO

channel withNr = Nt = 2, the throughput of the proposed lattice scheme is plotted in Figure 5.2.

The gap to capacity is also plotted, which saturates as the SNR increases. For single-antenna
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Figure 5.2. (a) Rates achieved by lattice codes vs. dirty paper coding vs. outer bound under
Rayleigh fading with Nr = Nt = 2 and Ps = 80 dB. (b) The gap to capacity of the lattice
scheme.

nodes, the rates achieved using lattice codes are compared with dirty paper coding rates in (5.5).

The capacity outer bound in (5.3) is plotted under Nakagami-m fading with m = 2 and Rayleigh

fading in Figure 5.3 and Figure 5.4, respectively. While the differences between the rates achieved

are notable under Rayleigh fading, they are insignificant under Nakagami-m fading, which again

suggests the point-to-point capacity is almost realized under this scenario.

5.4 Fading Broadcast Channel with CSIR

We first consider a two-user broadcast channel where the channel coefficients of Receiver 1 are

quasi-static, and that of Receiver 2 are stationary and ergodic. The transmitter and the two

receivers have Nt, Nr1 , Nr2 antennas, respectively. The received signals are given by

y1,i =Gx1,i +Gx2,i +w1,i

y2,i =H ix1,i +H ix2,i +w2,i, (5.39)

Each receiver has its own CSIR, but not global CSIR. The transmitter power constraint for the

two signals is E[||x1||2] ≤ nαPx and E[||x2||2] ≤ n(1 − α)Px, with α ∈ [0, 1] and n is the time

duration of each codeword. The noise terms w1,w2 are zero mean i.i.d. circularly-symmetric
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Figure 5.3. Rates achieved using lattice codes vs. dirty paper coding vs. outer bound under
Nakagami-m fading with m = 2 and Ps = 80 dB.
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Figure 5.4. Rates achieved using lattice codes vs. dirty paper coding vs. outer bound under
Rayleigh fading and Ps = 80 dB.
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complex Gaussian with variances Pw1 , Pw2 , respectively. A set of achievable rates for this channel

under lattice coding and decoding are as follows

Theorem 12. For the two-user broadcast channel given in (5.39), lattice coding and decoding

achieve

R1 < log det
(

INt
+

αPx

Nt

GHΦ−1G
)

(5.40)

R2 <
(

− log det
( 1

1− α
E
[(
INt

+
Px

NtPw2

HHH
)−1]

))+

, (5.41)

where Φ ,
(1−α)Px

Nt
GGH + Pw1INr1

.

Proof. Receiver 1: The transmitter emits a superposition of two codewords, i.e., x = x1 + x2,

where Receiver 1 decodes x1 while treating x2 as noise. Hence, with respect to Receiver 1, the

channel is a special case of the dirty paper channel with Ps = 0, and colored noise given by

Gx2,i +w1,i. The equalization matrix is then time invariant, given by

U 1 =
αPx

Nt

(Px

Nt

GGH + INr1

)−1
G . (5.42)

Since the channel is fixed, the decision region becomes ellipsoidal, given by

Ω ,

{

v ∈ R
Ntn : vTΣ−1

1 v ≤ (1 + ǫ)n
}

, (5.43)

where Σ1 is an Ntn×Ntn block-diagonal matrix whose diagonal blocks are equal, and given by

Σ1,i ,
αPx

Nt

(
INt

+
αPx

Nt

GHΦ−1G
)−1

. (5.44)

Following in the footsteps of the proof of Theorem 10, it can be shown that R1 satisfies (5.40).

Receiver 2: Since x1 is known non-causally at the transmitter, the channel between the

transmitter and Receiver 2 is equivalent to an ergodic fading dirty paper channel with Ps = αPx,

where R2 is given by (5.41) from Theorem 11. The remainder of the rate region is obtained by

varying α.
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In the absence of channel state information at the transmitter, the capacity of the fading

MIMO broadcast channel is not known in general. In Figure 5.5 we compare the rate region of

the lattice coding scheme to the time-sharing inner bound as well as a version of Costa’s dirty

paper coding under non-causal channel state information at the transmitter and white-input

covariance. In this non-causal scheme, Receiver 1 decodes its message while treating x2 as

noise. Since {H ix1,i}ni=1 are known non-causally at the transmitter, dirty paper coding allows

the rate for Receiver 2 to be unaffected by interference. The rate region is then given by5

Ř1 < log det
(

INt
+

αPx

Nt

GHΦ−1G
)

Ř2 <E

[

log det
(
INt

+
(1− α)Px

NtPw2

HHH
)]

. (5.45)

In Figure 5.5 we compute the rates through Monte-Carlo simulations when Nt = Nr1 = 2, Nr2 =

4, and the channel of Receiver 2 is Rayleigh faded.6 For the special case of single-antenna

nodes, the rates of the lattice coding scheme are plotted in Figure 5.6 and compared with the

time sharing inner bound as well as the Tuninetti-Shamai rate region for the two-user fading

broadcast channel [40].7 The results are also compared to the white-input capacity when the

channel state is available at all nodes [30]. For the single-antenna case we assume the channel

of Receiver 1 has unit gain, i.e., |g| = 1. Note that unlike both [40, 30], the proposed lattice

scheme presumes each receiver is oblivious to the codebook designed for the other receiver.

In addition, we study the two-user broadcast channel with CSIR, where the fading processes

of the two users are stationary, ergodic and independent of each other, as follows

y1,i =H1,ix1,i +H1,ix2,i +w1,i

y2,i =H2,ix1,i +H2,ix2,i +w2,i, (5.46)

5It is unknown whether the rate region in (5.45) is an outer bound for the capacity region of the channel
in (5.39).

6Jafar and Goldsmith [43] showed that for isotropic fading broadcast channels with single-antenna receivers,
increasing Nt beyond one does not increase the capacity under CSIR only. Therefore, we focus in our simulations
on cases where Nt ≤ min{Nr1 , Nr2}.

7The authors of [40] conjecture that their inner bound is tight.
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Theorem 13. For the two-user broadcast channel given in (5.46), lattice coding and decoding

achieve

R1 <
(

− log det
(

E
[(
IM +

αPx

NtPw1

HH
1 Φ

−1H1

)−1]
))+

, (5.47)

R2 <
(

− log det
( 1

1− α
E
[(
INt

+
Px

NtPw2

HH
2 H2

)−1]
))+

, (5.48)

where Φ ,
(1−α)Px

Nt
H1H

H
1 + Pw1INr1

.

Proof. The achievability proof of the rate of Receiver 2 in (5.48) is identical to that of Theo-

rem 12. At Receiver 1, the received signal is multiplied by a time-varying equalization matrix,

given by

U 1,i =
αPx

Nt

(Px

Nt

H1,iH
H
1,i + INr1

)−1
H1,i , (5.49)

with spherical decision region as follows

Ω ,

{

v ∈ R
Ntn : ||v||2 ≤ (1 + ǫ)n

αPx

Nt

tr
(

E

[(
INt

+
αPx

Nt

HH
1 Φ

−1H1

)−1
])}

. (5.50)

The remainder of the analysis resembles that in the proof of Theorem 12, where it can be shown

that (5.47) is achievable.

The rate region of the lattice scheme is plotted in Figure 5.7 under Nakagami fading with

Nt = 1 and Nr1 = Nr2 = 2, and compared with time sharing and dirty paper coding with

non-causal CSIT.

5.5 Broadcast Channel with CSIT

The two-user SISO ergodic broadcast channel under lattice codes is studied, when channel-state

information is available causally at all communication nodes. As a byproduct, we show that

lattice codes achieve the capacity of the (non-fading) two-user AWGN broadcast channel. For

simplicity, only the real-valued case is addressed.
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Figure 5.7. Rate regions for the MIMO broadcast channel with Nt = 1 and Nr1 = Nr2 = 2,
where Px

Pw1
= 0dB and Px

Pw2
= 20 dB. Both users experience Nakagami-m fading with m = 2.

We consider the case where only a private message is intended for each receiver. The trans-

mitter emits the sum of two lattice codewords, and hence the received signals at each receiver

are given by

y1 =H1x1 +H1x2 +w1

y2 =H2x1 +H2x2 +w2, (5.51)

where x1 and x2 denote the signals intended at receivers 1 and 2, respectively. In order to

fulfill the power constraint, we assume E[||x1||2] ≤ nαρ and E[||x2||2] ≤ n(1 − α)ρ. H1, H2

are diagonal matrices representing the channel coefficients across time. The vectors w1 and w2

are zero-mean i.i.d. Gaussian noise vectors each with covariance PwIn, and independent of H1

and H2.
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5.5.1 AWGN Broadcast Channel

For the AWGN broadcast channel, the channel gains are time invariant, and hence the channel

matrices simplify to H1 = h1In and H2 = h2In. Assume without loss of generality that

|h2| ≤ |h1|.

The capacity region of the two-user Gaussian broadcast channel is given by [67]

R1 <
1

2
log (1 + αρh2

1)

R2 <
1

2
log

(

1 +
(1− α)ρh2

2

αρh2
1 + 1

)

. (5.52)

Theorem 14. Lattice codes achieve the capacity of the two-user Gaussian broadcast channel

with full channel state information.

Proof. Encoding: The transmitter emits the sum of two lattice codewords as follows

x = [t1 − d1] modΛ + [t2 − d2] modΛ′, (5.53)

where t1 and t2 are two lattice points drawn from Λ1 ⊇ Λ and Λ2 ⊇ Λ′, respectively. The second

moment of the lattices Λ and Λ′ are αρ and (1 − α)ρ, respectively. The dithers d1 and d2 are

independent and uniform over V and V ′. Similar to the MAC, Λ1 and Λ2 are not necessarily

independent.

Decoding (User 2): User 2 uses MMSE scaling to decode its desired signal, while treating

the other signal as noise. The (time-invariant) MMSE coefficient is given by

u2 =
(1− α)ρh2

ρh2
2 + 1

. (5.54)

The scaled signal can thus be written as

y′
2 = x2 + z2,

where

z2 = − αρh2
2 + 1

ρh2
2 + 1

x1 +
(1− α)ρh2

2

ρh2
2 + 1

x2 +
(1− α)ρh2

ρh2
2 + 1

w2. (5.55)
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We apply the ambiguity decoder defined by a spherical decision region Ω2 as follows

Ω2 ,

{

v ∈ R
n : vTv ≤ (1 + ǫ)n(1− α)ρ

αρh2
2 + 1

ρh2
2 + 1

}

, (5.56)

where ǫ is an arbitrary positive constant.

Probability of error (User 2): There exists a nested lattice code with rate R2 whose proba-

bility of error can be bounded by

Pe < P (z /∈ Ω1) + (1 + δ)2nR2
Vol(Ω1)

Vol(V ′)
, (5.57)

for any δ > 0. Following in the footsteps of Lemma 7, P (z /∈ Ω1) < γ for any γ > 0.

Consequently, the error probability can be bounded by

Pe < γ + (1 + δ)2nR2
Vol(Ω2)

Vol(V ′)
, (5.58)

for any γ, δ > 0. The volume of Ω2 is given by

Vol(Ω2) = (1 + ǫ)
n
2

(αρh2
2 + 1

h2
2ρ+ 1

)n
2Vol

(
B(

√

n(1− α)ρ)
)
. (5.59)

The second term in (5.58) is bounded by

(1 + δ)2nR2(1 + ǫ)n/2
(αρh2

2 + 1

ρh2
2 + 1

)n
2 Vol(B(

√

n(1− α)ρ))

Vol(V ′)

= (1 + δ)2
−n

(

− 1
n
log

(
Vol(B(

√
n(1−α)ρ))

Vol(V′)

)
+ξ

)

, (5.60)

where

ξ ,
−1

2
log(1 + ǫ)− 1

2
log

(αρh2
2 + 1

ρh2
2 + 1

)

−R2. (5.61)

From (2.8), since the lattice Λ′ is good for covering, the first term of the exponent in (5.60)

vanishes. Then, whenever ξ is a positive constant we have limn→∞ Pe = 0. Since ǫ is arbitrary,

positive ξ can be achieved when

R2 <
1

2
log

(
1 +

(1− α)ρh2
2

ρh2
2 + 1

)
. (5.62)
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Decoding (User 1): The condition |h2| ≤ |h1| guarantees that User 1 can successfully decode

any signal that User 2 has decoded, since

1

2
log

(
1 +

(1− α)ρh2
2

ρh2
2 + 1

)
≤ 1

2
log

(
1 +

(1− α)ρh2
1

ρh2
1 + 1

)
. (5.63)

This is always true because the expression in (5.62) is non-decreasing with |h|. Hence, User 1

can follow the same steps as User 2 to decode x2, and then subtract it. The equivalent channel

is then y′′
1 = h1x1 +w1. User 1 can then scale y′′

1 by an MMSE coefficient

u1 =
αρh1

αρh2
1 + 1

, (5.64)

and then decode using an ambiguity decoder with a spherical decision region

Ω1 ,

{

v ∈ R
n : vTv ≤ (1 + ǫ)nαρ

1

αρh2
1 + 1

}

, (5.65)

where it can be shown that x1 can be decoded reliably as long as

R1 <
1

2
log

(
1 + αρh2

1

)
.

This concludes the proof of Theorem 14.

Note that the aforementioned achievable scheme can be extended to the K-user AWGN

broadcast channel. This is done through properly ordering the channel strengths of the users

such that each receiver can decode and subtract all the signals intended for the users with weaker

channel strengths.

5.5.2 Ergodic Broadcast Channel with CSIT

We study the two-user ergodic broadcast channel with full channel state information at all nodes.

The problem is different from the AWGN case since the relative channel magnitudes of the two

users alternate across different channel realizations. The capacity region of this class of channels

was established by Li and Goldsmith in [30] as follows

R1 <
1

2
E

[

log
(
1 +

αρh2
1

(1− α)ρh2
1I(h2 ≥ h1) + 1

)]

R2 <
1

2
E

[

log
(
1 +

(1− α)ρh2
2

αρh2
2I(h2 < h1) + 1

)]

, (5.66)
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where I(.) is an indicator function such that I(υ) = 1 if the argument υ is true and zero

otherwise.

Theorem 15. The capacity region of the two-user ergodic broadcast channel with full channel

state information can be achieved using lattice codes.

Proof. The argument broadly follows the same lines as [30]. We briefly sketch the achievability

proof for completeness, which is based on separable coding, i.e., coding independently across the

different fading states. This is done through discretizing the range of the time-varying channel

of each user into κ states, and hence we have L , κ2 joint channel states (Generally κK states

for K users). The states are denoted by S0, . . . , SL−1. In each joint state, the channel is

approximated by a non-fading broadcast channel, whose capacity can be achieved as shown in

Section 5.5.1. Hence, allowing sufficiently many channel states (large κ) in addition to using the

lattice scheme for the Gaussian broadcast channel over each joint state yields the rates given

in (5.66).
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CHAPTER 6

ERGODIC STRONG INTERFERENCE CHANNEL

Recently, lattice codes have been proposed to replace Gaussian codes for interference channels.

In [22] it has been shown that a naive extension of the Han-Kobayashi scheme with Gaussian

codes is suboptimal for the Gaussian interference channel with more than two users, and that

linear codes (more specifically lattice codes) outperform Gaussian codes in such case. Following

this result, Jafar and Vishwanath [23] showed that the generalized Degrees-of-Freedom of the

K-user symmetric Gaussian interference channel is achieved via lattice codes. Subsequently,

Ordentlich et al. [68] derived an achievable region for the K-user symmetric Gaussian interfer-

ence using nested lattice codes. In [47] Sankar et al. considered the two-user ergodic fading

interference channel with channel state information available at all nodes, where Gaussian codes

were shown to achieve the sum capacity under some scenarios, namely the ergodic very strong

(a mix of strong and weak fading states satisfying specific strict fading average conditions) and

uniformly strong, (every cross fading coefficient is larger in magnitude than the direct fading

coefficient) interference regimes. Farsani [48] also studied a variant of the latter problem with

partial channel state information at the transmitters.

In this chapter, the two-user ergodic strong interference channel is defined, and its capacity

is computed using Gaussian codebooks. Then, an achievable rate region under lattice coding

and decoding is derived for this channel and compared to capacity.

6.1 Capacity Region

Consider a two-user Gaussian interference channel with received signals at time instant i given

by

y1,i =h11,ix1,i + h12,ix2,i + w1,i,

y2,i =h21,ix1,i + h22,ix2,i + w2,i, (6.1)
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where in general hkj,i ∈ R denotes the coefficient of the channel between transmitter j and

receiver k at time i, which are stationary and ergodic with time-varying gain. Channel coeffi-

cients across different links are independent of each other, and are only known at the receivers.

xj,i ∈ R is the symbol sent from transmitter j at time i, where the codeword xj , [xj,1, . . . , xj,n]
T

is transmitted throughout n channel uses and satisfies E[||xj||2] ≤ nPj. The noise wj ∈ R
n is

zero-mean i.i.d. Gaussian with covariance In for j ∈ {1, 2}.

Definition 1. A two-user ergodic strong interference channel is defined by

I(Xn
1 ;Y

n
1 |Xn

2 , H) ≤ I(Xn
1 ;Y

n
2 |Xn

2 , H),

I(Xn
2 ;Y

n
2 |Xn

1 , H) ≤ I(Xn
2 ;Y

n
1 |Xn

1 , H). (6.2)

for all P(Xn
1 )P(X

n
2 ), where H represents the set of all channel coefficients.

Theorem 16. The capacity region of the ergodic strong interference channel is given by

R1 <E
[
log(1 + P1|h11|2))

]
,

R2 <E
[
log(1 + P2|h22|2))

]
,

R1 +R2 <min
{
E
[
log(1 + P1|h11|2 + P2|h12|2))

]
,

E
[
log(1 + P1|h21|2 + P2|h22|2))

]}
. (6.3)
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Proof. The first two bounds in (6.3) are trivial. Following in the footsteps of [67, Section 6.3],

the third bound can be derived as follows

n(R1 +R2) =h(M1) + h(M2)

=h(M1|H) + h(M2|H) (6.4)

≤I(M1;Y
n
1 , H) + I(M2;Y

n
2 , H) + nǫ (6.5)

=I(Xn
1 ;Y

n
1 , H) + I(Xn

2 ;Y
n
2 , H) + nǫ

≤I(Xn
1 ;Y

n
1 |H) + I(Xn

2 ;Y
n
2 |Xn

1 , H) + nǫ (6.6)

≤I(Xn
1 ;Y

n
1 |H) + I(Xn

2 ;Y
n
1 |Xn

1 , H) + nǫ (6.7)

=I(Xn
1 , X

n
2 ;Y

n
1 |H) + nǫ

=H(Y n
1 |H)−H(Y n

1 |Xn
1 , X

n
2 , H) + nǫ

=H(Y n
1 |H)−H(W n

1 ) + nǫ

≤
n∑

i=1

log(1 + P1|h11,i|2 + P2|h12,i|2) + nǫ, (6.8)

where (6.4) follows since channel knowledge is not available at transmitters and (6.5) follows

from Fano’s inequality. (6.6) holds since I(Xn
1 ;X

n
2 |H) = 0, whereas (6.7) holds from Definition 1.

At large n, (6.8) converges to

R1 +R2 ≤ E
[
log(1 + P1|h11|2 + P2|h12|2))

]
+ ǫ+ ǫ′,

where ǫ, ǫ′ vanish at large n. The other bound on R1 + R2 follows similarly by switching the

indices in (6.6). This concludes the proof of Theorem 16.

Obviously, the capacity region in (6.3) is the intersection of that of two multiple-access chan-

nels where both messages are required at both receivers. Hence (6.3) is achievable with Gaussian

codes, similar to the Gaussian strong interference channel without fading [45]. Although the

ergodic interference channel has been studied in [47, 48] under some channel knowledge at the

transmitters, capacity regions were only fully characterized for the uniformly strong interference
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channel, i.e., every fading state is strong, and the ergodic very strong interference channel, i.e., a

mix of strong and weak fading states satisfying specific fading averaged conditions. The ergodic

strong interference channel model studied in this section requires milder conditions than the

aforementioned models, yet includes them both as special cases.

6.2 Lattice Coding Inner Bound

Although the capacity region of the the ergodic strong interference channel is achievable using

Gaussian codes and typicality (or maximum likelihood) decoding, their significant encoding and

decoding complexity hinder their use in practice. Recently, lattice coding and decoding have

been shown to achieve the capacity of Gaussian channels [5], opening the door for significant

reduction in complexity without compromising communication rates. In this section, a lattice

coding and decoding scheme is proposed for the ergodic strong interference channel, and its rate

region is computed. We limit our study to the case where the direct and cross fading coefficients

are drawn from the same distribution, but are independent of each other, as follows

y1,i =
√
α11h11,ix1,i +

√
α12h12,ix2,i + w1,i,

y2,i =
√
αh21,ix1,i +

√
α22h22,ix2,i + w2,i, (6.9)

where hkj,i are identically distributed but independent of each other for all j, k, and α21 ≥ α11,

α12 ≥ α22. This models the case where all transmitters and receivers are in a similar terrain, with

the direct links being more distant. For ease of exposition let α11 = α22 = 1 and α12 = α21 , α.

A sufficient condition for the channel to satisfy ergodic strong interference in Definition 1 is

α ≥ 1.
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Theorem 17. For the ergodic strong interference channel with complex-valued channels, lattice

coding and decoding achieve the following rate region

R1 <L(P1g11)

R2 <L(P2g22)

β11R1 + β12R2 < ω1

β21R1 + β22R2 < ω2 , (6.10)

where L(x) , − log
(
E[ 1

1+x
]
)
, gjk , |h2

jk|, and

β11 ,L(αP2g12)− L(
αP2g12

1 + P1g11
)

β12 ,L(P1g11)− L(
P1g11

1 + αP2g12
)

β21 ,L(P2g22)− L(
P2g22

1 + αP1g21
)

β22 ,L(αP1g21)− L(
αP1g21

1 + P2g22
)

ω1 ,L(P1g11)L(αP2g12)− L(
P1g11

1 + αP2g12
)L(

αP2g12
1 + P1g11

)

ω2 ,L(αP1g21)L(P2g22)− L(
αP1g21

1 + P2g22
)L(

P2g22
1 + αP1g21

) .

Proof. Encoding: We first study real-valued channels. Nested lattice codewords are used where

at transmitter j, Λ(j) ⊆ Λ
(j)
1 . Transmitter j emits a lattice point tj ∈ Λ

(j)
1 dithered uniformly

with dj, as follows

xj = [tj − dj] modΛ(j) = tj − dj + λj , j = 1, 2, (6.11)

where λ = −QV(j)(tj −dj) ∈ Λ(j) from (2.5), and Λ(j) ∈ R
n has second moment Pj. The dithers

dj are independent of each other and uniform over V (j), leading to the independence of x1,x2,

according to Lemma 1.
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Decoding: First we discuss the received signal at receiver 1 which can be expressed in the

form

y1 = H11x1 +
√
αH12x2 +w1, (6.12)

where H1j is a diagonal matrix whose elements are h1j,i. The receiver performs successive

cancellation decoding, i.e., it decodes and subtracts x2 before decoding x1. At the receiver, y1

is multiplied by a single-tap equalization matrix U 1 ∈ R
n×n and the dither is removed as follows

y′
1 ,UT

1 y1 + d2

=x2 + (
√
αUT

1H12−In)x2 +UT
1H11x1 +UT

1w1 + d2

=t2 + λ2 + z1, (6.13)

where

z1 , (
√
αUT

1H12 − In)x2 +UT
1H11x1 +UT

1w1, (6.14)

and t2 is independent of z1, according to Lemma 1. U 1 is chosen to minimize E[||z1||2], and is

then a diagonal matrix whose elements u1,i, are the time-varying MMSE coefficient, given by

u1,i =

√
αP2h12,i

1 + P1h2
11,i + αP2h2

12,i

, (6.15)

From (6.14),(6.15), z1,i is expressed as

z1,i =
−(1 + P1h

2
11,i)x2,i

1 + P1h2
11 + αP2h2

12

+

√
αP2h11,ih12,ix1,i

1 + P1h2
11,i + αP2h2

12,i

+

√
αP2h12,iw1,i

1 + P1h2
11,i + αP2h2

22,i

. (6.16)

Obviously, z1,i depends on h11,i, h12,i, causing the noise distribution to be channel-dependent.

In order to simplify the decoding process, we ignore the instantaneous channel knowledge sub-

sequent to MMSE scaling. We apply a spherical ambiguity decoder as follows

Ω ,

{

v ∈ R
n : ||v||2 ≤ (1 + ǫ)nP2E

[ 1

1 +
αP2h2

12

1+P1h2
11

]}

, (6.17)

where ǫ is an arbitrary positive constant.
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Error Probability: On averaging over the set of all fine lattices C of rate R that belong to

the class of lattices proposed in Section 2.1, the probability of error can be bounded by

1

|C|
∑

Ci∈C
Pe < P(z /∈ Ω) + (1 + δ)2nR

Vol(Ω)

Vol(V (2))
, (6.18)

for any δ > 0. Following in the footsteps of Lemma 4, it can be shown that P (z /∈ Ω) < γ for

any γ > 0 at sufficiently large n. Consequently, the error probability can be bounded by

ǫ′′ ,
1

|C|
∑

Ci∈C
Pe < ǫ′ + (1 + δ)2nR

Vol(Ω)

Vol(V (2))
, (6.19)

for any γ, δ > 0. The volume of Ω is given by

Vol(Ω) = (1 + ǫ)
n
2Vol

(
B(

√

nP2)
) (

E
[ 1

1 +
αP2h2

12

1+P1h2
11

])n
2 . (6.20)

The second term in (6.19) is then bounded by

(1 + δ)2nR(1 + ǫ)
n
2

(
E
[ 1

1 +
αP2h2

12

1+P1h2
11

])n
2
Vol(B(

√
nP2))

Vol(V (2))

= (1 + δ)2
−n

(

− 1
n
log

(
Vol(B(

√
nP2))

Vol(V(2))

)
+ξ

)

, (6.21)

where

ξ ,
−1

2
log(1 + ǫ)− 1

2
log

(

E
[ 1

1 +
αP2h2

12

1+P1h2
11

])

−R. (6.22)

From (2.8), since the lattice Λ(2) is good for covering, the first term of the exponent in (6.21)

vanishes. From (6.21), limn→∞ Pe = 0 whenever ξ > 0. Hence,

R < −1

2
log

(

E
[ 1

1 +
αP2h2

12

1+P1h2
11

])

− 1

2
log(1 + ǫ)− ǫ′, (6.23)

is achievable where ǫ, ǫ′ can be made arbitrarily small by increasing n. The existence of at

least one lattice Ci that achieves the error probability averaged over the set of lattices C is

straightforward.
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In the event of successful decoding, from (6.13) the outcome of the decoding process would

be t̂ = t2 + λ2. On applying the modulo-Λ operation on t̂,

[t̂] modΛ = [t2 + λ2] modΛ(2) = t2, (6.24)

where the second equality follows from (2.6) since λ2 ∈ Λ(2).

Following in the footsteps of [5, 7], the existence of a sequence of coarse lattices with second

moment P2 that are good for covering and quantization, and nested in Λ
(2)
1 can be shown. Since

a sphere is define by the Euclidean metric, one can replace the spherical region in (6.17) with a

Euclidean lattice decoder, given by

t̂ =
[

arg min
t′∈Λ(2)

1

||(y′
2 − t′2)||2

]

modΛ(2), (6.25)

which cannot increase the error probability. Let R
(1)
2 , R denote the rate of message 2 that

is decodable at receiver 1. Following the first decoding stage, x2 is then subtracted and x1 is

decoded interference-free. When following similar steps to that above, it can be shown that

R
(1)
1 < −1

2
log

(

E
[ 1

1 + P1h2
11

])

, (6.26)

where the rate pair {R1, R2} in (6.23),(6.26) represent one corner in the rate region. On reversing

the decoding order, a new rate pair can be obtained, given by

R̃
(1)
1 <− 1

2
log

(

E
[ 1

1 +
P1h2

11

1+αP2h2
12

])

,

R̃2
(1)

<− 1

2
log

(

E
[ 1

1 + αP2h2
12

])

. (6.27)

Using time sharing between the two aforementioned strategies, the first sum rate constraint

in (6.10) can be obtained.1 A similar rate region can be obtained with respect to receiver 2,

and the intersection of both regions yields the rate region in (6.10).2 This concludes the proof

of Theorem 17.

1Unlike the sum capacity bounds in (6.3), the sum rate bounds in (6.10) does not have a unit slope in general.

2The extension to complex-valued channels is similar to that in Theorem 2.
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Figure 6.1. The sum rate of the ergodic strong interference channel with α = 4 vs. sum capacity
under Nakagami-m fading with m = 2, and P1 = P2 , SNR.

In Figure 6.1, the sum rate in (6.10) is compared with the sum capacity in (6.3) versus SNR

when all fading coefficients are Nakagami-m distributed with m = 2, α = 4. The gap between

the two rates is very small. Similar results are plotted in Figure 6.2 under Rayleigh fading.
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Figure 6.2. The sum rate of the ergodic strong interference channel with α = 4 vs. sum capacity
under Rayleigh fading, and P1 = P2 , SNR.
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CHAPTER 7

CONCLUSION

This dissertation studies lattice coding and decoding in the context of several ergodic fading

channels. Achievable lattice coding and decoding schemes are proposed and explicit achievable

rates are computed. For most cases, the gap to respective capacities of these rates are computed.

For the point-to-point channel and MAC, it is shown that the achievable rates are within a

constant gap to capacity under a wide range of distributions. Under i.i.d. Rayleigh fading, the

gap to capacity is a constant that vanishes as the number of receive antennas grows beyond

that of transmit antennas, even at finite SNR. For the special case of single-antenna nodes,

the gap to capacity is also shown to be a constant for even a wider range of distributions,

including Nakagami-m fading. At low SNR, the gap to capacity is shown to be a diminishing

fraction of the achievable rate. Simulation results are provided, confirming that lattice codes

perform competitively with Gaussian codes under several channel and antenna configurations.

An alternative decoding strategy is presented for block fading channels drawn from a discrete

distribution, where channel-matching decision regions are proposed that achieve rates within

a constant gap to capacity. The gap depends on both the coherence length of the channel as

well as the fading distribution size, and is shown to vanish under some special cases of interest.

Results are also extended to the imperfect CSIR case.

Also, the block fading MIMO point-to-point channel with channel state information at the

transmitter is studied, where it is shown that a precoded lattice coding scheme with a fixed

decoder and non-separable coding achieve the capacity.

The MIMO dirty paper channel with CSIR is also studied, where it is shown that a variant

of Costa’s dirty paper coding achieves rates within a constant gap to the capacity outer bound.

A lattice coding and decoding scheme is proposed that achieve rates within a constant gap to

capacity for a wide range of fading distributions. The gap to capacity diminishes as the number

of receive antennas increases, even at finite SNR. The results imply that lattice coding and
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decoding approach optimality for the fading dirty paper channel, and that under some antenna

configurations the capacity of the fading dirty paper channel with CSIR is within a very small

gap to the capacity of the point-to-point channel. The results are applied to various broadcast

channel scenarios. Simulations show that the proposed lattice coding scheme has near-capacity

performance.

Finally, a two-user ergodic fading interference channel is studied, where the interference is

statistically strong. The capacity region of this channel is established. Additionally, a lattice

coding and decoding scheme is proposed, whose achievable sum rate is close to the sum capacity

for a variety of fading distributions.

Interesting future directions for research include:

• Ergodic Interference Channel with arbitrary strength: The results in this dissertation in-

clude performance characterization of the ergodic strong interference channel only. Other

scenarios where the average interference power is lower than that of the direct link remain

open.

• Relay-aided Wireless Networks: One plausible direction for future work includes study-

ing relay channels. This would open the door for addressing the optimality of relaying

techniques under non-Gaussian coding.

• Closing the Gap to Capacity: Although we have shown that lattice coding and decoding

achieve rates within a small gap to capacity in several scenarios, it remains of interest

to explore whether lattice codes can achieve capacity. This is an active area of research

and some recent results have been able to answer the question in the affirmative for a

point-to-point link [15, 69]. Extending the analysis to more general cases remains an open

problem.
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APPENDIX A

APPENDICES FOR CHAPTER 3

A.1 Proof of Lemma 4

The aim of Lemma 4 is showing that z lies with high probability within the sphere Ω. However,

computing the distribution of z is challenging since it depends on that of x,H as shown in (3.6),

where the distribution of x is not known at arbitrary block length, and no fixed distribution

is imposed for H . The outline of the proof is as follows. First, we replace the original noise

sequence with a noisier sequence whose statistics are known. Then, we use the weak law of large

numbers to show that the noisier sequence is confined with high probability within Ω, which

implies that the original noise z is also confined within Ω. We decompose the noise z in (3.8)

in the form z = Asx+
√
ρBsw, where both As, Bs are block-diagonal matrices with diagonal

blocks Ai , −(INt
+ ρHT

i H i)
−1 and Bi ,

√
ρHT

i (INr
+ ρH iH

T
i )

−1, respectively, such that

AsA
T
s +BsB

T
s = (INtn + ρHT

s Hs)
−1. (A.1)

Since H i is a stationary and ergodic process, Ai and Bi can also be shown to be stationary and

ergodic. Denote the eigenvalues of the random matrix HTH (arranged in ascending order) by

σ2
H,1, . . . , σ

2
H,Nt

. Then its eigenvalue decomposition is given by HTH , V DV T , where V is a

unitary matrix and D is a diagonal matrix whose unordered entries are σ2
H,1, . . . , σ

2
H,Nt

. Owing

to the isotropy of the distribution ofH , AAT = V (INt
+ρD)−2V T can be shown to be unitarily

invariant, i.e., P(AAT ) = P(V̌ AAT V̌
T
) for any unitary matrix V̌ that is independent of A.

As a result of unitary invariance V is independent of D [70]. Hence,

E
[
AAT

]
= E

[
(INt

+ ρHTH)−2
]

= E
[
V (INt

+ ρD)−2V T
]

= EV |D
[
V ED[(INt

+ ρD)−2]V T
]

= EV |D
[
V σ2

AINt
V T

]

= σ2
AINt

, (A.2)
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where σ2
A , Ej

[
EσH,j

[ 1
(1+ρσ2

H,j
)2
]
]
. Similarly, it can be shown that E

[
BBT

]
= σ2

BINt
, where

σ2
B , Ej

[

EσH,j

[ ρσ2
H,j

(1 + ρσ2
H,j)

2

]
]

.

For convenience define σ2
z , σ2

A + σ2
B. Next, we compute the autocorrelation of z as follows

Σz , E
[
zzT

]
= E

[
AsΣxA

T
s

]
+ ρE

[
BsB

T
s

]
, (A.3)

where Σx , E
[
xxT

]
. Unfortunately, Σx is not known for all n, yet it approaches ρINtn for

large n, according to Lemma 2. Hence one can rewrite

Σz = σ2
xE

[
AsA

T
s +BsB

T
s

]

︸ ︷︷ ︸

σ2
x σ2

zINtn

+E
[
As(Σx − σ2

xINtn)A
T
s

]
+ (ρ− σ2

x)E
[
BsB

T
s

]

︸ ︷︷ ︸

≻0

, (A.4)

where σ2
x , λmin(Σx) − δ, and λmin(Σx) is the minimum eigenvalue of Σx. Note that ρ ≥ σ2

x,

from the definition in (2.2). As a result the second term in (A.4) is positive-definite, and

Σz ≻ σ2
x σ

2
zINtn. This implies that

Σz
−1 ≺ 1

σ2
xσ

2
z

INtn . (A.5)

To make noise calculations more tractable, we introduce a related noise variable that modifies

the second term of z as follows

z∗ = Asx+Bs

(√
ρw +

√
1

Ntn
R2

c − ρw∗), (A.6)

where w∗ is i.i.d. Gaussian with zero mean and unit variance, and Rc is the covering radius of V .

We now wish to bound the probability that z∗ is outside a sphere of radius
√

(1 + ǫ)Ntnσ2
xσ

2
z .

First, we rewrite

||z∗||2 =xTAT
s Asx+

1

Ntn
R2

cw
TBsB

T
s w + 2

√
1

Ntn
R2

c x
TAT

s Bsw. (A.7)

Then, we bound each term separately using the weak law of large numbers. The third term

satisfies 1

P
(
2

√
1

Ntn
R2

c x
TAT

s Bsw > Ntnǫ3
)
< γ3. (A.8)

1The third term in (A.7) is a sum of zero mean uncorrelated random variables to which the law of large
numbers applies [71].
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Addressing the second term in (A.7), 2

P
( 1

Ntn
R2

c w
TBT

s Bsw > σ2
BR

2
c +Ntnǫ2

)

= P
( 1

Ntn
R2

c tr(BswwTBT
s w) > σ2

BR
2
c +Ntnǫ2

)

< γ2. (A.9)

Now, we bound the first term in (A.7). Given that AT
s As is a block-diagonal matrix with

E
[
AT

s As

]
= σ2

AINtn, and that Σx → ρINtn as n → ∞, it can be shown using [72, Theorem 1]

that 1
||x||2x

TAT
s Asx → σ2

A as n → ∞. More precisely,

P
(
xTAT

s Asx > σ2
AR

2
c +Ntnǫ1

)

< P
(
xTAT

s Asx > σ2
A||x||2 +Ntnǫ1

)

< γ1, (A.10)

where ||x||2 < R2
c , and ǫ1, ǫ2, ǫ3 and γ1, γ2, γ3 can be made arbitrarily small by increasing n.

Using a union bound,

P
(
||z∗||2 > (1 + ǫ4)R

2
cσ

2
z

)
< γ, (A.11)

where ǫ4 ,
(ǫ1+ǫ2+ǫ3)

R2
cσ

2
z

and γ , γ1 + γ2 + γ3. For large n, 1
Ntn

R2
c ≤ (1 + ǫ6)ρ for covering-good

lattices and ρ ≤ (1 + ǫ7)σ
2
x according to Lemma 2. Let ǫ5 , (1 + ǫ6)(1 + ǫ7)− 1, then for any ǫ

such that ǫ ≤ (1 + ǫ4)(1 + ǫ5)− 1,

P
(
z∗TΣzz

∗ > (1 + ǫ)Ntn
)
< P

(
||z∗||2 > (1 + ǫ)Ntnρσ

2
z

)
(A.12)

= P

(

z∗T (
E
[
(INtn + ρHT

s Hs)
−1
])−1

z∗ > (1 + ǫ)Ntnρ
)

< γ, (A.13)

where (A.12) holds from (A.5) and (A.13) holds since E
[
(INtn + ρHT

s Hs)
−1
]
= σ2

zINtn, ac-

cording to (A.1). The final step is to show that ||z∗ − z|| → 0 as n → ∞, where z∗ − z =

2Note that µi , wT
i B

T
i Biwi is also a stationary and ergodic process that obeys the law of large numbers.
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√
1

Ntn
R2

c − ρBsw
∗. From the structure of Bs, the norm of each of its rows is less than Nt, and

hence the variance of each of the elements of Bsw
∗ is no more than Nt. Since limn→∞

1
Ntn

R2
c = ρ

for a covering-good lattice, it can be shown using Chebyshev’s inequality that the elements of
√

1
Ntn

R2
c − ρBsw

∗ vanish and |z∗
j − zj| → 0 as n → ∞ for all j ∈ {1, . . . , Ntn}. This concludes

the proof of Lemma 4.

A.2 Proof of Lemma 5

Denote by S the event that the post-processed received point y′ falls exclusively within one

decision sphere, defined in (3.9), where the probability of occurrence of S is PS , 1− γs. Using

the law of total probability, the probability of error (in general) is given by

Pe = Pe|SPS + Pe|ScPSc (A.14)

First we analyze the ambiguity decoder with spherical decision regions (denoted by super-

script (SD)). From the definition of ambiguity decoding, P
(SD)
e|Sc = 1. Hence,

P
(SD)
e = η′(1− γs) + γs, (A.15)

where P
(SD)
e|S , η′. Now we analyze the Euclidean lattice decoder (denoted by superscript (LD)).

Since a sphere is defined by the Euclidean metric, the outcomes of the spherical decoder and

the Euclidean lattice decoder conditioned on the event S are identical, and hence yield the same

error probability, i.e., P
(LD)
e|S = P

(SD)
e|S = η′. However, from (3.17), the Euclidean lattice decoder

declares a valid output even under the event Sc. Hence, P
(LD)
e|Sc , η′′ ≤ 1. Thereby,

P
(LD)
e = η′(1− γs) + η′′γs ≤ P

(SD)
e . (A.16)

A.3 Proof of Corollary 1

Lemma 10. For an i.i.d. complex Gaussian K ×M matrix G whose elements have zero mean,

unit variance and K > M , then E
[
(GHG)−1

]
= 1

K−M
IM .

Proof. See [73, Section V].
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A.3.1 Case 1: Nr ≥ Nt and the elements of E
[
(H̃

H
H̃)−1

]
< ∞

∆ =C −R

=E
[
log det(INt

+ ρH̃
H
H̃)

]
+ log det

(

E
[
(INt

+ ρH̃
H
H̃)−1

])

≤ log det
(

INt
+ ρE[H̃

H
H̃ ]

)

+ log det
(

E
[
(INt

+ ρH̃
H
H̃)−1

])

(A.17)

< log det
(

INt
+ ρE[H̃

H
H̃ ]

)

+ log det
(

E
[
(ρH̃

H
H̃)−1

])

(A.18)

= log det
((1

ρ
INt

+ E[H̃
H
H̃ ]

)
E
[
(H̃

H
H̃)−1

])

(A.19)

≤ log det
((

INt
+ E[H̃

H
H̃ ]

)
E
[
(H̃

H
H̃)−1

])

, (A.20)

where (A.17),(A.18) follow since log det(A) is a concave and non-decreasing function over the

set of all positive definite matrices [74]. (A.20) follows since ρ ≥ 1.

A.3.2 Case 2: Nr > Nt and the elements of H̃ are i.i.d. complex Gaussian

When the elements of H̃ are i.i.d. complex Gaussian with zero mean and unit variance,

∆ < log det
((

INt
+ E[H̃

H
H̃ ]

)
E
[
(H̃

H
H̃)−1

])

(A.21)

= log det
(
(1 +Nr)

1

Nr −Nt

INt

)
(A.22)

= Nt log
(
1 +

Nt + 1

Nr −Nt

)
,

where (A.21),(A.22) follow from Case 1 and Lemma 10, respectively.

92



A.3.3 Case 3: Nt = 1 and ρ < 1
E[||h̃||2]

∆ = C −R

= E
[
log (1 + ρ||h̃||2)

]
+ log

(
E[

1

1 + ρ||h̃||2
]
)

≤ log
(
1 + ρE[||h̃||2]

)
+ log

(

E
[ 1

1 + ρ||h̃||2
])

(A.23)

≤ log eE[||h̃||2]ρ+ log eE
[ −ρ||h̃||2
1 + ρ||h̃||2

]

(A.24)

= log eE
[

ρ||h̃||2 − ρ||h̃||2
1 + ρ||h̃||2

]

= log eE
[ ||h̃||4
1 + ρ||h̃||2

]

ρ2

< 1.45E
[
||h̃||4

]
ρ2,

where (A.23) is due to Jensen’s inequality and (A.24) utilizes ln x ≤ x− 1.

A.4 Proof of Corollary 2

The results in Case 1 and Case 2 are straightforward from Corollary 1. The proofs are therefore

omitted.
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A.4.1 Case 3: ρ ≥ 1, Nakagami-m fading with m > 1

The Nakagami-m distribution with m > 1 satisfies the condition E
[

1
|h̃|2

]
< ∞. For a Nakagami-

m variable with unit power, i.e., E[|h̃|2] = 1, E
[

1
|h̃|2

]
is computed as follows

E
[ 1

|h̃|2
]
=

2mm

Γ(m)

∫ ∞

0

1

x2
x2m−1e−mx2

dx

=
2mm

Γ(m)

1

2mm−1

∫ ∞

0

ym−2e−ydy

=
mΓ(m− 1)

Γ(m)

=
mΓ(m− 1)

(m− 1) Γ(m− 1)

= 1 +
1

m− 1
,

where Γ(·) denotes the gamma function. Substituting in (3.25), ∆ < 1 + log
(
1 + 1

m−1

)
.

A.4.2 Case 4: ρ ≥ 1, Rayleigh fading

Lemma 11. For any z > 0, the exponential integral function defined by Ē1(z) =
∫∞
z

e−t

t
dt is

upper bounded by

Ē1(z) <
1

log e
e−z log(1 +

1

z
).

Proof. See [75, Section 5.1].
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Under Rayleigh fading, |h̃|2 is exponentially distributed with unit power. Hence,

∆ = E[log (1 + ρ|h̃|2)] + log
(
E[

1

1 + ρ|h̃|2
]
)

≤ log
(
1 + ρE[|h̃|2]

)
+ log

(
E[

1

1 + ρ|h̃|2
]
)

(A.25)

≤ 1 + log
(
E[

1

|h̃|2 + 1
ρ

]
)

(A.26)

≤ 1 + log
(
∫ ∞

0

1

x+ 1
ρ

e−xdx
)

= 1 + log
(
e

1
ρ

∫ ∞

1
ρ

1

y
e−ydy

)

= 1 + log
(
e

1
ρ Ē1(

1

ρ
)
)

< 1 + log
( 1

log e
log(1 + ρ)

)
(A.27)

< 0.48 + log
(
log(1 + ρ)

)
,

where (A.25) follows from Jensen’s inequality. (A.26) holds from the condition ρ ≥ 1 and (A.27)

follows from Lemma 11.

A.5 Proof of Lemma 7

The proof resembles that in [5, 7]. Consider a noise vector z∗ ∈ R
Mn that is closely related to

z as follows

z∗ = −
(
INtn + ρHT

s Hs

)−1
g +

√
ρHT

s

(
INtn + ρHsH

T
s

)−1(√
ρw +

√

σ2
B − ρw∗)

,Asg +Bs

(√
ρw +

√

σ2
B − ρw∗) , (A.28)

where g and w∗ are i.i.d. Gaussian with zero mean and variances σ2
BINtn, INrn, respectively. σ

2
B

is the second moment of the smallest sphere covering V , where σ2
B > ρ. It is then easy to show

that the autocorrelation matrix of z∗ is
σ2
B
ρ
Σ, given in (3.38). The probability P

(
z∗ /∈ Ω

)
is

then equivalent to P
(
||z(w)||2 > (1+γ) ρ

σ2
B
Ntn

)
, where z(w) , (

σ2
B
ρ
Σs)

−1
2 z∗ is i.i.d. Gaussian with
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zero-mean and unit variance, and ||z(w)||2 is a chi-squared random variable with Mn degrees-of-

freedom. Using the Chernoff bound,

P
(
||z(w)||2 > (1 + γ)Ntn

)

≤ min
t≥0

{
e−Ntn

(
(1+γ)t+loge(1−t)

)
}

= (1 + γ)
Ntn

2 e−
Ntnγ

2

= e−
Ntn

2

(
γ−loge(1+γ)

)

. (A.29)

Now, we show that the distribution of z, i.e., fz(v), is upper-bounded (up to a constant)

by fz∗(v). It was shown in [5, Lemma 11], that fx(v) ≤ ecnfg(v), where cn/n → 0 as n → ∞.

Hence, fAsx(v) ≤ ecnfAsg(v) and fz(v) ≤ ecnfz∗(v) follow as well, where the former inequality is

obtained using transformation of random variables whereas the latter is obtained via convolution

of both terms in (A.28).

P(z /∈ Ω) =

∫

v/∈Ω
fz(v)dv

≤ ecn
∫

v/∈Ω
fz∗(v)dv

= ecn P
(
||z(w)||2 > (1 + γ)

ρ

σ2
B
Ntn

)

= ecn P
(
||z(w)||2 > (1 + γ′)Mn

)
(A.30)

≤ e
−Ntn

2

(
γ′−loge(1+γ′)− 2cn

Ntn

)

. (A.31)

where (A.30) holds since ρ ≤ (1+ 2
Ntn

)σ2
B [5], and hence γ′ ≤ (1+γ)(1+ 2

Ntn
). Since γ > loge(1+γ′)

for all γ′ > 0 and cn/n → 0 as n → ∞, the exponent in (A.31) remains negative and it can be

shown that there exists nǫ′ ∈ Z
+ such that for all n > nǫ′ , P(z /∈ Ω) < ǫ′.

The final step is to show that the elements of
√

σ2
B − ρBw∗ → 0 as n → ∞. Since |Bii| < 1,

the variance of each of the elements of Bw∗ is no more than 1. Since lim
n→∞

σ2
B = ρ for a covering-

good lattice, it can be shown using Chebyshev’s inequality that the elements of
√

σ2
B − ρBw∗
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vanish with high probability, as follows

P
(
√

σ2
B − ρBw∗ ≥ γ∗ κ

)
≤ 1

κ2
, for all κ > 0,

P
(
√

σ2
B − ρBw∗ ≥

√
γ∗

)
≤ γ∗ , (A.32)

where γ∗ ,
√

σ2
B − ρ vanishes with n and (A.32) follows when κ = 1√

γ∗ . This concludes the

proof of Lemma 7.

A.6 Designing the Permutation Matrix V

As mentioned earlier in Section 3.2.1, the role of V is ordering the channel coefficients in the

diagonal matrix H in ascending order of the magnitudes. Recall that the coefficients take on the

values h1, . . . , h|H|, where hk appears exactly nk times. Let us define a counter ν
(i)
k ≤ nk, that

counts the number of occurrences of the coefficient hk immediately after channel use i. Typically,

when hi = hk, then V (i, :) is δT
m, where m = ν

(i)
k +

∑k−1
l=1 nl. Using basic linear algebraic results,

it is straightforward that V THV = Hπ for any H that belongs to the random location channel

model.

A.7 Proof of Theorem 5

Before we proceed, we bound the total number of channel occurrences that deviate from nPk

in (2.10) as follows3

|H|
∑

k=1

|nk − nPk| ≤ δnPk < δn , nout. (A.33)

From (2.11),(A.33) on varying δ, a tradeoff occurs between nout and the total number of δ-typical

sequences. However, for the choice δ , δ′n
−1
2
(1−γ), where δ′ > 0 and 0 < γ < 1, nout = δ′n

1
2
(1+γ)

is a vanishing fraction of n, and the probability of atypical sequences would be upper-bounded

by 2|H|e−µnγ

3 . Hence, negligible nout can be guaranteed for almost all sequences satisfying a

distribution at large n.

3For simplicity, we assume nPk and nδ are positive integers.
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Now we are ready to present the capacity achieving scheme. The encoding, the choice of D

as well as U are identical to that in Section 3.2.1, i.e., D2
ii are the normalized optimal power

allocations for hi and Uii are the MMSE coefficients. However, designing the permutation

matrix V is now more challenging, since the number of occurrences of the different channel

values does not exactly fit the statistical distribution of the channel. We adopt a best-effort

approach to choose V , whose design is given in details in Table A.1, which can be phrased

as follows. First, we make a rough assumption that coefficient αk occurs exactly nPk times.

Designing the first n− nout rows of V is identical to that in Appendix A.6. For the remaining

nout rows, one or more slots dedicated for αk may be exhausted. Hence, we utilize the unoccupied

slots dedicated for αj where j < k, whose channel magnitudes are smaller. If all are occupied,

we utilize the last nout time slots available. This implies that the nout channel coefficients with

the largest magnitudes have no dedicated slots. Following the permutation operation, we use

an ellipsoidal decision region Ω̃1 as follows

Ω̃1 , {s ∈ R
n : sT Σ̃

−1
s ≤ (1 + ǫ)n}, (A.34)

where Σ̃ is a diagonal matrix given by

Σ̃ii =







ρ
ρh2

π(i)
+1

for i ∈ {1, . . . , n− nout}

ρ for i ∈ {n− nout + 1, . . . , n}.
(A.35)

Owing to V , Ω
(p)
1 ⊆ Ω̃, where Ω(p) is an ellipsoid parametrized by a perfectly ordered auto-

correlation matrix Σ(p) whose elements are perfectly ordered in descending order (recall the

channel coefficients are in ascending order), and hence achieves capacity. Ω
(p)
1 ⊆ Ω̃ follows since

Σ
(p)
ii ≤ Σ̃ii for any i, as guaranteed by the structure of V . The rate achieved is then

R <
1

2n

n∑

i=1

log
(
1 + h2

i ρ
∗(hi)

)
,

which converges to 1
2
E

[

log
(
1 + h2ρ∗(h)

)]

, by the weak law of large numbers. The final step

needed is showing that the suboptimal decision region Ω̃1 has negligible impact on the achievable
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Design of the permutation matrix V

Set νout = 0, ν
(0)
k = 0 for k = 1, . . . , |H|.

for i = 1 : n

Set flag = 0.

if hi == αk

Set ν
(i)
k = ν

(i−1)
k + 1 and ν

(i)
l = ν

(i−1)
l for l 6= k.

if ν
(i)
k ≤ npk

Set V (i, :) to δTm, where m = ν
(i)
k + n

∑k−1
l=1 Pl.

Set flag = 1.

else

for j = k − 1 : −1 : 1

if ν
(i)
j ≤ nPj

Set ν
(i)
j = ν

(i−1)
j + 1 and ν

(i)
l = ν

(i−1)
l for l 6= j.

Set V (i, :) to δTm, where m = ν
(i)
j + n

∑j−1
l=1 Pl.

Set flag = 1.

break;

end

end

if flag==0

Set νout = νout + 1.

Set V (i, :) to δTm, where m = νout + ⌊n− nout⌋.
end

end

end

end

Table A.1. Steps of designing V for a general fading channel.

rate. From (2.7) as well as the error analysis in Section 3.2.1, it can be shown that the gap ∆ ,

C −R is given by

∆ =
1

n

(

log
( Vol(Ω̃1)

Vol(Ω
(p)
1 )

)

+ o(n)
)

=
nout

n

1

nout

n∑

i=n−nout+1

log(1 + ρ∗π(i)h
2
π(i)) +

o(n)

n

<
nout

n
log(1 + ρ∗π(n)h

2
π(n)) +

o(n)

n
, (A.36)

where o(n) satisfies limn→∞
o(n)
n

= 0. Hence, ∆ vanishes since nout

n
→ 0 as n → ∞. This

concludes the proof of Theorem 5.
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A.8 Proof of Corollary 3

For ease of exposition let β , Px

1+Pxσ2
h

.

A.8.1 Case 1: General fading distribution with E
[

1

|ĥ|2
]
< ∞

∆ =E
[
log(1 + β|ĥ|2)

]
+ log

(

E
[ 1

1 + β|ĥ|2
])

≤ log
((

1 +
1

β

)
E
[ 1

|ĥ|2 + 1
β

])

(A.37)

≤1 + log
(

E
[ 1

|ĥ|2 + 1
β

])

(A.38)

<1 + log
(

E
[ 1

|ĥ|2
])

,

and (A.37) follows from Jensen’s inequality. (A.38) follows since σ2
h ≤ Px−1

Px
implies that β ≥ 1.

A.8.2 Case 2: Nakagami-m fading with m > 1

First, we compute E
[

1
g2

]
when g is Nakagami-m distributed with m > 1 and E[g2] = 1.

E
[ 1

g2
]
=
2mm

Γ(m)

∫ ∞

0

1

g2
g2m−1e−mg2dx

=
2mm

Γ(m)

1

2mm−1

∫ ∞

0

ym−2e−ydy

=m
Γ(m− 1)

Γ(m)

=1 +
1

m− 1
.

Since |ĥ| is Nakagami distributed, ∆ < 1 + log
(
1 + 1

m−1

)
.
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A.8.3 Case 3: Rayleigh fading

Under Rayleigh fading, |ĥ|2 is exponentially distributed with unit rate parameter, i.e., E[|ĥ|2] =

1. Hence,

∆ ≤1 + log
(

E
[ 1

|ĥ|2 + 1
β

])

(A.39)

=1 + log
(
∫ ∞

0

1

x+ 1
β

e−xdx
)

= log(2 + σ2
h) + log

(
eσ

2
h

∫ ∞

σ2
h

1

y
e−ydy

)

<0.48 + log
(
log(1 + β)

)
(A.40)

<0.48 + log
(

log
(
1 +

1

σ2
h

))

,

where (A.39) follows from (A.38) and (A.40) follows from Lemma 11.

A.9 Proof of Corollary 4

A.9.1 Case 1: Medard’s scheme

RG =E

[

log
(
1 +

Px|ĥ|2
1 + Pxσ2

h

)]

=E

[

log
(Px|ĥ|2 + Pxσ

2
h + 1

Pxσ2
h + 1

)]

<E

[

log
(Px|ĥ|2 + Pxσ

2
h

Pxσ2
h

)]

(A.41)

<1 + E

[

log
(SNR

INR

)]

, (A.42)

where (A.41) follows since x+y+1
x+1

< x+y
x

for all x, y > 0, and (A.42) follows since log(1 + z) <

1 + log(z) for z > 1. Hence,

RG

E[log SNR]
=

1 + E

[

log
(
SNR
INR

)]

E[log SNR]
= 1− α +

1

E[log SNR]
.

Hence, DR(α) = 1− α is straightforward.
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A.9.2 Case 2: Lattice scheme

RL =− log
(

E
[ 1

1 + Px|ĥ|2
Pxσ2

h
+1

])

=− log
(

E
[ Pxσ

2
h + 1

Px|ĥ|2 + Pxσ2
h + 1

])

>− log
(

E
[
(Pxσ

2
h + 1)

1

Px|ĥ|2 + 1

])

>− log
(

E
[ 1

Px|ĥ|2 + 1

])

− 1− log INR.

On replacing β with Px in Appendix A.4, it is easy to show that under Nakagami-m fading

with m > 1,
− log

(
E[ 1

1+SNR
]
)

E[log(1 + SNR)]
> 1 +

1 + log(1 + 1
m−1

)

E[log(1 + SNR)]
,

whereas for Rayleigh fading,

− log
(
E[ 1

1+SNR
]
)

E[log(1 + SNR)]
> 1 +

0.48 + log
(
log(1 + SNR)

)

E[log(1 + SNR)]
.

Hence, it is obvious that DL(α) = 1− α in both cases.
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APPENDIX B

APPENDICES FOR CHAPTER 4

B.1 Proof of Corollary 5

Lemma 12. For any two independent i.i.d. Gaussian matrices A ∈ C
r×m, B ∈ C

r×q where

r ≥ q + 1 whose elements have zero mean and unit variance,

AH
(
cIr +BBH

)−1
A ≻ 1

c
Ā

H
Ā, (B.1)

where the elements of Ā ∈ C
(r−q)×m are i.i.d. Gaussian with zero-mean and unit variance, and

c is a positive constant.

Proof. Using the eigenvalue decomposition of
(
cIr +BBH

)−1
,

AH
(
cIr +BBH

)−1
A = AHV DV HA = Ǎ

H
DǍ, (B.2)

where the columns of V are the eigenvectors of BBH . The corresponding eigenvalues of BBH

are then in the form σ2
1, . . . , σ

2
q , 0, . . . , 0. Hence, q of the diagonal entries of D are in the form

1/(c+ σ2
j ), whereas the remaining r − q entries are 1/c. Since V is unitary, then Ǎ , V HA is

i.i.d. Gaussian, similar to A [70]. One can rewrite (B.2) as follows

Ǎ
H
DǍ =

r−q
∑

j=1

1

c
ǎjǎ

H
j +

r∑

j=r−q+1

1

c+ σ2
j

ǎjǎ
H
j

≻
r−q
∑

j=1

1

c
ǎjǎ

H
j

=
1

c
Ā

H
Ā, (B.3)

where ǎj is the conjugate transposition of row j in Ǎ, and the columns of the matrix Ā are ǎj

for j ∈ {1, . . . , r − q}. The generalized inequality in (B.3) follows since X + Y � X for any

two positive semidefinite matrices X,Y .
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Let F̃ π(k) , INr
+ ρ

∑K
l=k+1 H̃π(l)H̃

H

π(l), where π(·) is an arbitrary permutation as described

in Section 4.1. We first bound the sum capacity in (4.18) (from above) as follows

Csum , E

[

log det
(
INr

+
K∑

k=1

ρH̃kH̃
H

k

)]

=
K∑

k=1

E

[

log det
(
INt

+ ρH̃
H

π(k)F̃
−1

π(k)H̃π(k)

)]

≤
K∑

k=1

E

[

log det
(
INt

+ ρH̃
H

π(k)H̃π(k)

)]

(B.4)

≤
K∑

k=1

log det
(

INt
+ ρE

[
H̃

H

π(k)H̃π(k)

])

= K log det
(
(1 + ρNr)INt

)

= NtK log (1 + ρNr)

≤ NtK
(
log ρ+ log (1 +Nr)

)
, (B.5)

where (B.4) follows since interference cannot increase capacity, and (B.5) follows since ρ ≥ 1.

Now, we bound (from below) Rsum. Since the sum of the rate expressions in both (4.16)

and (4.17) are equal, we bound each of the NtK terms in (4.16), where the power is allocated

uniformly over each virtual user, given by ρ as follows

Rπ(ℓ) = − log
(

E
[ 1

1 + ρh̃
H

π(ℓ)(INr
+ ρ

∑L
j=ℓ+1 h̃π(j)h̃

H

π(j))
−1h̃π(ℓ)

])

= − log
(

E
[ 1

1 + ρh̃
H

π(ℓ)(
1
ρ
INr

+ G̃π(ℓ)G̃
H

π(ℓ))
−1h̃π(ℓ)

])

≥ − log
(

E
[ 1

1 + ρȟ
H

π(ℓ)ȟπ(ℓ)

])

(B.6)

> − log
(

E
[ 1

ρȟ
H

π(ℓ)ȟπ(ℓ)

])

= log ρ− log
(

E
[ 1

ȟ
H

π(ℓ)ȟπ(ℓ)

])

= log ρ+ log
(
Nr − (K − ℓ+ 1)

)
, (B.7)
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where G̃π(ℓ) , [h̃π(ℓ+1), . . . , h̃π(L)]. (B.6) follows from Lemma 12 where ȟπ(ℓ) ∈ C
Nr−L+ℓ is an

i.i.d. Gaussian distributed vector whose elements have unit variance, and (B.7) follows from

Lemma 10.

Hence, from (B.5),(B.7) the gap is bounded as follows

∆ , Csum −Rsum

<
NtK∑

ℓ=1

(

log (1 +Nr) − log
(
Nr − (NtK − ℓ+ 1)

))

=
NtK∑

ℓ=1

log
( 1 +Nr

Nr − (NtK − ℓ+ 1)

)

=
NtK∑

ℓ=1

log
(1 +Nr

Nr − ℓ

)

=
NtK∑

ℓ=1

log
(
1 +

ℓ+ 1

Nr − ℓ

)
. (B.8)

B.2 Proof of Corollary 6

B.2.1 Case 1: ρ < 1
2

∆ =E
[
log (1 + ρ|h̃1|2 + ρ|h̃2|2)

]
+ log

(

E
[ 1 + ρ|h̃1|2
1 + ρ|h̃1|2 + ρ|h̃2|2

]
E
[ 1

1 + ρ|h̃1|2
])

≤ log
(
1 + ρE[|h̃1|2] + ρE[|h̃2|2]

)
+ log

(

E
[ 1

1 + ρ|h̃1|2
])

+ log
(

E
[ 1 + ρ|h̃1|2
1 + ρ|h̃1|2 + ρ|h̃2|2

])

< log e
(

ρE[|h̃1|2] + ρE[|h̃2|2] + E
[ −ρ|h̃2|2
1 + ρ|h̃1|2 + ρ|h̃2|2

]
+ E

[ −ρ|h̃1|2
1 + ρ|h̃1|2

])

< log e
(

E
[
ρ|h̃2|2 −

ρ|h̃2|2
1 + ρ|h̃1|2 + ρ|h̃2|2

]
+ E

[
ρ|h̃1|2 −

ρ|h̃1|2
1 + ρ|h̃1|2

])

= log e
(

E
[ρ2|h̃1|2|h̃2|2 + ρ2|h̃2|4

1 + ρ|h̃1|2 + ρ|h̃2|2
]
+ E

[ ρ2|h̃1|4
1 + ρ|h̃1|2

])

≤ log e
(
E[ρ2|h̃1|2|h̃2|2 + ρ2|h̃2|4] + E[ρ2|h̃1|4]

)

= log e
(
1 + E[|h̃1|4] + E[|h̃2|4]

)
ρ2

< 1.45
(
1 + 2E[|h̃1|4]

)
ρ2.
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B.2.2 Case 2: ρ ≥ 1
2
and E

[
1

|h̃|2
]
< ∞

∆ =E
[
log (1 + ρ|h̃1|2 + ρ|h̃2|2)

]
+ log

(

E
[ 1 + ρ|h̃1|2
1 + ρ|h̃1|2 + ρ|h̃2|2

]
E
[ 1

1 + ρ|h̃1|2
])

≤ log
(
1 + ρE[|h̃1|2] + ρE[|h̃2|2]

)
] + log

(

E
[ 1 + ρ|h̃1|2
1 + ρ|h̃1|2 + ρ|h̃2|2

]
E
[ 1

1 + ρ|h̃1|2
])

(B.9)

< log
(

(1 + 2ρ)E
[ 1

1 + ρ|h̃1|2
])

≤ 2 + log
(
E[

1

|h̃1|2 + 1
ρ

]
)

(B.10)

< 2 + log
(

E
[ 1

|h̃1|2
])

,

where (B.9) follows from Jensen’s inequality and (B.10) follows since ρ ≥ 1
2
.

B.2.3 Case 3: ρ ≥ 1
2
, Nakagami-m fading with m > 1

Since the Nakagami-m distribution with m > 1 belongs to the class of distributions in Case 2,

then

∆ < 2 + log
(

E
[ 1

|h̃1|2
])

= 2 + log
(
1 +

1

m− 1

)
, (B.11)

where (B.11) follows from the proof of Case 3 in Appendix A.4.

B.2.4 Case 4: ρ ≥ 1
2
, Rayleigh fading

∆ ≤ 2 + log
(
E[

1

|h̃1|2 + 1
ρ

]
)

(B.12)

< 1.48 + log
(
log(1 + ρ)

)
, (B.13)

where (B.12) follows from Case 2 and (B.13) follows from Case 4 in Appendix A.4.
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APPENDIX C

APPENDICES FOR CHAPTER 5

C.1 Proof of Lemma 9

We rewrite the noise expression z in (5.22) in the form z = Adx + Ads +
√

µ
Pw

Bdw, where

µ , Px

Nt
+ Ps, and both Ad, Bd are block-diagonal matrices with diagonal blocks Ai,Bi, as

follows

Ai , −
(
INt

+
µ

Pw

HT
i H i

)−1
, (C.1)

Bi ,
√

PwµH
T
i (µH iH

T
i + PwINr

)−1. (C.2)

Note that

AdA
T
d +BdB

T
d = (INt

+
µ

Pw

HT
dHd)

−1. (C.3)

Since H i is a stationary and ergodic process, Ai and Bi are stationary and ergodic processes as

well. In the proceeding we omit the time index i whenever it is clear from the context. Denote

the ordered eigenvalues of the random matrix HTH by σ2
H,1, . . . , σ

2
H,M (non-decreasing). Then

the eigenvalue decomposition of HTH is HTH , V DV T , where V is a unitary matrix and

D is a diagonal matrix whose unordered entries are σ2
H,1, . . . , σ

2
H,Nt

. Owing to the isotropy

of the distribution of H , AAT = V (INt
+ µ

Pw
D)−2V T is unitarily invariant, i.e., P(AAT ) =

P(V̌ AAT V̌
T
) for any unitary matrix V̌ independent of A. As a result V is independent

of D [70]. Hence,

E
[
AAT

]
= E

[
(INt

+
µ

Pw

HTH)−2
]

= E
[
V (INt

+
µ

Pw

D)−2V T
]

= EV |D
[
V ED[(INt

+
µ

Pw

D)−2]V T
]

= EV |D
[
V σ2

AINt
V T

]

= σ2
AINt

, (C.4)
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where σ2
A , Ej

[
EσH,j

[ 1
(1+ µ

Pw
σ2
H,j

)2
]
]
. Similarly, it can be shown that E

[
BBT

]
= σ2

BINt
, where

σ2
B , Ej

[

EσH,j

[
µ
Pw

σ2
H,j

(1 + µ
Pw

σ2
H,j)

2

]]

.

For convenience define σ2
z , σ2

A + σ2
B. Next, we compute the autocorrelation of z as follows

Σz , E
[
zzT

]
= E

[
Ad(Σx + PsINtn)A

T
d

]
+ µE

[
BdB

T
d

]
, (C.5)

where Σx , E
[
xxT

]
. Unfortunately, Σx is not known for all n, yet it approaches Px

Nt
INtn for

large n, according to Lemma 2. Hence one can rewrite

Σz = (σ2
x + Ps)E

[
AdA

T
d +BdB

T
d

]

︸ ︷︷ ︸

(σ2
x+Ps)σ2

zINtn

+E
[
Ad(Σx − σ2

xINtn)A
T
d

]
+
(Px

Nt

− σ2
x

)
E
[
BdB

T
d

]

︸ ︷︷ ︸

≻0

, (C.6)

where σ2
x , λmin(Σx)− δ. It follows that Σz ≻ (σ2

x + Ps) σ
2
zINtn, therefore

Σz
−1 ≺ 1

(σ2
x + Ps)σ2

z

INtn. (C.7)

To make noise calculations more tractable, we introduce a related noise variable that modifies

the second term of z as follows

z∗ = Adx+Ads+

√
µ

Pw

Bdw +

√
1

Ntn
R2

c + Ps

Pw

− µ

Pw

Bdw
∗, (C.8)

where w∗ is i.i.d. Gaussian with zero mean and unit variance, and Rc is the covering radius

of V , and hence 1
n
R2

c > Px. We now wish to bound the probability that z∗ is outside a sphere

of radius
√

(1 + ǫ)Ntn(σ2
x + Ps)σ2

z for some ǫ that vanishes with n. First, we rewrite

||z∗||2 =
1

Ntn
R2

c + Ps

Pw

wTBT
dBdw + sTAT

dAds+ 2

√
1

Ntn
R2

c + Ps

Pw

sTAT
dBdw + xTAT

dAdx

+ 2

√
1

Ntn
R2

c + Ps

Pw

xTAT
dBdw + 2xTAT

dAds. (C.9)

We now bound the probability of deviation each of the terms on the right hand side of (C.9)

from its mean using the law of large numbers. To begin with, the first term in (C.9) is the
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sum of n terms of an ergodic sequence, where E[wTBT
dBdw] = tr

(
E[BdwwTBT

d ]
)
= NtnPwσ

2
B.

Hence for any ǫ, γ ∈ (0, 1) there exists sufficiently large n so that:

P

( 1
Ntn

R2
c + Ps

Pw

wTBT
dBdw > (R2

c +NtnPs)σ
2
B +Ntnǫ

)

< γ, (C.10)

Similarly:

P
(
sTAT

dAds > NtnPsσ
2
A +Ntnǫ

)
< γ, (C.11)

and

P

(

2

√
1

Ntn
R2

c + Ps

Pw

sTAT
dBdw > Ntnǫ

)

< γ. (C.12)

The next term in (C.9) involves AT
dAd, a block-diagonal matrix with E

[
AT

dAd

]
= σ2

AINtn.

Considering Σx → ρINtn as n → ∞, it can be shown that 1
||x||2x

TAT
dAdx → σ2

A, using [72,

Theorem 1]. More precisely,

P
(
xTAT

dAdx > σ2
A||x||2 +Ntnǫ

)
< γ. (C.13)

Since ||x||2 < R2
c , (C.13) implies

P
(
xTAT

dAdx > σ2
AR

2
c +Ntnǫ

)
< γ. (C.14)

The penultimate term in (C.9) can be bounded as follows:1

P

(

2

√
1

Ntn
R2

c + Ps

Pw

xTAT
dBdw > Ntnǫ

)

< γ, (C.15)

where the elements of x are also bounded. Similarly for the final term in (C.9),

P
(
2xTAT

dAds > Ntnǫ
)
< γ, (C.16)

In (C.10) through (C.16), ǫ, γ can be made arbitrarily small by increasing n. Moreover, for any

fixed ǫ, γ there is a sufficiently large n so that simultaneously all the above bounds are satisfied,

because their number is finite and for each one a sufficiently large n exists.

1This term can be expressed as the sum of zero-mean and uncorrelated random variables to which the law of
large numbers apply [71].
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We now produce a union bound on all the terms above:

P
(
||z∗||2 > (1 + ǫ′)(R2

c +NtnPs)σ
2
z

)
< 6γ, (C.17)

where ǫ′ , 6ǫ
(R2

c+NtnPs)σ2
z
. For sufficiently large n, we can find 1

Ntn
R2

c ≤ (1 + ǫ)Px

Nt
for covering-

good lattices and Px

Nt
≤ (1 + ǫ)σ2

x according to Lemma 2. Then, take ǫ′′ , (1 + ǫ)2 − 1, and any

ǫ′′′ ≤ (1 + ǫ′)(1 + ǫ′′)− 1, we have

P
(
z∗TΣz

−1z∗ > (1 + ǫ′′′)Ntn
)

<P
(
||z∗||2 > (1 + ǫ′′′)n(Ntσ

2
x +NtPs)σ

2
z

)
(C.18)

<P
(
||z∗||2 > (1 + ǫ′′′′)n(Px +NtPs)σ

2
z

)

=P

(

||z∗||2 > (1 + ǫ′′′′) tr
(
E
[( 1

Px

Nt
+ Ps

INtn +
1

Pw

HT
dHd

)−1])
)

(C.19)

=P

(

||z∗||2 > (1 + ǫ′′′′)n tr
(
E
[( 1

Px

Nt
+ Ps

INt
+

1

Pw

HTH
)−1])

)

< 6γ,

where (C.18) holds from (C.7) and (C.19) holds since E
[
(INtn + ρHT

dHd)
−1
]
= σ2

zINtn, ac-

cording to (C.3). The final step is to show that ||z∗|| → ||z|| as n → ∞, where z∗ −

z =

√
1

Ntn
R2

c+Ps

Pw
− µ

Pw
Bdw

∗. From the structure of Bd, the norm of each of its rows is less

than Nt, and hence the variance of each of the elements of Bdw
∗ is no more than Nt. Since

limn→∞
1

Ntn
R2

c = Px

Nt
for a covering-good lattice, it can be shown using Chebyshev’s inequal-

ity [76] that the elements of

√
1

Ntn
R2

c+Ps

Pw
− µ

Pw
Bdw

∗ vanish and |z∗i − zi| → 0 as n → ∞ for all

i ∈ {1, . . . , n}, as follows

P
(
|z∗i − zi| ≥ γ∗ κ

)
≤ 1

κ2
, for all κ > 0,

P
(
|z∗i − zi| ≥

√
γ∗

)
≤ γ∗ , (C.20)

where γ∗ ,

√

Nt

( 1
Ntn

R2
c+Ps

Pw
− µ

Pw

)
vanishes with n and (C.20) follows when κ = 1√

γ∗ . This

concludes the proof of Lemma 9.
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C.2 Proof of Corollary 8

C.2.1 Nr ≥ Nt and E
[
(HHH)−1

]
< ∞

∆ =C −R

=E
[
log det(INt

+ ρHHH)
]
−
(

− log det
(

E
[
(

Px

Px +MPs

INt
+ ρHHH)−1

]))+

≤E
[
log det(INt

+ ρHHH)
]
+ log det

(

E
[
(

Px

Px +NtPs

INt
+ ρHHH)−1

])

≤ log det
(

INt
+ ρE[HHH ]

)

+ log det
(

E
[
(

Px

Px +NtPs

INt
+ ρHHH)−1

])

(C.21)

< log det
(

INt
+ ρE[HHH ]

)

+ log det
(

E
[
(ρHHH)−1

])

(C.22)

= log det
((1

ρ
INt

+ E[HHH ]
)
E
[
(HHH)−1

])

≤ log det
((

INt
+ E[HHH ]

)
E
[
(HHH)−1

])

, (C.23)

where (C.21),(C.22) follow since log det(A) is a concave and non-decreasing function over the

set of all positive definite matrices [74]. (C.23) follows since ρ ≥ 1.

C.2.2 Nr > Nt and H is Gaussian

∆ < log det
((

INt
+ E[HHH ]

)
E
[
(HHH)−1

])

(C.24)

= log det
(
(1 +Nr)

1

Nr −Nt

INt

)
(C.25)

= Nt log
(
1 +

Nt + 1

Nr −Nt

)
,

where (C.24) and (C.25) follow from (C.23) and Lemma 10, respectively.
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C.2.3 Nr = Nt = 1 and |h| is Nakagami-m with m > 1

The Nakagami-m distribution with m > 1 satisfies the condition E
[

1
|h|2

]
< ∞, and hence the

gap is in the form (C.23). When E[|h|2] = 1 and ρ ≥ 1, then

E
[ 1

|h|2
]
=

2mm

Γ(m)

∫ ∞

0

1

x2
x2m−1e−mx2

dx

=
2mm

Γ(m)

1

2mm−1

∫ ∞

0

ym−2e−ydy

=m
Γ(m− 1)

Γ(m)

= 1 +
1

m− 1
.

Hence, ∆ < log
(
(1 + E[|h|2])E

[
1

|h|2
])

= 1 + log
(
1 + 1

m−1

)
.

The case where ρ < 1 is trivial, since 2

∆ < C = E
[
log(1 + ρ|h|2)

]
≤ log

(
1 + ρE[|h|2]

)
< 1, (C.26)

and hence ∆ < 1 + log
(
1 + 1

m−1

)
is universal for all ρ.

2The result in (C.26) holds for any fading distribution with E
[
|h|2

]
= 1.
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C.2.4 Nr = Nt = 1 and |h| is Rayleigh

When |h| is a Rayleigh random variable, |h|2 is exponentially distributed with E[|h|2] = 1. For

the case where ρ ≥ 1,

∆ ≤ log
((

1 + ρE[|h|2]
)
E
[ 1

ρ|h|2 + ρ
Px
Pw

+ Ps
Pw

])

(C.27)

= log
(

(
1

ρ
+ 1)E

[ 1

|h|2 + 1
Px
Pw

+ Ps
Pw

])

≤1 + log
(

E
[ 1

|h|2 + 1
Px
Pw

+ Ps
Pw

])

(C.28)

≤ 1 + log
(

E
[ 1

|h|2 + 1
2κ

])

=1 + log
(
∫ ∞

0

e−x

x+ 1
2κ

dx
)

=1 + log
(
e

1
2κ

∫ ∞

1
2κ

e−y

y
dy

)

<0.48 + log
(
log(1 + 2κ)

)
(C.29)

< 1.48 + log
(
log(1 + κ)

)
, (C.30)

where (C.27) follows from (C.21), (C.28) follows since ρ ≥ 1 and (C.29) follows from Lemma 11.

Recall κ , max{ Px

Pw
, Ps

Pw
, 1}. When ρ < 1, the gap to capacity is within one bit, and hence (C.30)

is also an upper bound for the gap in this regime.
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