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The links in wireless networks may have non-identical spatial correlation or coherence times
when nodes have different scatters around them or they have unequal mobility. This phe-
nomenon can occur in massive MIMO and high-mobility scenarios. This dissertation investi-
gates the multiuser broadcast channel when the links have non-identical spatial correlations
and relay channel with unequal coherence times. It is found that exploiting the disparity in
these different fading conditions for multiple users can lead to gains over techniques that do

not take advantage of this disparity.

For the MIMO broadcast channel with non-identical spatial transmit correlation, we broaden
the scope of transmit correlation diversity to the case of partially and fully overlapping
eigenspaces and introduce techniques to harvest these generalized gains. We derive achiev-
able degrees of freedom regions and achievable rate regions and then extend the degrees of
freedom results to the K-user case by analyzing the interference graph that characterizes the

overlapping structure of the eigenspaces.

For the massive MIMO experiencing different spatial transmit correlation, we propose a
strategy combining product superposition and beamforming that applies to any configuration
of transmit correlation eigenspaces, leveraging of the statistical characteristics of massive

MIMO channels to reconcile the incompatibility of product superposition and beamforming.

vi



To demonstrate the characteristics of this technique, we calculate the sum rate of K-user

downlink under two correlation models.

For the MIMO relay with non-identical link coherence times, we calculate the achievable
degrees of freedom under this condition. Product superposition technique is employed at
the source which allows a more efficient usage of degrees of freedom when the relay and the
destination have different training requirements. Analysis is provided and varying configu-
rations of coherence times are studied, including unaligned coherence blocks and arbitrary

length of coherence times.
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CHAPTER 1

INTRODUCTION
1.1 Correlation and Coherence Diversity

In wireless networks, variations in node mobility and scattering environment lead to non-
identical delay, Doppler spread, and correlation conditions. Different links may experience
widely varying coherence conditions [1, 2, 3]. This dissertation focuses on the non-identical
fading conditions in space and time domain.

The effect of spatial correlation on the capacity of MIMO links has been a subject of
long-standing interest. Spatial correlation arises in part from propagation environments pro-
ducing stronger signal gains in some spatial directions than others, and in part from spatially
dependent patterns of the antennas. The interest in spatial correlation was sharpened by
its experimental validation [4, 5|, and more recently by the increasing attention to higher
microwave frequencies and larger number of antennas. Shiu et al. [6] proposed an abstract
“one-ring” model for the spatial fading correlation and its effect on the MIMO capacity. In
single-user channels with channel state information at the receiver (CSIR) but no channel
state information at the transmitter (CSIT), channel correlation can boost power but may
reduce the degrees of freedom (DoF) |7, 8|, thus it can be detrimental at high signal-to-noise
ratio (SNR) but a boon at low SNR. Tulino et al. [9] derived analytical characterizations
of the capacity of correlated MIMO channels for the large antenna array regime. Chang et
al. [10] showed that channel rank deficiency due to spatial correlation lowers the diversity-
multiplexing tradeoff curves from that of uncorrelated channel. Capacity bounds subject to
channel estimation errors in correlated fading have been characterized [11, 12]. For multiuser
systems, at higher frequencies or with large number of antennas, when spatial correlation
is unavoidable, comparing capacity against a hypothetically uncorrelated channel may have

limited operational impact. Instead, a more immediate question could be: how to maximize



performance in the presence of spatial correlation? A useful tool for that purpose is transmit
correlation diversity, i.e., leveraging the difference between the spatial correlations observed
by different users in the system.

There has been a surge of interest in high-mobility wireless communications [13, 14, 15],
wherein the co-existence of low-mobility and high-mobility users has been an accepted
fact [16]. Naturally, faster nodes lead to links with shorter coherence intervals, and slower
nodes experience links with longer coherence intervals. A deeper understanding of relay
performance under unequal link coherence times provides new tools and techniques for high-
mobility wireless communications. Relaying in high-mobility scenarios has been acknowl-
edged as an important topic [17, 18, 19, 20, 21|, but the implications of relaying under
unequal coherence intervals is an open problem.

In the dissertation, correlation and coherence disparity in wireless communication net-
works are studied. It is found that when there are non-identical coherence conditions, gains

exist, and these gains are obtained via product superposition and rate splitting.

1.2 Related Works

A review of the literature is as follows. Under the assumption that all users experience
identical correlation, Al-Naffouri et al. [22] showed that correlation is detrimental to the
sum-rate scaling of the MIMO broadcast channels under certain transmission schemes. It is
also known that transmit correlation benefits the sum rate in the downlink performance of
a heterogeneous cellular network (HetNet) where both macro and small cells share the same
spectrum [23|. In practice, however, users may have non-identical correlation matrices be-
cause they are not co-located [24], making it difficult to draw conclusions based on [22]. For
non-identical spatial correlation, a joint spatial division multiplexing (JSDM) transmission
scheme was proposed [25, 26, 27, 28| that reduces the overhead needed for channel esti-

mation. For multiuser networks with orthogonal eigenspace correlation matrices, Adhikary



and Caire [29] showed that transmit correlation helps in multi-cell network by partitioning
the user spaces into clusters according to correlation. Non-overlapping transmit correlation
eigenspaces has also been exploited in a two-tier system where a large number of small cells
are deployed under a macro cell [30]. The sum-rate under user-specific transmit correlations
with CSIR was studied in [31, 32]. Broadcast channel with spatial correlation was studied
in [33, 34, 35| under CSI and feedback. Jiang et al. [36] proposed a scheme for massive
MIMO in which the users received the same number of pilots, optimized according to a mu-
tual information metric. In several works [37, 38, 39|, the gains in pilots and training were
pushed beyond finding pairs of users with non-overlapping transmit-side correlations.

The performance of fading relay channel under equal coherence intervals has been exten-
sively studied [40, 41, 42, 43, 44, 45, 46, 47, 48, 49|. Networks with non-identical coherence
times have been studied for several scenarios. Broadcast channels with various configura-
tions of coherence times are investigated in [50, 51, 52|. The effect of coherence disparity is
also considered in multiple access channel is also considered in [52]. The impact of hybrid
channel state information on MISO broadcast channel with unequal coherence times was
studied in [53]|. For OFDM systems, when the coherence bandwidth varies in different users,

the performance is calculated in [54].

1.3 Contributions

Chapter 2 derives the achievable DoF regions for the two-user broadcast channel in spatially
correlated fading under the CSIR and no free CSIR assumptions. We analyze the two-user
broadcast channel with spatial correlation. We propose an achievable rate region for arbitrary
input distributions satisfying the power constraint. We characterize this rate region with an
explicit input distribution based on orthogonal pilots and Gaussian data symbols. We also
derive the rate achieved with product superposition and a hybrid of pre-beamforming and

product superposition. As a by-product, we find the rate achieved with pilot-based schemes



for the point-to-point channel, which generalizes the result of Hassibi and Hochwald [55] to
correlated fading. We derive achievable DoF' regions for the K-user broadcast channel in
spatially correlated fading in the presence of CSIR. The results of this chapter were published
in [37, 38|.

Chapter 3 analyzes the sum rate of a massive MIMO system operating in FDD mode
by investigating the pilot reduction and opportunistic additional data transmission that
is made possible by spatial correlation. For the achievability results above, we employ pre-
beamforming, product superposition, or a combination thereof, in the process demonstrating
that these transmission techniques can harvest transmit correlation diversity gains under
partially-overlapping eigenspaces.

Chapter 4 analyzes the MIMO relay with coherence diversity. It is assumed that there is
no free channel state information (CSI) at the receiver, since unequal coherence times impact
channel training and assuming free CSI will distort and obscure important features of the
problem. In addition, no channel state information is assumed at transmitters. We propose a
product superposition transmission strategy at the source, which was first introduced in [50]
for two-user broadcast channels. Product superposition is a technique that allows efficient
utilization of channel degrees of freedom under coherence disparity. It is used when the links
from the source to the relay and the destination have unequal coherence times. We begin
by proving that under identical coherence times, the relay cannot provide any DoF gains
over the direct link alone. This result is used as a reference. When the coherence times are
unequal, we start with a representative example to show the disparity in coherence times
enables DoF gains over conventional transmission. Then we extend the result to the case
where the coherence blocks are not aligned and then show that the DoF region is not changed
compared to the aligned coherence blocks. Finally, an achievable DoF strategy is proposed
where the coherence times are arbitrary times. The results of this chapter were published in

[56, 57).



1.4 Notation

Bold lower-case letters, e.g. x, denote column vectors. Bold upper-case letters, e.g. M,
denote matrices. The Euclidean norm is denoted by ||x| and the Frobenius norm ||M]||p.
The trace, conjugate, transpose and conjugated transpose of M are denoted tr (M), M*,
MT and M", respectively. M~" 2 (M~Y)T and M~ & (M~!)". I,, and 0,,x, denote the
m X m identity matrix and m X n zero matrix, respectively, and the dimensions are omitted
if cleared from the context. Mj;;) denotes the sub-matrix containing columns from 4 to j of
M, and My denotes the i-th column. (x)p;] and (x")j.;] denotes respectively the column
vector and row vector containing entries from i to j of a column vector x. Span (U) denotes
the subspace spanned by the columns of a truncated unitary matrix U. diag(xq,...,z,) is
a diagonal matrix with diagonal entries z1,...,7,. [n] £ {1,2,...,n}. (z)* £ max{x,0}.
1{ A} is the indicator function of event A. Logarithms are in base 2. All rates are measured

in bits per channel use.



CHAPTER 2
TRANSMIT CORRELATION DIVERSITY: GENERALIZATION, NEW

TECHNIQUES, AND IMPROVED BOUNDS! 2

Consider a MIMO broadcast channel in which a transmitter (also known as base station)
equipped with M antennas transmitting to K receivers (also known as users), where User k

is equipped with Ny antennas, k € [K]. The received signal at User k at channel use j is

Yk(]) :Hk(])x(j)+wk(j)> for ke [K]v J=L2,... (2'1)
where x(j) € CM is the transmitted signal at channel use j and w;, € C™* is the white noise
with independent and identically distributed (i.i.d.) CA(0, 1) entries. Hy(j) € CN+*M is the
channel matrix containing the random fading coefficients between M transmit antennas of the

base station and N}, receive antennas of User k. We assume that —+—E [|[H||?] = 1,k € [K].
MNy,

The transmitted signal is subject to the power constraint

S ING)IE < 22)

where J is the number of channel uses spanned by a codeword (of a channel code). Therefore,
p is the ratio between the average transmit power per antenna and the noise power, and is

referred to as the SNR of the channel. Hereafter, we omit the channel use index j.

2.1 Channel Correlation

We assume that the channel is spatially correlated according to the Kronecker model, i.e.,

separable model, and focus on the transmit-side correlation. Thus the channel matrices are

1©2017 IEEE. Reprinted, with permission, from F. Zhang, M. Fadel and A. Nosratinia, "Spatially corre-
lated MIMO broadcast channel: Analysis of overlapping correlation eigenspaces," 2017 IEEE International
Symposium on Information Theory (ISIT), 2017, pp. 1097-1101

2(©2018 IEEE. Reprinted, with permission, from F. Zhang and A. Nosratinia, "Spatially Correlated
MIMO Broadcast Channel with Partially Overlapping Correlation Eigenspaces," 2018 IEEE International
Symposium on Information Theory (ISIT), 2018, pp. 1520-1524



expressed as
H, = H,R?, ke K] (2.3)

where Ry = 5-E [H{H,] € C**M tr (Ry) = M, is the transmit correlation matrix of User &

with rank 7y, and Hy, € C¥+*M is drawn from a generic distribution satisfying the conditions

h(H,) > —c0, E [HZHk] — N,Ly, kelK] (2.4)
Since the correlation matrices might be rank-deficient, H,, is not necessarily a minimal
representation of the randomness in Hy. The correlation eigenspace of User k is revealed via

eigendecomposition of the correlation matrix:
R, = U, X, U}, (2.5)

where ¥ is a 7, X r; diagonal matrix containing r; non-zero eigenvalues of Ry, and Uy
is a M X r, matrix whose orthonormal unit column vectors are the eigenvectors of Ry
corresponding to the non-zero eigenvalues. The rows of Hy belong to the rp-dimensional
eigenspace Span(Uy) of Ry, also known as the eigenspace of User k.

The channel expression (2.3) can be expanded as
H, = H,U,2; U} = G, 2 U, (2.6)

where Gj, £ H, U, is equivalently drawn from a generic distribution satisfying h(Gy) > —oo,
E[GiGk] = NI, , k € [K].

The eigenspaces Span(Uy) have a prominent role in transmit correlation diversity. For
example, methods such as [25, 26, 27, 28| are critically dependent on finding groups of users
whose eigenspaces have no intersection. In contrast, in this chapter, we propose transmission

schemes that take advantage of both common and noncommon parts of the eigenspaces. To



this end, in several instances, we build an equivalent channel Hj, that resides in a subspace

of the eigenspace Span(Uy) via the linear transformation
H,=H,V,, (2.7)

for some truncated unitary matrix V, € CM*% s < ry, such that Span(V}) C Span(Uy).
Unlike Uy, k € [K], that characterize the correlation eigenspaces of the links, the sub-
spaces Span(Vy) also depend on the proposed transmission scheme and may be customized

throughout this chapter.

2.2 Channel Information Availability

We assume throughout this chapter that the distribution of Hy, in particular the second-
order statistic Ry (and thus ¥; and Uy), is known to both the base station and User k. This
is reasonable because Ry represents long-term behavior of the channel that is stable and can
be easily tracked. On the other hand, the realization of Hy changes much more rapidly. We

consider two scenarios:

e CSIR (channel state information at the receiver): User k knows perfectly the realiza-

tions of Hy.

e No free CSIR: User k only knows the distribution of Hy. In this case, for a tractable
model of the channel variation, we assume a block fading model with equal-length
and synchronous coherence interval (across the users) of T' channel uses. That is,
H, remains constant during each block of length T" and changes independently across
blocks [58]. We assume that 7" > 2 max(rg, Ny),Vk. Let X = [x(1) ... x(T)] be the

transmitted signal during a block, the received signal at User k£ during this block is

Y, = H,X + Wy, (2.8)



where Yy = [yr(1) ... yu(T)], Wi = [wi(1) ... wg(T)], and the block index is
omitted for simplicity. User k£ might attempt to estimate Hj with the help of known

pilot symbols inserted in X.

2.3 Achievable Rate and DoF

Assuming K independent messages are communicated (no common message), and the cor-
responding rate tuple (R1(p),..., Rx(p)) is achievable at SNR p, Vp > 0, i.e., lie within the

capacity region of the channel, then an achievable DoF tuple (dy,...,dk) is defined as

g2 lim 20 ek (2.9)

p—r0o0 logp ’
The set of achievable rate (resp., DoF) tuples defines an achievable rate (resp., DoF) region
of the channel.

. A .
For convenience, we denote N = min(Ny, 7).

2.4 Preliminaries and Useful Results

Lemma 1 (The optimal single-user DoF). For the correlated MIMO broadcast channel in
Section 2.1, the optimal single-user DoF of User k is d, = N} with CSIR and dj, = N} (1 —

NT;) without free CSIR.

The result in the CSIR case is well-known (see, e.g., [59]). The no free CSIR case was

reported in [37, Thm. 1|. The next lemma is used for the finite-SNR rate analysis.

Lemma 2 (Worst case uncorrelated additive noise [55]). Consider the point-to-point channel

y = UﬁHX—i—W, (2.10)

where the channel H € CN*M s known to the receiver, and the signal x € CM*1 and the

(CN><1

noise w € satisfy the power constraints - E[||x]|?] =1 and ~E[[|w]]*] = 1, are both



complex Gaussian distributed, and are uncorrelated, i.e, E [xw"] = 0. Let Ry = E [xx"] and
Ry 2 E[ww"] and assume tr (Ry) = M and tr (Ry) = N. Then the mutual information

I(y;x|H) is lower bounded as

I(y;x|H) > E [mg det <1N + %R;lHRXH”ﬂ (2.11)
. P -1 H)]
> — .
> i E [log det (IN + CRJHRH') |, (2.12)

If the distribution of H is left rotationally invariant, i.e., p(OH) = p(H) for any determin-
istic N x N wunitary matriz ©, then the minimizing noise covariance matriz in (2.12) is

Rw,opt = IN-

Proof. The proof follows from the proof of [55, Thm. 1]. Specifically, the mutual infor-
mation lower bound (2.11) was stated in [55, Eq.(27)]. To show that Ry ope = In, we
diagonalize Ry, using the left rotational invariance of H, and then use the convexity of

E [logdet (Iy + ZRG'HRH")| in the diagonalized Ry O

The next lemma gives the MMSE estimator used for pilot-based channel estimation

without free CSIR.

Lemma 3 (MMSE estimator). Consider the following linear model
Y = HX + W, (2.13)

where H € CY*M has correlation matriz R = ~E[H"H], X € CM*M s known, and

W € CV*M has i.i.d. CN(0,1) entries. The linear MMSE estimator for H is given by
H=Y(X"RX +I,,)'X"R. (2.14)

The MMSE estimate H is also the conditional mean: H = E[H | X,Y]. The estimate H and

the estimation error H = H —H are uncorrelated, which have zero mean and row covariance

1 . .
NIE[H”H] = RX(X"RX +I,) 'X"R, (2.15)
1 Y-

NIE[H”H] =R — RX(X"RX + I;) 'X"R. (2.16)

10



Proof. The linear MMSE channel estimator is given by H = YA where A is the minimizer
of the MSE

1

SEH - HJ2] = tr (R) — tr (RXA) — tr (A"X"R) + tr (A"(X"RX + Ly)A) . (2.17)

Solving %%E[HH—ICIH%] = 0 yields the optimal A, = (X"RX+1,,) 'X"R. Some further

simple manipulations give (2.15) and (2.16). O

2.5 Two-user Broadcast Channel: DoF Analysis

Both with or without free CSIR assumption, we study first the special case of fully overlap-
ping correlation eigenspaces, then the more general case of partially overlapping correlation

eigenspaces.

2.5.1 CSIR
Fully Overlapping Eigenspaces

Consider the case where both users have spatially correlated channels, and User 2’s channel

eigenspace is a subspace of User 1’s, which implies o < r; < M.

Proposition 1. For the two-user broadcast channel with CSIR, when the eigenspace of
User 2 is a subspace of User 1’s (implying ro < 1 < M), the DoF pairs (Ny,0), (0, N5),
and ((Nl* — T2)+,N§) are achievable. Furthermore, if 11 > Ny > r1 — ry, the DoF pair
(7’1 — ro,min(Ny —r + rQ,Ng‘)) 15 also achievable. The convex hull of these pairs and the

origin (0,0) is an achievable DoF' region.

Proof. According to Lemma 1, the DoF pairs (N7,0) and (0, V;) are achievable.
When N7 > ry, the pair (Ny — 7o, NJ) can be achieved as follows.
Recall that the eigenspaces of channels H; and Hy are Span(U;) and Span(U,), respec-

tively, and in the present case, Span(Usy) C Span(U;). There exist transmit eigendirections

11



V, € CMx(Ni{=m2) V€ CM*N: that are aligned with the common and non-common parts

of the two channel eigenspaces such that
Span(Vy) C Span(Us,), (2.18)
Span(V;) C (Span(U;) N Span(Us)™"). (2.19)
Define V £ [V, V4]. The proposed transmission scheme is x = V[s] SHT where the

signals s; € CNi "2 s, € C2 are intended for User 1 and User 2, respectively. The received

signal at User 1 is

So

Y1 = H1X +w; = H1V + Wi, (220)

S1
Since User 1 knows H;V, it can decode both s; and sj, achieving respectively Ny — ry and

N3 DoF'. The received signal at User 2 is

S0

Yo = HQX + Wo — HQ[VO Vl] + Wo — H2VOS0 + Wo, (221)

S1
which uses HyV; = 0 due to (2.19). Since User 2 knows HyVy, it can decode s,, achieving
N; DoF. By dedicating s, to user 2, the DoF pair (N7 — ry, NJ) is achieved.

The pair (7’1 — ro,min(N; — ry + TQ,N;)) can be achieved similarly when ry > N; >
11 — 79 by setting V; € CMx(n—r2) v, ¢ CMxmin(M=r+r2.N3) “and the dimensions of sq, s

accordingly. O

Partially Overlapping Eigenspaces

Theorem 1. For the two-user broadcast channel with CSIR, rank(Span(U;) N Span(Usy)) =
ro > 0, the DoF pairs (N7,0), (0, N3), ((Nf —ro)*, N3), and (Ni, (N5 —ro)") are achievable.

Furthermore, if Ny < ry and Ny < 1o, the DoF pairs
<min (Nl, L — 7"0) -+ min ((N1 —r1+19)T, (Ng — g + r0)+), min (Ng, Ty — r0)>, (2.22)

(min (Nl, ry— ro), min (Ng, ry — 7“0) + min ((N1 —ri+10)T, (Ny — 1y + 7‘0)+)), (2.23)
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are also achievable. The convex hull of these pairs and the origin (0,0) is an achievable DoF'

TEGLON.

Proof. The DoF pairs (N7, 0) and (0, N5) are achievable according to Lemma 1. The achiev-
able schemes for the other pairs are as follows. For non-negative integers sq < rg, 51 < r1—7o,
and sy < 75 — 1, there exist transmit eigendirections V, € CM**0 aligned with the common
part of the two channel eigenspaces, and eigendirections V; € CM*51 'V, ¢ CM*s2 aligned

with the two non-common parts, such that

Span(Vy) C (Span(U;) N Span(Us)), (2.24)
Span(V;) C (Span(U;) N Span(Us)™), (2.25)
Span(Vs) C (Span(U,) N Span(U;)™"). (2.26)

Define V £ [V, V; V,]. Let the transmitter send the signal x = V[s] s] SHT, where
si € C** contains symbols for User k, k € {1,2}, and sy € C* contains symbols that both
users can decode.

The received signal at User 1 and User 2 are respectively

_SO_

Y1 = H1X +w, = HI[VO Vl] + Wi, (227)
LS14
_SO_

Y2 = HQX + Wy = Hg [VQ VQ] + Wo, (228)
LS2.]

using HyV; = 0 and H; V5, = 0 due to (2.25) and (2.26), respectively. Then if s + so < Ng,

User k can decode both s; and sg, k € {1,2}.

o If Ny > rgand Ny <71y, set s; = Ny —rg, so =0, and s = N,. By dedicating s; to User 2,
the DoF pair (N — rg, Na) can be achieved. Similarly, if N7 < r¢ and Ny > rg, the DoF

pair (N7, N5 — rg) can be achieved.

13



o If Ny > rgand Ny > 1g, set 51 = N{ — 19, so = N3 — 1o, and so = ry. By dedicating s to

one of the users, the DoF pairs (Nik — 70, NQ*) and (Nl*, Ny — ro) are achievable.

e When N; < ry and Ny < 1y, by setting s; = min (Nl,rl — ro), S9 = min (Ng,rg — 7’0),
So = min ((Nl —r1+719)", (Ng—ro+ r0)+), and dedicating s, to one of the users, the DoF

pairs given in (2.22) and (2.23) are achievable.

Therefore, the proof is completed. O]

An outer bound for the achievable DoF region is given as follows.

Theorem 2. When rank(Span(U;) N Span(Usy)) = rq > 0, the achievable DoF region is

outer bounded by dp < N, k € {1,2}, and
d1+d2 S min{?"l—l—T‘Q—To,Nl—l—NQ}. (229)
When {r1 < Ni,r9 < No} or {Ny <11 — 19, Na < 19 — 1o}, this outer bound is tight.

Proof. The single-user bounds d < N, k € {1,2}, follow from Lemma 1.

Denote by V; € CMx(n=ro) v, ¢ CM*x(r2=70) the non-unique transmit eigendirections
that are aligned with the non-common parts, i.e., Span(V;) = Span(U;) N Span(Us,)* and
Span(Vy) = Span(Us,) N Span(U;)*, and Vy € CM*™ the common part, i.e., Span(Vj) =
Span(U;) N'Span(Us,), of the eigenspaces. Let V; € CM*(M=r1=r2470) denote the orthogonal
complement of the total channel eigenspaces, i.e., V = [V V| V, V] is an unitary matrix.
For a transmit vector x € CM, define [x] x] x5 x|]” = Vx, where xy € C"°, x; € C"7"°,
Xy € C2770 and x;, € CM—m1i—r2tro,

A cooperative cut-set upper bound is as follows, using invertibility of V:

Ry + Ry < I(y1,y2:x) = I(y1,y2; VX). (2.30)

14



The next step is to bound the right-hand side in (2.30). To extract a full-rank representation
of H; and Ho,
H| |GZUY| |GEiT. GI:T, 0
- 1 - 1 ' 1 Vo Vi Vo], (2.31)
H2 G’2222 Ug G2222 TQC 0 G2222 T2p
where Ty., Ty, To., and Ty, are matrices such that [T,;. T;,] is non-singular and U} =

[T:. T;,][Vo V4", i € {1,2}. Replacing x by Vx, the concatenated received signal is

Xp
y1 H, W1 ~ Wy
= Vx + =H |x,| + , (2.32)
Y2 H, Wa Wo
X9
where
1 1
I:I é Glzll Tlc Glzl Tlp 01 c C(N1+N2)X(Tl+7"2_7’0)‘ (233)
G222§T20 0 GQZSTgp
Because H is known at the receivers,
I(y1,y2; VX) = I(y1,¥2; X0, X1, X2) (2.34)
< min{r; + ry — ro, N1 + Na} log p + o(log p). (2.35)

This yields the sum DoF bound d; + dy < min{r; + ry — 19, N1 + Ny }. This outer bound is

tight against the achievable region in Theorem 1. O]

Figure 2.1 shows the regions where the outer bound in Theorem 2 is tight.

Figure 2.2 compares the achievable region proposed in Theoreml and the achievable
region achieved with TDMA (time sharing between (N7, 0) and (0, N5)) for r; = 12, ry = 10,
ro € {0,3,6,9} and Ny > 1, Ny > ry. The proposed achievable region is much larger than
the TDMA region, especially when rq is small. In this setting, according to Theorem 2, the

proposed region is optimal.
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Figure 2.1. Regions (the hashed part) where the outer bound for the DoF region with CSIR
in Theorem 2 is tight.

2.5.2 No free CSIR

In this case, CSIR is not available a priori and must be acquired via pilot transmission. On
the one hand, one needs to take into account the cost of CSI acquisition in both energy
and DoF. On the other hand, pilot transmission enables product superposition [50] that can

improve upon rate splitting.

Fully Overlapping Eigenspaces

Consider the case where User 2’s eigenspace is a subspace of User 1’s, which implies ry <
ry < M. The following proposition presents achievable DoF with product superposition in

this case.

Proposition 2. In a two-user broadcast channel without free CSIR, when the eigenspace of
User 2 is a subspace of User 1’s (implying ro < 11 < M ), the DoF pair <Nf(1—%), N;%)

15 achievable with product superposition.
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()]
T
/

— — —-TDMA ~
Proposed scheme (Theorem 1) ~
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0 2 4 6 8 10 12

dy

Figure 2.2. The achievable DoF region for two-users with CSIR, under TDMA and the
proposed scheme (Theorem 1) for r; = 12, ro = 10, 79 € {0,3,6,9} and N; > 71, Ny > 71s.
In this case, the latter region is optimal.

Proof. There exist transmit eigendirections V; € CM*(n="2) and V, € CM*"2 that are

aligned with the noncommon and common parts, respectively, of the two channel eigenspaces

such that

Span(Vy) = Span(Us,), (2.36)

Span(V;) = Span(U;) N Span(U,)™*. (2.37)

Define V £ [V, Vy]. Let the transmitter send the signal X = VX,X; during a coherence

I, S
block, with X; = [I,, S;] € C"*T and X, = [ ’ ‘e Cr*m | where S; € Crx(T=m1)
0 L,

contains symbols for User 1 and S, € C™2*("=%0) contains symbols for User 2. The received

signal at User 1 is
Y, = HVX,X, + W, = HVX,[I, Si] +W,. (2.38)

17



User 1 estimates the equivalent channel H; VX, and then decodes Sy, achieving N{ (T —ry)

DoF. The received signal at User 2 during the first r; channel uses is

o SQ

Yo = szl L., + Won, = HoVo[L,  Sa] + Wop, (2.39)

0o I, .,

using HoV; = 0 due to (2.37). User 2 estimates the equivalent channel Hy V), and then de-
codes So, achieving N; (r1—r3) DoF. Therefore, the normalized DoF pair (Nf( —1), N3 %)

is achievable. N

Partially Overlapping Eigenspaces

Theorem 3. For the two-user broadcast channel without free CSIR and rank(Span(U;) N

Span(Us)) = 19 > 0, the DoF pairs (Nl*(l — N%),O) and (O,Ng(l — %)) are achievable.

Furthermore, for any integers (s1, S, So) such that 0 < sy < r; —1g, 0 < 89 < 19 — 19, and

0 < sg <1, the DoF pairs

D, = (min(so, Nl);—2, min(ss + S, Na) (1 _ 2 ; SO)), (2.40)
D, = (min(51 + 80, V1) (1 A ; SO),min(so, Ng)%) (2.41)

are achievable. On top of that, if s1 > so, the DoF pairs

D3 = (min(sl + So,Nl)(l - s1t SO),

min(sz, No) 22 4 min(s,, (Na — 30)+)(1 _at 50)), (2.42)

T T
D, = (min(sl, (N —s0)™) (1 . ; 80),
min(ss, NQ)S1 ; 24 min(sy + so, V) (1 _ A ; SO)), (2.43)
Ds = (min(sl + so,Nl)(l _a ; SO),
min(sg + Sg, Na) o1 ; 2 min(sg, No) (1 _ A ; SO)) (2.44)

18



are achievable; if s1 < so, the DoF' pairs

Dy = <min(31, N1)82 ; il + min(81, (Nl - 30)+)<1 -2 ; SO)’
min(sy + S, Na) (1 _ 52 ; 50)>7 (2.45)
D, = <m1n(31,N1)82 — + min(s; + so, Nl)(l L SO)’
T T
min(sa, (N, — 30)+)(1 s ; 30))’ (2.46)
D5 = <min(31 + 30,N1)82 — + min(sy, Nl)(l _ st so)’
min(sy + S, Na) (1 _ 82 ; So)) (2.47)

are achievable. The convex hull of these DoF pairs (over all feasible values of sy, s2, and sq)

and the origin (0,0) is achievable.

Remark 1. The parameters sg, s1, So represent the allocation of available dimensions to the
encoding of messages for the two users. By tuning these parameters, we explore the trade-off
between the number of data dimensions (indicating the amount of channel uses needed for
pilot transmission) and the amount of channel uses for data transmission within each section

of the eigenspaces.

Proof of Theorem 3. The DoF pairs (Nf (1 — N%),O) and (O,Nz*(l — %)) are achieved
by activating only one user according to Lemma 1.

For any non-negative integers s, s1, o satisfying so < rg, s1 < r; — 19 and sy < 19 — 70,

there exist eigendirections Vo € CM*%0 V| € CM*s1 'V, € CM**2 that are aligned with part
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of the common and non-common sections of the two channel eigenspaces such that!

Span(Vy) C (Span(U;) N Span(Us,)), (2.48)
Span(V;) C (Span(Uy) N Span(Us)™), (2.49)
Span(V5) C (Span(Us,) N Span(Uy)™"). (2.50)

To achieve Dy, the base station employs product superposition and transmits

X — [VO Vl]X2X1, (251)

Iso SQ

with X; = [L,, 14, Si] and X, = [ ] where S; € Cls1ts0)x(T=s1=%0) and S, € C*0**

0 I,
contain symbols for User 1 and User 2, respectively. Following steps similar to the proof of

Proposition 2, it can be verified that this achieves the DoF pair D;. The DoF pair D, can
be achieved similarly by switching the users’ roles.
When s; > so, the pairs D3 and D, are achieved with rate splitting as follows. Let the

transmitter send

X = [VO Vi VQ] Oslxso [Isl Sl] , (252)
082X80 [ISQ SQ]
where Sy € C*0*(T=s17%) ig a common signal to both users while S; € C**(T=s1750) and

S, € Cs2x(T=s2=%) are private signals to User 1 and User 2, respectively.

'V can be calculated from U; and U, using, e.g., the Zassenhaus algorithm [60]. Specifically, this
U] Uj

algorithm uses elementary row operations to transform the (r; + ro) x 2M matrix 1 (or
U2 Orngu
ur ur V(T) *
2 2 1) to the row echelon form | 0 V[ |, where * stands for a matrix which is not of inter-
U1 07“1 x M 0 0

est. Vi and Vg can be found similarly by applying the Zassenhaus algorithm to U; and null (Us), and
null (U;) and Us, respectively, where null (Uy) is the matrix such that [Uj null (Uy)] is unitary.
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The received signal at User 1 is

Y, = Hi[Vy Vi Vo]X + W,

0 S, (2.53)
+W,.

S0

0 I, S

=H,[V, V]

User 1 estimates the equivalent channel H [V, V;] during the first s; 4+ sy channel uses
and decodes both S; and Sy during the remaining 7" — s; — sy channel uses, achieving

min(s; + so, N1)Z=3= DoF. The received signal at User 2 is

Y, = Hy[Vy Vi Vo)X + W,

(050 x (51—35) So W, (2.54)

S0

0 I, S,

= H,[V, V3]

User 2 estimates the equivalent channel Hy[Vy V3| and then decodes Sy and Ss, achieving

min(sy, No) 2252 + min(ss + so, No) T=.=%2 DoF. By dedicating Sy to only User 1 or User 2,

DoF pairs D3 and D, are achieved, respectively.

Ds can be achieved (still assuming s; > s5), via a combination of rate splitting and

product superposition as follows. The transmitted signal is
X - [VO Vl]Xéxl + ‘72)(27 (255)

ISO [OSOXSZ SIQ]

with X2 = [OSOXSO :[52 SQ], X1 = [Isl+so 81]7 and X/2 = y where Sl €

081 XS0 131

Cls1ts0)x(T=s1=50) contains symbols intended for User 1 while S € C*2*(T=s27%0) and S, €

Ceox(51752) contain symbols intended for User 2. The received signal at User 1 is

Y, = Hy[V, VXX, + W,
(2.56)

=H;[Vo V1|X} [, 16, S1] + Wi

21



User 1 estimates the equivalent channel H;[V, V;]X), and then decodes S; to achieve

min(sg + s1, Nl)% DoF. The received signal at User 2 is

Y, =H,[Vy Vi Vo] X + W,

I, 0., [S, A (2.57)
:HQ[VO Vg] 0 2 X 82 [2 ] —|—W2,

OSOXSO Isz 82
where A £ [I,, Oy x5, Sh]S:. User 2 estimates its equivalent channel Hy[Vy Vs] in the
first s, + 5o channel uses, and then decodes S and S,, achieving min(s; + sg, Na) =72 +
min(sy, No) £=2=52 DoF in total. Therefore, D; is achieved.
Therefore, the proof for the case where s; > sy is completed. A similar analysis applies

to the case sy > s1 and completes the proof of Theorem 3. O]

In Figure 2.5.2,2.5.2, the achievable DoF region in Theorem 3 is demonstrated for the
scenario where T'= 24, Ny = 12, Ny = 12, (r1,72) € {(12,10),(12,12)}, and ry € {0,3,6,9}.
Similar to the CSIR case, exploiting the channel correlation improves significantly the DoF
region upon TDMA, especially for small rq.

This completes the DoF analysis for the two-user case. By using both product superpo-
sition and rate splitting, achievable DoF regions were calculated for a variety of correlation

structures and antenna configurations. Also, an outer bound was calculated under perfect

CSIR.

2.6 Two-User Broadcast Channel: Rate Analysis

We assume no free CSIR under partially overlapping eigenspaces, and assume that r, < Ny,

k € {1,2}. In addition, without loss of generality r > rs.
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Figure 2.3. DoF region of a two-user broadcast channel without free CSIR with T = 24,
Ny =12, Ny =12, =12, ro = 10, 1o € {0, 3,6, 9}
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Figure 2.4. DoF region of a two-user broadcast channel without free CSIR with T = 24,
Ny =12, Ny =12, =12, ro = 12, 1 € {0, 3,6, 9}.
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2.6.1 The Single-User Case

Let us first consider the single-user case where, for simplicity, we omit the user’s index. The

received signal is
Y =HX+W, (2.58)

where the assumptions for the transmitted signal X, the Gaussian noise W, and the channel
H are as before. In particular, H is block fading with coherence time 7', and has correlation
matrix R = UXU", thus can be written as H = GX:U" with G € CY*" drawn from a
generic distribution. The following theorem states the achievable rate (in bits/channel use)

for this channel.
Theorem 4. For the single-user spatially correlated channel without free CSIR,

1. if the transmitter does not exploit R, the following rate is achievable with a pilot-based

scheme

M PsPr S
R=(1—22)E|logdet(I HH" ) |, 2.59
( T> { 08¢ ( N pstr((Z-1+ p, L)1) + M ﬂ (2:59)

where rows ofI:I obey CN(Ot,R(IM + pTR)_lR) and are independent of each other,

for powers p,; and ps satisfying p, M + ps(T — M) < pT’;

2. if the transmitter exploits R, the following rate is achievable with a pilot-based scheme

by transmitting in the eigenspace of R.:

o if the transmitter uses orthogonal pilot:

r PspPr 5 M
R=(1-—=)E|logdet(Iy+ _ QOM ) |, 2.60
( T> {Og ’ (N pstr(R1+p,L,) ) 4 )} (260

where rows offl obey CN(Ot, R(Ir+pTR)*1R) and are independent of each other.
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e if the transmitter optimizes the pilot:

T Ps A A
R=(1- = )E|logdet (I - — — QQH)l, 2.61
( T) [ N rps (pT + %tr(R—l)) o ( )

—1
where rows of Q obey CN(Ot, R — (pT + %tr (f_{*l) ) I,,) and are independent

of each other.

The correlation matriz R = VYRV for a truncated unitary matriv V.€ CM*" such

that Span (V) = Span (U). Powers p, and ps satisfy p.r + ps(T —r) < pT, and the

optimal power allocation maximizing the rate in (2.61) is characterized by p, = (1_?’”
and ps = %L_TT with
1 .
> of T = 2r,
o= (2.62)
b—+/b(b—a), if T >2r,
A tr(R™1) r2 A T-r tr(R™1)
where a = 1 + T T TR and b = 7= (1 + =7 )
Proof. See Appendix. n

2.6.2 The Baseline TDMA Schemes

We consider TDMA without free CSIR. If only User k is activated and the base station does

not exploit Ry, according to Theorem 4, the following corollary demonstrates the achievable

rate:

Corollary 1. For 2-user broadcast channel, when the base station does not exploit Ry, the

following rate is achievable by activating only one user:

M Pspr A e
R.=(1—=)E|logdet( Iy, + Q. )|, 2.63
k < T) |: ogdae ( Ny, patr((zgl + prIrk)_l) + M k k>:| ( )

where rows of Q, obey C/\/(Ot, Ry (In + pTRk)*le) and are independent of each other, for

powers p; and ps satisfying p, M + ps(T — M) < pT';
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If the base station transmits in the eigenspace of Ry using precoder V, = Uy, i.e.,

UiV, = 1,,, and optimize the pilot, the following corollary demonstrates the achievable

rate:

Corollary 2. For 2-user broadcast channel, when the base station transmits in the eigenspace

of Ry, the following rate is achievable by activating only one user:

Tk Ps A AH
R,=(1——= E|:10g det (I + — Q.0 ):| , (264)
(-7) R T R

where rows of Q, obey C./\/(Ot,zk — (pT + %tr(E,;l))_lIrk) and are independent of each
other, for powers p,; and ps satisfying p.r+ ps(T —r) < pT'. Furthermore, the optimal power
allocation for the rate in (2.64) is given by p,r. = (1 — @)pT and ps(T — i) = apT with

%, Zf T = 27‘k,
o= (2.65)

b—\/b(b—a), if T >2r,

A t(Eh 2 & Ty (=)
where a = 1 + ka — thrIEEk) and b = = (1 + pj’i )

The convex hull of (0,0), (R1,0), and (0, Ry) is achievable by TDMA.

2.6.3 Rate Splitting

In the following, we analyze the rate achievable with the schemes achieving the DoF region
in Theorem 3. Recall that for a set of non-negative integers sq < rg, s1 < r; — rg, and
Sy < ro — 19, the precoding matrices Vo, Vi, Vo, are defined in (2.48)-(2.50). For k € {1, 2},
define

o & £ ULV, Vi, ®ro 2 ULV, By 2 UV, (s0 &y, = [@10 rr]);
o Ry 2 %8, Ry 2 BTy, Riy 2 BTy (s0 Ry = [Rio Roa]);
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o Ry 2 0 T80, Ryp 2 8,581
Let the base station transmit
X =VXy+ ViX; 4+ VX, (2.66)
where Xy, Xy, and Xy are independent and satisfy the power constraint

E [|IXol[F + [Xallf + [1X2llF] < oT. (2.67)

Thanks to the precoders, the private signal X; is seen by User k only, while the common

signal X is seen by both users. The received signals become

1 1
Y, =GB X+ G1Z: 9, X, + W, (2.68)

1 1
Y2 - G2222¢20X.0 + G2222¢22X2 + Wg, (269)

where the equivalent channels GkZEQkO € CNkxs0 and GkEé‘I)kk € CNexsk_ | € {1,2}, are
correlated and unknown. It can be observed that the received signal at each user is similar
to a non-coherent two-user MAC: (2.68) as the MAC 1 with (sg, s;) equivalent transmit
antennas and N; receive antennas, (2.69) as the MAC 2 with (s, s2) equivalent transmit
antennas and N, receive antennas. The two MACs share a common signal X.

From the capacity region of multiple access channels [61], we know that the rate pairs
(Ro, RY) and (Ry, RY) are simultaneously achievable for the MAC 1 and MAC 2, respectively,

if the rates Ry > 0, Ry > 0, Rb > 0 satisfy

Ry < LIV X0/X)), (2.70)
RY < %I(YI;X1|XO), (2.71)
Ryt B} < HI(Y1:X0, X)), (2.72)
Ro < 7 1(Y2: Xp[Xo), (2.73)
R} < LI(Y 2 Xo/X0), (2.74)
Ro+ R < %I(Yg;XO,Xg). (2.75)



Then, User 1 achieves rate R} with private signal X;, user 2 achieves rate Ry with private
signal Xy, and both users can achieve rate Ry with common signal Xy. Let Rg; be the
User k’s share in Ry, then the rate pair (Ry, Re) = (Ro + R}, Ro2 + R%) is achievable.
Replacing Ry = Ro; + Ro2, R} = Ry — Ro1, and RY = Ry — Rgs in (2.70)-(2.75) and applying

Fourier-Motzkin elimination leads to the following result.

Lemma 4. With rate splitting and without free CSIR, the rate pairs (R, Ry) are achievable

with:
1 .
R, < T min{/(Y1; Xy, Xo), 1(Y1; X1|Xo) + 1(Y2; Xo|X2)}, (2.76)
1 .
R2 S f mlH{I(YQ; XQ, Xo), [(Yg, XQ‘X()) + [(Yla X(]’Xl)}, (277)
1
Rl + R2 S T HllIl{I(Yl7 X1|X0) + ](YQ, XQ, Xo), I(Yl, Xl, Xo) + I(Yg, X2|X0>}, (278)

for input distributions p(Xo), p(X1), and p(Xy) satisfying E[||Xo||% + [|X1]|% + |X2|[2] <

pl.
By bounding the mutual information terms in Lemma 4, we have the following theorem:

Theorem 5. Under rate splitting, the following rate region can be achieved in the two-user

correlated broadcast channel with partially overlapped eigenspaces:

R, < min{R}, R? + R/}, (2.79)
Ry < min{ Ry, RS + Ry}, (2.80)
Ry + Ry < min{R! + R}, R, + R}, (2.81)
where
R, = (1 _at SO)E[logdet (INl P QlﬁleRTQT)}, (2.82)
tr((Ry! 4+ Pyy) Pis) +1
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511 S0 P16 _ -
RP=(1-— E|logdet| Iy, + _ QR R Q)|
(2.83)
511 S Pos - -
R// — ]_ — E |:10g det (I + — — ﬂ R RH QH):| :
1 ( T ) M s [tr((Rl_l N PIT) 1P15) n 1} IEASTERSTIELS]
(2.84)

where rows of Oy obey CN (0, P2 (P RiPZ + L, 4s) 'PE) and are independent of each

other.

51 — 52

Ry = E | logdet( Iy, + Y . B QRR“QH)}
2 [ & (N p25tr(R5'2(R2+R2P2TR2)71R22)+52 2hioaigyd 2y

81+ So 1 =~ = = =
+(1— )]El det( Iy, + —— QR PRI ) |, (285
T [ ogde ( No tr((R;l + P27)71P25) +1 2121725 g8 a9 ( )

51— 82 P2s S oo
Rb = E|logdet| Iy, + — — — — QR»RoR5RY Q”)]
2 |: g ( N2 p25tr(R52(R2+R2P27—R2)_1R22) + 5y 24022402105 L0998 &9
51+ So P25 A PP RHPH _H):|
+(1-— E|logdet| Iy, + — Q2R RoRIRE,Q ,
( T > { & ( o S2 [tr((Rgl + PQT)_1P25> + 1] pre R
(2.86)
+ So Pos = 5 5 DHOH &
R/ = (1_51 )E{l dt(I + _ QR 0R.RIR) Q“)]
0 ogdet| 1y, 5o [tr((Rz_l T PQT)*ngg) + 1] 280 o g Mggd a9
(2.87)

_ 111 1
where rows of a obey CN (0, P3 (P2 RoP3. + I,,.)'P3.) and are independent of each

other. sg, 1,82 are designed to allocate transmit dimensions to the components of product
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superposition, and take values in the range so < rg, s1 < 11 —1rg and ss < ro — 1. The

component powers pro, Pri, Pr2, Ps Satisfy the power constraint

2
porso + pos(T — s1— s0) + Y _ [pirsi + pis(T — 5 — 50)] < pT. (2.88)

i=1
The overall achievable rate region is the convex hull of (2.79),(2.80),(2.81) over all feasible

values of so, s1, S2 and power allocations (2.88).

Proof. Please see the Appendix. n

2.6.4 Product Superposition

Theorem 6. With product superposition, the following rate pair (Ry, Rs) can be achieved:

S2 VispP2r A A
Rl =—=FE |:10g det (IN + 9] QmQH >:| y (289)
T ' S0 + V16p27tr((RI01 + V17p2TIso>_l) 10

where rows of Qm obey CN(Ot,lepng{m(lepng{lo + ISO)_lfilo) and are independent of

each other.

So + So el G €
Ry=(1- )E[lo det(I + GeGH“’)]’
2 T B ST (LLss P R

(2.90)

where rows of Gae obey CN(Ot, p2r-Rae (pgTRge + 182+30)_1R26) and are independent of each

other, with

R, N V1Tf{20 \/V1TV1a‘I>5'022‘I>22 . (2.91>

VVirV1aPoYa®o TR tr <R20> L, + v1aRao
S0, S1, S are designed to allocate transmit dimensions to the components of product superpo-
sition, and take values in the range sqg < rq and sy < ro — ro with the power constraint

T —59—s
(Sol/h + so(v15 + Vm)) <p2r +—== 0P25> < pT. (2.92)
S92+ So
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By swapping the users’ roles, another achievable rate pair is obtained. The overall achievable
rate region is the convexr hull of these pairs over all feasible values of sg, s1,s2 and feasible

power allocations (2.92).

Proof. Please see the Appendix. n

2.6.5 Hybrid Superposition

Hybrid superposition in this chapter refers to a composite scheme that involves both rate

splitting and product superposition.

Theorem 7. With hybrid superposition, the following rate pair (Ry, Ry) can be achieved:

5 s P1s ~ ~
R (1 ) D) [10 det (I + + ‘ He)}’
1= T 8 M 81+ Sg + plétr((Rl_el plTIsH-so)_l) 1 1

(2.93)

where rows of G, obey C/\/'(Ot,plTRl6 (plTRle + Isl+so)_1Rle) and are independent of each

other, with

V2TR10 VvV V2TV2a‘I>'f021‘I>11

Rle é 0 o ) (294)

VV2r 2,21, X1 P10 . + 12, Rao

0 ity (Rm) L, .,
50
_ 1 _ _
Ry = S1 - 52E [log det (IN2 + — = QQPQ(;GQS>:|
tr ((R; +Ps,) P25a> +1

1 _ _
+ (1 — MTSO)E [log det (IN2 + - — Qszébﬂg)]
tr ((R;l + PQT) PQ(Sb) +1

— (1 — il ; SO)E [log det (IN2 + P18 <V27- + 1/2551 S_ 82)920030)} s (295)

0

where rows of Qs obey CN(Ot,Rg (Rg + P;)flf{g) and Qg obey CN(Ot,f{QO), and are

independent of each other. sy, si1,s2 are designed to allocate transmit dimensions to the
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components of product superposition, and take values in the range sy < rg, s1 <11 — 19 and
S9 < 19 — 1o with the power constraint

T—Sl—SO

Plé) + Sapar + (T — 52 — 50) pas < pT.
51+ So

(80V2T + S109 + (51 — 82)V25) (,017 +

(2.96)

The overall achievable rate region is the convexr hull of these pairs over all possible power

allocations satisfying the power constraint and all feasible values of sg, s1, So.
Proof. Please see the Appendix. O

Remark 2. Hybrid superposition utilizes both rate splitting and product superposition but
15 mot a generalization, in the sense that the results of pure rate splitting and product su-
perposition cannot be recovered from the hybrid scheme. At very high SNR under partially
overlapped eigenspaces, hybrid superposition can improve over rate splitting and product su-
perposition, but in other channel conditions, the hybrid superposition may in fact perform

worse than the individual schemes.

2.6.6 Numerical Results

Simulations in this section assume Rayleigh fading, i.e., Gy has independent CN (0, 1) entries.
The correlation matrix Ry = U X, UL, k € {1,2}, is generated by assuming the same
magnitude along all eigendirections, i.e., ¥ = I. Furthermore, we assume the eigendirections
of transmit correlation matrices of the two users are either the same or orthogonal to each
other. The simplicity of this configuration makes it suitable for a representative example.
Assuming a constant magnitude along different eigendirections allows us to concentrate on
gains that are purely due to correlation diversity rather than, e.g., water-filling.

When the eigenspaces of the two users are partially overlapped, in Figure 2.5 and 2.6,

we plot the rate regions achieved with these schemes in a setting of T' = 24, M = 16,
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Figure 2.5. Rate region broadcast channel p =30 dB, r; =15, 7, =8, rg =7

Ny =Ny =12, r1 =16, 10 =6, =10and T'=32, M = N; = Ny, =16, r; = 15, ryo = 7,
ro = 8, at power constraint p = 30 dB. We observe that the performance of rate splitting and
product superposition depends strongly on the rank of the eigenspaces. When the rank of the
two individual eigenspaces is close to each other, rate splitting will obtain a better rate region
since the gains achieved by product superposition come from the difference between the
ranks of the two eigenspaces. In the channel configuration in Figure 2.5 and 2.6, the hybrid
superposition scheme produced rates that are inferior to both product superposition and to
rate splitting, therefore they are not displayed. Hybrid superposition becomes competitive
at very high SNR, while the results of this section focus on moderate SNR.

When one of the users’ eigenspaces is strictly a subspace of the other, rate splitting
performs no better than TDMA. In Figure 2.7, we plot the rate region for this scenario
achieved via product superposition in the setting of 7' = 20, M = N; = Ny = 10, r; =

10,7y = 5,79 = 5 and at power constraint p = 30 dB .

33



50 ‘

Product superposition
Rate splitting e
— — = Overall region
——— TDMA

45

40

351

251

20

F(2 bits/channel use

10

0 10 20 30 40 50
F!1 bits/channel use

Figure 2.6. Rate region broadcast channel p = 30 dB, r; = 16, ro = 10, r = 6
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Figure 2.7. Rate region of a broadcast channel where p = 30dB, M = N; = Ny = 10,T =
20,7”1 = 10,7”0 = 5,7’2 =95
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Figure 2.8. The channel eigenspace overlapping structure of the three-user broadcast channel

2.7 K-user Broadcast Channel: DoF Analysis

To extend the study to the K-user scenario, some further assumptions on the correlation
model are made as follows. Recall that the rows of Hy belong to the eigenspace Span (Uy)

of Ry. Denote the union of all channel eigenspaces as

V= U Span (Uy) . (2.97)

ke[K]

V can be partitioned into 2% — 1 subspaces V; of r; dimensional whose r; basis vectors
span the channel of every user in a non-empty group J C [K] and are orthogonal to all
vectors in Span (Uy) for k € {[K]\ J}. In other words, V7 = [, ., Span (Uy). Obviously,
> gty =rank (V) < Mand Y- ;g ey rg = rank (Span (Uy)) = rj. An example of the
correlation structure for the case of three-user broadcast channel is presented in Figure 2.8.
In this way, the signal transmitted in the subspace V; can be seen by every user in J
and is vague to all other users. On the other hand, the signals transmitted in V; and Vi

interfere each other at every user in J N K. To characterize the interfering relation between
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signals transmitted in different subspaces, we introduce the concept of interference graph as

follows:

Definition 1. For k € [K], the interference graph of order k, denoted by G(K, k), is an

undirected graph for which:

e the set of vertices is the set of unordered subsets of cardinality k of [K], i.e., J C [K]:

|T| = k, hence a vertex is also denoted by a subset J;

e there exists an edge between two vertices J and K if and only if T N K # ().

The interference graph G(K, k) has (1’:) vertices. It is a regular graph [62, Sec. 1.2] of
degree ([,:) - (Kk_k) — 1, with the convention (') = 0 if m < n. Let x(G (K, k)) denote the
chromatic number of G(K, k), i.e., the minimum number of colors to color all the vertices

such that adjacent vertices have different colors. We have the following property.

Property 1 (The chromatic number of the interference graph). X(G(K , 1)) =1 and when

U<k < [K/2], x(GUK,K)) < () = (") = 1, and when k > | K/2], x(G(K, k) = (})-

Proof. x(G(K,1)) = 1 since G(K,1) is edgeless. x(G(K,k)) = (¥) when k > [K/2]
because in this case, G(K, k) is complete. The results for the case 1 < k < | K/2]| follows

from Brook’s theorem [62, Thm. 5.2.4|. O
In this section, we assume the users have perfect CSIR.

Theorem 8. For the K-user broadcast channel with CSIR, for any integers ds satisfy

dy <rs, VYJ C [K], (298)

> dy <min(ry, Ny), Vk € [K], (2.99)
JCIK): keT

the DoF tuple (dy,...,dg) given by

de= Y Tgds, keK] (2.100)
JCIK]: keJ
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for some time-sharing coefficients T 7 > 0 satisfying T 7 = 0,Yk € {{[K\T} and S5, 7.7 =

1,VJ C [K], is achievable.

Proof. For J C [K], let Vs € CM*97 be a matrix with orthonormal columns such that
Span (V7) C V7. Then UV, = 0, Vk ¢ J, and rank (U{Vs) = ds, Vk € J. Let the

transmitter send the signal

X =) Vgsg, (2.101)
JCIK]

where s; € C% contains data symbols. Let us consider User k and label the subsets in

{TJC[K]: ke T}as{J,...,Ti}. The received signal at User k is

Yi=H, ) VsS;+W,

JCIK]
—GIiUp Y Vs 4+ W
JCIK]: 1eT (2102)
Sn
—GEIUNVy, V]| | e W
S,

Because Y., ds, < min(ry, Ni.), User k can decode s, ..., s, that is, {s; C [K]: k€ J},
where the signal s; provides d; DoF. Signal s; can be decoded by all the users in J. By
dedicating s 7 to user k € J in a fraction 74 7 of time, User k can achieve ZJG[K]:kej Ti,gds

DoF. This completes the proof. O

2.8 Appendix

2.8.1 Proof of Theorem 4

We prove by constructing pilot-based schemes that can achieve (2.59), (2.60), and (2.61).
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Transmitter Ignores Correlation

The transmitter can ignore R and form the transmitted signal as if the channel is uncorre-
lated, but the performance still depends on correlation. Within each coherence block, the
transmitter first sends an orthogonal pilot matrix X, € CM*M guch that X, X" = MI,,
during the first M channel uses (this is optimal for uncorrelated fading [55, Sec. I1I-A]), and

then sends i.i.d. CA/(0,1) data matrix X5 € CM*(T=M) quring the remaining 7' — M channel

Pr Ps
X = |/EX, /22X, 2.103
{ M M 5} ( )

where p, and ps are the average power used for training and data phases, respectively, and

uses. That is,

satisfy the power constraint p, M + ps(T — M) < pT.
In the training phase, the receiver observes Y, = Y = /5 HX: + Wy Following

Lemma 3, it performs a linear MMSE channel estimator as

~ Pr Pr -1
H— —YT<—X”RXT I ) X"R. 2.104
i T + I . ( )

The estimate H and the estimation error H = H — H have zero mean and row covariance

1 e Pr Pr o TIxHR -1

~E[FH] = MRXT< ZXIRX, + IM> X'"R = p,R(Iy + p,R)"'R, (2.105)
1

NIE[HHH] =R - p.R(Iyy + p-R)'R. (2.106)

In the data transmission phase, the received signal is

Y5 2 Y = p—]\/‘;[HX(; + Wingsnr) = %fﬂgS + Wy, (2.107)

where W5 £ | /%f{Xg + W41 is the combined noise consisting of additive noise and

channel estimation error. With MMSE estimator, W and X are uncorrelated because

E[X;W!X,,Y,] = ]E[X5< %ng{“ + Wg) X, YT} (2.108)

_ \/%E [X(;XQ(H - H)[X,, YT] (2.109)

—0, (2.110)
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since E[H — IZI‘XT,YT} = 0. From Lemma 2, a lower bound on the achievable rate is

obtained by replacing Wy by i.i.d. Gaussian noise with the same variance

1 P _
_ %tr (" +p L)) + 1. (2.112)

Thus, the achievable rate is lower bounded by

T7—-M

R= ]E{logdet(INJr P HH”)] (2.113)

2
Moy,

From (2.105), H has correlation matrix p,R(Iy; + p,R)"'R. This shows (2.59).

Transmitter Exploits Correlation

By exploiting R, the transmitter can project the signal onto the eigenspace of R and can also
adapt the pilot symbols. The transmitter builds a precoder V.€ CM*" with r orthonormal

columns such that Span (V) = Span (U). Let ® = U"V. The transmitted signal is

X=V [\/gx \/gx(g] (2.114)

where X, € C™" such that rank (X,) = r and tr (X"X,) = r? is the pilot matrix, and
X; € C(T=7) is the data matrix containing CA/(0, 1) entries. The average pilot and data
powers satisfy p.r + ps(T — 1) < pT.

The received signal during the training phase is then Y, £ Y, = \/gGE%q)XT +
Wi1.). The equivalent channel 2 GY:® has correlation matrix R = ®"$® = VHRV.
According to Lemma 3, the MMSE channel estimate for the equivalent channel € is given

by

_ -1
Q= /&YT<&X¢RXT + IT> X"R. (2.115)
r T
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) A ) . ~ 1 A .
The estimate €2 and the estimation error 2 = GX2® — Q2 have zero mean and row covariance

1 . . _ _ -1
—E[Q”Q]:&RXT(&XH{XTJFIT) X"R, (2.116)
T T

L. _ _ _ -1 _ _
VEIQQ) = R - ZRX(ZXRX 4+T) XIR= (R XX @)
r r r
In the data transmission phase, the received signal is

Y5 2 Y = /%GE%@Q + Wi = 4 /%QX(; + W, (2.118)

where W5 2 ./ %QXa + W 1.77. From Lemma 2, a lower bound on the achievable rate is

obtained by replacing Wy with i.i.d. Gaussian noise with the same variance

1 Ps S — Pr -1

The corresponding achievable rate lower bound is

R:T—r

E[logdet(INJr b QQ)} (2.120)

TOW,
where the rows of obey CN (Ot, R - B) with B & (R‘l + ’)TTXTXﬂ) ! and are independent
with each other.

Taking X, such that X, X" = rI, (i.e., orthogonal pilots), we have B = (R‘l + pTIr)_l,
and the achievable rate R is given in (2.60).

We can also optimize the pilot X, so as to maximize R. The pilot matrix X, affects the

achievable rate bound primarily through the effective SNR

ps 1 AYHE p5tr(R - B)
i = D R [Qr]) = 2R TP 2,121
Peft rogy, N (tr] ) pstr(B) +r ( )

which decreases with tr (B). Therefore, to maximize R, we would like to minimize tr (B).

That is

min  tr( (R + 22x. x") 7). 2.122
(R +2x.x (2.122)

tr(XHX)=r2
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Using Lagrange multiplier A\, we minimize
LX,,\) = tr<(R—1 + &XTxi)*l) +A(tr(X,XY) = r2). (2.123)
r

Solving % = 0, we obtain the minimizer X, X" =, /pL/\IT — /)Lf{*l. Using the constrain

tr(X¥X,) = r?, we find that 22X, X" = (p, + 1tr(R™))I, — R™'. With this, B = (p, +

%tr(R_l))_lIr, and the rate R is given in (2.61). The effective SNR is now written as

5 - Lomoy 7!
Peoft = p(;r(pT N %trp(R—l) )71 = [tr (R) - r(pT + ;tr (R ) ) ] (2.124)

Let p,r = (1 — a)pT and ps(T —r) = apT for a € (0,1), we can derive that

_ pTtr (R) —a? + aa
(T —2r) —a+b

Peft (2.125)

r(R™! r2 —r r(R™! : :
where a £ 1+ 1% (?T ) _ ST (R and b = % (1 + t(?—T)). Noting that T'—2r > 0, we obtain

the optimal value of a that maximizes peg as given in (2.62). This completes the proof.

2.8.2 Proof of Theorem 5

This achievable rate region is fully characterized by the mutual information (Yy; Xy, Xo),
I(Yy; Xk | Xo), and 1(Yg; Xo| Xk), £ € {1,2}. We cacluate the achievable rates for the

following input distribution:

[ / Pos ]

XO - V pO’TISO OSO><51 S_SO ) (2126>
L 0 J
[ /P18 ]

Xl = 051 X80 V pl’TISl S_Sl ) (2127)
L 1 J
[ [ P25 ]

X2 = OSQXS() V pQ’TISQ 3_82 ) (2128)
L 2 J

where Sy € C#ox(T—s1=s0) §, ¢ Co*(T—s1=%0) and S, € C*=2*(T—527%) agre data matrices

containing independent CA/(0, 1) symbols, for powers p;., ps, i € {0, 1,2}, such that

2
LorSo + po(g(T — 51— 80> + Z [pifsi + pu;(T — S; — So)] = pT (2129)

=1
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The received signal at User 1 is

1 Vpor L 0 pe g,
Y, = G379, ’ S (2.130)
0 VPirLs, %Sl
1 1 1 1S
= Glzfélpfr + W1[1:S1+80] Glzlz(l)lpfé + W1[81+80+1;T} (2'131)
Y1, Si
Yis
po-Ls 0 e 0
where Py, £ [ orteo ] and Pys £ [ 070 are the power matrices for the
0 pITIsl 0 %Isl

pilot and data, respectively.
1 _
The equivalent channel €2 £ GX]7®; has correlation matrix Ry. Following Lemma 3,

User 1 performs a MMSE channel estimation based on Y, as

~ 1 _ 1 _ 1 _
Q =Y., (PLRPZ +1,,,,) PLR,. (2.132)

. . 1 .
The estimate €2; and the estimation error €, = G1X7®; — ©; have zero mean and row

covariance
L piénd,] — R,P (PLR, P} “pi g
EE[Qlﬂl] = RlPlT (PlTRlplr + ISl+50> PITRla (2133)
-1 1 _ _ _
P:R, = (R +Py) . (2.134)

1 X a _ _ 1 11
FEQ)] = Ry — RiPE (PLRIPE, + Ly,
1

Lower bounding 1(Y1;X1,Xg): The received signal during the data transmission phase

can be written as

So
(2.135)

S

Y5 = G220, P2 + Wi,

A& D So
where W15 = lefé
S

due to channel estimation error. Define ; € CNM*(s1+%0) with independent rows obeying

+ Wis, 4s0+1:77 18 the combined noise and residual interference
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11 1 1
CN (0L, P (P} R\P? +1,,.,) 'P?). By a similar analysis using Lemma 2 as for (2.60
1T 1T 1T 1+So0 1r

in Theorem 4, we have

I(Y1; X4, Xo)
= ](Yl(;, Sl, So | Yh—) + I(Yh—, Sl, So) (2136)
—————
=0
= I(Y15:S1,So | 1) (2.137)
> ( s — 80> [1og det (INl e L QleQTﬂ (2.138)
tr(Ry' 4+ Pir) Pis) +1

1 _ _
e — log det ( Ly, + —— O.R,P R“QH)]. 2.139
( S1 SO) |: og de ( N tr((Rl_l n PlT)_1P1§) 1 1 gsvgesy ( )

v

Lower bounding 1(Y1;X; | Xo): We rewrite Y5 as

Y5 = w/%cqu‘bn& + U?Gﬁzf‘bmso + Wis. (2.140)
1 0

1
While decoding S;, the term /%‘5(}1212@1080 is an interference. Given the knowledge of Sy

and the channel estimate Ql = [QIO Qu}, where QIO and QH are respectively the estimates

1 1
of G1X]®y and G1X7®,;, the receiver can remove partly the interference to obtain

. 1 1 R
Yi5— 4/ ?91080 =1/ ?quf@n& + 4/ ? [G1Efq’1o - Q10] So + Wils, +s0+1:7]
0 1 0

(2.141)

= ?Qllsl +W15. (2142>
V 1
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With a similar analysis, using Lemma 2 as for (2.60) in Theorem 4,

I1(Y1; X | Xo)

= 1(Y15;51]S0, Y1) (2.143)

= I(Y15;S1[So, ) (2.144)

=I(Yis— \/’;:(ffzwso; S1 | S0, ) (2.145)

= [(\/Z:fﬂ“sl +Wi5Si | Q) (2.146)

> (T s - 50>E {log det (INl + T +’1);5 ETmEmy QlRHR;'lﬂT)} (2.147)
1 1 17 16

A ~

Lower bounding 1(Y1;Xo|X1): Given S; and the channel estimate Q, = [Qlo 911],

the receiver can remove partly the interference in (2.140) to obtain

Yis— 22008 = | [P2GE 818 + | /22 GiZi @0 — uS1| + Wi
1 0 1

(2.148)

=\ /?Qwso W, (2.149)
0

Using reasoning similar to (2.60) in Theorem 4,

I(Yq1; X0 | X1)
= ](Ylg; So|Sl, YIT) (2150)
= I(Y15;80|Sl,f21) (2151)
== I(Yw — %Qllsl; SO ’ Sl; Ql) (2152)
\/ 1
Pos A 2
=1, /EQNSO + Wis;So | Q1) (2.153)
Z (T — S1 — 50>E |:10g det (INl + —— pos 1 Qlﬁl()RTOQT)} (2154)
so[tr((Ry" +Py,) " Pys) + 1]
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The received signal at User 2 is

1 vV pOTIS 0 0 (s1—s2) ?SO
Y, = G,52, ' S A I A (2.155)

0 \/EISQ pS_Q;S%L pS_Q;S%

1 1
GQE% (I)2P227. +W2[1:52+so] 3

Yo,
025 o b 1o 1| So
S_G222¢22SQ(1+W2[52+50+1:51+50]7 G222¢2P25 +W2[51+50+1:T] ) (2156)
2 . Sap
Yasa ~ ~\~
Yosp

where So, and Sy, are respectively the first s; — so columns and the remaining 7' — s; — sg

pOTIS 0 %Is 0

A[ ’ ]andPg(géloo
52

columns of So; Py, =
0 pQTI 0 9%5]:52

for the pilot and data, respectively. Following Lemma 3, user 2 performs a MMSE channel

] are the power matrices
1 1 1
estimation of QQ =S G222¢2 = QQO QQQ = G’222¢20 G’222¢22 based on YQT as
2 2 2
A 1 1 1.1 -
Q = Yo, (P2 RoPZ +1,,1,,) PLR,. (2.157)

A~ ~ A~ ~ 1 ~
The estimate 2y = [ng 922] and the estimation error €25 = GoX5®, — €25 have zero mean

and row covariance

1 Alla _ 1 1 1 -1 1 _

. El262] = RoPS, (P§TR2P§T + 182+80) P Ro, (2.158)
2
1

o~ _ _ 1 1 _ 1 -1 1 _ _ —
FEI2] = Ry - RoP, (P;TRQPQQT + ISWO) P:R,= (R;'+Py) . (2159)
2
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Lower bounding 1(Yq; X, Xp): Using the chain rule,

I(Y9; X9, Xo) = 1(Yar, Yosa, Yosu; So, S2q; Sop) (2.160)
= ](YQ(Saa Y2§b; SO7 SQa; SQb | YQT) + \](YQT) S(), SQa7 SQb)J (2161)

~
= I(Yasa: Yass; So, S20, Say | o) (2.162)

= 1(Yasa;Sa4 | QQ) +\[(Y25a; So, Sap | S2a, Qz

=0

+ {(Y26b§ S0, Sa | Yasa, ﬂzz + {(Y26b§ S2a | S0, Sap, Yosa, QQZ (2.163)
ZI(Yzab;go,Szb |22) =0

> 1(Yasa; Soa | Qgg) + 1(Y a3 S0, Sas | QQ)' (2.164)

Define Q, € C*2*(#2%%0) with independent rows obeying CA (0", P2 (P2 RoPZ +1,,.,. ) 'P3.).

Following analysis similar to (2.60) in Theorem 4,

I(Y2§a; Soa | Q22)

P26 o
Z(s —3)1@[10 det(I L+ - _ _ _ AR R QH)]
1— S2 g N2 st (Ri,(Rs + RoPs,Ry)~'Ray) + 5 2R RS, 25

(2.165)

and

[(Y25b; So, Sap ’ QQ)
1
(Ry' + PQT)_1P25) +

Z <T — 851 — 80>E [log det (IN2 + tr( 1QQR2P25RSQS):| . (2166)

Lower bounding 1(Yq; Xy | Xo): We write Yo; = [Yasa Yoz as

[P 3 Pos 3
Y5 = S—G222 .S, + S_G222 D2[0 So] + Wos, 4 so+1:77- (2.167)
2 0
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Similar to I(Y1; Xy | Xp), using interference cancellation and wort-case additive noise,
[(Yg, X2 ‘ Xo)

= ](Yg(s, SQ|SQ, Qg) (2168)
= ](Y26 A / ?ng[o So], 82‘807 Qg) (2169)

Z ( — 82> |:10g det (IN2 -+ — — 7p26 — = QQRQQRQRSRSQQ;)]

pastr (RYy(Ra + RoPa;Ra) " 1Ras) + 52

P25 7 P P _DRHRH OH
— 851 — logdet| I = QR2RoR5R5, €2 :
S1 So> { ogae ( Ny T N [tr((Rz_l —|—P27)_1P25) + 1] 2102229 f92 2)]

(2.170)

Lower bounding 1(Y2; X | X2): Again, using interference cancellation and a similar anal-

ysis as for (2.60) in Theorem 4,

I(Y2;X0 | Xz)
> I(Yas; So|Sas, 22) (2.171)
=1(Yas — \/?9225%; So | Sz, €22) (2.172)
2
Pos e o um
><T— _ )El det( T _ QR0RRIRY Q) |
> S$1 — Sp [ og de < Ny T 5 [tr((R;l n PQT)_1P2§) n 1] 2hvop oy iy 2)}

(2.173)

Substituting (2.165) and (2.166) into (2.164), then substituting (2.139), (2.147), (2.154),
(2.164), (2.170), and (2.173) into (2.76)-(2.78), and taking the convex hull over all possible
power allocation satisfying (2.129) and all feasible values of s, s1, s2, an achievable rate

region is found with rate splitting for the broadcast channel. This concludes the proof of

Theorem 5.

2.8.3 Proof of Theorem 6

Under product superposition, the input to the channel is constructed as follows:

X = [V, V3] X, Xs, (2.174)
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with

v
vV Vl'r]:so SL()&Sl

X, = , (2.175)
0 w/VlaISQ
X, — { s szpfsoSQ]’ (2.176)

where S; € C*0*%2 and S, € Cs2F50)x(T=52-50) are the data matrices of User 1 and User 2 re-
spectively, both contain i.i.d. CN(0, 1) symbols. As in earlier developments, integers sg, s1, So
are designed to allocate transmit dimensions to the components of product superposition,
and take values in the range sp < rg and sy < ry — 1.

The power constraint E [tr (X"X)] < pT translates to

T —59— 5
(sovir + s2(v15 + V1a)) <pQT + #020 < pT. (2.177)
So + 8o
In the first s + sg channel uses, User 1 receives
1 v
Y1[1232+50] =/ PQTG1212‘I)10 {\/ V1TIso gsl} + W1[1:52+50] (2-178)
0

1 U1sP2r 1
= [\/ Virp2rGiE{ @10 + Wi 4/ 1ip2 G1X7®10S1 + Wilss1:s04s0) ] .
N ~~ g 0

YlT ~ vV -
Yis

(2.179)

1
Following Lemma 3, User 1 estimates the equivalent channel G137 ®,o using a MMSE esti-
mator based on Y, as

1%

. . -1
Q1o = VVirp2r Y17 <V17p2rR10 + Iso) Ro. (2.180)

. . 1 .
The estimate €2y and the estimation error 2,y = G1X{®y — 219 have zero mean and row

covariance

1 A A o o -1y
8010 = virpaRao (virpor Ruo + L) R (2.181)
1

1 ~ o~ o o o -1, o -1
N E[Q,210] = Rio — v1-p2:Rao (Vl‘rpZTRlO + Iso) R <ngl + V1r,027130) . (2.182)
1
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Using data processing inequality,
I(Y1; X1) > ](Y1[1:52+so}; Xl) = I(Yla; Sy |Y17) = ](Yw; Si | Q10)- (2.183)

Then, using the worst-case noise argument and Lemma 2, the following lower bound on

I(Y15;S1 | Q40), is established, giving an achievable rate for User 1:

52 VisP2r A AH
R1 = —E|:10g det (IN + < Qloﬂ ):| (2184)
T "oso+ V15;02Ttr((Rfol + V17p27150)_1) v

The received signal at User 2 is

Y, = GoEi9,X, |:\/p27'182+80 SzpfSOSQ} +W, (2.185)
— [\\/ pQTGQe + W2[1:S2+so]1 82'0—’2_580 GZ@SQ + W2[52+so+1:T] ] 5 (2186)
Yo, . ~
Yos

1
where Go, £ GoX;P,X is the equivalent channel with the correlation matrix

» H
1 vi:Roo V4 V17V1a‘1)20224’22

Ry = —E[GY Gy = } } (2.187)
V11 P52 Po %‘Str <R20) I, + v1,Ro

N,

Following Lemma 3, User 2 estimates the equivalent channel Gy, using a MMSE estimator

based on Yy, as

GQe =V p2TY2T (p2TR2e + Isz—i-so) _1R2e- (2188>

The estimate G, and the estimation error Gg. = Gg. — Go. have zero mean and row

covariance
1 Ay A _
FE[G;eG%] = p27R2e (pQTRZe + Is2+so) 1R2eu (2189)
2
1 ~ ~ _ —
FE[GgeGQe] = RQe - pQTRQe (pQTRQe + ISZJrsO) 1R2e = (R;el + p27152+50) 1. (2190)
2
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Using the worst-case noise argument and Lemma 2, the following achievable rate for User 2

is established:

S92+ So P25 A~ A~
Ry — (1 . )E{log det (IN2 + J G EGHE)]
2 T S92 + S0 + p25tr(<R261 + P27152+so)71) ? 2

(2.191)

where the distribution of Go, is imposed by (2.188).

From (2.184) and (2.191), the rate pair (R, Ry) is achievable. By swapping the users’
role, another achievable rate pair is obtained. The overall achievable rate region is the convex
hull of these pairs over all possible power allocations satisfying (2.177) and all feasible values

of sg, 1, 89. This concludes the proof of Theorem 6.

2.8.4 Proof of Theorem 7

The transmitted signal is

X = [V V1] X5X, + VX, (2.192)
with
Xi = [/prL sy +| 2228, | € ClartsoxT (2.193)
L S1 + So

Xy = |Ouyuse v/Pordes 1/ ?82} e C=xT, (2.194)
L 2

vV VQTISO |:030><52 %SIQ
0 vV V2a181

where S; € Cl1ts0)x(T=s1=s0) ' §) ¢ Cs2x(T=s27%0) and S € C*0*(1752) are data matrices

X} = } € Clrtso)x(satso) (2.195)

containing CN (0, 1) entries. The power constraint E [tr (X"X)] < pT translates to

T—Sl—SO

Pl&) + Sopar + (T — 59 — 50)pas < pT.
51+ So

(SonT + 51024 + (51 — 52)V25) (/)h +

(2.196)
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We begin by analyzing the rate of User 1. The received signal at User 1 is

Y1 = GiE Xy | ir ks &l Si| + Wy (2.197)
s1+ So
- [\\/EGR + W1[1:51+50} Slp‘il‘éSo Glesl + W1[81+so+1:T] ] ’ (2198)
Y . ~
Yis

1
where G, £ GX7®,X) is the equivalent channel with correlation matrix

. VQTR10 \/V27V2a‘I>T021‘I>11
Ry = F]E G G| = ) 0 5 (2.199)
1 VVor V2,211 281 P10 5 + 124 R
0 2tr (Rio) Ly,

Following Lemma 3, User 1 estimates the equivalent channel G;. using a MMSE estimator

based on Yy, as

G16 =V plTYh' (pllee + Ilerso) _lRle- (2200>

The estimate G, and the estimation error G;. = Gi. — Gi. have zero mean and row

covariance

1 A A _
FE[GTeGIe] - Perle (Perle + Isl—l—so) 1Rlea (2201)
1

1 ~ o~ _ _
N E[GTeGle] - Rle - plTRIe (plTRle + Isl—i-so) lRle - (Rl_el + plTIsl+so) 1- (2202)
1

Using the worst-case noise argument and Lemma 2 as before, the following achievable rate

for User 1 is obtained:

R, = <1 _at SO)E[logdet (IN1 + Pml — GleéTe)],
T s1+ 5o + prstr (R + prrleiis0) )

(2.203)

where the distribution of G, is imposed by (2.200).
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Now, we turn to analyzing the achievable rate for User 2. The received signal at User 2

can be written as

1 vV V2Tp17'Is 0 [ VQ_Z&S/ A:|
Y, = GoX3 9, ’ © T w, (2.204)
0 \/P2TISQ Z—?Sz
= [YzT Yo, ngb}, (2.205)
——
Yos
where A £ |:\/V27—ISO 0 %‘SQ] ;52-5; and
1 1
Yo, £ GoE28,P2 + Wolt:sy+s0]5 (2.206)
1 I VaspP1t S/2
Yas. = GoE3 P, ’ + Woals, 5ot 151 450]s (2.207)
i %82[1:51—52]
A i A
Yos = GoX5 P + Wl 5041775 (2.208)
%82[81—82—&-1:7—‘—82]

A V27'p17'150 0 . . 1 ,
where Py, = The rate that User 2 can achieve is 1(Y3;S5,Ss)
0 p27'132

bits/channel use with
I(YQ, SIQ, SQ) = [(YQT, Y25; SIQ, Sg) (2209)
= I(YQT,SIQ,SQ) +I(Y26,S,2,S2 ‘YQT) (2210)

—— —
=0

= I(Yg(g; SIQ, SQ, A | YQT) — I(YQ(;, A | YQT, SIQ, SQ) (2211)

where the second and third equalities follow from the chain rule.
Define 5 € CN2*(s2<0) with independent rows obeying CA/ (0%, R§ (R +P571)_1R2) and

Qyy € CN2*%0 with independent rows obeying C./\/'(Ot, f{go). For 1(Ys;S5,S, A| Y, ), using
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the worst-case noise argument and Lemma 2 as before, we have the bound

I(Y 255 S5, Softis,—so], A Yar)

> (51 — 32)E [log det (IN2 + tr((R;l n P217')_1P25a) n 1Q2P25GQ;)] (2.212)

+ (T — 81 — SO)E [log det (IN2 + tr((f{Q—l . P21T)—1P2§b) - 1QQP251,QS)}
(2.213)

where Pys, = [%Iso O ] and Pog, = [T‘leés() (vir + s 813_082)180 i ] .

0 e, 0 puy,
The term I(Yas; A|Y2i2, S5, S2) can be upper bounded as follows: 2
I(Ya5;A1Y5,,S,,Ss)

— [(Yan: A| S}, S5, Ysr) (2.214)
— [(Ya: A | Sy, Yor) — I(Yas: S, | S, Yar) (2.215)
< I(Yase; A | Sofs) —sy+1:7—s5—s0]» Y2r) (2.216)
= h(A|Sofs, —sot1:7—s2—s0]s Y2r) — R(A[Sas; —sy41:7—s3—s50]> Y2r; Yaop) (2.217)
< h(A]Sgps, —sot1:7—s3—s0)s Y2r) — M A[So[s, —sy41:7—s5—s0]5 Y2rs Y2, G222%‘I)2) (2.218)
= h(AS2[s; —sy11:7— 55— s0] G222%‘I’2) — h(A[Sa(s; sy 41:7—53—s0]> Y25bs G222%<I>2) (2.219)
= I(Yosn A [ Sofay ey s 17y o)y CoT385) (2.220)

5 1 1 1
= 1(Yan = [P GBI 008, iirsa i A | Sar a1y aa)s GoZBan, GoT @ )
2

(2.221)

— ](GQZ%@QOA —|— W2[51+50+1:T}; A ‘ G222§¢20> (2222)

= (T — 81 — sO)E {log det (IN2 + p1s (VQT + u2581 s_ SZ)QQOQSO)} (2.223)
0

where (2.214) and (2.215) follow from the Markov chains Yas, <> S5, <> A and Yag, <> A <

S5, respectively; (2.216) holds because mutual information is non-negative and both Ysg,
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and A are independent of Soi.s, —s,; (2.218) holds because conditioning reduces entropy;
1
(2.219) holds because A is independent of both Yi, and GoX3®,, while given Y5, A

depends on Yy, only through GoX2®,; and in the last equality, we used that E[AA"] =

P15 <V2T + Vs 518_052>ISO-
Substituting (2.213) and (2.223) into (2.211), an achievable rate for User 2 is obtained.
This rate and (2.203) give an achievable rate pair. Taking the convex hull of this pair over

all possible power allocations satisfying (2.196) and all feasible values of sq, s1, s2 provides

an overall achievable rate region. This concludes the proof of Theorem 7.
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CHAPTER 3

SPATIAL CORRELATION IN MASSIVE MIMO

In a massive MIMO system [63], the base station needs the CSI to beamform. However, due
to the large number of antennas, the overhead for channel estimation is large. On the other
hand, due to the limited space between the transmit antennas, the channel responses are
normally spatially correlated. In this section, we exploit the spatial correlation to reduce the
training overhead and compare the scheme with the conventional training method.

We consider a multiuser massive MIMO system with a base station equipped with M
antennas communicating with K single-antenna users with different spatial correlations. The
channel vector corresponding to user k € [K] is hy € CM. The received signal of User k at

time ¢ is y(t) = h;x(t) + w(t), and during a coherence block is
yi = @) y2) ... y(T)] = X+ wy, (3.1)

where X = [x(1) x(2) ... x(7)] and wy, = [w(l) w(2) ... w(T)]" ~ CN(0,Ir). We
assume that the system operates in FDD mode and focus on the downlink transmission.
The transmission has two phases: the pilot phase and the data phase. During the pilot
phase, pilot signal is sent so that the users can estimate the channel and then feedback the
channel estimates to the base station. For simplicity and to focus on the gain of exploiting
spatial correlation, we assume that feedback is perfect and instantaneous. After that, the

base station sends data via beamforming.

3.1 The Two-User Case

We first consider the two-user scenario and assume that User 1 has uncorrelated channel and
User 2 has spatially correlated channel of rank r,. To extract an uncorrelated equivalent

representation of hy, we define g, € C™ via

h, = Ug; (32)
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where U 2 [u; ... uy|" € CM*"™ is a truncated unitary matrix.

Consider one coherence block. During the pilot phase, the transmitted signal is

X[l:M} = \/ﬁ dlag (I’l,ZL‘Q,...,I'M) (33)

where 2, = 1 for t € {1,2,...,75}, and z; is a Gaussian random variable following CN(0,1)
fort € {ro+ 1,79+ 2,..., M}. In time slots t = 1,2,...,rq, the received signal at User 2 is

Y2(t) = \/pgouy + wo(t). User 2 estimates g, with a MMSE estimator

g = plw ... "L, +p[uy o wy)[ur e w]) T ye(1), e (r)]T (3.4)

The estimation error is gy = go — go. In time slots t = ro + 1,..., M, User 2 receives the
signal y5(t) = /pgausxs+ws(t). User 2 uses the estimated channel to decode [z, 11, ..., %],
achieving the rate

M _
AR, = "2

p - 2
E |log (1 + — gou )] : 3.5
{ E [Tzgua] 7 1122 (35)

The received signal at User 1 in the pilot phase is
YD = (1) -y (M)] =hiX + (W] (3.6)

User 2 estimates hjX by ;_%(y{)[l; ) and feeds back to the base station. Because the base

station knows X, it can obtain the estimation of h; as h; = #X‘T(yl)[l: M- The estimation
error is fll =h; — ﬁl.

Let hy = Ug, and hy, = Ug,. During the data phase, i.e. timeslots ¢t = M+1,...,T, the

transmitted signal via conjugate beamforming is x(t) = /% }Aq”sl(t) + /2 n
1

B sy 2 (1), Where

sk(t) is the data symbol for user k € {1,2} following the CN (0, 1) distribution. The received

signals at the two users are

phih; phih;

Yi(t) = ) 5—s1(t) + 1/ 5—=—s2(t) + wi(?), (3.7)
2 ||y | 2 || hy||
phyh; phih;

yg(t) = ~——= Q(t) + -~ = 81<t) + wg(t) (38)
2 ||y 2 ||y |
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The achievable rate for User k is:

M N
Ry = (1 - ?)E llog (1 -+ b)) . k=12 (3.9)
where the equivalent SNRs are defined as
BTB* 2 hTfl* 2 9\ -1
pL = (E [' . 1|2 b 2|2 ]+—> (3.10)
[hef[> [y P

and

e [\ﬁ;h;P [ghi

25\ —1
22l 1D +—) . (3.11)
[hof[* hq* ] P

The achievable sum rate is

For conventional transmission, the transmitter ignores the condition that two users need
different number of pilots and sends M pilots over M time slots, the users estimate the
channel and feedback to the transmitter. Then the transmitter communicates with the users
via conjugate beamforming [63]. Figure 3.1 shows the performance of the proposed scheme
in comparison with the conventional one under Rayleigh fading, M = 32, T = 64, User 1
has fully correlated channel and User 2 has uncorrelated channel.

We now generalize to the case where both users experience spatially correlated links and
have partially overlapping eigenspaces. Recall that the eigendirections for the two users are
U;, where U, € CM*™_ for k = 1,2. We assume without loss of generality that r > 7.
We find transmit eigendirections with orthonormal columns V, that are aligned with the
common part of the two channel eigenspaces and V1, V, that are aligned with the non-

common parts, i.e., Vo € CM*70 vV, ¢ CMx(n=ro) v, ¢ CM*(r2=70) guch that

Span(Vy) = Span(U;) N Span(Uy), (3.13)
Span(V;) = Span(U;) N Span(Uy)™*, (3.14)
Span(Vy) = Span(Us,) N Span(U;)~*. (3.15)
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8 ‘
Proposed scheme

- — = Conventional scheme

1\

sum rate

0 5 10 15 20
p(dB)

Figure 3.1. Sum rate of an FDD massive MIMO system where K = 2, M = 32, T' = 64,
User 1 has fully correlated channel, and User 2 has uncorrelated channel.
Therefore, we can write hy = [V V}]g, where g, € C™*, k =1, 2.

The proposed scheme has two phases. The pilot phase has r; time slots, and the data
phase has T'— ry time slots. In the pilot phase, the base station sends pilots in the subspace
of Vy in time slots 1 to 7o, X[1.,y) = 1/p V. The received signal at User k is

T0

+ (WD[LTO]' (316)

(YZ)[lzro] = \/ﬁhZVé + (WZ)[l:ro] = x/ﬁgl [

O(T'kf'r‘o) XTo

In the next ry — 7y time slots, the base station sends pilots to two users simultaneously in

subspaces Vi and Vj, the transmitted signal is

Ir -7
X[T()-i-l:?“z] = g <\/1< [ 2—T0
O(T‘1*T‘2)><(T2*7’0)

+ V;) . (3.17)
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The received signals at two users are:

07’0><(T‘27T0)
(yD[TO'H:W] = hIX[To-HITQ] + (WD[T0+1ZT2} - \/;gI L, + (WD[To-i-l:Tz}? (3'18>

_O(Tl—m) x(ro—rq)

07‘0><(T’2—7”0)
(y;)[r‘o+1:r2] = h;X[roJrl:Tz] + (W;)[roJrl:rz} = \/;g; + (W;)[To+1ir2]' (3.19)
ITQ*TO
T . . A~ a/p/2
Based on (y3)p.r,], User 2 obtains a MMSE estimates g, = m(yQ)[MQ] of g and feeds

back to the base station. The estimation error is go = go — go. In time slots 5 + 1 to rq, the
base station sends pilots for User 1 in the remaining eigenspaces and sends data to User 2

via beamforming as

0 _ o
X Pl ~| rexlri—ra) v g
[ro+1:r1] \/;( 1 [ ] [Orzxro 2] ”(gp[ 2+1 ]HS;Q)? (320>
T0 ro

IT'l —r2

where 895 € C™ 7" contains i.i.d. CN(0,1) data symbols. The received signal at User 1 is:

07"2 x(r1—r2)

p
<YI>[r2+1:r‘1] = hIX[errl:n] + (WD[errl:m} = \/;gI + (WD[errl:h] (3.21)

ITl —Tr2

. ) . /o2
Based on (y])p.r], User 1 obtains a MMSE estimates g; = Wpil(yl)[l;n] of g1 and feeds

back to the base station. The estimation error is g; = g; — &;. The received signal at User 2

is
(yg)[m-&-l:ﬁ] = h;X[T’2+1:7’1] + (W;)[Tz-‘rlﬂ“ﬂ (322>
OTQXT‘O 07”0><(T‘2—1”0) g*

= \/;gg ngz + (W) fra+1:01) (3.23)

01, —rg)xro | - 2/lrotira]

P/ P (g;)[r +1op ](g;)[r +1:7]

- 5’ (g;)[ro'f‘l”?] HSE? + 5 y AT : g : S12—2 + (W;)[TQ-i-l:Tﬂ' (324)

||(g2)[ro+1:rz]||
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User 2 decodes s99 and achieves the rate

- Pl(&T ] 2
ARy =~ Tz]E{log (1 +- _oll(88 o1l ] )} (3.25)
) +1

[ ‘(g2 )[7'0+1:7'2] (g2)[7'0+1:7'2] |2
2 H(g;—)[role:rQ]”Q

With the help of the feedback, the base station generates estimation for the two channels
via h; = [Vo Vi]g1, and hy, = [Vo Va|gs. The estimation errors are h, = h; — h; and
hy, = hy, — h,. During the data phase, the transmitted signal via conjugate beamforming is

h h
P gry 22 g1 (3.26)
2 [ b | 2 || hy|]

Xip41:1) =

where s, € CT~" k = 1,2, contains i.i.d. CA/(0,1) data symbols for User k. The received

signals at the two users are

VDo) = 8|}|lhh|| s E‘H 4 (WD (327)
(¥Y2) 411 = El:j sy + \/7“}2111| s1 + (Wa) 4117 (3.28)

User k decodes s, and achieves the rate
Ry, = (1 - %)E [1og (1+ Pk“flkHQ)} . k=12, (3.29)

. . N IhTh|? IhThy|2 2 -1 N |hlhy2 Inlh|?
Wltithe equivalent SNRs p; = (IE [ THE + ”]1;12‘2‘2 }+p> and py = (E [ H%z|2|2 + THE +
2
2

The achievable sum rate is:

R =Ry + Ry + AR,. (3.30)

3.2 The K-User Case with Symmetric Eigenspace

In the following subsections, we consider the K-user case. In this case, for a general (ir-
regular) correlation structure, the signal design matching the correlations is complicated.

Therefore, in order to emphasize the gain of correlation-based rate splitting and product
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superposition, we focus on some special configurations of the eigenspaces. The first con-

sidered special eigenspace configuration for the K-user case is the symmetric correlation

structure. We first present the case when K = 3. Under the symmetry assumption, we have
A A A

{1}y = T{2} = T{3} = P1, T'{1,2} = T{1,3} = T'{2,3} = P2, and T{1,2,3} = P3-

Define the matrix V as the collection of all the eigendirection vectors, which means
V=[Vuy Vi Vigy Vi Visy Visy Vs (3.31)

where V; € CM*"7 contains the eigenvectors spanning the subspaces of all users in J.
Now we decompose the channel as hy = [V 7|xcs8r where g, € C™. For example, h; =
[Viy Vg Vg Vies e

In the first p; time slots, the base station sends pilots to three users simultaneously in

subspaces Vi),V and Vysy. The transmitted signal is

p * * *
Xip] = \/;(V{l} + Vig + Vig). (3.32)

The received signal at User £ is

P *
(YD1 =/ SLViey + 5T (3:33

User k estimates h; V7 [k} to obtain h Vi (k) and feeds back to the base station. The estimation

k) = hiViy —

to users ¢ and j in the subspace of Vy; ;1(i # j) and data to the remaining user via conjugate

error is hTV hTVEk} In the next 3py time slots, the base station sends pilots

beamforming. For example, in the first ps time slots, it sends

Viyhi
Xipi+1p1+ps] = \/7 (23 T \/7 1} = S11 (3.34)
HV{1}h1H

where s1; € CP? contains i.i.d. CN(0,1) data symbols. The received signal at User 2 or

User 3 is

(yZ)[P1+1:p1+Pz] = \/;hT (23} T (Wk)[PH-l prpas K =2,3. (3.35)

61



User k (k = 2,3) estimates h V7, ., to obtain hTV* and feeds back to the base station.

{2,3} {2,3}
The received signal at User 1 is
T T V{l}h* T
(Y1) pr+1:p1+p2) = 2h1V{1}—* 11+ (W) 141142 (3.36)
IV hil

\/7||V{1}h*||sll + \/; 1 ?HHV h*H S11 T (WD[I’lJFl:PlJFPﬂ' (337)
{1371

User 1 decodes s;; and achieves the rate

2||VT, k)2
AR, = %E[log <1 o allVighil )] (3.38)

bV hy |2
VinViy | +1

p
5l N HE
VT, il

In the subsequent p, time slots, the channel coefficients in Vy; 3y, Vi 2y are estimated and
and fed back, and the achievable rate for User 2 and User 3 can be calculated similarly.

In the following ps3 time slots, the base station transmits pilots in Vg1 2 31 as X{3p,+1:3ps+ps] =
VPV{i23- User k receives (Y7 ) 3p2t1:3p2-+ps] = VOV 55 + (Y1) 3pat1:3pa-tps]> €Stimates
h; V7, 55 to obtain fl%V?Lw} and feeds back to the base station. From the feedbacks in the
first T, = p; + 3p2 + p3 time slots, the base station obtains estimates flk of hy, k =1,2,3.
The estimation error is flk =h; — flk

During the data phase, the transmitted signal via conjugate beamforming is

fl*
Xt 11 = \/7 S3, (3.39)
Hh1H Hh2|\ Hth

where s, € CT~77 contains i.i.d. CN(0,1) data symbols for User k. The received signals at

User 1 is

phihi . [phihi . [phih;
2 S ST 52 s34 (W1)iz, 177, (3.40)
3 [ 3 ||hy| 3 |||

YDz +1:1) =

User 1 decodes s; and achieves the rate

. 1+ 3p2 + p3 p”fll“Z
||th2 ||hz||2 Hh ||2

62



The achievable rate of User 2 and User 3 can be calculated in the same way.
The achievable sum rate is

3
R=> (Ri+ARy). (3.42)

k=1
Now we extend this scheme to the K-user scenario. Following the signaling structure

developed in the 3-user case, the transmit scheme has three phases. In the first phase, some
pilot signals are transmitted. In the second phase, the remaining pilots are transmitted while
at the same time, some users also receive data. In the third phase, the channel state is known
(due to pilots transmitted in the earlier two phases) and the base station beamforms to all
users.

The first phase has LK/ZJ X(G(K,1))p, time slots, in the first x(G(K,1))p; = p; time
slots, the base station sends £ Zfil V. In the same way, during the following time slots,
the base station sends pilots which will not interfere with each other. The users estimate
the channel coefficients in these subspaces and feed back to the base station.

The second phase has Zl[iLK/QJH X(G(K,1))p, time slots, where x(G(K, 1)) = ([l() . In
this phase, the base station sends pilot in some eigendirections and simultaneously beamforms
to the users which are not interfered by the pilots. For example, when sending the pilots in
Vi12,..,k—2}, the transmitted signal is

V.  .h% VT hi
p {(k-1}'K-1 ¢ D re UK o
SN 2 PR L SP
{1,2,...,.K—2} {K-1} N K—-1 {K} N
3 IVik_ 1}hK—1|| V7Y hK||

{K}

where the equivalent channels V7 (K- 1}h* _, and V7 i K}h* have been estimated and fed back

in the first phase. During these time slots, User 1 to User K — 2 can estimate their channel
coefficients in the direction of Vi, . x_2y, while user K — 1 can decode sx_; and User k
can decode sg.

In the third phase, which has T'— T, (K, 0) time slots, the base station beamforms to all

users with the estimated channel by sending

[Z Rl (34
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at time slot t =T — T (K,0)+1,...,T.
Finally, the total rate that can be achieved is the sum of the rates achieved during phases

two and three.

3.3 The K-User Case with On-Off Correlation

The second special correlation configuration is motivated as follows. Experience shows that
small values of correlation are often inconsequential to the rate and thus can be treated
as uncorrelation in signal design. Furthermore, interference-free pilot reuse is only made
possible under rank deficient correlation matrices, i.e., some transmit antenna gains are fully
deterministic conditioned on the others. Therefore, we consider a K-user channel where the
pairs of transmit antennas are either uncorrelated or fully correlated for each user, and refer
to it as on-off correlation. Specifically, consider the channel vector hy, = [hy1 hra ... hga”
of any User k, for any i,j € [M], we assume that either hy; = hy; (fully correlated) or
E [h; ;hrs] = 0 (uncorrelated).

Consider the case where the channel coefficients of User 1 are fully correlated, the channel
coefficients of User k are uncorrelated, while the remaining K — 2 users have fully correlated
channel coefficients with respect to some antennas. Let us group the antennas into L +

M-1

1 groups: the first group has the first antenna, the [-th group has = antennas from

(M—-1)(1-1)
L

+2 to @ + 1. We assign the users to each group as follows: User k is assigned

to group [ if the channel coefficients of User k corresponding to the antennas in group [ are

fully correlated, i.e h, ( h for 1 <i,5 < % Because User 1

W"‘H—i = k,W—f—H—j’

has fully correlated channel coefficients, it is assigned to every group.

The base station transmits the following signal in the pilot phase:

X[I:M] = \/15 dlag (/007 U1, Ulu-{7 V2, 71211;7 <+ UL, ULUE) ) (345)

where v9 = 1 and v; € C, u; € C'T 1’1, [ =1,2,...,L are mutually independent random

variables following the distribution CN(0,1). Here {v;}1, are the symbols for User 1 and w,
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is for one of the users in group [. The received signal at User k is:

(Vi) = Ve X+ (W) (3.46)

User k estimates X h; via MMSE and feeds back the estimated version pT\/ﬁl(yk)[lz M) to the
base station. Because the base station knows X, it obtains an estimated version of the
channel of User k as hy, = pT‘/‘jX_T(yk)[le]. The estimation error is h, = h;, — h,.

Denote the fully correlated channel coefficient of User 1 as hy & hig =hig=-- =

hi . In the first time slot, User 1 receives y;(1) = \/_1_11 4+ wy(1). It estimates h; by

?Ll = p—‘ﬁyl(l) and the estimation error is ?Ll =hy — h1 We have that h1 ~ CN( , +1) and
hl ~ CN( , +1) In the time slots W—I—Z l=1,...,L, User 1 receive yl(w+
2) = \/ﬁlevl + w1(% +2). User 1 can decode {v;} and achieves the rate
| hal”
ARy = ZE |log (1 + 'Ol 1 ) (3.47)
oE [ |*] +1
L[ plp+1) 2 2
=—E |l 1+=—=—"—2|h 4
T _Og<+2p+1’1‘ (3.48)
L 20+1 20+1
= Tlog(e) exp( pp )El( pr ), (3.49)

where Ey(z) £ [ eT_tdt is the exponential integral function.

In addition, if User k is assigned to group [+ 1, [ = 1,..., L, denote hk Gt U1 =

hk,7<MZI>l+3Ul+1 == hk?(JM—lg(l-H)_i_l’Ul_Fl = Bk7l+1. In time slot (M Lt + 2, the received signal
of User k is
ye (C 4 9) = /by g+ wi (Y2 1 9), (3.50)

User k can estimate the equivalent channel Bk,l+1 by lizkﬁlﬂ = pT\/ﬁlyk(( T DI 2) and the esti-
mation error is ]zlk’H_l = Bk,l—i—l - Zk,l—&-l‘ We have that E |:|]£Zk:,l+1|2] = % and E [|?Lk,l+1|2] =
—L_ In the next Y=L — 1 time slots, User k receives
p+1 L

yk(@ +2+t> \/_hkl+1ul+1t+wk(( Ol —|—2—|—t> (351)
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fort =1,2,...,%— — 1. Therefore, User k can decode u;;; and achieve the rate

M
= 2
M—-1)/L—-1 h
ARy = ( T),/ E |log (1 I J ’“”“2‘ ) (3.52)
i pE [‘hk,zH! } +1
(M-1)/L-1_] plo+1) s o
= T E _log 1 + m‘hk,l_kﬂ . (353)

In the beamforming phase, the base station beamforms to the users according to the

estimated channel with equal power. The transmitted signal is

Xiv11) = Vi Z 0 (3.54)
K=l k||

where s, € CT~=M contains i.i.d. CN(0,1) data symbols for User k. The received signal at

User k is:

(Vi) 1) = hZX[MH;T] + (W) (1) (3.55)

hlh, o
=4/—= +(w )[M+1:T]. (3.56)
V K& Z T

User k decodes s; and achieves the rate

M 2 ||
R (1_?)141% (1+ L — )} (357)
KE[ e 2 2 ||If,l|l|2 ] 1

Finally, the achievable sum rate is:

L+1

R= ZR +ZARZ (3.58)

Figure 3.2 shows the performance gain of the proposed scheme with respect to the con-

ventional one under the following configuration: K = 10, L =9, M =64, T = 128.
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Figure 3.2. Sum rate of an FDD massive MIMO system in on-off correlated fading where
K =10,M =64, T = 128.

67



CHAPTER 4

COHERENCE DIVERSITY IN THE MIMO RELAY CHANNEL! 2

In this chapter, we begin by proving the theorem: under identical coherence intervals for the
source-relay, relay-destination, and source-destination links, the relay cannot provide any
DoF gains compared with the direct link alone. This is a simple but important negative
result that is independent of antenna configurations at the three nodes and is used as a
reference. When the coherence intervals are unequal, we start with a representative example,
design signaling appropriately for the unequal coherence intervals, and show the resulting
DoF gains. Then we broaden the result by removing the constraints from the length and
alignment of the coherence blocks, showing that the DoF gains persist in the more general
case. Furthermore, a new scheme combining product superposition and relay scheduling is
proposed, motivated by the following observation: Whenever a pilot-based relay is activated,
the relay pilots impose a cost (in degrees of freedom) due to their interference with source-
destination transmission. In the new scheme, this cost is compared to the relay gains, and
the relay is activated accordingly. We show the extent to which this new scheme improves the
degrees of freedom of the relay channel. This paper also studies multiple parallel relays under
non-identical coherence intervals, wherein transmission strategies are studied and achievable

degrees of freedom are calculated.

1©2019 IEEE. Reprinted, with permission, from F. Zhang and A. Nosratinia, "The Degrees of Freedom
of MIMO Relay under Coherence Diversity," 2019 IEEE International Symposium on Information Theory
(ISIT), 2019, pp. 1177-1181

2(©2021 IEEE. Reprinted, with permission, from F. Zhang and A. Nosratinia, "Coherence Diversity

DoF in MIMO Relays: Generalization, Transmission Schemes, and Multi-Relay Strategies," 2021 IEEE
International Symposium on Information Theory (ISIT), 2021, Accepted
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Figure 4.1. Relay channel with coherence diversity

4.1 System Model

Consider a MIMO relay in full-duplex mode as in Figure 4.1. The source and destination
are equipped with Ng and Np antennas, respectively. The relay has Ngi receive antennas
and ng transmit antennas. The number of active (powered) relay transmit antennas in a
transmission scheme is represented with n,., which is optimized in each scenario. Obviously

n, < ng. The received signals at the relay and destination are:

yr = Hgrxs + Wi (4.1)

yp = Hspxs + Hrpxp + Wp, (4.2)

where xg and xp are signals transmitted from the source and relay. wr and wp are i.i.d.
white Gaussian noise and Hggr, Hrp and Hgp are channel gain matrices whose entries
are i.i.d. Gaussian. Channel gain entries and noise components are zero-mean and have
unit variance. Channel gains experience block fading, remaining constant during the co-
herence intervals which are, respectively, of length Tsgr, Trp and Tsp, satisfying Tsg >
2max(Ng, Ng), Trp > 2max(Ng, Np) and Tsp > 2max(Ng, Np). Channel gains are inde-
pendent across blocks [58]. The source and relay obey the power constraints E[tr(xsx’)] < p

and E[tr(xgx’z)] < p. We assume there is no CSIT at the source or relay.
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The source sends messages to the destination with rate R(p) at signal-to-noise ratio p.

The degrees of freedom at the destination achieving rate R(p) are defined as

d— 1im 2P)
p=ro0 log(p)

(4.3)

4.2 Aligned Coherence Blocks

We first show that the relay cannot provide any gains in degrees of freedom under identical

coherence intervals. Then we analyze the scenarios where the coherence times are unequal.

4.2.1 Identical Coherence Times

Proposition 3. When relay link coherence times are identical (Tsp = Tsg = Trp = T'), the

relay does not improve the degrees of freedom of the source-destination link, namely:

in(Ng, N,
d = min(Ns, Np)(1 — w» (4.4)
Proof. From the cut-set bound,
R < min{l(xs;yr, ys|xr), I(xs,Xr; ¥p)} - (4.5)

If Ng < Np, consider the broadcast component of the cutset bound: R < I(xgs;yr,¥Ys|Xr)-
Because Tsp = Tsg = T and there is no CSIT, the right hand side in the inequality is up-
per bounded by the capacity of a point-to-point channel having Ng transmit antennas and
(Np + Ng) receive antennas with coherence time T, which is Ns(1 — ££)log p + o(log p).

Then we have

d < Ng(1 - %), (4.6)

which can be achieved by the direct link alone.
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If Ng > Np, we focus on the MAC component of the cutset bound: R < I(xg,Xg;¥p)-
Since Tsp = Tsg = T, the right hand side is upper bounded by the capacity of a point-to-
point channel having (Np + Ng) transmit antennas and Np receive antennas with coherence

time T', whose capacity is Np(1 — %) log p + o(log p). Then we have

1< Np(1 - =2) (4.7)

and this degrees of freedom can also be achieved by the direct link alone. This completes

the proof. O

4.2.2 A Representative Example for Unequal Coherence Times

To pave the way for the analysis to come, and to motivate the direction taken by this paper,
we provide an example whose purpose is to illuminate the main features of the problem in
a simple setting. In this example, the source and relay are equipped with two antennas and
the destination is equipped with three antennas. The coherence times of the three links are
as follows: Tsp = Trp = 8 and Tsr = 00, i.e., the source-relay channel is static, therefore
the cost of training over this link is amortized over a large number of samples, so we can
assume the relay knows Hgpg.

The source uses product superposition, sending
XS = U[I2702><17V]7 (48)

where U € C2*2 and V € C?*5,

At the relay, the received signal is
Yr =HgrXs+ Wgr = HsgU[Iy, 051, V] + Wi (4.9)
The received signal during the first two time slots is

Y}, = HgrU + W, (4.10)

71



The relay knows Hgr and decodes U. The signal decoded by the relay in the previous block
is U’ and the two rows of U’ are uj, u, € C'*2,

The relay powers only one antenna for transmission and sends
Xz = [01x2, 1,u},u), 0] € C'*5, (4.11)
The received signal at the destination is:
Yp=HspXs+HrpXp+ Wp

U[I27 02 1, V]
= [Hsp, Hgp| g +Wp

/ /
01><271au7u70

\%
= [HspU, Hgp) [13, ] + Wp, (4.12)

uj, ub, 0
The destination estimates the equivalent channel [HgpU, Hgp] in the first three time slots
and decodes V,u] and u). In this proposed scheme, the destination can achieve the degrees
of freedom (2 x 5+2x 1x2)/8 = 1.75. In comparison, a traditional relaying scheme assigns

pilots and training according to the smallest coherence time and achieves the degrees of

freedom 2 x (8 —2)/8 = 1.5.

4.2.3 Coherence Conditions T = 00

When Tsi = oo, the training resources required for the source-relay link can be amortized
over a long period and are therefore negligible. This scenario occurs when source and relay

are either stationary, have a dominant line-of-sight component, or both.

Theorem 9. In a relay channel with Tsg = oo and Ng < Np, the following degrees of
freedom are achievable, where N§ £ min{Ng, Ng}:
If Tsp = Trp,

Ng + n,
Tsp

NN

d= (1 .
( Tsp —n, — Ng

) max min{Ng + n,, Ng + (4.13)
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Figure 4.2. Signaling structure of product superposition

If Trp = KTsp
Ng +n, . { (K — 1)n,
d=(1— ———)maxmin< (Ng +n,)(1+ ,
(= 2 i { (Vs 4 ) (14 o)
N¢+ (K —1)n,
Ng(1 5 . 4.14
s +TSD_nr_NS)} 414
If Tsp = KTrp
N, . N KNG — Ng }
d=(1—- —=——)maxmin{ (Ng +n,)(1 + ——"—-), Ng(1 + ——=>—"-) 7. (4.15
(1 e { Vs 4 014 o ) N g S L (01s)

Proof. When Tsp = Tgp, the proposed signaling structure is presented in Figure 4.2. In

this case, the source sends the product superposition signal:
XS = U[IN5>ON5><nT>VS]7 (416)

where n, < min{Ng, Np — Ng},U € CVs*Ns and Vg € CNs*(Tsp—nr=Ns),

At the relay, the received signal is
YR = HSRXS + WR = HSRU[INS; ONSXnM Vs] + WR. (417)
The received signal during the first Ng time slots is

Y}, = HegU + W, (4.18)
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The relay knows Hgr and decodes U. Assume the message decoded by the relay in the

previous block is U’. The relay uses n, transmit antennas, sending
Xz = [0y, xNg, In,, V| € C*T50 (4.19)

where Vg € Cr*(Tsp—nr—Ns)

The received signal at the destination is

Yp =HspXs+HrpXr+ Wp

UlIng, Ongxn,s Vs
= [Hsp, Hrp) s O | +Wp

OTLrXNsv In»m VR

Vs
= HspU, Hep]Ing+n,), +Wp. (4.20)
Vg

The destination estimates the equivalent channel [HspU.Hpgp]| during the first (Ng + n,)
time slots and then decodes Vg and Vg. At the destination, the decoded messages have
two parts: Vg from the source and Vg from the relay, which provide degrees of freedom
Ns(Tsp — n. — Ng) and n,.(Tsp — n, — Ng). The message in Vg is from U’. The degrees
of freedom the relay can decode from U’ are Ny Ng. The rate of the message emitted by the
relay is bounded by the rate it decodes from the source. Adding up the degrees of freedom
provided by the source and the relay, and optimizing the number of transmit antennas at
the relay, the end-to-end degrees of freedom are (4.13).

When Trp = KTsp, our scheme has a transmission block from the source that has length
KTsp, which we divide into sub-blocks of length Tsp. During the first sub-block, the source

sends the signal

X}S” - Ul[INs7ONS><nr7Vé’]7 (421)

where n, < min{Ns, Np — Ng}, Ul € C¥s*Ns and VL € CNsx(Tsp—n:—Ns),
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The relay decodes U! and uses n, transmit antennas and sends
Xk = [0,,xns I, V3] € C* s, (4.22)
where Vi € Cr*(Tsp=n=Ns)  The received signal at the destination is

Vl
Yl = HE XS + HepXh + Wh = [H U Hapl[Tvson. | 0| |+ Wh (423
Vi
In the first sub-block, the three signal components V§, Vz and U! respectively provide for
the degrees of freedom Ng(T'— n, — Ng), n.(T" — n, — Ng) and N§Ng.

During the following (K — 1) sub-blocks, the source sends the signal
X% = Ur[ly,, VE], 2 <k < K, (4.24)

where V& € CNsx(Tsp—nr—Ns)

The relay uses n, transmit antennas and sends:
XIIC% = [On, xNs> Vl]iz] e CrrTso, (4.25)
where V% € C*(Tsp=Ns) The received signal at the destination is

Vi

Y}, = Hip X + Hpp Xy + Wh = [HE, U, Hip) | T, | +wh. (4.26)

Vi
During Sub-block k, the destination can decode V% V% and U*, which respectively
provide degrees of freedom Ng(T' — Ng),n.(T' — Ng) and N§Ng. Therefore, the end-to-end
degrees of freedom are (4.14).
When Tsp = KTgp, our source transmission block has length KTrp, with sub-blocks of

length Txrp. For the first sub-block, the source uses product superposition, sending
X = U[lyg, Ongxn,, Vg] € CVs*TrD, (4.27)
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In the remaining K — 1 sub-blocks with length Tkp, the source sends
X% = Ul0ngxn,, VE] € CNs*Tro, (4.28)

where n,, < min{Ng, Np—Ng}, U € CNsxNs V‘]év € CNs*(Trp—nr—Ns) and Vg € CNsx(Trp=—nr)
k=23 . K.

The received signal during the first Ng time slots is
Y, = HgpU + W7, (4.29)
The relay knows Hgr and decodes U. Then it uses n, transmit antennas and sends
X5 = [0n,xng, In,, V] € CH>7TrD, (4.30)
during the first sub-block with length Trp. In the remaining K — 1 sub-block the relay sends
X =[1,,,Vk] € Cm>Tro, (4.31)
During the first sub-block, the received signal at the destination is

Y} = HspXg + HppXp + Wp

Uy, Ongxn,, VL
~ Hap HYy) [ O VR G
OanNsv:[nwVIl%

Vs

Xb

= [HspU,H})] [I(Ns+m), + W, (4.32)

The destination estimates the equivalent channel [HgpU, H}, ] during the first (Ng+n,.)

time slots and decodes V7§,
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During Sub-block k, the received signal at the destination is

Y4 = HspX5 + H p X5 + Wh

U[ON TLT7V§]
:[HSDaHl;%D] ° N +Wllc)
I, ,VEk
e
S
= |H%,, [HspU, HE ] i + Wk, (4.33)
R .

The destination estimates Hf,, during the first n, time slots. Because the destination
is already estimated HgpU, it knows the equivalent channel [HgpU, H%,]. During the
remaining time slots, the destination decodes V&, V% which respectively provide degrees of
freedom Ng(T —n, — N,) and Ng(T —n,). V provides degrees of freedom n, (T — n, — N;)
and V&(2 < k < K) provides degrees of freedom n,.(T — n,). Adding up the degrees of
freedom and optimizing the number of transmit antennas at the relay produces (4.15). This

completes the proof. O

Corollary 3. The degrees of freedom in Theorem 9 are optimal under channel conditions

Tsp = Tsr and antenna configuration:
(N) — Ns)(Tsp — Npp) < NgNs (4.34)

where N# = min{Ng + ng, Np}. In this case, the DoF is:

Np

Aoy = N7 (1 —
Dt D( TSD

). (4.35)

Proof. For achievability, the relay activates n, = Nj;—Ng antennas for transmission. Because
the condition (4.34) holds (equivalent to dy < d3), according to Theorem 9, the degrees of
freedom

Np,
Tsp

1 %
_D{NS(TSD_nr_NS)+nT(TSD —np — Ng)} = Np(l — =)

Ts
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are achievable. For the converse, from the cut-set bound, the capacity of the relay is upper
bounded by (Y p; Xg, Xg). Because the coherence times of the source-destination and relay-
destination links are identical and the coherence blocks are aligned, this mutual information
is equivalent to the capacity of a point-to-point channel with Ng 4+ ng transmit antennas
and Np receive antennas with coherence time Tsp. The degrees of freedom upper bound for

N—%’J). This completes the proof. O

this point-to-point channel is N}, (1 — T

Corollary 4. When Tsp = Tgrp and Tsg = oo, the relay degrees of freedom are strictly

greater than the degrees of freedom of source-destination link alone.

Proof. From Theorem 9, the direct link alone can achieve the following degrees of freedom:

d = X (Tsp — Ng). Choose n, = 1. If d3 < dy, the degrees of freedom achieved by the

TSD

proposed scheme are

1 N
d>—(Ns(Tsp — 1 — Ng) + N2) = - S
SD

2 —5 (Tsp — Ng + N; — 1). (4.36)

Obviously, d > d'; if dy < d3, the degrees of freedom achieved are

1 Ng + 1
d>——(Ng(Tsp — 1 — Ng) + (Tsp — 1 — Ng)) = —
~ Tsp Tsp

(Tsp — 1 — Ng). (4.37)

Because Tsp > 2Np > 2Ng + 2,

go Vst

(TSD —1-— Ns) > T—(TSD — NS) =d. (438)
SD SD

This completes the proof. O

Remark 3. Theorem 9 highlights strictly positive gains, e.q., N¢ = Ngr = 3, Np = 5,T =
6,K =2, d = %,d’ = %. But under some conditions, e.g. when the relay-destination

coherence time is too short, the relay pilot requirements will eat into the gains. For example,
when Ng¢ = Np = 3,Np =5,T =4, K =3, d=2,d = %, the relay does not provide any

DoF' gains.
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4.2.4 Coherence Conditions Tsr < 00

When Tsp is bounded, one can no longer assume that the relay knows Hgr with negligible

training cost. The following theorem states the achievable degrees of freedom.

Theorem 10. In a relay channel with link coherence times Tsgr = KTsp, and antenna

configuration Ng < Np, the following degrees of freedom are achievable:

[f TSD = TRD;

NS + ny : (K _ 1)N§NS’
g Nsin Nedm N | 4.39
( Tsp )H}Le:xmm{ s S+K(TSD—nr_NS)} ( )
If Trp = K'Tsp and all coherence length pairs have integer ratios, equivalently rr?jr)l(((lfglfg’/)) €N,
Ns +n, . (K= Dn,
d=(1--2=2"1 {(s +m(1 ’
( TSD )HL&TLXHHH ( S+n)( +K’(T5D—nr_NS))
K'(K — 1)N§ + K(K' — 1)n,
Nl } 4.40
s R R Ty~ — Ns) A
]fTSD — K/TRD
. | Ny (K — 1)N; — K Ng
( TRD) n}g}{mln ( 5+n )( K’(TRD _ nr)> S< + KK/(TRD - nr) )

(4.41)

Proof. When Tsp = Tgp, our transmission block has length KTsp. This transmit block has

K sub-blocks with length Tsp. During the first sub-block, the source sends the signal
X}SY = [INsa ONSXnT7 V}S‘]; (442)

where V! € CNsx(Tsp—nr=Ns)  The destination estimates the channel Hgp. The relay
estimates Hggr during the first Ng time slots.

In the next (K — 1) sub-blocks, the source sends
X% = Ur[Ing, Ongxen, VE], k=2,... K, (4.43)
where n, < min{Ng, Np — Ng}, U¥ € CNs*Ns and V& ¢ CNs*(Tsp—n-—Ns),
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The received signal at the relay is
Y}, = HsrU"[In,, Ongn,, VE]. (4.44)
The relay knows Hgr and decodes U* and uses n, transmit antennas, sending
X5 = [04, <, In,, V] € CH 7750, (4.45)
where V& € Cr-x(Tsp=n=Ns)  The received signal at the destination is:

\&

Y = HypX§ + Hpp Xy + Wi, = [Hg, U Hypp | Tivg ), + Wi (4.46)

Vi

The destination estimates the equivalent channel [H%,U* HY ] during the first (Ng + n,)
time slots , and decodes V¥ and V%, respectively provide degrees of freedom Ng(T'—n, — Ng)
and n,.(T —n, — Ng) per transmit block of length Tsp. For all k € {2,..., K}, the degrees of
freedom provided via U* are NjNg, hence the total degrees of freedom the relay can decode
are (K — 1)N{Ng per transmit block of length KTgp. Therefore, adding up the degrees of
freedom during the super block of length Tsp and optimizing the number of relay transmit
antennas, the end-to-end degrees of freedom are given by (4.39). This completes the first
part of the theorem.

We now consider Tgrp = K'Tsp. Recall that in this section we are focusing on fading
blocks that are aligned, thus the ratio of any pair of coherence times is an integer. Therefore
we have the following two cases for the coherence time configurations.

In the first case, Trp = (K'/K)Tsg = K'Tsp, where (K'/K) is an integer. Our trans-
mission block from the source has length Trp and is divided into sub-blocks with length

Tsg. During the first sub-block, from time slot 1 to Tsp, the source sends the signal
X5 = [Ing, Ongxn,, V] € CVo7T5P, (4.47)
where n, < min{Ng, Np — Ng}, V! € CNsx(Tsp=n-—Ns),
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The relay estimates Hgr and sends
Xk = [0n,xng: In,, V] € 70, (4.48)

where Vi € Cn*(Tsp=n=Ns)  The received signal at the destination is

Y} = [Hgp, Hrp) Iivgn), + W, (4.49)

Vi

The destination estimates [Hg,,, Hzp] and decodes Vi and V. Then every Tsp time slots,

the source sends the signal
X§ = U" Iy, Ongxn,, V] € CNs*Ts0, (4.50)
where Uk~ € CNs*Ns VE ¢ CNs*(Tsp=n=Ns)  The relay decodes U*~! and sends
X% = [0,,xng, V] € C'¥Tsp, (4.51)
where V% € C*(Tsp=Ns)  The received signal at the destination is

V5§

Y} = [H5,U", Hpp) [INS, + W (4.52)

Vi

The destination can decode V% and V% which respectively provide degrees of freedom Ng(T—
Ns) and n,(T — Ng) and U* can provide degrees of freedom NjNg.

In the remaining sub-block of length Tsr, the relay-destination channel keeps constant
and it has already been estimated by the destination. Therefore, the relay does not need to

send pilots. Then every Tgp time slots, the transmitted signals at the source are:!

IThe following expression represents the signaling structure, the information carrying matrices U* and
Vg are independent across different sub-blocks, but for convenience, we use the same notation across different
sub-blocks.
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X% = Uk[ly,, VE], 2 <k < K, (4.54)

where n, < min{Ng, Np — Ng}, V& € CNs*(Tsp=n=Ns)  The relay decodes U* and sends
(4.51), with the codeword representing the message of the latest decoded U*. In this way,
the destination can decode V& and V%.

The degrees of freedom the relay can decode are K?/(K —1)NENg. The source-destination
link achieves total degrees of freedom Ng(K'Tsp — n,. — K'Ng). The relay-destination link
achieves total degrees of freedom n,.(K'Tsp — n, — K'Ng). Adding it up with the degrees
of freedom the source-destination link achieves and optimizing the number of relay transmit
antennas, it results in the achievable degrees of freedom in (4.40).

In the second case, Tsg = (K/K')Trp = KTsp, where (K/K’) is an integer. The
transmission block from the source has length Tsr and is divided into sub-blocks with length

Trp. During the first sub-block, from time slot 1 to Tsp, the source sends the signal
X5 = [Ing, Ongxn,, V] € CNo7T50, (4.55)

where n, < min{Ns, Np — Ng},V! € CNsx(Tsp=n=Ns),

The relay estimates Hgr and sends
X}k = [0, xng, In,, V] € C¥Ts0. (4.56)
where V} € Crr-*(Tsp=nr=Ns) " The received signal at the destination is

Vs

Y}, = [Hgp, Hrp) [I(N5+nr)7 + W, (4.57)

Vk

The destination estimates [Hg,,, Hrp] and decodes V§ and V. Then every Tsp time slots,

the source sends the signal
Xk = UMy, VE] € CNs*Tsp, (4.58)
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where Uk~1 € CNs*Ns VE ¢ CNs*(Tsp=Ns) The relay decodes U*~! and sends
X% = [On,xng, V] € CT50, (4.59)
where V& € C-*(Tsp=Ns) The received signal at the destination is

\&

Y}, = [Hep U, Hep] | Iy, + W5, (4.60)

Vi
During each remaining sub-block of length Trp, from time slot 1 to Tsp, the source sends

the signal
X}S' - UI[INS7 Ongxn,s Vé‘]: (4'61>

where n, < min{Ng, Np — Ng}, V! € CNs*(Tsp=nr—Ns),
The relay decodes U' and sends

X5 = (00, xng, In,, V] € CxTs0, (4.62)

where Vi € C*(Tsp=n=Ns) - The received signal at the destination is

Vs

Y}, = [Hgp, Hep) [I(N5+m), + Wi, (4.63)

Vk
The destination estimates [Hg,,, Hgp] and decodes V§ and V. Then every Tsp time slots,

the source and the relay sends the signal with the same structure as (4.58),(4.59). The

received signal at the destination is

Y} = [Hep U Hpp) [INS, + W5, (4.64)

Vi
The degrees of freedom the relay can decode are (K — 1)N¢Ng. The source-destination

link achieves total degrees of freedom Ng(KTsp — %nr — K Ng). The relay-destination link

can provide total degrees of freedom n,.(KTsp — %nr — K Ng). Take the minimum of the
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degrees of freedom the relay can decode and can transmit. Adding up the degrees of freedom
the source-destination link achieves and optimizing the number of relay transmit antennas,
it results in the achievable degrees of freedom in (4.40). This completes the second part of
the theorem.

When Tsp = K'Tgrp, our source transmission block has length Tsr and is divided into
sub-blocks with length Tsp. In the first sub-block, during time slot 1 to Trp, the source
sends

X}g = [INsa 0N5><nr7vé‘] S CNSXTRD- (465)

The relay estimates Hgr and sends
X} = [0, xngs In,, VE] € C TR0, (4.66)
During the remaining (K’ — 1)Tgp time slots, every Trp time slots, the source sends
X = [Ongun,, VE] € CVs7Tm0 2 < | < K7, (4.67)
and the relay sends
X5 = [, Vi) € C*Tre, (4.68)

where n, < min{Ng, Np — Ng}, Vi € CNs*(Tro=n=Ns) and Vk ¢ CNs*(Tro—nr) | =
2,..., K.
During the first Trp time slots, the received signal at the destination is

1
S

Xb

YID = [Hgp, H}%D] [I(NSJFW), + W}j.

The destination estimates [Hgp, Hyp] during the first (Ng + n,) time slots and decodes

Vi and VL. Then every Tgp time slots, the received signal at the destination is

Vi

Vi

vi - [H w1, || | 5w,
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Figure 4.3. DoF for TSR = 00, TRD = TSD =T

In the following (K — 1) sub-block of length Tsp, the source-relay channel Hgp keeps
constant and has already been estimated by the relay. Therefore, we copy the transmission
strategy in the proof of Theorem 9, when the relay knows the channel Hgg. The source and
the relay send the signals (4.21), (4.22), (4.24), and (4.25).

The degrees of freedom the relay can decode are (K — 1)N§Ng. The source-destination
link can provide total degrees of freedom K Ng(K'Trp — K'n,. — Ng). The relay-destination
link can provide total degrees of freedom Kn,(K'Trp — K'n, — Ng) . Adding it up with
the degrees of freedom the source-destination link achieves and optimizing the number of
the relay transmit antennas, the achievable degrees of freedom in (4.41) are obtained. This

completes the proof. O

Figure 4.3 compares the performance of the proposed scheme with a conventional trans-
mission strategy which designs signals according to the shortest coherence time, demonstrat-
ing the gains in degrees of freedom. The antenna configuration is Ng = Nr = 3 and Np = 5.
The coherence intervals are Tsg = 00, Trp = Tsp = T. The proposed scheme has a signifi-

cant gain in degrees of freedom over the conventional transmission. Figure 4.4 considers the
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Figure 4.4. DoF for TSR = KTRD = KTSD = KT, T =10

case where Togr = KTrp = KTsp = KT, T = 10 for different K. When K =1, i.e., all links
have identical coherence times, and there is no degrees of freedom gain to be obtained; when

K grows, the gain achieved by the proposed scheme increases.

4.3 Achievable DoF with Relay Scheduling

In this section, a new scheme combining product superposition and relay scheduling is in-
troduced. The following theorem highlights the main result of this section. For convenience

and compact expression of the results, we define:

dy & Ng(Tsp — n, — Ng),
dy £ n,(Tsp — n, — Ng),

d3 = NS min{NS, NR},

Theorem 11. In a relay channel with link coherence times Tsgr = oo, Tsp = Tsr and

antenna configuration Ng < Np, under aligned coherence blocks,

o [fdy < ds, the degrees of freedom d = ﬁ max,, (di + dy) are achievable.
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o [fdy > ds, the following degrees of freedom are achievable,

Ns(Tsp — Ns) + —(dy + da)). (4.69)

Proof. If dy < ds, the achievable degrees of freedom follow Theorem 9. When dy > ds,
the transmit scheme with relay scheduling has two phases, each of them lasting an integer
multiple of the coherence interval T'. In both phases, product superposition is used at the
source, but the relay action is different in the two phases. We transmit for ds — d3 coherence
intervals in Phase 1, followed by transmitting ds coherence intervals in Phase 2.

During Phase 1, the relay transmission is deactivated, but the source continues to trans-
mit via product superposition. In this phase, in each coherence interval of length Tsp,
the source delivers to the destination data rates corresponding to its point-to-point degrees
of freedom bound, which is Ng(Tsp — Ny), while delivering additional data to the relay
with degrees of freedom d3. We transmit in Phase 1 for dy — d3 coherence intervals, there-

fore, the normalized (per-symbol) average degrees of freedom contribution of this phase is

d2—d
%R%NS(TSD — Ns)

During Phase 2, the relay is activated and the source sends the product superposition
signal

XS - U[IN570NS><TLT7VS]7 (47())

where n, < min{Ng, Np — Ng}, U € CNs*Ns and Vg € CNs*(Tsp=nr=Ns),
The relay knows Hgr and decodes U. The relay uses n, antennas for transmission,

sending
XR = [OanNs7Inr7VR] S CnTXTSD, (471)

where Vi € C?*(Tsp—nr=Ns),
The destination estimates the equivalent channel [HspU, Hgp] during the first (Ng+n,.)

time slots and then decodes its messages. Destination receives: Vg from the source and Vg
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Figure 4.5. Signaling structure with relay scheduling

from the relay, providing degrees of freedom d; and ds, respectively. Phase 2 consists of d3
coherence intervals; further, recall that the relay has stored data available from Phase 1 in
addition to the data it is receiving during Phase 2. Therefore, the relay can send data with
degrees of freedom ds to the destination. Hence, during phase 2, the normalized per-symbol
degrees of freedom are TSLDZ—z(dl + dy).

Adding the degrees of freedom achieved in Phase 1 and Phase 2 and optimizing the

number of relay transmit antennas to be activated produces (4.69). This completes the

proof. O

Remark 4. For comparison, we also mention the degrees of freedom without relay schedul-
ing. For a relay with the following setup, Tsgr = 0o, Tsp = Tsg =T and Ng < Np. From

Theorem 9, the following degrees of freedom are achievable:

1
d=— maxmin{ch -+ dg, d1 -+ dg}
Tsp nr

Figure 4.5 shows the signaling structure of the proposed scheme combining product su-
perposition and relay scheduling. Figure 4.6 shows the comparison between the achiev-
able degrees of freedom of product superposition alone and with relay scheduling when

Ng = 3, Np = 5 for different T'.
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Figure 4.6. Achievable DoF in Theorem 11

4.4 General Coherence Times

4.4.1 Unaligned Coherence Blocks

We now consider the scenario when the coherence blocks are not perfectly aligned. To build
intuition and motivation for the proposed approach, we begin with an unaligned counterpart
to the toy example in Section 4.2.2. Then we generalize the result to arbitrary coherence
times.

The unaligned toy example is as follows: the source and relay are equipped with 2
antennas and the destination is equipped with 3 antennas. The coherence times of the three
links are as follows: Tsg = 00, i.e., the source-relay channel is static, therefore the cost of
training over this link is amortized over a large number of samples and we can assume the
relay knows Hggr. Furthermore we assume Tsp = Trp = 8. The coherence block of the
channel Hgp starts from the 5th time slot of Hgp.

The source uses product superposition, sending
Xs = U[Iy, 0241, Vg, (4.72)

where U € C?*2? and Vg € C?*5.
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At the relay, the received signal is
Yr=HgsrXs+ Wgr =HgrU[Iy, 051, Vs + Whp. (4.73)
The received signal at the first two time slots is
Y, = HgpU + W7, (4.74)

The relay knows Hggr and decodes U. Assume the signal decoded by the relay in the previous
block is U’ and the two rows of U’ are uf, u}, € C'*2.

The relay uses one antenna for transmission and sends
Xz = [01x2,1,u},u), 0] € C'*5, (4.75)

Now in one coherence block of Hgp, because of the unaligned blocks of Hgp, the received

signal at the destination will experience two realizations of Hgp in the first 4 time slots,

Yp = [HspU,Hgp] [Ig, + Wp. (4.76)

ui(1)
The destination estimates the equivalent channel [HgspU, Hgpq] in the first three time slots

and decodes Vg, u/(1).

In the next 4 time slots, the received signal is:

Vg
Y = [HspU, Hpps] FW). (4.77)

u}(2),u5,0

The first part of the equivalent channel HgpU is already estimated. The second part Hgpo
will be estimated in the next transmit block. Therefore, the destination decodes V%, u}(2)
and u). This shows that when the coherence blocks from the source and relay to the des-
tination are unaligned, the proposed scheme can still be used. The destination achieves

the same degrees of freedom d = (2 x 542 x 1 x 2)/8 = 1.75 when the coherence blocks
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are aligned and with the same coherence times. Recall that for a conventional technique
that trains all links according to the shortest coherence interval, the degrees of freedom are
d=2x(8-2)/8=1.5.

A similar reasoning can be used to verify that when the coherence blocks from the source
to the relay and the source to destination are unaligned, the offset of these coherence blocks

will not affect the achievability of our proposed scheme.

4.4.2 Arbitrary Coherence Times

The following theorem states the achievable degrees of freedom with arbitrary coherence

times and Figure 4.7 illustrates the signaling structure for the achievable scheme.

Theorem 12. In a relay channel with link coherence times satisfying Tsg > Tsp, Trp >
Tsp. and antenna configuration Ng, Nr < Np, the following degrees of freedom are achiev-

able:

1
max{Ns(TsgTspTrp — NsTsrTrp — nTsrTsp)+

d= ———
TsrTspTrp nr

min{ NgNs(TsgTrp — TspTrp), " (TsrTspTrp — NsTsrTrp — nTsrTsp)}}.  (4.78)
where N¥% = min{Ng, Ng}.
Proof. Design the pilot-based achievable scheme in the following manner:

e On the multiple-access side, pilots sent from the relay and the source will be allocated
in different time slots, such that they will not interfere with each other. In addition,

during these time slots no data is sent, avoiding pilot contamination.

e On the broadcast side, the source-relay link needs fewer pilots than the source-destination.

Thus, product superposition enables transmission of additional data to the relay.
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Figure 4.7. Signaling structure for relay with arbitrary coherence times

In the following, we consider a super-interval of length TsgrTgrpTsp, after which the
coherence intervals will come back to their original alignment. The achievable degrees of
freedom are calculated as follows:

In each source-destination coherence interval Tsp, Ng pilot symbols are transmitted. We
call the pilot symbols in each coherence block a pilot sequence.

Therefore, for source-destination link, we repeat the length-Ng pilot sequence TsgrTrp
times over the length-TsgTrpTsp super-interval. Having coherence time TsrTrp, the re-
lay needs TspTrp pilot sequences. Hence, product superposition can be applied during
TsrTrp — TspTrp pilot sequences of length Ng to send data to the relay. Data with Ng
degrees of freedom per symbol can be sent.

Over each super-interval, the relay-destination link needs TsrTsp pilot sequences of
length n,. The pilot slots will be non-overlapping with pilots transmitted from the source
terminal.

In each super-interval, the source and the relay each have (TsgTspTrp — NsTsrTrp —
n,TsrTsp) time slots available for sending data. The source has Ng degrees of freedom

available per transmission, and the relay n, degrees of freedom per transmission.
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The relay can decode at most NiNg(TspTrp — TspTrp) degrees of freedom, therefore, it
provides min{ NyNs(TspTrp —TspTrp), nr(TsrTspTrp — NsTsrTrp —nTsrTsp)} degrees
of freedom, the minimum of the degrees of freedom the relay can receive and can transmit.

We can now add the degrees of freedom of the source transmission (subject to relay
constraints) with the degrees of freedom provided by the relay transmission, and optimize

the number of relay antennas to be activated. This concludes the proof. O

The following corollary shows the achievable degrees of freedom when using relay schedul-

ing with arbitrary coherence times.

Corollary 5. Define the following notation:

N, r
di 2 Ns(1— % - ),
Tsp Trp
N, .
dg ﬁ 77/T<1 — —S — ik s
Tsp Trp
d3 = N5Ns( ! !
ST\ Ten T

In a relay with coherence diversity,
e [fdy < ds, the degrees of freedom d = max,, (dy + d3) are achievable.

o [fdy > ds, the following degrees of freedom are achievable.

dy —d d
d = max(———— Ng(1 — =)+ d—3(d1 +dy)), (4.79)
nr 2 SD 2

Proof. 1f dy < d3, the achievable degrees of freedom follows Theorem 12. When dy > d3. the
transmit scheme with relay scheduling has two phases. In both phases, product superposition
is used at the source, but the relay action is different in the two phases, as described in the
sequel. We propose to transmit for do — d3 coherence intervals in Phase 1, followed by

transmitting ds coherence intervals in Phase 2.
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Figure 4.8. Channel with multiple parallel relays

During Phase 1, the relay transmission is deactivated but the source continues to transmit
via product superposition. In this phase, the source delivers to the destination data rates
corresponding to its point-to-point degrees of freedom bound, following the result in [52]
which is Ng(Tsp — Ng), while delivering additional data to the relay with degrees of freedom
d3. We transmit in Phase 1 for dy — d3 coherence intervals, therefore, the normalized (per-
symbol) average degrees of freedom contribution of this phase is %ﬁNS(TSD — Ng).

During Phase 2, following the strategy from the proof of Theorem 11, the relay has stored
the data available from Phase 1 in addition to the data it is receiving in Phase 2. Therefore,
the relay can send data with degrees of freedom d5 to the destination. Hence, during phase 2,
the normalized per-symbol degrees of freedom are g—z(dl + dy).

Adding the degrees of freedom achieved in Phase 1 and Phase 2 and optimizing the

number of relay transmit antennas to be activated produces (4.79). This completes the

proof. O]

4.5 Multiple Relays in Parallel

This section studies the MIMO relay channel with K full-duplex relays under coherence

diversity. The source and destination are equipped with Ng and Np antennas, respectively.
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Relay k has Ng(k) receive antennas and uses ng(k) < Ng(k) antennas for transmission.
Figure 4.8 shows the structure of the system. The received signals at the relays and the

destination are:

yr(k) = Hsr(k)xs + wgr(k), k=1,...,K (4.80)

Yp = HS’DXS + Z HRD(]{?)XR(k‘) —+ Wp, (481)

where xg and xg(k) are signals transmitted from the source and Relay k. wgr and wp are
i.i.d. zero-mean Gaussian noise and Hgg(k), Hrp(k) and Hgp are the channel gain matrices,
whose entries are i.i.d. Gaussian. We assume there is no free channel state information at
the destination and no CSIT at the source or relay. In the parallel relay geometry, there are
no inter-relay links. Denote the coherence time of the link between the source and Relay &

as Tsr(k) and the coherence time of the link between Relay k and the destination as Trp(k).

4.5.1 Achievable DoF for Two Parallel Relays

Consider the following channel with two parallel relays. Tsg(2) = KyTsgr(1) = KoK Tsp =
KK, T and the destination knows the channel state of Hgp(1) and Hgp(2), ie., Trp(1) =
Trp(2) = co. Denote N§(i) = min{Ng, Ng(i)}. If Relay 1 or Relay 2 is activated alone, the

achievable degrees of freedom are

4, = max { Ng(1 - %) + min {(1 - %)%,m(i)(l - %)}}. (4.82)

ng(i)

When Relay 1 and Relay 2 are both activated, consider a transmission interval of length
KyK,T. During each coherence interval of length KyK,T, Relay 1 and Relay 2 send the
messages they decoded in the previous interval. The transmitted signal from Relay 1 and 2

over each sub-interval of length T" has the following structure and is repeated Ky K7 times:
XR(Z) = [OnR(i)XNsa VRi]) 1= 17 2. (483)

95



During the first coherence interval of length KT, in the first sub-interval of length 7', the
source sends Xg = [Ing, Xp]. Relay 1 and Relay 2 estimate their channels. The signal at

the destination is

INSa VD
Yp = [Hsp, Hrp(1), Hrp(2)] |0, 0)xns, VRi | + Wb

0n(2)xNs» YV R2
(4.84)
Vp
= |Hsp, [Hsp, Hrp(1),Hrp(2)] |V | | + Wo.

Vg

The destination estimates Hgp and decodes the messages in Vp, Vg, and V gy, which re-
spectively provide degrees of freedom Ng,ng(1) and ng(2) per symbol over this interval of
length (7" — Ng).

In the remaining K7 — 1 intervals of length T', the source sends the signal
Xg=U\[Iy,, VY], i=1,2,...,K —1, (4.85)

where Ui € CNs*Ns_ Relay 1 has already estimated its channel in the first interval of length
T. Tt can decode U}, achieving degrees of freedom N%(1)Ng. The total degrees of freedom

Relay 1 can decode are (K7 — 1)N§(1)Ng. The received signal at the destination is

Vp
Yp = HSDUia[HSDUiaHRD(l%HRD(z)] Vi + Wp. (486)

Vi

The destination estimates HspU?} and decodes Vp, Vg, and Vgs.
During each of the remaining K5 — 1 coherence intervals of length KT, the transmitter

sends a signal with the same structure as the first sub-interval of length 7', multiplying it
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from the left by Ug, which contains the message for Relay 2. During each interval of length

K, T, the transmitted signal from the source has the following structure
X = U} [Ty, Xp), Ulllng, X3, U [In X3, ..., U~V Iy, X . (4.87)

During these K5 — 1 coherence intervals with length K77, the channel Hgg(2) remains the
same as in the first sub-interval of length K,7T. Therefore, in each interval of length KT,
Relay 2 can achieve degrees of freedom N§(2)Ng. The total degrees of freedom Relay 2 can
decode are (K3 — 1)N§(2)Ng over coherence interval of length Ko KT

At Relay 1, the first Ng symbols received during the first sub-interval of length K7 are
Yir(1) = HL, U + Wk(1). (4.88)

The first Ng symbols during the remaining sub-interval of length KT received at Relay 1

are

Yr(1) = H,,UU + Wg(1), i=1,..., K, — 1. (4.89)
Relay 1 first estimates its equivalent channel
Hip(1) = Hy,(1)U3, (4.90)

and decodes X% (1), which provides degrees of freedom N%(1)Ng. The total degrees of
freedom Relay 1 can decode are (K3 — 1)(K; — 1)N§(1)Ns.

At the destination, the received signal during the first sub-interval of length KT is

Vp
YD = [HSDU%, [HSDU%‘, HRD(l)a HRD(Q)] VRl

VR2

+ Wp, (4.91)

and the received signals during each remaining sub-intervals of length KT are

Vp

Yp = [HSDU;‘U§,[HSDU§U§,HRD<1),HRD<2>} Vil | +Wh, (4.92)

VR2
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wherei=1,...,K;—1,j=1,...,Ky—1. The destination estimates the equivalent channel
HSDU%, HSDUgUﬁ, and decodes Xp, Vg1 and Vg, which respectively provide degrees of
freedom Ng,ng(1),ng(2) per symbol over each time interval of length K77

During each interval of length K, KT, the source-destination link can always provide
degrees of freedom Ng(1 — %) per symbol. The maximum degrees of freedom decoded at
Relay 1 are (K1 —1)N§(1)Ng+ (K2 —1)(K1—1)N&(1)Ng = Ko(K;—1)N§(1)Ng. The degrees
of freedom decoded at Relay 2 are (K —1)N§(2)Ng. During each interval of length Ky KT,
the number of time slots available to relays for sending data is Ko K1 (1T — Ng). The degrees of
freedom the relays can provide via the relay-destination links are ng(i) Ko Ky (T—Ng),i = 1, 2.
Noting that the emitted data by the relays is limited by what they can decode, we add the
degrees of freedom of the two relays, normalize it per symbol, and optimize the number of

transmit antennas activated at the relays. The following degrees of freedom are achievable

- Ng(1— =2 o )y2sUWs
= { N1 = %) min {(1 = ) TN ) 00
Ky — 1 N3(2)Ns T — Ng
+ min { e T ,nR(Q)T} . (4.93)

4.5.2 Achievable DoF for K Parallel Relays

We now extend the ideas and techniques that were developed in the two-relay framework to
the K-relay case. In the interest of economy of expression, the parts that are similar to the
earlier discussions are condensed or omitted.

Denote with Tgr and Tgp the size-K vectors containing, respectively, source-relay and
relay-destination coherence times, and Ny, ng the number of receive and activated transmit
antennas at the relays. Also, we allow a subset k of relays to be used. We denote the
coherence times of selected relays with size-k vectors T’, T” and the number of receive and
activated transmit antennas in selected relays with size-k vector N’, n’. The following result

shows the achievable degrees of freedom, which is maximized over selected relays and their
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activated transmit antennas. We define a selection matrix Py containing k£ rows of the

identity matrix Ix g, corresponding to the k indices of the selected relays.

Theorem 13. For the multi-relay system (4.80) and (4.81), the following degrees of freedom

are achievable:

k

N n 1 N n

d = {Nl——— ik 1 E: N Ni( AN e }
lgnax s( Tep - ,E,, )+ 2 Inln{ s T B Tz) ( Top T]”)}

subject to: [T T N'n'| = P[Tsg Trp Ng ngl, (4.94)

where Ty £ Tsp, P is a selection matriz consisting of k rows of the identity matriz of size

K, and N} = min{Ng, N/}.

Proof. The transmit scheme is designed in the same spirit as Theorem 12: On the multiple-

access side, pilots sent from the relays and the source are allocated in different time slots;

on the broadcast side, product superposition enables transmission of additional data to the

relays. Throughout this proof, we index only the activated relays, e.g., Relay i refers to i-th

activated relay. Without loss of generality, 7| < Ty < --- < T}j. Define T} = Hle T! and
= Hle T!. In the following, we consider a super-interval of length 7175Tsp,

During each coherence interval of length 77, Relay ¢ needs TspT2Ty/T] pilot sequences
each of length Ng for channel estimation. Relay (i — 1) needs TspT217 /T pilot sequences
each of length Ng. Therefore, product superposition can be applied during (TspT>T1/T} | —
TspT>Ty/T]) pilot sequences each of length Ng to send data to Relay i, providing N;* degrees
of freedom per symbol.

During each coherence interval of length Tsp in the source-destination link, Ng pilot
symbols are transmitted. In each super-interval (see above) 1775 pilot sequences of length
Ng are transmitted.

For channel estimation between Relay ¢ and the destination, during the super-interval of

length T1T5Tsp, the destination needs T1T5Tsp/ T} pilot sequences of length n).
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Therefore, In each super-interval, the source and relays can use (TspT1Ty — NgT1 15 —

Zle ;—_,;,TlTQTSD) time slots to send data. The source has Ng degrees of freedom available

per transmission, and Relay i has n degrees of freedom per transmission.

The decodable degrees of freedom Relay i are at most N/ Ng(TspToT1 /T —TspToT1/T)).

Therefore, the degrees of freedom Relay ¢ can provide are:

k
. TopToTi  TspToT: n
i— 7 i=1 " °

It is the minimum of the degrees of freedom Relay i can receive and can transmit.

We can now add up the degrees of freedom of the source and the relays and normalize it
per symbol. Optimizing the relays to be activated (over k and P) and the number of transmit
antennas at the relays n’, the degrees of freedom in (4.94) are achieved. This concludes the

proof. O]

Figure 4.9 and 4.10 show the achievable degrees of freedom with two parallel relays
equipped with Ng = 3, Np = 6, Ng(1) = Ng(2) = 1 antennas. In Figure 4.9, Tsp = 5,

Trp(1) = Trp(2) = oo, 1243 = 2. Tn Figure 4.10, Tsp = 5, Trp(1) = Tan(2) = oo,

Tsr(1) = 6 and different %’;gg
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CHAPTER 5

CONCLUSION

This dissertation investigates wireless channels with multiple users when they have coher-
ence disparity in space and time. Correlation and coherence diversity gains are explored in
broadcast and relay channels.

Broadcast channels with spatial correlation disparity are investigated where the links have
non-identical correlations. Both the degrees of freedom and rate results are demonstrated.
Results are presented for two cases where CSIR are given and are not free. Applying product
superposition and rate splitting, gains are presented in correlation diversity scenarios.

In massive MIMO, in order to reduce the resource for training, this paper proposes
transmit strategies using product superposition and rate splitting, which make use of the
statistical difference between the channel of different users. Sum rate is calculated to evaluate
the performance.

Relay channels with non-identical coherence times are studied. The degrees of freedom
are analyzed in the following scenarios: difference coherence time configurations and with

multiple parallel relay nodes.
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