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Future communication applications will include image and video transmission in ad-

dition to mostly-voice services of today. The high rate of these applications, their high

quality of service, and combating the hostile wireless channel require advanced algo-

rithms and techniques in various layers and blocks of the system. This dissertation

looks at the problem of digital data transmission from two perspectives.

In the first part of the dissertation we investigate is the interaction between channel

coding in physical layer and source coding in higher layers. Efficient compression

of finite-alphabet sources requires variable-length codes, however, in the presence of

noisy channels, error propagation in the decoding of these codes severely degrades

performance. To address this problem, we consider redundant entropy codes and

iterative source channel decoding and obtain performance bounds and design crite-

ria for the composite system. We also improve upon the performance of residual

redundancy source channel decoding via an iterative list decoder.

In the second part of the dissertation, we investigate the performance of channel

equalizers in wireless fading channels. Due to the existence of temporal and spatial

interference in wireless channels equalizers must be employed. We analyze various

equalizers in single- and multi-antenna frequency-selective channels.
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CHAPTER 1

INTRODUCTION

Future communication applications will include image and video transmission

in addition to mostly-voice systems of today. The high rate of these applications, their

high quality of service, and combating the hostile wireless channel require advanced

algorithms and techniques in various layers and blocks of the system.

In this dissertation, we look at the problem of multimedia digital transmis-

sion from two perspectives. First, we look at a cross-layer issue: interaction between

channel coding in physical layer and source coding in higher layers, which issue is im-

portant in both wireline and wireless systems. Second, we investigate the performance

of channel equalizers in wireless fading channels.

Source compression schemes are designed independently of communication

channel. This is mainly motivated by the celebrated Shannon source channel separa-

tion theorem, which states that optimal source and channel coders can be designed

separately. The separation theorem requires based on asymptotically long sequences

and unconstrained complexity which, needless to say, are not met in practice. In

reality, a joint approach is necessary for optimality, subject to finite delay and com-

plexity. Joint source channel (JSC) coding approaches benefit systems operating over

both benign Gaussian channel as well as hostile fading channels.

In the second part of this dissertation, we investigate the performance of var-

ious equalizers in fading channels. Wireless channels suffer from multi-path fad-

ing, which causes non-flat frequency response. The detrimental effect of frequency-

1
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selective channels is removed by equalization. We analyze the performance of several

practical equalizers.

1.1 Outline of the Dissertation

A fundamental block of every compression system is entropy coding. Since

source samples usually do not possess uniform distribution, constant-length entropy

codes cannot remove the redundancy efficiently. Variable-length codes (VLC) are

more efficient and are widely used. Whenever variable-length entropy codes are used

in the presence of a noisy channel, each channel error propagates and causes significant

harm. Despite using channel codes, some residual errors always remain, whose effect is

magnified by error propagation. Mitigating this undesirable effect is of great practical

interest.

One approach is to use the residual redundancy of variable length codes for

joint source channel decoding. In Chapter 2, we consider the JSC coding problem by

focusing on entropy codes and channel codes. Motivated by the principle of turbo

decoding, we investigate the role of intentionally left redundancy in VLC and the

optimum way of source and channel decoding. Since the performance of concatenated

codes depend on the constituent codes, we calculate performance bounds for the

source channel system and investigate the role of redundancy in the VLC and the

channel code. Our analysis leads to a generalized form of VLC which provides better

performance than the VLC currently used in some compression standards.

Chapters 3, 4, and 5 concentrate on the performance of various equalizers in

fading channels where the interference may occur in time, space or both.

In frequency-selective single-antenna channels interference occurs in time. In

Chapter 3, we consider such channels and evaluate the performance of maximum like-
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lihood, linear, and decision-feedback equalizers and determine their diversity order.

Chapter 4 considers frequency-nonselective multiple-antenna channels where

spatial interference exists. We evaluate the performance of linear and decision-

feedback equalizers for two spatial encoding architectures.

In Chapter 5, we bring the two previous chapters together and consider multiple-

antenna frequency-selective channels where the interference occurs in time and space.

We evaluate the performance of maximum likelihood and linear equalizers and deter-

mine their diversity order.

Finally, Chapter 6 reviews the contribution of the dissertation and discusses

future work.



CHAPTER 2

CONCATENATED ERROR-CORRECTING ENTROPY CODES AND

CHANNELS CODES

Efficient compression of finite-alphabet sources requires variable-length codes

(VLC). However, in the presence of noisy channels, error propagation in the decoding

of VLC severely degrades performance. To address this problem, redundant entropy

codes and iterative source/channel decoding have been suggested, but to date neither

performance bounds nor design criteria for the composite system have been available.

We calculate performance bounds for the source/channel system by generalizing tech-

niques originally developed for serial concatenated convolutional codes (SCCC). Using

this analysis we demonstrate the role of a recursive structure for the inner code and

the distance properties of the outer code. We use density evolution to study the

convergence of our decoders. Finally, we pose the question: under a fixed rate and

complexity constraint, when should we use source-channel decoding (as opposed to

separable decoding). We offer answers in several specific cases.

We also improve the performance of residual redundancy source/channel de-

coding via an iterative list decoder made possible by a non-binary outer CRC code.

We show that the list decoding of VLC’s is beneficial for the redundant codes used in

state-of-art video coding standards. The proposed list-decoder improves the overall

performance significantly in AWGN and fully-interleaved Rayleigh fading channels

even with a short list.

4
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2.1 Introduction

In this chapter we consider the problem of the transmission of discrete, finite-

alphabet sources over a noisy channel. Since efficient entropy codes are often variable

length codes (VLC), a conventional channel decoding followed by a typical symbol-by-

symbol entropy decoding will result in error propagation, thus a single uncorrected

channel error may result in a long sequence of data errors. This difficulty has led

to a search for error resilient entropy codes. A prominent example is the reversible

variable length code (RVLC) [3] utilized in the video coding standard H.263+ and its

descendants. RVLC consist of a class of codes that have not only a prefix property,

but also a suffix property, thus they can be decoded from both directions.

A more comprehensive attempt at introducing error resilience into variable-

length entropy codes was made by Buttigieg [4, 5], who studied the general class of

entropy codes with error-correction ability, and introduced various sequence decoding

algorithms. Subbalakshmi and Vaisey also provided a trellis for describing VLC’s and

introduced an optimal maximum a posteriori probability decoder for variable-length

encoded sources over a binary-symmetric channel [6, 7].

Error resilient codes mentioned above are not strong enough to handle the er-

ror rates generated by most communication channels, thus a separate layer of channel

coding is usually necessary (see Figure 2.1). In such a concatenated system, itera-

tive decoding methods, originally introduced for channel codes [8, 2], provide another

opportunity for improved source/channel coding. To the best of our knowledge, the

first attempt at iterative decoding of source and channel codes is due to Bauer and

Hagenauer [1, 9], who proposed an iterative (turbo) decoding scheme between a chan-

nel code and the residual redundancy of a reversible variable-length code (RVLC).1

1For an example of iterative source-channel decoding of fixed-length codes see [10].
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Variable-length 
code

( size q )

Channel 
code

u cs

q-ary binary

Non-binary Source

(alphabet size q )
Interleaver

Figure 2.1. System block diagram

They reported a significant coding gain compared to a system with equivalent trans-

mission rate. Guyader et. al [11] proposed various algorithms in the framework of

Bayesian networks for the iterative decoding of the chain in Figure 2.1 with a Markov

non-binary source. Lakovic and Villasenor [12] studied the performance of VLC’s

followed by turbo codes and suggested combining the trellises of the VLC and the

upper convolutional code of the turbo code for more coding gain.

Despite many interesting and useful results including those mentioned above,

to date neither a comprehensive analysis nor design criteria has been available for

iteratively decoded source-channel coding systems. In this chapter, we analyze this

concatenated system, study design criteria for the constituent codes, and present

comparisons of various tradeoffs in the design of such codes, supported by extensive

simulations.

To start, we generalize the source-channel structure by assigning the error-

correcting entropy codes of Buttigieg as the outer code of the source-channel concate-

nated system. We study, via simulations, the performance of this generalized system

compared to other existing scenarios.

The central contribution of this chapter, however, is an analysis of the perfor-

mance of the concatenated source-channel codes. We employ the techniques originally

developed for serial concatenated convolutional codes (SCCC’s) [2], with the critical

difference that our outer codes (and hence our overall codes) are nonlinear, thus the

techniques of [2] need to be appropriately extended. Our analysis is general with
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respect to the choice of outer VLC’s and inner channel codes: the outer code can be

an RVLC similar to [1, 9, 12] , it can be a VLC with higher redundancy, similar to

the codes introduced in [4], or a VLC with minimum redundancy such as Huffman

codes. The analysis clarifies the roles of the inner and outer codes in the overall per-

formance, allowing us to make statements about the free distance of the outer code

and the desirability of a recursive structure for the inner code. To the best of our

knowledge, these or similar results have not been previously reported in the literature

on source-channel coding.

The analysis and simulations presented in this chapter enable us to make

several observations with practical implications. For example, the method of Bauer

and Hagenauer [9] achieved significant gain compared to systems with similar rate. We

found, however, that it is possible to improve on the scheme of [9], while maintaining

the same overall rate and complexity, by using separable source decoding and an

iteratively decoded SCCC. Thus in this case, investing computational resources into

the channel decoder alone gives better returns in terms of system performance. This

suggests that whenever the entropy code has small free distance (such as the RVLC

used in [9]) one may be better off spending the computational budget mostly on the

inner code and not on iterative decoding between source and channel codes. We also

found that in several cases, even with outer codes having larger free distance, iterative

source channel decoding may yield only a slight advantage compared with a separable

baseline system of equivalent rate and complexity. These findings are expressed in

more detail in the sequel2.

2The contribution of this chapter has been published in [13, 14, 15] and will appear in [16, 17].
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2.2 Variable-length Codes with Error-Correcting Capability

Buttigieg [4] introduced a class of entropy codes with error-correction ability

under the name of variable-length error-correcting codes (VLECC’s). These codes

have entropy coding property, in the sense that low probability symbols have longer

codewords compared to high-probability symbols. On the other hand, these codes

also have error correction capability, arising from a careful assignment of codewords to

symbols such that a minimum Hamming distance is maintained between all codeword

pairs. Obviously, maintaining a minimum distance introduces redundancy into the

code, such that its average length will be bounded away from the entropy of the

source.

Consider a q-ary source with elements denoted by u, and a variable length

code whose codewords are denoted by b(u). The minimum and maximum length of

b(ui)’s are denoted by `min and `max respectively, and the average length by `ave.

To perform maximum likelihood decoding, we need to consider a sequence of K

codewords. We now define such composite codewords. Assume the source sequence

u = (ui : i = 1, · · · , K) is entropy-encoded to the bit sequence

c = (b(u1), b(u2), · · · , b(uK)) = (c1, c2, · · · , cN) .

Because the codewords b(u) are variable length, the length of the output sequence c,

denoted by N , is variable. This leads to difficulty in analysis, therefore we partition

the overall code C into subcodes Ci such that each partition consists only of codewords

of length i. The free distance of C, denoted df , is defined as the minimum value of

the minimum Hamming distances of the individual binary codes Ci. Note that Ci are

in general nonlinear codes.

Buttigieg [4] calculates the upper bounds for the error event probability of a

VLC in the same manner as convolutional codes, by introducing the average number
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of converging paths on an appropriate trellis at a given Hamming distance. Unfortu-

nately, this approach is not appropriate for our purposes since, unlike Buttigieg, we

intend to use the variable length codes in concatenation with another code. Instead,

we use the codeword enumeration technique [2]. Considering that N , the length of the

bit-sequence c, is a random variable that takes value in [Nmin, Nmax] = [`minK, `maxK],

the upper bounds for the codeword error probability (frame error rate), PE, and sym-

bol error probability, PS are :

PE ≤
Nmax
∑

N=Nmin

Pr(N)
∑

h≥df

Ah(N)Ph

=
∑

h≥df

(

Nmax
∑

N=Nmin

Pr(N)Ah(N)

)

Ph (2.1)

PS ≤ 1

K

Nmax
∑

N=Nmin

Pr(N)
∑

h≥df

Bh(N)Ph

=
1

K

∑

h≥df

(

Nmax
∑

N=Nmin

Pr(N)Bh(N)

)

Ph , (2.2)

where Ph is the pairwise error probability, which has value Ph = 0.5 erfc(
√

hEs/N0)

in AWGN channel, and Ah(N), Bh(N) are multiplicities. Specifically, Ah(N) is the

number of codeword pairs in CN with Hamming distance h. Eventually, we are inter-

ested in the distance between symbol strings corresponding to codeword pairs with

Hamming distance h. The average contribution of two codewords of Hamming dis-

tance h to the Levenshtein distance is denoted Bh(N). Note that Ah(N) and Bh(N)

are normalized by the size of the respective codebooks CN . The exchange of summa-

tions in Equations (2.1) and (2.2) allow us to think of the terms inside parentheses

as equivalent Ah and Bh for the entire code, without the need to consider individual

code partitions separately. It is in fact more convenient to calculate Ah, Bh instead

of Ah(N), Bh(N); see for example [4, 1].
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Computation of Bh is based on the Levenshtein distance between the two

symbol sequences; dL(ui,uj). The Levenshtein distance is defined as the minimum

number of insertions, deletions or substitutions to transform one symbol sequence

into another [18, 4]. The Levenshtein distance is widely used as an error measure for

VLC’s, justified partly in light of the self-synchronization property of VLC’s [4], and

partly because of the lack of other more meaningful and useful distance measures for

VLC’s.

2.3 Trellis Representation of Variable Length Codes

Various trellis representation for VLC’s have been proposed [6, 9, 1]. Subbalak-

shmi and Vaisey [6] proposed a trellis based on the notion of complete and incomplete

states. The decoder is in a complete state if the most recently received bit completes

a codeword, otherwise it is in an incomplete state. The number of states sums up to

S + `max − 1, where S is the number of codewords. Bauer and Hagenauer proposed a

novel two-dimensional trellis which provides bit-level and symbol-level trellises in its

axis [9]. The maximum number of states depends on the length of the sequence in

bits and symbols and is N − `minK + 1.

In this chapter we employ the bit-level trellis that was proposed by Bal-

akirsky [19], and later used by Murad and Fuja [20] as well as Bauer and Hage-

nauer [1]. This trellis is obtained simply by assigning the states of the trellis to the

nodes of the VLC tree. The root node and all terminal nodes are assumed to repre-

sent the same state, since they all show the start of a new sequence of bits. Other

nodes, the so called internal nodes, are assigned one-by-one to the other states of the

trellis. The number of states of the trellis is equal to the number of internal nodes

of the tree plus one. As an example, Figure 2.2 shows the trellis corresponding to a
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Figure 2.2. The tree and bit-level trellis of [1], C1={00, 11, 10, 010, 011}

Huffman code C1={00, 11, 10, 010, 011}.

2.4 Serial Concatenation of VLC and Channel Codes

In this section, we present an analysis of the performance of the overall system

shown in Figure 2.1. The outer VLC can be a Huffman code, an RVLC, or a VLECC

and the inner code may be a convolutional or block code. Similar to [4, 1], we treat

redundant variable length codes as channel codes. We then build arguments similar

to those presented for the case of serial concatenated convolutional codes (SCCC) [2].

The key difference with SCCC is the nonlinearity of our outer code. Through the

developments in this section, we will see that it is possible to carry over several of

the design criteria of the SCCC to the concatenated source-channel codes, despite the

differences.

The interleaver maps the output of the outer codeword into another codeword

with similar weight. Unfortunately it is often not tractable to calculate weight enu-

merators in such codes due to the complicated dependencies introduced by a specific

interleaver. Instead, we use the concept of a uniform interleaver developed originally

by Benedetto and Montorsi, and subsequently used to analyze serial concatenated

codes [2]. A uniform interleaver avoids the problem of weight assignment by random-
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izing over the space of all possible interleavers: it maps a codeword of weight ` into

all distinct
(

N
`

)

permutations with equal probability 1/
(

N
`

)

.

In the following, functions and variables related to the inner code will be

distinguished by the superscript i, and those related to the outer code with superscript

o. Assume the inner code, C i, is a convolutional code with rate Ri = k
n
. The input-

output weight enumerating function (IOWEF) of the equivalent block code of the

inner convolutional code, with the input length N , is [2]:

Ai(L,H) =
N
∑

`=0

N/Ri
∑

h=di
f

Ai
`,h(N) L` Hh (2.3)

where Ai
`,h(N) represents the number of codewords with weight h generated by infor-

mation words of weight `, and L and H are dummy variables.

We use a uniform interleaver, which maps a codeword of weight ` into all

distinct
(

N
`

)

permutations with equal probability. The outer VLC has free distance

do
f , therefore:

Ah(N) =
N
∑

`=do
f

Ao
`(N)Ai

`,h(N)
(

N
`

) ,

Bh(N) =
N
∑

`=do
f

Bo
` (N)Ai

`,h(N)
(

N
`

) , (2.4)

where Ao
`(N) and Bo

` (N) are the associated multiplicities for CN , the length-N sub-

code of the outer code, Ai
`,h(N) are the multiplicities of the inner code. Summing

the contributions over all the possible `’s gives the associated coefficients Ah(N) and

Bh(N).

This derivation was facilitated by two facts. First, for two codewords a and

b we have dH(a,b) = dH(π(a), π(b)), where π is the interleaving function. Second,

since the inner code is a linear code, we may speak equivalently of codeword weights
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or codeword pair distances. In particular, for the inner code, two sequences with

distance ` = dH(π(a), π(b)), will result in two codewords with coded distance h. It

is due to this “invariance” of the interleaver and the linearity of the inner code that

our analysis remains tractable.

We can now calculate the frame error rate, PE, and symbol error rate, PS, of

the concatenated scheme:

PE ≤
Nmax
∑

N=Nmin

Pr(N)

N/Ri
∑

h=df

Ah(N)Ph

=
1

2

Nmax
∑

N=Nmin

N/Ri
∑

h=df

∑

`≥do
f

Pr(N)
Ao

`(N)Ai
`,h(N)

(

N
`

) erfc
(

√

hEs/N0

)

, (2.5)

PS ≤ 1

K

Nmax
∑

N=Nmin

Pr(N)

N/Ri
∑

h=df

Bh(N)Ph

=
1

2K

Nmax
∑

N=Nmin

N/Ri
∑

h=df

∑

l≥do
f

Pr(N)
Bo

l (N)Ai
l,h(N)

(

N
`

) erfc
(

√

hEs/N0

)

, (2.6)

where df is the free distance of the concatenated code. Similar to (2.1) and (2.2), the

above results may be presented in terms of equivalent A` and B`. This alternative

form is omitted here for sake of brevity. One may also obtain bounds similar to (2.5)

and (2.6) for the average interleaver size Nave. We note that the above union bounds

can be used with different choices of inner code, for example a convolutional code as

in [1], or a turbo code as in [12].

The asymptotic performance of the bounds above can be studied by looking

at the behavior of coefficients Ah and Bh. We mainly present the analysis for Ah;

similar developments are possible for Bh.

Following [21], the multiplicities Ah can be modeled as a polynomial function

of interleaver size, i.e., Ah ≈ β0N
α + β1N

(α−1) + . . .. We are in particular interested
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1 2 n

Figure 2.3. Concatenation of n error events with no gap in between, used in calcu-
lating the inner code multiplicity.

in the exponent α of the highest order term in this polynomial, which is indicative of

the asymptotic improvement of the multiplicity (and hence code performance) with

increasing interleaver length. To eliminate the dependency on h define

α̂ = max
h

lim
N→∞

logN Ah. (2.7)

Thus α̂ is the dominant coefficient of α(h), where we here emphasize the dependence

on h, the Hamming distance. The dominant multiplicity exponent α̂ is referred to as

interleaver gain in the literature [2]. The performance of the code, except in very high-

SNR regime, is dependent on the multiplicities of the code and therefore depends on

α̂. Whenever α̂ < 0, the dominant multiplicity gets smaller with increasing interleaver

size, therefore we will be motivated to design codes with α̂ < 0.

We define ĥ as the Hamming distance of codeword pairs having the dominant

multiplicity (the maximizer in the expression above). We now wish to calculate α̂

and ĥ. The inner code multiplicity, Ai
`,h, can be expressed as

Ai
`,h ≤

∑

n≥1

(

N/k

n

)

Ai
`,h,n , (2.8)

where Ai
`,h,n are the multiplicities for codewords with input/output weights (`, h) hav-

ing exactly n consecutive error events with no gap in between, as shown in Figure 2.3.

Equation (2.8) derives the overall multiplicities by inserting zero-runs before some of

the error events such that the overall number of trellis sections is N/k [21].

For the outer variable-length code, a similar expression can be derived with

certain modifications. Because of the nonlinearity of VLC’s weight enumeration has
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1 2 m

Figure 2.4. Pair of codewords showing concatenation of m error events with no trivial
error event in between, used for calculating the VLC multiplicity.

to be carried out through all pairs of codewords, as is shown in Figure 2.4. All error

events for the VLC must initiate and terminate in a “root state,” which is the state

where the bit sequence for a source symbol begins or terminates (see Figure 2.2). In

Figure 2.4 we show the root state as the top node. A pair of codewords of a VLC are

illustrated in Figure 2.4, using the trellis of Figure 2.2. Following a similar argument

as in [21], we obtain

Ao
` ≤

∑

m≥1

(

N

m

)

Ao
`,m , (2.9)

where Ao
`,m is the multiplicity of the pair of codewords at distance ` consisting of a

concatenation of exactly m simple error events, with no trivial error event in between.

Trivial error event is a section of the bit-trellis of the two codewords that are identical,

and furthermore it starts and ends in the root state. Equation (2.9) illustrates the

expansion of simple codepaths with m error events, to compound codepaths that

include trivial error events.

One may obtain the coefficients Ah of the concatenated code by substitut-

ing (2.8) and (2.9) in (2.4)

Ah ≤
N
∑

`=do
f

∑

m≥1

∑

n≥1

(

N
m

)(

N/k
n

)

(

N
`

) Ao
`,mAi

`,h,n

≤
N
∑

`=do
f

∑

m≥1

∑

n≥1

`!

m!n!kn
Nm+n−`Ao

`,mAi
`,h,n , (2.10)

where the approximation of
(

N
x

)

≈ Nx/x! is used. Substituting (2.10) in (2.7) we
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obtain

α̂ = max
h

(m + n) − ` ≤ b `

do
f

c + b `

wmin

c − `, (2.11)

where the bound for the outer code, b `
do

f
c, reflects the possibility of the concatenation

of error events all with minimum distance do
f , while the bound for the inner code,

b `
wmin

c, shows the maximum number of concatenated error events with minimum

uncoded weight wmin. For block codes and non-recursive convolutional codes wmin = 1

which results in a positive value for α̂, thus the concatenated code will not have any

interleaving gain. For recursive convolutional codes wmin = 2 since no finite error

event with w = 1 exists.3 Evaluating the maximum of the right hand side of (2.11)

for the recursive convolutional code results in

α̂ ≤ −b
do

f + 1

2
c + 1 (2.12)

offering interleaving gain for frame error rate PE whenever do
f is greater than two.4

Depending on whether do
f is odd or even ĥ is calculated differently. The design of

recursive convolutional codes is [2, 21].

To summarize, there are two important factors in the performance of source-

channel concatenated codes: the free distance of the outer code and the recursive

structure for the inner code. This was demonstrated by an extension of the techniques

of [2] in order to accommodate the nonlinear codes of interest in source-channel

coding. The design issues of the inner code are similar to the case of ordinary SCCC’s,

which have been well developed in the literature [2, 21].

Our analysis is based on the concept of union bound, which diverges at low

Eb/N0 values (in particular at SNR values below those corresponding to the channel

3In other words, in block codes and non-recursive convolutional codes, a single “1” leads to a
finite error event, while in recursive convolutional codes at least two “1”s are needed in the data
sequence for a finite error event.

4Similarly, calculations for Bh indicate that the interleaving gain for symbol error rate PS is
α̂B = α̂ − 1.
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cutoff rate [2]). There is no solid theoretical ground for using union bound analysis

below cutoff rate. However, as has been noted in the literature [2], design criteria

based on these bounds perform surprisingly well even at SNR values where the bounds

do not converge. Our simulations also support that conclusion.

2.5 Iterative VLC and Channel Decoding

Iterative detection (decoding) is possible when a sequence has two or more sets

of concurrent likelihood expressions for a data sequence. These sets of expressions

represent different constraints over the sequence. Obviously, all constraints have to

be satisfied for the detection process. Iterative decoding suggests satisfying each

constraint separately and repeating the process.

In iterative decoding, each decoder in turn processes the available information

about the desired signal, typically log likelihood ratios, thus modifying and hopefully

improving in each iteration the pool of available information on the received signal.

The additional information is called extrinsic information [8, 22]. Extrinsic informa-

tion represents the new information obtained in each half-iteration by applying the

constraint of a constituent decoder. An efficient way to calculate extrinsic information

is via the soft-input soft-output (SISO) algorithm [23]. In the following we discuss

the structure of the SISO module for a channel code as well as a VLC.

2.5.1 SISO Channel Decoder

A soft-output algorithm for channel decoding was introduced in [24]. A

slightly different version of this algorithm, called the SISO module, was introduced

in [23]. We give a system-level description of this block below.

The SISO module for the convolutional code, shown in Figure 2.6, works on
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sS(e)

sE(e)e
u(e)

Figure 2.5. Illustration of SISO calculation in a bit-level trellis

the channel code trellis. It accepts two probability streams P(c; I) and P(u; I) as in-

puts: the former is about the coded sequence c and the latter is about the information

sequence, u. Applying the constraints provided by the channel code, additional infor-

mation (extrinsic information) is obtained for both sequences, P(c; O) and P(u; O),

which in turn is passed to the other decoder. Each decoder repeats this process by

using the extrinsic information that was fed back as its new input.

2.5.2 Bit-Level SISO VLC Decoder

Many efficient channel decoding algorithms are trellis-based. In particular,

the Viterbi algorithm (VA), and SISO algorithms [24], [23] are all trellis-based. By

building a trellis for a VLC, one may employ these algorithms in the decoding of

VLC’s.

The trellis-based algorithms for the VLC are simpler than those for the inner

code for two reasons: First, for the VLC trellis only one node (root node) has multiple

incoming branches, thus the compare-select operation of the Viterbi algorithm and

selection of surviving path is done only for the root node. At other nodes only

the metric is calculated. Second, for VLC we do bit-level detection and there is no

reference to the input symbols except connections of the trellis, which simplifies the

SISO module.

Based on the trellis representation of a VLC introduced in Section 2.3, we
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derive an SISO algorithm for VLC’s. Following the notation of [23], the extrinsic

information is calculated as follows. At time k the output probability distribution is

evaluated as

P̃k(u; O) = h̃
∑

e:u(e)=u

Ak−1(s
S(e))Bk(s

E(e))Pk(u; I) (2.13)

where e represents a branch of the trellis; u(e), sS(e), and sE(e) are, respectively, the

branch value, the starting state, and the ending state of the branch e, as shown in

Figure 2.5. The constant h̃ is a normalizing factor to ensure P̃k(0; O) + P̃k(1; O) =

1. The quantities Ak(.) and Bk(.) are calculated through forward and backward

recursions, respectively, as follows.

Ak(s) =
∑

e:sE(e)=s

Ak−1(s
S(e))Pk(u; I)

Bk(s) =
∑

e:sS(e)=s

Bk+1(s
S(e))Pk+1(u; I)

with initial values A0(s) = BN(s) = 1 for the root state (since the trellis always starts

and ends at the root state) and A0(s) = BN(s) = 0 for all other states. In order to

exclude the input information, Pk(u; I), from the output probability, and obtain the

so called extrinsic information, both sides of (2.13) are divided by Pk(u; I):

Pk(u; O) =
P̃k(u; O)

Pk(u; I)
= h

∑

e:u(e)=u

Ak−1(s
S(e))Bk(s

E(e))

where, h is again a normalization factor.

Therefore Pk(u; I) (input probability), and Pk(u; O) (extrinsic information)

together form the a posteriori probability (APP) of the input sequence. In prac-

tice, the additive (logarithmic) version of an SISO algorithm is employed to avoid

multiplications and prevent numerical problems.
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2.5.3 Iterative Decoding and Density Evolution

An iterative decoder is shown in Figure 2.6, using the SISO blocks already

introduced. Blocks denoted π and π−1 are the interleaver and deinterleaver, respec-

tively.

SISO
(Channel Code)

SISO
(VLC)

Viterbi Decoder
(VLC)

from 
demodulator

output

P(u;I) P(u;O)

P(c;I)

P(u;I) P(u;O)

π

π−1

Figure 2.6. Iterative VLC and convolutional decoding

In each iteration, only the extrinsic information generated by each SISO block,

PCC(u; O) and PVLC(u; O), are exchanged between the soft-output decoders. After the

final iteration, the soft-sequence, PVLC(u; I) + PVLC(u; O), is decoded at symbol-level

by the Viterbi decoder over the same bit-level trellis.

The convergence of the iterative decoder can be illustrated by the density

evolution method [25], or alternatively by EXIT charts [26]. We use the density

evolution method for our analysis. We have verified the corresponding Gaussian

approximation assumption in our setting. Density evolution treats the decoder as

a nonlinear dynamical feedback system where the nonlinear input-output functions

are calculated empirically. For further information on density evolution, we refer the

reader to [25].

Density evolution considers the iterative decoder as a nonlinear dynamical

feedback system, where the corresponding nonlinear functions are calculated empir-
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Figure 2.7. Empirically measured histograms of the output of a channel code and an
RVLC SISO modules. From left to right 1,5,10,20 iterations. Eb/N0 = 1.5dB

ically. The functions describe the improvement in output extrinsic information by

a given input extrinsic information. To quantify the input and output extrinsic se-

quences and their evolution, the sequence is approximated by a Gaussian distribution,

which is mathematically justified for very large and random interleavers [25]. We have

experimentally verified this assumption for the iterative VLC and channel decoders.

A sample result of a RVLC is shown in Figure 2.7.

Each decoder is characterized with a single parameter, the ratio of the squared

mean by the variance of the empirical distribution of the extrinsic information, also

called the signal to noise ratio (SNR).5

Assume, referring to Figure 2.6, that the input and output SNR of the channel

SISO decoder are related with the function SNRCC
out = GCC(SNRCC

in , Eb/N0), where

Eb/N0 is the signal to channel noise ratio normalized per information bit. A similar

relationship exists for the variable-length SISO decoder, except it depends only on

its sole input: SNRVLC
out = GVLC(SNRVLC

in ), where SNRVLC
in = SNRCC

out. The functions

5To avoid confusion we should emphasize the distinction between the channel-induced Eb/N0 and
what we call “SNR.” The latter is a quantity that describes the reliability of the extrinsic information
during the decoding process.
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GCC and GVLC are evaluated empirically by simulation [25]. One may inspect the

convergence of the iterative decoder by the evolution of the extrinsic information from

one half-iteration to another. This is simply done by plotting SNRCC
out versus SNRCC

in ,

GCC curve, and in the same plot, SNRVLC
in versus SNRVLC

out , the curve associated with

the inverse of GVLC. When the curves are far apart the decoder converges rapidly. The

convergence may take many iterations if the curves are close, or may not converge

if they intersect. We verify the convergence behavior of some the schemes in the

following section.

2.6 List-Decoding Serially Concatenated VLC and Channel Codes

A list-decoder provides an ordered list of the L most probable sequences in

maximum likelihood sense. Then, an outer error detecting code, usually a cyclic

redundancy check (CRC) code, verifies the validity of the candidates and selects

the error-free sequence, if exists, among the candidates. Two variations of the list

Viterbi-algorithm (LVA) are reported in [27].

The advantage of the list decoder can be explained as follows. In a regular ML

decoder, for an error to occur, the closest codeword to the received sequence must be

an erroneous one. For the list-decoder to make an error, the correct sequence must

lie outside of the L nearest neighbors of the received sequence. This error is less

probable than the corresponding error in the ML decoder.

In a list-decoder, the distance between the received sequence and all the can-

didates determines the performance. Therefore, determining the exact performance

is mathematically intractable. But it is possible to calculate the asymptotic coding

gain, e.g. see [27]. In the case of AWGN channel, a geometrical argument reveals that

the asymptotic coding gain is G = 10 log( 2L
L+1

) dB for a list of length L. However,
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the actual gain is often less due to the multiplicity of the set of L nearest neighbors,

which is neglected in the analysis [27].

2.6.1 List-Decoding of Variable-Length Codes

List-decoders can also be applied for variable-length encoded sequences, given

an appropriate trellis (e.g. the bit-level trellises mentioned earlier). Our list decoding

is constructed with the help of a non-binary CRC code, which verifies the validity of

the L most probable paths in the VLC trellis. The alphabet set of the CRC code

must cover all codewords of the VLC (size q). If q is a power of a prime, it is possible

to construct a q-ary CRC code, otherwise the size of VLC should be extended to the

nearest power of a prime. One can use the a-priori knowledge that these additional

symbols are never present in the data sequence, but only (possibly) present in the

parity sequence.

The asymptotic error rate for a list of size L = 2 is based on a simple geometric

construction due to Seshadri and Sundberg [27] (see Figure 2.8). When the three

codewords are pairwise equi-distant, it produces a worst-case error probability. In

this case, the minimum-magnitude noise resulting in an error is shown by the vector

terminating at the center of the triangle. This is an effective minimum distance,

denoted deff, which is larger than dfree/2, explaining the list decoding gain, which is

equal to 10 log( 2L
L+1

) dB, as calculated in [27].

This value of asymptotic gain, however, ignores the multiplicities of the mini-

mum distance, and in our case minimum distance error event has high multiplicities6.

Therefore, we augment the asymptotic analysis of [27, 28] for L = 2, 3 list-decoder of

VLC’s so that multiplicities are taken into account. We denote by Nfree the multiplic-

6More information on the distance spectrum of VLC’s is available in [4], and two examples are
given in [1].
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Figure 2.8. Asymptotic analysis of list Viterbi algorithm.

ity of the minimum distance errors.7 The number of codeword triplets at minimum

distance that include the transmitted codeword is Neff = Nfree(Nfree − 1)/2. Thus, for

L = 2 and assuming an AWGN channel, coding gain is the difference ∆γ = γ1 − γ2,

where γ1 and γ2 are the two values of Eb

N0
such that

Neff Q
(

√

2deffγ2

)

= NfreeQ
(

√

2dfreeγ1

)

.

Closed form solutions are not available for this equation, however, the resulting coding

gain is closer to simulation results than the results of [27, 28].

Similar worst case analysis can be repeated for L = 3 list-decoder to calculate

deff. To obtain a more realistic approximation of the coding gain, we consider the

multiplicity of the worst case of the set of three codewords, which is Neff = Nfree(Nfree−

1)(Nfree − 2)/6, given Nfree ≥ 3. The coding gain is calculated in a similar way as

L = 2.

2.6.2 Proposed Iterative List-Decoder

We now introduce an approximated list-decoder for the concatenation of VLC’s

and channel codes. Our proposed iterative and list decoder is demonstrated in Fig-

ure 2.9. After the last iteration, the final soft-output sequence, which is the sum of

7The multiplicities of VLC’s in general are not integer-valued since we must average the multi-
plicities of the subcodes. In our analysis we round the multiplicities up to simplify the calculation.
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the input and output of SISO-VLC is decoded at symbol-level by employing the LVA

over the same bit-level trellis used by SISO-VLC.

SISO
(Channel Code)

SISO
(VLC)

List Viterbi 
Decoder (VLC)

from 
demodulator

output

P(u;I) P(u;O)

P(c;I)

P(u;I) P(u;O)

π

π−1

Figure 2.9. Iterative- and list-decoding of VLC and channel code

The asymptotic analysis of the list-decoder of turbo codes in [28] shows that

the coding gain of list turbo decoder is higher than the coding gain of list-convolutional

decoder. Specifically, due to the low probability of multiple free-distance error events

in a turbo-encoded sequence, the asymptotic coding gain is determined by the second

minimum distance, yielding higher gain [28]. For the case of serially concatenated

VLC’s and convolutional codes, we show experimentally in Section 2.7 that significant

improvements in coding performance can be achieved.

2.6.3 Non-Binary CRC

Wicker [29] provides a comprehensive background on Galois fields, rings of

polynomials on Galois fields, and the construction of cyclic codes. We give here a

quick summary of the key results and as well as the procedure for designing non-binary

CRC’s.

Cyclic codes are built using a generator polynomial on the underlying Galois

field GF(q). If the number of symbols in our application is not a power of a prime,

the next higher appropriate q must be chosen, since for a field GF(q), q must be either
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a prime or a power of a prime.. Cyclic codes are built from a generator polynomial

g(X) on GF(q). The codewords are all the multiples of g(X) modulo Xn − 1, where

g(X) is a degree-r polynomial that divides Xn − 1.

CRC codes are shortened cyclic codes that can encode up to n−r information

symbols. CRC codes have excellent error detection capability. The CRC code with a

generator of degree r detects all burst errors of length r or less, and the probability

that the CRC will not detect a random error is q−r. Due to the lack of a convenient

way to calculate the error spectrum of a CRC code, ad-hoc methods have been used

for code design in the binary case.

Unfortunately the existing ad-hoc techniques for binary CRC design are not

particularly helpful for the q-ary case, but nevertheless, the general structural prop-

erties, error coverage, and burst error detection properties remain the same across

different underlying Galois fields. Therefore, even though we cannot design CRC

with specified minimum distance, still it is possible to arrive at codes that have very

respectable error detection performance. For example, for the 5-ary code used in the

next section, a reasonable choice for generator polynomial is the primitive polynomial

X8 +4X6 +X4 +X3 +X2+3X +3 which requires 8 parity symbols for data sequences

of up to 390617 symbols. The undetected codeword error probability for this code is

only 2.56 × 10−6.

2.7 Experimental Results

Table 2.1 shows the 5-ary source used in our experiments and various codes

designed for this source. C1 is a Huffman code, C2 is a RVLC for this source reported

in [1], and the codes C3, C4, and C5 were designed by us with successively higher

redundancies. The redundancy of the VLC’s can be quantified by comparing their
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Table 2.1. Family variable-length codes used in Section 2.7

s PS(s) C1 C2 [1] C3 C4 C5

0 0.33 00 00 11 011 0100
1 0.30 11 11 001 1100 10011
2 0.18 10 010 0100 10111 101001
3 0.10 010 101 0101100 00000 011110
4 0.09 011 0110 0001010 000101 0000111

E[L] H=2.14 2.19 2.46 3.61 4.13 5.13

dfree 1 2 3 4 5

Table 2.2. Generator polynomials of convolutional codes used in Section 2.7 (from [2])

Recursive Non-Recursive

CC1: rate 1
2

(

1, 1+D2

1+D+D2

)

CC2: rate 1
2

(

1 + D2, 1 + D + D2
)

CC3: rate 2
3

(

1 0 1+D2

1+D+D2

0 1 1+D
1+D+D2

)

CC4: rate 2
3

(

1 + D D 1
1 + D 1 1 + D

)

average length to that of the Huffman code. The Levenshtein distance [18, 4] is used

in reporting symbol error rates (SER).

It is noteworthy that despite the differences, the trellises of the different codes

have roughly the same order of complexity. This arises due to the sparseness of the

VLC trellises, which becomes more pronounced when the code has redundancy. For a

more meaningful comparison of complexity, one may construct more compact trellises

with minimal number of states. For example, C3 has a sparse trellis with 13 states

and only 17 single-bit branches, which is equivalent to a 4-state compact trellis with

8 branches, the same as the equivalent trellis of code C2. Thus the complexities are

comparable.

Our inner convolutional codes are four-state codes with rates 1/2 or 2/3, as

shown in Table 2.2. In our experiments, a packet of K symbols is entropy-encoded, in-

terleaved, channel encoded, and transmitted using Binary phase-shift keying (BPSK)



28

0 1 2 3 4 5 6 7 8 9
10−10

10−8

10−6

10−4

10−2

100

Eb/N0  (dB)

S
ym

bo
l E

rr
or

 R
at

e 
(S

E
R

)

Simulation, K = 20
Simulation, K = 200
Bound, K = 20
Bound, K = 200

Figure 2.10. Symbol error rate of C2+CC1, K = 20 and 200 symbols.

modulation over an AWGN channel.

Our first experiment is designed to test the accuracy of our analysis. Fig-

ure 2.10 shows union bounds and simulation results for the concatenated code C2+CC1.

There are several factors to consider when reading this plot. First, union bounds

work in the high Eb/N0 regions, and the cutoff rate for this code is associated with

Eb/N0 = 2.45 dB. Second, union bounds are calculated for the optimal (ML) decoder,

while the simulations, by necessity, use iterative decoding. Finally, calculation of the

multiplicities for a nonlinear, variable-length code is a lengthy and time-consuming

process, thus we present “truncated bounds” calculated with the first 10 terms of the

multiplicities of the outer code that were available in [1]. The decoding experiment

was performed with 10 iterations, with packet lengths of 20 and 200. The bounds are

in agreement with simulations.

As mentioned in Section 2.4, higher redundancy in the outer VLC leads to

higher interleaver gain. To demonstrate this effect, we simulated the variable length

codes C4 and C2, each concatenated with the inner code CC1. To maintain (approxi-
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Figure 2.11. Performance of C2+CC1, C4+CC1(punctured to rate 8/9), and C3+CC3.
K = 2000 symbols.
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Figure 2.12. Approximate Gaussian density evolution of C2+CC1 and
C4+CC1(punctured to rate 8/9), K = 2000 symbols. An instance of the conver-
gence of the decoders at Eb/N0 = 1.5dB (dashed line staircase) is shown.

mately) the same overall rate, in the experiment with C4 the inner code is punctured

to rate 8/9, hence the notation C4+CC1(8/9). The overall rates of the two experi-

ments are 0.445 for C2+CC1 and 0.471 for C4+CC1(8/9), where the equivalent “code

rate” of a VLC is calculated by dividing the average length of the code by the av-

erage length of the Huffman code. The symbol and frame error rates are shown in

Figure 2.11 for K = 2000 symbols. For small values of Eb/N0, the code C2+CC1

outperforms C4+CC1(8/9) due to the more powerful inner code. However, the latter

starts outperforming the former for Eb/N0 > 1.5dB. The sharper drop in error rate

of the latter code is noteworthy.

The corresponding density evolutions of the iterative decoders are shown in

Figure 2.12. We use the approximate Gaussian density evolution of [25]. We show den-

sity evolutions at Eb/N0 = 1.5dB (the dashed-line staircase curve). When Eb/N0 =



31

0.5 1 1.5 2 2.5
10−4

10−3

10−2

10−1

100

Eb/N0  (dB)

Fr
am

e 
E

rr
or

 R
at

e 
(F

E
R

)

C2+CC1       4 itr
C2+CC1       9 itr
C4+CC1(8/9) 4 itr
C4+CC1(8/9) 9 itr
C3+CC3 4 itr
C3+CC3 9 itr

Figure 2.13. FER comparison between C2+CC1, C4+CC1(punctured to rate 8/9),
and C3+CC3. K = 2000 symbols.

1dB, the method predicts that neither of the codes converge. When Eb/N0 = 1.5,

both codes converge but C4+CC1(8/9) converges faster.

For further comparisons, we used the code C3 with free distance do
f = 3,

concatenated with the inner code CC3, a rate 2/3 recursive convolutional code. The

concatenated code has overall rate 0.404. The SER and FER of the this code are

shown in Figure 2.11. The code C3+CC3 outperforms C2+CC1 in the entire range

of Eb/N0 after the second iteration of the decoder. The density evolutions of the

iterative decoder of C3+CC3 is shown in Figure 2.14.

As mentioned previously, Bauer and Hagenauer [1] demonstrated coding gain

via iterative source/channel decoding. But in their case the baseline system did

not have the advantage of iterative decoding. We pose a slightly different question:

assuming we have a fixed computational and rate budget, we would like to com-

pare the source/channel iterative decoder with a separable decoder whose channel

decoder is iterative. For experimental verification of this and similar questions, we
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Figure 2.14. Approximate Gaussian density evolution of C3+CC3.

introduce three serial concatenated convolutional codes: SCCC1: CC2+CC1(8/9) and

SCCC2: CC4+CC3, both with overall rate 4/9, and SCCC3: CC2+CC3 with overall

rate 1/3.

We compare the iterative source/channel decoding of C2+CC1 with a system

consisting of the Huffman code C1 concatenated with SCCC2. The two systems have

the same overall rate and decoder complexity. The simulation results are not shown in

a separate figure, but one can compare the results of C2+CC1 in Figure 2.11 with the

results of C1+SCCC2 in Figure 2.15 (both for 9 iterations). The comparison indicates

that the case of separable source/channel decoding is superior to joint source/channel

decoding. We believe this is largely due to the small dfree of C2, which is the RVLC

used by Bauer and Hagenauer [1]. Therefore, it seems that separable decoding (with

an iterative channel decoder) can be superior to iterative source/channel decoding

when the outer code has small free distance.

Then one may ask: how does a joint source/channel decoder compare with

a separable decoder if we increase the free distance of the outer source code? We



33

0 0.2 0.4 0.6 0.8 1 1.2

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0  (dB)

S
ym

bo
l E

rr
or

 R
at

e 
(S

E
R

)

C1+SCCC2 9 itr
C3+CC3     9 itr
C1+SCCC3 9 itr
C5+CC3     9 itr

Figure 2.15. Comparison of concatenated redundant VLC and convolutional codes
versus concatenated Huffman code and SCCC’s, K = 2000 symbols.

designed several experiments to address this question. In a comparison of the sepa-

rable code C1+SCCC1 with the joint source/channel decoding of C4+CC1(8/9), we

found that especially at higher Eb/N0, the joint source/channel decoding works much

better, while at intermediate Eb/N0 the two methods perform the same.

We conducted two more experiments, whose results are shown in Figure 2.15.

The separable code C1+SCCC2, is compared against C3+CC3 (both with rates ∼

4/9), where C3+CC3 outperforms C1+SCCC2 slightly. In the same Figure 2.15,

C1+SCCC3 is compared against C5+CC3 (both with rate ∼ 1/3), and they perform

roughly similarly.

Thus, the simulations did not point to a clear and universal advantage for

either the joint or separable approach. In some cases, where the outer entropy code

has low redundancy, the separable case is clearly better, while in other cases either

the joint or the separable solution might be superior. The design choices must be

made on a case-by-case basis.
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Figure 2.16. List-decoding of C2 in AWGN channel, K=200.

2.7.1 Iterative List Decoding

We first present the performance of list-decoding of a VLC with no channel

coding. The FER of C2, with K = 200 symbols in the AWGN channel is shown in

Figure 2.16. The coding gain of the list-decoder is almost 1.1dB for L = 2, 1.5dB for

L = 3, and 1.8dB for the L = 4. The upper bound of the L = 1 case is calculated

based on the truncated union bound and the distance spectrum given in [1].

The coding gain predicted by [27] for L = 2 and L = 3 list-decoders are 1.25dB

and 1.75dB, respectively. From Figure 2.16, we observe that the predicted gains are

more than the actual gain. Using the multiplicity of the free distance of C2 provided

in [1], one can calculate the more realistic coding gain as described in Section 2.6.1.

Minor modifications may be necessary because we seek coding gain in FER and with

K = 200. The coding gain at FER=10−4 is 1dB for L = 2 and 1.4dB for L = 3. We

see that these gains better match the results of Figure 2.16.

To demonstrate the performance of the proposed iterative list-decoder, we

consider the two concatenated codes presented previously: C2+CC1 and C3+CC3.
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Figure 2.17 presents the FER of the list-iterative decoder at the first, second, and

third iterations with L = 1, 3 in AWGN channel with K = 500. We observe that the

coding gain of list-decoding varies for each code at each iteration. The coding gain

for the two codes for a given FER and at a given iteration are about the same. For

example, at the third iteration the list-decoder L = 3 provides a coding gain of 0.25dB

at FER= 10−3. We also notice that C3+CC3 outperforms C2+CC1. Figure 2.18

reports the FER of the concatenated codes in a fully-interleaved Rayleigh channel

with K = 200. At this frame size, which is a tenth of the frame size of the experiment

in Figure 2.11(b), the difference of the two concatenated codes is less pronounced,

but still C3+CC3 has lower error rate except in the first iteration. The coding gain

of list-decoding is higher in fully-interleaved Rayleigh channel. In fact, list-decoding

provides improved diversity in this channel due to an increase in the equivalent free

distance of the code [27]. Thus, regardless of the channel type, the coding gain of list

decoding increases in higher Eb/N0.

Iterative list-decoder of the concatenated code C2+CC2 has a slightly different

coding gain. For example, the coding gain at the fifth iteration for L = 2 is about

1.5dB in Rayleigh fading channel and 0.75dB with L = 5 in AWGN channel.

2.8 Chapter Summary

We obtain union bounds for the symbol and frame error rates of concatenated

source/channel codes for finite-alphabet sources. We generalize the previous notions

of outer entropy code by inserting an unrestricted redundant variable length code;

thus our analysis is general with respect to the choice of the outer code, including

non-redundant (Huffman) codes, RVLC codes, and the so-called variable-length error

correcting codes. We use techniques originally developed for the serial concatenated
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convolutional codes and adapt them so that they can be used with the nonlinear outer

codes that are of interest in source/channel coding. By evaluating the union bounds

of the concatenated scheme, we further studied the role of the constituent codes, and

illustrated through simulations the relevance of the suggested design rules.

We also propose an iterative list-decoder for VLC-based source-channel codes.

The list decoder is made possible by a non-binary CRC code which also provides

a stopping criterion for the iterative decoder. At a given iteration of the iterative

decoder, the proposed list decoder improves the overall performance of the system.

Extensive experimental results are provided in AWGN and fully-interleaved Rayleigh

channels.



CHAPTER 3

PERFORMANCE OF EQUALIZERS IN FREQUENCY-SELECTIVE

SINGLE-ANTENNA FADING CHANNELS

The performance of equalizers in fading channels is mainly characterized by di-

versity. First, we evaluate the performance and diversity order of maximum-likelihood

equalizers, and extend the results to cases with and without correlation between the

channel taps. Next, we derive the performance linear equalizers. We focus on outage

probability as a theoretical lower bound on the performance. We consider decision-

feedback equalizers as well and evaluate their performance.

3.1 Introduction

In frequency-selective fading channels, each symbol is affected by multiple

fading coefficients, providing a natural diversity to encounter the unreliable channel.

However, the inter-symbol interference makes it difficult for the receiver to exploit

this diversity.

It is known that the maximum likelihood sequence estimator (MLSE) equalizer

is able to extract the full diversity. Through pair-wise error probability and moment

generating function (MGF), we show in Section 3.2 that the maximum likelihood

(ML) detector does not prevent the receiver from achieving full diversity. We extend

the results to the case where the channel taps are correlated.

Maximum-likelihood equalizers are complex and have limited application in

practice. Linear equalizers, zero-forcing (ZF) and minimum mean square error (MMSE)

38
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equalizers, are attractive because of their low-complexity. However, compared to ML

equalizers, linear equalizers have inferior performance and lower diversity. In Sec-

tion 3.3, we show analytically and experimentally that zero-forcing linear equalizers

are unable to harvest the available diversity in the frequency-selective channel. In

high spectral efficiency, minimum mean square linear equalizers behave the same,

however, in low spectral efficiency they are capable of achieving some of the available

diversity1.

3.2 MLSE Equalizer

In the following, we derive the error rate of MLSE equalizers in frequency-

selective SISO channels. Assume the frequency-selective channel h(D) whose taps

are symmetric complex Gaussian random variables :

h(D) = h0 + h1D + h2D
2 · · · + hνD

ν

where ν represents the memory of the channel. Assuming additive white Gaussian

noise (AWGN), the transmission of L symbols over such channel results in the fol-

lowing matrix system model:

r = Hc + n










rL

rL−1
...
r1











=











h0 h1 · · · hν 0 · · · 0
0 h0 h1 · · · hν · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 h0 h1 · · · hν





















cL

cL−1
...
c1











+











nL

nL−1
...

n1











. (3.1)

Assuming perfect knowledge about the channel taps hi’s at the receiver, the

maximum likelihood (ML) metric is given by :

m(r, c) = ||r − Hc||2 .

1The contribution of this chapter appears in part in [30].
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An error occurs when the MLSE equalizer decides in favor of the sequence ĉ

when the sequence c is actually transmitted. The pairwise error probability of c and

ĉ:

Pr(c, ĉ|H) = Q

(
√

γ

2
||H∆||2

)

, (3.2)

where ∆ = c − ĉ. The unconditional pairwise error probability is

Pr(c, ĉ) =
�

H (Pr(c, ĉ, |H)) ,

and the overall error probability is the average of Pr(c, ĉ) over all possible pairs of c

and ĉ. Using the alternative definition of Q-function by a finite integral [31]

Q(x) =

∫ π/2

0

exp

(

− x2

2 sin2 θ

)

dθ , (3.3)

and by integrating over all channel realizations we obtain the unconditional PEP as

follows:

P (c, ĉ) =
�

H (Pr(c, ĉ, |H)) =

∫ π/2

0

ΦΓ

(

− ρ

4 sin2 θ

)

dθ (3.4)

where ΦΓ(.) is the MGF of the random variable Γ
4
= ||H∆||2, and ρ = Ex

N0
is the

SNR. For later reference we define s
4
= − ρ

4 sin2 θ
. We notice that the PEP is fully

expressed by the MGF of Γ. We seek this MGF for performance evaluation. Also,

the asymptotic behavior of P (c, ĉ) is the same as asymptotic behavior of ΦΓ(.), which

determines the MLSE diversity.

The ML metric Γ = ||H∆||2 for the system model in (3.1) can be derived as

||H∆||2 = tr(H∆∆HHH) = tr(∆HHHH∆) = ∆HHHH∆ . (3.5)

Note that because of the structure of the matrix channel H in (3.1), H∆ can be

written as follows

H∆ =











h0 h1 · · · hν 0 · · · 0
0 h0 h1 · · · hν · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 h0 h1 · · · hν





















δL

δL−1
...
δ1











=











h∆L−ν

h∆L−ν+1
...

h∆L











, (3.6)
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where h = (h0, h1, · · · , hν), and ∆i
4
= (δi+ν , · · · , δi), a sub-vector of ∆ with length

ν + 1. Therefore, the ML metric (3.5) can be written as:

||H∆||2 =
L−ν
∑

i=0

∆H
i hHh∆i (3.7)

=
L−ν
∑

i=0

h∆i∆
H
i hH = hΩhH , (3.8)

where

Ω
4
=

L−ν
∑

i=0

∆i∆
H
i (3.9)

is a square matrix with size ν + 1. The random variable Γ = hΩhH is quadratic

in the Gaussian random vector h. The following Lemma gives us the MGF of such

quadratic forms.

Lemma [32]: Let A be a Hermitian matrix and u a circularly symmetric complex

Gaussian vector with mean ū and covariance matrix Ru. The MGF of the quadratic

form y = uAuH is given as

Φy(s) =

∫ ∞

0

esypY (y)dy =
exp

(

−ūA (I − sRuA)−1 ūH
)

det (I − sRuA)
, (3.10)

where I is the identity matrix with appropriate size. �

Using above Lemma, we can obtain the MGF of Γ = hΩhH . First consider

the case where h has independent components, which leads to

ΦΓ(s) =
1

det (I − sΩ)
=

ν
∏

i=0

(1 − sλi(Ω))−1 , (3.11)

where λi(Ω) is an eigenvalue of matrix Ω. In high SNR, ΦΓ(s) behaves as

ΦΓ(−s)
·
=

∏

λi(Ω)6=0

(sλi(Ω))−1 =
s−(ν+1)

det(Ω)
, (3.12)
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where
·
= expresses the asymptotic equivalence2, and for the second equality all the

eigenvalues λi(Ω) are assumed nonzero. Equation (3.12) shows that if Ω is full-rank,

the MGF, and subsequently the PEP, decays as ρ−(ν+1). Hence, the diversity order is

ν + 1.

One might ask if the maximum diversity ν + 1 is obtainable without coding.

If the vector c does not have any redundancy then c and ĉ are different in at most

one position, hence ∆ has only one nonzero element. Let’s assume that the position

of the nonzero element of ∆ is somewhere that makes exactly ν + 1 of ∆i vectors

nonzero. Equation (3.9) shows that Ω becomes a multiple of the identity matrix,

hence has rank ν + 1. Therefore, to obtain the full frequency diversity the data need

not be redundant.

Now consider the case where h is a Gaussian vector with covariance R. One

can write h based on the white Gaussian vector h̃ as : h = h̃R
1

2 . Hence, the ML

metric is Γ = h̃R
1

2ΩR
H
2 h̃H ; still a quadratic form but with a different kernel than

the previous case. The MGF is

ΦΓ(s) =
1

det
(

I − sR
1

2ΩR
H
2

) =
1

det (I − sRΩ)
=

ν
∏

i=0

(1 − sλi(RΩ))−1 . (3.13)

We notice that in this case, the matrix RΩ has the same role as Ω had in (3.11).

Therefore, as long as the covariance matrix R is full-rank, full diversity order can be

obtained. However, the correlated vector h indeed causes performance loss, but no

diversity loss. The incurred loss in performance is det(R). This can be observed in

the asymptotic behavior of ΦΓ(−s) :

ΦΓ(−s)
·
= det(R) det(Ω)s−(ν+1) . (3.14)

2a
·
= b is equivalent to a = O(b).
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3.3 Linear Equalizers

To evaluate the performance of linear equalizers in frequency-selective fading

channels, we consider block transmission and apply the equalization in matrix-form.

Assume the system model (3.1). The block ZF-LE has the matrix form:

FZF = (HHH)−1HH , (3.15)

which transforms the received signal to

r̂ = FZF r = c + (HHH)−1HHn . (3.16)

The MMSE-LE has the matrix form:

FMMSE = (HHH + γ−1I)−1HH , (3.17)

which transforms the received signal to

r̂ = FMMSE r = (HHH + γ−1I)−1HHHc + (HHH + γ−1I)−1HHn . (3.18)

In the case of ZF-LE, the equivalent noise is ñ
4
= (HHH)−1HHn, which is a

complex Gaussian vector with zero-mean and covariance matrix

Rñ =
� (

(HHH)−1HHn
)

= σ2
n(HHH)−1 . (3.19)

In linear equalizers, symbols are detected individually, ignoring the correlation be-

tween noise components. Therefore, only the diagonal elements of Rñ are involved in

the calculation of SNR.

For mathematical tractability, we assume that the data is appended by cyclic

prefix (CP). Adding CP to the data, makes the equivalent channel a circulant ma-

trix, thus facilitating the analysis of Rñ. We benefit from the following well-known

property of circulant matrices.
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Figure 3.1. Single-carrier frequency-domain equalizer

Fact: Let H be a circulant matrix of size L. The eigen decomposition of H is

H = QΛQH , where Q is the Discrete Fourier Transform (DFT) matrix:

Q(p, q) =
1√
L

exp

(

−j
2π

L
(p − 1)(q − 1)

)

,

and the diagonal elements of Λ are the L-point Discrete Fourier transform of the first

row of H. �

The block-based linear equalizer with CP is equivalent to single-carrier fre-

quency domain equalizer (SC-FDE) [33, 34], as depicted in Figure 3.1, because the

noise covariance matrix (3.19), assuming cyclic prefix, is identical to the noise covari-

ance matrix of SC-FDE.

Under the circulant channel model, H = QΛQH , the noise covariance in (3.19)

is

Rñ = σ2
n(HHH)−1 = σ2

nQΛ−1Λ−HQH (3.20)

where Λ = diag(λ) and λ = QHh, where h is the first row of H in (3.1).

We assume the channel taps hi to be i.i.d. complex Gaussian variables with

zero-mean and variance σ2
i . Therefore, λ, the L-point DFT of the channel vector h,

is a complex Gaussian vector with zero-mean and covariance matrix

Rλ(m,n) =
1

L

ν
∑

p=0

σ2
p exp

(

−j
2π

L
(m − n)p

)

. (3.21)

Note that, in general, λi are dependent Gaussian RV’s, but if L = ν + 1 they become

independent.
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Evaluation of statistical expressions involving components of λ is difficult.

Multivariate Rayleigh and exponential do not in general possess a closed-form prob-

ability density function (PDF) or moment generating function (MGF) [35]. Even for

the multivariate exponential λ which is based upon a circularly symmetric Gaussian

vector, the joint PDF involves multiple integrations. In the following, to simplify

the problem, we sometimes assume that the random vector λ is an i.i.d. vector. If

ν + 1 = L the noise covariance (3.21) is indeed diagonal, therefore λ is i.i.d. If ν is

large enough, the off-diagonal elements are negligible.

Our objective is to calculate the asymptotic behavior and diversity order of

the linear equalizers. The system model (3.1) shows that the diversity order is the

same for ν + 1 = L and ν + 1 6= L. This observation comes from the fact that for

both cases each symbol is affected by exactly ν + 1 fading coefficients. Therefore, for

analytical studies, we assume ν +1 = L where λ has independent components. Later

we present experimental results that indicate our analytical findings are also valid for

ν + 1 6= L.

As a result of the independence assumption, the multivariate exponential ran-

dom vector X, defined as Xi
4
= |λi|2, has PDF:

f(X1, · · · , XL) =
exp

(

−
∑L

k=1
Xk

2σ2
k

)

∏L
k=1 2σ2

k

. (3.22)

In the following we provide the statistics of the decision-point signal-to-interference-

and-noise ratio (SINR) of ZF-LE and MMSE-LE.

SINR of ZF-LE

As seen in (3.16), ZF-LE cancels the interference fully. Hence, the SINR is

equal to SNR.
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The equivalent noise of ZF-LE output is correlated. Applying the symbol-by-

symbol detection, the correlation between noise components is ignored, and only the

diagonal elements of Rñ are involved in SNR calculation. Substituting Q in (3.20),

we have

Rñ(i, i) =
σ2

n

L

L
∑

k=1

|Λ(k, k)|−2 =
σ2

n

L

L
∑

k=1

|λk|−2 , (3.23)

where σ2
n is the AWGN variance. Since the diagonal elements of Rñ are equal, the

decision-point SNR’s of all symbols are also equal and determined by the random

variable

γ =
ρ

1
L

L
∑

k=1

|λk|−2

, (3.24)

where ρ = Ex

σ2
n

is the signal to noise ratio. The decision-point SNR in (3.24) is the

harmonic average of |λk|2, k = 1, · · · , L. We evaluate the statistics of γ as follows.

Let X be an exponential random variable with variance 2σ2, and PDF fX(x) =

1
2σ2 exp

(

− x
2σ2

)

. The MGF of Y = X−1 is

ΦY (−s) =

∫ ∞

0

esyfY (y) =

∫ ∞

0

e
s
x fX(x)

=

√

2s

σ2
K1

(

√

2s

σ2

)

, (3.25)

where Km(·) is the m-th order modified Bessel function of the second kind [36, 37].

In evaluating (3.25), we have used Equation (3.471.9) in [37] which is reported here

for convenience:

∫ ∞

0

xm−1 exp

(

− b

x
− cx

)

dx = 2

(

b

c

)m/2

Km

(

2
√

bc
)

. (3.26)

Using (3.25), the MGF of Z = 1
L

∑L
i=1 X−1

i (arithmetic mean of inverse of L

independent exponential random variables) is

ΦZ(−s) =

(

2s

Lσ2

)L
2

KL
1

(

√

2s

Lσ2

)

. (3.27)
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Subsequently, using the Laplace transform differentiation property, we obtain the

CDF of Z

FZ(z) = L−1

(

ΦZ(−s)

s

)

.

Note that Γ = Z−1. Thus

FΓ(γ) = Pr(Γ ≤ γ) = Pr

(

Z >
1

γ

)

= 1 − FZ

(

1

γ

)

. (3.28)

Using (3.27) and (3.28)

FΓ(γ) = 1 − L−1

(

(

2

Lσ2

)L
2

s
L
2
−1KL

1

(

√

2s

Lσ2

))

, (3.29)

where the inverse Laplace transform is evaluated at γ−1. The CDF of Γ in (3.29)

does not have a closed form except for L = 2.

In the special case of L = 2

FΓ(γ) = 1 − L−1

(

1

σ2
K2

1

(
√

s

σ2

))

= 1 − γ

2σ2
exp

(

− γ

2σ2

)

K1

( γ

2σ2

)

. (3.30)

Using the differentiation property of Km(·) functions [36, 37], the PDF of Γ is

fΓ(γ) = γe−γ (K0(γ) + K1(γ)) . (3.31)

With the help of the Equation (6.621.3) of [37], the MGF is given by

ΦΓ(s) =
2

(2 + s)2
F

(

2, 0.5; 2.5;
s

2 + s

)

+
2

(2 + s)3
F

(

3, 1.5; 2.5;
s

2 + s

)

, (3.32)

where F (·, ·; ·; ·) is the hypergeometric function [37].

In Figure 3.2(a), the MGF (3.32) along with the Monte-Carlo evaluation of

ΦΓ(s) for ν = 1, 3, 7 are shown (in each case L = ν + 1). Asymptotic behavior of

ΦΓ(s) does not depend on ν.
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Figure 3.2. Moment generating function of Γ (a) L = ν + 1 = 2, 4, 8 (b) ν = 1 and
L = 2, 10, 20, 40.

It is natural to ask: is this invariance to ν (channel memory) specific to the

case L = ν + 1, or is it general? The Monte-Carlo evaluation of ΦΓ(s) for ν = 1 and

L = 2, 10, 20, 40 are shown in Figure 3.2(b). We observe that ΦΓ(s) for the various

cases behave asymptotically the same, thus it seems that invariance to ν is a general

property. Figure 3.2 shows that the diversity order of the ZF-LE is one for arbitrary

ν and L. In the next subsection, we prove this observation for the case L = ν + 1.

SINR of MMSE-LE

The MMSE equalizer does not fully remove the interference. It can be shown

that the output SINR is [38]

γk =
1

(ρHHH + I)−1
k

− 1 , (3.33)

where (M)−1
k denotes the kth diagonal element of the inverse of M. Assuming the CP

and the circulant channel matrix H with eigenvalues λ, we obtain the decision-point
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SINR as

γ =
L

L
∑

k=1

1
1+ρ|λk|2

− 1 , (3.34)

which is the same for all k’s. The harmonic average of the random variables 1+ρ|λk|2

is seen in (3.34).

Even the limited development that is provided for the statistics of the SINR

in the case of ZF-LE is not possible for MMSE-LE, because the additive term in 1 +

ρ|λk|2 makes the respective integrals intractable. Thus we resort to outage probability

analysis to show the performance of MMSE-LE.

3.3.1 Outage Probability of Linear Equalizers

The mutual information between the transmitted vector c and the linearly

processed received vector r̂ in (3.16) and (3.18) is equal to the weighted sum of the

mutual information of their components

I(c; r̂) =
1

L

L
∑

k=1

I(ck; r̂k) =
1

L

L
∑

k=1

log(1 + γk) . (3.35)

In a circulant channel matrix H, the SINR of all symbols are the same and we have

I(c; r̂) = log(1 + γ). The outage occurs when the mutual information falls below a

target rate R:

Pr(O) = Pr (I(c; r̂) < R) = Pr (log(1 + γ) < R) . (3.36)

For ZF-LE, the SINR of each symbol is given by (3.24) which leads to

Pr(O) = Pr

(

L
∑

k=1

1

ραk

>
L

2R − 1

)

, (3.37)

where αk = |λk|2, and R is in bits. For MMSE-LE, the SINR is given by (3.34) which

gives

Pr(O) = Pr

(

L
∑

k=1

1

1 + ραk

> L2−R

)

. (3.38)
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We notice the apparent similarity between the outage region of ZF-LE and MMSE-LE

in the multidimensional space of the eigenvalues λ, however, the subtle difference in

the expression of the above regions gives surprisingly different outage probability.

We consider the simple case of ν = 1, i.e. a channel with two taps.

Two-tap channel (ν = 1)

With the simplifying assumption of independent λ, the outage probability of

ZF-LE, in a two-tap channel, is equal to

Pr(O) = Pr

(

1

ρα1

+
1

ρα2

>
2

2R − 1

)

(3.39)

=

∫ ∞

0

e−α1

∫
r α1

α1ρ−r

0

e−α2dα2 dα1 (3.40)

where r = 2R−1
2

. Notice that the outage region in this case is unbounded. For

example, if the channel is singular, e.g. the eigenvalue α1 = 0, regardless of the value

of α2 the ZF-LE is in outage. To continue from (3.40):

Pr(O) = 1 −
∫ ∞

0

exp

(

− ρα2

ρα − r

)

dα (3.41)

= 1 − e−
2r
ρ

ρ

∫ ∞

−r

exp

(

−z

ρ
− r2

zρ

)

dz , (3.42)

which is not tractable, however, we can write

Pr(O) = 1 − e−
2r
ρ

ρ

(∫ 0

−r

exp

(

−z

ρ
− r2

zρ

)

dz + 2rK1

(

2r

ρ

))

(3.43)

where (3.26) is used in the evaluation. The integral in (3.43) can be upper and lower

bounded as follows

0 ≤
∫ 0

−r

exp

(

−z

ρ
− r2

zρ

)

dz ≤ r exp

(

r

ρ

)

.

The first order approximation yields 2r
ρ

< Pr(O) < 3r
ρ
, indicating that the diversity

order is one.
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Evaluating (3.38) for the two-tap channel, the outage probability of MMSE-LE

is equal to

Pr(O) = Pr

(

1

1 + ρα1

+
1

1 + ρα2

> 21−R

)

(3.44)

= 1 −
∫ ∞

0

exp

(

−α −
(

2r + αρ(r − 1) − 1

ρ(αρ − r + 1)

)+
)

dα , (3.45)

where r = 2R−1, and (x)+ 4
= max(0, x). Though (3.45) is not tractable, we evaluate

it by approximating the outage regions in high and low spectral efficiencies.

Examples of the outage regions are shown in Figure 3.3 for target rates R =

0.5, 2 bits. The outage region of MMSE-LE can be unbounded similar to that of ZF-

LE (as in R = 2), or bounded (e.g. R = 0.5). When the channel is singular ZF-LE

is in outage, hence its outage region includes both of the axes and is unbounded.

However, depending on R, MMSE-LE may not be in outage even if the channel is

singular. Seen from the outage event in (3.44), when R < 1, even if one of the

eigenvalues is zero the MMSE-LE is not in outage unless the other eigenvalue is less

than c1
4
= 2r−1

ρ(r−1)
. This is seen for R = 0.5 in Figure 3.3. On the other hand, one can

see from the outage event in (3.44) that, when R > 1, having a singular channel takes

MMSE-LE to outage (see the region of R = 2 in Figure 3.3 ).

The smaller the rate, the closer the shape of the outage region to a isosceles

right triangle with the side α1 + α2 = c1. In this case, one can approximate (3.44)

by integration over the simple right triangle region. For high spectral efficiency, the

outage region has two unbounded strips, as in ZF-LE. Evaluation of (3.44) can be

made simpler by approximating the outage region by the two unbounded strips.

In low spectral efficiency (R � 1), considering the right triangle outage region



52

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

α
1

α 2
0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0.5

α
1

α 2

0 1 2 3
0

1

2

3

α
1

α 2

0 1 2 3
0

1

2

3

α
1

α 2

ZF−LE, R=0.5 bitsMMSE−LE, R=0.5 bits

ZF−LE, R=2 bitsMMSE−LE, R=2 bits

Figure 3.3. Outage regions of linear equalizers in a two-tap channel, ρ = 10 dB

of MMSE-LE, the outage probability (3.44) is

Pr(O) =

∫ c1

0

e−α1

∫ c1−α1

0

e−α2dα2dα1

= 1 − e−c1 − c1e
−c1 ·

=
c2
1

2
=

1

2

(

2r − 1

r − 1

)2

ρ−2 . (3.46)

In high spectral efficiency (R � 1), the outage region becomes similar to that of

ZF-LE, which is approximately two perpendicular strips (seen in Figure 3.3). Using

this approximation:

Pr(O) = 2

∫ r−1

ρ

0

e−α1

∫ ∞

0

e−α2dα2dα1 = 2 − 2e−
r−1

ρ
·
= (2r − 2)ρ−1 . (3.47)

This counts the intersection of the two strips twice, but since the contribution of the

intersection decays as fast as ρ−2, the approximation does not change the asymptotic

behavior.

The above results show that the outage probability of MMSE-LE has diver-

sity two in low spectral efficiency and diversity one in high spectral efficiency. Equa-
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tions (3.46) and (3.47) are only true for the extremes of high and low spectral efficien-

cies and do not give any information about the intermediate values of R. However,

one expects for intermediate values of R the outage probability decays faster than

ρ−1 but slower than ρ−2.

The result of (3.47) also applies to ZF-LE in both low and high spectral effi-

ciencies. The outage probability is

Pr(O) = 2

∫ r
ρ

0

e−α1

∫ ∞

0

e−α2dα2dα1 = 2 − 2e−
r
ρ

·
= (2r − 2)ρ−1 . (3.48)

where r = 2R−1
2

, indicating the outage probability decays as fast as ρ−1, regardless

of R. Therefore the diversity order is one, which is in agreement with MGF analysis

presented earlier.

Figure 3.4 presents simulation results for the outage probability of uncon-

strained receiver or ML equalizer3 and linear equalizers in a two-tap channel (ν = 1)

with frame size L = 10 and target rates R = 1, 2, 3, 4 bits. We see that the diver-

sity of ZF-LE is always one regardless of R. For the low spectral efficiency R = 1,

MMSE-LE and ML equalizers both have diversity order of two. As the target rate R

increases the outage probability of MMSE-LE decays slower than ρ−2 and eventually

shows diversity one.

The above experiment can be viewed from the perspective of capacity CDF,

using the result of [39]. Figure 3.5 shows the capacity CDF of the frequency-selective

channel and linear equalizers. The capacity CDF of the channel and MMSE-LE are

almost the same in low spectral efficiency, indicating they would achieve the same

diversity order.

Though the previous results are for independent fading coefficients, they hold

3Hereafter, we do not distinguish between the unconstrained receiver and the ML equalizer.
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Figure 3.4. Outage probability of ML and linear equalizers, ν = 1, L = 10. ML (solid
line), MMSE-LE (solid line marked with ◦) and ZF-LE (dashed line). The curves
correspond, from top left clockwise, to rates R=1,2,4,3 bits.

0  1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

C
ap

ac
ity

 C
D

F

0  1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

R

C
ap

ac
ity

 C
D

F

Figure 3.5. CDF of capacity of the frequency-selective channel (solid line), MMSE-LE
(dashed line), and ZF-LE (dashed-dot line) in a two-tap channel, ν = 1, and L = 8.
In each plot, the SNR for the left set of curves is 13 dB, and 23 dB for the other set.



55

5 10 20 30
10−4

10−2

100

P
r(

O
)

5 10 20 30
10−4

10−2

100

5 10 20 30
10−4

10−2

100

SNR (dB)

P
r(

O
)

5 10 20 30
10−3

10−2

10−1

100

SNR (dB)

Figure 3.6. Outage probability of ML and linear equalizers in a two-tap channel with
0.5 correlation between the fading coefficients, ν = 1, L = 10. ML (solid line), MMSE-
LE (solid line marked with ◦) and ZF-LE (dashed line). The curves correspond, from
top left clockwise, to rates R=1,2,4,3 bits.

for correlated case as well. Figure 3.6 presents outage probability results for the two-

tap channel where the taps are correlated by 0.5. The outage probabilities are slightly

higher than the uncorrelated case, however, ZF-LE and MMSE-LE show similar trend

as in Figure 3.4.

(ν + 1)-tap channel

In the following, we extend the previous result to arbitrary ν, using the as-

sumption of independent λ made earlier. In low spectral efficiency (R � log( L
L−1

)),

the outage region is a polyhedron whose vertices are the points on the axes with value



56

cν , i.e. the bounded region in the positive cone separated by the plane
∑ν+1

k=1 αk = cν

where

cν
4
=

r(ν + 1) − 1

ρ(1 − rν)
,

and r
4
= 2R/L. The outage probability (3.38) is therefore

Pr(O) =

∫ cν−d1

0

e−α1

∫ cν−d2

0

e−α2 · · · e−αν

∫ cν−dν+1

0

e−αν+1 dαν+1 · · · dα2 dα1 , (3.49)

where di =
∑i−1

j=1 αj and d1 = 0.

Pr(O) = 1 − e−cν

ν
∑

k=0

ck
ν

k!

= 1 − e−cν

(

ecν −
∞
∑

k=ν+1

ck
ν

k!

)

·
=

cν+1
ν

(ν + 1)!

=

(

r(ν + 1) − 1

1 − rν

)ν+1

· ρ−(ν+1)

(ν + 1)!
, (3.50)

which shows that in low spectral efficiency, the diversity order is ν + 1, the same as

that of the ML equalizer.

In high spectral efficiency (R � log( L
L−1

)), where the outage region of MMSE-

LE and ZF-LE become similar, we approximate the outage region as follows. The

outage event consists of ν +1 regions where the ith region, i = 1, · · · , ν +1, is defined

as 0 ≤ αi ≤ r−1
ρ

, and for k 6= i, 0 ≤ αk. Extending the result of the two-tap channel,

the outage probability (3.38) is equal to

Pr(O) = (ν + 1)

∫ r−1

ρ

0

e−α1dα1

ν+1
∏

i=2

∫ ∞

0

e−αidαi

= (ν + 1)
(

1 − e−
r−1

ρ

)

·
= (ν + 1)(r − 1)ρ−1 , (3.51)
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where, again, the intersection of the above mentioned regions is counted ν + 1 times

but this does not change the asymptotic behavior of the linearly-decaying outage

probability.

The same approximation of the outage region of MMSE-LE, in high spectral

efficiency, is applicable for ZF-LE for all values of R. With appropriate changes

in (3.51) one can conclude that the outage probability of ZF-LE decays as fast as ρ−1

regardless of R.

Figure 3.7 shows the outage probability of the ML and linear receivers for a

channel with three taps, ν = 2, frame size L = 10, and outage rates R = 1, 2, 3, 5 bits.

Similar to the results of the two-tap channel in Figure 3.4, the outage probability of

MMSE-LE has variable diversity order depending on R. In low spectral efficiency,

R = 1 in Figure 3.7, MMSE-LE has diversity order three, the same as that of ML

receiver. In high spectral efficiency, e.g. R = 5, MMSE-LE and ZF-LE show the

same diversity order one. In intermediate spectral efficiencies, the diversity order of

MMSE-LE is less than three but larger than one.

CDF of SINR

In addition to ΦΓ(s), the behavior of the CDF of Γ around zero predicts the

diversity order. The finding of [39] states if FΓ(γ) = cγd + o(γd) as γ → 0+, then at

high SNR the average error rate decays as fast as γ−d.

The CDF of γ of ZF-LE, given by in (3.24), is calculated as follows:

FΓ(γ) = Pr (Γ ≤ γ) = Pr

(

L
∑

k=1

1

αk

≥ ρL

γ

)

,

which is calculated in the same way as outage probability in (3.37). Similarly, for
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Figure 3.7. Outage probability of ML and linear equalizers, ν = 2, L = 10. ML (solid
line), MMSE-LE (solid line with ◦) and ZF-LE (dashed line). The curves correspond,
from top left clockwise, to rates R=1,2,5,3 bits/sec/Hz.
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Figure 3.8. Numerical evaluation of CDF of Γ in (3.29)

MMSE-LE, the CDF of γ in (3.34) is given by

FΓ(γ) = Pr (Γ ≤ γ) = Pr

(

L
∑

k=1

1

1 + ραk

≥ L

γ + 1

)

.

The CDF of Γ for ν = 1, 3, 7, depicted in Figure 3.8, is calculated through

numerical evaluation of the Laplace inverse [40] in Equation (3.29). We notice that

as γ → 0+, FΓ(γ) decays as slowly as the CDF of χ2. In the same plot, the CDF of

χ4 is given for comparison, indicating a diversity of two.

3.3.2 Simulation Results

We present simulation results for BPSK modulation transmission in a frequency-

selective fading channel followed by linear equalizers.

Figure 3.9 shows the error rate performance of ZF-LE for a two tap channel,

ν = 1, and L = 4, 10, 20. The results confirm that ZF-LE achieves only the diversity

order of one. It also shows that there is no significant dependence on the block size4.

4Of course, the CP overhead is smaller for larger L.



60

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

SNR (dB)

S
E

R

L=10
L=20
L=4

0 5 10 15 20
10−4

10−3

10−2

10−1

SNR (dB)

S
E

R

MMSE−LE
ZF−LE

Figure 3.9. Symbol error rate of BPSK signaling and linear equalizers (left) ZF-LE
ν = 1, and L = 4, 10, 20, and (right) ZF-LE versus MMSE-LE ν = 1, and L = 10.

Hence the reported results with the assumption L = ν + 1 are confirmed to be valid

also for L 6= ν + 1.

In Figure 3.9 the performance of MMSE-LE and ZF-LE are compared. The

diversity order of MMSE-LE is two, showing the diversity that is predicted by the

outage probability lower bound is achieved by a simple BPSK modulation at spectral

efficiency of 1 bits/sec/Hz.

3.4 Decision-Feedback Equalizers

The performance of decision-feedback equalizers (DFE) in Gaussian channels

have been investigated in [41, 42, 43]. With perfect feedback assumption, MMSE-

DFE achieves the capacity of Gaussian channel either with infinite-length filters [41]

or finite-length filters [38], hence achieving the maximum diversity of the channel.

Similar results have not been established for ZF-DFE yet, except in some special cases.

For two-tap channel, it is shown that ZF-DFE with infinite-length filters has the same

performance as selection diversity, hence achieving the full diversity of two [44].
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3.5 Chapter Summary

In this chapter, we analyze the performance of equalizers in frequency-selective

single-antenna fading channels. We present new results on the performance of linear

equalizers, and calculate their diversity order. We show that ZF-LE cannot achieve

the frequency diversity of the channel. Our analytical and experimental results show

that MMSE linear equalizers, depending on spectral efficiency, have outage probability

that decays as fast as the outage probability of unconstrained receiver, and as slowly

as that of ZF linear equalizers.



CHAPTER 4

PERFORMANCE OF EQUALIZERS IN FLAT FADING

MULTIPLE-ANTENNA CHANNELS

Multiple-input multiple output (MIMO) systems experience interference be-

tween signals transmitted simultaneously from transmit antennas. Various detection

methods can be used to retain the transmitted data. In this chapter, we consider

the performance of detection methods, also called equalizers, in flat fading MIMO

channels.

We first review the performance of ML receiver in MIMO channel and de-

velop performance bounds under spatially correlated fading. We then consider linear

receivers and calculate their outage probability. We also present results for decision-

feedback equalizers. In our derivation we consider two class of spatial encoders:

separate and joint transmit-antenna encoding.

4.1 Introduction

Consider a multiple-antenna wireless system with M transmit antennas and

N receive antennas, expressed by an N × M random matrix Ht whose elements are

i.i.d. complex Gaussian random variables. The input-output system model for flat

fading MIMO channel is

rt = Htct + nt , (4.1)

where ct is the M × 1 transmitted vector, nt ∈ CN×1 is the noise vector, and rt is

the N × 1 received vector at time instant t. In the following, the time index t is
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sometimes suppressed for convenience. Equation (4.1) can be expanded to:











r1

r2
...

rN











=











h1,1 h1,2 · · · h1,M

h2,1 h2,2 · · · h2,M
...

...
. . .

...
hN,1 hN,2 · · · hN,M





















c1

c2
...

cM











+











n1

n2
...

nN











. (4.2)

The vectors ct can be the output of two class of spatial encoders: separate and

joint spatial encoder.

Separate spatial encoding The data sequence is first demultiplexed into M sepa-

rate sub-streams. Each stream is independently channel encoded and mapped

into an appropriate signal constellation, and then transmitted from the cor-

responding antenna. Since each data symbol is sent from only one transmit

antenna, the diversity order of this scheme is at most N , the number of receive

antennas. However, this architecture provides a simple receiver. An example of

separate encoder is V-BLAST [45].

Joint spatial encoding The data stream goes under channel encoding and symbol

mapping. The stream of coded symbols is then multiplexed into M sub-streams

and each stream is transmitted from one antenna. Appropriate designs could

give the maximum diversity order of MN , but it also has a complex receiver.

Examples of joint encoding are D-BLAST [46] and space-time codes [47].

For both of the above encoding schemes, the receiver consists of an interference

cancellation module followed by an appropriate decoder. In this section, the inter-

ference cancellation module is referred to as equalizer. The equalizer performs either

linear or a non-linear process on the N received symbols. The results, M complex

variables, are the estimates of the original M transmitted symbols.



64

In this chapter, we evaluate the performance of various equalizers in flat fading

MIMO channels for both of the spatial encoders. Our evaluation excludes the channel

coding, but it can be embedded into the analysis of channel codes of choice. Moreover,

when the performance evaluation is in the form of outage probability, it gives a lower

bound on the error rate of the corresponding equalizer, presenting the error rate of

the best choice of channel codes.

4.2 Maximum Likelihood Equalizer

Consider the system model (4.1) and a block of L data vectors ct, t = 1, · · · , L

transmitted over the MIMO channel. Assuming that the receiver has perfect knowl-

edge of the channel matrix and performs coherent detection, the maximum likelihood

(ML) metric is given by m(r, c) =
∑L

t=1 ||rt − Htct||2 , where r is the received signal

in the period of length L, and c is the transmitted signal in the same period.

The probability that the decoder mistakenly detects a given transmitted vector

c as ĉ, is given by:

Pr(c, ĉ|H) = Q





√

√

√

√

ρ

2

L
∑

t=1

||Htet||2


 , (4.3)

where et is the difference, at time instance t, between the transmitted vector ct and

the mistakenly detected vector ĉt. Using a similar procedure as in Section 3.2, we

average over H and obtain

Pr(c, ĉ) =
1

π

∫ π
2

0

ΦΓ

(

− ρ

2 sin2 θ

)

dθ , (4.4)

where Γ =
∑L

t=1 ||Htet||2, and ΦΓ(·) is the MGF of Γ. In a quasi-static channel,
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where the channel Ht remains fixed over the time span of the frame, we have

Pr(c, ĉ) =
1

π

∫ π
2

0

det−N
(

IM − s∆∆H
)

dθ

=
1

π

∫ π
2

0

M
∏

i=1

(

1 +
ρ

2 sin2 θ
µi

)−N

dθ (4.5)

≤
M
∏

i=1

(

1 +
ρ

2
µi

)−N

, (4.6)

where µi are the eigenvalues of ∆∆H , ∆ = [e1, . . . , eL], and s = − ρ
4 sin2 θ

. Equa-

tion (4.6) is the Chernoff bound for Pr(c, ĉ), a result which was derived differently

in [47].

In high SNR, Equation (4.6) decays like ρ−rN , where r = rank(∆∆H). There-

fore, if ∆∆H is full rank1 the ML detector achieves the diversity order of MN . To

obtain full diversity with the ML detector, ∆∆H must be full rank for all possible

pairs of transmit vectors. This is the so-called rank criterion derived in [47].

The performance of ML equalizers in a spatially correlated flat fading channel

has also been studied. A well-accepted model is to separate transmit- and receive-side

correlation [48]:

H = R
1

2

TxH̃R
H
2

Rx (4.7)

where RTx is the correlation between the transmit antennas, and RRx is the correla-

tion between the receive antennas. A similar procedure as in the uncorrelated case

results in [49]:

Pr(c, ĉ) =
1

π

∫ π
2

0

det−1
(

IMN − s(IN ⊗ ∆∆H)(RRx ⊗ RTx)
)

dθ

=
1

π

∫ π
2

0

M
∏

i=1

N
∏

j=1

(

1 +
ρλjµi

2 sin2 θ

)−N

dθ ≤
M
∏

i=1

N
∏

j=1

(

1 +
1

2
ρλjµi

)−1

,(4.8)

1Note that if L < M then ∆∆
H cannot be full rank.
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where λj are the eigenvalues of RRx and µi are the eigenvalues of ∆∆HRTx.

High SNR approximation of (4.8) shows that the diversity order is not dimin-

ished as long as RRx and RTx are full rank.

4.3 Linear Equalizers

We consider linear equalizers and evaluate the outage probability of a flat

fading MIMO channel, with N ≥ M , followed by a ZF linear equalizer (ZF-LE) or

MMSE linear equalizer (MMSE-LE). In our treatment, we consider both separate and

joint spatial encoders.

Assume the system model (4.1): r = Hc + n. The ZF equalizer is

FZF = (HHH)−1HH (4.9)

which transforms the received signal to

r̂ = FZF r = c + (HHH)−1HHn . (4.10)

The MMSE equalizer is

FMMSE = (HHH + ρ−1I)−1HH (4.11)

which transforms the received signal to

r̂ = FMMSE r = (HHH + ρ−1I)−1HHHc + (HHH + ρ−1I)−1HHn . (4.12)

Since the symbols are detected individually, the SINR of the individual symbols de-

termine the performance.
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SINR of ZF-LE

The detection noise in (4.10), ñ
4
= (HHH)−1HHn, is a complex Gaussian

vector with zero-mean and covariance matrix

Rñ =
� (

(HHH)−1HHn
)

= σ2
n(HHH)−1 . (4.13)

Since the interference from other transmit antennas is completely removed by zero-

forcing, noise remains, which is characterized by the diagonal elements of Rñ, given

by:

Rñ(k, k) = σ2
n(HHH)−1

k = σ2
n

det
(

ĤHĤ
)

det (HHH)
, (4.14)

where (M)−1
k represents the kth diagonal element of the inverse of M, and Ĥ is

obtained by removing the kth row of H. In the following, without loss of generality,

we assume k = 1, thus H = [h; Ĥ], the following result is applicable when k 6= 1. A

simple matrix algebra gives the following relation between the determinants involved

in (4.14):

det
(

HHH
)

= det
(

ĤHĤ
)

det
(

hHh − hHPh
)

,

where P
4
= Ĥ

(

ĤHĤ
)−1

ĤH is an N × N matrix. Note that det
(

hHh − hHPh
)

=

hH(I − P)h. Substituting in (4.14) we obtain:

Rñ(1, 1) =
σ2

n

hH(I − P)h
. (4.15)

Considering the above noise variance and the eigen decomposition I − P = QHΛQ,

we get the associated SNR

γ1 = ρhH(I − P)h = ρhHQHΛQh . (4.16)

Since h ∈ CN×1 is an i.i.d. vector, its distribution is invariant under a unitary

transformation. Therefore, ĥ
4
= Qh has the same distribution as h, which results in
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general non-central chi-square distribution for γ1 = ρĥHΛĥ. However, considering

that P and I − P are projection matrices2, we can provide the statistics of γ1 more

specifically.

Since P is a projection matrix rank(P) = tr(P) [50], and we have

rank(P) = tr

(

Ĥ
(

ĤHĤ
)−1

ĤH

)

= M − 1 ,

which gives rank(I − P) = N − M + 1. Also, the eigenvalues of a projection matrix

are either one or zero [50]. Hence, Λ, the diagonal eigenvalue matrix of P, has only

N − M + 1 non-zero diagonal elements which are all one. This results in central

chi-square distribution with 2(N − M + 1) degrees of freedom for γ1 in (4.16).

Above procedure can be applied to obtain the same result for the SNR of other

symbols. Being the column of an i.i.d. channel matrix H, hk’s are independent which

results in the independence of γk. Therefore, the independent γk’s are chi-square

random variables with degrees 2(N − M + 1). The CDF of Y ∼ χ2(N−M+1), with

variance 0.5 for the participating Gaussian random variables, is:

FY (y) = 1 − e−y

N−M+1
∑

i=1

yi−1

(i − 1)!
. (4.17)

Above result has appeared in literature previously. Perhaps, the first time it

appeared in [51] in the context of multiple access interference, and recently in [52].

SINR of MMSE-LE

In MMSE detection, unlike ZF detection, the channel is not fully inverted

and there is residual interference left after linear processing. Hence, both noise and

interference determine the performance. It has been shown [38] that the SINR of the

2
P is a projection matrix if P

m = P for all positive integers m.
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kth symbol of MMSE detector is

γk = hH
k

(

ĤkĤ
H
k + ρ−1I

)−1

hk (4.18)

=
1

(I + ρHHH)−1
k

− 1 , (4.19)

where hk is the kth column of the channel matrix H and removing this column from

H gives Ĥk ∈ CN×(M−1).

The statistics of γk in (4.18), although more complicated than the ZF case,

has been investigated in the context of additive interference channels. Reference [53]

is entirely devoted to the derivation of the CDF of the output SINR of an MMSE

detector. Consider (4.18) and remove the subscript k for simplicity. The quadratic

form Y = hHR−1h, whose kernel depends on the random matrix R
4
= ĤĤH + ρ−1I

and Ĥ ∈ CN×(M−1), has the CDF

FY (y) = 1 − exp

(

−y

ρ

) N
∑

n=1

An(y)

(n − 1)!

(

y

ρ

)n−1

(4.20)

where the auxiliary functions An(y) are given by

An(y) =

{

1 N ≥ M + n − 1
1+
∑N−n

i=1
Ciy

i

(1+y)M−1 N < M + n − 1 .
, (4.21)

and Ci is the coefficient of yi in (1 + y)M−1 [53].

Note that the SINR of the various symbols, γ1, · · · , γM , are generally corre-

lated, unlike the ZF-LE case. In fact, they are negatively correlated which leads to

surprisingly different performance than ZF-LE in some rate regions.

4.3.1 Outage Probability in Separate Spatial Encoding

In separate spatial encoding, the data stream is demultiplexed to several sub-

streams, each for one transmit antenna. A simple observation in the evaluation of the

outage probability is that if any of the equivalent parallel channels is in outage, the
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system is in outage. Hence, the outage event, O, is the event when any of the sub-

channels cannot support the rate that is assigned to it. In our analysis, we consider

equal rate for the sub-channels, however, it is also possible to have a non-uniform

rate assignment.

After linear transformation, the mutual information between the elements of

r̂, in (4.10) and (4.12), and the transmitted data vector c is :

I(ck; r̂k) = log(1 + γk) . (4.22)

Assume the target rate is R, and let L
4
= N − M . The outage probability Pr(O) is :

Pr(O) = 1 − Pr(Oc)

= 1 − Pr

(

I(c1; r̂1) ≥
R

M
, · · · , I(cM ; r̂M) ≥ R

M

)

= 1 −
(

Pr

(

I(ck; r̂k) ≥
R

M

))M

≈ M Pr

(

I(ck; r̂k) <
R

M

)

. (4.23)

Notice that in the above derivation, we have used that fact that sub-channels outage

events are independent. This is based on the independence between the SINR of

various symbols. As we notice previously, this is a valid assumption for ZF-LE. While

this assumption does not hold for MMSE-LE, it does give a useful approximation,

providing the diversity order.

Substituting (4.17) and (4.22) in (4.23) gives the outage probability for ZF-LE

which is

Pr(O) ≈ MFY

(

2R/M − 1

ρ

)

(4.24)

= M − Me−y

(

ey −
∞
∑

i=L

yi−1

(i − 1)!

)∣

∣

∣

∣

∣

y= 2R/M
−1

ρ

·
=

M(2R/M − 1)L+1

(L + 1)!
ρ−(L+1) , (4.25)
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which shows the diversity order L + 1 for the ZF-LE.

Substituting (4.20) and (4.22) in (4.23) results in the outage probability of

MMSE-LE

Pr(O) ≈ MFY

(

2
R
M − 1

)

= M − Me−
y
ρ

(

e
y
ρ −

∞
∑

i=L+1

1

k!

(

y

ρ

)i

+
N
∑

i=L+2

Ai(y)

(i − 1)!

(

y

ρ

)i−1
)∣

∣

∣

∣

∣

y=2
R
M −1

(4.26)

·
=

yL+1

(L + 1)!
· yM−1

(1 + y)M−1
ρ−(L+1)

∣

∣

∣

∣

y=2
R
M −1

, (4.27)

which also shows the diversity order L + 1 for the MMSE-LE, the same as that of

ZF-LE. However, the two outage probabilities are not exactly the same. The ratio of

the outage probability of (4.25) to (4.27) is the inverse of the middle term in (4.27):

Pr(O)ZF

Pr(O)MMSE

=
(1 + y)M−1

yM−1

∣

∣

∣

∣

y=2
R
M −1

=

(

2
R
M

2
R
M − 1

)M−1

. (4.28)

Note that the ratio of outage probabilities in (4.28) remains fixed throughout

the range of SNR and it only depends on the relative target rate, R
M

. When the

relative target rate is small, the outage probability of ZF-LE becomes larger than

that of MMSE-LE. When the target rate is large this difference between the outage

probabilities becomes negligible. We demonstrate this fact in the experimental results

in Section 4.3.3.

Generalization of the above results to non-uniform rate assignment is straight-

forward. Uniform and non-uniform rate assignment have the same diversity, though

they have different performance.

It is also possible to obtain the diversity-multiplexing tradeoff, introduced

in [54], for ZF-LE and MMSE-LE. In the framework of [54], the target rate is defined

for a family of codes, whose members are designed to be employed each in a given
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SNR. A family of codes achieves the spatial multiplexing gain of r if it supports the

target rate R = r log ρ.

For ZF-LE, a similar derivation as in (4.25) leads to

Pr(O) ≈ MFY

(

ρ
r
M − 1

ρ

)

= M − Me−y

(

ey −
∞
∑

i=L

yi−1

(i − 1)!

)∣

∣

∣

∣

∣

y= ρ
r
M −1

ρ

·
=

M

(L + 1)!
ρ−(L+1)(1− r

M
)+ , (4.29)

where (x)+ = max(0, x). The above result indicates that ZF-LE achieves the diversity

gain of d(r) = (L + 1)(1 − r
M

). We notice that for a multiplexing gain of r = 0, i.e.

fixed target rate throughout the SNR region, the diversity is the same as what (4.25)

indicates. However, when the multiplexing gain increases, the diversity gain decreases

and in the limit of r = M , the maximum multiplexing gain, the diversity gain is zero.

Similarly for MMSE-LE, the derivation which led to (4.27) gives us:

Pr(O) ≈ MFY

(

ρ
r
M − 1

)

·
=

yL+1

(L + 1)!
· yM−1

(1 + y)M−1
ρ−(L+1)

∣

∣

∣

∣

y=ρ
r
M −1

·
=

M

(L + 1)!
ρ−(L+1)(1− r

M
)+ , (4.30)

which is the same diversity gain as that of ZF-LE.

4.3.2 Outage Probability in Joint Spatial Encoding

In joint spatial encoding, the data stream is encoded and then demultiplexed

into sub-streams to be sent from the antennas. Effectively, each data symbol con-

tribute to signals of all the transmit antennas. Considering the act of linear equalizers,

outage occurs when the aggregate mutual information of all the sub-channels fails to

support the target rate [38].
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The mutual information between the elements of the linearly transformed re-

ceive signal, r̂ in (4.10) and (4.12), and the transmitted data vector c is I(ck; r̂k) =

log(1 + γk). Assuming the target rate is R, the probability of the outage event O is

Pr(O) = Pr

(

M
∑

k=1

I(ck; r̂k) < R

)

= Pr

(

M
∑

k=1

log(1 + γk) < R

)

(4.31)

= Pr

(

M
∏

k=1

(1 + γk) < 2R

)

. (4.32)

The SINR of the sub-channels of ZF-LE are independent chi-square random

variables with degrees 2(N−M +1). Let Yk ∼ χ2(N−M+1), k = 1, · · · ,M . The outage

probability of ZF-LE is given by the CDF of the random variable

M
∏

k=1

(1 + Yk) = 1 +
M
∑

k=1

Yk + · · · +
M
∏

k=1

Yk . (4.33)

Among the components of the above random variable, the last term, which is the

product of Yk’s, determines the diversity order. In the following, through recursion,

we show that Y1 · Y2 · · ·YM has diversity order L. Let us start by Z
4
= Y1 · Y2. The

PDF of Z is given by

fZ(z) =
2

((L − 1)!)2
zLK0

(

2
√

z
)

, (4.34)

where K0(·) is the zeroth order modified Bessel function of the second kind [36], which

for small values of z is a constant3. Therefore, for small values of z the first order

approximation of fZ(z) is zL. This shows that the CDF of Z, FZ(z), has first order

approximation equal to zL+1, which indicates diversity order of L + 1. Now consider

3For small values of x: Km(x) ∼ Γ(m)
2 (2/x)m [37].
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the CDF of W
4
= Y1 · Y2 · Y3 = Z · Y , where Y ∼ χ2(N−M+1):

FW (w) = Pr(W ≤ w) = Pr(Z · Y ≤ w) =

∫ ∞

0

fZ(z)FY (
w

z
)dz

=

∫ ∞

0

αzLK0

(

2
√

z
)

(

1 − e−
w
z

L+1
∑

k=1

wk−1

zk−1(k − 1)!

)

dz

= α

∫ ∞

0

zLK0

(

2
√

z
)

e−
w
z

∞
∑

k=L+2

wk−1

zk−1(k − 1)!
dz , (4.35)

where α is the constant term in (4.34). The first order approximation of (4.35) around

zero is

wL+1

∫ ∞

0

α

z(L + 1)!
K0

(

2
√

z
)

dz .

Thus FW (w) behaves like the L+1th power of w, indicating the diversity order L+1.

This procedure can be applied recursively to find that the first order approximation

of the CDF of Y1 · Y2 · · ·YM behaves like wL+1. As mentioned, the product term,

among the ones in (4.33), dominates the diversity. We just showed that the product

term Y1 · Y2 · · ·YM has the diversity order L + 1. Therefore, the diversity order of

ZF-LE is L + 1.

Recalling the results from Section 4.3.1, ZF-LE has the same diversity in joint

and separate spatial encoding architecture.

To obtain the outage probability of MMSE-LE, we substitute the SINR of

MMSE-LE from (4.19) in (4.32) which gives:

Pr(O) = Pr

(

M
∏

k=1

(

I + ρHHH
)−1

k
> 2−R

)

. (4.36)

The involvement of the diagonal elements of the random matrix
(

I + ρHHH
)−1

makes

further analysis intractable. We proceed to provide an upper bound to this probabil-
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ity. Rewriting the sum mutual information as in (4.31), we have

−
M
∑

k=1

I(ck; r̂k) =
M
∑

k=1

log
(

(

I + ρHHH
)−1

k

)

≥ M log

(

M
∑

k=1

1

M

(

I + ρHHH
)−1

k

)

(4.37)

= M log

(

1

M
tr
(

(

I + ρHHH
)−1
)

)

= M log

(

1

M

M
∑

k=1

1

1 + ρλk

)

, (4.38)

where (4.37) is due to Jensen’s inequality, and λk’s are the eigenvalues of the Wishart

matrix HHH. Substituting (4.38) into (4.31) gives:

Pr(O) ≤ Pr

(

M
∑

k=1

1

1 + ρλk

≥ M2−
R
M

)

. (4.39)

To evaluate the above probability, we need the joint PDF of the eigenvalues of HHH.

Assuming N ≥ M , the joint PDF of the ordered eigenvalues λk’s, λ1 ≤ λ2 ≤ · · · ≤ λM ,

is

fΛ(λ) = KM,N

M
∏

i=1

λN−M
i

∏

i<j

(λi − λj)
2 exp

(

−
∑

i

λi

)

, (4.40)

where KM,N is a normalizing constant.

The evaluation of (4.39) for a specific outage rate R is rather difficult, due to

the shape of the outage region. However, one can calculate the bound for small and

large values of R where the the outage region can be approximated by regions with

simpler shapes. In the following we evaluate (4.39) for a MIMO channel with M = 2

and N ≥ 2.

For a MIMO channel with M = 2 and N ≥ 2, the bound (4.39) on outage

probability becomes

Pr(O) ≤ Pr

(

1

1 + ρλ1

+
1

1 + ρλ2

≥ 21−R
2

)

. (4.41)
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For small values of R, the outage region is a isosceles right triangle with the side

λ1 + λ2 = c2, where c2
4
= 2−b

ρ(b−1)
and b

4
= 21−R

2 . When M = N = 2, above outage

probability bound, up to the scaling factor K2,2, is

Pr(O) ≤
∫ c2

0

e−λ1

∫ c2−λ1

0

(λ1 − λ2)
2e−λ2dλ2 dλ1

= 2

(

1 − e−c2

(

1 + c2 +
c2
2

2
+

c3
2

6

))

= 2e−c2

∞
∑

k=4

ck
2

k!

·
=

1

12
c4
2 =

1

12

(

2 − b

b − 1

)4

ρ−4 , (4.42)

which indicates diversity four. When N ≥ 2 the outage probability bound (4.39), up

to the scaling factor K2,N , is

Pr(O) ≤
∫ c2

0

e−λ1λN−2
1

∫ c2−λ1

0

λN−2
2 (λ1 − λ2)

2e−λ2dλ2 dλ1

= 2(N − 1)!(N − 2)!

(

1 − e−c2

2N−1
∑

k=1

ck
2

k!

)

·
=

2(N − 1)!(N − 2)!

(2N)!

(

2 − b

b − 1

)2N

ρ−2N , (4.43)

where the achieved diversity is 2N . In obtaining (4.42) and (4.43), the following

identities are helpful:

∫ u

0

xne−xdx = n! − e−u

n
∑

k=0

n!

(n − k)!
un−k ,

∫ u

0

xn(u − x)mdx = um+n+1B(m + 1, n + 1) ,

where m and n are integers and B(·, ·) is the Beta function which is B(b, c) =

Γ(b)Γ(c)
Γ(b+c)

[37], and Γ(·) denotes the Gamma function.

For large values of R, the outage region is approximated by two orthogonal

strips. The strips are defined as 0 ≤ λ2, 0 ≤ λ1 ≤ ĉ2 and 0 ≤ λ1, 0 ≤ λ2 ≤ ĉ2, where
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ĉ2
4
= 1−b

bρ
. The outage probability bound, up to the scaling factor K2,N , is

Pr(O) ≤ 2

∫ ĉ2

0

e−λ1λN−2
1

∫ ∞

0

λN−2
2 (λ1 − λ2)

2e−λ2dλ2 dλ1

= 4(N − 1)! (N − 2)! e−ĉ2

∞
∑

k=N−1

xk

k!

+2(N − 2)! e−ĉ2
(

(N − 2)ĉN−1
2 − ĉN

2

)

·
= 2N(N − 2)! ĉN−1

2

= 2N(N − 2)!

(

1 − b

b

)N−1

ρ−(N−1) , (4.44)

which indicates that the upper bound4 has the diversity N − 1 = L + 1, where

L = N − M as introduced previously. In the calculation of (4.44), the intersection

of the two strips is calculated twice. This portion of integral, which decays as fast as

ρ−2(N−1), does not affect the asymptotic behavior of (4.44).

The upper bounds in (4.42) and (4.43) show the surprising fact that MMSE-

LE can achieve the same diversity as the ML receiver for small values of R in joint

spatial encoding. However, for large values of R the performance of MMSE-LE and

ZF-LE are the same. Hence, the diversity of MMSE-LE varies from the full diversity

of an unconstrained detector to that of ZF-LE, depending of the target rate R.

Comparing to the results from Section 4.3.1 for separate spatial encoders,

MMSE-LE has different diversity in joint spatial encoding architecture, except for

large outage rate R.

The previous results of the case M = 2, N ≥ 2 can be generalized to arbitrary

values of M and N ≥ M .

4In Section 4.3.3 is shown that the upper bound is tight in high spectral efficiency region.
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Figure 4.1. Outage probability of linear equalizers. Left: M = N = 2, the pairs solid
and dashed lines, from left, correspond to MMSE-LE and ZF-LE for rates R=1,2,4,10
bits/sec/Hz. Right: M = N = 4, R=4,8,12,16 bits/sec/Hz.

4.3.3 Simulation Results

First we consider a MIMO system with two antennas in transmit and receive

sides: M = N = 2. The outage probability of the linear equalizers in the separate

architecture are shown in Figure 4.1. The target rate is R = 1, 2, 4, 10 bits/sec/Hz.

As expected, both linear detectors show diversity order of one, regardless of the target

rate. For higher values of R the difference in the performance of ZF-LE and MMSE-

LE is negligible and they perform almost the same throughout the SNR region. This

is expected traditionally from linear equalizers: similar performance specially at high

SNR. But, for lower values of R, MMSE-LE performs better than ZF-LE in the whole

SNR region. The dependency of the relative performance of these equalizers on the

target rate R is in agreement with (4.28). In high SNR, the ratio of the outage

probabilities remains fixed. Similar results are also shown in Figure 4.1 for a MIMO

system with M = N = 4.

In Figure 4.2, the outage probability of the unconstrained receiver and linear

equalizers in a joint spatial encoding architecture are shown. The unconstrained
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Figure 4.2. Outage probability of unconstrained receiver and linear equalizers, Left:
M = N = 2, unconstrained receiver (solid line), MMSE-LE (solid line with ◦) and
ZF-LE (dashed line), R=1,2,4,10 bits/sec/Hz. Right: M = N = 4, R=4,8,12,16
bits/sec/Hz.

receiver achieves the full diversity of the channel. The ZF-LE equalizer has diversity

one as expected from the analysis in Section 4.3.2. The diversity order of ZF-LE

remains fixed regardless of the target rate R. Surprisingly, MMSE-LE shows diversity

rate that depends on R: in lower values of R the diversity order is very close to that

of the unconstrained receiver, and in higher values of R its diversity becomes the

same as the diversity of ZF-LE. These results are in agreement with the analysis

in Section 4.3.2. Figure 4.2 also presents similar results for a MIMO system with

M = N = 4.

In Figure 4.2, the outage probability of MMSE-LE and the upper bound (4.39)

are also shown. The bound is tight is either low or high values of R. Though the

bound is loose in the intermediate values of R, it does predict diversity order varying

with R.

Figure 4.4 presents similar results for a flat fading MIMO channel with M =

N = 2 and correlated transmit antennas with correlation factor ρt = 0.5. Outage

probabilities are slightly higher than the results in Figure 4.2 and Figure 4.3, however,
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Figure 4.3. Outage probability of MMSE-LE and the upper bound (4.39). M = N =
2, the curves correspond, from left to right, to rates R=1,2,4,10 bits/sec/Hz.

the behavior of outage probabilities are the same as uncorrelated cases.

To see the surprising outage probability of MMSE-LE from a different per-

spective, the CDF of the capacity of the unconstrained receiver and linear equalizers

at SNR= 5, 10, 15, 20, 25 are shown in Figure 4.5. To see the slope of the CDF at low

values of R, the right plot in Figure 4.5 zooms on a small region from the left plot.

We notice the significant difference in outage probability of ZF-LE and MMSE-LE in

low target rates.

The CDF capacity of two other MIMO systems with M = 2, N = 4 and

M = N = 4 are shown in Figure 4.6. We notice that in a higher diversity environment,

case M = 2, N = 4, the performance of ZF-LE becomes the same as MMSE-LE in

lower target rates, compared to the cases where no diversity is available (M = N).
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Figure 4.4. Outage probability of unconstrained receiver and linear equalizers, M =
N = 2 and correlated transmit antennas, ρt = 0.5. Left: unconstrained receiver (solid
line), MMSE-LE (solid line with ◦) and ZF-LE (dashed line). Right: MMSE outage
probability and the upper bound. R=1,2,4,10 bits/sec/Hz.
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Figure 4.5. CDF of capacity of the unconstrained receiver (solid line), MMSE-LE
(dashed line), and ZF-LE (dashed-dot line) in a MIMO channel with M = N = 2.
The SNR is, from left to right, 5,10,15,20,25 dB.
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Figure 4.6. CDF of capacity of the unconstrained receiver (solid line), MMSE-LE
(dashed line), and ZF-LE (dashed-dot line) in a MIMO channel with (left) M =
2, N = 4, and (right) M = N = 4. The SNR is, from left to right, 5,10,15,20,25 dB.

4.4 Decision-Feedback Equalizers

Decision-feedback equalizers (DFE) are combination of linear equalizers and

a cancelling process which is performed iteratively. In terms of complexity they are

less complex than ML equalizers but obviously more complex than linear equalizers.

Their performance is better than the linear equalizers but inferior to ML equalizers.

The basic process in DFE is as follows. Consider the system model (4.1):

r = Hc + n. Let the QR decomposition of random matrix H be H = QR, where

Q is a unitary matrix, QHQ = I, and R is an M × M lower triangular matrix with

positive diagonal elements. Consider

r̂ = QHr = Rc + QHn = Rc + ñ .

Note that ñ ∈ CM×1 since the distribution of the Gaussian vector n is invariant to

unitary operation. Since R is a lower triangular matrix, the first element of r̂ has no

interference from other antennas i.e., r̂1 = R1,1c1 + ñ1, and can be detected by either

ZF or MMSE criterion. Having c1 detected, its contribution can be cancelled from

other received symbols. Eliminating the first column of H and the first components
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of r̂ and ñ, we obtain a system with fewer of unknowns, to which we apply the same

process iteratively. The performance can be further improved if one starts detecting

the symbol with highest SNR in each iteration [45].

In a separate spatial encoder, above detecting and cancelling procedure can

be combined with the outer decoding. This is done by carrying out each iteration for

all the time indices in rt = Htct +nt, and then decode the detected r̂k’s, 1 ≤ k ≤ M ,

by the associated outer decoder of the kth antenna [45, 55].

The analysis of DFE structures usually relies on the assumption that the

decision that is fed back for next cancelling process is perfect, i.e., error propagation

is ignored.

4.4.1 Outage Probability in Separate Spatial Encoding

The performance of DFE equalizers with separate spatial encoders has been

evaluated in the literature, mainly for the V-BLAST architecture [56, 55, 54].

The following celebrated result facilitates the analysis of detecting and can-

celling process: In the QR factorization of H = QR, the diagonal elements of

the lower triangular matrix R are i.i.d. with chi-square distribution with degree

2(N − M + k), where k is the index of the diagonal element [57].

Based on the above result, the outage probability for the separate spatial

encoder, such as V-BLAST, is obtained from a similar analysis that led to (4.23):

Pr(O) = 1 −
M
∏

k=1

Pr

(

I(ck; r̂k) ≥
R

M

)

, (4.45)

where, in the context of detecting and cancelling process, r̂k is the resulting received

signal after the (k − 1)th cancelling process.
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For the DFE equalizer with ZF detection (ZF-DFE), the above results lead to

Pr(O) = 1 −
M
∏

k=1

(

1 − Pr

(

Yk <
2R/M − 1

ρ

))

, (4.46)

where Yk ∼ χ2(N−M+k). The diversity of (4.46) is simply obtained by observing that

the cumulative term
∑

k FYk
(2R/M−1

ρ
) dominates the diversity of (4.46). Among the

M components of this term, the first term has the smallest diversity of N − M + 1,

which is the diversity of ZF-DFE. Thus we have the same diversity as of ZF-LE.

This is not surprising since in the separate spatial encoder, the performance and

diversity is determined by the sub-channel which has the smallest diversity, the first

sub-channel [54].

For the DFE equalizer with MMSE detection (MMSE-DFE), Equation (4.45)

leads to

Pr(O) = 1 −
M
∏

k=1

(

1 − Pr

(

hH
k Akhk <

2R/M − 1

ρ

))

, (4.47)

where hk is the kth column of H and Ak =
(

ĤkĤ
H
k + ρ−1I

)

, and Ĥk is a submatrix of

H which excludes its first k columns. Carrying out a similar argument as in ZF-DFE

case, and considering the statistics of the Gaussian quadratic form in Section 4.3,

we see that the diversity of MMSE-DFE is also N − M + 1. Note that the starting

equation (4.45) assumes that the SINR of the subchannels are independent, which

may not hold. Therefore, (4.47) is only an approximation of the outage probability

of MMSE-DFE.

Considering the terms which determine diversity in (4.46) and (4.47), we get

the same ratio of the outage probability of ZF-DFE and MMSE-DFE as (4.28).

The diversity gain of V-BLAST, in the framework of diversity multiplexing

tradeoff, is shown in [54] to be d(r) = (1 − r
M

)+ when M = N . Similar to the
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procedure in Section 4.3.1, above result can be extended to the case where N ≥ M

which gives d(r) = (L + 1)(1 − r
M

)+.

4.4.2 Outage Probability in Joint Spatial Encoding

The outage probability for the joint encoding structure has been investigated

in the literature. Particularly, the D-BLAST architecture has been analyzed in the

early work of [46] and recently in [54].

In the joint spatial encoding architecture, outage occurs when the sum of

mutual information of the sub-channels is less than the target rate. The sum mutual

information is given by (4.31), except that r̂k is the result of the (k − 1)th cancelling

process.

When the ZF-DFE equalizer is applied to D-BLAST, [54] has shown that the

diversity is N(N + 1)/2, assuming M = N .

With perfect decision-feedback, the MMSE-DFE equalizer is actually capacity-

achieving (see e.g. [38]), hence it achieves the full diversity of the unconstrained

decoder. In the general context of joint spatial encoding, [38] shows that the sum

mutual information in (4.31) is the capacity of the MIMO system. In the context of

diversity multiplexing tradeoff, [54] shows that MMSE-DFE receiver for D-BLAST

structure achieves the tradeoff of the underlying MIMO channel.

4.5 Simulation Results

We consider a MIMO system with M = N = 2. The outage probability of

DFE equalizers in separate spatial encoding is shown in Figure 4.7. Both ZF-DFE

and MMSE-DFE equalizers show the diversity M−N +1 = 1, the same as their linear

counterparts, but they have better performance compared to linear equalizers. We
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Figure 4.7. Outage probability of DFE equalizers in separate spatial encoding, M =
N = 2. The pairs of solid and dashed lines, from left, correspond to MMSE-DFE and
ZF-DFE for rates R = 1, 2, 4, 10 bits/sec/Hz.

notice that for higher values of R the difference in the performance of ZF-DFE and

MMSE-DFE is negligible. In low spectral efficiencies, MMSE-DFE performs better

than ZF-DFE.

In Figure 4.8, the outage probability of the DFE equalizers with joint spatial

encoders is shown. The outage probability of the unconstrained receiver is the same as

that of MMSE-DFE and is not shown. Both achieve full diversity order of four. The

ZF-DFE equalizer has diversity order three, which is in agreement with the finding

of [54], as reported in Section 4.4.2.

4.6 Chapter Summary

In this chapter, we focus on the performance of equalizers in flat fading chan-

nels. We present new results on the performance of linear equalizers, and calculate

their diversity order. Our analytical and experimental results show that MMSE linear
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Figure 4.8. Outage probability of DFE equalizers in joint spatial encoding, M =
N = 2. The pairs of solid and dashed lines, from left, correspond to MMSE-DFE and
ZF-DFE for rates R = 1, 2, 4, 10 bits/sec/Hz. Unconstrained equalizer has the same
outage probability as MMSE-DFE.

equalizers, depending on spectral efficiency, have outage probability that decays as

fast as the outage probability of unconstrained receiver, and as slowly as that of ZF

linear equalizers. We also briefly present some results on the performance of DFE

equalizers and presented some new results as well.



CHAPTER 5

PERFORMANCE OF EQUALIZERS IN FREQUENCY-SELECTIVE

MULTIPLE-ANTENNA FADING CHANNELS

In frequency-selective MIMO channels interference occurs across both time and

space. In this section, we analyze the performance of various equalizers in frequency-

selective MIMO channels. Prior work in this area were focused mainly on diversity

combining [44, 58, 59]. The performance of ML receiver is evaluated first in spatially

uncorrelated and correlated channels. We also provide results for channels whose

multipath fading components are correlated. Next, we analyze the performance of

linear equalizers and calculate their achievable diversity order.

5.1 Introduction

Assume a MIMO channel with M transmit antennas, N receive antennas,

and memory ν. Such a channel is represented by matrix channels H0,H1, · · · ,Hν ∈

CN×M , with the system model r = Hc + n, i.e.
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0 H0 H1 · · · Hν · · · 0
...

. . . . . . . . . . . . . . .
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0 · · · 0 H0 H1 · · · Hν
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nL

nL−1
...
n1











, (5.1)

where L is the block length, ct is the M × 1 transmit vector at time index t, rt is the

N×1 received vector at the same time index, nt ∈ CN×1 is AWGN, and H ∈ CLN×LM

is the equivalent channel.
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5.2 Maximum Likelihood Equalizer

In this section, we use methodology and notation similar to Section 3.2. Let

H = (Hν ,Hν−1, · · · ,H0), where H ∈ CN×(ν+1)M , and denote the jth row of H with

hj. The ML metric in this case is

||H∆||2 = ∆H
H

H
H∆

where ∆ =
(

∆H
1 ,∆H

2 , · · · ,∆H
L

)H
, and ∆t = ct − ĉt, where ct and ĉt are the tth

subvector of the codewords c and ĉ. The structure of the matrix H simplifies the ML

metric to

||H∆||2 =
L−ν
∑

i=0

AH
i HHHAi (5.2)

=
L−ν
∑

i=0

N
∑

j=1

AH
i hH

j hjAi =
N
∑

j=1

hjΩhH
j , (5.3)

where Ai
4
=
(

∆H
i , · · · ,∆H

ν+i

)H
and Ω =

∑L−ν
i=0 AiA

H
i . The ML metric is a sum of

quadratic forms. Using the result of [32], appeared as a Lemma in Section 3.2, we

obtain the following MGF for Γ = ||H∆||2, assuming the channel components Hi are

independent:

ΦΓ(s) =
νM
∏

i=0

(1 − sλi)
−N , (5.4)

where s
4
= − ρ

4 sin2 θ
, ρ = Ex

N0
, and λi is an eigenvalue of Ω. Asymptotically, ΦΓ(s)

behaves like

ΦΓ(−s)
·
=
∏

λi 6=0

(sλi)
−N =

s−NM(ν+1)

det(Ω)N
,

where for the second equality it is assumed that all the eigenvalues λi are nonzero.

If Ω is full rank, ΦΓ(s) decays with the (ν + 1)MN power of SNR, indicating the

maximum obtainable diversity. However, to achieve this diversity, coding is necessary,

as demonstrated below.
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If the vector c does not have any redundancy, then c and ĉ are different in at

most one position, hence only one ∆t is non-zero. Assume that the position of the

nonzero ∆t is far enough from the edges of ∆ such that exactly ν+1 of Ai vectors are

nonzero. Therefore, Ω = I⊗D, where D is an M ×M matrix which has exactly one

nonzero diagonal element. Hence Ω has rank ν + 1, i.e., diversity order (ν + 1)N . It

follows that frequency and receive diversity are possible without coding, but transmit

diversity requires coding, or otherwise a carefully designed signaling that guarantees

a full rank Ω.

We now calculate the MGF of Γ when the channel matrices Hi are not in-

dependent. Assume Hν(i, j), · · · ,H0(i, j) are correlated with correlation matrix Rt,

which is fixed for all pairs of i and j. This model assumes that all antenna pairs

in the MIMO system have the same temporal dynamics. The covariance of hj,the

jth row of H, is Rt ⊗ IM . The vector hj can be decorrelated by the transform

hj = h̃j (Rt ⊗ IM)
1

2 where h̃j is a white vector. Hence

||H∆||2 =
N
∑

j=1

hj (Rt ⊗ IM)
1

2 Ω (Rt ⊗ IM)
H
2 hH

j ,

which results in the following MGF

ΦΓ(s) =
νM
∏

i=0

(I − sµi)
−N , (5.5)

where µi are eigenvalues of (Rt ⊗ IM)Ω. We notice that as long as the covariance

matrix Rt is full-rank, the diversity obtained by ML equalizer is not affected by

channel correlation, but it incurs performance loss characterized by (det(Rt))
M .

We now consider the spatial correlation between the elements of Hi. We again

use the channel model (4.7). In case of transmit-side correlation only (RRx = IN and

RRx 6= IM), we obtain the following MGF:

ΦΓ(s) =
νM
∏

i=0

(I − sµi)
−N ,
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where µi are eigenvalues of (Rt ⊗RRx)Ω. If RRx 6= IN and RRx 6= IM , the procedure

we have the following expression for MGF:

ΦΓ(s) = det (I − s(Rt ⊗ RRx)(RRx ⊗ Ω))−1 .

We notice that in the correlated channel cases, asymptotic behavior of MGF is inde-

pendent of correlation as long as the correlation matrices are full-rank, and the loss

in performance is quantified with the determinant of the correlation matrices, similar

to (3.14).

5.3 Linear Equalizers

We consider block transmission and apply linear equalization in matrix-form.

A linear transformation is applied to the received signal in a single step to remove

both temporal and spatial interference (see [38], among others).

Assume the system model (5.1). The block ZF-LE has the matrix form:

FZF = (HH
H)−1

H
H , (5.6)

which transforms the received signal to

r̂ = FZF r = c + (HH
H)−1

H
Hn . (5.7)

The MMSE-LE is

FMMSE = (HH
H + ρ−1I)−1

H
H , (5.8)

which transforms the received signal to

r̂ = FMMSE r = (HH
H + ρ−1I)−1

H
H

Hc + (HH
H + ρ−1I)−1

H
Hn . (5.9)

For mathematical tractability, we assume that the data sent from each transmit

antenna is appended by a cyclic prefix (CP). The CP converts the channel matrix
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H to a block circulant matrix. A block circulant matrix with size LN × LM is a

matrix whose sub-matrices, each with size N × M , appear in a circulant fashion.

Block diagonalization of block circulant matrices is possible using the following fact.

Fact: Let H be a block circulant matrix of size LN × LM . Then H = (Q ⊗

IN)Λ(QH ⊗ IM), where Q is the Discrete Fourier Transform (DFT) matrix as defined

in Section 3.3, and Λ is a block diagonal matrix whose diagonal matrices are

Λ` =
1√
L

ν+1
∑

k=1

Hk e−(k−1)(`−1)/L ,

for ` = 1, · · · , L, and ν + 1 ≤ L. �

Assuming Hi ∈ CN×M , i = 1, · · · , ν + 1 are independent, then Λ` ∈ CN×M

for ` = 1, · · · , L, since Λ`(i, j) is a weighted sum of Hk(i, j). However, Λ`’s are not

necessarily independent. If L = ν +1, which the circulant channel matrix H becomes

fully populated, Λ`’s are independent. Our analysis is limited to this case, but our

experimental results confirm that the findings of the uncorrelated case is also valid

for L 6= ν + 1.

5.3.1 ZF-LE

In the case of ZF-LE, the equivalent noise is ñ
4
= (HH

H)−1H
Hn, with covari-

ance matrix Rñ = σ2
n(HH

H)−1. Using the block circulant channel model, the noise

covariance is

Rñ = σ2
n(Q ⊗ IM)

(

ΛHΛ
)−1

(QH ⊗ IM) . (5.10)

The properties of the orthogonal matrix Q result in a block diagonal structure for

Rñ whose blocks, denoted by B, are all the same

B =
1

L

L
∑

`=1

(

ΛH
` Λ`

)−1
. (5.11)
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Each ΛH
` Λ` is a Wishart matrix, hence B is a sum of independent inverse Wishart

matrices whose diagonal elements determine the decision-point SINR. In Section 4.3,

we show that the diagonal elements of an inverse Wishart matrix are independent.

The decision-point SINR of each symbol, denoted by γi for i = 1, · · · ,M , is

γi =
ρ

1
L

L
∑

`=1

Y`,i

, (5.12)

where Y`,i, ` = 1, · · · , L, is the ith diagonal elements of
(

ΛH
` Λ`

)−1
and X`,i

4
= 1

Y`,i
∼

χ2(N−M+1). Since the diagonal blocks of Rñ are equal, we have γ(jM+i) = γi for

j = 0, · · · , L − 1. Equation (5.12) is a generalization of the decision-point SINR in

frequency-selective SISO channel given by (3.24). Since the CDF of γi’s are the same,

the subscript i is dropped in the following unless needed for clarity.

FΓ(γ) = Pr(Γ < γ)

= Pr

(

L
∑

`=1

1

X`

>
ρL

γ

)

. (5.13)

We evaluate (5.13) for γ → 0+ based on the similarity between the integration region

of (5.13) and what we carry out in Section 3.3.

When γ → 0+ the integration region of (5.13) is approximated by L regions

where the `th region is defined as 0 ≤ X` ≤ γ
ρL

, and for k 6= `, 0 ≤ Xk. Recalling

that X` ∼ χ2(N−M+1), and denoting α
4
= γ

ρL
, (5.13) gives

FΓ(γ) = L

∫ α

0

fX1
(x1)dX1

L
∏

`=2

∫ ∞

0

fX`
(x`)dX`

= LFX1
(α) = L

(

1 − e−α

N−M+1
∑

i=1

αi−1

(i − 1)!

)

·
=

1

(N − M + 1)!LN−M

(

γ

ρ

)N−M+1

, (5.14)

where the multiple count of the intersection of the regions is ignored because it de-

creases as fast as γL(N−M+1) when γ → 0+, hence does not change the result of (5.14).
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The achievable diversity is N −M +1, which is the same diversity order as what ZF-

LE achieves in flat fading channel (see Section 4.3). Therefore, ZF-LE is incapable of

achieving the frequency diversity.

Outage Probability

We analyze the outage probability of ZF-LE in frequency-selective channel

for separate and joint spatial encoders. In separate spatial coding, the CDF of the

SNR of the individual symbols determine the outage probability, seen from (4.23)

and (4.24). From (5.14), we conclude that the outage probability of ZF-LE decreases

as ρ−(N−M+1).

In the joint spatial encoding architecture, Equation (4.31) can be rewritten as

follows

Pr(O) = Pr

(

1

L

LM
∑

k=1

log(1 + γk) < R

)

= Pr

(

M
∑

k=1

log(1 + γk) < R

)

(5.15)

≈ Pr

(

M
∑

k=1

log(γk) < R

)

(5.16)

where γk is given by (5.12), Equation (5.15) is due to γ(jM+i) = γi, j = 0, · · · , L − 1,

and the approximation in (5.16) is made for tractability. Applying Jensen’s inequality,

and substituting (5.12) in, we obtain the following upper bound

Pr(O) ≤ Pr

(

M
∑

k=1

L
∑

`=1

1

X`,k

> ρL2−R

)

. (5.17)

The earlier result of independence of XjM , · · · , XjM+i, for a given j where j =

0, · · · , L − 1, and the assumption of L = ν + 1 make all Xk’s independent with

chi-square distribution with 2(N − M + 1) degrees of freedom. Calculated in the
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same manner as (5.13), in high-SNR region (5.17) is

Pr(O) ≤ M2R(N−M+1)

(N − M + 1)!LN−M
ρ−(N−M+1) . (5.18)

5.3.2 MMSE-LE

The decision-point SINR of the received symbols after MMSE linear equaliza-

tion are equal to [38]

γi =
1

(

ρH
H

H + I
)−1

i

− 1 , (5.19)

for i = 1, · · · , LM , where M−1
i is the ith diagonal element of the inverse of the matrix

M. Using ILM = (Q ⊗ IM)(QH ⊗ IM) and

ρH
H

H + ILM = (Q ⊗ IM)
(

ρΛHΛ + ILM

)

(QH ⊗ IM) ,

the SINR in (5.19), for i = 1, · · · ,M , can be simplified to

γi =
1

1
L

L
∑

`=1

(IM + ρΛH
` Λ`)

−1

i

− 1 . (5.20)

Statistical evaluation of (5.20) appears to be difficult. To obtain the performance and

diversity order of MMSE-LE, we resort to outage analysis.

Outage Probability

In joint spatial encoding architecture, starting from (5.15), the outage proba-

bility is:

Pr(O) = Pr

(

M
∑

k=1

log(1 + γk) < R

)

= Pr

(

M
∑

k=1

log

(

1

L

L
∑

`=1

(

IM + ρΛH
` Λ`

)−1

k

)

> −R

)

, (5.21)
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where the involvement of the diagonal elements makes the evaluation of the outage

probability intractable. However, an upper bound to above outage probability can be

calculated as follows. Denote A`
4
= 1

L
(IM + ρΛH

` Λ`)
−1. Applying Jensen’s inequality

to the argument of (5.21) gives

M
∑

k=1

log

(

L
∑

`=1

(A`)k

)

≤ M log

(

1

M

L
∑

`=1

tr (A`)

)

= M log

(

1

LM

L
∑

`=1

M
∑

k=1

1

1 + ρλ`,k

)

, (5.22)

where λ`,i are eigenvalues of ΛH
` Λ`. Application of (5.22) in (5.21) gives the following

upper bound :

Pr(O) ≤ Pr

(

L
∑

`=1

M
∑

k=1

1

1 + ρλ`,k

≥ LM2−
R

LM

)

. (5.23)

For SISO channel, above bound becomes exact and the same as (3.38). In flat fading

channel (L = 1), the above upper bound becomes the same (4.39). We evaluate (5.23)

for high and low spectral efficiencies.

For small values of R, the outage region of (5.23) is a polyhedron in the space

of eigenvalues λ`,k whose vertices are the points on the axes with value

cν,M
4
=

1 + M − Lb

ρM(Lb − 1)

where b = 2−
R
M . This region is the bounded region in the positive cone separated by

the plane
L
∑

`=1

M
∑

k=1

λ`,k = cν,M . The upper bound (5.23) can be evaluated by plugging

in the distribution of the eigenvalues λ`,k and integrating over the polyhedron outage

region. For M = N = 2 and a two-tap channel, the upper bound for small values of
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R is

Pr(O) ≤ Pr

(

1

1 + ρλ1,1

+
1

1 + ρλ1,2

+
1

1 + ρλ2,1

+
1

1 + ρλ2,2

≥ 22−R
2

)

=

∫ ∫

A1

(λ1,1 − λ1,2)
2 e−λ1,1−λ1,2

×
∫ ∫

A2

(λ2,1 − λ2,2)
2 e−λ2,1−λ2,2dλ1,1dλ1,2dλ2,1dλ2,2

·
=

4

45
c8
1,2 =

4c̃8
1,2

45
ρ−8 , (5.24)

where A1 ≡ {λ1,1 + λ1,2 ≤ c1,2} and A2 ≡ {λ2,1 + λ2,2 ≤ c1,2 − λ1,1 − λ1,2}, and

c̃1,2 = 3−21−R/2

21−R/2−1
. The above upper bound decays as fast as ρ−8, indicating the diversity

order of eight. For other values of M , N , and ν, the upper bound (5.23) can be

calculated to obtain the diversity order of MN(ν + 1) in low spectral efficiency.

For large values of R, the outage region of (5.23) is approximated by LM

regions. The (`, k)th region, ` = 1, · · · , L and k = 1, · · · ,M , is defined as 0 ≤ λ`,k ≤

b̂ν,M , and for (ˆ̀, k̂) 6= (`, k), λ ˆ̀,k̂ ≥ 0, where b̂ν,M = 1
ρ

(

2
R
M

LM
− 1

)

. The evaluation

of (5.23) is similar to (4.44) and results in an expression which decays as fast as

ρN−M+1. Therefore, the diversity order in high spectral efficiencies is N − M + 1.

5.3.3 Simulation Results

Consider a MIMO system with two antennas in the transmit and receive sides

(M = N = 2) in a two-tap Rayleigh frequency-selective channel (ν = 1) and block

length L = 10. The outage probability of the linear equalizers in joint spatial ar-

chitecture are shown in Figure 5.1. The target rate is R = 2, 4, 6, 8 bits/sec/Hz. As

expected, ZF-LE shows diversity order of N−M +1 = 1, regardless of the target rate.

This confirms that ZF-LE cannot harvest the frequency diversity of the channel.

However, MMSE-LE behaves differently in various spectral efficiencies. For

small values of R, the diversity order is very close to that of the unconstrained receiver.
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Figure 5.1. Outage probability of unconstrained and linear equalizers, M = N =
2, ν = 1, L = 10. Unconstrained (solid line), MMSE-LE (solid line with ◦) and ZF-
LE (dashed line). The curves correspond, from top left clockwise, to rates R=2,4,8,6
bits/sec/Hz.

As the spectral efficiency increases the diversity order of MMSE-LE decreases, and

eventually achieves diversity order of N −M + 1. This indicates that MMSE-LE can

achieve varying portions of the frequency diversity of the channel, depending of the

spectral efficiency. The upper bound (5.23) and the outage probability of MMSE-LE

are shown in Figure 5.2.
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Figure 5.2. Outage probability of MMSE-LE and the upper bound (5.23). M =
N = 2, ν = 1, L = 10, the curves correspond, from left to right, to rates R=2,4,6,8
bits/sec/Hz.

5.4 Chapter Summary

In this chapter, we evaluate the performance of ML and linear equalizers in

frequency-selective fading channels. We present new results on the performance of

linear equalizers, and calculate their diversity order. Our analytical and experimental

results show that MMSE linear equalizers, depending on spectral efficiency, have

outage probability that decays as fast as MNL, the same as that of unconstrained

receiver, and as slowly as L − M + 1.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Contributions

In Chapter 2, we analyze the role of redundancy in a concatenated entropy

and channel code. The significance of such concatenated codes is indisputable because

entropy coding is part of any compression system, and channel codes are always used

for reliable transmission.

Previous work in the area of joint entropy and channel coding were limited in

either decoding or the amount of redundancy in the entropy code. In some of the

early works, the redundancy of the entropy codes was exploited by simple but sub-

optimal decoding, such as bi-directional decoding in RVLC, which has the limitation

of separate source channel decoding. In some recent works [1, 9], joint source channel

decoding was used via iterative decoding methods. However, no attention was given

to the amount of redundancy in entropy codes.

We extend the prior work in joint entropy and channel coding as follows. We

generalize the role of entropy codes by using variable-length error correcting codes

of [4, 5]. Subject to a total rate, we allow the outer entropy code and inner channel

code freely share the available rate. We analyze the error rate of the concatenated code

to obtain design rules for the constituent codes. We consider iterative decoding and

improve upon it by using list iterative decoding. Our results indicate that allowing

more redundancy in entropy codes improves the overall code significantly compared

to the concatenated RVLC and channel code.

100
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We also compare the proposed concatenated code with a code that consists

of Huffman entropy code and a serial concatenated channel code. We conclude that

there is no clear and universal advantage of any of the two codes.

In Chapters 3, 4, and 5 we analyze the performance of equalizers in fading

channels which experience interference in time or space or both. Our analysis relies

on either the statistical evaluation of the decision-point SNR, or outage probability.

In Chapter 3, we consider a frequency selective single-antenna fading channel

and analyze the performance of various linear and decision-feedback equalizers. We

determine the diversity order of linear equalizers and show that ZF-LE does not

achieve any of the available frequency diversity. However, MMSE-LE may achieve

the full diversity if the spectral efficiency is low, or none if the spectral efficiency is

high. In intermediate spectral efficiencies, MMSE-LE achieves some diversity which

is less than the full diversity order.

We consider a flat fading multiple-antenna in Chapter 4, and analyze the

performance of various equalizers for two spatial encoding architectures. The diversity

order of ZF-LE has been shown by [51] to be N −M +1. Traditionally, it is expected

that MMSE-LE performs the same as ZF-LE in high SNR regime. However, our

findings show that it can perform quite differently than ZF-LE. In separate spatial

encoding, both linear equalizers have the diversity order N−M +1, however, MMSE-

LE performs better in low spectral efficiencies regardless on SNR. In joint spectral

efficiency, ZF-LE achieves the same diversity order N − M + 1. In low spectral

efficiency, MMSE-LE achieves the full spatial diversity of the system. As the spectral

efficiency grows, the diversity order of MMSE-LE decreases and eventually becomes

the same as ZF-LE. In Chapter 4, we also present some new results on the performance

of decision-feedback equalizers. In separate spatial encoding, ZF-DFE and MMSE-
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DFE do not achieve any higher diversity order than the linear equalizers, although

they have better performance.

In Chapter 5, frequency-selective multiple-antenna fading channels are consid-

ered where the interference occurs in both space and time. We analyze the perfor-

mance of ML equalizers in uncorrelated and correlated channels. Though the perfor-

mance of ML equalizers degrade in correlated channels, the diversity order remains

unchanged. We also analyzed the performance of linear equalizers. Our findings show

that ZF-LE achieve the diversity order of N − M + 1 which is the same as what it

achieves in flat fading channel. Therefore, similar to the results of Chapter 3, ZF-

LE is incapable of harvesting the available frequency diversity. However, MMSE-LE

achieves the full spatial and frequency diversity of MN(ν + 1) if it operates in low

spectral efficiency. As the spectral efficiency grows, the diversity order of MMSE-LE

decreases and finally becomes the same as that of ZF-LE.

6.2 Future Work

Related to the material in Chapter 2, the issue of rate allocation in concate-

nated codes is an open problem. Given a fixed total rate, there is a tradeoff in what

share of the rate the outer and inner codes of a serially concatenated code should

have. The higher amount of redundancy given to the outer code, the larger interleav-

ing gain. However, less amount of redundancy becomes available to the inner code

and the overall performance may not be optimum especially in low to moderate SNR.

The issue of rate allocation to constituent codes of a concatenated code is of

value in many scenarios. In the framework of Chapter 2, it is of interest to know how

much the outer VLC code should be redundant to have the best performance. For

example, in Section 2.7, we notice that the concatenated code with higher do
f does
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not perform better than a code with a more balanced rate allocation. Similarly, se-

rially concatenated convolutional codes that allocate the overall rate efficiently have

better performance. The optimal rate allocation is of importance in other concate-

nated codes [60], such as hybrid concatenated codes and double serially concatenated

codes [61].

In Chapters 3, 4, and 5, we evaluate the performance of various equalizers in

a single-user environment where the interference occurs between the components of

each user’s signal in time or space or both. In multiuser environments, the interference

may also occur between the users’ signals if they do not communicate in orthogonal

channels. While the performance of equalizers has been investigated in multiuser

environments [51, 62, 63], a comprehensive analysis of linear and decision-feedback

equalizers has not been presented yet. The performance of ZF-LE in a multiple-

access flat fading channel with receive diversity is investigated in [51]. In [62], it is

shown that MMSE-DFE achieves the capacity of a multiple-access Gaussian channel.

The focus of [51, 62] is limited to frequency-nonselective channels. Tse, Viswanath

and Zheng [63] presented the most comprehensive analysis recently by considering a

multiple-access channel where the users and the receiver have multiple antennas.

However, there are many open problems when the channel is frequency-selective.

The performance of equalizers in a frequency-selective multi-user environment has not

been yet investigated analytically. In such a scenario, when the receiver has multiple

antennas, multiuser interference can be removed more easily. When users are also

equipped with multiple antennas, although the available diversity of the channel in-

creases, the spatial interference of each user’s data must be dealt with along with

temporal and multiuser interference.

Performance of frequency-selective channels can also be investigated in the

framework of diversity-multiplexing tradeoff [54, 63]. Recently, the diversity-multiplexing
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tradeoff of frequency-selective channels in a single-antenna single-user environment

has been investigated [64]. The optimal tradeoff of frequency-selective multiple-access

channels has not been reported yet and is considered an open problem. It is also of

interest to see how linear and decision-feedback equalizers perform, compared to the

optimal tradeoff of the channel, and what portion of the maximum diversity they can

achieve.
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