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A GENERALIZATION OF THE COMMUNITY DETECTION

PROBLEM VIA SIDE INFORMATION
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The standard community detection consists of observing a graph and detecting its node

labels. However, many practical problems offer further information about the individual node

labels, which we denote side information. For example, social networks such as Facebook

and Twitter have access to information other than the graph edges, such as age, gender, etc.

This dissertation aims to understand when and by how much can side information change

the fundamental limits of the community detection problem, devise efficient algorithms for

it, and study the asymptotic performance of these algorithms.

In the context of the binary symmetric and single-community stochastic block models for the

graph, we introduce a model for side information that conveniently captures the variation of

its quantity and quality as the size of the graph grows.

For the binary symmetric stochastic block model under side information, we characterize

tight necessary and sufficient conditions for exact recovery. An efficient, asymptotically

optimal two-stage algorithm is introduced for recovery. Furthermore, the analysis of phase

transition is extended to continuous-valued side information.

For the single community stochastic block model, we characterize tight necessary and suffi-

cient conditions for weak and exact recovery. An efficient belief propagation algorithm under
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side information is proposed. A weak recovery phase transition for belief propagation is char-

acterized when both quality and quantity are fixed. When quality of side information varies

with graph size, sufficient conditions for weak recovery are established. Sufficient conditions

for belief propagation to achieve exact recovery are derived.

The extrinsic information transfer (EXIT) method is applied to the analysis of belief propa-

gation in community detection with side information, providing insights such as the asymp-

totic threshold for weak recovery, the performance of belief propagation near the optimal

threshold, and the performance of belief propagation through the first few iterations.
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CHAPTER 1

INTRODUCTION

1.1 Community Structure in Graphs

The field of graph theory dates back to Euler’s solution of the Konigsberg’s bridges puzzle

in 1736 (Euler, 1736). Since then a lot has been discovered and learned about graphs, their

properties, and their mathematical analysis (Bollobs, 1998). Graphs represent a wide variety

of systems and data sets that can be found in different areas of study. Social, biological, and

technological networks can be represented as graphs, and graph analysis has been shown to

be a crucial tool in understanding the properties and features of these networks, e.g., the

degree distribution of the nodes of the graph. Community structure is one of the important

features of these networks, and has been shown to be found in many real data sets and

applications (Fortunato, 2010a). Basically, communities (called clusters as well) are groups

of nodes which probably share common properties and/or play similar roles within the graph.

Figure 1.1 shows a toy example of a graph with communities.

Fundamentally, the goal of the community detection problem is to learn/detect the hidden

community structure upon observing the graph, see Figure 1.2 for a toy example. Commu-

nity detection has many applications: detecting web clients who have similar interests (Kr-

ishnamurthy and Wang, 2000), finding like-minded people in social networks (Girvan and

Newman, 2002), improving recommendation systems (Xu et al., 2014), detecting protein

complexes (Chen and Yuan, 2006), detecting clusters of customers with similar interests in

a purchase interaction network (Reddy et al., 2002). Grouping the nodes into communities

can be used as a compression mechanism in order to efficiently store the graph (Wu et al.,

2004). Moreover, identifying communities allows for classifying the nodes of the graph based

on their structural position in the graph (Csermely, 2008).
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Figure 1.1. A simple graph with three communities.

1.2 Algorithms and Methods for Community Detection

Many algorithms and methods have been proposed for detecting communities in graphs, such

as traditional clustering algorithms, e.g., K-means and hierarchical clustering, optimization

based algorithms, spectral algorithms, and dynamic algorithms, see (Fortunato, 2010a) and

reference therein.

Methods based on statistical inference are the main focus of this dissertation . These

methods are based mainly on devising generative models (random graphs) whose parame-

ters are then fit (tuned) to some real network using a statistical inference algorithm, e.g.,

maximum likelihood, expectation-maximization. Community detection on random graphs

has been studied in statistics (Holland et al., 1983; Zhang and Zhou, 2016; Bickel and Chen,

2009; Cai and Li, 2015; Snijders and Nowicki, 1997), computer science (Chen and Xu, 2016;

Coja-oghlan, 2010; Coja-Oghlan, 2005; Anandkumar et al., 2014; Chen et al., 2014) and

theoretical statistical physics (Decelle et al., 2011a; Zhang et al., 2012). Among the dif-
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Figure 1.2. (top) standard community detection (bottom) Community detection with side
information

ferent random graph (generative) models (Lancichinetti and Fortunato, 2009; Fortunato,

2010b), the stochastic block model (SBM) is widely used in the context of community de-

tection (Abbe and Sandon, 2015). The stochastic block model and its variants will be used

as the main model through out this dissertation.

1.3 Community Detection with Side Information

Despite the long history of the community detection problem, most of the literature focused

on the graph as the only source of information. The graphical structure of the problem has

lead to devising many community detection algorithms as well as well-characterized asymp-

totic results (e.g. phase transitions) that can give insights on the performance of inference

algorithms on large data sets. But considering only graphical (pair-wise) observations also

unfortunately limits the scope of the applicability of the model, since in many practical

application non-graphical (per node) relevant information is available that can aid the in-

ference. For example, social networks such as Facebook and Twitter have access to much
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information other than the graph edges, such as age, gender, school, etc. A citation network

that has the authors names, keywords, and abstracts of papers, and therefore may provide

significant additional information beyond the co-authoring relationships. Throughout this

dissertation, we call such non-graphical observations side information.

1.4 Objectives

This dissertation answers the following question: When and by how much does side informa-

tion help in recovering the communities? We answer this question in the following contexts:

• Studying the effect of side information on the fundamental limits of the community

detection problem.

• Devising efficient algorithms that combine the graph and side information, and study-

ing the asymptotic performance of these algorithms.

1.5 Related Work

In statistics, the problem of community detection with additional information such as “anno-

tation” (Newman and Clauset, 2016), “attributes” (Yang et al., 2013), or “features” (Zhang

et al., 2016) has been broached, wherein for matching to real (finite) data sets a paramet-

ric model is proposed that expresses the joint probability distribution of the graphical and

non-graphical (attribute/feature) observations conditioned on the true label and a modeling

parameter. These works concentrate on model-matching and inference using graphical and

non-graphical observations. However, none of these works focus on the effect of side infor-

mation on the fundamental limits of the community detection problem, nor they focus on

the asymptotic limits of efficient algorithms.

Some works appeared that considered asymptotics when side information is available.

Before stating them, a few basic definitions need to be highlighted.

4



• Correlated recovery refers to community detection that performs better than random

guessing (Decelle et al., 2011b; Mossel et al., 2014; Massoulié, 2014; Mossel et al., 2018;

Abbe and Sandon, 2018).

• Weak recovery refers to a vanishing fraction of misclassified labels (Yun and Proutiere,

2014; Mossel and Xu, 2016a; Saad et al., 2016).

• Exact recovery refers to recovering all community labels with probability converging

to one as n→∞1 (Abbe et al., 2016; Elchanan et al., 2015; Abbe and Sandon, 2015).

• Phase transition refers to a threshold on the random graph parameters such that on

one side of the threshold no algorithm can achieve a certain form of recovery, and on

the other side some algorithm exists to achieve recovery.

• A sparse regime is in place when the average degree of the graph is Ω(1), and a graph

is dense if the average degree is Ω(log n).

The asymptotic behavior of belief propagation with side information has been studied in

binary community detection in the sparse regime. Mosel and Xu (Mossel and Xu, 2016b)

considered side information in the form of noisy version of the true community labels, show-

ing that subject to such side information, belief propagation under certain condition has

the same residual error as the MAP estimator. Cai et. al (Cai et al., 2016) considered

side information in the form of a fraction of the true labels being revealed, demonstrating

regimes for correlated recovery and weak recovery. Both (Mossel and Xu, 2016b; Cai et al.,

2016) present sufficient (but not necessary) conditions. Kadavankandy et al. (Kadavankandy

et al., 2018) studies the single-community problem under side information consisting of noisy

version of the true labels, where they showed weak recovery in the sparse regime. Kanade

et. al (Kanade et al., 2016) showed that for symmetric communities, the phase transition of

1n is the number of nodes in the graph
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correlated recovery is not affected if a vanishing fraction of the labels are revealed. The same

side information was studied in (Caltagirone et al., 2018) under binary asymmetric commu-

nities, showing that local algorithms achieve correlated recovery up to the phase transition

threshold.

1.6 Contributions and Organization

The contributions of this dissertation are motivated and directed by several observations.

First, while the effect of side information on correlated recovery and weak recovery has been

studied, its effect on exact recovery has been unknown. Second, for efficient algorithms,

the literature has concentrated on the effect of side information only on belief propagation.

Third, only binary side information about binary labels has been studied (or binary side

information with erasures). The more general case where side information consists of several

features each with an arbitrary alphabet is motivated by many practical applications has not

been thoroughly studied either in the context of fundamental limits or efficient algorithms.

Finally, in many cases (even for correlated and weak recovery) either necessary or sufficient

conditions for recovery is known, but not both.

The contributions of this dissertation (divided by chapters) can be summarized as follows.

Chapter 2 considers the binary symmetric stochastic block model with n nodes, and studies

the effect of the quality and quantity of side information on the phase transition of exact

recovery in the dense regime. To study the effect of quality, we consider three models of

discrete-valued side information, where in all of them the log-likelihood ratio (LLR) of side

information (representing quality) is allowed to vary with n. First, we consider noisy-label

side information with noise parameter α ∈ (0, 0.5). Second, we consider partially revealed

side information with parameter ε ∈ (0, 1). Finally, we consider side information consisting of

multiple features each with arbitrary finite alphabet. For all three models, we characterize

necessary and sufficient conditions that are tight, except in one special case. Moreover,

6



for all three models we use the maximum likelihood detector to characterize the necessary

conditions. For the sufficient conditions, we propose a two-stage efficient algorithm, where

in the first stage, a weak recovery algorithm (already proposed in the literature) is used on

the graph alone, then in the second stage a local improvement is proposed that uses both the

graph and the side information. To the study of the quantity, we consider side information

in the form of a vector of independent, and identically distributed (i.i.d) observations. In

this model, the LLR of side information is fixed while the size of the vector (representing the

quantity) is allowed to vary with n. We characterize tight necessary and sufficient conditions

for exact recovery. The results of this chapter were published in (Saad et al., 2017; Saad and

Nosratinia, 2018).

Chapter 3 refines and improves the analysis of the sharp threshold for exact recovery

subject to side information that was characterize in chapter two. We provide a new analysis

for the necessary conditions which achieves two goals: closing the gap between necessary and

sufficient conditions in the special case left in chapter two, and generalizing the results to

infinite cardinality, including continuous-valued side information. The results of this chapter

were published in (Saad and Nosratinia, 2019).

Chapter 4 characterizes the utility of side information in single-community detection, in

particular exploring when and by how much can side information improve the information

limit (phase transition), as well as the phase transition of belief propagation, in single-

community detection. Unlike the previous chapters, we consider weak and exact recovery.

We model a varying quantity and quality of side information by associating with each node

a vector (i.e., non-graphical) observation whose dimension represents the quantity of side

information and whose (element-wise) log-likelihood ratios (LLRs) with respect to node

labels represents the quality of side information.

First, the information limits in the presence of side information are characterized. When

the dimension of side information for each node varies but its LLR is fixed across n, tight

7



necessary and sufficient conditions are calculated for both weak and exact recovery. Also, it

is shown that under the same sufficient conditions, weak recovery is achievable even when

the size of the community is random and unknown. We also find conditions on the graph and

side information where achievability of weak recovery implies achievability of exact recovery.

Subject to some mild conditions on the exponential moments of LLR, the results apply

to both discrete as well as continuous-valued side information. When the side information

for each node has fixed dimension but varying LLR, we find tight necessary and sufficient

conditions for exact recovery, and necessary conditions for weak recovery. Under varying

LLR, our results apply to side information with finite alphabet. Second, the phase transition

of belief propagation in the presence of side information is characterized, where we assume

the side information per node has a fixed dimension. When the LLRs are fixed across n,

tight necessary and sufficient conditions are calculated for weak recovery. Furthermore, it is

shown that when belief propagation fails, no local algorithm can achieve weak recovery. It is

also shown than belief propagation is strictly inferior to the maximum likelihood detector.

Numerical results on finite synthetic data-sets validate our asymptotic analysis and show

the relevance of our asymptotic results to even graphs of moderate size. We also calculate

conditions under which belief propagation followed by a local voting procedure achieves

exact recovery. When the side information has variable LLR across n, the belief propagation

misclassification rate was calculated using density evolution. The results of this chapter were

published in (Saad and Nosratinia, 2018,b,a).

Chapter 5 proposes a new tool, namely EXIT, for the analysis of the performance of

local message passing algorithms, e.g., belief propagation, for community detection with

side information. EXIT analysis has been used to understand the behavior of iterative al-

gorithms (Ten Brink, 2001) in the context of error control and communication systems. By

observing the EXIT chart, one can predict whether the decoder will fail, deduce the approx-

imate number of iterations needed to decode, as well as approximate error probability after

8



decoding. EXIT charts also have the additional benefit of an information theoretic interpre-

tation (Ten Brink, 2001). We apply EXIT analysis to single-community detection as well

as to binary symmetric community detection, each with side information, and leverage this

technique to provide insights on: 1) The effect of the quality and quantity of side informa-

tion on the performance of belief propagation, e.g. probability of error, 2) The asymptotic

threshold for weak recovery, achieving a vanishing residual error, 3) The performance of belief

propagation near the optimal threshold, 4) The performance of belief propagation through

the first few iterations, and 5) Approximating the number of iterations needed for conver-

gence. The results of this chapter were published in (Saad et al., 2016; Saad and Nosratinia,

2019). We conclude our contributions in Chapter 6.
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CHAPTER 2

TWO SYMMETRIC COMMUNITIES WITH DISCRETE-VALUED SIDE

INFORMATION 1 2

2.1 System Model and Assumptions

In this chapter, we consider the binary symmetric stochastic block model, with community

labels denoted 1 and −1. The number of nodes in the graph is denoted with n. The node

labels are independent and identically distributed across n, with 1 and −1 labels having

equal probability. If two nodes belong to the same community, there is an edge between them

with probability p = a log(n)
n

, and if they are from different communities, there is an edge

between them with probability q = b log(n)
n

. Finally, for each node one or more scalar random

variables are observed containing side information. Three models for this side information

are considered.

First, for each node, a scalar side information is independently observed which is the

true label with probability (1 − α) or the negative of the true label with probability α, for

α ∈ (0, 0.5). For the second model, for each node, a scalar side information is independently

observed which is the true label with probability 1 − ε or 0 (erased) with probability ε,

for ε ∈ (0, 1). For the third model, we consider side information consisting of K random

variables (features) each has arbitrary finite and fixed cardinality Mk, k ∈ {1, · · · , K}.

1© 2017 IEEE H. Saad and A. Abotabl and A. Nosratinia, ”Exact recovery in the binary stochastic
block model with binary side information,” 2017 IEEE 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 822-82, 2017.

2© 2018 IEEE H. Saad and A. Nosratinia, ”Community Detection With Side Information: Exact Re-
covery Under the Stochastic Block Model,” 2018 IEEE Journal of Selected Topics in Signal Processing, vol.
12, pp. 944-958, 2018.
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The observed graph is denoted by G = (V,E), the vector of nodes’ true assignment by

x∗, and the vector of nodes side information by yk for feature k ∈ {1, · · · , K}. The goal is

to recover the node assignment x∗ from the observation of (G,y1,y2, · · · ,yK)3.

In this chapter, exact recovery is considered in the dense regime, i.e., when p = a logn
n

and

q = b logn
n

with constants a ≥ b > 0. We investigate the question: when and by how much

can side information affect the phase transition threshold of exact recovery?4

2.2 Summary of Results

• When side information consists of observing node labels with erasure probability ε ∈

(0, 1), we show that if log(ε) = o(log(n)), the phase transition is not improved by side

information. On the other hand, if log(ε) = −β log(n) + o(log(n)) for some β > 0, i.e.,

O(log(n)), a necessary and sufficient condition for exact recovery is (
√
a−
√
b)2+2β > 2.

• When side information consists of observing node labels with error probability α ∈

(0, 0.5), if c = log(1−α
α

) is o(log(n)), then the phase transition is not improved by side

information. On the other hand, if c = β log(n) + o(log(n)), β > 0, i.e., O(log(n)),

necessary and sufficient conditions for exact recovery are derived as follows:
η(a, b, β) > 2 when β < T (a−b)

2

β > 1 when β > T (a−b)
2

where the following parameters are defined for convenience:

η(a, b, β) , a+ b+ β − 2γ

T
+
β

T
log(

γ + β

γ − β
) (2.1)

T , log(
a

b
), γ ,

√
β2 + abT 2 (2.2)

3For the special case where side information consists of noisy labels or partially revealed labels, K = 1
and hence, the subscript is omitted.

4The exact recovery phase transition without side information is (
√
a−
√
b)2 > 2 (Abbe et al., 2016).
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• When side information consists of K features each with finite and fixed cardinality,

two scenarios are considered: (1) K is fixed while the conditional distribution of each

feature varies with n. In this scenario, we study how the quality of each feature must

evolve as the size of the graph grows, so that phase transition can be improved. (2) K

varies with n while the conditional distribution of features is fixed. In this scenario,

the quality of the features is independent of n, and we study how many features are

needed in addition to the graphical information, so that the phase transition can be

improved.

Remark 1. In earlier community detection problems (Abbe et al., 2016; Abbe and Sandon,

2015), LLRs do not depend on n even though individual likelihoods (obviously) do. This was

very fortunate for calculating asymptotics. In the presence of side information, this conve-

nience disappears and LLRs will now depend on n, creating complications in bounding error

event probabilities en route to finding a threshold that must be independent of n. Overcoming

this technical difficulty is part of the contributions.

To illustrate the results of this chapter, Figures 2.1, 2.2 show the error exponent for

the side information consisting of partially revealed labels or noisy label observation, as a

function of β. It is observed that the value of β needed for recovery depends on a, b. For

the partially revealed labels, when (
√
a −
√
b)2 < 2, the critical β is 1 − 1

2
(
√
a −
√
b)2. For

noisy label observations, when (
√
a−
√
b)2 < 2, the value of critical β can be determined as

follows: if η(a, b, T (a−b)
2

) > 2, then the critical β is the solution to η = 2. On the other hand,

if η(a, b, T (a−b)
2

) < 2, then the critical β is one.

2.3 Noisy-label Side Information

In this section, side information consisting of noisy labels is considered, where side informa-

tion is incorrect with probability α ∈ (0, 0.5). Tight necessary and sufficient conditions are

provided as a function of α.
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Figure 2.1. Error exponent for noisy label observations as a function of β.

First, the maximum likelihood rule for detecting the communities under side information

is presented. It is known that without side information, in the binary symmetric stochastic

block model, the maximum likelihood detector will find two communities by minimizing the

number of edges between communities (min-cut) subject to each being of size n
2

(Abbe et al.,

2016). The set of nodes belonging to the two communities are denoted with A and B, i.e.,

A , {i : xi = 1} and B , {i : xi = −1}. E(A) denotes the subset of edges whose two

vertices belong to community A, and E(B) the subset of edges whose two vertices belong to

community B. The total number of edges in the graph is denoted Et. Also, define:

J+(A) ,
∣∣{i ∈ A : yi = 1}

∣∣
J−(B) ,

∣∣{i ∈ B : yi = −1}
∣∣

Then, the log-likelihood function can be written as:

log
(
P(G,y|x)

) (a)
= log

(
P(G|x)

)
+ log

(
P(y|x)

)
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Figure 2.2. Error exponent of partial label observation as a function of β.

= log

(
pE(A)+E(B)qEt−E(A)−E(B)(1− p)2(

n
2
2 )−E(A)−E(B)

(1− q)
n2

4
−Et+E(A)+E(B)

)
+ log

(
(1− α)J+(A)+J−(B)αn−J+(A)−J−(B)

)
(b)
=R + T

(
E(A) + E(B)

)
(1 + o(1)) + c

(
J+(A) + J−(B)

)
(2.3)

where (a) holds because G,y are independent given x. In (b), all terms that are independent

of x have been collected into a constant R, and log(p(1−q)
q(1−p)) has been approximated by (1 +

o(1))T , which is made possible because (1 − p), (1 − q) both approach 1 as n → ∞. The

difference between Eq. (2.3) and the likelihood function without side information is the term

c
(
J+(A) + J−(B)

)
and a constant n logα that is hidden inside R.

The following lemma characterizes a lower bound on the probability of failure of the

maximum likelihood detector. Let E[·, ·] denote the set of edges between two sets of nodes.5

5For economy of notation, in the arguments of E[·, ·] we allow singleton sets to be represented by their
singular member.
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Lemma 1. Let A and B denote the true communities. Define the following events:

F , {Maximum Likelihood fails}

FA , {∃i ∈ A : T (E[i, B]− E[i, A])− cyi ≥ T}

FB , {∃j ∈ B : T (E[j, A]− E[j, B]) + cyj ≥ T} (2.4)

Then, FA ∩ FB ⇒ F .

Proof. Define two new communities Â = A\{i} ∪ {j} and B̂ = B\{j} ∪ {i}. If

log
(
P(G,y|Â, B̂)

)
≥ log

(
P(G,y|A,B)

)
it means maximum likelihood chooses incorrectly

and therefore fails. We show that this happens under FA ∩ FB.

Let Aij ∼ Bern(q) be a random variable representing the existence of the edge between

nodes i and j. Then, using (2.3):

log
(
P(G,y|Â, B̂)

)
= R + T

(
E(Â) + E(B̂)

)
+ c
(
J+(Â) + J−(B̂)

)
= R + T

(
E(A) + E(B)

)
+ c
(
J+(A) + J−(B)

)
− 2TAij

+ T
(
E[j, A]− E[j, B] + E[i, B]− E[i, A]

)
+ c(yj − yi)

(a)

≥ log
(
P(G,y|A,B)

)
+ 2T (1− Aij)

(b)

≥ log
(
P(G,y|A,B)

)
(2.5)

where (a) holds by the assumption that FA∩FB happened and (b) holds because (1−Aij) ≥ 0

and T ≥ 0. The inequality (b) implies the failure of maximum likelihood.

2.3.1 Necessary Conditions

Theorem 1. Define c , log(1−α
α

). The maximum likelihood failure probability is bounded

away from zero if:
(
√
a−
√
b)2 < 2, when c = o(log(n))

η(a, b, β) < 2 when c = (β + o(1)) log(n), 0 < β < T (a−b)
2

β < 1 when c = (β + o(1)) log(n), β > T (a−b)
2
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Proof. Since x∗ is generated uniformly, then the ML detector minimizes the probability of

error over all possible estimators. Hence, if the probability of failure of ML is bounded

away from zero, then every other estimator has probability of failure bounded away from

zero. The main difficulty in bounding the error probability of the ML is the dependency

between the graph edges. To overcome this dependency, we follow similar steps as in (Abbe

et al., 2016). However, our bounding techniques, unlike (Abbe et al., 2016), involve Chernoff

type arguments and Cramer and Sanov large deviation principles that are more compact

than combinatorial techniques used in (Abbe et al., 2016). Let H be a subset of A with

|H| = n
log3(n)

and define the following auxiliary events:

4i =
{
i ∈ H : E[i,H] ≤ log(n)

log log(n)

}
FH
i =

{
i ∈ H : T ∗ E[i, A\H] + cyi + T + T

log(n)

log log(n)
≤ T ∗ E[i, B]

}
4 =

{
∀i ∈ H : 4i is true

}
FH =

{
∪i∈H FH

i

}
Lemma 2. If P(FH) ≥ 1− δ and P(4) ≥ 1− δ for δ < 1

4
, then there exists a positive δ′ so

that P(F ) ≥ δ′.

Proof. Clearly 4∩ FH ⇒ FA. Hence,

P(FA) ≥ P(FH) + P(4)− 1 ≥ 1− 2δ

By the symmetry of the graph and the side information, P(FB) ≥ 1 − 2δ as well. Also, by

Lemma 1 FA ∩ FB ⇒ F . Then, the following holds:

P(F ) ≥ P(FA) + P(FB)− 1 ≥ 1− 4δ

For δ < 1
4
, P(F ) is bounded away from zero.

Lemma 3. limn→∞ P(4) = 1
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Proof. Let Wi ∼ Bern(p). Then, the following holds:

P(4c
i) = P

( i−1∑
j=1

Wj +

n
log3(n)∑
j=i+1

Wj ≥
log(n)

log(log(n))

)

≤ P
( n

log3(n)∑
j=1

Wj ≥
log(n)

log(log(n))

)
(a)

≤
(1

e

log3(n)

a log(log(n))

) − log(n)
log(log(n))

where (a) holds from a multiplicative form of Chernoff bound, which states that for a se-

quence of n i.i.d random variables Xi, P(
∑n

i=1Xi ≥ tµ) ≤ ( t
e
)−tµ, where µ = nE[X]. Thus,

by union bound:

P(4) ≥ 1− n

log3(n)

(1

e

log3(n)

a log(log(n))

) − log(n)
log(log(n))

=1− elog(n)−3 log(log(n))e

[
log(n) log(ae)

log(log(n))
− log(n)

log(log(n))

(
3 log(log(n))−log(log(log(n)))

)]

=1− e−2 log(n)+o(log(n))

Lemma 4. For any δ ∈ (0, 1) and for sufficiently large n, if P(FH
i ) > log3(n)

n
log(1

δ
), then

P(FH) ≥ 1− δ.

Proof. Because FH
i are i.i.d.:

P(FH) = P(∪i∈HFH
i ) = 1− P(∩i∈H(FH

i )c)

= 1−
[(

1− P(FH
i )
) 1

P(FH
i

)
](nP(FHi )

log3(n)
)

(2.6)

> 1−
[(

1− P(FH
i )
) 1

P(FH
i

)
]− log δ

where the last inequality holds by the statement of the Lemma. If P(FH
i ) is o(1), then the

quantity inside the bracket tends to e−1 and the result follows. If P(FH
i ) is not o(1), then

from Eq. (2.6) it follows that P(FH)→ 1 and again the result of the Lemma holds.
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The following lemma completes the proof of Theorem 1.

Lemma 5. For sufficiently large n, P(FH
i ) > log3(n)

n
log(1

δ
) for δ ∈ (0, 1), if one of the

following is satisfied:
(
√
a−
√
b)2 < 2 when c = o(log(n))

η(a, b, β) < 2 when c = (β + o(1)) log(n), 0 < β < T (a−b)
2

β < 1 when c = (β + o(1)) log(n), β > T (a−b)
2

Proof. See Appendix 2.6.1.

Combining Lemmas 2, 3, 4, 5 concludes the proof of the theorem.

2.3.2 Sufficient Conditions

This section shows sufficient conditions for exact recovery by introducing an algorithm whose

exact recovery conditions are identical to Section 2.3.1. The first stage of the proposed

algorithm uses a component from (Massoulié, 2014), a method based on spectral properties

of the graph that achieves weak recovery. We start with a random graph H1 built on the

same n nodes where each candidate edge has probability D
log(n)

. The complement of H1 is

denoted H2. Then G is partitioned as follows: G1 = G ∩H1 and G2 = G ∩H2. G1 will be

used for the weak recovery step, G2 for local modification. The partitioning of G allows the

two steps to remain independent.

We perform a weak recovery algorithm (Massoulié, 2014) on G1. Since G1 is a graph

with connectivity parameters (Da
n
, Db
n

), the weak recovery algorithm is guaranteed to return

two communities A
′
, B

′
that agree with the true communities A, B on at least (1− δ(D))n

nodes so that limD→∞ δ(D) = 0 (i.e., weak recovery). A sufficient condition for that to

happen (Massoulié, 2014), e.g., is D = O(log log n).

The community assignments are locally modified as follows: for a node i ∈ A
′
, flip its

membership if the number of G2 edges between i and B
′

is greater than or equal the number

18



Table 2.1. Algorithm for exact recovery.
Algorithm 1
1: Start with graph G and side information y
2: Generate an Erdös-Renyi graph H1 with edge probability D

log(n)
. Use it to partition

G into G1 = G ∩H1 and G2 = G ∩Hc
1.

3: Apply weak recovery algorithm (Massoulié, 2014) on G1, calling the resulting
communities A′/B′.

4: Initialize Ã← A′ and B̃ ← B′.

5: For each node i modify Ã and B̃ as follows:

Flip membership if i ∈ Ã and EG2 [i, B̃] ≥ EG2 [i, Ã] + c
T
yi

Flip membership if i ∈ B̃ and EG2 [i, Ã] ≥ EG2 [i, B̃]− c
T
yi

6: Check size of communities. If |A′| 6= |Ã| or equivalently |B′| 6= |B̃|, discard changes
via Ã← A′ and B̃ ← B′.

of G2 edges between i and A
′

plus c
T
yi. For node j ∈ B′ , flip its membership if the number

of G2 edges between j and A
′

is greater than or equal the number of G2 edges between j and

B
′

minus c
T
yj. If the number of flips in the two clusters are not the same, keep the clusters

unchanged. The detailed algorithm is shown in Table 2.1.

Theorem 2. With probability approaching one as n grows, the algorithm above successfully

recovers the communities if:
(
√
a−
√
b)2 > 2, when c = o(log(n))

η(a, b, β) > 2 when c = (β + o(1)) log(n), 0 < β < T (a−b)
2

β > 1 when c = (β + o(1)) log(n), β > T (a−b)
2

Proof. We first upper bound the misclassification probability of a node assuming H2 is a

complete graph, then adjust the bound to reflect the departure of H2 from a complete

graph.

Figure 2.3 shows the mis-classification conditions: an error happens either when the weak

recovery was correct and is overturned by the local modification, or when the weak recovery

is incorrect and is not corrected by local modification. Let W ∼ Bern(p) and Z ∼ Bern(q)
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A

B

A’

B’

Figure 2.3. Two types of error events for the two-stage algorithm. The node in the top half
of the figure is misclassified in weak recovery, and remains uncorrected via local modification.
The node at the bottom half is correctly classified in weak recovery, but is mistakenly flipped
by local modification.

represent edges inside a community and across communities, respectively. Let yi ∈ {1,−1}

with probabilities (1 − α), α, respectively. For simplicity, we will write δ instead of δ(D).

Then, the mis-classification probability is:

Pe = P
(
node i is mislabeled

)
= P

( (1−δ)n
2∑

k=1

Zk +

δ n
2∑

k=1

Wk ≥
(1−δ)n

2∑
j=1

Wj +

δ n
2∑

j=1

Zj +
c

T
yi

)
(2.7)

To adjust for the fact that H2 is not complete, the following Lemma is used, noting that

H2 = Hc
1.

Lemma 6. With high probability, the degree of any node in H1 is at most 2Dn
log(n)

.

Proof. Let {Yi}i=1,··· ,n be a sequence of i.i.d. Bernoulli random variables with parameter

D
log(n)

. Define Y =
∑n−1

i=1 Yi. Then, E[Y ] = Dn
log(n)

and hence, by Chernoff bound:

P(Y ≥ 2Dn

log(n)
) ≤ e−

1
4

D
log(n)

n (2.8)
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Thus, by using a union bound:

P
(
∃ a node degree >

2Dn

log(n)

)
≤ nP

(
Y ≥ 2Dn

log(n)

)
≤ e−

1
4

D
log(n)

n+log(n) → 0 (2.9)

where the last statement holds as n→∞.

Having bounded from below the degree of H2, the correct error probability (for the in-

complete H2) can be arrived at by removing no more than 2D
log(n)

n terms from the summations

on the right hand side of (2.7). If we remove exactly 2D
log(n)

n terms, the following upper bound

on the error probability holds:

Pe ≤ P
( (1−δ)n

2∑
k=1

Zk +

δ n
2∑

k=1

Wk ≥
(1−δ)n

2
− 2D

log(n)
n∑

j=1

Wj +

δ n
2
− 2D

log(n)
n∑

j=1

Zj +
c

T
yi

)
(2.10)

The following lemma shows an upper bound on Pe.

Lemma 7.

Pe ≤


n−

1
2

(
√
a−
√
b)2+o(1) + n−(1+Ω(1)) when c = o(log(n))

n−
1
2
η(a,b,β)+o(1) + n−(1+Ω(1)) when c = (β + o(1)) log(n) , 0 < β < T (a−b)

2

n−
1
2
η(a,b,β)+o(1) + n−β + n−(1+Ω(1)) when c = (β + o(1)) log(n) , β > T (a−b)

2

Proof. See Appendix 2.6.2.

A simple union bound yields:

P(failure) ≤


n1− 1

2
(
√
a−
√
b)2+o(1), when c = o(log(n))

n1− 1
2
η(a,b,β)+o(1), when c = β log(n) , 0 < β < T (a−b)

2

n1−β+o(1), when c = β log(n) , β > T (a−b)
2

(2.11)

For the last case, β > 1 remains sufficient because of the following lemma.
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Lemma 8. β > 1⇒ η > 2.

Proof. Let a+ b− β − 2 γ
T

+ β
T

log(γ+β
γ−β ) = ψ(a, b, β). Then, from the definition of η:

η(a, b, β)− 2β = ψ(a, b, β) (2.12)

Since ψ(a, b, β) is convex in β, it can be shown that at the optimal β∗, log(γ
∗+β∗

γ∗−β∗ ) = T . Using

this fact and by substituting in (2.12), the following holds:

η(a, b, β)− 2β ≥ a+ b− 2
γ∗

T
(2.13)

By the definition of γ: γ + β = abT 2

γ−β . Using the fact that γ∗+β∗

γ∗−β∗ = a
b

leads to a
b

= abT 2

(γ∗−β∗)2 ,

which implies that γ∗ = bT + β∗. Hence, by substituting in (2.13), the following holds:

η(a, b, β)− 2β ≥ a− b− 2
β∗

T
(2.14)

Also, it can be shown that at β∗, γ∗ = β∗(a+b
a−b). This implies that β∗ = T (a−b)

2
. Substituting

in (2.14) leads to: η(a, b, β)− 2β ≥ 0, which implies that η > 2 when β > 1.

Combining the last lemma with (2.11) concludes the proof.

2.4 Partially Revealed Labels

In this section, we consider side information consisting of partially revealed labels, where

ε ∈ (0, 1) is the proportion of labels that remains unknown despite the side information.

Tight necessary and sufficient conditions are presented for exact recovery under this type of

side information. Similar to the noisy label side information, we begin by expressing the log-

likelihood function. For a given side information vector y, P(y|x) = 0 if a label contradicts

the side information.6 All label vectors x that do not contradict side information and satisfy

6We say a label contradicts the side information if the side information is not an erasure and it disagrees
with the label.
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the balanced prior, have the same conditional probability. Thus, for all x that have non-zero

conditional probability, the log-likelihood function can be written as:

log
(
P(G,y|x)

) (a)
= log

(
P(G|x)

)
+ log

(
P(y|x)

)
(b)
=R + T

(
E(A) + E(B)

)
(1 + o(1)) (2.15)

where (a) holds because G,y are independent given x. In (b), all terms that are independent

of x have been collected into a constant R, and log(p(1−q)
q(1−p)) has been approximated by (1 +

o(1))T , which is made possible because (1− p), (1− q) both approach 1 as n→∞.

The following lemma shows that if the graph includes at least one pair of nodes that have

more connections to the opposite-labels than similar-labels and if their side information is

an erasure, the maximum likelihood detector will fail.

Lemma 9. Define the following events:

FA = {∃i ∈ A : (E[i, B]− E[i, A]) ≥ 1 and yi = 0}

FB = {∃j ∈ B : (E[j, A]− E[j, B]) ≥ 1 and yj = 0}

Then, FA ∩ FB ⇒ F .

Proof. From the sets A,B, we swap the nodes i, j, producing Â = A\{i} ∪ {j} and B̂ =

B\{j} ∪ {i}. We intend to show that subject to observing the graph G and the side infor-

mation y, the likelihood of Â, B̂ is larger than the likelihood of A,B, therefore under the

condition FA ∩ FB, maximum likelihood will fail.

Let Aij ∼ Bern(q) be a random variable representing the existence of the edge between

nodes i and j. Then, from (2.15) the following holds:

log
(
P(G,y|Â, B̂)

)
= R + T (1 + o(1))

(
E(Â) + E(B̂)

)
= R + T (1 + o(1))

(
E(A) + E(B)

)
+ T (1 + o(1))
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×
(
E[j, A]− E[i, A]− E[j, B] + E[i, B]− 2Aij

)
(a)

≥ log
(
P(G,y|A,B)

)
+ 2T (1 + o(1))(1− Aij)

(b)

≥ log
(
P(G,y|A,B)

)
(2.16)

where (a) holds by the assumption that FA∩FB happened and (b) holds because (1−Aij) ≥ 0

and T ≥ 0. The inequality (b) implies the failure of maximum likelihood.

2.4.1 Necessary Conditions

Theorem 3. The maximum likelihood failure probability is bounded away from zero if:

• log(ε) = o(log(n)) and (
√
a−
√
b)2 < 2

• log(ε) = −(β + o(1)) log(n), β > 0, and 1
2
(
√
a−
√
b)2 + β < 1

Proof. Let H be a subset of A with |H| = n
log3(n)

. Define the following events:

4i =
{
i ∈ H : E[i,H] ≤ log(n)

log log(n)

}
FH
i =

{
i ∈ H : yi = 0 and

E[i, A\H] + 1 +
log(n)

log log(n)
≤ E[i, B]

}
4 =

{
∀i ∈ H : 4i is true

}
FH =

{
∪i∈H FH

i

}
Lemmas 2, 3, 4 directly apply with the above definitions. To complete the proof, it is

sufficient to show when P(FH
i ) > log3(n)

n
log(1

δ
) for δ ∈ (0, 1) holds, which is shown in the

following lemma.

Lemma 10. For sufficiently large n, P(FH
i ) > log3(n)

n
log(1

δ
) for δ ∈ (0, 1), if one of the

following is satisfied:
(
√
a−
√
b)2 < 2, when log(ε) = o(log(n))

(
√
a−
√
b)2 + 2β < 2, when log(ε) = −(β + o(1)) log(n), β > 0
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Proof. See Appendix 2.6.3.

Combining Lemmas 2, 3, 4, 10 concludes the proof of the theorem.

2.4.2 Sufficient Conditions

This section shows sufficient conditions for exact recovery by introducing an algorithm whose

exact recovery conditions are identical to Section 2.4.1. The first stage of the algorithm is the

same as Section 2.3.2. The second stage involving local modification is new and is described

below.

The community assignments are locally modified for each node i as follows: (a) if A′/B′

membership contradicts side information yi, flip node membership or (b) if yi = 0, re-assign

membership of i to the community A′/B′ to which it is connected with more edges. After

going through all nodes, if the the number of flips in two communities A′, B′ are not the

same, void all local modifications.

Theorem 4. The algorithm described above successfully recovers the communities with high

probability if:
(
√
a−
√
b)2 > 2, when log(ε) = o(log(n))

(
√
a−
√
b)2 + 2β > 2, when log(ε) = −(β + o(1)) log(n), β > 0

Proof. Let Pe = P(node i to be misclassified). Following the same analysis as in the proof

of Theorem 2 leads to:

Pe ≤ εP
( (1−δ)n

2∑
k=1

Zk +

δ n
2∑

k=1

Wk ≥
(1−δ)n

2
− 2D

log(n)
n∑

j=1

Wj +

δ n
2
− 2D

log(n)
n∑

j=1

Zj

)
(2.17)

Using Lemma 7 and strengthening c = o(log(n)) to c = 0, equation (2.17) can be upper

bounded as follows:

Pe ≤ εn−
1
2

(
√
a−
√
b)2

+ n−(1+Ω(1)) (2.18)
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Thus, the following holds for different asymptotic regimes of ε:

Pe ≤


n−

1
2

(
√
a−
√
b)2+o(1) + n−(1+Ω(1)), when log(ε) = o(log(n))

n−
1
2

(
√
a−
√
b)2−β + n−(1+Ω(1)), when log(ε) = −(β + o(1)) log(n) , β > 0

A simple union bound yields:

P(failure) ≤


n1− 1

2
(
√
a−
√
b)2+o(1), when log(ε) = o(log(n))

n1− 1
2

(
√
a−
√
b)2−β+o(1) when log(ε) = −(β + o(1)) log(n) , β > 0

2.5 More General Discrete Side Information

We now generalize the side information random variable such that each node observes K

features (side information) each has arbitrary fixed and finite cardinality Mk, k ∈ {1, · · · , K}.

The alphabet for each feature k is denoted with {uk1, uk2, · · · , ukMk
}. Denote, for each node

i and feature k, P(yi,k = ukmk |xi = 1) = αk+,mk and P(yi,k = ukmk |xi = −1) = αk−,mk ,mk ∈

{1, · · · ,Mk}, where αk+,mk ≥ 0, αk−,mk ≥ 0 and
∑Mk

mk=1 α
k
+,mk

=
∑Mk

mk=1 α
k
−,mk = 1 for all

k ∈ {1, · · · , K}. All features are assumed to be independent conditioned on the labels.

We first consider the case where K is fixed while αk+,mk and αk−,mk are varying with n for

mk ∈ {1, · · · ,Mk} and k ∈ {1, · · · , K}. To ensure that the quality of the side information is

increasing with n, assume that αk+,mk and αk−,mk for mk ∈ {1, · · · ,Mk} and k ∈ {1, · · · , K}

are constant or monotonic in n. Second, we consider the case where K is varying with n

while αk+,mk and αk−,mk are fixed for mk ∈ {1, · · · ,Mk} and k ∈ {1, · · · , K}. To ensure that

the quality of the side information is increasing with n, assume that K is non-decreasing with

n. Necessary and sufficient conditions for exact recovery that are tight except for one special

case are provided. Due to space limitation and similarity with some results in previous

sections, several proofs are provided as a sketch.
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First the log-likelihood function is presented. For feature k, let the number of {i ∈ A :

yi,k = ukmk} and {i ∈ B : yi,k = ukmk} be Jukmk
(A) and Jukmk

(B), respectively. Then, by using

similar ideas as in (2.3), the following holds:

log
(
P(G,y1,y2, · · · ,yK |x)

)
= R + T

(
E(A) + E(B)

)
(1 + o(1))+

K∑
k=1

Mk∑
mk=1

Jukmk
(A) log

(
αk+,mk

)
+ Jukmk

(B) log

(
αk−,mk

)
(2.19)

For convenience, define the following two quantities:

• hm`m = log(
αk+,mk
αk−,mk

) to be the log-likelihood ratio for the side information outcome ukmk

of feature k.

• hi,m = hkmk if yi,k = ukmk , i.e., hi,k is a random variable representing the LLR of the

observation of node i for feature k.

Lemma 11. Define the following events:

FA = {∃i ∈ A : T (E[i, B]− E[i, A])−
K∑
k=1

hi,k ≥ T}

FB = {∃j ∈ B : T (E[j, A]− E[j, B]) +
K∑
k=1

hj,k ≥ T}

Then, FA ∩ FB ⇒ F .

Proof. The proof follows similarly as in Lemmas 1 and 9.

2.5.1 Fixed Number of Features, Variable Quality

In this section, the number of features K is assumed to be fixed and we show how noisy

the outcomes of the features should be so that side information changes the phase transition

threshold of exact recovery. First the intuition behind the results are presented for the case

when K = 1, i.e. one feature with M outcomes. To understand how side information will
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affect the phase transition of exact recovery, two main quantities have to be considered for

each outcome m ∈ {1, · · · ,M}. The first quantity is the log-likelihood ratio hm = log(α+,m

α−,m
)

and the second is the conditional probability α±,m. An outcome is called informative if

hm = O(log(n))7 and non-informative if hm = o(log(n)). Also, an outcome is called rare

if log(α±,m) = O(log(n)) and not rare if log(α±,m) = o(log(n)). Hence, four different com-

binations are possible. The worst case is when the outcome is both non-informative and

not rare for both communities, e.g. noisy labels with α = 1
log(n)

. We will show that if such

an outcome exists, then side information will not improve the phase transition threshold.

The best case is when the outcome is informative, and rare for one community but not rare

for the other. This happens, e.g., under noisy label side information with α = n−β+o(1).

We have two cases in between: (1) an outcome that is non-informative and rare for both

communities, e.g. partial label reveal side information with ε = n−β+o(1) and (2) an outcome

that is informative and not rare for both communities. The last three cases can affect the

phase transition threshold under certain conditions which is stated in the following theorem.

Theorem 5. Assume αk+,mk and αk−,mk are either constant or monotonically increasing or

decreasing in n. Then, necessary and sufficient conditions for exact recovery are as follows.8

1. If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that∑K
k=1 h

m
`m

= o(log(n)),
∑K

k=1 log(αk+,mk) = o(log(n)) and
∑K

k=1 log(αk−,mk) = o(log(n)),

then (
√
a−
√
b)2 > 2 must hold.

2. If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such

that
∑K

k=1 h
m
`m

= o(log(n)) and
∑K

k=1 log(αk+,mk) =
∑K

k=1 log(αk−,mk) = −β log(n) +

o(log(n)), β > 0, then (
√
a−
√
b)2 + 2β > 2 must hold.

7We say hm = O(log n) when there exists a strictly positive constant C such that for all sufficiently large
n, the following holds: hm < C log(n).

8For clarity, in this theorem the side information outcomes [u1
m1

, . . . , uK
mK

] are represented by their index
[m1, . . . ,mK ]. Dependence on n is implicit.
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3. If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that∑K
k=1 h

m
`m

= β1 log(n)+o(log(n)), |β1| < T (a−b)
2
,
∑K

k=1 log(αksgn(β1),mk
) = o(log(n)), then

η(a, b, |β1|) > 2 must hold.

4. If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that∑K
k=1 h

m
`m

= β2 log(n) + o(log(n)), |β2| < T (a−b)
2
,
∑K

k=1 log(αksgn(β2),mk
) = −β ′2 log(n) +

o(log(n)), then η(a, b, |β2|) + 2β
′
2 > 2 must hold.

Remark 2. The four items in Theorem 5 must all hold. For example, if some outcomes fall

under item 3 and some fall under item 4, then min(η(a, b, |β1|), η(a, b, |β2|) + 2β
′
2) > 2 must

hold.

Remark 3. When there is any sequence of side information outcomes that satisfies∑K
k=1 h

m
`m

= β log(n) + o(log(n)) with T (a−b)
2

< |β|, no matching necessary and sufficient

conditions have been provided. A sufficient condition in this case easily follows other achiev-

ability proofs for Theorem 5, but a matching converse at this point remains unavailable.

Proof. Converse: Unlike previous sections, the side information might not be symmetric.

Hence, we need to define the events of Section 2.3.1 for both communities A and B. Let H1

and H2 be subsets of the true communities A and B, respectively, with |H1| = |H2| = n
log3(n)

.

Define the following events:

4j
i =

{
i ∈ Hj : E[i,Hj] ≤

log(n)

log log(n)

}
4j =

{
∀i ∈ Hj : 4j

i is true
}

FH1
i =

{
i ∈ H1 : TE[i, A\H1] +

K∑
k=1

hi,k + T + T
log(n)

log log(n)
≤ TE[i, B]

}
FH2
i =

{
i ∈ H2 : TE[i, B\H2]−

K∑
k=1

hi,k + T + T
log(n)

log log(n)
≤ TE[i, A]

}
FHj =

{
∪i∈Hj F

Hj
i

}
(2.20)
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where j = 1, 2 and hi,k is distributed according to αk+,mk and αk−,mk if node i ∈ A,B,

respectively. Lemmas 2, 3, 4 extend directly to our case here using the above definitions

for both communities A and B. To complete the proof, it is sufficient to show show when

P(FH1
i ) > log3(n)

n
log(1

δ
) and P(FH2

i ) > log3(n)
n

log(1
δ
) hold for δ ∈ (0, 1).

Lemma 12. Both P(FH1
i ) and P(FH2

i ) are greater than log3(n)
n

log(1
δ
), δ ∈ (0, 1) for suffi-

ciently large n if at least one of the following conditions holds:

• If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such

that
∑K

k=1 h
m
`m

= o(log(n)) and
∑K

k=1 log(αk+,mk) and
∑K

k=1 log(αk−,mk) are o(log(n))

and concurrently (
√
a−
√
b)2 < 2.

• If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that∑K
k=1 h

m
`m

= o(log(n)),
∑K

k=1 log(αk+,mk) =
∑K

k=1 log(αk−,mk) = −β log(n)+o(log(n)), β >

0 and concurrently (
√
a−
√
b)2 + 2β < 2.

• If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such

that
∑K

k=1 h
m
`m

= β log(n) + o(log(n)), |β| < T (a−b)
2
,
∑K

k=1 log(αksgn(β),mk
) = o(log(n))

and concurrently η(a, b, β) < 2 .

• If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that∑K
k=1 h

m
`m

= β log(n) + o(log(n)), |β2| < T (a−b)
2
,
∑K

k=1 log(αksgn(β),mk
) = −β ′ log(n) +

o(log(n)), β
′
> 0 and concurrently η(a, b, β) + β

′
< 2.

Proof. Please see Appendix 2.6.4

Combining Lemmas 2, 3, 4, 12 concludes the proof of converse.

Achievability: Achievability of Theorem 5 is proven via an algorithm whose exact

recovery conditions are identical to the necessary conditions provided in Lemma 12. The

first stage of the algorithm is the same as Section 2.3.2. After the first stage, we have G2,
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the side information y1, · · · ,yK , A
′

and B
′
. Locally modify the community assignment as

follows: for a node i ∈ A′ , flip its membership if the number of edges between i and B
′

is

greater than or equal the number of edges between i and A
′

plus
∑K

k=1
hi,k
T

and for node

j ∈ B′ , flip its membership if the number of of edges between j and A
′

is greater than or

equal the number of of edges between j and B
′

minus
∑K

k=1
hj,k
T

. If the the number of flips

in each cluster is not the same, keep the clusters unchanged.

Lemma 13. The algorithm described above successfully recovers the communities with high

probability if the following are satisfied simultaneously:

• If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such

that
∑K

k=1 h
m
`m

= o(log(n)) and
∑K

k=1 log(αk+,mk) and
∑K

k=1 log(αk−,mk) are o(log(n))

and concurrently (
√
a−
√
b)2 > 2.

• If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that∑K
k=1 h

m
`m

= o(log(n)),
∑K

k=1 log(αk+,mk) =
∑K

k=1 log(αk−,mk) = −β log(n)+o(log(n)), β >

0 and concurrently (
√
a−
√
b)2 + 2β > 2.

• If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such

that
∑K

k=1 h
m
`m

= β log(n) + o(log(n)), |β| < T (a−b)
2
,
∑K

k=1 log(αksgn(β),mk
) = o(log(n))

and concurrently η(a, b, β) > 2.

• If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that∑K
k=1 h

m
`m

= β log(n) + o(log(n)), |β2| < T (a−b)
2
,
∑K

k=1 log(αksgn(β),mk
) = −β ′ log(n) +

o(log(n)), β
′
> 0 and concurrently η(a, b, β) + β

′
> 2.

Proof. Define Pe = P(node i to be misclassified). Following similar analysis as in the proof

of Lemma 2 leads to:

Pe ≤
1

2

(
n−1−Ω(1) +

M1∑
m1=1

M2∑
m2=1

· · ·
MK∑
mK=1

K∏
k=1

(αk+,mk)×
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P
( n

2∑
l=1

(Zl −Wl) ≥
K∑
k=1

hm`m
T

+ ψn log(n)

))
+

1

2

(
n−1−Ω(1)+

M1∑
m1=1

M2∑
m2=1

· · ·
MK∑
mK=1

K∏
k=1

(αk−,mk)× P
( n

2∑
l=1

(Zl −Wl) ≥ −
K∑
k=1

hm`m
T

+ ψn log(n)

))
(2.21)

where ψn = o(1).

Similar to Lemma 7, it can be shown that any term inside the nested sum in the last

displayed equation can be upper bounded by:

• n−
1
2

(
√
a−
√
b)2+o(1) if there exists a sequence (over n) of side information outcomes

[m1, . . . ,mK ] such that
∑K

k=1 h
m
`m

= o(log(n)) and
∑K

k=1 log(αk+,mk) and∑K
k=1 log(αk−,mk) are o(log(n)).

• n−
1
2

(
√
a−
√
b)2−β+o(1) if there exists a sequence (over n) of side information outcomes

[m1, . . . ,mK ] such that
∑K

k=1 h
m
`m

= o(log(n)),
∑K

k=1 log(αk+,mk) =
∑K

k=1 log(αk−,mk) =

−β log(n) + o(log(n)), β > 0

• n−
1
2
η(a,b,β)+o(1) if there exists a sequence (over n) of side information outcomes

[m1, . . . ,mK ] such that
∑K

k=1 h
m
`m

= β log(n) + o(log(n)), |β| < T (a−b)
2
,∑K

k=1 log(αksgn(β),mk
) = o(log(n))

• n−
1
2
η(a,b,β)−β′+o(1) if there exists a sequence (over n) of side information outcomes

[m1, . . . ,mK ] such that
∑K

k=1 h
m
`m

= β log(n) + o(log(n)), |β2| < T (a−b)
2
,∑K

k=1 log(αksgn(β),mk
) = −β ′ log(n) + o(log(n)), β

′
> 0

Since K and Mk, k ∈ {1, · · · , K} are fixed, a union bound over nodes concludes the proof of

Lemma 13.

This concludes the proof of achievability.
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We now give an example of side information with K = 1 and fixed cardinality and analyze

the effect of the evolution of the distribution of side information with growing n.

Consider the weakly symmetric side information whose transition probability matrix

P(y|x) is defined as follows: every row of the transition matrix P(·|x) is a permutation of

every other row, and all the column sums
∑

x P(y|x) are equal. Since the labels are either 1 or

−1, all the column sums is 2
M

. Without loss of generality, assume the first row P(y|x = +1)

is arranged in descending order, i.e. P(yl+1|x = +1) ≥ P(yl|x = +1), 1 ≤ l ≤ M − 1.

Thus, for even M (odd M follow similarly), by the weakly symmetry property of P(y|x):

α±,l+α±,M−l+1 = 2
M

and hl = −hM−l+1, 1 ≤ l ≤ M
2

. Thus, if hM
2

= β log(n)+o(log(n)), i.e.,

hM
2

= O(log(n)), this implies that hl = O(log(n)) for all 1 ≤ l ≤ M , and hence, this maps

to the third case of Theorem 5. In other words, η(a, b, |β|) > 2 is necessary and sufficient for

exact recovery (assuming |β| < T (a−b)
2

). On the other hand, if hM
2

is in the order of o(log(n)),

this maps to the first case of Theorem 5, and hence, side information does not change the

exact recovery phase transition.

2.5.2 Varying Number of Fixed-Quality Features

In this section, αk+,mk and αk−,mk are independent of n. We study how many features K are

needed so that side information can improve the phase transition threshold of exact recovery.

We show that when K = o(log(n)), side information will not improve the phase transition

of exact recovery. A direct extension of our result shows that with K = O(log(n)), side

information can improve the phase transition, but this result is omitted here both in the

interest of brevity and in part because it can be considered a straight forward extension

of (Asadi et al., 2017, Theorem 4) which showed the result in the special case of K = log(n).

Theorem 6. Assume that Mk = M and all features are i.i.d. conditioned on the labels. Let

αk+,mk and αk−,mk be non-zero and independent of n. Then, if K = o(log(n)), (
√
a−
√
b)2 > 2

is necessary and sufficient for exact recovery.
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Proof. Converse: Using the same definitions as in (2.20), it remains to show when P(FH1
i ) >

log3(n)
n

log(1
δ
) and P(FH2

i ) > log3(n)
n

log(1
δ
) hold for δ ∈ (0, 1).

Lemma 14. For K = o(log(n)), both P(FH1
i ) and P(FH2

i ) are greater than log3(n)
n

log(1
δ
),

δ ∈ (0, 1) for sufficiently large n if (
√
a−
√
b)2 < 2.

Proof. Let Wi ∼ Bern(p), Zi ∼ Bern(q). Then, by following similar analysis as in Lem-

mas 15, 12, the following holds:

P(FH1
i )

≥P
( n

2∑
l=1

[Zl −Wl] ≥
K∑
k=1

hi,k
T

+ 1 +
log(n)

log log(n)

)
≥e− log(n)(1+o(1))(supt∈R

a+b
2
− b

2
(a
b

)t−a
2

(a
b

)−t−K log(E+[e−thi ])
log(n)

) (2.22)

where E+[e−thi ] is the moment generating function of the side information of any node i

conditioned on x∗i = +1. Since K = o(log(n), substituting in (2.22) leads to:

P(FH1
i ) ≥ e− log(n)(1+o(1))(supt∈R

a+b
2
− b

2
(a
b

)t−a
2

(a
b

)−t)

≥ n−
1
2

(
√
a−
√
b)2+o(1) (2.23)

where the last inequality holds by evaluating the supremum. Thus, if 1
2
(
√
a −
√
b)2 < 1,

P(FH1
i ) > log3(n)

n
log(1

δ
), δ ∈ (0, 1) for sufficiently large n.

Similarly,

P(FH2
i )

≥e− log(n)(1+o(1))(supt∈R
a+b

2
− b

2
(a
b

)t−a
2

(a
b

)−t−K log(E−[ethi ])

log(n)
)

≥n−
1
2

(
√
a−
√
b)2+o(1) (2.24)

Thus, if 1
2
(
√
a−
√
b)2 < 1, P(FH2

i ) > log3(n)
n

log(1
δ
), δ ∈ (0, 1) for sufficiently large n.

Combining Lemmas 2, 3, 4, 14 concludes the proof of converse.

Achievability: It is known that 1
2
(
√
a −
√
b)2 > 1 is sufficient if the only observation

was the graph. Combining this with the converse completes the proof.
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2.6 Appendix

2.6.1 Proof of Lemma 5

Define l = n
2

and Γ(t) = log(EX [etx]) for a random variable X. Then,

P(FH
i ) = P

( n
2∑

k=1

Zk −

n
2
− n

log3(n)∑
k=1

Wk − cyi ≥ T + T
log(n)

log log(n)

)

≥P
( n

2∑
k=1

[Zk −Wk] ≥ cyi + T + T
log(n)

log log(n)

)

=(1− α)P
(

1

l

n
2∑

k=1

[Zk −Wk] ≥
1

l
(c+ T + T

log(n)

log log(n)
)

)

+ αP
(

1

l

n
2∑

k=1

[Zk −Wk] ≥
1

l
(−c+ T + T

log(n)

log log(n)
)

)
(a)

≥(1− α)e−l
(
t∗1a1−Γ(t∗1)+|t∗1|δ

)
(1− o(1)) + αe−l

(
t∗2a2−Γ(t∗2)+|t∗2|δ

)
(1− o(1)) (2.25)

where (a) holds by defining δ = log
2
3 (n)
l

, a1 = 1
l
(c + T + T log(n)

log log(n)
) + δ, a2 = 1

l
(−c + T +

T log(n)
log log(n)

) + δ, t∗1 = arg supt∈R ta1 − Γ(t), t∗2 = arg supt∈R ta2 − Γ(t) and by using Lemma 15

in Appendix 2.6.5.

Note that both supremums in (2.25) are very similar, thus the analysis for only one of

them will be presented and the second should follow similarity.

ta1 − Γ(t) = ta1 − log
(
1− q(1− (

a

b
)t)
)
− log

(
1− p(1− (

a

b
)−t)

)
It is easy to check that the right hand side is concave in t ∈ R. Hence, taking the derivative

with respect to t leads to:

a1 −
Tq(a

b
)t

1− q(1− (a
b
)t)

+
Tp(a

b
)−t

1− p(1− (a
b
)−t)

=
log(n)

n

(
2c

log(n)
+

2T

log(n)
+

2T

log log(n)
+

2

log
1
3 (n)

−
Tb(a

b
)t

1− q(1− (a
b
)t)

+
Ta(a

b
)−t

1− p(1− (a
b
)−t)

)
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= 0 (2.26)

We consider two asymptotic regimes for α:

• c = o(log(n)). Then, the first four terms in (2.26) is o(1). This suggests that t∗ = 1
2
.

Hence, substituting back in (2.26) leads to:

ta1 − Γ(t) =
1

2
a1−log

(
1−q(1−(

√
a

b
))
)
−log

(
1−p(1−(

√
b

a
)
)

(a)

≤ 1

2
a1 +

q(1− (
√

a
b
))

1− q(1− (
√

a
b
))

+
p(1− (

√
b
a
))

1− p(1− (
√

b
a
))

(b)
=

log(n)

n

(
(
√
a−
√
b)2 + o(1)

)
(2.27)

where (a) holds because log(1−x) ≥ −x
1−x and (b) holds because both (1−q(1− (

√
a
b
)))

and (1 − q(1 − (
√

a
b
))) → 1 as n → ∞. Hence, substituting in one of the supremums

of (2.25) leads to:

e−l
(
t∗1a1−Γ(t∗1)+|t∗1|δ

)
≥ e− log(n)

(
1
2

(
√
a−
√
b)2+o(1)

)
Finally, following the same steps for the second supremum and substituting in (2.25)

lead to:

P(FH
i ) ≥ n−0.5(

√
a−
√
b)2+o(1)

Thus, if (
√
a−
√
b)2 ≤ 2− ε for some 0 < ε < 2, then P(FH

i ) ≥ n−1+ ε
2 > log3(n)

n
log(1

δ
)

for δ ∈ (0, 1) for sufficiently large n. This proves the first case of Lemma 5.

• c = β log(n) + o(log(n)), β > 0. Substituting in (2.26), this suggests that t∗1 =

1
T

log(γ+β
bT

) and t∗2 = 1
T

log(γ−β
bT

), where γ =
√
β2 + abT 2. Hence, by substituting back

in (2.26) and following the same ideas as in (2.27), the following holds:

ta1 − Γ(t) ≤ log(n)

n

(
2βt∗+b(1−(

a

b
)t
∗
) + a(1−(

a

b
)−t
∗
) + o(1)

)
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=
log(n)

n

(
a+ b+ β − 2γ

T
+
β

T
log(

γ + β

γ − β
) + o(1)

)
=

log(n)

n
(η(a, b, β) + o(1)) (2.28)

Hence, substituting in one of the supremums of (2.25) leads to:

e−l
(
t∗1a1−Γ(t∗1)+|t∗1|δ

)
≥ e−

log(n)
2

(
η(a,b,β)+o(1)

)
Finally, by following the same steps for the second supremum and substituting in (2.25),

the following holds:

P(FH
i ) ≥ n−0.5η(a,b,β)+o(1) + αn−0.5η(a,b,β)+β+o(1)

= n−0.5η(a,b,β)+o(1)

Thus, if η(a, b, β) ≤ 2− ε for some 0 < ε < 2, then P(FH
i ) ≥ n−1+ ε

2 > log3(n)
n

log(1
δ
) for

δ ∈ (0, 1) for sufficiently large n. This proves the second case of Lemma 5.

For the last case of Lemma 5, we begin as in (2.25) but take a different approach:

P(FH
i ) ≥ P

( n
2∑

k=1

[Zk−Wk] ≥ cyi+T+T
log(n)

log log(n)

)

=(1−α)
(

1−P
( n

2∑
k=1

[Zk−Wk] ≤ c+T +T
log(n)

log log(n)

))

+ α
(

1−P
( n

2∑
k=1

[Zk−Wk] ≤ −c+T+T
log(n)

log log(n)

))
(a)

≥1− (1− α)× e−n supt>0
−t
n

(
c+T+T

log(n)
log log(n)

)
− 1

2
log
(
E(e−t[Z−W ])

)
− αe−n supt>0

−t
n

(
−c+T+T

log(n)
log log(n)

)
− 1

2
log
(
E(e−t[Z−W ])

)
(2.29)

where (a) holds by Chernoff bound. Note that unlike the previous cases, here the

supremum is only on t > 0. A direct computation of the logarithmic term leads to:

log
(
E
[
e−t

∑n
2
i=1[Zi−Wj ]

]) (a)
=
n

2

(
log
(
1−q(1−

(p
q

)−t
)
)
+log

(
1−p(1−

(p
q

)t
)
))
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(b)

≤ −
(n

2

)
q(1−

(p
q

)−t
)−

(n
2

)
p(1−

(p
q

)t
)

where (a) follows from the fact that Wi, Zi are independent random variables ∀i, and

(b) holds because log(1 − x) ≤ −x. Thus, the first supremum in (2.29) can be lower

bounded by:

log(n)

n
sup
t>0
−t(β + o(1)) +

1

2

(
a+b−b(a

b
)−t−a(

a

b
)t
)

(2.30)

Again, by concavity of the last equation in t, it is easy to calculate the first derivative

to get:

−β − aT

2
(
a

b
)t +

bT

2
(
a

b
)−t = 0 (2.31)

Hence, following the same analysis as before, it can be shown that t∗ for the first and

second supremums can be calculated as: 1
T

log(γ−β
aT

) and 1
T

log(γ+β
aT

), respectively. Since

t has to be greater than zero, β < T (b−a)
2

is needed for for the first supremum, which

can not be true, since β is positive and b < a. Hence, by the concavity of the function

and the fact that it approaches −∞ as t→∞, the optimal t for the first supremum is

t∗1 = 0. On the other hand, for the second supremum, β > T (a−b)
2

is needed for t to be

positive.

Thus, assume β > T (a−b)
2

and by substituting in (2.29), the following holds:

P(FH
i ) ≥ 1− (1− α)e0 − αn−

1
2
η(a,b,β)+β

(a)
= n−β − n−

1
2
η(a,b,β)

where (a) holds by using the fact that α = n−β. Hence, if β ≤ 1− ε1 and 1
2
η ≥ 1 + ε2,

then P(FH
i ) ≥ n−1(nε1 − n−ε2) > log3(n)

n
log(1

δ
) for δ ∈ (0, 1) for sufficiently large n.

This proves the third and last case of Lemma 5.
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2.6.2 Proof of Lemma 7

By upper bounding Pe, we get:

Pe ≤P
( (1−δ)n

2∑
k=1

Zk +

δ n
2∑

k=1

Wk ≥
(1−δ)n

2
− 2D

log(n)
n∑

j=1

Wj +
c

T
yi

)

≤P
( n

2∑
k=1

Zk +

δ n
2∑

k=1

Wk ≥
(1−δ)n

2
− 2D

log(n)
n∑

j=1

Wi +
c

T
yi

)

≤P
( n

2∑
k=1

Zk −
n
2∑

k=1

Wk +

δn+ 2D
log(n)

n∑
j=1

Wi ≥
c

T
yi

)
(a)

≤P
( n

2∑
k=1

(Zk −Wk) ≥
c

T
yi − ψδ log(n)

)
+ P

( δn+ 2D
log(n)

n∑
j=1

Wj ≥ ψδ log(n)

)

=(1− α)P
( n

2∑
k=1

(Zk −Wk) ≥
c

T
− ψδ log(n)

)
+

αP
( n

2∑
k=1

(Zk −Wk) ≥ −
c

T
− ψδ log(n)

)
+ P

( δn+ 2D
log(n)

n∑
j=1

Wj ≥ ψδ log(n)

)
(2.32)

where (a) holds by defining ψ = 1

δ
√

log( 1
δ

)
.

Now we bound the second term. A multiplicative Chernoff bound that states that for

a sequence of n i.i.d random variables Xi: P(
∑n

i=1 ≥ tµ) ≤ ( t
e
)−tµ, where µ = nE[X].

Applying this bound to the second term with µ = a(δ log(n) + 2D) and t = ψδ log(n)
a(δ log(n)+2D)

leads to:

P
(δn+ 2D

log(n)
n∑

j=1

Wj ≥ ψδ log(n)

)
≤
(

ψδ log(n)

ae(δ log(n) + 2D)

)−ψδ log(n)

(2.33)

=

(
ψ

ae(1 + 2D
δ log(n)

)

)− log(n)√
log( 1

δ
)

= e
log(n)

(
1+log(a)√

log( 1
δ

)
+

log(1+ 2D
δ log(n)

)√
log( 1

δ
)

+
log(δ)+ 1

2 log log( 1
δ

)√
log( 1

δ
)

)

(a)
= n

−
√

log( 1
δ

)

(
1−

log(1+ 2D
δ log(n)

)

log( 1
δ

)
+o(1)

)
(2.34)
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where (a) holds because δ → 0 as D →∞. Note that we can find D large enough such that

log(1+ 2D
δ log(n)

)

log( 1
δ

)
< 1. Hence,

P
( δn+ 2D

log(n)
n∑

j=1

Wj ≥ ψδ log(n)

)
≤ n−(1+Ω(1)) (2.35)

Now for the first term in (2.32), Chernoff bound can be used as follows:

(1− α)P
( n

2∑
k=1

(Zk −Wk) ≥
c

T
− ψδ log(n)

)
+ αP

( n
2∑

k=1

(Zk −Wk) ≥ −
c

T
− ψδ log(n)

)
(a)

≤ (1− α)e−
log(n)

2
supt1>0 2t( c

T log(n)
−ψδ)+a+b−bet1−ae−t1 +

αe−
log(n)

2
supt2>0 2t2(− c

T log(n)
−ψδ)+a+b−bet2−ae−t2 (2.36)

where (a) holds because log(1− x) ≤ −x. Since ψδ → 0 as D →∞, ψδ can be replaced by

o(1) for sufficiently large D. We consider the following asymptotic regimes for α.

• If c = o(log(n)), this suggests that t∗1 = t∗2 = 1
2
T . Hence, (2.36) can be upper bounded

by:

n−
1
2

(
√
a−
√
b)2+o(1) (2.37)

• If c = β log(n) + o(log(n)), for 0 < β < T (a−b)
2

, then it can be shown that t∗1 = log(γ+β
bT

)

and t∗2 = log(γ−β
bT

), where γ =
√
β2 + abT 2. Hence, (2.36) can be upper bounded by:

(2− α)n−
1
2
η(a,b,β)+o(1) (2.38)

• If c = β log(n), for β > T (a−b)
2

, then it can be shown that t∗1 = log(γ+β
bT

) and t∗2 = 0.

Hence, (2.36) can be upper bounded by:

(1− α)n−
1
2
η(a,b,β)+o(1) + n−β (2.39)

The last three equations and (2.35), substituting in (2.32), concludes the proof of the lemma.
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2.6.3 Proof of Lemma 10

Define l = n
2

and let Γ(t) = log(EX [etx]) for a random variable X. Then,

P(FH
i ) = εP

( n
2∑

k=1

(Zk)−

n
2
− n

log3(n)∑
k=1

(Wk) ≥ 1 +
log(n)

log log(n)

)

≥ εP
( n

2∑
k=1

[Zk −Wk] ≥ 1 +
log(n)

log log(n)

)
(a)

≥ εe−l
(
t∗a−Γ(t∗1)+|t∗1|δ

)
(1− o(1))

= e−l
(
t∗a−Γ(t∗1)+|t∗1|δ

)
+log(ε)(1− o(1)) (2.40)

where (a) holds by defining δ = log
2
3 (n)
l

, a = 1
l
(1 + log(n)

log log(n)
) + δ, t∗1 = arg supt∈R at−Γ(t) and

by using Lemma 15 in Appendix 2.6.5.

Following similar analysis as in (2.26) and (2.26), it can be shown that t∗ = 1
2
T . Thus,

by substituting back in (2.40) and using the fact that log(1− x) ≥ −x
1−x , we get:

P(FH
i ) ≥ εn−0.5(

√
a−
√
b)2+o(1) (2.41)

Thus, if log(ε) = o(log(n)), then, it is clear that if (
√
a−
√
b)2 ≤ 2−ε for some 0 < ε < 2,

then P(FH
i ) ≥ n−1+ ε

2 > log3(n)
n

log(1
δ
) for δ ∈ (0, 1) for sufficiently large n. This proves the

first case of Lemma 10. On the other hand, if log(ε) = −β log(n) + o(log(n)), for some

β > 0, then, it is clear that if (
√
a −
√
b)2 + 2β ≤ 2 − ε for some 0 < ε < 2, then

P(FH
i ) ≥ n−1+ ε

2
log3(n)
n

log(1
δ
) for δ ∈ (0, 1) for sufficiently large n. This proves the second

and last case of Lemma 10.

2.6.4 Proof of Lemma 12

Let Wi ∼ Bern(p), Zi ∼ Bern(q) and define l = n
2

and Γ(t) = log(EX [etx]) for a random

variable X. Then, we have the following:

P(FH1
i ) = P

( n
2∑
j=1

(Zj)−

n
2
− n

log3(n)∑
j=1

(Wj) ≥
K∑
k=1

hi,k
T

+ 1 +
log(n)

log log(n)

)
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≥
M1∑
m1=1

M2∑
m2=1

· · ·
MK∑
mK=1

(
K∏
k=1

αk+,mk)P
( n

2∑
j=1

[Zj −Wj] ≥
K∑
k=1

hm`m
T

+ 1 +
log(n)

log log(n)

)
(a)

≥
M1∑
m1=1

M2∑
m2=1

· · ·
MK∑
mK=1

(
K∏
k=1

αk+,mk)e
−l
(
t∗a−Γ(t∗)+|t∗|δ

)
(2.42)

where (a) holds by defining δ = log
2
3 (n)
l

, a = 1
l
(
∑K

k=1

hm`m
T

+1+ log(n)
log log(n)

)+δ, t∗ = arg supt∈R at−

Γ(t) and by using Lemma 15 in the Appendix9. Similarly,

P(FH2
i ) ≥

M1∑
m1=1

M2∑
m2=1

· · ·
MK∑
mK=1

(
K∏
k=1

α+,mk)e
−l
(
t∗a−Γ(t∗)+|∗|δ

)
(2.43)

where a = 1
l
(−
∑K

k=1

hm`m
T

+ 1 + log(n)
log log(n)

) + δ.

Without loss of generality, we focus on one term of the nested sum in (2.42) and (2.43).

Then,

• If
∑K

k=1 h
m
`m

= o(log(n)) and both
∑K

k=1 log(αk+,mk and
∑K

k=1 log(αk−,mk) are o(log(n)),

then the optimal t for that term is t∗ = 1
2
T for both (2.42), (2.43). Hence, substituting

in (2.42), (2.43) leads to:

P(FH1
i ) ≥ n−0.5(

√
a−
√
b)2+o(1) (2.44)

P(FH2
i ) ≥ n−0.5(

√
a−
√
b)2+o(1) (2.45)

Thus, it is clear that if (
√
a −
√
b)2 ≤ 2 − ε for some 0 < ε < 2, then P(FH1

i ) and

P(FH2
i ) are both greater than n−1+ ε

2 > log3(n)
n

log(1
δ
) for δ ∈ (0, 1) for sufficiently large

n.

• If
∑K

k=1 h
m
`m

= o(log(n)),
∑K

k=1 log(αk+,mk) =
∑K

k=1 log(αk−,mk) = −β log(n) +o(log(n)),

β > 0, then t∗ = 1
2
T for both (2.42), (2.43). Hence, by substituting in (2.42), (2.43),

the following holds:

P(FH1
i ) ≥ n−0.5(

√
a−
√
b)2−β+o(1) (2.46)

9For ease of notation,we omit any subscript for both a and t∗. However, both depend on the outcomes
of the features as shown in their definitions.
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P(FH2
i ) ≥ n−0.5(

√
a−
√
b)2−β+o(1) (2.47)

Thus, it is clear that if (
√
a−
√
b)2 + 2β ≤ 2− ε for some 0 < ε < 2, then P(FH1

i ) and

P(FH2
i ) are both greater than n−1+ ε

2 > log3(n)
n

log(1
δ
) for δ ∈ (0, 1) for sufficiently large

n.

• If
∑K

k=1 h
m
`m

= β log(n) + o(log(n)), 0 < β < T (a−b)
2

, then t∗ = log(γ+β
bT

) for (2.42)

and t∗ = 1
T

log(γ−β
bT

) for (2.43). Hence, by substituting in (2.42), (2.43), the following

holds:

P(FH1
i ) ≥ e− log(n)

(
0.5η(a,b,β)−

∑K
k=1

log(αk+,mk
)

log(n)
+o(1)

)
(2.48)

P(FH2
i ) ≥ e− log(n)

(
0.5η(a,b,β)−β−

∑K
k=1

log(αk−,mk
)

log(n)
+o(1)

)
(2.49)

Then, if
∑K

k=1 log(αk+,mk) = o(log(n)), this implies that
∑K

k=1

log(αk−,mk
)

log(n)
= −β + o(1).

Hence,

P(FH1
i ) ≥ n−0.5η(a,b,β)+o(1) (2.50)

P(FH2
i ) ≥ n−0.5η(a,b,β)+o(1) (2.51)

Thus, it is clear that if η(a, b, β) ≤ 2− ε for some 0 < ε < 2, then P(FH1
i ) and P(FH2

i )

are both greater than n−1+ ε
2 > log3(n)

n
log(1

δ
) for δ ∈ (0, 1) for sufficiently large n.

On the other hand, if
∑K

k=1 log(αk+,mk) = −β ′ log(n) + o(log(n)), this implies that∑K
k=1

log(αk−,mk
)

log(n)
= −β ′′ , for some β

′′
> 0 and β = β

′′ − β ′ . Hence,

P(FH1
i ) ≥ n−0.5η(a,b,β)−β′+o(1) (2.52)

P(FH2
i ) ≥ n−0.5η(a,b,β)+β−β′′+o(1)

= n−0.5η(a,b,β)−β′+o(1) (2.53)

Thus, it is clear that if η(a, b, β) + 2β
′ ≤ 2 − ε for some 0 < ε < 2, then P(FH1

i ) and

P(FH2
i ) are both greater than n−1+ ε

2 > log3(n)
n

log(1
δ
) δ ∈ (0, 1) for sufficiently large n.

The case when T (a−b)
2

< β < 0 holds similarly.
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2.6.5 Proof of Lemma 15

Lemma 15. Let X1, · · · , Xn be a sequence of i.i.d random variables. Define Γ(t) = log(E[etX ]).

Then, for any a, ε ∈ R:

P
( 1

n

n∑
i=1

Xi ≥ a− ε
)
≥ e−n

(
t∗a−Γ(t∗)+|t∗|ε

)(
1−

σ2
X̂

nε2

)

where t∗ = arg supt∈R ta − Γ(t), X̂ is a random variable with the same alphabet as X but

distributed according to et
∗xP(x)

EX [et∗x]
and µX̂ , σ

2
X̂

are the mean and variance of X̂, respectively.

Proof.

P
( 1

n

n∑
i=1

Xi ≥ a− ε
)
≥ P

(
a− ε ≤ 1

n

n∑
i=1

Xi ≤ a+ ε
)

=

∫
a−ε≤ 1

n

∑n
i=1 Xi≤a+ε

P(x1) · · ·P(xn)dx1 · · · dxn

(a)
=

∫
a−ε≤ 1

n

∑n
i=1 Xi≤a+ε

(EX [et
∑n
i=1 xi ])(et

∑n
i=1 xi)

(EX [et
∑n
i=1 xi ])(et

∑n
i=1 xi)

P(x1) · · ·P(xn)dx1 · · · dxn

(b)

≥e−n(ta−Γ(t)+|t|ε)
∫
a−ε≤ 1

n

∑n
i=1 Xi≤a+ε

n∏
i=1

(
etxiP(xi)

EX [etx]
dxi

)
(c)
=e−n(ta−Γ(t)+|t|ε)PX̂n

(
a− ε ≤ 1

n

n∑
i=1

X̂i ≤ a+ ε

)
(d)

≥e−n(ta−Γ(t)+|t|ε)
(

1−
nσ2

X̂
+ (nµX̂ − na)2

n2ε2

)
(2.54)

where (a) holds for any t ∈ R such that the expectation holds, (b) holds because a − ε ≤
1
n

∑n
i=1 X̂i ≤ a + ε, (c) holds because etxP(x)

EX [etx]
defines a probability distribution (Dembo and

Zeitouni, 2010) on a new random variable X̂ with the same alphabet as X, and (d) holds by

Chebyshev’s inequality and defining µX̂ , σ
2
X̂

to be the mean and variance of X̂, respectively.

Now, choose t = t∗ = arg supt∈R ta−Γ(t). Since this function is concave in t ∈ R (Dembo

and Zeitouni, 2010), then by setting the first derivative to zero, we have a = EX [xet
∗x]

E[et∗x]
. Also,

by direct computation of µX̂ , it can be shown that µX̂ = EX [xetx]
E[etx]

. This means that at t = t∗,
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we have µX̂ = a. Thus, substituting back in (2.54) leads to:

P
(

1

n

n∑
i=1

Xi ≥ a− ε
)
≥ e−n(t∗a−Γ(t∗)+|t∗|ε)(1− σ2

X̂

nε2
)

Now, in our model ε = log
2
3 (n)
n

and X = Z − W , where Z ∼ T*Bern(q) and W ∼

T*Bern(p), where T = log(a
b
). Hence, it can be easily shown that σ2

X̂
is in the order of log(n)

n
,

and hence,

P
(

1

n

n∑
i=1

Xi ≥ a− ε
)
≥ e−n(t∗a−Γ(t∗)+|t∗|ε)(1− o(1)

)
which concludes our proof.
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CHAPTER 3

TWO SYMMETRIC COMMUNITIES WITH CONTINUOUS-VALUED SIDE

INFORMATION 1

3.1 System Model and Assumptions

We use the same system model used in chapter two, which we restate here with slightly

different notations that fit the needs of this chapter. The binary symmetric stochastic block

model includes a graph with nodes u ∈ {1, . . . , n} each labeled xu = 1 or −1. Any pair of

nodes are connected by an edge with probability p = a log(n)
n

if the nodes belong to the same

community, and with probability q = b log(n)
n

otherwise, where a ≥ b. For each node a side

information Yu is observed, collectively according to the distribution
∏

u P (Yu|xu). Condi-

tioned on node labels, the side information of different nodes are assumed to be independent

of the graph edges.

We denote the observed graph by G, the vector of nodes’ true labels by x∗, and the vector

of nodes’ side information by Y = [Y1, . . . ,Yn]. The goal is to recover the node labels x∗

from the observation of (G,Y).

Definition 1. Let E(·, ·) denote the number of edges between two sets of nodes. Define

A , {u : xu = 1} and B , {u : xu = −1}. For a node u, define

hu , log

(
P (Yu|xu = 1)

P (Yu|xu = −1)

)
. (3.1)

Therefore the distribution of hu is the same for all u. Define T , log(a
b
). We say a node u

is irregular if one of the following holds:

xu = +1 and E(u,B) ≥ E(u,A) +
1

T
hu + 1

1© 2019 IEEE H. Saad and A. Nosratinia, ”Exact Recovery in Community Detection With Continuous-
Valued Side Information,” 2019 IEEE Signal Processing Letters, vol. 26, pp. 332-336, 2019.
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xu = −1 and E(u,A) ≥ E(u,B)− 1

T
hu + 1

otherwise we call the node regular.

Definition 2. Consider binomial random variables W ∼ Bin(n
2
− 1, p), Z ∼ Bin(n

2
, q),

independent of each other and of hu. Define:

ζn,+ , P(Z ≥ W +
1

T
hu + 1)

ζn,− , P(Z ≥ W − 1

T
hu + 1)

ζn ,
1

2
(ζn,+ + ζn,−)

Thus ζn represents the probability of a node being irregular in a graph of size n.

3.2 Exact Recovery Phase Transition

Theorem 7. Exact recovery is possible if and only if every node u is almost-surely regular,

i.e.,

ζn = o(n−1)

Remark 4. The significance of this result is to show the critical nature of regularity of

nodes. Theorem 7 admits arbitrary sequences P (Yu|xu = 1) and P (Yu|xu = −1), and hence

generalizes (Saad and Nosratinia, 2018, Theorem 5) which was only for discrete distributions

with finite cardinality.

3.2.1 Sufficiency of Theorem 7

A modification of a two-step algorithm from (Saad and Nosratinia, 2018, Achievability of

Theorem 5) is used. The first step of the original algorithm, which we use without change,

produces detected communities A′, B′ with no more than δn errors with δ → 0 as n → ∞.
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Our method departs from (Saad and Nosratinia, 2018, Theorem 5) in the second step: for a

node u ∈ A′, we flip its membership if E(u,B′) ≥ E(u,A′) + hu
T

+ 1 + γ log(n), where γ =

1√
− log(δ)

. For node v ∈ B′, we flip its membership if E(v,A′) ≥ E(v,B′)− hv
T

+ 1 + γ log(n).

In the end, if the number of flips in A′, B′ are unequal, undo all flips.

Lemma 16. The modified two-step algorithm recovers the community labels with probability

one if ζn = o(n−1).

Proof. Define two Bernoulli random variables W̃ ∼ Bern(p) and Z̃ ∼ Bern(q). Define

SLz ,
∑L

i=1 Z̃i and SLw ,
∑L

i=1 W̃i. Following (Saad and Nosratinia, 2018, Theorem 5), the

misclassification probability is:

Pe =P
(
node u is mislabeled

)
=

1

2
P
(
S

(1−δ)n
2

z + S
δ n

2
w ≥ S

(1−δ)n
2

w + S
δ n

2
z +

1

T
hu + 1 + γ log(n)

)
+

1

2
P
(
S

(1−δ)n
2

z + S
δ n

2
w ≥ S

(1−δ)n
2

w + S
δ n

2
z −

1

T
hu + 1 + γ log(n)

)
where δ → 0 as n→∞. Using (Saad and Nosratinia, 2018, Lemma 6):

Pe ≤
1

2
P
(
S

(1−δ)n
2

z + S
δ n

2
w ≥ S

(1−δ)n
2
− 2D

log(n)
n

w + S
δ n

2
− 2D

log(n)
n

z +
1

T
hu + 1 + γ log(n)

)
+

1

2
P
(
S

(1−δ)n
2

z + S
δ n

2
w ≥ S

(1−δ)n
2
− 2D

log(n)
n

w + S
δ n

2
− 2D

log(n)
n

z − 1

T
hu + 1 + γ log(n)

)
(3.2)

where as n grows D →∞ and D
log(n)

→ 0. We now bound the first term of (3.2); the second

term follows similarly.

P
(
S

(1−δ)n
2

z + S
δ n

2
w ≥ S

(1−δ)n
2
− 2D

log(n)
n

w + S
δ n

2
− 2D

log(n)
n

z +
1

T
hu + 1 + γ log(n)

)
≤P
(
S
n
2
z + S

δ n
2

w ≥ S
(1−δ)n

2
− 2D

log(n)
n

w +
1

T
hu + 1 + γ log(n)

)
≤P
(
S
n
2
z − S

n
2
w + S

δn+ 2D
log(n)

n

w ≥ 1

T
hu + 1 + γ log(n)

)
≤P
(
S
n
2
z − S

n
2
w ≥

1

T
hu + 1

)
+ P

(
S
δn+ 2D

log(n)
n

w ≥ γ log(n)
)
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≤ζn,+ + P
(
S
δn+ 2D

log(n)
n

w ≥ γ log(n)
)

(3.3)

where (3.3) uses the definition of ζn,+. From (Saad and Nosratinia, 2018, Lemma 7),

P
(
S
δn+ 2D

log(n)
n

w ≥ γ log(n)
)
≤ n−(1+Ω(1)) (3.4)

Using (3.3) and (3.4) and substituting in (3.2):

Pe ≤
1

2

(
ζn,+ + ζn,−

)
+ n−(1+Ω(1)) = ζn + n−(1+Ω(1)) (3.5)

A simple union bound yields:

P(failure) ≤ nζn + n−Ω(1) (3.6)

Thus, if ζn = o(n−1), then as n→∞:

P(failure) ≤ o(1) (3.7)

which concludes the achievability proof of Theorem 7.

3.2.2 Necessity of Theorem 7

Lemma 17. Define Bernoulli random variable Mu indicating the irregularity of node u. Let

Cov(Mu,Mv) denote the covariance between Mu and Mv. Then,

|Cov(Mu,Mv)| ≤ Cn−
2
3 ζ2
n + n−4 (3.8)

for some positive constant C.

Proof. Define the Bernoulli random variable indicating an edge between u, v, i.e., δ = E(u, v)

and note that Mu and Mv are independent conditioned on δ. Therefore, using the law of

total covariance,

|Cov(Mu,Mv)| = |Cov(E(Mu|δ),E(Mv|δ))|
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≤
√
V ar(E(Mu|δ))V ar(E(Mv|δ))

= V ar(E(Mu|δ)) (3.9)

where (3.9) holds because Mu and Mv have the same distribution conditioned on δ. We now

bound one-by-one the terms required for the calculation of E(Mu|δ). First, by definition of

irregularity,

P(Mu = 1|δ = 0) =
1

4

(
P(S

n
2
z ≥ S

n
2
−2

w +
1

T
hu + 1) + P(S

n
2
z ≥ S

n
2
−2

w − 1

T
hu + 1)

)
+

1

4

(
P(S

n
2
−1

z ≥ S
n
2
−1

w +
1

T
hu + 1) + P(S

n
2
−1

z ≥ S
n
2
−1

w − 1

T
hu + 1)

)
≤1

4

(
P(S

n
2
z ≥ S

n
2
−2

w +
1

T
hu + 1) + P(S

n
2
z ≥ S

n
2
−2

w − 1

T
hu + 1)

)
+

1

4

(
ζn,+ + ζn,−

)
(3.10)

The first two terms in (3.10) can be bounded as follows:

ζn,+ =pP(S
n
2
z ≥ 1 + S

n
2
−2

w +
1

T
hu + 1) + (1− p)P(S

n
2
z ≥ S

n
2
−2

w +
1

T
hu + 1)

≥(1− p)P(S
n
2
z ≥ S

n
2
−2

w +
1

T
hu + 1)

≥(1− n−
1
3 )P(S

n
2
z ≥ S

n
2
−2

w +
1

T
hu + 1)

resulting in:

P(S
n
2
z ≥ S

n
2
−2

w +
1

T
hu + 1) ≤ (1 + Cn

−1
3 )ζn,+ (3.11)

for some positive constant C. Using (3.11) and substituting in (3.10),

P(Mu = 1|δ = 0) ≤ (1 + Cn−
1
3 )ζn (3.12)

Similar to (3.10),

P(Mu = 1|δ = 1) ≤1

4
(1 + Cn

−1
3 )
(
ζn,+ + ζn,−

)
+

1

4

(
P(S

n
2
−1

z ≥ −1 + S
n
2
−1

w +
1

T
hu + 1)+

P(S
n
2
−1

z ≥ −1 + S
n
2
−1

w − 1

T
hu + 1)

)
(3.13)
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In a manner similar to (3.11), and using Lemma 19 from the Appendix:

P(Mu = 1|δ = 1) ≤ C1 log(n)ζn + n−2 (3.14)

for some positive constant C1. Using (3.12) and (3.14),

V ar(E(Mu|δ)) =
p+ q

2
(P(Mu = 1|δ = 1)− ζn)2 + (1− p+ q

2
)(P(Mu = 1|δ = 0)− ζn)2

≤C2n
− 2

3 ζ2
n + n−4 (3.15)

for some positive constant C2. Substituting (3.15) into (3.9):

|Cov(Mu,Mv)| ≤ Cn−
2
3 ζ2
n + n−4 (3.16)

for some positive constant C. This concludes the proof of the lemma.

Now we prove the converse part of Theorem 7. Let N be the number of nodes that are

irregular. Thus, E[N ] = nζn. If ζn is not o(n−1), then there exists ε > 0 such that for

infinitely many n, E[N ] ≥ ε. Moreover,

V ar(N) =
∑
u

V ar(Mu) +
∑
u6=v

Cov(Mu,Mv)

≤ nζn + Cn−
2
3n2ζ2

n + n−2 (3.17)

where (3.17) holds by Lemma 17. Thus, by the Paley-Zygmund inequality (Paley and Zyg-

mund, 1932), there exists δ > 0 such that P(N ≥ δ) ≥ δ. Thus,

P(∃u : u is irregular) = P(N > 0) ≥ P(N ≥ δ) ≥ δ (3.18)

By the symmetry of the labels of the nodes:

P(∃u : xu = 1, u is irregular) ≥ δ

2

P(∃u : xu = −1, u is irregular) ≥ δ

2
(3.19)
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Moreover, by Lemma 17, |Cov(Mu,Mv)| = |P(Mu = 1,Mv = 1) − P(Mu = 1)P(Mv = 1)| ≤

Cn−
2
3 ζ2
n. Thus, P(Mu = 1,Mv = 1) ≥ P(Mu = 1)P(Mv = 1)(1 − o(1)). This implies that if

ζn is not o(n−1), then for infinitely many n:

P(∃u, v : xu 6= xv and u, v are irregular ) ≥ δ2

4
(3.20)

We have shown that if ζn is not o(n−1), then with probability bounded away from zero, there

exist irregular nodes in both communities. This implies that exact recovery fails with high

probability, as shown below.

Lemma 18. Let A and B denote the true communities. Define the following events:

F , {Maximum Likelihood fails}

FA , {∃u ∈ A : u is irregular}

FB , {∃v ∈ B : v is irregular}

Then, FA ∩ FB ⇒ F .

Proof. Note that FA ∩FB denote an event where there exist nodes with different labels that

are irregular. Define two new communities Â = A\{u} ∪ {v} and B̂ = B\{v} ∪ {u}. Let

Auv ∼ Bern(q) be a random variable representing the existence of the edge between nodes

u and v. Then, by a direct computation of the likelihood function:

log
(
P(G,Y|Â, B̂)

) (a)
=R + T

(
E(Â) + E(B̂)

)
+

∑
i∈Â\{v}

log(P(Yi|xi = 1))+

∑
j∈B̂\{u}

log(P(Yj|xj = −1)) + log(P(Yu|xu = 1))+

log(P(Yv|xv = −1)) + hv − hu

=R + T
(
E(A) + E(B)

)
+ log

(
P(Y|A,B)

)
− 2TAuv+

T
(
E[v, A]− E[v,B] + E[u,B]− E[u,A]

)
+ hv − hu
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(b)

≥ log
(
P(G,Y|A,B)

)
+ 2T (1− Auv)

(c)

≥ log
(
P(G,Y|A,B)

)
where (a) holds for some constant R, (b) holds by the assumption that FA ∩ FB happened

and (c) holds because (1 − Aij) ≥ 0 and T ≥ 0. The inequality (c) implies the failure of

maximum likelihood, which concludes the proof of the necessary condition of Theorem 7.

3.3 Closing the Gap in (Saad and Nosratinia, 2018, Theorem 5)

Consider a system model where each node observes K features (random variables) each with

cardinality Mk < ∞. The alphabet for each feature k is denoted with {uk1, uk2, · · · , ukMk
}.

For each node i and feature k, define

αk+,mk , P(yi,k = ukmk |xi = 1)

αk−,mk , P(yi,k = ukmk |xi = −1)

hm`m , logαk+,mk − logαk−,mk

Features are mutually independent conditioned on labels. Define the following functions of

statistics of side information:

f1(n) ,
∑K

k=1h
m
`m

f2(n) ,
∑K

k=1 log(αk+,mk) f3(n) ,
∑K

k=1 log(αk−,mk)

Theorem 8. Assume αk+,mk and αk−,mk are either constant or monotonically increasing or

decreasing in n. Then, necessary and sufficient conditions for exact recovery are as follows.2

1. Items (1)− (4) in (Saad and Nosratinia, 2018, Theorem 5) must hold.

2In this theorem the side information outcomes [u1
m1

, . . . , uK
mK

] are represented by their index
[m1, . . . ,mK ]. Dependence on n is implicit.
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2. If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that

f1(n) = β log(n) + o(log(n)), |β| > T (a−b)
2

, and furthermore f2(n) = o(log(n)) if β > 0

and f3(n) = o(log(n)) if β < 0, then β > 1 must hold.

3. If there exists a sequence (over n) of side information outcomes [m1, . . . ,mK ] such that

f1(n) = β1 log(n) + o(log(n)), |β1| > T (a−b)
2

, and furthermore f3(n) = −β ′1 log(n) +

o(log(n)) if β1 > 0 and f2(n) = −β ′1 log(n) + o(log(n)) if β1 < 0, then β
′
1 > 1 must

hold.

Proof. Using Theorem 7, it is sufficient to show that ζn = o(n−1) if and only if the three

items in Theorem 8 hold. The first item was proved in (Saad and Nosratinia, 2018, Theorem

5), and we consider the last two items. By definition:

ζn =
1

2

(
M1∑
m1=1

M2∑
m2=1

· · ·
MK∑
mK=1

( K∏
k=1

(αk+,mk)× P
( n

2∑
l=1

(Zl −Wl) ≥
K∑
k=1

hm`m
T

+ 1

)
+

K∏
k=1

(αk−,mk)× P
( n

2∑
l=1

(Zl −Wl) ≥ −
K∑
k=1

hm`m
T

+ 1

)))
(3.21)

Assume
∑K

k=1 h
m
`m

= β log(n) + o(log(n)), β > T (a−b)
2

. The case when β < −T (a−b)
2

holds

similarly. Without loss of generality, we focus on one term inside the nested sum in (3.21).

Using Chernoff bound, ζn can be upper bounded as follows:

P1 =
K∏
k=1

(αk+,mk)P
( n

2∑
l=1

(Zl −Wl) ≥
K∑
k=1

hm`m
T

+ 1

)
+

K∏
k=1

(αk−,mk)P
( n

2∑
l=1

(Zl −Wl) ≥ −
K∑
k=1

hm`m
T

+ 1

)

≤
K∏
k=1

(αk+,mk)e
− supt1>0

t1(β+o(1))
T

log(n)−n
2

log(E[et1(Z−W )])+

K∏
k=1

(αk−,mk)e
− supt2>0

−t2(β+o(1))
T

log(n)−n
2

log(E[et2(Z−W )])

(a)

≤
K∏
k=1

(αk+,mk)e
− log(n) supt1>0

t1(β+o(1))
T

+ 1
2

(a+b−ae−t1−bet1 )+
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K∏
k=1

(αk−,mk)e
− log(n) supt2>0

−t2(β+o(1))
T

+ 1
2

(a+b−ae−t2−bet2 )

where (a) follows because log(1 − x) ≤ −x. Since β > T (a−b)
2

, supremum is achieved at

t∗1 = log(γ+β
bT

) and t∗2 = 0, where γ =
√
β2 + abT 2. Thus,

P1 ≤
K∏
k=1

(αk+,mk)n
−(1+o(1))η(a,b,β) +

K∏
k=1

(αk−,mk) (3.22)

Consider two scenarios for
∏K

k=1(αk+,mk). First, when log(
∏K

k=1(αk+,mk)) = o(log(n)), then

log(
∏K

k=1(αk−,mk)) = −(β + o(1)) log(n). Thus,

P1 ≤ n−( 1
2

+o(1))η(a,b,β) + n−β+o(1) ≤ n−β+o(1) (3.23)

where (3.23) holds by (Saad and Nosratinia, 2018, Lemma 8). For the lower bound, we

use (Saad and Nosratinia, 2018, Lemma 15) resulting in:

P1 ≥
K∏
k=1

(αk+,mk)e
−(1+o(1)) log(n) supt>0

tβ
T

+ 1
2

(a+b−ae−t−bet)+

K∏
k=1

(αk−,mk)e
−(1+o(1)) log(n) supt>0

−tβ
T

+ 1
2

(a+b−ae−t−bet)

In a manner similar to (3.22):

P1 ≥ n−( 1
2

+o(1))η(a,b,β) + n−β+o(1) ≥ n−β+o(1) (3.24)

Combining (3.23) and (3.24) concludes the proof for the case when log(
∏K

k=1(αk+,mk)) =

o(log(n)). When log(
∏K

k=1(αk+,mk)) = −(β′ + o(1)) log(n) for some positive β′. Then,

log(
∏K

k=1(αk−,mk)) = −(β′′+o(1)) log(n) such that β = β′′−β′. In a manner similar to (3.23):

P1 ≤ n−( 1
2

+o(1))η(a,b,β)−β′ + n−β
′′+o(1) ≤ n−β

′′+o(1) (3.25)

where (3.25) holds by (Saad and Nosratinia, 2018, Lemma 8). For the lower bound, in a

manner similar to (3.24):

P1 ≥ n−( 1
2

+o(1))η(a,b,β)−β′ + n−β
′′+o(1) ≥ n−β

′′+o(1) (3.26)

Combining (3.25) and (3.26) concludes the proof.
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3.4 Appendix

Lemma 19. Let Z ∼ Bin(n, q) and W ∼ Bin(n, p) be independent. Let Y be another

random variable independent of Z and W . Also, define ψ to be a constant. Then,

P(Z≥W−1+ Y + ψ) ≤ C log(n)P(Z ≥ W + Y + ψ) + n−2 (3.27)

for some positive constant C.

Proof. By rewriting the left hand side of (3.27),

P(W ≤ Z + 1− Y − ψ) =
n∑
k=0

P(W ≤ k + 1− Y − ψ)P(Z = k)

=

log2(n)∑
k′=0

P(W ≤ k′ − Y − ψ)P(Z = k′ − 1)+

n+1∑
k′=log2(n)+1

P(W ≤ k′ − Y − ψ)P(Z = k′ − 1) (3.28)

Now, for k′ = o(n), we have:

log(
P(Z = k′ − 1)

P(Z = k′)
) = log(

(
n

k′−1

)
qk
′−1(1− q)n−k′+1(

n
k′

)
qk′(1− q)n−k′

)

= log(
n(1− q)

(n− k′ + 1)
) + log(

k′

nq
)

≤ log(
k′

np
) (3.29)

where (3.29) holds for sufficiently large n, since k′ = o(n). Thus, substituting in (3.28),

P(W ≤ Z + 1− Y − ψ) ≤
log2(n)∑
k′=0

k′

np
P(W ≤ k′ − Y − ψ)P(Z = k′)+

n+1∑
k′=log2(n)+1

P(W ≤ k′ − Y − ψ)P(Z = k′ − 1)

≤
log2(n)∑
k′=0

log2(n)

np
P(W ≤ k′ − Y − ψ)P(Z = k′)+
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n+1∑
k′=log2(n)+1

P(Z = k′ − 1)

(a)

≤ C log(n)
n∑

k′=0

P(W ≤ k′ − Y − ψ)P(Z = k′)+

P(Z ≥ log2(n))

(b)

≤ C log(n)P(W ≤ Z − Y − ψ) + n−2 (3.30)

where (a) holds because np ≈ log(n) and (b) holds by Chernoff bound.
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CHAPTER 4

SINGLE COMMUNITY DETECTION1 2

In this chapter, the stochastic block model for one community is considered (Montanari,

2015; Hajek et al., 2017, 2018; Kadavankandy et al., 2018). The stochastic block model for

one community consists of a graph of size n with a community of size K, where K = o(n)).

The problem of finding a hidden community upon observing only the graph has been studied

in (Montanari, 2015; Hajek et al., 2017, 2018). The information limits3 of weak recovery and

exact recovery have been studied in (Hajek et al., 2017). Weak recovery is achieved when

the expected number of misclassified nodes is o(K), and exact recovery when all labels

are recovered with probability approaching one. The limits of belief propagation for weak

recovery have been characterized (Hajek et al., 2018; Montanari, 2015) in terms of a signal-

to-noise ratio parameter. The utility of a voting procedure after belief propagation to achieve

exact recovery was pointed out in (Hajek et al., 2018).

4.1 System Model and Assumptions

Let G be a realization from a random ensemble of graphs G(n,K, p, q), where each graph

has n nodes and contains a hidden community C∗ with size |C∗| = K. The underlying

distribution of the graph is as follows: an edge connects a pair of nodes with probability p

if both nodes are in C∗ and with probability q otherwise. Gij is the indicator of an edge

1© 2018 IEEE H. Saad and A. Nosratinia, ”Side Information in Recovering a Single Community: In-
formation Theoretic Limits,” 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2107-
2111, 2018.

2© 2018 IEEE H. Saad and A. Nosratinia, ”Belief Propagation with Side Information for Recovering
a Single Community,” 2018 IEEE International Symposium on Information Theory (ISIT), pp. 1271-1275,
2018.

3The extremal phase transition threshold is also known as information theoretic limit (Abbe and Sandon,
2015) or information limit (Hajek et al., 2017). We use the latter term throughout this chapter.
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between nodes i, j. For each node i, a vector of dimension M is observed consisting of side

information, whose distribution depends on the label xi of the node. By convention xi = 1

if i ∈ C∗ and xi = 0 if i /∈ C∗. For node i, the entries of the side information vector are

each denoted yi,m and can be interpreted as different features of the side information. The

side information for the entire graph is collected into the matrix Y n×M . The column vector

ym = [y1,m, . . . , yn,m]t collects the side information feature m for all nodes i.

The vector of true labels is denoted x∗ ∈ {0, 1}n. P and Q are Bernoulli distributions

with parameters p, q, respectively, and

LG(i, j) = log
(P (Gij)

Q(Gij)

)
is the log-likelihood ratio of edge Gij with respect to P and Q.

In this chapter, we address the problem of single-community detection, i.e., recovering

x∗ from G and Y , under the following conditions: K = o(n) while limn→∞K = ∞, p ≥ q,

p
q

= θ(1) and lim supn→∞ p < 1.

An estimator x̂(G,Y ) is said to achieve exact recovery of x∗ if, as n → ∞, P(x̂ =

x∗)→ 1. An estimator x̂(G,Y ) is said to achieve weak recovery if, as n→∞, d(x̂,x∗)
K
→ 0

in probability, where d(·, ·) denotes the Hamming distance. It was shown in (Hajek et al.,

2017) that the latter definition is equivalent to the existence of an estimator x̂ such that

E[d(x̂,x∗)] = o(K). This equivalence will be used throughout this chapter.

4.2 Information Limits

4.2.1 Fixed-Quality Features

In this subsection, the side information for each node is allowed to evolve with n by having

a varying number of independent and identically distributed scalar observations, each of

which has a finite (imperfect) amount of information about the node label. By allowing

the dimension of the side information per-node to vary and its scalar components to be
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identically distributed, the side information is represented with fixed-quality quanta. The

results of this section demonstrate that as n grows, the number of these side information

quanta per-node must increase in a prescribed fashion in order to have a positive effect on

the threshold for recovery.

For all n, for all i = 1, . . . , n, define the distributions:

V (υ) , P(yi,m = υ|xi = 1) U(υ) , P(yi,m = υ|xi = −1)

Thus the components of the side information for each node (features) are identically dis-

tributed for all nodes and all graph sizes n; we also assume all features are independent

conditioned on the node labels x∗. The dimension M of the side information per node is

allowed to vary as the size of the graph n changes.

In addition, we assume U, V are such that the resulting LLR random variable, defined

below, has bounded support:

LS(i,m) = log
(V (yi,m)

U(yi,m)

)
Throughout the chapter, LS will continue to denote the LLR random variable of one side

information feature, and LG denotes the random variable of the LLR of a graph edge.

Definition 3.

ψQU(t,m1,m2) , m1 log(EQ[etLG ]) +m2 log(EU [etLS ]) (4.1)

ψPV (t,m1,m2) , m1 log(EP [etLG ]) +m2 log(EV [etLS ]) (4.2)

EQU(θ,m1,m2) , sup
t∈[0,1]

tθ − ψQU(t,m1,m2) (4.3)

EPV (θ,m1,m2) , sup
t∈[−1,0]

tθ − ψPV (t,m1,m2) (4.4)

where θ, m1 and m2 ∈ R.
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Weak Recovery

Theorem 1. For single community detection under bounded-LLR side information, if:

(K − 1)D(P ||Q) +MD(V ||U)→∞ ,

lim inf
n→∞

(K − 1)D(P ||Q) + 2MD(V ||U)

log( n
K

)
> 2

(4.5)

then weak recovery is achieved and if weak recovery is achieved, then:

(K − 1)D(P ||Q) +MD(V ||U)→∞ ,

lim inf
n→∞

(K − 1)D(P ||Q) + 2MD(V ||U)

log( n
K

)
≥ 2

(4.6)

Proof. For necessity please see Appendix 4.4.2. For sufficiency, please see Appendix 4.4.3.

Remark 1. The condition of bounded support for the LLRs can be somewhat weakened

to Eqs. (4.67) and (4.70). As an example U ∼ N (0, 1) and V ∼ N (µ, 1) with µ 6= 0

satisfies (4.67), (4.70) and the theorem continues to hold even though the LLR is not bounded.

Remark 2. Theorem 1 shows that if M grows with n slowly enough, e.g., if M is fixed and

independent of n, or if M = o(log( n
K

)), side information does not affect the information

limits.

Remark 3. If the features are conditionally independent but not identically distributed, it is

easy to show the necessary and sufficient conditions are:

(K − 1)D(P ||Q) +
M∑
m=1

D(Vm||Um)→∞ ,

lim inf
n→∞

(K − 1)D(P ||Q) + 2
∑M

m=1D(Vm||Um)

log( n
K

)
> 2

where Vm and Um are analogous to U and V earlier, except specialized to each feature.

61



The assumption that the size of the community |C∗| is known a-priori is not always

reasonable: we might need to detect a small community whose size is not known in advance.

In that case, the performance is characterized by the following lemma.

Lemma 20. For single-community detection under bounded-LLR side information, if the

size of the community is not known in advance but obeys a probability distribution satisfying:

P
(∣∣∣ |C∗| −K∣∣∣ ≤ K

log(K)

)
≥ 1− o(1) (4.7)

for some known K = o(n). If conditions (4.5) hold, then:

P
( |Ĉ4C∗|

K
≤ 2ε+

1

log(K)

)
≥ 1− o(1) (4.8)

where

ε =
(

min(log(K), (K − 1)D(P ||Q) +MD(V ||U))
)− 1

2 = o(1).

Proof. Please see Appendix 4.4.4

Exact Recovery

The sufficient conditions for exact recovery are derived using a two-step algorithm (see

Table 4.1). Its first step consists of any algorithm achieving weak recovery, e.g. maximum

likelihood (see Lemma 20). The second step applies a local voting procedure.

Lemma 21. Define C∗k = C∗ ∩ Skc and assume Ĉk achieves weak recovery, i.e.

P
(
|Ĉk4C∗k | ≤ δK for 1 ≤ k ≤ 1

δ

)
→ 1 . (4.9)

If

lim inf
n→∞

EQU
(

log( n
K

), K,M
)

log(n)
> 1 (4.10)

then P(C̃ = C∗)→ 1.

Proof. Please see Appendix 4.4.5.
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Table 4.1. Algorithm for exact recovery.
Algorithm 1

1. Input: n, K, G, Y , δ ∈ (0, 1) : nδ, 1
δ
∈ N.

2. Consider a partition of the nodes {Sk} with |Sk| = nδ.
Gk and Y k are the subgraph and side information corre-
sponding to Sk

c, i.e., after each member of partition has
been withheld.

3. Consider estimator Ĉk(Gk,Y k) that produces |Ĉk| =
dK(1− δ)e and further assume it achieves weak recovery.

4. For all Sk and all i ∈ Sk calculate ri = (
∑

j∈Ĉk LG(ij)) +∑M
m=1 LS(i,m)

5. Output: C̃ = {Nodes corresponding to K largest ri}.

Then the main result of this section follows:

Theorem 2. In single community detection under bounded-LLR side information,

assume (4.5) holds, if

lim inf
n→∞

EQU
(

log( n
K

), K,M
)

log(n)
> 1 (4.11)

then exact recovery is achieved, and if exact recovery is achieved, then:

lim inf
n→∞

EQU
(

log( n
K

), K,M
)

log(n)
≥ 1 (4.12)

Proof. For sufficiency, please see Appendix 4.4.6. For necessity see Appendix 4.4.7.

Remark 4. The assumption that (4.5) holds is necessary because otherwise weak recovery

is not achievable, and by extension, exact recovery.

Remark 5. Theorem 2 shows if M grows with n slowly enough, e.g., M is fixed and inde-

pendent of n or M = o(K), side information will not affect the information limits of exact

recovery.
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Figure 4.1. Exact recovery threshold, ψ − 1 for different values of α at c = b = 1.

To illustrate the effect of side information on information limits, consider the following

example:

K =
cn

log(n)
, q =

b log2(n)

n
, p =

a log2(n)

n
(4.13)

for positive constants c, a ≥ b. Then, KD(P ||Q) = O(log(n)), and hence, weak recovery is

achieved without side information, and by extension, with side information. Moreover, exact

recovery without side information is achieved if and only if:

sup
t∈[0,1]

tc(a− b) + bc− bc(a
b

)t > 1 (4.14)

Assume noisy label side information with error probability α ∈ (0, 0.5). By Theorem 2,

exact recovery is achieved if and only if:

sup
t∈[0,1]

tc(a− b) + bc− bc(a
b

)t − M

log(n)
log((1− α)tα(1−t) + (1− α)(1−t)αt) > 1 (4.15)

If M = o(log(n)), then (4.15) reduces to (4.14), thus side information does not improve

the information limits of exact recovery. If M > o(log(n)), then log((1 − α)tα(1−t) + (1 −
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α)(1−t)αt) < 0 since t ∈ [0, 1]. It follows that (4.15) is less restrictive than (4.14), thus

improving the information limit.

Let ψ denote the left hand side of (4.15) with M = log(n), i.e.,

ψ = sup
t∈[0,1]

tc(a− b) + bc− bc(a
b

)t − log((1− α)tα(1−t) + (1− α)(1−t)αt) (4.16)

The behavior of ψ against α describes the influence of side information on exact recovery

and is depicted in Fig. 4.1.

4.2.2 Variable-Quality Features

In this section, the number of features, M , is assumed to be constant but the LLR of each

feature is allowed to vary with n.

Weak Recovery

Recall that the probability distribution side information feature m is Vm when the node

is inside and outside the community, and Um when the node is outside the community.

Theorem 3 (Necessary Conditions for Weak Recovery). For single community detection

under bounded-LLR side information, weak recovery is achieved only if:

(K − 1)D(P ||Q) +
M∑
m=1

(D(Vm||Um) +D(Um||Vm))→∞

lim inf
n→∞

(K − 1)D(P ||Q) + 2
∑M

m=1D(Vm||Um)

log( n
K

)
≥ 2

(4.17)

Proof. The proof follows similar to Theorem 1.
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Exact Recovery

We begin by concentrating on the following regime, and will subsequently show its relation

to the set of problems that are both feasible and interesting.

K = ρ
n

log(n)
, p = a

log(n)2

n
q = b

log(n)2

n
(4.18)

with constants ρ ∈ (0, 1) and a ≥ b > 0.

The alphabet for each feature m is denoted with {um1 , um2 , · · · , umLm}, where Lm is the

cardinality of feature m which, in this section, is assumed to be bounded and constant

across n. The likelihoods of the features are defined as follows:

αm+,`m , P(yi,m = um`m|xi = 1) (4.19)

αm−,`m , P(yi,m = um`m|xi = 0) (4.20)

Recall that in our side information model, all features are independent conditioned on the

labels. To ensure that the quality of the side information is increasing with n, both αm+,`m

and αm−,`m are assumed to be either constant or monotonic in n.

To better understand the behavior of information limits, we categorize side information

outcomes based on the trends of LLR and likelihoods. For simplicity we speak of trends

for one feature; extension to multiple features is straight forward. An outcome is called

informative if h` = O(log(n)) and non-informative if h` = o(log(n)). An outcome is called

rare if log(α±,`) = O(log(n)) and not rare if log(α±,`) = o(log(n)). Among the four different

combinations, the worst case is when the outcome is both non-informative and not rare for

nodes inside and outside the community. We will show that if such an outcome exists, then

side information will not improve the information limit. The best case is when the outcome

is informative and rare for the nodes inside the community, or for the nodes outside the

community, but not both. Two cases are in between: (1) an outcome that is non-informative
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and rare for nodes inside and outside the community and (2) an outcome that is informative

and not rare for nodes inside and outside the community. It will be shown that the last

three cases can affect the information limit under certain conditions.

For convenience we define:

T , log
(a
b

)
(4.21)

We introduce the following functions whose value, as shown in the sequel, characterizes the

exact recovery threshold:

η1(ρ, a, b) , ρ
(
b+

a− b
T

log
(a− b
ebT

))
(4.22)

η2(ρ, a, b, β) , ρb+
ρ(a− b)− β

T
log
(ρ(a− b)− β

ρebT

)
+ β (4.23)

η3(ρ, a, b, β) , ρb+
ρ(a− b) + β

T
log
(ρ(a− b) + β

ρebT

)
(4.24)

For example in the regime (4.18), one can conclude using (4.11) that exact recovery without

side information is achieved if and only if η1 > 1.

The LLR of each feature is denoted:

hm`m , log
(αm+,`m
αm−,`m

)
(4.25)

We also define the following functions of the likelihood and LLR of side information, whose

evolution with n is critical to the phase transition of exact recovery (Saad and Nosratinia,

2018).

f1(n) ,
M∑
m=1

hm`m , (4.26)

f2(n) ,
M∑
m=1

log(αm+,`m), (4.27)

f3(n) ,
M∑
m=1

log(αm−,`m) (4.28)
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In the following, the side information outcomes [u1
`1
, . . . , uM`M ] are represented by their index

[`1, . . . , `M ] without loss of generality. Throughout, dependence on n of outcomes and their

likelihood is implicit.

Theorem 4. In the regime characterized by (4.18), assume M is constant and αm+,`m and

αm−,`m are either constant or monotonic in n. Then, necessary and sufficient conditions for

exact recovery depend on side information statistics in the following manner:

1. If there exists any sequence (over n) of side information outcomes [`1, . . . , `M ] such

that f1(n), f2(n), f3(n) are all o(log(n)), then η1(ρ, a, b) > 1 must hold.

2. If there exists any sequence (over n) of side information outcomes [`1, . . . , `M ] such

that f1(n) = o(log(n)) and f2(n), f3(n) evolve according to −β log(n) + o(log(n)) with

β > 0, then η1(ρ, a, b) + β > 1 must hold.

3. If there exists any sequence (over n) of side information outcomes [`1, . . . , `M ] such

that f1(n) = β1 log(n) + o(log(n)) with 0 < β1 < ρ(a − b − bT ) and furthermore

f2(n) = o(log(n)), then η2(ρ, a, b, β1) > 1 must hold.

4. If there exists any sequence (over n) of side information outcomes [`1, . . . , `M ] such

that f1(n) = β2 log(n) + o(log(n)) with 0 < β2 < ρ(a − b − bT ) and furthermore

f3(n) = o(log(n)), then η3(ρ, a, b, β2) > 1 must hold.

5. If there exists any sequence (over n) of side information outcomes [`1, . . . , `M ] such

that f1(n) = β3 log(n) + o(log(n)) with 0 < β3 < ρ(a − b − bT ) and furthermore

f2(n) = −β′3 log(n) + o(log(n)), then η2(ρ, a, b, β3) + β′3 > 1 must hold.

6. If there exists any sequence (over n) of side information outcomes [`1, . . . , `M ] such

that f1(n) = β4 log(n) + o(log(n)) with 0 < β4 < ρ(a − b − bT ) and furthermore

f3(n) = −β′4 log(n) + o(log(n)), then η3(ρ, a, b, β4) + β′4 > 1 must hold.
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Proof. For necessity, see Appendix 4.4.8. For sufficiency, see Appendix 4.4.9.

Remark 6. The six items in Theorem 4 are concurrent. For example, if some side infor-

mation outcome sequences fall under Item 2 and some fall under Item 3, then the necessary

and sufficient condition for exact recovery is min(η1(ρ, a, b, β), η2(ρ, a, b, β1)) > 1.

Remark 7. Theorem 4 does not address f1(n) = ω(log(n)) because it leads to a trivial

problem. For example, for noisy label side information, if the noise parameter α = e−n,

then side information alone is sufficient for exact recovery. Also, when f1(n) = β log(n)

with |β| ≥ ρ(a − b − bT ), a necessary condition is easily obtained but a matching sufficient

condition for this case remains unavailable.

In the following, we specialize the results of Theorem 4 to noisy-labels and partially-

revealed-label side information.

Corollary 1. For side information consisting of noisy labels with error probability α ∈

(0, 0.5), Theorem 4 combined with Lemma 36 state that exact recovery is achieved if and

only if:
η1(ρ, a, b) > 1, when log(1−α

α
) = o(log(n))

η2(ρ, a, b, β) > 1, when log(1−α
α

) = (β + o(1)) log(n), 0 < β < ρ(a− b− bT )

Figure 4.2 shows the error exponent for the noisy label side information as a function of

β.

Corollary 2. For side information consisting of a fraction 1 − ε of the labels revealed,

Theorem 4 states that exact recovery is achieved if and only if:
η1(ρ, a, b) > 1, when log(ε) = o(log(n))

η1(ρ, a, b) + β > 1, when log(ε) = (−β + o(1)) log(n), β > 0
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Figure 4.2. Error exponent for noisy side information.
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Figure 4.3 shows the error exponent for partially revealed labels, as a function of β.

We now comment on the coverage of the regime (4.18). If the average degree of a node

is o(log n), then the graph will have isolated nodes and exact recovery is impossible. If the

average degree of the node is ω(log n), then the problem is trivial. Therefore the regime of

interest is when the average degree is Ω(log n). This restricts Kp and Kq in a manner that

is reflected in (4.18). Beyond that, in the system model of this chapter K = o(n), so
log( n

K
)

log(n)

is either o(1) or approaching a constant C ∈ (0, 1]. The regime (4.18) focuses on the former,

but the proofs are easily modified to cover the latter. For the convenience of the reader, we

highlight the places in the proof where a modification is necessary to cover the latter case.

4.3 Belief Propagation

Belief propagation for recovering a single community was studied without side information

in (Hajek et al., 2018; Montanari, 2015) in terms of a signal-to-noise ratio parameter λ =

K2(p−q)2

(n−k)q
, showing that weak recovery is achieved if and only if λ > 1

e
. Moreover, belief

propagation followed by a local voting procedure was shown to achieve exact recovery if

λ > 1
e
, as long as information limits allow exact recovery.

In this section M = 1, i.e. we consider scalar side information random variables that are

discrete and take value from an alphabet size L. Extension to a vector side information is

straight forward as long as dimensionality is constant across n; the extension is outlined in

Corollary 3.

Denote the expectation of the likelihood ratio of the side information conditioned on

x = 1 by:

Λ ,
L∑
`=1

α2
+,`

α−,`
(4.29)

By definition, Λ = χ̃2 + 1, where χ̃2 is the chi-squared divergence between the conditional

distributions of side information. Thus, Λ ≥ 1.
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4.3.1 Bounded LLR

We begin by demonstrating the performance of belief propagation algorithm on a random

tree with side information. Then, we show that the same performance is possible on a random

graph drawn from G(n,K, p, q), using a coupling lemma (Hajek et al., 2018) expressing local

approximation of random graphs by trees.

Belief Propagation on a Random Tree with Side Information

We model random trees with side information in a manner roughly parallel to random

graphs. Let T be an infinite tree with nodes i, each of them possessing a label τi ∈ {0, 1}.

The root is node i = 0. The subtree of depth t rooted at node i is denoted T ti . For brevity,

the subtree rooted at i = 0 with depth t is denoted T t. Unlike the random graph counterpart,

the tree and its node labels are generated together as follows: τ0 is a Bernoulli-K
n

random

variable. For any i ∈ T , the number of its children with label 1 is a random variable Hi

that is Poisson with parameter Kp if τi = 1, and Poisson with parameter Kq if τi = 0.

The number of children of node i with label 0 is a random variable Fi which is Poisson

with parameter (n − K)q, regardless of the label of node i. The side information τ̃i takes

value in a finite alphabet {u1, · · · , uL}. The set of all labels in T is denoted with τ , all side

information with τ̃ , and the labels and side information of T t with τ t and τ̃ t respectively.

The likelihood of side information continues to be denoted by α+,`, α−,`, as earlier.

The problem of interest is to infer the label τ0 given observations T t and τ̃ t. The error

probability of an estimator τ̂0(T t, τ̃ t) can be written as:

pte ,
K

n
P(τ̂0 = 0|τ0 = 1) +

n−K
n

P(τ̂0 = 1|τ0 = 0) (4.30)
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The maximum a posteriori (MAP) detector minimizes pte and can be written in terms of the

log-likelihood ratio as τ̂MAP = 1{Γt0≥ν}, where ν = log(n−K
K

) and:

Γt0 = log

(
P(T t, τ̃ t|τ0 = 1)

P(T t, τ̃ t|τ0 = 0)

)
(4.31)

The probability of error of the MAP estimator can be bounded as follows (Kobayashi and

Thomas, 1967):

K(n−K)

n2
ρ2 ≤ pte ≤

√
K(n−K)

n
ρ (4.32)

where ρ = E
[
e

Γt0
2

∣∣τ0 = 0
]
.

Lemma 22. Let Ni denote the children of node i, Ni , |Ni| and hi , log
(P(τ̃i|τi=1)
P(τ̃i|τi=0)

)
. Then,

Γt+1
i = −K(p− q) + hi +

∑
k∈Ni

log

( p
q
eΓtk−ν + 1

eΓtk−ν + 1

)
(4.33)

Proof. See Appendix 4.4.12

Lower and Upper Bounds on ρ

Define for t ≥ 1 and any node i:

ψti = −K(p− q) +
∑
j∈Ni

M(hj + ψt−1
j ) (4.34)

where

M(x) , log
( p
q
ex−ν + 1

ex−ν + 1

)
= log

(
1 +

p
q
− 1

1 + e−(x−ν)

)
.

Then, Γt+1
i = hi + ψt+1

i and ψ0
i = 0 ∀i ∈ T t. Let Zt

0 and Zt
1 denote random variables drawn

according to the distribution of ψti conditioned on τi = 0 and τi = 1, respectively. Similarly,

let U0 and U1 denote random variables drawn according to the distribution of hi conditioned

on τi = 0 and τi = 1, respectively. Thus, ρ = E
[
e

1
2

(Zt0+U0)
]

= E
[
e
U0
2

]
E
[
e
Zt0
2

]
. Define:

bt , E
[ eZ

t
1+U1

1 + eZ
t
1+U1−ν

]
(4.35)

at , E
[
eZ

t
1+U1

]
(4.36)
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Lemma 23. Let B = (p
q
)1.5. Then:

E[e
U0
2 ]e

−λ
8
bt ≤ ρ ≤ E[e

U0
2 ]e

−λ
8B
bt (4.37)

Proof. See Appendix 4.4.13.

Thus to bound ρ, lower and upper bounds on bt are needed.

Lemma 24. For all t ≥ 0, if λ ≤ 1
Λe

, then bt ≤ Λe.

Proof. See Appendix 4.4.14.

Lemma 25. Define C = λ(2 + p
q
) and Λ′ = E[e3U0 ]. Assume that bt ≤ ν

2(C−λ)
. Then,

bt+1 ≥ Λeλbt(1− Λ′

Λ
e
−ν
2 ) (4.38)

Proof. See Appendix 4.4.15.

Lemma 26. The sequences at and bt are non-decreasing in t.

Proof. The proof follows directly from (Hajek et al., 2018, Lemma 5).

Lemma 27. Define log∗(ν) to be the number of times the logarithm function must be itera-

tively applied to ν to get a result less than or equal to one. Let C = λ(2+ p
q
) and Λ′ = E[e3U0 ].

Suppose λ > 1
Λe

. Then there are constants t̄o and νo depending only on λ and Λ such that:

bt̄o+log∗(ν)+2 ≥ Λe
λν

2(C−λ) (1− Λ′

Λ
e
−ν
2 ) (4.39)

whenever ν ≥ νo and ν ≥ 2Λ(C − λ).

Proof. See Appendix 4.4.16.
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Achievability and Converse for the MAP Detector

Lemma 28. Let Λ′ = E[e3U0 ], C = λ(2 + p
q
) and B = (p

q
)1.5. If 0 < λ ≤ 1

Λe
, then:

pte ≥
K(n−K)

n2
E2[e

U0
2 ]e

−λΛe
4 (4.40)

If λ > 1
Λe

, then:

pte ≤
√
K(n−K)

n2
E[e

U0
2 ]e

−λΛ
8B

e
λν

2(C−λ) (1−Λ′
Λ
e
−ν
2 ) (4.41)

Moreover, since ν →∞:

pte ≤
√
K(n−K)

n2
E[e

U0
2 ]e−ν(r+ 1

2
) =

K

n
e−ν(r+o(1)) (4.42)

for some r > 0.

Proof. The proof follows directly from (4.32) and Lemmas 24 and 27.

Belief Propagation Algorithm for Community Recovery with Side Information

In this section, the inference problem defined on the random tree is coupled to the problem

of recovering a hidden community with side information. This can be done via a coupling

lemma (Hajek et al., 2018) that shows that under certain conditions, the neighborhood of a

fixed node i in the graph is locally a tree with probability converging to one, and hence, the

belief propagation algorithm defined for random trees in Section 4.3.1 can be used on the

graph as well. The proof of the coupling lemma depends only on the tree structure, implying

that it also holds for our system model, where the side information is independent of the

tree structure given the labels.

Define Gt̂
u to be the subgraph containing all nodes that are at a distance at most t̂ from

node u and define xt̂u and Y t̂
u to be the set of labels and side information of all nodes in Gt̂

u,

respectively.
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Lemma 29 (Coupling Lemma (Hajek et al., 2018)). Suppose that t̂(n) are positive integers

such that (2 + np)t̂(n) = no(1). Then:

• If the size of community is deterministic and known, i.e., |C∗| = K, then for any node

u in the graph, there exists a coupling between (G,x,Y ) and (T, τ , τ̃ ) such that:

P((Gt̂
u,x

t̂
u,Y

t̂
u) = (T t̂, τ t̂, τ̃ t̂)) ≥ 1− n−1+o(1) (4.43)

where for convenience of notation, the dependence of t̂ on n is made implicit.

• If |C∗| obeys a probability distribution so that P(||C∗| −K| ≥
√

3K log(n)) ≤ n
−1
2

+o(1)

with K ≥ 3 log(n), then for any node u, there exists a coupling between (G,x,y) and

(T, τ , τ̃ ) such that:

P((Gt̂
u,x

t̂
u,Y

t̂
u) = (T t̂, τ t̂, τ̃ t̂)) ≥ 1− n

−1
2

+o(1) (4.44)

Now, we are ready to present the belief propagation algorithm for community recovery

with bounded side information. Define the message transmitted from node i to its neighbor-

ing node j at iteration t+ 1 as:

Rt+1
i→j = hi −K(p− q) +

∑
k∈Ni\j

M(Rt
k→i) (4.45)

where hi = log(P(yi|xi=1)
P(yi|xi=0)

), Ni is the set of neighbors of node i and M(x) = log(
p
q
ex−ν+1

ex−ν+1
).

The messages are initialized to zero for all nodes i, i.e., R0
i→j = 0 for all i ∈ {1, · · · , n} and

j ∈ Ni. Define the belief of node i at iteration t+ 1 as:

Rt+1
i = hi −K(p− q) +

∑
k∈Ni

M(Rt
k→i) (4.46)

Algorithm 4.2 presents the proposed belief propagation algorithm for community recovery

with side information.
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Table 4.2. Belief propagation algorithm for community recovery with side information.
Belief Propagation Algorithm

1. Input: n,K, t ∈ N, G and Y .

2. For all nodes i and j ∈ Ni, set R0
i→j = 0.

3. For all nodes i and j ∈ Ni, run t − 1 iterations of belief
propagation as in (4.45).

4. For all nodes i, compute its belief Rt
i based on (4.46).

5. Output C̃ = {Nodes corresponding to K largest Rt
i}.

If in Algorithm 4.2 we have t = t̂(n), according to Lemma 29 with probability converging

to one Rt
i = Γti, where Γti was the log-likelihood defined for the random tree. Hence, the

performance of Algorithm 4.2 is expected to be the same as the MAP estimator defined as

τ̂MAP = 1{Γti≥ν}, where ν = log(n−K
K

). The only difference is that the MAP estimator decides

based on Γti ≥ ν while Algorithm 4.2 selects the K largest Rt
i. To manage this difference, let

Ĉ define the community recovered by the MAP estimator, i.e. Ĉ = {i : Rt
i ≥ ν}. Since C̃ is

the set of nodes with the K largest Rt
i. Then,

|C∗4C̃| ≤ |C∗4Ĉ|+ |Ĉ4C̃|

= |C∗4Ĉ|+ ||Ĉ| −K| (4.47)

Moreover,

||Ĉ| −K| ≤ ||Ĉ| − |C∗||+ ||C∗| −K| ≤ |C∗4Ĉ|+ ||C∗| −K| (4.48)

Using (4.48) and substituting in (4.47):

|C∗4C̃| ≤ 2|C∗4Ĉ|+ ||C∗| −K| (4.49)

We will use (4.49) to prove weak recovery.
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Weak Recovery

Theorem 5 (Achievability). Suppose that (np)log∗(ν) = no(1) and λ > 1
Λe

. Let t̂(n) =

t̄o+log∗(ν)+2, where t̄o is a constant depending only on λ and Λ. Apply Algorithm 4.2 with

t = t̂(n) resulting in estimated community C̃. Then:

E[|C∗4C̃|]
K

→ 0 (4.50)

for either |C∗| = K or random |C∗| such that K ≥ 3 log(n) and P(||C∗|−K| ≥
√

3K log(n)) ≤

n
−1
2

+o(1).

Proof. See Appendix 4.4.17.

Theorem 6 (Converse). Suppose that λ ≤ 1
Λe

. Let t̂ ∈ N depend on n such that (2 + np)t̂ =

no(1). Then, for any local estimator Ĉ of x∗u that has access to observations of the graph and

side information limited to a neighborhood of radius t̂ from u,

E[|C∗4Ĉ|]
K

≥ (1− K

n
)E2[e

U0
2 ]e

−λΛe
4 − o(1) (4.51)

Proof. See Appendix 4.4.18.

Corollary 3. The same result holds for side information consisting of multiple features, i.e.,

constant M ≥ 1. In other words, using the same notation as in Section 4.2.2, weak recovery

is possible if and only if λ > 1
Λe

where Λ =
∑L1

`1=1 · · ·
∑LM

`M=1(
∏M

m=1

(αm+,`m )2

αm−,`m
).

Exact Recovery

In Section 4.2.1, it was shown that under certain conditions any estimator that achieves

weak recovery on a random cluster size will also achieve exact recovery if followed by a local

voting process. This can be used to demonstrate sufficient conditions for exact recovery under

belief propagation. To do so, we employ a modified form of the algorithm in Table 4.1, where

in Step 3 for weak recovery we use the belief propagation algorithm presented in Table 4.2.
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Theorem 7. Suppose that (np)log∗(ν) = no(1) and λ > 1
Λe

. Let δ ∈ (0, 1) such that 1
δ
∈ N,

nδ ∈ N and λ(1 − δ) > 1
Λe

. Let t̂ = t̄o + log∗(n) + 2, where t̄o is a constant depending

only on λ(1− δ) and Λ as described in Lemma 27. Assume that (4.11) holds. Let C̃ be the

estimated community produced by the modified version of Algorithm 4.1 with t = t̂(n). Then

P(C̃ = C∗)→ 1 as n→∞.

Proof. See Appendix 4.5.

Comparison with Information Limits

Since K →∞ and the LLRs are bounded, the weak recovery result in Theorem 1 reduces

to lim infn→∞
KD(P ||Q)
2 log( n

K
)
> 1. This condition can be written as (Hajek et al., 2018):

λ > C
K

n
log(

n

K
) (4.52)

for some positive constant C. Thus, weak recovery only demands a vanishing λ. On the other

hand, belief propagation achieves weak recovery for λ > 1
Λe

, where Λ is greater than one and

bounded as long as LLR is bounded. This implies a gap between the information limits and

belief propagation limits for weak recovery. Since Λ ≥ 1, side information diminishes the

gap.

For exact recovery, the following regime is considered:

K =
cn

log(n)
, q =

b log2(n)

n
, p = 2q (4.53)

for fixed positive b, c as n → ∞. In this regime, KD(P ||Q) = O(log(n)), and hence, weak

recovery is always asymptotically possible. Also, λ = c2b. Moreover, exact recovery is

asymptotically possible if cb(1 − 1+log log(2)
log(2)

) > 1. For belief propagation, we showed that

exact recovery is possible if cb(1− 1+log log(2)
log(2)

) > 1 and λ > 1
Λe

.

Figure 4.4 compares the regions where weak recovery is achieved for belief propagation

with and without side information, as well as exact recovery with bounded-LLR side in-

formation. Side information with L = 2 is considered, where each node observes a noisy
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Figure 4.4. Phase diagram with K = c n
log(n)

, q = b log2(n)
n

, p = 2q and α = 0.3 for b, c fixed as
n→∞.

label with cross-over probability α = 0.3. In Region 1, the belief propagation algorithm

followed by voting achieves exact recovery with no need for side information. In Region 2,

belief propagation followed by voting achieves exact recovery with side information, but not

without. In Region 3, weak recovery is achieved by belief propagation with no need for side

information, but exact recovery is not asymptotically possible. In Region 4, weak recovery

is achieved by the belief propagation as long as side information is available; exact recovery

is not asymptotically possible. In Region 5, exact recovery is asymptotically possible, but

belief propagation without side information or with side information whose α = 0.3 cannot

achieve even weak recovery (needs smaller α, i.e., better side information). In Region 6,

weak recovery, but not exact recovery, is asymptotically possible via optimal algorithms, but

belief propagation without side information or with side information whose α = 0.3 cannot

achieve even weak recovery.
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log(n)
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n

, p = 2q and α = 0.3, 0.1 for b, c
fixed as n→∞.

Figure 4.5 explores the effect of different values of α, showing that as quality of side

information improves (smaller α), the gap between the belief propagation limit and the

information limit decreases.

Application to Finite Data

This section explores the relevance of asymptotic results, obtained in this chapter, to finite

data. The setup consists of a graph with n = 104, K = 100, t = 10 and side information con-

sisting of noisy labels with error probability α. We study the performance of Algorithm 4.2

on this data set. The following performance metric is used ζ = 1
2K

∑n
i=1 |x∗i − x̂i|. The nor-

malization by 2K, and the fact that the algorithm is guaranteed to return a community of

known size K, defines the range of the error metric ζ ∈ [0, 1]. Two scenarios are considered:

First, q = 5 × 10−4 and p = 10q, which results in λ ≈ 0.041 < 1
e
. The results are reported

for different values of α in Table 4.3, which show that when λ < 1
Λe

, significant residual error

exists. On the other hand, when λ >> 1
Λe

, error occurrences are rare. In the second scenario,
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Table 4.3. Performance of belief propagation for λ < 1
e
.

α ζ w/o side λ× Λe ≈ ζ with side
0.1 0.95 0.903 0.75
0.01 0.95 10 0.4
0.001 0.95 100 0.05

Table 4.4. Performance of belief propagation for λ > 1
e
.

α ζ w/o side λ× Λe ≈ ζ with side
0.1 0.125 70 0.1
0.01 0.125 840 0.03
0.001 0.125 8551 0.02

q = 5× 10−4 and p = 80q, resulting in λ ≈ 3.152 > 1
e
. The results are reported for different

values of α in Table 4.4. In this scenario, the performance of belief propagation without side

information is much better compared with the first scenario because λ > 1
e
. The results also

show that the performance is improved as α decreases.

4.3.2 Unbounded LLR

The results of the previous section suggest that when Λ → ∞ arbitrarily slowly, belief

propagation achieves weak recovery for any fixed λ > 0. In this section we prove this result

for scalar side information with finite cardinality and Λ that grows at a specific rate.

The proof technique uses density evolution of Γti. More precisely, we assume that ν,
α+,`

α−,`
,

and λ are constants independent of n, while nq,Kq
n→∞
−−→ ∞, which implies that p

q

n→∞
−−→ 1. This

assumption allows us to precisely characterize the conditional probability density function

of Γti (asymptotically Gaussian), and hence, calculate the fraction of misclassified labels via

the Q-function. Then, n
K

is allowed to grow and the behavior of the fraction of misclassified

labels is studied as ν and the LLR of the side information grow.

Recall the definition of ψti from (4.34) and Γti from (4.31) as well as the definitions of Zt
0,

Zt
1, U0 and U1 defined directly afterward.

82



Lemma 30. Assume λ,
α+,`

α−,`
and ν are constants independent of n while nq,Kq

n→∞
−−→ ∞.

Then, for all t ≥ 0:

E[Zt+1
0 ] =

−λ
2
bt + o(1) (4.54)

E[Zt+1
1 ] =

λ

2
bt + o(1) (4.55)

var(Zt+1
0 ) = var(Zt+1

1 ) = λbt + o(1) (4.56)

Proof. See Appendix 4.5.1.

The following lemma shows that the distributions of Zt
1 and Zt

0 are asymptotically Gaus-

sian.

Lemma 31. Assume λ,
α+,`

α−,`
and ν are constants independent of n while nq,Kq

n→∞
−−→ ∞.

Let φ(x) be the cumulative distribution function (CDF) of a standard normal distribution.

Define v0 = 0 and vt+1 = λEZ,U1 [ 1

e−ν+e−(
vt
2 +
√
vtZ)−U1

], where Z ∼ N (0, 1). Then, for all t ≥ 0:

sup
x

∣∣P(Zt+1
0 + vt+1

2√
vt+1

≤ x
)
− φ(x)

∣∣→ 0 (4.57)

sup
x

∣∣P(Zt+1
1 − vt+1

2√
vt+1

≤ x
)
− φ(x)

∣∣→ 0 (4.58)

Proof. See Appendix 4.5.2.

Lemma 32. Assume λ,
α+,`

α−,`
and ν are constants independent of n while nq,Kq

n→∞
−−→ ∞.

Let Ĉ define the community recovered by the MAP estimator, i.e. Ĉ = {i : Γti ≥ ν}. Then,

lim
nq,Kq→∞

lim
n→∞

E[Ĉ4C∗]
K

=
n−K
K

EU0 [Q(
ν + vt

2
− U0√
vt

)] + EU1 [Q(
−ν + vt

2
+ U1√

vt
)] (4.59)

where v0 = 0 and vt+1 = λEZ,U1 [ 1

e−ν+e−(
vt
2 +
√
vtZ)−U1

], and Z ∼ N (0, 1).

Proof. Let pe,0, pe,1 denote Type I and Type II errors for recovering τ0. Then the proof

follows from Lemmas 30 and 31, and because

E[Ĉ4C∗]
K

=
n

K
pte =

n−K
K

pe,0 + pe,1.
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Lemma 32 applies for side information with cardinality L ≥ 1, and hence, general-

izes (Kadavankandy et al., 2018) which was limited to L = 2. Now n
K

is allowed to grow

and the behavior of the fraction of misclassified labels is studied as ν and the LLR of the

side information grows without bound. The following lemma shows that if Λ → ∞ such

that |h`| = | log(
α+,`

α−,`
)| < ν, belief propagation achieves weak recovery for any fixed λ > 0

upon observing the tree structure of depth t∗ + 2 and side information with finite L, where

t∗ = log∗(ν) is the number of times the logarithm function must be iteratively applied to ν

to get a result less than or equal to one.

Lemma 33. Let Ĉ be the output of the MAP estimator for the root of a random tree of

depth t∗ + 2 upon observing the tree structure and side information with cardinality L <∞.

Assume as n
K
→∞, Λ→∞ such that |h`| < ν. Then for any fixed λ > 0:

lim
n
K
→∞

lim
nq,Kq→∞

lim
n→∞

E[Ĉ4C∗]
K

= 0 (4.60)

Proof. See Appendix 4.5.3.

Although Lemma 33 is for L-ary side information, it focuses on one asymptotic regime of

side information where |h`| < ν. To study other asymptotic regimes of side information, one

example is considered for L = 2, i.e., side information takes values in {0, 1}. For constants

η, β ∈ (0, 1) and γ > 0, define:

α+,1 = P(y = 1|x∗ = 1) = ηβ

α−,1 = P(y = 1|x∗ = 0) =
η(1− β)

(n−K
K

)γ
(4.61)

Thus, Λ→∞ and h1 = (1 +o(1))γ log(n−K
K

) and h2 = (1 +o(1)) log(1−ηβ). For 0 < γ < 1,

Lemma 33 shows that belief propagation achieves weak recovery for any fixed λ > 0. This

implies that belief propagation achieves weak recovery also for γ ≥ 1 because γ ≥ 1 implies

higher-quality side information. This generalizes the results obtained in (Kadavankandy

et al., 2018) which was only for γ = 1.
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Belief Propagation Algorithm for Community Recovery with Unbounded Side

Information

Lemma 32 characterizes the performance of the optimal estimator of the root of a random

tree upon observing the tree of depth t and the side information. Similar to Section 4.3.1,

the inference problem defined on the random tree is coupled to the problem of recovering a

hidden community with side information. This is done via Lemma 29, which together with

Equation (4.49) allow us to use Algorithm 4.2 (as long as (np)t = no(1)). Let C̃ be the output

of Algorithm 4.2, i.e., the set of nodes with the K largest Rt
i. Then, using Equation (4.49)

we have: E[C̃4C∗]
K

≤ 2E[Ĉ4C∗]
K

. Thus, the results of Lemma 33 and the special case (4.61)

hold. This also suggests that belief propagation (Algorithm 4.2) achieves weak recovery for

any λ > 0 when Λ grows with n
K

arbitrarily slowly.

4.4 Appendix

4.4.1 Auxiliary Lemmas For Information Limits

Lemma 34. Define

ÊQU(θ,m1,m2) , sup
t∈R

tθ −m1 logQ(E[etLG ])−m2 logU(E[etLS ])

ÊPV (θ,m1,m2) , sup
t∈R

tθ −m1 logP (E[etLG ])−m2 logV (E[etLS ])

For θ ∈ [−m1D(Q||P )−m2D(U ||V ),m1D(P ||Q) +m2D(V ||U)], the following holds:

ÊQU(θ,m1,m2) = EQU(θ,m1,m2) (4.62)

ÊPV (θ,m1,m2) = EPV (θ,m1,m2) (4.63)

Moreover, for δ : −m1D(Q||P )−m2D(U ||V ) ≤ θ ≤ θ+ δ ≤ m1D(P ||Q) +m2D(V ||U)], the

following holds:

EQU(θ,m1,m2) ≤ EQU(θ + δ,m1,m2) ≤ EQU(θ,m1,m2) + δ (4.64)
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EPV (θ,m1,m2) ≥ EPV (θ + δ,m1,m2) ≥ EPV (θ,m1,m2)− δ (4.65)

Proof. Equations (4.62) and (4.63) follow since EPV (θ,m1,m2) = EQU(θ,m1,m2) − θ and

because:

EQU(−m1D(Q||P )−m2D(U ||V ),m1,m2) = 0

EPV (m1D(P ||Q) +m2D(V ||U),m1,m2) = 0

ψ′QU(m1,m2, 0) = ψ′PV (m1,m2,−1) = −m1D(Q||P )−m2D(U ||V )

ψ′QU(m1,m2, 1) = ψ′PV (m1,m2, 0) = m1D(P ||Q) +m2D(V ||U) (4.66)

Equations (4.64) and (4.65) follow since EPV (EQU) is decreasing (increasing) for θ ∈

[−m1D(Q||P )−m2D(U ||V ),m1D(P ||Q) +m2D(V ||U)].

Lemma 35. Assume |LG| ≤ B and |LS| ≤ B′ for some positive constants B and B′. Define

B′′ = max{B,B′}. Then, for t ∈ [−1, 1] and η ∈ [0, 1],

ψ′′QU(m1,m2, t) ≤ 2e5B′′
(

min
{
m1D(Q||P ) +m2D(U ||V ),m1D(P ||Q) +m2D(V ||U)

})
(4.67)

ψQU(m1,m2, t) ≤ (m1D(Q||P ) +m2D(U ||V ))(−t+ e5B′′t2) (4.68)

EQU

(
m1,m2,−(1− η)(m1D(Q||P ) +m2D(U ||V ))

)
≥ η2

4e5B′′
(m1D(Q||P ) +m2D(U ||V ))

(4.69)

ψ′′PV (m1,m2, t) ≤ 2e5B′′
(

min
{
m1D(Q||P ) +m2D(U ||V ),m1D(P ||Q) +m2D(V ||U)

})
(4.70)

ψPV (m1,m2, t) ≤ (m1D(P ||Q) +m2D(V ||U))(t+ e5B′′t2) (4.71)

EPV (m1,m2, (1− η)(m1D(P ||Q) +m2D(V ||U))) ≥ η2

4e5B′′
(m1D(P ||Q) +m2D(V ||U))

(4.72)

where ψ′′QU(m1,m2, t) and ψ′′PV (m1,m2, t) denote the second derivatives with respect to t.
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Proof. By direct computation of the second derivative,

ψ′′QU(m1,m2, t) ≤ m1
EQ[L2

Ge
tLG ]

EQ[etLG ]
+m2

EU [L2
Se

tLS ]

EU [etLS ]

(a)

≤ m1e
2BEQ[L2

G] +m2e
2B′EU [L2

S] (4.73)

where (a) follows by the assumption that |LG| ≤ B, |LS| ≤ B′ and holds for all t ∈ [−1, 1].

Now consider the following function: φ(x) = ex − 1− x restricted to |x| ≤ B. It is easy

to see that φ(x) is non-negative, convex with φ(0) = φ′(0) = 0 and φ′′(x) = ex. Hence,

e−B ≤ φ′′(x) ≤ eB. From Taylor’s theorem with integral remainder (Apostol, 1962), we get:

e−Bx2

2
≤ φ(x) ≤ eBx2

2
, which implies x2 ≤ 2eBφ(x). Using this result for x = LG and x = LS:

EQ[L2
G] ≤ 2eBEQ[φ(LG)] = 2eBD(Q||P ) (4.74)

EU [L2
S] ≤ 2eB

′EU [φ(LS)] = 2eB
′
D(U ||V ) (4.75)

Combining (4.73), (4.74), (4.75) lead to ψ′′QU(m1,m2, t) ≤ 2m1e
3BD(Q||P ) +

2m2e
3B′D(U ||V ) for t ∈ [−1, 1]. Similarly, it can shown for t ∈ [0, 2]: ψ′′QU(m1,m2, t) ≤

2m1e
5BD(Q||P ) + 2m2e

5B′D(U ||V ).

On the other hand, using φ(x) = e−x − 1 + x with |x| ≤ B, it can be shown that

ψ′′PV (m1,m2, t) ≤ 2m1e
5BD(P ||Q) + 2m2e

5B′D(V ||U), for t ∈ [0, 2]. By definition,

ψQU(m1,m2, t) = ψPV (m1,m2, t− 1), and hence, ψ′′QU(m1,m2, t) ≤ 2m1e
5BD(P ||Q) +

2m2e
5B′D(V ||U), for t ∈ [−1, 1], which concludes the proof of (4.67). The proof of (4.70)

follows similarly.

Now since ψQU(m1,m2, 0) = 0 and ψ′QU(m1,m2, 0) = −m1D(Q||P ) −m2D(U ||V ), then

using Taylor’s theorem with integral remainder, we have for t ∈ [−1, 1]:

ψQU(m1,m2, t)

= ψQU(m1,m2, 0) + tψ′QU(m1,m2, 0) +

∫ 0

t

(λ− t)ψ′′QU(m1,m2, t)dλ

(a)

≤ −t(m1D(Q||P ) +m2D(U ||V )) + e5B′′(m1D(Q||P ) +m2D(U ||V ))t2 (4.76)
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where (a) follows using (4.67). Similarly, it can be shown that:

ψPV (m1,m2, t) ≤ t(m1D(P ||Q) +m2D(V ||U)) + e5B′′(m1D(P ||Q) +m2D(V ||U))t2 (4.77)

Combining (4.76) and (4.77) concludes the proof of (4.68), (4.71). Using (4.68) and (4.71),

we get:

EQU

(
m1,m2,−(1− η)(m1D(Q||P ) +m2D(U ||V ))

)
≥ sup

t∈[0,1]

t(−(1− η)(m1D(Q||P ) +m2D(U ||V ))) + t(m1D(Q||P ) +m2D(U ||V ))

− e5B′′(m1D(Q||P ) +m2D(U ||V ))t2

=
η2

4e5B′′
(m1D(Q||P ) +m2D(U ||V )) (4.78)

Similarly,

EPV

(
m1,m2, (1− η)(m1D(P ||Q) +m2D(V ||U))

)
≥ η2

4e5B′′
(m1D(P ||Q) +m2D(V ||U)) (4.79)

Combining (4.78) and (4.79) concludes the proof of (4.69), (4.72).

Lemma 36. η3(ρ, a, b, β) ≥ η2(ρ, a, b, β), for 0 < β < ρ(a− b− bT ).

Proof. It is easy to show that η3(ρ, a, b, β)− β is convex in β > 0. Thus, the optimal β can

be calculated as β∗ = ρ(aT − a+ b) at which η3(ρ, a, b, β∗)− β∗ = 0. Thus, η3(ρ, a, b, β) ≥ β

for all a ≥ b > 0.

Furthermore, note that η2(ρ, a, b, β) is convex and increasing in 0 < β < ρ(a − b − bT ).

By direct substitution, it can be shown that at β = ρ(a − b − bT ): η2(ρ, a, b, β) = β. This

implies that at β = ρ(a− b− bT ):

η3(ρ, a, b, β)− η2(ρ, a, b, β) = η3(ρ, a, b, β)− β ≥ 0 (4.80)

Using (4.80) together with the fact that η3(ρ, a, b, β)−η2(ρ, a, b, β) is concave in β > 0, leads

to the conclusion that η3(ρ, a, b, β) ≥ η2(ρ, a, b, β) for 0 < β < ρ(a− b− bT ).
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Lemma 37. Let X1, · · · , Xn be a sequence of i.i.d random variables. Define Γ(t) = log(E[etX ]).

Define S =
∑n

i=1Xi, then for any ε > 0 and a ∈ R:

P
(
S ≥ a− ε

)
≥ e−

(
t∗a−nΓ(t∗)+|t∗|ε

)(
1−

nσ2
X̂

ε2

)
(4.81)

P
(
S ≤ a+ ε

)
≥ e−

(
t∗a−nΓ(t∗)+|t∗|ε

)(
1−

nσ2
X̂

ε2

)
(4.82)

where t∗ = arg supt∈R ta − Γ(t), X̂ is a random variable with the same alphabet as X but

distributed according to et
∗xP(x)

EX [et∗x]
and µX̂ , σ

2
X̂

are the mean and variance of X̂, respectively.

Proof.

P
(
S ≥ a− ε

)
≥ P

(
a− ε ≤ S ≤ a+ ε

)
=

∫
a−ε≤S≤a+ε

P(x1) · · ·P(xn)dx1 · · · dxn

(a)

≥e−(ta−nΓ(t))−|t|ε
∫
a−ε≤S≤a+ε

n∏
i=1

(
etxiP(xi)

EX [etx]
dxi

)
(b)
=e−(ta−nΓ(t))−|t|εPX̂n

(
a− ε ≤ S ≤ a+ ε

)
(c)

≥e−(ta−nΓ(t))−|t|ε
(

1−
nσ2

X̂
+ (nµX̂ − a)2

ε2

)
(4.83)

where, for all finite E[etX ], (a) is true because et
∑
xi ≤ en(ta+|t|ε) over the range of integration,

(b) holds because etxPX(x)
EX [etX ]

is a valid distribution (Dembo and Zeitouni, 2010), and (c) holds by

Chebyshev inequality and by defining µX̂ , σ
2
X̂

to be the mean and variance of X̂, respectively.

Since ta−nΓ(t) is concave in t, to find t∗ = arg supt(ta−nΓ(t)) we set the derivative to zero,

finding a = nEX [xet
∗x]

E[et∗x]
. Also, by direct computation of µX̂ , it can be shown that µX̂ = EX [xetx]

E[etx]
.

This means that at t = t∗, nµX̂ = a. Thus, substituting back in (4.83) leads to:

P
(
S ≥ a− ε

)
≥ e−(t∗a−nΓ(t∗))−|t∗|ε(1− nσ2

X̂

ε2
)

This concludes the proof of (4.81). The proof of (4.82) follows similarly.

In our model ε = log
2
3 (n) and nσ2

X̂
is O(log(n)), and hence,

P
(
S ≥ a− ε

)
≥ e−(t∗a−nΓ(t∗))−|t∗|ε(1− o(1)

)
which concludes the proof.
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4.4.2 Necessity of Theorem 1

Let x∗\i,j represent the vector x∗ with two coordinates i, j removed. We wish to determine

x∗i via an observation of G,Y , as well as a node index J and the expurgated vector of labels

x∗\i,J , where node J is randomly and uniformly chosen from inside (outside) the community

if node i is outside (inside) the community, i.e., {j : x∗j 6= x∗i }. Then:

P(G,Y , J,x∗\i,J |x∗i = 0)

P(G,Y , J,x∗\i,J |x∗i = 1)

=
P(G|Y , J,x∗\i,J , x∗i = 0)

P(G|Y , J,x∗\i,J , x∗i = 1)

P(x∗\i,J |J, x∗i = 0,Y )

P(x∗\i,J |J, x∗i = 1,Y )

P(Y , J |x∗i = 0)

P(Y , J |x∗i = 1)

(a)
=
P(G|J,x∗\i,J , x∗i = 0)

P(G|J,x∗\i,J , x∗i = 1)

P(yi,1 · · · , yi,M |x∗i = 0)

P(yi,1 · · · , yi,M |x∗i = 1)

P(yJ,1, · · · , yJ,M |J, x∗i = 0)

P(yJ,1, · · · , yJ,M |J, x∗i = 1)

=

( ∏
k 6=i,J
x∗k=1

Q(Gik)P (GJk)

P (Gik)Q(GJk)

)( M∏
m=1

U(yi,m)V (yJ,m)

V (yi,m)U(yJ,m)

)
(4.84)

where (a) holds because G and Y are independent given the labels, P(J |x∗i = 0) = P(J |x∗i =

1) and P(x∗\i,J |J, x∗i = 0,Y ) = P(x∗\i,J |J, x∗i = 1,Y ).

Denote the set of nodes inside the community, excluding i, J , with K = {k 6= i, J : x∗k =

1}, and construct a vector from four sets of random variables as follows:

T ,
[
{yi,m}Mm=1, {yJ,m}Mm=1, {Gik}k∈K, {GJk}k∈K

]
.

where the members of each set appear in the vector in increasing order of their varying

index. From (4.84), T is a sufficient statistic of (G,Y , J,x∗\i,J) for testing x∗i ∈ {0, 1}.

Moreover, conditioned on x∗i = 0, T is distributed according to U⊗MV ⊗MQ⊗(K−1)P⊗(K−1)

and conditioned on x∗i = 1, T is distributed according to V ⊗MU⊗MP⊗(K−1)Q⊗(K−1). Then,

for any estimator x̂(G,Y ) achieving weak recovery:

E[d(x̂,x∗)] =
n∑
i=1

P(x∗i 6= x̂i)

≥
n∑
i=1

min
x̃i(G,Y )

P(x∗i 6= x̃i)
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≥
n∑
i=1

min
x̃i(G,Y ,J,x∗\i,J )

P(x∗i 6= x̃i)

= n min
x̃i(G,Y ,J,x∗\i,J )

P(x∗i 6= x̃i)

= n min
x̃i(G,Y ,J,x∗\i,J )

(
K

n
P(x∗i 6= x̃i|x∗i = 1) +

n−K
n

P(x∗i 6= x̃i|x∗i = 0)

)
≥ n min

x̃i(G,Y ,J,x∗\i,J )

(
K

n
P(x∗i 6= x̃i|x∗i = 1) +

K

n
P(x∗i 6= x̃i|x∗i = 0)

)
= K min

x̃i(G,Y ,J,x∗\i,J )

(
P(x∗i 6= x̃i|x∗i = 1) + P(x∗i 6= x̃i|x∗i = 0)

)
(4.85)

Since by assumption, E[d(x̂,x∗)] = o(K), then by (4.85), the sum of Type-I and II proba-

bilities of error is o(1), which implies that as n→∞ (Polyanskiy and Wu, 2017):

TV
(
U⊗MV ⊗MQ⊗(K−1)P⊗(K−1), V ⊗MU⊗MP⊗(K−1)Q⊗(K−1)

)
→ 1 (4.86)

where TV (·, ·) is the total variational distance between probability distributions. By prop-

erties of the total variational distance and KL divergence (Polyanskiy and Wu, 2017), for

any two distributions P̃ , Q̃: D(P̃ ||Q̃) ≥ log( 1
2(1−TV (P̃ ||Q̃))

). Hence, using (4.86):

D
(
U⊗MV ⊗MQ⊗(K−1)P⊗(K−1)

∣∣∣∣∣∣V ⊗MU⊗MP⊗(K−1)Q⊗(K−1)
)

= M
(
D(U ||V ) +D(V ||U)

)
+ (K − 1)

(
D(P ||Q) +D(Q||P )

)
→∞ (4.87)

Since the LLRs are bounded by assumption, using Lemma 35 in Appendix 4.4.1,

(K − 1)D(P ||Q) +MD(V ||U) = EQU

(
(K − 1)D(P ||Q) +MD(V ||U), K − 1,M

)
≥ EQU

(
− (K − 1)D(Q||P ) +MD(U ||V )

2
, K − 1,M

)
≥ C

(
(K − 1)D(Q||P ) +MD(U ||V )

)
(4.88)

for some positive constant C. Substituting in (4.87) leads to:

MD(V ||U) + (K − 1)D(P ||Q)→∞ (4.89)
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which proves the first condition in (4.6).

x∗ is drawn uniformly from the set {x ∈ {0, 1}n : w(x) = K} and w(x) =
∑n

j=1 xj;

therefore xi’s are individually Bernoulli-K
n

. Then, for any estimator x̂(G,Y ) achieving weak

recovery we have the following, where H(·) and I(·; ·) are the entropy and mutual information

of their respective arguments.

I(G,Y ;x∗)
(a)

≥ I(x̂(G,Y );x∗)
(b)

≥ min
E[d(x̃,x∗)]≤εnK

I(x̃(G,Y );x∗) (4.90)

≥ H(x∗)− max
E[d(x̃,x∗)]≤εnK

H(d(x̃,x∗))

(c)
= log

((n
K

))
− nh(

εnK

n
)

(d)

≥ K log(
n

k
)(1 + o(1)) (4.91)

where (a) is due to the data processing inequality (Polyanskiy and Wu, 2017), in (b) we

defined εn = o(1), (c) is due to the fact that maxE(w(X))≤pnH(X) = nh(p) for any p ≤
1
2

(Hajek et al., 2017), where h(p) , −p log(p) − (1 − p) log(1 − p), and (d) holds because(
n
K

)
≥ ( n

K
)K , the assumption K = o(n) and the bound h(p) ≤ −p log(p) + p for p ∈ [0, 1].

Denoting by P (G,Y ,x∗) the joint distribution of the graph, side information, and node

labels, and using (Polyanskiy and Wu, 2017):

I(G,Y ;x∗) = min
Q̃
D
(

P(G,Y |x∗)
∣∣∣∣ Q̃

∣∣ P(x∗)
)

≤ D
(

P(G|x∗)
M∏
m=1

(P(ym|x∗))
∣∣∣∣∣∣Q⊗(n2)

M∏
m=1

(U⊗n)
∣∣P(x∗)

)
=

(
K

2

)
D(P ||Q) +KMD(V ||U) (4.92)

Combining (4.91) and (4.92):

lim inf
n→∞

(K − 1)D(P ||Q) + 2MD(V ||U)

log( n
K

)
≥ 2 (4.93)

which proves the second condition in (4.6).

92



4.4.3 Sufficiency of Theorem 1

The sufficient conditions for weak recovery is derived for the maximum likelihood (ML)

detector. Define:

e1(S, T ) ,
∑
i∈S

∑
j∈T

LG(i, j) (4.94)

e2(S) ,
∑
i∈S

M∑
m=1

LS(i,m) (4.95)

for any subsets S, T ⊂ {1, · · · , n}. Using these definitions, the maximum likelihood detection

can be characterized as follows:

Ĉ = ĈML = arg max
C⊂{1,··· ,n}
|C|=K

(
e1(C,C) + e2(C)

)
(4.96)

Let R , |Ĉ∩C∗|, then |Ĉ4C∗| = 2(K−R), and hence, to show that maximum likelihood

achieves weak recovery, it is sufficient to show that there exists positive ε = o(1), such that

P
(
R ≤ (1− ε)K

)
= o(1).

To bound the error probability of ML, we characterize the separation of its likelihood

from the likelihood of the community C∗.

e1(Ĉ, Ĉ) + e2(Ĉ)−
(
e1(C∗, C∗) + e2(C∗)

)
= e1(Ĉ\C∗, Ĉ\C∗) + e1(Ĉ\C∗, Ĉ ∩ C∗)− e1(C∗\Ĉ, C∗) + e2(Ĉ\C∗)− e2(C∗\Ĉ) (4.97)

By definition |C∗\Ĉ| = |Ĉ\C∗| = K −R. Thus, for any 0 ≤ r ≤ K − 1,

P(R = r)

≤ P
({
Ĉ : |Ĉ| = K, |Ĉ ∩ C∗| = r, e1(Ĉ, Ĉ) + e2(Ĉ)− e1(C∗, C∗)− e2(C∗) ≥ 0

})
= P

({
S ⊂ C∗, T ⊂ (C∗)c : |S| = |T | = K − r, e1(S,C∗) + e2(S) ≤

e1(T, T ) + e1(T,C∗\S) + e2(T )
})

≤ P
({
S ⊂ C∗ : |S| = K − r, e1(S,C∗) + e2(S) ≤ θ

}
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∪
{
S ⊂ C∗, T ⊂ (C∗)c : |S| = |T | = K − r, e1(T, T ) + e1(T,C∗\S) + e2(T ) ≥ θ

})
(4.98)

where θ = (1 − η)(aD(P ||Q) + (K − r)MD(V ||U)), for some η ∈ (0, 1) and a =
(
K
2

)
−
(
r
2

)
.

We further assume random variables LG,i are drawn i.i.d. according to the distribution of

LG, and LS,m,j are similarly i.i.d. copies of LS. Then, using (4.98) and a union bound:

P(R = r) ≤
(

K

K − r

)
P
( a∑
i=1

LG,i +
K−r∑
j=1

M∑
m=1

LS,m,j ≤ θ
)

+

(
K

K − r

)(
n−K
K − r

)
P
( a∑
i=1

LG,i +
K−r∑
j=1

M∑
m=1

LS,m,j ≥ θ
)

(a)

≤ e(K−r) log( Ke
K−r )e− supt≥0−tθ−a logP (E[e−tLG ])−(K−r)M logV (E[e−tLS ])

+ e
(K−r) log(

(n−K)Ke2

(K−r)2
)
e− supt≥0 tθ−a logQ(E[etLG ])−(K−r)M logU (E[etLS ])

(b)

≤ e(K−r) log( Ke
K−r )−EPV (θ,a,M(K−r)) + e

(K−r) log(
(n−K)Ke2

(K−r)2
)−EQU (θ,a,M(K−r))

(c)
= e(K−r) log( Ke

K−r )−EPV (θ,a,M(K−r)) + e
(K−r) log(

(n−K)Ke2

(K−r)2
)−EPV (θ,a,M(K−r))−θ

(d)

≤ e(K−r) log( Ke
K−r )−EPV (θ,a,M(K−r))

+ e−(K−r)
(

(1−η)((K−1
2

)D(P ||Q)+MD(V ||U))−log(n−K
K

)
)
e2(K−r) log( e

ε
)−EPV (θ,a,M(K−r))

(e)

≤ 2e2(K−r) log( e
ε
)−EPV (θ,a,M(K−r)) (4.99)

where (a) holds by Chernoff bound and because
(
a
b

)
≤ ( ea

b
)b, (b) holds from Lemma 34 in

Appendix 4.4.1, (c) holds because EPV (θ, a,M(K−r)) = EQU(θ, a,M(K−r))−θ, (d) holds

because a ≥ (K−r)(K−1)
2

, r ≤ (1− ε)K and (e) holds by assuming that

lim infn→∞
(K−1)D(P ||Q)+2MD(V ||U)

log( n
K

)
> 2, which implies that

(1− η)((
K − 1

2
)D(P ||Q) +MD(V ||U))− log(

n−K
K

) ≥ 0.

Lemma 34 in Appendix 4.4.1 shows that

EPV (θ, a,M(K − r)) ≥ C(aD(P ||Q) + (K − r)MD(V ||U)]).
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Using a ≥ (K−r)(K−1)
2

and substituting in (4.99),

P(R = r) ≤2e−(K−r)
(
C(K−1

2
D(P ||Q)+MD(V ||U))−2 log( e

ε
)
)

≤2e−(K−r)
(
C
2

((K−1)D(P ||Q)+MD(V ||U))−2 log( e
ε
)
)

(4.100)

Choose ε =
(
(K − 1)D(P ||Q) + MD(V ||U)

)− 1
2 and let E =

(
C
2

((K − 1)D(P ||Q) +

MD(V ||U))− 2 log( e
ε
)
)
. Thus,

P(R ≤ (1− ε)K) =

(1−ε)K∑
r=0

P(R = r) ≤
(1−ε)K∑
r=0

2e−(K−r)E

(a)

≤2
∞∑

r′=εK

e−r
′E ≤ 2

e−εKE

1− e−E
(b)

≤ o(1) (4.101)

where (a) holds by defining r′ = K − r and (b) holds by assuming that (K − 1)D(P ||Q) +

MD(V ||U)→∞ and by the choice of ε. This concludes the proof of Theorem 3.

4.4.4 Proof of Lemma 20

Recall the definition of Ĉ from (4.96). Note that under the conditions of this Lemma,

Ĉ may no longer be the maximum likelihood solution because |C∗| need not be K. Let

|C∗| = K ′. Then, by assumption, with probability converging to one, |K ′ − K| ≤ K
log(K)

.

Let R = |Ĉ ∩ C∗|. Thus, |Ĉ4C∗| = K + K ′ − 2R. Hence, it is sufficient to show that

P(R ≤ (1− ε)K − |K ′ −K|) = o(1), where ε is defined in the statement of the Lemma. Let

a =
(
K
2

)
−
(
r
2

)
and a′ =

(
K′

2

)
−
(
r
2

)
, then for any r ≤ (1− ε)K − |K ′ −K| and by the choice

of ε, the following holds as n→∞:

K

K ′
→ 1 ,

K − r
K ′ − r

→ 1 ,
a

a′
→ 1 (4.102)

Following similar ideas as the proof of Theorem 3:

P(R = r)

≤ P
({
C ∈ {1, · · · , n} : |C| = K, |C ∩ C∗| = r,
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e1(Ĉ, Ĉ) + e2(Ĉ)− e1(C∗, C∗)− e2(C∗) ≥ 0
})

= P
({
S ⊂ C∗, T ⊂ (C∗)c : |S| = K ′ − r,= |T | = K − r,

e1(S,C∗) + e2(S) ≤ e1(T, T ) + e1(T,C∗\S) + e2(T )
})

≤ P
({
S ⊂ C∗ : |S| = K ′ − r, e1(S,C∗) + e2(S) ≤ θ

}
∪
{
∃S ⊂ C∗, T ⊂ (C∗)c : |S| = K ′ − r, |T | = K − r, e1(T, T ) + e1(T,C∗\S) + e2(T ) ≥ θ

})
(4.103)

where θ = (1 − η)(aD(P ||Q) + (K − r)MD(V ||U)), for some η ∈ (0, 1). Using (4.103) and

a union bound,

P(R = r)

(a)

≤
(

K ′

K ′ − r

)
P
( a′∑
i=1

LG,i +
K′−r∑
j=1

M∑
m=1

LS,m,j ≤ θ
)

+

(
K ′

K ′ − r

)(
n−K ′

K − r

)
P
( a∑
i=1

LG,i +
K−r∑
j=1

M∑
m=1

LS,m,j ≥ θ
)

(b)

≤ e(K′−r) log( K′e
K′−r )e− supt≥0−tθ−a′ logP (E[e−tLG ])−M(K′−r) logV (E[e−tLS ])

+ e
(K′−r) log( K′

(K′−r) )+(K−r) log(
(n−K)e
(K−r) )

e− supt≥0 tθ−a logQ(E[etLG ])−M(K−r) logU (E[etLS ])

(c)

≤ e(K′−r) log( K′e
K′−r )−(1−o(1))EPV (θ,a,M(K−r)) + e

(K′−r) log( K′
(K′−r) )+(K−r) log(

(n−K)e
(K−r) )−EQU (θ,a,M(K−r))

(d)
= e(K−r) log( Ke

K−r )(1+o(1))−EPV (θ,a,M(K−r))(1+o(1)) + e
(K−r) log(

(n−K)Ke2

(K−r)2
)(1+o(1))−EPV (θ,a,M(K−r))−θ

(e)

≤ e(K−r)(1+o(1)) log( Ke
K−r )−(1+o(1))EPV (θ,a,M(K−r))

+ e−(K−r)(1+o(1))
(

(1−η)((K−1
2

)D(P ||Q)+MD(V ||U))−log(n−K
K

)
)
e2(1+o(1))(K−r) log( e

ε
)−EPV (θ,a,M(K−r))

(f)

≤ 2e2(K−r)(1+o(1)) log( e
ε
)−(1+o(1))EPV (θ,a,M(K−r)) (4.104)

where (a) holds for LG,i(LS,m,j) be i.i.d copies of LG(LS), respectively, (b) holds by Cher-

noff bound and because
(
a
b

)
≤ ( ea

b
)b, (c) holds by using (4.102) and by Lemma 34 in Ap-

pendix 4.4.1, (d) holds by using (4.102) and because EPV (θ, a,M(K−r)) = EQU(θ, a,M(K−
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r)) − θ, (e) holds because a ≥ (K−r)(K−1)
2

, r ≤ (1 − ε)K and (f) holds by assuming

that lim infn→∞
(K−1)D(P ||Q)+2MD(V ||U)

log( n
K

)
≥ 2, which implies that (1 − η)((K−1

2
)D(P ||Q) +

MD(V ||U))− log(n−K
K

) ≥ 0.

The remainder of the proof follows similarly to Appendix 4.4.3 following (4.99).

4.4.5 Proof of Lemma 21

Lemma 38. Suppose that (4.11) holds. Let {W`} and {W̃`} denote sequences of i.i.d. copies

of LG under P and Q, respectively. Also, for any node i, let Z and Z̃ denote
∑M

m=1 LS(i,m)

under V and U , respectively. Then, for sufficiently small, but constant, δ and γ =
log( n

K
)

K
:

P
(K(1−δ)∑

`=1

W̃` + Z̃ ≥ K(1− δ)γ
)

= o(
1

n
) (4.105)

P
(K(1−2δ)∑

`=1

W` +
δK∑
`=1

W̃` + Z ≤ K(1− δ)γ
)

= o(
1

K
) (4.106)

Proof. By Chernoff bound:

P
(K(1−δ)∑

`=1

W̃` + Z̃ ≥ K(1− δ)γ
)
≤ e−(1−δ) supt≥0 tKγ−K log(EQ[etLG ])− M

1−δ log(EU [etLS ]) (4.107)

From (4.5) it follows that for some positive εo:

Kγ ≤ KD(P ||Q)

2 + εo
+
MD(V ||U)

1 + εo
2

≤ KD(P ||Q) +MD(V ||U)

≤ KD(P ||Q) +
M

1− δ
D(V ||U) (4.108)

Hence, using Lemma 34 in Appendix 4.4.1, supt≥0 is replaced by supt∈[0,1]. Also, log(EU [etLS ]) =

(t− 1)Dt(V ||U) ≤ 0 where the first equality holds by the definition of the Rényi-divergence

between distributions V and U (Polyanskiy and Wu, 2017) and the second inequality because

t ∈ [0, 1]. This implies that M
1−δ log(EU [etLS ]) ≤M log(EU [etLS ]). Substituting in (4.107):

P
(K(1−δ)∑

`=1

W̃` + Z̃ ≥ K(1− δ)γ
)
≤ e−(1−δ)EQU (Kγ,K,M)
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≤ e−(1−δ)(1+ε) log(n) (4.109)

where (4.109) follows since (4.11) holds by assumption, i.e., there exists ε ∈ (0, 1) :

EQU(Kγ,K,M) ≥ (1 + ε) log(n). Equation (4.109) implies that (4.105) holds for sufficiently

small δ.

To show (4.106), Chernoff bound is used:

P
(K(1−2δ)∑

`=1

W` +
δK∑
`=1

W̃` + Z ≤ K(1− δ)γ
)

(a)

≤ etKγ(1−δ)+K(1−2δ) log(EP [e−tLG ])+Kδ log(EQ[e−tLG ])eM(1−δ) log(EV [e−tLS ])+Mδ log(EU [e−tLS ])

= e(1−2δ)(tKγ+K log(EP [e−tLG ])+M 1−δ
1−2δ

log(EV [e−tLS ]))eδ(tKγ+K log(EQ[e−tLG ])+M log(EU [e−tLS ]))

(b)

≤ e(1−2δ)(tKγ+K log(EP [e−tLG ])+M log(EV [e−tLS ]))eδ(tKγ+K log(EQ[e−tLG ])+M log(EU [e−tLS ])) (4.110)

where (a) and (b) hold because 1−δ
1−2δ

≥ 1 for sufficiently small δ and log(EV [e−tLS ]) =

(t − 1)Dt(U ||V ) ≤ tDt+1(U ||V ) = log(EU [e−tLS ]), where Dt(V ||U) is the Rényi-divergence

between distributions V and U , which is non-decreasing in t ≥ 0 (Polyanskiy and Wu, 2017).

By definition −EPV (Kγ,K,M) = − supλ∈[−1,0] λKγ−K log(EP [eλLG ])−M log(EV [eλLS ])

= −λ∗Kγ + K log(EP [eλ
∗LG ]) + M log(EV [eλ

∗LS ]). Hence, by choosing t = −λ∗ ∈ [0, 1] and

substituting in (4.110),

P
(K(1−2δ)∑

`=1

W` +
δK∑
`=1

W̃` + Z ≤ K(1− δ)γ
)

≤ e−(1−2δ)EPV (Kγ,K,M)eδ(Kγ+K log(EQ[e−tLG ])+M log(EU [e−tLS ])) (4.111)

By Lemma 35 and convexity of ψQU(t,m1,m2):

ψQU(−t,K,M) ≤ ψQU(−1, K,M) ≤ A(KD(Q||P ) +MD(U ||V )) (4.112)

for some positive constant A. Moreover, by Lemma 35, EQU(Kγ,K,M) ≥ EQU(0, K,M) ≥

A1(KD(Q||P )+MD(U ||V )), for some positive constantA1. Hence, by substituting in (4.111),
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for some positive constant A2:

P
(K(1−2δ)∑

`=1

W` +
δK∑
`=1

W̃` + Z ≤ K(1− δ)γ
)
≤ e−(1−2δ)EPV (Kγ,K,M)+δ(Kγ+A2EQU (Kγ,K,M))

(a)

≤ e−EQU (Kγ,K,M)(1−2δ−δA2)+(1−δ)Kγ

(b)
= e− log(n)((1+ε)(1−2δ−δA2)+δ−1)−log(K)(1−δ)

(c)
= o(

1

K
) (4.113)

where (a) holds because EPV (Kγ,K,M) = EQU(Kγ,K,M) − Kγ from Lemma 35, (b)

holds by the assumption that (4.11) holds, which implies that there exists ε ∈ (0, 1) :

EQU(Kγ,K,M) ≥ (1 + ε) log(n) and (c) holds for sufficiently small δ.

Equations (4.109) and (4.113) concludes the proof of Lemma 38.

Define the event E , {(Ĉk, C∗k) : |Ĉk4C∗k | ≤ δK ∀k}; then conditioned on E we have:

|Ĉk ∩ C∗k | ≥ |Ĉk| − |Ĉk4C∗k | = dK(1− δ)e − |Ĉk4C∗k | ≥ K(1− 2δ)

Thus, in Algorithm 4.1, for nodes i within the community C∗, ri is stochastically greater

than or equal to (
∑K(1−2δ)

`=1 W`) + (
∑Kδ

`=1 W̃`) + Z by Lemma 38 and (4.110). For i /∈ C∗,

ri has the same distribution as (
∑K(1−δ)

`=1 W̃`) + Z̃. Thus, by Lemma 38, with probability

converging to 1,

ri > K(1− δ)γ, i ∈ C∗

ri < K(1− δ)γ, i /∈ C∗

Hence, P(C̃ = C∗)→ 1 as n→∞.

4.4.6 Sufficiency of Theorem 2

The cardinality |C∗k | is a random variable that corresponds to sampling, without replacement,

from the nodes of the original graph. Let Z be a binomial random variable Bin(n(1− δ), K
n

).
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The Chernoff bound for Z:

P
(∣∣∣Z − (1− δ)K

∣∣∣ ≥ K

log(K)

)
≤ e

−Ω( K
log2(K)

)
(4.114)

A result of Hoeffding (Hoeffding, 1963, Theorem 4) for sampling with and without replace-

ment indicates that E[φ(|C∗k |)] ≤ E[φ(Z)] for any convex φ. This can be applied to (4.114)

on the negative and positive side, individually. Putting them back together, we get a bound

on the tails of |C∗k |:

P
(∣∣∣|C∗k | − (1− δ)K

∣∣∣ ≥ K

log(K)

)
≤ e

−Ω( K
log2(K)

)

≤ o(1) (4.115)

Since (4.5) holds, for sufficiently small δ,

lim inf
n→∞

d(1− δ)KeD(P ||Q) + 2MD(V ||U)

log( n
K

)
> 2

which together with (4.115) indicates, via Lemma 20, that ML achieves weak recovery. Thus,

for any 1 ≤ k ≤ 1
δ
:

P
( |Ĉk4C∗k |

K
≤ 2ε+

1

log(K)

)
≥ 1− o(1) (4.116)

with ε = o(1). Since δ is constant, by the union bound

P
( |Ĉk4C∗k |

K
≤ 2ε+

1

log(K)
, ∀k

)
≥ 1− o(1) (4.117)

Since ε = o(1), the desired (4.9) holds.

4.4.7 Necessity of Theorem 2

The following Lemma characterizes necessary conditions that are weaker than needed for

Theorem 2, i.e., the Lemma is stronger than needed at this point, but will subsequently be

used for unbounded LLR as well.
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Lemma 39. Let {W`} and {W̃`} denote sequences of i.i.d. copies of LG under P and Q,

respectively. For any node i inside the community, let Z denote a random variable drawn

according to the distribution of
∑M

m=1 LS(i,m). Let Z̃ be the corresponding random variable

when i is outside the community. Let Ko → ∞ such that Ko = o(K). Then, for any

estimator Ĉ achieving exact recovery, there exists a sequence θn such that for sufficiently

large n:

P
(K−Ko∑

`=1

W` + Z ≤ (K − 1)θn − θ̃n
)
≤ 2

Ko

(4.118)

P
(K−1∑

`=1

W̃` + Z̃ ≥ (K − 1)θn

)
≤ 1

n−K
(4.119)

where

θ̃n , (Ko − 1)D(P ||Q) + 6
√
Koσ (4.120)

and σ2 is the variance of LG under P .

Proof. Recall that ML is optimal for exact recovery since C∗ is chosen uniformly. Assume

P(ML fails) = o(1). Define

io , arg min
i∈C∗

e1(i, C∗) +
M∑
m=1

LS(i,m)

C̃ , C∗\{io} ∪ {j} for j /∈ C∗ (4.121)

Also, define the following event:

FM ,
{

(G, Y ) : min
i∈C∗

e1(i, C∗) +
M∑
m=1

LS(i,m) ≤ max
j /∈C∗

e(j, C∗\{io}) +
M∑
m=1

LS(j,m)
}

(4.122)

Since P(ML fails) = o(1), using (4.96):

e1(C̃, C̃) + e2(C̃)− e1(C∗, C∗)− e2(C∗)

=
(
e(j, C∗\{io}) +

M∑
m=1

LS(j,m)
)
−
(
e1(i, C∗) +

M∑
m=1

LS(i,m)
)

(4.123)
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For observations belonging to FM , the expression (4.123) is non-negative, implying ML fails

with non-zero probability. Then,

P(FM) ≤ P(ML fails) = o(1) (4.124)

since ML achieves exact recovery.

Define θ′n, θ′′n and the events E1 and E2 as follows:

θ′n , inf

{
x ∈ R : P

(K−Ko∑
`=1

W` + Z ≤ (K − 1)x− θ̃n
)
≥ 2

Ko

}
(4.125)

θ′′n , sup

{
x ∈ R : P

(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)x
)
≥ 1

n−K

}
(4.126)

E1 ,
{

(G, Y ) : max
j /∈C∗

(
e(j, C∗\{io}) +

M∑
m=1

LS(j,m)
)
≥ (K − 1)θ′′n

}
(4.127)

E2 ,
{

(G, Y ) : min
i∈C∗

(
e1(i, C∗) +

M∑
m=1

LS(i,m)
)
≤ (K − 1)θ′n

}
(4.128)

where θ̃n is defined in (4.120).

Lemma 40. P(E1) = Ω(1) and P(E2) = Ω(1).

Proof.

P(E1)
(a)
= 1−

∏
j /∈C∗

P
(
e(j, C∗\{io}) +

M∑
m=1

LS(j,m) < (K − 1)θ′′n

)

= 1−
(

1− P
(
e(j, C∗\{io}) +

M∑
m=1

LS(j,m) ≥ (K − 1)θ′′n
))n−K

S
(b)

≥ 1− e

(
−(n−K)P

(
e(j,C∗\{io})+

∑M
m=1 LS(j,m)≥(K−1)θ′′n

))
(c)

≥ 1− e−1 (4.129)

where (a) holds because e(j, C∗\{io}) +
∑M

m=1 LS(j,m) are i.i.d. for all j /∈ C∗, (b) holds

because 1− x ≤ e−x ∀x ∈ R and (c) holds by definition of θ′′n. Thus, P(E1) = Ω(1).
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To show P(E2) = Ω(1), we are confronted with the difficulty that e1(i, C∗) are not

independent. Let T be the set of the first Ko indices in C∗, where Ko → ∞ such that

Ko = o(K). Also, let T ′ = {i ∈ T : e1(i, T ) ≤ θ̃n}. Then,

min
i∈C∗

e1(i, C∗) +
M∑
m=1

LS(i,m) ≤ min
i∈T ′

e1(i, C∗) +
M∑
m=1

LS(i,m)

≤ min
i∈T ′

e1(i, C∗\T ) +
M∑
m=1

LS(i,m) + θ̃n (4.130)

It follows that:

P(E2)

≥ P
(

min
i∈T ′

e1(i, C∗\T ) +
M∑
m=1

LS(i,m) ≤ (K − 1)θ′n−θ̃n
)

(a)
= 1− P

( ⋂
i∈T ′

{
e1(i, C∗\T ) +

M∑
m=1

LS(i,m) > (K − 1)θ′n − θ̃n
})

= 1− P
( ⋂
i∈T ′

{
e1(i, C∗\T ) +

M∑
m=1

LS(i,m) > (K − 1)θ′n − θ̃n
}∣∣∣∣ |T ′| ≥ Ko

2

)
P
(
|T ′| ≥ Ko

2

)
− P

( ⋂
i∈T ′

{
e1(i, C∗\T ) +

M∑
m=1

LS(i,m) > (K − 1)θ′n − θ̃n
}∣∣∣∣ |T ′| < Ko

2

)
× P

(
|T ′| < Ko

2

)
≥ 1− P

( ⋂
i∈T ′

{
e1(i, C∗\T ) +

M∑
m=1

LS(i,m) > (K − 1)θ′n − θ̃n
}∣∣∣∣ |T ′| ≥ Ko

2

)
− P

(
|T ′| < Ko

2

)
≥ 1−

(
1− P

(K−Ko∑
`=1

W` + Z ≤ (K − 1)θ′n − θ̃n
))Ko2 − P

(
|T ′| < Ko

2

)
(b)

≥ 1− e

(
−(Ko

2
)P
(∑K−Ko

`=1 W`+Z≤(K−1)θ′n−θ̃n
))
− P

(
|T ′| < Ko

2

)
(c)

≥ 1− e−1 − P
(
|T ′| < Ko

2

)
where (a) holds because e1(i, C∗\T ) +

∑M
m=1 LS(i,m) are i.i.d. for all i ∈ T ′, (b) holds

because 1− x ≤ e−x ∀x ∈ R, (c) holds by definition of θ′n.

To conclude the proof, it remains to show that P(|T ′| < Ko
2

) = o(1). Recall T ′ = {i ∈

T : e1(i, T ) ≤ θ̃n}. For i ∈ T , e1(i, T ) = Gi + Hi, where Gi = e1(i, {1 · · · , i − 1}) and
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Hi = e1(i, {i+ 1 · · · , Ko}). Thus, by Chebyshev inequality:

P
(
Gi ≥ (i− 1)D(P ||Q) + 3

√
Koσ

)
≤ 1

9

for all i ∈ T . Therefore, |{i : Gi ≤ (i − 1)D(P ||Q) + 3
√
Koσ}| is stochastically at least as

large as a Bin(Ko,
8
9
) random variable. Thus,

P
(∣∣{i : Gi ≤ (i− 1)D(P ||Q) + 3

√
Koσ}

∣∣ ≥ 3Ko

4

)
→ 1 (4.131)

as Ko →∞. Similarly,

P
(∣∣{i : Hi ≤ (Ko − i)D(P ||Q) + 3

√
Koσ}

∣∣ ≥ 3Ko

4

)
→ 1 (4.132)

as Ko →∞. Combining (4.131) and (4.132) and using the definition of e1(i, T ):

P(|T ′| ≥ Ko

2
)
Ko→∞−−−−→ 1

which concludes the proof of the lemma.

By definition, E1 and E2 are independent. Since P(ML fails) = o(1) implies that P(FM) =

o(1):

P(E1 ∩ E2 ∩ F c
M) ≥ P(E1 ∩ E2)− P(FM) = P(E1)P(E2)− o(1)

= Ω(1) (4.133)

where (4.133) holds since P(E1) = Ω(1) and P(E2) = Ω(1).

It is easy to see that E1 ∩ E2 ∩ F c
M ⊂ {θ′n > θ′′n}. It follows P(θ′n > θ′′n) = Ω(1) for

sufficiently large n. Let θn = θ′n+θ′′n
2

. For sufficiently large n, θn < θ′n and θn > θ′n. Combining

this with the definitions of θ′n and θ′′n, implies that (4.118) and (4.119) hold simultaneously.
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The necessity of Theorem 2 expresses the following: subject to conditions (4.5), exact

recovery implies (4.12). Lemma 39 shows that exact recovery implies (4.118) and (4.119). It

remains to be shown that (4.118) and (4.119) imply (4.12). We show that by contraposition.

Assume (4.12) does not hold, then for arbitrarily small ε > 0 and sufficiently large n

EQU
(

log(
n

K
), K,M

)
≤ (1− ε) log(n) (4.134)

Let

γ ,
log( n

K
)

K

and define S ,
∑K−1

`=1 W̃` + Z̃ and a , (K − 1)γ + δ, for some δ > 0. Since (4.5) holds, for

sufficiently large n and arbitrary small εo > 0:

Kγ ≤ KD(P ||Q)

2 + εo
+
MD(V ||U)

(1 + εo
2

)

≤ 1

1 + εo
2

(KD(P ||Q) +MD(V ||U))

≤ KD(P ||Q) +MD(V ||U) (4.135)

At θn = γ:

P
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)

=

∫
S≥(K−1)γ

P
(
w̃1, · · · , w̃K−1, z̃

)
(a)

≥
∫

a−δ≤S≤a+δ

(K−1∏
`=1

P(w̃`)
)(
P(z̃)

) (b)
=

∫
a−δ≤S≤a+δ

(
E[etS]etS

E[etS]etS

)(K−1∏
`=1

P(w̃`)
)(
P(z̃)

)
(c)

≥ e−ta−|t|δ+ψQU (K−1,M,t)

∫
a−δ≤S≤a+δ

(K−1∏
`=1

P(w̃`)e
tw̃`

E[etw̃`]

)(
P(z̃)etz̃

E[etz̃]

)
(d)
= e−ta−|t|δ+ψQU (K−1,M,t)PQ̃Ũ

(
a− δ ≤ S ≤ a+ δ

)
(e)

≥ e−
(
ta−ψQU (K−1,M,t)

)
−|t|δ

(
1−

(
(K − 1)σ̃2

LG
+Mσ̃2

LS

)
+
(
(K − 1)µ̃LG +Mµ̃LS − a

)2

δ2

)
(4.136)
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where (a) holds because W̃` are i.i.d. and independent of Z̃, (b) holds for any t ∈ R such

that E[etS] is finite, (c) holds by the definition of ψQU and because a − δ ≤ S ≤ a + δ, (d)

holds because P(W̃`)e
tW̃`

E[etW̃`]
and P(Z̃)etZ̃

E[etZ̃ ]
define two new probability distributions Q̃ and Ũ over

the same support of Q and U , respectively and (e) holds from Chebyshev’s inequality and

by defining σ̃2
LG

, µ̃LG , σ̃2
LS

and µ̃LS to be the variances and means of LG and LS under Q̃

and Ũ , respectively.

Since ta−ψQU(K − 1,M, t) is concave in t, to find t∗ = arg supt∈R ta−ψQU(K − 1,M, t)

we set the derivative to zero, finding

a = ψ′QU =
(K − 1)EQ[LGe

tLG ]

EQ[etLG ]
+M

EU [LSe
tLS ]

EU [etLS ]
.

Also, by the definition of Q̃ and Ũ ,

(K − 1)µ̃LG +Mµ̃LS =
(K − 1)EQ[LGe

tLG ]

EQ[etLG ]
+M

EU [LSe
tLS ]

EU [etLS ]

= a.

Thus, by substituting in (4.136):

PQU
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ e−

(
t∗a−ψQU (K−1,M,t∗)

)
−|t∗|δ(1− (K − 1)σ̃2

LG
+Mσ̃2

LS

δ2

)
(4.137)

By direct computation, and Lemma 35,

(K − 1)σ̃2
LG

+Mσ̃2
LS

= ψ′′QU(K − 1,M, t)

≤ B
(
(K − 1)D(P ||Q) +MD(V ||U)

)
(4.138)

for some positive constant B. This allows us to eliminate the Chebyshev term (asymptoti-

cally) by setting

δ =
(
(K − 1)D(P ||Q) +MD(V ||U)

) 2
3 .
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Moreover, for sufficiently large n:

a = (K − 1)γ + δ

≤ Kγ + δ

(a)

≤ KD(P ||Q)

2 + εo
+
MD(V ||U)

1 + εo
2

+ (KD(P ||Q) +MD(V ||U))
2
3

≤ KD(P ||Q) +MD(V ||U)(
1

1 + εo
2

+ o(1)) (4.139)

where (a) holds from (4.135). Thus, for sufficiently large n,

−(K − 1)D(Q||P )−MD(U ||V ) ≤ a ≤ (K − 1)D(P ||Q) +MD(V ||U)

Hence, by Lemma 34,

t∗ = arg sup
t∈R

ta− ψQU(K − 1,M, t)

= arg sup
t∈[0,1]

ta− ψQU(K − 1,M, t).

Using this result and substituting in (4.137):

PQU
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ e−EQU (a,K−1,M)−δ

≥ e−EQU (a,K,M)−δ (4.140)

where (4.140) holds because t∗ ∈ [0, 1] and log(EQ[etLG ]) = (t − 1)Dt(P ||Q) ≤ 0, where

Dt(V ||U) ≥ 0 is the Rényi-divergence between distributions P and Q (Polyanskiy and Wu,

2017). Moreover,

EQU(a,K,M) = EQU((K − 1)γ + δ,K,M)

≤ EQU(Kγ + δ,K,M)

≤ EQU(Kγ,K,M) + δ (4.141)
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where (4.141) holds because t ∈ [0, 1] and, by (4.139),

a ∈
[
−KD(Q||P )−MD(U ||V ), KD(P ||Q) +MD(V ||U)

]
Also, by Lemma 35, for some positive constant B:

EQU(0, K − 1,M) ≥ B((K − 1)D(Q||P ) +MD(U ||V ))

≥ B′((K − 1)D(P ||Q) +MD(V ||U)) (4.142)

where (4.142) holds for some positive constant B′ because for bounded LLR D(Q||P ) ≈

D(P ||Q) and D(U ||V ) ≈ D(V ||U). Thus, for sufficiently large n, and for some positive

constant B′′:

δ = ((K − 1)D(P ||Q) +MD(V ||U))
2
3 ≤ (B′′EQU(0, K − 1,M))

2
3

≤ (B′′EQU(Kγ,K,M))
2
3 (4.143)

Combining Equations (4.141), (4.142), (4.143):

EQU(a,K,M) + δ ≤ EQU(Kγ,K,M) + 2δ

≤ EQU(Kγ,K,M) + 2(B′′EQU(Kγ,K,M))
2
3 (4.144)

Substituting in (4.140):

PQU
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ e−(EQU (Kγ,K,M)+2(B′′EQU (Kγ,K,M))

2
3 )

(a)

≥ e−((1−ε) log(n)+2(B′′(1−ε) log(n))
2
3 )

≥ e−(1−ε) log(n)(1+o(1)) (4.145)

where (a) comes from the contraposition assumption that (4.12) does not hold, i.e.,

EQU(Kγ,K,M) ≤ (1− ε) log(n) for arbitrary small ε > 0. Equation (4.145) shows that

nPQU(
K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ) ≥ nε(1+o(1))
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which implies that (4.119) does not hold for θn = γ.

Similarly, we will show that (4.118) does not hold for θn = γ. Define

Ko =
K

log(K)
= o(K)

δ′ =
(Ko − 1)(D(P ||Q)− γ) + 6

√
Koσ

(K −Ko)D(P ||Q) +MD(V ||U)
(4.146)

Note that δ′ = o(1), which holds because Kγ ≤ KD(P ||Q) + MD(V ||U), Ko = o(K) and

Koσ
2 = Ko

d2(log(EQ[etLG ]))

dt2
|t=1 ≤ BKoD(P ||Q) by Lemma 35 for some positive constant B.

Let a = (K−Ko)(γ− δ′D(P ||Q)− δ′

K−KoMD(V ||U))− δ, for some δ > 0. Then, by a similar

analysis as in (4.136):

PPV
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)

= PPV
(K−Ko∑

`=1

W` + Z ≤ (K −Ko)(γ − δ′D(P ||Q)− δ′

K −Ko

MD(V ||U))

)
(a)

≥ e−
(
t∗a−ψPV (K−Ko,M,t∗)

)
−|t∗|δ(1− (K −Ko)σ̃

2
LG

+Mσ̃2
LS

δ2

)
(b)

≥ e−(t∗a−ψPV (K−Ko,M,t∗))−|t∗|δ(1− o(1)) (4.147)

where (a) holds for t∗ = arg supt∈R ta−ψPV (K−Ko,M, t) and by defining two new probability

distributions P̃ and Ṽ over the same support of P and V , respectively and σ̃2
LG

, µ̃LG , σ̃2
LS

and µ̃LS to be the variances and means of LG and LS under P̃ and Ṽ , respectively. (b) holds

by choosing

δ = ((K −Ko)D(P ||Q) +MD(V ||U))
2
3

and noticing that for bounded LLR,

(K −Ko)σ̃
2
LG

+Mσ̃2
LS

= ψ′′(K −Ko,M, t)

≤ B((K −Ko)D(P ||Q) +MD(V ||U)),

by Lemma 35 for some positive constant B.
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Moreover, for sufficiently large n:

a = (K −Ko)(γ − δ′D(P ||Q)− δ′

K −Ko

MD(V ||U))− δ

= (1− o(1))(Kγ −Kδ′D(P ||Q)− δ′MD(V ||U))− δ
(a)

≤ (KD(P ||Q) +MD(V ||U))(
1

1 + εo
2

− δ′ − o(1))

(b)

≤ KD(P ||Q) +MD(V ||U) (4.148)

where (a) holds from (4.135) and (b) holds because (K− 1)D(P ||Q) +MD(V ||U)→∞ and

δ′ = o(1). Thus

a ∈ [−KD(Q||P )−MD(U ||V ), KD(P ||Q) +MD(V ||U)].

By Lemma 34,

t∗ = arg sup
t∈R

ta− ψPV (K −Ko,M, t)

= arg sup
t∈[−1,0]

ta− ψPV (K,M, t).

Substituting in (4.147):

PPV
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)
≥ e−(EPV (a,K,M)+δ)(1− o(1)) (4.149)

Moreover,

EPV (a,K,M) ≤ EPV (Kγ,K,M) + δ′(KD(P ||Q) +MD(V ||U)) + δ (4.150)

which holds because t ∈ [−1, 0] and a ∈ [−KD(Q||P )−MD(U ||V ), KD(P ||Q)+MD(V ||U)]

by (4.148). Also, by Lemma 35, for some positive constant B

EPV (Kγ,K,M) ≥ EPV (
KD(P ||Q) +MD(V ||U)

1 + εo
2

, K,M)

≥ B(KD(P ||Q) +MD(V ||U)) (4.151)
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Thus, for sufficiently large n and for some positive constant B′:

δ = (KD(P ||Q) +MD(V ||U))
2
3

≤ (B′EPV (Kγ,K,M))
2
3 (4.152)

Combining equations (4.150), (4.151), (4.152):

EPV (a,K,M) + δ ≤ EPV (Kγ,K,M) + δ′(KD(P ||Q) +MD(V ||U)) + 2δ

≤ EPV (Kγ,K,M) + δ′B′′EPV (Kγ,K,M) + 2(B′EPV (Kγ,K,M))
2
3 (4.153)

for some positive constants B′ and B′′. Substituting in (4.149):

PPV
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)
≥ e

−EPV (Kγ,K,M)(1+δ′B′′+ 2(B′)
2
3

(EPV (Kγ,K,M))
1
3

)

(1− o(1))

(a)
= e−EPV (Kγ,K,M)(1+o(1))

(b)
= e(Kγ−EQU (Kγ,K,M))(1+o(1))

(c)

≥ e(ε log(n)−log(K))(1+o(1))

≥ e(ε log(K)−log(K))(1+o(1))

= e− log(K)(1−ε+o(1)) (4.154)

where (a) holds because δ′ = o(1), (b) holds because from Lemma 34 EPV (Kγ,K,M) =

EQU(Kγ,K,M)−Kγ and (c) is due to the contraposition assumption that (4.12) does not

hold, i.e., EQU(Kγ,K,M) ≤ (1− ε) log(n) for arbitrary small ε > 0.

Equation (4.154) shows:

KoPPV (
K−Ko∑
`=1

W` + Z ≤ (K − 1)γ + θ̃n) ≥ Kε(1+o(1))

which implies that (4.118) does not hold for θn = γ.

Thus, if (4.12) does not hold, both (4.145) and (4.154) show that (4.118) and (4.119)

does not hold simultaneously at θn = γ. Thus, for any θn > γ, (4.118) will not hold and for

any θn < γ, (4.119) will not hold, and hence, if (4.12) does not hold, then there does not

exist θn such that (4.118) and (4.119) hold simultaneously. This concludes the proof.
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4.4.8 Necessity of Theorem 4

Recall that Definition 3 introduced Chernoff-information-type functions for the LLR of the

graph plus side information; for convenience we now introduce a narrowed version of the

same functions that focus on graph information only.

Definition 4.

ψQ(t,m1) , m1 log(EQ[etLG ]) (4.155)

ψP (t,m1) , m1 log(EP [etLG ]) (4.156)

EQ(θ,m1) , sup
t∈[0,1]

tθ − ψQ(t,m1) (4.157)

EP (θ,m1) , sup
t∈[−1,0]

tθ − ψP (t,m1) (4.158)

The quantities introduced in Definition 3 reduce to Definition 4 by setting m2 = 0,

therefore Lemmas 34 and 35 continue to hold.

In view of Lemma 39, it suffices to test whether there exists θn such that both (4.118)

and (4.119) hold. We will show that if one of the conditions (1)-(6) of Theorem 4 is not

satisfied, then there does not exist θn such that (4.118) and (4.119) hold simultaneously.

Let θn = γ =
log( n

K
)

K
, and a = (K − 1)γ −

∑M
m=1 h

m
`m

+ δ for δ = log(n)
2
3 .

P
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)

=

L1∑
`1=1

· · ·
LM∑
`M=1

[
(
M∏
m=1

αm−,`m)PQ
(K−1∑
`=1

W̃` ≥ (K − 1)γ −
M∑
m=1

hm`m
)]

(a)

≥
L1∑
`1=1

· · ·
LM∑
`M=1

[
(
M∏
m=1

αm−,`m)e−(t∗a−(K−1) log(EQ[et
∗LG ]))−|t∗|δ(1− o(1))

]
(4.159)

where (a) holds by Lemma 37, where t∗ = arg supt∈R(ta− (K − 1) log(EQ[etLG ]))4.

4For ease of notation, we omit any subscript for both a and t∗. However, both depend on the outcomes
of the features as shown in their definitions.
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Under (4.18):

KD(Q||P ) = ρ(a− b− bT )(1 + o(1)) log(n)

KD(P ||Q) = ρ(aT + b− a)(1 + o(1)) log(n)

Thus, according to conditions of Theorem 4,

a ∈
[
−KD(Q||P ), KD(P ||Q)

]
.

So, by Lemma 34,

t∗ = arg sup
t∈R

(ta− (K − 1) log(EQ[etLG ]))

= arg sup
t∈[0,1]

(ta− (K − 1) log(EQ[etLG ]))

Without loss of generality, we focus on one term of the nested sum in (4.159). Then,

• If
∑M

m=1 h
m
`m

= o(log(n)) and both
∑M

m=1 log(αm+,`m) and
∑M

m=1 log(αm−,`m) are o(log(n)),

then by evaluating the supremum and by substituting in (4.159),

P
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ n−η1(ρ,a,b)+o(1)

Thus, if η1(ρ, a, b) ≤ 1 − ε for some 0 < ε < 1, then (n − K)P(
∑K−1

`=1 W̃` + Z̃ ≥

(K − 1)γ) ≥ nε+o(1) which shows that (4.119) does not hold for θn = γ.

• If
∑M

m=1 h
m
`m

= o(log(n)) and
∑M

m=1 log(αm+,`m) =
∑M

m=1 log(αm−,`m) = −β log(n) +

o(log(n)), β > 0, then by evaluating the supremum and by substituting in (4.159),

P
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ n−η1(ρ,a,b)−β+o(1)

Thus, if η1(ρ, a, b) + β ≤ 1 − ε for some 0 < ε < 1, then (n − K)P(
∑K−1

`=1 W̃` + Z̃ ≥

(K − 1)γ) ≥ nε+o(1) which shows that (4.119) does not hold for θn = γ.

113



• If
∑M

m=1 h
m
`m

= β log(n)+o(log(n)), 0 < β < ρ(a−b−bT ),
∑M

m=1 log(αm+,`m) = o(log(n)),

then by evaluating the supremum and by substituting in (4.159),

P
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ n−η2(ρ,a,b,β)+o(1)

Thus, if η2(ρ, a, b, β) ≤ 1 − ε for some 0 < ε < 1, then (n − K)P(
∑K−1

`=1 W̃` + Z̃ ≥

(K − 1)γ) ≥ nε+o(1) which shows that (4.119) does not hold for θn = γ.

• If
∑M

m=1 h
m
`m

= −β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm−,`m) =

o(log(n)), then by evaluating the supremum and by substituting in (4.159),

P
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ n−η3(ρ,a,b,β)+o(1)

Thus, if η3(ρ, a, b, β) ≤ 1 − ε for some 0 < ε < 1, then (n − K)P(
∑K−1

`=1 W̃` + Z̃ ≥

(K − 1)γ) ≥ nε+o(1) which shows that (4.119) does not hold for θn = γ.

• If
∑M

m=1 h
m
`m

= β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm+,`m) =

−β′ log(n)+o(log(n)), then by evaluating the supremum and by substituting in (4.159),:

P
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ n−η2(ρ,a,b,β)−β′+o(1)

Thus, if η2(ρ, a, b, β) + β′ ≤ 1− ε for some 0 < ε < 1, then (n−K)P(
∑K−1

`=1 W̃` + Z̃ ≥

(K − 1)γ) ≥ nε+o(1) which shows that (4.119) does not hold for θn = γ.

• If
∑M

m=1 h
m
`m

= −β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm−,`m) =

−β′ log(n)+o(log(n)), then by evaluating the supremum and by substituting in (4.159),

P
(K−1∑
`=1

W̃` + Z̃ ≥ (K − 1)γ
)
≥ n−η3(ρ,a,b,β)−β′+o(1)

Thus, if η3(ρ, a, b, β) + β′ ≤ 1− ε for some 0 < ε < 1, then (n−K)P(
∑K−1

`=1 W̃` + Z̃ ≥

(K − 1)γ) ≥ nε+o(1) which shows that (4.119) does not hold for θn = γ.
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Now we show that (4.118) does not hold for θn = γ. Let Ko = K
log(K)

= o(K). Also, let

a = (K − 1)γ + θ̃n −
∑M

m=1 h
m
`m
− δ for δ = log(n)

2
3 . Then,

P
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)

(a)

≥
L1∑
`1=1

· · ·
LM∑
`L=1

(
M∏
m=1

αm+,`m)e−(t∗a−(K−Ko) log(EP [et
∗LG ]))−|t∗|δ(1− o(1))

(b)
=

L1∑
`1=1

· · ·
LM∑
`L=1

(
M∏
m=1

αm+,`m)e−(λ∗a−(K−Ko) log(EQ[eλ
∗LG ]))+a−|λ∗−1|δ(1− o(1)) (4.160)

where (a) holds by Lemma 37, where t∗ = arg supt∈R(ta − (K −Ko) log(EP [etLG ])) and (b)

holds for λ∗ = 1 + t∗ and by Lemma 34.

Thus, according to conditions of Theorem 4,

a ∈
[
−KD(Q||P ), KD(P ||Q)

]
. (4.161)

Thus, by Lemma 34, arg supt∈R is replaced by arg supt∈[−1,0].

• If
∑M

m=1 h
m
`m

= o(log(n)) and both
∑M

m=1 log(αm+,`m) and
∑M

m=1 log(αm−,`m) are o(log(n)),

then by evaluating the supremum and by substituting in (4.160),

P
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)
≥ n−η1(ρ,a,b)+o(1)

Thus, if η1(ρ, a, b) ≤ 1− ε for some 0 < ε < 1, then KP(
∑K−Ko

`=1 W` +Z ≤ (K − 1)γ +

θ̃n) ≥ nε+o(1) which shows that (4.118) does not hold for θn = γ.

• If
∑M

m=1 h
m
`m

= o(log(n)) and
∑M

m=1 log(αm+,`m) =
∑M

m=1 log(αm−,`m) = −β log(n) +

o(log(n)), β > 0, then by evaluating the supremum and by substituting in (4.160),

P
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)
≥ n−η1(ρ,a,b)−β+o(1)

Thus, if η1(ρ, a, b) + β ≤ 1 − ε for some 0 < ε < 1, then KP(
∑K−Ko

`=1 W` + Z ≤

(K − 1)γ + θ̃n) ≥ nε+o(1) which shows that (4.118) does not hold for θn = γ.
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• If
∑M

m=1 h
m
`m

= β log(n)+o(log(n)), 0 < β < ρ(a−b−bT ),
∑M

m=1 log(αm+,`m) = o(log(n)),

then by evaluating the supremum and by substituting in (4.160),

P
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)
≥ n−η2(ρ,a,b,β)+o(1)

Thus, if η2(ρ, a, b, β) ≤ 1 − ε for some 0 < ε < 1, then KP(
∑K−Ko

`=1 W` + Z ≤ (K −

1)γ + θ̃n) ≥ nε+o(1) which shows that (4.118) does not hold for θn = γ.

• If
∑M

m=1 h
m
`m

= −β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm−,`m) =

o(log(n)), then by evaluating the supremum and by substituting in (4.160),

P
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)
≥ n−η3(ρ,a,b,β)+o(1)

Thus, if η3(ρ, a, b, β) ≤ 1 − ε for some 0 < ε < 1, then KP(
∑K−Ko

`=1 W` + Z ≤ (K −

1)γ + θ̃n) ≥ nε+o(1) which shows that (4.118) does not hold for θn = γ.

• If
∑M

m=1 h
m
`m

= β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm+,`m) =

−β′ log(n)+o(log(n)), then by evaluating the supremum and by substituting in (4.160),

P
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)
≥ n−η2(ρ,a,b,β)−β′+o(1)

Thus, if η2(ρ, a, b, β) + β′ ≤ 1 − ε for some 0 < ε < 1, then KP(
∑K−Ko

`=1 W` + Z ≤

(K − 1)γ + θ̃n) ≥ nε+o(1) which shows that (4.118) does not hold for θn = γ.

• If
∑M

m=1 h
m
`m

= −β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm−,`m) =

−β′ log(n)+o(log(n)), then by evaluating the supremum and by substituting in (4.160),

P
(K−Ko∑

`=1

W` + Z ≤ (K − 1)γ + θ̃n
)
≥ n−η3(ρ,a,b,β)−β′+o(1)

Thus, if η3(ρ, a, b, β) + β′ ≤ 1 − ε for some 0 < ε < 1, then KP(
∑K−Ko

`=1 W` + Z ≤

(K − 1)γ + θ̃n) ≥ nε+o(1) which shows that (4.118) does not hold for θn = γ.
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To summarize, when θn = γ, if one of the conditions (1)-(6) of Theorem 4 does not hold,

then (4.118) and (4.119) cannot hold simultaneously. Thus, for any θn > γ, (4.118) will not

hold and for any θn < γ, (4.119) will not hold, and hence, if one of the conditions (1)-(6) of

Theorem 4 does not hold, then there does not exist θn such that (4.118) and (4.119) hold

simultaneously. This concludes the proof of the necessary conditions.

Finally, we comment on how the proof would change if instead of the regime (4.18), K was

chosen such that for all large n, log( n
K

) = (C−o(1)) log(n) for some constant C ∈ (0, 1]. A key

step in the proof was to ensure that θ in definition 4 is between [−KD(Q||P ), KD(P ||Q)],

e.g, see (4.161). Hence, the only modification needed is to take C into account. For example,

when
∑M

m=1 h
m
`m

= β log(n) + o(log(n)) for some positive β, then a condition on β would be

−ρ(a − b − bT ) < C ± β < ρ(a − b − bT ). The proofs for the modified regime would then

follow a similar strategy as the proofs in this section. Similar modifications are needed for

the sufficiency proofs as well.

4.4.9 Sufficiency of Theorem 4

The sufficient conditions are derived via Algorithm 4.1 provided in Section 4.2.1 with only

one modification in the weak recovery step. Since the LLRs of the side information may not

be bounded, the maximum likelihood detector with side information presented in Lemma 20

cannot be used for the weak recovery step. Instead the maximum likelihood detector without

side information provided in (Hajek et al., 2017) will be used.

The following lemma gives sufficient conditions for Algorithm 4.1 to achieve exact recov-

ery.

Lemma 41. Define C∗k = C∗ ∩ Skc and assume Ĉk achieves weak recovery, i.e.

P
(
|Ĉk4C∗k | ≤ δK for 1 ≤ k ≤ 1

δ

)
→ 1 (4.162)

Under conditions (4.18), if conditions (1)-(6) of Theorem 4 hold, then P(C̃ = C∗)→ 1.
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Proof. Please see Appendix 4.4.10

In view of Lemma 41, it suffices to show that there exists an estimator that achieves

weak recovery for a random cluster size and satisfies (4.162). We use the estimator presented

in (Hajek et al., 2017, Lemma 4), where it was shown that the maximum likelihood estimator

can achieve weak recovery for a random cluster size upon observing only the graph if:

KD(P ||Q)→∞ (4.163)

lim inf
n→∞

(K − 1)D(P ||Q)

log( n
K

)
≥ 2 (4.164)

P
(∣∣∣∣|C∗k | − (1− δ)K

∣∣∣∣ ≥ K

log(K)

)
≤ o(1) (4.165)

It is obvious that in the regime (4.18), both (4.163) and (4.164) are satisfied. Thus, it remains

to show that (4.165) holds too. Let Ĉk be the ML estimator for C∗k based on observing Gk

defined in Algorithm 4.1. The distribution of |C∗k | is obtained by sampling the indices of the

original graph without replacement. Hence, for any convex function φ: E[φ(|C∗k |)] ≤ E[φ(Z)],

where Z is a binomial random variable Bin(n(1− δ), K
n

). Therefore, the Chernoff bound for

Z also holds for |C∗k |. Thus,

P
(∣∣∣|C∗k | − (1− δ)K

∣∣∣ ≥ K

log(K)

)
≤ o(1) (4.166)

Thus, (4.165) holds, which implies that ML achieves weak recovery with K replaced with

d(1− δ)Ke in (Hajek et al., 2017, Lemma 4). Thus, from (Hajek et al., 2017, Lemma 4), for

any 1 ≤ k ≤ 1
δ
:

P
( |Ĉk4C∗k |

K
≤ 2ε+

1

log(K)

)
≥ 1− o(1) (4.167)

with ε = o(1). Since δ is constant, by the union bound over all 1 ≤ k ≤ 1
δ
, we have:

P
( |Ĉk4C∗k |

K
≤ 2ε+

1

log(K)
∀1 ≤ k ≤ 1

δ

)
≥ 1− o(1) (4.168)

Since ε = o(1), the desired (4.162) holds.
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4.4.10 Proof of Lemma 41

To prove Lemma 41, we follow essentially the same strategy used for Lemma 21 in Ap-

pendix 4.4.5. Namely, we intend to show that the total LLR for nodes inside and outside the

community are, asymptotically, stochastically dominated by a certain constant. Since the

strategy is essentially similar to an earlier result, we only provide a sketch in this appendix.

Lemma 42. In the regime (4.18), suppose conditions (1)-(6) of Theorem 4 hold. Let {W`}

and {W̃`} denote two sequences of i.i.d copies of LG under P and Q, respectively. Also, let

Z be a random variable whose distribution is identical to
∑M

m=1 hi,m conditioned on i ∈ C∗,

and Z̃ drawn according to the same distribution conditioned on i /∈ C∗. Then, for sufficiently

small constant δ and γ =
log( n

K
)

K
:

P
(K(1−δ)∑

`=1

W̃` + Z̃ ≥ K(1− δ)γ
)

= o(
1

n
) (4.169)

P
(K(1−2δ)∑

`=1

W` +
δK∑
`=1

W̃` + Z ≤ K(1− δ)γ
)

= o(
1

K
) (4.170)

Proof. Using the Chernoff bound:

P
(K(1−δ)∑

`=1

W̃` + Z̃ ≥ K(1− δ)γ
)

≤ P
( K∑
`=1

W̃` + Z̃ ≥ K(1− δ)γ
)

≤
L1∑
`1=1

· · ·
LM∑
`M=1

( M∏
m=1

αm−,`m

)
e− supt≥0 t(K(1−δ)γ−

∑M
m=1 h

m
`m

)−K log(EQ[etLG ]) (4.171)

The terms inside the nested sum in (4.171) are upper bounded by:

• n−η1(ρ,a,b)+o(1), if
∑M

m=1 h
m
`m

= o(log(n)) and both
∑M

m=1 log(αm+,`m) and∑M
m=1 log(αm−,`m) are o(log(n)).

• n−η1(ρ,a,b)−β+o(1), if
∑M

m=1 h
m
`m

= o(log(n)) and
∑M

m=1 log(αm+,`m) =∑M
m=1 log(αm−,`m) = −β log(n) + o(log(n)), β > 0.
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• n−η2(ρ,a,b,β)+o(1), if
∑M

m=1 h
m
`m

= β log(n) + o(log(n)), 0 < β < ρ(a− b− bT ),∑M
m=1 log(αm+,`m) = o(log(n)).

• n−η3(ρ,a,b,β)+o(1), if
∑M

m=1 h
m
`m

= −β log(n) + o(log(n)), 0 < β < ρ(a− b− bT ),∑M
m=1 log(αm−,`m) = o(log(n)).

• n−η2(ρ,a,b,β)−β′+o(1), if
∑M

m=1 h
m
`m

= β log(n) + o(log(n)), 0 < β < ρ(a− b− bT ),∑M
m=1 log(αm+,`m) = −β′ log(n) + o(log(n)).

• n−η3(ρ,a,b,β)−β′+o(1), if
∑M

m=1 h
m
`m

= −β log(n) + o(log(n)), 0 < β < ρ(a− b− bT ),∑M
m=1 log(αm−,`m) = −β′ log(n) + o(log(n)).

Since M and Lm are independent of n and finite, it follows that if items (1)-(6) of Theorem 4

are satisfied, then Equation (4.169) holds.

To show (4.170), Chernoff bound is used.

P
(K(1−2δ)∑

`=1

W` +
δK∑
`=1

W̃` + Z ≤ K(1− δ)γ
)

≤
L1∑
`1=1

· · ·
LM∑
`M=1

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

(4.172)

Without loss of generality, we focus on one term inside the nested sum in(4.172):

• If
∑M

m=1 h
m
`m

= o(log(n)) and both
∑M

m=1 log(αm+,`m) and
∑M

m=1 log(αm−,`m) are o(log(n)),

then:

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M∏
m=1

αm+,`m)e(1−2δ)
(
t(kγ−

∑M
m=1 h

m
`m

1−2δ
)+K log(EP [e−tLG ])

)
eδ
(
tKγ+K log(EQ[e−tLG ])

)
(4.173)

Since
∑M

m=1 h
m
`m

= o(log(n)), it is easy to show that

Kγ −
∑M

m=1 h
m
`m

1− 2δ
∈ [−KD(Q||P ) , KD(P ||Q)].
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Define θ , Kγ −
∑M
m=1 h

m
`m

1−2δ
and choose t∗ ∈ [0, 1], such that t∗θ + K log(E[e−t

∗LG ]) =

−EP (θ,K). Substituting in (4.173):

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M∏
m=1

αm+,`m)e−(1−2δ)EP (θ,K)+δ
(
t∗Kγ+K log(EQ[e−t

∗LG ])
)

≤ (
M∏
m=1

αm+,`m)e−(1−2δ)EP (θ,K)+δ
(
Kγ+K log(EQ[e−t

∗LG ])
)

(4.174)

where the last inequality holds because t∗ ∈ [0, 1]. Also, by Lemma 35 and convexity

of log(EQ[e−tLG ]), the following holds for some positive constant A:

K log(EQ[e−t
∗LG ]) ≤ K log(EQ[e−LG ]) ≤ AKD(Q||P ) (4.175)

Moreover, by Lemma 35, EP [θ,K] = EQ[θ,K] − θ and EQ[θ,K] ≥ EQ[0, K] ≥

A1KD(Q||P ). Combining the last observation with (4.175), for some positive con-

stant A2,

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M∏
m=1

αm+,`m)e−(1−2δ)(EQ(θ,K)−θ)+δKγ+δA2EQ(θ,K)

= (
M∏
m=1

αm+,`m)e−EQ(θ,K)(1−2δ−δA2)+(1−2δ)θ+δKγ (4.176)

Since
∑M

m=1 log(αm+,`m) = o(log(n)), evaluating the supremum in EQ[θ,K] and substi-

tuting in (4.176) leads to:

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ e− log(n)(1−2δ−δA2)(η1+o(1))

≤ n−(1+ε)(1−2δ−δA2)+o(1)) (4.177)
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where (4.177) holds by assuming η1 ≥ 1 + ε for some ε > 0. Multiplying (4.177) by K:

K(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ n1−(1+ε)(1−2δ−δA2)+o(1)) (4.178)

Thus, for any ε > 0, there exists a sufficiently small δ such that (1+ε)(1−2δ−δA2) > 1.

This concludes the proof of the first case of Lemma 42.

• If
∑M

m=1 h
m
`m

= o(log(n)) and
∑M

m=1 log(αm+,`m) =
∑M

m=1 log(αm−,`m) = −β log(n) +

o(log(n)), β > 0, then:

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤
M∏
m=1

(αm+,`m)e− log(n)(1−2δ−δA2)(η1+o(1)) (4.179)

Since
∑M

m=1 log(αm+,`m) = −β log(n) + o(log(n)), β > 0:

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ e
− log(n)(1−2δ−δA2)(η1+ β

1−2δ−δA2
+o(1))

≤ e− log(n)(1−2δ−δA2)(η1+β+o(1)) (4.180)

where the last inequality holds because 0 < 1 − 2δ − δA2 < 1 for sufficiently small δ.

Thus:

K(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ n1−(η1+β)(1−2δ−δA2)+o(1)

≤ n1−(1+ε)(1−2δ−δA2)+o(1)) (4.181)

where the last inequality holds by assuming η1 + β ≥ 1 + ε for some ε > 0. Thus, for

any ε > 0, there exists a sufficiently small δ such that (1 + ε)(1− 2δ − δA2) > 1. This

concludes the proof of the second case of Lemma 42.
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• If
∑M

m=1 h
m
`m

= β log(n)+o(log(n)), 0 < β < ρ(a−b−bT ),
∑M

m=1 log(αm+,`m) = o(log(n)),

then:

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M∏
m=1

αm+,`m)e(1−2δ)
(
t(kγ−

∑M
m=1 h

m
`m

)+K log(EP [e−tLG ])
)
eδ
(
t(kγ−

∑M
m=1 h

m
`m

)+K log(EQ[e−tLG ])
)

(4.182)

Since
∑M

m=1 h
m
`m

= β log(n) + o(log(n)), 0 < β < ρ(a− b− bT ), it is easy to show that

Kγ −
M∑
m=1

hm`m ∈ [−KD(Q||P ) , KD(P ||Q)]

Define θ , Kγ −
∑M

m=1 h
m
`m

and choose t∗ ∈ [0, 1], such that t∗θ + K log(E[e−t
∗LG ]) =

−EP (θ,K). Substituting in (4.182):

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M∏
m=1

αm+,`m)e−(1−2δ)EP [θ,K]+δ
(
t∗(Kγ−

∑M
m=1 h

m
`m

)+K log(EQ[e−t
∗LG ])

)
(4.183)

By Lemma 35 and convexity of log(EQ[e−t
∗LG ]), the following holds for some positive

constant A:

K log(EQ[e−t
∗LG ]) ≤ K log(EQ[e−LG ]) ≤ AKD(Q||P ) (4.184)

Moreover, since

−KD(Q||P ) < Kγ −
M∑
m=1

hm`m < 0 ,

it follows that θ = −(1 − η̃)KD(Q||P ) for some η̃ ∈ (0, 1). Thus, by Lemma 35, for

some positive constant A1:

EQ[θ,K] = EQ[−(1− η̃)KD(Q||P ), K]

≥ A1KD(Q||P )
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≥ A1

A
K log(EQ[e−t

∗LG ])

where the last inequality holds because of (4.184). Substituting in (4.183), for some

positive constant A2,

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M∏
m=1

αm+,`m)e−(1−2δ)(EQ[θ,K]−θ)+δA2EQ[θ,K]

≤ (
M∏
m=1

αm+,`m)e−EQ[θ,K](1−2δ−δA2)+(1−2δ)θ (4.185)

Since
∑M

m=1 log(αm+,`m) = o(log(n)), by evaluating the supremum in EQ[θ,K], multi-

plying by K and substituting in (4.185):

K(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ Ke
− log(n)(1−2δ−δA2)(η2−β+

(1−2δ)β
1−2δ−δA2

+o(1))

(a)

≤ Ke− log(n)(1−2δ−δA2)(η2+o(1))

≤ n1−(1+ε)(1−2δ−δA2)+o(1)) (4.186)

where (a) holds for sufficiently small δ. Thus, for any ε > 0, there exists a sufficiently

small δ such that (1 + ε)(1− 2δ− δA2) > 1. This concludes the proof of the third case

of Lemma 42.

• If
∑M

m=1 h
m
`m

= −β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm−,`m) =

o(log(n)), then:

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M∏
m=1

αm+,`m)e(1−2δ)
(
t(kγ−

∑M
m=1 h

m
`m

)+K log(EP [e−tLG ])
)
eδ
(
t(kγ−2

∑M
m=1 h

m
`m

)+K log(EQ[e−tLG ])
)

(4.187)
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Following similar analysis as in (4.185):

(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ (
M∏
m=1

αm+,`m)e− log(n)(1−2δ−δA2)(η3+o(1))e−
∑M
m=1 h

m
`m (4.188)

Since
∑M

m=1 log(αm−,`m) = o(log(n)), by multiplying by K:

K(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ Ke− log(n)(1−2δ−δA2)(η3+o(1))

≤ Kn−(η3+o(1))(1−2δ−δA2)

≤ n1−(1+ε)(1−2δ−δA2)+o(1)) (4.189)

where the last inequality holds by assuming η3 ≥ 1 + ε for some ε > 0. Thus, for any

ε > 0, there exists a sufficiently small δ such that (1 + ε)(1 − 2δ − δA2) > 1. This

concludes the proof of the fourth case of Lemma 42.

• If
∑M

m=1 h
m
`m

= β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm+,`m) =

−β′ log(n) + o(log(n)), then following similar analysis as in (4.185):

K(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ Kn−(1−2δ−δA2)(η2+β′+o(1))

≤ n1−(1+ε)(1−2δ−δA2)+o(1)) (4.190)

where the last inequality holds by assuming η2 + β′ ≥ 1 + ε for some ε > 0. Thus, for

any ε > 0, there exists a sufficiently small δ such that (1 + ε)(1− 2δ − δA2) > 1. This

concludes the proof of the fifth case of Lemma 42.
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• If
∑M

m=1 h
m
`m

= −β log(n) + o(log(n)), 0 < β < ρ(a − b − bT ),
∑M

m=1 log(αm−,`m) =

−β′ log(n) + o(log(n)), then following similar analysis as in (4.185):

K(
M∏
m=1

αm+,`m)et(K(1−2δ)γ−
∑M
m=1 h

m
`m

)+K(1−2δ) log(EP [e−tLG ])eKδ log(EQ[e−tLG ])+tKγδ

≤ Kn−(1−2δ−δA2)(η3+β′+o(1))

≤ n1−(1+ε)(1−2δ−δA2)+o(1)) (4.191)

where the last inequality holds by assuming η3 + β′ ≥ 1 + ε for some ε > 0. Thus, for

any ε > 0, there exists a sufficiently small δ such that (1 + ε)(1− 2δ − δA2) > 1. This

concludes the proof of the last case of Lemma 42.

The proof of Lemma 41 then follows similarly as the proof of Lemma 21.

4.4.11 Auxiliary Lemmas For Belief Propagation

Lemma 43. Recall the definition of Γt0 from (4.31). For any measurable function g(.):

E[g(Γt0)|τ0 = 0] = E[g(Γt0)e−Γt0|τ0 = 1] (4.192)

Proof. Let Y = (T t, τ̃ t) denote the observed tree and side information. Then,

E[g(Γt0)|τ0 = 0] = EY |τ0=0[g(Γt0)]

=

∫
Y

g(Γt0)
P(Y |τ0 = 0)

P(Y |τ0 = 1)
P(Y |τ0 = 1)

=

∫
Y

g(Γt0)e−Γt0P(Y |τ0 = 1)

= EY |τ0=1[g(Γt0)e−Γt0 ]

= E[g(Γt0)e−Γt0|τ0 = 1] (4.193)
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Lemma 44. Let bt = E[ eZ
t
1+U1

1+eZ
t
1+U1−ν

] and at = E[e2(Zt0+U0)]. Let Λ = E[eU1 ] = E[e2U0 ]. Then,

for any t ≥ 0

at+1 = E[eZ
t
1+U1 ] = Λeλbt (4.194)

E[e3(Zt0+U0)] = E[e2(Zt1+U1)] = E[e3U0 ]e
3λbt+

λ2

K(p−q)E[( e
Zt1+U1

1+e
Zt1+U1−ν

)2]

(4.195)

Proof. The first equality in (4.194) holds by Lemma 43 for g(x) = e2x. Similarly, the first

equality in (4.195) holds by Lemma 43 for g(x) = e3x.

Let f(x) =
1+ p

q
x

1+x
= 1 +

p
q
−1

1+x−1 . Then:

at+1 = E[e2(Zt0+U0)]

(a)
= e−2K(p−q)E[e2U0 ]E[(E[f 2(eZ

t
1+U1−ν)])Hu ]E[(E[f 2(eZ

t
0+U0−ν)])Fu ]

(b)
= Λe−2K(p−q)eKq(E[f2(eZ

t
1+U1−ν)]−1)e(n−K)q(E[f2(eZ

t
0+U0−ν)]−1) (4.196)

where (a) holds by the definition of Zt
0 and U0, (b) holds by the definition of Λ and by using

the fact that E[cX ] = eλ(c−1) for X ∼ Poi(λ) and c > 0. By the definition of f(x):

Kq
(
E
[
f 2(eZ

t
1+U1−ν)

]
− 1
)

+ (n−K)q
(
E
[
f 2(eZ

t
0+U0−ν)

]
− 1
)

= KqE
[

2(p
q
− 1)

1 + e−(Zt1+U1−ν)
+

(p
q
− 1)2

(1 + e−(Zt1+U1−ν))2

]
+ (n−K)qE

[
2(p

q
− 1)

1 + e−(Zt0+U0−ν)
+

(p
q
− 1)2

(1 + e−(Zt0+U0−ν))2

]
(a)
= 2K(p− q) +Kq(

p

q
− 1)2E

[
1

1 + e−(Zt1+U1−ν)

]
(b)
= 2K(p− q) + λbt (4.197)

where (a) holds by Lemma 43 and (b) holds by the definition of λ and bt.

Using (4.197) and substituting in (4.196) concludes the proof of (4.194). The proof

of (4.195) follows similarly using f 3(x) instead of f 2(x).

127



4.4.12 Proof of Lemma 22

The independent splitting property of the Poisson distribution is used to give an equivalent

description of the numbers of children having a given label for any vertex in the tree. An

equivalent description of the generation of the tree is as follows: for each node i, generate a

set Ni of children with Ni = |Ni|. If τi = 1, we generate Ni ∼ Poi(Kp+ (n−K)q) children.

Then for each child j, independent from everything else, let τj = 1 with probability Kp
Kp+(n−K)q

and τj = 0 with probability (n−K)q
Kp+(n−K)q

. If τi = 0 generate Ni ∼ Poi(nq), then for each child j,

independent from everything else, let τj = 1 with probability K
n

and τj = 0 with probability

(n−K)
n

. Finally, for each node i in the tree, τ̃i is observed according to α+,`, α−,`. Then:

Γt+1
0 = log

(
P(T t+1, τ̃ t+1|τ0 = 1)

P(T t+1, τ̃ t+1|τ0 = 0)

)

= log

(
P(N0, τ̃0, {T tk}k∈N0 , {τ̃ tk}k∈N0|τ0 = 1)

P(N0, τ̃0, {T tk}k∈N0 , {τ̃ tk}k∈N0|τ0 = 0)

)
(a)
= log

(
P
(
N0, τ̃0|τ0 = 1

)
P
(
N0, τ̃0|τ0 = 0

))+ log

(∏
k∈N0

P
(
T tk, τ̃

t
k|τ0 = 1

)∏
k∈N0

P
(
T tk, τ̃

t
k|τ0 = 0

))
(b)
= log

(
P
(
N0|τ0 = 1

)
P
(
N0|τ0 = 0

))+ log

(
P
(
τ̃0|τ0 = 1

)
P
(
τ̃0|τ0 = 0

))

+
∑
k∈N0

log

(∑
τk∈{0,1} P

(
T tk, τ̃

t
k|τk
)
P
(
τk|τ0 = 1

)∑
τk∈{0,1} P

(
T tk, τ̃

t
k|τk
)
P
(
τk|τ0 = 0

))
(c)
= −K(p− q) + h0 +

∑
k∈N0

log(

p
q
eΓtk−ν + 1

eΓtk−ν + 1
) (4.198)

where (a) holds because conditioned on τ0: 1) (N0, τ̃0) are independent of the rest of the tree

and 2) (T tk, τ̃
t
k) are independent random variables ∀k ∈ N0, (b) holds because conditioned on

τ0, N0 and τ̃0 are independent, (c) holds by the definition of N0 and h0 and because τk is

Bernoulli- Kp
Kp+(n−K)q

if τ0 = 1 and is Bernoulli-K
n

if τ0 = 0.
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4.4.13 Proof of Lemma 23

Let f(x) ,
1+ p

q
x

1+x
, then:

E
[
e
Zt0
2

]
= e

−K(p−q)
2 EH0

[
(EZ1U1 [f

1
2 (eZ

t
1+U1−ν)])H0

]
EF0

[
(EZ0U0 [f

1
2 (eZ

t
0+U0−ν)])F0

]
(a)
= e

−K(p−q)
2 eKq(E[f

1
2 (eZ

t
1+U1−ν)]−1)e(n−K)q(E[f

1
2 (eZ

t
0+U0−ν)]−1) (4.199)

where (a) holds using E[cX ] = eλ(c−1) for X ∼ Poi(λ) and c > 0.

By the intermediate value form of Taylor’s theorem, for any x ≥ 0 there exists y with

1 ≤ y ≤ x such that
√

1 + x = 1 + x
2
− x2

8(1+y)1.5 . Therefore,

√
1 + x ≤ 1 +

x

2
− x2

8(1 + A)1.5
, 0 ≤ x ≤ A (4.200)

Let A = p
q
− 1 and B = (1 + A)1.5. By assumption, B is bounded. Then,(

1 + p
q
eZ

t
0+U0−ν

1 + eZ
t
0+U0−ν

) 1
2

=
(

1 +

p
q
− 1

1 + e−(Zt0+U0−ν)

) 1
2

≤ 1 +
1

2

p
q
− 1

1 + e−(Zt0+U0−ν)
− 1

8B

(p
q
− 1)2

(1 + e−(Zt0+U0−ν))2
(4.201)

It follows that:

Kq
(
E[f

1
2 (eZ

t
1+U1−ν)]− 1

)
+ (n−K)q

(
E[f

1
2 (eZ

t
0+U0−ν)]− 1

)
≤
Kq(p

q
− 1)

2

(
E
[

1

1 + e−(Zt1+U1−ν)

]
+ eνE

[
1

1 + e−(Zt0+U0−ν)

])
−
Kq(p

q
− 1)2

8B

(
E
[

1

(1 + e−(Zt1+U1−ν))2

]
+ eνE

[
1

(1 + e−(Zt0+U0−ν))2

])
(a)
=
K(p− q)

2
− K(p− q)2

8Bq
E
[

1

1 + e−(Zt1+U1−ν)

]
(4.202)

=
K(p− q)

2
− λ

8B
bt (4.203)

where (a) holds by the following consequence of Lemma 43 (from Appendix 4.4.11):

E
[

1

1 + e−(Zt1+U1−ν)

]
+ eνE

[
1

1 + e−(Zt0+U0−ν)

]
= 1
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E
[

1

(1 + e−(Zt1+U1−ν))2

]
+ eνE

[
1

(1 + e−(Zt0+U0−ν))2

]
= E

[
1

1 + e−(Zt1+U1−ν)

]
(4.204)

Using (4.199) and (4.203):

E
[
e
Zt0+U0

2

]
≤ E

[
e
U0
2

]
e
−λ
8B
bt (4.205)

Similarly, using the fact that
√

1 + x ≥ 1 + x
2
− x2

8
for all x ≥ 0:

E
[
e
Zt0+U0

2

]
≥ E

[
e
U0
2

]
e
−λ
8
bt (4.206)

4.4.14 Proof of Lemma 24

Fix λ > 0 and define (vt : t ≥ 0) recursively by v0 = 0 and vt+1 = λΛevt . From Lemma 44

in Appendix 4.4.11, at+1 = Λeλbt .

We first prove by induction that λbt ≤ λat ≤ vt+1 for all t ≥ 0. a0 = E[eU1 ] = Λ and

λb0 = λE[ eU1

1+eU1−ν ] ≤ λE[eU1 ] = λa0. Thus, λb0 ≤ λa0 = λΛ = v1. Assume that λbt−1 ≤

λat−1 ≤ vt. Then, λbt ≤ λat = λΛeλbt−1 ≤ λΛevt = vt+1, where the first inequality holds

by the definition of at and bt and the second inequality holds by the induction assumption.

Thus, λbt ≤ λat ≤ vt+1 for all t ≥ 0.

Next we prove by induction that vt
λ

is increasing in t ≥ 0. We have vt+1

λ
= Λevt . Then,

v1

λ
= Λ ≥ 0 = vo

λ
. Now assume that vt

λ
> vt−1

λ
. Then, vt+1

λ
= Λevt = Λeλ(

vt
λ

) > Λevt−1 = vt
λ

.

Thus, we have: vt+1

λ
> vt

λ
for all t ≥ 0.

Note that vt+1

λ
= Λeλ(

vt
λ

) has the form of x = Λeλx, which has no solutions for λ > 1
Λe

and has two solutions for λ ≤ 1
Λe

, where the largest solution is Λe. Thus, for λ ≤ 1
Λe

,

bt ≤ vt+1

λ
≤ Λe.

4.4.15 Proof of Lemma 25

By definition of at, we have:

at+1 − E
[
e−ν+2(Zt+1

1 +U1)
]

= E
[
eZ

t+1
1 +U1(1− eZ

t+1
1 +U1−ν)

]
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≤ E
[

eZ
t
1+U1

1 + eZ
t
1+U1−ν

]
= bt+1

where the first inequality holds because 1− x ≤ 1
1+x

. Then,

bt+1 ≥ at+1 − E[e−ν+2(Zt+1
1 +U1)]

(a)
= Λeλbt − e−νΛ′e

3λbt+
λ2

K(p−q)E
[

( e
Zt1+U1

1+e
Zt1+U1−ν

)2
]

(b)

≥ Λeλbt − Λ′eCbt−ν

= Λeλbt
(
1− Λ′

Λ
e−ν+(C−λ)bt

)
(c)

≥ Λeλbt
(
1− Λ′

Λ
e
−ν
2

)
(4.207)

where (a) holds from Lemma 44, (b) holds because ( ex

1+ex−ν
)2 ≤ eν( ex

1+ex−ν
), which holds

because eν ≥ ex

1+ex−ν
for all x, and (c) holds by the assumption that bt ≤ ν

2(C−λ)
.

4.4.16 Proof of Lemma 27

Given λ with λ > 1
Λe

, assume ν ≥ νo and ν ≥ 2Λ(C − λ) for some positive νo. Moreover,

select the following constants depending only on λ and the LLR of side information:

• D and νo large enough such that λΛeλD(1− Λ′

Λ
e−νo) > 1 and Λλe(1− Λ′

Λ
e−νo) ≥

√
λΛe.

• wo > 0 so large that

woλΛeλD(1− Λ′

Λ
e−νo)− λD ≥ wo. (4.208)

• A positive integer t̄o large enough such that λ(Λ(λΛe)
t̄o
2
−1 −D) ≥ wo

The goal is to show that there exists some t̃ after which ν = o(bt).

Let t∗ = max{t > 0 : bt <
ν

2(C−λ)
} and t̄1 = log∗(ν). The first step is to show that

t∗ ≤ t̄o + t̄1.
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By the definition of bt,

b0 = E
[ eU1

1 + eU1−ν

]
< E[eU1 ] = Λ

Since ν ≥ 2Λ(C − λ), we get b0 <
ν

2(C−λ)
.

Since for all t ≤ t∗, bt <
ν

2(C−λ)
, then by Lemma 25:

bt+1 ≥ Λeλbt(1− Λ′

Λ
e
−ν
2 )

≥ Λeλbt(1− Λ′

Λ
e
−νo

2 ) (4.209)

where the last inequality holds since ν ≥ νo. Thus,

b1 ≥ Λeλb0(1− Λ′

Λ
e
−νo

2 )

≥ Λ(1− Λ′

Λ
e
−νo

2 )

≥
√

Λ

λe
(4.210)

where the last inequality holds by the choice of νo. Moreover,

bt+1 ≥ Λeλbt(1− Λ′

Λ
e
−νo

2 )

(a)

≥ Λeλbt(1−
Λ′

Λ
e
−νo

2 )

(b)

≥
√

Λλebt (4.211)

where (a) holds because eu ≥ eu for all u > 0 and (b) holds by choice of ν0. Thus, for all

1 ≤ t ≤ t∗ + 1: bt ≥
√

Λλebt−1. Since b1 ≥
√

Λ
λe

, it follows by induction that:

bt ≥ Λ(λΛe)
t
2
−1 for all 1 ≤ t ≤ t∗ + 1 (4.212)
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We now divide the analysis into two cases. First, if t̄o is such that bt̄o−1 ≥ ν
2(C−λ)

. This

implies that t̄o − 1 ≥ t∗ + 1 by the definition of t∗. Thus, t∗ ≤ t̄o − 2 ≤ t̄o + t̄1, which proves

our claim for the first case.

If t̄o is such that bt̄o−1 < ν
2(C−λ)

. Then, t̄o ≤ t∗ + 1. Thus, bt̄o ≥ Λ(λLe)
t̄o
2
−1. Let

to = min{t : bt ≥ Λ(λΛe)
t̄o
2
−1}. Thus, by Lemma 26, we get to ≤ t̄o. Moreover, by the choice

of to and wo:

wo ≤ λ(Λ(λΛe)
t̄o
2
−1 −D) ≤ λ(bto −D) (4.213)

Now define sequence (wt : t ≥ 0): wt+1 = ewt , where wo was chosen according to (4.208). We

already showed that wo ≤ λ(bto −D). Assume that wt−1 ≤ λ(bto+t−1−D) for to + t− 1 ≤ t∗.

Then,

λ(bto+t −D)
(a)

≥ λ(Λeλbto+t−1(1− Λ′

Λ
e−νo)−D)

(b)

≥ λ(ΛeλD+wt−1(1− Λ′

Λ
e−νo)−D)

(c)
= λΛeλDwt(1−

Λ′

Λ
e−νo)− λD

(d)

≥ wt

where (a) holds by Lemma 25, (b) holds by the assumption that wt−1 ≤ λ(bto+t−1 −D), (c)

holds by the definition of the sequence wt and (d) holds by the choice of wo and the fact that

wt ≥ wo. Thus, we showed by induction that

wt ≤ λ(bto+t −D) for 0 ≤ t ≤ t∗ − to + 1. (4.214)

By the definition of t̄1 and since w1 ≥ 1, we have ν ≤ wt̄1+1. Thus, wt̄1+1 ≥ ν − λD.

Since, by the definition of C, λ ≤ 2(C − λ). Therefore, wt̄1+1 ≥ νλ
2(C−λ)

− λD. We will show

that t∗ ≤ t̄o + t̄1 by contradiction. Let t∗ > t̄o + t̄1. Thus, from (4.214), for t = to + t̄1 + 1:

bto+t̄1+1 ≥
wt̄1+1

λ
+D ≥ ν

2(C − λ)
(4.215)
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which implies that to + t̄1 + 1 ≥ t∗ + 1, i.e., to + t̄1 ≥ t∗, which contradicts the assumption

that t∗ > t̄o + t̄1.

To sum up, we have shown so far that if λ > 1
Λe

, then t∗ ≤ t̄o + t̄1.

Since t∗ is the last iteration for bt <
ν

2(C−λ)
. Then, bt∗+1 ≥ ν

2(C−λ)
. We begin with

bt∗+1 = ν
2(C−λ)

. Then by Lemma 25:

bt∗+2 ≥ Λeλbt∗+1(1− Λ′

Λ
e
−ν
2 ) (4.216)

By Lemma 26, the sequence bt is non-decreasing in t. We also known t∗+ 2 ≤ t̄o + t̄1 + 2.

Using (4.216):

bt̄o+log∗(ν)+2 ≥ Λe
λν

2(C−λ) (1− Λ′

Λ
e
−ν
2 ) (4.217)

which concludes one case of the proof.

When bt∗+1 > ν
2(C−λ)

, we use the truncation process (Hajek et al., 2018, Lemma 6),

which depends only on the tree structure. Applying this truncation process, it can directly

be shown that the tree can be truncated such that with probability one the value of bt∗+1 in

the truncated tree is ν
2(C−λ)

. The truncation process (Hajek et al., 2018, Lemma 6) depends

only on the structure of the tree. In this chapter, the side information is independent of

the tree structure given the labels, therefore the same truncation process holds for our case,

which concludes the proof using (4.216) and (4.217).

4.4.17 Proof of Theorem 5

The assumption (np)log∗(ν) = no(1) ensures that (np)t̂ = no(1). Since K2(p−q)2

q(n−K)
→ λ, p ≥ q and

p
q

= θ(1), then (n−K
K

)2 = O(np). Since K = o(n), then np → ∞. Thus, (np)t̂ = no(1) can

be replaced by (np+ 2)t̂ = no(1), and hence, the coupling Lemma 29 holds. Moreover, since

(n−K
K

)2 = O(np) and np = no(1), K = n1−o(1).
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Consider a modified form of Algorithm 4.2 whose output is Ĉ = {i : Rt̂
i ≥ ν}. Then for

deterministic |C∗| = K, the following holds:

pe = P(No coupling)pe|no coupling + P(coupling)pe|coupling

≤ n−1+o(1) +
K

n
e−ν(r+o(1)) (4.218)

where the last inequality holds by Lemmas 29 and 28 for some positive constant r. Multi-

plying (4.218) by n
K

:

E[|C∗4Ĉ|]
K

≤ no(1)

K
+ e−ν(r+o(1)) → 0 (4.219)

where the last inequality holds because K = n1−o(1) and ν →∞.

Now going back to Algorithm 4.2 and its output C̃, using Equation (4.49):

E[|C∗4C̃|]
K

≤ 2
E[|C∗4Ĉ|]

K
→ 0 (4.220)

which concludes the proof under deterministic |C∗| = K.

When |C∗| is random such that K ≥ 3 log(n) and P(||C∗|−K| ≥
√

3K log(n)) ≤ n
−1
2

+o(1),

we have E[||C∗| −K|] ≤ n
1
2

+o(1). Thus, for C̃, using Equation (4.49):

E[|C∗4C̃|]
K

≤ 2
E[|C∗4Ĉ|]

K
+

E[||C∗| −K|]
K

→ 0 (4.221)

which concludes the proof.

4.4.18 Proof of Theorem 6

Since (np+ 2)t̂ = no(1), the coupling Lemma 29 holds. Moreover, since (n−K
K

)2 = O(np) and

np = no(1), K = n1−o(1). Consider a deterministic |C∗| = K. Then, for any local estimator

Ĉ:

pe = P(No coupling)pe|no coupling + P(coupling)pe|coupling

≥ K(n−K)

n2
E2[e

U0
2 ]e

−λΛe
4 − n−1+o(1) (4.222)
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where the last inequality holds by Lemmas 29 and 28. Multiplying (4.222) by n
K

:

E[|C∗4Ĉ|]
K

≥
(

1− K

n

)
E2[e

U0
2 ]e

−λΛe
4 − o(1) (4.223)

where the last inequality holds because K = n1−o(1). Thus, for λ ≤ 1
Λe

, E[|C∗4Ĉ|]
K

is bounded

away from zero for any local estimator Ĉ.

It can be shown that under a non-deterministic |C∗| that obeys a distribution in the class

of distributions mentioned earlier, the local estimator will do no better, therefore the same

converse will hold.

4.5 Proof of Theorem 7

Let Z be a binomial random variable Bin(n(1− δ), K
n

). In view of Lemma 21, it suffices to

verify (4.9) when Ĉk for each k is the output of belief propagation for estimating C∗k based

on observing Gk and Y k. The distribution of |C∗k | is obtained by sampling the indices of the

original graph without replacement. Thus, for any convex function φ: E[φ(|C∗k |)] ≤ E[φ(Z)].

Therefore, Chernoff bound for Z also holds for |C∗k |. This leads to:

P
(∣∣|C∗k | − (1− δ)K

∣∣ ≥√3K(1− δ) log(n)
)
≤ n−1.5+o(1)

≤ n
−1
2

+o(1) (4.224)

Thus, by Theorem 5, belief propagation achieves weak recovery for recovering C∗k for each

k. Thus:

P
(
|Ĉk4C∗k | ≤ δK for 1 ≤ k ≤ 1

δ

)
→ 1 (4.225)

which together with Lemma 21 conclude the proof.

4.5.1 Proof of Lemma 30

First, we expand M(x) using Taylor series:

M(x) =

p
q
− 1

1 + e−(x−ν)
− 1

2

( p
q
− 1

1 + e−(x−ν)

)2
+O

(( p
q
− 1

1 + e−(x−ν)

)3
)

(4.226)
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Thus:

E[Zt+1
0 ] =−K(p− q) +KqE[M(Zt

1 + U1)] + (n−K)qE[M(Zt
0 + U0)]

=−K(p− q) +K(p− q)E
[ 1

1 + e−(Zt1+U1−ν)

]
+ (n−K)(p− q)E

[ 1

1 + e−(Zt0+U0−ν)

]
− K(p− q)2

2q
E
[( 1

1 + e−(Zt1+U1−ν)

)2
]
− (n−K)(p− q)2

2q
E
[( 1

1 + e−(Z0
1+U0−ν)

)2
]

+O

(
K(p− q)3

q2
E
[( 1

1 + e−(Zt1+U1−ν)

)3
]

+
(n−K)(p− q)3

q2
E
[( 1

1 + e−(Zt0+U0−ν)

)3
])

(4.227)

Using Lemma 43 for g(x) = 1
1+e−(x−ν) ,

K(p− q)E
[ 1

1 + e−(Zt1+U1−ν)

]
+ (n−K)(p− q)E

[ 1

1 + e−(Zt0+U0−ν)

]
= K(p− q) (4.228)

Similarly:

K(p− q)2

2q
E
[( 1

1 + e−(Zt1+U1−ν)

)2
]

+
(n−K)(p− q)2

2q
E
[( 1

1 + e−(Z0
1+U0−ν)

)2
]

=
K(p− q)2

2q
E
[ 1

1 + e−(Zt1+U1−ν)

]
(4.229)

and,

K(p− q)3

q2
E
[( 1

1 + e−(Zt1+U1−ν)

)3
]

+
(n−K)(p− q)3

q2
E
[( 1

1 + e−(Zt0+U0−ν)

)3
]

=
K(p− q)3

q2
E
[( 1

1 + e−(Zt1+U1−ν)

)2
]

(4.230)

Using (4.228), (4.229) and (4.230) and substituting in (4.227):

E[Zt+1
0 ] =− λ

2
bt +O

(
K(p− q)3

q2
E[
( 1

1 + e−(Zt1+U1−ν)

)2
]

)
=− λ

2
bt + o(1) (4.231)
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where the last equality holds by the definition of λ and bt and because K(p−q)3

q2 = λ n
K

(1 −
K
n

)(p
q
− 1) which is o(1) because of the assumptions of the lemma which also implies that

p
q
→ 1.

To show (4.55), we use Taylor series: M(x) =
p
q
−1

1+e−(x−ν) +O(
( p

q
−1

1+e−(x−ν)

)2
). Then,

E[Zt+1
1 ] = E[Zt+1

0 ] +K(p− q)E[M(Zt
1 + U1)]

= E[Zt+1
0 ] +

K(p− q)2

q
E
[ 1

1 + e−(Zt1+U1−ν)

]
+O

(
K(p− q)3

q2
E
[( 1

1 + e−(Zt1+U1−ν)

)2
])

= E[Zt+1
0 ] + λbt + o(1) =

λ

2
bt + o(1) (4.232)

We now calculate the variance. For Y =
∑L

i=1 Xi, where L is Poisson distributed and

{Xi} are independent of Y and are i.i.d., it is well-known that var(Y ) = E[L]E[X2
1 ]. Thus,

var(Zt+1
0 )

= Kq E[M2(Zt
1 + U1)] + (n−K)q E[M2(Zt

0 + U0)]

(a)
=
K(p− q)2

q2
E
[( 1

1 + e−(Zt1+U1−ν)

)2
]

+
(n−K)(p− q)2

q2
E
[( 1

1 + e−(Zt0+U0−ν)

)2
]

+O

(
K(p− q)3

q2
E
[( 1

1 + e−(Zt1+U1−ν)

)3
]

+
(n−K)(p− q)3

q2
E
[( 1

1 + e−(Zt0+U0−ν)

)3
])

(b)
= λbt + o(1) (4.233)

where (a) holds because log2(1 + x) = x2 + O(x3) for all x ≥ 0 and (b) holds by similar

analysis as in (4.231).

Similarly,

var(Zt+1
1 ) = var(Zt+1

0 ) +O

(
K(p− q)3

q2
E
[( 1

1 + e−(Zt1+U1−ν)

)2
])

= λbt + o(1) (4.234)

4.5.2 Proof of Lemma 31

Before we prove the lemma, we need the following lemma from (Korolev and Shevtsova,

2012, Theorem 3).
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Lemma 45. Let Sγ = X1 + · · · + XNγ , where Xi : i ≥ 1 are i.i.d. random variables with

mean µ, variance σ2 and E[|Xi|3] ≤ ρ3, and for some γ > 0, Nγ is a Poi(γ) random variable

independent of (Xi : i ≥ 1). Then,

sup
x

∣∣P( Sγ − γµ√
γ(µ2 + σ2)

≤ x
)
− φ(x)

∣∣ ≤ 0.3041ρ3√
γ(µ2 + σ2)3

(4.235)

For t ≥ 0, Zt+1
0 can be represented as follows:

Zt+1
0 = −K(p− q) +

Nnq∑
i=1

Xi (4.236)

where Nnq is distributed according to Poi(nq), the random variables Xi, i ≥ 1 are mutually

independent and independent of Nnq and Xi is a mixture:

Xi =
(n−K)q

nq
M(Zt

0 + U0) +
Kq

nq
M(Zt

1 + U1).

Starting with (4.236), using the properties of compound Poisson distribution, and then

applying Lemma 30:

nqE[X2
i ] = var(Zt+1

0 ) = λbt + o(1) (4.237)

Also, using log3(1 + x) ≤ x3 for all x ≥ 0:

nqE[|X3
i |] ≤

K(p− q)3

q2
E
[( 1

1 + e−(Zt1+U1)+ν

)3
]

+
(n−K)(p− q)3

q2
E
[( 1

1 + e−(Zt0+U0)+ν

)3
]

(a)

≤ K(p− q)3

q2

(b)
= o(1) (4.238)

where (a) holds by Lemma 43 for g(x) = 1
1+e−(x−ν) and (b) holds since p

q
→ 1.

Combining (4.237) and (4.238) yields
E[|X3

i |]√
nqE3[X2

i ]
=

nqE[|X3
i |]√

(nqE[X2
i ])3
→ 0, which together with

Lemma 45 yields:

sup
x

∣∣P(Zt+1
0 + λbt

2√
λbt

≤ x
)
− φ(x)

∣∣→ 0 (4.239)
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Similarly, for t ≥ 0, Zt+1
1 can be represented as follows:

Zt+1
1 = −K(p− q) +

1√
(n−K)q

N(n−K)q+Kp∑
i=1

Yi (4.240)

where N(n−K)q+Kp is distributed according to Poi((n − K)q + Kp), the random variables

Yi, i ≥ 1 are mutually independent and independent of N(n−K)q+Kp and Yi is a mixture:

Yi =
(n−K)q

(n−K)q +Kp
M(Zt

0 + U0) +
Kp

(n−K)q +Kp
M(Zt

1 + U1).

Starting with (4.240), using the properties of compound Poisson distribution, and then

applying Lemma 30:

((n−K)q +Kp)E[Y 2
i ] = var(Zt+1

1 ) = λbt + o(1) (4.241)

Also, using log3(1 + x) ≤ x3 for all x ≥ 0:

((n−K)q +Kp)E[|Y 3
i |] = nqE[|Xi|3] +K(p− q)E

[( p
q
− 1

1 + e−(Zt1+U1)+ν

)3
]

≤ o(1) (4.242)

where (4.242) holds since p
q
→ 1.

Combining (4.241) and (4.242) yields
E[|Y 3

i |]√
(n−K)q+Kp)E3[Y 2

i ]
→ 0, which together with

Lemma 45 yields:

sup
x

∣∣P(Zt+1
1 − λbt

2√
λbt

≤ x
)
− φ(x)

∣∣→ 0 (4.243)

Hence, using (4.239) and (4.243), it suffices to show that λbt → vt+1, which implies

that (4.57) and (4.58) are satisfied. We use induction to prove that λbt → vt+1. At t = 0,

we have: v1 = λE[ 1
e−ν+e−U1

] = λb0. Hence, our claim is satisfied for t = 0. Assume that

λbt → vt+1. Then,

bt+1 = E[
1

e−ν + e−(Zt+1
1 +U1)

] = EU1 [EZ1 [
1

e−ν + e−(Zt1+u)
]]
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= EU1 [EZ1 [f(Zt+1
1 ;u, ν)]] = EU1 [EZ1 [En]] (4.244)

where f(z;u, ν) = 1
e−ν+e−(z+u) and En is a sequence of random variables representing f(Z;u, ν)

as it evolves with n. Let G(s) denote a Gaussian random variable with mean s
2

and variance

s.

From (4.243), we have Kolm
(
Zt+1

1 , G(λbt)
)
→ 0 where Kolm(·, ·) is the Kolmogorov dis-

tance (supremum of absolute difference of CDFs). Since f(z;u, ν) is non-negative and mono-

tonically increasing in z and since the Kolmogorov distance is preserved under monotone

transformation of random variables, it follows that Kolm
(
f(Zt+1

1 ;u, ν), f(G(λbt);u, ν)
)
→ 0

. Since limz→∞ f(z;uν) = eν , using the definition of Kolmogorov distance and by expressing

the CDF of f(G(λbt);u, ν) in terms of the CDF of G(λbt) and the inverse of f(z;u, ν), we

get:

sup
0<c<eν

∣∣∣FEn(c)− FG(λbt)

(
log
( ce−u

1− ce−ν
))∣∣∣→ 0 (4.245)

From the induction hypothesis, λbt → vt+1. Thus,

sup
0<c<eν

∣∣∣FEn(c)− FG(vt+1)

(
log
( ce−u

1− ce−ν
))∣∣∣→ 0 (4.246)

which implies that the sequence of random variables En converges in Kolmogorov distance

to a random variable 1

e−ν+e−(G(vt+1)+u) as n → ∞. This implies the following convergence in

distribution:

En
i.d.→ 1

e−ν + e−(G(vt+1)+u)
(4.247)

Moreover, the second moment of En is bounded from above independently of n:

E[E2
n]

(a)

≤ e2ν
(b)

≤ A (4.248)

where (a) holds by the definition of En, and (b) holds for positive constant A since based on

the assumptions of the lemma, ν is constant as n→∞.
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By (4.246), (4.247) and (4.248), the dominated convergence theorem implies that, as

n→∞, the mean of En converges to the mean of the random variable 1

e−ν+e−(G(vt+1)+u) . Since

the cardinality of side information is finite and independent of n, it follows that:

bt+1 = EU1

[
E[En]

]
(a)→ EU1

[
EZ
[

1

e−ν + e−(
vt+1

2
+
√
vt+1Z)−u

]]
=
vt+2

λ
(4.249)

where in (a) we define Z ∼ N (0, 1). Equation (4.249) implies that λbt+1 → vt+2, which

concludes the proof of the lemma.

4.5.3 Proof of Lemma 33

Let κ = n
K

. Since for all `: |h`| < ν, it follows that for any t ≥ 0 and for sufficiently large κ:

vt+1 = λ EZ,U1

[
1

e−ν + e−(
vt
2

+
√
vtZ)−U1

]
= λ

L∑
`=1

α2
+,`

α−,`
EZ
[

1

e−ν(1−h`
ν

) + e−(
vt
2

+
√
vtZ)

]
(a)
= λ

L∑
`=1

α2
+,`

α−,`
EZ
[

1

e−Clν + e−(
vt
2

+
√
vtZ)

]
(b)
= λΛevt(1 + o(1)) (4.250)

where (a) holds for positive constants C`, ` ∈ {1, · · · , L} and (b) holds because EZ [e
vt
2

+
√
vtZ ] =

evt .

Consider the sequence wt+1 = ewt with w0 = 0. Define t∗ = log∗(ν) to be the number

of times the logarithm function must be iteratively applied to ν to get a result less than or

equal to one. Since w1 = 1 and wt is increasing in t, we have wt∗+1 ≥ ν (check by applying

the log function t∗ times to both sides). Thus, as κ grows, we have ν = o(wt∗+2).
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Since Λ→∞ as κ grows, it follows by induction that for any fixed λ > 0:

vt ≥ wt (4.251)

for all t ≥ 0 and for all sufficiently large κ. Thus,

vt∗+2 ≥ wt∗+2 (4.252)

which implies that as κ grows, ν = o(vt∗+2) and h` = o(vt∗+2) for all `. Since vt is increasing

in t, using (4.250) and (4.252), we get for all sufficiently large κ and after t∗ + 2 iterations

of belief propagation (or for a tree of depth t∗ + 2):

EU0

[
Q(
ν +

vt∗+2

2
− U0√

vt∗+2

)
]

= Q
(1

2

√
vt∗+2(1 + o(1))

)
(4.253)

EU1

[
Q(
−ν +

vt∗+2

2
+ U1√

vt∗+2

)
]

= Q
(1

2

√
vt∗+2(1 + o(1))

)
(4.254)

Since Q(x) ≤ e−
1
2
x2

for x ≥ 0, then using (4.252), (4.253) and (4.254):

n−K
K

Q
(1

2

√
vt∗+2(1 + o(1))

)
→ 0 (4.255)

Q
(1

2

√
vt∗+2(1 + o(1))

)
→ 0 (4.256)

Using (4.255) and (4.256) and Lemma 32, we get:

lim
n
K
→∞

lim
nq,Kq→∞

lim
n→∞

E[Ĉ4C∗]
K

= 0 (4.257)
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CHAPTER 5

EXIT ANALYSIS FOR COMMUNITY DETECTION

The technical distinction and novelty of this chapter can be explained as follows: EXIT anal-

ysis was originally developed in the context of communication systems for bipartite graphs in

which some nodes carry information while some other nodes represent the constraints on the

data nodes (e.g. via parity check equations or the structure or memory of a communication

channel). The present work aims to employ EXIT analysis in a scenario where the above

conditions do not apply, and therefore the EXIT analysis must be developed anew for the

scenario where each node in a general tree has both an individual label (information) as

well as information that is applicable to other nodes. This gives rise to new EXIT equa-

tions. In other words, in the original EXIT analysis, all mutual information was calculated

with respect to a subset of node labels, i.e., bit-node variables, whereas now all nodes have

information. Since we are now interested in a graph that has a stochastic symmetry, the

input/output belief propagation equations must be reinterpreted once again in terms of ex-

trinsic information. This statement will be further clarified in the sequel while developing

the details of EXIT equations.

5.1 System Models

Throughout this chapter, the community label of node i is denoted by xi, the side information

of node i by yi, the vector of the nodes true labels by x∗, the vector of the nodes side

information by y, and the observed graph by G. We assume that conditioned on x, G and y

are independent. The goal is to recover x∗ from the observation of G and y. The alphabet

for yi is denoted with {u1, u2, · · · , uM}, where M is the cardinality of side information which

is assumed to be bounded and constant across n.

Two system models are considered. The first, the binary symmetric stochastic block

model which consists of n nodes with xi ∈ {±1}. The node labels are independent and
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identically distributed across n, with 1 and −1 labels having equal probability. Each two

nodes are connected with an edge with probability a
n

if the two nodes belong to the same

community and with probability b
n
, otherwise, for a > b > 0. In addition to the graph, each

node independently observes side information, yi, according to:

α+,m , P(yi = um|xi = 1) (5.1)

α−,m , P(yi = um|xi = −1) (5.2)

It is further assumed that as n → ∞: a, b → ∞ such that a−b√
b

= µ, for a fixed positive

constant µ and that the average degree (a+b)
2

= no(1). The latter condition is crucial in our

analysis, by enabling the approximation of the neighborhood of a given node in the graph

by a tree (Mossel and Xu, 2016a,b).

The second model studied is the one-community stochastic block model, consisting of n

nodes and containing a hidden community C∗ with size |C∗| = K. Let xi = 1 if i ∈ C∗ and

xi = 0 if i /∈ C∗. The underlying distribution of the graph is as follows: an edge connects a

pair of nodes with probability p if both nodes are in C∗ and with probability q otherwise,

with p ≥ q. For each node i, side information yi is observed according to the distribution:

α+,m , P(yi = um|xi = 1) (5.3)

α−,m , P(yi = um|xi = 0) (5.4)

Define

λ ,
K2(p− q)2

(n−K)q
. (5.5)

We assume K
n

, the LLR of side information and λ are constants independent of n, while

nq,Kq
n→∞
−−→ ∞, which implies that p

q

n→∞
−−→ 1. Furthermore, np = no(1).

5.2 Binary Symmetric Stochastic Block Model

Studying the performance of belief propagation with noisy-label side information was in-

troduced in (Mossel and Xu, 2016b). This section generalizes the results to M-ary side
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information and introduces EXIT analysis as a new tool to study the performance of belief

propagation for community detection. A key idea in our analysis is the relation between

inference on graphs and inference on the corresponding Galton-Watson trees (Mossel and

Xu, 2016b).

Definition 1. For a node i, let (Ti, τ, τ̃) be a Poisson two-type branching process tree rooted

at i, where τ is a ±1 labeling of nodes in Ti. Let τi be chosen uniformly at random from

{±1}. Each node j in Ti will have Lj ∼ Pois(a
2
) children with label τj and Mj ∼ Pois( b

2
)

children with label −τj. Finally, for each node j, an M-ary side information τ̃j is observed

according to the conditional distributions α+,m and α−,m.

Let T tj be the sub-tree of Ti rooted at node j with depth t. The problem of inference

on trees with side information is to estimate the label of the root τi given observation of

(T ti , τ̃T ti ), where τ̃T ti is the side information of all the nodes in the tree rooted at i with depth

t. It then follows that the error probability for an estimator τ̂i(T
t
i , τ̃T ti ) is:

qT t =
1

2
P(τ̂i

= 1|τi = −1) +
1

2
P(τ̂i = −1|τi = 1).

Let q∗T t be the error probability achieved by the optimal estimator, i.e. maximum a posteriori

(MAP). Note that the MAP estimator for any node i can be written as: τ̂MAP = 2×1{Γti≥0}−1,

where Γti is the log likelihood ratio and can be defined as:

Γtj =
1

2
log

(
P(T tj , τ̃T tj |τj = 1)

P(T tj , τ̃T tj |τj = −1)

)
(5.6)

∀j ∈ Ti. The log likelihood ratio Γtj can be further computed via a recursive formula which

is the basis for the belief propagation algorithm.

Lemma 1. Let Nj denote the children of node j, Nj , |Nj|, β = 1
2

log(a
b
) and hj ,

1
2

log
( P(τ̃j |τj=1)

P(τ̃j |τj=−1)

)
. Then, for all t ≥ 1,

Γtj = hj +
1

2

∑
k∈Nj

log

(
1 + e2β+2Γt−1

k

e2β + e2Γt−1
k

)
(5.7)
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Proof.

Γtj =
1

2
log

(
P(T tj , τ̃T tj |τj = 1)

P(T tj , τ̃T tj |τj = −1)

)
(a)
=

1

2
log

(
P
(
Nj, τ̃j|τj = 1

)
P
(
Nj, τ̃j|τj = −1

))+ log

( ∏
k∈Nj P

(
T t−1
k , τ̃T t−1

k
|τj = 1

)∏
k∈Nj P

(
T t−1
k , τ̃T t−1

k
|τj = −1

))
(b)
=

1

2
log

(
P
(
Nj|τj = 1

)
P
(
Nj|τj = −1

))+
1

2
log

(
P
(
τ̃j|τj = 1

)
P
(
τ̃j|τj = −1

))+

1

2

∑
k∈Nj

log

( ∑
τk∈{±1} P

(
T t−1
k , τ̃T t−1

k
|τk
)
P
(
τk|τj = 1

)∑
τk∈{±1} P

(
T t−1
k , τ̃T t−1

k
|τk
)
P
(
τk|τj = −1

))
(c)
=hj +

1

2

∑
k∈Nj

log

(
aP
(
T t−1
k , τ̃T t−1

k
|τk = 1

)
+ bP

(
T t−1
k , τ̃T t−1

k
|τk = −1

)
bP
(
T t−1
k , τ̃T t−1

k
|τk = 1

)
+ aP

(
T t−1
k , τ̃T t−1

k
|τk = −1

))
(d)
=hj +

1

2

∑
k∈Nj

log
(1 + e2β+2Γt−1

k

e2β + e2Γt−1
k

)
• (a) holds because conditioned on τj, (Nj, τ̃j) are independent of the rest of the tree, and

(T t−1
k , τ̃T t−1

k
) are independent and identically distributed random variables ∀k ∈ Nj,

• (b) holds also because conditioned on τj, Nj and τ̃j are independent,

• (c) holds because Nj ∼ Pois(a+b
2

) ∀j ∈ T t, and for a node j, Nj children are generated

∼ Pois(a+b
2

), then for each node k ∈ Nj, τk = τj with probability a
a+b

and τk = −τj

with probability b
a+b

,

• (d) holds from the definition of β.

The above result clarifies the connection between inference on trees and the community

detection problem addressed in this chapter. Let Gt
i be the sub-graph of G induced by the

nodes whose distance to i is at most t, and xA be a vector consisting of labels of nodes in

a set of nodes A. Then, the following Lemma, proved in (Mossel and Xu, 2016b), shows the
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Table 5.1. Belief propagation algorithm with side information.
Belief Propagation Algorithm
1: Input: n, t ∈ N, G, y.
2: Initialize: Set R0

i→j = 0, ∀i ∈ G and
j ∈ Ni.
3: For all i ∈ G and j ∈ Ni, run for t − 1
iterations:

Rt−1
i→j = hi +

∑
k∈Ni\{j} log

(
1+e

2β+2Rt−2
k→i

e2β+e
2Rt−2
k→i

)
4: For all i ∈ G, compute:

Rt
i = hi +

∑
k∈Ni log

(
1+e

2β+2Rt−1
k→i

e2β+e
2Rt−1
k→i

)
5: Return x̂BP t with x̂BP t(i) = 2 ×
1{Rti≥0} − 1.

feasibility of approximating (Gt
i,xGti ,yGti) by (T ti , τT ti , τ̃T ti ) with probability approaching one

under certain conditions on the depth t.

Lemma 2 ((Mossel and Xu, 2016b)). For t = t(n) such that (a+b
2

)t = no(1), there exists a

coupling between (G,x,y) and (T, τ, τ̃) such that (Gt
i,xGti ,yGti) = (T ti , τT ti , τ̃T ti ) with proba-

bility converging to 1.

Lemma 2 suggests that the tree-based log likelihood ratio Γti, calculated in Lemma 1, is

an asymptotically accurate representation for belief propagation in our problem. Let x̂BP t

be the output of the belief propagation algorithm after t iterations. The details of the belief

propagation algorithm is presented in Table 5.1.

Define

pG,y(x̂) ,
1

n

n∑
i=1

P{xi 6= x̂i}

to be the expected fraction of misclassified nodes by an estimator x̂. The following lemma

characterizes the asymptotic average behavior of grah-wide error as characterized by pG,y(x̂BP t).

Lemma 3. For t = t(n) such that (a+b
2

)t = no(1), limn→∞ |pG,y(x̂BP t)− q∗T t| = 0.
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Proof. By Lemma 2, (Gt
i,xGti ,yGti) = (T ti , τT ti , τ̃T ti ) with probability converging to 1. This

implies that Rt
i = Γti, and hence, pG,y(x̂BP t) = q∗T t + o(1), where the o(1) term comes from

the coupling error of Lemma 2.

So far the results hold for all a and b as long as (a+b)
2

= no(1) and a
b

= Θ(1). Now let

a = b+µ
√
b, for a fixed positive constant µ. Let U+ and U− be two random variables drawn

according to the distribution of hi conditioned respectively on τi = 1 and τi = −1. Then the

following theorem describes a density evolution that evaluates q∗T t .

Theorem 8. Assume as n→∞, b→∞ and a−b√
b
→ µ, for a fixed positive constant µ. Also,

let h(ν) = E[tanh(ν +
√
νZ + U+)], where Z ∼ N (0, 1). Define ν̄ to be the smallest fixed

point of ν = µ2

4
h(ν). Then:

lim
t→∞

lim
n→∞

pG,y(x̂BP t) =
1

2

(
EU+

[
Q
( ν̄ + U+√

ν̄

)]
+ EU−

[
Q
( ν̄ − U−√

ν̄

)])
(5.8)

Proof. The proof has similarities with (Mossel and Xu, 2016b). For brevity, we only de-

scribe the new developments compared with (Mossel and Xu, 2016b) and the corresponding

arguments.

Define

F (x) ,
1

2
log
(e2x+2β + 1

e2x + e2β

)
(5.9)

and for all t ≥ 1, Φt
j =

∑
k∈Nj F (Φt−1

k + hk). Thus, for all t ≥ 0,

Γtj = hj + Φt
j. (5.10)

We are interested in the moments of Φt
j conditioned on node label τj = −1 and τj = 1.

For convenience of notation, we define new random variables W t
+ and W t

− whose distribution

is identical to Φt
j when τj is equal to 1 and −1, respectively.
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Lemma 4. For all t ≥ 0,

E[W t+1
± ] = ±µ

2

4
E[tanh(W t

+ + U+)] +O(a−
1
2 )

var(W t+1
± ) =

µ2

4
E[tanh(W t

+ + U+)] +O(a−
1
2 )

Proof. The proof for E[W t+1
− ] and var(W t+1

− ) departs from (Mossel and Xu, 2016b, Lemma

7.1) in the distribution of U±.

Define ψ(x) = log(1 + x) − x. It then follows from Taylor expansion that |ψ(x)| ≤ x2.

Then, F (x), defined in (5.9), can be written as:

F (x) = −β +
1

2
log
(
1 +

e4β − 1

e−2(x−β) + 1

)
= −β +

e4β − 1

2
f(x) +

1

2
ψ
(
(e4β − 1)f(x)

)
where f(x) = 1

1+e−2(x−β) . It then follows that:

Φt+1
j =

∑
k∈Nj

F (Φt
k + hk)

=
∑
k∈Nj

[
− β +

e4β − 1

2
f(Φt

k + hk) +
1

2
ψ
(
(e4β − 1)f(Φt

k + hk)
)]

(5.11)

Calculating the mean of the two sides of equation above conditioned on τj = ±1,

E[W t+1
+ ]− E[W t+1

− ] = (
e4β − 1

4
)(a− b)E

[
f(W t

+ + U+)− f(W t
− + U−)

]
+
a− b

4
E
[
ψ
(
(e4β − 1)f(W t

+ + U+)
)
− ψ

(
(e4β − 1)f(W t

− + U−)
)]

(5.12)

By the definition of Γtj and a change of measure, it follows that E[g(Γtj)|τj = −1] =

E[g(Γtj)e
−2Γtj |τj = 1] for any measurable function g such that the expectations are well

defined. Also, notice that:

(
e4β − 1

4
)(a− b) =

µ2

2

a+ b

2b
=
µ2

2
(1 +

a− b
2b

) (5.13)

=
µ2

2
+O(a−

1
2 ) (5.14)
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Moreover, since |ψ(x)| ≤ x2 and |f(x)| ≤ 1, it follows that ψ
(
(e4β − 1)f(W t

+ + U+)
)
−

ψ
(
(e4β − 1)f(W t

− + U−)
)
≤ 2(e4β − 1)2. Therefore,

a− b
4

E
[
ψ
(
(e4β − 1)f(W t

+ + U+)
)
− ψ

(
(e4β − 1)f(W t

− + U−)
)]
≤ a− b

2
(e4β − 1)2

= O(a
−1
2 ) (5.15)

Combining (5.12), (5.14), and (5.15),

E[W t+1
+ ] = E[W t+1

− ] +
(µ2

2
+O(a

−1
2 )
)
E
[
f(W t

+ + U+)(1− e−2(W t
++U+))

]
+O(a

−1
2 )

(a)
=
µ2

4
E[tanh(W t

+ + U+)]−O(a
−1
2 )E[e−2(W t

++U+)] +O(a
−1
2 )

(b)
=
µ2

4
E[tanh(W t

+ + U+)] +O(a
−1
2 ) (5.16)

where (a) holds from the definition of f(x), the definition of tanh(x) and the fact that

f(x) = 1
1+e−2x + O(a

−1
2 ) and (b) holds because by change of measure E[e−2(W t

++U+)] =

E[e−2(W t
−+U−)e2(W t

−+U−)] = 1. This concludes the proof for E[W t+1
+ ]. The proof for var(W t+1

+ )

follows similarly.

Lemma 5. Assume α−,m, α+,m are constants as n→∞. Let h(ν) = E[tanh(ν+
√
νZ+U+)],

where Z ∼ N (0, 1). Define (νt : t ≥ 0) recursively by ν0 = 0 and νt+1 = µ2

4
h(νt). Then, for

any fixed t ≥ 0, as n→∞:

sup
x

∣∣∣∣P{W t
± ∓ νt√
νt

≤ x

}
− P{Z ≤ x}

∣∣∣∣ = O(a−
1
2 ) (5.17)

The proof of Lemma 5 departs from (Mossel and Xu, 2016b, Lemma 7.3) only in the

distribution of U±, and is therefore omitted for brevity.

In view of Lemmas 4, 5, for all j, (Φt
j|τj = ±1) ∼ N (±νt, νt). Hence,

lim
n→∞

P(Γtj > 0|τj = −1) = EU−
[
Q
( ν̄ − U−√

ν̄

)]

lim
n→∞

P(Γtj < 0|τj = 1) = EU+

[
Q
(νt + U+√

νt

)]
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where Q(x) =
∫∞
x

1√
2π
e
−y2

2 dy. Hence, from Lemma 3,

lim
n→∞

pG,y(x̂BP t) = lim
n→∞

q∗T t =
1

2

(
EU+

[
Q
(νt + U+√

νt

)]
+ EU−

[
Q
(νt − U−√

νt

)])
It remains to show that limt→∞ νt = ν̄.

Lemma 6. Let h(ν) = E[tanh(ν+
√
νZ+U+)], where Z ∼ N (0, 1). Then, h(ν) is continuous

on [0,∞] and h
′
(ν) ≥ 0 for ν ∈ (0,∞).

The proof of Lemma 6 departs from (Mossel and Xu, 2016b, Lemma 7.4) only in the

distribution of U±, and is therefore omitted for brevity.

Recall that ν0 = 0. By direct substitution ν0 ≤ ν1. Now, let νt+1 ≥ νt. By Lemma 6,

νt+2 − νt+1 =
µ2

4
(h(νt+1)− h(νt)) =

µ2

4
h
′
(x) (5.18)

for some x ∈ (νt, νt+1). By Lemma 6, h
′
(x) ≥ 0 for x ∈ (0,∞). Thus, νt+2 ≥ νt+1, and hence,

it has been shown by induction on t that νt is non-decreasing in t. Also, note that ν0 = 0 ≤ ν̄.

If we assume that νt ≤ ν̄, then by monotonicity of h, we have: νt+1 = µ2

4
h(νt) ≤ µ2

4
h(ν̄) = ν̄.

Thus, limt→∞ νt = ν̄.

5.2.1 Exit Analysis

Equation (5.8) characterizes the asymptotic residual error of belief propagation for recovering

binary symmetric communities with side information. However, we seek answers to some

natural and interesting questions that are not directly apparent by inspection from (5.8),

such as: What is the effect of quality and quantity of side information on the residual

error? How is this related to the amount of information provided by the graph about node

labels? Can side information dominate the performance of belief propagation for community

detection, and if so, under what conditions does that happen? In this section, we show that
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EXIT charts can provide answers to these questions, via existence and location of crossing

points of EXIT curves.

We begin by calculating the mutual information between the label of node i, xi, and its

belief at time t, namely Rt
i.

I(xi, R
t
i)

=1−H(xi|Rt
i)

=1− 1

2

∫ ∞
−∞

(
M∑
m=1

α+,m
e
−(y−(vt+hm))2

2vt

√
2πvt

)
log2

(
1 +

∑M
m=1 α−,me

−(y−(−vt+hm))2

2vt∑M
m=1 α+,me

−(y−(vt+hm))2

2vt

)
dy

− 1

2

∫ ∞
−∞

(
M∑
m=1

α−,m
e
−(y−(−vt+hm))2

2vt

√
2πvt

)
log2

(
1 +

∑M
m=1 α+,me

−(y−(vt+hm))2

2vt∑M
m=1 α−,me

−(y−(−vt+hm))2

2vt

)
dy

(5.19)

For simplicity and to show the power of EXIT analysis in drawing insights that cannot

be easily deduced from belief propagation equations, we consider a concrete example with

M = 3. More precisely, for each node i, we observe yi = xi with probability ε(1 − α) or

yi = −xi with probability εα or yi = 0 with probability 1 − ε, independently at random,

for α ∈ (0, 0.5) and ε ∈ [0, 1]. Thus, U+ = −U−, where U+ ∈ {γ,−γ, 0} with probabilities

ε(1 − α), εα and 1 − ε, respectively, where γ , 1
2

log
(

1−α
α

)
. Note that for fixed α and ε,

I(xi, R
t
i) is function of νt only. Hence, we will denote it by J(νt).

Based on the belief propagation algorithm described in Table 5.1, at iteration t, node

i receives the beliefs of all nodes j ∈ N(i) calculated at iteration (t − 1). We denote the

information node i receives from node j as Iin. Then, node i computes the new information

it has at iteration t. We denote this information as Iout. Both Iin and Iout can be calculated

using (5.19) as J(νt−1) and J(νt), respectively. Since J(νt) is monotonically increasing in

νt (Ten Brink, 2001), J(νt) is reversible. Thus, νt = J−1(I(xi, R
t
i)). Moreover, νt−1 and νt

are related by

νt+1 =
µ2

4
h(νt)
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therefore Iin and Iout for node i are related as follows

Iout =

J

(
µ2

4

[
ε(1− α)EZ [tanh(J−1(Iin) +

√
J−1(Iin)Z + γ)]+

εαEZ [tanh(J−1(Iin) +
√
J−1(Iin)Z − γ)] + (1− ε)EZ [tanh(J−1(Iin) +

√
J−1(Iin)Z)]

])
(5.20)

There is a fundamental difference between using EXIT charts in the context of community

detection in stochastic block models and EXIT charts in the standard context of coding

theory. Taking Low Density Parity Check (LDPC) Codes as an example, each variable node

i receives from a check node j the information or belief of that check node about whether the

variable node is one or zero. Thus, the input log-likelihood ratio received by variable node i

is actually calculated conditioned on the value of the variable node i. Community detection

presents a different scenario: Each node i receives the belief of node j. However, the belief of

node j is calculated conditioned on the value of node j, not the value of node i. This reflects

the fundamental differences between the bipartite graph representing FEC codewords and a

random graph representing relationships of randomly distributed node labels. The former is

fundamentally asymmetric, where parity nodes carry no new information conditioned on bit

nodes. On the contrary, in community detection, nodes are (stochastically) symmetric and

all of them carry information.

In community detection, for a node i at iteration t, we define Iin = I(xj, R
t−1
j ), and

Iout = I(xi, R
t
i). In other words, the amount of information transferred from each node

outward represents how confident (in terms of mutual information) is the belief of that node

about the value of its own label.

To compute J and J−1, we apply curve fitting using the Levenberg Marquardt algo-

rithm (Ten Brink, 2001). Figures 5.1, 5.2, and 5.3 show the EXIT curves for different values

of µ, α and ε. From these figures, we can deduce the following:
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Figure 5.1. EXIT Chart for µ = 2.
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Figure 5.2. EXIT Chart for µ = 6.
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Figure 5.3. EXIT Chart for α = 0.4 and ε = 1.

• Side information, with any quantity (any ε 6= 0), regardless of the quality (e.g. α = 0.4),

breaks the symmetry. Note that without side information the curves get stuck at the

trivial (0, 0) point, implying that the belief propagation algorithm is a trivial random

guessing estimator (Saad et al., 2016). This is true for all values of µ.

• The starting point of the curves, which indicates the quality of the initial estimate,

depends crucially on the values of µ, α, ε. For small values of µ, e.g. µ = 2, EXIT

charts reveal that the quantity of side information is not very important unless its

quality is excellent. This can be seen in Figure 5.1: when α = 0.4, the starting point

for all values of ε 6= 0 is almost the same. On the other hand, when α = 0.1, the effect

of ε on the starting point of the curve can be very significant, and the gap is around

0.7 between ε = 1 and ε = 0.1. For large values of µ, e.g. µ = 6, the behavior changes.

EXIT charts show that the effect of ε becomes more significant even when α = 0.4.

This is because larger values of µ imply larger difference between a and b, which means

156



easier detection (quick convergence). Therefore when µ is large, the quality of the

initial guess can make a bigger difference, proportionally.

• The intersection points on the curve exhibit almost the same behavior as the starting

point. Note that the intersection point determines the value of ν̄, which determines the

probability of error. In Figure 5.1, when α = 0.4, the intersection points are very close

in value for ε 6= 0. This shows that the quantity of side information does not enhance

the performance of belief propagation for small values of µ. On the other hand, when

α = 0.1, the effect of ε on the intersection point of the curve (i.e., probability of error)

is significant, even when µ = 2.

• EXIT charts also show that when the graph is not very informative, e.g., µ = 2, even

when side information provides significant information, e.g., when α = 0.1, ε = 1, the

residual error does not improve markedly over the course of iterations. On the other

hand, for highly-informative graphs, e.g., µ = 6, even when side information provides

a small amount of information, e.g., when α = 0.4, ε = 0.1, the eventual residual error

improves significantly compared with the starting point.

• Although side information can break symmetry, even with high quality, e.g., α = 0.1,

unless ε → 1, one cannot hope to reach a vanishing fraction of misclassified nodes

for a graph with small µ. This stems from the fact that the two communities are

symmetric and for nodes with erased side information, the only source of information

is the messages coming from its neighbors.

• When µ = 6, for all values of α ∈ (0, 0.5) and ε ∈ (0, 1], one may achieve a vanishing

fraction of misclassified nodes. This is because the only intersection point on the curve

is approaching (1, 1), which is the maximum mutual information available for binary

variables.
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• Figure 5.3 shows that as µ increases, there is always an intersection point. This sug-

gests that one could not hope for vanishing residual error, i.e., weak recovery, except

when µ → ∞ or α → 0. This suggests that belief propagation for recovering binary

symmetric communities with side information does not have a phase transition for a

finite µ.

5.3 One Community Stochastic Block Model

We begin by studying the performance of belief propagation on a random tree with side

information. Then, we show that the same performance is possible on a random graph

drawn according to the one community stochastic block model with side information, using

a coupling lemma (Hajek et al., 2018).

Let T be an infinite tree with nodes indexed by variable i, each of them possessing a

label τi ∈ {0, 1}. The root is node i = 0. The sub-tree of depth t rooted at node i is denoted

T ti . The sub-tree rooted at i = 0 with depth t is referenced often and is denoted simply T t.

Unlike the random graph counterpart, the tree and its node labels are generated together as

follows: τ0 is a Bernoulli-K
n

random variable. For any i ∈ T , the number of its children with

label 1 is a random variable Hi that is Poisson with parameter Kp if τi = 1, and Poisson

with parameter Kq if τi = 0. The number of children of node i with label 0 is a random

variable Fi which is Poisson with parameter (n−K)q, regardless of the label of node i. The

side information τ̃i takes value in a finite alphabet {u1, · · · , uM}. The set of all labels in T

is denoted with τ , all side information with τ̃ , and the labels and side information of T t

with τ t and τ̃ t respectively. The likelihood of side information continues to be denoted by

α+,m, α−,m, as earlier.

The goal is to infer the label τ0 given observations T t and τ̃ t. The error probability of

the estimator τ̂0(T t, τ̃ t) is:

pte ,
K

n
P(τ̂0 = 0|τ0 = 1) +

n−K
n

P(τ̂0 = 1|τ0 = 0) (5.21)
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The maximum a posteriori (MAP) detector minimizes pte is given by τ̂MAP = 1{Γt0≥ν}, where

Γt0 is the log likelihood ratio,

Γt0 , log

(
P(T t, τ̃ t|τ0 = 1)

P(T t, τ̃ t|τ0 = 0)

)
(5.22)

and ν = log(n−K
K

).

Lemma 7. Let Ni denote the children of node i, Ni , |Ni| and hi , log
(P(τ̃i|τi=1)
P(τ̃i|τi=0)

)
. Then,

Γt+1
i = −K(p− q) + hi +

∑
k∈Ni

log

( p
q
eΓtk−ν + 1

eΓtk−ν + 1

)
(5.23)

Proof. The independent splitting property of the Poisson distribution is used to give an

equivalent description of the numbers of children having a given label for any vertex in the

tree, as follows. The set of children of node i is denoted Ni with cardinality Ni = |Ni|. If

τi = 1, the number of its children Ni ∼ Poi(Kp + (n − K)q) and each of these children j,

independently of everything else has label τj = 1 with probability Kp
Kp+(n−K)q

and τj = 0 with

probability (n−K)q
Kp+(n−K)q

. If τi = 0 the number of its children Ni ∼ Poi(nq) and each of these

children j, independent from everything else, has label τj = 1 with probability K
n

and τj = 0

with probability (n−K)
n

. Finally, for each node i in the tree, side information τ̃i is observed

according to α+,m, α−,m. Then:

Γt+1
0 = log

(
P(T t+1, τ̃ t+1|τ0 = 1)

P(T t+1, τ̃ t+1|τ0 = 0)

)

= log

(
P(N0, τ̃0, {T tk}k∈N0 , {τ̃ tk}k∈N0|τ0 = 1)

P(N0, τ̃0, {T tk}k∈N0 , {τ̃ tk}k∈N0|τ0 = 0)

)
(a)
= log

(
P
(
N0, τ̃0|τ0 = 1

)
P
(
N0, τ̃0|τ0 = 0

))+ log

(∏
k∈N0

P
(
T tk, τ̃

t
k|τ0 = 1

)∏
k∈N0

P
(
T tk, τ̃

t
k|τ0 = 0

))
(b)
= log

(
P
(
N0|τ0 = 1

)
P
(
N0|τ0 = 0

))+ log

(
P
(
τ̃0|τ0 = 1

)
P
(
τ̃0|τ0 = 0

))

+
∑
k∈N0

log

(∑
τk∈{0,1} P

(
T tk, τ̃

t
k|τk
)
P
(
τk|τ0 = 1

)∑
τk∈{0,1} P

(
T tk, τ̃

t
k|τk
)
P
(
τk|τ0 = 0

))
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(c)
= −K(p− q) + h0 +

∑
k∈N0

log(

p
q
eΓtk−ν + 1

eΓtk−ν + 1
) (5.24)

where

• (a) holds because conditioned on τ0 (N0, τ̃0) are independent of the rest of the tree and

also (T tk, τ̃
t
k) are independent random variables ∀k ∈ N0,

• (b) holds because conditioned on τ0, N0 and τ̃0 are independent,

• (c) holds by the definition of N0 and h0 and because τk is Bernoulli- Kp
Kp+(n−K)q

if τ0 = 1

and is Bernoulli-K
n

if τ0 = 0.

The inference problem defined on the random tree is coupled to the recovering of a

hidden community with side information through a coupling lemma (Hajek et al., 2018),

which shows that under certain conditions, the neighborhood of a fixed node i in the graph

is locally a tree with probability converging to one. Thus, the belief propagation algorithm

defined for random trees can be used on the graph as well. The proof of the coupling lemma

depends only on the tree structure, implying that it also holds for our system model where

the side information is independent of the tree structure given the labels.

Define Gt̂
u to be the subgraph containing all nodes that are at a distance at most t̂ from

node u and define xt̂u and Y t̂
u to be the set of labels and side information of all nodes in Gt̂

u,

respectively.

Lemma 8 (Coupling Lemma (Hajek et al., 2018)). Suppose that t̂(n) are positive integers

such that (2 + np)t̂(n) = no(1). Then, for any node u in the graph, there exists a coupling

between (G,x,Y ) and (T, τ , τ̃ ) such that:

P((Gt̂
u,x

t̂
u,Y

t̂
u) = (T t̂, τ t̂, τ̃ t̂)) ≥ 1− n−1+o(1) (5.25)

where for convenience of notation, the dependence of t̂ on n is made implicit.
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Table 5.2. Belief propagation algorithm for community recovery with side information.
Belief Propagation Algorithm

1. Input: n,K, t ∈ N, G and Y .

2. For all nodes i and j ∈ Ni, set R0
i→j = 0.

3. For all nodes i and j ∈ Ni, run t − 1 iterations of belief
propagation as in (5.26).

4. For all nodes i, compute its belief Rt
i based on (5.27).

5. Output C̃ = {Nodes corresponding to K largest Rt
i}.

Now, we are ready to present the belief propagation algorithm for community recovery

with bounded side information. Define the message transmitted from node i to its neighbor-

ing node j at iteration t+ 1 as:

Rt+1
i→j = hi −K(p− q) +

∑
k∈Ni\j

M(Rt
k→i) (5.26)

where hi = log(P(yi|xi=1)
P(yi|xi=0)

), Ni is the set of neighbors of node i and M(x) = log(
p
q
ex−ν+1

ex−ν+1
).

The messages are initialized to zero for all nodes i, i.e., R0
i→j = 0 for all i ∈ {1, · · · , n} and

j ∈ Ni. Define the belief of node i at iteration t+ 1 as:

Rt+1
i = hi −K(p− q) +

∑
k∈Ni

M(Rt
k→i) (5.27)

Algorithm 5.2 presents the proposed belief propagation algorithm for community recovery

with side information.

If in Algorithm 5.2 we have t = t̂(n), according to Lemma 8 with probability converging

to one Rt
i = Γti, where Γti was the log-likelihood defined for the random tree. Hence, the

performance of Algorithm 5.2 is expected to be the same as the MAP estimator defined as

τ̂MAP = 1{Γti≥ν}, where ν = log(n−K
K

).
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We now study the asymptotic behavior of Γti. Define for t ≥ 1 and any node i:

ψti , −K(p− q) +
∑
j∈Ni

M(hj + ψt−1
j ) (5.28)

where

M(x) , log
( p
q
ex−ν + 1

ex−ν + 1

)
= log

(
1 +

p
q
− 1

1 + e−(x−ν)

)
.

Then, Γt+1
i = hi + ψt+1

i and ψ0
i = 0 ∀i ∈ T t. Let Zt

0 and Zt
1 denote random variables drawn

according to the distribution of ψti conditioned on xi = 0 and xi = 1, respectively. Similarly,

let U0 and U1 denote random variables drawn according to the distribution of hi conditioned

on τi = 0 and τi = 1, respectively.

Lemma 9. ((Saad and Nosratinia, 2018a, Lemma 11)) Assume λ, α+,m

α−,m
and ν are constants

independent of n while nq,Kq
n→∞
−−→ ∞. Then, for all t ≥ 0:

E[Zt+1
0 ] =

−λ
2
bt + o(1) (5.29)

E[Zt+1
1 ] =

λ

2
bt + o(1) (5.30)

var(Zt+1
0 ) = var(Zt+1

1 ) = λbt + o(1) (5.31)

The following lemma shows that the distributions of Zt
1 and Zt

0 are asymptotically Gaus-

sian.

Lemma 10. ((Saad and Nosratinia, 2018a, Lemma 12)) Assume λ, α+,m

α−,m
and ν are constants

independent of n while nq,Kq
n→∞
−−→ ∞. Let φ(x) be the cumulative distribution function

(CDF) of a standard normal distribution. Define v0 = 0 and vt+1 = λEZ,U1 [ 1

e−ν+e−(
vt
2 +
√
vtZ)−U1

],

where Z ∼ N (0, 1). Then, for all t ≥ 0:

sup
x

∣∣P(Zt+1
0 + vt+1

2√
vt+1

≤ x
)
− φ(x)

∣∣→ 0 (5.32)

sup
x

∣∣P(Zt+1
1 − vt+1

2√
vt+1

≤ x
)
− φ(x)

∣∣→ 0 (5.33)
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The following lemma characterizes the asymptotic residual error of belief propagation

with side information for recovering a single community.

Lemma 11. Assume λ, α+,m

α−,m
and ν are constants independent of n while nq,Kq

n→∞
−−→ ∞.

Let Ĉ define the community recovered by the MAP estimator, i.e. Ĉ = {i : Γti ≥ ν}. Then,

lim
nq,Kq→∞

lim
n→∞

E[Ĉ4C∗]
K

=
n−K
K

EU0 [Q(
ν + vt

2
− U0√
vt

)] + EU1 [Q(
−ν + vt

2
+ U1√

vt
)] (5.34)

where v0 = 0 and vt+1 = λEZ,U1 [ 1

e−ν+e−(
vt
2 +
√
vtZ)−U1

], and Z ∼ N (0, 1).

Proof. Let pe,0, pe,1 denote Type I and Type II errors for recovering τ0. Then, the proof

follows from Lemmas 9 and 10, using

E[Ĉ4C∗]
K

=
n

K
pte =

n−K
K

pe,0 + pe,1.

5.3.1 Exit Analysis

An interesting and natural question is: does belief propagation with side information have a

phase transition? If yes, what is the threshold? Equation (5.34) shows the residual asymp-

totic error of belief propagation for detecting one community with side information. However,

it does not provide a direct answer regarding phase transition. This section demonstrates

the utility of EXIT charts in the understanding of phase transition.

We begin by calculating the mutual information between the label of node i, xi, and its

belief at time t, Rt
i as follows:

I(xi, R
t
i)

=− K

n
log(

K

n
)− (1− K

n
) log(1− K

n
)−H(xi|Rt

i)

=− K

n
log(

K

n
)− (1− K

n
) log(1− K

n
)
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− K

n

∫ ∞
−∞

(
M∑
m=1

α+,m
e
−(y−(vt+hm))2

2vt

√
2πvt

)
log2

(
1 +

(n−K)
∑M

m=1 α−,me
−(y−(−vt+hm))2

2vt

K
∑M

m=1 α+,me
−(y−(vt+hm))2

2vt

)
dy

− n−K
n

∫ ∞
−∞

(
M∑
m=1

α−,m
e
−(y−(−vt+hm))2

2vt

√
2πvt

)
log2

(
1 +

K
∑M

m=1 α+,me
−(y−(vt+hm))2

2vt

(n−K)
∑M

m=1 α−,me
−(y−(−vt+hm))2

2vt

)
dy

(5.35)

where hm = log(u+,m

u−,m
).

For a concrete demonstration of the capabilities of EXIT analysis, we use the following

model for side information. Let M = 2, where for each node i, yi = xi with probability 1−α,

and yi = 1 − xi with probability α, where α ∈ [0, 0.5]. Note that for a fixed α, I(xi, R
t
i) is

function of vt only. Hence, we will denote it by J(vt).

Based on the belief propagation algorithm described in Table 5.2, at iteration t, node i

receives the beliefs of all nodes j ∈ Ni calculated at iteration (t − 1). We denote the input

information to node i from node j as Iin. Then, node i computes the new information it

has at iteration t, which we call Iout. Note that Iin and Iout can be calculated using (5.35)

as J(vt−1) and J(vt), respectively. Since J(vt) is monotonically increasing in vt (Ten Brink,

2001), J(vt) is reversible. Thus, vt = J−1(I(xi, R
t
i)). Moreover, since vt−1 and vt are related

by:

vt = λEZ,U1

[
1

e−ν + e−(
vt−1

2
+
√
vt−1Z)−U1

]
,

we can define the relation between Iin and Iout for node i as follows:

Iout =J

(
λ

[
αEZ

[(
e−ν + e−(

J−1(Iin)

2
+
√
J−1(Iin)Z)−log( α

1−α )
)−1]

+

(1− α)EZ
[(
e−ν + e−(

J−1(Iin)

2
+
√
J−1(Iin)Z)−log( 1−α

α
)
)−1]])

(5.36)

To compute J and J−1, we apply curve fitting using the Levenberg Marquardt

algorithm (Ten Brink, 2001). Figures 5.4, 5.5 and 5.6 show the EXIT curves for different

values of λ, and α.
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Figure 5.4. EXIT charts for one community detection with λ = 2
3e

for different values of α.

• Figure 5.4 shows a threshold for λ, such that the EXIT curves do not intersect above

this threshold and they do below the threshold. Hence, belief propagation with side

information experiences a phase transition. Moreover, above the threshold, the maxi-

mum mutual information is attained, and hence, a vanishing residual error is possible

(weak recovery). This particular example is constructed for a graph whose probabil-

ity distribution does not provide sufficient information alone for weak recovery. This

example demonstrates clearly the role of side information in weak recovery especially

in conditions where, without it, weak recovery is not attainable. EXIT analysis thus

confirms the threshold effect that was first reported in (Saad and Nosratinia, 2018a),
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but more importantly, EXIT demonstrates the phase transition behavior in a visually

compelling manner that is easy to grasp, with relatively straight forward calculations.

• To elaborate, EXIT charts bring further clarity to the nature of the belief propagation

threshold, by showing how the iterations of the belief propagation, at threshold, just

barely manage to escape through a bottleneck and approach the maximum likelihood

solution. EXIT also clearly demonstrates the residual error of belief propagation on

the two sides of the phase transition (the jump in error probability at phase transition)

which is not as easy to see via other analytical methods.

• Thus, the EXIT method demonstrates that while the thresholding phenomenon for be-

lief propagation is indeed sharp in terms of transition across parameters of the model

for the graph and side information, however, close to the threshold the belief propaga-

tion might pay a heavy price in terms of the number of iterations needed to converge.

Thus, in the sense of the cost of the algorithm, the behavior of belief propagation near

the threshold is something that is especially well understood via the EXIT analysis.

The curvature (second derivative) of the EXIT curves at the point of bottleneck is

an indication of the iterations needed close to the threshold. This effect is not visible

to the other analytical methods that, typically, first let the number of iterations go

to infinity, and then observe the (asymptotic, in iterations) performance of the belief

propagation algorithm across the landscape of the parameters of the system model.

• As mentioned earlier, Fig. 5.4 shows the thresholding effect for the side information

where the graphical information is fixed. In order to complete the picture, we also

performed experiments where we hold the quality of the side information to be fixed

(via a fixed α), while we allow the graph to become progressively more informative

(characterized by improving λ). This result is shown in Figures 5.5 and 5.6. In these
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Figure 5.5. EXIT Chart for one community detection with α = 0.4.

figures, the thresholding effect for graphical information is shown in the presence of

side information.
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Figure 5.6. EXIT Chart for one community detection with α = 0.4.
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CHAPTER 6

CONCLUSION

This dissertation studies the community detection problem when non-graphical observations

(side information) is available. Specifically, the following questions are considered: 1) when

can side information change the fundamental limits of the community detection problem?

2) Can we devise efficient algorithms that incorporate side information? 3) what is the

asymptotic performance of these algorithms?

Under the binary symmetric stochastic block model, we study the effect of quality and

quantity of side information on the phase transition of exact recovery. To model quality, we

propose three different discrete-valued side information models, where in all of them the LLR

of side information is allowed to vary with n, while the number of observations per node is

fixed. To model quantity, we assume each node observes a vector of i.i.d. observations, where

the LLR is fixed and the dimension of the vector is allowed to vary with n. In all models, tight

sufficient and necessary conditions for exact recovery are characterized. We show that for side

information to change the phase transition of exact recovery, either the quality or quantity

of side information has to grow at least as fast as Ω(log(n)). For the sufficient conditions,

we propose a two-step efficient algorithm and show that it is asymptotically optimal for all

the proposed models. Moreover, we characterize a more general phase transition when side

information is infinite-valued or continuous.

Under the single community stochastic block model, we study the effect of quality and

quantity of side information on the phase transition (information limits) of both weak and

exact recovery, as well as the phase transition of an efficient algorithm, namely, belief prop-

agation. We model a varying quantity and quality of side information by associating with

each node a vector (i.e., non-graphical) observation whose dimension represents the quantity

of side information and whose (element-wise) log-likelihood ratios (LLRs) with respect to

node labels represents the quality of side information. First, for the information limits, when
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the dimension of side information for each node varies but its LLR is fixed across n, tight

necessary and sufficient conditions are calculated for both weak and exact recovery. The

results show which classes of side information can change the information limits. Also, it is

shown that under the same sufficient conditions, weak recovery is achievable even when the

size of the community is random and unknown. The results for weak recovery are shown

under maximum likelihood detection, while the results for exact recovery are shown under a

two-stage algorithm. Subject to some mild conditions on the exponential moments of LLR,

the results apply to both discrete as well as continuous-valued side information. When the

side information for each node has fixed dimension but varying LLR, we characterize tight

necessary and sufficient conditions for exact recovery, and necessary conditions for weak

recovery. Under varying LLR, our results apply to side information with finite alphabet.

Second, the phase transition of belief propagation in the presence of side information is

characterized, where we assumed the side information per node has a fixed dimension. When

the LLRs are fixed across n, tight necessary and sufficient conditions are calculated for weak

recovery. We show that side information provides a gain that is proportional to the chi-

squared distance between the conditional distributions of side information. Furthermore, it

is shown that when belief propagation fails, no local algorithm can achieve weak recovery. We

compare belief propagation phase transition for weak recovery with maximum likelihood, and

it is shown than belief propagation is strictly inferior to the maximum likelihood detector.

Numerical results on finite synthetic data-sets are presented that validated our asymptotic

analysis and showed its relevance to even graphs of moderate size. The results show that

when weak recovery is not asymptotically feasible, the fraction of misclassified nodes is

significant, and when weak recovery is asymptotically feasible, the fraction of misclassified

nodes is small. We also calculate conditions under which belief propagation followed by a

local voting procedure achieves exact recovery. When the side information has variable LLR

across n, the belief propagation misclassification rate is calculated using density evolution,

and we show sufficient conditions under which weak recovery is always feasible.
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Finally, we propose a new tool, namely EXIT, for the analysis of the performance of

local message passing algorithms, e.g., belief propagation, for community detection with

side information. EXIT analysis has been used to understand the behavior of iterative

algorithms in the context of error control and communication systems. We apply EXIT

analysis to single-community detection as well as to binary symmetric community detection,

each with side information, and leveraged this technique to provide insights on: 1) The effect

of the quality and quantity of side information on the performance of belief propagation, e.g.

probability of error, 2) The asymptotic threshold for weak recovery, achieving a vanishing

residual error, 3) The performance of belief propagation near the optimal threshold, 4) The

performance of belief propagation through the first few iterations, and 5) Approximating the

number of iterations needed for convergence.
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