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PREFACE
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part of the dissertation the text of an original paper or papers submitted for publication.
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Dallas.” It must include a comprehensive abstract, a full introduction and literature review,

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin, and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student’s

contribution to the work and acknowledging the contribution of the other author(s). The

signatures of the Supervising Committee which precede all other material in the dissertation

attest to the accuracy of this statement.
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Publication No.
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The University of Texas at Dallas, 2012

Supervising Professor: Dr. Aria Nosratinia

This dissertation has two parts: the first part studies multi-antenna broadcast channels with

nodes of varying mobility, and the second part studies capacity limits of spectrum-sharing

networks.

In the multi-antenna broadcast channel without transmit-side channel state information

(CSIT), it has been known that when all receivers have channel state information (CSIR),

the degrees of freedom (DoF) cannot be improved beyond what is available via TDMA.

The same is true if none of the receivers possess CSIR. This dissertation shows that an

entirely new scenario emerges when receivers have unequal CSIR: orthogonal transmission

is no longer DoF-optimal. In particular, when one receiver has CSIR and the other does

not, two product superposition methods based on Grassmannian signaling are proposed

and analyzed, and are shown to attain the optimal degrees of freedom for a wide set of

antenna configurations and channel coherence times. Furthermore, the product superposition

is extended to the domain of coherent signaling with pilots, the advantages of product

superposition are demonstrated in low-SNR as well as high-SNR, and DoF optimality is

established in a wider set of receiver antenna configurations. Two classes of decoders, with
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and without interference cancellation, are studied, and the effect of power allocation and

partial CSI at the base station are investigated.

The second part of this dissertation investigates capacity limits of spectrum-sharing net-

works. Unlike point-to-point cognitive radio, where the constraint imposed by the primary

rigidly curbs the secondary throughput, multiple secondary users have the potential to more

efficiently harvest the spectrum and share it among themselves. Efficient methods are pro-

posed and analyzed to exploit multiuser diversity in cognitive broadcast channels, cognitive

multiple access channel (MAC) and cognitive relay channels. The optimal growth rate of

the capacity of these channels is established, and the tradeoff between scaling the secondary

throughput and reducing interference on the primary is highlighted and characterized.
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CHAPTER 1

INTRODUCTION

1.1 Background

Wireless communication has attracted significant interests in the past decades. To sus-

tain ever increasing demand for mobile data, various advanced wireless technologies have

been developed to maximize spectrum efficiency. Among these technologies, multiple-input-

multiple-output (MIMO) has shown great potential to improve data rate and are widely used

by standards, e.g., Long Term Evolution (LTE) and IEEE 802.22.

MIMO systems use multiple antennas at transmitter and receiver and may send multiple

data streams to one or several receivers at the same time and frequency, thus the overall

spectral efficiency can be greatly increased. To harvest the gain of MIMO, the receiver(s)

must reliably estimate the channel to the transmitter, and, if necessary, feed back the channel

state information (CSI) to the transmitter in a timely fashion. It is widely understood that

CSI acquisition is costly in resources and sometimes may be challenging or even infeasible,

and therefore is one key of issues that limit the gain promised by MIMO.

Cognitive radio (CR) aims to improve spectral efficiency from a different perspective. It

is known that the spectrum assigned to licensed (primary) users is severely under-utilized [1].

The utilization of spectrum can be increased by allowing cognitive radio (secondary) users

to access the same spectrum as primary users, as long as performance degradation of the

primary users remains acceptable. In general the secondary users can only use the spectrum

when the spectrum demand of primary users is not heavy or the interference between the

primary and secondary users is small due to, e.g., channel fading or spatial separation. It

is challenging for the secondary users to fulfill constraints imposed by the primary system

while maximizing their own data rate.

1
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1.2 Motivations and Objectives

This dissertation studies the MIMO broadcast channels and cognitive radio networks.

1.2.1 MIMO Broadcast Channels

In the multi-antenna broadcast channel without transmit-side channel state information

(CSIT), it has been known that when all receivers have channel state information (CSIR),

the degrees of freedom (DoF) cannot be improved beyond what is available via TDMA.

The same is true if none of the receivers possess CSIR. This dissertation shows that an

entirely new scenario emerges when receivers have unequal CSIR. In particular, orthogonal

transmission is no longer DoF-optimal when one receiver has CSIR and the other does

not. A multiplicative superposition is proposed for this scenario and shown to attain the

optimal degrees of freedom under a wide set of antenna configurations and coherence lengths.

The product superposition is extended to the domain of coherent signaling with pilots, the

advantages of product superposition are demonstrated in low-SNR as well as high-SNR.

1.2.2 Cognitive Radio Networks

Unlike point-to-point cognitive radio, where the constraint imposed by the primary rigidly

curbs the secondary throughput, multiple secondary users have the potential to more ef-

ficiently harvest the spectrum and share it among themselves. The main objective of the

dissertation is to investigate throughput limits and efficient methods to exploit multiuser

diversity in cognitive radios. In a cognitive (secondary) network which is subject to in-

terference power constraints imposed by a primary system, it is desirable to mitigate the

interference on the primary and to harvest multiuser diversity gains in the secondary.

This problem of cognitive radio is often formulated as maximizing the secondary rate

subject to interference constraints on the primary, or as the dual problem of minimizing the

interference on the primary subject to a fixed rate for the secondary. Thus, reducing the in-

terference footprint of the secondary is of paramount interest in spectrum sharing. Multihop
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relaying and cooperative communication is known to significantly mitigate interference and

increase the sum-throughput in many multi-user scenarios [2], among others in broadcast

channels [3], multiple access channels [4] and interference channels [5]. This has motivated

the use of relays in spectrum sharing networks [6–12]. Another objective of the dissertation

is to investigate efficient secondary relaying methods as well as the fundamental secondary

throughput limits.

1.3 Contributions and Outline

Chapter 2 proposes a multiplicative superposition, and shows that it attains the optimal

degrees of freedom under a wide set of antenna configurations and coherence lengths. Two

signaling schemes are constructed based on the multiplicative superposition. In the first

method, the messages of the two receivers are carried in the row and column spaces of a

matrix, respectively. This method works better than orthogonal transmission while reception

at each receiver is still interference-free. The second method uses coherent signaling for the

receiver with CSIR, and Grassmannian signaling for the receiver without CSIR. This second

method requires interference cancellation at the receiver with CSIR, but achieves higher DoF

than the first method.

Chapter 3 extends product superposition to the domain of coherent signaling with pilots,

demonstrates the advantages of product superposition in low-SNR as well as high-SNR, and

established DoF optimality in a wider set of receiver antenna configurations. Two classes

of decoders, with and without interference cancellation, are studied, and the effect of power

allocation and partial CSI at the base station are also investigated.

Chapter 4 analyzes the sum throughput of a multiuser cognitive radio system with multi-

antenna base stations, either in the uplink or downlink mode. The primary and secondary

have Np and n users, respectively, and their base stations have Mp and m antennas, respec-

tively. We show that an uplink secondary throughput grows with m
Np+1

log n if the primary

is a downlink system, and grows with m
Mp+1

log n if the primary is an uplink system. These
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growth rates are shown to be optimal and can be obtained with a simple threshold-based user

selection rule. In addition, we show that the secondary throughput can grow proportional to

log n while simultaneously the interference on the primary is forced down to zero, asymptoti-

cally. For a downlink secondary it is shown that the throughput grows with m log log n in the

presence of either an uplink or downlink primary system. In addition, the interference on the

primary can be made to go to zero asymptotically while the secondary throughput increases

proportionally to log log n. The effect of unequal path loss and shadowing is also studied.

It is shown that under a broad class of path loss and shadowing models, the secondary

throughput growth rates remain unaffected.

Chapter 5 proposes a two-step (hybrid) scheduling method to harvest both interference

diversity and secondary multiuser diversity. The method pre-selects a set of secondary users

based on their interference on the primary, and from among them selects the user(s) that yield

the highest secondary throughput. The optimal number of active secondary transmitters is

characterized as a function of the primary interference constraint, the secondary transmit

power, and the number of secondary transmitters n. The secondary sum-rate (throughput) of

the proposed algorithm grows optimally (proportional to log n). We investigate the tradeoff

between scaling the secondary throughput and reducing interference on the primary, and

characterize the optimum tradeoff in the regime of large n. Finally, we study user scheduling

under fairness constraints, which is necessary when the channel statistics of secondary nodes

are not identical. A modified hybrid scheduling rule is proposed to ensure user fairness, while

still achieving the optimal growth rate for the secondary throughput.

Chapter 6 considers a spectrum-sharing network where n secondary relays are used to in-

crease secondary rate and also mitigate interference on the primary by reducing the required

overall secondary emitted power. We propose a distributed relay selection and clustering

framework, obtain closed-form expressions for the secondary rate, and show that secondary

rate increases proportionally to log n. Remarkably, this is on the same order as the growth

rate obtained in the absence of a primary system and its imposed constraints. To address the

rate loss due to half-duplex relays, we propose an enhanced cognitive relaying protocol. Our
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results show that to maximize rate, the secondary relays must transmit with power propor-

tional to n−1 (thus the sum of relay powers is bounded) and also that the secondary source

may not operate at its maximum allowable power. Our results also characterize the tradeoff

between the secondary rate and the interference on the primary, showing that the primary

interference can be reduced asymptotically to zero as n increases, while still maintaining

secondary rate that grows proportionally to log n.



CHAPTER 2

GRASSMANNIAN PRODUCT SUPERPOSITION FOR MIMO

BROADCAST CHANNELS

2.1 Introduction

In the MIMO broadcast channel, when channel state information is available at the receiver

(CSIR) but not at the transmitter (CSIT), orthogonal transmission (e.g., TDMA) achieves

optimal degrees of freedom (DoF) [13, 14]. With neither CSIT nor CSIR, again orthogonal

transmission achieves the best possible DoF [15]. This chapter studies the broadcast channel

where one receiver has full CSIR and another has no CSIR. In this case, new DoF gains are

discovered that can be unlocked with novel signaling strategies.

The study of broadcast channels with unequal CSIR is motivated by downlink scenarios

where users have different mobilities. Low-mobility users have the opportunity to reliably

estimate their channels, while the high-mobility users may not have the same opportunity.

For example, two mobiles operating at 2.1 GHz and moving at the speed of 5 km/h and

60 km/h have coherence times of approximately 50 ms and 4 ms, respectively [16]. If the

transmitter broadcasts pilots every 50 ms, the low-mobility user is able to maintain accurate

CSIR, while the high-mobility user cannot. This is partially due to the fact that effective

estimation of the channel coefficients requires a training update every 4 ms, which induces

significant overhead.

The main result of this chapter is that when one receiver has full CSIR and the other

has none, the achieved DoF is strictly better than that obtained by orthogonal transmission.

For the unequal CSIR scenario, we propose a product superposition, where the signals of the

two receivers are multiplied to produce the broadcast signal.

6
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In the following the receiver with full CSIR is referred to as the static receiver and

the receiver with no CSIR as the dynamic receiver. Two classes of product superposition

signaling are proposed:

• In the first method, information for both receivers is conveyed by the row and column

spaces of a transmit signal matrix, respectively. The signal matrix is constructed from

a product of two signals that lie on different Grassmannians. The two receivers do not

interfere with each other even though there is no CSIT, a main point of departure from

traditional superposition broadcasting [13,17].

• In the second method, information for the static receiver is carried by the signal matrix

values (coherent signaling), while information for the dynamic receiver is transported

on the Grassmannian. The static receiver is required to decode and cancel interference,

therefore this method is slightly more involved, but it achieves higher DoF compared

with the first method.

Using the proposed methods, the exact DoF region is found when Nd ≤ Ns ≤ M , T ≥ 2Nd,

where Nd, Ns and M are the number of antennas at the dynamic receiver, static receiver and

transmitter, respectively, and T is the channel coherence time of the dynamic receiver. For

Ns < Nd ≤ M , T ≥ 2Nd, we partially characterize the DoF region when either the channel

is the more capable type [18], or when the message set is degraded [19].

We use the following notation throughout the chapter: for a matrix A, the transpose is

denoted with At, the conjugate transpose with AH , and the element in row i and column j

with [A]i,j. The k×k identity matrix is denoted with Ik. The set of n×m complex matrices

is denoted with Cn×m.

The organization of this chapter is as follows. In Section 2.2 we introduce the system

model and preliminary results. Two signaling methods are proposed and studied in Sec-

tion 2.3 and Section 2.4, respectively.
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Tx

Static Rx

Dynamic Rx

Hs

Hd

Figure 2.1. Channel model of Chapter 2.

2.2 System Model and Preliminaries

We consider a broadcast channel with an M -antenna transmitter and two receivers. One

receiver has access to channel state information (CSI), and is referred to as the static receiver.

The other receiver has no CSI, e.g. due to mobility, and is referred to as the dynamic receiver.

The dynamic receiver has Nd antennas and the static receiver has Ns antennas. Denote the

channel coefficient matrices from the transmitter to the dynamic and static receivers by

Hd ∈ CNd×M and Hs ∈ CNs×M , respectively. We assume that Hd is constant for T symbols

(block-fading) and is unknown to both receivers, while Hs is known by the static receiver

but not known by the dynamic receiver.1 Neither Hd nor Hs is known by the transmitter

(no CSIT).

Over T time-slots (symbols) the transmitter sends X = [x1, · · · ,xM ]t across M antennas,

where xi ∈ CT×1 is the signal vector sent by the antenna i. The normalized signal at the

dynamic and static receivers is respectively

Yd = HdX +
1√
ρ
Wd,

Ys = HsX +
1√
ρ
Ws, (2.1)

1In practice Hs for a static receiver may vary across intervals of length much greater than
T . However, for the purposes of this chapter, once Hs is assumed to be known to the static
receiver, its time variation (or lack thereof) does not play any role in the subsequent math-
ematical developments. Therefore in the interest of elegance and for a minimal description
of the requirements for the results, we only state that Hs is known.
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where Wd ∈ CNd×T and Ws ∈ CNs×T are additive noise with i.i.d. entries CN (0, 1). Each

row of Yd ∈ CNd×T (or Ys ∈ CNs×T ) corresponds to the received signal at an antenna of the

dynamic receiver (or the static receiver) over T time-slots. The transmitter is assumed to

have an average power constraint ρ, and therefore, in the normalized channel model given

by (2.1), the average power constraint is:

E
[ M∑

i=1

tr(xix
H
i )

]
= T. (2.2)

The channel Hd has i.i.d. entries with zero mean and unit variance, but we do not assign

any specific distribution for Hd. This general model includes Rayleigh fading as a special

case where the entries of Hd are i.i.d. CN (0, 1). The channel Hs is assumed to have full rank;

this assumption, e.g., holds with probability 1 if the entries of Hs are drawn independently

according to a continuous distribution. We focus on the case of M = max(Nd, Ns) and

T ≥ 2Nd, which is motivated by the fact that having more transmit antennas does not

increase the multiplexing gain for either receiver, and the fact that if T < 2Nd, some of

the antennas of the dynamic receiver can be deactivated without any loss in the degrees of

freedom (DoF) [20].

The degrees of freedom at the dynamic and static receivers are defined as:

dd = lim
ρ→∞

Rd(ρ)

log ρ
, ds = lim

ρ→∞
Rs(ρ)

log ρ
,

where Rd(ρ) and Rs(ρ) are the rate of the dynamic receiver and the static receiver, respec-

tively.

2.2.1 Definitions

Definition 2.2.1 (Isotropically Distributed Matrix [21]) A random matrix X ∈ Ck×n,

where n ≥ k, is called isotropically distributed (i.d.) if its distribution is invariant under

unitary transformations, i.e., for any deterministic n× n unitary matrix Φ,

p(X) = p(XΦ). (2.3)
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An example of i.d. matrices is X with i.i.d. CN (0, 1) entries.

Remark 2.2.1 An interesting property of i.d. matrices is that if X is i.d. and Φ is a

random unitary matrix that is independent of X, then XΦ is independent of Φ [20, Lemma

4]. That is, any rotation to an i.d. matrix is essentially “invisible.”

Definition 2.2.2 (Stiefel manifold [22]) The Stiefel manifold F(n, k), where n > k, is

the set of all k × n unitary matrices, i.e.,

F(n, k) =
{
Q ∈ Ck×n : QQH = Ik

}
.

For k = 1, the manifold F(n, 1) is the collection of all n-dimensional vectors with unit

norm, i.e., the surface of a unit ball.

Definition 2.2.3 (Grassmann manifold [22]) The Grassmann manifold G(n, k), where

n > k, is the set of all k-dimensional subspaces of Cn.

Remark 2.2.2 The (complex) dimension of G(n, k) is

dim
(
G(n, k)

)
= k(n− k), (2.4)

i.e., each point in G(n, k) has a neighborhood that is equivalent (homeomorphic) to a ball in

the Euclidean space of complex dimension k(n − k). The dimensionality of Grassmannian

can also be viewed as follows. For any matrix Q, there exists a k × k full rank matrix U so

that

Q∗ = UQ =




1 · · · 0 x1,k+1 · · · x1n

0 · · · 0
...

...
...

0 · · · 1 xk,k+1 · · · xkn




, (2.5)

where Q and Q∗ span the same row space. Therefore, each point in G(n, k) is determined

by k(n − k) complex parameters xji, for 1 ≤ j ≤ k and k + 1 ≤ i ≤ n. In other words, a

k-dimension subspace in Cn is uniquely decided by k(n− k) complex variables.
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2.2.2 Non-coherent Point-to-point Channels

The analysis in this chapter uses insights and results from non-coherent communication in

point-to-point MIMO channels, which are briefly outlined below.

Intuition

Consider a point-to-point M × N MIMO channel where the receiver does not know the

channel H, namely a non-coherent channel.

At high SNR the additive noise is negligible, so the received signal Y ≈ HX, where X is

the transmitted signal. Because X is multiplied by a random and unknown H, the receiver

cannot decode X. However, communication is still possible because, for any non-singular

H, the received signal Y spans the same row space as X. Therefore, the row space of X

can be used to carry information without the need to know H, i.e., the codebook consists of

matrices with different row spaces.

Conveying information via subspaces can be viewed as communication on the Grassmann

manifold where each distinct point in the manifold represents a different subspace [20]. In

this case, the codewords (information) are represented by subspaces, which differs from the

coherent communication that maps each codeword into one point in a Euclidean space [23].

Intuitively, the information of a Grassmannian codeword is carried by k(n− k) variables, as

seen in (2.5).

Optimal Signaling

The design of an optimal signaling can be viewed as sphere packing over Grassmannians [20].

At high SNR, the optimal signals are isotropically distributed unitary matrices [20, 21]. In

addition, the optimal number of transmit antennas depends on the channel coherence time.

For a short coherence interval, using fewer antennas may lead to a higher capacity. The

optimal number of transmit antennas is

K = min(M, N, bT/2c), (2.6)
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where T is the channel coherence time, i.e., the number of symbols that the channel remains

constant. Therefore, the optimal signals are K × T unitary matrices. In other words,

K antennas (K ≤ M) are in use and they transmit equal-energy and mutually orthogonal

vectors. These unitary matrices reside in G(T, K) and each is interpreted as a representation

of the subspace it spans. This method achieves the maximum DoF K(T −K) over T time-

slots. Note that the DoF coincides with the dimensionality of the Grassmannian G(T,K).

Subspace Decoding

Unlike coherent communication, in non-coherent signaling the information is embedded in

the subspaces instead of the signal values. As long as two matrices span the same subspace,

they correspond to the same message. Maximum-likelihood decoding chooses the codeword

whose corresponding subspace is the closest one to the subspace spanned by the received

signal. For example in [24], the received signals are projected on the subspaces spanned

by different codewords, and then the one is chosen with the maximum projection energy.

More precisely, for the transmitted signals Xi ∈ CK×T from a unitary codebook X , and the

received signals Y ∈ CK×T , the ML detector is

X̂ML = arg max
Xi∈X

tr{YXH
i XiY

H}. (2.7)

2.2.3 A Baseline Scheme: Orthogonal Transmission

For the purposes of establishing a baseline for comparison, we begin by considering a time-

sharing (orthogonal transmission) that acquires CSIR via training in each interval and uses

Gaussian signaling. This baseline method has been chosen to highlight the differences of

the heterogeneous MIMO broadcast channel of this chapter with two other known scenar-

ios: It is known that for a broadcast channel with no CSIT and perfect CSIR, orthogonal

transmission ahieves the optimal DoF region [14]. Also, a training-based method with Gaus-
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sian signaling is sufficient to achieve DoF optimality [20] for the point-to-point noncoherent

MIMO channel2.

In orthogonal transmission, the transmitter communicates with the two receivers in a

time-sharing manner. When transmitting to the dynamic receiver, it is optimal if the trans-

mitter activates only K out of M antennas: it sends pilots from the K antennas sequen-

tially over the first K time-slots; the dynamic receiver estimates the channel by using, e.g.,

minimum-mean-square-error (MMSE) estimation. Then, the transmitter sends data during

the remaining (T −K) time-slots, and the dynamic receiver decodes the data by using the

estimated channel coefficients [20, 25]. Using this strategy, the maximum rate achieved by

the dynamic receiver is:

K(1− K

T
) log ρ + O(1). (2.8)

The operating point in the achievable DoF region where the transmitter communicates ex-

clusively with the dynamic receiver is denoted with D1.

D1 =
(
K(1− K

T
), 0

)
. (2.9)

For the static receiver the channel is assumed to be known at the receiver, therefore data

is transmitted to it coherently. The maximum rate achieved by the static receiver is [26]

min(M, Ns) log ρ + O(1). (2.10)

The operating point in the DoF region where the transmitter communicates only with the

static receiver is denoted with D2.

D2 =
(
0, min(M,Ns)

)
. (2.11)

Time-sharing between the two points of D1 and D2 yields the achievable DoF region
(

tK(1− K

T
), (1− t) min(M, Ns)

)
, (2.12)

where t is a time-sharing variable.

2Grassmannian signaling is superior, but the same slope of the rate vs. SNR curve is
obtained with training and Gaussian signaling in the point-to-point MIMO channel.
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2.3 Grassmannian Superposition for Broadcast Channel

In this section, we propose a signaling method that attains DoF region superior to orthogonal

transmission, and allows each receiver to decode its message while being oblivious of the other

receiver’s message.

2.3.1 A Toy Example

Consider M = Ns = 2, Nd = 1 and T = 2. From Section 2.2.3, orthogonal transmission

attains 1/2 DoF per time-slot for the dynamic receiver and 2 DoF per time-slot for the static

receiver. By time-sharing between the two receivers, the following DoF region is achieved

(
t

2
, 2− 2t), (2.13)

where t ∈ [0, 1] is a time-sharing parameter.

We now consider the transmitter sends a product of signal vectors over 2 time-slots

X = xsx
t
d ∈ C2×2, (2.14)

where xd = [x
(1)
1 x

(1)
2 ]t and xs = [x

(2)
1 x

(2)
2 ]t are the signals for the dynamic receiver and the

static receiver, respectively. The vectors xd and xs have unit-norm and from codebooks that

lie on G(2, 1).

The signal at the dynamic receiver is

yd = [h
(1)
1 h

(1)
2 ]


x

(2)
1

x
(2)
2


 [x

(1)
1 x

(1)
2 ] +

1√
ρ
[w

(1)
1 w

(1)
2 ]

= h̃(1) [x
(1)
1 x

(1)
2 ] +

1√
ρ
[w

(1)
1 w

(1)
2 ], (2.15)

where [h
(1)
1 , h

(1)
2 ] is the isotropically distributed channel vector, and h̃(1) is the equivalent

channel coefficient seen by the dynamic receiver.

The subspace spanned by xt
d is the same as h̃(1)xt

d, so at high SNR the dynamic receiver

is able to determine the direction specified by xt
d. From Section 2.2.2, the dynamic receiver

attains 1/2 DoF per time-slot, which is optimal even in the absence of the static receiver.



15

Consider the signal of the static receiver at time-slot 1:

ys = Hs


x

(2)
1

x
(2)
2


 x

(1)
1 +

1√
ρ


w

(2)
1

w
(2)
2


 . (2.16)

Because the static receiver knows Hs, it can invert the channel as long as Hs is non-singular:

(
H−1

s ys

)t
= x

(1)
1 [x

(2)
1 x

(2)
2 ] + [w

(2)
1 w

(2)
2 ]H−t

s . (2.17)

The equivalent (unknown) channel seen by the static receiver is x
(1)
1 , i.e., part of the dynamic

receiver’s signal. Using Grassmannian signaling via the subspace of xs, the DoF achieved is

again 1/2 per time-slot.

Time-sharing between the proposed scheme and D2 (transmitting only to the static re-

ceiver) yields the achievable DoF region

(1

2
t, 2− 3

2
t
)
. (2.18)

The above region is strictly larger than that of orthogonal transmission, as shown in Fig-

ure 2.2. The static receiver achieves 1/2 DoF “for free” in the sense that this DoF was

extracted for the static receiver without reducing the dynamic receiver’s DoF.

2.3.2 Grassmannian Superposition Signaling

Based on the previous example, we design a general signaling method (the Grassmannian

superposition) with two properties: (1) information is carried by subspaces and (2) two signal

matrices are superimposed multiplicatively so that their row (or column) space is unaffected

by multiplying the other receiver’s signal matrix. Two separate cases are considered based

on whether the number of static receiver antennas is larger than the number of dynamic

receiver antennas.

Signaling In The Case Nd < Ns

The transmitter sends X ∈ CNs×T across M = Ns antennas over an interval of length T :

X =

√
T

Nd

XsXd, (2.19)
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Figure 2.2. DoF region of the toy example 1

where Xd ∈ CNd×T and Xs ∈ CNs×Nd are the signals for the dynamic receiver and the

static receiver, respectively. Here,
√

T/Nd is a normalizing factor to satisfy the power

constraint (2.2). Information for both receivers are sent over the Grassmannian, namely Xd

is from a codebook Xd ⊂ G(T,Nd) and Xs is from a codebook Xs ⊂ G(Ns, Nd). The codebook

Xd and Xs are chosen to be isotropically distributed unitary matrices (see Section 2.3.3 for

more details).

A sketch of the argument for the DoF achieved by the Grassmannian superposition is

as follows. The noise is negligible at high SNR, so the signal at the dynamic receiver is

approximately

Yd ≈
√

T

Nd

HdXsXd ∈ CNd×T . (2.20)

The row space of Xd can be determined based on Yd, and then (T − Nd)Nd independent

variables (DoF) that specify the row space are recovered, i.e., the transmitted point Xd in

Xd ∈ G(T, Nd) is found.
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For the static receiver, since Hs is known by the receiver, it inverts the channel (given

that Hs is non-singular)

H−1
s Ys ≈

√
T

Nd

XsXd ∈ CNs×T , (2.21)

which has approximately the same column space as Xs. The transmitted point Xs in Xs ∈
G(Ns, Nd) will be recovered from the column space of H−1

s Ys, producing (Ns−Nd)Nd DoF.

Therefore, the proposed scheme attains the DoF pair

D3 =

(
Nd(1− Nd

T
),

Nd

T
(Ns −Nd)

)
. (2.22)

The result is more formally stated as follows:

Theorem 2.3.1 (Nd < Ns) Consider a broadcast channel with an M-antenna transmitter,

a dynamic receiver and a static receiver with Nd and Ns antennas, respectively, with coherence

time T for the dynamic channel. The Grassmannian superposition achieves the rate pair





Rd = Nd

(
1− Nd

T

)
log ρ + O(1)

Rs = Nd

T
(Ns −Nd) log ρ + O(1)

.

The corresponding DoF pair is denoted D3 =

(
Nd(1 − Nd

T
), Nd

T
(Ns − Nd)

)
. If we denote

the DoF for the single-user operating points for the dynamic and static user with D1, D2

respectively, the achievable DoF region consists of the convex hull of D1, D2 and D3.

Proof See Section 2.5.1.

From Theorem 2.3.1 the static receiver attains a “free” rate of

∆R1 =
Nd

T
(Ns −Nd) log ρ + O(1). (2.23)

We plot the achievable DoF region of Theorem 2.3.1 in Figure 2.3. For small T , the DoF

gain achieved by the proposed method is significant, while as T increases, both methods

approach the coherent upper bound [14] where both of the receivers have CSIR. For T →∞,
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Figure 2.3. DoF region (Theorem 2.3.1): Nd = 2, Ns = 4.

the rate gain ∆R1 = O(1), and no DoF gain is obtained. In this case, the achievable DoF

region in Theorem 2.3.1 coincides with that attained by orthogonal transmission as well as

the coherent outer bound [14]. This is not surprising, since if the channel remains constant

(T → ∞), the resource used for obtaining CSIR is negligible. Finally, the rate gain ∆R1 is

an increasing function of (Ns −Nd), i.e., the extra antennas available for the static receiver.

Now, we design the dimension of Xd and Xs in (2.19) to maximize the achievable DoF

region. To find the optimal dimensions, we allow the signaling to use a flexible number of

antennas and time slots, up to the maximum available. Let Xd ∈ CN̂d×T̂ and Xs ∈ CN̂s×N̂d ,

where T̂ ≤ T , N̂d ≤ Nd and N̂s ≤ Ns. Theorem 2.3.1 does not immediately reveal the

optimal values of N̂d, N̂s, and T̂ , because the rates are not monotonic in the mentioned

parameters. The following corollary presents the optimal value of N̂d, N̂s and T̂ .

Corollary 2.3.2 For the Grassmannian superposition under Nd < Ns, the signal dimension

T̂ = T , N̂d = Nd and N̂s = Ns optimizes the achievable DoF region.

Proof See Section 2.5.2.
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Thus, in the special case of Nd < Ns, it is optimal to use all time slots and all antennas.

Signaling In The Case Nd ≥ Ns

In this case, we shall see that sometimes the Grassmanian superposition may still outperform

orthogonal transmission, but also under certain conditions (e.g. very large T or Nd À Ns) the

Grassmannian superposition as described in this section may not improve the DoF compared

with orthogonal transmission.

When Nd ≥ Ns, if the Grassmannian signaling to the dynamic receiver uses all the Nd

dimensions, there will remain no room for communication with the static receiver. To allow

the static user to also use the channel, the dynamic user must “back off” from using all

the rate available to it, in other words, the dimensionality of the signaling for the dynamic

receiver must be reduced. The largest value of N̂d that makes N̂d < Ns and thus allows

nontrivial Grassmannian superposition is N̂d = Ns − 1. Once we are in this regime, the

results of the subsection 2.3.2 can be used. Specifically, Corollary 2.3.2 indicates that de-

activating any further dynamic user antennas will not improve the DoF region. Thus, given

Ns, and assuming we wish to have a non-trivial Grassmannian signaling for both users, using

N̂d = Ns − 1 dimensions for signaling to the dynamic receiver maximizes the DoF region.

The transmit signal is then

X =

√
T

Nd

XsXd, (2.24)

where Xd ∈ C(Ns−1)×T and Xs ∈ CNs×(Ns−1). The corresponding achievable DoF pair is

D4 =

(
(Ns − 1)(1− Ns − 1

T
), (Ns − 1)/T

)
, (2.25)

which leads to the following result.

Corollary 2.3.3 (Nd ≥ Ns) Consider an M-antenna transmitter broadcasting to a dynamic

receiver and a static receiver with Nd and Ns antennas, respectively, with coherence time T
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Figure 2.4. DoF region (Corollary 2.3.3): Nd = Ns = 4.

for the dynamic channel. Then the Grassmannian superposition achieves the rate pair




Rd = (Ns − 1)
(
1− Ns−1

T

)
log ρ + O(1)

Rs = Ns−1
T

log ρ + O(1)

.

Denote the corresponding DoF pair with D4. Together with the two single-user operating

points D1 and D2 obtained earlier, the achievable DoF region consists of the convex hull of

D1, D2 and D4.

Proof The proof follows directly by replacing Nd with (Ns − 1) in Theorem 2.3.1.

In Corollary 2.3.3, the DoF for the static receiver has not been achieved for “free” but at

the expense of reducing the DoF for the dynamic receiver. The transmitter uses only Ns− 1

dimensions for the dynamic receiver, which allows an extra DoF (Ns − 1)/T to be attained

at the static receiver. If Nd −Ns and T are small, then the DoF gain of the static receiver
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outweighs the DoF loss for the dynamic, so that the overall achievable DoF region will be

superior to that of orthogonal transmission. In contrast, if Nd À Ns or T is large, the DoF

loss from the dynamic receiver may not be compensated by the DoF gain from the static

receiver, as illustrated by Figure 2.4. Therefore in the latter case orthogonal transmission

may do better. The following corollary specifies the condition under which Grassmannian

superposition improves DoF region compared with orthogonal transmission.

Corollary 2.3.4 For Nd ≥ Ns, the Grassmannian superposition improves DoF region with

respect to orthogonal transmission if and only if

Ns − (Ns − 1)/T(
Ns − 1)(1− (Ns − 1)/T

) <
Ns

Nd(1−Nd/T )
. (2.26)

Proof The necessary and sufficient condition for ensuring the improvement of the achievable

DoF region is that the slope between D2 and D4 is larger than the slope between D1 and

D2, which is equivalent to the inequality in the corollary.

2.3.3 Design of Xd and Xs

The representation of a point in the Grassmannian is not unique [27] (also see Remark 2.2.2),

and therefore the codebooks Xd ⊂ G(T, Nd) and Xs ⊂ G(Ns, Nd) are not unique.

First, Xs is chosen to be a unitary codebook. When Xs is unitary, for i.i.d. Rayleigh

fading Hd, the equivalent dynamic channel H̃d = HdXs still has i.i.d. Rayleigh fading

coefficients [21]. Therefore, the static receiver is transparent to the dynamic receiver, which

allows us to decouple and simplify the design of the two codebooks and their decoders.

Once Xs is chosen to be a set of unitary matrices, communication between dynamic

receiver and the transmitter is equivalent to a non-coherent point-to-point MIMO channel.

Hence, to maximize the rate of the dynamic receiver at high SNR, Xd must also be a collection

of isotropically distributed unitary matrices (see Section 2.2).

Remark 2.3.1 With unitary codebooks Xd and Xs, information for both receivers is conveyed

purely by the the subspace to which the codeword belongs. Consider X ∈ Ck×n, n ≥ k, which
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is uniquely represented by Ω (the row space of X) and a k×k coefficient matrix C according

to a certain basis of Ω. The codewords Xd,Xs can be represented as

Xd → (Ωd,Cd),

Xs → (Ωs,Cs). (2.27)

In a manner similar to [20], one can verify

I(Xd;Yd) = I(Ωd;Yd) + I(Cd;Yd|Ωd)︸ ︷︷ ︸
=0

, (2.28)

and

I(Xs;Ys|Hs) = I(Ωs;Ys|Hs) + I(Cs;Ys|Ωs,Hs)︸ ︷︷ ︸
=0

. (2.29)

2.3.4 Multiplicative vs. Additive Superposition

In this section, we compare product superposition with additive superposition. Under addi-

tive superposition, the transmit signal has a general expression

X =
√

c1ρV1 Xd +
√

c2ρV2 Xs, (2.30)

where V1 and V2 are the precoding matrices, and c1 and c2 represent the power allocation.

In this case, the signal at the dynamic receiver is

Yd =
√

c1ρHdV1Xd +
√

c2ρHdV2Xs + Wd. (2.31)

Since Hd is unknown, the second interference term cannot be completely eliminated in

general, which leads to a bounded signal-to-interference-plus-noise ratio (SINR), resulting in

zero DoF for the dynamic receiver.

For the multiplicative superposition, the signal at the dynamic receiver is

Yd =
√

cρ HdXsXd + Wd

=
√

cρ H̃dXd + Wd, (2.32)
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where c is a power normalizing constant. For any unitary Xs, XsXd and Xd span the same

row space. This invariant property of Grassmannian enables us to convey information to

the static receiver via Xs without reducing the degrees of freedom of the dynamic receiver.

Intuitively, the dynamic receiver does not have CSIR and is “insensitive” to rotation, i.e.,

the distribution of Yd does not depend on Xs.

For the static receiver, the received signal is

Ys =
√

cρHsXsXd + Ws. (2.33)

Because Hs is known, the channel rotation Xs is detectable, i.e., the distribution of Ys

depends on Xs. Therefore Xs can be used to convey information for the static receiver.

2.4 Grassmannian-Euclidean Superposition for the Broadcast Channel

We now propose a new transmission scheme based on successive interference cancellation,

where the static receiver decodes and removes the signal for the dynamic receiver before de-

coding its own signal. This scheme improves the DoF region compared to the non-interfering

Grassmannian signaling of the previous section.

2.4.1 A Toy Example

Consider M = Nd = Ns = 1 and T = 2. Our approach is that over 2 time-slots, the

transmitter sends

X = xs xt
d ∈ C1×2, (2.34)

where xd = [x
(1)
1 x

(1)
2 ]t is the signal for the dynamic receiver and xs is the signal for the static

receiver. Here, xd has unit-norm and is from a codebook Xd that is a subset of G(2, 1), and

xs can obey any distribution that satisfies the average power constraint.
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The signal at the dynamic receiver is

yd = hdxs[x
(1)
1 x

(1)
2 ] +

1√
ρ
[w

(1)
1 w

(1)
2 ] (2.35)

= h̃d [x
(1)
1 x

(1)
2 ] +

1√
ρ
[w

(1)
1 w

(1)
2 ], (2.36)

where hd is the channel coefficient of the dynamic receiver, and h̃d , hdxs is the equivalent

channel coefficient. The dynamic receiver can determine the row space spanned by xd even

though h̃d is unknown, in a manner similar to Section 2.3.1. The total DoF conveyed by xd

is 1 (thus 1
2

per time-slot); this is the optimal DoF under the same number of antennas and

coherence time.

For the static receiver, the received signal is:

ys = hsxs[x
(1)
1 x

(1)
2 ] +

1√
ρ
[w

(2)
1 w

(2)
2 ] (2.37)

= h̃s [x
(1)
1 x

(1)
2 ] +

1√
ρ
[w

(2)
1 w

(2)
2 ], (2.38)

where hs is the channel coefficient of the static receiver, and h̃s , hsxs. Intuitively,

since (2.36) and (2.38) are equivalent, if the dynamic receiver decodes the subspace of xd,

so does the static receiver. Then, the exact signal vector xd is known to the static receiver

(recall that each subspace is uniquely represented by a signal matrix). The static receiver

removes the interference signal xd

ysx
H
d = hsxs +

1√
ρ
w̃s, (2.39)

where w̃s is the equivalent noise. Finally, the static receiver knows hs, so it decodes xs and

attains 1/2 DoF per time-slot.

Therefore, the proposed scheme attains the maximum DoF for the dynamic receiver,

meanwhile achieving 1/2 DoF for the static receiver. With time sharing between this scheme

and D2, the achievable DoF pair is

(dd, ds) =
( t

2
, 1− t

2

)
. (2.40)

Figure 2.5 shows that this region is uniformly larger than that of orthogonal transmission.
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Figure 2.5. DoF region of the toy example 2.

Remark 2.4.1 There are two key differences between the method proposed here and the

Grassmannian superposition proposed in Section 2.3. First, the information for the static

receiver is carried by the value of xs instead of its direction (subspace), i.e., the signal for

the static receiver is carried in the Euclidean space. Second, the static receiver must decode

and remove the interference signal for the dynamic receiver before decoding its own signal,

which is unlike the non-interfering method of the previous section.

2.4.2 Grassmannian-Euclidean Superposition Signaling

We denote the aforementioned method as Grassmannian-Euclidean superposition, whose

generalization is the subject of this subsection. Two separate cases are considered based on

whether the number of static receiver antennas is less than, or no less than, the number of

dynamic receiver antennas.
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Signaling In The Case Nd ≤ Ns

The transmitter sends X ∈ CNs×T

X =

√
T

NdNs

XsXd, (2.41)

where Xd ∈ CNd×T and Xs ∈ CNs×Nd are signals for the dynamic receiver and the static

receiver, respectively. The signal Xd is from a Grassmannian codebook Xd ⊂ G(T, Nd),

while Xs is from a conventional Gaussian codebook Xs. The constant
√

T/NdNs is a power

normalizing factor.

We now give a sketch of the argument of the DoF attained by the superposition signal-

ing (2.41). For the dynamic receiver, Yd ≈ HdXsXd at high SNR. When Nd ≤ Ns, the

equivalent channel HdXs ∈ CNd×Nd has full rank and does not change the row space of Xd.

Recovering the row space of Xd produces (T −Nd)Nd DoF, which is similar to Section 2.3.

For the static receiver, the signal at high SNR is

Ys ≈
√

T

NdNs

Hs Xs Xd =

√
T

NdNs

H̃s Xd. (2.42)

For Nd ≤ Ns, H̃s = HsXs ∈ CNs×Nd has full column rank and does not change the the row

space of Xd, and therefore, the signal intended for the dynamic receiver can be decoded by

the static receiver. From the subspace spanned by Xd, the codeword Xd ∈ Xd is identified.

Then, Xd is peeled off from the static signal:

YsX
H
d ≈

√
T

NdNs

HsXs ∈ CNs×Nd . (2.43)

Because Hs is known by the static receiver, Eq. (2.43) is a point-to-point MIMO channel.

Therefore, NsNd DoF can be communicated via Xs to the static receiver (over T time-

slots) [26].

Altogether, the Grassmannian-Euclidean superposition attains the DoF pair D5

D5 =

(
Nd(1−Nd/T ), NsNd/T

)
. (2.44)

More precisely, we have the following theorem.
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Theorem 2.4.1 (Nd ≤ Ns) Consider a broadcast channel with an M-antenna transmitter,

a dynamic receiver and a static receiver with Nd and Ns antennas, respectively, with coherence

time T for the dynamic channel. The Grassmannian-Euclidean superposition achieves the

rate pair




Rd = Nd

(
1− Nd

T

)
log ρ + O(1)

Rs = NdNs

T
log ρ + O(1)

.

Denote the corresponding DoF pair by D5. Together with the two single-user operating points

D1, D2 obtained earlier, the achievable DoF region consists of the convex hull of D1, D2 and

D5.

Proof See Section 2.5.3.

With the Grassmannian-Euclidean superposition, the static receiver attains the following

gain compared with orthogonal transmission:

∆R2 =
NdNs

T
log ρ + O(1). (2.45)

From Figure 2.6, for relatively small T or large Ns, the DoF gain is significant. For example,

at T = 2Nd, the minimum coherence interval considered in this chapter, the proposed

method achieves a DoF Ns/2 for the static receiver while attaining the maximum DoF Nd/2

for the dynamic receiver. As T increases the gain over orthogonal transmission decreases.

In the limit T → ∞, we have ∆R2 = O(1), and the DoF gain of Grassmannian-Euclidean

superposition goes away. The Grassmannian-Euclidean superposition also provides DoF gain

over the non-interfering Grassmannian superposition3

∆R =
N2

d

T
log ρ + O(1). (2.46)

The optimal design of the dimensions of Xd and Xs is trivial, because the DoF region in

Theorem 2.4.1 is indeed optimal (see Section 2.4.4).

3 Although Grassmannian-Euclidean superposition achieves larger DoF than the non-
interfering Grassmannian superposition, it may not achieve larger rate at low or moderate
SNR due to the decodable restriction on the rate (interference).
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Figure 2.6. DoF region (Theorem 2.4.1): Nd = 2, Ns = 4.

Signaling In The Case Nd > Ns

When the static receiver has fewer antennas than the dynamic receiver, it may not be able

to decode the dynamic signal. Here, we cannot directly apply the signaling structure given

by (2.41). A straightforward way is to activate only Ns antennas at the transmitter and use

only Ns dimensions for the dynamic receiver, that is

X =

√
T

N2
s

XsXd ∈ CNs×T , (2.47)

where Xd ∈ CNs×T and Xs ∈ CNs×Ns , and
√

T/N2
s is a power normalizing factor.

Following the same argument as the case of Nd ≤ Ns, the Grassmannian-Euclidean

superposition achieves the DoF pair

D6 =

(
Ns(1− Ns

T
),

N2
s

T

)
. (2.48)
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Corollary 2.4.2 (Nd > Ns) Consider a broadcast channel with an M-antenna transmitter,

a dynamic receiver and a static receiver with Nd and Ns antennas, respectively, with coherence

time T for the dynamic channel. The Grassmannian-Euclidean superposition achieves the

rate pair





Rd = Ns

(
1− Ns

T

)
log ρ + O(1)

Rs = N2
s

T
log ρ + O(1)

Denote the corresponding DoF pair with D6. Together with the two single-user operating

points D1 and D2 obtained earlier, the achievable DoF region consists of the convex hull of

D1, D2 and D6.

Proof The proof directly follows from Theorem 2.4.1.

In Corollary 2.4.2, the static rate receiver is obtained at the expense of a reduction in the

dynamic rate. The transmitter uses only Ns out of Nd dimensions available for the dynamic

receiver, which allows extra DoF N2
s /T for the static receiver. A necessary and sufficient

condition for Grassmannian-Euclidean superposition to improve the DoF region is as follows.

Corollary 2.4.3 For the Grassmannian-Euclidean superposition, the signal dimension T̂ =

T , N̂d = Nd and N̂s = Ns optimizes the rate region at high SNR. Moreover, it achieves

superior DoF region compared with orthogonal transmission if and only if

Ns > (1− Nd

T
)Nd (2.49)

Proof First, using the maximum number of static antennas (N̂s = Ns) is optimal, because

both Rd and Rs in Corollary 2.4.2 are increasing functions of Ns (note that Ns ≤ T/2).

Second, we find the optimal T̂ . Maximizing the achievable DoF region is equivalent to

maximizing the slope of the line between D2 and D4, i.e.,

(0, Ns) and
(
Ns(1− Ns

T̂
),

N2
s

T̂

)
, (2.50)
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Figure 2.7. DoF region (Corollary 2.4.2): Nd = 4, Ns = 3.

which has a constant slope −1 and is independent of T̂ . Therefore, any choice of T̂ , as long

as T̂ ≥ 2Ns, achieves a boundary point of the DoF region of the Grassmannian-Euclidean

superposition.

Finally, for the Grassmannian-Euclidean superposition to be superior to orthogonal trans-

mission in term of DoF, the slope of the line between D2 and D6 must be larger than the

slope between D1 and D2, namely

Ns

(1−Nd/T )Nd

> 1. (2.51)

This completes the proof.

Corollary 2.4.3 can be interpreted as follows: the Grassmannian-Euclidean superposition

achieves superior DoF if and only if the maximum DoF of the static receiver is larger than

that of the dynamic receiver.
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2.4.3 Design of Xd and Xs

We heuristically argue that it is reasonable to choose Xd to be isotropically distributed

unitary matrices and Xs to be i.i.d. complex Gaussian codebook. .

Recall that the Grassmannian-Euclidean superposition is to allow the static receiver

to decode the signal for the dynamic receiver and then remove this interference. After

interference cancellation, the static receiver has an equivalent point-to-point MIMO channel

with perfect CSIR, in which case Gaussian signal achieves capacity.

Assuming Xs ∈ Xs has i.i.d. CN (0, 1) entries, the equivalent channel for the dynamic

receiver HdXs is isotropically distributed (see Definition 2.2.1), which leads to two properties.

First, for any T × T unitary matrix Φ,

p(YdΦ |XdΦ) = p(Yd |Xd). (2.52)

Second, for any Nd ×Nd unitary matrix Ψ

p(Yd |ΨXd) = p(Yd |Xd). (2.53)

Based on these properties, the optimal signaling structure for the channel of the dynamic

receiver is a diagonal matrix4 times a unitary matrix [20, 21]. Therefore, choosing Xd to be

isotropically distributed unitary matrices is not far from optimal.

2.4.4 Degrees of Freedom Region

In this section, we show that the Grassmannian-Euclidean superposition achieves the optimal

DoF region under certain channel conditions.

Degrees of Freedom In The Case Nd ≤ Ns

In this case, the optimal DoF region is as follows.

4When the channel is i.i.d. Rayleigh fading this diagonal matrix should be identity at
high SNR [20]. However, it remains unknown whether the optimal choice is an identity
matrix at arbitrary SNR.
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Corollary 2.4.4 (Nd ≤ Ns) When an M-antenna transmitter transmits to a dynamic re-

ceiver and a static receiver with Nd and Ns antennas, respectively, with the dynamic channel

coherence time T , the DoF region is:





dd ≤ Nd(1− Nd

T
)

dd

Nd
+ ds

Ns
≤ 1

. (2.54)

Proof An outer bound can be found when both receivers have CSIR. The DoF region of

the coherent upper bound is [14]
dd

Nd

+
ds

Ns

≤ 1. (2.55)

An inner bound is attained by Grassmannian-Euclidean superposition, which reaches the

boundary of (2.55) except for dd > Nd(1 − Nd/T ). However, the DoF of the dynamic re-

ceiver can never exceed Nd(1−Nd/T ) (see Section 2.2). Therefore, Grassmannian-Euclidean

superposition achieves the DoF region.

Degrees of Freedom In The Case Nd > Ns

In this case, the Grassmannian-Euclidean superposition does not match the coherent outer

bound (2.55), however, we can partially characterize the DoF region for broadcasting with

degraded message sets [19] and in the case of the more capable channel [18]. For both cases

the capacity region is characterized by:





Rd ≤ I(U;Yd)

Rd + Rs ≤ I(Xs;Ys|U) + I(U;Yd)

Rd + Rs ≤ I(Xs;Ys)

, (2.56)

where U is an auxiliary random variable. From the last inequality we have

Rd + Rs ≤ Ns log ρ + O(1), (2.57)
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that is

dd + ds ≤ Ns. (2.58)

When Ns ≥ (1 − Nd/T )Nd, the inner bound in Corollary 2.4.2 coincides with the outer

bound (2.58) for 0 ≤ dd ≤ Ns(1 − Ns/T ), therefore, the DoF is established for this range.

For dd > Ns(1−Ns/T ), the inner and outer bounds do not match, but the gap is small when

Ns is close to Nd.

When Ns < (1 − Nd/T )Nd, the inner bound in Corollary 2.4.2 is inferior to orthogonal

transmission and the problem remains open.

2.5 Proof of Theorem and Corollary

2.5.1 Proof of Theorem 2.3.1

Achievable Rate for the Dynamic Receiver

The normalized received signal Yd ∈ CNd×T at the dynamic receiver is

Yd =

√
T

Nd

HdXsXd +
1√
ρ
Wd, (2.59)

where Hd ∈ CNd×Ns is the dynamic channel, Xd ∈ CNd×T and Xs ∈ CNs×Nd are the isotrop-

ically distributed, unitary signals for the dynamic and static receivers, respectively, and

Wd ∈ CNd×T is additive Gaussian noise.

Let H̃d , HdXs be the Nd ×Nd equivalent channel, and rewrite (2.59) as

Yd =

√
T

Nd

H̃dXd +
1√
ρ
Wd. (2.60)

The elements in H̃d are

h̃ij = [H̃d]i,j =
Ns∑

k=1

hikxkj, 1 ≤ i, j ≤ Nd, (2.61)

where hik = [Hd]ik and xkj = [Xs]kj. Note that hik is i.i.d. random variable with zero mean

and unit variance, therefore,

E[h̃H
ij h̃mn] = 0, (i, j) 6= (m,n). (2.62)
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For (i, j) = (m, n) we have

E[|h̃ij|2] =
Ns∑

k=1

E
[|hik|2|xkj|2

]
(2.63)

= E
[ Ns∑

k=1

|xkj|2
]

= 1, (2.64)

where (2.64) holds because E[|hik|2] = 1 and each column of Xs has unit norm. Therefore,

the equivalent channel H̃d has uncorrelated entries with zero mean and unit variance.

We now find a lower bound for the mutual information

I(Xd;Yd) = h(Yd)− h(Yd|Xd), (2.65)

i.e., an achievable rate for the dynamic receiver. First, we find an upper bound for h(Yd|Xd).

Let ydi be the row i of Yd. Using the independence bound on entropy:

h(Yd|Xd) ≤
Nd∑
i=1

h(ydi|Xd). (2.66)

Let h̃i be the row i of H̃d. Then, conditioned on Xd the covariance of ydi is

E[yH
diydi|Xd] =

T

Nd

XH
d E

[
h̃H

i h̃i

]
Xd +

1

ρ
IT (2.67)

=
T

Nd

XH
d Xd +

1

ρ
IT , (2.68)

where the last equality holds since all the elements in H̃d are uncorrelated with zero mean and

unit variance. In addition, given Xd, the vector ydi has zero mean, and therefore, h(ydi|Xd)

is upper bounded by the differential entropy of a multivariate normal random vector with

the same covariance [17]:

h(ydi|Xd) ≤ log det
( T

Nd

XH
d Xd +

1

ρ
I
)

(2.69)

≤ Nd log
( T

Nd

+
1

ρ

)− (T −Nd) log ρ. (2.70)

Combining (2.66) and (2.70), we obtain

h(Yd|Xd) ≤ N2
d log

( T

Nd

+
1

ρ

)−Nd(T −Nd) log ρ. (2.71)
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After calculating the upper bound for h(Yd|Xd), we now find a lower bound for h(Yd)

as follows.

h(Yd) > h
(√ T

Nd

HdXsXd

)
(2.72)

≥ h
(√ T

Nd

HdXsXd

∣∣Hd,Xs

)
, (2.73)

where (2.72) holds since we remove the noise, and (2.73) holds since conditioning does not

increase differential entropy. The Jacobian from Xd to HdXsXd is [28, Theorem. 2.1.5]:

JXd
=

(√
T

NdNs

det(HdXs)

)Nd

. (2.74)

Therefore, from (2.73) we have

h(Yd) > h(Xd) + E[log JXd
], (2.75)

where the expectation is with respect to Xs and Hd. Because Xd is an isotropically dis-

tributed unitary matrix, i.e., uniformly distributed on the Stiefel manifold F(T, Nd), we

have [20]

h(Xd) = log
∣∣F(T, Nd)

∣∣, (2.76)

where
∣∣F(T, Nd)

∣∣ is the volume of F(T,Nd) based on the Haar measure induced by the

Lebesgue measure restricted to the Stiefel manifold [28]:

∣∣F(T,Nd)
∣∣ =

T∏
i=T−Nd+1

2πi

(i− 1)!
. (2.77)

Finally, combining (2.71) and (2.75), we obtain

I(Xd;Yd) > Nd(T −Nd) log ρ + log |F(T, Nd)|+ E[log JXd
]−Nd

Nd∑
i=1

log
( T

Nd

+
1

ρ

)
(2.78)

= Nd(T −Nd) log ρ + O(1). (2.79)

Normalizing I(Xd;Yd) over T time-slots yields the achievable rate of the dynamic receiver.
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Achievable Rate for the Static Receiver

The signal received at the static receiver is

Ys =

√
T

Nd

HsXsXd +
1√
ρ
Ws, (2.80)

where Hs ∈ CNs×Ns is the static channel and Ws ∈ CNs×T is additive Gaussian noise. Denote

the sub-matrix containing the first Nd columns of Ys with Y′
s.

Y′
s =

√
T

Nd

HsXsX
′
d +

1√
ρ
W′

s, (2.81)

where X′
d ∈ CNd×Nd is the corresponding sub-matrix of Xd, and W′

s ∈ CNd×Nd is i.i.d.

Gaussian noise. Given Hs, the mutual information between Ys and Xs is lower bounded by:

I(Ys;Xs|Hs) ≥ I(Y′
s;Xs|Hs). (2.82)

We will focus on I(Y′
s;Xs|Hs) to derive a lower bound. Using the singular value decompo-

sition (SVD):

Hs = UHΣV, (2.83)

where U, V ∈ CNs×Ns and

Σ = diag(λ1, · · · , λNs) (2.84)

with |λ1| ≥ · · · ≥ |λNs|. Since Hs is known and non-singular, the dynamic receiver applies

H−1
s to remove it:

H−1
s Y′

s =

√
T

Nd

XsX
′
d +

1√
ρ
W′′

s . (2.85)

The columns of W′′
s are mutually independent, and each column has an autocorrelation:

RW = VH Σ−2V. (2.86)

Because mutual information is independent of the choice of coordinates, we have

I(Y′
s;Xs|Hs) = I(H−1

s Y′
s;Xs|Hs) (2.87)

= h(H−1
s Y′

s|Hs)− h(H−1
s Y′

s|Xs,Hs). (2.88)
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Let ysi be the column i of H−1
s Y′

s, then via the independence bound on entropy:

h(H−1
s Y′

s|Xs,Hs) ≤
Nd∑
i=1

h(ysi|Xs,Hs). (2.89)

From (2.85) and (2.86), the autocorrelation of ysi conditioned on Xs and Hs is

Rsi =
T

Nd

XsE[x′dix
′H
di ]XH

s +
1

ρ
RW (2.90)

=
T

Nd

XsRdiX
H
s +

1

ρ
RW (2.91)

where x′d,i ∈ CNd×1 is the column i of X′
d and has autocorrelation Rd,i. The expected value

of ys,i is zero and thus the differential entropy is maximized if ys,i has multivariate normal

distribution [17]:

h(ysi|Xs,Hs) ≤ log det
( T

Nd

XsRdiX
H
s +

1

ρ
RW

)

= log det
( T

Nd

VXsRdiX
H
s VH +

1

ρ
Σ−2

)
. (2.92)

The following lemma calculates Rdi, the autocorrelation of a column of an i.d. matrix.

Lemma 2.5.1 If Q ∈ CT×T is isotropically distributed (i.d.) unitary matrix, then each row

and column of Q is an i.d. unit vector with autocorrelation 1
T
IT .

Proof From Definition 2.2.1, given Q is i.d., for any deterministic unitary matrix Φ ∈ CT×T ,

p(QΦ) = p(Q), (2.93)

which implies that the marginal distribution of each row and column remains unchanged

under any transform Φ. Therefore, each row and column is an i.d. unit vector. Without loss

of generality, we consider the first row of Q, denoted as q1. Let the autocorrelation of q1 be

Rq and posses the eigenvalue decomposition Rq = PHΣqP, where P ∈ Cn×n is unitary and

Σq is diagonal. Since q1P
H has the same distribution as q1, therefore

Rq = E[qH
1 q1] = P E[qH

1 q1]P
H = Σq. (2.94)
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Thus Rq is a diagonal matrix. Furthermore, the diagonal elements of Σq have to be identical,

i.e., Σq = aIT , otherwise Rq would not be rotationally invariant which conflicts with an i.d.

assumption. Finally, because tr(Rq) = 1, we have Σq = IT /T . This completes the proof of

Lemma 2.5.1.

Since Xd is an i.d. unitary matrix, based on Lemma 2.5.1, the autocorrelation of its

sub-column is

Rdi = INd
/T. (2.95)

Therefore, the eigenvalues of V2XsR1iX
H
s VH

2 are

(
1

T
, · · · ,

1

T︸ ︷︷ ︸
Nd

, 0, · · · , 0︸ ︷︷ ︸
Ns−Nd

)
. (2.96)

We now bound the eigenvalues of the sum of two matrices in (2.92), noting that λ−2
j are in

ascending order and using a theorem of Weyl [29, Theorem 4.3.1]:

h(ysi|Xs,Hs) ≤ Nd log
( 1

Nd

+ λ−2
Ns

)
+ (Ns −Nd) log

1

ρ
λ−2

Ns
. (2.97)

From (2.89) and (2.97), we have:

h(H−1
s Y′

s|Xs,Hs) ≤ N2
d log

( 1

Nd

+ λ−2
Ns

)
+ Nd(Ns −Nd) log λ−2

Ns
−Nd(Ns −Nd) log ρ.

(2.98)

We now calculate a lower bound for h(H−1
s Y′

s|Hs):

h(H−1
s Y′

s|Hs) > h(

√
T

Nd

XsX
′
d|Hs) (2.99)

> h(

√
T

Nd

XsX
′
d|X′

d,Hs). (2.100)

From [28, Theorem. 2.1.5], given X′
d the Jacobian of the transformation from Xs to

√
T
Nd

XsX
′
d

is:

JXs =

(√
T

Nd

)Ns

det(X′
d)

Nd . (2.101)
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Therefore, from the right hand side of (2.100) we have

h(H−1
s Y′

s|Hs) > h(Xs) + E[log JXs ], (2.102)

where the expectation is with respect to X′
d. Because Xs is uniformly distributed on the

Stiefel manifold F(Ns, Nd), we have [20]

h(Xd) = log
∣∣F(Ns, Nd)

∣∣, (2.103)

where
∣∣F(Ns, Nd)

∣∣ is the volume of F(Ns, Nd), which is given by [28]:

∣∣F(Ns, Nd)
∣∣ =

Ns∏
i=Ns−Nd+1

2πi

(i− 1)!
. (2.104)

Finally, substituting (2.102) and (2.98) into (2.88), we have

I(Y′
s;Xs|Hs) = Nd(Ns −Nd) log ρ + O(1). (2.105)

Hence, the rate achieved by the static receiver is

1

T
E[I(Y′

s;Xs|Hs)] =
Nd

T
(Ns −Nd) log ρ + O(1), (2.106)

where the expectation is with respect to Hs.

2.5.2 Proof of Corollary 2.3.2

The objective is to find the best dimensions for the transmit signals Xd ∈ CN̂d×T̂ and Xs ∈
CN̂s×N̂d . From Theorem 2.3.1, it is easily determined that N̂s = Ns is optimal, because the

pre-log factor of R2 increases with N̂s and the pre-log factor of Rd is independent of N̂s

(given N̂d ≤ Ns).

To find the optimal values of N̂d, T̂ , we start by relaxing the variables by allowing them

to be continuous valued, i.e. N̂d → x and T̂ → y, and then showing via the derivatives that

the cost functions are monotonic, therefore optimal values reside at the boundaries, which

are indeed integers.
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Using the DoF expression from Theorem 2.3.1, the slope between two achievable points

D2 and D3 is:

f(x, y) =
x(Ns − x)/y −Ns

x(1− x/y)
. (2.107)

Therefore, for all 0 < x ≤ Nd,

∂f(x, y)

∂y
=

x

(y − x)2
> 0. (2.108)

We wish to maximize f with the constraint y ≤ T , thus y = T is optimal.

Substituting y = T into f(x, y), we have

∂f(x, T )

∂x
= −(T −Ns)x

2 + TNsx− T 2Ns

x2(T − x)2
. (2.109)

If T = Ns, since x ≤ T/2, then ∂f
∂x

> 0. In this case x = Nd maximizes the DoF region.

If T 6= Ns, let T = αNs. When 0 < α < 3
4
, one can verify that ∂f

∂x
> 0 for all x > 0.

Thus, x = Nd is optimal. When α ≥ 3
4
, let ∂f

∂x
= 0, and we have the corresponding solutions:

x1,2 =
−αNs ± αNs

√
1 + 4(α− 1)

2(α− 1)
. (2.110)

When 3
4
≤ α < 1, the above solutions are positive, where the smaller one is:

x1 =
αNs − αNs

√
1− 4(1− α)

2(1− α)
> Nd. (2.111)

Since ∂f
∂x

> 0 at x = 0, we have ∂f
∂x

> 0 for 0 ≤ x ≤ Nd. When α > 1, the (only) positive

solution of (2.110) is:

x1 =
αNs + αNs

√
1 + 4(α− 1)

2(α− 1)
> Nd. (2.112)

Once again, since ∂f
∂x

> 0 at x = 0, we have ∂f
∂x

> 0 for 0 ≤ x ≤ Nd.

Therefore, for all cases, x = Nd maximizes the DoF region.
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2.5.3 Proof of Theorem 2.4.1

Achievable Rate for the Dynamic Receiver

The proof is similar to the proof for Theorem 2.3.1, so we only outline key steps. The

received signal at the dynamic receiver is

Yd =

√
T

NdNs

HdXsXd +
1√
ρ
Wd, (2.113)

where Yd ∈ CNd×T and Hd ∈ CNd×Ns and Wd ∈ CNd×T is additive Gaussian noise. We

establish a lower bound for the mutual information between Xd and Yd:

I(Xd;Yd) = h(Yd)− h(Yd|Xd). (2.114)

In the above equation, we have

h(Yd|Xd) ≤
Nd∑
i=1

h(ydi|Xd).

One can verify

h(ydi|Xd) ≤ log det
( T

Ns

XH
d Xd +

1

ρ
I
)
. (2.115)

Finally, we obtain

h(Yd|Xd) < N2
d log

( T

Ns

+
1

ρ

)−Nd(T−Nd) log ρ. (2.116)

The lower bound is given by:

h(Yd) > log |F(T, Nd)|+ E[log JXd
], (2.117)

where the expectation is with respect to Hd and Xs, and

JX1 =

(√
T

NdNs

det(HdXs)

)Nd

. (2.118)

Combining (2.116) and (2.118), and normalizing over T time-slots leads to the achievable

rate of the dynamic receiver.



42

Achievable Rate for the Static Receiver

The received signal at the static receiver is Ys ∈ CNs×T

Ys =

√
T

NdNs

HsXsXd +
1√
ρ
Ws,

where Hs ∈ CNs×Ns is the static channel, and Ws ∈ CNd×T is additive Gaussian noise.

We first calculate the decodable dynamic rate at the static receiver in the next lemma.

Lemma 2.5.2 The static receiver is able to decode the dynamic rate Rd if

Rd ≤ Nd(1−Nd/T ) log ρ + O(1). (2.119)

Proof Use the SVD for Hs and re-write the signal at the static receiver as

Ys =

√
T

NdNs

UHΣVXsXd +
1√
ρ
Ws, (2.120)

Because Xs is an isotropically distributed unitary matrix, X′
s , VXs has the same distri-

bution as Xs, i.e., a matrix of i.i.d. CN (0, 1). Rotate Ys with U

Y′
s , UYs =

√
T

NdNs

ΣX′
sXd +

1√
ρ
W′

s, (2.121)

where W′
s is i.i.d. Gaussian noise. Let Y′′

s ∈ CNd×T be the first Nd rows of Y′
s, i.e., the rows

corresponding to the largest Nd singular modes of Hs, that is |λ1| ≥ · · · ≥ |λNd
|. We denote

the corresponding Nd ×Nd sub-matrix of X′
s by X′′

s . Then,

Y′′
s = diag(λ1, · · · , λNd

)X′′
sXd +

1√
ρ
W′′

s . (2.122)

Conditioned on Hs, the decodable dynamic rate at the static receiver is

I(Xd;Ys|Hs) = I(Xd;Y
′
s|Hs),

which is lower bounded by

I(Xd;Y
′′
s |Hs) = h(Y′′

s |Hs)− h(Y′′
s |Xd,Hs). (2.123)
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Using the independence bound for h(Y′′
s |Xd,Hs) yields

h(Y′′
s |Xd,Hs) ≤

Nd∑
i=1

h(ysi|Xd,Hs), (2.124)

where ysi is the row i of Y′′
s . Let xsi be the row i of X′′

s , for 1 ≤ i ≤ Nd. Since X′′
s ∈ CNd×Nd

have i.i.d. CN (0, 1) entries, all the row vectors xsi have the same autocorrelation INd
.

Conditioned on Xd, the autocorrelation of ysi = λixsiXd is given by

E[yH
siysi|Xd,Hs] = λ2

i X
H
d Xd +

1

ρ
IT . (2.125)

Therefore,

h(ysi|Xd,Hs) ≤ log det
(
λ2

i X
H
d Xd +

1

ρ
IT

)
, (2.126)

= Nd log
(
λ2

i +
1

ρ

)− (T −Nd) log ρ, (2.127)

and subsequently,

h(Y′′
s |Xd,Hs) ≤

Nd∑
i=1

log(λ2
i +

1

ρ
)−Nd(T −Nd) log ρ. (2.128)

We now find a lower bound for h(Y′′
s |Hs). Similar to (2.102), we have

h(Y′′
s |Hs) ≥ h(Xd) + E[JXs ], (2.129)

where the expectation is with respect to Xs, and

h(Xd) = |F(T, Nd)| =
T∏

i=T−Nd+1

2πi

(i− 1)!
, (2.130)

and

JXs =

Nd∏
i=1

λ2Nd det(Xs)
Nd . (2.131)

Finally, taking expectation over Hs, we obtain

E[I(Xd;Ys|Hs)] ≥ Nd(T −Nd) log ρ + h(Xd) + E[JX2 ]− E
[ Nd∑

i=1

log(λ2
i +

1

ρ
)
]

= Nd(T −Nd) log ρ + O(1). (2.132)

This completes the proof for Lemma 2.5.2.
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Therefore, the transmitter is able to send Nd(1 − Nd/T ) DoF to the dynamic receiver,

while ensuring the dynamic signal is decoded at the static receiver.

After decoding Xd, the static receiver removes the interference:

YsX
H
d =

√
T

NdNs

HsXs +
1√
ρ
W′

s, (2.133)

where W′
s ∈ CNs×Nd is the equivalent noise whose entries are still i.i.d. CN (0, 1). The

equivalent channel for the static receiver is now a point-to-point MIMO channel. With

Gaussian input Xs, we have [26]

I(Xs;Ys|Hs) = NdNs log ρ + O(1). (2.134)

Normalizing I(Xs;Ys|Hs) over T time-slots yields the achievable rate of the static receiver.



CHAPTER 3

COHERENT PRODUCT SUPERPOSITION FOR DOWNLINK

MULTIUSER MIMO

3.1 Introduction

Due to varying mobilities, wireless network nodes often have unequal capability to acquire

CSIR (channel state information at receiver). Downlink (broadcast) transmission to nodes

with unequal CSIR is therefore a subject of practical interest.

It has been known that if all downlink users have full CSIR or none of them do, then

orthogonal transmission (e.g. TDMA) achieves the optimal degrees of freedom (DoF) [13,14]

when no CSIT is available. Chapter 2 ( [30]) finds that a very different behavior emerges

when one user has perfect CSIR and the other has none: in this case TDMA is highly

suboptimal and a product superposition can achieve the optimal degrees of freedom (DoF).

However, the analysis of Chapter 2 was limited to high-SNR, did not demonstrate optimal-

ity in all receiver antenna configurations, and more importantly, it required non-coherent

Grassmannian signaling.

Most practical systems use pilots and employ channel estimation and coherent detection.

Therefore in this chapter we extend the product superposition to coherent signaling with pi-

lots. We show the DoF optimality of product superposition for more antenna configurations,

and in addition show that it has excellent performance in low-SNR as well as high-SNR.

A downlink scenario with two users is considered in this chapter, where one user has a

short coherence interval and is referred to as the dynamic user, and the other has a long

coherence interval and is referred to as the static user. The main results of this chapter are

as follows.

45
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• We propose a new signaling structure that is a product of two matrices representing

the signals of the static and dynamic user, respectively, where the data for both users

are transmitted using coherent signaling.

• We propose two decoding methods. The first method performs no interference cancel-

lation at the receiver. We show that under this method, at both high SNR and low

SNR, the dynamic user experiences almost no degradation due to the transmission of

the static user. Therefore in the sense of the cost to the other user, the static user’s

rate is added to the system “for free.” Avoiding interference cancellation gives this

method the advantage of simplicity.

• The second method further improves the static user’s rate by allowing it to decode and

remove the dynamic user’s signal. This increases the effective SNR for the static user

and provides further rate gain.

• We show that the product decompostion is DoF optimal when the dynamic user has

either more, less or equal number of antennas as the static user. Previously [30] the

DoF optimality was demonstrated only when the dynamic user had fewer or equal

number of antennas compared with the static user.

• Finally we show how CSIT for the static user, whenever available, can be used to

reduce the decoding complexity and further improve the rate for the static user.

The following notation is used throughout the chapter: for a matrix A, the transpose

is denoted with At, the conjugate transpose with AH , the pesudo inverse with A† and the

element in row i and column j with [A]ij. The k×k identity matrix is denoted with Ik. The

set of n×m complex matrices is denoted with Cn×m. We denote CN (0, 1) as the circularly

symmetric complex Gaussian distribution with zero mean and unit variance. For all variables

the subscripts “s” and “d” stand as mnemonics for “static” and “dynamic”, respectively, and

subscripts “τ” and “δ” stand for “training” and “data.”
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Tx

Static Rx

Dynamic Rx

Hs

Hd

Figure 3.1. Channel model of Chapter 3.

3.2 System Model and Preliminaries

We consider an M -antenna base-station transmitting to two users, where the dynamic user

has Nd antennas and the static user has Ns antennas. The channel coefficient matrices of

the two users are Hd ∈ CNd×M and Hs ∈ CNs×M , respectively. In this chapter we restrict our

attention to M = max{Nd, Ns}. The system operates under block-fading, where Hd and Hs

remain constant for Td and Ts symbols, respecitvely, and change independently across blocks.

The coherence time Td is small but Ts is large (Ts À Td) due to different mobilities. The

difference in coherence times means that the channel resources required by the static user

to estimate its channel are negligible compared to the training requirements of the dynamic

user. To reflect this in the model, it is assuemd that Hs is known by the static user (but

unknown by the dynamic user, naturally), while Hd is not known a priori by either user.

Over T time-slots (symbols) the base-station sends X = [x1, · · · ,xM ]t across M antennas,

where xi ∈ CT×1 is the signal vector sent by the antenna i. The signal at the dynamic and

static users is respectively

Yd = HdX + Wd,

Ys = HsX + Ws, (3.1)

where Wd ∈ CNd×T and Ws ∈ CNs×T are additive noise with i.i.d. entries CN (0, 1). Each

row of Yd ∈ CNd×T (or Ys ∈ CNs×T ) corresponds to the received signal at an antenna of the

dynamic user (or the static user) over T time-slots. The base-station is assumed to have an
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average power constraint ρ

E
[ M∑

i=1

tr(xix
H
i )

]
= ρ Td. (3.2)

In this chapter, the base-station may know Hs (in Section 3.4) but does not know Hd

due to its fast variation. The channels Hd and Hs have i.i.d. entries with the distribution

CN (0, 1). We assume M = max(Nd, Ns) and Td ≥ 2Nd [20].

3.2.1 The Baseline Scheme

We start by establishing a baseline scheme and outlining its capacity for the purposes of

comparison. In our system model, MIMO transmission schemes involving dirty paper coding,

zero-forcing, or similar techniques [31–34] are not applicable since Hd varies too quickly for

feedback to transmitter. Our baseline method uses orthogonal transmission, i.e., TDMA.

For the dynamic user, we consider the following near-optimal method. The base-station

activates only Nd out of M antennas [20], sends an orthogonal pilot matrix Sτ ∈ CNd×Nd

during the first Nd time-slots, and then sends i.i.d. CN (0, 1) data signal Sδ ∈ CNd×(Td−Nd) in

the following Td −Nd time-slots [25], that is

X =

[√
ρτ

Nd

Sτ

√
ρδ

Nd

Sδ

]
(3.3)

where SτS
H
τ = NdI, and ρτ and ρδ are the average power used for training and data, respec-

tively, and satisfy the power constraint in (3.2):

ρτNd + ρδ(Td −Nd) ≤ ρTd. (3.4)

The dynamic user employs a linear minimum-mean-square-error (MMSE) estimation on the

channel. The normalized channel estimate obtained in this orthogonal scheme is denoted

Hd ∈ CNd×Nd . Under this condition, the rate attained by the dynamic user is [25]:

Rd ≥ (1− Nd

Td

)E
[
log det(INd

+
ρd

Nd

HdH
H

d )
]
, (3.5)

where ρd is the effective signal-to-noise ratio (SNR)

ρd =
ρδ ρτ

1 + ρδ + ρτNd

. (3.6)
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For the static user, the channel is known at the receiver, the base-station sends data

directly using all M antennas. The rate achieved by the static user is [26]

Rs = E
[

log det

(
INs +

ρ

Ns

HsH
H
s

)]
. (3.7)

Time-sharing between Rd and Rs yields the rate region

ROT =
(
tRd, (1− t)Rs

)
. (3.8)

3.2.2 Overview of Product Superposition

In Chapter 2, a product superposition based on Grassmannian signaling was proposed and

shown to achieve significant gain in DoF over orthogonal transmission. It has been shown

that the method is DoF-optimal when Ns ≥ Nd. In the so-called Grassmannian-Ecludean

superposition [30], the base-station transmits

X = XsXd ∈ CNs×Td (3.9)

over Td time-slots, where Xd ∈ CNd×Td and Xs ∈ CNs×Nd are the signals for the dynamic and

static user, respectively. For the dynamic user, a Grassmannian (unitary) signal is used to

construct Xd, so that information is carried only in the subspace spanned by the rows of Xd.

As long as Xs is full rank, its multiplication does not create interference for the dynamic

user, since XsXd and Xd span the same row-space.

The static user decodes and peels off Xd from the received signal, then decodes Xs, which

carries information in the usual manner of space-time codes.

3.3 Pilot-Based Product Superposition

In this section, we develop a variation of product superposition that employs coherent sig-

naling for both users. This is motivated by several factors, among them the popularity and

prevalence of coherent signaling in the practice of wireless communications, as well as the

known results in the point-to-point channel [20] showing that pilot-based transmission can
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perform almost as well as Grassmannian signaling. We show that a similar result holds in

the mixed-mobility broadcast channel. The method proposed in this section uses single-user

decoding (no interference cancellation).

3.3.1 Signaling Structure

Over Td symbols (the coherence interval of the dynamic user) the base-station sends X ∈
CNs×Td across Ns antennas:

X = XsXd, (3.10)

where Xs ∈ CNs×Nd is the data matrix for the static user and has i.i.d. CN (0, 1) entries. The

signal matrix Xd ∈ CNd×Td is intended for the dynamic user and consists of the data matrix

Xδ ∈ CNs×(Td−Ns) whose entries are i.i.d. CN (0, 1) and the pilot matrix Xτ ∈ CNs×Ns which

is unitary, and is known to both static and dynamic users.

Xd =

[√
cτ Xτ

√
cδ Xδ

]
, (3.11)

where the constant cτ and cδ satisfy the power constraint (3.2):

NsNd

(
cτ + (Td −Nd)cδ

) ≤ ρ Td. (3.12)

Please make note of the normalization of pilot and data matrices in the product superpo-

sition: The pilot matrix is unitary, i.e., the entire pilot power is normalized, while the data

matrix is normalized per time per antenna. This is only for convenience of mathematical

expressions in the sequel; full generality is maintained via multiplicative constants cδ and cτ .

A sketch of the ideas involved in the decoding at the dynamic and static users is as

follows. The signal received at the dynamic user is

Yd = HdXs

[√
cτXτ

√
cδXδ

]
+ Wd (3.13)

where Wd is the additive noise. The dynamic user uses the pilot matrix to estimate the

equivalent channel HdXs, and then decodes Xδ based on the channel estimate.
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For the static user, the signal received during the first Nd time-slots is

Ys1 =
√

cτ HsXsXτ + Ws1 (3.14)

where Ws1 is the additive noise at the static user during the first Nd samples. The static

user multiplies its received signal by XH
τ from the right and then recovers the signal Xs.

Remark 3.3.1 Each of the dynamic user’s codewords includes pilots because it needs fre-

quent channel estimates. No pilots are included in the individual codewords of the static user

because it only needs infrequent channel estimate updates. In practice static user’s channel

training occurs at much longer intervals outside the proposed signaling structure.

3.3.2 Main Result

Theorem 3.3.1 Consider an M-antenna base-station, a dynamic user with Nd-antennas

and coherence time Td, and a static user with Ns-antennas and coherence time Ts À Td.

Assuming the dynamic user does not know its channel Hd but the static user knows its

channel Hs, the pilot-based product superposition achieves the rates

Rd = (1− Nd

Td

)E
[

log det

(
INd

+
ρd

Nd

HdH
H

d

)]
, (3.15)

Rs =
Nd

Td

E
[

log det

(
INs +

ρs

Ns

HsH
H
s

)]
, (3.16)

where Hd is the normalized MMSE channel estimate of the equivalent dynamic channel

HdXs, and ρd and ρs are the effective SNRs:

ρd =
cτcδNdN

2
s

1 + cτNs + cδNdNs

, (3.17)

ρs = cτNs. (3.18)

Proof See Section 3.6.1.

For the static user, the effective SNR ρs = cτ increases linearly with the power used in

the training of the dynamic user. This is because the static user decodes based on the signal

received during the training phase of the dynamic user.
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For the dynamic user, the effective SNR ρd is unaffected by superimposing Xs on Xd. To

see this, compare (3.4) with (3.12) to arrive at ρτ = cτNs and ρδ = cδNdNs, therefore the

two SNRs are equal to

ρd =
cτcδNdN

2
s

1 + cτNs + cδNdNs

. (3.19)

Intuitively, the rate available to the dynamic user via orthogonal transmission (Eq. (3.5))

and via superposition (Eq. (3.15)) will be very similar: the normalized channel estimate Hd

in both cases has uncorrelated entries with zero mean and unit variance.1 Thus the product

superposition achieves the static user’s rate “for free” in the sense that the rate for the

dynamic user is approximately the same as in the single-user scenario. In the following, we

discuss this phenomenon at low and high SNR.

Low-SNR Regime

We have ρd, ρs ¿ 1. Let the eigenvalues of HdH
H

d be denoted λ̄2
1i, i = 1, . . . , Nd. Using (3.15)

and a Taylor expansion of the log function at low SNR, the achievable rate for the dynamic

user is approximately:

Rd ≈ (1− Nd

Td

)
ρd

Nd

E
[ Nd∑

i=1

λ̄2
1i

]
(3.20)

= (1− Nd

Td

)
ρd

Nd

tr
(
E[HdH

H

d ]
)

(3.21)

= (1− Nd

Td

)Nd ρd. (3.22)

Similarly, from (3.5), the baseline method achieves the rate

(1− Nd

Td

)Nd ρd. (3.23)

1The dynamic channel estimates in the orthogonal and superposition transmissions have
the same mean and variance but are not identically distributed, becuase in the orthogonal
case, Hd is an estimate of Hd, a Gaussian matrix, while in the superposition case it is an
estimate of HdXs, the product of two Gaussian matrices. Therefore the expectations in
Eq. (3.5) and (3.15) may produce slightly different results.
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Thus, the dynamic user attains the same rate as it would in the absence of the other user and

its interference, i.e., a single-user rate. At low SNR, one cannot exceed this performance.

The rate available to the static user at low-SNR is obtained via (3.16), as follows:

Rs ≈ ρs

Td

tr
(
E[HsH

H
s ]

)
(3.24)

=
N2

s ρs

Td

. (3.25)

High-SNR Regime

We have ρd, ρs À 1, therefore from (3.15) the achievable rate for the dynamic user is

Rd ≈ (1− Nd

Td

)

(
Nd log

ρd

Nd

+ E
[ Nd∑

i=1

log λ̄2
1i

])
. (3.26)

The dynamic user attains Nd(1 − Nd/Td) degrees of freedom, which is the maximum DoF

even in the absence of the static user [20]. Superimposing Xs only affects the distribution of

eigenvalues λ̄2
1i, whose impact is negligible at high-SNR.

For the static user, let the eigenvalues of HsH
H
s be denoted λ2

2i, i = 1, . . . , Ns. From (3.16),

we have

Rs ≈ Nd

Td

(
Ns log

ρs

Ns

+ E
[ Ns∑

i=1

log λ2
2i

])
, (3.27)

which implies that the static user achieves NdNs/Td degrees of freedom. Thus, the pilot-

based product superposition achieves the optimal DoF obtained in [30] for Nd ≤ Ns, and for

Nd > Ns meets the coherent upper bound.

3.3.3 Power Allocation

The effective SNRs of the dynamic and static users depend on cτ and cδ. We focus on cτ and

cδ that maximize Rd (equivalently ρd) in a manner similar to [25]. From (3.79) and (3.72),

ρd =
cτcδNdN

2
s

1 + cτNs + cδNdNs

. (3.28)
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From (3.12), we have cτ = ρTd/(NdNs)− cδ(Td −Nd). Substitue cτ into (3.28):

ρd =
NdNs(Td −Nd)

Td − 2Nd

· cδ(a− cδ)

−cδ + b
, (3.29)

where

a =
ρTd

NdNs(Td −Nd)
, (3.30)

b =
Nd + ρTd

NdNs(Td − 2Nd)
. (3.31)

Noting that 0 ≤ cδ ≤ a, we obtain the value of cδ that maximizes Rd:

c∗δ = b−
√

b2 − ab, (3.32)

which corresponds to

ρ∗d =
NdNs(Td −Nd)

Td − 2Nd

(
2b− a− 2

√
b2 − ab

)
, (3.33)

ρ∗s =
ρTd

Nd

−Ns(Td −Nd)(b−
√

b2 − ab). (3.34)

In the low-SNR regime where ρ ¿ 1 we have

ρ∗d ≈
ρ2T 2

d

4(Td −Nd)
(3.35)

ρ∗s ≈
ρTd

2Nd

. (3.36)

This indicates that the static user has a much larger effective SNR, i.e., ρ∗d = o(ρ∗s). In this

case, from (3.22) and (3.25), the achievable rate is

Rd ≥ TdNd

4
ρ2, (3.37)

Rs ≈ Ns

2
ρ. (3.38)

In the high-SNR regime where ρ À 1 we have

ρ∗d ≈
ρ Td

(
√

Td −Nd −
√

Nd)2
, (3.39)

ρ∗s ≈
ρTd(

√
Td/Nd − 1− 1)

Td − 2Nd

. (3.40)
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Both static and dynamic users attain SNR that increases linearly with ρ. When Td À Nd,

for the static user, ρ∗s ≈ ρ
√

Td/Nd À ρ∗d. For the dynamic user, we have ρ∗d ≈ ρ, which is

the same SNR as if the dynamic user had perfect CSI; this is not suprising since the power

used for training is negligible when the channel is very steady.

Remark 3.3.2 In the MIMO broadcast channel, conventional transmission schemes essen-

tially divide the power between users. In the proposed product superposition the transmit

power works for both users simultaneously instead of being divided between them. The train-

ing power used for the dynamic user also carries the static user’s data. In this way, signifi-

cant gains over TDMA are achieved, which is contrary to the conventional methods that at

low-SNR produce little or no gain relative to TDMA.

Remark 3.3.3 Note that the developments in this section make no assumption about the

relative number of antennas at the dynamic and static receivers, yet in Equations (3.15)

and (3.16) the degrees of freedom (prelog factors) meet upper the bound [30] when Nd ≤
Ns as well as the coherent upper bound when Nd > Ns. Thus, the DoF optimality of the

product superposition, which was shown in [30] only for Nd ≤ Ns, is now extended for all

dynamic/static user antenna configurations.

3.4 Improving Rates by Interference Cancellation and Partial CSIT

3.4.1 Interference Decoding and Cancellation

We focus on the case of Ns ≥ Nd. Previously, the static user could only use the portion

of power that was shared with the dynamic user pilot (but not the dynamic user data).

However, if the static user has no fewer antennas than the dynamic user, in principle it may

decode the dynamic user’s data and then harvest the entire power of the signal.

The received signal at the static user is

Ys = HsXs[
√

cτ Xτ

√
cδ Xδ] + Ws (3.41)
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where Ys ∈ CNs×Td . The static user first estimates the product HsXs ∈ CNs×Nd by using the

pilot Xτ sent during the first Nd time-slots, and then it may deocde Xδ. Given the entire Xd,

ML decoding can be used to decode the static user’s signal. Assuming the codeword used

by the dynamic user is sufficiently long, the rate gain produced by the interference decoding

is characterized by the following theorem.

Theorem 3.4.1 (Ns ≥ Nd) With interference decoding and cancellation, the pilot-based prod-

uct superposition achieves the following rate for the static user

Rs =
Nd

Td

E
[

log det

(
INs +

ρs

Ns

HsH
H
s

)]
, (3.42)

where the effective SNR is

ρs =
Ns

E[λ−2
i ]

(3.43)

with λ2
i being any of the unorderred eigenvalues of XdX

H
d .

Proof See Section 3.6.2.

Compared with Theorem 3.3.1, the SNR for the static user is improved by using the

entire Xd. To see this, we decompose Xδ = Uδ diag(γ1, · · · , γNd
)VH

δ , and obtain

XdX
H
d = cτINd

+ cδ Uδ diag(γ2
1 , · · · , γ2

Nd
)UH

δ (3.44)

= diag(cτ + cδγ
2
1 , · · · , cτ + cδγ

2
Nd

). (3.45)

Therefore, λ2
i = cτ + cδ γ2

i , for i = 1, . . . , Nd, and

ρs =
Ns

E[(cτ + cδ γ2
1)
−1]

. (3.46)

which is greater than the effective power available to the previous scheme (compare with

Eq. (3.18)). So knowing the dynamic user’s data always produces a power gain. A closed

form expression for ρs is not tractable so we find lower and upper bounds.

E[γ2
i ] =

1

Nd

E[

Nd∑
i=1

γ2
i ] =

1

Nd

E[tr(XδX
H
δ )] (3.47)

= Td −Nd. (3.48)
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Due to convexity of the function 1/x, we have

E[(cτ + cδ γ2
i )
−1] ≥ (

cτ + cδE[γ2
i ]

)−1
(3.49)

=
1

cτ + cδ(Td −Nd)
, (3.50)

and thus

ρs ≤ cτNs + cδNs(Td −Nd). (3.51)

Recall that Xs has Nd columns, so the total power used for the static user is ρsNd. Therefore,

from (3.12), the upper bound corresponds to the case where the static user collects all the

transmit power.

For the lower bound, we use the fact that the arithmetic mean is no less than the harmonic

mean, and obtain

E[(cτ + cδ γ2
i )
−1] = E

[
1

1/c−1
τ + 1/(cδγ2

i )
−1

]
(3.52)

≤ 1

4

(
c−1
τ + c−1

δ E[γ−2
i ]

)
(3.53)

=
1

4

(
c−1
τ + c−1

δ (Td −Nd − 1)−1
)
, (3.54)

where (3.54) uses the fact that γ−2
i has inverse Gamma distribution with mean 1/(Td−Nd−1).

3.4.2 Partial CSIT

In each of the methods mentioned earlier in this section, the static user operates under an

equivalent single-user channel, by inverting either the pilot component or all components

of the dynamic user’s signal. Thus, any benefits that can be realized in the single-user

MIMO can also be available to the static user, including the benefits arising from CSIT. For

example, water-filling can be applied to allocate power across multiple eigen-modes of the

static user. CSI can also simplify decoding at the static user. To see this, using singular value

decomposition (SVD), Hs = UΣVH , where Σs = diag(λ1, · · · , λNs). Then, the base-station

sends

X = VXs [
√

cτXτ

√
cδXδ]. (3.55)
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Figure 3.2. Pilot-based product superposition (PBPS), Nd = 2, Ns = M = 4 and Td = 5.

Since V is unitary, the entries of VXs remain i.i.d. CN (0, 1), and therefore, the performance

of the dynamic user is unaffected by precoding with V. Without interference decoding, the

static user forms the equivalent diagonal channel

UHYτXτ =
√

cτ Xs + W′
τ , (3.56)

where W′
τ is the noise with i.i.d. CN (0, 1) distribution.

3.5 Numerical Results

Unless specified otherwise, a power allocation is assumed (cτ and cδ) that maximizes the rate

for the dynamic user.

Figure 3.2 illusrates the rate for dynamic and staic users in the pilot-based product

superposition, as shown in Theorem 3.3.1. We consider Nd = 2, Ns = M = 4 and Td = 5.

Both the baseline method and proposed methods optimize the rate for the dynamic user.
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In this case, the baseline method cannot provide any rate for the static user. In addition

to near-optimal rate for the dynamic user, the proposed method significant rate for the

static user. The separation from optimality is negligible in the low-SNR regime, and in the

high-SNR regime the rate of the dynamic user has the optimal degrees of freedom (SNR

slope).

Thus the proposed method achieves the static user’s rate almost “for free” in terms of

the penalty to the other user.

Figure 3.3 shows the impact of the available antenna of the static user. Here, ρ = 10

dB, Nd = 2, M = Ns and Td = 5. The static user’s rate (thus the sum-rate) increases

linearly with Ns, because the degrees of freedom is NdNs/Td, as indicated by Theorem 3.3.1.

The gap of the dynamic user’s rate under the proposed method and the baseline method

vanishes as Ns increases. Intuitively, the rate difference is because of the Jensen’s loss: in the

proposed method the equivalent channel is the product matrix HdXs and is “more spread”

than the channel in the baseline method. As Ns increases, Xs becomes “more unitary”

(XsX
H
s /Ns → INd

) and thus less impact on the distribution of Hd.

The power allocated in the training and data period is cτNdNs and cδNdNs(Td − Nd),

respectively. The impact of different power allocation is shown by Figure 3.4, where ρ = 5

dB, Nd = 2, Ns = M = 4 and Td = 5. In Figure 3.4, the larger the ratio cτ/cδ is, the

more power is used for training. The optimal ratio that maximizes the rate for the dynamic

user can be derived from (3.32) and is similar to the result in [25]. The static user’s rate

increases logrimathtically with cτ/cδ, because without interference decoding, the effective

power received by the static user is proportional to cτ .

In Figure 3.5, we investigate the impact of the channel coherence time of the dynamic

user. Here, ρ = 5 dB, Nd = 2, and Ns = M = 4. As Td increases, the rate for the dynamic

user improves, since the portion of time-slots (overhead) used for training is reduced. In

contrast, the rate for the static user decreases with Td, because the static user transmits

new signal matrix over Td period. Intuitively, as Td increases, the dynamic user’s channel
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Figure 3.3. Impact of the static user’s antennas : ρ = 10 dB, Nd = 2, M = Ns and Td = 5.
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Figure 3.5. Impact of channel coherence time: ρ = 5 dB, Nd = 2, and Ns = M = 4.

becomes “more static”, and therefore, the opportunity to explore its “insensitivity” to the

channel is reduced.

Finally, in Figure 3.6, we show the gain of interference decoding in the pilot-based product

superposition, where Nd = 2, Ns = M = 4 and Td = 5. By decoding the dynamic signal and

harvesting the power carried by the entire data, the static rate is improved around 10%.

3.6 Proof of Theorem

3.6.1 Proof of Theorem 3.3.1

Rate of the Static User

During the first Nd time-slots, the static user receives

Ys1 =
√

cτ HsXsXτ + Ws1. (3.57)
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Figure 3.6. Static user’s rate with interference decoding: Nd = 2, Ns = M = 4 and Td = 5.

Because the static user knows Xτ , it removes the impact of Xτ from Y2τ :

Y′
s1 = Ys1X

H
τ (3.58)

=
√

cτ HsXs + W′
s1 (3.59)

where Ys1 ∈ CNs×Nd and W′
s1 is the equivalent noise whose entries remain i.i.d. CN (0, 1).

Therefore, the channel seen by the static user becomes a point-to-point MIMO channel. Let

y′si and xsi be the column i of Y′
s1 and Xs, respectively. The mutual information

I(Ys1;Xs) =

Nd∑
i=1

I(y′si;xsi) (3.60)

= Nd log det

(
INs + cτ HsH

H
s

)
, (3.61)

which implies that the effective SNR for the static user is

ρs = cτ . (3.62)
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In the following Td − Nd time-slots, the static user disregards the received signal. The

average rate achieved by the static user is

Rs =
Nd

Td

E
[

log det

(
INs + ρs HsH

H
s

)]
, (3.63)

where the expectation is over the channel realizations of Hs.

Rate of the Dynamic User

The dynamic user first estimates the equivalent channel and then decodes its data. During

the first Nd time-slots, the dynamic user receives the pilot signal

Yτ =
√

cτ HdXsXτ + Wτ (3.64)

=
√

cτNs H̃dXτ + Wτ , (3.65)

where H̃d ∈ CNd×Nd is the equivalent channel of the dynamic user

H̃d
∆
=

1√
Ns

HdXs (3.66)

Let h̃ij = [H̃d]ij, then we have E[h̃ij] = 0 and

E[h̃ij h̃H
pq] =





1, if (i, j) = (p, q)

0, else

, (3.67)

i.e., the entries of H̃d are uncorrelated and have zero-mean and unit variance.

The dynamic user estimates H̃d by the MMSE. Let

CY Y = (1 + cτNs)INd
, CY H =

√
cτNs XH

τ , (3.68)

we have

Ĥd = YτC
−1
Y Y CY H (3.69)

=

√
cτNs

1 + cτNs

(√
cτNs H̃d + WτX

H
τ

)
(3.70)
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Because Wτ has i.i.d. CN (0, 1) entries, the noise matrix WτX
H
τ also has i.i.d. CN (0, 1)

entries. Define ĥ1ij = [Ĥd]ij. Then, we have E[ĥ1ij] = 0 and

E[ĥijĥ
H
pq] =





δ2
1, if (i, j) = (p, q)

0, else

, (3.71)

where

δ2
1 =

cτNs

1 + cτNs

. (3.72)

In other words, the estimate of the equivalent channel has uncorrelated elements with zero-

mean and variance δ2
1.

During the remaining Td−Nd time-slots, the dynamic user regards the channel estimate

Ĥd as the true channel and decodes the data signal. At the time-slot i, Nd < i ≤ Td, the

dynamic user receives

ydi =
√

cδNs Ĥdxdi +
√

cδNs H̃ex1di + wdi︸ ︷︷ ︸
w′di

, (3.73)

where H̃e = H̃d− Ĥd is the estimation error for H̃d, and w′
di is the equivalent noise that has

zero mean and autocorrelation

Rwd
= cδNs E

[
H̃eH̃

H
e

]
+ INd

(3.74)

=
(
1 +

cδNdNs

1 + cτNs

)
INd

. (3.75)

Using the argument that Gaussian distribution maximizes the differential entroy with given

second moments [17], the mutual information is lower-bounded as

I(ydi;xdi|Ĥd) ≥ log det

(
INd

+
cδNs ĤdĤ

H
d

1 + cδNdNs/(1 + cτNs)

)
(3.76)

= log det

(
INd

+
cδδ

2
1Ns HdH

H

d

1 + cδNdNs/(1 + cτNs)

)
, (3.77)

where Hd is the normorlized channel whose elements have unit variance

Hd =
1

δ1

Ĥd. (3.78)



65

From (3.77), the effective SNR for the dynamic user is

ρd =
cδδ

2
1Ns

1 + cδNdNs/(1 + cτNs)
. (3.79)

The average rate that the dynamic user achieves is

Rd ≥ (1− Nd

Td

)E
[
log det(INd

+ ρdHdH
H

d )
]
, (3.80)

where the expectation is over the dynamic user’s channel realizations.

3.6.2 Proof of Theorem 3.4.1

We first show that if the codeword used by the dynamic user is sufficiently long, the static

user always decodes the dynamic user’s signal. Then, we find the rate for the static user

given the knowledge of the dynamic user’s signal.

During the first Nd time-slots, the static user receives

Ys1 =
√

cτNs H̃sXτ + Ws1, (3.81)

where H̃s
∆
= HsXs/

√
Ns is the composite channel of the static user. Define h̃ij = [H̃s]ij.

Then, we have E[h̃ij] = 0 and

E[h̃ijh̃
H
pq] =





1, if (i, j) = (p, q)

0, else

, (3.82)

i.e., the entries of H̃s are uncorrelated and have zero-mean and unit variance. For simplicity,

we do not exploit the knowledge of Hs, i.e., viewing H̃s as a product of two random matrices,

and use the MMSE estimation similar to Section 3.3:

Ĥs =

√
cτNs

1 + cτNs

Ys1X
H
τ . (3.83)

Define h̄ij = [Ĥs]ij. Then, we have E[h̄ij] = 0 and

E[h̄ijh̄
H
pq] =





δ2
Ĥs

, if (i, j) = (p, q)

0, else

, (3.84)
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where δ2
Ĥs

= δ2
1. Based on Ĥd the static user decodes the dynamic signal. At time-slot

i ∈ {Nd, . . . , Td} the static user receives

ysi =
√

cδNs Ĥsxdi +
√

cδNs H̃exdi + wsi︸ ︷︷ ︸
w′si

, (3.85)

where He = H̃s− Ĥs is the estimation error for H̃s, and w′
si is the equivalent noise that has

zero mean and the autocorrelation

Rws = cδNs E
[
HeH

H
e

]
+ INs (3.86)

=
(
1 +

cδNdNs

1 + cτNs

)
INs (3.87)

Therefore, the mutual information

I(ysi;xdi|Ĥs) ≥ log det

(
INs +

cδNs ĤsĤ
H
s

1 + cδNdNs/(1 + cτNs)

)
(3.88)

= log det
(
INd

+ ρdHsH
H

s

)
, (3.89)

where Hs = 1
δĤs

Ĥs is the normalized channel estimate. For the static user, the effective SNR

for decoding the dynamic signal is identical to that of the dynamic user.

We now assume the signal for the dynamic user is encoded via a sufficiently long period

so that the static user also experiences many channel realizations over this period. Write

Hs = [Hs1;Hs2], where Hs1 ∈ CNd×Nd and Hs2 ∈ C(Ns−Nd)×Nd . Then,

E
[
I(ysi;xdi|Ĥs)

] ≥ E
[

log det

(
INd

+ ρd

(
Hs1H

H

s1 + Hs2H
H

s2

))]
(3.90)

≥ E
[

log det

(
INd

+ ρdHs1H
H

s1

)]
, (3.91)

where in the last equality we use the fact that log det(A + B) ≥ log detA for any positive

definite matrices A,B. Note that Hs1 has the same distribution as Hd, the static user is

able to decode the data of the dynamic user.
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Using SVD, Xd = UdΣdV
H
d , where Ud ∈ CNd×Nd , Vd ∈ CTd×Nd are unitary matrices, and

Σd = diag(λ1, · · · , λNd
). Then, we have

Y′
s = YsVdΣ

−1
d (3.92)

= HsXsUd + WsVdΣ
−1
d (3.93)

∆
= HsX

′
s + W′

sΣ
−1
d , (3.94)

where X′
s = XsUd,W

′
s = WsVd. Because Ud, Vd are unitary, the entries of X′

s,W
′
s ∈

CNs×Nd remain i.i.d. CN (0, 1). Define y′s = vec(Y′
s), x′s = vec(X′

s), H′
s = INd

⊗Hs and

w′
s = vec(W′

sΣ
−1
d ) =




1
λ1

w′
s1

...

1
λNd

w′
sNd


 , (3.95)

where w′
si is the column i of W′

s. Then, from (3.94), we write y′s ∈ CNdNs×1 as

y′s = H′
sx
′
s + w′

s. (3.96)

The mutual information

I(Ys;Xs|Hs,Xd) = I(y′s;x
′
s|Hs,Xd) (3.97)

= log det

(
INdNs + R−1

w′s
H′

sH
′H
s

)
, (3.98)

where Rw′s = E[w′
sw

′H
s ] is the noise autocorrelation matrix that is given by

Rw′s =




E[λ−2
1 ]INs

. . .

E[λ−2
Nd

]INs


 . (3.99)

Therefore, the average rate attained by the static user is

Rs =
1

Td

E[I(Ys;Xs|Hs,Xd)] (3.100)

=
1

Td

E
[ Nd∑

i=1

log det

(
INs +

1

E[λ−2
i ]

HsH
H
s

)]
(3.101)

=
Nd

Td

E
[

log det

(
INs +

1

E[λ−2
1 ]

HsH
H
s

)]
, (3.102)

where the last equality holds because the marginal distributions of λi are identical.



CHAPTER 4

CAPACITY LIMITS OF MULTIUSER MULTIANTENNA SPECTRUM

SHARING NETWORKS

4.1 Introduction

This chapter studies performance limits of an underlay cognitive network consisting of multi-

user and multi-antenna primary and secondary systems. The primary and secondary systems

are subject to mutual interference, where the secondary must comply with a set of interfer-

ence constraints imposed by the primary. We are interested in the secondary throughput,

i.e., the sum rate averaged over channel realizations, as the number of secondary users grows.

Moreover, we study how the secondary throughput is affected by the size of primary network

as well as the severity of the interference constraints.

A summary of the results of this chapter is as follows. We assume that the primary

and secondary have N and n users, respectively, and their base stations have M and m

antennas, respectively. In this chapter, n is allowed to grow (to infinity) while N , M and m

are bounded (not scaling with n).

• Secondary uplink (MAC): The secondary throughput is shown to grow as Θ(log n),

which is achieved by a threshold-based user selection rule. More precisely, the through-

put of the secondary MAC channel grows as m
Np+1

log n + O(1) when it coexists with

the primary broadcast channel, and grows as m
Mp+1

log n + O(1) when it coexists with

the primary MAC channel. By developing asymptotically tight upper bounds, these

growth rates are further proven to be optimal. Moreover, the interference on the pri-

mary system can be asymptotically forced to zero, while the secondary throughput

still grows as Θ(log n). Specifically, for some non-negative exponent q, the interfer-

ence on the primary can be made to decline as Θ(n−q), while the throughput of a

68
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secondary MAC grows as m−qNp

Np+1
log n + O(1) and m−qMp

Mp+1
log n + O(1), respectively in

cases of primary broadcast and MAC channel. The above results imply that asymp-

totically the secondary system can attain a non-trivial throughput without degrading

the performance of the primary system.

• Secondary downlink (broadcast): The secondary throughput is shown to scale with

m log log n + O(1) in the presence of either the primary broadcast or MAC channel.

Hence, the growth rate of throughput is unaffected (thus optimal) by the presence of

the primary system. In addition, the interference on the primary can be asymptotically

forced to zero, while maintaining the secondary throughput as Θ(log log n). Specifically,

for an arbitrary exponent 0 < q < 1, the interference can be made to decline as

Θ
(
(log n)−q

)
, while the secondary throughput grows as m(1− q) log log n + O(1).

• Non-homogeneous networks: Secondary throughput under non-homogeneous inter-

node link gains is studied for both secondary MAC and broadcast. It is shown that

even if the nodes experience unequal path loss and shadowing, under a broad class

of path loss and shadowing models, the secondary throughput growth rates remain

unaffected.

Much of the past work in the underlay cognitive radio involves point-to-point primary and

secondary systems. Ghasemi and Sousa [35] studies the ergodic capacity of a point-to-point

secondary link under various fading channels. Multiple antennas at the secondary transmitter

are exploited by [36] to manage the tradeoff between the secondary throughput and the

interference on the primary. In the context of multi-user cognitive radios, Zhang et al. [37]

studies the power allocation of a single-antenna secondary system under various transmit

power constraints as well as interference constraints. Gastpar [38] studies the secondary

capacity via translating a receive power constraint into a transmit power constraint.

Recently, ideas from opportunistic communication [39] were used in underlay cognitive

radios by selectively activating one or more secondary users to maximize the secondary

throughput while satisfying interference constraints. The user selection in cognitive radio is
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complicated because the secondary system must be mindful of two criteria: The interference

on the primary and the rate provided to the secondary. Karama et al. [40] selects secondary

users with channels almost orthogonal to a single primary user, so that the interference

on the primary is reduced. Jamal et al. [41, 42] obtains interesting scaling results for the

throughput by selecting users causing the least interference. Some distinctions of our work

and [41,42] are worth noting. First, Jamal et al. [41,42] studies the hardening of sum rate via

convergence in probability, while we analyze the throughput, which requires a very different

approach.1 Second, we study a multi-antenna cognitive network and the effect of the primary

network size (number of constraints) on the secondary throughput, whereas [41,42] consider

a single antenna network with a single primary constraint.

We use the following notation: [ · ]i,j refers to the (i, j) element in a matrix, | · | refers to

the cardinality of a set or the Euclidean norm of a vector, diag(·) refers to a diagonal matrix,

tr(·) refers to the trace of a matrix, and Ik refers to the k × k identity matrix. All log(·) is

natural base. For any ε > 0, some positive c1 and c2, and sufficiently large n:

f(n) = O
(
g(n)

)
: |f(n)| < c1 |g(n)|,

f(n) = Θ
(
g(n)

)
: c2 |g(n)| < |f(n)| < c1 |g(n)|,

f(n) = o
(
g(n)

)
: |f(n)| < ε |g(n)|.

In this chapter, we define throughput as the sum rate averaged over all channel realiza-

tions. We let Ropt
mac,w/o and Ropt

bc,w/o be the maximum throughput achieved by the secondary

MAC and broadcast channel in the absence of the primary, respectively. In this case, we

1In general, convergence in probability does not imply convergence in any moment (thus
average throughput) [43]. For example, consider a sequence of rates Rn = log(1+Xn), where

Xn =

{
1 with probability 1− 1

n

exp(n2) with probability 1
n

.

Then, limn↑∞ Rn = log 2 in probability, however, limn↑∞ E[Rn] = ∞ in probability. There-
fore, the average rate E[Rn] may not be predicted based on the hardening (in probability)
of Rn.
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Figure 4.1. Coexistence of the secondary MAC channel and the primary system
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Figure 4.2. Coexistence of the secondary broadcast channel and the primary system

have regular MAC and broadcast channels, and it is well known that Ropt
mac,w/o scales as

m log n [26], and Ropt
bc,w/o scales as m log log n [34].

The remainder of this chapter is organized as follows. Section 4.2 describes the system

model. The throughput of the secondary MAC channel is studied in Section 4.3, where

in Section 4.3.3 we prove the achieved throughout is asymptotically optimal. The average

throughput of the secondary broadcast channel is investigated in Section 4.4. Section 4.5

studies the effect of path-loss and shadowing on the secondary throughput. Numerical results

are shown in Section 4.6.
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4.2 System Model

We consider a cognitive network consisting of a primary and a secondary, each being either

a MAC or broadcast channel (Figure 4.1 and Figure 4.2). The primary system has one base

station with Mp antennas and Np users, while the secondary system consists of one base

station with m antennas and n users. The primary and secondary are subject to mutual

interference, which is treated as noise (no interference decoding). The secondary system must

comply with a set of interference power constraints imposed by the primary. For simplicity of

exposition, primary and secondary users are assumed initially to have one antenna, however,

as shown in the sequel, most of the results can be directly extended to a scenario where each

user has multiple antennas.

A block-fading channel model is assumed. All channel coefficients are fixed through-

out each transmission block, and are independent, identically distributed (i.i.d.) circularly-

symmetric-complex-Gaussian with zero mean and unit variance, denoted by CN (0, 1). The

secondary base station acts as a scheduler: For each transmission block, a subset of the

secondary users is selected to transmit to (or receive from) the secondary base station. We

denote the collection of selected (active) secondary users as S.

We begin by introducing a system model that applies to all four scenarios in Figures 4.1

and 4.2, thus simplifying notation in the remainder of the chapter. The secondary received

signal is given by:

y = H(S)xs + Gs xp + w, (4.1)

where y represents the received signal vector, either signals at a multi-antenna base station

(uplink) or at different users (downlink). H(S) is the channel coefficient matrix between the

active secondary users and their base station. Gs represents the cross channel coefficient

matrix from the primary transmitter(s) to the secondary receiver(s). The primary and

secondary transmit signal vectors are xp and xx. The variable w is the received noise vector,

where each entry of w is i.i.d. CN (0, 1).
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We assume both primary and secondary systems use Gaussian signaling, subject to short-

term power constraints. The transmit covariance matrices of the primary and secondary

systems are

Qp = E
[
xpx

†
p

]
, (4.2)

and

Qs = E
[
xsx

†
s

]
. (4.3)

When the secondary is a MAC channel, each secondary user is subject to an individual

short term power constraint ρs. The users do not cooperate, therefore Qs is diagonal:

Qs = diag
(
ρ1, · · · , ρ|S|

)
, (4.4)

where ρ` ≤ ρs, for ` = 1, · · · , |S|. In this case, H(S) has dimension m× |S|.
When the secondary is a broadcast channel, we assume the secondary base station is

subject to a short term power constraint Ps:

tr(Qs) ≤ Ps. (4.5)

In this case, H(S) has dimension |S| ×m.

When the primary is a MAC channel, each primary user transmits with power ρp without

user cooperation:

Qp = ρp INp . (4.6)

Furthermore, each receive antenna at the primary base station can tolerate interference with

power Γ from the secondary system,2 that is

[
Gp Qs G†

p

]
`,`
≤ Γ, (4.7)

for ` = 1, · · · ,Mp, where Gp represents the cross channel coefficient matrix from the sec-

ondary base station (or active users) to the primary base station.

2If each primary antenna or user tolerates a different interference power, the results of
this chapter still hold, as seen later.
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When the primary is a broadcast channel, the power constraint at the primary base

station is tr(Qp) ≤ Pp. For simplicity, we assume3

Qp =
Pp

Mp

IMp . (4.8)

Furthermore, each primary user tolerates interference with power Γ:

[
Gp Qs G†

p

]
`,`
≤ Γ, (4.9)

for ` = 1, · · · , Np, where Gp is the cross channel coefficient matrix from the secondary base

station (or active users) to the primary users.

4.3 Cognitive MAC Channel

Consider a MAC secondary in the presence of either a broadcast or MAC primary. We wish

to find how much throughput is available to the secondary subject to rigid constraints on

the secondary-on-primary interference. We first construct a transmission strategy and find

the corresponding (achievable) throughput. Then, we develop upper bounds that are tight

with respect to the throughput achieved.

The framework for the transmission strategy is as follows: For each transmission block,

the secondary base station determines an active user set S as well as transmit power for all

active users Qs. For each transmission, from (4.1), the sum rate of the secondary system

is [44]:

Rmac = log det

(
I + H(S)QsH

†(S) + GsQpG
†
s

)
− log det

(
I + GsQpG

†
s

)
. (4.10)

subject to the interference constraints (4.9) and (4.7) for the primary broadcast and MAC

channel respectively.

The secondary throughput is obtained by averaging Rmac over channel realizations

Rmac = E[Rmac]. (4.11)

3The asymptotic results remain the same, even if we allow Qp to be an arbitrary covariance
matrix.
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For the development of upper bounds, we assume the secondary base station knows all

the channels. This is a genie-like argument that is used solely for development of upper

bounds. For the achievable scheme, the requirement is more modest and is outlined after

the description of the achievable scheme (see Remark 4.3.1).

4.3.1 Achievable Scheme

The objective is to choose S and Qs, i.e., the secondary active transmitters and their power,

such that secondary throughput is maximized subject to interference constraints on the

primary.

The choice of S and Qs is coupled through the interference constraints: Either more

secondary users can transmit with smaller power, or fewer of them with higher power. We

focus on a simple power policy that all active secondary users transmit with the maximum

allowed power ρs. Hence, given an active user set S, we have

Qs = ρsI|S|. (4.12)

It will be shown that the on-off transmission (without any further power adaptation) suffices

to asymptotically achieve the maximum throughput. Furthermore, its simplicity facilitates

analysis.

Recall that each primary user can tolerate interference with power Γ. The interference

on a primary user is guaranteed to be below this level if ks secondary users are active, each

causing interference no more than α = Γ
ks

. This bound allows us to honor the interference

constraints on the primary while decoupling the action of different secondary users. Based

on this observation, we construct a user selection rule as follows. First, we define an eligible

secondary user set that disqualifies users that cause too much interference on the primary:

A =
{
i : ρs

∣∣[Gp]ji
∣∣2 < α, for all j

}
, (4.13)

where [Gp]ji is the channel coefficient from the secondary user i to the primary user (antenna)

j, and α is a pre-designed interference quota. A secondary user is eligible if its interference
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on each primary user (antenna) is less than α. Now, to satisfy the interference bound, we

limit the number of secondary transmitters to no more than ks, where

ks =
Γ

α
. (4.14)

If |A| ≤ ks, then all eligible users can transmit. If |A| > ks, then ks users will be chosen

randomly from among the eligible users to transmit.4 The number of eligible users, |A|, is a

random variable; the number of active users is

|S| = min
(
ks, |A|

)
. (4.15)

The transmission of |S| eligible users induces interference no more than Γ on any primary user

or antenna. Notice that the manner of user selection guarantees that the channel coefficients

in H(S) remain independent and distributed as CN (0, 1).

Now we want to design an interference quota α to maximize the secondary throughput.

Neither very small nor very large values of α are useful within our framework: If α is very

small, for most transmissions few (if any) secondary users will be eligible, thus the secondary

throughput will be small. If α > Γ, any transmitting user might violate the interference

constraint, so the secondary must shut down (equivalently, we have ks < 1). The value

of individual interference constraint α, or equivalently ks, must be set somewhere between

these extremes.

Clearly, a desirable outcome would be to allow exactly the number of users that are

indeed eligible for transmission, i.e., ks ≈ |A|. But one cannot guarantee this in advance

because |A| is a random variable. Motivated by this general insight, we choose α such that

ks = E[|A|]. (4.16)

In Section 4.3.3, we will verify that this choice of α is enough to asymptotically achieve the

maximum throughput.

4Naturally the number of active users must be an integer, i.e., bksc. We do not carry the
floor operation in the following developments for simplicity, noting that due to the asymptotic
nature of the analysis, the floor operation has no effect on the final results.
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Remark 4.3.1 The above scheme does not require the secondary users to have full channel

knowledge. Each secondary user can compare its own cross channel gains with a pre-defined

interference quota α, and then decide its eligibility. After this, each eligible user can inform

the secondary base station via 1-bit, so that the secondary base station can determine A
without knowing the cross channels from the secondary users to the primary system. The

secondary channels H(S) and the cross channels Gs can be estimated at the secondary base

station. Therefore, this scheme can be implemented with little exchange of channel knowledge.

4.3.2 Throughput Calculation

Secondary MAC with Primary Broadcast

The primary base station transmits to Np primary users, where each user tolerates interfer-

ence with power Γ. Notice that in (4.13), [Gp]ji is the channel coefficient from the secondary

user i to the primary user j which is i.i.d. CN (0, 1). Thus,
∣∣[Gp]ji

∣∣2 is i.i.d. exponential.

Therefore, |A| is binomially distributed with parameter (n, p), where

p =
(
1− e−

α
ρs

)Np
. (4.17)

From (4.16), the interference quota α = Γ
ks

is chosen such that

ks = np

= n
( Γ

ρs

)N
k−N

s + O
(
nk−(N+1)

s

)
. (4.18)

Denote the associated solution for ks as k̄s:

k̄s =

(
Γ

ρs

) Np
Np+1

(n)
1

Np+1 + O(1). (4.19)

Thus, we can see Θ(n
1

Np+1 ) secondary users are allowed to transmit, and the interference

quota is on the order of Θ(n
− 1

Np+1 ). With the above choice of interference quota, or the

number of allowable active users, we state one of the main results of this chapter as follows.



78

Theorem 4.3.1 Consider a secondary MAC with a m-antenna base station and n users each

with power constraint ρs. The secondary MAC operates in the presence of a primary broadcast

channel with an M-antenna transmitter with power Pp to N users each with interference

tolerance Γ. The secondary throughput satisfies:

Rmac ≥ m

Np + 1
log n +

1

Np + 1
log

(
ρsΓ

Np
)−m log(1 + Pp) + O

(
n
− 1

Np+1 log n
)
, (4.20)

Rmac ≤ m

Np + 1
log n +

1

Np + 1
log

(
ρsΓ

Np
)−RI + O

(
n
− 1

Np+1
)
.

with

RI = mmin log

(
1 +

Pp

Mp

exp

(
1

mmin

mmin∑
j=1

mmax−j∑
i=1

1

i
− γ

))
, (4.21)

where mmin = min(m,Mp), mmax = max(m,Mp) and γ is the Euler’s constant. This through-

put is achieved under the threshold-based user selection with the choice of k̄s given by (4.19).

Proof See Section 4.7.1.

Remark 4.3.2 The essence of the above result is that the secondary throughput grows as

m
Np+1

log n + O(1), which implies that the secondary throughput decreases almost linearly

with the number of primary constraints as n → ∞. A noteworthy special case is when the

primary base station chooses to transmit to a number of users equal to the number of its

transmit antennas (Np = Mp), a strategy which is known to be near-optimum in terms of

sum rate [13]. Under this condition:

Rmac =
m

Mp + 1
log n + O(1).

Therefore, we have

lim
n→∞

Rmac

Ropt
mac,w/o

=
1

Mp + 1
, (4.22)

where Ropt
mac,w/o is the maximum throughput of the secondary MAC in the absence of the

primary system. This ratio shows that the compliance penalty of the secondary MAC system

and its relationship with the characteristics of the primary network.
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It is noteworthy that although Γ does not affect the growth rate, it is an important param-

eter. Both the lower and upper bounds have the term 1
N+1

log(ρsΓ
N) = 1

N+1
log ρs+

N
N+1

log Γ,

thus throughput is an increasing function of Γ. One can also see that the interference tol-

erance Γ is more important than secondary power ρs, respectively by a factor of N
N+1

versus

1
N+1

.

Remark 4.3.3 The results in Theorem 4.3.1 can be directly extended to a scenario where

each primary user tolerates a different level of interference. As long as all primary users

allow non-zero interference (no matter how small), we can let Γ be the minimum allowable

interference, and the theorem still holds.

So far we have analyzed the effect of small but constant primary interference constraints,

and shown that the secondary throughput improves with increasing the number of secondary

users. The flexibility provided by the increasing number of secondary users can be exploited

not only to increase secondary throughput, but also to reduce the primary interference. In

fact, it is possible to simultaneously suppress the interference on the primary down to zero

while increasing the secondary throughput proportional to log n. The following corollary

makes this idea precise:

Corollary 4.3.2 Assuming the interference on each primary user is bounded as Θ(n−q), the

secondary throughput satisfies

Rmac =
m− qNp

Np + 1
log n + O(1), (4.23)

where 0 < q < 1
Np

.

Proof Because the proof of Theorem 4.3.1 holds for Γ = Θ(n−q), the corollary follows by

substituting Γ = Θ(n−q) into the lower and upper bounds given by Theorem 4.3.1.

Remark 4.3.4 The corollary above explores a tradeoff where primary interference is made

to decrease polynomially, i.e., proportional to n−q. We saw that this leads to a secondary
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throughput that decreases linearly in q. If we reduce the primary interference more slowly,

e.g., decreasing as Θ(1/ log n), one can verify that Rmac = m
N+1

log n− N
N+1

log log n + O(1),

which achieves the optimal growth rate even though the throughput is reduced. Conversely, if

we try to suppress the primary interference faster than Θ(n−1/N), the secondary throughput

will asymptotically remain stagnant, i.e., Rmac = o(log n), since in this case k̄s = O(1)

according to (4.19).

Secondary MAC with Primary MAC

Recall that each antenna at the primary base station allows interference with power Γ. By

regarding each antenna of the primary base station as a virtual user, we can re-use most of

the analysis that was developed in the previous section. Thus, the steps leading to Eq. (4.19)

can be repeated to obtain the number of allowable active secondary users:

k̄s =

(
Γ

ρs

) Mp
Mp+1

(n)
1

Mp+1 + O(1). (4.24)

With this allowable active users k̄s and slight modifications, we obtain a result that parallels

Theorem 4.3.1.

Theorem 4.3.3 Consider a secondary MAC with an m-antenna base station and n users

each with power constraint ρs. The secondary MAC operates in the presence of a primary

MAC channel where each user transmits with power ρp to an Mp-antenna base station with

interference tolerance Γ on each antenna. The secondary throughput satisfies:

Rmac ≥ m

Mp + 1
log n +

1

Mp + 1
log

(
ρsΓ

Mp
)−m log(1 + ρpNp) + O

(
n
− 1

Mp+1 log n
)
, (4.25)

Rmac ≤ m

Mp + 1
log n +

1

Mp + 1
log

(
ρsΓ

Mp
)−RI + O

(
n
− 1

Mp+1
)
, (4.26)

with

RI = mmin log

(
1 + ρp exp

(
1

mmin

mmin∑
j=1

mmax−j∑
i=1

1

i
− γ

))
, (4.27)

where mmin = min(m,Np), mmax = max(m,Np) and γ is the Euler’s constant. This through-

put is achieved under the threshold-based user selection with the choice of k̄s given by (4.24).
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A tradeoff exists between the primary interference reduction and the secondary through-

put enhancement, which is stated by the following corollary. Remark 4.3.4 is again applicable

here.

Corollary 4.3.4 Assuming the interference on each antenna of the primary base station is

bounded as Θ(n−q), the secondary throughput satisfies

Rmac =
m− qMp

Mp + 1
log n + O(1), (4.28)

where 0 < q < 1
Mp

.

4.3.3 Upper Bounds for Secondary Throughput

So far we have seen achievable rates of a cognitive MAC channel in the presence of either a

primary broadcast or MAC. We now develop corresponding upper bounds.

Theorem 4.3.5 Consider a secondary MAC with an m-antenna base station and n users.

The maximum throughput of the secondary, Ropt
mac, satisfies

Ropt
mac ≤

m

Np + 1
log n + O(log log n), (4.29)

in the presence of a primary broadcast channel transmitting to Np users. Similarly, Ropt
mac

satisfies

Ropt
mac ≤

m

Mp + 1
log n + O(log log n), (4.30)

in the presence of a primary MAC, where each user transmits to an Mp-antenna base station.

Proof See Section 4.7.2.

Remark 4.3.5 By comparing the upper bounds with the achievable rates obtained by the

thresholding strategy, we see that the achievable rates are at most O(log log n) away from the

upper bounds, a difference which is negligible relative to the dominant term Θ(log n). Thus,

the growth of the maximum throughput of a cognitive MAC is m
Np+1

log n in the presence of
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the primary broadcast channel, and m
Mp+1

log n in the presence of the primary MAC channel.

Both the achievable rates and the upper bounds show that the average cognitive sum-rate

decreases almost linearly with the number of primary-imposed constraints, asymptotically.

4.3.4 Discussion

Recall that our method determines eligible cognitive MAC users based on their cross channel

gains. To satisfy the interference constraints, our selection rule then allows Θ(n
1

Np+1 ), or

Θ(n
1

Mp+1 ), of these users to be active simultaneously, in the presence of either the primary

broadcast or MAC. If there are more eligible users than the allowed number, we choose

from among the eligible users randomly. In this process, the forward channel gain of the

cognitive users does not come into play, and still an optimal growth rate is achieved. This

can be intuitively explained as follows. The total received signal power at the cognitive base

station grows linearly with the number of active users, and the total received signal power

determines the throughput. On the other hand, selecting good cognitive users according

to their secondary channel strengths can only offer logarithmic power gains (with respect

to n) [39], which is negligible compared to the linear gain due to increasing the number of

active users. Therefore the cross channel gains are more important in this case. Note that

we do not imply that knowledge of the cognitive forward channel is useless; our conclusion

only says that once the cross channels are taken into account, the asymptotic growth of the

secondary throughput cannot be improved by any use of the cognitive forward channel.

Although we have allowed the base stations to have multiple antennas, so far the users

have been assumed to have only one antenna. We now consider a generalization to the

case where all users have multiple antennas. Consider a secondary MAC in the presence

of a primary broadcast, where each primary and secondary user have tp and ts antennas

respectively. We apply a separate interference constraint on each antenna of each primary

user, which guarantees the satisfaction of the overall interference constraint on any primary

user. On each of the ts-antenna secondary users, we shall allocate ts−1 degrees of freedom for

zero-forcing and only one degree of freedom for cognitive transmission. Using this strategy,
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we can ensure that ts − 1 of the primary receive antennas are exempt from interference.

Thus, the total number of interference constraints will reduce from tpNp to tpNp + 1 − ts.

By using an analysis similar to the development of Theorem 4.3.1, one can show that the

growth rate m log n
max(1, tpNp+2−ts)

is achievable. For the converse, the situation is more complicated,

because here the correlation among the antennas of the secondary users must be accounted

for. Nevertheless, in some cases it is possible to show without much difficulty that the above

achieved throughput is indeed asymptotically optimal. For example, in the presence of the

primary MAC, if ts > Mp, the secondary MAC channel can have a throughput that grows

as m log n by letting each active secondary user completely eliminate the interference on

the primary. Similarly, in the presence of a primary broadcast channel, if ts > tpNp, the

secondary MAC channel can also have a throughput that grows as m log n. The achieved

growth rate is optimal because it coincides with the the growth rate of Ropt
mac,w/o, which is

always an upper bound.

4.4 Cognitive Broadcast Channel

4.4.1 Achievable Scheme

We consider a random beam-forming technique where the secondary base station oppor-

tunistically transmits to m secondary users simultaneously [34]. Specifically, the secondary

base station constructs m orthonormal beams, denoted by {φj}m
j=1, and assigns each beam

to a secondary user. Then, the secondary base station broadcasts to m selected users. The

selection of users and beam assignment will be addressed shortly.

Considering an equal power allocation among m users, the transmitted signal from the

secondary base station is given by:

xs =
m∑

j=1

√
P

m
φj xj, (4.31)
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where φj is the beam-forming vector j with dimension m × 1, xj is the signal transmitted

along with the beam j, and P is the total transmit power. In this case, we have

Qs =
P

m
Im. (4.32)

Notice that P is subject to the power constraint Ps as well as a set of interference constraints

imposed by the primary. Thus, the value of P depends on the cross channels from the

secondary base station to the primary system.

Assuming the beam j is assigned to the user i. From (4.1) and (4.31), the received signal

at the secondary user i is given by

yi = h†iφjxj +
∑

k 6=j

h†iφkxk + g†s,ixp + wi, (4.33)

where h†i is the 1 ×m vector of channel coefficients from the secondary base station to the

secondary user i, and g†s,i is the 1 ×Mp (or 1 × Np) vector of channel coefficients from the

primary base station (or users) to the secondary user i. The received signal-to-noise-plus-

interference-ratio (SINR) at the secondary user i (with respect to the beam j) is

SINRi,j =
P
m
|h†iφj|2

1 + P
m

∑
k 6=j |h†iφk|2 + g†s,i Qp gs,i

. (4.34)

The random beam technique assigns each beam to the secondary user that results in the

highest SINR. Because the probability of more than two beams being assigned to the same

secondary user is negligible [34], we have the secondary throughput

Rbc ≈ E
[ m∑

j=1

log
(
1 + max

1≤i≤n
SINRi,j

)]
(4.35)

= mE
[

log
(
1 + max

1≤i≤n
SINRi,j

)]
. (4.36)

The above analysis holds in the presence of either the primary broadcast or MAC channel;

the only difference is the constraints on P and Qp. Since the SINR is symmetric across all

beams, the subscript j will be omitted in the following analysis.
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Remark 4.4.1 We briefly address the issue of channel state information. All users are

assumed to have receiver side channel state information. On the transmit side, the secondary

base station only needs to know SINR and does not need to have full channel knowledge. Each

secondary user can estimate its own SINR with respect to each beam, and feed it back to the

secondary base station [34]. Based on collected SINR, the secondary base station performs

user selection. The secondary base station needs to know Gp to adjust P such that the

interference constraints on the primary are satisfied.

4.4.2 Throughput Calculation

Secondary Broadcast with Primary Broadcast

The secondary system has to comply with the constraints on Np primary users. To maximize

the throughput, the secondary base station transmits at the maximum allowable power.

From (4.9) and (4.32), we have

P = min
( mΓ

|g†p,1|2
, · · · ,

mΓ

|g†p,Np
|2 , Ps

)
, (4.37)

where g†p,` is the row ` of Gp. Then, we substitute Qp given by (4.8) into (4.34), and obtain

the SINR at the secondary user i with respect to the beam j:

SINRi =
|h†iφj|2

m
P

+
∑

k 6=j |h†iφk|2 + mPp

MpP
|gs,i|2

. (4.38)

Our analysis of maxi SINRi, which is required to evaluate the throughput in Eq. (4.36),

does not follow [34] because the denominator involves a sum of two Gamma distributions

with different scale parameters:
∑

k 6=j |h†iφk|2 has Gamma(m − 1, 1) and mPp

MpP
|gs,i|2 has

Gamma(Mp,
mPp

MpP
). Fortunately, lower and upper bounds can be leveraged to simplify the

analysis. We define:

θ =
mPp

MpP
. (4.39)
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We consider the case when mPp

MpPs
≥ 1. The techniques can be generalized to the case of

mPp

MpPs
< 1.5 When mPp

MpPs
≥ 1, we have θ ≥ 1 for all P . We define:

Li =
|h†iφj|2

m
P

+ θ
( ∑

k 6=j |h†iφk|2 + |gs,i|2
) , (4.40)

and

Ui =
|h†iφj|2

m
P

+ θ|gs,i|2 , (4.41)

where Li and Ui are random variables that depend on channel realizations. Conditioned on

P , the denominators of Li and Ui have Gamma distributions, which simplifies the analysis.

For 1 ≤ i ≤ n, we have

Li ≤ SINRi ≤ Ui. (4.42)

Hence, for any channel realization,

Lmax ≤ max
1≤i≤n

SINRi ≤ Umax, (4.43)

where Lmax = maxi Li and Umax = maxi Ui. Therefore, the secondary throughput is bounded

as follows:

mE
[
log(1 + Lmax)

] ≤ Rbc ≤ mE
[
log(1 + Umax)

]
. (4.44)

We study the lower and upper bounds given by (4.44), instead of directly analyzing Rbc.

Some useful properties of Lmax and Umax are as follows.

Lemma 4.4.1 Conditioned on P = ρ,

Pr

(
Lmax ≥ bn − ρ

m
log log n

∣∣∣∣P = ρ

)
= 1−Θ

(
1

n

)
, (4.45)

Pr

(
Umax < dn +

ρ

m
log log n

∣∣∣∣ P = ρ

)
= 1−Θ

(
1

log n

)
, (4.46)

E
[
Umax

∣∣∣∣ Umax > dn +
ρ

m
log log n, P = ρ

]
< O(n log n), (4.47)

5When mPp

MpPs
< 1, one can define θ = max( mPp

MpP
, 1). Then, we can use Bayesian expansion

via conditioning on {P < mPp

Mp
} and its complement, where both conditional terms can be

shown to have the same growth rate.



87

where bn = ρ
m

log n− ρ(m+Mp−1)

m
log log n+O

(
log log log n

)
and dn = ρ

m
log n− ρMp

m
log log n+

O
(
log log log n

)
.

Proof See Section 4.7.3.

Based on the above two lemmas, we obtain the following results for the secondary through-

put.

Theorem 4.4.2 Consider a secondary broadcast channel with n users and an m-antenna

base station with power constraint Ps. The secondary broadcast operates in the presence of

a primary broadcast channel transmitting with power Pp to Np users each with interference

tolerance Γ. The secondary throughput satisfies:

Rbc > m log
(
Γ log n

)−m log
(
µ̃1 +

mΓ

Ps

)
+ O

( log log n

log n

)
,

Rbc < m log(Γ log n)−m log µ̃2 + O(1),

where µ̃1 = E[max1≤i≤Np |g†p,i|2] and µ̃2 =
(
E

[
1/ max1≤i≤Np |g†p,i|2

])−1
.

Proof See Section 4.7.4.

Remark 4.4.2 The result above states that Rbc = m log log n + O(1), thus

lim
n→∞

Rbc

Ropt
bc,w/o

= 1, (4.48)

where Ropt
bc,w/o is the maximum throughput of the secondary broadcast channel in the absence of

the primary system. Therefore, the achieved throughput is asymptotically optimal, because we

always have Rbc ≤ Ropt
bc,w/o. Thus, we have a positive result: The growth rate of the secondary

throughput is unaffected by the constraints and interference imposed by the primary, as long

as each primary user tolerates some fixed interference Γ.

The above results naturally lead to the question: How small can we make the interference

on the primary, while still having a secondary throughput that grows as Θ(log log n). We

find that Γ, the interference on each primary user, can asymptotically go to zero, as shown

by the next corollary.
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Corollary 4.4.3 Assuming the interference on each primary user is bounded as Θ
(
(log n)−q

)
,

the secondary throughput satisfies:

Rbc = (1− q)m log log n + O(1), (4.49)

where 0 < q < 1.

Remark 4.4.3 This result sheds lights on the tradeoff between two goals of a cognitive radio

system: High throughput for the secondary and low interference on the primary. For pri-

mary interference reduction up to Θ
(
(log log n)−1

)
, one can verify that Rbc = m log log n −

m log log log n + O(1), which still achieves the double logarithmic growth rate for secondary

throughput. It is possible to reduce the interference faster than Θ((log n)−1), but this will

make Rbc = o(log log n).

Remark 4.4.4 It can be shown that the growth rate of the secondary throughput does not

depend on the transmit covariance Qp of the primary . To see this, we decompose Qp =

UΛU †, where U is an unitary matrix and Λ = diag(λ1, · · · , λM), 0 < λ1 ≤ · · · ≤ λM < Pp.

From (4.34), we have g†s,i Qp gs,i = g̃†s,i Λ g̃s,i, where g̃s,i = U †gs,i has the same distribution

as gs,i [21]. Therefore, λ1|g̃s,i|2 ≤ g†s,i Qp gs,i ≤ λM |g̃s,i|2. With the exception of a slightly

different definition of θ, the analysis for Qp = I will follow.

Secondary Broadcast with Primary MAC

The analysis of this case closely parallels the analysis of the primary broadcast. The sec-

ondary transmit power is given by

P = min
( mΓ

|g†p,1|2
, · · · ,

mΓ

|g†p,Mp
|2 , Ps

)
, (4.50)

where g†p,` is the row ` of Gp. The MAC primary system produces power Npρp and has Mp

interference constraints. From the viewpoint of the secondary, this is all the information

that is needed. Therefore the analysis of Theorem 4.4.2 can be essentially repeated to obtain

the following result.
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Theorem 4.4.4 Consider a secondary broadcast channel with n users and an m-antenna

base station with power constraint Ps. The secondary broadcast operates in the presence of a

primary MAC where each user transmits with power ρp to an Mp-antenna base station with

interference tolerance Γ on each antenna. The secondary throughput satisfies:

Rbc > m log
(
Γ log n

)−m log
(
µ̃3 +

mΓ

Ps

)
+ O

( log log n

log n

)

Rbc < m log(Γ log n)−m log µ̃4 + O(1),

where µ̃3 = E[max1≤i≤Mp |g†p,i|2] and µ̃4 =
(
E

[
1/ max1≤i≤Mp |g†p,i|2

])−1
.

Remark 4.4.5 Theorem 4.4.2 and Theorem 4.4.4 can be extended to a scenario where each

primary (secondary) user has multiple antennas via regarding each primary and secondary

antenna as a virtual user. Using analysis similar to the single-antenna case, the secondary

broadcast channel can be shown to achieve a throughput scaling as m log log n (thus optimal).

The details are straightforward and are therefore omitted for brevity.

Similar to Corollary 4.4.3, we can also obtain the tradeoff between the primary inter-

ference reduction and the secondary throughput enhancement as follows. All the remarks

following Corollary 4.4.3 apply to the present case as well.

Corollary 4.4.5 Assuming the interference on each antenna of the primary base station is

bounded as Θ
(
(log n)−q

)
, the secondary throughput satisfies:

Rbc = (1− q)m log log n + O(1) (4.51)

where 0 < q < 1.

4.5 Capacity Scaling under Path Loss and Shadowing

The results so far were developed assuming all fading channels obey the same distribution,

i.e., for a homogeneous network. In this section, we generalize our results by allowing different

users to experience varying path loss and shadowing. We consider the combined effect of
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path loss and shadowing as a multiplicative factor on the channel gain. The probabilistic

behavior of this multiplicative factor can in general be complicated because it depends on

the spatial distribution of users, whose randomness will induce a distribution on path loss,

as well as the composition of the terrain. However, certain assumptions can be made about

it from first principles. We assume the support of the probability density of path loss and

shadowing is positive6 and bounded. This is equivalent to saying that the distance between

nodes cannot be arbitrarily large or arbitrarily small, and that shadowing attenuates but

is not a perfect isolator of emissions [45]. Conditioned on a realization of path loss and

shadowing, the resulting fading coefficient is assumed to be a Rayleigh random variable

whose variance is determined by the value of path loss and shadowing.

In this section we concentrate on a broadcast primary. Similar results hold with little

variation for the primary MAC channel, and are omitted for brevity.

Our basic idea of characterizing the secondary throughput in the presence of path loss

and shadowing is as follows. We find an upper (lower) bound on the secondary throughput

by constructing a homogeneous network whose throughput is no larger (smaller) than the

throughput under any realization of path loss and shadowing. The throughput of the homo-

geneous networks that bound our performance follows the analysis of previous sections. We

then show the scaling of the throughput lower and upper bounds are identical.

4.5.1 Secondary MAC

A homogeneous secondary MAC channel with cross link variance ν and secondary link vari-

ance µ can be shown, using methods of the previous sections, to have a throughput charac-

6For ease of exposition we have assumed that under path loss and shadowing a link is not
completely lost. It is possible to carry through the analysis as long as at least O(n) secondary
links remain available, and no more than o(log n) cross links go to zero. If too many cross
links disappear due to path loss and shadowing, effectively that part of the network is no
longer cognitive and the nature of the problem would be changed.
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terized by:

Riid
mac(ν, µ, n) ≥ m

Np + 1
log n +

1

Np + 1
log

(
ρs(

Γ

ν
)Np

)
+ log µ

−m log(1 + Pp) + O
(
n
− 1

Np+1 log n
)
,

Riid
mac(ν, µ, n) ≤ m

Np + 1
log n +

1

Np + 1
log

(
ρs(

Γ

ν
)Np

)
+ log µ

−RI + O
(
n
− 1

Np+1 log n
)
. (4.52)

Now, consider a heterogeneous network where path loss and shadowing of the nodes vary

according to a distribution with positive and bounded support. Then, conditioned on the

path loss and shadowing, the channel coefficient from the secondary user i to the primary

user j is CN (0, σ2
ji), and from the secondary user i to all the co-located secondary base

station antennas is CN (0, σ2
si), while all other channel coefficients are i.i.d. CN (0, 1). Let

X = {σ2
ji, σ2

si, 1 ≤ j ≤ N, 1 ≤ i ≤ n}, the set of all random channel variances. The

positivity and boundedness assumptions for the support of the path loss distribution are

formalized by 0 < ν1 ≤ σ2
ji ≤ ν2 and 0 < µ1 ≤ σ2

si ≤ µ2.

We now outline an argument based on the intuition that the secondary throughput in-

creases or at worst stays the same if one secondary link improves, and that the secondary

throughput does not increase if one cross link gets stronger. To make this argument precise,

the cross-link variance σ2
ji can be absorbed into the interference constraint Γ, resulting in an

equivalent cross link with unit variance and interference constraint Γ
σ2

ji
. So a stronger cross

link is equivalent to a stricter interference constraint, therefore the secondary throughput

is non-increasing in σ2
ji. Similarly, the secondary link variance σ2

j can be absorbed into the

secondary transmit power for the secondary throughput calculation, leading to an effective

transmit power σ2
j ρs over a link of unit variance. Thus, the throughput is non-decreasing

with σ2
j .

Based on the above argument, we always have Rmac ≥ Riid
mac(ν2, µ1, n) and Rmac ≤

Riid
mac(ν1, µ2, n), because ν1 ≤ σ2

ji ≤ ν2 and µ1 ≤ σ2
si ≤ µ1 for any realization of X. Therefore,

E[Rmac] ≥ Riid
mac(ν2, µ1, n), (4.53)
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and

E[Rmac] ≤ Riid
mac(ν1, µ2, n). (4.54)

From (4.52), we conclude that the growth rate of our proposed technique under path loss

and shadowing is m
N+1

log n + O(1).

However, this has not fully settled the capacity question, because the upper bound was

calculated only under a specific scheme. A stronger upper bound is obtained by noting that

for any transmission scheme, the throughput of the heterogenous network is smaller than

the throughput of the homogeneous network with cross link variance ν1 and secondary link

variance µ2. The latter throughput can be shown, following the analysis of Theorem 4.3.5,

to be upper bounded by m
N+1

log n + O(log log n).

Thus, we have lower and upper bounds whose order matches, and we have the following

result.

Theorem 4.5.1 Consider a secondary MAC channel with n users, m antennas at the base

station, and power constraint ρs, in the presence of a primary that broadcasts with power

constraint Pp to N users with interference constraint Γ. The users are randomly located

resulting in path loss and shadowing coefficients whose combined effect can be characterized

by a random variable whose support is over a strictly positive bounded interval, then:

m

Np + 1
log n + O(1) ≤ E

[Ropt
mac

] ≤ m

Np + 1
log n + O(log log n). (4.55)

Therefore, the throughput grows with m
Np+1

log n.

4.5.2 Secondary Broadcast

Now, we consider a secondary broadcast channel. A homogeneous secondary broadcast chan-

nel with primary-to-secondary channel variance ν and secondary link variance µ can be shown

to have a throughput

Riid
bc (ν, µ, n) = m log

(
µΓ log n

)
+ O(1). (4.56)
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Consider the channel coefficient from all the co-located secondary base-station antennas

to the secondary user i to be CN (0, σ2
i ), and the primary to the secondary user i to be

CN (0, σ2
pi), while all other channel coefficients are i.i.d. CN (0, 1). Let X = {σ2

i , σ2
pi, 1 ≤ i ≤

n}, where 0 < µ3 ≤ σ2
i ≤ µ4 and 0 < ν3 ≤ σ2

pi ≤ ν4.

Similar to the argument for cognitive MAC channel, Rbc decreases with σ2
pi but increases

with σ2
i . Therefore, we have

Riid
bc (ν4, µ3, n) ≤ EX [Rbc] ≤ Riid

bc (ν3, µ4, n). (4.57)

Thus, in the presence of path loss and shadowing, we have the following result.

Theorem 4.5.2 Consider a secondary broadcast channel with n users, m antennas at the

base station, and power constraint ρs, in the presence of a primary that broadcasts with power

constraint Pp to N users with interference constraint Γ. The users are randomly located

resulting in path loss and shadowing coefficients whose combined effect can be characterized

with a random variable whose support is over a strictly positive bounded interval, then:

lim
n→∞

E
[Ropt

bc

]

m log log n
= 1 (4.58)

Remark 4.5.1 The heterogeneity of the following channels does not affect the throughput

growth rate in a straightforward manner, thus it is not considered in the above analysis:

(1) For the secondary MAC channel, the cross channel between the primary and secondary

base-stations, whose variance only affects the interference on the secondary (independent of

n), and (2) for the secondary broadcast channel, the cross channel from the secondary base-

station to the primary, which only affects the secondary transmit power that is once again

independent of n.

4.6 Numerical Results

In this section, we concentrate on numerical results in the presence of the primary broadcast

channel and the results in the presence of the primary MAC channel are similar thus omitted.
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Figure 4.3. Secondary MAC: Throughput versus user number (Γ = 2)

For all simulations, we consider: Pp = Ps = ρs = 5, the secondary base station has m = 4

antennas, and the primary base station has Mp = 2 antennas and the number of primary

users is Np = 2.

Figure 4.3 illustrates the secondary throughput given by Theorem 4.3.1. The allowable

interference power on each primary user is Γ = 2. The slope of the throughput curve is

discontinuous at some points, because the allowable number of active secondary users must

be an integer bksc (also see Eq.(4.18)). As mentioned earlier, the floor operation does not

affect the asymptotic results. Figure 4.4 presents the tradeoff between the tightness of

the primary constraints and the secondary throughput, as shown by Corollary 4.3.2. The

interference power constraint Γ is 2n−q for q = 0.1 and 0.2 respectively. As expected,

for q = 0.2 the interference on primary decreases faster than q = 0.1 and the secondary

throughput increases more slowly.
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Figure 4.4. Secondary MAC: Throughput versus user number (Γ = 2n−q)

Figure 4.5 shows the secondary throughput versus the number of secondary users in the

presence of the primary broadcast channel (Theorem 4.4.2), where the interference power

is Γ = 2. In Figure 4.6, we show the tradeoff between the secondary throughput and the

interference on the primary, as described in Corollary 4.4.3. We set Γ to decline as 2(log n)−q,

for q = 0.5 and q = 0.8, respectively. Clearly, for q = 0.5, the interference power decreases

faster than q = 0.8, while the secondary throughput increases more slowly.

4.7 Proof of Theorem and Lemma

4.7.1 Proof of Theorem 4.3.1

We rewrite (4.10) as

Rmac = log det

(
I + H(S)QsH

†(S)
(
I + GsQpG

†
s

)−1
)

. (4.59)
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Figure 4.5. Secondary broadcast: Throughput versus user number (Γ = 2)
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Figure 4.6. Secondary broadcast: Throughput versus user number (Γ = 2(log n)−q)
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The secondary throughput is calculated by averaging the instant rate Rmac over all chan-

nel realizations, i.e., H and Gs, thus

Rmac = EH

[
EGs [Rmac |H]

]

= EH

[
EGs

[
log det

(
I + H(S)QsH

†(S)× (
I + GsQpG

†
s

)−1
)]]

. (4.60)

Because for any positive definite matrix A and B, the function log det(I + AB−1) is con-

vex in B [46, Lemma II.3], we apply the Jensen inequality on the right hand side of the

inequality (4.60), i.e., taking expectation with respect to Gs

Rmac > EH

[
log det

(
I + H(S)QsH

†(S)× (
I + E[GsQpG

†
s]
)−1

)]
(4.61)

= EH

[
log det

(
I +

ρs

1 + Pp

H(S)H†(S)

)]
, (4.62)

where in (4.62) we use the facts that Qp = PpI/M and E[GsG
†
s] = MpIm since each entry

of Gs is i.i.d. CN (0, 1).

Now we bound the right hand side of (4.62). Recall that |A| and |S| are the random

number of eligible users and active users, respectively. By the Chebychev inequality, for any

ε > 0, we have

Pr

(
|A| > (1− ε)k̄s

)
> 1− 1− p

ε2np
(4.63)

= 1−O
(
k̄−1

s

)
, (4.64)

where in the above we use the fact k̄s = np. Then, we expand (4.62) based the event

{|A| > (1 − ε)k̄s} and its complement, and discard the non-negative term associated with

its complement:

Rmac

> E
[

log det

(
I +

ρs

1 + Pp

H(S)H†(S)

) ∣∣∣∣ |A| > (1− ε)k̄s

]
× Pr

(
|A| > (1− ε)k̄s

)
(4.65)

≥ E
[

log det

(
I +

ρs

1 + Pp

H(S)H†(S)

) ∣∣∣∣ |A| = (1− ε)k̄s

]
×

(
1−O

(
k̄−1

s

))
(4.66)

= E
[

log det

(
I +

ρs

1 + Pp

H(S)H†(S)

) ∣∣∣∣ |S| = (1− ε)k̄s

]
×

(
1−O

(
k̄−1

s

))
, (4.67)
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where in the inequality (4.66), we apply the result in (4.64) and the fact that the conditional

expectation of the right hand side of (4.65) is non-decreasing in |A|. Since |S| = (1− ε)k̄s in

case of |A| = (1 − ε)k̄s, then we obtain (4.67) due to the throughput depending on |A| via

the size of S.

Recall that each entry of H(S) is i.i.d. CN (0, 1). Conditioned on |S| = (1 − ε)k̄s,

H(S)H†(S) is a Wishart Matrix with degrees of freedom (1− ε)k̄s, we have [47, Lemma A]

Rmac >

(
m log

(
1 +

(1− ε)ρsk̄s

1 + Pp

)
+ O

(
k̄−1

s

))×
(

1−O
(
k̄−1

s

))
(4.68)

= m log
(
1 + Pp + (1− ε)ρsk̄s

)
+ O

( log k̄s

k̄s

)−m log(1 + Pp) (4.69)

= m log ρsk̄s + m log(1− ε)−m log(1 + Pp) + O
( log k̄s

k̄s

)
, (4.70)

where in (4.70) we use the identity log(x + y) = log x + log(1 + y/x), for x, y > 0. Since the

strict inequality (4.70) holds for any ε > 0, thus log(1 − ε) < 0 but can be arbitrarily close

to zero, by the definition of inequality we have

Rmac ≥ m log ρsk̄s −m log(1 + Pp) + O
( log k̄s

k̄s

)
. (4.71)

Now we find an upper bound for Rmac. For convenience, we denote (see (4.10))

Rmac,0 = log det

(
I + ρsH(S)H†(S) + Gs Qp G†

s

)
, (4.72)

and

RI = log det

(
I + Gs Qp G†

s

)
. (4.73)

So the throughput can be written as

Rmac = E
[
Rmac,0

]− E[
RI

]
. (4.74)

Using the inequality det(A) ≤ (
tr(A)/k)

)k
[17, p. 680], where A is a k × k positive

definite matrix, Rmac,0 is bounded by

Rmac,0 ≤ m log

(
1 +

1

m
tr

(
ρsH(S)H†(S) + Gs Qp G†

s

))
. (4.75)
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Therefore,

E[Rmac,0] ≤ mE
[

log

(
1 +

1

m
tr

(
ρsH(S)H†(S) + Gs Qp G†

s

))]
(4.76)

≤ m log

(
1 +

ρs

m
E

[
tr

(
H(S)H†(S)

)]
+

1

m
E

[
tr

(
GsQpG

†
s

)])
(4.77)

≤ m log
(
1 + ρsk̄s + Pp

)
, (4.78)

where (4.77) uses the Jensen inequality. To obtain the inequality (4.78), we use the facts that

E
[
tr

(
GsQpG

†
s

)]
= Pp by substituting Qp given by (4.8) as well as E

[
tr

(
H(S)H†(S)

)] ≤ mk̄s

due to |S| ≤ k̄s.

Now we lower bound the second term in (4.74). From [48, Theorem 1], we have

E[RI ] ≥ mmin log

(
1 +

Pp

Mp

exp

(
1

mmin

mmin∑
j=1

mmax−j∑
i=1

1

i
− γ

))

∆
= RI , (4.79)

where mmin = min(m, Mp), mmax = max(m,Mp) and γ is the Euler’s constant. Notice that

RI is a finite constant independent of n and Γ.

Combining (4.78) and (4.79), we have

Rmac ≤ m log(1 + ρsk̄s + Pp)−RI . (4.80)

Finally, substituting k̄s given by (4.19) and noting that k̄s = Θ(n
1

Np+1 ), we have

Rmac ≥ m

Np + 1
log n +

1

Np + 1
log

(
ρsΓ

Np
)−m log(1 + Pp) + O

(
n
− 1

Np+1 log n
)

(4.81)

Rmac ≤ m

Np + 1
log n +

1

Np + 1
log

(
ρsΓ

Np
)−RI + O

(
n
− 1

Np+1
)
, (4.82)

where we use the identity log(x + y) = log x + log(1 + y/x), for x, y > 0, in the above

inequalities. This completes the proof.

Remark 4.7.1 The primary transmit covariance matrix Qp can be arbitrary and does not

affect the growth rate of Rmac. For any Qp, we have Qp = UΛU †, where U is an uni-

tary and Λ = diag[λ1, · · · , λM ]. For the lower bound, in (4.61) we have E[GsQpG
†
s] =
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E[GsUΛU †G†
s] = E[Gs1ΛG†

s1], where each entry of Gs1 is still i.i.d. CN (0, 1) [21]. Let gi

be the column i of Gs1, then E[GsQpG
†
s] = E[

∑M
i=1 λigig

†
i ] =

∑M
i=1 λiIm. Since tr(Qp) = Pp,

∑M
i=1 λi = Pp, which yields the same bound as (4.62), and the same development of the lower

bound. For the upper bound, we note that in (4.77) E
[
tr

(
GsQpG

†
s

)]
= tr

(
E[Gs1ΛG†

s1]
)

=
∑M

i=1 λitr(Im) = mPp, which yields the same bound (4.78) and thus the development of the

upper bound.

4.7.2 Proof of Theorem 4.3.5

We develop an upper bound for the secondary throughput in the presence of the primary

broadcast only; the development is similar in the presence of the primary MAC and thus is

omitted. We consider an arbitrary active user set S and transmit covariance matrix given

by (4.4), such that the interference constraints on the primary are satisfied.

By removing the interference from the primary to the secondary, the secondary through-

put is enlarged. Then, starting from (4.10) and using the inequality det(A) ≤ (
tr(A)/k

)k
[17,

p. 680], where Ak×k is a positive definite matrix, we have

Rmac ≤ m log

(
1 +

1

m
tr

(
H(S)QsH

†(S)
))

. (4.83)

Let hi be the m × 1 vector of channel coefficients from the secondary user i (i ∈ S) to the

secondary base station, corresponding to a certain column of H(S). Since Qs is diagonal,

we have

tr
(
H(S)QsH

†(S)
)

=
∑
i∈S

ρi tr
(
hih

†
i

)
(4.84)

=
∑
i∈S

ρi |hi|2 (4.85)

≤ max
i∈S

|hi|2
∑
i∈S

ρi (4.86)

≤ max
1≤i≤n

|hi|2
∑
i∈S

ρi, (4.87)
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where ρi is the transmit power of the secondary user i. Let

Psum =
∑
i∈S

ρi, (4.88)

and

hmax = max
1≤i≤n

|hi|2. (4.89)

We can rewrite the right hand side of (4.83) as

Rmac ≤ m log
(
1 +

1

m
hmaxPsum

)
. (4.90)

We first bound Psum and formulate an optimization as:

max
S, {ρi}

Psum

subject to: ρi ≤ ρs for i ∈ S
[
Gp Qs G†

p

]
`,`
≤ Γ for 1 ≤ ` ≤ Np, (4.91)

which is a standard linear programming, and the solution is denoted by P ∗
sum. Then, P ∗

sum

is the maximum total transmit power, depending on the channel realizations for each trans-

mission.

Subject to the interference constraints on the primary, the user selection and power

allocation are coupled, and a direct analysis is difficult. Instead, we will find an upper bound

for P ∗
sum. Notice that the total interference (on all primary users) caused by the secondary

user i is ρi|gp,i|2, where gp,i is the vector of channel coefficients from the secondary i to all

Np primary users. We relax the set of individual interference constraints in (4.91) with a

single sum interference constraint:

∑
i∈S

ρi|gp,i|2 ≤ NpΓ. (4.92)

Notice that gp,i corresponds to a certain column in Gp.

Order the cross channel gains {|gp,i|2}n
i=1 of all the secondary users and denote the ordered

cross channel gains by

|g̃p,1|2 ≤ |g̃p,2|2 ≤ · · · ≤ |g̃p,n|2. (4.93)
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Then, we further relax the sum interference constraint (4.92) by replacing {|gp,i|2}i∈S with

the first |S| smallest cross channel gains {|g̃p,i|2}|S|i=1. Thus, we have:

max
S, {ρi}

Psum

subject to:

|S|∑
i=1

ρi|g̃p,i|2 ≤ NpΓ

ρi ≤ ρs for 1 ≤ i ≤ |S|. (4.94)

For any channel realization, the solution for the above problem, denoted by P ∗
sum,1, is always

greater than, or equal to P ∗
sum. Notice that P ∗

sum,1 is also a random variable. Since {|g̃p,i|2}
is non-decreasing in i, the set of {ρi} that achieves P ∗

sum,1 satisfies ρi ≥ ρj, for i ≤ j. In

other words, we have ρi = ρs, for i = 1 to |S| − 1, and ρi ≤ ρs, for i = |S|.
Let Smax be the maximum value of |S| that satisfies the constraint

ρs

|S|−1∑
i=1

|g̃p,i|2 ≤ NpΓ. (4.95)

We have

P ∗
sum,1 ≤ ρsSmax, (4.96)

where in (4.96) we have an inequality because the constraint (4.95) is relaxed by discarding

ρ|S| compared to the interference constraint in (4.94) .

Now, we focus on bounding ρsSmax. For any positive integer k, we have

Pr

(
Smax < k

) ≥ Pr

( k−1∑
i=1

|g̃p,i|2 >
NpΓ

ρs

)
, (4.97)

which comes from the fact that the event of the right hand side implies the event of the

left hand side. Notice that
∑k−1

i=1 |g̃p,i|2 is a sum of least order statistics out of {|gp,i|2}n
i=1

with i.i.d. Gamma(Np, 1) distributions. We apply some results in the development of [42,

Proposition 12], and obtain7

Pr

( f(n)−1∑
i=1

|g̃p,i|2 >
NpΓ

ρs

)
> 1−O

( 1

f(n)

)
, (4.98)

7For our case, 1
λ

= γ = Np.
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where f(n) = c0 n
1

Np+1 , and c0 =
(Γ(Np+1)

(1−ε)ρs
N
− 1

Np
p

) Np
Np+1 . For large Np and small ε, c0 ≈

Γ
ρs

(Np + 1).

Let k = f(n) in (4.97) and combine with (4.98):

Pr

(
ρsSmax < ρs f(n)

)
> 1−O

(
n
− 1

Np+1
)
. (4.99)

After characterizing ρsSmax, now we return to P ∗
sum. To simplify notation, we denote

p̄sum = ρs f(n). (4.100)

Because P ∗
sum ≤ P ∗

sum,1 ≤ ρsSmax for any channel realizations, from (4.99), we have

Pr

(
P ∗

sum ≥ p̄sum

)
= 1− Pr

(
P ∗

sum < p̄sum

)

< 1− Pr

(
ρsSmax < p̄sum

)

< O
(
n
− 1

Np+1
)
. (4.101)

Now, we complete the analysis of P ∗
sum, and move to hmax. Because {|hi|2}n

i=1 have

i.i.d. Gamma(m, 1) distributions, using the similar arguments developed in Lemma 4.4.1,

we obtain

Pr

(
hmax > ζn

)
= O

( 1

log n

)
(4.102)

E
[
hmax

∣∣ hmax > ζn

]
< O(n log n), (4.103)

where ζn is a deterministic sequence satisfying

ζn = log n + m log log n + O(log log log n). (4.104)
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Now we are ready to develop the upper bound for the secondary throughput. Since Psum ≤
P ∗

sum, from (4.90), we have

Rmac ≤ mEH,P

[
log

(
1 +

1

m
hmaxP

∗
sum

)]
(4.105)

= mEH,P

[
log

(
1 +

1

m
hmaxP

∗
sum

) ∣∣∣∣P ∗
sum < p̄sum

]
× Pr

(
P ∗

sum < p̄sum

)

+ mEH,P

[
log

(
1 +

1

m
hmaxP

∗
sum

) ∣∣∣∣ P ∗
sum ≥ p̄sum

]
× Pr

(
P ∗

sum ≥ p̄sum

)
(4.106)

≤ mEH

[
log

(
1 +

1

m
hmaxp̄sum

)]
· 1

+ mEH

[
log

(
1 +

1

m
hmaxρsn

)]
·O(

n
− 1

Np+1
)

(4.107)

≤ mEH

[
log

(
1 +

1

m
hmaxp̄sum

) ∣∣∣∣hmax ≤ ζn

]
× Pr

(
hmax ≤ ζn

)

+ mEH

[
log

(
1 +

1

m
hmaxp̄sum

) ∣∣∣∣hmax > ζn

]
× Pr

(
hmax > ζn

)

+ mEH

[
log

(
1 +

1

m
hmaxρsn

) ∣∣∣∣hmax ≤ ζn

]
× Pr

(
hmax ≤ ζn

)
O

(
n
− 1

Np+1
)

+ mEH

[
log

(
1 +

1

m
hmaxρsn

) ∣∣∣∣hmax > ζn

]
Pr

(
hmax > ζn

)
O

(
n
− 1

Np+1
)

(4.108)

≤ m log

(
1 +

1

m
ζn p̄sum

)
· 1

+ m log

(
1 +

p̄sum

m
E

[
hmax

∣∣ hmax > ζn

])× Pr

(
hmax > ζn

)

+ m log

(
1 +

1

m
ζn ρsn

)
· 1 ·O(

n
− 1

Np+1
)

+ m log

(
1 +

ρsn

m
E

[
hmax

∣∣hmax > ζn

])× Pr

(
hmax > ζn

)
O

(
n
− 1

Np+1
)

(4.109)

≤ m log

(
1 +

1

m
ζn p̄sum

)
+ m log

(
1 +

p̄sum

m
O(n log n)

)
O(

1

log n
)

+ m log

(
1 +

1

m
ζnρsn

)
O

(
n
− 1

Np+1
)

+ m log

(
1 +

ρsn

m
O(n log n)

)
O(

1

log n
)O

(
n
− 1

Np+1
)
, (4.110)

where the second term in (4.107) comes from using (4.101) as well as the fact that P ∗
sum is

upper bounded by ρsn. In (4.109), we apply the Jensen inequality to obtain the second and
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fourth terms. Using (4.102) and (4.103), we have the second and fourth terms in (4.110).

Finally, by substituting p̄sum and ζn, we obtain

Rmac ≤ m

Np + 1
log n + O(log log n). (4.111)

This concludes the proof of this theorem.

4.7.3 Proof of Lemma 4.4.1

First, we prove (4.45). Let Z = |h†iφj|2 and Y = θ
( ∑

k 6=j |h†iφj|2 + |gs,i|2
)
. Then, Z has

the exponential distribution, and Y has the Gamma
(
(m + Mp − 1), θ

)
distribution. We can

write

Li =
Z

c + Y
, (4.112)

where c = m
ρ
. Conditioned on Y , the pdf of Li is given by

fL(x) =

∫ ∞

0

fL|Y (x|y)fY (y)dy (4.113)

=

∫ ∞

0

(c + y)e−(c+y)x × ym+Mp−1e−y/θ

(m + Mp − 1)! θm+Mp
dy (4.114)

=
e−cx

(1 + θx)m+Mp

(
c(1 + θx) + θ(m + Mp − 1)

)
. (4.115)

So the cdf of Li is

FL(x) = 1−
∫ ∞

x

fL(t)dt (4.116)

= 1− e−cx

(1 + θx)m+Mp−1
. (4.117)

We define a growth function as

gL(x) =
1− FL(x)

fL(x)
(4.118)

=
1 + θx

c(1 + θx) + θ(m + Mp − 1)
. (4.119)

Since limx→∞ g′L(x) = 0, the limiting distribution of Lmax = max1≤i≤n Li exists [49]:

lim
n→∞

(
FL(bn + anx)

)n
= e−e−x

, (4.120)
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where bn = F−1
L (1− 1/n) and an = gL(bn). In general, an exact closed-form solution for an

and bn is intractable, but an approximation can be obtained, which is sufficient for asymptotic

analysis. After manipulating (4.117), we have

bn =
1

c
log n− m + Mp − 1

c
log log n + O

(
log log log n

)
, (4.121)

and thus

an =
1

c
+ O

( 1

log n

)
. (4.122)

It is straightforward to verify limn→∞
(
ng′L(bn)

)
= ∞, so we apply the expansion developed

in [50, Eq. (22)]

(
FL(bn + anx)

)n
= exp

(
− exp(−x + Θ(

x2

log2 n
)
))

. (4.123)

Let x = − log log n in (4.123) we obtain (4.45).

Now, we prove (4.46) and (4.47). Since Ui is similar to Li, except that the denominator

now has the Gamma
(
Mp, θ

)
distribution. Following the same steps of obtaining (4.123), we

have the expansion of the cdf of Umax:

(
FU(dn + cnx)

)n
= exp

(
− exp(−x + Θ(

x2

log2 n
)
))

, (4.124)

where

dn =
1

c
log n− Mp

c
log log n + O

(
log log log n

)
, (4.125)

and

cn =
1

c
+ O

( 1

log n

)
, (4.126)

where (4.46) follows by substituting x = log log n into (4.124).

Finally, because E[Umax] < nE[Ui] [49], we have

E
[
Umax

∣∣∣∣Umax > dn +
1

c
log log n

]
≤ nE[Ui]

Pr

(
Umax > dn + 1

c
log log n

)

= Θ(n log n), (4.127)

where we use (4.46) in the last equality.
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4.7.4 Proof of Theorem 4.4.2

We first find a lower bound for the secondary throughput Rbc. Conditioned on P = ρ, the

throughput is denoted Rbc|P (ρ). Let ln = bn− ρ
m

log log n, where bn is given by Lemma 4.4.1.

Using (4.44), the conditional throughput Rbc|P (ρ) can be bounded as

Rbc|P (ρ) ≥ mE
[

log
(
1 + Lmax

) ∣∣∣∣ P = ρ

]
(4.128)

≥ mE
[

log
(
1 + Lmax

) ∣∣∣∣ Lmax ≥ ln, P = ρ

]
× Pr

(
Lmax ≥ ln

∣∣P = ρ
)

(4.129)

> m

(
log

( ρ

m
log n

)
+ O

( log log n

log n

))×
(

1−Θ
(
n−1

))
(4.130)

= m log
( ρ

m
log n

)
+ O

( log log n

log n

)
. (4.131)

From (4.128) to (4.129), we discard the non-negative term associated with the event {Lmax <

ln}. Using (4.45) from Lemma 4.4.1 and the identity log(x + y) = log x + log(1 + y/x), for

x, y > 0, we have (4.130).

Now we take the expectation with respect to P . From (4.37), we have

P >
mΓ

max1≤i≤Np |g†p,i|2 + mΓ/Ps

, (4.132)

where g†p,i is the 1×m vector of channel coefficients from the secondary base station to the

primary user i. Let the pdf of max1≤i≤Np |gp(i)|2 be fgp(x). Because (4.132) holds for any

channel realization, we have

Rbc >

∫ ∞

0

m log

(
Γ log n

x + mΓ/Ps

)
fgp(x) dx + O

(
log log n

log n

)
(4.133)

≥ m log

(
Γ log n

µ̃1 + mΓ/Ps

)
+ O

(
log log n

log n

)
(4.134)

= m log
(
Γ log n

)−m log
(
µ̃1 + mΓ/Ps

)
+ O

(
log log n

log n

)
, (4.135)

where (4.134) comes from the convexity of log(a + b
x+c

) and

µ̃1 = E[ max
1≤i≤Np

|gp(i)|2]. (4.136)
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To find an upper bound, we still begin with the conditional throughput Rbc|P (ρ). Let

un = dn + ρ
m

log log n, where dn is given by Lemma 4.4.1. Then

Rbc|P (ρ) ≤ mE
[

log
(
1 + Umax

) ∣∣∣∣P = ρ

]
(4.137)

≤ mE
[

log
(
1 + Umax

) ∣∣∣∣Umax < un, P = ρ

]
× Pr

(
Umax < un

∣∣P = ρ
)

(4.138)

+ mE
[

log
(
1 + Umax

) ∣∣∣∣Umax ≥ un, P = ρ

]
× Pr

(
Umax ≥ un

∣∣P = ρ
)

(4.139)

< m log(1 + un)
(
1−Θ

( 1

log n

))

+ m log
(
1 + E[Umax |Umax ≥ un, P = ρ

])×Θ
( 1

log n

)
(4.140)

< m log(1 +
ρ

m
log n) + O(1), (4.141)

where (4.137) comes from (4.44). We apply (4.46) in Lemma 4.4.1 and the Jensen inequality

to obtain (4.140). Using (4.47) in Lemma 4.4.1 and substituting un, we obtain (4.141).

After calculating an upper bound for the conditional throughput, we average over P .

From (4.37), we have

P ≤ mΓ

max1≤i≤Np |g†p,i|2
. (4.142)

We denote
1

µ̃2

= E
[
1/ max

1≤i≤Np

|g†p,i|2
]
. (4.143)

Then, by the Jensen inequality, we have

Rbc < m log
(
1 +

log n

m
E[P ]

)
+ O(1) (4.144)

< m log
(
1 +

Γ

µ̃2

log n
)

+ O(1) (4.145)

= m log(Γ log n)−m log µ̃2 + O(1), (4.146)

where (4.145) holds since E[P ] ≤ mΓ
µ̃2

. The theorem follows.



CHAPTER 5

HYBRID OPPORTUNISTIC SCHEDULING IN COGNITIVE RADIO

NETWORKS

5.1 Introduction

This chapter studies an underlay cognitive multiple-access (MAC) channel with n trans-

mitters, in the presence of a primary system with Mp transmitters and Np receivers. The

primary and secondary systems are subject to mutual interference, where the secondary must

comply with a set of interference power constraints imposed by the primary. The objective

is to design a user scheduling method that exploits multiuser diversity in both cross links

and secondary links, so that the secondary sum-rate (throughput) is maximized, while the

interference induced on the primary is strictly bounded.

A brief overview of the past work is as follows. Zhang et al. [37] studied the power alloca-

tion of a secondary system under various power and interference constraints. Multiple anten-

nas at the secondary transmitter were exploited by [36] to balance the secondary throughput

and the interference on the primary. Recently, ideas from opportunistic communication [39]

have been applied in underlay cognitive radios. Tajer et al. [51] analyzed a parallel cognitive

network and found a growth rate of Θ(log log n) for the throughput. The throughput lim-

its of cognitive broadcast and MAC channel were analyzed [52, 53] (Chapter 4), where [52]

randomly activates multiple secondary transmitters with interference smaller than a thresh-

old. Jamal et al. [41] and Shen et al. [54] found that the secondary throughput can be

increased by simultaneously activating as many secondary transmitters as possible. The

multiuser diversity gain in cognitive networks was also studied by Hong et al. [55], Zhang

et al. [56] and Ban et al. [57], showing that by selecting the secondary user with the highest

109
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signal-to-interference-and-noise ratio (SINR) under the primary interference constraints, the

secondary throughput can grow as Θ(log log n).

The main results of this chapter are as follows.

• We propose a two-step (hybrid) opportunistic scheduling that pre-selects a set of sec-

ondary transmitters with small interference, and from among them activates multi-

ple transmitters with large secondary-channel gain. The pre-selection step provides

cross-link diversity to minimize interference, while the second step provides multi-user

diversity to improve the secondary throughput. The result is a throughput growing as

Θ(log n), which improves on the growth rate of Θ(log log n) in [55–57]. Furthermore, a

20-30% throughput gain is obtained compared with Chapter 4 for up to 200 secondary

users. The proposed scheduling method is shown to be optimal asymptotically, and

can reduce the interference on the primary proportionally to n−q, while the secondary

throughput grows proportionally to 1−qNp

Np+1
log n, for 0 ≤ q ≤ 1

Np
.

• We characterize the (asymptotically) optimal number of active secondary transmitters

as a function of the primary interference constraint, the secondary transmit power and

n. To achieve the asymptotically optimal secondary throughput, the number of active

transmitters must be proportional to n
1

Np+1 .

• The issue of fairness is studied; this issue arises when the node channel statistics

are not identical. A method is proposed to ensure user fairness and the effect of a

fairness constraint on asymptotic throughput is analyzed. It is shown that the modified

scheduling method achieves the same optimal growth rate for the throughput, i.e., the

fairness constraint does not affect the growth rate of the throughput for this algorithm.

The following asymptotic notations are used in this chapter. For sufficiently large n,

f(n) = O
(
g(n)

)
: ∃c1 |f(n)| < c1|g(n)|

f(n) = Θ
(
g(n)

)
: ∃c1, c2 c2|g(n)| < |f(n)| < c1|g(n)|

f(n) = o
(
g(n)

)
: ∀ε > 0 |f(n)| < ε|g(n)|
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Figure 5.1. Multiple access cognitive radios.

5.2 System Model

We consider a multiple-access (MAC) secondary system that coexists with a primary system,

as shown in Figure 5.1. The primary system consists of Mp transmitters and Np receivers,1

where each transmitter communicates with one or more receivers, and vice versa. The

primary and secondary are subject to mutual interference from each other which is treated

as noise. The interference from the secondary to each primary receiver must be smaller than

a pre-defined interference temperature (threshold). For simplicity, all nodes are assumed to

be single-antenna.

A block-fading channel model is assumed where all channel coefficients are independent,

identically distributed (i.i.d.) circularly-symmetric complex Gaussian with zero mean and

unit variance, denoted by CN (0, 1). For each transmission, a subset of secondary transmitters

are activated; the collection of selected (active) transmitters is denoted by S. The signal at

the secondary receiver is:

y =
∑
i∈S

√
Pi hi xi +

Mp∑

`=1

√
Pp gs,` xp,` + w, (5.1)

where hi is the channel coefficient from the secondary transmitter i to the secondary receiver.

The secondary transmitter i sends a signal xi with power Pi, which is subject to a short term

power constraint, i.e., Pi ≤ P for 1 ≤ i ≤ n. The cross-channel coefficient from the primary

1In this chapter, Mp and Np are assumed to be bounded, i.e., not scaling with n.
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transmitter ` to the secondary receiver is gs,`. The primary transmitter ` sends a signal xp,`

with power Pp for 1 ≤ ` ≤ Mp. The additive noise w has the distribution CN (0, 1).

The interference power (caused by the secondary transmitters) on the primary receiver j

is

Ij =
∑
i∈S

Pi|gji|2, (5.2)

where gji is the cross-channel coefficient from the secondary transmitter i to the primary

receiver j. For clarity of exposition, all the primary receivers are assumed to tolerate a

short-term interference power Γ; the case of unequal tolerances can be studied similarly (see

Remark 5.3.1). We have

Ij ≤ Γ, for 1 ≤ j ≤ Np. (5.3)

Throughout this chapter, we assume the secondary receiver knows the secondary-channel

coefficients {hi} but does not know any other channels (see Remark 5.3.2 for more details).

We refer to the secondary forward channel simply as the secondary-channel, and the sec-

ondary cross-channel to the primary receiver as the cross-channel.

5.3 Scheduling in Cognitive MAC channel

A scheduling scheme determines a set of active secondary transmitters S and their power

{Pi}i∈S . The corresponding average secondary sum-rate (throughput) is given by

Rmac = E
[

log

(
1 +

Gsum

1 + Ip

)]
, (5.4)

where

Gsum =
∑
i∈S

Pi|hi|2, Ip = Pp

Mp∑

`=1

|gs,`|2. (5.5)

The statistics of Gsum depends on the associated scheduling rule, and are independent of Ip,

the interference from the primary.



113

5.3.1 Hybrid Opportunistic Scheduling

A secondary user scheduling should maximize the (average) secondary throughput, while

satisfying the primary-imposed interference constraints. However, such two objectives often

conflict. To increase the throughput, we want to activate many transmitters with large

secondary-channel gains, but these transmissions may violate the interference constraints.

Since the interference from various concurrent transmissions will add up, the scheduling

of secondary transmitters is interdependent. We may choose many transmitters operating

at low power, or a few transmitters at high power. Moreover, even for a fixed number

of transmitters, reducing power from one transmitter allows increasing power from other

transmitters. In general, the search for the optimal transmitter set and transmit power is

a variation of the knapsack problem, which is NP-complete. To simplify the problem, we

adopt a decoupling power policy that is shown to be asymptotically optimal later on. This

is an on-off power policy where each transmitter either operates at maximum power P or

remains silent. Then, the scheduling scheme is as follows:

Selection of Eligible Transmitters

The scheduling process has two parts. In its first part, we concentrate on limiting the

interference, thus favoring transmitters with small cross-channel gains. Specifically, we only

allow transmitters that do not violate an interference quota α on each primary receiver. The

collection of such transmitters is defined as the eligible transmitter set:

A =

{
i : P |gji|2 < α, ∀ 1 ≤ j ≤ Np

}
. (5.6)

This step can be considered as opportunistic interference avoidance. Recall that each primary

receiver can tolerate interference power Γ. Once the maximum interference generated by each

secondary transmitter is capped, the total interference at each primary receiver is guaranteed

to be tolerable if no more than ks = Γ
α

eligible secondary transmitters are in operation.2

2For the purposes of analysis α is allowed to take any small and positive value, but for
practical purposes it can be limited to the values that make ks to be an integer.
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Selection of Active Transmitters

Now we choose from among the eligible transmitters those who will actually transmit. Up

to ks secondary transmitters will be chosen that have high secondary-channel gains (SNRs),

therefore producing multiuser diversity. The ordered channel gains of eligible transmitters

are denoted by:

|h̃1|2 ≥ |h̃2|2 ≥ · · · ≥ |h̃M |2, (5.7)

where |h̃i|2 is the ith largest channel gain of transmitters in A, and M = |A| is the size of A.

Note that M is a random variable. If M > ks, the first ks transmitters in the above order

will be active simultaneously. If M ≤ ks, then all the M eligible transmitters will operate.

The above two-step scheme is called Hybrid Opportunistic Scheduling in the sense that it is

driven by a hybrid of two criteria: Minimizing interference and maximizing throughput. This

selection process requires neither exhaustive search nor joint power control among secondary

transmitters, but it still guarantees compliance with the pre-defined interference threshold

and captures the multiuser diversity gain. In addition, this scheduling is simple to design;

the only parameter to consider is the interference quota α (thus ks), which will be studied

in the sequel.

Remark 5.3.1 Hybrid Opportunistic Scheduling still applies when primary receivers toler-

ate unequal amounts of interference, e.g., Γj for 1 ≤ j ≤ Np. In this case, we design a

separate interference quota for each primary receiver, i.e., αj =
Γj

ks
, and re-define the eligible

transmitter set as

Aneq =

{
i : P |gji|2 < αj, ∀ 1 ≤ j ≤ Np

}
, (5.8)

such that the transmission of any ks eligible secondary transmitters complies with all the

interference constraints. Notice that the selection of active transmitters is unaffected. One

can show that most of the analysis and results in this chapter still follow in a similar manner.
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Remark 5.3.2 We briefly discuss the CSI requirement of the proposed scheme. First, each

secondary transmitter compares its cross-channel gains3 to a threshold to evaluate its eligibil-

ity. Then, only among eligible transmitters each sends 1-bit to inform the secondary receiver.

The secondary-channel of eligible transmitters can be directly estimated at the receiver side.

Therefore, this scheduling method requires little exchange of CSI. The thresholding operation

of our method is essentially a distributed decision making process that significantly reduces

the CSI overhead compared with methods that choose the least interfering secondary [41],

because ranking is by necessity a centralized process and requires all nodes to communicate

their cross-link to the receiver.

5.3.2 Throughput Analysis

Now we study the throughput achieved by the proposed Hybrid Opportunistic Scheduling.

We first derive the average secondary throughput, and then maximize the throughput over

α. Under the proposed scheduling, we have

Gsum = P

min(ks,M)∑
i=1

|h̃i|2, (5.9)

which involves a sum of order statistics whose properties are given by the following lemma.

Lemma 5.3.1 Let a and b be large positive integers with b ≥ a, and Sa
b (ρ) be the sum of the

highest a order statistics out of b i.i.d. exponentials with mean ρ. For any 0 < ε < 1,

P
(∣∣Sa

b (ρ)− ρµa
b

∣∣ < ερµa
b

)
> 1−O

(
1(

log b
)2

)
,

E[Sa
b (ρ)] = ρµa

b ,

where µa
b = a log b

a
+ a + O(1).

3The primary receiver emits packets for, e.g., handshake or ACK/NACK, which can be
overheard by the secondary transmitter and used for cross-channel gain estimation in a TDD
system. Also, under the spectrum leasing model [58], the primary receivers can be expected
to actively promote spectrum reuse by transmitting pilots that can be used for cross-channel
gain estimation. The latter model applies to both TDD and FDD.
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Proof See Section 5.6.1.

Remark 5.3.3 In Lemma 5.3.1, µa
b can be considered as the multiuser diversity gain achieved

by selecting the best a out of b users in i.i.d. Rayleigh fading channels. For a = 1, it reduces

to the case where one transmitter with the highest channel gain is selected, and we have

µ1
b ≈ log b, a well known result [39, 49]. For a = b (no selection), Sa

b (ρ) obeys Gamma(b, ρ)

distribution, and ρµb
b ≈ ρb.

Based on Lemma 5.3.1 and recalling that ks = Γ
α
, for sufficiently small α (large ks), we

have the following results.

Theorem 5.3.2 Consider a secondary MAC with n transmitters, each with power P . This

MAC coexists with a primary system with Np receivers and Mp transmitters each with power

Pp. If each primary receiver tolerates interference power Γ, then the average secondary

throughput Rmac satisfies

Rmac ≥ log

(
log n− (Np + 1) log ks + Np log(Γ/P ) + 1

)

1 + MpPp

+ log
Pks

1 + MpPp

+ O
( 1

log n

)
,

(5.10)

Rmac ≤ log

(
log n− (Np + 1) log ks + Np log(Γ/P ) + 1

)

1 + MpPp

+ log
Pks

1 + MpPp

+ C0 + O
( 1

log n

)
,

(5.11)

for sufficiently large n and ks, where C0 = log
(
E[1/(1 + Ip)]E[1 + Ip]

)
.

Remark 5.3.4 The lower bound (5.10) has only a constant gap C0 relative to the upper

bound (5.11) for large n, therefore, for given ks, Rmac scales as log log n, similar to the

results in [55–57]. To achieve this secondary rate, multiuser decoding is required at the

secondary receiver for ks > 1, which is unlike TDMA scheduling (ks = 1) where single-user

detection is sufficient. Finally, we note that C0 depends only on the statistics of Ip, the

interference from the primary to the secondary (see (5.5)).
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Now, we design the interference quota α (equivalently ks) to maximize the secondary

throughput. Unlike conventional MAC where ks = n maximizes the sum throughput, in

spectrum-sharing networks ks (thus α) must be carefully designed due to the additional

primary interference constraints. If α is very small, the number of eligible transmitters is

also small on average, which reduces the multiuser diversity gain achieved by selecting from

among the eligible transmitters. If α is very large, Γ
α

will be small and few transmitters can

be activated, thus once again the overall throughput will suffer. Therefore, it is desirable to

optimize α (thus ks), as shown by the following lemma.

Lemma 5.3.3 For sufficiently large n the optimal number of active secondary transmitters

kopt
s satisfies ∣∣∣∣

kopt
s

k∗s
− 1

∣∣∣∣ ≤
√

1− ξ,

where k∗s =
(

Γ
Pe

) Np
Np+1 n

1
Np+1 and ξ is given by (5.52).

Proof See Section 5.6.3.

Lemma 5.3.3 asymptotically bounds the optimal number of active secondary transmitters

as a function of Γ, P and n. It shows that, essentially, kopt
s cannot be too far from k∗s . Mo-

tivated by this lemma, we choose ks = k∗s and in the following theorem obtain a throughput

growth rate that is later shown to be asymptotically optimal (See Chapter 5.3.3).

Theorem 5.3.4 Consider a secondary MAC with n transmitters each with power P . This

MAC coexists with a primary system with Np receivers and Mp transmitters with power Pp. If

each primary receiver tolerates interference power Γ, then the average secondary throughput

Rmac satisfies

Rmac ≥ 1

Np + 1
log n + C1 + O

( 1

log n

)
, (5.12)

Rmac ≤ 1

Np + 1
log n + C1 + C0 + O

( 1

log n

)
, (5.13)

for sufficiently large n by activating k∗s transmitters, where C1 = Np

Np+1
log Γ

Pe
+ log (Np+1)P

1+MpPp
.
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Proof Notice that the proof of Theorem 5.3.2 holds for ks = Θ(n1/(Np+1)). The theorem

follows by substituting k∗s into (5.10) and (5.11), respectively.

The implications of Theorem 5.3.4 are as follows. Intuitively, the secondary throughput

is reduced when the number of primary receivers (constraints) increases. Theorem 5.3.4

explicitly quantifies this: Rmac = 1
Np+1

log n + O(1). For small Np, Hybrid Opportunistic

Scheduling achieves a (significant) fraction of the throughput of an ordinary MAC, if n is

large enough. The achieved throughput is proven to be optimal asymptotically (with n) in

the sequel.

So far we have shown that the multiuser nature of a secondary system can improve the

secondary throughput. In fact, this multiuser flexibility can also be used to mitigate the

interference on the primary. A tradeoff exists between the primary interference reduction

and the secondary throughput enhancement under Hybrid Opportunistic Scheduling, which

is described as follows.

Corollary 5.3.5 Consider the allowable interference on each primary receiver being bounded

as Θ(n−q). Then, the average secondary throughput satisfies

Rmac =
1− qNp

Np + 1
log n + O(1), (5.14)

for sufficiently large n under Hybrid Opportunistic Scheduling, where 0 ≤ q ≤ 1
Np

.

Proof Notice that Theorem 5.3.4 holds for Γ = Θ(n−q). The Corollary follows by substi-

tuting Γ into the lower and upper bounds given by (5.13).

Based on Corollary 5.3.5, as n increases, Hybrid Opportunistic Scheduling can mitigate

interference (to zero) on the primary receivers, while the secondary throughput grows as

Θ(log n). The allowable interference Γ is made to decline as Θ(n−q), which leads Rmac to

decrease linearly in q. If Γ is reduced more slowly, e.g., decreasing as Θ( 1
log n

), the secondary

throughput can increase at a rate of 1
Np+1

log n. If we try to mitigate the primary interference

faster than Θ(n−q), i.e., q ≥ 1
Np

, the secondary throughput only grows as o(log n). Therefore,
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as Np increases, not only the throughput of the secondary decreases, but also its ability of

reducing the interference on the primary.

Remark 5.3.5 The key to the secondary growth rate Θ(log n) is to activate multiple sec-

ondary transmitters while limiting the interference. This approach is in contrast with [55–57]

where a single transmitter with the highest SNR was activated. The main questions to be

answered in this work have been: how many secondary transmitters we should activate, how

to choose the active secondary transmitters in a relatively straight forward fashion, and how

much power should the active transmitters emit to achieve the growth rate while satisfying

the interference constraint.

5.3.3 Optimality of Hybrid Opportunistic Scheduling

We first find an upper bound for the average secondary throughput that applies regardless

of transmission strategies.

Theorem 5.3.6 Consider the coexistence of a secondary MAC with n transmitters and a

primary system with Np receivers. The maximum average throughput of the secondary, Ropt
mac,

satisfies

Ropt
mac ≤

1

Np + 1
log n + O(log log n). (5.15)

Proof See Section 5.6.4.

The gap between the above upper bound and the throughput attained by Hybrid Op-

portunistic Scheduling (shown in Theorem 5.3.4) is only on the order of O(log log n). This

gap is negligible relative to Θ(log n) for sufficiently large n, therefore, Hybrid Opportunistic

Scheduling asymptotically attains the maximum throughput:

lim
n→∞

Rmac

Ropt
mac

= 1. (5.16)
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Remark 5.3.6 The growth rate Θ(log n) can also be attained by activating secondary users

simply according to the least interference, i.e., only based on cross-channel gains [42,52]. The

similarity of growth rates may tempt one to say that there is no gain in utilizing secondary

channel information [42]. However, similarity of growth rates hides o(log n) throughput gains

by the two-step (hybrid) approach that are highly nontrivial and practically important. For

instance, our results show throughput gains of around 20-30% over Chapter 4 (see Figure 5.3)

by selecting the users with large secondary-channel gain.

5.4 Scheduling under non-I.I.D. Link Statistics

In this section, we consider a network where neither the secondary-channels nor cross-

channels are identically distributed. This is a practical scenario due to, e.g., different path

losses for various links. Assuming that the channel gains obey one out of a finite number of

distributions, we enumerate them with the variable d ∈ {1, . . . , D}. Specifically, each user

has a secondary-channel gain and cross-channel gain that obeys the exponential distribution

with parameter ρd and λd, respectively. The number of users in each of these groups is βd n,

where
∑D

d=1 βd = 1.

The secondary transmitters that enjoy larger ρd and smaller λd have a higher probability

to be active under Hybrid Opportunistic Scheduling, so user fairness is no longer guaran-

teed. In the following, we extend Hybrid Opportunistic Scheduling to ensure a (long-term)

temporal fairness [59,60] in the sense that each secondary transmitter has equal probability

(time fraction) to be active. For clarity of exposition, we consider Mp = Np = 1, i.e., one

pair of primary transmitter and receiver.

Our strategy is to design the interference quota for Group d to be proportional to λd,

such that all transmitters have equal eligible probability. More precisely, the interference

quota for Group d is

αd =
λdΓ

ks

∑D
j=1 βjλj

, for 1 ≤ d ≤ D. (5.17)
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The corresponding eligible transmitter set for Group d is

Ad =

{
i : P |gji|2 < αd, ∀ 1 ≤ j ≤ Np, i ∈ Group d

}
.

Therefore, the eligible probability of any transmitter is

p′ ≈ Γ

ksP
∑D

d=1 βjλj

. (5.18)

Then, we separately select the best (up to) eligible βd ks transmitters from among each group.

One can verify that the above modifications ensure both the fairness requirement and the

primary interference restriction. We have the following lemma:

Lemma 5.4.1 For the network described above, the average secondary throughput Rmac sat-

isfies

Rmac ≥ log
Pks

(
log n p′

ks
+ 1

)

1 + Pp

+ log
D∑

d=1

ρdβd + O(
1

log n
),

Rmac ≤ log
Pks

(
log n p′

ks
+ 1

)

1 + Pp

+ log
D∑

d=1

ρdβd + C0 + O(
1

log n
),

for sufficiently large n under the modified Hybrid Opportunistic Scheduling.

Proof For brevity we only provide an outline. First, note that the user selection is decoupled

among different groups. Let Md be the number of eligible transmitters for Group d, then Md

is binomially distributed with parameter (βd n, p′) (similar to (5.27)). In this case, Gsum is

a mixture of sums of order statistics described by Lemma 5.3.1, i.e., Gsum =
∑D

d=1 Sβdks

Md
(ρd)

in distribution given Md sufficiently large. The rest of the proof is similar to Theorem 5.3.2.

With slight modification of Lemma 5.3.3, we choose the number of active secondary

transmitters as:

k∗s =

√
Γ

eP
∑D

d=1 βdλd︸ ︷︷ ︸
c′

(
n
) 1

2 . (5.19)

The above equation indicates that as the average cross-channel gain
∑

d βdλd increases, fewer

secondary transmitters should be activated simultaneously. Notice that k∗s becomes identical
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to that given by Lemma 5.3.3 (with Np = 1) when λd = 1 for 1 ≤ d ≤ D. Based this choice

of ks and Lemma 5.4.1, we obtain the following results.

Theorem 5.4.2 For the network described above, the average secondary throughput Rmac

satisfies

Rmac ≥ 1

2
log n + C2 + O(

1

log n
), (5.20)

Rmac ≤ 1

2
log n + C2 + C0 + O(

1

log n
), (5.21)

for sufficiently large n by activating ks = c′
√

n transmitters, where C2 = log
P

d βd ρd√P
d βd λd

+

log 2
1+Pp

√
ΓP
e

.

Proof The theorem follows by substituting ks = c′
√

n into Lemma 5.4.1.

Remark 5.4.1 From Theorem 5.4.2, the growth rate of Rmac is 1
2
log n, which is optimal and

thus is unaffected due to the imposition of the fairness constraint. Besides the growth rate, the

impact of channel heterogeneity on the secondary throughput can also be seen by inspecting

C2: The lower (upper) bound of the throughput increases with the average secondary-channel

gain,
∑

d βd ρd, but decreases with the average cross-channel gain,
∑

d βd λd. Intuitively, as
∑

d βd λd increases, statistically, the secondary transmitters more easily cause interference on

the primary, thus fewer of them can be active simultaneously, which in turn leads to a smaller

secondary throughput. Finally, note that Theorem 5.4.2 includes, as a special case, the results

of Theorem 5.3.4 when the primary system simply consists of one transmitter-receiver pair.

5.5 Numerical Results

In this section, we illustrate our results with simulations. We use Pp = P = 10 and Mp =

Np = 1. Unless otherwise specified, the allowable interference power on the primary receiver

is Γ = 5. All simulations are averaged over 2× 104 channel realizations.
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Figure 5.2. Optimal number of active secondary transmitters.

20 40 60 80 100 120 140 160 180 200
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of secondary transmitters

S
ec

on
da

ry
 th

ro
ug

hp
ut

 (
B

it/
S

ec
/H

z)

 

 

Hybrid O.S.
Upper bound
Lower bound
Scheme in [14][15]
Scheme in [10]

Figure 5.3. Throughput of Hybrid Opportunistic Scheduling and other schemes.
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Figure 5.4. Throughput versus transmitter number, vanishing Γ

Figure 5.2 shows the (asymptotically) optimal number of active secondary transmitters

characterized by Lemma 5.3.3. The throughput achieved by activating k∗s = d
√

Γ
Pe

ne trans-

mitters surpasses (or equals) that achieved by activating fixed ks transmitters, for n from

20 to around 400. Although Lemma 5.3.3 only suggests kopt
s cannot be far away from k∗s ,

simulations imply that k∗s may be indeed optimal. Intuitively, as n increases, the number

of secondary transmitters that have desirably small cross-channel gains also increases on

average, therefore, more secondary transmitters should be active simultaneously.

Figure 5.3 illustrates Theorem 5.3.4 and compares Hybrid Opportunistic Scheduling with

several other schemes. The throughput of the proposed method is bounded by the asymptotic

bounds in Theorem 5.3.4, even for small n. Hybrid Opportunistic Scheduling attains a

throughput higher than that attained in Chapter 4, where the transmitters are selected only

based on cross-channels without considering the secondary-channel conditions. Also, the

achieved throughput is higher than that achieved in [56, 57] where the (single) secondary
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Figure 5.5. Throughput of Hybrid Opportunistic Scheduling under different Mp and Np.

transmitter with the highest SINR is activated. The throughput of the proposed method

scales as Θ(log n), which is faster than the Θ(log log n) growth achieved in [56,57].

Figure 5.5 shows the impact on the secondary throughput of the primary network (Mp and

Np). The dash lines correspond to the asymptotic lower bound derived by Theorem 5.3.4.

As Mp increases, due to experiencing more interference from the primary, the secondary

throughput decreases. As Np increases, due to more constraints imposed by the primary,

the secondary throughput again decreases.

The results of Corollary 5.3.5 are illustrated by Figure 5.4. The allowable interference

power Γ declines (to zero) as n−q, while the throughput still grows logarithmically with n.

In addition, one can see the tradeoff given by Corollary 5.3.5: For larger q, the interference

power decreases faster but the secondary throughput increases more slowly, and vice versa.
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Figure 5.6. Throughput of Hybrid Opportunistic Scheduling under a fairness constraint.

Figure 5.6 and Figure 5.7 show the performance of Hybrid Opportunistic Scheduling

under non-i.i.d. links. Here, n = 50 and ks = 4; D = 2 and β1 = β2 = 0.5, i.e., two groups

with equal number of transmitters. Figure 5.6 shows the secondary throughput for the

case of ρ1 = λ1 = λ2 = 1 and ρ2 = 2 (non-i.i.d. secondary-channels), and for the case of

ρ1 = ρ2 = λ1 = 1 and λ2 = 2 (non-i.i.d. cross channels). With the fairness constraint, the

modified Hybrid Opportunistic Scheduling still attains a throughput that is very close to

that attained without any fairness restriction.

Figure 5.7 shows the ratio of average portion of active time of Group 1 and Group 2.

If this ratio equals 1, each transmitter has an equal portion of active time and the system

is temporally fair [59]. The larger the ratio, the larger portion of active time of Group 2

relative to that of Group 1. One can see that user fairness is ensured under the modified

scheduling.
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5.6 Proof of Theorem and Lemma

5.6.1 Proof of Lemma 5.3.1

Proof Let Z1, · · · , Zb be i.i.d. exponentials with mean ρ. From [49], we know that Sa
b (ρ)

has the same distribution as

b−a∑
i=1

a

b− i + 1
Zi + Zb−a+1 + · · ·+ Zb. (5.22)

Therefore we can calculate its expectation:

E[Sa
b (ρ)]

∆
= ρµa

b = ρa

( b∑
i=1

1

i
−

a∑
i=1

1

i

)
+ ρa. (5.23)

It is known [61] that, for any positive integer k,

log k + γ +
1

2(k + 1)
<

k∑
i=1

1

i
< log k + γ +

1

2k
, (5.24)

where γ is the Euler constant. Hence, for sufficiently large b and a (b ≥ a), we obtain

µa
b = a log

b

a
+ a + O(1). (5.25)

Now, we calculate the variance of Sa
b (ρ). From (5.22), we have:

V ar[Sa
b (ρ)] < (ρa)2

b∑
i=a+1

1

(i− 1)i
+ ρ2a < 2ρ2a. (5.26)

Applying the Chebyshev inequality, for any 0 < ε < 1, we have

P
(∣∣Sa

b (ρ)− ρµa
b

∣∣ > ερµa
b

)
<

V ar[Sa
b (ρ)](

ερµa
b

)2 < O

(
1

(log b)2

)
.

The above second inequality holds for any a = O(bδ) and δ < 1. The lemma follows by

taking the complement of the random event in inequality.
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5.6.2 Proof of Theorem 5.3.2

Proof To begin with, note that M (the size of A) is binomially distributed with parameter

p =
(
1− e−

α
P

)Np
, (5.27)

since {|gji|2} are i.i.d. exponentials with unit mean. For any 0 < ε1 < 1, we have

P
(
|M − np| > ε1np

)
<

(1− p)

ε2
1p n

= O
( 1

n

)
(5.28)

based on the Chebyshev inequality. For convenience, we denote

n1 = b(1− ε1)npc, n2 = d(1 + ε1)npe. (5.29)

Then, from (5.28), we have

P(M ≥ n1) > 1−O(
1

n
), P(M ≥ n2) < O(

1

n
). (5.30)

Now, we establish a lower bound. Based on (5.4), Rmac depends two independent random

variables Ip and Gsum, where Ip is distributed as Gamma(Mp, Pp), and given M = m, Gsum

has the same distribution as Sks
m (P ) for m ≥ ks (see Lemma 5.3.1). Condition on Ip = x and

expand the conditional throughput Rmac|Ip(x):

Rmac|Ip(x)=
n∑

m=1

E
[

log

(
1 +

Gsum

1 + x

)∣∣∣∣M = m

]
P
(
M = m

)

≥
n∑

m=n1

E
[

log

(
1 +

Sks
m (P )

1 + x

)]
P
(
M = m

)
, (5.31)

where the inequality holds since we discard non-negative terms associated with m < n1 in the

summation and n1 > ks for sufficiently large n. For any 0 < ε < 1, we further expand (5.31)
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by conditioning on the event Cm = {Sks
m (P ) > (1− ε)Pµks

m}:

Rmac|Ip(x) ≥
n∑

m=n1

E
[

log

(
1 +

Sks
m (P )

1 + x

) ∣∣∣∣ Cm

]
P
(
M = m

)
P
(Cm

)

>
n∑

m=n1

log

(
1 +

(1− ε)Pµks
m

1 + x

)
P
(
M = m

)×
(

1−O
( 1

(log n)2

))
(5.32)

> log

(
1 +

(1− ε)Pµks
n1

1 + x

)
P
(
M ≥ n1

) (
1−O

( 1

(log n)2

))
(5.33)

> log

(
1 +

(1− ε)Pµks
n1

1 + x

)(
1−O(

1

n
)
) (

1−O
( 1

(log n)2

))
. (5.34)

To obtain (5.32), we use the result from Lemma 5.3.1 by noting m = Θ(n) for m ≥ n1:

P
(Cm

) ≥ 1−O
( 1

(log n)2

)
. (5.35)

We have (5.33), since µks
n1
≤ µks

m , ∀ m ≥ n1. Finally, (5.34) uses (5.30).

From Lemma 5.3.1 and the fact that n1 = Θ(n), we have µks
n1

= O(log n). Since log(1 +

z) = log z + log(1 + 1
z
) for z > 0, we expand the right hand side of (5.34):

Rmac|Ip(x) > log
P (1− ε)µks

n1

1 + x
+ O(

1

log n
). (5.36)

Take expectation with respect to Ip and use the convexity of h(z) = log
(
1 + c1

c2+z

)
:

E
[
Rmac|Ip(x)

]
> log

P (1− ε)µks
n1

1 + E[Ip]
+ O

( 1

log n

)

= log
Pµks

n1

1 + PpMp

+ log(1− ε) + O
( 1

log n

)
. (5.37)

Finally, we calculate µks
n1

. Since α = Γ
ks

, from (5.27), we have p ≈ (
Γ

ksP

)Np
for large ks.

From Lemma 5.3.1, we have

µks
n1

= ks

(
log

n ΓNp

PNp k
Np+1
s

+ 1

)
+ O(1). (5.38)

Substituting (5.38) into (5.37), and with some calculation, we have the desired lower bound

in (5.10).
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Now, we find an upper bound. Let T = 1
1+Ip

and Rmac|T (t) be the conditional throughput.

Expand Rmac|T (t) based on the event {M ≤ n2} and its complement:

Rmac|T (t) = E
[

log(1 + tGsum)
∣∣ M ≤ n2

]
P
(
M ≤ n2

)
+ E

[
log(1 + tGsum)

∣∣M > n2

]
P
(
M > n2

)

≤ log
(

1 + tE
[
Gsum

∣∣M ≤ n2

])
+ log

(
1 + tE

[
Gsum

∣∣M > n2

])
P
(
M > n2

)
, (5.39)

where (5.39) uses the Jensen inequality. Since E[Gsum|M = i] is a non-decreasing function

of i, we have

Rmac|T (t) ≤ log
(
1 + tE[Sks

n2
(P )]

)
+ log

(
1 + tE[Sks

n (P )]
)
P
(
M > n2

)

< log
(
1 + tPµks

n2

)
+ log

(
1 + tPµks

n

)
O

( 1

n

)
, (5.40)

where (5.40) uses (5.30). Take expectation with respect to T .

E
[
Rmac|T (t)

] ≤ log
(
1 + Pµks

n2
E[T ]

)
+ log

(
1 + Pµks

n E[T ]
)
O

( 1

n

)
(5.41)

< log

(
1 + Pµks

n2
µT

)
+ O

( log log n

n

)
(5.42)

= log Pµks
n2

+ log µT + log
(
1 + O(1/µks

n2
)
)

+ O
( log log n

n

)
, (5.43)

where µT = E[T ]. The Jensen inequality is used in (5.41) and the identity log(1 + z) =

log z + log(1 + 1
z
) for z > 0 is used in (5.43). Similar to (5.38), we have

µks
n2

= ks

(
log

n ΓNp

PNp k
Np+1
s

+ 1

)
+ O(1). (5.44)

Substituting (5.44) into (5.43), we obtain the desired upper bound in (5.11) with C0 =

log
(
µT (1 + MpPp)

)
. Notice that C0 ≥ 0, because

µT (1 + MpPp) = E[1/(1 + Ip)]E[1 + Ip] ≥ 1, (5.45)

where the equality holds if and only if Ip is a constant.

5.6.3 Proof of Lemma 5.3.3

Proof The exact expression of Rmac as a function of ks is unknown in Theorem 5.3.2, thus

a direct maximization of Rmac(ks) is impossible. The idea of this proof is to (approximately)
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optimize bounds on Rmac and show that the resulting answer is sufficient for our purposes.

We begin with the lower and upper bounds in Theorem 5.3.2, denoted as L(ks) and U(ks),

which can be written as (ignoring vanishing terms):

L(ks) = log r(ks) + log
P

1 + MpPp

, (5.46)

U(ks) = log r(ks) + log
P

1 + MpPp

+ C0, (5.47)

where

r(ks) = ks

(
− (Np + 1) log ks + log n

(
Γ/P

)Np
+ 1

)
. (5.48)

Notice that L(ks) and U(ks) are identical function of ks except a constant gap C0. Intuitively,

the value of ks that maximizes L(ks) (or U(ks)), denoted by k∗s , should also (almost) maximize

Rmac(ks). We justify this intuition in the rest of the proof.

First, we find k∗s . Since log(·) is a monotonic-increasing function, we maximize r(ks)

instead. For the asymptotic analysis, ks can be considered as a continuous variable. So,

solving r′(·) = 0, we obtain:

k∗s =
( Γ

Pe

) Np
Np+1 n

1
Np+1 . (5.49)

Now, consider ks = k1
s such that log r(k1

s) + C0 < log r(k∗s). Then, k1
s is not the maxi-

mizer of Rmac(ks), because in this case U(k1
s) < L(k∗s), which implies Rmac(k

1
s) < Rmac(k

∗
s).

Therefore, kopt
s , the true maximizer of Rmac(ks), must satisfy

log r(kopt
s ) + C0 ≥ log r(k∗s). (5.50)

Let kopt
s = k∗s + ∆k. From (5.50), with some algebra, we have:

|∆k| ≤
√

1− ξ k∗s , (5.51)

where

ξ = exp(−C0) =
(
µT (1 + PpMp)

)−1
. (5.52)

Numerically, one can see that ξ ≈ 1 and thus ∆k ≈ 0. For example, if Pp = 10, ξ ≈ 0.8 for

Mp = 4 and ξ ≈ 0.9 for Mp = 8.
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5.6.4 Proof of Theorem 5.3.6

Proof Consider an arbitrary S and {Pi}i∈S that comply with the interference constraints

imposed by the primary. We first enlarge the secondary throughput by assuming zero inter-

ference from the primary:

Rmac ≤ log
(
1 +

∑
i∈S

Pi|hi|2
)

(5.53)

≤ log
(
1 + GmaxPsum

)
, (5.54)

where

Psum =
∑
i∈S

Pi, Gmax = max
1≤i≤n

|hi|2. (5.55)

Now we find an upper bound for Rmac regardless of transmission strategies. First, we

bound Psum and formulate an optimization problem:

max
S, {Pi}

Psum

s.t. :
∑
i∈S

Pi|gji|2 ≤ Γ for 1 ≤ j ≤ Np, and Pi ≤ P. (5.56)

which is a standard linear programming whose solution is denoted by P ∗
sum. Here, P ∗

sum is

a random variable depending on the channel realizations. A direct solution requires joint

optimization over S and {Pi}, but a simpler analysis exists for upper bounds. We relax the

set of interference constraints in (5.56) to a single sum constraint, which never decreases

P ∗
sum:

∑
i∈S

PiIsum,i ≤ NpΓ, (5.57)

where

Isum,i =

Np∑
j=1

|gji|2 (5.58)

is the total cross-channel gains from the secondary transmitter i to all the primary receivers.

Thus, {Isum,i}n
i=1 are i.i.d. Gamma(Np, 1). We order Isum,i among all the secondary trans-

mitters:

Ĩsum,1 ≤ · · · ≤ Ĩsum,n. (5.59)
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Then, we construct the following problem by further relaxing the constraint of (5.57):

max
S, {Pi}

Psum

s.t. :

|S|∑
i=1

PiĨsum,i ≤ NpΓ and Pi ≤ P. (5.60)

The solution for the above problem, denoted by P ∗
sum,1, is always greater than or equal to

P ∗
sum. The corresponding {Pi} achieves P ∗

sum,1 are in form of Pi ≥ Pj for i ≤ j. Thus, we

have

P ∗
sum,1 ≤ PNsmax (5.61)

where Nsmax is the maximum possible value of |S| that satisfies

P

|S|−1∑
i=1

Ĩsum,i ≤ NpΓ. (5.62)

For brevity, we outline the rest of the proof. It can be shown that Nsmax converges to

Θ(n
1

Np+1 ) in probability. Because P ∗
sum ≤ PNs and Gmax (the maxima of n i.i.d. exponen-

tials) scales as log n [39, 49], we have (see (5.54)):

Ropt
mac ≤ log

(
Θ(n

1
Np+1 ) log n

)
(5.63)

=
1

Np + 1
log n + O(log log n). (5.64)



CHAPTER 6

SPECTRUM SHARING WITH DISTRIBUTED RELAY SELECTION AND

CLUSTERING

6.1 Introduction

Spectrum-sharing [35, 38] allows unlicensed (secondary) users to share the spectrum of li-

censed (primary) users as long as the interference caused on the primary is tolerable. This

problem is often formulated as maximizing the secondary rate subject to interference con-

straints on the primary, or as the dual problem of minimizing the interference on the pri-

mary subject to a fixed rate for the secondary. Thus, reducing the interference footprint

of the secondary is of paramount interest in spectrum sharing. Multihop relaying and co-

operative communication is known to significantly mitigate interference and increase the

sum-throughput in many multi-user scenarios [2], among others in broadcast channels [3],

multiple access channels [4] and interference channels [5]. This has motivated the use of

relays in spectrum sharing networks [6–12].

This chapter studies a spectrum sharing network consisting of multiple primary nodes

and a secondary system with M -antenna source and destination, and n half-duplex relays.

Unlike conventional relay networks [45,62], the secondary relays must not only maximize the

secondary rate but also control the interference on the primary, thus new cooperative algo-

rithms are called for. To achieve this goal we propose and investigate an approach involving

amplify-and-forward (AF) relaying as well as relay selection. Under the proposed frame-

work a closed-form expression is derived for the secondary rate, showing that it increases

as (M log n)/2. Furthermore, we propose an augmented scheduling algorithm that recovers

the half-duplex loss and improves the constant factor in the throughput growth rate. Fi-

nally, we characterize the trade-off between the secondary rate and the primary interference,
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showing that the interference on the primary can be reduced asymptotically to zero while

the secondary rate still grows logarithmically with n. Our results suggest that to maximize

the secondary rate subject to primary interference constraints, one must activate a subset of

relays that are chosen based on their interference profile on the primary, each of the relays

transmit with power inversely proportional to n, and the secondary source must operate at

a power level potentially below its maximum available power. These outcomes are unique to

the cognitive relay networks and are distinct from the conventional relay networks, e.g., [45].

Some of the related work is as follows. Zhang et al. [37] studied the secondary power

allocation under various power and interference constraints. The throughput limits of

spectrum-sharing broadcast and MAC were analyzed in [52] (Chapter 4). Recently, relay-

ing in spectrum sharing networks has attracted attention. For secondary outage probability

Zou et al. [11] and Lee et al. [12] proved that the relay selection in spectrum-sharing achieved

the same diversity as conventional relay networks. For decode-and-forward (DF) relaying,

Mietzner et al. [7] studied power allocation subject to a desired secondary rate, and Asghari

and Aissa [8] analyzed symbol error rate with relay selection. For AF-relaying, Li et al. [9]

selected a single relay to maximize the secondary rate, and Naeem et al. [10] numerically

analyzed a greedy relay selection algorithm.

6.2 System Model

We consider a spectrum sharing network consists of Np primary nodes and a secondary system

with an M -antenna source, an M -antenna destination and n single-antenna half-duplex

relays, as shown in Figure 6.1. The average interference power caused by the secondary on

each of the primary nodes must be less than γ [63]. Let H ∈ CM×n be the channel coefficient

matrix from the source to the relays, and F ∈ Cn×M and G ∈ Cn×Np be the channel coefficient

matrices from the relays to the destination and the primary nodes, respectively. Denote

hp,` ∈ CM×1 as the channel vector from the source to the primary node `, 1 ≤ ` ≤ Np. The

source has no direct link to the destination, a widely used model [8, 45, 64] appropriate for

geometries where the relays are roughly located in the middle of the source and destination.
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Primary nodes 

RelaysSource Destination

H F

G
Hp

Figure 6.1. System model of Chapter 6

A block-fading model is considered where all entries of H, F, G and hp,` are zero-mean i.i.d.

circular symmetric complex Gaussian (CN ) with variance σ2
s , σ2

d, σ2
p and σ2

sp, respectively.

The source communicates with the destination via two hops, which in general lowers the

required transmit power and thus reduces the interference on the primary. In the first hop,

the source sends M independent data streams across M antennas with equal power. The

relay i receives

ri =

√
Ps

M
ht

i s + ni, (6.1)

where Ps is the source transmit power, which must be less than a power constraint P̄s,

s ∈ CM×1 is i.i.d. Gaussian signals, ht
i ∈ C1×M is the row i of H, namely the channel vector

between the relay i and the source, and ni is additive noise with distribution CN (0, 1).

In the second hop, a subset of the relays is selected to transmit to the destination. We

define a random variable Ti to indicate whether the relay i is selected (eligible):

Ti =





1, the relay i is eligible

0, otherwise

. (6.2)

No cooperation among the relays is allowed due to their distributed nature. Each relay

rotates and scales ri by

ci = ejθi

√
Pr

E[Ti](Psσ2
s + 1)

. (6.3)

where Pr is the average relay power and θi is the rotation angle, which are designed in the

sequel. Therefore, the signal transmitted by the relay i is Tici ri.
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After the relay forwarding, the received signal vector at the destination is

y =

√
Ps

M
FDH︸ ︷︷ ︸

H̃

s + FDn + w︸ ︷︷ ︸
w̃

, (6.4)

where D = diag(T1c1, · · · , Tncn) is the relay processing matrix and w̃ is the equivalent

additive noise. The equivalent channel matrix H̃ has entries

[
H̃]mq =

n∑
i=1

Ti ci fmi hiq, (6.5)

where fmi and hiq are [F]mi and [H]iq, respectively.

In this chapter, we focus on the effect of the number of relays on the secondary rate,

i.e., the so-called “scaling laws” for the relays in a spectrum-sharing system. Thus, we

allow n to increase while Np remains bounded. Analysis of scaling laws has a long and

established history in wireless communications. Among the many examples we mention a

few, e.g., [34, 45,65].

We refer to cross channels between secondary transmitters and primary receivers as in-

terference links. We assume the destination knows F, D and H, and the relays only know

the instantaneous channel gains to which they directly connect, i.e., hi and the column i of

F. The interference (thus the channels) from the primary to the secondary is not explicitly

modeled for brevity, because its impact can be absorbed into the noise term w̃.

The cross-channel CSI requirements in a TDD system can be met by the secondary nodes

detecting packets emitted from the primary nodes. Otherwise, under the spectrum leasing

model [58], the primary nodes can be expected to actively promote spectrum reuse by trans-

mitting pilots that can be used for cross-channel gain estimation. The latter model applies

to both TDD and FDD. Regarding the precision of cross-channel CSI, only the magnitude

of the channel gains are needed, and the system can be made robust to imperfections in the

cross-channel CSI to the relays, as shown in subsequent discussions (see Remark 6.3.1).
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6.3 Spectrum-Sharing with relay selection and clustering

Relays that have weak interference links but strong secondary links are useful for spectrum

sharing, while relays that produce a strong interference on the primary may do more harm

than good. Therefore we use relay selection. In spectrum sharing, relay selection and al-

location of transmit powers are coupled through the interference constraint, an issue that

is not encountered in conventional (non-spectrum sharing) relaying. To make the prob-

lem tractable, we propose a two-step approach: first the allowable interference per relay is

bounded, leading to the creation of an eligible relay set. Then the secondary rate is max-

imized by selecting appropriate relays from among the eligible set and coordinating their

transmissions in a manner shown in the sequel.

6.3.1 Eligible Relay Selection

The interference on the primary nodes is controlled by activating only the relays with weak

interference links. We design the relay selection in a distributed manner that does not require

CSI exchange among the relays. A relay is eligible if and only if all of its own interference

link gains are less than a pre-designed threshold α. So from (6.2)

Ti =





1, |g`i|2 ≤ α for ` = 1, · · · , Np

0, otherwise

, (6.6)

where |g`i|2 is the channel gain between the relay i and the primary node `. Note that

{|g`i|2}`,i are i.i.d. exponentials with mean σ2
p, so {Ti}i are i.i.d. Bernoulli random variables

with success probability

p = (1− e−α/σ2
p)Np . (6.7)

Since each relay determines eligibility based on its own interference links, the eligible relay

selection is independent across the relays. The average interference from the secondary
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system to the primary node ` is

γ` =
1

2
E

[
(

n∑
i=1

g`iti)(
n∑

i=1

g∗`it
∗
i )

]
+

Ps

2M
E

[|hp,`|2
]

(6.8)

=
Pr

2

n∑
i=1

E
[|g`i|2

∣∣Ti = 1
]
+

σ2
spPs

2
, (6.9)

where the factor 1
2

is due to the fact that the relays and the source only transmit during half

of the time. The second equality holds since the design of θi is independent of interference

links, as shown soon. Since Ti = 1 implies |g`i|2 ≤ α ∀`, we have

E
[|g`i|2

∣∣Ti = 1
]

<

∫ α

0

xe−x/σ2
p

σ2
p

dx = σ2
p − e−α/σ2

p(α + σ2
p) (6.10)

∆
= f(α). (6.11)

Combining (6.9) and (6.11), we have ∀`, γ` ≤ γ if α and Pr satisfy

nPrf(α) ≤ max(γr, 0), (6.12)

where γr = 2γ − σ2
spPs. As long as (6.12) holds, the interference on all the primary nodes

is ensured to be less than γ, although the relays are selected distributedly. In our two-hop

communication the source power Ps is chosen so that γr > 0, and otherwise the secondary

rate is zero.

Remark 6.3.1 We briefly discuss CSI uncertainty in the CSI of relay cross-channel gains.

Denote the (relay) estimated cross channel gain as |ĝ`i|2. For simplicity, consider |ĝ`i|2 has

the same exponential distribution as the true channel gain |g`i|2. Assume uncertainty can be

modeled as an interval, e.g., that the true cross-channel gain is in the interval [0, (1+ε)|ĝ`i|2]
for some known and fixed ε. In this case, if α and Pr satisfy

nPrf(α + ε) ≤ max(γr, 0),

the interference constraints on the primary will still be ensured. Since f(·) is an increasing

and bounded function, the impact of uncertainty ε is to reduce the transmit power at the

relays.
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6.3.2 Distributed Relay Clustering

The second part of the proposed method aims to maximize the secondary rate. Recall that

the source and destination have M antennas each; the relays are divided correspondingly

into M groups {Gm , 1 ≤ m ≤ M}, where each group of relays aims to provide a vir-

tual pipe between one of the source antennas and the corresponding destination antenna.

This channel-diagonalization approach is reminiscent of [45] but requires more sophisticated

analysis because the (eligible) relay set is random, as shown in the sequel.

The relay i ∈ Gm rotates the received signal by θi such that

ejθifmihim = |fmi||him|. (6.13)

In this case, all the relays in Gm forward the signal sent by the source-antenna m coherently

to the destination-antenna m.

Now, the challenge is to decide the assignment of relays to the group Gm, for 1 ≤ m ≤ M .

We focus on distributed methods so that the coordination among relays is reduced. In

addition, we decouple the relay clustering from the relay selection: the relays decide their

groups according to their source-relay and relay-destination channels but independent of

the interference links. Therefore, under this framework, {θi}n
i=1 and {Ti}n

i=1 are mutually

independent. This decoupling allows us to leverage existing relaying methods to enhance

the secondary rate while bounding the primary interference. It also greatly simplifies the

analysis.

We shall consider two clustering schemes:

Fixed Clustering

Here, each of the groups has n/M relays.1 Subject to this condition, the relays are assigned

to the groups in a pre-defined manner. Without loss of generality, we assume:

Gm =

{
i :

(m− 1)n

M
+ 1 ≤ i ≤ mn

M
, 1 ≤ m ≤ M.

}
.

1We assume the number of relays n is so that n/M is an integer, however, this restriction
is not essential and can be relaxed [45].
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Gain Clustering

In this clustering we have

Gm =

{
i : |him| > |hiq|, q 6= m, 1 ≤ q ≤ M

}
.

In other words, the groups are assigned based on the relays’ channel gain to source antennas.

A relay (distributedly) decides to join in the group m if its gain to the m-th source antenna

is the stronger than any other channel gains. The group assignment of relays is independent

from each other and is also independent of relay eligibility. Note that Gm is no longer fixed

but depends on the source-relay channels. Because all channels are i.i.d., a relay has equal

probability of choosing any of the groups. Therefore |Gm| (the cardinality of Gm) is binomially

distributed with parameters (n, 1
M

).

6.4 Secondary Rate in Spectrum-sharing with Relays

We first derive a general closed-form expression for the secondary rate under the proposed

framework, and then evaluate the achievable rate for specific methods.

6.4.1 Calculation of Secondary Rate

From (6.4), conditioned on F, D and H, w̃ is a Gaussian vector with autocorrelation

W = I + FDD†F†. (6.14)

The secondary rate in the presence of n relays is denoted with Rn and is given by:

Rn =
1

2
log det

(
I +

Ps

M
H̃H̃†W−1

)
, (6.15)

where 1
2

is due to the half-duplex relay constraint.

Now, we find Rn for large n. First, from (6.5) and (6.13), the entry of H̃ is

[
H̃]mq =





Amm + Bmm, q = m

Cmq, q 6= m

, (6.16)
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where

Amm =

√
Pr

p(σ2
sPs + 1)

∑
i∈Gm

Ti |fmi| |him|,

Bmm =

√
Pr

p(σ2
sPs + 1)

∑

i/∈Gm

Ti fmi him ejθi ,

Cmq =

√
Pr

p(σ2
sPs + 1)

n∑
i=1

Ti fmi hiq ejθi . (6.17)

The terms in Amm, Bmm and Cmq are mutually independent, because {Ti}n
i=1 and {θi}n

i=1

are independent from each other. So we have the following lemma.

Lemma 6.4.1 If min1≤m≤M |Gm| w.p.1−→ ∞ as n →∞, we have

Amm

n
− 1

n

√
pPr

σ2
sPs + 1

∑
i∈Gm

E[|fmi||him|] w.p.1−→ 0, (6.18)

Bmm

n
− 1

n

√
pPr

σ2
sPs + 1

∑

i/∈Gm

E[fmihime−jθi ]
w.p.1−→ 0, (6.19)

Cmq

n
− 1

n

√
pPr

σ2
sPs + 1

n∑
i=1

E[fmihiqe
−jθi ]

w.p.1−→ 0. (6.20)

Proof The proof follows from [66, Theorem 2.1] and [43, Theorem 1.8.D], and is omitted

here.

From Lemma 6.4.1, given |Gm| w.p.1−→ ∞ ∀m, we have:

H̃

n
− diag(a1, · · · , aM)

w.p.1−→ 0, (6.21)

where

am =
1

n

√
pPr

(σ2
sPs + 1)

∑
i∈Gm

E[|fmi||him|]. (6.22)

The above analysis indicates that H̃ converges to a diagonal matrix for large n (with

probability 1). We now show that W is also diagonalized as n increases. From (6.14), we

have
[
W

]
mq

=
n∑

i=1

TiPrfmif
∗
iq

p(Psσ2
s + 1)

+ δmq, (6.23)
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where δmq = 1 if m = q and δmq = 0 if m 6= q. One can verify Kolmogorov conditions [43,

Theorem 1.8.D], and therefore obtain

[
W

]
mq

n
− 1

n

( n∑
i=1

PrE[fmif
∗
iq]

Psσ2
s + 1

+ δmq

)
w.p.1−→ 0, (6.24)

where

E[fmif
∗
iq] =




E[|fmi|2], m = q

0, m 6= q

. (6.25)

Therefore, we have
W

n
− diag(b1, · · · , bM)

w.p.1−→ 0, (6.26)

where

bm =
Pr

∑n
i=1 E[|fmi|2]

n(Psσ2
s + 1)

+
1

n
. (6.27)

From (6.21) and (6.26), for large n, the end-to-end channel between the source and

the destination is approximately decoupled into M parallel channels under the proposed

framework, where the channel coefficient m is am and the received noise has variance bm.

The capacity of this parallel channel is

R =
1

2

M∑
m=1

log
(
1 +

nPsa
2
m

Mbm

)
, (6.28)

Therefore, it is reasonable to expect that Rn ≈ R for large n. After some calculation (omitted

for brevity), we obtain the following result.

Theorem 6.4.2 Consider a secondary system with an M-antenna source, an M-antenna

destination, and n single-antenna relays, in the presence of N primary nodes each tolerating

interference no more than γ. The secondary rate satisfies

Rn −R
w.p.1−→ 0, n →∞, (6.29)

under the proposed relay selection and clustering framework.
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6.4.2 Achievable Rate under Specific Clustering Schemes

We apply Theorem 6.4.2 to fixed clustering and gain clustering.

Fixed Clustering

In this scheme, |Gm| = n
M

(so Lemma 6.4.1 is applicable), and |fmi| and |him| are i.i.d.

Rayleigh random variables with mean σd
√

π
2

and σs
√

π
2

, respectively. Therefore, from (6.22),

am = πσsσd

4M

√
pPr

σ2
sPs+1

, for 1 ≤ m ≤ M . Under this clustering, |fmi|2 is i.i.d. exponential with

mean σ2
d, and we have bm =

σ2
dPr

σ2
sPs+1

+ 1
n
, for 1 ≤ m ≤ M . Substituting am and bm into (6.28),

R becomes

R(f) =
M

2
log

(
1 +

npπ2σ2
sσ

2
dPrPs

16M3(σ2
dPr + n−1(σ2

sPs + 1))

)
. (6.30)

From Theorem 6.4.2, under fixed clustering, we have: Rn −R(f) w.p.1−→ 0.

Gain Clustering

Since |Gm| is binomially distributed with parameters (n, 1
M

), we have |Gm|/n w.p.1−→ 1/M , and

Lemma 6.4.1 is again applicable. Due to the independence of |fmi| and |him|, from (6.22),

we have

am =
1

n

√
pPr

(σ2
sPs + 1)

∑
i∈Gm

E[|fmi|]E[|him|]. (6.31)

where E[|fmi|] = σd
√

π
2

(i.i.d. Rayleigh) and E[|him|] = max1≤m≤M |hmi|, which is the maxi-

mum of M i.i.d. Rayleigh random variables. We have

µh = E
[

max
1≤m≤M

|him|
]

=

∫ ∞

0

2Mx2

σ2
s

e−x2/σ2
s
(
1− e−x2/σ2

s
)M−1

dx (6.32)

=
M−1∑
m=0

(−1)M−m−1
(M−1

m

) σsMΓ(3
2
)

(M −m)3/2
. (6.33)

Note that µh = σs
√

π
2

for M = 1 (no selection is needed), which is identical to the fixed

clustering. Based on (6.31) and |Gm|/n w.p.1→ 1/M , we have am − σdµh

2M

√
pπPr

(σ2
sPs+1)

w.p.1−→ 0.
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Under this clustering, bm remains the same as the fixed clustering case, since |fmi| is still

i.i.d. Rayleigh for i ∈ Gm, ∀m. Substituting am and bm into (6.28), we have

R(g) =
M

2
log

(
1 +

npπµ2
hσ

2
dPrPs

4M3(σ2
dPr + n−1(σ2

sPs + 1))

)
, (6.34)

then: Rn −R(g) w.p.1−→ 0.

6.5 Optimal Power Strategy for Spectrum-sharing with relays

In general, one may envision two competing philosophies for relay selection: (1) Allow only

relays that have extremely weak interference links to the primary. Only very few relays will

qualify but each of them can transmit at high power. (2) Allow a large number of relays to

be activated. In this case the relay powers must be lowered because not all interference links

are as “good” as the previous case.

The key question is: which approach is better? Should we use a few select relays with

excellent interference profiles, or more relays operating at lower power? In this section, we

optimize the threshold α, the relay power Pr and the source power Ps, while bounding the

primary interference. The results of this section show that in general the balance tips in

favor of having more eligible relays operating at low power.

6.5.1 Optimal Design of α and Pr

Consider a fixed Ps. Since α and Pr depend on each other via (6.12), given α the maximum

Pr is

Pr =
γr

nf(α)
. (6.35)

Substituting (6.35) and (6.7) into (6.30) and (6.34) shows that R(f) and R(g) attain their

maxima (as a function of α) at α = α0 where:

αo = arg max
α

γrPs(1− e−α/σ2
p)Np

γrσ2
d + (σ2

sPs + 1)f(α)
. (6.36)
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Figure 6.2. Optimal value of selection threshold α under Ps = 5, n = 100

A closed-form solution for αo is unavailable but numerical solution can be easily obtained.

Figure 6.2 shows the optimal design of α based on (6.36). For both fixed clustering and gain

clustering, according to (6.36), αo = 1.7 maximizes the secondary rate.

Now, we characterize the asymptotic behavior of αo, equivalently the optimal Pr. Be-

cause (6.36) is independent of n, the optimal threshold α is not a function of n. So from (6.35)

the optimal average transmit power2 is Pr = Θ(n−1), i.e., there exist real constants d1, d2 > 0

so that d1n
−1 ≤ Pr ≤ d2n

−1. This implies that the secondary system should on average allow

many relays to operate at low power. One may intuitively interpret this result as follows. To

comply with the primary interference constraints, the sum power of relays must be bounded,

and by spreading the total power among more relays better beamforming gain is achieved

via coherent transmission.

Now, we study the scaling of the secondary rate. Consider examples with fixed clustering

(Eq. (6.30)) and gain clustering (Eq. (6.34)). If Pr = Θ(n−1), for fixed α (not necessarily

2It can be shown that Theorem 6.4.2 still holds if Pr scales as Θ(n−1).
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optimal), we have

R(f) =
M

2
log n + C1, R(g) =

M

2
log n + C1 + C2, (6.37)

where

C1 =
M

2
log

pπ2σ2
sσ

2
dγrPs

16M3(σ2
sPs + 1)(σ2

pγr + f(α))

and C2 = log
4µ2

h

πσ2
s
. One can view C2 as multi-antenna diversity gain by selecting over source-

relay channels. From (6.37), the secondary rate increases as (M log n)/2, which is summa-

rized in the next theorem.

Theorem 6.5.1 Consider a secondary system with an M-antenna source, an M-antenna

destination, and n single-antenna relays, in the presence of N primary nodes each tolerating

interference no more than γ. For Pr = Θ(n−1) and fixed α, the secondary rate satisfies

Rn

M
2

log n

w.p.1−→ 1, (6.38)

under the proposed framework with both fixed clustering and gain clustering.

Theorem 6.5.1 holds for a broad class of clustering schemes, as long as the corresponding

am and bm are bounded but non-zero, i.e., the secondary end-to-end equivalent channel is

diagonalized with probability 1 as n grows.

Remark 6.5.1 It is possible to extend our results to the case of peak interference constraint

γ. The secondary source will manage its instantaneous interference to be smaller than γs

on all primary nodes by adjusting its transmit power according to the largest cross-channel

gain to the primaries. Then, the sum interference from all the relays must be smaller than

γr = γ − γs. Let Pr = ξ/n where ξ is a positive constant. The instantaneous interference

from all the relays to the primary node ` is γ` = ξ
∑n

i=1 Ti|g`i|2/n. This implies that

γ` − ξ E[Ti |g`i|2] w.p.1−→ 1

for an arbitrary i ∈ {1, . . . , n}, where we have used the fact that Ti and g`i for all i have iden-

tical distributions. Therefore, ξ = γr

(
E[Ti |g`i|2]

)−1
ensures the instantaneous interference

on all the primary nodes to be smaller than γ with probability 1.
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6.5.2 Optimal Source Power

Due to the primary interference constraints, for any chosen α the higher the source power Ps,

the lower the relay power Pr, and vice versa. From (6.30) and (6.34), the rate-maximizing

Ps is

P ∗
s = arg max

0<Ps<min(P̄s,2γ)

(2γ − σ2
spPs)Ps

(2γ − σ2
spPs)σ2

d + (σ2
sPs + 1)f(α)

. (6.39)

The unique solution of the above optimization problem is

P ∗
s = min(Po, P̄s), (6.40)

where P0 = γ
σ2

sp
if σ2

spσ
2
d = σ2

sf(α), otherwise:

Po =
2γσ2

d

σ2
spσ

2
d − σ2

sf(α)
−

√(
2γσ2

df(α) + f 2(α)
)(

σ2
sp + 2γσ2

s

)

σsp

(
σ2

spσ
2
d − σ2

sf(α)
) (6.41)

Figure 6.3 demonstrates the optimal source power as a function of three channel param-

eters σ2
sp, σ2

s and σ2
d. Three curves are shown, in each case one parameter varies while the

other two are held constant (at unity). In this Figure P̄s = 10, γ = 5 and f(α) = 0.8. As

the source-primary channels become stronger, the source needs to reduce power; otherwise,

the relay power must decrease to comply with the primary interference constraints, which

curbs the rate achieved by the second hop. If the source-relay channels become stronger,

the relay-destination links is the bottleneck and the relays need to transmit at higher power,

thus once again the source needs to reduce power. In contrast, when the relay-destination

channels become better, the source-relay channels are the bottleneck so the source needs to

increase power.

6.5.3 Asymptotic Reduction of Interference on Primary

Multiple relays produce opportunities not only to enhance the secondary rate but also to

reduce the interference on the primary. Suppose the interference on the primary nodes to

be bounded as γ = O
(
n−δ

)
, which goes to zero as n → ∞. From (6.12), it is sufficient

to comply with this constraint if Pr decreases as Θ(n−(1+δ)) and Ps decreases as Θ(n−δ).
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Figure 6.3. Optimal source power with γ = 5, f(α) = 0.8

Substituting Pr and Ps into the expression of R(f) given by (6.30) and following some order

calculation (the analysis of R(g) is the same thus omitted), we have

R(f) =





M(1−2δ)
2

log n + O(1) δ < 1
2

O(1) δ ≥ 1
2

(6.42)

The above equation characterizes the trade-off between the secondary rate and the in-

terference on the primary: the faster of the interference reduction, the slower of the rate

growth. It also shows that the interference on the primary nodes may be mitigated (to zero

asymptotically), while the secondary rate maintains to increase as Θ(log n).

Remark 6.5.2 In the above, the allowable interference γ is made to decline as Θ(n−δ),

which leads the growth rate to decrease linearly in δ. If γ is reduced more slowly, e.g.,

decreasing as Θ( 1
log n

), the secondary rate can increase at a rate of M
2

log n. If we try to

mitigate the primary interference faster than Θ(1/
√

n), the secondary rate will not increase

logarithmically with n.
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6.6 Spectrum-sharing with Alternating Relay Protocol

In this section we consider issues raised by the relay half-duplex constraint, i.e., limitations

that arise because relays cannot listen to the source at the same time as they are transmitting.

When a subset of relays are activated for relaying the previously received information, the

inactive relays are able to listen and receive information from the source, thus in principle

the source can transmit continually and the half-duplex loss can be mitigated. This is the

basic idea of spectrum sharing with Alternating Relay Protocol, which is the subject of this

section.

The protocol consists of L transmission frames, as shown in Figure 6.4. It is assumed

the channel coefficient remains constant during each frame, but varies independently from

frame to frame. The source transmits during frames 1 through L − 1, and remains silent

during frame L. Since the source transmits L−1 data segments during L time intervals, the

rate loss induced by the half-duplex relaying is a factor of L−1
L

. The relays are partitioned

into two groups G1 = {1 ≤ i ≤ n
2
} and G2 = {n

2
+ 1 ≤ i ≤ n}. During even-numbered

transmission frames a subset of the relays in G1 transmit to the destination, while the relays

in G2 listen to the source. During odd-numbered transmission frames, a subset of the relays

in G2 transmit, while the relays in G1 listen. As shown later, each of the two relay groups

asymptotically achieves a rate that grows as M
2

L−1
L

log n, thus the overall system has a rate

that grows proportionally to M L−1
L

log n. Therefore a good part of the half-duplex rate loss

can be recovered.

When either group G1 or group G2 is in the transmit mode, a subset of relays in the

corresponding group is selected to transmit. A relay is selected (eligible) if its interference

links satisfy (6.6), similar to Section 6.3.1. The average interference power on the primary

node ` takes slightly different forms depending on whether L is even or odd. When L is

even:

γ` =
(L− 1)σ2

spPs

L
+

Pr

2

∑
i∈G1

E
[|g`i|2

∣∣Ti = 1
]
+

(L− 2)Pr

2L

∑
i∈G2

E
[|g`i|2

∣∣Ti = 1
]
, (6.43)
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Figure 6.4. Transmission schedule in the alternating relay protocol (ARP)

and when L is odd:

γ` =
(L− 1)σ2

spPs

L
+

(L− 1)Pr

2L

( ∑
i∈G1

E
[|g`i|2

∣∣Ti = 1
]
+

∑
i∈G2

E
[|g`i|2

∣∣Ti = 1
])

. (6.44)

To comply with the interference constraints on the primary nodes, the threshold α and the

relay power Pr shall satisfy

nPrf(α) ≤ max(γL, 0), (6.45)

where γL = 2L
L−1

γ − 2σ2
spPs with Ps so that γL > 0, and we use the fact that E

[|g`i|2
∣∣Ti =

1
]

= f(α). Since from Section 6.5 the optimal Pr is proportional to n−1, we let Pr = η/n,

and re-write (6.45) as

ηf(α) ≤ max(γL, 0). (6.46)

For the Alternating Relay Protocol, relay clustering is accomplished in a manner similar to

Section 6.3.2, therefore the details are omitted. During frame 2k (or 2k+1), let G(1)
m,k ⊂ G1 (or

G(2)
m,k ⊂ G2) be the set of relays that assists the antenna pair m. As long as minm,k,d |G(d)

m,k| →
∞, the secondary rate will be obtained following the analysis similar to Section 6.4.

Remark 6.6.1 At any point in time, it is possible to allow all non-transmitting relays to

listen to the source, and be eligible to transmit in the next frame. This may give some gains,

however, it also complicates the relay selection by introducing dependence between not only
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interference links but also other links such as source-relay and relay-relay links. It may be

better for a relay even with a small interference on primary to remain inactive if it has also

a weak channel to destination (therefore it cannot help much) but has a strong channel to the

source (therefore it can listen well for the next round). Thus, any gains will come with a loss

of elegance and tractability, and therefore this approach is not considered in this chapter.

6.6.1 A Simple Example: L = 3

For illustration purposes, we consider L = 3, where G1 (G2) listen to the source during frame

1, and then transmit to the destination during frame 2 (frame 3). We assume fixed clustering

is used with |G(d)
m,1| = n/(2M), for 1 ≤ m ≤ M and 1 ≤ d ≤ 2. Let Hd (Fd) be the channel

coefficient matrix between the relays in Gd and the source (the destination), and Hr be the

channel coefficient matrix between G1 and G2 with i.i.d. CN (0, σ2
r) entries.

We now analyze the rate achieved under Alternating Relay Protocol. The optimization

of the threshold and the source power follows in a manner similar to Section 6.5 and thus is

omitted here.

Rate Achieved by G1

After listening to the source at frame 1, G1 relays to the destination at frame 2. At the end

of frame 2, similar to (6.4) the received signal at the destination is

y1 =

√
Ps

M
F1D1H1︸ ︷︷ ︸

H̃1

s1 + F1D1n1 + w1︸ ︷︷ ︸
w̃1

, (6.47)

where s1 is the signal sent by the source during frame 1, n1 is the noise forwarded by the

group G1 of relays, w1 is the destination noise. For the group G1 the relay gains are collected

into the relay processing matrix

D1 = diag(T1c1, · · · , Tn
2
cn

2
), (6.48)
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where ci is given by (6.3) so that the average relay power constraints are satisfied. One can

verify that the equivalent channel H̃1

H̃1√
n

w.p.1−→ ρ1I, (6.49)

where ρ1 = πσsσd

8M

√
pη

σ2
sPs+1

. The auto-covariance of equivalent noise w̃1 is

1

n
W1

w.p.1−→ λ1I, (6.50)

where λ1 =
ησ2

d

2(σ2
sPs+1)

+ 1. Therefore, the end-to-end channel is diagonalized for large n, and

similar to the results in Theorem 6.4.2, the rate achieved R(1) during frame 2 satisfies:

R(1) −M log

(
1 +

npπ2σ2
sσ

2
dηPs

32M3(ησ2
d + 2σ2

sPs + 2)

)
w.p.1−→ 0. (6.51)

Rate Achieved by G2

During frame 2, the relays in G2 receive the signal vector:

r2 =

√
Ps

M
H2s2 + HrD1

(√
Ps

M
H1s1 + n1

)
+ n2, (6.52)

where s2 is the signal sent by the source during frame 2, and the second term corresponds

to the interference from the transmission of G1. During frame 3 the relays in G2 transmit to

the destination with a processing matrix

D2 = diag(Tn
2
+1 cn

2
+1, · · · , Tncn), (6.53)

where, to satisfy the power constraints, for n
2

+ 1 ≤ i ≤ n

ci = ejθi

√
η

np(Psσ2
s + ησ2

r/2 + 1)
. (6.54)

At the end of frame 3, the received signal at the destination is

y2 =F2D2r2 + w2

=

√
Ps

M
F2D2H2︸ ︷︷ ︸

H̃2

s2 +

√
Ps

M
F2D2HrD1H1s1 + F2D2HrD1n1 + F2D2n2 + w2︸ ︷︷ ︸

w̃2

. (6.55)
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After correctly decoding s1, the destination cancels the inter-relay interference,3 i.e., the

second term in (6.55). After eliminating the inter-relay interference, we have an equivalent

channel:

y2 =

√
Ps

M
H̃2s2 + w̃2. (6.56)

Following steps similar to (6.21) and (6.22), we have

H̃2√
n

w.p.1−→ ρ2I, (6.57)

where ρ2 = πσsσd

8M

√
pη

σ2
sPs+ησ2

r/2+1
. Note that w̃2 is still a zero-mean Gaussian vector with

auto-covariance
1

n
W2 = F2D2HrD1D

†
1H

†
rD

†
2F

†
2 + F2D2D

†
2F

†
2 + I. (6.58)

In the right hand side of the above equation, we have

HrD1D
†
1H

†
r =

η

np(Psσ2
s + 1)

Hr diag(T1, · · · , Tn
2
)H†

r

w.p.1−→ ησ2
r

2(Psσ2
s + 1)

I. (6.59)

Therefore,

W2
w.p.1−→ λ2I, (6.60)

where

λ2 =
1

2(Psσ2
s + ησ2

r/2 + 1)

[
η2σ2

dσ
2
r

2(Psσ2
s + 1)

+ ησ2
d

]
+ 1. (6.61)

Combining (6.57) and (6.58) , the rate achieved by G2 is R(2) where

R(2) −M log
(
1 +

nPsρ
2
2

Mλ2

) w.p.1−→ 0. (6.62)

The overall rate is given by the following theorem.

3Interference cancellation requires knowledge of Hr at the destination, however, we note
that even without this knowledge it is possible to obtain the same scaling of secondary
throughput with the number of relays. Intuitively, the inter-relay interference is bounded by
a constant that is under our control.
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Theorem 6.6.1 Consider a secondary system with an M-antenna source, an M-antenna

destination, and n single-antenna relays, in the presence of N primary nodes each tolerating

interference no more than γ. The secondary rate satisfies

R− (
R(1) + R(2)

)
/3

w.p.1−→ 0, (6.63)

under the Alternating Relaying Protocol with L = 3 and fixed clustering.

From Theorem 6.6.1, the growth rate of R is

R
2M
3

log n

w.p.1−→ 1. (6.64)

Remark 6.6.2 Theorem 6.6.1 can be generalized to an arbitrary number of transmission

blocks L. For general L we can conclude:

R
(L−1)M

L
log n

w.p.1−→ 1.

As L increases, the growth rate of R approaches the maximum value of M log n.

6.7 Numerical Results

Unless otherwise specified, we use parameters P̄s = 10, M = 2, N = 1, γ = 5 and σ2
s = σ2

d =

1.

The secondary rates as a function of source transmit power are presented by Figure 6.5.

The theoretical rate under various Ps is calculated according to (6.30) and (6.34). Recall

that the theoretically optimal Ps given by (6.40) is obtained by (6.30) and (6.34). When

the source interference links are very weak, e.g., σ2
sp = 0.1, maximizing the source power is

optimal, which is similar to non-spectrum-sharing networks. When the source interference

links is strong, e.g., σ2
sp = 1, 2, unlike non-spectrum-sharing networks, the secondary achieves

higher rate if the source transmit at power lower than the maximum value. This is because

the source needs to ensure the relays can operate with sufficient power, subject to the total

interference constraints on the primary nodes.
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Figure 6.5. Throughput as a function of source power when n = 100, σ2 = σd = σp = 1

Figure 6.6 verifies Theorem 6.4.2 under fixed clustering and gain clustering. Here, α = γ,

σ2
sp = 1, Pr is given by (6.35) and Ps = 5, which is almost optimal as shown in Figure 6.5.

The simulated average rate of Rn under two clustering schemes are compared to R(f) given

by (6.30) and R(g) given by (6.34), respectively, where the results are well matched for modest

value of n. The secondary rate increases as the interference links of relays become weaker

(smaller σ2
p), since the relays can transmit at higher power (but the sum relay power is still

bounded with n).

Figure 6.7 illustrates the tradeoff between maximizing secondary rate and minimizing

interference on the primary. The interference power is γ = 5(n)−δ with δ = 0.1 and 0.2,

respectively. For δ = 0.2, the interference power decreases faster than δ = 0.1, while the

secondary rate increases more slowly.

The rate of Alternating Relaying Protocol (Theorem 6.6.1) is shown in Figure 6.8. We

consider α → ∞, where all the relays in G1 and G2 transmit alternatively. Here, Ps = 5
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and Pr is determined by (6.45). The simulated rates match the theoretic analysis well under

modest value of n. As the relay-relay channel becomes weaker (smaller σ2
r), the inter-relay

interference is reduced, and thus the secondary rate increases.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of this dissertation and provides some possible

avenues for future research. The results of this dissertation appear in [30,52,53,67–77].

In the first part of this dissertation, we propose a product superposition signaling that

significantly improves the rate performance of the MIMO broadcast channel with varying

CSIR. First, two product superposition methods based on Grassmannian signaling are ana-

lyzed, and are shown to attain higher DoF than TDMA and indeed are optimal for a wide

set of antenna configuration and channel coherence time. Then, we extend the product su-

perposition to coherent signaling. The proposed method transmits a product of two signal

matrices for the static and dynamic user, respectively, and each user decodes its own signal

in a conventional manner. The method can work without interference cancellation, there-

fore has low complexity. For the entire SNR range, the static user attains considerable rate

almost without degrading the rate for the dynamic user. The static user’s rate is further

improved by allowing the static user to cancel the dynamic user’s signal.

It is possible to extend the above-mentioned results to more than two receivers. The set

of receivers can be divided into two sets, one of them the dynamic set and the other the

static set. At each point in time, the transmitter uses product superposition to broadcast to

two users, one from each group. A scheduler selects the pair of users that is serviced at each

time. To facilitate the case where there are unequal number of dynamic and static users, the

pair memberships are allowed to be non-unique, i.e., there may be two or more pairs that

contain a given receiver.

Note that throughout this work, both users are assumed to be in an ergodic mode of

operation, i.e., the codewords are sufficiently long to allow coding arguments to apply. Simple

160
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extensions to this setup are easily obtained. For example, if the static user’s coherence time

is very long, one may adapt the transmission rate of the static user to its channel but allow

the dynamic user to remain in an ergodic mode. Most expressions in this paper remain the

same, except that for the rates and powers of the static user, expected values will be replaced

with constant values.

In second part of this dissertation, we study the performance limits of an underlay cog-

nitive network consisting of a multi-user and multi-antenna primary and secondary systems.

We find the throughput limits of the secondary system as well as the tradeoff between this

throughput and the tightness of constraints imposed by the primary system. Given a set of

interference power constraints on the primary, the maximum throughput of the secondary

MAC grows as m
Np+1

log n (primary broadcast), and m
Mp+1

log n (primary MAC). These growth

rates are attained by a simple threshold-based user selection rule. Interestingly, the sec-

ondary system can force its interference on the primary to zero while maintaining a growth

rate of Θ(log n). For the secondary broadcast channel, the secondary throughput can grow

as m log log n in the presence of either the primary broadcast or MAC channel. The growth

rate of the throughput is unaffected by the presence of the primary (thus optimal). Further-

more, the interference on the primary can also be made to decline to zero, while maintaining

the secondary throughput to grow as Θ(log log n).

Furthermore, we propose a Hybrid Opportunistic Scheduling for cognitive MAC, which is

driven by two objectives: Maximizing the secondary throughput and minimizing the primary

interference. The proposed scheme strictly controls the primary interference by opportunistic

interference avoidance, and enhances the secondary throughput by activating transmitters

with large secondary-channel gain. We characterize the optimal number of active secondary

transmitters and a tradeoff between the secondary throughput enhancement and the primary

interference reduction. Finally, we study user scheduling under a fairness constraint when

links have non-i.i.d. statistics.

Finally, we study spectrum sharing networks with distributed amplify-forward relaying

to improve the secondary rate and reduce the interference on the primary. In the asymptote
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of large n (number of relays) the optimal power strategy for the secondary source and relays

was found, achieving a secondary rate proportionally to log n. The half-duplex rate loss

was reduced and the scaling of secondary rate was enhanced by the introduction of the

Alternating Relay Protocol. The trade-off between the secondary rate and the interference

on the primary was characterized. Finally, our results show that even without cross channel

information at the secondary, the secondary rate can achieve the growth rate log n.
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