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PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as

part of the dissertation the text of an original paper or papers submitted for publication.

The dissertation must still conform to all other requirements explained in the “Guide for the

Preparation of Master’s Theses and Doctoral Dissertations at The University of Texas at

Dallas.” It must include a comprehensive abstract, a full introduction and literature review,

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin, and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student’s

contribution to the work and acknowledging the contribution of the other author(s). The

signatures of the Supervising Committee which precede all other material in the dissertation

attest to the accuracy of this statement.
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Supervising Professor: Dr. Aria Nosratinia

The objective of this dissertation is to enhance and improve two medical imaging modalities:

functional Magnetic Resonance Imaging (fMRI) and x-ray Computed Tomography (CT).

For image analysis in both modalities accurate modeling of the signal is important as it

affects the analysis and image quality. Several components of fMRI have resisted precise

modeling, due to the complexity of the signals, their underlying causes and their variations

across subjects and brain regions. We introduce a maximum likelihood method that jointly

estimates the Hemodynamic Response Function (HRF) and activation level in fMRI, with a

regularization that allows our method to work with smaller regions of interest and therefore

to better capture the variations of the HRF across the areas of the brain. Improvements in

modeling achieved via the proposed methods have direct impact on enhancing the activation

detection, which is a primary goal in the fMRI analysis. We also introduce extracting the

general structure of the signals, such as activation level, baseline drift and the hemodynamic

response function, from each data set itself using the Minimum Description Length (MDL)
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principle. The integration of the MDL principle with modeling the fMRI signal provides

paradigm-shifting advances in the fMRI analysis. Results show that MDL-based methods

offer benefits in comparison with other methods. In Computed Tomography the scatter

radiation from the dose compensator causes artifacts in the image. This signal is hard to

measure and it varies between each detector. This scattered radiation impacts high contrast

edges such as bone-soft tissue and tissue-air interfaces, especially in brain imaging. We

use Monte Carlo (MC) simulation for modeling this nuisance component of the CT data.

We implement a variance reduction technique called forced detection (FD) to improve the

computational efficiency. A correction algorithm for the scatter radiation is implemented

which improves the image quality.

viii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Functional MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Background and Literature Review on Drift Model . . . . . . . . . . 3

1.1.3 Background and Literature Review on HRF Model . . . . . . . . . . 5

1.1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Background on CT dose compensator scatter modeling and Forced
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 2 FUNCTIONAL MRI AND MINIMUM DESCRIPTION LENGTH . . 16

2.1 Minimum Description Length principle . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Why use MDL for fMRI? . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 MDL-based estimation of fMRI drift and activation level . . . . . . . . . . . 20

2.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



2.3 MDL-based estimation of HRF and activation level . . . . . . . . . . . . . . 32

2.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 3 FMRI: JOINT MAXIMUM LIKELIHOOD ESTIMATION OF HRF AND
ACTIVATION LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Rank-one Approximation in White Noise . . . . . . . . . . . . . . . . 45

3.2.3 Regularized Rank-one Approximation in White Noise . . . . . . . . . 46

3.2.4 Rank-one Approximation in Colored Noise . . . . . . . . . . . . . . . 50

3.2.5 Regularized Rank-one Approximation in Colored Noise . . . . . . . . 51

3.2.6 Iterative Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.7 Extension to Multiple Stimuli . . . . . . . . . . . . . . . . . . . . . . 53

3.2.8 Region of Interest Selection . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Real fMRI Data: Event Related experiment . . . . . . . . . . . . . . 67

3.3.3 Real fMRI Data: Block Design experiment . . . . . . . . . . . . . . . 74

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

CHAPTER 4 COMPUTED TOMOGRAPHY: MODELING AND CORRECTION FOR
SCATTER RADIATION FROM DOSE COMPENSATOR . . . . . . . . . . . . . 80

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Conventional Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Variance reduction by Forced Detection technique . . . . . . . . . . . 84

4.3 Dose compensator scatter kernel . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

x



CHAPTER 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

VITA

xi



LIST OF FIGURES

1.1 Patient in MRI scanner with a block design stimulus, structural data and func-

tional data across time, and activation map after the statistical analysis. . . . . 2

1.2 Summary of the fMRI time series model for each voxel. . . . . . . . . . . . . . 3

1.3 fMRI time series of 9 neighboring voxels. The baseline drift varies between neigh-

boring voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Example of the hemodynamic response function with parameters defined in [41]. 6

1.5 Schematic diagram of a dose compensator and scattered radiations from the pa-

tient (red long dashed line) and from the dose compensator (blue dashed line).

The black dash-dot line shows a ray without scattering. . . . . . . . . . . . . . . 12

2.1 Comparing estimated drift from different methods with the benchmark drift for

a block design simulated data with SNR=0.8. The MSE between estimated and

benchmark drifts is shown for each method. . . . . . . . . . . . . . . . . . . . . 25

2.2 The mean square error between the benchmark and estimated drift for (a) a block

design and (b) an event related experiment. . . . . . . . . . . . . . . . . . . . . 27

2.3 Histogram of autocorrelation of residual error at lag one for all voxels for a block

design experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Axial, Sagittal and Coronal views of a single slice activation maps. (a) benchmark

activation, (b) MDL-based detrending, (c) No detrending, (d) spline detrending

and (e) polynomial of order 3 detrending. . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Axial and Coronal views of a single slice activation map of real fMRI data for (a)

AFNI, (b) MDL-based detrending, (c) No detrending, (d) spline detrending and

(e) polynomial of order 3 detrending. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Square error between drift estimates across iterations for one voxel of a real fMRI

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 The benchmark, Gamma, Poisson and estimated HRFs for an event related stim-

uli in a ROI with 27 active voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Comparing t-statistics obtained by benchmark, Gamma, Poisson and estimated

HRFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xii



2.9 Axial and Coronal views of a single slice activation maps for MDL-based HRF
estimation and AFNI. (a) HRF from MDL-based estimation for ROI 1 (on the
left side of activation maps), (b) HRF from MDL-based estimation for ROI 2
(on the right side of activation maps), (c) MDL-based activation maps, (d) AFNI
activation maps, (e) HRF from AFNI for one voxel in ROI 1, (f) HRF from AFNI
for one voxel in ROI 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Average of the HRF estimate and the variance of the estimate at each point on
a ROI with 50 voxels, with SNR = 0.2 for (a) a block design experiment without
regularization, (b) a block design experiment with regularization. . . . . . . . . 56

3.2 Average of the HRF estimate and the variance of the estimate at each point on a
ROI with 50 voxels, with SNR = 0.2 for (a) an event related experiment without
regularization and (b) an event related experiment with regularization. . . . . . 57

3.3 Mean square error between the benchmark HRF and the estimated HRF with
different SNRs for a block design experiment with white noise assumption for (a)
M=50 and (b) M=100 voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Mean square error between the benchmark HRF and the estimated HRF with
different SNRs for an event related experiment with white noise assumption for
(a) M=50 and (b) M=100 voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Effect of regularization constraint on MSE between the benchmark HRF and the
estimated HRF with different SNRs for a block design experiment on (a) M=50
and (b) M=100 voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Effect of regularization constraint on MSE between the benchmark HRF and the
estimated HRF with different SNRs for an event related experiment on (a) M=50
and (b) M=100 voxels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Comparing the estimated activation levels by imposing regularization for a block
design experiment with 100 voxels in the ROI and SNR=0.5. (a) Absolute value
of the difference between estimated and benchmark activation levels. (b) Variance
of the activation levels estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 T-tests calculated with the benchmark correlation coefficient, compared with the
t-tests calculated with and without whitening. . . . . . . . . . . . . . . . . . . . 66

3.9 (a) HRF estimates and (b) t-tests for a ROI with 50 voxels including 40 active
voxels. One realization of event related with SNR=0.2 and white noise assumption. 68

3.10 Effect of the t-test threshold on the estimated HRF, for the iterative algorithm
in a ROI with 40 active and 10 inactive voxels for (a) a block design experiment
with SNR = 0.8, (b) an event related experiment with SNR = 0.2. . . . . . . . . 69

3.11 Axial and coronal views of a single slice activation maps for ROI 1. (a) activation
maps from the MLE method, (b) estimated HRF from MLE method, (c) ROI
obtained from AFNI, (d) estimated HRF from AFNI. . . . . . . . . . . . . . . . 71

xiii



3.12 Axial and coronal views of a single slice activation maps for ROI 2. (a) activation

maps from the MLE method, (b) estimated HRF from MLE method, (c) ROI

obtained from AFNI, (d) estimated HRF from AFNI. . . . . . . . . . . . . . . . 72

3.13 Axial and coronal views of a single slice activation maps for ROI 3. (a) activation

maps from the MLE method, (b) estimated HRF from MLE method, (c) ROI

obtained from AFNI, (d) estimated HRF from AFNI. . . . . . . . . . . . . . . . 73

3.14 Coronal and sagittal views of a single slice activation maps. (a) activation maps

from the MLE method without prior knowledge on active ROI, (b) estimated HRF

from MLE method, (c) activation map based on AFNI 3dDeconvolve algorithm,

(d) estimated HRF from AFNI. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.15 Fixation (Stimulus 1) and Attention (Stimulus 2) conditions over the duration of

the scans. Amplitude of 1 represents the stimulus was on. . . . . . . . . . . . . 76

3.16 Axial and Sagittal views of a single slice activation maps for the block design

attention to visual stimuli data set. Activation maps are for Stimulus 1. (a)

activation maps from the MLE method without prior knowledge on active ROI,

(b) estimated HRF from MLE method, (c) activation map based on AFNI 3dDe-

convolve algorithm, (d) estimated HRF from AFNI, (e) activation maps from the

MLE method with ROI from AFNI, (f) estimated HRF from MLE method with

ROI from AFNI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Example of an x-ray tube output energy spectrum at 120kVp. . . . . . . . . . . 82

4.2 Photon tracks for conventional Monte Carlo (a) and with application of forced

detection (b). The path for the photon emitted from the source is shown in

solid black line. The red and cyan dotted arrows show forced photons from two

scattered events which are forced to travel in the detector directions. . . . . . . 85

4.3 The ratio of primary with the dose compensator to the primary without the dose

compensator for the FD, conventional MC, and analytic model are plotted for all

detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Dose compensator scatter kernel for one of the detectors with respect to off-focal

angles in X and Z direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Effect of collimation on the scatter to primary ratio across the detectors for

8×0.625, 16×0.625, 32×0.625, 64×0.625 and 128×0.625 mm collimations. . . . . 90

4.6 Slice 1 of the (a) simulated data, (b) added dose compensator scatter radiation,

(c) corrected for compensator scatter. (d) The horizontal profiles. The difference

between original and added scatter is shown in (e), the difference between original

and corrected image is in (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiv



4.7 Simulated uncentered 20 cm diameter water phantom. (a) Horizontal profiles
for original, added scatter with amplitude 1%, corrected for dose compensator,
(b) difference between the original and added dose compensator scatter radia-
tion, (c) difference between the original and corrected images and (d) and (e)
Vertical profiles for original, added scatter with amplitude 1%, corrected for dose
compensator zoomed in top and bottom section of image. . . . . . . . . . . . . . 93

xv



LIST OF TABLES

3.1 Comparison of SPM, AFNI and proposed joint MLE . . . . . . . . . . . . . . . 42

3.2 Monte Carlo comparison between SPM and joint MLE. Average of mean square
error between benchmark and estimated values are shown for block and event
related designs for a ROI with 100 voxels. . . . . . . . . . . . . . . . . . . . . . 64

xvi



LIST OF ABBREVIATIONS

AFNI Analysis of Functional NeuroImages

AR Auto Regressive

ARMA Auto Regressive Moving Average

BOLD Blood Oxygenation Level Dependent

CBCT Cone Beam Computed Tomography

CT Computed Tomography

DCT Discrete Cosine Transform

fMRI functional Magnetic Resonance Imaging

FBP Filtered Back Projection

FD Forced Detection

FIR Finite Impulse Response

GEANT GEometry ANd Tracking

GLM General Linear Model

HRF Hemodynamic Response Function

ICA Independent Component Analysis

ISI Inter Stimulus Intervals

MC Monte Carlo

MDL Minimum Description Length

MLE Maximum Likelihood Estimation

MRI Magnetic Resonance Imaging

MSE Mean Square Error

NML Normalized Maximum Likelihood

xvii



PCA Principle Component Analysis

ROI Region Of Interest

SNR Signal to Noise Ratio

SPECT Single Photon Emission Computed Tomography

SPM Statistical Parametric Mapping

SPR Scatter to Primary Ratio

SVD Singular Value Decomposition

TR Repetition Time

xviii



CHAPTER 1

INTRODUCTION

This dissertation addresses some of the key challenges in modeling signal components of

functional Magnetic Resonance Imaging (fMRI) and x-ray Computed Tomography (CT)

imaging. Modeling of signal and artifact components affect image analysis and activation

detection in fMRI and image quality in CT. The overview, motivations and challenges in

each modality are covered in this chapter.

1.1 Functional MRI

1.1.1 Overview

Functional Magnetic Resonance Imaging is considered to be one of the most popular brain

imaging modalities because it is a powerful tool to non-invasively study the relationship be-

tween cognitive stimulus and the hemodynamic response of the brain in real time. fMRI uses

Magnetic Resonance Imaging (MRI) technology and works based on the increase in blood

flow to the local vasculature that accompanies neural activity in the brain. This results in a

corresponding local reduction in deoxyhemoglobin because the increase in oxygenated blood

flow occurs without an increase of similar magnitude in oxygen extraction. One of the main

types of fMRI employs the blood oxygenation level dependent (BOLD) contrast, which is

based on the differing magnetic properties of oxygenated (diamagnetic) and deoxygenated

(paramagnetic) blood. The focus in this dissertation is on BOLD fMRI signal. Since deoxy-

hemoglobin is paramagnetic, it alters the magnetic resonance signal [73]. These magnetic

susceptibility differences lead to small, but detectable changes in susceptibility-weighted MR

image intensity. Relatively low image signal to noise ratio (SNR) of the BOLD effect, head

1
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Figure 1.1. Patient in MRI scanner with a block design stimulus, structural data and func-
tional data across time, and activation map after the statistical analysis.

movement, and undesired physiological sources of variability (cardiac, pulmonary) make de-

tection of the activation-related signal changes difficult. The BOLD signal can be detected

by appropriate design of experiments and imaging the brain during rest and activation.

Rapid image acquisition techniques can be used to generate data sets with hundreds of im-

ages for each slice location which can be statistically analyzed to determine brain functional

activation map.

Clinical applications of fMRI include neuropsychological studies of behavior, networks

for cognitive processing, mapping of functional areas in neuropathology and brain surgery

planning.

Figure 1.1 shows a patient in a MRI scanner, example of block design stimulus, the

output BOLD and structural images and brain activation map. fMRI stimuli are either block

paradigms, with alternating periods of action (activation) and rest (baseline) conditions each

typically having duration of about 10-30 seconds, or event-related paradigms, with short

periods of activation and longer periods of rest.



3

Figure 1.2. Summary of the fMRI time series model for each voxel.

The fMRI time series model at each voxel is shown in Figure 1.2. Stimulus is multiplied

by activation level and is convolved with the hemodynamic response function (HRF), shown

as h, then drift and noise are added to the signal.

The drift and hemodynamic response function and their background are defined in Sec-

tions 1.1.2 and 1.1.3. The proposed methods to model these components are covered in

Chapter 2, Sections 2.2 and 2.3 and Chapter 3.

1.1.2 Background and Literature Review on Drift Model

Slow variations over time in the fMRI data are known as drift. Some causes of the drift are

uncorrected head movement and instrumental instability. Drift has low frequencies of about

0-0.015 Hz and can have maximum amplitude of approximately 5% of the baseline signal

intensity [85]. The amount and direction of the baseline drift is difficult to predict even

between neighboring voxels [87]. Figure 1.3 shows the fMRI time series for 9 neighboring

voxels, the pattern of the baseline drift is changing between neighboring voxels. The mean of

each time series is subtracted to better show the variation in the same axis. Because of the

low signal to noise ratio of the fMRI signal, estimating and removing the drift component

can have a strong impact on the statistical analysis and accurate activation detection [87].
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Figure 1.3. fMRI time series of 9 neighboring voxels. The baseline drift varies between
neighboring voxels.

The two most popular methods for drift estimation and removal have been low pass filtering

and subspace methods.

Low pass filters, autoregressive filters, Kalman filters [56] and nonlinear low pass filters

such as those suggested in [52] can be used for drift estimation. The filtering methods

have the advantage of simplicity but they face the problem of determining the appropriate

cutoff frequency. This is very challenging, because one needs to be very careful not to

remove the stimulus frequencies. Furthermore, it is not even clear that one may be able
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to sufficiently estimate the drift via low pass filters without harming activation analysis,

because the separation of stimulus and drift signals may not be well described by a single

cut-off frequency.

Another technique for estimating drift is to assume that a certain subspace can represent

the drift. Several works model drift by assuming a predefined basis, such as linear functions

of time [6, 14, 62] and low order polynomials [41, 84], set of vectors like polynomials and

harmonics of sine and cosine [25, 24], discrete cosine transform (DCT) [48, 38] and large scale

wavelets [71, 32]. There are other techniques that use exploratory analysis like principal

component analysis, independent component analysis (ICA), clustering method or canonical

correlation analysis to find the basis for the drift component [5, 35]. In [40, 66] smoothing

splines and running lines smoothers are used for modeling the drift.

Subspace methods are, in general, more powerful than filtering methods, but they also

have certain shortcomings. The main difficulty is that our understanding of the origin of drift

does not provide us with a specific function or a parametric model of drift. Moreover, most

of the existing drift estimation methods have user defined parameters. In general, subspace

models assume that the drift component belongs completely to a given subspace, and this

might not be true. There is growing evidence that detrending (drift removal) techniques

should be adapted to the subject or even the voxel being analyzed, but at the moment there

is no consensus as to which detrending approach should be used [86].

1.1.3 Background and Literature Review on HRF Model

The most precise approaches to modeling the link between stimulus and the induced BOLD

activity, are physiological nonlinear models [15, 39, 77] but because of their computational

cost and their identifiability issues their use is restricted to a number of specific regions and

to a few experimental conditions [18]. In contrast, the common approach, being the focus of

this dissertation, relies on linear systems which appear more robust and tractable.
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Figure 1.4. Example of the hemodynamic response function with parameters defined in [41].

It has been observed that the neurovascular system is well approximated by a linear and

stationary model if the inter-stimulus interval (ISI) is more than a few seconds [12, 26]. Using

a linear time invariant model the hemodynamic changes in BOLD fMRI can be characterized

as the convolution of the stimulus with the impulse response function of the system, which

is called the hemodynamic response function. Figure 1.4 shows the hemodynamic response

function as described by [41]. The hemodynamic response starts immediately after the

stimulus is applied, and experiences a peak after 3-10 seconds delay. There is a post stimulus

undershoot and then it returns to its baseline [52].

HRF estimation is important in two aspects, estimation of temporal dynamics and detec-

tion of where activity occurs. It is well known that the HRF varies across different regions

of the brain, different subjects and tasks [4]. Knowledge of the hemodynamic response func-

tion is necessary for the estimation of activation levels, which are the responses at each brain

locality to a given stimulus. In the absence of exact prior knowledge, the estimation of HRF



7

and activation levels are inter-related: a precise HRF model results in better activation de-

tection, but at the same time active voxels need to be known in order to estimate the HRF,

since inactive voxels do not carry any information that is useful for HRF estimation, and

their inclusion will introduce noise into the process.

Methods for estimating HRF can be categorized by the amount of assumptions on the

shape of the HRF. At one extreme, one may assume a pre-determined shape for the HRF with

varying magnitude. Parametric models fit in this category. Among the parametric models

one may name the Poisson density [36], the Gaussian function [76], the Gamma density [21,

57], shifted Gamma density [12], difference of two Gamma functions [41] and truncated

Gaussian functions [44]. Parametric models may introduce bias in the HRF estimate, since

they have limited ability to capture HRF shape variability across voxels.

On the other extreme, one may assume no prior knowledge about the shape, thus the

model would have as many free parameters as the data points [41, 45, 74], and is able to

estimate HRF with any arbitrary shape. The nonparametric models fall in this category.

This may seem like a superior method, however, its shortcoming is sensitivity to measurement

noise. For that reason, the latter methods need a much larger data set to train on. Bayesian

nonparametric estimations of the HRF were proposed in [20] and [67]. Afonso et al. [2] also

used a Bayesian framework to jointly estimate the HRF and activation levels, the HRF was

estimated voxel-wise in their work.

In between the two extremes, there are basis-set methods, whose degrees of freedom are

fewer than the time samples. Past work that models the HRF as a linear combination of basis

functions includes combining canonical shape for the HRF and its temporal derivative [37],

spline basis sets, finding basis sets using principal components [4, 90], cosine functions [94],

radial basis functions [77], linear combination of Fourier basis functions [53] and spectral

basis functions [58]. Lindquist et al. [59] performed a comparative study using various basis

functions. There is a trade off between the flexibility of the model and its ability to capture
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variabilities. Too little flexibility will not allow adaptation of HRF shape to the variability

of brain regions or subjects, while too much flexibility may produce unlikely shapes.

The HRF varies across different regions of the brain. Therefore, assuming any fixed

shape for HRF is inaccurate in most parts of the brain [46]. Because of the low signal-to-

noise ratio in the fMRI data, voxel-wise estimation methods may be too noisy. It has been

observed [20, 43] that for a specific task, the shape of the HRF is constant across neighboring

voxels in a homogeneous region [20], thus a more robust HRF estimation may be obtained

from the data corresponding to a set of voxels within a neighborhood, instead of a single

voxel.

A region-based formulation for the HRF estimation was proposed in [18, 28, 64, 65], where

a single HRF shape was used with varying amplitude within a region of interest (ROI).

Donnet et al. [28] proposed expectation maximization for estimating HRF and activation

levels, they used pre-defined ROI on event-related experiment. Makni et al. and Chaari et

al. [64, 65, 18] used a Bayesian framework that requires knowledge of the prior distributions

for activation levels, HRF and other parameters. They used a parcellation technique to select

active ROIs. Pedregosa et.al [75] used a rank constraint and quasi-Newton method for joint

estimation of HRF and activation levels at each voxel.

1.1.4 Motivation

A significant task in fMRI data analysis is to develop activation maps showing a subject’s

localized brain responses to pre-specified stimuli. fMRI data analysis methods can be catego-

rized as model-driven and data-driven techniques. In model-driven methods each component

of the fMRI signal is often modeled separately and these a priori models are fitted to the

fMRI time series. Some of the fMRI components are the neural response and nuisance terms

such as baseline drift and noise. The quality of model-based fMRI data analysis, which

includes pre-processing, fitting a model to the data, calculation of statistics and activation
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detection, depends on accurate modeling of the data. But due to the complexity of biological

systems, and because the models cannot be measured directly, fMRI modeling has been ad

hoc.

For data-driven methods, no underlying model is assumed and, rather, the method at-

tempts to extract meaningful spatial or temporal trends in the measurement. The data-

driven approach is useful when an appropriate model for the data is not available. However,

these methods are computationally expensive and their results do not easily lend themselves

to interpretation. The independent component analysis and principle component analysis

(PCA) [16, 69] are among data-driven approaches.

More specifically, despite their convenience, simple and rigid models do not provide reli-

able results when the expected neural response to the stimuli is not known a priori or when

it is varying across the brain, subjects and/or experiments. It is well-known that large qual-

itative variations are often observed in fMRI signals, which explains the need for adaptive

methods. Adaptability to signal variations can be achieved with data-driven methods. But

these methods need large data sets to train on and are computationally more expensive than

model-based methods.

The large variations of fMRI signal components motivates the need for adaptive methods

that can capture variabilities of the HRF and the baseline drift across regions and tasks

while not being as computationally demanding as data-driven methods.

1.1.5 Contributions

The contributions of this dissertation on fMRI include adaptive methods to estimate and

model the baseline drift and the HRF.

1. In model-based fMRI data analysis, which includes pre-processing, calculation of statis-

tics and activation detection, accurate modeling of the data plays an important role
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in final activation map. The model for each component has to be as flexible as possi-

ble and be able to capture variabilities across voxels. The minimum description length

principle is introduced to model the baseline drift and the hemodynamic response func-

tion. In the MDL principle any regularity in the data can be used to compress the

data and fMRI models try to match to regularities. So the MDL principle is proposed

for modeling and capturing structures and regularities in the fMRI data with as few

assumptions as possible. Unlike previous works which applied MDL for model order

selection [9, 19, 50], in this dissertation MDL is used as a tool to guide us throughout

estimating the fMRI baseline drift and HRF components.

(a) Estimation and removing the baseline drift artifact in fMRI using the MDL prin-

ciple: The proposed method is based on the iterative estimation of the activation

level and the drift component, using least squares estimation and the concept of

MDL denoising. Results show that the proposed algorithm can estimate the acti-

vation level and the drift term without having any prior knowledge or assuming an

overly restrictive model for the drift. The proposed method captures variability

of drift across voxels and improves the statistical analysis results. This is covered

in Section 2.2.

(b) Estimation of the HRF and activation level in fMRI using the MDL principle:

Estimating the HRF is important for statistical analysis of the fMRI data and for

obtaining information about the temporal dynamics of the brain. HRF models

commonly assume varying amounts of prior knowledge about the shape of the

HRF. The proposed algorithm is based on the iterative estimation of the HRF

and activation level. This provides a nonparametric approach to HRF estimation

without any explicit assumptions. The proposed method is capable of capturing

variabilities of the HRF across regions and improving statistical analysis. This is

discussed in detail in Section 2.3
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2. Joint maximum likelihood estimation of the fMRI hemodynamic response function and

activation level: Modeling the HRF and estimating the activation level are two impor-

tant aspects in the statistical analysis of the fMRI signal. These two are intertwined.

Knowledge of the HRF is necessary for the reliable estimation of the activation levels

in fMRI. Furthermore, estimation of the HRF requires knowledge of activation levels.

The cross dependency motivates the joint approach for estimation of these quantities.

Our work takes a maximum likelihood approach to this problem and, since it does

not require the prior probability distributions of the HRF or the activation levels, it

is useful in situations where obtaining reliable and verifiable prior probability distri-

butions on the HRF or the activation levels are difficult. It is known that the shape

of the HRF varies across brain regions and subjects. This suggests that a data-driven

estimation of this function is statistically more powerful when modeling BOLD fMRI

data. A different HRF is estimated depending on the stimulus presented for each ROI.

The proposed method has the flexibility that our own algorithm can be used to define

the active ROIs without the need to use another algorithm to provide pre-defined ROIs

as is the practice in most of the region based analysis methods. This is explained in

Chapter 3.

1.2 Computed Tomography

1.2.1 Overview and Motivation

Computed tomography is a medical imaging technique for imaging cross-sections using a

series of x-ray projection measurements taken from different angles around the patient. Using

mathematical reconstruction algorithms, the volumetric information inside the patient can be

reconstructed slice by slice. CT is a valuable medical tool that can help a physician diagnose

disease, trauma or abnormality; plan and guide interventional or therapeutic procedures and

monitor the effectiveness of therapy (e.g., cancer treatment).
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Figure 1.5. Schematic diagram of a dose compensator and scattered radiations from the
patient (red long dashed line) and from the dose compensator (blue dashed line). The black
dash-dot line shows a ray without scattering.

Figure 1.5 shows a schematic diagram of the x-ray source, the dose compensator or bowtie

filter (which is a pre-patient filter), the patient and the detector. One of the challenging

problems that affects the accuracy of the projection measurement is scattered radiation.

Sources of scatter radiation are the patient and the dose compensator. This figure shows

examples of two scattered and one primary rays. The blue dashed lines represent a ray

that scattered once in the dose compensator before reaching the detector. The red long

dashed lines represent a ray that scatters two times in the patient. The black dash-dot line

represents a primary ray without scattering.

Dose compensators serve to optimize the skin radiation dose received by the patient

by preferentially attenuating x-rays that are incident at the edge of the patient where the
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thickness is lower [49] and a lower flux is needed to achieve a given level of image quality.

It is an important part of the overall strategy of maximizing the image quality to patient

dose ratio. Such dose compensation is usually achieved with a pre-patient filter of variable

thickness across the fan angle that is thinner at the center of the fan and thicker towards

the outer edges (shaped like a bowtie). However, as with all x-ray filtration, the beam is

not entirely absorbed and there is some degree of scattered radiation and some transmission

without scatter. Dose compensators are typically constructed of materials that are relatively

similar to water in their attenuation properties, which implies the use of materials with low

atomic number elements. Scatter is then the primary mechanism of attenuation due to

dominance of Compton scatter in low atomic number elements [54]. Some portion of the

radiation scattered from the dose compensator can reach the detector system and lead to a

degradation in image quality. In traditional Filtered Back Projection (FBP) reconstruction,

these scattered x-rays confound the image reconstruction as they do not follow a straight

ray path from detector to focal spot and are a source of off-focal radiation [10] that can blur

edges and may require correction algorithms.

There is a need to model and estimate the scatter from the dose compensator and correct

for it as part of the pre-processing steps. Since detectors are far from the scatter source and

have small solid angle, traditional MC is not computationally efficient. We have implemented

a variance reduction technique called forced detection (FD) to improve the computational

efficiency.

1.2.2 Background on CT dose compensator scatter modeling and Forced De-

tection

Part of the work represented in this dissertation on the scatter from the dose compensator

appeared in SPIE [7], and was independently repeated by others in [60]. In [60] Monte

Carlo simulation was done without using forced detection and with monochromatic x-ray
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source assumption. However X-ray sources are polychromatic in nature. In our work we

used polychromatic x-ray source, analyzed the effect of scatter from dose compensator and

implemented a software correction algorithm.

The forced detection technique has been used in Single Photon Emission Computed To-

mography (SPECT) scanner simulations [8, 27, 61]. FD was used to simulate all projections

in SPECT. In Cone Beam Computed Tomography (CBCT) the scatter contribution from the

patient was studied in [63]. The scatter radiations from the patient and the dose compen-

sator were investigated in [11, 70] for CBCT. The compensator shape and scanner geometry

are different between CT and CBCT.

1.2.3 Contribution

The contribution in the CT modality is:

1. Modeling the scatter radiation from the CT dose compensator using Monte Carlo

simulation: In order to increase the computational efficiency of the calculations, a

forced detection method which is a variance reduction technique is implemented. We

find that FD increases the efficiency of our computations by a factor of more than

40,000. The impact of the scatter radiation on image quality is studied on simulated

data and a correction algorithm is implemented and applied to a set of simulated data.

This is covered in Chapter 4.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 explains the MDL prin-

ciple, the proposed MDL-based algorithm for fMRI baseline drift and activation level estima-

tion and the MDL-based algorithm for the HRF and activation level estimation. Chapter 3

describes the joint maximum likelihood estimation of HRF and activation levels. Chapter 4
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explains the scatter contribution from CT dose compensator, the Monte Carlo simulation for

modeling the scatter radiation, the variance reduction method and the proposed correction

algorithm. The concluding remarks are in Chapter 5.



CHAPTER 2

FUNCTIONAL MRI AND MINIMUM DESCRIPTION LENGTH

We introduce methods based on the minimum description length (MDL) principle to estimate

two important components of the fMRI signal, the baseline drift and the hemodynamic

response function. In the following subsections, a detailed explanation of the MDL principle

and its use in estimating the baseline drift and the hemodynamic response function are

provided.

Throughout this chapter vectors and matrices are denoted by bold lowercase and upper-

case symbols, respectively. Vectors are defined as column vectors.

2.1 Minimum Description Length principle

The minimum description length principle is an important tool in statistics, information

theory, and learning theory, which was introduced by Rissanen [78] in 1978 and is related to

Occam’s razor. Any data can be represented by a string of numbers, also known as codes.

In MDL, we only work with a subset of all possible codes, the prefix codes. The length of

prefix codes can be shown to follow a pattern according to: `(x) = −logP (x), where x is

the event, P (x) is its probability, and `(x) is the length of its codeword [22]. The length of

description is thus related to the probability distribution of the samples. The more likely

an event, the shorter its representation can be. The average length of the description will

be: L = E[`(x)] = −E[logP (x)]. If the data are distributed according to P (x), then the

code corresponding to P (x) will give the shortest average codelength. If the probability

distribution P (x) is unknown and an arbitrary distribution Q(x) is assumed, it can be

shown that the mismatch will result in inefficiencies and the average length of the calculated

16
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descriptions will increase.

L′ = Ep[-logQ(x)] > Ep[-logP (x)] = L (2.1)

This is known as the information inequality. Now imagine a number of samples with un-

known distribution. One can try to build representations based on all candidate distributions

or models until come across one that gives the smallest average length. The inequality (2.1)

shows that the minimum description length can lead to a good approximation of the prob-

ability P (x) that samples are drawn from. The class of probability distributions, out of

which our observed data has been drawn is denoted by M and called a family. It is easier

to imagine that the class is parameterized by one parameter θ from the parameter space Θ,

so finding a desired distribution is equivalent to finding a good θ. This group is then called

a parametric family, and denoted as

M = {P (·|θ); θ ∈ Θ} (2.2)

MDL methods calculate the description length for the model and the data and minimize the

total description length. The description length has two components: description of θ, the

member of the family of distributions to which data belongs, and a description of P (D|θ).

This is a consequence of conditional probabilities, because the distribution of the data is

P (D) = P (D|θ)P (θ), therefore

− logP (D) = − logP (D|θ)− logP (θ). (2.3)

Having a set of candidate models, the best model to explain the data D is the one which

minimizes the combined length of the description of the model, plus the description of the

data under that model.

Often parametric descriptions for each component are used so that they can be more

easily optimized. A useful example is MDL denoising via wavelets [79], where each subset
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of the wavelet coefficients are considered as a model class. The description of model, θ, is

constant, thus simplifying the optimization, and the length of P (·|θ) is described by the

number of non-zero wavelet coefficients.

Denoising is related to data compression; many denoising techniques are designed based

on sparseness and compressibility in the wavelet domain. Methods suggested by Donoho and

Johnstone [29, 30] are the pioneering denoising techniques among the wavelet-based denoising

methods. By taking advantage of the property of the orthonormal wavelet basis, the noise will

have coefficients with small absolute value. So denoising can be done by finding a threshold

such that if the square of the coefficient exceeds the threshold it remains while others are set

to zero. The problem with wavelet denoising is that the noise is defined by the estimated

signal, which depends on the estimated variance of the noise. The MDL principle has another

approach to denoising. MDL takes advantage of the fact that noise is the incompressible part

in the data while the compressible part defines the meaningful information-bearing signal.

Based on this concept, one may decompose the signal by minimizing the ideal code length

describing the data. Because the noise part is incompressible, one can recover the data itself.

Denoising is a special case of linear regression with regressor selection. MDL denoising

uses wavelets. Orthonormal regressor matrices such as wavelet transforms are used as re-

gressors. The wavelet transform takes the data and converts it into coefficients representing

the data at various frequencies and scales (high-detail vs. low-detail). The solution to the

denoising problem is to consider each subset of the regressors separately as a model class.

The model class in the case of wavelets is going to be defined as: “the non-zero coefficients,”

which includes only the coefficients which are above the threshold. The coefficients below

that threshold will be set to zero. In other words, we will partition all signals according to

which of their wavelet coefficients are non-zero. The minimization of description length is

equivalent to the minimization of the number of non-zero coefficients. Models are compared

by their ability to compress a data set. The goal is to select a model that gives the most
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compact description of the data and the model. This mathematical model is motivated by

the practical fact that many real-world signals have a relatively small number of significant

coefficients, with a large number of zero or near-zero coefficients.

2.1.1 Why use MDL for fMRI?

The fundamental idea behind the MDL principle in modeling is that any regularity in a given

set of data can be used to compress the data. Since we want to select the hypothesis/model

that captures the most regularity in the data, we look for the hypothesis/model with which

the best compression can be achieved.

fMRI models only try to match to the regularities in the observed data from which scien-

tists aim to learn, and then to propose and test hypotheses about the biological phenomena.

Modeling is therefore closely related to answering the following question: how much structure

is there in the data? Unstructured measurements are categorized as noise, while appropri-

ately structured measurements are inferred as active voxels. Thus, if detecting and learning

from data regularities is our aim, it stands to reason to develop methods and algorithms

that specifically pursue and uncover these regularities with the fewest assumptions about

the data. Thus, the MDL principle is a very good match for the fMRI modeling problem.

MDL has been successfully used in some image analysis problems, i.e., image restoration

and edge location, segmentation, denoising, simultaneous noise suppression and compres-

sion [33, 72, 55, 81]. We note that, in the past, MDL has been used as a tool to solve small

subproblems in fMRI. For example, certain models have been assumed and then their order

was calculated with MDL [9, 19, 50]. In contrast, we propose that MDL can be used as a

comprehensive principle that can guide us throughout the solution and algorithm develop-

ment.
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2.2 MDL-based estimation of fMRI drift and activation level1

2.2.1 Algorithm

The contribution of this chapter for drift estimation is to have fewer prior assumptions about

the drift component and let the data itself find the best model for it. No subspace is assumed

for the drift component; moreover, drift can have different structures across voxels. In this

approach, data are considered as sequences to be compressed by the model. We implement

a compression-based method for drift estimation based on MDL denoising as introduced

in [79]. Wavelets are used as regressors for MDL denoising.

The fMRI time series model at each voxel j at a time point ti is modeled as

yj(ti) = αj (S(ti) ∗ h(ti)︸ ︷︷ ︸
X(ti)

) + dj(ti) + ej(ti), j = 1, ..., J and i = 1, ..., N (2.4)

where the first term represents the BOLD response model which is the brain response to a

given stimulus. Index j represents the spatial position of a voxel, J is the total number of

voxels, αj is the activation level, S(ti) is the stimulus time series which is convolved with the

HRF represented by h(ti). The convolution of stimulus and HRF is denoted as X(ti). The

slowly varying baseline drift is represented as dj and ej is random noise. The time for each

scan is ti = iTR, with TR as the time of repetition and i is between 1 and N , the number

of scans. J is the total number of voxels.

By rewriting this equation as vectors and matrices, the fMRI time series at voxel j is

yj = Xαj + dj + ej j = 1, ..., J (2.5)

where the N × 1 vector yj is the fMRI time series for voxel j, X is the N × m design

matrix which includes the desired activation signal for all the stimuli and a vector of all-ones

1 c© 2007 IEEE. Adapted/Reprinted with permission from N. Bazargani, A. Nosratinia, K. Gopinath, and
R. Briggs (2007, April). fMRI baseline drift estimation method by MDL principle. In IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Washington, D.C., 472-475.
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representing the average of the signal. In this case the number of stimuli is m − 1. The

desired activation signal is the convolution of the HRF with each of the stimulus time series.

αj is m× 1 vector represents the activation level and mean of the time series, dj represents

the drift component and ej denotes Gaussian noise. For cases with one stimulus, X is N × 2

and αj is 2 × 1. Since the goal of this study is to focus on the drift estimation, we do not

concern ourselves with the power spectral density of the noise, and assume it to be white.

The baseline drift is estimated voxel-wise.

The following iterative algorithm is proposed to estimate the unknown parameters dj

and αj for each voxel:

1. Define design matrix X by convolving a known HRF with the stimulus time series.

2. Initialize drift to zero, d̂j
(0)

= 0.

3. For iteration i, find an initial estimate of αj via least squares estimation

α̂
(i)
j =

(
XTX)−1XT

(
yj − d̂j

(i−1)
). (2.6)

4. Use the activation level estimate and the MDL principle to find a new estimate of the

drift

d̂
(i)
j = fMDL

(
yj −Xα̂

(i)
j

)
. (2.7)

5. Set i = i+ 1.

6. Repeat steps 3-5 until the convergence condition ‖d̂(i) − d̂(i−1)‖2 < ε holds. ‖ · ‖2

represents `2 norm.

The function fMDL in step 4 represents the use of MDL principle for estimating the

drift component. We use MDL denoising, which operates in the wavelet domain. The

MDL principle is described in Section 2.1. Specifically, we use a variation of the method
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suggested in [80], which itself is a refined and extended version of the earlier MDL denoising

criterion [79].

For each model class in MDL denoising a single representative of the whole class is

constructed which is universal. This means that it can represent any densities in the whole

model class. One of the universal models is the normalized maximum likelihood (NML)

model. The NML code length is used to determine the length of the description and gives

the minimax optimal universal model for each model class. NML was originally proposed

by Shtarkov [83] for data compression. After finding NML code length for each model class,

the model class with the shortest description length for the data was selected.

In the MDL-based denoising, model selection is performed by considering each subset of

coefficients as a model class and minimizing the summation of the code length of the model

and the code length of the data given the model. The MDL criterion proposed in [80] for

finding the best subset of coefficients is as follows

min
k

(n− k)

2
ln
C − Cγ
(n− k)3

+
k

2
ln
Cγ
k3

(2.8)

where n is the total number of coefficients, γ denotes a set of k nonzero coefficient indices,

k ∈ (0, n), C is the sum of the squares of all the wavelet coefficients and Cγ is the sum of the

squares of the coefficients that are in the set γ. As described in [80], for orthonormal bases,

the subset of coefficients that minimizes the MDL criterion corresponds to the k largest

coefficients in absolute value for some k. The rest of the coefficients will be set to zero.

The Student’s t-test is calculated for testing the significance of the activation level es-

timate. The contrast vector is defined as c = [1 0]T for a study with one stimulus time

series to check the significance of each of the elements of vector α̂j. The null and alternative

hypotheses at each voxel are

H0 : cTαj = 0

H1 : cTαj 6= 0.
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Under the null hypothesis,
cT α̂j√

cT cov(α̂j)c
has a Student’s t-distribution with ν degrees of free-

dom. For MDL-based drift estimation algorithm the degree of freedom is ν = N−rank(X)−p,

where p is the number of remaining wavelet coefficients.

2.2.2 Results

The performance of the algorithm was tested using simulated and real fMRI data. For MDL

denoising, we used Daubechies symlet 8 wavelet basis with 6 decomposition levels. In order

to implement wavelet detrending, the wavelet set should be compact. Daubechies wavelets

and symlets with small orders are therefore reasonable candidates.

We evaluated our method against existing detrending approaches like linear, quadratic

and cubic polynomial detrending methods [41, 84] and spline detrending [40].

For polynomial detrending, a polynomial with the pre-defined degree was fitted to each

voxel time series. Then, the detrended time series was obtained by subtracting the fitted

polynomial model from the voxel time series. The degrees of freedom for calculating t-test

of polynomial detrending is ν = N − rank(X)− polynomial order.

Smoothing splines have been used in the literature [40] to estimate the fMRI baseline

drift. Using MATLAB spline toolbox, a cubic smoothing spline was fitted to the fMRI

time series at each voxel. The smoothing parameter is a number between 0 and 1, which is

selected based on giving a good estimate of the benchmark drift in the simulated data. This

parameter has been used for experiments on real data. The spline θ(t) is the solution to the

optimization problem

min
θ
ρ

N∑
k=1

|yj(tk)− θ(tk)|2 + (1− ρ)

∫
|θ′′|2dθ (2.9)

where yj(tk) is the fMRI time series at voxel j at time sample tk, the parameter ρ controls

the degrees of smoothness. The fitted spline is subtracted from the original time series to

obtain the detrended time series.
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Simulated Data

The simulated time series at each voxel j was constructed using model in Equation (2.5).

We defined one stimulus time series S(t), a known benchmark HRF h(t), a known activation

level α1j which was multiplied by (h(t) ∗S(t)), a known drift term dj, a known DC level α2j

and white Gaussian noise ej with the signal to noise ratio (SNR) observed in the fMRI data.

The HRF was defined as the difference of two Gamma functions with known parameters as

in [41].

h(t) = (
t

d1

)
a1

e
− (t−d1)

b1 − c( t
d2

)
a2

e
− (t−d2)

b2 (2.10)

where dj = ajbj, a1 = 6, a2 = 12, b1 = b2 = 0.9, c = 0.35. This HRF was convolved with the

stimulus time series S(t) to yield the first column of matrix X. The benchmark drift used

in the simulated time series was extracted by kernel smoothing the resting state fMRI data.

The added drift at each voxel was tuned to be significant so that the ratio of the norm of

the drift over the norm of the drift free signal was more than 0.5.

Figure 2.1 shows one time series realization of a simulated data with SNR = 0.8 and

block design stimuli with period 40 seconds and known activation level. The length of the

time series was N = 160. The benchmark drift and estimated drift via each of detrending

methods have been shown. The mean square error (MSE) between the benchmark and

estimated drifts was calculated and was shown in each plot. MDL detrending gives the

lowest MSE compare to the other approaches.

We performed Monte Carlo (MC) studies on the simulated fMRI time series which was

generated with the benchmark activation and the benchmark drift, the length of the time

series was N = 160. Monte Carlo methods are a class of computational algorithms that rely

on repeated random sampling to obtain numerical results. We used Monte Carlo for error

analysis. The signal to noise ratio was within the typical range of the SNR in the real fMRI

data, which is between 0.2 and 1 [52]. For each SNR, Q = 300 Monte Carlo realizations
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Figure 2.1. Comparing estimated drift from different methods with the benchmark drift for
a block design simulated data with SNR=0.8. The MSE between estimated and benchmark
drifts is shown for each method.

have been performed. For each noise realization the square error between the estimated

and the benchmark drift was calculated, and then the average was calculated over all the

realizations. Figure 2.2 shows the mean square error (MSE) between the estimated and the

benchmark drift for different SNR values, for a block design experiment with period of 40

seconds and for an event-related experiment, respectively. The true activation level was set

to 5. The performances of various detrending methods were compared with each other. The

MDL detrending results in smaller MSE compare to other detrending methods for all SNR
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levels. As the SNR increases, the MSE decreases for all of the detrending methods. Event

related experiment shows lower MSE in comparison with the block design experiment.

The drift has slow variations, so it induces correlation to the fMRI time series. The

autocorrelation will be decreased by detrending. Thus, we checked the performance of the

various detrending methods in removing autocorrelation from the voxel time series. The

histogram of the residual autocorrelation at lag one was plotted for all the voxels before and

after removing drift and is shown in Figure 2.3. The data set we used for this experiment

was a resting data set with added activation to it. The activation level was 1% of the mean

of the signal. MDL-based compression-based detrending, spline detrending and polynomial

order 3 result in the lowest 95th percentile of the residual error at lag one, respectively.

The 95th percentile is the autocorrelation in the most autocorrelated residual time series.

The result was consistent both for event related and block design stimuli added to the

resting state data. So, in terms of removing autocorrelation of the residual error, MDL-

based detrending gives better performance compare to polynomials and spline detrending.

To compare detection performance, activation was added to some voxels of the resting state

data at known locations. This generated benchmark activation level.

The stimulus was a block design stimulus with the period of 40. The known activation

with SNR = 0.2 was added to 459 voxels in known locations. The benchmark activation for

one slice is shown in Figure 2.4. Axial, sagittal and coronal views are shown for MDL-based,

without detrending, spline detrending and polynomial detrending with order 3. The MDL-

based activation map shows less false positives compare to no detrending and polynomial

detrendings, and at the same time detects more true positives compare to spline detrending.

The t-test threshold is the same for all of these images.
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Figure 2.2. The mean square error between the benchmark and estimated drift for (a) a
block design and (b) an event related experiment.
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Figure 2.3. Histogram of autocorrelation of residual error at lag one for all voxels for a block
design experiment.

Real fMRI data

Figure 2.5 shows results of MDL-based detrending on a real fMRI “attention to visual mo-

tion” data set available on the SPM web site.2 The data set was used with permission from

Methods group at the Wellcome Trust Centre for Neuroimaging. This data set was obtained

by Christian Büchel and is described in [13]. The experiment was a block design consisting

of 4 conditions: fixation, static, no attention and attention. Each of these conditions were

2http://www.fil.ion.ucl.ac.uk/spm
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(a)

(b)

(c)

(d)

(e)

Figure 2.4. Axial, Sagittal and Coronal views of a single slice activation maps. (a) bench-
mark activation, (b) MDL-based detrending, (c) No detrending, (d) spline detrending and
(e) polynomial of order 3 detrending.
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blocks of 32.2 seconds. The repetition time (TR) was 3.22 seconds. There were 360 scans

in this study. The experiment was performed on a 2 Tesla Magnetom VISION (Siemens,

Erlangen) whole-body MRI system equipped with a head volume coil. Contiguous multislice

T2*-weighted fMRI images, with 64 × 64 pixels, 32 slices and slice thickness of 3 mm. Image

processing and statistical analysis were carried out using SPM8 and MATLAB. All volumes

were realigned to the first volume and a mean image was created using the realigned volumes.

A structural MRI image, acquired using a standard three-dimensional T1 weighted sequence

(1× 1× 3 mm voxel size) was co-registered to this mean (T2) image.

The activated brain regions identified by our approach were compared with the activa-

tion maps from spline detrending, polynomial of order 3 detrending and AFNI (Analysis of

Functional NeuroImages) imaging analysis tool.3 AFNI is a widely used set of programs that

implement well-known algorithms for processing, analyzing and displaying fMRI data [23],

and is often used for benchmarking new developments. Figure 2.5 shows axial and coronal

views of activation maps from AFNI, compared with MDL-based detrending, no detrending,

spline detrending and polynomial of order 3 detrending. The activation maps are superim-

posed on the anatomical data.

For AFNI analysis the data was detrended (using Legendre polynomials of degree 3) and

then analyzed using 3dDeconvolve to locate the active areas of the brain. The HRF modeled

as a finite impulse response model in AFNI, while for other methods in Figure 2.5 the HRF

was based on Equation (2.10). The overall activation location of the MDL-based method is

not different from AFNI. We observe slight differences with AFNI, which are explained by

the differences between F-test and t-test and the differences between the algorithms used in

AFNI and our method. The number of false positives are higher in spline detrending and

polynomial detrending compare to AFNI and MDL-based detrending.

3http://afni.nimh.nih.gov
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(a) AFNI (b) MDL-based

(c) No detrending (d) Spline detrending

(e) Polynomial order 3 detrending

Figure 2.5. Axial and Coronal views of a single slice activation map of real fMRI data
for (a) AFNI, (b) MDL-based detrending, (c) No detrending, (d) spline detrending and (e)
polynomial of order 3 detrending.
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Figure 2.6. Square error between drift estimates across iterations for one voxel of a real
fMRI dataset.

The MDL algorithm is an iterative algorithm, the condition for convergence is the square

error between the drift estimates between the two iterations, ‖d̂(i)− d̂(i−1)‖2 < ε, where ‖ ·‖2

represents `2 norm and i is the iteration number. The ε is chosen to be 10−5. For real fMRI

data the maximum number of iteration needed was 20. Figure 2.6 shows the square error for

drift estimates across iterations. As can be seen the square error decreases as the number of

iterations increases and the algorithm converges.

2.3 MDL-based estimation of HRF and activation level

2.3.1 Algorithm

The contribution of this section is to use the MDL principle to estimate the HRF from

the data itself, without any assumptions on its shape. MDL-based methods, which can

extract models from data itself, are a natural choice for attacking this important problem,
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because it allows the HRF to vary across different brain regions, experiments and subjects.

The proposed algorithm iteratively estimates the HRF shape for a region of interest and

activation levels for all voxels in that ROI, using the MDL principle and the least squares

estimation.

We start with the model in Equation (2.5) without the drift component for each voxel

time series as shown below

yj = Xαj + ej j = 1, · · · ,M (2.11)

where index j indicates the spatial position of a voxel in the brain and M is the number

of voxels in the region of interest. The N × 1 vector yj shows the mean subtracted and

detrended time series of voxel j. X is a N × 1 matrix that includes the convolution of the

HRF, h(t), with one stimulus time series S(t). The HRF is unknown and will be estimated.

Activation level for voxel j is denoted by the scalar αj which is unknown and needs to be

estimated and ej is the white Gaussian noise. We assume that HRF has the same shape over

a homogeneous region but the magnitude can change. We can divide the brain into several

sub-volumes, such that the HRF over each sub-volume is constant. For real fMRI data, the

ROIs are obtained from analyzing the data with AFNI imaging analysis tool. In order to

capture HRF variations, the estimation process is applied on each of the ROIs.

The general linear model for the set of voxels in each sub-volume is as follows

Y = Xα + E (2.12)

where the matrix Y includes the time series for M voxels in one cube, Y = [yj+1 · · · yj+M ].

α is a vector including αj+1 to αj+M and E is a matrix containing Gaussian noise for all the

voxels in the ROI.

The following iterative algorithm is proposed to estimate the HRF and activation levels:
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1. Set iteration number i = 1. Find an initial estimate of the BOLD response using one

of the voxel’s time series.

X̂(1) =
fMDL(yj)

‖fMDL(yj)‖
(2.13)

2. In first iteration, find the estimate of activation level via least squares from an initial

estimate of the BOLD response and the time series of the M voxels in a cube, namely

X̂(1)

α̂(1) =
(
X̂(1)T X̂(1))

)−1
X̂(1)T Y (2.14)

3. For iteration i + 1, use the activation estimate and the MDL principle to find an

estimate for the BOLD response. α̂(i)† denotes pseudoinverse of α̂(i).

Yα̂(i)† = X̂(i+1) + Eα̂(i)†

X̂(i+1) = fMDL

(
Yα̂(i)†

)
(2.15)

4. Normalize the estimate of X

X̂(i+1) =
X̂(i+1)

‖X̂(i+1)‖
(2.16)

5. Use the latest X̂ to update the activation level estimate

α̂(i+1) =
(
X̂(i)T X̂(i)

)−1
X̂(i)T Y (2.17)

6. Set i = i+ 1.

7. Repeat steps 3-6 until the convergence condition ‖X̂(i+1) − X̂(i)‖2 < ε holds.

8. Calculate HRF, h(t), by deconvolution of X̂ and the stimulus time series, using the

constraints that h(t) = 0 for t < 0 and t > tn. Divide h(t) by its maximum value to

get the peak of one for comparison purposes.

The function fMDL in steps 1 and 3 represents the use of MDL principle for estimating

the HRF. We use MDL denoising, which operates in the wavelet domain. Description of

fMDL is the same as Section 2.2.
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2.3.2 Results

Simulated Data

The simulated time series were generated for a ROI containing 27 active voxels. The bench-

mark HRF was the difference of two Gamma functions as in Equation (2.10). The HRF

was convolved with an event-related paradigm to generate the BOLD response. The SNR

for each time series was 0.2. The benchmark and estimated HRF are shown in Figure 2.7,

together with the Poisson and Gamma HRF plots. The MDL-based algorithm can estimate

the benchmark with good precision. The t-statistics were calculated for all the voxels in the

ROI with each of the HRFs. These t-statistics are shown in Figure 2.8. The t-values with

the proposed MDL-based method are better estimates of the t-values compared with others,

since they are closer to the t-values obtained with the benchmark HRF.

Real fMRI data

The real data were acquired from a healthy subject at the University of Texas Southwestern

at Dallas on a 3-T scanner. The experiment was an event related paradigm with 27 auditory

stimuli, the events were jittered with random inter stimulus intervals. The voxel size was

3.125 mm×3.125 mm×4 mm and the number of scans was 160, repetition time (TR) was 2

seconds and the only preprocessing step done on the data was the registration. The size of

the whole brain data set was 64×64×40 voxels. The ROIs were obtained as follow. The

data was detrended (using Legendre polynomials of degree 3) and then analyzed with AFNI

toolbox using 3dDeconvolve to locate the active areas of the brain. The criteria for defining

the voxel clusters were the threshold for the activation map and the size of the cluster. The

active contiguous voxels which were above these specific thresholds were defined as regions

of interest. The program 3dclust in AFNI toolbox finds clusters that fit the criteria. We

set the threshold for the F-test to be greater than 3.045 and the number of voxels in each

cluster to be greater than 20 voxels. We obtained 2 ROIs with these thresholds.
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The MDL-based HRF estimation algorithm was applied to each of the ROIs defined by

AFNI analysis. For each voxel in the ROI the activation levels and one HRF for that ROI

were estimated. The Student’s t-test was calculated for each of the voxels in the ROI and

the t-test activation map was superimposed on the anatomical data. Figure 2.9 shows the

HRF estimates and activation maps for MDL-based and AFNI. The HRF estimates from

the two methods for the two ROIs are shown in subfigures (a) and (b), and (e) and (f).

First ROI is the left one and the second ROI is the right one shown in the activation maps.

The activation map from the MDL-based algorithm is consistent with the AFNI activation

maps. Since AFNI uses voxel-based analysis and MDL uses region-based methods, in low

SNR regions there will be differences. MDL-based performs better in low SNR since it is

region-based. The slight differences between the activation maps are because of differences

between F-test used in AFNI and t-test used in our method, and differences between the

two algorithms. The HRF estimates from MDL-based algorithm are smoother since the

algorithm is ROI-based.

2.4 Conclusion

The use of MDL was introduced for estimating the baseline drift and the HRF in fMRI

signal. For each of the algorithms activation levels for each voxel were estimated as well.

The proposed algorithm based on MDL for the drift estimation needed no prior assumptions

about the drift component and let the data itself find the best model for it. No subspace

was assumed for the drift component; moreover, drift could have different structures across

voxels. This algorithm showed improvement in activation detection and estimating the drift

component compare with other detrending methods such as spline and polynomial meth-

ods. The MDL-based drift and activation level estimation algorithm was applied on a real

fMRI dataset and the results were compared with AFNI, polynomial of order 3 detrending

and spline detrending. The proposed MDL-based algorithm showed less false positives and



38

(a)
0 5 10 15 20 25

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

%
 B

O
L
D

 s
ig

n
a
l 
c
h
a
n
g
e

(b)
0 5 10 15 20 25

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

%
 B

O
L
D

 s
ig

n
a
l 
c
h
a
n
g
e

(c)

(d)

(e) (f)

Figure 2.9. Axial and Coronal views of a single slice activation maps for MDL-based HRF
estimation and AFNI. (a) HRF from MDL-based estimation for ROI 1 (on the left side
of activation maps), (b) HRF from MDL-based estimation for ROI 2 (on the right side of
activation maps), (c) MDL-based activation maps, (d) AFNI activation maps, (e) HRF from
AFNI for one voxel in ROI 1, (f) HRF from AFNI for one voxel in ROI 2.
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more true positives compared with other detrending methods. The benefits of the proposed

algorithm were seen more in the low SNR regions as was shown in the simulations.

The MDL-based algorithm for the HRF and activation level estimation let the data itself

find the best model for the HRF. No subspace was assumed for the HRF, and it could capture

HRF variabilities across regions. The proposed algorithm was applied on a simulated data

with a benchmark HRF and it showed that the proposed algorithm was capable of estimating

the HRF and resulted in better t-test values compared with algorithms that assumed a fixed

shaped HRF. The MDL-based HRF estimation was applied on a real fMRI dataset and the

HRF and activation maps were compared with AFNI. Since the proposed algorithm was

region based the HRF estimates were smoother compared to HRF estimates from AFNI.

The activation maps were comparable with the ones from AFNI.



CHAPTER 3

FMRI: JOINT MAXIMUM LIKELIHOOD ESTIMATION OF HRF AND

ACTIVATION LEVEL1

3.1 Overview

In this Chapter, the joint estimation of the hemodynamic response function and activation

levels is presented. The proposed algorithm is validated on simulated data and two real data

sets. The result of real data sets are compared with AFNI. Throughout this chapter vectors

and matrices are denoted by bold lowercase and uppercase symbols, respectively. Vectors

are defined as column vectors.

As mentioned in the introduction, knowledge of the hemodynamic response function is

necessary for the reliable estimation of the activation levels in fMRI. Furthermore, estimation

of the HRF requires knowledge of activation levels. The cross dependency motivates a

joint approach for estimation of these quantities. The main contribution of this chapter

is a maximum likelihood estimation (MLE) method that jointly estimates the HRF and

activation. We apply regularization on the HRF estimation to allow our method to work

with smaller amounts of data, thus making it possible to focus on smaller regions of interest

and therefore better capture the variations of the HRF across the areas of the brain. The

method is developed in the presence of either white noise or colored noise. Our method does

not require prior knowledge for the probability distributions of the HRF or the activation

levels. This is useful in situations where obtaining reliable and verifiable prior distributions

on the HRF or the activation levels is difficult.

1 c© 2014 Elsevier. Adapted/Reprinted with permission from N. Bazargani, and A. Nosratinia (2014).
Joint maximum likelihood estimation of activation and hemodynamic response function for fMRI. Medical
Image Analysis 18(5), 711-724.

40
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The shape of the HRF is observed to be constant across neighboring voxels in a homo-

geneous region [20]. Thus a more robust HRF estimation may be obtained from the data

corresponding to a set of voxels within a neighborhood, instead of a single voxel. In order to

capture HRF variations, our joint estimation process is applied individually on each of the

regions of interest.

It has been common for ROI-based analyses to depend on other methods to determine the

ROI. In [65] and in [18] regions are first identified as functionally homogeneous parcels in the

mask of the grey matter using a specific procedure. In [64] the input ROIs are SPM clusters

obtained from maps based on standard Statistical Parameter Mapping (SPM) software using

MARSBAR toolbox.2 Makni et al. [65] also required parcellation and a knowledge of active

regions.

In this chapter, two approaches are explored for establishing the ROI. The first approach

is to deduce the ROI via analyzing the data with AFNI (Analysis of Functional NeuroImages)

imaging analysis tool. The second approach does not involve using another algorithm as

the input to ours, but rather uses the proposed joint estimation algorithm in a two-step

“bootstrap” approach, as follows. In the first step, the brain is segmented into equal-size

cubes and the joint MLE method is applied to each cube, without a priori assumptions about

any of the regions. The resulting activation levels are then used to determine the ROI. The

activation levels are discarded after determining the ROI, and then the ROI obtained from

the first round are used in a second round of joint MLE, which determines the final values

of both activation level and HRF. Thus, the joint MLE introduced in this dissertation can

also be used as a stand-alone method.

Table 3.1 shows a comparison between the main features of this work with SPM software

and AFNI toolbox.

2http://www.sourceforge.net/projects/marsbar
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Table 3.1. Comparison of SPM, AFNI and proposed joint MLE
SPM AFNI Joint MLE

Activation estimation Yes. For each voxel. No. It is not part of
the model.

Yes. For each voxel.

HRF estimation
Fixed basis func-
tions, estimates pa-
rameters. Fixed
across voxels.

1. FIR - estimate
for each voxel
2. Fixed a priori
(no estimation)

Estimates HRF for
a ROI.

Variable HRF
Time and disper-
sion derivation,
or using FIR
model. Yes(voxel-
by-voxel).

Yes (voxel-by-voxel) Yes (across ROIs)

Per Voxel or Region? voxel-based voxel-based region-based

Multiple stimuli?
Yes Yes (different HRF

for each stimulus
can be estimated)

Yes (different HRF
for each ROI)

Noise correlation
Yes, Auto regres-
sive (AR(1) for clas-
sical, for Bayesian
AR with order de-
fined in the process)

Can model
ARMA(1,1) with
3dREMLfit

AR(1)

Summary
Low flexibility in es-
timation of HRF via
basis functions.

More flexibility in
HRF via FIR, but
noisy estimate of
HRF.

Joint estimation of
HRF and activa-
tion, ROI-based,
regularized. More
reliable HRF esti-
mate for low SNR
regions.



43

Due to the level of noise and limitation on the data points arising from a region-dependent

model on the HRF, we also consider smoothing constraints. This is, in part, motivated by

the existing work in the literature, which we briefly outline below. It has been shown by

Buxton [15] that the HRF is smooth. Earlier work on the use of smoothness constraint in

the HRF estimation include smoothing a finite impulse response [45], as well as constraints

on the second order discrete derivative operator [67, 20]. In addition, Tikhonov regulariza-

tion [88] has been proposed for imposing smoothness constraints on the HRF estimate. Two

approaches based on using Tikhonov regularization and smoothing splines are introduced

in [95] and [89]. In both papers, the HRF estimation was done voxel-wise on a block design

experimental paradigm. The impact of regularization constraint on the HRF estimates was

studied in [17] by comparing regularization-based techniques to the least squares estimation

methods.

3.2 Methods

3.2.1 Formulation

The time series at voxel j at time t is represented as Equation (2.4) without the drift

component

yj(t) = αj (S(t) ∗ h(t)) + ej(t), ej(t) ∼ N(0,C) (3.1)

where yj is a N × 1 vector, N represents the number of scans, t is the time which is between

1 and N , activation level at that voxel is represented by αi, s(t) is the stimulus time series

which is convolved with the HRF represented by h(t), and ej(t) is a zero-mean Gaussian

random variable that represents the observation noise with the covariance matrix C. In this

formulation we only model activation signal and Gaussian noise, so other artifacts such as

drift are removed from the measured signal. In this formulation only one stimulus time series

is applied to the subject. The solution for the multiple stimuli experiment is discussed in

Section 3.2.7.
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We assume that the HRF is approximately invariant across small regions, which we denote

as regions of interest. The activation levels within each ROI may vary. The size of ROI is

denoted with M . The combined time series equation for a ROI is:

Y = S



h1

h2

...

hp


[α1 α2 · · · αM ] + E (3.2)

where Y is a N ×M matrix of observations, whose column yj is the time series observed

at voxel j. The HRF is represented by [h1 · · ·hp]t. In agreement with the existing results as

well as common sense, we assume the HRF starts from zero and decays to zero eventually as

shown in Figure 1.4. The time-sampled version of the HRF is represented as a finite impulse

response (FIR) filter that has p nonzero values. The column vector α = [α1 α2 · · · αM ]t rep-

resents the activation levels, E contains the observation noise. For the purposes of exposition

this noise is at first assumed to be white, and then the results are extended to the case of

temporally correlated noise. In fMRI the noise is spatially correlated [91], as well. However,

since the goal of this study is to look at activation levels and HRF estimations, we simplify

the noise model by just accounting for the temporal correlation. The spatially uncorrelated

noise model is prevalent in works where HRF is estimated, including [2, 17, 45, 59, 64, 65].

The matrix S represents the stimulus data and has a Toeplitz structure in order to

implement convolution by matrix multiplication. Specifically:

S =



s(1) 0 · · · 0

s(2) s(1) · · · 0

...
... · · · ...

s(N) s(N − 1) · · · s(N − p)


(3.3)
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3.2.2 Rank-one Approximation in White Noise

By assuming that the noise is independent, identically distributed Gaussian ej(t) ∼ N (0, σ2),

the likelihood function for the voxel time series in a region with M voxels becomes

p(Y; h,α, σ) =
M∏
j=1

p(yj; h, αj, σ) (3.4)

∝
M∏
j=1

σ−N exp(− 1

2σ2
‖yj − S hαj‖2

2) (3.5)

where σ is the standard deviation of the noise at each of the voxels in the ROI. It is assumed

that the amount of noise is the same in each ROI. Maximizing the likelihood leads to the

following optimization:

min
h,α

M∑
j=1

‖yj − S hαj‖2
2 (3.6)

where yj is the time series vector of voxel j, with activation level αj. Recalling that Y =

[y1 . . .yM ], Equation (3.6) can be converted from a sum of vector norms to its equivalent in

Frobenius norm, transforming the optimization problem as follows:

min
h,α
‖Y − S hαT‖2

F (3.7)

Since the product of two matrices is limited in its rank to the lower of the constituent

matrix ranks, the product S (hαT ) is a rank-one matrix. Thus, the problem represented

by expression (3.7) is essentially to find a rank-one approximation to the observations Y.

From the Eckart and Young theorem [31] it follows that a low-rank approximation either in

the Frobenius norm or the spectral norm is given by a truncated sum of the singular value

decomposition of the original matrix. Specifically, the answer to:

min
B
‖Y −B‖F (3.8)

s.t. rank(B) ≤ p (3.9)
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is given by:

Bopt =

p∑
i=1

ηiuiv
T
i

where ηi are the ordered singular values and ui and vi are the respective left and right

singular vectors of matrix Y. For a rank-one approximation, only one of the terms will be

retained, therefore:

Bopt = S ĥ α̂T = η1u1v
T
1

from which we set α̂T = η1v
T
1 and S ĥ = u1, the estimates are as follows:

α̂ = η1v1 ĥ = S†u1 (3.10)

where S† is the pseudo inverse of S. To resolve the scaling ambiguity between h and α, a

normalization constraint is imposed on ĥ, i.e., ‖ĥ‖2 = 1.

3.2.3 Regularized Rank-one Approximation in White Noise

We now turn to the practical question of the required data for the reliable computation

of the maximum likelihood solution. In our problem, this requires special care because we

wish to obtain a space-varying HRF in homogeneous regions, which implies that the voxels

whose observations are used to obtain the maximum likelihood solution must be concentrated

around a certain locality. This imposes a practical upper limit on the number of voxels that

can be used in our estimation.

To solve this problem, we turn to earlier investigations which have shown that the HRF is

a smooth function of time [15]. We then try to incorporate this knowledge into our algorithm

by imposing a smoothing constraint on the estimated HRF using the Tikhonov regularization

technique [88]. The cost function to be minimized in this case is

min
h,α

{
‖Y − S hαT‖2

F + λ ‖D h‖2
2

}
(3.11)
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where λ is the regularization parameter. The smoothness constraint is imposed by a discrete

second derivative matrix D which is defined as

D =



−2 1 0 · · · · · · 0

1 −2 1 0
. . .

...

0
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

...
. . . 0 1 −2 1

0 · · · · · · 0 1 −2


(3.12)

We use a regularized rank-one matrix approximation to minimize this penalty cost func-

tion. We first find the rank-one matrix approximation of Y, which is Y(1) = η1u1v
T
1 . We

define u = u1 and v = η1v1. By substituting h with S†u1 and α with v, the iterative

estimation procedure will be simplified. The minimization problem is transformed to:

min
u,vT

{
‖Y − uvT‖2

F + λ ‖L u‖2
2

}
(3.13)

where L = DS†. Now the vectors u and v are updated iteratively until convergence.3

A relaxation method is used to solve the minimization problem, resulting in the following

update equations.

u(k+1) = (v(k)Tv(k)I + λLTL)−1Yv(k)

v(k+1) =
YTu(k+1)

u(k+1)Tu(k+1)
(3.14)

After convergence and finding the optimum v and u, the estimates of h and α are

α̂ = vopt ĥ = S†uopt (3.15)

The computation of the update Equations (3.14) for a regularized rank-one minimization

problem in Equation (3.13) is as follows. Our approach to find vectors u and v is found via a

3This is similar to the technique used in [82].
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relaxation method, specifically, by the successive optimization of u while v is held constant,

and vice versa.

First, for a fixed v we optimize u. The minimization criterion (3.13) can be rewritten as

∑
j

∑
i

(yji − ujvi)2 + λuTLTLu (3.16)

By expanding the squares, we have

min
u

{∑
j

∑
i

y2
ji − 2

∑
j

∑
i

yji uj vi +
∑
j

∑
i

u2
jv

2
i + λuTLTLu

}
(3.17)

The first term does not have any effect on the minimization. Therefore, we need to minimize

min
u

{
− 2uTYv + uTuvTv + λuTLTLu

}
(3.18)

By taking the derivative with respect to u and setting it to zero, we get

− 2Yv + 2vTvu + 2λLTLu = 0 (3.19)

In each iteration k, we can use the equation above to calculate u in terms of observed values

as well as the latest v(k), the value of v in iteration k.

u(k+1) = (v(k)Tv(k)I + λLTL)−1Yv(k) (3.20)

We now perform the remaining task, namely to find an update for v given the latest calcu-

lated u. By expanding the squares in a manner similar to Equation (3.17) and ignoring the

terms that do not involve v,

min
v

{
− 2
∑
j

∑
i

yji uj vi + uTuvTv
}

(3.21)

which is equivalent to

min
v

{
− 2YTuv + uTuvTv

}
(3.22)
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By taking derivative with respect to v and setting it to zero

− 2YTu + 2uTuv = 0 (3.23)

The solution is

v(k+1) =
YTu(k+1)

u(k+1)Tu(k+1)
. (3.24)

Selecting a suitable regularization parameter, λ, is an important issue. One of the promi-

nent techniques that is used to find near-optimum regularization parameter is the generalized

cross-validation criterion [42]. However, due to the nature of the cost function in Equa-

tion (3.13) and optimizing over two vectors, the derivation of cross validation is mathemat-

ically intractable. Therefore we introduce another approach for choosing the regularization

parameter. We calculate the mean square error between the benchmark and the estimated

HRF for each value of λ for the simulated data set and test 200 different values for λ, in

the range from zero to 107 with linear spacing. The implementation is done in MATLAB,

on Intel core2, 2.0 GHz processor. The computation time for selecting the optimum λ de-

pends on the number of voxels in a ROI and ranges from 60 to 72 seconds for M = 50 and

M = 100 voxels, respectively. The regularization parameter that corresponds to the least

mean squares error is selected as the optimum value. The process of choosing the optimum

λ was done on the block design and event related simulated data sets. The chosen optimum

regularization parameter for the event related design was used for the real event related fMRI

data experiments.

It is noteworthy that the basic matrix analysis and optimization techniques used in this

section have a long and storied history, but their application to the specific problem at

hand and the adaptation to the requirements of our problem are novel. In passing, we

note the distinction of our approach with respect to earlier works that also used smoothing,

e.g., [82] which finds the sparse principal component in their analysis. The work in [82]

solved the problem for a sparseness constraint while we modify the regularization term to

be the smoothing constraint and solve for the regularized rank-one matrix approximation.
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3.2.4 Rank-one Approximation in Colored Noise

Various results, e.g., [92], indicate that the additive noise in fMRI is not purely white, but

rather is better modeled by a random sequence that is correlated in time. Therefore we

extend our results to capture the more accurate model for the noise in fMRI.

Using a formulation for a voxel time series as Equation (3.1), the likelihood function for

all the voxels time series in the ROI becomes

p(Y; h,α,C) =
M∏
j=1

p(yj; h, αj,C) (3.25)

∝
M∏
j=1

|C|−
1
2 exp

(
− 1

2
(yj − S hαj)

TC−1(yj − S hαj)
)

(3.26)

where h,α and C, the noise covariance matrix, are the unknown parameters. We model

the fMRI noise as a first order autoregressive (AR) process. The use of AR(1) noise model

has precedents in the literature, e.g., [14]. We assume that noise statistics are stationary

within a homogeneous region of neighboring voxels, similar to a global AR(1) which was

proposed in [34]. However, no assumptions are made in our work about global variations of

the noise statistics. It follows that the noise covariance matrix of the voxels in a given region

of interest is fixed and is represented by C. For a AR(1) temporal noise model, C = σ2
eΓ,

where σ2
e is the variance of the input white Gaussian noise in the AR(1) model and Γ is a

matrix that its `th element is γ` = ρ|`|, where ρ is the delay-one autocorrelation of noise.

By substituting C in Equation (3.26), the maximum likelihood solution takes the following

form

min
h,α,Γ

{ M∑
j=1

(yj − S hαj)
TΓ−1(yj − S hαj) + lnΓ

}
(3.27)

Because Γ−1 is a positive definite matrix, it can be decomposed to square roots, i.e., Γ−1 =

WTW. By substituting in Equation (3.27),

min
h,α,W

{ M∑
j=1

‖W(yj − S hαj)‖2
2 + lnΓ

}
(3.28)
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Or,

min
W

min
h,α

{
‖WY −WS hαT‖2

F + lnΓ
}

(3.29)

It should be noted that W itself is completely characterized by one scalar parameter ρ.

Several values of ρ in the range of 0 to 1, as mentioned in [93], are tested. The minimization

is done in two steps. For each ρ, the matrix W is generated. First we optimize the inner

minimization with respect to h and α, which gives a result which is a function of W (or ρ).

In the second step, the minimum over W (effectively a scalar optimization over ρ) is found.

3.2.5 Regularized Rank-one Approximation in Colored Noise

The optimization for the colored noise case is as follows

min
W

min
h,α

{
‖WY −WS hαT‖2

F + λ‖Dh‖2
2 + lnΓ

}
(3.30)

The noise model is AR(1) as the previous section and for each correlation coefficient ρ, the

matrix W is generated. For each W, we optimize over h and α using the regularization

algorithm explained in Section 3.2.3. Then we minimize over W (effectively a scalar opti-

mization over ρ) and the optimum values are obtained for the activation levels and the HRF

estimates.

3.2.6 Iterative Estimation

In previous sections all the voxels in the region were used in the estimation of the HRF and

were treated as active voxels. We extend the estimation algorithm to the case where inactive

voxels or insignificantly activated voxels also exist in the ROI. Inactive voxels harm the

reliability of the HRF and activation levels estimate. We address this problem by iterating

between the estimation of the HRF and the activation levels.

The iterative process consists of two halves. In the first half-iteration, the HRF and

activation levels are estimated via a rank-one matrix approximation in the same way dis-

cussed in the previous sections considering all the voxels in the ROI. This gives an initial
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estimate for activation levels and the HRF. In the second half-iteration, the most recently

estimated HRF is convolved with the stimulus time series and used as a design matrix in

a generalized linear model (GLM). The new estimates for activation levels is obtained by

the least squares estimation that is well-known in the literature. We then calculate Stu-

dent’s t-test for each voxel in a ROI to perform statistical inference on activation levels. A

threshold for t-values is selected according to the desired significance level. The t-values for

each voxel are converted to P-values based on the degrees of freedom of the dataset. The

significance level of P-value = 0.001 which is corrected for multiple comparisons is chosen

for selecting the t-test threshold. The Bonferroni correction method [1] is used for multiple

comparison correction, where for a single voxel the significance level is calculated by dividing

the significance level 0.001 by the number of the tests (voxels). If P-value of each voxel is

less than 0.001/Number of tests, then the voxel is considered active and the null hypothesis

is rejected.

Those voxels with t-tests less than a threshold will be excluded from the next iteration.

The iterations will stop when no further improvement on the HRF estimate is observed.

After convergence, the last HRF estimate is used for calculating the t-tests for all of the

voxels in the region.

It is important to select a good threshold for t-test values in order to exclude inactive

voxels. If the threshold is set too high, the number of the participating voxels decreases,

which makes the estimates less reliable, while setting the threshold too low will include too

many low-quality voxels which will also harm the estimate. The iterative process outlined

in this section can be used with any of the algorithms proposed previously. In particular,

it can be used in the context of white or colored noise, and with or without regularization

constraint. The effect of the selection of the t-test threshold on the estimations is studied and

the results are shown in Figure 3.10, which appears later in this Chapter. The convergence

of the iterative algorithm is studied by examining the changes in the estimated HRF from

one iteration to another. At most 10 iterations are sufficient to achieve convergence.
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3.2.7 Extension to Multiple Stimuli

All of the above proposed algorithms can be extended to multiple stimuli. If the responses to

different stimuli are in different brain locations, the estimations are straightforward. For each

stimulus we find the joint MLE solution in every ROI. Then for each ROI and each stimulus,

we evaluate the objective function with its corresponding estimates. For each stimuli the

estimates which give the lowest error at a given ROI, are selected as the response to that

stimuli.

In the case where two stimuli give responses in the same region, the same approach as

mentioned above can still work for the event related design as long as the stimulus time

series are non-overlapping in time. There are several examples in the literature for the

non-overlapping, orthogonal designs [47].

3.2.8 Region of Interest Selection

For real fMRI data two approaches are used to obtain ROIs.

• The first method is to use AFNI toolbox and analyze the data to locate active areas

of the brain. Then use 3dclust program in AFNI to find the active clusters. These

ROIs from AFNI are used as inputs for the joint MLE algorithm.

• The second approach is to segment the brain into equal size cubes. The optimal

cube size for this segmentation reflects a trade-off. The cubes (ROIs) should be small

enough to guarantee the invariance of the HRF within each cube but large enough to

contain reliable information for the estimation. Cubes of size 27 to 125 voxels represent

a reasonable trade-off that produce good results. This cube segmentation uniformly

divides the space.

For the second approach which is the analysis with the brain segmentation method,

the joint MLE method is applied to each cube separately, so the cubes act as a rough
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approximation to desired regions. The resulting activation levels are then used to determine

the active regions. The ROIs from the first round are used in a second round of joint MLE

to estimate the final activation levels and HRF inside each ROI. In other words, we can

“bootstrap” our method by running it in the first round with cube-shaped regions.

3.3 Results

3.3.1 Simulated Data

In the first experiment, the proposed algorithm was applied to a simulated fMRI time series

that was constructed by convolving a stimulus time series with a benchmark HRF. Our

benchmark HRF was constructed by forming the difference of two Gamma functions with

known parameters as in [41] which is mentioned in Equation (2.10). The simulated time series

also reflects the magnitude of activation levels and a Gaussian noise. The noise statistics

were fixed for the voxels in the ROI and were chosen such that the SNR was within the

typical range of the SNR in the real fMRI data, which is between 0.2 and 1 [52]. The SNR

was defined as ||S hαi||2/(N × σ2). We applied our algorithm on both block design and

event related experiments. For the block design experiment, the stimulus time series had a

period of 60 seconds, with 30 seconds on and 30 seconds off intervals. For the event related

experiment, there were 51 stimuli with random inter stimulus intervals. The time series had

N = 300 samples. M different time series for the voxels in a ROI were generated in this

way. We performed experiments with white Gaussian noise as well as with colored Gaussian

noise having first order autoregressive model.

Simulated data with white Gaussian noise

The MLE algorithm with rank-one approximation was applied to the simulated data with

additive white Gaussian noise. The results are presented for both regularized and non-

regularized cases in block design and event related experiments.
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To evaluate the estimate of the HRF, Monte Carlo simulation was performed on a block

design paradigm and also on an event related paradigm. In these simulations SNR = 0.2, the

number of voxels was M = 50, and Monte Carlo simulation was performed Q = 500 times.

The mean of the HRF estimate and the variance of the estimation at each point are shown

in Figures 3.1 and 3.2 for block design and event related paradigms. The HRF estimates

are presented with and without imposing the smoothing constraint. It is observed that the

smoothness constraint improves the accuracy of the mean of the HRF estimate (closer to

the benchmark HRF). Inclusion of the smoothing constraint also improves the estimation

variance. In the interest of brevity the results are reported only at a single SNR, but results

at a wide range of SNRs have been obtained that show a similar trend.

For the error analysis, we generated fMRI time series for one voxel with block design

paradigm and performed Q = 500 Monte Carlo realizations over the entire ROI. The ac-

tivation levels were drawn from a Normal distribution, αi ∼ N (3, 0.01). The mean square

error between the benchmark and the estimated HRF, and the MSE between the benchmark

and the estimated activation levels were calculated. First, an average solution for the esti-

mated HRF, h̄, over Q = 500 realizations was computed. Then the estimated variance was

approximated by V(h̄), and the mean square error was calculated as follows

h̄ =
1

Q

Q∑
q=1

ĥq (3.31)

V(h̄) =
1

Q

Q∑
q=1

(ĥq − h̄)2 (3.32)

MSE(ĥ; h) ≈ V(h̄) + (h− h̄)2 (3.33)

Figures 3.3 and 3.4 show the MSE between the benchmark and the estimated HRF with no

regularization for a block design experiment and for an event related experiment. Experi-

mental data are produced for several SNRs and for observation sets containing M = 50 and

100 voxels. The results show that the performance of estimation improves with both SNR
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Figure 3.1. Average of the HRF estimate and the variance of the estimate at each point on a
ROI with 50 voxels, with SNR = 0.2 for (a) a block design experiment without regularization,
(b) a block design experiment with regularization.



57

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (Seconds)

%
 B

o
ld

 s
ig

n
a

l 
c
h

a
n

g
e

 

 

benchmark HRF

without regularization

(a)

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (Seconds)

%
 B

o
ld

 s
ig

n
a

l 
c
h

a
n

g
e

 

 

benchmark HRF

with regularization

(b)

Figure 3.2. Average of the HRF estimate and the variance of the estimate at each point
on a ROI with 50 voxels, with SNR = 0.2 for (a) an event related experiment without
regularization and (b) an event related experiment with regularization.
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and M . The reported SNR at each case is the average of SNR among voxels in the ROI.

The performance of the method including regularization constraint are shown in Figures 3.5

and 3.6 for observation sets containing M = 50 and 100 voxels for various SNR with white

noise assumption. By imposing the smoothing constraint on the HRF shape, improvements

are achieved in the form of smaller MSE between the benchmark and average of the HRF

estimates compared to non-regularized case.

Similar error analysis experiments were performed with the block design paradigm and

this time we evaluated the activation level estimates. The region of interest had M = 100

voxels and SNR = 0.5. The benchmark coefficients were drawn from a Gaussian distribution

with mean 3 and variance of 0.01. For each voxel, the mean and variance of the activation

level were calculated via Monte Carlo. For each voxel in the ROI, the average of the esti-

mated activation level and the estimation variance were computed. In Figure 3.7 (a) the

absolute value of the difference between the benchmark and estimated activation levels at

each voxel are plotted. It is observed that the regularization constraint reduces the estima-

tion error. The variances of the estimated activation levels are shown in Figure 3.7 (b). The

regularization constraint results in a smaller estimation variance. Experiments at other SNR

levels were also performed which verify the expected trends with respect to SNR and number

of voxel observations, but were not included in this dissertation in the interest of brevity.

The performance of the estimation algorithm on estimating activation levels was evaluated

on the event related paradigm using Monte Carlo simulation, as well. It is observed that the

regularization constraint improves the HRF estimate as well as the activation levels estimate.

It also improves (reduces) the estimation variance. These experiments show that while event

related and block design experiments both benefit from regularization, the improvements are

more pronounced in the latter case.

In the case that voxels in a ROI have larger differences between their activation levels,

the same results for error analysis with Monte Carlo have been obtained. The variances of
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Figure 3.3. Mean square error between the benchmark HRF and the estimated HRF with
different SNRs for a block design experiment with white noise assumption for (a) M=50 and
(b) M=100 voxels.
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Figure 3.4. Mean square error between the benchmark HRF and the estimated HRF with
different SNRs for an event related experiment with white noise assumption for (a) M=50
and (b) M=100 voxels.
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Figure 3.5. Effect of regularization constraint on MSE between the benchmark HRF and
the estimated HRF with different SNRs for a block design experiment on (a) M=50 and (b)
M=100 voxels.



62

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Time (Seconds)

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

 

 

SNR=0.2, with regularization

SNR−0.5, with regularization

SNR=0.8, with regularization

SNR=1,with regularization

(a)

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−4

Time (Seconds)

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

 

 

SNR=0.2,with regularization

SNR=0.5,with regularization

SNR=0.8, with regularization

SNR=1, with regularization

(b)

Figure 3.6. Effect of regularization constraint on MSE between the benchmark HRF and the
estimated HRF with different SNRs for an event related experiment on (a) M=50 and (b)
M=100 voxels.
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Figure 3.7. Comparing the estimated activation levels by imposing regularization for a
block design experiment with 100 voxels in the ROI and SNR=0.5. (a) Absolute value of the
difference between estimated and benchmark activation levels. (b) Variance of the activation
levels estimates.
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Table 3.2. Monte Carlo comparison between SPM and joint MLE. Average of mean square
error between benchmark and estimated values are shown for block and event related designs
for a ROI with 100 voxels.

average of MSE SNR = 0.5 SNR = 0.8 SNR = 1

HRFNoReg, Block design 0.0078 0.0049 0.0041
HRFReg, Block design 0.0071 0.0044 0.0037
HRFSPM, Block design 0.0162 0.0162 0.0162

HRFNoReg, Event related 1.04×10−4 6.43 ×10−5 5.27 ×10−5

HRFReg, Event related 9.95 ×10−5 6.16 ×10−5 5.02 ×10−5

HRFSPM, Event related 0.0162 0.0162 0.0162

α̂NoReg, Block design 0.2093 0.0907 0.0684
α̂Reg, Block design 0.1832 0.0812 0.0617
α̂SPM, Block design 0.3169 0.2974 0.2963
α̂NoReg, Event related 0.0657 0.0387 0.0297
α̂Reg, Event related 0.0657 0.0387 0.0297
α̂SPM, Event related 0.3077 0.2716 0.2565

the estimates are higher compared to the case with smaller difference between activation

levels.

We compared the performance of the rank-one MLE method with the Statistical pa-

rameter mapping (SPM) software which uses the generalized linear model (GLM) analysis.

In SPM-GLM the HRF is pre-calculated using a mixture of Gamma functions and is fixed

during the analysis, while in our approach the HRF is estimated jointly with activation lev-

els. The comparison was on simulated data corrupted by white Gaussian noise. In these

simulations the number of voxels was M = 100, activation levels were drawn from a Normal

distribution N (3, 0.1) and Monte Carlo simulation was performed Q = 500 times. Several

SNR values have been tested for block design and event related experiments. The average

of the mean square error which was calculated in Equation (3.33), was computed for the

HRF estimate and activation level estimates and reported in Table 3.2. Comparing the re-

sults show smaller average MSE for the joint MLE approach compared to SPM-GLM. The

smallest average MSE is obtained with the regularized MLE approach.
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Experiments with Colored Noise

As mentioned earlier, the noise correlations are modeled by a first-order autoregressive AR(1)

model. No regularization constraint was imposed on the HRF in this experiment.

For the error analysis, M = 50 simulated fMRI time series were generated with the

block design paradigm. The benchmark HRF was convolved with the stimuli, the result

was multiplied by a benchmark activation level and then colored Gaussian noise with AR(1)

model was added to it. The SNR used in this simulated experiment was selected to be in line

with the SNR observed in actual fMRI data using present-day technologies. We performed

Q = 500 Monte Carlo realizations over the entire ROI with M voxels. The estimation results

were compared for various values of the correlation coefficient for noise. The goal of this

experiment was to study the effect of whitening the colored noise on the HRF and activation

level estimation.

The correlation coefficient ρ = 0.4 is similar to the noise correlation observed in the real

fMRI data sets. For a block design experiment with SNR = 0.3, ρ = 0.4 and the activation

levels drawn from a N (3, 0.01), no significant difference is observed in the HRF estimate by

accounting for the colored noise. This result is in agreement with the observations made by

previous investigators, e.g., [65, 68], which report that under the above-mentioned conditions

the noise model has little impact on the estimated HRF shape.

We also investigated the effect of colored noise on detection performance. Figure 3.8

shows the t-tests calculated in three different scenarios: using the benchmark (ideal) noise

correlation coefficient, estimating the noise correlation coefficient, and ignoring the corre-

lation of noise (assuming it is white even though it is not). It is observed that taking

into account the noise correlation result in t-values closer to the t-value calculated with the

benchmark covariance.

We repeated this experiment for various other values of correlation coefficient and SNR,

and the results demonstrated the same trend as seen in Figure 3.8. The improvements in the
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Figure 3.8. T-tests calculated with the benchmark correlation coefficient, compared with
the t-tests calculated with and without whitening.

t-values diminish as the SNR increases. This is also in agreement with the result reported

in [65]: that using an AR(1) noise model at low SNR slightly improves the detection.

Although colored noise models yield a small improvement at low SNR for activation

detection, our simulations show that the corresponding improvements for the HRF estimation

are not at all significant.

Iterative Estimation

We applied our iterative algorithm on a simulated data generated as follows: an ROI was

constructed with 40 active and 10 inactive voxels. The observation length was N = 300 and

observations were contaminated with additive white Gaussian noise. The iterative estimation

algorithm was implemented with a regularization constraint.

For an event related paradigm with SNR = 0.2 and activation levels drawn from a

normal distribution αi ∼ N (3, 0.01), Figure 3.9 (a) shows the benchmark HRF as well as
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the HRF estimates at the first and last iterations. The t-tests are shown in Figure 3.9

(b). The HRF estimate and activation detection performance improve through iterations.

The t-test statistics improve through iterations and approach the t-tests calculated with the

benchmark HRF. We also performed simulations for SNR from 0.2 to 1. The results show

that the advantage of the iterative algorithm is more pronounced at lower SNRs. We note

that this was not unexpected, since the method was devised in the first place to address the

small data sets resulting from a region-based estimation of the HRF. We observed the same

improvement in the HRF and activation level estimations for the block design paradigm.

We investigated the effect of choosing the t-test threshold on the estimations for a ROI

with 40 active and 10 inactive voxels. Figure 3.10 (a), shows the estimated HRF for a block

design experiment with the SNR of 0.8 for different t-test thresholds. The activation levels

were drawn from a Gaussian distribution with mean 2 and variance 0.5. The results for

an event related design are shown in Figure 3.10 (b), the SNR is 0.2 for this experiment.

By setting a high t-test threshold, the number of voxels whose t-test exceeds the threshold

decreases and the estimates become less reliable. The significance level of P-value = 0.001

corrected for multiple comparisons, corresponds to a t-test threshold which will result in

reliable estimates.

3.3.2 Real fMRI Data: Event Related experiment

Analysis with active ROIs from AFNI

The first real data is the same dataset used in Section 2.3.2. The data were acquired from

a healthy subject at the University of Texas Southwestern at Dallas on a 3-T scanner.

The experiment was an event related paradigm with 27 auditory stimuli, the events were

jittered with random inter stimulus intervals. The voxel size was 3.125 mm×3.125 mm×4

mm and the number of scans was 160, repetition time (TR) was 2 seconds and the only
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Figure 3.9. (a) HRF estimates and (b) t-tests for a ROI with 50 voxels including 40 active
voxels. One realization of event related with SNR=0.2 and white noise assumption.
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Figure 3.10. Effect of the t-test threshold on the estimated HRF, for the iterative algorithm
in a ROI with 40 active and 10 inactive voxels for (a) a block design experiment with
SNR = 0.8, (b) an event related experiment with SNR = 0.2.
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preprocessing step done on the data was the registration. The size of the whole brain data

set was 64×64×40 voxels.

The regions of interest were obtained as follow. The data was detrended (using Legendre

polynomials of degree 3) and then analyzed with AFNI toolbox using 3dDeconvolve to locate

the active areas of the brain. The criteria for defining the voxel clusters were the threshold

for the activation map and the size of the cluster. The active contiguous voxels which were

above these specific thresholds were defined as regions of interest. The program 3dclust in

AFNI toolbox finds clusters that fit the criteria. We set the threshold for the F-test to be

greater than 3.045 and the number of voxels in each cluster to be greater than 10 voxels.

We obtained 4 ROIs with these thresholds.

The iterative algorithm with regularization constraint and with the color noise assump-

tion was applied to each ROI. The HRF and activation levels for each of the voxels in each

region were estimated. The Student’s t-test was calculated for each voxel.

The activated brain regions identified by our approach were compared with the activation

maps from AFNI. The axial and coronal views of the activation maps for one of the ROIs

(ROI 1) are shown in Figure 3.11. The cross-hair in Figure 3.11 shows the voxel of interest.

The subfigure (a) shows activation maps from our MLE approach and Figure 3.11 (b) shows

the HRF estimate with our iterative approach for that voxel and its corresponding ROI. The

bottom row shows the region of interest and the estimated HRF obtained from AFNI. The

activation maps are superimposed on the anatomical data. The HRF estimate with AFNI

for the same voxel is shown in Figure 3.11 (d). The results on the two other ROIs are shown

in Figure 3.12 and Figure 3.13, respectively.

The subfigure (c) in each of these figures shows the ROI from AFNI, which is the input to

the MLE. Thus, the activate regions from iterative joint MLE algorithm which are shown in

subfigure (a) should be consistent with AFNI activation maps in subfigure (c). Our method

is not too far from AFNI when signal to noise ratio (SNR) is good, because in that case
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Figure 3.11. Axial and coronal views of a single slice activation maps for ROI 1. (a) activation
maps from the MLE method, (b) estimated HRF from MLE method, (c) ROI obtained from
AFNI, (d) estimated HRF from AFNI.

the precise determination of the HRF is not crucial since at high SNR the activation is

somewhat robust to the precise form of the HRF. At very high SNR even a single voxel

may have enough information to produce a sufficiently close approximation of the HRF

estimate. The differences between our algorithm and AFNI, one would expect, are not in

entirely different activation, but rather on the voxels in the activation region where the SNR

is lowest. Thus it is not surprising that the overall location of the new activation is not

different from AFNI, but the shape of the new region is slightly different and improved.

In AFNI the activation analysis as well as the HRF estimation are performed voxel-wise.

In our approach, the HRF estimation is performed over a region. The HRF is estimated in

AFNI via a finite impulse response filter.
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Figure 3.12. Axial and coronal views of a single slice activation maps for ROI 2. (a) activation
maps from the MLE method, (b) estimated HRF from MLE method, (c) ROI obtained from
AFNI, (d) estimated HRF from AFNI.

Analysis with no knowledge on active ROIs

The same real fMRI data as in Section 3.3.2 was analyzed without using another algorithm

to provide input ROIs to the joint MLE algorithm, but uses the joint MLE algorithm in a

two-step “bootstrap” approach as mentioned in Section 3.2.8. In the first round, the brain

was segmented into equal-size cubes of 3 × 3 × 3 voxels. The iterative algorithm with the

colored noise assumption was applied to each cube separately. The resulting activation levels

from first round were used to determine the active regions. The threshold for t-test to define

active regions was chosen based on the desired significance level for false positive errors. The
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Figure 3.13. Axial and coronal views of a single slice activation maps for ROI 3. (a) activation
maps from the MLE method, (b) estimated HRF from MLE method, (c) ROI obtained from
AFNI, (d) estimated HRF from AFNI.

regions from first round were used in second round of joint MLE to estimate final activation

levels and HRF.

The activation maps and HRF estimates from joint MLE were compared with the results

from AFNI. Figure 3.14 subfigure (a) shows coronal and sagittal views of the t-test activation

map for ROIs defined as active with joint MLE algorithm. The HRF estimate for the ROI

which is shown with crosshairs is in subfigure (b). The activation map from AFNI which is

F-test are shown in subfigure (c), the HRF estimate from AFNI is shown in subfigure (d).

Figure 3.14 shows that even without prior knowledge of active ROI, our joint MLE approach

is capable of detecting active regions. As mentioned previously, in AFNI the activation
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analysis as well as the HRF estimation are performed voxel-wise. In our approach, the HRF

estimation is performed over a region.

We observe slight differences with AFNI, which are explained by the differences between

F-test and t-test and the differences between the algorithms used in AFNI and our method.

However, we note that varying amounts of difference may be observed between AFNI and

our method, for example when signal to noise ratio is low on a per-voxel basis, but the active

ROI is not too small. In such cases, a more reliable HRF estimate and hence more reliable

estimate of activation level, can be obtained by our proposed joint MLE method since it is

ROI-based.

3.3.3 Real fMRI Data: Block Design experiment

The second real fMRI data is the “attention to visual motion” data set available on the SPM

web site. The data set was used with permission from Methods group at the Wellcome Trust

Centre for Neuroimaging. We used this dataset in Section 2.2.2. This data set was obtained

by Christian Büchel and is described in [13]. The experiment was a block design consisted

of 4 conditions: fixation, static, no attention and attention. Each of these conditions were

blocks of 32.2 seconds. The TR was 3.22 seconds. There were 360 scans in this study. The

experiment was performed on a 2 Tesla Magnetom VISION (Siemens, Erlangen) whole-body

MRI system equipped with a head volume coil. Contiguous multislice T2*-weighted fMRI

images, with 64×64 pixels, 32 slices and slice thickness of 3 mm. Image processing and

statistical analysis were carried out using SPM8 and MATLAB. All volumes were realigned

to the first volume and a mean image was created using the realigned volumes. A structural

MRI image, acquired using a standard three-dimensional T1 weighted sequence (1×1×3 mm

voxel size) was co-registered to this mean (T2) image. Finally all the images were spatially

normalized to a standard Tailarach template and smoothed using a 6 mm full width at

half maximum (FWHM) isotropic Gaussian kernel. Figure 3.15 shows the stimuli during
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Figure 3.14. Coronal and sagittal views of a single slice activation maps. (a) activation maps
from the MLE method without prior knowledge on active ROI, (b) estimated HRF from
MLE method, (c) activation map based on AFNI 3dDeconvolve algorithm, (d) estimated
HRF from AFNI.
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Figure 3.15. Fixation (Stimulus 1) and Attention (Stimulus 2) conditions over the duration
of the scans. Amplitude of 1 represents the stimulus was on.

fixation and attention conditions. The fMRI time series was detrended with the third degree

polynomial before applying the joint-MLE algorithm.

The data were analyzed using joint MLE with two methods for ROI selection as mentioned

in Section 3.2.8. The first method was using AFNI to analyze the data and get active ROI.

The data was analyzed with AFNI toolbox using 3dDeconvolve to locate the active areas

of the brain. The criteria for defining the clusters were the threshold for the activation map

and the size of the cluster. The active contiguous voxels which were above these specific

thresholds were defined as regions of interest. The program 3dclust in AFNI toolbox finds

clusters that fit the criteria. We set the F-test threshold for this data set to be greater than

25 and the number of voxels in each cluster to be greater than 25. We obtained one ROI

with these thresholds. The analysis from joint MLE with the two different input methods

for ROI selection was compared with AFNI results.
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The second method was using the two-step “bootstrap” approach. The brain was seg-

mented into equal-size cubes of 5× 5× 5 voxels. The iterative algorithm with colored noise

assumption was applied to each cube separately. For this multiple stimuli case the stimuli

were orthogonal and Si
†Sj = 0 for each stimulus i and j. We applied the iterative MLE

algorithm for each stimuli and estimate the HRF and activation levels for each stimuli as

mentioned in Section 3.2.7. The active regions were determined based on the threshold on

the t-test values. The threshold was chosen based on desired significance level of 0.001. These

active regions were used as ROI input for the second round. Figure 3.16 shows activation

maps and HRF estimates from joint MLE with ROIs from bootstrap method (subfigures a

and b), AFNI analysis (subfigures c and d) and joint MLE with ROIs from AFNI (subfigures

e and f). The HRF estimate for AFNI is for the voxel which is shown by crosshair. The HRF

estimates for the joint MLE are for the whole ROI. The activation maps in subfigure (a)

show that even without prior knowledge of active ROI, the joint MLE approach is capable

of detecting active ROIs. The shape and location of the active regions are similar between

AFNI analysis and joint MLE approach. The slight differences between our joint MLE results

and AFNI results are because of differences between F-test and t-test, differences between

algorithms in AFNI analysis and our method, and using voxels versus regions of interest for

the analysis. Subfigures (b) and (f) show the HRF estimates for the two stimuli shown in

Figure 3.15. As can be seen if there are multiple stimuli joint MLE approach can be used to

estimate the HRF for all the individual stimuli as long as the stimuli are orthogonal.

3.4 Conclusion

This chapter introduced a maximum likelihood method for jointly estimating the activation

levels and the hemodynamic response function for a region of interest in fMRI without

using prior probability distributions on the HRF of activation levels. This enabled capturing

variabilities in the HRF across the brain regions. The proposed algorithm can use ROIs
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Figure 3.16. Axial and Sagittal views of a single slice activation maps for the block design
attention to visual stimuli data set. Activation maps are for Stimulus 1. (a) activation maps
from the MLE method without prior knowledge on active ROI, (b) estimated HRF from
MLE method, (c) activation map based on AFNI 3dDeconvolve algorithm, (d) estimated
HRF from AFNI, (e) activation maps from the MLE method with ROI from AFNI, (f)
estimated HRF from MLE method with ROI from AFNI.
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from AFNI or any other analysis tool as input. It also had the ability to work without

pre-defined ROIs by applying our algorithm on segmented cubes in the first round. A

rank-one approximation was used for estimating both the HRF and activation levels in

a computationally tractable manner. A smoothness constraint was imposed on the HRF

estimate to improve the results under limited observation data, which often happens in a

region-based estimation of the HRF. Both block design and event related paradigms can be

used with this method.

We investigated the effect of colored noise. Our results showed that the accurate modeling

of noise autocorrelation did not significantly affect the HRF estimation, which was consistent

with the results reported earlier in the literature.

To have accurate HRF estimates, inactive voxels must be excluded from HRF estimation,

but the activation estimation itself is dependent on HRF values. To address this problem,

an iterative method for the estimation of the HRF and activation values was introduced.

The algorithms were tested using simulated and real data over a wide range of parameters

and on block design and event related experiments.



CHAPTER 4

COMPUTED TOMOGRAPHY: MODELING AND CORRECTION FOR

SCATTER RADIATION FROM DOSE COMPENSATOR1

The focus of this chapter is to model the scatter radiation from the dose compensator using

Monte Carlo (MC) simulations and apply the correction to simulated data. Scatter correction

is part of the pre-processing steps applied to CT data.

4.1 Background

For better understanding of the scattered radiation artifact, an introduction of x-ray inter-

action with matter and projection data is given.

The interaction of x-ray with matter results in attenuation of the x-ray beam traveling

through a medium. The attenuation of x-ray photons can be expressed by an exponential

relationship for a monochromatic (monoenergetic) incident x-ray beam by Beer-Lambert law

I = I0e
−

∫
L µ(l)dl (4.1)

where I and I0 are the incident and transmitted x-ray intensities, L is the thickness of the

material, µ(l) is the linear attenuation coefficient of the material at location l. The linear

attenuation coefficient represents the sum of the possible interaction processes: photoelectric

effect, Rayleigh scattering and Compton scattering and is a function of the incident x-ray

photon energy [49]. The line integral of the linear attenuation coefficient along the x-ray

1 c© 2012 SPIE, Adapted/Reprinted with permission from N. Bazargani, R. A. Thompson, and Y. Yoad
(2012, February). Modeling scattered radiation from dose compensator in CT by forced detection Monte
Carlo simulation. In Proc. SPIE 8313, San Diego. 83132L
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trajectory through the object is described as

p = −ln
I

I0

=

∫
L

µ(l)dl (4.2)

where p is the projection measurement in CT. This describes an ideal situation. The x-ray

beam produced by an x-ray tube covers a broad spectrum. Figure 4.1 shows an example of the

output x-ray spectrum of an x-ray tube operating at 120 kilovolt peak (kVp). The projection

line integrals for the polychromatic spectrum and a nonuniform material is described by the

following

p = − ln
I

I0

= − ln
( ∫

Ω(E)e−
∫
L µ(E,l)dldE

)
(4.3)

where Ω(E) represents the incident x-ray spectrum, E is the energy and µ(E, l) shows the

energy dependence of the linear attenuation coefficient. The reconstruction problem for CT

is to estimate or calculate the attenuation distribution from the measured line integrals of an

object. The mathematical derivation of the filtered back projection (FBP) reconstruction [49]

assumes Equation (4.2) to be satisfied. The line integrals are distorted due to a number of

effects, e.g., beam hardening, scattered radiation and detector artifacts. The beam hardening

artifact happens because of the polyenergetic nature of the x-ray beam and the energy

dependency of µ. The scattered radiation is discussed in this chapter. Remaining distortions

of the line-integral values, possibly after application of corrections schemes, will lead to

inconsistent data and cause artifacts in the reconstructed volume.

The scattered radiation affects the accuracy of the projection measurement. Not all of

the x-ray photons that reach the detector are primary photons. Sources of scatter radiation

are the patient and the dose compensator (bowtie filter). In this chapter we focus on the

analysis of scatter radiation from dose compensator and its effect on image quality.

We introduce using a MC simulation to characterize the intensity of scattered x-rays from

the dose compensator incident on a given detector in the absence of an object and developing

an effective method for the correction of scatter induced artifacts.
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Figure 4.1. Example of an x-ray tube output energy spectrum at 120kVp.

4.2 Monte Carlo simulation

Many phenomena of physical nature are too complex to be modeled or to be calculated in

an analytical way. The Monte Carlo method is a common statistical approach to overcome

these limitations. The basic idea of the Monte Carlo method is to model the process of

interest, e.g., the process of x-ray photon propagation through a scattering medium, by its

known physical properties and to use these physical properties to calculate the tracks of

individual photons through objects.

The physical properties of the different objects and their materials are specified by means

of probability distributions, often referred to as physical cross sections that accurately de-

scribe the photon’s interaction, transport and energy deposition characteristics within the

respective material. Using this physical input data, a photon is tracked from its point of cre-

ation, e.g., the x-ray tube, through the dose compensator and to the detector by repeatedly

generating random numbers and choosing associated actions defined by the probability dis-

tributions. Photons reaching the virtual detector surface are recorded and estimates of the
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quantities of interest are derived from their distribution. For the simulations of the scattered

radiation from the dose compensator, the geometry of the detectors, x-ray source and the

dose compensator are modeled in a GEANT4 (GEometry ANd Tracking) [3] application.

4.2.1 Conventional Monte Carlo

The x-ray source is modeled as a polychromatic point source with 120 kVp and the low

energy electromagnetic model of GEANT4 is used for physics processes. X-rays are tracked

until they reach the surface of detector elements where the energy and angle of incidence

on the face of the detector are recorded. The angle of incidence is characterized by two

off-focal angles that are the angles that a given x-ray is incident on the face of the detector

relative to the ray that traces directly to the focal spot. Off-focal angles of zero then indicate

unscattered radiation or radiation that has undergone multiple scattering and is coincident

with the unscattered direction. The intensity of scattered x-rays incident on a given detector

in the absence of an object in the scan field of view is then a two dimensional function that

we call the scatter kernel Ki(θx, θz) where i denotes a particular detector element and θx

and θz are the angles of incidence in a coordinate system local to detector i. A post-patient

collimator (anti-scatter grid) is incorporated as an aperture function that is applied to the

accumulated data. The objective of the MC simulations is to calculate the scatter kernel

for each detector in the system. We are interested in the scatter radiation from the dose

compensator for each detector in given off-focal directions. Since the solid angle of the

detector relative to the point of scatter in the dose compensator is small, a large number of

events is required to achieve reasonable accuracy. The most likely outcome of the simulation

of a particular x-ray that scatters in the dose compensator is that it will be directed away

from the detector. A high computational cost is required for the conventional MC simulation

technique.
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4.2.2 Variance reduction by Forced Detection technique

To increase the computational efficiency, a variance reduction technique called forced detec-

tion is implemented in a GEANT4 application. The different concepts of the conventional

MC method and the forced detection technique are illustrated in Figure 4.2. The detectors

are not shown but they are below the bowtie filters as shown in Figure 1.5. By using the con-

ventional Monte-Carlo method, a large number of the simulated photons never reaches the

detector because many photons are photo-absorbed or are scattered away from the detector

area, the aim of the forced detection technique is to make use of as many contributions of

the simulated photons as possible.

The basic strategy in forced detection is to force particles to interact with the detectors

by creating multiple copies that are directed towards the detector elements and to adjust the

weight of the copies to preserve the overall normalization. The forced detection technique

is applied to the photons which scattered in the dose compensator so that they scatter into

the direction of the detectors. At each Compton or Rayleigh scatter interaction, the Monte

Carlo algorithm will determine a particular final state for the scattered photon. In forced

detection variance reduction, a multitude of additional scattered photon is created. We

call these copies forced photons. Each of the forced photons is forced to travel, without

additional interactions, in the direction towards one of the detectors. Based on this final

state, the scattering angle and the scattered photon energy are calculated and the weight

of each forced photon is adjusted based on the detector that it is to hit and the interaction

process. Figure 4.2 illustrates an incident photon emitted from the source and scattered in

the dose compensator. Figure 4.2 (a) shows the conventional Monte Carlo without forced

detection, the forced photons from two scatter events are shown in Figure 4.2 (b).

For Compton scattered photons the energy after the interaction is equal to [54]

E ′ =
E

1 +
E

m0c2
(1− cos θ)

(4.4)



85

 

 

source

Parent Particle

(a)

 

 

source

daughter Particles

Parent Particle

(b)

Figure 4.2. Photon tracks for conventional Monte Carlo (a) and with application of forced
detection (b). The path for the photon emitted from the source is shown in solid black line.
The red and cyan dotted arrows show forced photons from two scattered events which are
forced to travel in the detector directions.

where E is the energy of the incident photon, m0c
2 is the electron rest mass energy (0.511

MeV) and θ is the scatter angle. The probability of Compton scattering per atom of the

absorber depends on the number of electrons available as scattering targets and therefore

increases linearly with the atomic number represented as Z [54]. The angular distribution of

scattered x-ray photons is predicted by Klein-Nishina formula for the differential scattering

cross section [54].

dσKN

dΩ
= Zr0

2
( 1

1 + α(1− cos θ)

)2(1 + cos2 θ

2

)(
1 +

α2(1− cos θ)2

(1 + cos2 θ)[1 + α(1− cos θ)]

)
(4.5)

where α ≡ E/m0c
2 and r0 is the classical radius.

The differential Compton cross section is defined as the Klein-Nishina formula in Equa-

tion (4.5) multiplied by the incoherent scattering function S(χ, Z) and is angularly depen-

dent. χ is the momentum transfer variable defined as χ = E
hc

sin( θ
2
) and Z is the atomic

number. If the electron is bound in an atom, Compton scattering in the forward direction
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is suppressed due to electron binding effects. This is taken into account by the incoherent

scattering function. The differential Compton cross section is defined as

dσCompton

dΩ
=
dσKN

dΩ
· S(χ, Z) (4.6)

The weight of the forced photons for the Compton process is

Wforced photon,Compton = Wincident · e−µtotal(E
′)·L · 1

σCompton

∫
dσCompton

dΩ
dΩ (4.7)

where Wincident is the weight of the incident photon at each scatter interaction, the second

term, e−µtotal(E
′)·L, is the probability of no further interaction of the forced photon in the dose

compensator, µtotal is the total linear attenuation coefficient at energy E ′. The total linear

attenuation coefficient, µtotal, includes Compton, Rayleigh and photoelectric effects. L is the

path length from the scattered point to the exit point from the dose compensator, σCompton

is the total Compton cross section. The third term is the probability of scattering into

the desired solid angle. Since the differential cross section is nearly constant over a small

solid angle, the integral term can be approximated as
dσCompton

dΩ

∫
dΩ. The solid angle from

the scatter point to the detector,
∫
dΩ, is calculated by another geometrical Monte Carlo

simulation and a formula is derived for the solid angle based on the inverse of the square of

the distance from the scatter point in the dose compensator to the detector.

During Rayleigh scattering, no energy is converted to kinetic energy or transferred to

the medium. The scattered photon has the same energy as the incident photon (E ′ = E).

Angular dependence for the process of Rayleigh scattering is based on the angular scattering

probability of a free electron given by differential Thomson cross section [51]

dσ0

dΩ
=
r0

2

2
(1 + cos2 θ) (4.8)

where θ is the scattering angle. While interacting with a bound electron, the Thomson cross

section must be weighted with an atomic form factor F (χ, Z) [51]. The differential Rayleigh

cross section is

dσRayleigh
dΩ

=
r0

2

2
(1 + cos2 θ) · F 2(χ, Z) (4.9)
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For the forced photons from Rayleigh scattering, the energy of the forced photons re-

mained unchanged but the weight of each forced photon is adjusted according to

Wforced photon,Rayleigh = Wincident · e−µtotal(E)·L · 1

σRayleigh

∫
dσRayleigh

dΩ
dΩ (4.10)

where σRayleigh is the total Rayleigh cross section and
dσRayleigh

dΩ
is the differential Rayleigh

cross section, both of them including the squared atomic form factor. The rest of the

parameters in Equation (4.10) are similar to the Equation (4.7) and the integral is simplified

the same way as Equation (4.7) by taking the differential cross section out of the integral

and deriving the solid angle from the pre-calculated formula. The weight of the original,

non-forced, final state photon after scattering is equal to its weight before interaction minus

the sum of all the forced photon weights.

Wfinal state = Wincident −
∑

Wforced photon (4.11)

This final state photon then becomes the incident photon for the next scatter event.

The FD-MC was validated against the conventional MC (no forced detection). The

validation was on the primary photons which reached the detector without interaction; both

MC simulations must give similar results and are compared to an analytic calculation. The

primary ratios for two sets of simulations with 100,000 events were calculated. The first

set was the simulation without a dose compensator, and the second set included the dose

compensator. We then calculated the ratio of the primary rays with the dose compensator

to the primary without including the dose compensator for the FD-MC and the conventional

MC, and compared it with the analytical calculation. The ratios are well aligned for all three

models and are shown in Figure 4.3. The results are consistent with each other within the

statistical accuracy of the simulations.
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Figure 4.3. The ratio of primary with the dose compensator to the primary without the dose
compensator for the FD, conventional MC, and analytic model are plotted for all detectors.

4.3 Dose compensator scatter kernel

For each detector a two dimensional dose compensator scatter kernel was obtained via FD-

MC simulations. This kernel shows the likelihood of the scatter reaching the detector in

each of the off-focal angles in two dimensions. Figure 4.4 shows the dose compensator

scatter kernel for one of the detectors. This simulation was done with the FD technique and

included 429,600 Compton and 52,400 Rayleigh scatters. The z-axis shows the likelihood of

the scatter in each off-focal angle, and the x-axis and y-axis represent the off-focal angles in

degrees. These calculated dose compensator scatter kernels can be used for correcting the

dose compensator scatter radiation. The effects of the pre-patient collimator and the post-

patient collimator on the dose compensator scatter kernels were accounted for by applying

geometrically calculated aperture functions. For implementing the dose compensator scatter

correction, we needed an estimate of the line integral of the rays from the dose compensator
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Figure 4.4. Dose compensator scatter kernel for one of the detectors with respect to off-focal
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scatter location to the detector that we want to correct for the dose compensator scatter.

We used readings from different detectors belonging to neighboring source fans.

4.4 Results

Since the dose compensator scattered radiation has a dependence in the z-direction, the

scatter to primary ratio (SPR) varies with collimation due to the fact that the pre-patient

collimator will block some of the radiation scattered in the dose compensator. Figure 4.5

shows the SPR for various collimations across all detectors including the effects of pre-patient

and post-patient collimator indicates that the SPR reduces with narrower collimation as

expected. The SPR for center detectors ranges from 0.5% to 1%, while for edge detectors it

ranges from 3% to 11%, indicating the necessity to correct for the scattered radiation from

the dose compensator. The results for SPR are based on the conventional MC simulation

results, since calculating the SPR is not as straightforward with the FD.
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The estimated scatter kernels from FD simulation were used to evaluate the impact of

dose compensator scatter on image quality using simulated test phantoms. The CT simulator

provided us the ideal, noise free simulated attenuation line integrals. We simulated the

effect of scatter radiation from the dose compensator by adding the scattered radiation to

idealized, noise free data. The dose compensator scattered radiation was attenuated through

the phantom before being added to the detector signal and the total scatter reaching each

detector was the sum of all the scatter in the x and z off focal angles.

The correction algorithm used the simulated scatter kernel. The rays coming from z

direction were not available from the scanner data. The best available approximation to

those rays was the line integral from that slice and neighboring slices. Figure 4.6 shows one

slice of the 20 cm diameter water phantom for the ideal case and added dose compensator

scatter with magnitude of 1% on central detector to the ideal data set. The corrected image

for the scatter from dose compensator is shown in Figure 4.6 (c). The horizontal profile of

these three images is shown in Figure 4.6 (d), zoomed to show the effect at the edge of the
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Figure 4.6. Slice 1 of the (a) simulated data, (b) added dose compensator scatter radiation,
(c) corrected for compensator scatter. (d) The horizontal profiles. The difference between
original and added scatter is shown in (e), the difference between original and corrected
image is in (f).
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phantom. The blurring artifact at the edge of the phantom is caused by the scatter from

the dose compensator. The results show significant reduction of the compensator scatter

artifact as seen by the corrected image in Figure 4.6 (c) and profiles in Figure 4.6 (d).

A 20 cm diameter solid water phantom located 14 cm above isocenter was also simulated.

Horizontal profiles for slice 1 are plotted in Figure 4.7 (a) for the original image, added dose

compensator scatter with amplitude 1% image and corrected image. The difference between

original and added dose compensator images and difference image between original and

corrected images are shown in Figure 4.7 (b) and Figure 4.7 (c), respectively. The effect of

the dose compensator scatter radiation depends on the location of the phantom with respect

to isocenter. For a centered phantom the effect is symmetric and has lower amplitude while

for the uncentered phantom the effect is asymmetric and more farther from the center of the

phantom. The reason for the larger artifact is that in the uncentered phantom is in a higher

SPR region.

4.5 Conclusion

The scatter radiation from the dose compensator was modeled using Monte Carlo simula-

tion and found to be comparable to the off focal radiation from the x-ray tube. The forced

detection technique was implemented in a GEANT4 application and reduced the computa-

tion time by a factor of 42,800. The impact of the scatter radiation on image quality was

studied on simulated data. A scatter correction algorithm was implemented which used dose

compensator scatter kernels in the correction process.
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CHAPTER 5

CONCLUSION

5.1 Contributions

The contributions of this dissertation were developing algorithms for modeling signal and

artifact components in fMRI and Computed Tomography. Accurate modeling of signal

components affect image analysis.

We introduced applying the MDL principle in the fMRI analysis, for removing the drift

and estimating the hemodynamic response function in Chapter 2. We developed an algorithm

for simultaneously estimating drift and activation level. The advantage of the proposed

method was that no model or structure were assumed for the drift component and we let the

data select the best model for the drift term. We evaluated the performance of the proposed

algorithm against the polynomial and spline detrending methods on simulated and real fMRI

datasets. The results showed better estimation and removal of the drift via the MDL-based

detrending.

The MDL principle was also used to design adaptive methods for HRF and activation level

estimation for a region of interest. The proposed iterative algorithm described in Chapter 2

provided a nonparametric approach to HRF estimation without any explicit assumptions.

The estimated HRF was compared with the benchmark, the Gamma and Poisson HRF mod-

els. The results showed the ability of the MDL-based algorithm to estimate the benchmark

HRF with good approximation. Statistical analysis based on the estimated HRF by the

proposed method showed better estimates of the activation level and t-tests compared with

that of fixed HRF models. The performance of the algorithm was compared with AFNI on

a real fMRI dataset and showed smoother HRF estimates and comparable activation maps.

94
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A maximum likelihood method was implemented in Chapter 3 for jointly estimating the

activation levels and the hemodynamic response function for a region of interest in fMRI.

A rank-one approximation was used for finding the HRF in a computationally tractable

manner. A smoothness constraint was imposed on the HRF estimate to improve the results

under limited observation data. Both block design and event related paradigms can be used

with this method. We investigated the effect of colored noise. Our results showed that

accurate modeling of noise autocorrelation did not significantly affect the HRF estimation,

which was consistent with the results reported earlier in the literature. The algorithms were

tested using simulated and real fMRI datasets.

For the computed tomography modality, as described in Chapter 4, we modeled the

scatter radiation from the dose compensator in a Monte Carlo simulation and found it to be

comparable to the off focal radiation from the x-ray tube. The forced detection technique

was implemented in a GEANT4 application and reduced the computation time by a factor of

more than 40,000. We obtained two dimensional dose compensator scatter kernels for each

of the detectors in a multislice detector CT. The dose compensator scatter to primary ratio

was calculated based on the MC simulations. The impact of the scatter radiation on image

quality was studied on simulated data and showed that the effect was significant and varied

with the size of the phantom and its location with respect to isocenter. A dose compensator

scatter correction algorithm was implemented which used dose compensator scatter kernels

of each detector in the correction process.



REFERENCES

[1] Abdi, H. (2007). Bonferroni and Sidak corrections for multiple comparisons, pp. 103–
107. N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics, Thousand
Oaks(CA): Sage.

[2] Afonso, D., J. Sanches, and M. Lauterbach (2008, October). Robust brain activation de-
tection in functional MRI. In 15th IEEE International Conference on Image Processing
(ICIP), San Diego, CA, pp. 2960–2963.

[3] Agostinelli, S., J. Allison, and et al (2003). Geant4-a simulation toolkit. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 506 (3), 250 – 303.

[4] Aguirre, G., E. Zarahn, and M. D’Esposito (1998). The variability of human BOLD
hemodynamic response. Neuroimage 8 (4), 360–369.

[5] Ardekani, B., J. Kershaw, K. Kashikura, and I. Kanno (1999). Activation detection in
functional MRI using subspace modeling and maximum likelihood estimation. IEEE
Transactions Medical Imaging 18 (2), 101–114.

[6] Bandettini, P., A. Jesmanowics, E. Wong, and J. Hyde (1993). Processing strategies for
time-course data sets in functional MRI of human brain. Mag. Res. Med. 30, 161–173.

[7] Bazargani, N., R. A. Thompson, and Y. Yoad (2012, February). Modeling scattered
radiation from dose compensator in CT by forced detection Monte Carlo simulation. In
Proc. SPIE 8313, San Diego. 83132L.

[8] Beck, J. W., R. J. Jaszczak, R. E. Coleman, C. F. Starmer, and L. W. Nolte (1982).
Analysis of SPECT including Scatter and Attenuation Using Sophisticated Monte Carlo
Modeling Methods. IEEE Transactions on Nuclear Science 29, 506–511.

[9] Beckmann, C. and S. Smith (2004). Probabilistic independent component analysis for
functional magnetic resonance imaging. IEEE Transactions on Medical Imaging 23 (2),
137–152.

[10] Boone, J. M. (2010). Method for evaluating bow tie filter angle-dependent attenuation
in CT: Theory and simulation results. Medical Physics 37 (1), 40–48.

[11] Bootsma, G. J., F. Verhaegen, and D. A. Jaffray (2011). The effects of compensator and
imaging geometry on the distribution of x-ray scatter in cbct. Medical Physics 38 (2),
897–914.

96



97

[12] Boynton, G., S. Engel, G. Glover, and D. Heeger (1996). Linear systems analysis of
functional magnetic resonance imaging in human V1. Journal of Neuroscience 16 (3),
4207–4221.
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