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RESOLVABILITY AND STRONG SECRECY FOR THE MULTIPLE ACCESS

CHANNEL WITH COOPERATION

Noha Helal, PhD
The University of Texas at Dallas, 2020

Supervising Professor: Aria Nosratinia, Chair

We study secret communication over the discrete memoryless multiple-access channel with

the following cooperation strategies: (i) degraded message sets, (ii) a common message,

(iii) conferencing, (iv) cribbing, (v) feedback, and (vi) generalized feedback. For developing

strong secrecy results, we utilize the methods and techniques of channel resolvability, which

involves the characterization of the amount of randomness required at the inputs of the

channel to approximately produce a chosen i.i.d. output distribution.

For the multiple-access with degraded message sets, a common message, conferencing and

feedback, we exactly characterize the channel resolvability region. For the multiple access

channel with cribbing, we exactly characterize the channel resolvability region for the causal

cribbing and non-causal cribbing scenarios. For the strictly-causal cribbing scenario, inner

and outer bounds are provided. For the multiple-access channel with generalized feedback,

we provide two inner bounds representing the role of decoding and randomness extraction,

which can also be combined.

Finally, leveraging the resolvability results, we derive achievable strong secrecy rate regions

for each of the cooperation scenarios.
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CHAPTER 1

INTRODUCTION

The field of physical layer security dates back to Wyner’s wiretap channel [1]. The modern

approach to physical layer security involves strong secrecy, and increasingly leverages tools

and techniques from channel resolvability.

Channel resolvability is defined as producing an approximation of a desired statistic

at a channel output via application of minimal randomness at its input. The origins of

this problem can be traced back to Wyner’s work [2] on the characterization of common

randomness among two dependent random variables, in which he used a normalized KL

divergence as a measure of approximation. The problem was subsequently formalized and

generalized for total variation using information-spectrum methods [3]. Subsequent works

have simplified proofs, both for total variation [4] and Kullback-Leibler (KL) divergence [5],

and studied multi-user settings, such as multiple-access channel (MAC) with non-cooperative

encoders [6, 7, 8, 9].

In this work we study the role of user cooperation in enhancing channel resolvability.

One-sided and two-sided cooperation scenarios are considered. In the category of noiseless

cooperation, in which one or both users have access to the other user’s message or transmitted

signal noiselessly, we investigate MAC with degraded message sets, MAC with a common

message, MAC with conferencing and MAC with cribbing. In the category of cooperation

in the presence of noisy communication, we investigate MAC with feedback and MAC with

generalized feedback.

For MAC with degraded message sets, MAC with a common message and MAC with

conferencing, we exactly characterize the channel resolvability via tight inner and outer

bounds. For MAC with cribbing, we analyze resolvability rates under (i) strictly-causal

cribbing, (ii) causal cribbing and (iii) non-causal cribbing. For scenarios (ii)-(iii), we exactly

characterize the channel resolvability region. For (i), we provide inner and outer bounds for
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the channel resolvability region; the crux of our achievability result is to handle the strict

causality constraint with a block-Markov coding scheme in which dependencies across blocks

are suitably hidden.

For MAC with feedback, one of the highlights of this work is a converse that shows

feedback does not improve the resolvability of MAC. Since this converse is tight against

the results of [7], no new achievable rate is needed for MAC with feedback. This result is

significant because it is known that MAC capacity can be improved by feedback [10, 11], thus

MAC capacity and resolvability react differently to feedback. For MAC with generalized

feedback, we give two achievable resolvability regions representing the roles of decoding

and randomness extraction, which can also be combined. The essence of the achievability

proofs is carefully applying block-Markov encoding to handle the strict causality imposed by

the channel feedback; randomness is appropriately recycled to break the dependence across

blocks created by the encoding scheme. Furthermore, we harness the randomness that stems

from the channel noise independent of the channel input [12] via a random binning argument

to introduce fresh randomness at the encoders and assist in the approximation of the output

distribution.

Finally, strong secrecy [13, 14] achievable rates are obtained. We develop a wiretap

coding scheme that achieves strong secrecy, fueled by the resolvability results. For the cases

of strictly-causal cribbing, feedback and generalized feedback, a contribution of this work is

a new superposition coding strategy that uses all components of the cooperation signal to

achieve efficient decoding at the legitimate receiver, while at the same time forcing a part of

the randomness within the cooperation signal to remain non-cooperative from the viewpoint

of the eavesdropper. This feature is needed for randomness recycling and is crucial to avoid

secrecy rate loss.

Strong secrecy for MAC with non-cooperating encoders has been studied in [7, 8, 9].

To the best of our knowledge, strong secrecy in multi-terminal settings under cooperating
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encoders has not been comprehensively studied. For completeness we highlight examples

of the investigation of weak secrecy under cooperation: MAC with cooperating or partially

cooperating encoders [15, 16, 17, 18], interference channel with cooperating encoders [19,

20, 21], relay channel with an external eavesdropper [22, 23] and broadcast channel with

cooperating receivers [24]. These works follow the classical approach of Wyner [1] and

Csiszár [25] to develop weak secrecy results. To the best of our understanding there has

been limited work on any type of cooperative strong secrecy; notable examples are Goldfeld

et al. [26] on receive side cooperation in the broadcast channel, Watanabe and Oohama [27]

on the cognitive interference channel with confidential messages, and Chou and Yener [28]

on Polar coding for MAC wiretap channel with cooperative jamming.

1.1 Notation

Random variables are represented by upper case letters and their realizations by the corre-

sponding lower case letters, e.g., x is a realization of the random variable X. Superscripts

denote the length of a sequence of symbols and subscripts denote the position of a symbol

in a sequence. Calligraphic letters represent sets, the cardinality of which is denoted by | · |.

For example, Xn = {X1, . . . , Xn} where Xi belongs to the alphabet X of size |X |. PX and

PXY denote probability distributions on X and X ×Y , respectively. We sometimes omit the

subscripts in probability distributions if they are clear from the context, i.e., we write P (x)

instead of PX(x).

For two distributions P and Q on the same alphabet, the KL divergence is defined by

D(P ||Q) ,
∑

x P (x) log P (x)
Q(x)

and the total variational distance is defined by V(P,Q) ,∑
x |P (x) − Q(x)|. Throughout the dissertation, log denotes the base 2 logarithm. For an

i.i.d. vector whose components are distributed according to PX , the product distribution is

denoted by P⊗nX (xn) ,
∏n

i=1 PX(xi). The set of ε-strongly-typical sequences of length n with

3



respect to PX is defined as:

T nε (PX) ,
{
xn :

∣∣∣∣N(a|xn)

n
− PX(a)

∣∣∣∣ ≤ εPX(a),∀a ∈ X
}
.

For a set of random variables {Xi}i∈M indexed over a countable set M, E\m(·) denotes

the expectation over all random variables with indices in M except that with index m.

EX(·) is the expectation w.r.t. the random variable X and 1{·} is the indicator function.

[x]+ = max{0, x}.

1.2 MAC with non-Cooperating Encoders

Encoder 1

Encoder 2

Figure 1.1. The multiple access channel.

We first recall the known MAC resolvability region with non-cooperating encoders [6, 7],

which will serve as a reference to assess the benefits of cooperation. The discrete memoryless

MAC consists of finite input alphabets X1 and X2, and finite output alphabet Z with a

channel transition probability WZ|X1,X2 , see Figure 1.1. For a distribution PX1PX2 on X1×X2,

the output is distributed according to QZ(z) =
∑

x1,x2
PX1PX2(x1, x2)WZ|X1,X2(z|x1, x2). A

(2nR1 , 2nR2 , n) channel resolvability code consists of two encoders f1 and f2 with M1 ∈

J1, 2nR1K and M2 ∈ J1, 2nR2K. The encoding functions are defined as follows:

f1 :M1 → X n
1 , (1.1)

f2 :M1 → X n
2 . (1.2)

4



Definition 1. A rate pair (R1, R2) is said to be achievable for the discrete memoryless MAC

(X1×X2,WZ|X1,X2 ,Z) if for a given1 QZ there exists a sequence of (2nR1 , 2nR2 , n) codes with

increasing block length such that limn→∞D(PZn||Q⊗nZ ) = 0. The MAC resolvability region is

the closure of the set of achievable rate tuples (R1, R2).

Theorem 1. [7] The resolvability region for MAC with non-cooperating encoders is the set

of rate pairs (R1, R2) such that

R1 ≥ I(X1;Z|V ), (1.3)

R2 ≥ I(X2;Z|V ), (1.4)

R1 +R2 ≥ I(X1, X2;Z|V ), (1.5)

for some joint distribution PV X1X2Z , PV PX1|V PX2|VWZ|X1X2 with marginal QZ.

While the resolvability region in [7] was established w.r.t. total variation, it can be shown

to also hold w.r.t. KL divergence.

Encoder 1

Encoder 2

Decoder

Figure 1.2. The multiple access wiretap channel.

In [8], a strong secrecy achievable region for MAC with non-cooperating encoders was

provided. The multiple-access wiretap channel (Figure 1.2) consists of two encoders f1 and f2

and a decoder g. The encoders are defined similar to definitions presented in (1.1) and (1.2),

1Originally in [3] the resolvability rate was defined as “the number of random bits required per channel
use in order to generate an input that achieves arbitrarily accurate approximation of the output statistics
for any given input process.” More recent works consider a fixed but arbitrary QZ , leaving out the implied
intersection of rate regions over different QZ . This is more convenient in several ways, including in the
application of resolvability to secrecy problems where only the simulation of a certain QZ is of interest.
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but the functions f1 and f2 are now stochastic and not deterministic. The decoding function

at the legitimate receiver is defined as:

g : Yn → M̂1 × M̂2. (1.6)

The probability of error at the legitimate receiver is defined as P
(n)
e = P

(
(M̂1, M̂2) 6=

(M1,M2)
)

. The strong secrecy metric adopted in this dissertation is the total amount

of leaked confidential information per codeword, defined as L(n) = I(M1,M2;Zn).

Definition 2. A strong secrecy rate pair (R1, R2) is said to be achievable for the discrete

memoryless wiretap MAC if there exists a sequence of (2nR1 , 2nR2 , n) codes such that P
(n)
e

and L(n) vanish as n→∞.

Proposition 1. [8] For the multiple-access wiretap channel with non-cooperating encoders,

the following strong-secrecy rate region is achievable:

(R1, R2) =
⋃

PX1
PX2

WY,Z|X1,X2

R(in)
no-co,

R(in)
no-co =



R1, R2 ≥ 0

R1 ≤ I(X1;Y |X2)− I(X1;Z)

R2 ≤ I(X2;Y |X1)− I(X2;Z)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)


. (1.7)
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CHAPTER 2

MAC WITH DEGRADED MESSAGE SETS, MAC WITH COMMON

MESSAGE AND MAC WITH CONFERENCING 1 2 3

In this chapter we present the discrete memoryless MAC with three noiseless cooperation

models: MAC with degraded message sets, MAC with common message and MAC with

conferencing. MAC with degraded message sets is the case where one encoder knows a priori

the message of the other encoder. In MAC with a common message, each encoder possesses

an individual message in addition to a message shared between both encoders. In MAC with

conferencing, both encoders cooperate over communication links with finite capacities.

For each of these MAC models, we exactly characterize the channel resolvability region.

We then provide inner bounds for the strong secrecy regions building on the results of channel

resolvability.

2.1 MAC with Degraded Message Sets

Encoder 1

Encoder 2

Figure 2.1. The multiple access channel with degraded message sets.

1© N. Helal and M. Bloch and A. Nosratinia, ”Multiple-Access Channel Resolvability with Cribbing,”
2018 IEEE International Symposium on Information Theory (ISIT), pp. 2052-2056, 2018.

2© N. Helal and M. Bloch and A. Nosratinia, ”Cooperative Resolvability and Secrecy in the Cribbing
Multiple Access Channel,” in IEEE Transactions on Information Theory.

3© N. Helal and M. Bloch and A. Nosratinia, ”Resolvability of the Multiple Access Channel with
Two-Sided Cooperation,” 2020 IEEE International Symposium on Information Theory (ISIT).
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The discrete memoryless MAC with degraded message sets (Figure 2.1) consists of finite

input alphabets X1 and X2, and finite output alphabet Z with a channel transition probability

WZ|X1,X2 . For a joint distribution PX1,X2 on X1 ×X2, the output is distributed according to

QZ(z) =
∑

x1,x2
PX1,X2(x1, x2)WZ|X1,X2(z|x1, x2). A (2nR1 , 2nR2 , n) channel resolvability code

consists of two encoders f1 and f2 with M1 ∈ J1, 2nR1K and M2 ∈ J1, 2nR2K. The encoding

functions are defined as follows:

f1 :M1 → X n
1 f2 :M1 ×M2 → X n

2 . (2.1)

Definition 3. A rate pair (R1, R2) is said to be achievable for the discrete memoryless MAC

with degraded message sets (X1 × X2,WZ|X1,X2 ,Z) if for a given QZ there exists a sequence

of (2nR1 , 2nR2 , n) codes with increasing block length such that limn→∞D(PZn||Q⊗nZ ) = 0. The

MAC resolvability region is the closure of the set of achievable rate pairs (R1, R2).

Note that one could define achievability by requiring instead that limn→∞V(PZn , Q
⊗n
Z ) =

0. For two distributions P and Q on a finite alphabet A, Pinsker’s inequality ensures that

V(P,Q) ≤
√

1

2 ln 2
D(P ||Q).

Consequently, if rate is achievable in terms of KL divergence, it is achievable in terms of

total variational distance. One of the best reverse Pinsker inequality is proved in [29, Eq.

(323)] and recalled in the following lemma.

Lemma 1. Let P and Q be two probability distributions on a finite alphabet A such that P

is absolutely continuous w.r.t. Q. If µ , mina∈Q:Q(a)>0Q(a), we have

D(P ||Q) ≤ log

(
1

µ

)
V(P,Q).

Specialized to our setting, this means that D(PZn||Q⊗nZ ) ≤ n log 1
µ
V(PZn , Q

⊗n
Z ) with

µ = minz:QZ(z)>0QZ(z). Therefore, only if the total variation decays fast enough as o(1/n)

8



can we conclude that the KL divergence vanishes. More generally, this suggests that the

channel resolvability region under a total variation constraint could be larger than that un-

der a KL divergence constraint. In achievability proofs of channel resolvability over discrete

memoryless channel, one can usually show that total variation decays exponentially with n

so that an achievable rate in terms of total variational distance is also achievable in terms

of KL divergence. Similarly, in converse proofs for channel resolvability over memoryless

channel, one usually obtains the same bounds irrespective of which metric is used. Unfor-

tunately, these are not general results and whether the channel resolvability regions under

total variation or KL divergence are the same must be systematically checked.

Theorem 2. The resolvability region for MAC with degraded message sets is the set of rate

pairs (R1, R2) such that

R1 ≥ I(X1;Z), (2.2)

R1 +R2 ≥ I(X1, X2;Z), (2.3)

for some joint distribution PX1X2Z , PX1X2WZ|X1X2 with marginal QZ.

Proof. See Section 2.5.1.

The absence of the individual rate constraint R2 is a direct consequence of the degraded

message model that allows Encoder 2 to benefit from the randomness provided via R1,

reducing the required individual rate constraint for User 2 to R2 ≥ 0, which is omitted.

Another difference between the regions described by Theorem 1 and Theorem 2 is that the

former includes a convexifying auxiliary random variable that is missing in the latter. The

region described by Theorem 2 is already convex due to the larger set of available input

distributions, as proved in Section 2.5.7.
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Encoder 1

Encoder 2

Figure 2.2. The multiple access channel with a common message.

2.2 MAC with Common Message

The discrete memoryless MAC with common message (Figure 2.2) consists of finite input

alphabets X1 and X2, and finite output alphabet Z with a channel transition probability

WZ|X1,X2 . For a joint distribution PX1,X2 on X1 ×X2, the output is distributed according to

QZ(z) =
∑

x1,x2
PX1,X2(x1, x2)WZ|X1,X2(z|x1, x2). A (2nR0 , 2nR1 , 2nR2 , n) channel resolvability

code consists of two encoders f1 and f2 with inputs M0 ∈ J1, 2nR0K, M1 ∈ J1, 2nR1K and

M2 ∈ J1, 2nR2K. The encoding functions are defined as follows:

f1 :M0 ×M1 → X n
1 f2 :M0 ×M2 → X n

2 . (2.4)

Definition 4. A rate tuple (R0, R1, R2) is said to be achievable for the discrete memoryless

MAC with common message (X1×X2,WZ|X1,X2 ,Z) if for a given QZ there exists a sequence

of (2nR0 , 2nR1 , 2nR2 , n) codes with increasing block length such that limn→∞D(PZn||Q⊗nZ ) = 0.

The MAC resolvability region is the closure of the set of achievable rate tuples (R0, R1, R2).

Theorem 3. The resolvability region for the discrete-memoryless MAC with common mes-

sage is the set of rate tuples (R0, R1, R2) such that

R0 ≥ I(U ;Z) (2.5)

R0 +R1 ≥ I(U,X1;Z) (2.6)

R0 +R2 ≥ I(U,X2;Z) (2.7)

R0 +R1 +R2 ≥ I(X1, X2;Z) (2.8)

10



for some joint distribution PU,X1,X2,Z , PUPX1|UPX2|UWZ|X1,X2 with marginal QZ.

Proof. See Section 2.5.3.

The region described by Theorem 3 is convex as proved in Section 2.5.8.

Remark 1. The resolvability of MAC with non-cooperating encoders [7] can be retrieved

from Theorem 3 by setting R0 = 0.

Remark 2. The resolvability of MAC with degraded message sets [30, 31] can be retrieved

from Theorem 3 by setting R1 = 0, R0 = R1 and U = X1.

2.3 MAC with Conferencing

Encoder 1

Encoder 2

Figure 2.3. The multiple access channel with conferencing.

The discrete memoryless MAC with conferencing (Figure 2.3) consists of finite input

alphabets X1 and X2, and finite output alphabet Z with a channel transition probability

WZ|X1,X2 . For a joint distribution PX1,X2 on X1 ×X2, the output is distributed according to

QZ(z) =
∑

x1,x2
PX1,X2(x1, x2)WZ|X1,X2(z|x1, x2). A conference between the encoders consists

of K subsequent pairs of communications defined by the communicating functions g1 and g2.

A (2nR1 , 2nR2 , n) channel resolvability code consists of two encoders f1 and f2 with inputs

M1 ∈ J1, 2nR1K and M2 ∈ J1, 2nR2K. The encoding functions are defined as follows:

g1k :M1 × Vk−1
2 → V1k, for k ∈ J1, KK, (2.9)

11



g2k :M2 × Vk−1
1 → V2k, for k ∈ J1, KK, (2.10)

f1 :M1 × VK2 → X n
1 , (2.11)

f2 :M2 × VK1 → X n
2 . (2.12)

The amount of information exchanged during conferencing is bounded by capacities, C12

and C21, of the communication links between the encoders. C12 is the capacity of the link

used by Encoder 1 to communicate to Encoder 2 and C21 is the capacity of the other link

such that

K∑
k=1

log |V1k| ≤ nC12 (2.13)

K∑
k=1

log |V2k| ≤ nC21 (2.14)

Definition 5. A rate pair (R1, R2) is said to be achievable for the discrete memoryless

MAC with conferencing (X1 × X2,WZ|X1,X2 ,Z) if for a given QZ there exists a sequence of

(2nR1 , 2nR2 , n) codes with increasing block length such that limn→∞D(PZn||Q⊗nZ ) = 0. The

MAC resolvability region is the closure of the set of achievable rate pairs (R1, R2).

Theorem 4. The resolvability region for the discrete-memoryless MAC with conferencing is

the set of rate pairs (R1, R2) such that

C12 + C21 ≥ I(U ;Z) (2.15)

R1 ≥ I(U,X1;Z)− C21 (2.16)

R2 ≥ I(U,X2;Z)− C12 (2.17)

R1 +R2 ≥ I(X1, X2;Z) (2.18)

for some joint distribution PU,X1,X2,Z , PUPX1|UPX2|UWZ|X1,X2 with marginal QZ.

Proof. See Section 2.5.5.
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Similar to MAC with common message, it can be proved that the region described by

Theorem 4 is convex. The idea behind the achievability proof is converting this cooperation

scheme into a setting that corresponds to a MAC with common message. The common

message is constructed from the information exchanged during conferencing. We then provide

a matching converse.

Remark 3. The resolvability of MAC with non-cooperating encoders [7] can be retrieved

from Theorem 3 by setting C12 = C21 = 0.

2.4 Strong Secrecy from Channel Resolvability

Encoder 1

Encoder 2

Decoder

Figure 2.4. The multiple access wiretap channel with degraded message sets.

Encoder 1

Encoder 2

Decoder

Figure 2.5. The multiple access wiretap channel with a common message.

In this section we use the resolvability results to study the multiple-access wiretap channel

with degraded message sets, the multiple-access wiretap channel with a common message and

the multiple-access wiretap channel with conferencing (Figures 2.4, 2.5 and 2.6 respectively).

For each of these cooperation models, an achievable strong secrecy rate region is presented.
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DecoderEncoder 1

Encoder 2

Figure 2.6. The multiple access wiretap channel with conferencing.

The multiple-access wiretap channel consists of two encoders f1 and f2 and a decoder g. The

encoders of each model are defined similar to definitions presented earlier in this chapter,

but the functions f1 and f2 are now stochastic and not deterministic. The decoding function

at the legitimate receiver is defined as:

g : Yn → M̂1 × M̂2. (2.19)

For MAC with common message,

g : Yn → M̂0 × M̂1 × M̂2, (2.20)

in which case a second decoder is defined at the wiretapper:

g : Zn → ˆ̂M0. (2.21)

The probability of error at the legitimate receiver is defined as P
(n)
e = P

(
(M̂1, M̂2) 6=

(M1,M2)
)

or P
(n)
e = P

(
(M̂0, M̂1, M̂2) 6= (M0,M1,M2) or

ˆ̂
M0 6= M0

)
for MAC with common

message. As mentioned in the introduction, the strong secrecy metric is defined as the total

amount of leaked confidential information per codeword, L(n) = I(M1,M2;Zn).

Definition 6. A strong secrecy rate pair (R1, R2) (or rate tuple (R0, R1, R2)) is said

to be achievable for the discrete memoryless wiretap MAC if there exists a sequence of

(2nR1 , 2nR2 , n) (or (2nR0 , 2nR1 , 2nR2 , n)) codes such that P
(n)
e and L(n) vanish as n→∞.
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Proposition 2. For the multiple-access wiretap channel with degraded message sets, the

following strong-secrecy rate region is achievable:

(R1, R2) =
⋃

PX1,X2
WY,Z|X1,X2

R(in)
DM,

R(in)
DM =


R1, R2 ≥ 0

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)

 . (2.22)

Proof. See Section 2.5.2.

Proposition 3. For the multiple-access wiretap channel with common message, the following

strong-secrecy rate region is achievable:

(R0, R1, R2) =
⋃

PUPX1|UPX2|UWY,Z|X1,X2

R(in)
CM,

R(in)
CM =



R1, R2 ≥ 0

R0 ≤ I(U ;Z)

R1 ≤ I(X1;Y |X2, U)− I(X1;Z|U)

R2 ≤ I(X2;Y |X1, U)− I(X2;Z|U)

R1 +R2 ≤ I(X1, X2;Y |U)− I(X1, X2;Z|U)

R0 +R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z|U)



. (2.23)

Proof. See Section 2.5.4.

Remark 4. The achievable strong secrecy rate region of the multiple-access wiretap channel

with non-cooperating encoders can be obtained from Proposition 3 by setting R0 = 0.

Proposition 4. For the multiple-access wiretap channel with conferencing, the following

strong-secrecy rate region is achievable:

(R1, R2) =
⋃

PUPX1|UPX2|UWY,Z|X1,X2

R(in)
C ,
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R(in)
C =



R1, R2 ≥ 0, C12 + C21 ≥ I(U ;Z)

R1 ≤ I(X1;Y |X2, U)− I(U,X1;Z) + C12 + C21

R2 ≤ I(X2;Y |X1, U)− I(U,X2;Z) + C21 + C12

R1 +R2 ≤ I(X1, X2;Y |U)− I(X1, X2;Z) + C12 + C21

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)


. (2.24)

Proof. See Section 2.5.6.

Remark 5. The achievable strong secrecy rate region of the multiple-access wiretap channel

with non-cooperating encoders can be obtained from Proposition 3 by setting C12 = C21 = 0.

2.5 Proofs

2.5.1 Channel resolvability of MAC with degraded message sets

Achievability:

Codebook generation: Consider a distribution P (x1, x2) = P (x1)P (x2|x1) such that∑
x1,x2

P (x1, x2)W (z|x1, x2) = QZ(z).

• Independently generate 2nR1 codewords xn1 each with probability P (xn1 ) = P⊗nX1
(xn1 ).

Label them xn1 (m1), m1 ∈ J1, 2nR1K.

• For every m1, independently generate 2nR2 codewords xn2 each with probability

P (xn2 |xn1 (m1)) = P⊗nX2|X1
(xn2 |xn1 (m1)). Label them xn2 (m1,m2), m2 ∈ J1, 2nR2K.

This defines the codebook

Cn = {xn1 (m1), xn2 (m1,m2),m1 ∈ J1, 2nR1K,m2 ∈ J1, 2nR2K} (2.25)

and we denote the random codebook by

Cn = {Xn
1 (m1), Xn

2 (m1,m2),m1 ∈ J1, 2nR1K,m2 ∈ J1, 2nR2K} (2.26)
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The average KL divergence is:

ECn

(
D(PZn||Q⊗nZ )

)
= ECn

(∑
zn

PZn(zn) log
PZn(zn)

Q⊗nZ (zn)

)

= ECn

(∑
zn

1

2n(R1+R2)

∑
m1

∑
m2

W⊗n(zn|Xn
1 (m1), Xn

2 (m1,m2))

log

∑
m′1

∑
m′2
W⊗n(zn|Xn

1 (m′1), Xn
2 (m′1,m

′
2))

2n(R1+R2)Q⊗nZ (zn)

)

=
∑
xn1 (1)

∑
xn2 (1,1)

· · ·
∑

xn1 (2nR1 )

∑
xn2 (2nR1 ,2nR2 )

(2nR1 ,2nR2 )∏
(K1,K2)=(1,1)

P (xn1 (k1), xn2 (k1, k2))

∑
zn

1

2n(R1+R2)

∑
m1

∑
m2

W⊗n(zn|xn1 (m1), xn2 (m1,m2))

log

∑
m′1

∑
m′2
W⊗n(zn|xn1 (m′1), xn2 (m′1,m

′
2))

2n(R1+R2)Q⊗nZ (zn)

=
∑
zn

1

2n(R1+R2)

∑
m1

∑
m2

∑
xn1 (m1)

∑
xn2 (m1,m2)

P (xn1 (m1), xn2 (m1,m2))W⊗n(zn|xn1 (m1), xn2 (m1,m2))

(2nR1 ,2nR2 )∑
(k1,k2)6=(m1,m2)

∑
xn1 (k1)

∑
xn2 (k1,k2)

(2nR1 ,2nR2 )∏
(l1,l2) 6=(m1,m2)

P (xn1 (l1), xn2 (l1, l2))

log

∑
m′1

∑
m′2
W⊗n(zn|xn1 (m′1), xn2 (m′1,m

′
2))

2n(R1+R2)Q⊗nZ (zn)

=
∑
zn

1

2n(R1+R2)

∑
m1

∑
m2

∑
xn1 (m1)

∑
xn2 (m1,m2)

P (xn1 (m1), xn2 (m1,m2), zn)

E\(m1,m2) log

∑
m′1

∑
m′2
W⊗n(zn|Xn

1 (m′1), Xn
2 (m′1,m

′
2))

2n(R1+R2)Q⊗nZ (zn)
(a)

≤ 1

2n(R1+R2)

∑
m1

∑
m2

∑
zn

∑
xn1 (m1)

∑
xn2 (m1,m2)

P (xn1 (m1), xn2 (m1,m2), zn)

logE\(m1,m2)

∑
m′1

∑
m′2
W⊗n(zn|Xn

1 (m′1), Xn
2 (m′1,m

′
2))

2n(R1+R2)Q⊗nZ (zn)

=
1

2n(R1+R2)

∑
m1

∑
m2

∑
zn

∑
xn1 (m1)

∑
xn2 (m1,m2)

P (xn1 (m1), xn2 (m1,m2), zn)
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logE\(m1,m2)

(
W⊗n(zn|xn1 (m1), xn2 (m1,m2))

2n(R1+R2)Q⊗nZ (zn)
+
∑

m′2 6=m2

W⊗n(zn|xn1 (m1), Xn
2 (m1,m

′
2))

2n(R1+R2)Q⊗nZ (zn)

+
∑

m′1 6=m1

∑
m′2

W⊗n(zn|Xn
1 (m′1), Xn

2 (m′1,m
′
2))

2n(R1+R2)Q⊗nZ (zn)

)
(b)

≤ 1

2n(R1+R2)

∑
m1

∑
m2

∑
zn

∑
xn1 (m1)

∑
xn2 (m1,m2)

P⊗n(xn1 (m1), xn2 (m1,m2), zn)

log

(
W⊗n(zn|xn1 (m1), xn2 (m1,m2))

2n(R1+R2)Q⊗nZ (zn)
+
∑

m′2 6=m2

P⊗n(zn|xn1 (m1))

2n(R1+R2)Q⊗nZ (zn)
+ 1

)
(2.27)

where

(a) follows by Jensen’s inequality where E log(·) ≤ logE(·). Recall E\(m1,m2)(·) is the expec-

tation over Xn
1 (i) and Xn

2 (i, j) for (i, j) 6= (m1,m2);

(b) follows by applying the expectation E\(m1,m2) to each term inside the bracket.

We finally write the right-hand side of (2.27) as Ψ1 + Ψ2 with

Ψ1 ,
1

2n(R1+R2)

∑
m1

∑
m2

∑
(xn1 ,x

n
2 ,z

n)∈T nε (PX1,X2,Z
)

P⊗n(xn1 (m1), xn2 (m1,m2), zn)

log

(
W⊗n(zn|xn1 (m1), xn2 (m1,m2))

2n(R1+R2)Q⊗nZ (zn)
+
∑

m′2 6=m2

P⊗n(zn|xn1 (m1))

2n(R1+R2)Q⊗nZ (zn)
+ 1

)

≤ log
( 2−n(1−ε)H(Z|X1,X2)

2n(R1+R2)2−n(1+ε)H(Z)
+

2nR22−n(1−ε)H(Z|X1)

2n(R1+R2)2−n(1+ε)H(Z)
+ 1
)

≤ log
(

2−n(R1+R2−I(X1,X2;Z)−2εH(Z)) + 2−n(R1−I(X1;Z)−2εH(Z)) + 1
)

and

Ψ2 ,
1

2n(R1+R2)

∑
m1

∑
m2

∑
(xn1 ,x

n
2 ,z

n)/∈T nε (PX1,X2,Z
)

P⊗n(xn1 (m1), xn2 (m1,m2), zn)

log

(
W⊗n(zn|xn1 (m1), xn2 (m1,m2))

2n(R1+R2)Q⊗nZ (zn)
+
∑

m′2 6=m2

P⊗n(zn|xn1 (m1))

2n(R1+R2)Q⊗nZ (zn)
+ 1

)

≤2|X1||X2||Z|e−nε
2µX1X2Zn log(

2

µZ
+ 1)
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where

µZ = min
z∈Z

s.t. Q(z)>0

Q(z)

µX1X2Z = min
(x1,x2,z)∈(X1,X2,Z)

s.t. Q(x1,x2,z)>0

Q(x1, x2, z)

Combining the bounds on Ψ1 and Ψ2, we obtain ECn(D(PZn||Q⊗nZ ))→ 0 exponentially with n

if R1 > I(X1;Z)+2εH(Z) and R1 +R2 > I(X1, X2;Z)+2εH(Z). This implies, by Markov’s

inequality, that Pr(D(PZn||Q⊗nZ ) > ηn)
n→∞−−−→ 0 for a suitable choice of ηn; ηn = e−nα for

α > 0.

Converse:

We consider a (2nR1 , 2nR2 , n) code such that D(PZn||Q⊗nZ ) ≤ ε, where ε
n→∞−−−→ 0.

By assumption,

ε ≥ D(PZn||Q⊗nZ )

=
∑
zn

P (zn) log
P (zn)

Q⊗nZ (zn)

=
n∑
i=1

(∑
zi

PZ(zi) log
1

Q(zi)
−H(Zi|Zi−1)

)
(a)

≥
n∑
i=1

(∑
zi

P (zi) log
1

Q(zi)
−H(Zi)

)

=
n∑
i=1

D(PZi ||QZ)

(b)

≥ nD(P̃Z ||QZ)

where (a) follows because conditioning does not increase entropy and (b) follows by Jensen’s

inequality and the convexity of D(·||·) with P̃Z(z) , 1
n

∑n
i=1 PZi(z). Note that

nR1 = H(M1) (2.28)
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≥ I(M1;Zn)

(a)
= I(M1, X

n
1 ;Zn)

≥ I(Xn
1 ;Zn)

= I(Xn
1 , X

n
2 ;Zn)− I(Xn

2 ;Zn|Xn
1 )

(b)

≥
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

PZn(zn)
−
∑
i

I(X2i;Zi|X1i)

=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
− D(PZn ||Q⊗nZ )−

∑
i

I(X2i;Zi|X1i)

≥
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
−
∑
i

I(X2i;Zi|X1i)− ε

=
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi)

(
log

W (zi|x1i, x2i)

Q(zi)
− log

W (zi|x1i, x2i)

P (zi|x1i)

)
− ε

=
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi) log
P (zi|x1i)

Q(zi)
− ε

=
∑
i

∑
x1i

∑
zi

P (x1i, zi) log
P (zi|x1i)

Q(zi)
− ε

=
∑
i

D(PX1iZi ||PX1i
QZi)− ε

(c)

≥ nD
(∑

i PX1iZi

n

∣∣∣∣∣∣∣∣∑i PX1i

n
QZ

)
− ε

(d)
= nD(P̃X1,Z ||P̃X1QZ)− ε

= n
∑
x1

∑
z

P̃X1,Z(x1, z) log
P̃X1,Z(x1, z)

P̃X1(x1)QZ(z)
− ε

= n
∑
x1

∑
z

P̃X1,Z(x1, z) log
P̃X1,Z(x1, z)

P̃X1(x1)P̃Z(z)
+ n

∑
x1

∑
z

P̃X1,Z(x1, z) log
P̃Z(z)

QZ(z)
− ε

= nI(X̃1; Z̃) + nD(P̃Z ||QZ)− ε

≥ nI(X̃1; Z̃)− ε (2.29)

where

(a) follows from the definition of the deterministic encoding functions in (2.1);
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(b) follows because conditioning does not increase entropy and the channel is discrete

memoryless, therefore I(Xn
2 ;Zn|Xn

1 ) =
∑
H(Zi|Zi−1, Xn

1 ) − H(Zi|Zi−1, Xn
1 , X

n
2 ) ≤∑

H(Zi|X1i)−H(Zi|X1i, X2i) ≤
∑n

i=1 I(X2i;Zi|X1i);

(c) follows by Jensen’s inequality and the convexity of D(·||·);

(d) follows by defining P̃X1,Z(x1, z) , 1
n

∑
i PX1i,Zi(x1, z) and P̃X1(x1) , 1

n

∑
i PX1i

(x1) where

P̃X1,X2(x1, x2) , 1
n

∑
i PX1i,X2i

(x1, x2), P̃X1,X2,Z(x1, x2, z) , 1
n

∑
i PX1i,X2i,Zi(x1, x2, z) =

WZ|X1,X2(z|x1, x2)P̃X1,X2(x1, x2) and P̃X1,Z(x1, z) =
∑

x2
P̃X1,X2,Z(x1, x2, z) .

Next, observe that

n(R1 +R2)

= H(M1,M2) (2.30)

≥ I(M1,M2;Zn)

≥ I(Xn
1 , X

n
2 ;Zn) + D(PZn||Q⊗nZ )− ε

=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
P (xn1 , x

n
2 , z

n)

P (xn1 , x
n
2 )PZn(zn)

+
∑
zn

P (zn) log
PZn(zn)

Q⊗nZ (zn)
− ε

=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
− ε

=
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi) log
W (zi|x1i, x2i)

Q(zi)
− ε

=
∑
i

D(PX1i,X2i,Zi ||PX1i,X2i
QZi)− ε

(a)

≥ nD
(∑

i PX1i,X2i,Zi

n

∣∣∣∣∣∣∣∣∑i PX1i,X2i

n
QZ

)
− ε

(b)
= nD(P̃X1,X2,Z ||P̃X1,X2QZ)− ε

= nD(P̃X1,X2,Z ||P̃X1,X2P̃Z) + nD(P̃Z ||QZ)− ε

≥ nI(X̃1, X̃2; Z̃)− ε (2.31)

where
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(a) follows by Jensen’s inequality and the convexity of D(·||·);

(b) follows by defining P̃X1,X2,Z(x1, x2, z) , 1
n

∑
i PX1i,X2i,Zi(x1, x2, z) and P̃X1,X2(x1, x2) ,

1
n

∑
i PX1i,X2i

(x1, x2) with P̃X1,X2,Z(x1, x2, z) = WZ|X1,X2(z|x1, x2)P̃X1,X2(x1, x2, z).

The final step of this converse proof, and other converse proofs in this dissertation, is to

show the continuity of the resolvability region at ε → 0. For a proof of this statement, we

refer the reader to [4, Section VI.C], which can be extended to a MAC.

2.5.2 Strong secrecy of MAC with degraded message sets

Achievability:

Consider a distribution P (x1, x2) = P (x1)P (x2|x1) such that
∑

x1,x2
P (x1, x2)W (z|x1, x2) =

QZ(z).

Code Construction:

• Independently generate 2n(R1+R′1) codewords xn1 each with probability P (Xn
1 ) =

P⊗nX1
(xn1 ). Label them xn1 (m1,m

′
1), m1 ∈ J1, 2nR1K and m′1 ∈ J1, 2nR′1K.

• For every xn1 (m1,m
′
1), independently generate 2n(R2+R′2) codewords xn2 each with prob-

ability P (xn2 |xn1 (m1,m
′
1)) = P⊗nX2|X1

(xn2 |xn1 (m1,m
′
1)). Label them xn2 (m1,m

′
1,m2,m

′
2),

m2 ∈ J1, 2nR2K and m′2 ∈ J1, 2nR′2K.

Encoding: To send m1, Encoder 1 transmits xn1 (m1,m
′
1). To send m2, Encoder 2

cooperatively sends xn2 (m1,m
′
1,m2,m

′
2). m′1 and m′2 are independently chosen at random

from J1, 2nR′1K and J1, 2nR′2K respectively.

Decoding: The decoder finds (m1,m
′
1,m2,m

′
2) such that

(xn1 (m1,m
′
1), xn2 (m1,m

′
1,m2,m

′
2), yn) ∈ T (n)

ε (PX1,X2,Y ).
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Probability of error analysis: Using standard arguments, the probability of error

averaged over all codebooks vanishes exponentially with n if

R2 +R′2 < I(X2;Y |X1) (2.32)

R1 +R′1 +R2 +R′2 < I(X1, X2;Y ) (2.33)

Secrecy analysis: We will show that the information leakage, averaged over all

codebooks, vanishes exponentially with n. We use the results of Theorem 2 to bound

EM1,M2 [D(PZn|M1,M2 ||Q⊗nZ )] such that the channel output distribution at the wiretapper

is, on average, independent of the transmitted messages and follows the i.i.d distribu-

tion Q⊗nZ . This is sufficient to ensure secrecy because I(M1,M2;Zn) can be bounded by

EM1,M2 [D(PZn|M1,M2 ||Q⊗nZ )], as follows:

I(M1,M2;Zn) = D(PM1,M2,Zn||PM1,M2PZn) (2.34)

=
∑

m1,m2,zn

PM1,M2,Zn(m1,m2, z
n) log

PM1,M2,Zn(m1,m2, z
n)

PM1,M2(m1,m2)PZn(zn)
(2.35)

=
∑
m1,m2

PM1,M2(m1,m2)D(PZn|M1,M2||PZn) (2.36)

(a)

≤ EM1,M2

(
D(PZn|M1,M2||Q⊗nZ )

)
, (2.37)

where (a) follows by adding D(PZn||Q⊗nZ ) ≥ 0 to (2.36). With PZn|M1M2(z
n|m1,m2) =

2−n(R′1+R′2)
∑

i,jW
⊗n(zn|xn1 (m1, i), x

n
2 (m1, i,m2, j)) and applying Theorem 2 to (2.37),

I(M1,M2;Zn) vanishes exponentially with n if

R′1 > I(X1;Z) (2.38)

R′1 +R′2 > I(X1, X2;Z) (2.39)
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Combining (2.32), (2.33), (2.38) and (2.39), and using Fourier-Motzkin elimination, the

following rate region is achievable

R2 < I(X2;Z|X1), (2.40)

R1 +R2 < I(X1, X2;Y )− I(X1, X2;Z). (2.41)

2.5.3 Channel resolvability of MAC with common message

Achievability:

Codebook Construction:

Consider a distribution PU,X1,X2 = PUPX1|UPX2|U such that
∑

u,x1,x2
PU,X1,X2WZ|X1,X2 =

QZ

• Independently generate 2nR0 codewords un(m0) each with probability PUn = P⊗nU .

Label them un(m0), m0 ∈ J1, 2nR0K.

• For every m0, independently generate 2nR1 codewords xn1 each with probability

PXn
1 |Un = P⊗nX1|U . Label them xn1 (m0,m1), m1 ∈ J1, 2nR1K.

• For every m0, independently generate 2nR2 codewords xn2 each with probability

PXn
2 |Un = P⊗nX2|U . Label them xn2 (m0,m2), m2 ∈ J1, 2nR2K.

This defines the codebook

Cn = {xn1 (m0,m1), xn2 (m0,m2),m0 ∈ J1, 2nR0K,m1 ∈ J1, 2nR1K,m2 ∈ J1, 2nR2K} (2.42)

and we denote the random codebook by

Cn = {Xn
1 (m0,m1), Xn

2 (m0,m2),m0 ∈ J1, 2nR0K,m1 ∈ J1, 2nR1K,m2 ∈ J1, 2nR2K} (2.43)

ECn

(
D(PZn||Q⊗nZ )

)
24



= ECn

(∑
zn

P (zn) log
P (zn)

Q⊗nZ

)
(2.44)

= ECn

(∑
zn

∑
m0

∑
m1

∑
m2

2−n(R0+R1+R2)W⊗n(zn|Un(m0), Xn
1 (m0,m1), Xn

2 (m0,m2))

× log

∑
i,j,kW

⊗n(zn|Un(i), Xn
1 (i, j), Xn

2 (i, k))

2n(R0+R1+R2)Q⊗nZ

)
(2.45)

(a)

≤
∑
zn

∑
m0

∑
m1

∑
m2

∑
un(m0)

∑
xn1 (m0,m1)

∑
xn2 (m0,m2)

P⊗n(un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)

× logE\(m0,m1,m2)

∑
i,j,kW

⊗n(zn|Un(i), Xn
1 (i, j), Xn

2 (i, k))

2n(R0+R1+R2)Q⊗nZ

)
(2.46)

=
∑
zn

∑
m0

∑
m1

∑
m2

∑
un(m0)

∑
xn1 (m0,m1)

∑
xn2 (m0,m2)

P⊗n(un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)

× logE\(m0,m1,m2)

(
W⊗n(zn|un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)Q⊗nZ

+

∑
j 6=m1

W⊗n(zn|un(m0), Xn
1 (m0, j), x

n
2 (m0,m2))

2n(R0+R1+R2)Q⊗nZ

+

∑
k 6=m2

W⊗n(zn|un(m0), xn1 (m0,m1), Xn
2 (m0, k))

2n(R0+R1+R2)Q⊗nZ

+

∑
j 6=m1
k 6=m2

W⊗n(zn|un(m0), Xn
1 (m0, j), X

n
2 (m0, k))

2n(R0+R1+R2)Q⊗nZ

+

∑
i 6=m0
j,k

W⊗n(zn|Un(i), Xn
1 (i, j), Xn

2 (i, k))

2n(R0+R1+R2)Q⊗nZ

)
(2.47)

≤
∑
zn

∑
m0

∑
m1

∑
m2

∑
un(m0)

∑
xn1 (m0,m1)

∑
xn2 (m0,m2)

P⊗n(un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)

× log

(
W⊗n(zn|un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)Q⊗nZ

+

∑
j 6=m1

P⊗(zn|un(m0), xn2 (m0,m2))

2n(R0+R1+R2)Q⊗nZ

+

∑
k 6=m2

P⊗(zn|un(m0), xn1 (m0,m1))

2n(R0+R1+R2)Q⊗nZ

+

∑
j 6=m1
k 6=m2

P⊗n(zn|un(m0))

2n(R0+R1+R2)Q⊗nZ
+ 1

)
(2.48)

= Ψ1 + Ψ2 (2.49)
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where Ψ1 and Ψ2 are defined as following

Ψ1 ,
∑
zn

∑
m0

∑
m1

∑
m2

∑
(un(m0),xn1 (m0,m1),xn2 (m0,m2))∈T nε

P⊗n(un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)

× log

(
W⊗n(zn|un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)Q⊗nZ

+

∑
j 6=m1

P⊗(zn|un(m0), xn2 (m0,m2))

2n(R0+R1+R2)Q⊗nZ

+

∑
k 6=m2

P⊗(zn|un(m0), xn1 (m0,m1))

2n(R0+R1+R2)Q⊗nZ

+

∑
j 6=m1
k 6=m2

P⊗n(zn|un(m0))

2n(R0+R1+R2)Q⊗nZ
+ 1

)
(2.50)

≤ log

(
2−n(1−ε)H(Z|X1,X2)

2n(R0+R1+R2)2−n(1+ε)H(Z)
+

2nR12−n(1−ε)H(Z|U,X2)

2n(R0+R1+R2)2−n(1+ε)H(Z)

+
2nR22−n(1−ε)H(Z|U,X1)

2n(R0+R1+R2)2−n(1+ε)H(Z)
+

2n(R1+R2)2−n(1−ε)H(Z|U)

2n(R0+R1+R2)2−n(1+ε)H(Z)
+ 1

)
(2.51)

≤ log

(
2−n(R0+R1+R2−I(X1,X2;Z)−2εH(Z)) + 2−n(R0+R2−I(U,X2;Z)−2εH(Z))

+ 2−n(R0+R1−I(U,X1;Z)−2εH(Z)) + 2−n(R0−I(U ;Z)−2εH(Z)) + 1

)
(2.52)

Ψ2 ,
∑
zn

∑
m0

∑
m1

∑
m2

∑
(un(m0),xn1 (m0,m1),xn2 (m0,m2))/∈T nε

P⊗n(un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)

× log

(
W⊗n(zn|un(m0), xn1 (m0,m1), xn2 (m0,m2))

2n(R0+R1+R2)Q⊗nZ

+

∑
j 6=m1

P⊗(zn|un(m0), xn2 (m0,m2))

2n(R0+R1+R2)Q⊗nZ

+

∑
k 6=m2

P⊗(zn|un(m0), xn1 (m0,m1))

2n(R0+R1+R2)Q⊗nZ

+

∑
j 6=m1
k 6=m2

P⊗n(zn|un(m0))

2n(R0+R1+R2)Q⊗nZ
+ 1

)
(2.53)

≤ 2|U||X1||X2||Z|e−nε
2µUX1X2Zn log(

4

µz
+ 1) (2.54)
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where

µZ = min
z∈Z

s.t. Q(z)>0

Q(z)

µUX1X2Z = min
(x1,x2,z)∈(X1,X2,Z)
s.t. Q(x1,x2,z)>0

Q(x1, x2, z)

Combining the bounds on Ψ1 and Ψ2, we obtain ECn

(
D(PZn||Q⊗nZ )

)
→ 0 exponentially

with n if

R0 > I(U ;Z) + 2εH(Z)

R0 +R1 > I(U,X1;Z) + 2εH(Z)

R0 +R2 > I(U,X2;Z) + 2εH(Z)

R0 +R1 +R2 > I(X1, X2;Z) + 2εH(Z)

Converse:

By assumption,

ε ≥ D(PZn||Q⊗nZ )

=
∑
zn

P (zn) log
P (zn)

Q⊗nZ (zn)

=
n∑
i=1

(∑
zi

PZ(zi) log
1

Q(zi)
−H(Zi|Zi−1)

)
(a)

≥
n∑
i=1

(∑
zi

P (zi) log
1

Q(zi)
−H(Zi)

)

=
n∑
i=1

D(PZi ||QZ)

(b)

≥ nD(P̃Z ||QZ)

where

(a) follows because conditioning does not increase entropy;
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(b) follows by Jensen’s inequality and the convexity of D(·||·) with P̃Z(z) , 1
n

∑n
i=1 PZi(z).

nR0 = H(M0) (2.55)

≥ I(M0;Zn) (2.56)

(a)
= I(M0, U

n;Zn) (2.57)

≥ I(Un;Zn) (2.58)

= I(Un, Xn
1 , X

n
2 ;Zn)− I(Xn

1 , X
n
2 ;Zn|Un) (2.59)

=
∑

un,xn1 ,x
n
2 ,z

n

P (un, xn1 , x
n
2 , z

n) log
W⊗n(zn|un, xn1 , xn2 )

P (zn)
−
∑
i

I(Xn
1 , X

n
2 ;Z1|Un, Zi−1)

(2.60)

=
∑

un,xn1 ,x
n
2 ,z

n

P (un, xn1 , x
n
2 , z

n) log
W⊗n(zn|un, xn1 , xn2 )

Q⊗nZ (zn)
− D(PZn||Q⊗nZ )

−
∑
i

I(Xn
1 , X

n
2 ;Z1|Un, Zi−1) (2.61)

=
∑
i

∑
ui,x1i,x2i,zi

P (ui, x1i, x2i, zi) log
W (zi|ui, x1i, x2i)

QZ(zi)
− D(PZn||Q⊗nZ )

−
∑
i

I(Xn
1 , X

n
2 ;Zi|Un, Zi−1) (2.62)

(b)

≥
∑
i

∑
ui,x1i,x2i,zi

P (ui, x1i, x2i, zi) log
W (zi|ui, x1i, x2i)

QZ(zi)
−
∑
i

I(X1i, X2i;Zi|Ui)− ε

(2.63)

=
∑
i

∑
ui,x1i,x2i,zi

P (ui, x1i, x2i, zi)

(
log

W (zi|ui, x1i, x2i)

QZ(zi)
− log

W (zi|ui, x1i, x2i)

P (zi|ui)

)
− ε

(2.64)

=
∑
i

∑
ui,zi

P (ui, zi) log
P (zi|ui)
QZ(zi)

− ε (2.65)

=
∑
i

D(PUi,Zi ||PUiQZi)− ε (2.66)
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(c)

≥ nD
(∑

i PUi,Zi
n

∣∣∣∣∣∣∣∣∑i PUi
n

QZ

)
− ε (2.67)

(d)
= nD(P̃U,Z ||P̃UQZ)− ε (2.68)

= n
∑
u,z

P (u, z) log
P̃ (u, z)

P̃ (u)QZ(z)
− ε (2.69)

= n
∑
u,z

P (u, z) log
P̃ (u, z)

P̃ (u)P̃ (z)
+ n

∑
u,z

P (u, z) log
P̃ (z)

Q(z)
− ε (2.70)

= nI(Ũ ; Z̃) + nD(P̃Z ||QZ)− ε (2.71)

≥ nI(Ũ ; Z̃)− ε (2.72)

where

(a) follows by setting Ui ,M0;

(b) follows since I(Xn
1 , X

n
2 ;Zi|Un, Zi−1) = H(Zi|Un, Zi−1) − H(Zi|Un, Zi−1, Xn

1 , X
n
2 ) ≤

H(Zi|Ui, Zi−1)−H(Zi|Ui, X1i, X2i);

(c) follows by Jensen’s inequality and the convexity of D(·||·);

(d) follows by defining P̃U = 1
n

∑
i PUi , P̃U,X1,X2 = 1

n

∑
i PUi,X1i,X2i

and P̃U,Z =∑
x1,x2

P̃U,X1,X2,Z = P̃U,X1,X2WZ|X1,X2 .

n(R0 +R1) = H(M0,M1) (2.73)

≥ I(M0,M1;Zn) (2.74)

(a)
= I(M0,M1, U

n, Xn
1 ;Zn) (2.75)

≥ I(Un, Xn
1 ;Zn) (2.76)

= I(Un, Xn
1 , X

n
2 ;Zn)− I(Xn

1 , X
n
2 ;Zn|Un, Xn

1 ) (2.77)

(b)

≥ nI(Ũ , X̃1; Z̃)− ε (2.78)

where
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(a) follows by setting Ui ,M0 and from the encoding function in (2.4);

(b) follows by steps similar to (2.59)-(2.72).

n(R0 +R2) = H(M0,M2) (2.79)

≥ I(M0,M2;Zn) (2.80)

(a)
= I(M0,M2, U

n, Xn
2 ;Zn) (2.81)

≥ I(Un, Xn
2 ;Zn) (2.82)

= I(Un, Xn
1 , X

n
2 ;Zn)− I(Xn

1 , X
n
2 ;Zn|Un, Xn

2 ) (2.83)

(b)

≥ nI(Ũ , X̃2; Z̃)− ε (2.84)

where

(a) follows by setting Ui ,M0 and from the encoding function in (2.4);

(b) follows by steps similar to to (2.59)-(2.72).

n(R0 +R1 +R2) = H(M0,M1,M2) (2.85)

≥ I(M0,M1,M2;Zn) (2.86)

(a)
= I(M0,M1,M2, X

n
1 , X

n
2 ;Zn) (2.87)

≥ I(Xn
1 , X

n
2 ;Zn) (2.88)

(b)

≥ nI(X̃1, X̃2; Z̃)− ε (2.89)

where

(a) follows from the encoding functions in (2.4);

(b) follows by steps similar to (2.59)-(2.72).
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2.5.4 Strong secrecy of MAC with common message

Achievability:

Consider a distribution P (u, x1, x2) = P (u)P (x1|u)P (x2|u) such that∑
u,x1,x2

P (u, x1, x2)W (z|x1, x2) = QZ(z).

Code Construction:

• Independently generate 2nR0 codewords un, each with probability P (un) = P⊗nU (un).

Label them un(m0), m0 ∈ J1, 2nR0K.

• For every un(m0), independently generate 2n(R1+R′1) codewords xn1 each with probability

P (Xn
1 |un) = P⊗nX1|U(xn1 |un). Label them xn1 (m0,m1,m

′
1), m1 ∈ J1, 2nR1K and m′1 ∈

J1, 2nR′1K.

• For every un(m0), independently generate 2n(R2+R′2) codewords xn2 each with probability

P (xn2 |un) = P⊗nX2|U(xn2 |un). Label them xn2 (m0,m2,m
′
2), m2 ∈ J1, 2nR2K and m′2 ∈

J1, 2nR′2K.

Encoding: To send (m0,m1), Encoder 1 sends xn1 (m0,m1,m
′
1). To send (m0m2), En-

coder 2 cooperatively sends xn2 (m0,m2,m
′
2).

Decoding at the receiver: The decoder finds m̂0, m̂1, m̂
′
1, m̂2, m̂

′
2 such that

(un(m̂0), xn1 (m̂0, m̂1, m̂
′
1), xn2 (m̂0, m̂2, m̂

′
2), yn) ∈ T (n)

ε (PU,X1,X2,Y ).

Decoding at the wiretapper: The wiretapper finds ˆ̂m0 such that (un( ˆ̂m0), zn) ∈

T (n)
ε (PU,Z).

Probability of error analysis: Using standard arguments, the probability of error

averaged over all codebooks vanishes exponentially with n if

R0 ≤ I(U ;Z) (2.90)

R1 +R′1 ≤ I(X1;Y |X2, U) (2.91)
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R2 +R′2 ≤ I(X2;Y |X1, U) (2.92)

R1 +R′1 +R2 +R′2 ≤ I(X1, X2;Y |U) (2.93)

R0 +R1 +R′1 +R2 +R′2 ≤ I(X1, X2;Y ) (2.94)

Secrecy analysis: We will show that the information leakage, averaged over all

codebooks, vanishes exponentially with n. We use the results of Theorem 3 to bound

EM1,M2 [D(PZn|M1,M2||Q⊗nZ )] such that the channel output distribution at the wiretapper

is, on average, independent of the transmitted messages and follows the i.i.d distribu-

tion Q⊗nZ . This is sufficient to ensure secrecy because I(M1,M2;Zn) can be bounded by

EM1,M2 [D(PZn|M1,M2||Q⊗nZ )], as follows:

I(M1,M2;Zn) = D(PM1,M2,Zn||PM1,M2PZn) (2.95)

=
∑

m1,m2,zn

PM1,M2,Zn(m1,m2, z
n) log

PM1,M2,Zn(m1,m2, z
n)

PM1,M2(m1,m2)PZn(zn)
(2.96)

=
∑
m1,m2

PM1,M2(m1,m2)D(PZn|M1,M2||PZn) (2.97)

(a)

≤ EM1,M2

(
D(PZn|M1,M2||Q⊗nZ )

)
(2.98)

where (a) follows by adding D(PZn||Q⊗nZ ) ≥ 0 to (2.97). With PZn|M1M2(z
n|m1,m2) =

2−n(R0+R′1+R′2)
∑

i,j,kW
⊗n(zn|un(i), xn1 (i,m1, j), x

n
2 (i,m2, k)) and applying Theorem 3 to

(2.98), I(M1,M2;Zn) vanishes exponentially with n if

R0 ≥ I(U ;Z) (2.99)

R0 +R′1 ≥ I(U,X1;Z) (2.100)

R0 +R′2 ≥ I(U,X2;Z) (2.101)

R0 +R′1 +R′2 ≥ I(X1, X2;Z) (2.102)
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Combining (2.90)-(2.94) and (2.99)-(2.102), and using Fourier-Motzkin elimination, the

following rate region is achievable

R0 < I(U ;Z) (2.103)

R1 < I(X1;Y |X2, U)− I(X1;Z|U), (2.104)

R2 < I(X2;Y |X1, U)− I(X2;Z|U), (2.105)

R1 +R2 < I(X1, X2;Y |U)− I(X1, X2;Z|U), (2.106)

R0 +R1 +R2 < I(X1, X2;Y )− I(X1, X2;Z|U) (2.107)

2.5.5 Channel resolvability of MAC with conferencing

Achievability:

From MAC with common message we know that

R̃0 ≥ I(U ;Z) (2.108)

R̃0 + R̃1 ≥ I(U,X1;Z) (2.109)

R̃0 + R̃2 ≥ I(U,X2;Z) (2.110)

R̃0 + R̃1 + R̃2 ≥ I(X1, X2;Z) (2.111)

Let us define the following rates

R̃0 = C12 + C21 (2.112)

R̃1 = R1 − C12 (2.113)

R̃2 = R2 − C21 (2.114)

i.e., we defined the common message as the randomness exchanged via conferencing. Com-

bining (2.108)-(2.114) yields the desired region.

33



Remark 6. The same achievable result can be obtained via a binning approach. The set

{1, · · · , 2nR1} is partitioned into 2nR12 bins, each containing 2n(R1−R12) elements where R12 ≤

C12. In the same way, the set {1, · · · , 2nR2} is partitioned into 2nR21 bins, each containing

2n(R2−R21) elements where R21 ≤ C21. Therefore, the message represented by the bin index

pair ({1, · · · , 2nR12}, {1, · · · , 2nR21}) can be considered as the cooperation random variable.

Converse:

nR1 = H(M1) (2.115)

≥ I(M1;Zn) (2.116)

= I(M1, V
K

1 , V K
2 ;Zn)− I(V K

1 , V K
2 ;Zn|M1) (2.117)

(a)
= I(M1, V

K
1 , V K

2 , Un, Xn
1 ;Zn)− I(V K

1 , V K
2 ;Zn|M1) (2.118)

≥ I(Un, Xn
1 ;Zn)− I(V K

1 , V K
2 ;Zn|M1) (2.119)

= I(Un, Xn
1 ;Zn)−

K∑
k=1

I(V1k, V2k;Z
n|M1, V

k−1
1 , V k−1

2 ) (2.120)

(b)
= I(Un, Xn

1 ;Zn)−
K∑
k=1

I(V2k;Z
n|M1, V

k−1
1 , V k−1

2 ) (2.121)

≥ I(Un, Xn
1 ;Zn)−

K∑
k=1

H(V2k) (2.122)

≥ I(Un, Xn
1 ;Zn)−

K∑
k=1

log(|V2k|) (2.123)

≥ I(Un, Xn
1 ;Zn)− nC21 (2.124)

(c)

≥ nI(Ũ , X̃1; Z̃)− nC21 (2.125)

where

(a) follows by setting Ui , (V K
1 , V K

2 ) and from the encoding function in (2.11);

(b) follows from the communicating function in (2.9);
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(c) follows by similar steps to (2.59)-(2.72).

Similarly,

nR2 = nI(Ũ , X̃2; Z̃)− nC12 (2.126)

n(R1 +R2) = H(M1,M2) (2.127)

≥ I(M1,M2;Zn) (2.128)

= I(M1,M2, V
K

1 , V K
2 ;Zn)− I(V K

1 , V K
2 ;Zn|M1,M2) (2.129)

(a)
= I(M1,M2, V

K
1 , V K

2 , Xn
1 , X

n
2 ;Zn)− I(V K

1 , V K
2 ;Zn|M1,M2) (2.130)

≥ I(Xn
1 , X

n
2 ;Zn)− I(V K

1 , V K
2 ;Zn|M1,M2) (2.131)

= I(Xn
1 , X

n
2 ;Zn)−

K∑
k=1

I(V1k, V2k;Z
n|M1,M2, V

k−1
1 , V k−1

2 ) (2.132)

(b)
= I(Xn

1 , X
n
2 ;Zn) (2.133)

(c)

≥ nI(X̃1, X̃2; Z̃) (2.134)

where

(a) follows from the encoding functions in (2.11) and (2.12) ;

(b) follows from the communicating functions in (2.9) and (2.10) ;

(c) follows by similar steps to (2.59)-(2.72).

n(C12 + C21) ≥
K∑
k=1

log(|V1k|) +
K∑
k=1

log(|V2k|) (2.135)

≥
K∑
k=1

H(V1k) +
K∑
k=1

H(V2k) (2.136)
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≥
K∑
k=1

H(V1k, V2k) (2.137)

≥ H(V K
1 , V K

2 ) (2.138)

≥ I(V K
1 , V K

2 ;Zn) (2.139)

(a)
= I(V K

1 , V K
2 , Un;Zn) (2.140)

≥ I(Un;Zn) (2.141)

(b)

≥ nI(Ũ ; Z̃) (2.142)

where

(a) follows by setting Ui , (V K
1 , V K

2 );

(b) follows by similar steps to (2.59)-(2.72).

2.5.6 Strong secrecy of MAC with conferencing

Consider a distribution P (u, x1, x2) = P (u)P (x1|u)P (x2|u) such that∑
u,x1,x2

P (u, x1, x2)W (z|x1, x2) = QZ(z). Split the secret message m1 into two inde-

pendent secrecy messages m12 and m1p . Similarly, split the secret message m2 into two

independent secrecy messages m21 and m2p.

Code Construction:

• Independently generate 2n(R12+nR′12+R21+R′21) codewords un, each with probability

P (un) = P⊗nu (un). Label them un(m12,m
′
12,m21,m

′
21), m12 ∈ J1, 2nR12K, m′12 ∈

J1, 2nR′12K, m21 ∈ J1, 2nR21K and m′21 ∈ J1, 2nR′21K. Let w0 = (m12,m
′
12,m21,m

′
21).

• For every un(w0), independently generate 2n(R1−R12+R′1−R′12) codewords xn1 each

with probability P (xn1 |un) = P⊗nX1|U(xn1 |un). Label them xn1 (w0,m1p,m
′
1p), m1p ∈

J1, 2n(R1−R12)K and m′1p ∈ J1, 2n(R′1−R′12)K.
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• For every un(w0), independently generate 2n(R2−R21+R′2−R′21) codewords xn2 each

with probability P (xn2 |un) = P⊗nX2|U(xn2 |un). Label them xn2 (w0,m2p,m
′
2p), m2p ∈

J1, 2n(R2−R21)K and m′2p ∈ J1, 2n(R′2−R′21)K.

Encoding: To send m1, Encoder 1 transmits xn1 (w0,m1p,m
′
1p). To send m2, Encoder 2

cooperatively sends xn2 (w0,m2p,m
′
2p).

Decoding: The decoder finds (ŵ0, m̂1p, m̂
′
1p, m̂2p, m̂

′
2p) such that

(un(ŵ0), xn1 (ŵ0, m̂1p, m̂
′
1p), x

n
2 (ŵ0, m̂2p, m̂

′
2p), y

n) ∈ T (n)
ε (PU,X1,X2,Y ).

Probability of error analysis: Using standard arguments, the probability of error

averaged over all codebooks vanishes exponentially with n if

R12 +R′12 < C12 (2.143)

R21 +R′21 < C21 (2.144)

R1 +R′1 −R12 −R′12 < I(X1;Y |X2, U) (2.145)

R2 +R′2 −R21 −R′21 < I(X2;Y |X1, U) (2.146)

R1 +R′1 +R2 +R′2 < I(X1, X2;Y ) (2.147)

R1 +R′1 −R12 −R′12 +R2 +R′2 −R21 −R′21 < I(X1, X2;Y |U) (2.148)

which can be simplified as

R1 +R′1 < I(X1;Y |X2, U) + C12 (2.149)

R2 +R′2 < I(X2;Y |X1, U) + C21 (2.150)

R1 +R′1 +R2 +R′2 < I(X1, X2;Y ) (2.151)

R1 +R′1 +R2 +R′2 < I(X1, X2;Y |U) + C12 + C21 (2.152)

Secrecy analysis: We will show that the information leakage, averaged over all

codebooks, vanishes exponentially with n. We use the results of Theorem 4 to bound
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EM1,M2 [D(PZn|M1,M2 ||Q⊗nZ )] such that the channel output distribution at the wiretapper

is, on average, independent of the transmitted messages and follows the i.i.d distribu-

tion Q⊗nZ . This is sufficient to ensure secrecy because I(M1,M2;Zn) can be bounded by

EM1,M2 [D(PZn|M1,M2 ||Q⊗nZ )], as follows:

I(M1,M2;Zn) = D(PM1,M2,Zn||PM1,M2PZn) (2.153)

=
∑

m1,m2,zn

PM1,M2,Zn(m1,m2, z
n) log

PM1,M2,Zn(m1,m2, z
n)

PM1,M2(m1,m2)PZn(zn)
(2.154)

=
∑
m1,m2

PM1,M2(m1,m2)D(PZn|M1,M2||PZn) (2.155)

(a)

≤ EM1,M2

(
D(PZn|M1,M2||Q⊗nZ )

)
, (2.156)

where (a) follows by adding D(PZn ||Q⊗nZ ) ≥ 0 to (2.155). With PZn|M1M2(z
n|m1,m2) =

2−n(R′1+R′2)
∑

i,j,k,lW
⊗n(zn|un(m12, i,m21, j), x

n
1 (m12, i,m21, j,m1p, k), xn2 (m12, i,m21, j,m2p, l))

and applying Theorem 4 to (2.156), I(M1,M2;Zn) vanishes exponentially with n if

C12 + C21 ≥ I(U ;Z) (2.157)

R′1 ≥ I(U,X1;Z)− C21 (2.158)

R′2 ≥ I(U,X2;Z)− C12 (2.159)

R′1 +R′2 ≥ I(X1, X2;Z) (2.160)

Combining (2.149)-(2.152) and (2.157)-(2.160), and using Fourier-Motzkin elimination,

the following rate region is achievable

C12 + C21 ≥ I(U ;Z) (2.161)

R1 < I(X1;Y |X2, U)− I(U,X1;Z) + C12 + C21 (2.162)

R2 < I(X2;Y |X1, U)− I(U,X2;Z) + C12 + C21 (2.163)
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R1 +R2 < I(X1, X2;Y )− I(X1, X2;Z) (2.164)

R1 +R2 < I(X1, X2;Y |U)− I(X1, X2;Z) + C12 + C21 (2.165)

2.5.7 Convexity proof of channel resolvability of MAC with degraded message

sets

Assume that (R
(1)
1 , R

(1)
2 ) and (R

(2)
1 , R

(2)
2 ) are achievable, which implies the existence of two

distributions P
(1)
X1,X2,Z

and P
(2)
X1,X2,Z

with marginal QZ such that,

R
(1)
1 ≥ I(X

(1)
1 ;Z(1)),

R
(1)
1 +R

(1)
2 ≥ I(X

(1)
1 , X

(1)
2 ;Z(1)),

and

R
(2)
1 ≥ I(X

(2)
1 ;Z(2)),

R
(2)
1 +R

(2)
2 ≥ I(X

(2)
1 , X

(2)
2 ;Z(2)).

Let P
(3)
X1,X2|Z = λP

(1)
X1,X2|Z+(1−λ)P

(2)
X1,X2|Z for λ ∈ J0, 1K and P

(3)
X1|Z = λP

(1)
X1|Z+(1−λ)P

(2)
X1|Z .

Note that P
(3)
X1,X2,Z

resulting from a convex combination of P
(1)
X1,X2,Z

and P
(2)
X1,X2,Z

exists unlike

MAC with non-cooperating encoders, where the convex combination does not necessarily

factorize into a product distribution.

From the convexity of I(X1, X2;Z) with respect to PX1,X2|Z and the convexity of I(X1;Z)

with respect to PX1|Z , it follows that for a fixed QZ :

I(X
(3)
1 ;Z(3)) ≤ λI(X

(1)
1 ;Z(1)) + (1− λ)I(X

(2)
1 ;Z(2)),

I(X
(3)
1 , X

(3)
2 ;Z(3)) ≤ λI(X

(1)
1 , X

(1)
2 ;Z(1)) + (1− λ)I(X

(2)
1 , X

(2)
2 ;Z(2)).

Therefore we have

I(X
(3)
1 ;Z(3)) ≤ λR

(1)
1 + (1− λ)R

(2)
1 ,

I(X
(3)
1 , X

(3)
2 ;Z(3)) ≤ λ(R

(1)
1 +R

(1)
2 ) + (1− λ)(R

(2)
1 +R

(2)
2 ).
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which implies that
(
λR

(1)
1 + (1− λ)R

(2)
1 , λR

(1)
2 + (1− λ)R

(2)
2

)
is inside the achievable region

defined by P
(3)
X1,X2,Z

.

2.5.8 Convexity proof of channel resolvability of MAC with common message

Assume that (R
(1)
0 , R

(1)
1 , R

(1)
2 ) and (R

(2)
0 , R

(2)
1 , R

(2)
2 ) are achievable, which implies the

existence of two distributions P
(1)
U,X1,X2,Z

= P
(1)
U P

(1)
X1|UP

(1)
X2|UW

(1)
Z|X1,X2

and P
(2)
U,X1,X2,Z

=

P
(2)
U P

(2)
X1|UP

(2)
X2|UW

(2)
Z|X1,X2

with marginal QZ such that,

R
(1)
0 ≥ I(U (1);Z(1)),

R
(1)
0 +R

(1)
1 ≥ I(U (1), X

(1)
1 ;Z(1)),

R
(1)
0 +R

(1)
2 ≥ I(U (1), X

(1)
2 ;Z(1)),

R
(1)
0 +R

(1)
1 +R

(1)
2 ≥ I(X

(1)
1 , X

(1)
2 ;Z(1)),

and

R
(2)
0 ≥ I(U (2);Z(2)),

R
(2)
0 +R

(2)
1 ≥ I(U (2), X

(2)
1 ;Z(2)),

R
(2)
0 +R

(2)
2 ≥ I(U (2), X

(2)
2 ;Z(2)),

R
(2)
0 +R

(2)
1 +R

(2)
2 ≥ I(X

(2)
1 , X

(2)
2 ;Z(2)).

Let P
(3)
U,X1,X2|Z = P

(3)
U P

(3)
X1|UP

(3)
X2|UW

(3)
Z|X1,X2

= λP
(1)
U,X1,X2|Z + (1− λ)P

(2)
U,X1,X2|Z for λ ∈ J0, 1K.

From the convexity of I(·;Z) with respect to P·|Z , it follows that for a fixed QZ :

I(U (3);Z(3)) ≤ λI(U (1);Z(1)) + (1− λ)I(U (2);Z(2)),

I(U (3), X
(3)
1 ;Z(3)) ≤ λI(U (1), X

(1)
1 ;Z(1)) + (1− λ)I(U (2), X

(2)
1 ;Z(2)),

I(U (3), X
(3)
2 ;Z(3)) ≤ λI(U (1), X

(1)
2 ;Z(1)) + (1− λ)I(U (2), X

(2)
2 ;Z(2)),

I(X
(3)
1 , X

(3)
2 ;Z(3)) ≤ λI(X

(1)
1 , X

(1)
2 ;Z(1)) + (1− λ)I(X

(2)
1 , X

(2)
2 ;Z(2)).
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Therefore we have

I(U (3);Z(3)) ≤ λR
(1)
0 + (1− λ)R

(2)
0 ,

I(U (3), X
(3)
1 ;Z(3)) ≤ λ(R

(1)
0 +R

(1)
1 ) + (1− λ)(R

(2)
0 +R

(2)
1 ),

I(U (3), X
(3)
2 ;Z(3)) ≤ λ(R

(1)
0 +R

(1)
2 ) + (1− λ)(R

(2)
0 +R

(2)
2 ),

I(X
(3)
1 , X

(3)
2 ;Z(3)) ≤ λ(R

(1)
0 +R

(1)
1 +R

(1)
2 ) + (1− λ)(R

(2)
0 +R

(2)
1 +R

(2)
2 ).

which implies that
(
λR

(1)
0 + (1−λ)R

(2)
0 , λR

(1)
1 + (1−λ)R

(2)
1 , λR

(1)
2 + (1−λ)R

(2)
2

)
is inside the

achievable region defined by P
(3)
U,X1,X2,Z

.
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CHAPTER 3

MAC WITH CRIBBING 1 2

In this chapter we study MAC with cribbing. In this channel model, one or both encoders

have access to the output of the other encoder subject to various causality constraints.

The goal is to capture the essence of cooperation and produce results and insights that

are independent of cooperation signaling mechanisms. In each cribbing model, we provide

inner and outer bounds for the channel resolvability region which are tight for most of the

cases. We then provide inner bounds for the strong secrecy regions building on the results

of channel resolvability.

3.1 MAC with One-Sided Cribbing

Encoder 1

Encoder 2

Figure 3.1. The multiple access channel with one-sided strictly-causal cribbing.

We consider three scenarios for the two-user discrete memoryless MAC with one-sided

cribbing. The discrete memoryless MAC (X1×X2,WZ|X1,X2 ,Z) consists of finite input alpha-

bets X1 and X2, and finite output alphabet Z, together with a channel transition probability

WZ|X1X2 . For a joint input distribution PX1,X2 on X1×X2, the output is distributed according

to QZ(z) =
∑

x1,x2
PX1,X2(x1, x2)WZ|X1,X2(z|x1, x2). A (2nR1 , 2nR2 , n) channel resolvability

1© N. Helal and M. Bloch and A. Nosratinia, ”Multiple-Access Channel Resolvability with Cribbing,”
2018 IEEE International Symposium on Information Theory (ISIT), pp. 2052-2056, 2018.

2© N. Helal and M. Bloch and A. Nosratinia, ”Cooperative Resolvability and Secrecy in the Cribbing
Multiple Access Channel,” in IEEE Transactions on Information Theory.
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Encoder 1

Encoder 2

Figure 3.2. The multiple access channel with one-sided causal cribbing.

Encoder 1

Encoder 2

Figure 3.3. The multiple access wiretap channel with one-sided non-causal cribbing.

code consists of two encoders f1 and f2 with inputs M1 and M2 defined on M1 = J1, 2nR1K

and M2 = J1, 2nR2K. In the four scenarios studied in this dissertation, the per-symbol

encoding functions are defined as follows.

In MAC with one-sided strictly-causal cribbing (Figure 3.1), Encoder 2 has access to the

output of Encoder 1 with a one-symbol delay

f1i :M1 → X1 f2i :M2 ×X i−1 → X2. (3.1)

In MAC with one-sided causal cribbing (Figure 3.2), Encoder 2 has access to the output of

Encoder 1 with zero delay

f1i :M1 → X1 f2i :M2 ×X i
1 → X2. (3.2)

In MAC with one-sided non-causal cribbing (Figure 3.3), Encoder 2 has non-causal access

to the entire current codeword of Encoder 1

f1i :M1 → X1 f2i :M2 ×X n
1 → X2. (3.3)
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Definition 7. A rate pair (R1, R2) is said to be achievable for the discrete memoryless MAC

(X1 ×X2,WZ|X1X2 ,Z) if for a given QZ there exists a sequence of (2nR1 , 2nR2 , n) codes such

that limn→∞D(PZn||Q⊗nZ ) = 0. The MAC resolvability region is the closure of the set of

achievable rate pairs (R1, R2).

3.1.1 MAC with one-sided strictly-causal cribbing

Theorem 5. The resolvability region for the MAC with one-sided strictly-causal cribbing is

included in the set of rate pairs (R1, R2) such that

R1 ≥ I(U,X1;Z), (3.4)

R2 ≥ I(X1, X2;Z)−H(X1|U), (3.5)

R1 +R2 ≥ I(X1, X2;Z), (3.6)

for some joint distribution PUX1X2Z , PUPX1|UPX2|UWZ|X1X2 with marginal QZ. An achiev-

able region is characterized by the same rate constraints and distribution, but subject to the

additional constraint H(X1|U) > I(U,X1;Z).

Proof. See Section 3.4.1.

The achievable region provided by Theorem 5 does not provably match the outer bound

because the set of probability distributions available in the achievable region is smaller than

in the converse, due to the additional constraint H(X1|U) > I(U,X1;Z). The rate regions

defined by the inner and outer bounds are convex (see Section 3.4.9).

3.1.2 MAC with one-sided causal cribbing

Theorem 6. The resolvability region for the MAC with one-sided causal cribbing is the set

of rate pairs (R1, R2) such that

R1 ≥ I(X1;Z) (3.7)
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R2 ≥ I(X1, X2;Z)−H(X1) (3.8)

R1 +R2 ≥ I(X1, X2;Z) (3.9)

for some joint distribution PX1X2Z , PX1X2WZ|X1X2 with marginal QZ.

Proof. See Section 3.4.3.

Remark 7. Theorem 6 is established from Theorem 5 using Shannon strategies as in [32],

yet Theorem 6 has an achievable region that is tight against the outer bound when Theo-

rem 5 does not. Perhaps surprisingly, this happens because the choice of random variables

in the Shannon strategy automatically satisfies the constraint imposed in the achievability of

Theorem 5.

This rate region is convex (see Section 3.4.10).

3.1.3 MAC with one-sided non-causal cribbing

Theorem 7. The resolvability region for MAC with one-sided non-causal cribbing is the set

of rate pairs (R1, R2) such that

R1 ≥ I(X1;Z), (3.10)

R2 ≥ I(X1, X2;Z)−H(X1), (3.11)

R1 +R2 ≥ I(X1, X2;Z), (3.12)

for some joint distribution PX1X2Z , PX1X2WZ|X1X2 with marginal QZ.

Proof. See 3.4.5

Similar to what was observed for the MAC reliability region [32], the MAC resolvability

region with non-causal cribbing is identical to that obtained for causal cribbing.

The achievability result was derived in [4, Corollary VII.8] for approximation of the

output statistics in terms of total variational distance. Our contribution here is to provide
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achievability and converse proofs for approximation in terms of KL divergence. Compared

with MAC with degraded message sets, more randomness is required as seen by the presence

of an individual rate constraint for User 2. As already discussed in [4], this stems from the

impossibility for Encoder 2 to extract uniform randomness from the observation of the output

of Encoder 1 at a rate exceeding H(X1). This rate region is convex (see Section 3.4.10).

3.2 MAC with Two-Sided Cribbing

3.2.1 MAC with two-sided strictly-causal cribbing

Encoder 1

Encoder 2

Figure 3.4. The multiple access channel with two-sided strictly-causal cribbing.

The discrete memoryless MAC with two-sided strictly-causal cribbing (Figure 3.4) con-

sists of finite input alphabets X1 and X2, and finite output alphabet Z with a channel transi-

tion probability WZ|X1,X2 . For a joint distribution PX1,X2 on X1×X2, the output is distributed

according to QZ(z) =
∑

x1,x2
PX1,X2(x1, x2)WZ|X1,X2(z|x1, x2). A (2nR0 , 2nR1 , 2nR2 , n) chan-

nel resolvability code consists of two encoders f1 and f2 with inputs M1 ∈ J1, 2nR1K and

M2 ∈ J1, 2nR2K. The encoding functions are defined as follows:

f1i :M1 ×X i−1
2 → X1i f2i :M2 ×X i−1

1 → X2i. (3.13)

Proposition 5. For the discrete memoryless MAC channel with two-sided strictly-

causal cribbing, the following region is achievable if there exists a joint distribu-

tion PU,U1,U2,X1,X2,Z = PUPU1|UPU2|UPX1|U,U1PX2|U,U2WZ|X1,X2 with marginal QZ satisfying

46



H(X1|U,U1) +H(X2|U,U2) > I(X1, X2;Z) for which:

R1 ≥ I(X1, X2;Z)−H(X2|U,U2)

R2 ≥ I(X1, X2;Z)−H(X1|U,U1)

R1 +R2 ≥ I(X1, X2;Z)

Proof. See Section 3.4.7.

Proposition 6. For the discrete memoryless MAC channel with two-sided strictly-causal

cribbing, the following region is achievable if there exists a joint distribution PU,X1,X2,Z =

PUPX1|UPX2|UWZ|X1,X2 with marginal QZ satisfying H(X1|U) +H(X2|U) > I(X1, X2;Z) for

which:

R1 ≥ I(X1, X2;Z)−H(X2|U)

R2 ≥ I(X1, X2;Z)−H(X1|U)

R1 +R2 ≥ I(X1, X2;Z)

Proof. See Section 3.4.7.

Proposition 7. For the discrete memoryless MAC channel with two-sided strictly-

causal cribbing, an outer bound for the resolvability region for which PU1,U2,X1,X2,Z =

PU1,U2PX1|U1,U2PX2|U1,U2WZ|X1,X2 is given by:

R1 ≥ I(X1, X2;Z)−H(X2|U2)

R2 ≥ I(X1, X2;Z)−H(X1|U1)

R1 +R2 ≥ I(X1, X2;Z)
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Proof. See Section 3.4.7.

Similar to MAC with one-sided strictly-causal cribbing, it can be proven that the resolv-

ability regions provided by Propositions 5, 6 and 7 are convex.

3.3 Strong Secrecy from Channel Resolvability

DecoderEncoder 1

Encoder 2

Figure 3.5. The multiple access wiretap channel with one-sided strictly-causal cribbing.

DecoderEncoder 1

Encoder 2

Figure 3.6. The multiple access wiretap channel with one-sided causal cribbing.

DecoderEncoder 1

Encoder 2

Figure 3.7. The multiple access wiretap channel with one-sided non-causal cribbing.

In this section we use the resolvability results to study the multiple-access wiretap channel

with cribbing (Figures 3.5, 3.6, 3.7 and 3.8). For each of the cribbing models previously
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Decoder
Encoder 1

Encoder 2

Figure 3.8. The multiple access wiretap channel with two-sided strictly-causal cribbing.

discussed, an achievable strong secrecy rate region is presented. Consider a MAC with

cribbing (X1×X2,WZ|X1,X2 ,Y ,Z) where X1 and X2 are finite input alphabets, Y and Z are

the finite output alphabets of the legitimate receiver and the wiretapper, respectively. A

(2nR1 , 2nR2 , n) code consists of two encoders f1 and f2 and a decoder g. The encoders are

defined similar to (3.1)-(3.3) and (3.13) but the functions f1i and f2i are now stochastic and

not deterministic. The decoding function at the legitimate receiver is defined as:

g : Yn → M̂1 × M̂2. (3.14)

The probability of error at the legitimate receiver is defined as P
(n)
e = P

(
(M̂1, M̂2) 6=

(M1,M2)
)

. The strong secrecy metric adopted is defined as L(n) = I(M1,M2;Zn).

Definition 8. A strong secrecy rate pair (R1, R2) is said to be achievable for the discrete

memoryless MAC (X1×X2,WZ|X1X2 ,Y ,Z) if there exists a sequence of (2nR1 , 2nR2 , n) codes

such that P
(n)
e and L(n) vanish as n→∞.

Proposition 8. For the multiple-access wiretap channel with strictly-causal cribbing, the

following strong-secrecy rate region is achievable:

(R1, R2) =
⋃

PUPX1|UPX2|UWY Z|X1X2

R(in)
SC ,
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R(in)
SC =



R1, R2 ≥ 0

R1 ≤ H(X1|U)− I(U,X1;Z)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ H(X1|U) + I(X2;Y |X1, U)− I(X1, X2;Z)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)


. (3.15)

Proof. See Section 3.4.2.

Remark 8. Recall the resolvability achievable rate region under the strictly-causal cribbing

had a constraint H(X1|U) > I(U,X1;Z) on the allowable probability distributions. This

constraint is implicit in Proposition 8 in the form of the non-negativity constraint on R1.

Proposition 9. For the multiple-access wiretap channel with causal cribbing, the following

strong-secrecy rate region is achievable:

(R1, R2) =
⋃

PX1X2
WY Z|X1X2

R(in)
C ,

R(in)
C =



R1, R2 ≥ 0

R1 ≤ H(X1)− I(X1;Z)

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)


. (3.16)

Proof. See Section 3.4.4.

Proposition 10. For the multiple-access wiretap channel with non-causal cribbing, the fol-

lowing strong-secrecy rate region is achievable:

(R1, R2) =
⋃

PX1X2
WY Z|X1X2

R(in)
NC ,

R(in)
NC =



R1, R2 ≥ 0

R1 ≤ H(X1)− I(X1;Z)

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)


. (3.17)
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Proof. See Section 3.4.6

Proposition 11. For the multiple-access wiretap channel with two-sided strictly-causal crib-

bing, the following strong-secrecy rate region is achievable:

(R1, R2) =
⋃

PUPX1|UPX2|UWY Z|X1X2

R(in)
SC,2,

R(in)
SC,2 =



R1, R2 ≥ 0

R1 ≤ H(X1|U)

R2 ≤ H(X2|U)

R1 +R2 ≤ H(X1|U) +H(X2|U)− I(X1, X2;Z)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)


. (3.18)

Proof. See Section 3.4.8.

3.4 Proofs

3.4.1 Channel resolvability of MAC with one-sided strictly-causal cribbing

Achievability:

To handle the strict causality constraint, we adopt a block-Markov encoding scheme over

B > 0 consecutive and dependent blocks, each consisting of r transmissions such that n =

rB. The vector of n channel outputs Zn may then be described as Zn , (Zr
1 , · · · , Zr

B), where

each Zr
b for b ∈ J1, BK describes the observations in block b. The distribution induced by the

coding scheme is the joint distribution P n
Z , PZr1 ,··· ,PZrB

, while the target output distribution

is a product distribution of product distributions Q⊗nZ ,
∏B

j=1 Q
⊗r
Z .

Codebook generation: Consider a distribution PUX1X2Z = PUPX1|UPX2|UWZ|X1X2

with marginal QZ that satisfies H(X1|U) > I(UX1;Z). For every block b ∈ J1, BK:

• Independently generate 2rρ0 codewords according to P⊗rU and label them ur(m
(b)
0 ),

where m
(b)
0 ∈ J1, 2rρ0K.
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• For every m
(b)
0 , independently generate 2r(ρ

′
1+ρ′′1 ) codewords according to∏r

i=1 PX1|U=uri (m
(b)
0 )

; label them xr1(m
(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ) for m

′(b)
1 ∈ J1, 2rρ′1K and

m
′′(b)
1 ∈ J1, 2rρ′′1 K. Note that m

(b)
1 = (m

′(b)
1 ,m

′′(b)
1 ).

• For every m
(b)
0 , independently generate 2rρ2 codewords according to

∏r
i=1 PX2|U=uri (m

(b)
0 )

;

label them xr2(m
(b)
0 ,m

(b)
2 ), m

(b)
2 ∈ J1, 2rρ2K.

This defines the codebook in block b

Cr = {ur(m(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,m′(b)1 ∈ J1, 2rρ

′
1K,

m
′′(b)
1 ∈ J1, 2rρ

′′
1 K,m(b)

2 ∈ J1, 2rρ2K} (3.19)

and we denote the random codebook in block b by

Cr = {U r(m
(b)
0 ), Xr

1(m
(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), Xr

2(m
(b)
0 ,m

(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,m′(b)1 ∈ J1, 2rρ

′
1K,

m
′′(b)
1 ∈ J1, 2rρ

′′
1 K,m(b)

2 ∈ J1, 2rρ2K} (3.20)

The message M
′′(b)
1 is the part of M

(b)
1 that we wish to recycle toward the creation of

M
(b+1)
0 , which itself constitutes the cooperating message between the two encoders. The

codes hence obtained are chained across B blocks as follows. In Block 1, we assume that the

encoders have access to a common message M
(1)
0 through some private common randomness

(see Remark 9 for justification). In block b > 1, we assume for now that Encoder 2 knows

M
(b)
0 . It is then able to form estimates M̂

′(b)
1 , M̂

′′(b)
1 , which are correct with high probability.

Assuming ρ′′1 > ρ0, an amount ρ0 of the rate ρ′′1 (which represents M
′′(b)
1 ) may be recycled

toward the creation of M
(b+1)
0 . Furthermore, for γ ∈ J0, 1K, an amount γ(ρ′′1 − ρ0) may be

recycled toward the creation of M
′(b+1)
1 , and an amount (1 − γ)(ρ′′1 − ρ0) may be recycled

toward the creation of M
(b+1)
2 .

The key observations here are that (i) this procedure ensures that, with high probability,

both Encoder 1 and Encoder 2 know messages M
(b)
0 ,M

′(b)
1 ,M

′′(b)
1 at the end of block b, so
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that they can coordinate their choices of M
(b+1)
0 ; and (ii) the dependencies across blocks are

only created through M
′′(b)
1 . This dependency between blocks can be hidden at the output

of the channel by transmitting M
′′(b)
1 securely over the wiretap channel shown in Figure 3.9.

��|�1�2

Enc1

Enc2

�1�

�2�

,� ′
1

�″
1

�2

�
�−1

1

delay � ��|�1

Alice

Bob

�1��″
1

�ˆ
″

1
�

�−1

1

delay
�

Eve

�″
1

Figure 3.9. Wiretap channel embedded in MAC with strictly-causal cribbing.

Next we bound D(PZn||Q⊗nZ ) and show that the dependencies across blocks created by

block-Markov coding can be eliminated by suitably recycling randomness from one block to

the next.

D(PZn ||Q⊗nZ ) = D(PZr1 ...ZrB ||Q
⊗rB
Z )

(a)
=

B∑
b=1

D(PZrb ||Q
⊗r
Z ) +

B∑
b=1

D(PZrb |Z(b+1:B),r ||PZrb |PZ(b+1:B),r)

=
B∑
b=1

D(PZrb ||Q
⊗r
Z ) +

B∑
b=1

I(Zr
b ;Z

(b+1:B),r)

(b)

≤
B∑
b=1

D(P
Zrb ,M

′′(b)
1
||Q⊗rZ P

M
′′(b)
1

) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 , M̂

′′(b)
1 , Z(b+1:B),r)

(c)
=

B∑
b=1

D(P
Zrb ,M

′′(b)
1
||Q⊗rZ P

M
′′(b)
1

) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 , M̂

′′(b)
1 )

=
B∑
b=1

D(P
Zrb ,M

′′(b)
1
||Q⊗rZ P

M
′′(b)
1

) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 ) +

B∑
b=1

I(Zr
b ; M̂

′′(b)
1 |M ′′(b)

1 )

(d)

≤ 2
B∑
b=1

D(P
Zrb ,M

′′(b)
1
||Q⊗rZ P

M
′′(b)
1

) +
B∑
b=1

H(M̂1
′′(b)
|M ′′(b)

1 )

where
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(a) follows from the definition Z(b+1:B),r = {Zr
b+1, . . . Z

r
B};

(b) follows since D(PZrb ||Q
⊗r
Z ) = D(P

Zrb ,M
′′(b)
1
||Q⊗rZ P

M
′′(b)
1

)− D(P
Zrb ,M

′′(b)
1
||PZrbPM ′′(b)1

);

(c) follows since Zr
b →M

′′(b)
1 , M̂

′′(b)
1 → Z(b+1:B),r holds;

(d) follows since I(Zr
b ;M

′′(b)
1 ) = D(P

Zrb ,M
′′(b)
1
||PZrbPM ′′(b)1

) ≤ D(P
Zrb ,M

′′(b)
1
||Q⊗rZ P

M
′′(b)
1

).

Let P
(b)
e be the average error probability of Encoder 2 decoding (M

′(b)
1 ,M

′′(b)
1 ). From

Fano’s inequality, we can write H(M̂
′′(b)
1 |M ′′(b)

1 ) ≤ H(P
(b)
e ) + rρ′′1P

(b)
e . By random coding we

know that ECr

(
P

(b)
e

)
< 2−αr for some α > 0 and all r large enough if

ρ′1 + ρ′′1 < H(X1|U) (3.21)

Let P be the probability distribution induced when Encoder 1 uses M
(b)
0 and Encoder 2

uses an estimate M̂
(b)
0 derived from his estimate M̂

′′(b−1)
1 . Define P̄ as the probability

distribution induced when both encoders are using the same M
(b)
0 , i.e., M̂

(b)
0 = M

(b)
0 or

M̂
′′(b−1)
1 = M

′′(b−1)
1 .

PZrb =
∑

m
(b)
0 ,m̂

(b)
0 ,

m
′(b)
1 ,m

′′(b)
1 ,

m
(b)
2

2−r(2ρ0+ρ′1+ρ′′1+ρ2)W⊗r(zrb |ur(m
(b)
0 ), ur(m̂

(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m̂

(b)
0 ,m

(b))
2 )),

(3.22)

P̄Zrb =
∑

m
(b)
0 ,m

′(b)
1 ,

m
′′(b)
1 ,m

(b)
2

2−r(ρ0+ρ′1+ρ′′1+ρ2)W⊗r(zrb |ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

(b))
2 )). (3.23)

If we let D(b) , D(P̄
ZrbM

′′(b)
1
||Q⊗rZ P̄

M
′′(b)
1

), a standard argument (see [33, Section III] for

a similar result with total variational distance and Section 3.4.11 for more detailed steps)

shows that, when averaging over the randomly generated codes, ECn

(
D(b)

)
< 2−βr for some

β > 0 and all r large enough if

ρ0 > I(U ;Z), (3.24)
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ρ0 + ρ′1 > I(U,X1;Z), (3.25)

ρ0 + ρ′1 + ρ2 > I(X1, X2;Z), (3.26)

ρ0 + ρ2 > I(U,X2;Z). (3.27)

Let ε > 0 and set

ρ0 = I(U ;Z) + ε, (3.28)

ρ′1 = I(X1;Z|U) + ε, (3.29)

ρ′′1 = H(X1|U)− I(X1;Z|U)− 2ε, (3.30)

ρ2 = I(X2;Z|U,X1) + ε, (3.31)

which is compatible with constraints (3.21)-(3.25). The choice is also compatible with (3.26)

because I(U,X1, X2;Z) = I(X1, X2;Z). The choice is finally compatible with (3.27) because

I(X2;Z|U,X1) = H(X2|UX1)−H(X2|U,X1, Z) = H(X2|U)−H(X2|U,X1, Z) ≥ H(X2|U)−

H(X2|U,Z) = I(X2;Z|U). Hence, by an expurgation argument, for every b ∈ J1, BK there

exists a code for block b such that

P (b)
e < 2−α

′r and D(b) < 2−β
′r (3.32)

for some α′, β′ > 0 and all r large enough.

Note that the effective rate of new randomness for Encoder 1 in block b is

R1 , ρ′1 + ρ′′1 − γ(ρ′′1 − ρ0) = ρ′1 + (1− γ)ρ′′1 + γρ0, (3.33)

and the effective rate for Encoder 2 is

R2 , ρ2 − (1− γ)(ρ′′1 − ρ0). (3.34)

Using the values of ρ0, ρ
′
1, ρ
′′
1, ρ2 chosen in (3.28)-(3.31), we may obtain all1 rate pairs such

that

R1 ≥ ρ′1 + ρ0 = I(U,X1;Z) + 2ε,

1For R1 we choose γ = 1 and for R2 we choose γ = 0, in each case finding the smallest single-user rate
constraint so that the entire rate region is captured. The sum-rate constraint is independent of γ.
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R2 ≥ ρ2 − ρ′′1 + ρ0 = I(X1, X2;Z)−H(X1|U) + 4ε,

R1 +R2 ≥ ρ′1 + ρ′′1 + ρ2 − (ρ′′1 − ρ0) = I(X1, X2;Z) + 3ε,

which is the desired rate region.

Finally we show that ECr

(
D(P̄

Zrb ,M
′′(b)
1
||Q⊗rZ P̄

M
′′(b)
1

)
) r→∞−−−→ 0 implies

ECr

(
D(P

Zrb ,M
′′(b)
1
||Q⊗rZ P

M
′′(b)
1

)
) r→∞−−−→ 0. The total variation V(P

ZrbM
′′(b)
1

, P̄
ZrbM

′′(b)
1

) satis-

fies

V(P
ZrbM

′′(b)
1

, P̄
ZrbM

′′(b)
1

) ≤ V(P
ZrbM

(b)
0 M

′(b)
1 M

′′(b)
1 M̂

(b)
0 M

(b)
2
, P̄

ZrbM
(b)
0 M

′(b)
1 M

′′(b)
1 M

(b)
0 M

(b)
2

) (3.35)

= V(P
M

(b)
0 M̂

(b)
0
, P̄

M
(b)
0 M

(b)
0

) (3.36)

= 2P(M
(b)
0 6= M̂

(b)
0 ) (3.37)

≤ 2P(M
′′(b−1)
1 6= M̂

′′(b−1)
1 ). (3.38)

Consequently, since P̄
M
′′(b−1)
1

= P
M
′′(b−1)
1

, we obtain

V(P
ZrbM

′′(b)
1

, Q⊗rZ P
M
′′(b)
1

) ≤ V(P
ZrbM

′′(b)
1

, P̄
ZrbM

′′(b)
1

) + V(P̄
ZrbM

′′(b)
1

, Q⊗rZ P
M
′′(b)
1

)

≤ 2× 2−α
′r + 2−

β′
2
r, (3.39)

where we have used Pinsker’s inequality to bound the last term. To conclude that

D(P
ZrbM

′′(b)
1
||Q⊗rZ P

M
′′(b)
1

) vanishes, we recall the following result [29, Eq. (323)].

Lemma 2. Let P and Q be two distributions on a finite alphabet A such that P is absolutely

continuous w.r.t. Q. If µ , mina∈Q:Q(a)>0Q(a), we have

D(P ||Q) ≤ log

(
1

µ

)
V(P,Q).

Note that P
ZrbM

′′(b)
1

is absolutely continuous w.r.t. Q⊗rZ P
M
′′(b)
1

by definition of QZ and the

code construction. Hence, using (3.39) together with Lemma 2 shows that there exists η > 0

such that for all r large enough

D(P
ZrbM

′′(b)
1
||Q⊗rZ P

M
′′(b)
1

) < 2−ηr. (3.40)
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Remark 9. Recall that some private common randomness is required to jump-start the

block-Markov encoding; this common randomness can be collected during a non-cooperative

starting phase in the following manner. The two encoders will start transmitting with rates

R1 = H(X1) and R2 = 0, which exceeds the single-user resolvability rate. Simultaneously,

via the usual arguments in the degraded wiretap channel M1 → Xn
1 → Zn, one can convey

1
n
(I(M1;Xn

1 ) − I(M1;Zn)) = H(X1|Z) bits of randomness from User 1 to User 2 while

keeping it independent of Z and maintaining an i.i.d. distribution Q⊗n(z). By collecting this

randomness for ρ0
H(X1|Z)

blocks, sufficient common randomness will be available to start the

block-Markov process. The difference of rates (R1, R2) in the starting phase will be amortized

over B blocks, with B growing without bound, thus the average rates remain as described.

The concept of starting the block-Markov transmission with a non-cooperative phase goes

back to the inception of block-Markov encoding [34].

Remark 10. The above mentioned initialization of block-Markov coding leaves open the pos-

sibility that some Q(z) may be compatible with some joint distribution p(x1, x2) but incompati-

ble with all product distributions p(x1)p(x2). Such a Q(z) is valid for cooperative transmission

but cannot be generated during the non-cooperative initialization of block-Markov encoding.

Thus, for a more precise definition of the model for MAC with strictly-causal cribbing, in the

context of resolvability, we are presented with three distinct choices: Either (a) some private

shared randomness (with rate that amortizes asymptotically to zero) is made available to the

model, or (b) the distribution Q(z) is limited to the set that can be generated via product dis-

tributions p(x1)p(x2), or (c) the distribution of Zn, although still i.i.d., is allowed to deviate

from the target Q(z) for a finite number of blocks at the beginning of transmission. Options

(b) and (c) are both reasonable for secrecy applications of resolvability; option (b) may affect

secrecy rates.
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Converse:

We consider a (2nR1 , 2nR2 , n) code such that D(PZn||Q⊗nZ ) ≤ ε, where ε
n→∞−−−→ 0. Then,

nR1 = H(M1)

≥ I(M1;Zn)

(a)
= I(M1, X

n
1 ;Zn) (3.41)

≥ I(Xn
1 ;Zn)

= I(Xn
1 , X

n
2 ;Zn)− I(Xn

2 ;Zn|Xn
1 )

(b)

≥
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

PZn(zn)
−
∑
i

I(X2i;Zi|X1i, X
i−1
1 ) (3.42)

(c)
=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
− D(PZn||Q⊗nZ )−

∑
i

I(X2i;Zi|X1i, Ui)

(3.43)

≥
∑
i

∑
ui

∑
x1i

∑
x2i

∑
zi

P (ui, x1i, x2i, zi) log
W (zi|x1i, x2i)

Q(zi)

−
∑
i

∑
ui

∑
x1i

∑
x2i

∑
zi

P (ui, x1i, x2i, zi) log
W (zi|x1i, x2i)

P (zi|x1i, ui)
− ε (3.44)

=
∑
i

∑
ui

∑
x1i

∑
x2i

∑
zi

P (ui, x1i, x2i, zi) log
P (zi|x1i, ui)

Q(zi)
− ε

=
∑
i

∑
ui

∑
x1i

∑
zi

P (ui, x1i, zi) log
P (zi|x1i, ui)

Q(zi)
− ε

=
∑
i

D(PUi,X1i,Zi ||PUi,X1i
QZi)− ε

=
∑
i

I(UiX1i;Zi) +
∑
i

D(PZi ||QZ)− ε (3.45)

(d)

≥ nI(UQX1Q;ZQ|Q)− ε (3.46)

= nI(QUQX1Q;ZQ)− nI(Q;ZQ)− ε (3.47)

(e)

≥ nI(UX1;Z)− nε′ (3.48)

where
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(a) follows from the definition of the deterministic encoding functions in (3.1);

(b) follows from I(Xn
2 ;Zn|Xn

1 ) ≤
∑n

i=1 I(X2,i;Zi|X1,iX
i−1
1 ) since the channel is memoryless

and because conditioning does not increase entropy;

(c) follows setting Ui , X i−1
1 ;

(d) follows by introducing a random variable Q uniformly distributed on J1, nK and inde-

pendent of all others;

(e) follows by [4, Lemma VI.3] for some ε′ > 0 with limε→0 ε
′ = 0 and by setting U = (Q,UQ),

X1 = X1Q and Z = ZQ.

Notice that upon setting X2 = X2Q and recalling that the cribbing is strictly-causal such

that X2Q is a function of (M2, Q, UQ), and that the Markov chains M1, X1 → U → M2 and

X1Q → Q,UQ → X2Q hold, we have

PQUQX1QX2QZQ = PQUQPX1Q|UQQPX2Q|UQQWZQ|X1QX2Q
, (3.49)

and

PUX1X2Z = PUPX1|UPX2|UWZ|X1X2 . (3.50)

Next, note that

nR2 = H(M2)

≥ H(M2|Xn
1 )

≥ I(M2;Zn|Xn
1 )

(a)
= I(M2, X

n
2 ;Zn|Xn

1 ) (3.51)

≥ I(Xn
2 ;Zn|Xn

1 )

= I(Xn
1 , X

n
2 ;Zn)− I(Xn

1 ;Zn) (3.52)
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=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

PZn(zn)
− I(Xn

1 ;Zn)

≥
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
− D(PZn||Q⊗nZ )−H(Xn

1 )

≥
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi) log
W (zi|x1i, x2i)

Q(zi)
−
∑
i

H(X1i|Ui)− ε

=
∑
i

∑
i

∑
x1i

∑
x2i

P (x1i, x2i, zi) log
W (zi|x1i, x2i)

P (zi)
+ D(PZi ||QZ)−

∑
i

H(X1i|Ui)− ε

≥
∑
i

I(X1i, X2i;Zi)−
∑
i

H(X1i|Ui)− ε

= nI(X1QX2Q;ZQ|Q)− nH(X1Q|UQQ)− ε

= nI(QX1QX2Q;ZQ)− nI(Q;ZQ)− nH(X1Q|UQQ)− ε
(b)

≥ nI(X1QX2Q;ZQ)− nH(X1Q|UQQ)− nε′

= nI(X1X2;Z)− nH(X1|U)− nε′ (3.53)

where (a) follows from the definition of the encoding function and (b) follows by [4, Lemma

VI.3] for some ε′ > 0 with limε→0 ε
′ = 0. Finally,

n(R1 +R2) = H(M1,M2)

≥ I(M1,M2;Zn)

≥ I(Xn
1 , X

n
2 ;Zn) + D(PZn||Q⊗nZ )− ε

≥ nI(X1, X2;Z)− nε′

where we have merely repeated the steps in (3.52)-(3.53).

3.4.2 Strong secrecy of MAC with one-sided strictly-causal cribbing

Achievability:

The interesting challenge being addressed in this section is that the decoding at output Y

and secrecy at output Z have dissonant requirements under strictly-causal cribbing. For
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decoding, Willems and van der Muelen [32] proposed a block-Markov superposition coding

technique where all the information carried by the cribbing signal is used as cloud centers for

the purpose of cooperation between the two encoders. The tightness of the inner and outer

bounds in [32] strongly suggests (via continuity arguments in joint probability distributions)

that leaving out any part of cribbing information from cooperation can incur a rate loss

for decoding at Y . On the other hand, the resolvability results of this dissertation strongly

suggest that for simulating a desired probability distribution at Z, it is beneficial to have

a local randomness component at X1 that does not take part in cooperation with X2. The

contribution of this section is to produce a coding strategy that reconciles these two dissonant

requirements.

We begin by informally describing the main idea of this section with a simplified notation.

The codebook for X1 is driven by three variables: (M1,M
′
1,M

′′
1 ). M1 is the secret message,

and M ′
1,M

′′
1 are uniformly distributed dithers. The encoder for X2 will decode the cribbing

signal X1 and use all its three components as cloud center for the next transmission, which we

call M0,M
′
0,M

′′
0 . This, as mentioned earlier, is crucial for decoding at Y . Now we introduce

an additional constraint (enforced by proper assignment of rates) so that Z is independent of

M ′
0, one of the dither components of X1. Thus, as far as the distribution of Z is concerned,

one of the two dither components of X1 is local (private) to X1 and is not used by X2. To

elaborate further, due to the imposed independence, the cloud centers that only differ in

their M ′
0 index must give rise to the same distribution in Z, therefore Encoder 2 has been

effectively enjoined from cooperation or coordination with part of the dither of Encoder 1,

which for all practical purposes becomes local to X1 as far as the eavesdropper is concerned.

We now make these ideas precise in full detail, which includes direct reference to block indices

as well as accounting for discrepancies between message/dither indices and their estimated

values.

We use a combination of block-Markov encoding and backward decoding. Independently

and uniformly distributed messages m
(b)
1 ∈ J1, 2rR1K and m

(b)
2 ∈ J1, 2rR2K will be sent over

61



B blocks. Each block consists of r transmissions so that n = rB. Consider a distribution

P (u, x1, x2) = P (u)P (x1|u)P (x2|u) such that
∑

u,x1,x2
P (u, x1, x2)W (z|x1, x2) = QZ(z).

Code Construction: In each block b ∈ J1, BK:

• Independently generate 2r(R1+ρ′1+ρ′′1 ) codewords urb each with probability P (ur) =

P⊗rU (ur). Label them ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), m

(b)
0 ∈ J1, 2rR1K, m′(b)0 ∈ J1, 2rρ′1K and

m
′′(b)
0 ∈ J1, 2rρ′′1 K.

• For every ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), independently generate 2r(R1+ρ′1+ρ′′1 ) codewords xr1b each

with probability P (xr1|ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )) = P⊗rX1|U(xr1|ur(m

(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )). Label

them xr1(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
1 ,m

′(b)
1 ,m

′′(b)
1 ), m

(b)
1 ∈ J1, 2rR1K, m

′(b)
1 ∈ J1, 2rρ′1K and

m
′′(b)
1 ∈ J1, 2rρ′′1 K.

• For every ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), independently generate 2r(R2+ρ2) codewords xr2b each

with probability P (xr2|ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )) = P⊗rX2|U(xr2|ur(m

(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )). Label

them xr2(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
2 ,m

′(b)
2 ), m

(b)
2 ∈ J1, 2rR2K and m

′(b)
2 ∈ J1, 2rρ2K.

We intend to use these codebooks in the following manner:

1. Block Markov encoding via M
(b)
0 = M

(b−1)
1 , M

′(b)
0 = M

′(b−1)
1 and M

′′(b)
0 = M

′′(b−1)
1 ;

2. M
(b)
1 , M

′(b)
1 and M

′′(b)
1 can be decoded from Xr

1b knowing (M
(b)
0 ,M

′(b)
0 ,M

′′(b)
0 );

3. {M (1)
1 , . . . ,M

(B)
1 } and {M (1)

2 , . . . ,M
(B)
2 } are secret from {Zr

1 , . . . , Z
r
B};

4. M
′′(b)
1 is the common randomness to be used by both encoders in block b+ 1;

5. M
′(b)
1 is local randomness used by Encoder 1 and M

′(b)
2 is local randomness used by

Encoder 2;

6. The messages M
(b)
0 , M

′(b)
0 , M

′′(b)
0 , M

(b)
1 , M

′(b)
1 , M

′′(b)
1 , M

(b)
2 and M

′(b)
2 can be decoded at

the receiver from Y r
b and the messages decoded in future blocks b+ 1 to B (backward

decoding).
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As a result of cribbing, after block b, Encoder 2 finds estimates (m̂
(b)
1 , m̂

′(b)
1 , m̂

′′(b)
1 ) for

(m
(b)
1 ,m

′(b)
1 ,m

′′(b)
1 ) such that

(ur(m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ), xr1(m̂

(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 , m̂

(b)
1 , m̂

′(b)
1 , m̂

′′(b)
1 ), xr1b) ∈ T (r)

ε (PU,X1,X1). (3.54)

where (m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ) = (m̂

(b−1)
1 , m̂

′(b−1)
1 , m̂

′′(b−1)
1 ).

Encoding: We apply block-Markov encoding as follows. In block b, the encoders send:

xr1b = xm1 (m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
1 ,m

′(b)
1 ,m

′′(b)
1 )

xr2b = xm2 (m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ,m

(b)
2 ,m

′(b)
2 )

where (m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ) = (m

(b−1)
1 ,m

′(b−1)
1 ,m

′′(b−1)
1 ) and (m̂

(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ) =

(m̂
(b−1)
1 , m̂

′(b−1)
1 , m̂

′′(b−1)
1 ). We also assume that the encoders and decoder have access

to (M
(1)
0 ,M

′(1)
0 ,M

′′(1)
0 ,M

(B)
1 ,M

′(B)
1 ,M

′′(B)
1 ,M

(B)
2 ,M

′(B)
2 ) through private common random-

ness.

Decoding at the receiver: The legitimate receiver waits until all B blocks are trans-

mitted and then performs backward decoding. The decoder first finds ( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 )

such that

(ur( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 ), xr1( ˆ̂m

(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 , ˆ̂m

(B)
1 , ˆ̂m

′(B)
1 , ˆ̂m

′′(B)
1 ),

xr2( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 , ˆ̂m

(B)
2 , ˆ̂m

′(B)
2 ), yrB) ∈ T (r)

ε (PU,X1,X2,Y ).

Assuming that (m
(B)
0 ,m

′(B)
0 ,m

′′(B)
0 ), (m

(B−1)
0 ,m

′(B−1)
0 ,m

′′(B−1)
0 ), . . . , (m

(b+1)
0 ,m

′(b+1)
0 ,m

′′(b+1)
0 )

have been decoded, the decoder sets ( ˆ̂m
(b)
1 , ˆ̂m

′(b)
1 , ˆ̂m

′′(b)
1 ) = ( ˆ̂m

(b+1)
0 , ˆ̂m

′(b+1)
0 , ˆ̂m

′′(b+1)
0 ) and finds

( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 ) and ( ˆ̂m

(b)
2 , ˆ̂m

′(b)
2 ) such that

(ur( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 ), xr1( ˆ̂m

(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 , ˆ̂m

(b)
1 , ˆ̂m

′(b)
1 , ˆ̂m

′′(b)
1 ),

xr2( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 , ˆ̂m

(b)
2 , ˆ̂m

′(b)
2 ), yrb) ∈ T (r)

ε (PU,X1,X2,Y ).
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Figure 3.10. Functional dependence graph for the block-Markov encoding scheme for MAC
with one-sided strictly-causal cribbing.

Probability of error analysis: Using the arguments for error analysis from [35, Lemma

4], the probability of error of each block vanishes exponentially with r and in turn vanishes

across blocks if

R1 + ρ′1 + ρ′′1 < H(X1|U), (3.55)

R2 + ρ2 < I(X2;Y |X1, U), (3.56)

R1 + ρ′1 + ρ′′1 +R2 + ρ2 < I(X1, X2;Y ). (3.57)

Secrecy analysis: Let P̄ be the probability induced when both encoders use

(M
(b)
0 ,M

′(b)
0 ,M

′′(b)
0 ). Let P be the probability when Encoder 1 uses (M

(b)
0 ,M

′(b)
0 ,M

′′(b)
0 ) and

Encoder 2 uses the estimate (M̂
(b)
0 , M̂

′(b)
0 , M̂

′′(b)
0 ). For the secrecy analysis, we find conditions

so that I(M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 ;Zr

b ) vanishes exponentially with r. This

is motivated by:

• (M
(b)
1 ,M

(b)
0 , M̂

(b)
0 ,M

(b)
2 ) are the Encoder 1 secret message in the present and the past,

the estimate of the latter (at Encoder 2), and Encoder 2 secret message, which must

be kept secret from Zr
b , obviously.
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• (M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ) must be kept independent of Zr

b according to the functional de-

pendence graph (Figure 3.10) to ensure the distribution of Z remains i.i.d. across

blocks

• M̂
′(b)
0 is kept independent from Zr

b to allow Encoder 1 to possess a local randomness

that is separate from the common randomness shared with Encoder 2: Resolvability

analysis showed us that having a local randomness at Encoder 1 can be beneficial for

achievable rates.

Let Ī(·; ·) be the mutual information according to P̄

Ī(M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 ;Zr

b )

= D(P̄
M

(b)
0 M

(b)
1 M

′(b)
1 M

′′(b)
1 M̂

(b)
0 M̂

′(b)
0 M

(b)
2 Zrb
||P̄

M
(b)
0 M

(b)
1 M

′(b)
1 M

′′(b)
1 M̂

(b)
0 M̂

′(b)
0 M

(b)
2
P̄Zrb )

≤ D(P̄
M

(b)
0 M

(b)
1 M

′(b)
1 M

′′(b)
1 M̂

(b)
0 M̂

′(b)
0 M

(b)
2 Zrb
||P̄

M
(b)
0 M

(b)
1 M

′(b)
1 M

′′(b)
1 M̂

(b)
0 M̂

′(b)
0 M

(b)
2
Q⊗rZ ) (3.58)

D(P̄
M

(b)
0 M

(b)
1 M

′(b)
1 M

′′(b)
1 M̂

(b)
0 M̂

′(b)
0 M

(b)
2 Zrb
||P̄

M
(b)
0 M

(b)
1 M

′(b)
1 M

′′(b)
1 M̂

(b)
0 M̂

′(b)
0 M

(b)
2
Q⊗rZ ) can be shown, sim-

ilar to Section 3.4.11, to vanish exponentially with r if:

ρ′′1 > I(U ;Z), (3.59)

ρ′1 + ρ′′1 > I(U,X1;Z), (3.60)

ρ′1 + ρ′′1 + ρ2 > I(X1, X2;Z), (3.61)

ρ′′1 + ρ2 > I(U,X2;Z). (3.62)

Define M (a:b) = {M (a), . . . ,M (b)} and Z(1:b),r = {Zr
1 , . . . , Z

r
b}.

Ī(M
(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r)

≤ Ī(M
(b)
0 ,M

(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(1:b)
2 ;Z(1:b),r) (3.63)

= Ī(M
(b)
0 ,M

(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(1:b)
2 ;Zr

b )

+ Ī(M
(b)
0 ,M

(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(1:b)
2 ;Z(1:b−1),r|Zr

b ) (3.64)
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= Ī(M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 ;Zr

b )

+ Ī(M
(1:b−1)
1 ,M

(1:b−1)
2 ;Zr

b |M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 )

+ Ī(M
(b)
0 ,M

(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(1:b)
2 ;Z(1:b−1),r|Zr

b ) (3.65)

≤ Ī(M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 ;Zr

b )

+ Ī(M
(1:b−1)
1 ,M

(1:b−1)
2 ;M

′′(b−1)
1 , Zr

b |M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 )

+ Ī(M
(b)
0 ,M

(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(1:b)
2 ;Z(1:b−1),r|Zr

b ) (3.66)

(a)
= Ī(M

(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 ;Zr

b )

+Ī(M
(1:b−1)
1 ,M

(1:b−1)
2 ;Zr

b |M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 ,M

(b−1)
1 ,M

′(b−1)
1 ,M

′′(b−1)
1 )

+ Ī(M
(b)
0 ,M

(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(1:b)
2 ;Z(1:b−1),r|Zr

b ) (3.67)

(b)

≤ 2−αr + Ī(M
(b)
0 ,M

(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(1:b)
2 ;Z(1:b−1),r|Zr

b ) (3.68)

≤ 2−αr

+Ī(M
(b)
0 ,M

(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M̂

(b)
0 ,M̂

′(b)
0 ,M

(1:b)
2 , Zr

b ,M
(b−1)
0 ,M

′(b−1)
1 ,M

′′(b−1)
1 ,M̂

(b−1)
0 , M̂

′(b−1)
0 ;Z(1:b−1),r)

(3.69)

(c)
= 2−αr + Ī(M

(b−1)
0 ,M

(1:b−1)
1 ,M

′(b−1)
1 ,M

′′(b−1)
1 , M̂

(b−1)
0 , M̂

′(b−1)
0 ,M

(1:b−1)
2 ;Z(1:b−1),r) (3.70)

(d)

≤ b× 2−αr

Therefore Ī(M1,M2;Zn) ≤ B × 2−αr where,

(a) holds because M
(b)
0 = M̂

(b)
0 = M

(b−1)
1 , M̂

′(b)
0 = M

′(b−1)
1 and M

′′(b−1)
1 is independent of

(M
(1:b−1)
1 ,M

(1:b−1)
2 ) by construction;

(b) holds because Ī(M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 ;Zr

b ) ≤ 2−αr by (3.58)-(3.62)

andM
(1:b−1)
1 ,M

(1:b−1)
2 →M

(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b)
0 , M̂

′(b)
0 ,M

(b)
2 ,M

(b−1)
1 ,M

′(b−1)
1 ,M

′′(b−1)
1 →

Zr
b (see Figure 3.10);

(c) holds because M
(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 , M̂

(b−1)
0 , M̂

′(b)
0 ,M

(b)
2 , Zr

b →

M
(b−1)
0 ,M

(1:b−1)
1 ,M

′(b−1)
1 ,M

′′(b−1)
1 , M̂

(b−1)
0 , M̂

′(b−1)
0 ,M

(1:b−1)
2 → Z(1:b−1),r (see Figure 3.10).
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(d) holds by repeating (3.63)-(3.70) b− 1 times.

Next we show that I(M
(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r) is not too different from

Ī(M
(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r).

I(M
(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r)

= D(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||PM(1:b)

1 M
(1:b)
2

PZ(1:b),r)

(a)

≤ D(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||PM(1:b)

1 M
(1:b)
2

Q⊗brZ )

=
∑

m
(1:b)
1 ,m

(1:b)
2 ,z(1:b),r

P (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r) log

P (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r)

P̄ (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r)

+
∑

m
(1:b)
1 ,m

(1:b)
2 ,z(1:b),r

P (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r) log

P̄ (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r)

P (m
(1:b)
1 ,m

(1:b)
2 )Q⊗brZ

+ D(P̄
M

(1:b)
1 M

(1:b)
2 Z(1:b,r) ||PM(1:b)

1 M
(1:b)
2

Q⊗brZ )− D(P̄
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||PM(1:b)

1 M
(1:b)
2

Q⊗brZ )

= D(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) + D(P̄

M
(1:b)
1 M

(1:b)
2 Z(1:b),r ||PM(1:b)

1 M
(1:b)
2

Q⊗brZ )

+
∑

m
(1:b)
1 ,m

(1:b)
2 ,z(1:b),r

(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r − P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) log

P̄ (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r)

P (m
(1:b)
1 ,m

(1:b)
2 )Q⊗brZ

(b)

≤ D(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) + D(P̄

M
(1:b)
1 M

(1:b)
2 Z(1:b),r ||P̄M(1:b)

1 M
(1:b)
2

Q⊗brZ )

+ log
1

µ
V(P

M
(1:b)
1 M

(1:b)
2 Z(1:b),r , P̄M(1:b)

1 M
(1:b)
2 Zb,r

)

(c)

≤ 2 log
1

µ
V(P

M
(1:b)
1 M

(1:b)
2 Z(1:b),r , P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) + D(P̄

M
(1:b)
1 M

(1:b)
2 Zb,r

||P̄
M

(1:b)
1 M

(1:b)
2

P̄Z(1:b),r)

+ D(P̄Z(1:b),r ||Q⊗brZ )

= 2 log
1

µ
V(P

M
(1:b)
1 M

(1:b)
2 Z(1:b),r , P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) + Ī(M

(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r)

+ D(P̄Z(1:b),r ||Q⊗brZ ) (3.71)

where

(a) follows by adding D(PZb,r ||Q⊗brZ );
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(b) follows because P̄
M

(1:b)
1 ,M

(1:b)
2

= P
M

(1:b)
1 ,M

(1:b)
2

, (P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r − P̄

M
(1:b)
1 M

(1:b)
2 Z(1:b),r) ≤

|P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r − P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r | and by defining µ , minzb,r Q

⊗br
Z (zb,r);

(c) follows by Lemma 2 and because D(P̄
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||P̄M(1:b)

1 M
(1:b)
2

Q⊗brZ ) =

D(P̄
M

(1:b)
1 M

(1:b)
2 Zb,r

||P̄
M

(1:b)
1 M

(1:b)
2

P̄Z(1:b),r) + D(P̄Z(1:b),r ||Q⊗brZ ).

The first and third terms of (3.71) vanish exponentially with br similar to Section 3.4.1.

We now derive an achievable rate region by choosing values for ρ′1, ρ′′1, ρ2, R1 and R2 that

satisfy the constraints for secrecy and probability of error. We find it more convenient to

separately derive achievable rate regions under the two conditions H(X1|U) ≶ I(U,X1;Y ),

and then merge them.

When H(X1|U) > I(U,X1;Y ), The following rates satisfy all error and secrecy con-

straints:

ρ′′1 = I(U ;Z) + ε,

ρ′1 = I(X1;Z|U) + ε,

ρ2 = I(X2;Z|X1, U) + ε,

R1 = H(X1|U)− I(U,X1;Z)− 2ε,

R2 = I(X1, X2;Y )− I(X2;Z|X1, U)−H(X1|U)− ε,

and the same is true for the following rates:

ρ′′1 = I(U,X2;Z) + ε,

ρ′1 = I(X1, X2;Z)− I(U,X2;Z) + ε,

ρ2 = ε,

R1 = I(X1, X2;Y )− I(X2;Y |X1, U)− I(X1, X2;Z)− 2ε,

R2 = I(X2;Y |X1, U)− ε.
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Considering the above two corner points, the following rate region is achievable.

R1 ≤ H(X1|U)− I(U,X1;Z)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)

which is identical to Eq. (3.15) absent one of the two sum rate constraints.

WhenH(X1|U) ≤ I(U,X1;Y ), the following rates satisfy all error and secrecy constraints:

ρ′′1 = I(U ;Z) + ε,

ρ′1 = I(X1;Z|U) + ε,

ρ2 = I(X2;Z|X1, U) + ε,

R1 = H(X1|U)− I(U,X1;Z)− 2ε,

R2 = I(X2;Y |X1, U)− I(X2;Z|X1, U)− ε,

and the same is true for the following rates:

ρ′′1 = I(U,X2;Z) + ε,

ρ′1 = I(X1, X2;Z)− I(U,X2;Z) + ε,

ρ2 = ε,

R1 = H(X1|U)− I(X1, X2;Z)− 2ε,

R2 = I(X2;Y |X1, U)− ε.

Considering the above two corner points, the following rate region is achievable.

R1 ≤ H(X1|U)− I(U,X1;Z)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ H(X1|U) + I(X2;Y |X1, U)− I(X1, X2;Z)
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which is again identical to Eq. (3.18) absent one of the two sum rate constraints.

Thus far, we have two achievable rate regions for the two conditions H(X1|U) ≶

I(U,X1;Y ), and the overall achievable rate region is usually specified as the union of the

two. However, a more compact representation is possible via the following useful information

inequality:

H(X1|U) ≶ I(U,X1;Y ) ⇒ H(X1|U) + I(X2;Y |X1, U) ≶ I(X1, X2;Y )

which holds because of I(X1, X2;Y ) = I(U,X1, X2;Y ) and the chain rule. It then follows

that the smaller of the two derived sum rate constraints is always active. Therefore we can

simplify the expression of the achievable region by using the intersection of the two sum rate

constraints.

This concludes the proof of Proposition 8.

3.4.3 Channel resolvability of MAC with one-sided causal cribbing

Achievability:

�1

� = � ( )�2 �1

��| , =�( )�1 �2 �1

�

Figure 3.11. MAC induced by Shannon strategy.

The proof of MAC with causal cribbing is similar to MAC with strictly-causal cribbing,

however, we use a Shannon strategy to generate X2 rather than codewords [32]. Let T ,

X |X1|
2 be the set of all strategies that map X1 into X2, and for t ∈ T denote by t(x1) ∈ X2

the image of x1 ∈ X1. See Figure 3.11 for illustration. The MAC induced by the Shannon

strategy is denoted by (X1 ×T ,W+
Z|X1,T

,Z) where W+
Z|X1,T

, WZ|X1,X2=T (X1).
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By Theorem 5, rate pairs (R1, R2) satisfying the following conditions are achievable for

MAC with strictly-causal cribbing.

R1 > I(U,X1;Z), (3.72)

R2 > I(X1, T ;Z)−H(X1|U), (3.73)

R1 +R2 > I(X1, T ;Z), (3.74)

with H(X1|U) > I(U,X1;Z) for any joint distribution PUX1TZ , PUPX1|UPT |UW
+
Z|X1T

with

marginal QZ . Therefore, for MAC with causal cribbing the rate pairs (R1, R2) in (3.72)-(3.74)

must be achievable. Restricting the distribution to satisfy PUX1TZ , PUPX1PTW
+
Z|X1T

yields:

H(X1|U) = H(X1),

I(U,X1;Z) = I(X1;Z),

I(X1, T ;Z) = I(X1, X2, T ;Z) = I(X1, X2;Z),

and P (x1, x2, z) = P (x1)
∑

t:t(x1)=x2
P (t)W (z|x1, x2). This is possible because of the fact that

for an arbitrary distribution P ∗(x1, x2), there always exists a product distribution P (x1, t) =

P (x1)P (t) such that P ∗(x1, x2) = P (x1)
∑

t:t(x1)=x2
P (t). This is achieved by choosing [32,

Eq. (44)]

P (x1) =
∑
x2

P ∗(x1, x2),

P (t) =
∏
x1

P ∗(x1, x2 = t(x1))

P (x1)
.

Note that the constraint H(X1|U) > I(U,X1;Z) is now automatically satisfied if H(X1|Z) >

0. From the above we conclude that all rate pairs (R1, R2) satisfying the following conditions

are achievable for MAC with causal cribbing.

R1 > I(X1;Z),

R2 > I(X1, X2;Z)−H(X1),
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R1 +R2 > I(X1, X2;Z),

with H(X1|Z) > 0 for any joint distribution PX1,X2,Z , PX1,X2WZ|X1,X2 with marginal QZ .

The achievability scheme presented thus far depends on H(X1|Z) > 0. The same achiev-

able rates can be attained for H(X1|Z) = 0, however, a different scheme is required for this

extremal case, which is presented below.

Consider a distribution P (x1, x2) = P (x1)P (x2|x1) such that∑
x1,x2

P (x1, x2)W (z|x1, x2) = QZ .

• Independently generate 2nR1 codewords xn1 each with probability P (xn1 ). Label them

xn1 (m1), m1 ∈ J1, 2nR1K.

• For every xn1 (m1), independently generate 2nR2 codewords xn2 each with probability

P (xn2 |xn1 (m1)) = P⊗nX2|X1(m1)(x
n
2 |xn1 (m1)). Label them xn2 (xn1 (m1),m2), m2 ∈ J1, 2nR2K.

This defines the codebook

Cn = {xn1 (m1), xn2 (xn1 (m1),m2),m1 ∈ J1, 2nR1K,m2 ∈ J1, 2nR2K} (3.75)

and we denote the random codebook by

Cn = {Xn
1 (m1), Xn

2 (Xn
1 (m1),m2),m1 ∈ J1, 2nR1K,m2 ∈ J1, 2nR2K} (3.76)

The average KL divergence is:

ECn

(
D(PZn||Q⊗nZ )

)
= ECn

(∑
zn

∑
xn1

P (xn1 , z
n) log

∑
xn1
P (xn1 , z

n)∑
xn1
Q⊗nX1,Z

(xn1 , z
n)

)
(a)

≤ ECn

(∑
zn

∑
xn1

P (xn1 , z
n) log

P (xn1 , z
n)

Q⊗nX1,Z
(xn1 , z

n)

)
= ECn

(
D(PXn

1 ,Z
n||Q⊗nX1,Z

)
)

(b)
= ECn

(
D(PZn|Xn

1
||Q⊗nZ|X1

|PXn
1
)
)

+ ECn

(
D(PXn

1
||P⊗nX1

)
)

(3.77)

where

QX1,Z =
∑

x2
P (x1, x2)W (z|x1, x2);
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(a) follows by the log-sum inequality;

(b) follows from the chain rule of KL divergence.

Encoder 

Figure 3.12. State-dependent point-to-point channel.

Let R1 > H(X1), in which case the second term of (3.77) vanishes as n → ∞ and

the channel is effectively a state-dependent point-to-point channel (Fig. 3.12). Using similar

bounding techniques as those used earlier in this dissertation (e.g. the proof of (3.24)-(3.27)),

the first term of (3.77) vanishes as n → ∞ if R2 > I(X2;Z|X1). Since H(X1|Z) = 0, the

achievable region is

R1 > H(X1) = I(X1;Z),

R2 > I(X2;Z|X1) = I(X1, X2;Z)−H(X1),

R1 +R2 > H(X1) + I(X2;Z|X1) = I(X1, X2;Z).

Converse:

Since MAC with causal cribbing is a special case of MAC with non-causal cribbing, it follows

that the converse of the latter holds for the causal cribbing scenario. The converse of MAC

with non-causal cribbing is presented in 3.4.5

3.4.4 Strong secrecy of MAC with one-sided causal cribbing

Achievability:

This proof is similar to the achievability proof of the strictly-causal case and we again use

a Shannon strategy for generating X2 rather than codewords [32]. Using the same notation

73



as in Section 3.4.3 for the strategies T , we find from Proposition 8 that rate pairs (R1, R2)

satisfying the following secrecy are achievable with strictly-causal cribbing:

R1 < H(X1|U)− I(U,X1;Z),

R2 < I(T ;Y |X1, U),

R1 +R2 < I(X1, T ;Y )− I(X1, T ;Z),

for any joint distribution PUX1TY Z , PUPX1|UPT |UW
+
Y Z|X1T

with marginal QZ . Restricting

the distribution to satisfy PUX1TY Z , PUPX1PTW
+
Y Z|X1T

yields:

H(X1|U) = H(X1),

I(U,X1;Z) = I(X1;Z)

I(T ;Y |X1, U) = I(T,X2;Y |X1, U) = I(X2;Y |X1),

I(X1, T ;Y ) = I(X1, X2, T ;Y ) = I(X1, X2;Y ),

I(X1, T ;Z) = I(X1, X2, T ;Z) = I(X1, X2;Z),

and P (x1, x2, y, z) = P (x1)
∑

t:t(x1)=x2
P (t)W (y, z|x1, x2). To complete the proof, we again

follow [32, Eq. (44)] to note that for an arbitrary distribution P ∗(x1, x2) there exists a product

distribution P (x1, t) = P (x1)P (t) such that P ∗(x1, x2) = P (x1)
∑

t:t(x1)=x2
P (t).

3.4.5 Channel resolvability of MAC with one-sided non-causal cribbing

Achievability:

Codebook generation: Consider a distribution P (x1, x2) = P (x1)P (x2|x1) such that∑
x1,x2

P (x1, x2)W (z|x1, x2) = QZ(z).

• Independently generate 2nR1 codewords xn1 each with probability P (xn1 ) = P⊗nX1
(xn1 ).

Label them xn1 (m1), m1 ∈ J1, 2nR1K.
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• For every xn1 (m1), independently generate 2nR2 codewords xn2 each with probability

P (xn2 |xn1 (m1)) = P⊗nX2|X1
(xn2 |xn1 (m1)). Label them xn2 (xn1 (m1),m2), m2 ∈ J1, 2nR2K.

This defines the codebook

Cn = {xn1 (m1), xn2 (xn1 (m1),m2),m1 ∈ J1, 2nR1K,m2 ∈ J1, 2nR2K} (3.78)

and we denote the random codebook by

Cn = {Xn
1 (m1), Xn

2 (Xn
1 (m1),m2),m1 ∈ J1, 2nR1K,m2 ∈ J1, 2nR2K} (3.79)

The average KL divergence is:

ECn

(
D(PZn||Q⊗nZ )

)
= ECn

(∑
zn

PZn(zn) log
PZn(zn)

Q⊗nZ (zn)

)
= ECn

(∑
zn

1

2n(R1+R2)

∑
m1,m2

W⊗n(zn|Xn
1 (m1), Xn

2 (Xn
1 (m1),m2))

log

∑
m′1,m

′
2
W⊗n(zn|Xn

1 (m′1), Xn
2 (Xn

1 (m′1),m′2))

2n(R1+R2)Q⊗nZ (zn)

)

=
∑
xn1 (1)

∑
xn2 (xn1 (1),1)

· · ·
∑

xn1 (2nR1 )

∑
xn2 (xn1 (2nR1 ),2nR2 )

(2nR1 ,2nR2 )∏
(k1,k2)=(1,1)

P (xn1 (k1), xn2 (xn1 (k1), k2))

∑
zn

1

2n(R1+R2)

∑
m1,m2

W⊗n(zn|xn1 (m1), xn2 (xn1 (m1),m2))

log

∑
m′1,m

′
2
W⊗n(zn|xn1 (m′1), xn2 (xn1 (m′1),m′2))

2n(R1+R2)Q⊗nZ (zn)

=
∑
zn

1

2n(R1+R2)

∑
m1,m2

∑
xn1 (m1),

xn2 (xn1 (m1),m2)

P (xn1 (m1), xn2 (xn1 (m1),m2))W⊗n(zn|xn1 (m1), xn2 (xn1 (m1),m2))

(2nR1 ,2nR2 )∑
(k1,k2)6=(m1,m2)

∑
xn1 (k1)

∑
xn2 (xn1 (k1),k2)

(2nR1 ,2nR2 )∏
(l1,l2)6=(m1,m2)

P (xn1 (l1), xn2 (xn1 (l1), l2))

log

∑
m′1

∑
m′2
W⊗n(zn|xn1 (m′1), xn2 (xn1 (m′1),m′2))

2n(R1+R2)Q⊗nZ (zn)
(3.80)
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=
∑
zn

1

2n(R1+R2)

∑
m1,m2

∑
xn1 (m1)

∑
xn2 (xn1 (m1),m2)

P (xn1 (m1), xn2 (xn1 (m1),m2), zn)

E\(m1,m2) log

∑
m′1

∑
m′2
W⊗n(zn|Xn

1 (m′1), Xn
2 (Xn

1 (m′1),m′2))

2n(R1+R2)Q⊗nZ (zn)

(3.81)

(a)

≤ 1

2n(R1+R2)

∑
m1,m2

∑
zn

∑
xn1 (m1)

∑
xn2 (xn1 (m1),m2)

P (xn1 (m1), xn2 (xn1 (m1),m2), zn)

logE\(m1,m2)

∑
m′1,m

′
2

W⊗n(zn|Xn
1 (m′1), Xn

2 (Xn
1 (m′1),m′2))

2n(R1+R2)Q⊗nZ (zn)

=
1

2n(R1+R2)

∑
m1,m2

∑
zn

∑
xn1 (m1)

∑
xn2 (xn1 (m1),m2)

P (xn1 (m1), xn2 (xn1 (m1),m2), zn)

logE\(m1,m2)

(
W⊗n(zn|xn1 (m1), xn2 (xn1 (m1),m2))

2n(R1+R2)Q⊗nZ (zn)

+
∑

m′1 6=m1

[
1{xn1 (m′1)=xn1 (m1)}

W⊗n(zn|Xn
1 (m′1), xn2 (Xn

1 (m′1),m2))

2n(R1+R2)Q⊗nZ (zn)

+ 1{xn1 (m′1)6=xn1 (m1)}
W⊗n(zn|Xn

1 (m′1), xn2 (Xn
1 (m′1),m2))

2n(R1+R2)Q⊗nZ (zn)

]
+
∑

m′2 6=m2

W⊗n(zn|xn1 (m1), Xn
2 (xn1 (m1),m′2))

2n(R1+R2)Q⊗nZ (zn)

+
∑

m′2 6=m2

m′1 6=m1

W⊗n(zn|Xn
1 (m′1), Xn

2 (Xn
1 (m′1),m′2))

2n(R1+R2)Q⊗nZ (zn)

)

(b)

≤ 1

2n(R1+R2)

∑
m1,m2

∑
zn

∑
xn1 (m1)

∑
xn2 (xn1 (m1),m2)

P (xn1 (m1), xn2 (xn1 (m1),m2), zn)

log

(
W⊗n(zn|xn1 (m1), xn2 (xn1 (m1),m2))

2n(R1+R2)Q⊗nZ (zn)

+ E\(m1,m2)

( ∑
m′1 6=m1

[
1{xn1 (m′1)=xn1 (m1)}

W⊗n(zn|Xn
1 (m′1), Xn

2 (Xn
1 (m′1),m2))

2n(R1+R2)Q⊗nZ (zn)

+ 1{xn1 (m′1) 6=xn1 (m1)}
W⊗n(zn|Xn

1 (m′1), Xn
2 (Xn

1 (m′1),m2))

2n(R1+R2)Q⊗nZ (zn)

])
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+
∑

m′2 6=m2

P⊗n(zn|xn1 (m1))

2n(R1+R2)Q⊗nZ (zn)
+ 1

)
(3.82)

(c)
= Ψ1 + Ψ2

where

(a) follows by Jensen’s inequality where E log(·) ≤ logE(·). Recall E\(m1,m2)(·) is the expec-

tation over Xn
1 (i) and Xn

2 (Xn
1 (i), j) for (i, j) 6= (m1,m2); E\(m1,m2) to each term inside

the bracket;

(b) Ψ1 is taking the summation
∑

xn1 ,x
n
2 ,z

n in (3.82) over (xn1 , x
n
2 , z

n) ∈ T nε (PX1,X2,Z) and Ψ2

is taking the same summation over (xn1 , x
n
2 , z

n) 6∈ T nε (PX1,X2,Z).

Hence,

Ψ1 ≤ log
(

2−n(R1+R2)2−n(1−ε)H(Z|X1,X2)2n(1+ε)H(Z) + 2−nR22−n(1−ε)(H(X1)+H(Z|X1,X2))2n(1+ε)H(Z)

+ 2−nR2 + 2−nR12−n(1−ε)(H(Z|X1))2n(1+ε)H(Z) + 1
)

(3.83)

Ψ2 ≤ 2|X1||X2||Z|e−nε
2µX1X2Zn log(

4

µZ
+ 1) (3.84)

where

µZ = min
z∈Z

s.t. Q(z)>0

Q(z)

µX1X2Z = min
(x1,x2,z)∈(X1,X2,Z)

s.t. Q(x1,x2,z)>0

Q(x1, x2, z)

Now E(D(PZn||Q⊗nZ ))
n→∞−−−→ 0 if R1 > I(X1;Z) + 2εH(Z), R2 > I(X1, X2;Z)−H(X1) +

2εH(Z) and R1 + R2 > I(X1, X2;Z) + 2εH(Z). This implies, by Markov’s inequality, that

Pr(D(PZn||Q⊗nZ ) > ηn)
n→∞−−−→ 0 for a suitable choice of ηn; ηn = e−nα for α > 0.
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Converse:

We consider a (2nR1 , 2nR2 , n) code such that D(PZn||Q⊗nZ ) ≤ ε, where ε
n→∞−−−→ 0.

By assumption,

ε ≥ D(PZn||Q⊗nZ )

=
∑
zn

P (zn) log
P (zn)

Q⊗nZ (zn)

=
n∑
i=1

(∑
zi

PZ(zi) log
1

Q(zi)
−H(Zi|Zi−1)

)
(a)

≥
n∑
i=1

(∑
zi

P (zi) log
1

Q(zi)
−H(Zi)

)

=
n∑
i=1

D(PZi ||QZ)

(b)

≥ nD(P̃Z ||QZ)

where

(a) follows because conditioning does not increase entropy;

(b) follows by Jensen’s inequality and the convexity of D(·||·) with P̃Z(z) , 1
n

∑n
i=1 PZi(z).

Note that,

nR1 = H(M1) (3.85)

≥ I(M1;Zn)

(a)
= I(M1, X

n
1 ;Zn)

≥ I(Xn
1 ;Zn)

= I(Xn
1 , X

n
2 ;Zn)− I(Xn

2 ;Zn|Xn
1 )

(b)

≥
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

PZn(zn)
−
∑
i

I(X2i;Zi|X1i)
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=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
− D(PZn ||Q⊗nZ )−

∑
i

I(X2i;Zi|X1i)

≥
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
−
∑
i

I(X2i;Zi|X1i)− ε

=
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi)

(
log

W (zi|x1i, x2i)

Q(zi)
− log

W (zi|x1i, x2i)

P (zi|x1i)

)
− ε

=
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi) log
P (zi|x1i)

Q(zi)
− ε

=
∑
i

∑
x1i

∑
zi

P (x1i, zi) log
P (zi|x1i)

Q(zi)
− ε

=
∑
i

D(PX1iZi ||PX1i
QZi)− ε

(c)

≥ nD
(∑

i PX1iZi

n

∣∣∣∣∣∣∣∣∑i PX1i

n
QZ

)
− ε

(d)
= nD(P̃X1,Z ||P̃X1QZ)− ε

= n
∑
x1

∑
z

P̃X1,Z(x1, z) log
P̃X1,Z(x1, z)

P̃X1(x1)QZ(z)
− ε

= n
∑
x1

∑
z

P̃X1,Z(x1, z) log
P̃X1,Z(x1, z)

P̃X1(x1)P̃Z(z)
+ n

∑
x1

∑
z

P̃X1,Z(x1, z) log
P̃Z(z)

QZ(z)
− ε

= nI(X̃1; Z̃) + nD(P̃Z ||QZ)− ε

≥ nI(X̃1; Z̃)− ε (3.86)

where

(a) follows from the definition of the deterministic encoding functions in (3.3);

(b) follows because conditioning does not increase entropy and the channel is discrete

memoryless, therefore I(Xn
2 ;Zn|Xn

1 ) =
∑
H(Zi|Zi−1, Xn

1 ) − H(Zi|Zi−1, Xn
1 , X

n
2 ) ≤∑

H(Zi|X1i)−H(Zi|X1i, X2i) ≤
∑n

i=1 I(X2i;Zi|X1i);

(c) follows by Jensen’s inequality and the convexity of D(·||·);
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(d) follows by defining P̃X1,Z(x1, z) , 1
n

∑
i PX1i,Zi(x1, z) and P̃X1(x1) , 1

n

∑
i PX1i

(x1) where

P̃X1,X2(x1, x2) , 1
n

∑
i PX1i,X2i

(x1, x2), P̃X1,X2,Z(x1, x2, z) , 1
n

∑
i PX1i,X2i,Zi(x1, x2, z) =

WZ|X1,X2(z|x1, x2)P̃X1,X2(x1, x2) and P̃X1,Z(x1, z) =
∑

x2
P̃X1,X2,Z(x1, x2, z) .

nR2 = H(M2)

≥ H(M2|Xn
1 )

≥ I(M2;Zn|Xn
1 )

(a)
= I(M2, X

n
2 ;Zn|Xn

1 )

≥ I(Xn
2 ;Zn|Xn

1 )

= I(Xn
1 , X

n
2 ;Zn)− I(Xn

1 ;Zn)

=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
P (xn1 , x

n
2 , z

n)

P (xn1 , x
n
2 )PZn(zn)

−H(Xn
1 ) +H(Xn

1 |Zn)

≥
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
− D(PZn||Q⊗nZ )−H(Xn

1 )

≥
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi) log
W (zi|x1i, x2i)

Q(zi)
−
∑
i

H(X1i)− ε

=
∑
i

D(PX1i,X2i,Zi ||PX1i,X2i
QZi)−

∑
i

H(X1i)− ε

(b)

≥ nD(P̃X1,X2,Z ||P̃X1,X2QZ)− nH(X̃1)− ε

= nD(P̃X1,X2,Z ||P̃X1,X2P̃Z) + nD(P̃Z ||QZ)− nH(X̃1)− ε

≥ nI(X̃1, X̃2; Z̃)− nH(X̃1)− ε

where

(a) follows from the definition of the deterministic encoding functions in (3.3);

(b) follows by Jensen’s inequality, the convexity of D(·||·), concavity of H(·) and defining

P̃X1,X2,Z(x1, x2, z) , 1
n

∑
i PX1i,X2i,Zi(x1, x2, z) and P̃X1,X2(x1, x2) , 1

n

∑
i PX1i,X2i

(x1, x2)

with P̃X1,X2,Z(x1, x2, z) = WZ|X1,X2(z|x1, x2)P̃X1,X2(x1, x2).
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Next, observe that

n(R1 +R2)

= H(M1,M2) (3.87)

≥ I(M1,M2;Zn)

≥ I(Xn
1 , X

n
2 ;Zn) + D(PZn||Q⊗nZ )− ε

=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
P (xn1 , x

n
2 , z

n)

P (xn1 , x
n
2 )PZn(zn)

+
∑
zn

P (zn) log
PZn(zn)

Q⊗nZ (zn)
− ε

=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
− ε

=
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi) log
W (zi|x1i, x2i)

Q(zi)
− ε

=
∑
i

D(PX1i,X2i,Zi ||PX1i,X2i
QZi)− ε

(a)

≥ nD
(∑

i PX1i,X2i,Zi

n

∣∣∣∣∣∣∣∣∑i PX1i,X2i

n
QZ

)
− ε

(b)
= nD(P̃X1,X2,Z ||P̃X1,X2QZ)− ε

= nD(P̃X1,X2,Z ||P̃X1,X2P̃Z) + nD(P̃Z ||QZ)− ε

≥ nI(X̃1, X̃2; Z̃)− ε (3.88)

where

(a) follows by Jensen’s inequality and the convexity of D(·||·);

(b) follows by defining P̃X1,X2,Z(x1, x2, z) , 1
n

∑
i PX1i,X2i,Zi(x1, x2, z) and P̃X1,X2(x1, x2) ,

1
n

∑
i PX1i,X2i

(x1, x2) with P̃X1,X2,Z(x1, x2, z) = WZ|X1,X2(z|x1, x2)P̃X1,X2(x1, x2, z).
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3.4.6 Strong secrecy of MAC with one-sided non-causal cribbing

Achievability:

Consider a distribution P (x1, x2) = P (x1)P (x2|x1) such that
∑

x1,x2
P (x1, x2)W (z|x1, x2) =

QZ(z).

Code Construction:

• Independently generate 2n(R1+R′1) codewords xn1 each with probability P (Xn
1 ) =

P⊗nX1
(xn1 ). Label them xn1 (m1,m

′
1), m1 ∈ J1, 2nR1K and m′1 ∈ J1, 2nR′1K.

• For every xn1 (m1,m
′
1), independently generate 2n(R2+R′2) codewords xn2 each

with probability P (xn2 |xn1 (m1,m
′
1)) = P⊗nX2|X1

(xn2 |xn1 (m1,m
′
1)). Label them

xn2 (xn1 (m1,m
′
1),m2,m

′
2), m2 ∈ J1, 2nR2K and m′2 ∈ J1, 2nR′2K.

We assume that each message is chosen independently and uniformly from its corre-

sponding set. As a result of cribbing, Encoder 2 knows xn1 in advance, therefore before

transmission, it finds (m̂1, m̂
′
1) such that (xn1 (m̂1, m̂

′
1), xn1 ) ∈ T (n)

ε (PX1,X1) where (m̂1, m̂
′
1) are

the estimates of (m1,m
′
1).

Encoding: To send m1, Encoder 1 sends xn1 (m1,m
′
1). To send m2, Encoder 2 coopera-

tively sends xn2 (xn1 (m̂1, m̂
′
1),m2,m

′
2).

Decoding at the receiver: The decoder finds ( ˆ̂m1, ˆ̂m′1,
ˆ̂m2, ˆ̂m′2) such that

(xn1 ( ˆ̂m1, ˆ̂m′1), xn2 (xn1 ( ˆ̂m1, ˆ̂m′1), ˆ̂m2, ˆ̂m′2), yn) ∈ T (n)
ε (PX1,X2,Y ).

Probability of error analysis: Using standard arguments, the probability of error

averaged over all codebooks vanishes exponentially with n if

R1 +R′1 < H(X1) (3.89)

R2 +R′2 < I(X2;Y |X1) (3.90)

R1 +R′1 +R2 +R′2 < I(X1, X2;Y ) (3.91)
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Secrecy analysis: We will show that the information leakage, averaged over all

codebooks, vanishes exponentially with n. We use the results of Theorem 7 to bound

EM1,M2 [D(PZn|M1,M2 ||Q⊗nZ )] such that the channel output distribution at the wiretapper

is, on average, independent of the transmitted messages and follows the i.i.d distribu-

tion Q⊗nZ . This is sufficient to ensure secrecy because I(M1,M2;Zn) can be bounded by

EM1,M2 [D(PZn|M1,M2 ||Q⊗nZ )], as follows:

I(M1,M2;Zn) = D(PM1,M2,Zn||PM1,M2PZn) (3.92)

=
∑

m1,m2,zn

PM1,M2,Zn(m1,m2, z
n) log

PM1,M2,Zn(m1,m2, z
n)

PM1,M2(m1,m2)PZn(zn)
(3.93)

=
∑
m1,m2

PM1,M2(m1,m2)D(PZn|M1,M2||PZn) (3.94)

(a)

≤ EM1,M2

(
D(PZn|M1,M2||Q⊗nZ )

)
, (3.95)

where (a) follows by adding D(PZn||Q⊗nZ ) ≥ 0 to (3.94). With PZn|M1M2(z
n|m1,m2) =

2−n(R′1+R′2)
∑

i,jW
⊗n(zn|xn1 (m1, i), x

n
2 (m1, i,m2, j)) and applying Theorem 7 to (3.95),

I(M1,M2;Zn) vanishes exponentially with n if

R′1 > I(X1;Z) (3.96)

R′2 > I(X1, X2;Z)−H(X1) (3.97)

R′1 +R′2 > I(X1, X2;Z) (3.98)

Combining (3.89)-(3.91) and (3.96)-(3.98), and using Fourier-Motzkin elimination, the

following rate region is achievable

R1 < H(X1)− I(X1;Z), (3.99)

R2 < I(X2;Y |X1), (3.100)

R1 +R2 < I(X1, X2;Y )− I(X1, X2;Z). (3.101)
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3.4.7 Channel resolvability of MAC with two-sided strictly-causal cribbing

Achievability (Proposition 5):

To handle the strict causality constraint, we adopt a block-Markov encoding scheme over

B > 0 consecutive and dependent blocks, each consisting of r transmissions such that n =

rB. The vector of n channel outputs Zn may then be described as Zn , (Zr
1 , · · · , Zr

B), where

each Zr
b for b ∈ J1, BK describes the observations in block b. The distribution induced by the

coding scheme is the joint distribution P n
Z , PZr1 ,··· ,PZrB

, while the target output distribution

is a product distribution of product distributions Q⊗nZ ,
∏B

j=1 Q
⊗r
Z .

Codebook Construction:

Consider a distribution PU,U1,U2,X1,X2 = PUPU1|UPU2|UPX1|U,U1PX2|U,U2 such that∑
u,u1,u2,x1,x2

PU,U1,U2,X1,X2WZ|X1,X2 = QZ that satisfies H(X1|U,U1) + H(X2|U,U2) >

I(X1, X2;Z). For every b ∈ J1, BK:

• Independently generate 2rρ0 codewords ur(m
(b)
0 ) each with probability PUr = P⊗rU .

Label them ur(m
(b)
0 ), m

(b)
0 ∈ J1, 2nρ0K.

• For every ur(m
(b)
0 ), independently generate 2rρ01 codewords ur1(m

(b)
0 ,m

(b)
01 ) each with

probability PUr1 |Ur = P⊗rUr1 |Ur
. Label them ur1(m

(b)
0 ,m

(b)
01 ), m

(b)
01 ∈ J1, 2rρ01K.

• For every (ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 )), independently generate 2r(ρ

′
1+ρ′′1 ) codewords

xr1(m
(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ) each with probability PXr

1 |Ur1 ,Ur = P⊗rXr
1 |Ur1 ,Ur

. Label them

xr1(m
(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ), m

′(b)
1 ∈ J1, 2rρ′1K and m

′′(b)
1 ∈ J1, 2rρ′′1 K.

• For every ur(m
(b)
0 ), independently generate 2rρ02 codewords ur2(m

(b)
0 ,m

(b)
02 ) each with

probability PUr2 |Ur = P⊗rUr2 |Ur
. Label them ur2(m

(b)
0 ,m

(b)
02 ), m

(b)
02 ∈ J1, 2rρ02K.

• For every (ur(m
(b)
0 ), ur2(m

(b)
0 ,m

(b)
02 )), independently generate 2r(ρ

′
2+ρ′′2 ) codewords

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ) each with probability PXr

2 |Ur2 ,Ur = P⊗rXr
2 |Ur2 ,Ur

. Label them

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ), m

′(b)
2 ∈ J1, 2rρ′2K and m

′′(b)
2 ∈ J1, 2rρ′′2 K.
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This defines the codebook in block b

Cr =
{
ur(m

(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,m(b)

01 ∈ J1, 2rρ01K,m(b)
02 ∈ J1, 2rρ02K,

m
′(b)
1 ∈ J1, 2rρ

′
1K,m′′(b)1 ∈ J1, 2rρ

′′
1 K,m′(b)2 ∈ J1, 2rρ

′
2K,m′′(b)2 ∈ J1, 2rρ

′′
2 K
}

(3.102)

and we denote the random codebook in block b by

Cr =
{
U r(m

(b)
0 ), U r

1 (m
(b)
0 ,m

(b)
01 ), U r

2 (m
(b)
0 ,m

(b)
02 ), Xr

1(m
(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

Xr
2(m

(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,m(b)

01 ∈ J1, 2rρ01K,m(b)
02 ∈ J1, 2rρ02K,

m
′(b)
1 ∈ J1, 2rρ

′
1K,m′′(b)1 ∈ J1, 2rρ

′′
1 K,m′(b)2 ∈ J1, 2rρ

′
2K,m′′(b)2 ∈ J1, 2rρ

′′
2 K
}

(3.103)

The messages M
′(b)
1 and M

′(b)
2 are part of M

(b)
1 and M

(b)
2 respectively and represent the

local randomness at each encoder. The messages M
′′(b)
1 and M

′′(b)
2 are part of M

(b)
1 and

M
(b)
2 respectively that are used by both encoders toward the creation of M

(b+1)
0 , M

(b+1)
01

and M
(b+1)
02 , assuming ρ′′1 + ρ′′2 > ρ0 + ρ01 + ρ02. Furthermore, for γ ∈ J0, 1K, an amount

γ(ρ′′1 + ρ′′2 − ρ0 − ρ01 − ρ02) is recycled towards the creation of M
′(b+1)
1 and an amount

(1− γ)(ρ′′1 + ρ′′2 − ρ0 − ρ01 − ρ02) is recycled towards the creation of M
′(b+1)
2 .

Next we bound D(PZn||Q⊗nZ ) and show that dependencies across blocks created by block-

Markov encoding can be eliminated by appropriately recycling randomness from one block

to the next.

D(PZn||Q⊗nZ ) (3.104)

= D(PZr1 ...ZrB ||Q
⊗rB
Z )

=
B∑
b=1

D(PZrj |Z
B,r
b+1
||Q⊗rZ |PZB,rb+1

) (3.105)

=
B∑
b=1

D(PZrj ||Q
⊗r
Z ) +

B∑
b=1

D(PZrj |Z
B,r
b+1
||PZrj |PZB,rb+1

) (3.106)
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=
B∑
b=1

D(PZrb ||Q
⊗r
Z ) +

B∑
b=1

I(Zr
b ;Z

B,r
b+1) (3.107)

(a)

≤
B∑
b=1

D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 , ZB

b+1)

(3.108)

(b)
=

B∑
b=1

D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 ) (3.109)

(c)

≤
B∑
b=1

2× D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

H(M̂
′′(b)
1 , M̂

′′(b)
2 |M ′′(b)

1 ,M
′′(b)
2 ) (3.110)

where

(a) follows since D(PZrb ||Q
⊗r
Z ) = D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) −

D(P
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

PZrb );

(b) follows since Zr
b → M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 → ZB,r

b+1 holds; fol-

lows since I(Zr
b ;M

′′(b)
1 ,M

′′(b)
2 ) = D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

PZrb ) ≤

D(P
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ).

Let P
(b)
e be the average error probability of both encoders decoding the other en-

coder’s message. From Fano’s inequality, we can write H(M̂
′′(b)
1 , M̂

′′(b)
2 |M ′′(b)

1 ,M
′′(b)
2 ) ≤

H(M̂
′′(b)
1 |M ′′(b)

1 ) +H(M̂
′′(b)
2 |M ′′(b)

2 ) ≤ 2H(P
(b)
e ) + r(ρ′′1 + ρ′′2)P

(b)
e . By random coding we know

that ECr

(
P

(b)
e

)
< 2−αr for some α > 0 and all r large enough if ρ′1 + ρ′′1 < H(X1|U,U1) and

ρ′2 + ρ′′2 < H(X2|U,U2).

Let P̄ be the probability distribution induced when both encoders are using the same

M
(b)
0 , i.e., (M̂

′′(b−1)
1 , M̂

′′(b−1)
2 ) = (M

′′(b−1)
1 ,M

′′(b−1)
2 ).

ECr

(
D(P̄

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
)

= ECr

∑
m
′′(b)
1 ,m

′′(b)
2 ,zrb

P̄
Zrb ,M

′′(b)
1 ,M

′′(b)
2

log
P̄
Zrb |M

′′(b)
1 ,M

′′(b)
2

Q⊗rZ
(3.111)
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= ECr

∑
m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−r(ρ
′′
1+ρ′′2 )

∑
m

(b)
0 ,m

(b)
01 ,m

(b)
02 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ01+ρ02+ρ′1+ρ′2)

W⊗r(zrb |U r(m
(b)
0 ), U r

1 (m
(b)
0 ,m

(b)
01 ), U r

2 (m
(b)
0 ,m

(b)
02 ), Xr

1(m
(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

Xr
2(m

(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ))

× log
∑

a,b,c,d,e

W⊗r(zrb |U r(a), U r
1 (a, b), U r

2 (a, c), Xr
1(a, b, d,m

′′(b)
1 ), Xr

2(a, c, e,m
′′(b)
2 ))

2r(ρ0+ρ01+ρ02+ρ′1+ρ′2)Q⊗rZ

(3.112)

(a)

≤
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−r(ρ
′′
1+ρ′′2 )

∑
m

(b)
0 ,m

(b)
01 ,m

(b)
02 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ01+ρ02+ρ′1+ρ′2)

∑
ur(m

(b)
0 ),ur1(m

(b)
0 ,m

(b)
01 ),ur2(m

(b)
0 ,m

(b)
02 ),xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 )

P̄⊗r(ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× logE\(m(b)
0 ,m

(b)
01 ,m

(b)
02 ,m

′(b)
1 ,m

′(b)
2 )∑

a,b,c,d,e

W⊗r(zrb |U r(a), U r
1 (a, b), U r

2 (a, c), Xr
1(a, b, d,m

′′(b)
1 ), Xr

2(a, c, e,m
′′(b)
2 ))

2r(ρ0+ρ01+ρ02+ρ′1+ρ′2)Q⊗rZ
(3.113)

=
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−r(ρ
′′
1+ρ′′2 )

∑
m

(b)
0 ,m

(b)
01 ,m

(b)
02 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ01+ρ02+ρ′1+ρ′2)

∑
ur(m

(b)
0 ),ur1(m

(b)
0 ,m

(b)
01 ),ur2(m

(b)
0 ,m

(b)
02 ),xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 )

P̄⊗r(ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× logE\(m(b)
0 ,m

(b)
01 ,m

(b)
02 ,m

′(b)
1 ,m

′(b)
2 )

1

2r(ρ0+ρ01+ρ02+ρ′1+ρ′2)Q⊗rZ[
W⊗r(zrb |ur(m

(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ))
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+
∑

d6=m′(b)1

W⊗r(zrb |ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), Xr

1(m
(b)
0 ,m

(b)
01 , d,m

′′(b)
1 ),

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

e 6=m′(b)2

W⊗r(zrb |ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

Xr
2(m

(b)
0 ,m

(b)
02 , e,m

′′(b)
2 ))

+
∑

d 6=m′(b)1

e6=m′(b)2

W⊗r(zrb |ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), Xr

1(m
(b)
0 ,m

(b)
01 , d,m

′′(b)
1 ),

Xr
2(m

(b)
0 ,m

(b)
02 , e,m

′′(b)
2 ))

+
∑
a6=m(b)

0
b,c,d,e

W⊗r(zrb |U r(a), U r
1 (a, b), U r

2 (a, c), Xr
1(a, b, d,m

′′(b)
1 ), Xr

2(a, c, e,m
′′(b)
2 ))

+
∑
b 6=m(b)

01
d,e

W⊗r(zrb |ur(m
(b)
0 ), U r

1 (m
(b)
0 , b), ur2(m

(b)
0 ,m

(b)
02 ), Xr

1(m
(b)
0 , b, d,m

′′(b)
1 ),

Xr
2(m

(b)
0 ,m

(b)
02 , e,m

′′(b)
2 ))

+
∑
c 6=m(b)

02
d,e

W⊗r(zrb |ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), U r

2 (m
(b)
0 , c), Xr

1(m
(b)
0 ,m

(b)
01 , d,m

′′(b)
1 ),

Xr
2(m

(b)
0 , c, e,m

′′(b)
2 ))

+
∑
b6=m(b)

01

c 6=m(b)
02

d,e

W⊗r(zrb |ur(m
(b)
0 ), U r

1 (m
(b)
0 , b), U r

2 (m
(b)
0 , c), Xr

1(m
(b)
0 , b, d,m

′′(b)
1 ),

Xr
2(m

(b)
0 , c, e,m

′′(b)
2 ))

]
(3.114)

(b)

≤
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−n(ρ′′1+ρ′′2 )
∑

m
(b)
0 ,m

(b)
01 ,m

(b)
02 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ01+ρ02+ρ′1+ρ′2)

∑
ur(m

(b)
0 ),ur1(m

(b)
0 ,m

(b)
01 ),ur2(m

(b)
0 ,m

(b)
02 ),xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 )
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P̄⊗r(ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× log
1

2r(ρ0+ρ01+ρ02+ρ′1+ρ′2)Q⊗rZ[
W⊗r(zrb |ur(m

(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ),

xr2(m
(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

d 6=m′(b)1

P̄⊗r(zrb |ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr2(m

(b)
0 ,m

(b)
02 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

e 6=m′(b)2

P̄⊗r(zrb |ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ), xr1(m

(b)
0 ,m

(b)
01 ,m

′(b)
1 ,m

′′(b)
1 ))

+
∑

d 6=m′(b)1

e6=m′(b)2

P̄⊗r(zrb |ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ), ur2(m

(b)
0 ,m

(b)
02 ))

+
∑
a6=m(b)

0
b,c,d,e

P̄⊗r(zrb )

+
∑
b 6=m(b)

01
d,e

P̄⊗r(zrb |ur(m
(b)
0 ), ur2(m

(b)
0 ,m

(b)
02 ))

+
∑
c 6=m(b)

02
d,e

P̄⊗r(zrb |ur(m
(b)
0 ), ur1(m

(b)
0 ,m

(b)
01 ))

+
∑
b6=m(b)

01

c 6=m(b)
02

d,e

P̄⊗r(zrb |ur(m
(b)
0 ))

]
(3.115)

(c)
= Ψ1 + Ψ2 (3.116)

where

(a) follows by Jensen’s Inequality;

(b) follows by taking the expectation inside the log of the previous step;
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(c) Ψ1 is found by restricting the sum in the previous step over (ur, ur1, u
r
2, x

r
1, x

r
2, z

r
b ) ∈

T rε (PU,U1,U2,X1,X2,Y,Z) and Ψ2 is found by restricting that sum over (ur, ur1, u
r
2, x

r
1, x

r
2, z

r
b ) 6∈

T rε (PU,U1,U2,X1,X2,Z).

Solving Ψ1 and Ψ2 like in previous sections we find that

D(P̄
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
r→∞−−−→ 0 if:

ρ0 + ρ01 + ρ02 + ρ′1 + ρ′2 > I(X1, X2;Z) (3.117)

ρ0 + ρ01 + ρ02 + ρ′2 > I(U,U1, U2, X2;Z) (3.118)

ρ0 + ρ01 + ρ02 + ρ′1 > I(U,U1, U2, X1;Z) (3.119)

ρ0 + ρ01 + ρ02 > I(U,U1, U2;Z) (3.120)

ρ0 + ρ02 > I(U,U2;Z) (3.121)

ρ0 + ρ01 > I(U,U1;Z) (3.122)

ρ0 > I(U ;Z) (3.123)

Let ε > 0, set

ρ0 = I(U ;Z) + ε (3.124)

ρ01 = I(U1;Z|U) + ε (3.125)

ρ02 = I(U2;Z|U) + ε (3.126)

ρ′1 = I(X1;Z|U,U1) + ε (3.127)

ρ′′1 = H(X1|U,U1)− I(X1;Z|U,U1)− 2ε (3.128)

ρ′2 = I(X2;Z|U,U1, X1) + ε (3.129)

ρ′′2 = H(X2|U,U2)− I(X2;Z|U,U1, X1)− 2ε (3.130)

We can write the effective rates of new randomness at both encoders as:

R1 , ρ′1 + ρ′′1 − γ(ρ′′1 + ρ′′2 − ρ0 − ρ01 − ρ02) (3.131)
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R2 , ρ′2 + ρ′′2 − (1− γ)(ρ′′1 + ρ′′2 − ρ0 − ρ01 − ρ02) (3.132)

R1 +R2 , ρ′1 + ρ′2 + ρ0 + ρ01 + ρ02 (3.133)

Using the values of ρ0, ρ01, ρ02, ρ′1, ρ′′1, ρ′2 and ρ′′2 chosen above, we obtain the rate region

as follows:

R1 ≥ I(X1, X2;Z)−H(X2|U,U2) + 2ε (3.134)

R2 ≥ I(X1, X2;Z)−H(X1|U,U1) + 2ε (3.135)

R1 +R2 ≥ I(X1, X2;Z) + 5ε (3.136)

Finally we note that E
(
D(P̄

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
) r→∞−−−→ 0 implies

E
(
D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
) r→∞−−−→ 0 (see discussion in Section 3.4.1) if

ρ′1 + ρ′′1 < H(X1|U,U1) (3.137)

ρ′2 + ρ′′2 < H(X2|U,U2) (3.138)

Achievability (Proposition 6):

To handle the strict causality constraint, we adopt a block-Markov encoding scheme over

B > 0 consecutive and dependent blocks, each consisting of r transmissions such that n =

rB. The vector of n channel outputs Zn at the channel output may then be described as

Zn , (Zr
1 , · · · , Zr

B), where each Zr
b for b ∈ J1, BK describes the observations in block b. The

distribution induced by the coding scheme is the joint distribution P n
Z , PZr1 ,··· ,PZrB

, while the

target output distribution is a product distribution of product distributions Q⊗nZ ,
∏B

j=1Q
⊗r
Z

.

Codebook Construction:

Consider a distribution PU,X1,X2 = PUPX1|UPX2|U such that
∑

u,x1,x2
PU,X1,X2WZ|X1,X2 =

QZ that satisfies H(X1|U) +H(X2|U) > I(X1, X2;Z). For every b ∈ J1, BK:
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• Independently generate 2rρ0 codewords ur(m
(b)
0 ) each with probability PUr = P⊗rU .

Label them ur(m
(b)
0 ), m

(b)
0 ∈ J1, 2nρ0K.

• For every ur(m
(b)
0 ), independently generate 2r(ρ

′
1+ρ′′1 ) codewords xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 )

each with probability PXr
1 |Ur = P⊗rXr

1 |Ur
. Label them xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), m

′(b)
1 ∈

J1, 2rρ′1K and m
′′(b)
1 ∈ J1, 2rρ′′1 K.

• For every ur(m
(b)
0 ), independently generate 2r(ρ

′
2+ρ′′2 ) codewords xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 )

each with probability PXr
2 |Ur = P⊗rXr

2 |Ur
. Label them xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ), m

′(b)
2 ∈

J1, 2rρ′2K and m
′′(b)
2 ∈ J1, 2rρ′′2 K.

This defines the codebook in block b

Cr = {ur(m(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,

m
′(b)
1 ∈ J1, 2rρ

′
1K,m′′(b)1 ∈ J1, 2rρ

′′
1 K,m′(b)2 ∈ J1, 2rρ

′
2K,m′′(b)2 ∈ J1, 2rρ

′′
2 K} (3.139)

and we denote the random codebook in block b by

Cr = {U r(m
(b)
0 ), Xr

1(m
(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), Xr

2(m
(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,

m
′(b)
1 ∈ J1, 2rρ

′
1K,m′′(b)1 ∈ J1, 2rρ

′′
1 K,m′(b)2 ∈ J1, 2rρ

′
2K,m′′(b)2 ∈ J1, 2rρ

′′
2 K} (3.140)

The messages M
′(b)
1 and M

′(b)
2 are part of M

(b)
1 and M

(b)
2 respectively and represent the

local randomness at each encoder. The messages M
′′(b)
1 and M

′′(b)
2 are part of M

(b)
1 and

M
(b)
2 respectively that are used by both encoders toward the creation of M

(b+1)
0 , assuming

ρ′′1 + ρ′′2 > ρ0. Furthermore, for γ ∈ J0, 1K, an amount γ(ρ′′1 + ρ′′2 − ρ0) is recycled towards the

creation of M
′(b+1)
1 and an amount (1− γ)(ρ′′1 + ρ′′2 − ρ0) is recycled towards the creation of

M
′(b+1)
2 .

Next we bound D(PZn||Q⊗nZ ) and show that dependencies across blocks created by block-

Markov encoding can be eliminated by appropriately recycling randomness from one block

to the next.
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D(PZn||Q⊗nZ )

= D(PZr1 ...ZrB ||Q
⊗rB
Z )

=
B∑
b=1

D(PZrj |Z
B,r
b+1
||Q⊗rZ |PZB,rb+1

) (3.141)

=
B∑
b=1

D(PZrj ||Q
⊗r
Z ) +

B∑
b=1

D(PZrj |Z
B,r
b+1
||PZrj |PZB,rb+1

) (3.142)

=
B∑
b=1

D(PZrb ||Q
⊗r
Z ) +

B∑
b=1

I(Zr
b ;Z

B,r
b+1) (3.143)

(a)

≤
B∑
b=1

D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 , ZB

b+1)

(3.144)

(b)
=

B∑
b=1

D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 ) (3.145)

(c)

≤
B∑
b=1

2× D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

H(M̂
′′(b)
1 , M̂

′′(b)
2 |M ′′(b)

1 ,M
′′(b)
2 ) (3.146)

where

(a) follows since D(PZrb ||Q
⊗r
Z ) = D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) −

D(P
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

PZrb );

(b) follows since Zr
b → M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 → ZB,r

b+1 holds; fol-

lows since I(Zr
b ;M

′′(b)
1 ,M

′′(b)
2 ) = D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

PZrb ) ≤

D(P
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ).

Let P
(b)
e be the average error probability of both encoders decoding the other en-

coder’s message. From Fano’s inequality, we can write H(M̂
′′(b)
1 , M̂

′′(b)
2 |M ′′(b)

1 ,M
′′(b)
2 ) ≤

H(M̂
′′(b)
1 |M ′′(b)

1 ) +H(M̂
′′(b)
2 |M ′′(b)

2 ) ≤ 2H(P
(b)
e ) + r(ρ′′1 + ρ′′2)P

(b)
e . By random coding we know
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that ECr

(
P

(b)
e

)
< 2−αr for some α > 0 and all r large enough if ρ′1 + ρ′′1 < H(X1|U) and

ρ′2 + ρ′′2 < H(X2|U).

Let P̄ be the probability distribution induced when both encoders are using the same

M
(b)
0 , i.e., (M̂

′′(b−1)
1 , M̂

′′(b−1)
2 ) = (M

′′(b−1)
1 ,M

′′(b−1)
2 ).

ECr

(
D(P̄

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
)

= ECr

∑
m
′′(b)
1 ,m

′′(b)
2 ,zrb

P̄
Zrb ,M

′′(b)
1 ,M

′′(b)
2

log
P̄
Zrb |M

′′(b)
1 ,M

′′(b)
2

Q⊗rZ
(3.147)

= ECr

∑
m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−r(ρ
′′
1+ρ′′2 )

∑
m

(b)
0 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ′1+ρ′2)

W⊗r(zrb |U r(m
(b)
0 ), Xr

1(m
(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), Xr

2(m
(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

× log
∑
i,j,k

W⊗r(zrb |U r(i), Xr
1(i, j,m

′′(b)
1 ), Xr

2(i, k,m
′′(b)
2 ))

2r(ρ0+ρ′1+ρ′2)Q⊗rZ
(3.148)

(a)

≤
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−r(ρ
′′
1+ρ′′2 )

∑
m

(b)
0 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ′1+ρ′2)
∑

ur(m
(b)
0 ),xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 )

P̄⊗r(ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× logE\(m(b)
0 ,m

′(b)
1 ,m

′(b)
2 )∑

i,j,k

W⊗r(zrb |U r(i), Xr
1(i, j,m

′′(b)
1 ), Xr

2(i, k,m
′′(b)
2 ))

2r(ρ0+ρ′1+ρ′2)Q⊗rZ
(3.149)

=
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−r(ρ
′′
1+ρ′′2 )

∑
m

(b)
0 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ′1+ρ′2)
∑

ur(m
(b)
0 ),xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 )

P̄⊗r(ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× logE\(m(b)
0 ,m

′(b)
1 ,m

′(b)
2 )

1

2r(ρ0+ρ′1+ρ′2)Q⊗rZ[
W⊗r(zrb |ur(m

(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))
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+
∑

j 6=m′(b)1

W⊗r(zrb |ur(m
(b)
0 ), Xr

1(m
(b)
0 , j,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

k 6=m′(b)2

W⊗r(zrb |ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), Xr

2(m
(b)
0 , e,m

′′(b)
2 ))

+
∑

j 6=m′(b)1

k 6=m′(b)2

W⊗r(zrb |ur(m
(b)
0 ), Xr

1(m
(b)
0 , j,m

′′(b)
1 ), Xr

2(m
(b)
0 , k,m

′′(b)
2 ))

+
∑
i 6=m(b)

0
j,k

W⊗r(zrb |U r(a), Xr
1(i, j,m

′′(b)
1 ), Xr

2(i, k,m
′′(b)
2 ))

]
(3.150)

(b)

≤
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−n(ρ′′1+ρ′′2 )
∑

m
(b)
0 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ′1+ρ′2)
∑

ur(m
(b)
0 ),xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 )

P̄⊗r(ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× log
1

2r(ρ0+ρ′1+ρ′2)Q⊗rZ[
W⊗r(zrb |ur(m

(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

j 6=m′(b)1

P̄⊗r(zrb |ur(m
(b)
0 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

k 6=m′(b)2

P̄⊗r(zrb |ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ))

+
∑

j 6=m′(b)1

k 6=m′(b)2

P̄⊗r(zrb |ur(m
(b)
0 ))

+
∑
i 6=m(b)

0
j,k

P̄⊗r(zrb )

]
(3.151)

(c)
= Ψ1 + Ψ2 (3.152)

where

(a) follows by Jensen’s Inequality;
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(b) follows by taking the expectation inside the log of the previous step;

(c) Ψ1 is found by restricting the sum in the previous step over (ur, xr1, x
r
2, z

r
b ) ∈

T rε (PU,X1,X2,Y,Z) and Ψ2 is found by restricting that sum over (ur, xr1, x
r
2, z

r
b ) 6∈

T rε (PU,X1,X2,Z).

Solving Ψ1 and Ψ2 like in previous sections we find that

D(P̄
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
r→∞−−−→ 0 if:

ρ0 + ρ′1 + ρ′2 > I(X1, X2;Z) (3.153)

ρ0 + ρ′2 > I(U,X2;Z) (3.154)

ρ0 + ρ′1 > I(U,X1;Z) (3.155)

ρ0 > I(U ;Z) (3.156)

Let ε > 0, set

ρ0 = I(U ;Z) + ε (3.157)

ρ′1 = I(X1;Z|U) + ε (3.158)

ρ′′1 = H(X1|U)− I(X1;Z|U)− 2ε (3.159)

ρ′2 = I(X2;Z|U,X1) + ε (3.160)

ρ′′2 = H(X2|U)− I(X2;Z|U,X1)− 2ε (3.161)

We can write the effective rates of new randomness at both encoders as:

R1 , ρ′1 + ρ′′1 − γ(ρ′′1 + ρ′′2 − ρ0) (3.162)

R2 , ρ′2 + ρ′′2 − (1− γ)(ρ′′1 + ρ′′2 − ρ0) (3.163)

R1 +R2 , ρ′1 + ρ′2 + ρ0 (3.164)
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Using the values of ρ0, ρ′1, ρ′′1, ρ′2 and ρ′′2 chosen above, we obtain the rate region as

follows:

R1 ≥ I(X1, X2;Z)−H(X2|U) + 4ε (3.165)

R2 ≥ I(X1, X2;Z)−H(X1|U) + 4ε (3.166)

R1 +R2 ≥ I(X1, X2;Z) + 3ε (3.167)

Finally we note that ECr

(
D(P̄

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
) r→∞−−−→ 0 implies

ECr

(
D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
) r→∞−−−→ 0 (see discussion in Section 3.4.1) if

ρ′1 + ρ′′1 < H(X1|U) (3.168)

ρ′2 + ρ′′2 < H(X2|U) (3.169)

Converse:

nR1 = H(M1)

≥ H(M1|Xn
2 )

≥ I(M1;Zn|Xn
2 )

(a)
= I(M1, X

n
1 ;Zn|Xn

2 ) (3.170)

≥ I(Xn
1 ;Zn|Xn

2 )

= I(Xn
1 , X

n
2 ;Zn)− I(Xn

2 ;Zn) (3.171)

=
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

PZn(zn)
− I(Xn

2 ;Zn)

≥
∑
xn1

∑
xn2

∑
zn

P (xn1 , x
n
2 , z

n) log
W⊗n(zn|xn1 , xn2 )

Q⊗nZ (zn)
− D(PZn||Q⊗nZ )−H(Xn

2 )

(b)

≥
∑
i

∑
x1i

∑
x2i

∑
zi

P (x1i, x2i, zi) log
W (zi|x1i, x2i)

Q(zi)
−
∑
i

H(X2i|U2i)− ε

=
∑
i

∑
i

∑
x1i

∑
x2i

P (x1i, x2i, zi) log
W (zi|x1i, x2i)

P (zi)
+ D(PZi ||QZ)−

∑
i

H(X2i|U2i)− ε
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≥
∑
i

I(X1i, X2i;Zi)−
∑
i

H(X2i|U2i)− ε

= nI(X1QX2Q;ZQ|Q)− nH(X2Q|U2QQ)− ε

= nI(QX1QX2Q;ZQ)− nI(Q;ZQ)− nH(X2Q|U2QQ)− ε
(c)

≥ nI(X1QX2Q;ZQ)− nH(X2Q|U2QQ)− nε′

= nI(X1X2;Z)− nH(X2|U2)− nε′ (3.172)

where

(a) follows from the definition of the encoding function in (3.13),

(b) follows by setting U2i , X i−1
2 ,

(c) follows by [4, Lemma VI.3] for some ε′ > 0 with limε→0 ε
′ = 0.

Similarly we get,

nR2 ≥ nI(X1X2;Z)− nH(X1|U1)− nε′ (3.173)

and

n(R1 +R2) ≥ nI(X1X2;Z)− nε′ (3.174)

3.4.8 Strong secrecy of MAC with two-sided strictly-causal cribbing

Achievability:

We use a combination of block-Markov encoding and backward decoding. Independently

and uniformly distributed messages m
(b)
1 ∈ J1, 2rR1K and m

(b)
2 ∈ J1, 2rR2K will be sent over

B blocks. Each block consists of r transmissions so that n = rB. Consider a distribution

P (u, x1, x2) = P (u)P (x1|u)P (x2|u) such that
∑

u,x1,x2
P (u, x1, x2)W (z|x1, x2) = QZ(z).

Code Construction: In each block b ∈ J1, BK:
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• Independently generate 2r(R1+ρ′1+ρ′′1+R2+ρ′2+ρ′′2 ) codewords urb each with probability

P (ur) = P⊗rU (ur). Label them ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), m

(b)
0 ∈ J1, 2r(R1+R2)K, m′(b)0 ∈

J1, 2r(ρ′1+ρ′2)K and m
′′(b)
0 ∈ J1, 2r(ρ′′1+ρ′′2 )K.

• For every ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), independently generate 2r(R1+ρ′1+ρ′′1 ) codewords xr1b each

with probability P (xr1|ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )) = P⊗rX1|U(xr1|ur(m

(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )). Label

them xr1(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
1 ,m

′(b)
1 ,m

′′(b)
1 ), m

(b)
1 ∈ J1, 2rR1K, m

′(b)
1 ∈ J1, 2rρ′1K and

m
′′(b)
1 ∈ J1, 2rρ′′1 K.

• For every ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), independently generate 2r(R2+ρ′2+ρ′′2 ) codewords xr2b each

with probability P (xr2|ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )) = P⊗rX2|U(xr2|ur(m

(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )). Label

them xr2(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
2 ,m

′(b)
2 ,m

′′(b)
2 ), m

(b)
2 ∈ J1, 2rR2K, m

′(b)
2 ∈ J1, 2rρ′2K and

m
′′(b)
2 ∈ J1, 2rρ′′2 K.

We intend to use these codebooks in the following manner:

1. Block Markov encoding via M
(b)
0 = (M

(b−1)
1 ,M

(b−1)
2 ), M

′(b)
0 = (M

′(b−1)
1 ,M

′(b−1)
2 ) and

M
′′(b)
0 = (M

′′(b−1)
1 ,M

′′(b−1)
2 );

2. M
(b)
1 , M

′(b)
1 and M

′′(b)
1 can be decoded (at Encoder 2) from Xr

1b knowing

(M
(b)
0 ,M

′(b)
0 ,M

′′(b)
0 );

3. M
(b)
2 , M

′(b)
2 and M

′′(b)
2 can be decoded (at Encoder 1) from Xr

2b knowing

(M
(b)
0 ,M

′(b)
0 ,M

′′(b)
0 );

4. {M (1)
1 , . . . ,M

(B)
1 } and {M (1)

2 , . . . ,M
(B)
2 } are secret from {Zr

1 , . . . , Z
r
B};

5. M
′′(b)
1 and M

′′(b)
2 are the common randomness to be used by both encoders in block

b+ 1;

6. M
′(b)
1 is local randomness used by Encoder 1 and M

′(b)
2 is local randomness used by

Encoder 2;
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7. The messages M
(b)
0 , M

′(b)
0 , M

′′(b)
0 , M

(b)
1 , M

′(b)
1 , M

′′(b)
1 , M

(b)
2 , M

′(b)
2 and M

′′(b)
2 can be

decoded at the receiver from Y r
b and the messages decoded in future blocks b+ 1 to B

(backward decoding).

As a result of cribbing, after block b, Encoder 2 finds estimates (m̂
(b)
1 , m̂

′(b)
1 , m̂

′′(b)
1 ) for

(m
(b)
1 ,m

′(b)
1 ,m

′′(b)
1 ) such that

(ur(m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ), xr1(m̂

(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 , m̂

(b)
1 , m̂

′(b)
1 , m̂

′′(b)
1 ), xr1b) ∈ T (r)

ε (PU,X1,X1). (3.175)

where (m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ) = (m̂

(b−1)
1 ,m

(b−1)
2 , m̂

′(b−1)
1 ,m

′(b−1)
2 , m̂

′′(b−1)
1 ,m

′′(b−1)
2 ). Also, Encoder 1

finds estimates (M̃
(b)
2 , M̃

′(b)
2 , M̃

′′(b)
2 ) for (m

(b)
2 ,m

′(b)
2 ,m

′′(b)
2 ) such that

(ur(M̃
(b)
0 , M̃

′(b)
0 , M̃

′′(b)
0 ), xr2(M̃

(b)
0 , M̃

′(b)
0 , M̃

′′(b)
0 , M̃

(b)
2 , M̃

′(b)
2 , M̃

′′(b)
2 ), xr2b) ∈ T (r)

ε (PU,X2,X2).

(3.176)

where (m̃
(b)
0 , m̃

′(b)
0 , m̃

′′(b)
0 ) = (m

(b−1)
1 , m̃

(b−1)
2 ,m

′(b−1)
1 , m̃

′(b−1)
2 ,m

′′(b−1)
1 , m̃

′′(b−1)
2 ).

Encoding: We apply block-Markov encoding as follows. In block b, the encoders send:

xr1b = xm1 (m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
1 ,m

′(b)
1 ,m

′′(b)
1 )

xr2b = xm2 (m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ,m

(b)
2 ,m

′(b)
2 ,m

′′(b)
2 )

We also assume that the encoders and decoder have access to

(M
(1)
0 ,M

′(1)
0 ,M

′′(1)
0 ,M

(B)
1 ,M

′(B)
1 ,M

′′(B)
1 ,M

(B)
2 ,M

′(B)
2 ) through private common random-

ness.

Decoding at the receiver: The legitimate receiver waits until all B blocks are trans-

mitted and then performs backward decoding. The decoder first finds ( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 )

such that

(ur( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 ), xr1( ˆ̂m

(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 , ˆ̂m

(B)
1 , ˆ̂m

′(B)
1 , ˆ̂m

′′(B)
1 ),

xr2( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 , ˆ̂m

(B)
2 , ˆ̂m

′(B)
2 , ˆ̂m

′′(B)
2 ), yrB) ∈ T (r)

ε (PU,X1,X2,Y ).
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Figure 3.13. Functional dependence graph for the block-Markov encoding scheme for MAC
with two-sided strictly-causal cribbing.

Assuming that (m
(B)
0 ,m

′(B)
0 ,m

′′(B)
0 ), (m

(B−1)
0 ,m

′(B−1)
0 ,m

′′(B−1)
0 ), . . . , (m

(b+1)
0 ,m

′(b+1)
0 ,m

′′(b+1)
0 )

have been decoded, the decoder sets ( ˆ̂m
(b)
1 , ˆ̂m

′(b)
1 , ˆ̂m

′′(b)
1 ) = ( ˆ̂m

(b+1)
0 , ˆ̂m

′(b+1)
0 , ˆ̂m

′′(b+1)
0 ) and finds

( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 ) and ( ˆ̂m

(b)
2 , ˆ̂m

′(b)
2 ) such that

(ur( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 ), xr1( ˆ̂m

(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 , ˆ̂m

(b)
1 , ˆ̂m

′(b)
1 , ˆ̂m

′′(b)
1 ),

xr2( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 , ˆ̂m

(b)
2 , ˆ̂m

′(b)
2 , ˆ̂m

′′(b)
2 ), yrb) ∈ T (r)

ε (PU,X1,X2,Y ).

Probability of error analysis: Using the arguments for error analysis from [35, Lemma

4], the probability of error of each block vanishes exponentially with r and in turn vanishes

across blocks if

R1 + ρ′1 + ρ′′1 < H(X1|U), (3.177)

R2 + ρ′2 + ρ′′2 < H(X2|U), (3.178)

R1 + ρ′1 + ρ′′1 +R2 + ρ′2 + ρ′′2 < I(X1, X2;Y ). (3.179)

Secrecy analysis: Let P̄ be the probability induced when both en-

coders use (M
(b)
0 ,M

′(b)
0 ,M

′′(b)
0 ). Let P be the probability when Encoder 1
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uses the estimate (M̃
(b)
0 , M̃

′(b)
0 , M̃

′′(b)
0 ) and Encoder 2 uses the estimate

(M̂
(b)
0 , M̂

′(b)
0 , M̂

′′(b)
0 ). For the secrecy analysis, we find conditions so that

I(M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b ) vanishes expo-

nentially with r. This is motivated by:

• (M
(b)
1 ,M

(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 ) are the Encoder 1 and Encoder 2 secret messages in the

present, the past and the estimates of the latter (at Encoder 1 and Encoder 2 respec-

tively), which must be kept secret from Zr
b .

• (M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ) and (M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ) must be kept independent of Zr

b accord-

ing to the functional dependence graph (Figure 3.13) to ensure the distribution of Z

remains i.i.d. across blocks

• M̃
′(b)
0 and M̂

′(b)
0 are kept independent from Zr

b to allow Encoder 1 and Encoder 2 to

possess a local randomness that is separate from the common randomness shared with

between each other: Resolvability analysis showed us that having a local randomness

at both encoders can be beneficial for achievable rates.

Let Ī(·; ·) be the mutual information according to P̄

Ī(M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b )

= D(P̄
M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 ,M̃

(b)
0 ,M̂

(b)
0 ,M̃

′(b)
0 ,M̂

′(b)
0 Zrb
||

P̄
M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 ,M̃

(b)
0 ,M̂

(b)
0 ,M̃

′(b)
0 ,M̂

′(b)
0
P̄Zrb )

≤ D(P̄
M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 ,M̃

(b)
0 ,M̂

(b)
0 ,M̃

′(b)
0 ,M̂

′(b)
0 Zrb
||

P̄
M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 ,M̃

(b)
0 ,M̂

(b)
0 ,M̃

′(b)
0 ,M̂

′(b)
0
Q⊗rZ )

(3.180)

Similar to Section 3.4.11, the divergence in (3.180) can be shown to vanish exponentially

with r if:
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ρ′′1 + ρ′′2 > I(U ;Z), (3.181)

ρ′1 + ρ′′1 + ρ′′2 > I(U,X1;Z), (3.182)

ρ′2 + ρ′′1 + ρ′′2 > I(U,X2;Z), (3.183)

ρ′1 + ρ′2 + ρ′′1 + ρ′′2 > I(X1, X2;Z). (3.184)

Define M
(a:b)
1 = {M (a)

1 , . . . ,M
(b)
1 }, M

(a:b)
2 = {M (a)

2 , . . . ,M
(b)
2 } and Z(1:b),r = {Zr

1 , . . . , Z
r
b}.

Ī(M
(a:b)
1 ,M

(a:b)
2 ;Z(1:b),r)

≤ Ī(M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Z(1:b),r) (3.185)

= Ī(M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b )

+ Ī(M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Z(1:b−1),r|Zr

b )

(3.186)

= Ī(M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b )

+Ī(M
(1:b−1)
1 ,M

(1:b−1)
2 ;Zr

b |M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 )

+ Ī(M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Z(1:b−1),r|Zr

b )

(3.187)

≤ Ī(M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b )

+ Ī(M
(1:b−1)
1 ,M

(1:b−1)
2 ;M

′′(b−1)
1 ,M

′′(b−1)
2 , Zr

b |M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,

M
(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 )

+ Ī(M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Z(1:b−1),r|Zr

b )

(3.188)

(a)
= Ī(M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b )

+ Ī(M
(1:b−1)
1 ,M

(1:b−1)
2 ;Zr

b |M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 ,

M̃
′(b)
0 , M̂

′(b)
0 ,M

(b−1)
1 ,M

′(b−1)
1 ,M

′′(b−1)
1 ,M

(b−1)
2 ,M

′(b−1)
2 ,M

′′(b−1)
2 )
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+ Ī(M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Z(1:b−1),r|Zr

b )

(3.189)

(b)

≤ 2−αr

+ Ī(M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Z(1:b−1),r|Zr

b )

(3.190)

≤ 2−αr + Ī(M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ,

M
(b−1)
0 , M̃

(b−1)
0 , M̂

(b−1)
0 , M̃

′(b−1)
0 , M̂

′(b−1)
0 ,M

′′(b−1)
1 ,M

′′(b−1)
2 , Zr

b ;Z
(1:b−1),r)

(3.191)

(c)
= 2−αr + Ī(M

(1:b−1)
1 ,M

′(b−1)
1 ,M

′′(b−1)
1 ,M

(1:b−1)
2 ,M

′(b−1)
2 ,M

′′(b−1)
2 ,M

(b−1)
0 , M̃

(b−1)
0 , M̂

(b−1)
0 ,

M̃
′(b−1)
0 , M̂

′(b−1)
0 ;Z(1:b−1),r) (3.192)

(d)

≤ b× 2−αr

Therefore Ī(M1,M2;Zn) ≤ B × 2−αr where,

(a) holds because M
(b)
0 = M̃

(b)
0 = M̂

(b)
0 = M

(b−1)
1 , M̃

′(b)
0 = M̂

′(b)
0 = M

′(b−1)
1 and

(M
′′(b−1),
1 M

′′(b−1)
2 ) is independent of (M

(1:b−1)
1 ,M

(1:b−1)
2 ) by construction;

(b) holds because Ī(M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b ) ≤

2−αr by (3.180)-(3.184) and M
(1:b−1)
1 ,M

(1:b−1)
2 →

M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 M̂

′(b)
0 ,M

(b−1)
1 ,M

′(b−1)
1 ,M

′′(b−1)
1 ,

M
(b−1)
2 ,M

′(b−1)
2 ,M

′′(b−1)
2 → Zr

b (see Figure 3.13);

(c) holds because M
(1:b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(1:b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 , Zr

b →

M
(b−1)
0 , M̃

(b−1)
0 , M̂

(b−1)
0 , M̃

′(b−1)
0 , M̂

′(b−1)
0 ,M

′′(b−1)
1 ,M

′′(b−1)
2 ;Z(1:b−1),r (see Figure 3.13).

(d) holds by repeating (3.185)-(3.192) b− 1 times.
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Next we show that I(M
(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r) is not too different from

Ī(M
(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r).

I(M
(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r)

= D(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||PM(1:b)

1 M
(1:b)
2

PZ(1:b),r)

(a)

≤ D(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||PM(1:b)

1 M
(1:b)
2

Q⊗brZ )

=
∑

m
(1:b)
1 ,m

(1:b)
2 ,z(1:b),r

P (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r) log

P (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r)

P̄ (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r)

+
∑

m
(1:b)
1 ,m

(1:b)
2 ,z(1:b),r

P (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r) log

P̄ (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r)

P (m
(1:b)
1 ,m

(1:b)
2 )Q⊗brZ

+ D(P̄
M

(1:b)
1 M

(1:b)
2 Z(1:b,r) ||PM(1:b)

1 M
(1:b)
2

Q⊗brZ )− D(P̄
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||PM(1:b)

1 M
(1:b)
2

Q⊗brZ )

= D(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) + D(P̄

M
(1:b)
1 M

(1:b)
2 Z(1:b),r ||PM(1:b)

1 M
(1:b)
2

Q⊗brZ )

+
∑

m
(1:b)
1 ,m

(1:b)
2 ,z(1:b),r

(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r − P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) log

P̄ (m
(1:b)
1 ,m

(1:b)
2 , z(1:b),r)

P (m
(1:b)
1 ,m

(1:b)
2 )Q⊗brZ

(b)

≤ D(P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) + D(P̄

M
(1:b)
1 M

(1:b)
2 Z(1:b),r ||P̄M(1:b)

1 M
(1:b)
2

Q⊗brZ )

+ log
1

µ
V(P

M
(1:b)
1 M

(1:b)
2 Z(1:b),r , P̄M(1:b)

1 M
(1:b)
2 Zb,r

)

(c)

≤ 2 log
1

µ
V(P

M
(1:b)
1 M

(1:b)
2 Z(1:b),r , P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) + D(P̄

M
(1:b)
1 M

(1:b)
2 Zb,r

||P̄
M

(1:b)
1 M

(1:b)
2

P̄Z(1:b),r)

+ D(P̄Z(1:b),r ||Q⊗brZ )

= 2 log
1

µ
V(P

M
(1:b)
1 M

(1:b)
2 Z(1:b),r , P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r) + Ī(M

(1:b)
1 ,M

(1:b)
2 ;Z(1:b),r)

+ D(P̄Z(1:b),r ||Q⊗brZ ) (3.193)

where

(a) follows by adding D(PZb,r ||Q⊗brZ );

(b) follows because P̄
M

(1:b)
1 ,M

(1:b)
2

= P
M

(1:b)
1 ,M

(1:b)
2

, (P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r − P̄

M
(1:b)
1 M

(1:b)
2 Z(1:b),r) ≤

|P
M

(1:b)
1 M

(1:b)
2 Z(1:b),r − P̄M(1:b)

1 M
(1:b)
2 Z(1:b),r | and by defining µ , minzb,r Q

⊗br
Z (zb,r);
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(c) follows by Lemma 2 and because D(P̄
M

(1:b)
1 M

(1:b)
2 Z(1:b),r ||P̄M(1:b)

1 M
(1:b)
2

Q⊗brZ ) =

D(P̄
M

(1:b)
1 M

(1:b)
2 Zb,r

||P̄
M

(1:b)
1 M

(1:b)
2

P̄Z(1:b),r) + D(P̄Z(1:b),r ||Q⊗brZ ).

The first and third terms of (3.193) vanish exponentially with br similar to Section 3.4.1.

We now derive an achievable rate region by choosing values for ρ′1, ρ′′1, ρ′2, ρ′′2, R1 and R2

that satisfy the constraints for secrecy and probability of error. We find it more convenient

to separately derive achievable rate regions under the two conditions H(X1|U)+H(X2|U) ≶

I(X1, X2;Y ), and then merge them.

When H(X1|U) + H(X2|U) > I(X1, X2;Y ), The following rates satisfy all error and

secrecy constraints:

ρ′′1 = ε,

ρ′1 = ε,

ρ′′2 = I(U,X1;Z) + ε,

ρ′2 = I(X2;Z|X1, U) + ε,

R1 = H(X1|U)− 2ε,

R2 = I(X1, X2;Y )−H(X1|U)− I(X1, X2;Z)− ε,

and the same is true for the following rates:

ρ′′1 = I(U,X2;Z) + ε,

ρ′1 = I(X1;Z|X2, U) + ε,

ρ′2 = ε,

ρ′′2 = ε,

R1 = I(X1, X2;Y )−H(X2|U)− I(X1, X2;Z)− 2ε,

R2 = H(X2|U)− ε.
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Considering the above two corner points, the following rate region is achievable.

R1 ≤ H(X1|U)

R2 ≤ H(X2|U)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)

When H(X1|U) + H(X2|U) ≤ I(X1, X2;Y ), the following rates satisfy all error and

secrecy constraints:

ρ′′1 = ε,

ρ′1 = ε,

ρ′′2 = I(U,X1;Z) + ε,

ρ′2 = I(X2;Z|X1, U) + ε,

R1 = H(X1|U)− 2ε,

R2 = (X2|U)− I(X1, X2;Z)− ε,

and the same is true for the following rates:

ρ′′1 = I(U,X2;Z) + ε,

ρ′1 = I(X1;Z|X2, U) + ε,

ρ′2 = ε,

ρ′′2 = ε,

R1 = H(X1|U)− I(X1, X2;Z)− 2ε,

R2 = H(X2|U)− ε.

Considering the above two corner points, the following rate region is achievable.

R1 ≤ H(X1|U)
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R2 ≤ H(X2|U)

R1 +R2 ≤ H(X1|U) +H(X2|U)− I(X1, X2;Z)

Thus far, we have two achievable rate regions for the two conditions H(X1|U) +

H(X2|U) ≶ I(X1, X2;Y ), and the overall achievable rate region is usually specified as the

union of the two. It then follows that the smaller of the two derived sum rate constraints

is always active. Therefore we can simplify the expression of the achievable region by using

the intersection of the two sum rate constraints.

This concludes the proof of Proposition 11.

3.4.9 Convexity proof of channel resolvability of MAC with one-sided strictly-

causal cribbing

To prove the convexity of the inner bound, assume that (R
(1)
1 , R

(1)
2 ) and (R

(2)
1 , R

(2)
2 ) are achiev-

able, which implies the existence of two distributions P
(1)
U,X1,X2,Z

= P
(1)
U P

(1)
X1|UP

(1)
X2|UWZ|X1,X2

and P
(2)
U,X1,X2,Z

= P
(2)
U P

(2)
X1|UP

(2)
X2|UWZ|X1,X2 with marginal QZ such that,

R
(1)
1 ≥ I(U (1), X

(1)
1 ;Z(1)),

R
(1)
2 ≥ I(X

(1)
1 , X

(1)
2 ;Z(1))−H(X

(1)
1 |U (1)),

R
(1)
1 +R

(1)
2 ≥ I(X

(1)
1 , X

(1)
2 ;Z(1)),

with H(X
(1)
1 |U (1)) > I(U (1), X

(1)
1 ;Z(1)),

and

R
(2)
1 ≥ I(U (2), X

(2)
1 ;Z(2)),

R
(1)
2 ≥ I(X

(2)
1 , X

(2)
2 ;Z(2))−H(X

(2)
1 |U (2)),

R
(2)
1 +R

(2)
2 ≥ I(X

(2)
1 , X

(2)
2 ;Z(2)),

with H(X
(2)
1 |U (2)) > I(U (2), X

(2)
1 ;Z(2)).
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For λ ∈ J0, 1K, let Q ∈ {1, 2} with Pr(Q = 1) = λ and Pr(Q = 2) = 1 − λ. Define

U (3) , (U (Q), Q), X
(3)
1 , X

(Q)
1 , X

(3)
2 , X

(Q)
2 and Z(3) , Z(Q). Let Q, (U (1), X

(1)
1 , X

(1)
2 , Z(1))

and (U (2), X
(2)
1 , X

(2)
2 , Z(2)) be independent so that P

(3)
U,X1,X2,Z

= λP
(1)
U,X1,X2,Z

+(1−λ)P
(2)
U,X1,X2,Z

can be written as P
(3)
U,X1,X2,Z

= P
(3)
U P

(3)
X1|UP

(3)
X2|UWZ|X1,X2 . From the definition of the random

variables:

H(X
(3)
1 |U (3)) = λH(X

(1)
1 |U (1)) + (1− λ)H(X

(2)
1 |U (2)).

For a fixed QZ , we have P
(3)
X1,X2|Z = λP

(1)
X1,X2|Z + (1−λ)P

(2)
X1,X2|Z and P

(3)
U,X1|Z = λP

(1)
U,X1|Z +

(1− λ)P
(2)
U,X1|Z . From the convexity of I(U,X1;Z) with respect to PU,X1|Z and the convexity

of I(X1, X2;Z) with respect to PX1,X2|Z :

I(U (3), X
(3)
1 ;Z(3)) ≤ λI(U (1), X

(1)
1 ;Z(1)) + (1− λ)I(U (2)X

(2)
1 ;Z(2)),

I(X
(3)
1 , X

(3)
2 ;Z(3)) ≤ λI(X

(1)
1 , X

(1)
2 ;Z(1)) + (1− λ)I(X

(2)
1 , X

(2)
2 ;Z(2)).

Therefore we have

I(U (3), X
(3)
1 ;Z(3)) ≤ λR

(1)
1 + (1− λ)R

(2)
1 ,

I(X
(3)
1 , X

(3)
2 ;Z(3))−H(X

(3)
1 |U (3)) ≤ λR

(1)
2 + (1− λ)R

(2)
2 ,

I(X
(3)
1 , X

(3)
2 ;Z(3)) ≤ λ(R

(1)
1 +R

(1)
2 ) + (1− λ)(R

(2)
1 +R

(2)
2 ).

and

H(X
(3)
1 |U (3)) = λH(X

(1)
1 |U (1)) + (1− λ)H(X

(2)
1 |U (2))

> λI(U (1), X
(1)
1 ;Z(1)) + (1− λ)I(U (2)X

(2)
1 ;Z(2))

≥ I(U (3), X
(3)
1 ;Z(3)),

which implies that
(
λR

(1)
1 + (1− λ)R

(2)
1 , λR

(1)
2 + (1− λ)R

(2)
2

)
is inside the achievable region

defined by P
(3)
U,X1,X2,Z

. The convexity of the outer bound is proven similarly but without the

entropy constraint H(X1|U) > I(U,X1;Z).
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3.4.10 Convexity proof of channel resolvability of MAC with one-sided

causal/non-causal cribbing

Assume that (R
(1)
1 , R

(1)
2 ) and (R

(2)
1 , R

(2)
2 ) are achievable, which implies the existence of two

distributions P
(1)
X1,X2,Z

and P
(2)
X1,X2,Z

with marginal QZ such that,

R
(1)
1 ≥ I(X

(1)
1 ;Z(1)),

R
(1)
2 ≥ I(X

(1)
1 , X

(1)
2 ;Z(1))−H(X

(1)
1 ),

R
(1)
1 +R

(1)
2 ≥ I(X

(1)
1 , X

(1)
2 ;Z(1)),

and

R
(2)
1 ≥ I(X

(2)
1 ;Z(2)),

R
(1)
2 ≥ I(X

(2)
1 , X

(2)
2 ;Z(2))−H(X

(2)
1 ),

R
(2)
1 +R

(2)
2 ≥ I(X

(2)
1 , X

(2)
2 ;Z(2)).

Let P
(3)
X1,X2|Z = λP

(1)
X1,X2|Z + (1 − λ)P

(2)
X1,X2|Z for λ ∈ J0, 1K. Then P

(3)
X1|Z = λP

(1)
X1|Z + (1 −

λ)P
(2)
X1|Z and P

(3)
X1

= λP
(1)
X1

+ (1− λ)P
(2)
X1

.

From the convexity of I(X1, X2;Z) with respect to PX1,X2|Z , the convexity of I(X1;Z)

with respect to PX1|Z for a fixed QZ and the concavity of H(X1) with respect to PX1 :

I(X
(3)
1 ;Z(3)) ≤ λI(X

(1)
1 ;Z(1)) + (1− λ)I(X

(2)
1 ;Z(2)),

H(X
(3)
1 ) ≥ λH(X

(1)
1 ) + (1− λ)H(X

(2)
1 ),

I(X
(3)
1 , X

(3)
2 ;Z(3)) ≤ λI(X

(1)
1 , X

(1)
2 ;Z(1)) + (1− λ)I(X

(2)
1 , X

(2)
2 ;Z(2)).

Therefore we have

I(X
(3)
1 ;Z(3)) ≤ λR

(1)
1 + (1− λ)R

(2)
1 ,

I(X
(3)
1 , X

(3)
2 ;Z(3))−H(X

(3)
1 ) ≤ λR

(1)
2 + (1− λ)R

(2)
2 ,

I(X
(3)
1 , X

(3)
2 ;Z(3)) ≤ λ(R

(1)
1 +R

(1)
2 ) + (1− λ)(R

(2)
1 +R

(2)
2 ),

which implies that
(
λR

(1)
1 + (1− λ)R

(2)
1 , λR

(1)
2 + (1− λ)R

(2)
2

)
is inside the achievable region

defined by P
(3)
X1,X2,Z

.
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3.4.11 Proof of Equations (3.24)-(3.27)

Before we proceed to the proof, we recall some definitions. The random codebook for MAC

with strictly-causal cribbing in block b is denoted by

Cr = {U r(m
(b)
0 ), Xr

1(m
(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), Xr

2(m
(b)
0 ,m

(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,m′(b)1 ∈ J1, 2rρ

′
1K,

m
′′(b)
1 ∈ J1, 2rρ

′′
1 K,m2 ∈ J1, 2rρ2K}

We use P̄ to denote the probability distribution induced when both encoders use M
(b)
0

as defined in (3.23)

P̄Zrb =
∑

m
(b)
0 ,m

′(b)
1 ,

m
′′(b)
1 ,m

(b)
2

2−r(ρ0+ρ′1+ρ′′1+ρ2)W⊗r(zrb |ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

(b))
2 ))

The average KL divergence is:

ECr(D(P̄
Zrb ,M

′′(b)
1
||Q⊗rZ P̄

M
′′(b)
1

))

= ECr

∑
m
′′(b)
1 ,zrb

P̄ (m
′′(b)
1 , zrb ) log

P̄ (m
′′(b)
1 , zrb )

P̄
M
′′(b)
1

(m
′′(b)
1 )Q⊗rZ (zr)

= ECr

∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
zrb

P̄ (zrb |m
′′(b)
1 ) log

P̄ (zrb |m
′′(b)
1 )

Q⊗rZ (zr)

= ECr

∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
zrb

∑
i,j,k

W⊗r(zrb |U r(i), Xr
1(i, j,m

′′(b)
1 ), Xr

2(i, k))

2r(ρ0+ρ′1+ρ2)

log
∑
i′,j′,k′

W⊗r(zrb |U r(i′), Xr
1(i′, j′,m

′′(b)
1 ), Xr

2(i′, k′))

2r(ρ0+ρ′1+ρ2)Q⊗rZ (zr)

=
∑
ur(1)

∑
xr1(1,1,1)

∑
xr2(1,1)

· · ·
∑

ur(2rρ0 )

∑
xr1(2rρ0 ,2rρ

′
1 ,2rρ

′′
1 )

∑
xn2 (2rρ0 ,2rρ2 )

(2rρ0 ,2rρ
′
1 ,2rρ

′′
1 ,2rρ2 )∏

(k1,k2,k3,k4)=(1,1,1,1)

P̄ (ur(k1), xr1(k1, k2, k3), xr2(k1, k4))

∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
zrb

∑
i,j,k

W⊗r(zrb |ur(i), xr1(i, j,m
′′(b)
1 ), xr2(i, k))

2r(ρ0+ρ′1+ρ2)
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log
∑
i′,j′,k′

W⊗r(zrb |ur(i′), xr1(i′, j′,m
′′(b)
1 ), xr2(i′, k′))

2r(ρ0+ρ′1+ρ2)Q⊗rZ (zr)

(a)
=

1

2r(ρ0+ρ′1+ρ2)

∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
i,j,k

∑
zrb

∑
ur(i)

∑
xr1(i,j,m

′′(b)
1 )

∑
xr2(i,k)

P̄ (ur(i), xr1(i, j,m
′′(b)
1 ), xr2(i, k), zrb )

E\(i,j,k) log
∑
i′,j′,k′

W⊗r(zrb |U r(i′), Xr
1(i′, j′,m

′′(b)
1 ), Xr

2(i′, k′))

2r(ρ0+ρ′1+ρ2)Q⊗rZ (zr)

(b)

≤ 1

2r(ρ0+ρ′1+ρ2)

∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
i,j,k

∑
zrb

∑
ur(i)

∑
xr1(i,j,m

′′(b)
1 )

∑
xr2(i,k)

P̄ (ur(i), xr1(i, j,m
′′(b)
1 ), xr2(i, k), zrb )

logE\(i,j,k)

∑
i′,j′,k′

W⊗r(zrb |U r(i′), Xr
1(i′, j′,m

′′(b)
1 ), Xr

2(i′, k′))

2r(ρ0+ρ′1+ρ2)Q⊗rZ (zr)

≤ 1

2r(ρ0+ρ′1+ρ2)

∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
i,j,k

∑
zrb

∑
ur(i)

∑
xr1(i,j,m

′′(b)
1 )

∑
xr2(i,k)

P̄ (ur(i), xr1(i, j,m
′′(b)
1 ), xr2(i, k), zrb )

logE\(i,j,k)
1

2r(ρ0+ρ′1+ρ2)Q⊗rZ (zr)

(
W⊗r(zrb |ur(i), xr1(i, j,m

′′(b)
1 ), xr2(i, k))

+
∑
j′ 6=j
k′ 6=k

W⊗r(zrb |ur(i), Xr
1(i, j′,m

′′(b)
1 ), Xr

2(i, k′))

+
∑
k′ 6=k

W⊗r(zrb |ur(i), xr1(i, j,m
′′(b)
1 ), Xr

2(i, k′))

+
∑
j′ 6=j

W⊗r(zrb |ur(i), Xr
1(i, j′,m

′′(b)
1 ), xr2(i, k))

+
∑
i′ 6=i
j′,k′

W⊗r(zrb |U r(i′), Xr
1(i′, j′,m

′′(b)
1 ), Xr

2(i′, k′))

)
(c)

≤ 1

2r(ρ0+ρ′1+ρ2)

∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
i,j,k

∑
zrb

∑
ur(i)

∑
xr1(i,j,m

′′(b)
1 )

∑
xr2(i,k)

P̄ (ur(i), xr1(i, j,m
′′(b)
1 ), xr2(i, k), zrb )

log
1

2r(ρ0+ρ′1+ρ2)Q⊗rZ (zr)

(
W⊗r(zrb |ur(i), xr1(i, j,m

′′(b)
1 ), xr2(i, k))

+
∑
j′ 6=j
k′ 6=k

P̄⊗r(zrb |ur(i)) +
∑
k′ 6=k

P̄⊗r(zrb |ur(i), xr1(i, j,m
′′(b)
1 ))

+
∑
j′ 6=j

P̄⊗r(zrb |ur(i), xr2(i, k)) + 1

)
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= Ψ1 + Ψ2

where

(a) follows since EXEY
(
f(X)f(X, Y )

)
= EX

(
f(X)EY f(X, Y )

)
. Recall E\(i,j,k)(·) is the

expectation over U r(i′), Xr
1(i′, j′,m

′′(b)
1 ) and Xr

2(i′, k′) for (i′, j′, k′) 6= (i, j, k);

(b) follows by Jensen’s inequality where E log(·) ≤ logE(·);

(c) follows by applying the expectation E\(i,j,k) to each term inside the bracket.

Ψ1 ,
1

2r(ρ0+ρ′1+ρ2)

∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
i,j,k

∑
(ur(i),xr1(i,j,m

′′(b)
1 ),xr2(i,k),zrb )∈T rε (PU,X1,X2,Z

)

P̄ (ur(i), xr1(i, j,m
′′(b)
1 ), xr2(i, k), zrb ) log

1

2r(ρ0+ρ′1+ρ2)Q⊗rZ (zr)(
W⊗r(zrb |ur(i), xr1(i, j,m

′′(b)
1 ), xr2(i, k)) +

∑
j′ 6=j
k′ 6=k

P̄⊗r(zrb |ur(i))

+
∑
k′ 6=k

P̄⊗r(zrb |ur(i), xr1(i, j,m
′′(b)
1 )) +

∑
j′ 6=j

P̄⊗r(zrb |ur(i), xr2(i, k)) + 1

)

≤ log
( 2−r(1−ε)H(Z|X1,X2)

2r(ρ0+ρ′1+ρ2)2−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|U)

2rρ02−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|U,X1)

2r(ρ0+ρ′1)2−r(1+ε)H(Z)

+
2−r(1−ε)H(Z|U,X2)

2r(ρ0+ρ2)2−r(1+ε)H(Z)
+ 1
)

≤ log
(

2−r(ρ0+ρ′1+ρ2−I(X1,X2;Z)−2εH(Z)) + 2−r(ρ0−I(U ;Z)−2εH(Z)) + 2−r(ρ0+ρ′1−I(U,X1;Z)−2εH(Z))

+ 2−r(ρ0+ρ2−I(U,X2;Z)−2εH(Z)) + 1
)

Ψ2 ,
∑
m
′′(b)
1

P̄ (m
′′(b)
1 )

∑
i

∑
j

∑
k

∑
(ur(i),xr1(i,j,m

′′(b)
1 ),xr2(i,k),zrb )/∈T rε (PU,X1,X2,Z

)

P̄ (ur(i), xr1(i, j,m
′′(b)
1 ), xr2(i, k), zrb ) log

1

2r(ρ0+ρ′1+ρ2)Q⊗rZ (zr)
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(
W⊗r(zrb |ur(i), xr1(i, j,m

′′(b)
1 ), xr2(i, k)) +

∑
j′ 6=j
k′ 6=k

P̄⊗r(zrb |ur(i))

+
∑
k′ 6=k

P̄⊗r(zrb |ur(i), xr1(i, j,m
′′(b)
1 )) +

∑
j′ 6=j

P̄⊗r(zrb |ur(i), xr2(i, k)) + 1

)
≤ 2|U||X1||X2||Z|e−rε

2µUX1X2Zr log(
4

µZ
+ 1)

where

µZ = min
z∈Z

Q(z)

µUX1X2Z = min
(u,x1,x2,z)∈(U ,X1,X2,Z)

Q(u, x1, x2, z)

Combining the bounds on Ψ1 and Ψ2, E(D(P̄
Zrb ,M

′′(b)
1
||Q⊗rZ P̄

M
′′(b)
1

))
r→∞−−−→ 0 when (3.24)-

(3.27) are satisfied.
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CHAPTER 4

MAC WITH FEEDBACK AND MAC WITH GENERALIZED FEEDBACK 1 2

The MAC models studied so far involve cooperation via pre-shared information or noiseless

information exchange between the two encoders.

We start by a MAC model with (noise-free) feedback. we show that feedback does

not improve channel resolvability, but still can improve the secrecy rates. We then study

MAC with generalized feedback. For the channel resolvability, we introduce two achievable

resolvability regions. The first inner bound is constructed by using a decoding strategy, where

each encoder decodes the other encoder’s message. The second inner bound is constructed

by randomness extraction; this approach is motivated to improve resolvability rates when

the feedback is very noisy and therefore decoding is not helpful. We then provide inner

bounds for the strong secrecy regions building on the results of channel resolvability.

4.1 MAC with Feedback

Encoder 1

Encoder 2

Figure 4.1. The multiple access channel with feedback.

1© N. Helal and M. Bloch and A. Nosratinia, ”Channel Resolvability with a Full-Duplex Decode-and-
Forward Relay,” 2019 Information Theory Workshop (ITW), pp. 1-5, 2019.

2© N. Helal and M. Bloch and A. Nosratinia, ”Resolvability of the Multiple Access Channel with
Two-Sided Cooperation,” 2020 IEEE International Symposium on Information Theory (ISIT).
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The discrete memoryless MAC with feedback (Figure 4.1) consists of finite input al-

phabets X1 and X2, and finite output alphabet Z with a channel transition probability

WZ|X1,X2 . For a joint distribution PX1,X2 on X1 × X2, the output is distributed according

to QZ(z) =
∑

x1,x2
PX1,X2(x1, x2)WZ|X1,X2(z|x1, x2). A (2nR1 , 2nR2 , n) channel resolvability

code consists of two encoders f1 and f2 with inputs M1 ∈ J1, 2nR1K and M2 ∈ J1, 2nR2K. The

encoding functions are defined as follows:

f1i :M1 ×Z i−1 → X1i f2i :M2 ×Z i−1 → X2i. (4.1)

Definition 9. A rate pair (R1, R2) is said to be achievable for the discrete memoryless MAC

with feedback (X1×X2,WZ|X1,X2 ,Z) if for a given QZ there exists a sequence of (2nR1 , 2nR2 , n)

codes with increasing block length such that limn→∞D(PZn||Q⊗nZ ) = 0. The MAC resolvability

region is the closure of the set of achievable rate pairs (R1, R2).

Theorem 8. The resolvability of MAC with feedback is the set of rate pairs (R1, R2) such

that:

R1 ≥ I(X1;Z|U)

R2 ≥ I(X2;Z|U)

R1 +R2 ≥ I(X1, X2;Z|U)

for some joint distribution PU,X1,X2,Z , PUPX1|UPX2|UWZ|X1,X2 with marginal QZ.

Proof. See Section 4.4.1.

We provide a converse proof and show that feedback does not improve the resolvability

of the multiple access channel.
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Encoder 1

Encoder 2

Figure 4.2. The multiple access channel with generalized feedback.

4.2 MAC with Generalized Feedback

The discrete memoryless MAC with generalized feedback (Figure 4.2) consists of finite input

alphabets X1 and X2, and finite output alphabets Z1, Z2 and Z with a channel transi-

tion probability WZ,Z1,Z2|X1,X2 . For a joint distribution PX1,X2 on X1 × X2, the output is

distributed according to QZ(z) =
∑

x1,x2,z1,z2
PX1,X2(x1, x2)WZ,Z1,Z2|X1,X2(z, z1, z2|x1, x2). A

(2nR1 , 2nR2 , n) channel resolvability code consists of two encoders f1 and f2 with inputs

M1 ∈ J1, 2nR1K and M2 ∈ J1, 2nR2K. The encoding functions are defined as follows:

f1i :M1 ×Z i−1
1 → X1i f2i :M2 ×Z i−1

2 → X2i. (4.2)

Definition 10. A rate pair (R1, R2) is said to be achievable for the discrete memoryless MAC

with generalized feedback (X1×X2,WZ1,Z2,Z|X1,X2 ,Z1×Z2×Z) if for a given QZ there exists a

sequence of (2nR1 , 2nR2 , n) codes with increasing block length such that limn→∞D(PZn||Q⊗nZ ) =

0. The MAC resolvability region is the closure of the set of achievable rate pairs (R1, R2).

Proposition 12. For the discrete memoryless MAC channel with generalized feedback,

the following region is achievable via decode-and-forward if there exists a joint distribution

PU,X1,X2,Z,Z1,Z2 = PUPX1|UPX2|UWZ,Z1,Z2|X1,X2 with marginal QZ satisfying I(X1;Z1|X2, U) +

I(X2;Z2|X1, U) > I(X1, X2;Z) for which:

R1 ≥ I(X1, X2;Z)− I(X2;Z1|X1, U)
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R2 ≥ I(X1, X2;Z)− I(X1;Z2|X2, U)

R1 +R2 ≥ I(X1, X2;Z)

Proof. See Section 4.4.3. We present here a sketch of the proof. This achievable bound

on the channel resolvability is constructed by allowing the two encoders to cooperate over

multiple blocks. Each encoder recovers the other’s message over a secure channel, i.e., the

two encoders exchange information in such a way so that the output Z is oblivious to it.

This is accomplished through two mechanisms: first, the feedback outputs Z1 and Z2 are

different from the output Z, which creates a virtual wiretap channel allowing the feedback to

carry information that is not accessible to Z. Second, the resolution of information available

at each encoder is better than the output, because each encoder knows its own transmission

and can somewhat clean up the feedback to get access to the communication from the other

user.

It is interesting to note that this second mechanism was not helpful in the case of simple

output feedback, also called Shannon feedback, since it was shown that feedback does not

improve the resolvability rate. In the case of generalized feedback, conditioning on each

encoder’s own message, while decoding the feedback, seems to improve the resolvability

rates.

The information exchanged during each time block is used in the next block to coordinate

transmissions by the two users to facilitate obfuscation at Z. In the achievability proof,

the security of the exchange of messages (mentioned in the previous paragraph) is used to

demonstrate, via a chaining argument, the breaking of the dependence across blocks.

Remark 11. The resolvability of the relay channel via decode-and-forward [36] can be re-

trieved from Proposition 12 by setting R2 = 0 and U = X2.
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Proposition 13. For the discrete memoryless MAC channel with generalized feedback, the

following region is achievable via randomness extraction if there exists a joint distribution

PX1,X2,Z,Z1,Z2 = PX1PX2WZ,Z1,Z2|X1,X2 with marginal QZ for which:

R1 ≥ I(X1;Z)−H(Z1|X1, Z)

R2 ≥ I(X2;Z)−H(Z2|X2, Z)

R1 +R2 ≥ I(X1, X2;Z)−H(Z1, Z2|X1, X2, Z)

Proof. See Section 4.4.3. We provide here a sketch of the proof. We divide the transmission

into multiple blocks. In every block, each encoder independently generates randomness

that stems from channel noise via a random binning argument. This fresh randomness

is re-injected into the channel in the next block to assist in the approximation of output

distribution.

Remark 12. Proposition 13 shows a third way in which generalized feedback improves the

resolvability rate of MAC, and that is in providing fresh randomness to the inputs that are

independent of each other and of Z. Our understanding of this mechanism is refined and

focused via the earlier result that Shannon feedback does not improve the resolvability rate:

we therefore conclude that only the fresh randomness that is independent of Z is useful in

improving resolvability rates. This insight is not obvious because this recycled randomness is

used only in the following time block and is re-processed through the channel.

Remark 13. The resolvability of the relay channel via randomness extraction [36] can be

retrieved from Proposition 13 by setting R2 = 0 and Z1 = constant.

Remark 14. The achievable resolvability of MAC can be retrieved from Proposition 13 by

setting Z1 = Z2 = constant.

119



Proposition 14. For the discrete memoryless MAC channel with generalized feedback, the

following region is achievable via decode-and-forward with randomness extraction if there

exists a joint distribution PU,X1,X2,Z1,Z2,Z = PUPX1|UPX2|UWZ1,Z2,Z|X1,X2 with marginal QZ

satisfying I(X1;Z2|X2, U) + I(X2;Z1|X1, U) > I(X1, X2;Z) for which:

R1 ≥ I(X1, X2;Z)− I(X2;Z1|X1, U)−H(Z1, Z2|X1, X2, Z),

R2 ≥ I(X1, X2;Z)− I(X1;Z2|X2, U)−H(Z1, Z2|X1, X2, Z),

R1 +R2 ≥ I(X1, X2;Z)−H(Z1, Z2|X1, X2, Z).

Proof. The proof follows by combining the proofs of Proposition 12 and Proposition 13.

4.3 Strong Secrecy from Channel Resolvability

Encoder 1

Encoder 2

Decoder

Figure 4.3. The multiple access wiretap channel with feedback.

Decoder
Encoder 1

Encoder 2

Figure 4.4. The multiple access wiretap channel with generalized feedback.
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The multiple-access wiretap channel with feedback or the multiple-access wiretap channel

with generalized feedback consists of two encoders f1 and f2 and a decoder g. The encoders

are defined similar to definitions presented in (4.1) and (4.2), but the functions f1i and f2i

are now stochastic and not deterministic. The decoding function at the legitimate receiver

is defined as:

g : Yn → M̂1 × M̂2. (4.3)

The probability of error at the legitimate receiver is defined as P
(n)
e = P

(
(M̂1, M̂2) 6=

(M1,M2)
)

. The total amount of leaked confidential information per codeword is defined as

L(n) = I(M1,M2;Zn).

Definition 11. A strong secrecy rate pair (R1, R2) is said to be achievable for the discrete

memoryless wiretap MAC if there exists a sequence of (2nR1 , 2nR2 , n) codes such that P
(n)
e

and L(n) vanish as n→∞.

Proposition 15. For the multiple-access wiretap channel with feedback, the following strong-

secrecy rate region is achievable via decode-and-forward:

(R1, R2) =
⋃

PUPX1|UPX2|UWY Z|X1X2

R(in)
FB-DF,

R(in)
FB-DF =



R1, R2 ≥ 0

R1 ≤ I(X1;Y |X2, U)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ I(X1;Y |X2, U) + I(X2;Y |X1, U)− I(X1, X2;Z)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)


. (4.4)

Proof. See Section 4.4.2.
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Proposition 16. For the multiple-access wiretap channel with feedback, the following strong-

secrecy rate region is achievable via randomness extraction:

(R1, R2) =
⋃

PX1
PX2

WY Z|X1X2

R(in)
FB-RE,

R(in)
FB-RE =



R1, R2 ≥ 0

R1 ≤ I(X1;Y |X2)

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y )− [I(X1, X2;Z)−H(Y |X1, X2, Z)]+


. (4.5)

Proof. See Section 4.4.2.

Proposition 17. For the multiple-access wiretap channel with feedback, the following strong-

secrecy rate region is achievable via decode-and-forward with randomness extraction:

(R1, R2) =
⋃

PUPX1|UPX2|UWY Z|X1X2

R(in)
FB-DF-RE,

R(in)
FB-DF-RE =



R1, R2 ≥ 0

R1 ≤ I(X1;Y |X2, U)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ I(X1;Y |X2, U) + I(X2;Y |X1, U)

−[I(X1, X2;Z)−H(Y |X1, X2, Z)]+

R1 +R2 ≤ I(X1, X2;Y )− [I(X1, X2;Z)−H(Y |X1, X2, Z)]+



. (4.6)

Proof. The proof follows by combining the proofs of Proposition 15 and Proposition 16.

Proposition 18. For the multiple-access wiretap channel with generalized feedback, the fol-

lowing strong-secrecy rate region is achievable via decode-and-forward:

(R1, R2) =
⋃

PUPX1|UPX2|UWY1Y2Y Z|X1X2

R(in)
GFB-DF,
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R(in)
GFB-DF =



R1, R2 ≥ 0

R1 ≤ I(X1;Y2|X2, U)

R2 ≤ I(X2;Y1|X1, U)

R1 +R2 ≤ I(X1;Y2|X2, U) + I(X2;Y1|X1, U)− I(X1, X2;Z)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)


. (4.7)

Proof. The proof follows by steps similar to Proposition 15.

Remark 15. The achievable strong secrecy rate region of the relay wiretap channel via

decode-and-forward can be obtained from Proposition 18 by setting R2 = 0, Y1 = constant

and U = X2.

Proposition 19. For the multiple-access wiretap channel with generalized feedback, the fol-

lowing strong-secrecy rate region is achievable via randomness extraction:

(R1, R2) =
⋃

PX1
PX2

WY1Y2Y Z|X1X2

R(in)
GFB-RE,

R(in)
GFB-RE =



R1, R2 ≥ 0

R1 ≤ I(X1;Y |X2)

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y )− [I(X1, X2;Z)−H(Y1, Y2|X1, X2, Z)]+


. (4.8)

Proof. The proof follows by steps similar to Proposition 16.

Proposition 20. For the multiple-access wiretap channel with generalized feedback, the fol-

lowing strong-secrecy rate region is achievable via decode-and-forward with randomness ex-

traction:

(R1, R2) =
⋃

PUPX1|UPX2|UWY1,Y2,Y,Z|X1X2

R(in)
GFB-DF-RE,
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R(in)
GFB-DF-RE =



R1, R2 ≥ 0

R1 ≤ I(X1;Y2|X2, U)

R2 ≤ I(X2;Y1|X1, U)

R1 +R2 ≤ I(X1;Y2|X2, U) + I(X2;Y1|X1, U)

−[I(X1, X2;Z)−H(Y1, Y2|X1, X2, Z)]+

R1 +R2 ≤ I(X1, X2;Y )− [I(X1, X2;Z)−H(Y1, Y2|X1, X2, Z)]+



.

(4.9)

Proof. The proof follows by combining the proofs of Proposition 18 and Proposition 19.

4.4 Proofs

4.4.1 Channel resolvability of MAC with feedback

Converse:

By assumption,

ε ≥ D(PZn||Q⊗nZ )

= D(PZ1...Zn||Q⊗nZ )

=
n∑
i=1

D(PZi|Zi−1 ||QZ |PZi−1) (4.10)

=
n∑
i=1

D(PZi ||QZ) +
n∑
i=1

I(Zi;Z
i−1) (4.11)

nR1 = H(M1) (4.12)

≥ I(M1;Zn) (4.13)

=
∑
i

I(M1;Zi|Zi−1) (4.14)

(a)
= I(M1, X1i;Zi|Zi−1) (4.15)
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≥ I(X1i;Zi|Zi−1) (4.16)

=
∑
i

I(Zi−1, X1i;Zi)−
∑
i

I(Zi−1;Zi) (4.17)

(b)

≥
∑
i

I(Ui, X1i;Zi)− ε (4.18)

=
∑
i

D(PUi,X1i,Zi ||PUi,X1i
PZi)− ε (4.19)

=
∑
i

D(PUi,X1i,Zi ||PUi,X1i
QZi)−

∑
i

D(PZi ||QZi)− ε (4.20)

(c)

≥
∑
i

D(PUi,X1i,Zi||PUi,X1i
QZi)− ε′ (4.21)

(d)

≥ nD
(∑

i PPUi,X1i,Zi

n

∣∣∣∣∣∣∣∣∑i PUi,X1i

n
QZi

)
− ε′ (4.22)

= nD(P̃U,X1,Z ||P̃U,X1QZ)− ε′ (4.23)

(e)

≥ nD(P̃U,X1,Z ||P̃U,X1P̃Z)− ε′ (4.24)

= nI(Ũ , X̃1; Z̃)− ε′ (4.25)

≥ nI(X̃1; Z̃|Ũ) (4.26)

where

(a) follows by the encoding function;

(b) follows since
∑

i I(Zi−1;Zi) ≤ D(PZn||Q⊗nZ ) ≤ ε and by setting Ui , Zi−1;

(c) follows since
∑

iD(PZi||QZi) ≤ ε;

(d) follows by Jensen’s inequality and convexity of D(·||·);

(e) follows since D(P̃U,X1,Z ||P̃U,X1QZ) = D(P̃U,X1,Z ||P̃U,X1P̃Z) + D(P̃Z ||QZ);

Similarly we obtain,

nR2 ≥ nI(X̃2; Z̃|Ũ)− ε′ (4.27)
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and

n(R1 +R2) ≥ nI(X̃1, X̃2; Z̃|Ũ)− ε′ (4.28)

The following steps proves PU,X1,X2,Z = PUPX1|UPX2|UWZ|X1,X2 .

P (zi−1|m1,m2)P (zi−1|m′1,m′2)

=
i−1∏
j=1

P (zj|m1,m2, z
j−1)×

i−1∏
j=1

P (zj|m′1,m′2, zj−1) (4.29)

=
i−1∏
j=1

∑
x̃1j ,x̃2j

P (x̃1j, x̃2j, zj|m1,m2, z
j−1)×

i−1∏
j=1

∑
x1j ,x2j

P (x1j, x2j, zj|m′1,m′2, zj−1) (4.30)

=
i−1∏
j=1

∑
x̃1j ,x̃2j

P (x̃1j|m1,m2, z
j−1)P (x̃2j|m1,m2, z

j−1, x̃1j)P (zj|m1,m2, z
j−1, x̃1j, x̃2j)

×
i−1∏
j=1

∑
x1j ,x2j

P (x1j|m′1,m′2, zj−1)P (x2j|m′1,m′2, zj−1, x1j)P (zj|m′1,m′2, zj−1, x1j, x2j) (4.31)

(a)
=

i−1∏
j=1

∑
x̃1j ,x̃2j

P (x̃1j|m1, z
j−1)P (x̃2j|m2, z

j−1)W (zj|x̃1j, x̃2j)

×
i−1∏
j=1

∑
x1j ,x2j

P (x1j|m′1, zj−1)P (x2j|m′2, zj−1)W (zj|x1j, x2j) (4.32)

(b)
=

i−1∏
j=1

∑
x̃1j ,x2j

P (x̃1j|m1, z
j−1)P (x2j|m′2, zj−1)W (zj|x̃1j, x2j)

×
i−1∏
j=1

∑
x1j ,x̃2j

P (x1j|m′1, zj−1)P (x̃2j|m2, z
j−1)W (zj|x1j, x̃2j) (4.33)

= P (zi−1|m1,m
′
2)P (zi−1|m′1,m2) (4.34)

where

(a) follows from the encoding functions and the discrete memoryless nature of the channel;

(b) follows from the discrete memoryless nature of the channel.
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P (m1,m2|zi−1)

=
P (m1,m2, z

i−1)

P (zi−1)
(4.35)

=

∑
m′1,m

′
2
P (m1,m2, z

i−1)P (m′1,m
′
2, z

i−1)

P (zi−1)P (zi−1)
(4.36)

=

∑
m′1,m

′
2
P (m1)P (m2)P (zi−1|m1,m2)P (m′1)P (m′2)P (zi−1|m′1,m′2)

P (zi−1)P (zi−1)
(4.37)

(a)
=

∑
m′2
P (m1)P (m′2)P (zi−1|m1,m

′
2)
∑

m′1
P (m′1)P (m2)P (zi−1|m′1,m2)

P (zi−1)P (zi−1)
(4.38)

= P (m1|zi−1)P (m2|zi−1) (4.39)

where

(a) follows from (4.34).

P (x1i, x2i|zi−1)

=
∑
m1,m2

P (m1,m2, x1i, x2i|zi−1) (4.40)

=
∑
m1,m2

P (m1,m2|zi−1)P (x1i, x2i|m1,m2, z
i−1) (4.41)

(a)
=
∑
m1,m2

P (m1|zi−1)P (m2|zi−1)P (x1i|m1, z
i−1)P (x2i|m2, z

i−1) (4.42)

= P (x1i|zi−1)P (x2i|zi−1) (4.43)

(a) follows from the encoding functions and (4.39).

4.4.2 Strong secrecy of MAC with feedback

Achievability via decode-and-forward:

We use a combination of block-Markov encoding and backward decoding. Independently

and uniformly distributed messages m
(b)
1 ∈ J1, 2rR1K and m

(b)
2 ∈ J1, 2rR2K will be sent over
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B blocks. Each block consists of r transmissions so that n = rB. Consider a distribution

P (u, x1, x2) = P (u)P (x1|u)P (x2|u) such that
∑

u,x1,x2
P (u, x1, x2)W (z|x1, x2) = QZ(z).

Code Construction: In each block b ∈ J1, BK:

• Independently generate 2r(R1+ρ′1+ρ′′1+R2+ρ′2+ρ′′2 ) codewords urb each with probability

P (ur) = P⊗rU (ur). Label them ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), m

(b)
0 ∈ J1, 2r(R1+R2)K, m′(b)0 ∈

J1, 2r(ρ′1+ρ′2)K and m
′′(b)
0 ∈ J1, 2r(ρ′′1+ρ′′2 )K.

• For every ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), independently generate 2r(R1+ρ′1+ρ′′1 ) codewords xr1b each

with probability P (xr1|ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )) = P⊗rX1|U(xr1|ur(m

(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )). Label

them xr1(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
1 ,m

′(b)
1 ,m

′′(b)
1 ), m

(b)
1 ∈ J1, 2rR1K, m

′(b)
1 ∈ J1, 2rρ′1K and

m
′′(b)
1 ∈ J1, 2rρ′′1 K.

• For every ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ), independently generate 2r(R2+ρ′2+ρ′′2 ) codewords xr2b each

with probability P (xr2|ur(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )) = P⊗rX2|U(xr2|ur(m

(b)
0 ,m

′(b)
0 ,m

′′(b)
0 )). Label

them xr2(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
2 ,m

′(b)
2 ,m

′′(b)
2 ), m

(b)
2 ∈ J1, 2rR2K, m

′(b)
2 ∈ J1, 2rρ′2K and

m
′′(b)
2 ∈ J1, 2rρ′′2 K.

We intend to use these codebooks in the following manner:

1. Block Markov encoding via M
(b)
0 = (M

(b−1)
1 ,M

(b−1)
2 ), M

′(b)
0 = (M

′(b−1)
1 ,M

′(b−1)
2 ) and

M
′′(b)
0 = (M

′′(b−1)
1 ,M

′′(b−1)
2 );

2. M
(b)
1 , M

′(b)
1 and M

′′(b)
1 can be decoded (at Encoder 2) from Y r

b knowing

(M
(b)
0 ,M

′(b)
0 ,M

′′(b)
0 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 );

3. M
(b)
2 , M

′(b)
2 and M

′′(b)
2 can be decoded (at Encoder 1) from Y r

b knowing

(M
(b)
0 ,M

′(b)
0 ,M

′′(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 );

4. {M (1)
1 , . . . ,M

(B)
1 } and {M (1)

2 , . . . ,M
(B)
2 } are secret from {Zr

1 , . . . , Z
r
B};
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5. M
′′(b)
1 and M

′′(b)
2 are the common randomness to be used by both encoders in block

b+ 1;

6. M
′(b)
1 is local randomness used by Encoder 1 and M

′(b)
2 is local randomness used by

Encoder 2;

7. The messages M
(b)
0 , M

′(b)
0 , M

′′(b)
0 , M

(b)
1 , M

′(b)
1 , M

′′(b)
1 , M

(b)
2 , M

′(b)
2 and M

′′(b)
2 can be

decoded at the receiver from Y r
b and the messages decoded in future blocks b+ 1 to B

(backward decoding).

As a result of cribbing, after block b, Encoder 2 finds estimates (m̂
(b)
1 , m̂

′(b)
1 , m̂

′′(b)
1 ) for

(m
(b)
1 ,m

′(b)
1 ,m

′′(b)
1 ) such that

(ur(m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ), xr1(m̂

(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 , m̂

(b)
1 , m̂

′(b)
1 , m̂

′′(b)
1 ),

xr2(m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ,m

(b)
2 ,m

′(b)
2 ,m

′′(b)
2 ), yrb) ∈ T (r)

ε (PU,X1,X2,Y ). (4.44)

where (m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ) = (m̂

(b−1)
1 ,m

(b−1)
2 , m̂

′(b−1)
1 ,m

′(b−1)
2 , m̂

′′(b−1)
1 ,m

′′(b−1)
2 ). Also, Encoder 1

finds estimates (M̃
(b)
2 , M̃

′(b)
2 , M̃

′′(b)
2 ) for (m

(b)
2 ,m

′(b)
2 ,m

′′(b)
2 ) such that

(ur(M̃
(b)
0 , M̃

′(b)
0 , M̃

′′(b)
0 ), xr1(M̃

(b)
0 , M̃

′(b)
0 , M̃

′′(b)
0 ,M

(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ),

xr2(M̃
(b)
0 , M̃

′(b)
0 , M̃

′′(b)
0 , M̃

(b)
2 , M̃

′(b)
2 , M̃

′′(b)
2 ), yrb) ∈ T (r)

ε (PU,X1,X2,Y ). (4.45)

where (m̃
(b)
0 , m̃

′(b)
0 , m̃

′′(b)
0 ) = (m

(b−1)
1 , m̃

(b−1)
2 ,m

′(b−1)
1 , m̃

′(b−1)
2 ,m

′′(b−1)
1 , m̃

′′(b−1)
2 ).

Encoding: We apply block-Markov encoding as follows. In block b, the encoders send:

xr1b = xr1(m
(b)
0 ,m

′(b)
0 ,m

′′(b)
0 ,m

(b)
1 ,m

′(b)
1 ,m

′′(b)
1 )

xr2b = xr2(m̂
(b)
0 , m̂

′(b)
0 , m̂

′′(b)
0 ,m

(b)
2 ,m

′(b)
2 ,m

′′(b)
2 )

We also assume that the encoders and decoder have access to

(M
(1)
0 ,M

′(1)
0 ,M

′′(1)
0 ,M

(B)
1 ,M

′(B)
1 ,M

′′(B)
1 ,M

(B)
2 ,M

′(B)
2 ) through private common random-

ness.
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Decoding at the receiver: The legitimate receiver waits until all B blocks are trans-

mitted and then performs backward decoding. The decoder first finds ( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 )

such that

(ur( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 ), xr1( ˆ̂m

(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 , ˆ̂m

(B)
1 , ˆ̂m

′(B)
1 , ˆ̂m

′′(B)
1 ),

xr2( ˆ̂m
(B)
0 , ˆ̂m

′(B)
0 , ˆ̂m

′′(B)
0 , ˆ̂m

(B)
2 , ˆ̂m

′(B)
2 , ˆ̂m

′′(B)
2 ), yrB) ∈ T (r)

ε (PU,X1,X2,Y ).

Assuming that (m
(B)
0 ,m

′(B)
0 ,m

′′(B)
0 ), (m

(B−1)
0 ,m

′(B−1)
0 ,m

′′(B−1)
0 ), . . . , (m

(b+1)
0 ,m

′(b+1)
0 ,m

′′(b+1)
0 )

have been decoded, the decoder sets ( ˆ̂m
(b)
1 , ˆ̂m

′(b)
1 , ˆ̂m

′′(b)
1 ) = ( ˆ̂m

(b+1)
0 , ˆ̂m

′(b+1)
0 , ˆ̂m

′′(b+1)
0 ) and finds

( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 ) and ( ˆ̂m

(b)
2 , ˆ̂m

′(b)
2 ) such that

(ur( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 ), xr1( ˆ̂m

(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 , ˆ̂m

(b)
1 , ˆ̂m

′(b)
1 , ˆ̂m

′′(b)
1 ),

xr2( ˆ̂m
(b)
0 , ˆ̂m

′(b)
0 , ˆ̂m

′′(b)
0 , ˆ̂m

(b)
2 , ˆ̂m

′(b)
2 , ˆ̂m

′′(b)
2 ), yrb) ∈ T (r)

ε (PU,X1,X2,Y ).

Probability of error analysis: Using the arguments for error analysis from [35, Lemma

4], the probability of error of each block vanishes exponentially with r and in turn vanishes

across blocks if

R1 + ρ′1 + ρ′′1 < I(X1;Y |X2, U), (4.46)

R2 + ρ′2 + ρ′′2 < I(X2;Y |X1, U), (4.47)

R1 + ρ′1 + ρ′′1 +R2 + ρ′2 + ρ′′2 < I(X1, X2;Y ). (4.48)

Secrecy analysis: Let P̄ be the probability induced when both en-

coders use (M
(b)
0 ,M

′(b)
0 ,M

′′(b)
0 ). Let P be the probability when Encoder 1

uses the estimate (M̃
(b)
0 , M̃

′(b)
0 , M̃

′′(b)
0 ) and Encoder 2 uses the estimate

(M̂
(b)
0 , M̂

′(b)
0 , M̂

′′(b)
0 ). For the secrecy analysis, we find conditions so that

I(M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b ) vanishes expo-

nentially with r. This is motivated by:
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• (M
(b)
1 ,M

(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 ) are the Encoder 1 and Encoder 2 secret messages in the

present, the past and the estimates of the latter (at Encoder 1 and Encoder 2 respec-

tively), which must be kept secret from Zr
b .

• (M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ) and (M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ) must be kept independent of Zr

b according

to the functional dependence graph (it can be shown by a figure similar to Figure 3.13)

to ensure the distribution of Z remains i.i.d. across blocks.

• M̃
′(b)
0 and M̂

′(b)
0 are kept independent from Zr

b to allow Encoder 1 and Encoder 2 to

possess a local randomness that is separate from the common randomness shared with

between each other: Resolvability analysis showed us that having a local randomness

at both encoders can be beneficial for achievable rates.

It can be shown, similar to Section 3.4.11, that

I(M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b ) → 0 as r → ∞

if:

ρ′′1 + ρ′′2 > I(U ;Z), (4.49)

ρ′1 + ρ′′1 + ρ′′2 > I(U,X1;Z), (4.50)

ρ′2 + ρ′′1 + ρ′′2 > I(U,X2;Z), (4.51)

ρ′1 + ρ′2 + ρ′′1 + ρ′′2 > I(X1, X2;Z). (4.52)

Similar to Section 3.4.8, it can be shown that

I(M
(b)
1 ,M

′(b)
1 ,M

′′(b)
1 ,M

(b)
2 ,M

′(b)
2 ,M

′′(b)
2 ,M

(b)
0 , M̃

(b)
0 , M̂

(b)
0 , M̃

′(b)
0 , M̂

′(b)
0 ;Zr

b )
r→∞−−−→ 0 for all b

implies I(M1,M2;Zn)
n→∞−−−→ 0.

We now derive an achievable rate region by choosing values for ρ′1, ρ′′1, ρ′2, ρ′′2, R1

and R2 that satisfy the constraints for secrecy and probability of error. We find it

more convenient to separately derive achievable rate regions under the two conditions

I(X1;Y |X2, U) + I(X2;Y |X1, U) ≶ I(X1, X2;Y ), and then merge them.
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When I(X1;Y |X2, U) + I(X2;Y |X1, U) > I(X1, X2;Y ), The following rates satisfy all

error and secrecy constraints:

ρ′′1 = ε,

ρ′1 = ε,

ρ′′2 = I(U,X1;Z) + ε,

ρ′2 = I(X2;Z|X1, U) + ε,

R1 = I(X1;Y |X2, U)− 2ε,

R2 = I(U,X2;Y )− I(X1, X2;Z)− ε,

and the same is true for the following rates:

ρ′′1 = I(U,X2;Z) + ε,

ρ′1 = I(X1;Z|X2, U) + ε,

ρ′2 = ε,

ρ′′2 = ε,

R1 = I(U,X1;Y )− I(X1, X2;Z)− 2ε,

R2 = I(X2;Y |X1, U)− ε.

Considering the above two corner points, the following rate region is achievable.

R1 ≤ I(X1;Y |X2, U)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ I(X1, X2;Y )− I(X1, X2;Z)

When I(X1;Y |X2, U) + I(X2;Y |X1, U) ≤ I(X1, X2;Y ), the following rates satisfy all

error and secrecy constraints:

ρ′′1 = ε,
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ρ′1 = ε,

ρ′′2 = I(U,X1;Z) + ε,

ρ′2 = I(X2;Z|X1, U) + ε,

R1 = I(X1;Y |X2, U)− 2ε,

R2 = I(X2;Y |X1, U)− I(X1, X2;Z)− ε,

and the same is true for the following rates:

ρ′′1 = I(U,X2;Z) + ε,

ρ′1 = I(X1;Z|X2, U) + ε,

ρ′2 = ε,

ρ′′2 = ε,

R1 = I(X1;Y |X2, U)− I(X1, X2;Z)− 2ε,

R2 = I(X2;Y |X1, U)− ε.

Considering the above two corner points, the following rate region is achievable.

R1 ≤ I(X1;Y |X2, U)

R2 ≤ I(X2;Y |X1, U)

R1 +R2 ≤ I(X1;Y |X2, U) + I(X2;Y |X1, U)− I(X1, X2;Z)

Thus far, we have two achievable rate regions for the two conditions I(X1;Y |X2, U) +

I(X2;Y |X1, U) ≶ I(X1, X2;Y ), and the overall achievable rate region is usually specified as

the union of the two. It then follows that the smaller of the two derived sum rate constraints

is always active. Therefore we can simplify the expression of the achievable region by using

the intersection of the two sum rate constraints.

This concludes the proof of Proposition 15.
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Achievability via randomness extraction:

We divide the transmission into B blocks. Independently and uniformly distributed messages

m
(b)
1 ∈ J1, 2rR1K and m

(b)
2 ∈ J1, 2rR2K will be sent over B blocks. Each block consists of r

transmissions so that n = rB. Consider a distribution PX1,X2,Y,Z , PX1PX2WY,Z|X1,X2 with

marginal QZ .

Code Construction: For block b = 1,

• Independently generate 2r(ρ1+ρ′1) codewords according to P⊗rX1
and label them

xr1(m
(1)
1 ,m

′(1)
1 ), where m

(1)
1 ∈ J1, 2rρ1K and m

′(1)
1 ∈ J1, 2rρ′1K.

• Independently generate 2r(ρ2+ρ′2) codewords according to P⊗rX2
and label them

xr2(m
(1)
2 ,m

′(1)
2 ), where m

(1)
2 ∈ J1, 2rρ2K and m

′(1)
2 ∈ J1, 2rρ′2K.

For b ∈ J1, B − 1K, we perform random binning as follows:

• For each yrb , assign uniformly and independently two random bin indices k
(b)
1 ∈ J1, 2rρk1K

and k
(b)
2 ∈ J1, 2rρk2K. We denote k

(b)
1 = φ1(yrb) and k

(b)
2 = φ2(yrb).

K
(b)
1 is recycled by Encoder 1 towards the generation of M

′(b+1)
1 . K

(b)
2 is recycled by

Encoder 2 towards the generation of M
′(b+1)
2 . Therefore the effective secret rate at Encoder 1

is R1 = ρ1 + ρk1. Similarly, the effective secret rate at Encoder 2 is R2 = ρ2 + ρk2.

For blocks b ∈ J2, BK:

• Independently generate 2r(ρ1+ρ′1) codewords according to P⊗rX1
and label them

xr1(m
(b)
1 ,m

′(b)
1 ), where m

(b)
1 ∈ J1, 2rρ1K and m

′(b)
1 ∈ J1, 2rρ′1K.

• Independently generate 2r(ρ2+ρ′2) codewords according to P⊗rX2
and label them

xr2(m
(b)
2 ,m

′(b)
2 ), where m

(b)
2 ∈ J1, 2rρ2K and m

′(b)
2 ∈ J1, 2rρ′2K.

We intend to use these codebooks in the following manner:
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1. {M (1)
1 , . . . ,M

(B)
1 } and {M (1)

2 , . . . ,M
(B)
2 } are secret from {Zr

1 , . . . , Z
r
B};

2. M
′(b)
1 is local randomness used by Encoder 1 and M

′(b)
2 is local randomness used by

Encoder 2;

3. K
(b)
1 and K

(b)
1 are randomness extracted from the channel independent from each other

and independent from Zr
b . They are recycled towards the creation of M

′(b+1)
1 and

M
′(b+1)
2 respectively;

4. The messages M
(b)
1 , M

′(b)
1 , M

(b)
2 and M

′(b)
2 can be decoded at the receiver from Y r

b .

Encoding: In block b, the encoders send:

xr1b = xr1(m
(b)
1 ,m

′(b)
1 )

xr2b = xr2(m
(b)
2 ,m

′(b)
2 )

Decoding at the receiver: In block b, the legitimate receiver finds m̂1, m̂′1, m̂2 and

m̂′2 such that

(xr1(m̂1, m̂
′
1), xr2(m̂2, m̂

′
2), yrb) ∈ T (r)

ε (PX1,X2,Y )

Probability of error analysis: Using the arguments for error analysis from [35, Lemma

4], the probability of error of each block vanishes exponentially with r and in turn vanishes

across blocks if

ρ1 + ρ′1 < I(X1;Y |X2), (4.53)

ρ2 + ρ′2 < I(X2;Y |X1), (4.54)

ρ1 + ρ′1 + ρ2 + ρ′2 < I(X1, X2;Y ). (4.55)

Secrecy analysis: It can be shown, similar to Section 3.4.11, that

I(M
(b)
1 ,M

(b)
2 , K

(b)
1 , K

(b)
2 ;Zr

b )→ 0 as r →∞ if:

ρ′1 + ρ′2 − ρk1 − ρk2 ≥ I(X1, X2;Z)−H(Y |X1, X2, Z) (4.56)
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ρ′2 − ρk1 − ρk2 ≥ I(X2;Z)−H(Y |X2, Z) (4.57)

ρ′1 − ρk1 − ρk2 ≥ I(X1;Z)−H(Y |X1, Z) (4.58)

ρ′1 + ρ′2 ≥ I(X1, X2;Z) (4.59)

−ρk1 − ρk2 ≥ H(Z)−H(Y, Z) (4.60)

ρ′1 ≥ I(X1;Z) (4.61)

ρ′2 ≥ I(X2;Z) (4.62)

Similar to Section 3.4.8, it can be shown that I(M
(b)
1 ,M

(b)
2 , K

(b)
1 , K

(b)
2 ;Zr

b )
r→∞−−−→ 0 for all

b implies I(M1,M2;Zn)
n→∞−−−→ 0.

We now derive an achievable rate region by choosing values for ρ1, ρ′1, ρk1, ρ2, ρ′2 and ρk2

that satisfy the constraints for secrecy and probability of error.

The following rates satisfy all error and secrecy constraints:

ρ′1 − ρk1 = ε,

ρ′2 − ρk2 = [I(X1, X2;Z)−H(Y |X1, X2, Z)− ε]+,

R1 = I(X1;Y |X2)− ε,

R2 = I(X1, X2;Y )− I(X1;Y |X2)− [I(X1, X2;Z)−H(Y |X1, X2, Z)− ε]+ + ε,

and the same is true for the following rates:

ρ′2 − ρk2 = ε,

ρ′1 − ρk1 = [I(X1, X2;Z)−H(Y |X1, X2, Z)− ε]+,

R2 = I(X2;Y |X1)− ε,

R1 = I(X1, X2;Y )− I(X2;Y |X1)− [I(X1, X2;Z)−H(Y |X1, X2, Z)− ε]+ + ε.

Considering the above two corner points, the following rate region is achievable.

R1 ≤ I(X1;Y |X2)
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R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y )− [I(X1, X2;Z)−H(Y |X1, X2, Z)]+

4.4.3 Channel resolvability of MAC with generalized feedback

Achievability: Decode-and-forward

To handle the strict causality constraint, we adopt a block-Markov encoding scheme over

B > 0 consecutive and dependent blocks, each consisting of r transmissions such that n =

rB. The vector of n channel outputs Zn at the channel output may then be described as

Zn , (Zr
1 , · · · , Zr

B), where each Zr
b for b ∈ J1, BK describes the observations in block b. The

distribution induced by the coding scheme is the joint distribution P n
Z , PZr1 ,··· ,PZrB

, while the

target output distribution is a product distribution of product distributions Q⊗nZ ,
∏B

j=1 Q
⊗r
Z

.

Codebook Construction:

Consider a distribution PU,X1,X2 = PUPX1|UPX2|U such that∑
u,x1,x2,Z1,Z2

PU,X1,X2WZ1,Z2,Z|X1,X2 = QZ that satisfies I(X1;Z2|X2, U) + I(X2;Z1|X1, U) >

I(X1, X2;Z). For every b ∈ J1, BK:

• Independently generate 2rρ0 codewords ur(m
(b)
0 ) each with probability PUr = P⊗rU .

Label them ur(m
(b)
0 ), m

(b)
0 ∈ J1, 2rρ0K.

• For every ur(m
(b)
0 ), independently generate 2r(ρ

′
1+ρ′′1 ) codewords xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 )

each with probability PXr
1 |Ur = P⊗rXr

1 |Ur
. Label them xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), m

′(b)
1 ∈

J1, 2rρ′1K and m
′′(b)
1 ∈ J1, 2rρ′′1 K.

• For every ur(m
(b)
0 ), independently generate 2r(ρ

′
2+ρ′′2 ) codewords xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 )

each with probability PXr
2 |Ur = P⊗rXr

2 |Ur
. Label them xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ), m

′(b)
2 ∈

J1, 2rρ′2K and m
′′(b)
2 ∈ J1, 2rρ′′2 K.
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This defines the codebook in block b

Cr = {ur(m(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,

m
′(b)
1 ∈ J1, 2rρ

′
1K,m′′(b)1 ∈ J1, 2rρ

′′
1 K,m′(b)2 ∈ J1, 2rρ

′
2K,m′′(b)2 ∈ J1, 2rρ

′′
2 K} (4.63)

and we denote the random codebook in block b by

Cr = {U r(m
(b)
0 ), Xr

1(m
(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), Xr

2(m
(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ),m

(b)
0 ∈ J1, 2rρ0K,

m
′(b)
1 ∈ J1, 2rρ

′
1K,m′′(b)1 ∈ J1, 2rρ

′′
1 K,m′(b)2 ∈ J1, 2rρ

′
2K,m′′(b)2 ∈ J1, 2rρ

′′
2 K} (4.64)

The messages M
′(b)
1 and M

′(b)
2 are part of M

(b)
1 and M

(b)
2 respectively and represent the

local randomness at each encoder. The messages M
′′(b)
1 and M

′′(b)
2 are part of M

(b)
1 and

M
(b)
2 respectively that are used by both encoders toward the creation of M

(b+1)
0 , assuming

ρ′′1 + ρ′′2 > ρ0. Furthermore, for γ ∈ J0, 1K, an amount γ(ρ′′1 + ρ′′2 − ρ0) is recycled towards the

creation of M
′(b+1)
1 and an amount (1− γ)(ρ′′1 + ρ′′2 − ρ0) is recycled towards the creation of

M
′(b+1)
2 .

Next we bound D(PZn||Q⊗nZ ) and show that dependencies across blocks created by block-

Markov encoding can be eliminated by appropriately recycling randomness from one block

to the next.

D(PZn||Q⊗nZ )

= D(PZr1 ...ZrB ||Q
⊗rB
Z )

=
B∑
b=1

D(PZrj |Z
B,r
b+1
||Q⊗rZ |PZB,rb+1

) (4.65)

=
B∑
b=1

D(PZrj ||Q
⊗r
Z ) +

B∑
b=1

D(PZrj |Z
B,r
b+1
||PZrj |PZB,rb+1

) (4.66)

=
B∑
b=1

D(PZrb ||Q
⊗r
Z ) +

B∑
b=1

I(Zr
b ;Z

B,r
b+1) (4.67)
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(a)

≤
B∑
b=1

D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 , ZB

b+1)

(4.68)

(b)
=

B∑
b=1

D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

I(Zr
b ;M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 ) (4.69)

(c)

≤
B∑
b=1

2× D(P
M
′′(b)
1 ,M

′′(b)
2 ,Zrb

||P
M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) +
B∑
b=1

H(M̂
′′(b)
1 , M̂

′′(b)
2 |M ′′(b)

1 ,M
′′(b)
2 ) (4.70)

where

(a) follows since D(PZrb ||Q
⊗r
Z ) = D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ) −

D(P
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

PZrb );

(b) follows since Zr
b → M

′′(b)
1 , M̂

′′(b)
1 ,M

′′(b)
2 , M̂

′′(b)
2 → ZB,r

b+1 holds; fol-

lows since I(Zr
b ;M

′′(b)
1 ,M

′′(b)
2 ) = D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

PZrb ) ≤

D(P
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ ).

Let P
(b)
e be the average error probability of both encoders decoding the other en-

coder’s message. From Fano’s inequality, we can write H(M̂
′′(b)
1 , M̂

′′(b)
2 |M ′′(b)

1 ,M
′′(b)
2 ) ≤

H(M̂
′′(b)
1 |M ′′(b)

1 ) +H(M̂
′′(b)
2 |M ′′(b)

2 ) ≤ 2H(P
(b)
e ) + r(ρ′′1 + ρ′′2)P

(b)
e . By random coding we know

that ECr

(
P

(b)
e

)
< 2−αr for some α > 0 and all r large enough if ρ′1 + ρ′′1 < I(X1;Z2|X2, U)

and ρ′2 + ρ′′2 < I(X2;Z1|X1, U).

Let P̄ be the probability distribution induced when both encoders are using the same

M
(b)
0 , i.e., (M̂

′′(b−1)
1 , M̂

′′(b−1)
2 ) = (M

′′(b−1)
1 ,M

′′(b−1)
2 ).

ECr

(
D(P̄

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
)

= ECr

∑
m
′′(b)
1 ,m

′′(b)
2 ,zrb

P̄
Zrb ,M

′′(b)
1 ,M

′′(b)
2

log
P̄
Zrb |M

′′(b)
1 ,M

′′(b)
2

Q⊗rZ
(4.71)

= ECr

∑
m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−r(ρ
′′
1+ρ′′2 )

∑
m

(b)
0 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ′1+ρ′2)
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P̄⊗r(zrb |U r(m
(b)
0 ), Xr

1(m
(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), Xr

2(m
(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

× log
∑
i,j,k

P⊗r(zrb |U r(i), Xr
1(i, j,m

′′(b)
1 ), Xr

2(i, k,m
′′(b)
2 ))

2r(ρ0+ρ′1+ρ′2)Q⊗rZ
(4.72)

(a)

≤
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−n(ρ′′1+ρ′′2 )
∑

m
(b)
0 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ′1+ρ′2)
∑

ur(m
(b)
0 ),xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 )

P̄⊗r(ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× logE\(m(b)
0 ,m

′(b)
1 ,m

′(b)
2 )

∑
i,j,k

P⊗r(zrb |U r(i), Xr
1(i, j,m

′′(b)
1 ), Xr

2(i, k,m
′′(b)
2 ))

2r(ρ0+ρ′1+ρ′2)Q⊗rZ
(4.73)

=
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−n(ρ′′1+ρ′′2 )
∑

m
(b)
0 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ′1+ρ′2)
∑

ur(m
(b)
0 ),xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 )

P̄⊗r(ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× logE\(m(b)
0 ,m

′(b)
1 ,m

′(b)
2 )

1

2r(ρ0+ρ′1+ρ′2)Q⊗rZ[
P⊗r(zrb |ur(m

(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

j 6=m′(b)1

P⊗r(zrb |ur(m
(b)
0 ), Xr

1(m
(b)
0 , j,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

k 6=m′(b)2

W⊗r(zrb |ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), Xr

2(m
(b)
0 k,m

′′(b)
2 ))

+
∑

j 6=m′(b)1

k 6=m′(b)2

W⊗r(zrb |ur(m
(b)
0 ), Xr

1(m
(b)
0 , j,m

′′(b)
1 ), Xr

2(m
(b)
0 , k,m

′′(b)
2 ))

+
∑
i 6=m(b)

0
j,k

W⊗r(zrb |U r(i), Xr
1(i, j,m

′′(b)
1 ), Xr

2(i, k,m
′′(b)
2 ))

]
(4.74)

(b)

≤
∑

m
′′(b)
1 ,m

′′(b)
2 ,zrb

2−n(ρ′′1+ρ′′2 )
∑

m
(b)
0 ,m

′(b)
1 ,m

′(b)
2

2−r(ρ0+ρ′1+ρ′2)
∑

ur(m
(b)
0 ),xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ),xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 )

P̄⊗r(ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ), zrb )

× log
1

2r(ρ0+ρ′1+ρ′2)Q⊗rZ
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[
P⊗r(zrb |ur(m

(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

j 6=m′(b)1

P̄⊗r(zrb |ur(m
(b)
0 ), xr2(m

(b)
0 ,m

′(b)
2 ,m

′′(b)
2 ))

+
∑

k 6=m′(b)2

P̄⊗r(zrb |ur(m
(b)
0 ), xr1(m

(b)
0 ,m

′(b)
1 ,m

′′(b)
1 ))

+
∑

j 6=m′(b)1

k 6=m′(b)2

P̄⊗r(zrb |ur(m
(b)
0 ))

+
∑
i 6=m(b)

0
j,k

P̄⊗r(zrb )

]
(4.75)

(c)
= Ψ1 + Ψ2 (4.76)

where

(a) follows by Jensen’s Inequality;

(b) follows by taking the expectation inside the log of the previous step;

(c) Ψ1 is found by restricting the sum in the previous step over (ur, xr1, x
r
2, z

r
b ) ∈

T rε (PU,X1,X2,Y,Z) and Ψ2 is found by restricting that sum over (ur, xr1, x
r
2, z

r
b ) 6∈

T rε (PU,X1,X2,Z).

Solving Ψ1 and Ψ2 like in previous sections we find that

D(P̄
Zrb ,M

′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
r→∞−−−→ 0 if:

ρ0 + ρ′1 + ρ′2 > I(X1, X2;Z) (4.77)

ρ0 + ρ′2 > I(U,X2;Z) (4.78)

ρ0 + ρ′1 > I(U,X1;Z) (4.79)

ρ0 > I(U ;Z) (4.80)
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Let ε > 0, set

ρ0 = I(U ;Z) + ε (4.81)

ρ′1 = I(X1;Z|U) + ε (4.82)

ρ′′1 = I(X1;Z2|X2, U)− I(X1;Z|U)− 2ε (4.83)

ρ′2 = I(X2;Z|X1, U) + ε (4.84)

ρ′′2 = I(X2;Z1|X1, U)− I(X2;Z|X1, U)− 2ε (4.85)

We can write the effective rates of new randomness at both encoders as:

R1 , ρ′1 + ρ′′1 − γ(ρ′′1 + ρ′′2 − ρ0) (4.86)

R2 , ρ′2 + ρ′′2 − (1− γ)(ρ′′1 + ρ′′2 − ρ0) (4.87)

R1 +R2 , ρ′1 + ρ′2 + ρ0 (4.88)

Using the values of ρ0, ρ′1, ρ′′1, ρ′2 and ρ′′2 chosen above, we obtain the rate region as

follows:

R1 ≥ I(X1, X2;Z)− I(X2;Z1|X2, U) + 2ε (4.89)

R2 ≥ I(X1, X2;Z)− I(X1;Z2|X1, U) + 2ε (4.90)

R1 +R2 ≥ I(X1, X2;Z) + 3ε (4.91)

Finally, we note that ECr

(
D(P̄

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P̄

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
) r→∞−−−→ 0 implies

ECr

(
D(P

Zrb ,M
′′(b)
1 ,M

′′(b)
2
||P

M
′′(b)
1 ,M

′′(b)
2

Q⊗rZ )
) r→∞−−−→ 0 (see discussion in Section 3.4.1) if

ρ′1 + ρ′′1 < I(X1;Z2|X2, U) (4.92)

ρ′2 + ρ′′2 < I(X2;Z1|X1, U) (4.93)

Achievability: Randomness Extraction

We adopt a block-Markov encoding scheme over B > 0 consecutive and dependent blocks,

each consisting of r transmissions such that n = rB. The vector of n channel outputs Zn
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at the channel output may then be described as Zn , (Zr
1 , · · · , Zr

B), where each Zr
b for

b ∈ J1, BK describes the observations in block b. The distribution induced by the coding

scheme is the joint distribution P n
Z , PZr1 ,··· ,PZrB

, while the target output distribution is a

product distribution of product distributions Q⊗nZ ,
∏B

j=1Q
⊗r
Z .

Codebook Construction:

Consider a distribution PX1,X2 = PX1PX2 such that
∑

x1,x2,Z1,Z2
PX1,X2WZ1,Z2,Z|X1,X2 =

QZ . For every b ∈ J1, BK:

• Independently generate 2rρ1 codewords xr1(m
(b)
1 ) each with probability PXr

1
= P⊗rXr

1
.

Label them xr1(m
(b)
1 ), m

(b)
1 ∈ J1, 2rρ1K.

• Independently generate 2rρ2 codewords xr1(m
(b)
2 ) each with probability PXr

2
= P⊗rXr

2
.

Label them xr2(m
(b)
2 ), m

(b)
2 ∈ J1, 2rρ2K.

Random binning at each encoder:

• For each (xr1(m
(b)
1 ), zr1b), assign uniformly and independently a random bin index k

(b)
1 ∈

J1, 2rρk1K. We denote k
(b)
1 = φ1b(x

r
1(m

(b)
1 ), zr1b).

• For each (xr2(m
(b)
2 ), zr2b), assign uniformly and independently a random bin index k

(b)
2 ∈

J1, 2rρk2K. We denote k
(b)
2 = φ2b(x

r
2(m

(b)
2 ), zr2b).

This defines the codebook in block b

Cr = {xr1(m
(b)
1 ), xr2(m

(b)
2 ),m

(b)
1 ∈ J1, 2rρ1K,m(b)

2 ∈ J1, 2rρ2K} (4.94)

and we denote the random codebook in block b by

Cr = {Xr
1(m

(b)
1 ), Xr

2(m
(b)
2 ),m

(b)
1 ∈ J1, 2rρ1K,m(b)

2 ∈ J1, 2rρ2K} (4.95)

K
(b)
1 and K

(b)
1 are random variables representing the randomness that stems from chan-

nel noise and are used towards the creation of M
(b+1)
1 and M

(b+1)
2 respectively. For every
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(Xr
1(m

(b)
1 ), zr1b), let Φ1b(X

r
1(m

(b)
1 ), zr1b) be the random variables representing the index asso-

ciated to (Xr
1(m

(b)
1 ), zr1b). For every (Xr

2(m
(b)
2 ), zr2b), let Φ2b(X

r
2(m

(b)
2 ), zr2b) be the random

variables representing the index associated to (Xr
2(m

(b)
2 ), zr2b).

Next we bound D(PZn||Q⊗nZ ) and show that the dependencies across blocks created by

block-Markov coding can be eliminated by suitably recycling the extracted randomness from

one block to the next.

D(PZn||Q⊗nZ ) = D(PZr1 ...ZrB ||Q
⊗rB
Z )

(a)
=

B∑
b=1

D(PZrb ||Q
⊗r
Z ) +

B∑
b=1

D(PZrb |Z
B,r
b+1
||PZrb |PZB,rb+1

)

=
B∑
b=1

D(PZrb ||Q
⊗r
Z ) +

B∑
b=1

I(Zr
b ;Z

B,r
b+1)

(b)

≤
B∑
b=1

D(P
Zrb ,K

(b)
1 ,K

(b)
2
||Q⊗rZ Q

K
(b)
1
Q
K

(b)
2

) +
B∑
b=1

I(Zr
b ;K

(b)
1 , K

(b)
2 , ZB,r

b+1)

(c)
=

B∑
b=1

D(P
Zrb ,K

(b)
1 ,K

(b)
2
||Q⊗rZ Q

K
(b)
1
Q
K

(b)
2

) +
B∑
b=1

I(Zr
b ;K

(b)
1 , K

(b)
2 )

(d)

≤ 2
B∑
b=1

D(P
Zrb ,K

(b)
1 ,K

(b)
2
||Q⊗rZ Q

K
(b)
1
Q
K

(b)
2

)

where

(a) follows from the definition ZB,r
b+1 = {Zr

b+1, . . . Z
r
B};

(b) follows since D(PZrb ||Q
⊗r
Z ) = D(P

Zrb ,K
(b)
1 ,K

(b)
2
||Q⊗rZ Q

K
(b)
1
Q
K

(b)
2

) −

D(P
Zrb ,K

(b)
1 ,K

(b)
2
||PZrbQK

(b)
1
Q
K

(b)
2

). Q
K

(b)
1

is the uniform distribution over J1, 2rρk1K

and Q
K

(b)
2

is the uniform distribution over J1, 2rρk2K;

(c) follows since Zr
b → K

(b)
1 , K

(b)
2 → ZB,r

b+1 holds;

(d) follows since I(Zr
b ;K

(b)
1 , K

(b)
2 ) = D(P

Zrb ,K
(b)
1 ,K

(b)
2
||PZrbPK(b)

1 ,K
(b)
2

) ≤

D(P
Zrb ,K

(b)
1 ,K

(b)
2
||Q⊗rZ Q

K
(b)
1
Q
K

(b)
2

).
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ECr,Φ1b,Φ2b

(
D(P

Zrb ,K
(b)
1 ,K

(b)
2
||Q

K
(b)
1
Q
K

(b)
2
Q⊗rZ )

)
= ECr,Φ1b,Φ2b

∑
k
(b)
1 ,k

(b)
2 ,zrb

P
Zrb ,K

(b)
1 ,K

(b)
2

log
P
Zrb ,K

(b)
1 ,K

(b)
2

Q
K

(b)
1
Q
K

(b)
2
Q⊗rZ

(4.96)

= ECr,Φ1b,Φ2b

∑
k
(b)
1 ,k

(b)
2 ,zrb

∑
m

(b)
1 ,m

(b)
2

∑
zr1b,z

r
2b

2−r(ρ1+ρ2)

W⊗r(zr1b, z
r
2b, z

r
b |Xr

1(m
(b)
1 ),Xr

2(m
(b)
2 ))1{Φ1b(x

r
1(m

(b)
1 ),zr1b)=k
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Solving Ψ1 and Ψ2 like in previous sections we find that

D(P
Zrb ,K
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(b)
2
||Q

K
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1
Q
K

(b)
2
Q⊗rZ )

r→∞−−−→ 0 if:

ρ1 + ρ2 − ρk1 − ρk2 > I(X1, X2;Z)−H(Z1, Z2|X1, X2, Z) (4.102)

ρ2 − ρk2 > I(X2;Z)−H(Z1, Z2|X2, Z) (4.103)
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ρ1 − ρk1 > I(X1;Z)−H(Z1, Z2|X1, Z) (4.104)

ρ1 + ρ2 − ρk2 > I(X1, X2;Z)−H(Z2|X1, X2, Z) (4.105)

ρ1 + ρ2 − ρk1 > I(X1, X2;Z)−H(Z1|X1, X2, Z) (4.106)

H(Z1, Z2, Z) > H(Z) (4.107)

ρ1 + ρ2 > I(X1, X2;Z) (4.108)

ρ2 − ρk2 > I(X2;Z)−H(Z2|X2, Z) (4.109)

ρ2 > I(X2;Z)−H(Z1|X2, Z) (4.110)

ρ1 > I(X1;Z)−H(Z2|X1, Z) (4.111)

ρ1 − ρk1 > I(X1;Z)−H(Z1|X1, Z) (4.112)

H(Z2, Z) > H(Z) (4.113)

H(Z1, Z) > H(Z) (4.114)

ρ2 > I(X2;Z) (4.115)

ρ1 > I(X1;Z) (4.116)

Defining the effective rates of new randomness at each encoder as R1 , ρ1 − ρk1 and

R2 , ρ2 − ρk2 and performing Fourier-Motzkin elimination completes the proof.
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CHAPTER 5

CONCLUSION

This dissertation develops inner and outer bounds for the resolvability rates of the multiple-

access channel with several cooperation strategies: (i) degraded message sets, (ii) a common

message, (iii) conferencing, (iv) cribbing, (v) feedback, and (vi) generalized feedback. For

the multiple access channel with cribbing, we investigate the following cases: (a) one-sided

strictly-causal cribbing, (b) one-sided causal cribbing, (c) one-sided non-causal cribbing and

(d) two-sided strictly-causal cribbing.

The derived inner and outer bounds are tight for the cases of the multiple access channel

with degraded message sets, a common message, conferencing, one-sided causal cribbing,

one-sided non-causal cribbing, and feedback.

The key insights of this dissertation are as follows. First, feedback does not improve the

resolvability of the MAC, which we show by providing a converse that is tight against the

results of [7]. Resolvability may be improved by the other cooperation schemes. Second, the

encoding schemes involve the hiding of the encoder cooperation, so that the dependencies

created by cooperation are undetectable at the channel output. This is made possible because

the cooperation mechanism creates an effective wiretap channel and allows the exchange of

secret information. In the context of channel resolvability, this secret information plays the

role of randomness that can be reused for cooperation without impacting the desired output

approximation. Third, we develop two achievability approaches investigating the roles of

decoding and randomness extraction. The first approach is constructed by using decode-

and-forward strategy, where each encoder decodes the other encoder’s message. The second

approach is constructed by a randomness extraction mechanism which can be motivated by

a case when each encoder’s observation is very noisy, allowing cooperation without decoding.

Then, deriving secrecy from channel resolvability, achievable strong secrecy rates were

derived for MAC wiretap channel for all the previously mentioned cooperation schemes.
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