
SPECTRALLY-EFFICIENT PROTOCOLS FOR WIRELESS

RELAY NETWORKS

by

Ramy M. Tannious

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Aria Nosratinia, Chair

Dr. Naofal Al-Dhahir

Dr. John P. Fonseka

Dr. Hlaing Minn



Copyright 2008

Ramy M. Tannious

All Rights Reserved



To my mother and the loving memory of my father



SPECTRALLY-EFFICIENT PROTOCOLS FOR WIRELESS

RELAY NETWORKS

by

RAMY M. TANNIOUS, B.S.E.E., M.S.E.E.

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

December 2008



PREFACE

This dissertation was produced in accordance with guidelines which permit

the inclusion as part of the dissertation the text of an original paper or papers sub-

mitted for publication. The dissertation must still conform to all other requirements

explained in the ”Guide for the Preparation of Master’s Theses and Doctoral Dis-

sertations at The University of Texas at Dallas.” It must include a comprehensive

abstract, a full introduction and literature review and a final overall conclusion. Ad-

ditional material (procedural and design data as well as descriptions of equipment)

must be provided in sufficient detail to allow a clear and precise judgment to be made

of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies

of papers already published, provided these meet type size, margin and legibility re-

quirements. In such cases, connecting texts which provide logical bridges between

different manuscripts are mandatory. Where the student is not the sole author of a

manuscript, the student is required to make an explicit statement in the introductory

material to that manuscript describing the student’s contribution to the work and

acknowledging the contribution of the other author(s). The signatures of the Super-

vising Committee which precede all other material in the dissertation attest to the

accuracy of this statement.
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CHAPTER 1

INTRODUCTION

1.1 Background

Wireless communication is attractive for both the consumer as well as ser-

vice providers. On one hand, it provides an ubiquitous mode of communications.

On the other hand, it requires lower infrastructure costs and easier implementation

compared to wire-line networks. However, communication over the wireless medium

poses challenges for engineers and scientists. The wireless channel suffers from path

loss, scattering, and shadowing effects. These effects are sometimes collectively called

fading, and are detrimental to wireless communications. Furthermore, interference

arises as a serious issue in a wireless networks due to the broadcast nature of wireless

transmissions.

Fortunately, over time, new paradigms and approaches have been devised to

combat the fading and the interference effects. One of the key recent directions in

wireless communications has been to exploit, rather than suppress, the unique features

of the wireless channel such as fading and interference. For example, the paradigm

of opportunistic communication is based on transmitting at the peak of the fading

channel. Multiple-input-multiple-output (MIMO) communications is enabled by the

fading in rich scattering wireless environments. Likewise, the relaying in wireless

networks takes advantage of the broadcast nature of wireless transmissions. These

new developments give further hope that future wireless networks will provide higher

data rates with improved reliability.
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Relay networks are communication networks where one or more nodes assist

the communication of a source-destination pair or a group of pairs. The simplest form

of a relay network is the three node network known as the relay channel, which was

introduced by van der Muelen in 1971 [1]. The seminal work of Cover and El Gamal

further investigated the relay channel [2], establishing the capacity in several special

cases. In the most general case, the capacity of the relay channel has remained an

open problem for almost four decades.

Research in relay networks, with a few exceptions, remained dormant after the

work of Cover and El Gamal, until the work of Sendonaris et. al [3] on cooperative

diversity generated renewed interest in relaying and cooperation. Cooperative com-

munication, which is a form of mutual relaying between the network nodes, enlarges

the capacity region of a fading multiple-access channel, improves signals reliability,

and extends the coverage area [3].

After the appearance of [3], a large body of research on relaying has been

produced, and many aspects of relaying have been investigated. It is now generally

accepted that the improvements made possible by relays can translate into tangible

benefits for wireless communication systems, and that continued study of relaying

remains of importance from both a theoretical as well as a practical point of view.

This dissertation makes contributions to several key problems in this area.

1.2 Motivation and Objectives

The common theme of the research in this dissertation is to improve the rate

of wireless relay networks. This can refer to the capacity region of a network, the

spectral efficiency, or the degrees of freedom. These notions will be rigorously defined

in the next chapter.
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In the recent past, research in relays has focused on achieving better diversity

via the additional signal paths provided by the relays. However, much less attention

has been paid to achieving good spectral efficiency while maintaining (near) optimal

spatial diversity in a relay network. The main challenge in this task is due to the

repetition of information by the half-duplex relays, i.e., the nodes cannot transmit

and receive at the same time/frequency.

This dissertation addresses the spectral efficiency in various relay network

architectures. We start with the three node relay problem. Then, the multiple-relay

network is considered, where a set of nodes are willing to help the communications

of a source-destination pair. We then consider relaying in interference networks,

where multiple source-destination pairs attempt to communicate together and they

are assisted by a dedicated relay.

1.3 Contributions and Outline

Chapter 2 provides the mathematical background that is used in the following

chapters. It collects some techniques and ideas used in multi-terminal information

theory. It also defines some of the performance measures used in this dissertation.

Chapter 3 presents the first contribution of this dissertation. A new relay

channel model is proposed and analyzed for the simple three node network. Simulta-

neous communications between the three nodes is proposed to maximize the spectral

efficiency of the network. This leads to a channel model where relay, broadcast, and

multiple-access components are featured. We derive inner and outer bounds on the

capacity region for this channel. We further show that many of the existing capacity

results for the three-node relay network can be recovered as special cases of the results

obtained in this chapter.
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Chapter 4 studies a multiple-relay network, where it is assumed that a group

of nodes are willing to assist the source to communicate its message to the destina-

tion. We take an opportunistic approach for the relaying process via a relay selection

framework. Two models are considered: where the direct link exists, and where it

is absent. Two corresponding novel relay selection protocols are devised. Under a

block-fading model, outage probability and diversity-multiplexing tradeoff are the

performance limits of interest. The proposed protocols exhibit excellent performance

at high spectral efficiencies compared to all existing protocols in the literature, while

also requiring minimal overhead. Moreover, a novel concept of unequal error protec-

tion via a family of DMT curves is produced in our work.

The last contribution presented in this dissertation appears in Chapter 5. We

study the inclusion of a MIMO relay to assist communications in an interference

network. Thus, this chapter considers the simultaneous communication of several

source-destination pairs. Several coding strategies are proposed and analyzed for this

network model. Achievable bounds on the sum-rate capacity (network throughput)

are obtained. Then, the achievable (lower bound) degrees of freedom (DOF) of this

network for different signaling schemes is obtained. We then obtain an upper bound

on the DOF and finally establish the exact DOF of the network under study.



CHAPTER 2

PRELIMINARIES

This chapter is dedicated to review some of the information-theoretic concepts

and performance measures used throughout this dissertation. Some of the definitions

and the proofs of theorems that are discussed below appear in [4].

2.1 Typicality Decoding

We use random codes in our analysis of various signaling schemes. Decoding

of these codes at the receiver is based on the idea of typicality known as typicality

decoding. Hence, we start this chapter by defining weak and strong typicality and

their differences and then consider the definition of joint typicality.

Theorem 1 Asymptotic Equipartition Property (AEP) If X1, X2,· · ·Xn are i.i.d ∼ p(x),

then

− 1

n
log p(X1, X2, · · · , Xn) → H(X) in probability (2.1)

where H(X) is the entropy of X.

Definition 1 (Weak Typicality) The typical set Aε with respect to p(x) is the set of

sequences xn = (x1, x2, ....xn) ∈ X n with the property

2−n(H(X)+ε) ≤ p(x1, x2, ....xn) ≤ 2−n(H(X)−ε) (2.2)

5
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As a consequence of the AEP, it can be shown that the typical set has the following

properties. It has probability nearly 1, all elements belonging to the typical set are

nearly equiprobable and the cardinality of the typical set is almost 2nH .

There is another form of typicality known as strong typicality. Strong typical-

ity put limits on the relative occurrence of the symbols within a sequence not on the

probability of the sequence.

Definition 2 (Strong Typicality) The strongly typical set Aε with respect to p(x) is

the set of sequences xn = (x1, x2, ....xn) ∈ X n with the property

∣∣∣∣
1

n
N(a;xn)− p(a)

∣∣∣∣ <
ε

|X | (2.3)

where N(a;xn) is the number of occurrences of the symbol a in the sequence xn and

|X | is the size (cardinality) of the alphabet X .

Strong typicality implies weak typicality while the opposite is not always true.

Definition 3 (Joint Typicality) The set Aε of jointly typical sequences (xn, yn) with

respect to p(x, y) is the set of length n sequences with the properties

∣∣∣∣−
1

n
p(xn)−H(X)

∣∣∣∣ < ε (2.4)

∣∣∣∣−
1

n
p(yn)−H(Y )

∣∣∣∣ < ε (2.5)

∣∣∣∣−
1

n
p(xn, yn)−H(X, Y )

∣∣∣∣ < ε (2.6)

where

p(xn, yn) =
n∏

i=1

p(xi, yi) (2.7)
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It is easy to show that the probability of any randomly chosen typical pair hitting a

jointly-typical pair is ∼ 2−nI(X;Y ). The notion of joint typicality is the basis of the

typicality decoder. The typicality decoder is in general suboptimal but is simple to

analyze and achieves all rates below capacity.

2.2 Some Network Information Theory Techniques

Most of the significant results in network information theory hinges upon the

use of novel techniques in the construction of the signaling (coding) scheme. Most

of the currently used techniques have been introduced during the 1970’s. We review

some of these tools that are used in our proofs throughout the dissertation.

2.2.1 Random Binning

The important idea of random binning is now introduced. The idea is that the

encoder indexes at random all the sequences in the codebook (typical and atypical).

The range of indexes is usually smaller then the total number of available sequences.

Then, instead of sending the desired codeword itself, the encoder sends only the index

of this sequence. The set of sequences which have the same index are said to form a

bin. The number of bins determines the rate of the encoder. For decoding, the index

of the bin is revealed to the decoder and it looks for one and only one typical sequence

in that bin. This powerful idea can be extended to several sequences transmitted by

same encoder as in the broadcast channel problem or transmitted by different sources

as in distributed source-coding problems. Here, the sets of two sequences (or more)

are divided into bins in such away that the pair of indexes specifies a product bin. The

decoder in turn searches for a one and only one jointly-typical pair in this product

bin.
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2.2.2 Superposition Block Markov Encoding

Superposition block Markov encoding is an idea that was devised by Cover and

Leung [5]. It gained a lot of attention afterwards as it was the key idea in achieving

the capacity of the relay channel in some special cases. This idea is relevant when two

or more transmitters cooperate in sending information to a receiver. Superposition

block Markov encoding for two cooperating transmitters works as follows. Transmis-

sion occurs in blocks. At each block, the main transmitter sends high rate information

that does not allow correct decoding by the destination while another node might be

able to decode this information reliably. However, in the next block, both transmit-

ters cooperate by sending “resolution information” that removes the uncertainty of

the receiver about the data in the previous block. Moreover, in order to keep this

cooperation possible in the next blocks, the main transmitter superimposes a fresh

information about the message of the current block, hence the “superposition” part

in the name of the technique. When the sizes of the two codebooks used by the

source and the cooperating transmitter are the same, the encoding is called regular

encoding, otherwise it is called irregular encoding.

2.2.3 Backward Decoding

Backward decoding is a decoding technique that was introduced by Willems [6].

It can simplify the decoding of a superposition block Markov encoded signal. All

blocks of transmission are collected at the destination until the last block of trans-

mission is completed. Decoding starts from the last block which contains only “reso-

lution information”. The decoder then moves to the previous blocks sequentially and

decodes the information in a backward manner. Hence, the name “backward decod-

ing”. The obvious issues with this type of decoding is that it causes high decoding

delay and requires large buffering.
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2.3 Some Performance Measures for the Rate of Information

Moving on from ideas and coding techniques, several measures for performance

limits used in this dissertation are now defined.

2.3.1 Shannon Capacity

Shannon capacity represents the maximum rate of transmission in a noisy

channel with almost zero probability of error. Consider the following linear time

invariant channel model with an input power constraint P :

y = hx+ z (2.8)

where h represents the random channel gain between the transmitter and receive and

z is the thermal noise at receiver modeled as AWGN∼ N (0, No). Conditioned on

knowing h, the channel follows a Gaussian model and its Shannon capacity is given

by:

C(h, ρ) =
1

2
log

(
1 + ρ

)
(2.9)

achieved when X ∼ N (0, P ) and under infinite block length assumption, where ρ =

P
No

is the signal-to-noise ratio (SNR). When h varies like in fading channels, if the

codeword is long enough such that h reveals its ergodic nature within one codeword,

then the Shannon (ergodic) capacity is obtained by taking the expectation of (2.9)

Cergodic(ρ) = E[C(h, ρ)] (2.10)

2.3.2 Outage Probability and Outage Capacity

When the codeword length spans only one channel realization whose value is

unknown at the transmitter, there exist a non-zero probability of decoding error and

outage occurs. In this case, the Shannon capacity in its strict sense is zero. One can
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instead define an outage probability Pout performance limit which at high SNR and

long enough block length was proved to tightly lower bound the error probability [7].

For a given rate R, Pout is given by:

Pout = Pr[C(h, ρ) < R] (2.11)

Also, one can define a corresponding outage capacity, Cε. It is the rate below

which the outage probability over any channel realization does not exceed ε. It is

expressed by:

Cε = sup
{
R : Pr[C(h, ρ) < R] ≤ ε

}
(2.12)

2.3.3 Diversity-Multiplexing Tradeoff

The outage probability described above provides insight into the tradeoff be-

tween error probability and transmission rate at a fixed SNR. However, formulating

a closed-form outage expression is not possible in many cases. In order to circumvent

this hurdle, Zheng and Tse elegantly formulated another performance measure known

as the diversity-multiplexing tradeoff (DMT) [8]. The DMT provides a tradeoff be-

tween the reliability provided by a certain signaling scheme versus the rate expressed

as a fraction of the AWGN channel capacity at high SNR. Communicating at fixed

rate would yield the maximum reliability of a channel. However, at high SNR, any

fixed rate R becomes vanishingly small with respect to the channel capacity. Thus,

one would be sacrificing the spectral efficiency of the channel in order to attain the

maximum diversity for the signal transmitted. Therefore, the key for the Zheng-Tse

formulation is the notion of multiplexing gain r. It is expressed as:

r = lim
ρ→∞

R(ρ)

log(ρ)
(2.13)

The diversity gain d at a specific multiplexing gain r is defined as:

d(r) = lim
ρ→∞

−Pout(R(ρ))

log(ρ)
(2.14)
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2.3.4 Degrees of Freedom

The degrees of freedom (DOF) is a characteristic of the channel. It is also

known as the pre-log factor or the multiplexing gain. It is formally defined as:

DOF = lim
ρ→∞

C(ρ)

log(ρ)
(2.15)

That is for a MIMO channel with m transmit antennas and n receive antennas,

Telatar’s seminal paper shows that such channel has a DOF = min(m,n) [9].



CHAPTER 3

RELAY CHANNEL WITH PRIVATE MESSAGES

3.1 Introduction

The three-terminal relay channel was proposed by van der Meulen [1] and

thoroughly studied by Cover and El Gamal [2]. The relay node in this model has no

role aside from relaying, in particular, it is neither a source nor a sink of information.

When dedicated relays are unavailable, relaying must be done by network

nodes that are also a source/sink of data. Thus, one is interested in the network

performance limits when a relay must handle both relayed messages, as well as their

own (private) messages. A representative channel model is shown in Fig. 3.1, which

we call relay channel with private messages (RCPM). This is a network with both

point-to-point as well as relayed links, a generalization of the traditional relay channel.

In the following we mention some of the literature that is most directly re-

lated to the present discussion. Liang and Veeravalli [10] studied a cooperative relay

Relay
Channel

private
message

private
message

Source

Relay

Destination

Figure 3.1. Relay channel with private messaging.

12
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broadcast channel. The bounds in this work are further improved by Liang and

Kramer [11]. Reznik et al. [12] address a similar problem with multiple relays. Dab-

ora and Servetto [13] study a broadcast channel with a secure cooperative link between

the receivers. Lai et al [14] study a half-duplex, fading, three-way channel.

The contributions of this chapter are described as follows. In our analysis of

RCPM we use new combinations of coding strategies inspired by the MAC channel

with generalized feedback, and Marton’s approach to the broadcast channel. We

derive achievable rates for the discrete memoryless and Gaussian RCPM based on

decode-and-forward and compress-and-forward schemes, and outer bounds for the

DMC case. The discrete memoryless and Gaussian RCPM generalize their counter-

parts in the original relay channel and relay-broadcast channels. Numerical results are

provided that give insights into the trade-offs between private messaging and relayed

messaging in this hybrid three-node network.

Throughout this chapter, the techniques of regular encoding and backward

decoding defined in Chapter 2 are used. Backward decoding has been used previously

for degraded relay channel in [15] and more recently for the general relay channel with

partial decode-and-forward in [16]. As a by-product of our work, we demonstrate

that backward decoding does not improve the achievable rate of a non-degraded relay

channel employing compress-and-forward scheme.

3.2 Definitions and System Model

In this chapter, X, X , and ||X || denote a random variable, its range, and

cardinality. A
(n)
ε (X) denotes the ε-typical set according to X, in the strong or weak

sense. Deterministic scalars and vectors are shown by lower case and lower-case

bold-face letters. We further define X i
t

4
= (Xt,1, Xt,2..., Xt,i), the capacity function
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C(x) = 1
2
log2(1 + x), and for usage in convex combinations, we define x̄ = 1− x.

Definition 4 A relay channel with private messages consists of a channel input al-

phabet X1, a relay input alphabet X2, two channel output alphabets Y2 and Y3, and

a probability transition function p(y2, y3|x1, x2), where x1, x2 denote source and relay

inputs, respectively, while y2 and y3 denote the outputs at the relay and destination

nodes, respectively.

Definition 5 A

((
2nR12 , 2nR23 , 2nR13

)
, n

)
code for the relay channel with private

messages consists of the following :

• Three sets of integers, W12 =
{
1, 2, ..., 2nR12

}
, W23 =

{
1, 2, ..., 2nR23

}
, and

W13 =
{
1, 2, ..., 2nR13

}
.

• An encoder,

X1 : W12 ×W13 → X n
1

• A set of relay functions {fi}n
i=1,

x2,i = fi(y2,1, ..., y2,i−1, w23), 1 ≤ i ≤ n

• Two decoding functions,

d1 : Yn
2 →W12

d2 : Yn
3 →W13 ×W23.

Figure 3.2 illustrates the encoding and decoding structure of different mes-

sages. The channels considered in this chapter are memoryless. Thus, the current

outputs depend on the past only through present input symbols. The relay node is

assumed to operate in full duplex mode and to be causal, i.e., its input is allowed to

depend only on its past observations.
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Figure 3.2. The encoding and decoding structure for relay with private messages.

Definition 6 A relay channel with private messages is said to be degraded if its

transition probability satisfies

p(y2, y3|x1, x2) = p(y2|x1, x2)p(y3|y2, x2) (3.1)

i.e., Y3 is independent of X1 conditioned on knowing Y2 and X2.

Definition 7 An AWGN relay channel with private messages is a RCPM with a con-

tinuous input and output alphabets and independent, additive white Gaussian noise.

The channel outputs of the relay and destination are given by:

Y2 = X1 + Z2 (3.2)

Y3 = X1 +X2 + Z3 (3.3)

where Z2 ∼ N (0, N2) and Z3 ∼ N (0, N3) are independent Gaussian noise.

Figure 3.3 illustrates this channel and the flow of information between the three nodes.

The input sequences are subject to the power constraints E [x2
1] < P1 and E [x2

2] < P2.

Definition 8 A degraded AWGN relay channel with private messages is a AWGN

RCPM where the source and destination signals are independent given the relay input
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Relay
Y2 X2

W12

W13

W12
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^
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Y3

^
W13

W23
^

Figure 3.3. Gaussian relay channel with private messages.

and output, which is equivalent to saying that the relay knows everything that the

destination knows. The channel outputs at the relay and destination are given by

Y2 = X1 + Z2 (3.4)

Y3 = X1 +X2 + Z2 + Z ′ (3.5)

where Z2 and Z ′ are independent zero mean Gaussian random variables with variances

N2 and N3 −N2, respectively, where N2 < N3.

Definition 9 The average probability of error is defined as the probability that the

decoded messages are different from the transmitted ones:

P (n)
e = P

(
Ŵ12 6= W12 or (Ŵ13, Ŵ23) 6= (W13,W23)

)
(3.6)

where Ŵ denotes an estimate of W . We assume that the source and relay nodes select

their messages (W12,W23,W13) independently and uniformly over W12 ×W23 ×W13.

he probability of error at the relay and destination, respectively, is defined as:

P
(n)
e,R = P (Ŵ12 6= W12) (3.7)

P
(n)
e,D = P

(
(Ŵ13, Ŵ23) 6= (W13,W23)

)
(3.8)
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where each codeword contains n symbols. Note that by the union bound, we have:

max{P (n)
e,R , P

(n)
e,D} ≤ P (n)

e ≤ P
(n)
e,R + P

(n)
e,D (3.9)

Hence, if P
(n)
e → 0 then both P

(n)
e,R and P

(n)
e,D go to zero.

Definition 10 A rate triple (R12, R23, R13) is said to be achievable for the relay chan-

nel with private messages if there exist a sequence of codes

((
2nR12 , 2nR23 , 2nR13

)
, n

)

with average probability of error P
(n)
e → 0 as n→∞.

3.3 Achievable Rate Regions

In this section, we obtain achievable rate regions for RCPM when the relay

node use the well known decode-and-forward and compress-and-forward schemes [2,

Theorem 1, Theorem 6].

3.3.1 Relaying via Decode-and-Forward

Here, we assume the relay is able to fully decode both his private message and

the message intended for the destination. The relay node then re-encodes the source

node message W13 along with its message for the destination W23.

Theorem 2 The rates (R12, R23, R13) are achievable for the discrete memoryless re-

lay channel with private messages if

R13 < min{I(U, V ;Y3), I(V ;Y2|U,X2)}, (3.10)

R23 < I(X2;Y3|U, V ), (3.11)

R12 < I(X1;Y2|U, V,X2) (3.12)

for some joint distribution p(u)p(v|u)p(x1|u, v)p(x2|u)p(y2, y3|x1, x2).
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Proof:

The coding arguments use ideas from relay channels, broadcast channels and

MAC channel with generalized feedback [2, 17, 6]. The source uses a three-level su-

perposition block Markov encoding, while the relay uses superposition coding. Fur-

thermore, we use the regular encoding/backward decoding techniques.

Consider a transmission period of B blocks, each of n symbols. We assume that

n is sufficiently large to allow reliable decoding. The source and relay send sequences

of B − 1 messages (W13(b),W12(b)) and W23(b), respectively, over the channel in nB

transmissions, where b denotes the block index, b = 1, 2, ..., B − 1. The rate tuple

(R13
B−1

B
, R12

B−1
B
, R23

B−1
B

) approaches (R13, R12, R23) as B → ∞. In the following,

we use random variables chosen according to an arbitrary probability distribution

p(u, v, x1, x2) = p(u)p(v|u)p(x1|u, v)p(x2|u).

Random Codebook Construction:

1. Generate 2nR13 i.i.d. u = (u1, u2, .....un) sequences, each with distribution

p(u) =
∏n

i=1 p(ui). Label them u(w′13).

2. For each u(w′13) generate 2nR13 i.i.d. v sequences, each with distribution p(v) =
∏n

i=1 p(vi|ui). Label them v(w′13, w13).

3. For every pair (u(w′13),v(w′13, w13)) generate 2nR12 i.i.d x1 sequences, each with

distribution

p(x1) =
n∏

i=1

p(x1,i|ui(w
′
13), vi(w

′
13, w13))

Label them x1(w
′
13, w13, w12).

4. For each u(w′13) generate 2nR23 i.i.d. x2 sequences, each with distribution

p(x2) =
∏n

i=1 p(x2,i|ui(w
′
13)). Label them x2(w

′
13, w23).
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Encoding:

At Block b

1. The source sends x1(w13,b−1, w13,b, w12,b), where w13,b−1 was denoted above as

w′13.

2. Assuming the relay has estimated w13,b−1 correctly from the previous block, it

then sends x2(w13,b−1, w23,b).

So, the transmitted codeword pair is:

x1(1, w13,1, w12,1), x2(1, w23,1) b = 1
x1(w13,b−1, w13,b, w12,b), x2(w13,b−1, w23,b) b = 2, ..., B − 1
x1(w13,B−1, 1, 1), x2(w13,B−1, 1) b = B.

Decoding:

1. Assuming the relay has decoded w13,b−1, it can decode w13,b by looking for a

unique ŵ13,b such that (u(w13,b−1),v(w13,b−1, ŵ13,b),x2(w13,b−1, w23,b),y2(b)) are

jointly typical. This step can be made reliable if:

R13 < I(V ;Y2|U,X2). (3.13)

2. The relay decodes w12,b by looking for ŵ12,b such that u(w13,b−1), v(w13,b−1,

w13,b)

,x1(w13,b−1, w13,b, ŵ12,b), x2(w13,b−1, ŵ23,b), and y2(b) are jointly typical. The

decoding is reliable if:

R12 < I(X1;Y2|U, V,X2). (3.14)

3. The destination waits until all blocks are received before it starts to decode.

Suppose it has decoded w13,b in block (b+1), then in block b, it looks for a unique
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ŵ13,b−1 such that u(ŵ13,b−1), v(ŵ13,b−1, w13,b) , and y3(b) are jointly typical.

Upon successful decoding of w13,b−1, the destination decodes w23,b by looking

for a unique ŵ23,b such that u(w13,b−1), v(w13,b−1, w13,b), x2(w13,b−1, ŵ23,b), and

y3(b) are jointly typical.

This sequential decoding at the destination node clearly achieves the following

rates:

R13 < I(U, V ;Y3). (3.15)

R23 < I(X2;Y3|U, V ). (3.16)

The achievable rate region then follows directly from combining the previous set of

equations. ¤

Remark 1 The capacity of partially cooperative relay broadcast channel in [10] and

also the capacity of the degraded relay channel [2] can be recovered from the above

rate region. To see that, set U = X2, V = U and the region will reduce to that in [10,

Theorem 3], also if we let U = X2, V = X1, we have the result of [2, Theorem 1].

3.3.2 Relaying via Compress-and-Forward

Even when the relay node cannot fully decode the message it is supposed to

relay, it can still render some help to the destination. If the channel between relay

and destination had unlimited capacity, Y2 could be transferred to the destination,

however, this is often not the case. Therefore, the received signal of the relay is

compressed into a new random variable, Ŷ2, characterized by an index z —possibly

via vector quantization— which is conveyed to the destination via X2. Upon decoding

z, the receiver uses Ŷ2(z) to resolve the uncertainty in Y3 about the source’s message.

This strategy which was introduced in [2] has been commonly known as estimate-

and-forward or compress-and-forward.
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Theorem 3 In the discrete memoryless relay channel with private messages, a set

of private and relayed rates (R12, R23, R13) is achievable if

R13 < I(U1; Ŷ2, Y3|V,X2), (3.17)

R12 < I(U2;Y2|X2), (3.18)

R13 +R12 < I(U1; Ŷ2, Y3|V,X2) + I(U2;Y2|X2)− I(U1;U2), (3.19)

R23 < I(V ;Y3), (3.20)

subject to

I(Ŷ2;Y2|U2, V,X2) ≤ I(X2, Ŷ2;Y3|V ) (3.21)

where the random variables are drawn from any joint distribution

p(u1, u2)p(v)p(x1|u1, u2)p(x2|v)p(ŷ2|y2, x2, v)p(y2, y3|x1, x2).

Proof:

The proof uses ideas developed for the general non-degraded relay channels,

the non-degraded broadcast channels and source coding with side information at the

decoder [2, 18, 19]. In particular, the source uses a Slepian-Wolf binning-type coding

strategy developed by Marton for the general broadcast channels, while the relay

uses superposition coding. We note that the coding used by the source corresponds

to Marton’s simplified region (in the Remarks of [18, Theorem 2]) where no condition

on the independence of different random variables of the source’s codeword is imposed

and the random variable representing information decoded by both receivers is set

to a constant. Again, the regular encoding/backward decoding technique is adopted.

The relationship between the auxiliary random variables, channel inputs and channel

outputs are depicted in Fig 3.4.
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Figure 3.4. Relationship of auxiliary variables.

We consider a transmission over B blocks, each of n symbols. A sequence

of B − 1 messages W13(b), W12(b), and W23(b) will be sent over the channel in nB

transmissions, where b denotes the block index, b = 1, 2, ..., B − 1. The rate tuple

(R13
B−1

B
, R12

B−1
B
, R23

B−1
B

) approaches (R13, R12, R23) as B →∞.

Let A(n)(U1), A
(n)(U2), denote the set of sequences u1 and u2 that are strongly

typical in U1 and U2, respectively, and A(n)(U1, U2) the set of strongly jointly typical

sequences. Let S(n)(U1) denote the set of all sequences u1 ∈ A(n)(U1), such that

A(n)(U2|U1) is nonempty. Thus, according to [20, Theorem 5.9], we have,

A(n)(U2|U1) =
{
u2 ∈ A(n)(U2) : (u1,u2) ∈ A(n)(U1, U2)

}
(3.22)

Similarly, define S(n)(U2) for the sequence u2. Consider an arbitrary probability

distribution p(u1, u2, v, x1, x2, ŷ2) = p(u1, u2)p(v)p(x1|u1, u2)p(x2|v)p(ŷ2|y2, x2, v).

Random Codebook Construction:

1. Generate 2nR(U1) sequences u1 by drawing i.i.d. according to the probability

p(u1) =

{ 1
‖S(n)(U1)‖ u1 ∈ S(n)(U1)

0 otherwise.

2. Generate 2nR(U2) sequences u2 by drawing i.i.d. according to the probability

p(u2) =

{ 1
‖S(n)(U2)‖ u2 ∈ S(n)(U2)

0 otherwise.
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3. Randomly assign u1’s into 2nR13 bins and the u2’s into 2nR12 bins.

4. For each product bin find a pair (u1,u2) that belong in A(n)(U1, U2). For a

sufficiently large n, random binning arguments ([4, 21]) guarantee that such a

pair exist with high probability if

R13 +R12 < R(U1) +R(U2)− I(U1;U2) (3.23)

5. For each product bin and its designated jointly typical pair (u1,u2), generate

x1(u1, u2) according to
∏n

i=1 p(x1,i|u1,i, u2,i). Label these x1(w13, w12).

6. Generate 2nR23 sequences v by drawing i.i.d. according to the probability p(v) =
∏n

i=1 p(vi). Label these v(w23).

7. For each v generate 2nR̂ sequences x2 according to
∏n

i=1 p(x2,i|vi). Label these

x2(w23, z
′).

8. For each v(w23) and x2(w23, z
′), generate 2nR̂ sequences ŷ2 according to

∏n
i=1 p(ŷ2,i|x2,i, vi). Label these ŷ2(w23, z

′, z).

Encoding:

At Block b:

1. The source sends x1(w13,b, w12,b).

2. Assuming the relay has determined zb−1, -denoted above as z′-, of the com-

pressed signal ŷ2, it sends x2(w23,b, zb−1).

So, the transmitted codeword pair is given by:

x1(w13,1, w12,1), x2(w23,1, 1) b = 1
x1(w13,b, w12,b), x2(w23,b, zb−1) b = 2, ..., B − 1
x1(1, 1), x2(1, zB−1) b = B.
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Decoding:

1. The relay decodes w12,b by looking for a unique ŵ12,b such that (u2(ŵ12,b),

x2(w23,b, zb−1),y2(b)) are jointly typical. This can be made possible with small

probability of error if

R12 < I(U2;Y2|X2) (3.24)

2. The relay can determine the index zb of the hypothetical output ŷ2(w23,b, zb−1, zb)

given it has determined zb−1 correctly, if (ŷ2(w23,b, zb−1, ẑb),y2(b),x2(w23,b, zb−1),

v(w23,b)) are jointly typical. Correct decision of zb will occur with high proba-

bility if

R̂ > I(Ŷ2;Y2|U2, X2) (3.25)

3. The destination waits until all blocks are received before it starts to decode. At

block B, we let (w12,B, w13,B, w23,B) = (0, 0, 0) and consequently we let zB = 0.

Thus, we are left only with zB−1, which can be decoded if the receiver finds a

unique ẑB−1 such that: (ŷ2(w23,B, ẑB−1, zB),y3(B)

,x2(w23,B, ẑB−1),v(w23,B)) are jointly typical. This step can be made reliable if

R̂ < I(X2, Ŷ2;Y3|V ) (3.26)

4. Moving to block B− 1 and for a general block b, the destination finds a unique

ŵ23,b such that (v(ŵ23,b),y3(b)) are jointly typical. The decoding error can be

made small if

R23 < I(V ;Y3) (3.27)

5. Now assuming zb, zb−1 and w23,b have been decoded correctly, then w13,b can be

decoded at block b if the receiver finds a unique ŵ13,b such that: (u1(ŵ13,b),
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v(ŵ23,b),x2(w23,b, ẑb−1), ŷ2(w23,b, zb−1, zb),y3(b)) are jointly typical. The decod-

ing error can be made small if

R13 < I(U1; Ŷ2, Y3|V,X2) (3.28)

Therefore, as long as n is chosen sufficiently large, R(U1) ≥ I(U1; Ŷ2, Y3|V,X2)

and R(U2) ≥ I(U2;Y2|X2), we can decode w13,b and w12,b, respectively with an arbi-

trarily small probability of error.

The achievable rate region of Theorem 3 then follows directly from combining

equations (3.28), (3.24), (3.23) and (3.27), while the constraint given by (3.21) follows

from combining (3.25) and (3.26). ¤

Remark 2 The symbols y2 are here compressed to ŷ2 after peeling off the component

of X1 intended to the relay node which is represented by U2. Hence, we condition on

knowing U2 in (3.25). A similar situation arises when using compress-and-forward

for multiple relays [22].

We now briefly explain why strong typicality condition is needed in the CF scheme.

First, we state the following Lemma due to Berger [23].

Lemma 1 If X and Y are jointly typical, Y and Z are also jointly typical, both in

the strong sense, then if X → Y → Z, all three sequences are jointly typical in the

strong sense.

Note that the above lemma does not hold for weakly typical sequences. In the CF

scheme used, the relay does not know X1 fully and moreover it does not know Y3,

the channel output at the destination. However, by the Markov chain (X1, Y3) →
(X2, Y2) → Ŷ2 and by Berger’s Lemma, typicality between all sequences is guaranteed.
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Another issue in which strong and weakly typical sequences differ is the ran-

dom binning procedure. Recall that we limited the sequences U1 and U2 chosen for

binning to be drawn from S(n)(U1) and S(n)(U2) and not from A(n)(U1) and A(n)(U2),

respectively. The reason is that we try to guarantee the existence of at least one

typical U2 for any typical U1 such that the pair (U1, U2) is jointly typical. This is not

guaranteed by independent (random) drawing of each sequence as in weak typicality.

Remark 3 The achievability result for the general RCPM given by Theorem 3 gen-

eralizes the achievability result of the general relay channel in [2, Theorem 6]. This

is can be shown by setting U1 = X1, U2 = 0 and V = 0. The constraint on the relay

observation compression rate at the end Theorem 3 also corresponds to the constraint

provided in [2, Theorem 6]. To see that, (3.21) becomes:

I(Ŷ2;Y2|X2) ≤ I(X2, Ŷ2;Y3),

= I(X2;Y3) + I(Ŷ2;Y3|X2) (3.29)

But we have the Markov relation Y3 → X2, Y2 → Ŷ2, therefore,

I(Ŷ2;Y2, Y3|X2) ≤ I(X2;Y3) + I(Ŷ2;Y3|X2) (3.30)

Further simplification leads to

I(Ŷ2;Y2|X2, Y3) ≤ I(X2;Y3) (3.31)

which is the constraint given in [2, Theorem 6].

Hence, we see that backward decoding does not improve the achievable rate of a relay

channel employing compress-and-forward scheme. This is in contrast to the results

of [16] when the relay uses the partial decode-forward of [2, Theorem 7].

Recall that in the strategy of Remark 2, the relay makes an observation, re-

moves the part intended for relay, then compresses and transmits X2 to destination.
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Alternatively, X2 may represents the compressed version of Y2 together with W23. In

this approach, the relay does not peel off any component from its observation. The

destination decodes X2 (and hence Z and W23), reconstructs Ŷ2, and decodes W12

with the help of both Ŷ2 and Y3. It then decodes W13 knowing both X2 and U2. It

can be shown, in a manner similar to Theorem 3, that the following rate region is

achievable:

R13 < I(U1; Ŷ2, Y3|U2, V,X2), (3.32)

R12 < min{I(U2;Y2|X2), I(U2; Ŷ2, Y3|X2)}, (3.33)

R13 +R12 < I(U1; Ŷ2, Y3|U2, V,X2)− I(U1;U2)

+ min{I(U2;Y2|X2), I(U2; Ŷ2, Y3|X2)}, (3.34)

R23 < I(V ;Y3), (3.35)

subject to

I(Ŷ2;Y2|V,X2) ≤ I(X2, Ŷ2;Y3|V ) (3.36)

where the random variables are drawn from any joint distribution

p(u1, u2)p(v)p(x1|u1, u2)p(x2|v)p(ŷ2|y2, x2, v)p(y2, y3|x1, x2).

3.4 Upper Bounds on the Capacity Region

3.4.1 Upper Bound via Cut-set Theorem

The following upper rate bounds are obtained using the max-flow-min-cut

theorem [4, Theorem 15.10.1] with different choices of subsets.

(a) A cut through source-relay and source-destination links gives:

R12 +R13 < I(X1;Y2, Y3|X2) (3.37)
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(b) A cut through source-destination and relay-destination links gives:

R13 +R23 < I(X1, X2;Y3) (3.38)

(c) A cut through source-relay and relay-destination links gives:

R12 < I(X1;Y2|X2) (3.39)

R23 < I(X2;Y3|X1) (3.40)

3.4.2 Upper Bounds via Auxiliary Random Variables

The above cut-set bounds have two shortcomings. First, they ignore the com-

ponents of the codewords represented by the auxiliary random variables. Second,

there is no explicit individual bound on R13. By appropriate definition of auxiliary

random variables, a new set of bounds is obtained, including an upper bound on R13,

and a tighter bound on R12 in the degraded case.

Given any

((
2nR12 , 2nR23 , 2nR13

)
, n

)
code for RCPM, the probability mass

function on the joint ensemble space W13×W13×W23×X n
1 ×X n

2 ×Yn
2 ×Yn

3 is given

by:

p(w12, w13, w23,x1,x2,y2,y3) = p(w12)p(w13)p(w23)p(x1|w12, w13)

×
n∏

i=1

p(x2,i|w23, y
i−1
2 )p(y2,iy3,i|x1,ix2,i) (3.41)

Now, based on Fano’s inequality, we have

H(W12|Y n
2 ) ≤ nR12P

(n)
e,R + 1 = nδR,n (3.42)

H(W13,W23|Y n
3 ) ≤ n(R13 +R23)P

(n)
e,D + 1 = nδD,n (3.43)

where δR,n, δD,n → 0 as P
(n)
e → 0.
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R13 can be upper bounded as follows:

nR13 = H(W13),

= I(W13;Y
n
3 ) +H(W13|Y n

3 ),

(a)

≤ I(W13;Y
n
3 ) + nδD,n,

=
n∑

i=1

I(W13;Y3,i|Y i−1
3 ) + nδD,n,

=
n∑

i=1

H(Y3,i|Y i−1
3 )−H(Y3,i|Y i−1

3 ,W13) + nδD,n,

≤
n∑

i=1

H(Y3,i)−H(Y3,i|Y i−1
2 , Y i−1

3 ,W13) + nδD,n,

=
n∑

i=1

H(Y3,i)−H(Y3,i|Ui, Vi) + nδD,n,

=
n∑

i=1

I(Ui, Vi;Y3,i) + nδD,n (3.44)

where (a) follows from Fano’s inequality since H(W13|Y n
3 ) ≤ H(W13,W23|Y n

3 ) and we

define Ui = (Y i−1
2 , Y i−1

3 ) and V1 = V2 = ...... = Vn = W13.

And R12 can be upper bounded as follows:

nR12 = H(W12),

= I(W12;Y
n
2 ) +H(W12|Y n

2 ),

≤ I(W12;Y
n
2 , Y

n
3 ,W13,W23) + nδR,n,

(b)
= I(W12;Y

n
2 , Y

n
3 |W13,W23) + nδR,n,

=
n∑

i=1

H(Y2,i, Y3,i|Y i−1
2 , Y i−1

3 ,W13,W23)−H(Y2,iY3,i|Y i−1
2 Y i−1

3 ,W12,W13,W23)

+ nδR,n,

(c)
=

n∑
i=1

H(Y2,i, Y3,i|Y i−1
2 , Y i−1

3 ,W13,W23, X2,i)

−H(Y2,iY3,i|Y i−1
2 Y i−1

3 ,W12,W13,W23, X2,i) + nδR,n,



30

≤
n∑

i=1

H(Y2,i, Y3,i|Y i−1
2 , Y i−1

3 ,W13,W23, X2,i)

−H(Y2,iY3,i|Y i−1
2 Y i−1

3 ,W12,W13,W23, X1,i, X2,i) + nδR,n,

(d)

≤
n∑

i=1

H(Y2,i, Y3,i|Y i−1
2 , Y i−1

3 ,W13, X2,i)−H(Y2,iY3,i|X1,i, X2,i) + nδR,n,

≤
n∑

i=1

H(Y2,i, Y3,i|Y i−1
2 , Y i−1

3 ,W13, X2,i)−H(Y2,iY3,i|Y i−1
2 Y i−1

3 ,W13, X1,i, X2,i)

+ nδR,n,

=
n∑

i=1

I(X1,i;Y2,iY3,i|Ui, Vi, X2,i) + nδR,n (3.45)

(b) follows from independence of W13, W13 and W23, (c) is due to the fact that X2,i

is a function of Y i−1
2 and W23 and (d) is justified because of removing W23 from

the conditioning of the first term and by noting that (W12,W13,W23, Y
i−1
2 , Y i−1

3 ) →
(X1,i, X2,i) → (Y2,i, Y3,i) form a Markov chain from the memoryless property of the

channel.

In case of degraded RCPM, X1,i → (Ui, Vi, X2,i, Y2,i) → Y3,i form a Markov

chain and so
n∑

i=1

I(X1,i;Y3,i|Ui, Vi, X2,i, Y2,i) = 0 (3.46)

Hence R12 is upper bounded by

nR12 ≤
n∑

i=1

I(X1,i;Y2,i|Ui, Vi, X2,i) + nδR,n (3.47)

Finally, the single letter characterization for the two previous bounds can be obtained

by introducing a time-sharing random variable Q which is uniformly distributed over

the n symbols and independent of W12, W13, W23, X1, X2, Y2 and Y3. Next, define

U = (Q,UQ), V = VQ, X1 = XQ, X2 = X2,Q, Y2 = Y2,Q, and Y3 = Y3,Q. Following

steps similar to those in [4, Ch. 15.3.4] the bounds can be reduced to the single letter

form given by:

R13 < I(U, V ;Y3), (3.48)
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R12 < I(X1;Y2|U, V,X2) (3.49)

It can be easily shown that for the degraded RCPM, the bound on R12 is tighter than

the cut-set bound of (3.39) and in fact comparing (3.12) and (3.49), the bound is

tight.

Remark 4 The auxiliary random variables U and V are not independent, therefore

their cardinality cannot be bounded using existing methods (e.g. [24]). This problem

has been previously noted in [13, Comment 4.1].

3.5 Application to Gaussian Channels

Characterizing the capacity region in Gaussian channels is of high interest as

Gaussian channel provide approximation to realistic wireless channel models. More-

over, the DMC bounds developed in the previous sections are incomputable due to

the problem of bounding the cardinality of the auxiliary random variables. Never-

theless, by applying previous results in Gaussian RCPM channel we can obtain some

numerical results and assess the behavior of various rates in our three-node network.

For simplicity, the following results assume the input distributions to be Gaussian.

Although, Gaussian inputs may not be optimal, however, searching over all possi-

ble distributions is a tedious task. All rate values in this section are expressed in

(bps/Hz).

3.5.1 Decode-and-forward

We consider a degraded Gaussian RCPM of Definition 8, for which the follow-

ing result applies:

Corollary 1 An achievable rate region for the AWGN relay channel with private
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messages is the convex hull of the rates (R12, R23, R13) satisfying:

R13 <min

{
C( ᾱP1 + γ̄P2 + 2

√
ᾱβ̄γ̄P1P2

αP1 + γP2 +N3

)
, C( βᾱP1

αP1 +N2

)}
, (3.50)

R23 < C( γP2

αP1 +N3

)
, (3.51)

R12 < C(αP1

N2

)
(3.52)

for some α, β and γ ∈ [0, 1],

Here α indicates the fraction of the source’s power allocated to convey its pri-

vate message to the relay, β controls the power allocated to the source-to-destination

message in the previous block and in the current block and finally, γ indicates the part

of the power allocated to convey the private message from the relay to the destination.

Proof:

This rate region is achieved via the coding strategy described in Theorem 2 and

then evaluating mutual informations using the following independent distributions:

• U ∼ N (0, Pu), V
′ ∼ N (0, βᾱP1).

• X ′
1 ∼ N (0, αP1), X

′
2 ∼ N (0, γP2).

Furthermore, we let V =
√

ᾱβ̄P1

Pu
U +V ′, X1 = V +X ′

1 and X2 =
√

γ̄P2

Pu
U +X ′

2.

¤

Remark 5 One would recover the decode-and-forward capacity in a degraded Gaus-

sian relay channel defined in [2, Theorem 5] by setting α = 0 and γ = 0.



33

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

R23R13

R
12

Figure 3.5. An Achievable rate region of the degraded Gaussian relay channel with
private messages.



34

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
13

R23

0

0.66

1.54

1.40

1

1.23

1.730
1.66

Figure 3.6. Cross sections of achievable rate region of the degraded Gaussian relay
channel with private messages, parameterized by the private rate R12



35

Example 1 Consider the degraded Gaussian RCPM with P1

N2
= 10dB, P2

N3
= 5dB.

Figure 3.5 shows an achievable rate region of this Gaussian RCPM. Figure 3.6 shows

contour plots of the achievable rate region in the R13-R23 plane to demonstrate the

trade-off between the relayed rate and one of the private rates.

3.5.2 Compress-and-forward

We consider a general (non-degraded) Gaussian RCPM. In addition to the

channel outputs relations given in section 3.2, the random variable representing the

compressed channel output of the relay is chosen as:

Ŷ2 = U1 + Z2 + Zc (3.53)

where Zc refers to the compression noise whose variance Nc is determined by the

constraint given in Theorem 3 . Then, the following result applies:

Corollary 2 An achievable rate region for the AWGN relay channel with private

messages is given by:

R13 < C
(
Pu1Pu2(1− ρ2) + (Pu1 + 2ρ

√
Pu1Pu2)(N2 +Nc) + Pu1N3

Pu2(N2 +Nc) +N3(N2 +Nc)

)
, (3.54)

R12 < C
(
Pu2 + 2ρ

√
Pu1Pu2

Pu1 +N2

)
, (3.55)

R13 +R12 < C
(

(Pu1 + 2ρ
√
Pu1Pu2)(N2 +N3 +Nc)

Pu2(N2 +N3 +Nc) +N3(N2 +Nc)

)
+ C

(
Pu2 + 2ρ

√
Pu1Pu2

Pu1 +N2

)

+ C (−ρ2
)
, (3.56)

R23 < C
(

γP2

P1 + γ̄P2 +N3

)
(3.57)

subject to

Nc ≥
(
Pu1Pu2(1− ρ2) + Pu1N3 +N2(P1 +N3)

γ̄P2

)
(3.58)

for some α and γ ∈ [0, 1] and 0 < ρ < 1.

Pu1 ≤
(√

P1(1− α(1− ρ2))− ρ
√
αP1

)2

(3.59)
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Pu2 ≤ αP1 (3.60)

We shall see that the variable ρ denotes the correlation coefficient between the

two Gaussian codebooks U1 and U2 used by the source, α is the fraction of source

power dedicated to its private message, and γ is the fraction of relay power dedicated

to the private message of the relay.

Proof:

We attempt to find attractive compress-and-forward achievable rates, accord-

ing to Equations (3.17)-(3.20), by finding suitable X1, X2, U1, U2, and V , and their

distributions. The extension of compress-and-forward DMC to the Gaussian channel

faces two main problems:

• The proof of achievability requires strong typicality. In general, strong typicality

does not apply to continuous random variables. However, for Gaussian input

distributions the problem can be solved, as explained in [22, Remark 30].

• Every time we wish to extend DMC results to Gaussian channels, we need to find

optimal codebooks which are often left unspecified in the DMC developments.

In some early cases, e.g. dirty paper coding of Costa [25], the optimum codebook

was correctly guessed, and the guess was verified by tightness against upper

bounds. In many cases, such as ours, it is not feasible to verify optimality of

the guesses. We use jointly Gaussian U1 and U2 with correlation ρ as our guess,

where ρ will be optimized.

The codebook is therefore:

• U1 ∼ N (0, Pu1), U2 ∼ N (0, Pu2) with correlation coefficient ρ
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• V ∼ N (0, γP2) and X ′
2 ∼ N (0, γ̄P2)

The transmit signals are X1 = U1 + U2 and X2 = V + X ′
2. The achievabil-

ity of Equations (3.54)-(3.57) follows from this choice of codebooks (the details of

proof appear in the Appendix). The power constraint of X1 gives rise to power con-

straints (3.59) and (3.60) for U1 and U2, respectively. Equation (3.58) gives Nc, the

compression noise variance, in terms of other variables in the system. ¤

Remark 6 One would recover the compress-and-forward rate in a non-degraded Gaus-

sian relay channel provided in [22] by setting α = 0 and γ = 0.

Note that the above achievable rate was obtained by successive nulling and

cancellation in a particular order, namely, the private messages are decoded first.

Other achievable rates can be obtained by different orderings of nulling and canceling

the codeword components representing Z and W12 at the relay, and W13 and W23 at

the destination. This leads to a total of four possibilities. Each of the decoding orders

gives one achievable rate region, and naturally the overall achievable rate region is

the convex hull of the four (the remaining rate regions can be similarly derived as

Corollary 2) .

We briefly comment on the various orderings possible for nulling and canceling.

Consider the achievable region in Corollary 2 where the private messages are decoded

first and peeled off, following by the decoding of relayed message at rate R13. It is

known that for successive decoding to work well, one must start with the dominant

signal in the superposition. However, at least at some operating points we may have

very low rates for private messages, which translates into low power allocated for these

messages. Therefore the remainder of the power will be available for relaying. This

means that the private messages do not always correspond to the dominant signal.
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For example, consider the case where R23 is small, that is, the signal corre-

sponding to the private message from relay to destination has small power. If we

insist on decoding the private message first, it will limit the power and hence the

rate associated with R13 below the levels possible in the system, and hence is very

suboptimal. It is then reasonable to proceed with decoding as follows.

At the destination, we start by considering the signal component of R23 as

“noise” and decode the relayed signal at rate R13. This will allow us to know (part

of) the signal transmitted by the source, which can now be peeled off. Note that the

transmission by the relay cannot be peeled off in general, because the system is not

degraded. Now, the private message from the relay is decoded.

As yet another example, consider that R12 is much smaller than the other rates

in the system. Therefore, if the relay wishes to peel off W12 from its input, this will

severely limit the amount of information that can be relayed in a decode-and-forward

protocol, since this assumes R12 is the dominant signal at the relay input. Once again,

by reversing the order of nulling and cancelling whenever appropriate, one may be

able to obtain better achievable rates.

3.6 Appendix: Derivation of (3.54)-(3.58)

Given the input-output relationship between different random variables in

Gaussian channels, the rate region represented by (3.54)-(3.57) is obtained as fol-

lows

R13 ≤ I(U1; Ŷ2, Y3|V,X2)

= h(Ŷ2, Y3|V,X2)− h(Ŷ2, Y3|U1, V,X2) (3.61)
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Now,

h(Ŷ2, Y3|V,X2) = h(U1 + Z2 + Zc, X1 +X2 + Z3|V,X2)

= h(U1 + Z2 + Zc, U1 + U2 + Z3)

=
1

2
log(2πe)2

∣∣∣∣
Pu1 +N2 +Nc Pu1 + ρ

√
Pu1Pu2

Pu1 + ρ
√
Pu1Pu2 P1 +N3

∣∣∣∣

=
1

2
log(2πe)2

(
Pu1Pu2(1− ρ2) + P1(N2 +Nc) + Pu1N3

+N3(N2 +Nc)

)
(3.62)

while

h(Ŷ2, Y3|U1, V,X2) = h(Z2 + Zc, U2 + Z3)

=
1

2
log(2πe)2

∣∣∣∣
N2 +Nc 0

0 Pu2 +N3

∣∣∣∣

=
1

2
log(2πe)2

(
(Pu2 +N3)(N2 +Nc)

)
(3.63)

After straight forward simplifications we get,

R13 < C
(
Pu1Pu2(1− ρ2) + (Pu1 + 2ρ

√
Pu1Pu2)(N2 +Nc) + Pu1N3

Pu2(N2 +Nc) +N3(N2 +Nc)

)
(3.64)

Next,

R12 ≤ I(U2;Y2|X2)

= h(Y2|X2)− h(Y2|U2, X2)

=
1

2
log(2πe)(P1 +N2)− 1

2
log(2πe)(Pu1 +N2) (3.65)

simplifying we get,

R12 < C
(
Pu2 + 2ρ

√
Pu1Pu2

Pu1 +N2

)
(3.66)

To compute I(U1;U2), we have

I(U1;U2) = h(U1) + h(U2)− h(U1, U2),
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=
1

2
log(2πe)(Pu1) +

1

2
log(2πe)(Pu2)

− 1

2
log(2πe)2

∣∣∣∣
Pu1 ρ

√
Pu1Pu2

ρ
√
Pu1Pu2 Pu2

∣∣∣∣ (3.67)

Simplifying, we get

I(U1;U2) = −C(− ρ2
)

(3.68)

Combining (3.64), (3.66) and (3.68), we have

R13 +R12 < C
(

(Pu1 + 2ρ
√
Pu1Pu2)(N2 +N3 +Nc)

Pu2(N2 +N3 +Nc) +N3(N2 +Nc)

)
+ C

(
Pu2 + 2ρ

√
Pu1Pu2

Pu1 +N2

)

+ C (−ρ2
)

(3.69)

For R23, we have

R23 ≤ I(V ;Y3),

= h(Y3)− h(Y3|V ),

= C
(

γP2

P1 + γ̄P2 +N3

)
(3.70)

We are left with computing the constraint on the compression noise variance Nc.

From (3.25),

R̂ > I(Ŷ2;Y2|U2, V,X2)

= h(Ŷ2|U2, V,X2)− h(Ŷ2|U2, V,X2, Y2)

=
1

2
log(2πe)(Pu1 +N2 +Nc)− 1

2
log(2πe)(Nc) (3.71)

Hence,

R̂ > C
(
Pu1 +N2

Nc

)
(3.72)

On the other hand, we have from (3.26)

R̂ < I(X2, Ŷ2;Y3|V )

= I(X2;Y3|V ) + I(Ŷ2;Y3|V,X2) (3.73)
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Now,

I(X2;Y3|V ) = C
(

γ̄P2

P1 +N3

)
(3.74)

Moreover, we have

I(Ŷ2;Y3|V,X2) = h(Ŷ2|V,X2)− h(Ŷ2|V,X2, Y3)

= h(Ŷ2)− h(Ŷ2|Y ′
3) (3.75)

where we defined

Y ′
3 = Y3 −X2 = U1 + U2 + Z3

Now,

h(Ŷ2) =
1

2
log(2πe)(Pu1 +N2 +Nc) (3.76)

h(Ŷ2|Y ′
3) = h(Ŷ2, Y

′
3)− h(Y ′

3)

=
1

2
log(2πe)2

∣∣∣∣
Pu1 +N2 +Nc Pu1 + ρ

√
Pu1Pu2

Pu1 + ρ
√
Pu1Pu2 P1 +N3

∣∣∣∣−
1

2
log(2πe)(P1 +N3)

(3.77)

Simplifying we get,

h(Ŷ2|Y ′
3) =

1

2
log(2πe)

(
Pu1Pu2(1− ρ2) + P1(N2 +Nc) + Pu1N3 +N3(N2 +Nc)

P1 +N3

)

(3.78)

Combining (3.76) and (3.78),

I(Ŷ2;Y3|V,X2) = C
(

P1Pu1 − Pu1Pu2(1− ρ2)

Pu1Pu2(1− ρ2) + P1(N2 +Nc) + Pu1N3 +N3(N2 +Nc)

)

(3.79)

Combining (3.74) and (3.79),

R̂ = C
(

γ̄P2

P1 +N3

)
+ C

(
P1Pu1 − Pu1Pu2(1− ρ2)

Pu1Pu2(1− ρ2) + P1(N2 +Nc) + Pu1N3 +N3(N2 +Nc)

)

(3.80)
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Finally, from (3.72) and (3.80), we have

Pu1 +N2 +Nc

Nc

≤
(
γ̄P2 + P1 +N3

P1 +N3

)

×
(

(P1 +N3)(Pu1 +N2 +Nc)

Pu1Pu2(1− ρ2) + P1(N2 +Nc) + Pu1N3 +N3(N2 +Nc)

)

(3.81)

Solving (3.81) for Nc leads to:

Nc ≥
(
Pu1Pu2(1− ρ2) + Pu1N3 +N2(P1 +N3)

γ̄P2

)
(3.82)



CHAPTER 4

SPECTRALLY-EFFICIENT RELAY SELECTION WITH

LIMITED FEEDBACK

4.1 Introduction

Relays can improve the performance of a wireless system via a number of

mechanisms, such as increased spatial diversity or beamforming effects (whenever

available). But for half-duplex relays, some time must be set aside for listening to

the source, during which the relay must be silent. These silent times lead to a loss of

spectral efficiency (also known as the multiplexing loss).

In this chapter, we address the issue of multiplexing loss in relay networks.

As our main tool, we use variations on relay selection, which has nice properties

but requires an exchange of channel state information between the nodes. We aim

to recover the multiplexing loss using relay selection, under the constraint of very

limited feedback (on the order of merely bits/relay).

Relay selection has been recently proposed to overcome some shortcomings of

the existing relaying approaches in networks with multiple relays. Relay selection

simplifies signaling, avoids complex synchronization schemes, and with careful design

can preserve the spatial diversity provided by the total number of relays available in

the network [26]. However, the selection process requires an overhead. This overhead

grows with the number of relays in the network. Moreover, in practice, the control

channel that often conveys the feedback information is of very limited rate [27]. Hence,

one is motivated to devise relay selection methods with limited feedback.

43
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Figure 4.1. Wireless network with relay selection. The best successful relay transmits
to destination.

The setting of this chapter includes a source, a destination, and multiple relays,

all of them single-antenna nodes in a fading wireless environment (see Figure 4.1).

The relays employ a regenerative, decode-and-forward (DF) strategy. We consider

two topologies: Either (a) the destination has a viable link to all transmitters, so a

direct link from the source to destination exists, or (b) a direct link does not exist

between the source and destination, so they can only communicate through the relays.

The topologies include a very general inter-relay interference, which is not assumed

to be either strong or weak. In fact, the general relay-on-relay interference is a key

challenge and interesting facet of this work. Throughout this chapter, we define the

best relay as the one with the highest instantaneous channel gain to the destination.

In the scenario where a direct source-destination link exists, one may use

feedback not only to select the best relay, but also to select no relay when none is

needed [28]. Thus, feedback can be used to gain both diversity as well as multi-

plexing. Motivated by this argument, we present an Incremental Transmission Relay

Selection (ITRS) protocol, which employs a Type-I hybrid ARQ with packet combin-

ing at the destination, and includes a limited-feedback handshake for relay selection.

We perform a detailed outage and DMT analysis of this method. ITRS meets the
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multiple-input-single-output (MISO) DMT bound, and provides a distinct improve-

ment on a number of existing comparable methods.

In the scenario where a direct source-destination link does not exist, we employ

overlapping (non-orthogonal) transmissions from the source to the relays and from the

selected relay to the destination. This strategy leads to a Multi-Hop Relay Selection

(MHRS) protocol. We analyze the performance of this method when the relays

employ either successive cancellation, joint decoding of the incoming messages, or

hybrid adaptive strategies. This system provides an embedded set of DMT curves

that can be used for unequal-error protection (UEP), a very attractive feature for

practical systems. Even the minimal DMT of this system is shown to improve on

comparable existing methods.

We now outline some past works on multiple relay networks that use the DF

relaying scheme. To improve the spectral efficiency of relaying, Laneman and Wor-

nell [29] propose distributed space-time codes (DSTC), which requires synchronization

between the nodes. Azarian et al. [30] propose dynamic decode and forward (DDF)

for multiple relays. The basic ideas of DDF are very nice, but unfortunately DDF does

not scale with increasing number of relays in the high-rate regime. Bletsas et al. [26]

propose an opportunistic relaying scheme that achieves the DMT of DSTC without

the synchronization requirement, but requires transmit and receive-side channel-state

information at the relays. Recently, Tajer and Nosratinia [31] show that it is possible

to achieve the same DMT with very little information exchange.

Relay selection has also generated a sizable literature. The work in [32] shows

the outage-optimality of relay selection under aggregate power constraint, which bor-

rows much from the earlier work in [26]. In the multi-source, multi-destination sce-

narios, only a few works exist. Nosratinia and Hunter [33] demonstrate relay selection

techniques that can capture maximum diversity in the number of cooperating nodes,
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while each node only knows its own receive channel state. Lin et. al. [34] presents re-

lay selection criteria in the presence of node locations. Beres and Adve [35] considers

various levels of centralization and compares selection with DSTC under instanta-

neous channel knowledge. There are also several works on relay selection adopt the

amplify-and-forward (AF) scheme [36], [37], [38], [39], [40], [41] whose details are

beyond the scope of this study.

There are some works with similarities to our ITRS protocol: Zhao and

Valenti [28] were the first to consider hybrid-ARQ in relays, but they select relays

based on average channel gains, resulting in coding gain and second order diversity

but not a diversity order that is equal to the number of available relays in the network.

Lo et al. [42] propose a decentralized, limited-feedback, HARQ-based relay selection,

and concentrate on BER and throughput studies.

Recently, Yang and Belfiore [43] present a sequential AF technique where,

like our MHRS protocol, the relays transmit in succession. The results of [43] on

AF networks cannot be directly compared with the present work, which is on DF

networks. Furthermore, the achievable DMT of [43] is not known except for special

cases where relays are isolated, or when two-slot transmission is used.

To summarize, the contributions of this chapter are as follows: Relay selection

methods are devised under very limited feedback and very general inter-relay inter-

ference conditions, for the purpose of recovering multiplexing gain in half-duplex DF

relay networks. For two topologies with and without a direct link, we propose two

protocols, named ITRS and MHRS, which are analyzed in detail and their DMT is

provided or bounded. The MHRS protocol gives rise to an embedded set of DMT

curves that can be used for unequal error protection. Our protocols improve over ex-

isting methods for half-duplex DF relays, including DSTC, DDF, and opportunistic

relaying.
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4.2 System and Channel Models

The system model consists of a destination node, a source, and M half-duplex

relays (see Figure 4.1). The channel gains between any two nodes is described by a

flat, quasi-static block Rayleigh fading model. We also consider the case where the

source-destination link is non-existent, thus the communication must take place in a

two-hop fashion through the relays, creating a bigger challenge for spectral efficiency.

The analysis is general and avoids any special assumptions, such as isolated relays or

strong inter-relay interference.

For relay selection, we assume the existence of a low-rate, reliable feedback

from the destination to the relays (and possibly from destination to the source).

Aside from this, no transmit-side channel state information (CSI) is assumed. The

nodes have access to perfect receive CSI.

We assume that the input codewords are obtained from a random Gaussian

codebook. The length of a codeword is asymptotically large but spans one coherence

interval of the channel. Source and relay nodes each transmit under an average power

constraint P . The receive noises are normally distributed ∼ N (0, σ2). The average

receive SNR at each receiver is denoted ρ, i.e., ρ = P
σ2 . The system has M relays,

indexed m = 1, . . . ,M . The channels between source and relays (hs,m), relays and

destination (hm,d) and the inter-relay channels (hm,m′) are zero-mean independent,

circularly symmetric complex Gaussian random variables whose variances are λs,m,

λm,d, λm,m′ , respectively. The magnitude square of channel coefficients, also known

as effective channel gain, are denoted gs,m, gm,d, gm,m′ and follow exponential distri-

butions. Whenever it exists, the source-destination channel is described with hs,d and

follows similar statistics as the other links in the system. For simplicity of exposi-

tion, throughout the chapter we assume that the source-relay channels have identical
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distributions, and the same holds for relay-destination and inter-relay channels, re-

spectively. However, the DMT results do not depend on this assumption and continue

to hold even if channels have non-identical (but finite) variance.

The performance of protocols is measured by outage [44], and the diversity-

multiplexing tradeoff [8]. A channel is said to achieve multiplexing gain r and diversity

gain d if there exists a sequence of codes C(ρ) with rate R(ρ) and resulting outage

probability Pout(ρ) such that:

lim
ρ→∞

R(ρ)

log(ρ)
= r lim

ρ→∞
logPout(ρ)

log(ρ)
= −d (4.1)

In the following developments, we say f(ρ) is exponentially equal to ρv , denoted by

f(ρ)
.
= ρv, if

lim
ρ→∞

log(f(ρ))

log(ρ)
= v (4.2)

4.3 Incremental Transmission Relay Selection

This section presents a protocol for a multi-relay network with limited feed-

back, called Incremental Transmission Relay Selection (ITRS). The network consists

of a source, M relays, and a destination, where the destination has a fading link to

the source as well as the relays (see Section 4.2). In this protocol, the limited feed-

back has dual use: it selects the best relay, thus improving diversity, and also enables

retransmission (HARQ), thus improving spectral efficiency. The broad outline of the

protocol is as follows: A packet is broadcast by the source. If the destination cannot

decode, a limited-feedback handshake is performed that identifies the best available

node (among source and relays), which will retransmit the packet. The ITRS proto-

col is described in detail in Figure 4.2. Note that the channel gains are assumed to

remain fixed during steps 3-5.
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1. The source transmits a packet.

2. If the destination correctly decodes the message, it broadcasts an ACK and system returns
to Step 1. Otherwise destination broadcasts a NACK.

3. Upon receiving the NACK, the relays that successfully decoded the packet will declare
their status via a one-bit packet (RTS - Request to Send) to the destination. The RTS
packet includes a pilot.

4. The destination estimates channel gains, picks the best transmitter from among successful
relays and the source, and broadcasts the index of the best node.

5. The best node will retransmit the packet. The destination combines its two received
packets and decodes. If unsuccessful, destination is in outage.

Figure 4.2. The Incremental Transmission with Relay Selection (ITRS) protocol

The ITRS protocol uses a maximum of one retransmission. Further retrans-

missions would reduce (and eventually eliminate) outage, but also incur further delay.

We study the case of one retransmission, which incurs modest delay and yet captures

the biggest part of the gains available through retransmissions.

The ITRS protocol uses type-I H-ARQ with packet combining, i.e., relays use

the same codebook as the source. Type-II H-ARQ, where the relays use non-identical

codebooks, has better mutual information but also increases complexity. The two

methods achieve the same DMT.

The ITRS protocol includes the source in the competition for the re-transmission,

thus improving the diversity as well as throughput, as seen in the sequel.

The protocols presented in this chapter require feedback, whose transmission

in turn requires a channel and a protocol. Feedback often goes through a control

channel that exists in many wireless standards. The medium access layer for these

channels can be either contention-based or slotted. In the former, all relays contend

in sending their RTS to the destination, in which case the relay address (ID) must



50

be attached to the RTS packet. In a time-slotted system, on the other hand, each

relay transmits an RTS in its designated mini-slot only. This avoids collision between

relays, but some mini-slots may go unused depending on the number of available

relays, therefore usage of channel resources may be inefficient.

4.3.1 Outage Probability and Effective Rate

During the first transmission of a packet by the source, the received signals at

the relays and the destination are given by:

ym = hs,m xs + zm m = 1, . . . ,M (4.3)

yd = hs,d xs + zd (4.4)

During a re-transmission, the received signal at the destination is given by

yd = hm∗,d xm∗ + zd (4.5)

Where m∗ denotes the index of the selected relay. We emphasize again that for

the retransmission, the best relay is chosen from among all the nodes (including the

source) that have possession of the packet data at that time.

During the original packet transmission, the mutual information across the

source-destination channel is:

ID = log(1 + ρgs,d) (4.6)

If a retransmission occurs, the combination of the two transmissions forms an equiv-

alent channel between the source and the destination, whose mutual information is:

I∗itrs =
1

2
log

[
1 + ρ(gs,d + gm∗,d)

]
(4.7)

Denote the set of all nodes (in addition to the source) that have decoded the message

of the source with D(s). Using the law of total probability, the outage probability
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can be expressed as:

Pout =
M+1∑
t=1

Pr

{
I∗itrs <

R

2

∣∣∣∣ ID < R , |D(s)| = t

}
Pr

{
ID < R

}
Pr

{|D(s)| = t
}
,

=
M+1∑

t

Pr

{
I∗itrs <

R

2

∣∣∣∣ |D(s)| = t

}
Pr

{|D(s)| = t
}

(4.8)

The outage probability in (4.8) is computed for a rate R in case of successful source

transmission and for a rate R
2

in case of incremental transmission due to information

repetition.

The probability that exactly t nodes (including the source) know the message

is given by [29],

Pr
{|D(s)| =t} =

(
M

t− 1

)
exp

(
− 2R − 1

λs,mρ

)t−1[
1− exp

(
− 2R − 1

λs,mρ

)]M−t+1

(4.9)

By substituting (4.9) in (4.8) and obtaining the CDF of I∗itrs one can find a closed

form expression for the overall outage probability (M ≥ 1):

Pout,ITRS =
t=M+1∑

t=1

FW (γ)×
(
M

t− 1

)
exp

(
− γ

λs,m

)t−1 (
1− exp

(
− γ

λs,m

))M−t+1

(4.10)

Where

FW (γ) =

[
t

t−1∑

k=1

(
t− 1

k

)
(−1)k

k

(
1 +

exp(−µ(k + 1)γ)− 1

(k + 1)

− exp(−µγ)
)]

+ t

(
1− (µγ + 1) exp(−µγ)

)
(4.11)

γ = 2R−1
ρ

and for simplicity we let λs,d = λm∗,d = 1
µ
. The details of the analysis are

carried out in the Appendix.

Figure 4.3 depicts the outage probability of several relaying schemes for a net-

work with two relays. The benchmark for direct transmission is a HARQ scheme with

two rounds of transmission for which the following outage expression is developed:

Pout,HARQ = Γ(2, µγ) (4.12)
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Figure 4.3. Outage performance of ITRS compared with distributed space-time cod-
ing, opportunistic relaying and HARQ non-cooperative transmission.

where Γ(.) is the incomplete gamma function. ITRS performs better than the dis-

tributed space-time coding and opportunistic relaying schemes. Note the almost per-

fect match between the simulation results and the analytical expressions developed

for HARQ and ITRS protocols.

We now calculate the throughput η, also known as effective rate or expected

rate, for the ITRS protocol. This value has two contributing terms: for packets that

are received in one try, or two tries, as shown below:

η = R exp

(
− 2R − 1

ρλs,d

)
+
R

2

[(
1− exp

(− 2R − 1

ρλs,d

))
(1− Pout)

]
(4.13)

The first term is the average rate from the direct link and it occurs with the associated

success probability. The second term is the average rate from HARQ with relay
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selection. Therefore, the rate is reduced to half since two blocks are used to transmit

the same information. This second round of transmission is successful under the

following two conditions:

1. The first round transmission failed.

2. The second round transmission with relay selection is successful.

We note that a somewhat similar notion of expected spectral efficiency was

developed in [45] for a single-relay Amplify and Forward (AF) incremental relaying.

The mapping R → η is highly nonlinear and one may choose R to maximize the

throughput η.

The ITRS protocol requires 1 + log(M+1)
M+1

[1− exp(−2R−1
ρλs,d

)] bits of overhead per

transmitting node. First, the destination broadcasts one bit of ACK/NACK. With

probability 1 − exp(−2R−1
ρλs,d

), the response is a NACK. The available relays and the

source will respond with one-bit (known as Request To Send, or RTS). Finally, the

destination will broadcast the index of the best node via log(M + 1) bits. Asymptot-

ically, this overhead is one bit per node per packet.

The above overhead analysis only counts the information bits in the feed-

back/control channels. It does not include the extra overhead that must be included

in practice, for example a preamble. We also note that although we strive to design

protocols with minimal overhead, this overhead will not affect the DMT results. In

the high SNR regime, any constant overhead will diminish with respect to the channel

capacity.

Remark 7 If the source is excluded from the competition for relaying the expected

rate will be given by

η = R exp

(
− 2R − 1

ρλs,d

)
+
R

2

{[
1− exp

(− 2R − 1

ρλs,d

)]
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[
1−

(
1− exp

(− 2R − 1

ρλm∗,d

))M]
(1− Pout)

}
(4.14)

This expected rate will approach (4.13) for large number of relays and high ρ.

4.3.2 DMT Analysis

In the high-SNR regime the performance of ITRS is described as follows, where

we denote (·)+ = max{·, 0}.

Theorem 4 The ITRS protocol achieves the following diversity-multiplexing tradeoff:

dITRS(r) = (M + 2)(1− r)+ (4.15)

which is equivalent to the optimal DMT of a system with one source node and M

relay nodes [30, 8].

Proof: See the Appendix. ¤

Corollary 3 ITRS with independent codebooks (type-II ARQ) achieves the same

DMT.

Proof: Since the identical codebooks achieve the MISO DMT bound, and indepen-

dent codebooks will do no worse, then type-II ARQ will also achieve the same upper

bound. ¤

The DMT of ITRS protocol with eight relays is shown in Figure 4.4. Also

shown are other DF-based protocols, including the DDF of Azarian et al. [30, Theorem

6], and the DSTC of Laneman-Wornell [29], which has DMT equivalent to Bletsas

et al. [26]. For fairness, we have compared our algorithm with a slight enhancement

of DSTC by allowing its source to participate in the second phase of transmission.
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Figure 4.4. Diversity-multiplexing tradeoff of ITRS compared with distributed space-
time coding, dynamic decode-and-forward and HARQ non-cooperative transmission.
There are eight relays and the source-destination link exists.

For the non-cooperative benchmark, the DMT of HARQ signaling is shown, where

a maximum diversity order of two is possible via packet combining [46, Corollary 3].

We see that ITRS has improved performance over previous protocols across all r,

while requiring only limited feedback.

Protocol analysis corroborates the merits of allowing the source to compete for

transmission in the relaying phase, which results in higher effective rate and diversity

order M + 2 (since M + 1 nodes act as distributed antennas in the second phase).

Remark 8 Consider the case where the destination node is limited to a type-I HARQ

without diversity combining. Then the ITRS protocol still works, and achieves a

slightly diminished maximum diversity order of M + 1. Thus, ITRS can also be used

in networks with very simple nodes without packet combining capabilities, e.g., wireless

sensor networks.
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Remark 9 When SNR is low, retransmissions are frequent. If, furthermore, relays

are not abundant, the source may be called upon to re-transmit frequently, which is

a strain on its power resources. Under these conditions, one may use a variation

of ITRS, where the source will re-transmit only if all relays have failed to decode.

This results in a slightly diminished maximal diversity of M + 1, while extending the

lifetime of the network.

4.4 Two-Hop Relay Selection

When a direct path between the source and destination is unavailable, the

relays must repeat the signal in a two-hop fashion. But it has been well-known that

repeating the source’s transmission limits the spectral efficiency in relay networks.

The work in this section shows that in the presence of multiple relays, one may

recover a good part of the rate loss with appropriate protocol design. We present a

Multi-Hop Relay Selection (MHRS) protocol with attractive spectral efficiency, using

non-orthogonal decode-and-forward signaling. The basic operation of the algorithm

is as follows: in each time interval, the source transmits a new packet for the benefit

of the relays. Simultaneously, the “best” relay re-transmits a packet for the benefit

of the destination, interfering with the reception of other relays. All relays attempt

to decode in the presence of interference, to be able to participate in the next round

of transmission. The details of the MHRS protocol is described in Figure 4.5. It is

assumed the channel remains constant within steps 2-4.

A sample timing diagram of the MHRS protocol is shown in Figure 4.6. The

reception status of the relays is shown with a check or a cross. A check mark means

successful decoding while a cross means failed decoding. Notice that whenever a

relay transmits, due to the half-duplex constraint, it cannot receive. Therefore, in
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1. The source transmits alone in the first time slot. Then, in each time slot:

2. Relays that successfully decode the source packet, declare their status to the destination
via a one-bit RTS packet (which includes a pilot).

3. The destination picks the best relay and broadcasts its index.

4. The best relay retransmits its decoded packet, which the destination attempts to decode.
At the same time, the source transmits a new packet.

5. The source packet and relayed packet combine at other relays. Relays attempt to decode
new source packet in the presence of interference. Then continue to Step 2.

Figure 4.5. The Multi-Hop with Relay Selection (MHRS) protocol.

Source

Relay 1

Relay 2

Relay M
Time

Relay 3

1 2 3 4 5 B

Tx

Tx

Tx

Tx

Tx

Figure 4.6. Frame structure of MHRS protocol.
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the following time interval, it is operating at a disadvantage since it cannot peel-off

the interference signal from the source transmission. Thus, in this sample path many

relays are shown to fail in decoding immediately after transmission. In each time

interval, the best available relay is called upon to transmit to the destination. Note

that at the very end, the source is silent while a relay communicates the final packet

with the destination. The overhead for control in the MHRS protocol is 1+ log(M−1)−1
M

bits per node per packet (as mentioned in the previous section, this overhead does

not include preamble and pilots of packets transmitted through the control channel).

Remark 10 If no relay has successfully decoded the sources message, i.e. an empty

decoding set, the source will notice the absence of the RTS (Request to Send) signal

from all the relays, and can resend the packet. This is easy to implement, but in

general not straight forward to analyze. The full analysis of this extension can be a

subject of future work.

In the following, we calculate a DMT upper bound and then present two

decoding protocols at the relays, each with their own achievable DMT. The first

decoding protocol is based on successive cancellation at the relays. The key result in

successive cancellation is that, after each transmission by a relay, due to interference

it cannot recover its own decoding diversity, thus it cannot contribute to the overall

diversity any longer. It follows that across time, a family of DMT curves are produced

with varying diversity. Every B + 1 blocks, the maximal diversity is restored when

the source transmits alone and relays are silent.

The interesting outcome of the family of DMT curves is that it allows variable

error-protection. The overall data can be divided into several groups with varying

error sensitivity. The most sensitive data is transmitted early, and enjoy the best



59

DMT, while other packets with lower sensitivity are transmitted later. To our knowl-

edge, this is the first formal introduction of a variable-error protection scheme in relay

networks, in the DMT sense.

If the relays have enough computational power, they may be able to jointly

decode the two interfering signals. We show that a hybrid strategy, incorporating both

successive cancellation and joint decoding, in part meets the DMT upper bound, and

is superior to successive cancellation.

4.4.1 DMT Upper bound

We upper bound the DMT of our system by considering a hypothetical system

where the individual relays are replaced with one MIMO relay. This will result in

a system that operates as follows: during each interval, the best antenna for the

relay-destination channel is used for relaying, while the other antennas listen to the

source to receive the next frame. Since the new system is equivalent to perfect

information exchange between relays, its performance upper bounds the performance

of our system.

Using the above model, we have the following result:

Theorem 5 The DMT of the multi-hop with relay selection (MHRS) protocol is upper

bounded by:

d∗(r) = (M − 1)

(
1− B + 1

B
r

)+

(4.16)

Proof: According to [47, Lemma 1], the DMT of a channel with a single MIMO relay

is bounded by the minimum of the source-relay and relay-destination DMT bounds.

The source-relay DMT bound is the well-known SIMO bound

d∗SR(r) = (M − 1)(1− r)+ (4.17)
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The relay-destination DMT is bounded by a MISO DMT with single-antenna selection

out of M − 1 available antennas, which has been recently reported in [48, Theorem

4.1].

d∗RD(r) = (M − 1)(1− r)+ (4.18)

The proof is completed by taking the minimum of the previous two bounds and taking

into account the rate loss due to the causality of the relay. The optimal DMT is given

by,

d∗(r) = (M − 1)

(
1− B + 1

B
r

)+

(4.19)

¤

4.4.2 Successive Cancellation DMT and Variable-Error Protection

Based on the protocol description, the received signals at the intermediate

nodes and the destination are respectively given by:

ym = hs,m xs + hm∗,m xm∗ + zm (4.20)

yd = hm∗,dxm∗ + zd (4.21)

Where m = 1, . . . ,M and m 6= m∗. The transmission of the packets occurs in cycles.

The source packets in each cycle are indexed by b = 1, . . . , B. At the end of the cycle,

the source stays silent for one period so that the last packet can be cleared to the

destination. Then the entire process starts again (see Figure 4.6).

The mutual information of the channel between the “best” relay node and the

destination is given by:

I∗mhrs = log
(
1 + ρ max

m∈D(s)
gm

)
(4.22)

The outage probability can be expressed as:

Pr{I∗mhrs < R} =
∑

t

Pr{|D(s)| = t}Pr{I∗mhrs < R
∣∣ |D(s)| = t} (4.23)
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Thus, the diversity-multiplexing tradeoff is governed by two probabilities: the

relay decoding probability, and the outage probability conditioned on a decoding set

D(s).

Recall that from the viewpoint of a relay, there are two packets arriving si-

multaneously over the air. For example, when the source is transmitting packet b,

another relay is transmitting packet b− 1. We aim to calculate the probability that

a given relay fails to decode the source packet b, denoted P (Ob). Conditioned on

having decoded packet b− 1, the probability of relay outage for packet b is:

P (Ob|Ōb−1)
.
= ρ−(1−r)+

However, if the previous packet b − 1 cannot be peeled off, the interference has the

same order of magnitude as the signal, and thus

P (Ob|Ob−1)
.
= ρ0

Now, we derive a equation using the law of total probability

P (Ob) = P (Ob|Ōb−1)P (Ōb−1) + P (Ob|Ob−1)P (Ob−1)

.
= ρ−(1−r)+ [1− P (Ob−1)] + ρ0P (Ob−1)

= ρ−(1−r)+ + P (Ob−1)[1− ρ−(1−r)+ ]

.
= ρ−(1−r)+ + P (Ob−1) for r < 1 (4.24)

During transmission of the first packet, the relays listen to the source signal

without interference, so P (O1)
.
= ρ−(1−r)+ . Then according to the above recursion,

each relay will continue to decode with P (Ob)
.
= ρ−(1−r)+ until it is called upon to

transmit. During a transmission interval by a relay node, it cannot listen to the

source signal, so in the next interval, it will have to decode the source signal without

knowledge of the interference. This task has outage probability proportional to ρ0.



62

From this point onwards, the recursion shows that the relay will continue to experience

outage proportional to ρ0. In other words, the loss of diversity propagates in time.

The diversity of all relays is restored at the end of the transmission cycle.

Now consider Pr{|D(s)| = t}. To have exactly t decoding relays, M − t relays

must be in outage. For the first packet, all relays decode without interference on i.i.d.

channels, therefore

Pr{|D(s)| = t} .
= ρ−(M−t)(1−r)+ for b = 1

Subsequently, one of the relays is chosen to relay packet b = 1. This relay will lose

its diversity for all subsequent packets, until the end of the cycle. Each relay that

transmits will then stay out of the decoding set in successive blocks with probability

proportional to ρ0. Effectively, as we go through the packets, the number of available

relays is reduced one-by-one.1 Thus, for packet b, the probability that there are t

relays ready to transmit is:

Pr{|D(s)| = t} .
= ρ−(M−b+1−t)+(1−r)+ (4.25)

Now we look at the destination outage conditioned on the decoding set.

Pr

{
I∗mhrs < R

∣∣∣∣ |D(s)| = t

}
=

(
1− exp

(
− 2R − 1

ρλm∗,d

))t

,

=

(
1− exp

(
− ρr−1

λm∗,d

))t

.
= ρ−t(1−r)+ (4.26)

Substituting (4.25) and (4.26) in (4.23), we get:

Pr{I∗mhrs(b) < R} .
= ρ−(M−b+1)+(1−r)+ (4.27)

1Please note that it is possible for the relays to return to the decoding pool, as is
shown in Figure 4.6, but not with probability-1 asymptotically with SNR.
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Finally, we have to take into account a fractional rate loss, because as seen in

Figure 4.6, overall B blocks are transmitted in B + 1 time intervals, due to causality

requirement of the relays. Therefore, we must make the adjustment r → B+1
B
r. The

final result can be described as follows:

Theorem 6 For the MHRS protocol, the following diversity-multiplexing tradeoff is

achievable for the packet b, where b ∈ {1, . . . , B}.

d(r, b) = (M − b+ 1)+

(
1− B + 1

B
r

)+

(4.28)

The variable-error protection strategy is an attractive feature of this system

that allows a tailoring of transmission to the application requirements. Figure 4.7

shows the family of DMT’s obtained in a MHRS protocol with five relays and B = 5.

In some applications, we may not be interested in a multiplicity of DMT’s,

thus the diversity across different packets b is dominated by the smallest diversity



64

gain, i.e.,

dSC(r) = min
b
d(r, b) = (M −B + 1)+

(
1− B + 1

B
r

)+

Note that in this expression, B + 1 is a refresh cycle of the system, i.e., the period

after which the source will transmit alone and will reset all the interferences at the

relays. For an overall DMT above, since the two terms M − B + 1 and (B + 1)/B

move in opposite directions, one may optimize B for each multiplexing gain r so that

the best diversity is obtained. This will lead to an overall DMT curve as shown in

Figure 4.8.

4.4.3 MHRS Protocol with Hybrid Joint Decoding

In the previous section, we observed that successive cancellation in the MHRS

protocol leads to error propagation and a gradual loss of diversity with increasing

packet index. This loss arises from the reduced ability of the relays, after their own

transmission, to correctly estimate and subtract the interference caused by other

relays.

For better performance, we can employ a more powerful decoding technique

at the relay. Whenever possible, the relays will decode by successive cancellation,

but whenever that is not possible, the relays attempt an optimal joint decoding of

the two arriving signals. Compare this with the method of Section 4.4.2, where

the unavailable interfering signals were treated as noise. The more powerful method,

denoted MHRS with hybrid joint decoding, improves the DMT of the MHRS protocol,

and in fact meets the DMT upper bound up to a certain multiplexing gain, as we

shall see in the sequel.

To calculate the DMT of MHRS with hybrid joint decoding, we use certain

recent results on the so-called Z-channel. It is not difficult to see that our system
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Figure 4.9. The multiple Z channels arising from the MHRS channel model.

model is a special case of the Z-channel, since the source is heard only by the relays,

while the best relay in each interval is heard by both the destination and relays. (See

Figure 4.9).

Recently, the DMT of the Z channel under general decoding was reported

in [49]. Specializing the result of [49] to our channel model gives in the following

relay outage diversity for a single-block decoding:

dZ(r) = (min{(1− r), 2(1− 2r)})+ (4.29)

Since hybrid MHRS, for each packet detection, chooses the better of successive

cancellation or joint decoding, the hybrid method must perform strictly better than

either of its components. We will use this fact to find a lower bound to the DMT of

the hybrid method.

The DMT of the non-hybrid method that always attempts successive cancella-

tion was calculated in Section 4.4.2. In the following Lemma, we calculate the DMT

of the non-adaptive method that always uses joint decoding.
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Lemma 2 The DMT of MHRS protocol under joint decoding is lower bounded by

dJD(r) =

(
min

{
(M − 1)(1− B + 1

B
r),

min
t=0,...,M−1

(2M − 2− t)− B + 1

B
r(4M − 4− 3t)

})+

(4.30)

Proof: We first consider an individual frame. When all relays (excluding the selected

one) use joint decoding for detecting the message of the source and using the DMT

of the Z-channel given in (4.29), we can write

Pr{|D(s)| = t} .
=

(
1− ρ−(min{(1−r),2(1−2r)})+

)
× ρ−(M−1−t)(min{(1−r),2(1−2r)})+

.
=ρ−(M−1−t)(min{(1−r),2(1−2r)})+ (4.31)

Now, from (4.26), we have

Pr

{
I∗mhrs < R

∣∣∣∣ |D(s)|
}

.
= ρ−t(1−r)+ (4.32)

Therefore, the asymptotic outage probability is expressed as

Pout
.
=

∑
t

ρ−
(

t(1−r)+(M−1−t)(min{(1−r),2(1−2r)})
)+

(4.33)

Hence, the diversity order is given by

dJD(r) =

(
min

t

{
min

[
(M − 1)(1− r), t(1− r) + 2(M − 1− t)(1− 2r)

]})+

=

(
min

{
(M − 1)(r − 1) min

t=0,...,M−1
(2M − 2− t)− r(4M − 4− 3t)

})+

(4.34)

We now consider the overall rate loss due to sending B frames in B+1 time intervals,

therefore we must make the substitution r → B+1
B
r. This completes the proof of the

Lemma. ¤

At low spectral efficiencies, the above expression shows a distinct improvement

over successive cancellation.
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Figure 4.10. Diversity-multiplexing tradeoff of different protocols in a two-hop net-
work with ten relays.

The overall DMT of the hybrid joint decoding method is bounded by the

following.

Theorem 7 The DMT of hybrid joint decoding is bounded below by:

max

{
(M −B + 1)+

(
1− B + 1

B
r

)+

,min

{
(M − 1)(1− B + 1

B
r)+,

min
t=0,...,M−1

[(2M − 2− t)− B + 1

B
r(4M − 4− 3t)]+

}}
(4.35)

Proof: The DMT of the adaptive (hybrid) protocol d(r) is bounded below by the

two DMT’s belonging to the pure successive cancellation and joint decoding methods

dSC(r), dJD(r). It immediately follows that d(r) ≥ max{dSC(r), dJD(r)}. ¤

Figure 4.10 compares the diversity-multiplexing tradeoff of several DF-based

protocols in a two-hop relay network with M = 10 and B = 6. Also, shown the MHRS
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protocol upper bound derived in Section 4.4.1. The hybrid MHRS protocol attains

better DMT performance, across a large range of spectral efficiencies, compared with

distributed space-time codes and opportunistic relaying2.

Remark 11 The hybrid MHRS protocol, as analyzed above, used a successive cancel-

lation component whose minimal DMT was included in the analysis. The reader may

recall, however, that the successive cancellation MHRS produces a family of unequal

error protection DMT’s. Thus, the hybrid strategy can also inherit the embedded

DMT property of the successive cancellation. Since the hybrid DMT is influenced

by the successive cancellation DMT in the high-rate regime, it follows that the em-

beddedness of the hybrid DMT is observable at high multiplexing rates. In the low

multiplexing rates, all frames will experience the same diversity. To summarize, the

embedded hybrid MHRS has the following achievable DMT, where b is the index of

the packet.

max

{
(M − b+ 1)+

(
1− B + 1

B
r

)+

,min

{
(M − 1)(1− B + 1

B
r)+,

min
t=0,...,M−1

[(2M − 2− t)− B + 1

B
r(4M − 4− 3t)]+

}}
(4.36)

4.5 Appendix

4.5.1 ITRS Outage Analysis

Computing the outage probability of ITRS hinges upon a closed-form expres-

sion for

Pr

{
1

2
log

[
1 + ρ(gs,d + gm∗,d)

] ≤ R

2

∣∣∣∣ D(s)

}
(4.37)

whose calculation is the main goal of this appendix.

2Distributed space-time codes and opportunistic relaying have the same DMT, for
compactness, only one of them is marked in Figure 4.10.
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Lemma 3 Consider an exponential random variable U with mean λu, and a random

variable V which is maximum of a group of t i.i.d. exponential random variables,

each with mean λg. The PDF of W = U + V is given by

fW (w) = t exp

(
− w

λu

) t−1∑

k=0

(
t− 1

k

)
(−1)k

(k + 1)λu − λg(
1− exp

[− (k + 1

λg

− 1

λu

)
w

])
(4.38)

Proof:

fU(u) =
1

λu

exp

(
− u

λu

)
(4.39)

The CDF of a maximum of i.i.d. exponential random variables is given by:

FV (v) =

(
1− exp

(
− v

λg

))t

(4.40)

Differentiating with respect to v, we get

fV (v) =
t

λg

exp

(
− v

λg

)(
1− exp

(
− v

λg

))t−1

(4.41)

Using the convolution integral, the PDF of W is given by:

fW (w) =
t

λgλu

exp

(
− w

λu

)∫ w

0

exp

(
− v

λeq

)(
1− exp

(
− v

λg

))t−1

dv (4.42)

where we have defined:

1

λeq

4
=

1

λg

− 1

λu

(4.43)

Using the binomial expansion, performing the integration and simplifying, one ob-

tains,

fW (w) = t exp

(
− w

λu

) t−1∑

k=0

(
t− 1

k

)
(−1)k

(k + 1)λu − λg

(
1− exp

[− (k + 1

λg

− 1

λu

)
w

])

(4.44)
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¤

Now, let U = gs,d, V = gm∗,d and W = U + V . Then, the PDF of W is given

by:

fW (w) = t exp

(
− w

λs,d

) t−1∑

k=0

(
t− 1

k

)
(−1)k

(k + 1)λs,d − λm,d(
1− exp

[− (k + 1

λm,d

− 1

λs,d

)
w

])
(4.45)

The CDF of this expression can be obtained via integration;

FW (γ) = t

t−1∑

k=0

(
t− 1

k

)
(−1)k

(k + 1)λs,d − λm,d

×
∫ γ

0

exp

(
− w

λs,d

)(
1− exp

[− (k + 1

λm,d

− 1

λs,d

)
w

])
dw (4.46)

where as previously defined, γ = 2R−1
ρ

. Also, to simplify the calculations, we let

λs,d = λm∗,d = 1
µ
. After integration by parts and collecting terms, whose details are

omitted for brevity, we obtain:

FW (γ) =

[
t

t−1∑

k=1

(
t− 1

k

)
(−1)k

k

(
1 +

exp(−µ(k + 1)γ)− 1

(k + 1)

− exp(−µγ)
)]

+ t

(
1− (µγ + 1) exp(−µγ)

)
(4.47)

Finally, the overall outage probability for ITRS protocol is calculated by

Pout,ITRS =
∑

D(s)

FW (γ)×
(
M

t− 1

)
exp

(
− γ

λs,m

)t−1

(
1− exp

(
− γ

λs,m

))M−t+1

(4.48)

4.5.2 ITRS DMT Analysis

The effective rate of the ITRS protocol is η, as defined in (4.13), therefore the

multiplexing gain must be defined with respect to η. However, one can equivalently
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use the nominal per-packet transmission rate R for the DMT calculations, since an

inspection of (4.13) shows they are asymptotically equivalent:

lim
ρ→∞

η = R (4.49)

Hence we can proceed and calculate the multiplexing gain based on R as defined

in (4.1).

There are two ways to obtain the diversity order in terms of the multiplexing

gain. One can either find an upper bound on the outage expression in (4.8) in a

manner similar to [26, Theorem 3], or use the closed-form outage expression that is

developed in this chapter, in asymptotic SNR form. The former approach is easier

and we briefly mention the required steps.

First, from (4.9), at high SNR

Pr
{|D(s)| = t

} .
= ρ(r−1)(M−t+1)

(
1

λs,m

)M−t+1

(4.50)

Now, from (4.7), at high SNR

Pr

{
I∗itrs <

r log ρ

2

∣∣∣∣D(s)

}
= Pr

{
log(1 + ρ(gs,d + gm∗,d)) ≤ r log ρ

∣∣∣∣ D(s)

}
,

≤ Pr
{
gs,d ≤ ρr−1

∣∣ D(s)
}
Pr

{
gm∗,d ≤ ρr−1

∣∣ D(s)
}
,

.
= ρr−1ρt(r−1),

= ρ(t+1)(r−1) (4.51)

where we have used the results of Lemmas 2 and 3 of [26]. Combining (4.50)

and (4.51), the diversity order of the ITRS protocol is given by

dITRS(r) = (M + 2) (1− r)+ (4.52)



CHAPTER 5

RELAY-ASSISTED INTERFERENCE NETWORKS

5.1 Introduction

In addition to historical importance in network information theory, a bet-

ter understanding of the interference channel [50] is becoming practically important

as well, since many current wireless communication systems are interference-limited.

Examples include ad-hoc networks with peer-to-peer communications that lack infras-

tructure and hence transmission coordination, interference between adjacent networks

in wireless LAN systems, as well as cognitive networks, where primary and secondary

users transmit in the same frequency band.

The capacity of the interference channel in the most general case remains un-

known, thus a number of partial approaches for investigating the interference channel

have been pursued. One of the tools for understanding the behavior of multi-terminal

networks is the degrees of freedom (DOF), also known as the multiplexing gain or the

pre-log factor, which characterizes the scaling behavior of a network throughput at

high signal-to-noise ratios (SNR). We formally define the degrees of freedom as fol-

lows:

DOF = lim
P→∞

Cs

log( P
σ2 )

(5.1)

where P is the power constraint at each source node, σ2 is the noise variance at a

destination and Cs is the network sum-rate capacity.

As an example, the maximum degrees of freedom of a two-user (single-antenna)

Gaussian interference channel is equal to one [51]. In this chapter we investigate the

72
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effect of having a dedicated MIMO relay shared by several source-destination pairs

on the degrees of freedom of such network. The main issue is whether with simple

single-user decoding at the destinations, exploiting direct links is of a benefit.

A brief outline of related work is as follows. The new advances in network

information theory have allowed characterizing the degrees of freedom of many net-

works. It is well known that the MIMO MAC and MIMO BC have full degrees of

freedom [52, 53]. Since the point-to-point MIMO channel has full degrees of freedom,

the latter result is equivalent to perfect cooperation for transmitters (MIMO MAC)

and receivers (MIMO BC) at high SNR. Recently, through the interesting idea of

interference alignment, new results have been obtained that characterize the degrees

of freedom in interference networks. The idea of interference alignment is to pre-code

the transmitted symbols of each user into multiple dimensions (can be time or fre-

quency) such that at the desired receiver the interference signals are aligned in some

dimensions. Hence, other dimensions are left interference-free. In a K user time-

varying interference network, K
2

degrees of freedom are achieved almost surely [54].

However, for fixed channel coefficients and single antenna nodes, the Host-Madsen-

Nosratinia conjecture of a DOF equals to one remains unsolved [51]. Thus, the gap

remains untouched between the DOF upper bound of K
2

and the achievable DOF of

1.

The first attempt to study the effect of relaying on the degrees of freedom

of the interference network was performed in [51] and [55]. A rather negative result

was obtained. Cooperation over fading links between the sources, between the desti-

nations, or both, cannot improve the degrees of freedom of an interference network.

On the other hand, if perfect cooperation between sources (destinations) is assumed,

the network can mimic a MIMO system with antennas co-located at the transmitting

(receiving) side as we mentioned previously. In [56], the link between the sources and
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the link between the destinations are assumed to have a constant fading coefficient

(static AWGN) while the links between the sources and the destinations have phase

fading. It is shown that with full channel state information at all nodes, cooperation

can help in increasing the throughput of a two-user interference channel close to rates

achieved by a 2× 2 MIMO system.

The Gaussian interference channel with a dedicated relay was explicitly intro-

duced and its capacity studied by Şahin and Erkip [57, 58]. Recent works related to

this area are [59, 60]. Other works tangentially related to this area include [61, 62]

that despite apparent similarities are different in their essential features, due to a

two-hop amplify-and-forward model.

The addition of a MIMO relay to an interference channel (direct links exist)

gives rise to a network model that we denote the interference MIMO relay channel

(IMRC). In this chapter we obtain the achievable sum-rate, and consequently, the

achievable degrees of freedom of the Gaussian IMRC with the source and destination

nodes having one antenna each. Towards this end, we devise new combinations of

coding strategies that are inspired by the coding schemes used in relay channels, as

well as MIMO MAC and MIMO broadcast channels. We start the analysis for the

two-user case and generalize it for multiple-user case. We show that in a K-user

network with a MIMO relay, one can achieve exactly K
2

degrees of freedom same as a

two-hop strategy. It is assumed that the relay has global channel state information,

but other nodes have only their own channel-state information. We also study upper

bounds on the degrees of freedom by specializing the recently developed upper bounds

in [63]. Our study establishes the fact that the interference MIMO relay channel has

K
2

degrees of freedom.

We then take the investigation one step further to consider the effect of the

availability of abundant power at the relay. This is motivated by real-world scenarios
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Figure 5.1. The two-User Interference MIMO Relay Channel

where a single relay tower, with easy access to power, is assisting many mobiles. We

wish to understand whether additional power at the relay is helpful, and if so, what is

the minimum amount of power needed to impart maximum degrees of freedom to the

network. We find that if the relay has power proportional to O(P 2), it can impart the

maximum K degrees of freedom to a K-user network whose users have power O(P ),

regardless of the number of users (c.f. of our definition of DOF in (5.1)).

5.2 System Model

Throughout the chapter, lower-case and upper-case boldface letters denote

vectors and matrices, respectively. det(X) denotes the determinant of matrix X

while X† and X∗ denote the transpose and hermitian of X, respectively. The norm of

a vector x is denoted by ‖x‖. log(.) stands for the base-2 logarithm, hence all rates

are expressed in bits/channel use.

The interference MIMO relay channel (IMRC) is depicted in Fig. 5.1. Nodes

1 and 2 want to communicate independent messages W1 and W2 to their respective

receivers, possibly with help from the relay (node R). The relay is assumed to be

equipped withM antennas, whereM ≥ 2 while all other nodes have one antenna each.

All links are subject to flat fading which remains constant during the transmission
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period. The channels from the sources to their corresponding destinations, from the

sources to the relay and from the relay to destinations are denoted by the letters, f ,

g and h, respectively. A subscript ab is used to index the transmitting and receiving

nodes, a and b, respectively.

The input-output relation of a Gaussian IMRC is given by:

y1 = f11x1 + h†R1xR + f21x2 + z1 (5.2)

y2 = f12x1 + h†R2xR + f22x2 + z2 (5.3)

yR = g1Rx1 + g2Rx2 + zR (5.4)

where y1, y2 and yR are the channel outputs at receivers 1, 2 and the relay, x1, x2 and

xR are the transmitted signals. The variables z1, z2 and zR denote zero-mean, unit-

variance additive white Gaussian noises at the receivers. We assume individual block

power constraints on the transmitting nodes. Nodes 1 and 2 have equal transmit

power constraint of P , i.e.

n∑
i=1

‖xk(i)‖2 ≤ nPk, k = 1, 2 (5.5)

where i is the symbol index within a block of n symbols.

We assume that the relay node has block power constraint of PR, which may

be different from P and will be specified in each instance in the sequel. The relay uses

a decode-and-forward scheme [2] that includes linear pre-coding, in a manner to be

explained shortly. The channel state information (CSI) knowledge assumptions are as

follows. Transmitters 1 and 2 each have perfect knowledge about their own transmit-

side CSI while receivers 1 and 2 have perfect knowledge of their receive-side CSI.

Global channel knowledge is assumed at the relay. The relay is assumed to operate

in full-duplex mode, i.e., it can receive and transmit at the same time. Throughout
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the chapter, we assume the input alphabets to be Gaussian. The average probability

of error is defined as follows:

P (n)
e = Pr

[{Ŵ1 6= W1} ∪ {Ŵ2 6= W2}
]

(5.6)

where, Ŵ denotes an estimate of W . The rate of transmission from node k is Rk =

log Qk

n
, where Qk is the size of the message transmitted by the k′th node. A rate pair

(R1, R2) is said to be achievable for the interference MIMO relay channel if there exist

a sequence of codes
((

2nR1 , 2nR2
)
, n

)
with average probability of error P

(n)
e → 0 as

n→∞.

5.3 Coding strategies and Achievable Rates

Our approach to the problem is to use the relay in a way that minimizes

the interference at the receivers. However, this task is highly nontrivial because the

causality of the relay prohibits straight-forward interference cancelation. Therefore,

sophisticated coding and power control strategies are needed to possibly manage the

interference at the receivers.

Consider a transmission period of B blocks, each of n symbols. We assume that

n is sufficiently large to allow reliable decoding. The sources and relay send sequences

of B − 1 messages (W1(b) and W2(b)) over the channel in nB transmissions, where b

denotes the block index, b = 1, 2, ..., B−1. The rate pair (R1
B−1

B
, R2

B−1
B

) approaches

(R1, R2) as B →∞.

5.3.1 Encoding at the Sources

The source uses the super-position block Markov encoding technique devised

in [2]. In particular at any block b,

X
(b)
1 = U1 + U ′1 (5.7)
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X
(b)
2 = U2 + U ′2 (5.8)

where U1 and U ′1 are i.i.d Gaussian codebooks encoding the messages of the current

and the previous blocks with powers χ(P ) and ψ(P ), respectively, according to the

power constraint

χ(P ) + ψ(P ) = P (5.9)

Similar definitions hold for the signal components transmitted by node 2, U2

and U ′2.

5.3.2 Decoding and Re-encoding at the Relay

We use a space division multiple-access (SDMA) approach to communicate

between nodes 1, 2 and the MIMO relay. Therefore, both sources transmit simulta-

neously and the MIMO relay attempts decoding both signals. At the end block b,

given that the relay decoded both messages W1(b − 1) and W2(b − 2) correctly, it

can decode the messages W1(b) and W2(b) of both users while achieving a DOF = 2.

This can be achieved by a zero-forcing strategy, as long as the relay has no fewer

antennas as the number of transmit nodes, and is made possible by the independence

of the users’ channels to the relay that is a result of spatial separation. The sum-rate

constraint for correct decoding at the relay is given by [64, section 10.1]:

R1 +R2 ≤ log det
(
I2 + GKxG

∗) (5.10)

where G = [g1R g2R], Kx = diag
(
χ(P ), χ(P )

)
, and I2 is the 2× 2 identity matrix.

We now describe the encoding process at the relay. Ideally, we would have

liked the relay to cancel the whole interference seen by each receiver. However, due

to causality, the relay can only battle the interference arising from signals that it

has already decoded. Thus, even if everything else can be accomplished perfectly,
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we can expect that not all of the interferences will be canceled. The question is, if

interferences cannot be fully removed, then how to manage the remaining interference

so that a good result may be obtained in terms of the degrees of freedom. We will

address this problem via power allocation policies at the sources and at the relay, as

will be shown in the sequel.

The channel from the relay to both destinations is similar to a Gaussian MIMO

broadcast channel whose capacity region has been recently determined [65]. To help

in canceling the interference, the relay uses a modified zero-forcing beamforming (ZF-

BF) strategy [66]. ZF-BF achieves the maximum degrees of freedom of the sum-rate

capacity of a Gaussian MIMO BC, although it is in general suboptimal compared to

the capacity-achieving dirty-paper coding (DPC) strategy. The relay constructs and

transmits the following signal:

x
(b)
R = u′1t1 + u′2t2 (5.11)

where t1 and t2 are 2× 1 complex unitary beamforming vectors. Proper selection of

beamforming vectors (magnitudes and phases) allows partial suppression of interfer-

ence at the receivers. Simultaneously, t1 and t2 can be selected to allow beamforming

(coherent combination) of the relay signal with the cooperative components of the

signals transmitted by the sources at the current block. For simplicity, we assume

the relay divides its power PR equally between the two codebooks U ′1 and U ′2.

5.3.3 Decoding at the Destinations

Given the structure of the signal formed by the relay, we re-write (5.2) and

(5.3) as follows:

y
(b)
1 =f11u1 + (f11 + h†R1t1)u

′
1 + (f21 + h†R1t2)u

′
2 + f21u2 + z1 (5.12)

y
(b)
2 =f12u1 + (f12 + h†R2t1)u

′
1 + (f22 + h†R2t2)u

′
2 + f22u2 + z2 (5.13)
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Therefore, the relay selects t1 and t2 such that h†R2t1 = −f12 and h†R1t2 = −f21. This

will cancel part of the interference seen by each receiver, thus the received signals are

modified to:

y
(b)
1 =f11u1 + (f11 + h†R1t1)u

′
1 + f21u2 + z1 (5.14)

y
(b)
2 =f12u1 + (f22 + h†R2t2)u

′
2 + f22u2 + z2 (5.15)

Receivers 1 and 2 can use Willems’s backward decoding to decode their intended

signals [6]. Backward decoding imposes decoding delays, however, it simplifies the

analysis compared to list decoding or window decoding [22]. Backward decoding

starts from block B. The receivers have interference-free channels to decode u
(B−1)
1

and u
(B−1)
2 . In block B − 1, they pre-subtract the components of u

(B−1)
1 and u

(B−1)
2

before attempting to decode u
(B−2)
1 and u

(B−2)
2 . Therefore, at any block b the received

signals can be further reduced to:

y
(b)
1 =(f11 + h†R1t1)u

′
1 + f21u2 + z1 (5.16)

y
(b)
2 =f12u1 + (f22 + h†R2t2)u

′
2 + z2 (5.17)

To simplify the analysis, one can convert the above channel into standard form with-

out changing the capacity region [50].

y
(b)
1,s = u′1,s +

√
αu2,s + z1,s (5.18)

y
(b)
2,s =

√
β u1,s + u′2,s + z2,s (5.19)

The subscript s indicates that the variables are in standard form. The relations with

the original channel are as follows:

u′1,s = (f11 + h†R1t1)u
′
1 (5.20)

u′2,s = (f22 + h†R2t2)u
′
2 (5.21)
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and,

√
α =

f21

(f22 + h†R2t2)
(5.22)

√
β =

f12

(f11 + h†R1t1)
(5.23)

The power constraints on each of u′1,s and u′2,s are given by:

ψ1,s(P ) =

∥∥∥∥f11

√
ψ(P ) + h†R1t1

√
PR

2

∥∥∥∥
2

(5.24)

ψ2,s(P ) =

∥∥∥∥f22

√
ψ(P ) + h†R2t2

√
PR

2

∥∥∥∥
2

(5.25)

Note that the amplitudes of part of the signal components from the sources and

the relay combine at the destination due to the beamforming effect. Based on the

standard form and the corresponding power constraints, one can see that receivers 1

and 2 can decode their respective messages W1 and W2 reliably if:

R1 ≤ log

(
1 +

ψ1,s(P )

‖α‖χ(P ) + 1

)
(5.26)

R2 ≤ log

(
1 +

ψ2,s(P )

‖β‖χ(P ) + 1

)
(5.27)

We proceed to specify two power allocation strategies and explore the corresponding

achievable degrees of freedom.

• Power Policy (a)

We let χ(P ) = ψ(P ) = P
2

and PR = P . According to this power allocation,

the multi-access part of the channel according to (5.10) achieves DOF = 2.

However, according to (5.26) and (5.27), the signal and interference have the

same power order and hence a DOF = 0 is achieved. Therefore, the degrees

of freedom of the network in this case is zero. Clearly this is not a desirable

solution.
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Relay

Figure 5.2. Relay for K-user interference network.

• Power Policy (b)

Now we explore an asymmetric power allocation policy characterized by χ(P ) =
√
P , ψ(P ) = P − √P and PR = P . Therefore, the cooperative information -

also known as the resolution information- has a higher power order than the

information of the current block of transmission. It is clear that DOF = 1 is

achieved on the multi-access side of the channel. On the other hand, each of

(5.26) and (5.27) provides a pre-log factor of 1
2

leading to a sum-rate having

DOF = 1 for the direct link with relaying. Therefore, an overall DOF = 1 is

achieved.

The results of this section is summarized in the following theorem:

Theorem 8 Under the power allocation policies considered above, the Interference

MIMO Relay Channel (IMRC) can achieve degrees of freedom of zero and one.
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5.3.4 The K-user Interference Network with MIMO Relay

The previous coding strategies can easily be extended to an interference net-

work where K users transmit simultaneously and a MIMO relay having M ≥ K

antennas helps all K nodes in their transmission. Details are omitted for brevity and

the result is summarized as follows:

Corollary 4 A K-user Interference MIMO relay network achieves zero degrees of

freedom under power policy (a) and K
2

degrees of freedom under power policy (b).

Corollary 4 leads to the following insight. Compared to a time-sharing strategy

that achieves DOF = 1, a MIMO relay increases the degrees of freedom to K
2
. This

can be achieved by exploiting the direct links under power policy (b) or more simply

using a two-hop strategy (a MIMO MAC followed by a MIMO BC).

While we consider the case of full-duplex relay, one can devise similar signaling

strategies for the half-duplex case. However, the block-Markov coding is not required.

A brief description of a possible coding scheme is given as follows. The sources

transmit all the time. However, they divide each block of their transmission into

two halves. Each source node transmits the same message in the two halves using

i.i.d. Gaussian codebooks. During the second half, the relay transmits and manages

the interference as discussed above in the full-duplex case. At the destinations, the

received signals at the first and second halves form two Gaussian parallel channels,

the first sees interference while the other is interference-free. It can be easily shown

that the maximum degrees-of-freedom of this scheme is K
2
. Hence, again a two-hop

strategy suffices to achieve a K
2

degrees-of-freedom. However, exploiting the direct

links provides an increase in the throughput compared to two-hop communications

for all signal-to-noise-ratios.
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5.4 Upper bounds on the Degrees of Freedom

In a recent work, an elegant way to find upper bounds on fully connected

interference and X networks with relays and feedback has been presented in [63]. The

upper bound on a S×R×D fully connected network can be specialized to the network

we study in this chapter, where S, R, and D refer to the number of sources, relays

and destinations in the network. A fully connected network means that there is a

message from every source to every destination that needs to be communicated. For

completeness, we will first state the main result on the upper bound on the degrees

of freedom of the S ×R×D network.

Theorem 9 [63] If D represents the degrees of freedom region of the S × R × D

node X network, then the total degrees of freedoms can be upper bounded as follows:

max
[(di,j)]∈D

S∑
j=1

S+R+D∑
i=S+R+1

di,j ≤ SD

S +D − 1

Note that in [63], the authors derives upper bound not only on the degrees of freedom

of the S ×R×D but on the whole degrees of freedom region. The interested reader

can refer to [63] for further details on the proof techniques.

Considering the K user interference network, the following corollary from [63]

gives the exact degrees of freedom of this network.

Corollary 5 [63] ”Consider a fully connected K user interference network with

R relays, where all the channel coefficients are time-varying/frequency-selective with

values drawn randomly from a continuous distribution with support bounded below by

a non-zero constant. Let all nodes be full-duplex allowing noisy transmitter/receiver

cooperation. Also, let the source and relay nodes receive perfect feedback from all

nodes. Then the interference network has K
2

degrees of freedom.”
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The bounds in the previous theorem and the corollary are applicable to the MIMO

relay. Since the proof of the converse assumes full cooperation between the distributed

R relay nodes (see observation 3 in [63]). Now, the achievable degrees of freedom for

the interference MIMO relay channel was shown to be K
2
. Moreover, feedback and

time/frequency selectivity of the channel do not reduce the degrees of freedom of the

channel. Then one concludes the following.

Corollary 6 The degrees of freedom of the interference MIMO relay network is given

by K
2
.

Therefore, the ineffectiveness of exploiting the direct link to increase the de-

grees of freedom is not an artifact of the coding strategy used. It is a fundamental

result.

5.5 Abundant Power at the Relay

Given that the relay can perform a pre-coding strategy that does not cause

interference at the respective receivers at high SNR. One is interested to investigate

a case where the relay can play a role in increasing the degrees of freedom of the

interference network. Consider the effect of abundant power at the relay, specifically,

assume χ(P ) = ψ(P ) = P
2

while at the relay we have PR = P 2 (or in general O(P 2)).

In this case, the network will achieve its maximum possible degrees of freedom of

two, thanks to the pre-coding strategy employed by the relay, which allows the power

of the relay not to cause interference at any node. Note that our definition of the

degrees of freedom in (5.1) concentrates on the power of information-bearing nodes,

thus allowing us to study the effect of abundant excess power at the relay for this

special case.
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Therefore, K degrees of freedom can be achieved using a relay that enjoys

power proportional to P 2, but the power is independent on K. Thus, one relay

station with enough antennas and abundant power can significantly boost the network

throughput in the high SNR regime.

In the following, we shall refer to the power policy discussed in this section as

Power Policy (c).

5.6 Numerical Results

We corroborate the analysis by the following numerical example of an inter-

ference MIMO relay channel. The following setup is considered:

• Two-user channel and the relay has two antennas, i.e., K = M = 2.

• The noise variance at all nodes σ2=1.

• The magnitude of channel coefficients are selected as: h13 = 1.2, h14 = 0.5,

h23 = 0.5, h24 = 1.2, h†15 = (0.6 1.2), h†25 = (1 0.5), h†53 = (0.5 1) and

h†54 = (1 2).

According to the selected channel gains, we have from (5.22), α = 0.1455 and β =

0.2157. Note that the original interference channel provides standard form channel

gains of a = b = 0.1736 (see e.g. [67]). Thus, both with and without the MIMO relay,

the interference is considered weak/moderate. This is the case where the capacity

region of the interference channel is unknown and where a form of relaying will be of

greater impact on the capacity [55].

Figure 5.3 depicts the sum-rate of five different schemes. Curve (1) is the case

where no relay is present and the two sources have ideal cooperation leading to a
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MIMO BC model. The optimal power allocation and hence the sum-rate capacity

are computed according to Algorithm 2 of [68]. Curve (2) depicts the best known

achievable sum-rate for the interference channel (with no relay present) using the

Han-Kobayashi coding scheme. This scheme involves rate splitting, joint decoding at

the receivers and moreover it includes a time-sharing random variable that switches

between time-division transmission and simultaneous transmission. The cardinality

of the time-sharing parameter is set to two and furthermore the power allocation of

the rate-splitting scheme is optimized. This corresponds to curve 4 of [69]. Curves 3,

4 and 5 are the computable sum-rate of the interference MIMO relay channel under

power policies (a), (b) and (c), respectively. The slopes of the these three curves verify

that degrees of freedom of zero, one and two are indeed achievable. Also notice that

although the power policy (a) provides DOF = 0 but the relay enhances the network

throughput significantly at medium signal-to-noise-ratios. Throughput analysis at

finite SNR is outside the scope of this chapter. We finally emphasize here that we use

independent decoding at the nodes and we do not fully optimize the power allocation

strategies at the sources and the relay.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of this dissertation and provides

some possible avenues for future directions in the area of relay networks. The findings

of this dissertation also appear in [70, 71, 72, 73, 74, 75].

In Chapter 3 we present a new relay channel model for the three node network

called the relay channel with private messages (RCPM). In addition to the traditional

communication from source to destination (assisted by the relay), the source has a

private message for the relay, and the relay has a private message for the destination.

Achievable rate regions as well as outer bounds on the capacity region are obtained

for the discrete memoryless relay channel with private messages. The Gaussian ver-

sions of this channel are also studied and achievable rate regions are characterized.

Numerical results are provided that give insights into the trade-offs between private

messaging and relayed messaging in this hybrid three-node network. We show that

many of the previous results for the original relay and relay-broadcast channels can

be recovered as special cases of the results presented in this chapter.

Chapter 4 addresses the spectral efficiency loss or the multiplexing loss that

occurs in relay networks due to causality of relays and the half-duplex constraint. We

devise spectrally-efficient relay selection techniques with limited feedback in decode-

and-forward (DF) relay networks. When a direct link exists between the source and

destination, we propose an Incremental Transmission Relay Selection (ITRS) protocol

that leverage a H-ARQ mechanism. In the absence of a direct link, we propose a Multi-

89
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Hop Relay Selection (MHRS) and several efficient non-orthogonal DF protocols are

produced and analyzed. We use the powerful diversity-multiplexing tradeoff analysis

tool to examine the performance of the algorithms proposed. The ITRS achieves the

MISO DMT bound, in addition we derive an outage expression that is valid at any

SNR. We develop upper and lower bounds for the diversity-multiplexing tradeoff of

the MHRS. We show that the developed lower bound meets the upper bound over

a portion of the multiplexing gains. The proposed protocols improve over existing

methods for half-duplex DF relay systems in block-fading channels.

In Chapter 5 we characterize the high-SNR sum-rate behavior of the inter-

ference channel in the presence of a dedicated MIMO relay. The relay is used to

manage the interference at the receivers. Using a number of hybrid encoding strate-

gies and power allocation policies, we obtain non-asymptotic achievable sum-rates,

subsequently leading to achievable degrees of freedom. The results are generalized

from a two-user to a K-user network. The achievable degrees of freedom are tight

against a recently developed upper bound. Our main result is that only K
2

degrees of

freedom are achievable in an interference channel with MIMO relay, assuming global

channel knowledge at the relay but not at other nodes. Thus, appropriate signaling

in a two-hop scenario captures the degrees of freedom gains without the need for the

direct links. We also investigate the case where the relay (unlike other nodes) has

access to abundant power, showing that when the sources have power P and the relay

is allowed power proportional to O(P 2), the full K degrees of freedom are available

to the network.

To summarize, the major contributions of this dissertation are:

• Proposing a bandwidth efficient three-node channel model, known as the relay

channel with private messages, and analyzing its capacity.
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• Proposing relay selection algorithms that achieve the best known diversity-

multiplexing tradeoff for the class of decode-and-forward relays in a multiple-

relay network.

• Proposing the use of a MIMO relay to manage the interference in interference

networks. We report the first case of achieving the full degrees-of-freedom (pre-

log sum-capacity factor) of an interference network.

We forsee some extensions to the research topics proposed in this dissertation.

The development of tight outer bounds for the Gaussian relay channel with private

messages remains an open problem. Also, one can include a common message from

the source to relay and destination to the channel model and perform a capacity

analysis. An interesting direction is to consider the fading relay channel with private

messages and study power allocation policies at the source and relay. Another promis-

ing direction is to use the relay channel with private messages as a building block of

larger networks and study the rate scaling laws for these network architectures.

Considering the relay selection framework, few extensions are in order. We

employ random coding arguments throughout this dissertation. A natural direction

which has a strong practical impact, is to design channel codes for the relay selection

protocols developed in this dissertation. Another extension is to consider the case

of MIMO nodes and perform a DMT analysis. Design issues related to higher layers

can also be explored, including selection of the number of transmission blocks for the

multi-hop relay selection algorithm and designing signaling protocols for exchanging

the feedback information over a control channel.

In the relay-assisted interference network, our analysis concentrates on the

high SNR behavior of the network throughput. Many parameters can be further

optimized for non-asymptotic SNRs. More complex coding/decoding techniques can
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also be employed, for example, a modified Han-Kobayashi scheme (in the presence

of the MIMO relay) that combines rate-splitting, time-sharing (TDM), relaying and

joint decoding at the receivers. Also, one can study the half-duplex version of this

network under Gaussian and block-fading channel models.
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