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Publication No.

Thuy Van Nguyen, Ph.D.
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Supervising Professor: Dr. Aria Nosratinia

In this dissertation, a systematic framework is proposed to design practical protograph-

based low-density parity check (LDPC) coding schemes that address simultaneously several

important issues: structured coding that permits easy design, low encoding complexity, em-

bedded structure for convenient adaptation to various channel conditions, and performance

close to capacity with a reasonable block length. This dissertation consists of four closely

inter-related parts. In the first part, the design of rate-compatible protograph codes for

the hybrid automatic repeat request protocol is presented. A high-performance family of

protograph codes that has the iterative decoding threshold within a gap of a fraction of dB

to capacity in the AWGN channel over a wide range of rates is reported. In the second

part, protograph-based LDPC coding schemes are designed for half-duplex relay channels.

A simple new methodology for evaluating the end-to-end error performance of relay coding

systems is then developed and used to highlight the performance of the proposed codes. In

the third part, a general mapping method is devised for using protograph-based LDPC codes

in bit-interleaved coded modulation. The reported coding scheme operates close to the coded

modulation capacity. In the fourth part, the design of rate-compatible protograph codes in
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inter-symbol interference channels is proposed. The design problem is non-trivial due to

the joint design of structured LDPC codes and the state structure of ISI channels using

the BCJR equalizer. High-performance protograph-based LDPC codes that have iterative

thresholds close to i.u.d capacity of ISI channels are reported.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since the 1948 celebrated results of Shannon [1], one of the most important questions in the

coding theory has been to design practical coding schemes to achieve the Shannon capac-

ity [2]. Low density parity check (LDPC) codes, proposed by Gallager [3] in 1963, were a

notable early result in this direction, were forgotten for almost 30 years, and then regained

attention in late 1990’s [4, 5]. A few notable activities in the interim did exist, chief among

them the works of Zyablov and Pinsker [6] in 1975, Tanner [7] in 1981, and Margulis [8] in

1982. By now it is known that LDPC codes can operate within a fraction of a dB to capacity

of many channels, such as additive white Gaussian noise (AWGN) channels [9, 10], fading

channels [11], etc.

The new wave of interest in LDPC codes produced several deep and important results in

quick succession. Among them the concept of degree distributions first appeared in [12] and

code ensemble analysis [9]. These results showed the superiority of irregular LDPC codes

over the regular LDPC codes originally investigated by Gallager. The behavior of iterative

decoding was characterized by the notion of density evolution [13, 9], and later through its

variations such as the EXIT chart [14].

Through these advances, the capacity-approaching qualities of the LDPC codes were

firmly established through codes designed with random structures and long block lengths.

This, however, was not the end of the story from an engineering viewpoint. Random-like

LDPC codes are not easy to encode, because their generator matrix is in general not sparse.

Therefore, a search continued for efficient LDPC-like coding structures that can provide

at the same time excellent performance and small complexity. Divsalar et al. [15] in 1998

1



2

introduced “repeat-accumulate” (RA) codes as a simple “turbo-like” structure. Then Lin et

al. [16] showed that good LDPC codes can be built from finite-geometry. In 2003, protograph-

based LDPC codes were proposed [17] as a method of constructing large tanner graphs

systematically from a smaller protograph. In 2004, Richardson and Urbanke [18] introduced

multi-edge-type LDPC codes as a generalization of regular and irregular LDPC codes, and

it became evident that protographs are a special case of multi-edge-type graphs. Protograph

codes have been shown to achieve the capacity of the AWGN channel closely, e.g. [19, 20]

and reference therein.

1.2 Motivation and Objectives

The protograph family of LDPC codes have among them a few excellent codes (e.g. the

AR4JA codes [20]), and new and exciting directions such as convolutional LDPC codes [21]

which have surfaced that are closely related to protographs. However, on the question of

protograph code designs, the picture has been incomplete: the design of protograph codes

prior to the work in this dissertation had been limited to manual design via trial-and-error.

This has several drawbacks: first, without a comprehensive computer search in the code

space, it is not possible to know whether the best code within a certain class has been found.

Second, it is not possible to design larger protographs reliably by trial and error (there are

too many variables), and larger protographs are sometimes necessary for good performance

and especially for producing nested codes. The central contribution of this dissertation is to

produce a systematic method for designing protograph codes that lends itself to computer

search, which has resulted in uncovering superior previously-unknown codes, and also has

led to efficient code designs for channels other than the point-to-point memoryless AWGN

channel.

The overall objective of the work in this dissertation has been to produce efficient meth-

ods for the design of protographs and corresponding protograph codes. This design task,

in general, involves the characterization of desirable code properties such as growth of min-

imum distance and near-capacity threshold in terms of constraints on the structure of the
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protograph. It has been also been an objective of this dissertation to use this systematic

design procedure to discover excellent protograph codes for a variety of applications. For

many of these applications, protograph LDPC codes did not exist prior to this dissertation.

1.3 Contributions and Outline

Chapter 2 provides definitions and background of protograph-based LDPC codes as well as

their performance measures that will be used in this dissertation.

Chapter 3 produces a systematic framework to design a good protograph in the AWGN

channel. Based on this framework, a high-rate nested family of protograph codes is designed

with rates from 1/2 to 9/10. We also design a rate-compatible family by extension with

applications in hybrid automatic repeat request (HARQ) systems, covering a wide range of

rates from 0.33 to 0.9. The new nested and rate-compatible families of protograph codes

not only inherit the advantages of protograph codes, namely low encoding complexity and

efficient decoding algorithms, but also have very good performance with iterative decoding

thresholds that are close to their capacity limits.

Chapter 4 studies the problem of designing protograph codes over relay channels with the

decode-and-forward protocol. Two coding strategies for the relay channels are considered:

the bilayer-lengthened and bilayer-expurgated structures. We present capacity-approaching

protograph-based LDPC coding schemes using these bilayer structures for the half-duplex re-

lay channels. The new structured relay coding schemes not only have low encoding/decoding

complexity but also the embedded structure for convenient adaptation for various channel

conditions. Additionally, the application of the coding structure to multi-relay networks is

demonstrated. Finally, we also develop a new methodology for evaluating the end-to-end

error performance of relay coding systems that is used to highlight the performance of the

proposed codes.

Chapter 5 studies the problem of designing high order coded modulation schemes over

Rayleigh fading channels. We present a simple method involving the concatenation of binary
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protograph codes and a specially designed mapping. The proposed method is general and

applies to any modulation. We calculate the iterative decoding thresholds of the protograph

codes while mapped to higher order modulations. This coded modulation framework can

support not only multiple rates but also adaptive modulation. We discover families of pro-

tograph codes that achieve a threshold within a gap of approximately 0.2 − 0.4 dB of the

BICM capacity limit across a wide range of rates and modulations.

Chapter 6 studies the problem of designing structured LDPC codes in inter-symbol in-

terference (ISI) channels. This problem is non-trivial due to the joint design of structured

(protograph-based) LDPC codes and the state structure of ISI channels. A method of com-

puting the iterative decoding threshold of a concatenated system between the LDPC decoder

and the BCJR equalizer is proposed. This allows us to design nested and rate-compatible

protograph codes that can operate closely to the independent and uniformly distributed

(i.u.d.) capacity of ISI channels. Numerical results are provided to support our analysis.



CHAPTER 2

PROTOGRAPH-BASED LDPC CODES

This chapter is dedicated to reviewing background material regarding LDPC codes and

protograph-based LDPC codes, including the introduction of performance measures used in

this dissertation.

2.1 LDPC Codes

LDPC codes are defined via the column null-space of a sparse m×n binary matrix H called

a parity check matrix, i.e., cH t = 0. The common notation used in this dissertation includes

the following: H t is a transposed matrix, m and n are the number of rows and columns of

H, respectively, and c is a binary row vector indicating a codeword of length n. The matrix

H is sparse if the number of 1’s in each row or column is small compared with m or n,

respectively.

An LDPC code can be fully represented either by a matrix H or via an equivalent

bipartite graph (also known as Tanner graph) as shown in Figure 2.1. In the figure there are

          m
check nodes

          n
variable nodes

Figure 2.1. Tanner graph of a general LDPC code

5
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two types of nodes: n dark circles represent n variable nodes (or n columns of H), m plus

circles represent m check nodes (or m rows of H), and edges that connect variable nodes to

check nodes correspond to the 1’s in H.

The number of edges connecting to a node is called the degree of the node. An LDPC

code is called regular if all its variable nodes share the same degree, and all the check

nodes share the same degree. An LDPC code is irregular if it is not regular. Since LDPC

codes have sparse parity check matrices, they facilitate efficient iterative decoding (e.g.

the iterative sum-product algorithm) which allows building low complexity decoders. Even

though iterative decoding algorithms are sub-optimal, they often provide near-optimal per-

formance [22, 23]. The iterative decoding process improves the log-likelihood ration (LLR)

of the coded bits in a step-by-step process.

A general tool to analyze LDPC codes using the iterative sum-product decoder is the

density evolution (DE) algorithm [9]. The DE algorithm analyzes the evolution of probability

density of the LLRs throughout the iterative decoding process for long codewords and large

number iterations. DE analysis highlights the conditions of the channel parameter (e.g. noise

power or SNR) that are required for error-free performance of LDPC iterative decoder. This

level of noise or SNR beyond which the iterative decoder fails is called the iterative decoding

threshold of an LDPC code. A good irregular LDPC code is designed by optimizing the

threshold, itself accomplished by selecting the appropriate degree distribution for the code [9].

An optimized rate-1/2 irregular LDPC code [24] has been reported with an iterative decoding

threshold within 0.0045 dB to capacity.

The above reported irregular LDPC codes are non-structured or random codes. These

random codes often require high encoding complexity,1 preventing them from being used

in practical systems. There have been many research attempts to design good structured

LDPC codes [23] having cyclic or quasi-cyclic (QC) structures. These structures facilitate

low encoding complexity with simple feedback shift registers [25].

1Because the generator matrix of an LDPC code is in general not sparse.
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Figure 2.2. Copy and permute operation for a protograph to generate larger graphs

In the following, we present one special QC code, namely protograph-based LDPC codes,

which are the main topics of this dissertation.

2.2 Protograph-Based LDPC Codes

A protograph [17] is a Tanner graph with a relatively small number of nodes, connected

by a small number of edges, allowing parallel edges between two nodes. A protograph is

typically represented by a protomatrix, i.e., a matrix whose entries indicate the number of

edges connecting the respective variable and check nodes. Therefore, unlike the parity check

matrix, the protomatrix is in general non-binary.

A protograph code (an equivalent LDPC code) is a larger derived graph constructed by

applying a “copy-and-permutation” operation on a protograph. The protograph is copied

N times, then a large LDPC code graph is obtained by permuting N variable-to-check pairs

(edges), corresponding to the same edge type of the original protograph. A simple example

of a protograph is shown in Figure 2.2. This graph consists of 3 variable nodes and 2 check

nodes that are interconnected by 7 different edge (variable-to-check) types. The derived

graph is constructed by replicating the protograph 3 times and permuting variable-to-check

pairings within the same edge type of the protograph. For example, the protomatrix of

protograph in Figure 2.2 is in the following form
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Hproto =


1 1 1

2 1 1


 (2.1)

where the rows and columns represent the check nodes and variable nodes in the graph

respectively. The (i, j) element of the protomatrix indicates the number of parallel edges that

connect the check node i and the variable node j. The protograph code graph has N times

as many nodes as the protograph, but compared with the protograph it has the same rate as

well as the same degree distribution for both variable and check nodes. Protograph LDPC

codes are a subclass of multi-edge type LDPC codes [18] where each edge of a protograph

is one edge type. Protograph codes can achieve capacity-approaching performance with low

encoder complexity as well as fast decoding [26, 20].

2.3 Performance of LDPC Codes

The Shannon capacity of the binary-input AWGN channel determines the maximum rate

supported at a given SNR. The BI-AWGN capacity does not have a closed-form expression,

but regardless it is a monotonic function that can be inverted, so that at a given rate one

may find the minimum SNR that supports that rate. This is often how Shannon capacity is

displayed in the context of coding: as a SNR limit for each rate.

Figure 2.3 shows a typical behavior for an LDPC code in the AWGN channel. An LDPC

code has an iterative decoding threshold that is above the capacity limit. If the code threshold

is close to capacity, we say that the code is capacity-approaching. The performance of LDPC

codes has two regions, the waterfall and error floor regions. The waterfall region indicates

the regime of operation where error rate reduces significantly when SNR increases, i.e., a

sharp slope. At higher SNR, some codes experience a slower slope for error probability that

is due either to reaching the limit imposed by the minimum distance of the code, or to the

limits of iterative decoding performance due to graph imperfections.

It is challenging to design an LDPC code that has good performance in both the waterfall

and error floor regions. From Figure 2.3, the waterfall performance can be improved by
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Figure 2.3. A general performance curve of an LDPC code

optimizing the code threshold based on density evolution. That is equivalent to shift the

error performance curve to the left, close to the capacity limit. The error floor performance

has proved difficult to characterize explicitly: it depends on graph imperfections of finite-

length codes due to non-codewords such as stopping set and trapping sets as discussed in [27]

and references therein.

Improving the error floor performance of LDPC codes is critical sine many systems, such

as data-storage devices and optical communication systems, require extremely low error

rates. There are two main strategies to solve this problem, i.e. novel LDPC code designs and

decoder-based algorithms. The former [20] involves a careful design so that the code structure

avoids graph imperfections of short cycles that form trapping sets [27]. The latter [23]

involves designing modified iterative decoders so that they are able to recover from trapping

sets.

In this dissertation, we focus the LDPC code design with two main parameters to con-

trol these performance regions: the iterative decoding threshold which affects the waterfall

performance, and the linear minimum distance growth property which affects the error floor

performance.
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2.3.1 Iterative Decoding Thresholds of Protograph Codes

As mentioned in Section 2.2, a protograph code has the same degree distribution as that of

the protograph. Thus, the iterative decoding threshold of a protograph-based LDPC code

is the same as that of the protograph; this reflects the minimum channel SNR that supports

reliable iterative decoding of asymptotically large LDPC codes built from the protograph.

The decoding threshold can be computed by using density evolution (DE) [9]. The density

evolution algorithm tracks the distribution of messages exchanged in the Tanner graph, but it

is computationally cumbersome, especially for our purposes because we intend to use it inside

an optimization loop as explained in the next chapter. There are approximate techniques that

reduce the complexity of the calculation of the decoding threshold: the extrinsic information

transfer (EXIT) chart [14] and reciprocal channel approximation (RCA) [20]. The EXIT

chart and its variants are more popular methods for fast calculation of threshold, and in our

dissertation we follow that route.

To consider further the threshold calculation using the EXIT chart, we need to make a

note of a property of protograph codes. The permutation step that builds the LDPC code

from its protograph only permutes the edges among the same node from different copies of

the protograph. Therefore, even though an LDPC code is built that has the same degree

distribution as the protograph, the edges have more structure than implied by the degree

distribution, and that structure is enforced by the protograph. To put this in yet another way,

it is possible to have two LDPC codes possessing the same degree distribution that arise from

two different protographs; these two LDPC codes may not have the same decoding threshold

(because a protograph does not allow complete randomization). As a result, the decoding

threshold of a protograph code is a function of both the degree distribution as well as its

protograph protomatrix.

Because of this dependency the general EXIT chart, which is designed for generic LDPC

ensembles, cannot be accurately applied to protograph codes: it can neither account for

degree-1 variables nor the dependency on the protomatrix as mentioned above [28]. To solve

these problems, Liva and Chiani [28] proposed the PEXIT method. The PEXIT algorithm
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code rate =
(n+1)/(n+2)
n=0,1,...

Figure 2.4. The AR4JA family of protograph with rates 1/2 and higher

computes the iterative threshold of a protograph based on its edge degree distribution (via

its protomatrix) rather than node degree distribution as in general EXIT chart [14]. The

PEXIT method will be used throughout this dissertation. For completeness, a summary of

the PEXIT algorithm and the two-step lifting method to design protograph codes using the

PEG algorithm are given in the appendix.

The AR4JA Codes

In the following, we will provide a description of AR4JA codes reported in [20] as reference

codes in this dissertation. The family of AR4JA protograph codes are plotted in Figure 2.4.

In this figure, the dark circles represent transmitted variable nodes, the white circle is a

punctured node and the circles with a plus sign are parity check nodes. The graph contains

4+2n transmitted variable nodes and 3 check nodes that is equivalent to code rate R = n+1
n+2

,

with n = 0, 1, . . .. The rate-1/2 AR4JA protograph (n = 0) has a protomatrix in the

following form

H1/2 =




1 2 0 0 0

0 3 1 1 1

0 1 2 2 1


 (2.2)
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Table 2.1. Thresholds of AR4JA code family using PEXIT chart

Code RCA PEXIT Capacity PEXIT
Rate Thres. (dB)[20] Thres. (dB) Thres. (dB) gap to cap.
1/2 0.628 0.6337 0.187 0.4467
2/3 1.450 1.4256 1.059 0.3666
3/4 2.005 1.9707 1.626 0.3447
4/5 2.413 2.387 2.040 0.3470
5/6 2.733 2.5924 2.362 0.2304
6/7 2.993 2.8935 2.625 0.2685

The other codes in this family with rate R = n+1
n+2

, have protomatrices in the form of

Hn+1
n+2

=


H n

n+1

0 0

3 1

1 3


 (2.3)

where n = 1, 2, . . .. The nested codes with rate of n+1
n+2

are built by extending from the

rate-1/2 code with the protomatrix of Equation. (2.2).

Thresholds of the AR4JA family of protograph codes [20] plotted in Figure 2.4 are shown

in Table 2.1. For comparison purposes, the performance of protographs using RCA [20] is

also given. As seen in the table, the AR4JA codes can perform within a gap of 0.5 dB to

capacity in AWGN channel.

2.3.2 Linear Minimum Distance Growth Property

The previous section discusses the protograph threshold calculations that are used to design a

code that that has good waterfall performance. However, it is not as easy to handle the error

floor performance since the error floor involves graph imperfections due to non-codewords

such as stopping sets and trapping sets [27].

Finding trapping sets has complexity that grows with codeword blocklength. However,

experiments show that if the minimum distance of an LDPC code grows linearly with code-

word blocklengths, the LDPC code will asymptotically have no error floors2 [29]. We also

2If a random permutation per each edge of its protograph is used.
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show [30] that if the protograph codes satisfy the minimum distance growth (dmin) property,

the minimum size of small trapping sets of these codes also grows with the code blocklength.

Since the error floor performance depends mostly on the small trapping sets [27], the code

that satisfies the dmin property can have no error floor if the code blocklength is large enough.

The linear minimum distance growth property is determined via calculating the ensemble

weight enumerator for an LDPC code built from a protograph [20]. The AR4JA codes

represented in the previous subsection also have the linear minimum distance property [20].



CHAPTER 3

THE DESIGN OF RATE-COMPATIBLE PROTOGRAPH LDPC CODES

A rate-compatible family of codes allows coding across a range of rates using a common en-

coder/decoder infrastructure [31, 32, 33, 34, 35, 36, 37, 38]. This allows convenient matching

of the code rate to channel conditions and also provides an efficient realization for incremen-

tal hybrid automatic repeat request (HARQ). In HARQ, upon an unsuccessful reception,

the transmitter transmits incremental parity bits to allow the decoder to decode the data

with a lower-rate (more powerful) code. This requires a rate-compatible family of codes.

The most common way of generating a rate-compatible family of codes is by puncturing,

i.e., starting with a low-rate mother code and then selectively discarding some of the coded

bits (parity bits) to arrive at higher rate codes [32, 33, 34]. This approach is simple but

is not free of problems [39]. Specifically, (1) the mother code is optimally designed for

low rates, so higher-rate punctured codes have iterative decoding thresholds with a wider

gap to capacity than that of the mother code; (2) the optimal low rate code structure and

puncturing patterns are designed separately, which is suboptimal. Even though it has been

shown that puncturing can theoretically achieve the same gap to capacity as the mother

code, in practice puncturing has increased the gap significantly [40, 32].

In this chapter, we propose a simple, systematic procedure to search for good nested

protograph LDPC codes that have a low decoding threshold (close to the capacity limit) and

also a minimum distance that grows linearly with block-length [20, 3], a necessary condition

for avoiding an error floor. A protograph code is an LDPC code that can be constructed

from a small protomatrix with a few elements [17]. We start by producing nested protograph

codes where the parity check matrix of higher rate code is a lengthened version of the

lower rate one. This lengthening structure is motivated by [20] but the resulting codes are

better than those reported in [20]. This family is suitable for applications where adaptive

14
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coding and/or unequal error protection is required as well as low complexity. However, code

lengthening changes the information block size, thus the resulting codes are not useful for

some applications, e.g., HARQ.

To achieve full rate-compatibility, we use another approach involving code extension.

Code extension starts with a high-rate code (a daughter code), then lower rate codes are

obtained by extending the parity check matrix of the daughter code [39, 41, 42, 35]. Most

existing extension-based LDPC codes [39, 41, 35] are designed as rate-compatible irregular

LDPC codes with highly optimized framework and unstructured design that does not pro-

mote low-complexity encoding. In contrast, the proposed rate-compatible protograph-based

codes can achieve very good thresholds with low encoding complexity allowed by circulant

permutations [20, 26].

Several protograph-based rate-compatible codes have appeared in the literature [43, 20,

44, 45, 46]. While some of these codes have reasonably good performance, the designs are by

trial-and-error and thus time consuming. Some designs manually manipulate within a given

structure [20, 19] or use node splitting and edge growth techniques [20, 44]. But without

a comprehensive search one may easily miss good codes in this class, in fact this chapter

shows the protograph codes mentioned above can be improved upon. Furthermore, manual

design makes it impractical to use larger protographs that are needed for implementing a

wide range of rates, and are helpful for improved performance. Also noteworthy is [42] which

produced rate-compatible protograph codes based on node-splitting and attaching additional

accumulators, but [42] only produces rates higher than 1/2 and furthermore the resulting

iterative decoding threshold gaps to capacity are higher than that of the codes reported in

this chapter.

To summarize, the main contribution of this chapter is a simple method to design rate-

compatible codes, within a wide range of rates, for adaptive coding and HARQ applications.

Examples of rate-compatible codes are produced with rates from 0.32 to 0.88. These codes

have iterative decoding thresholds within 0.2 dB of capacity and a linear minimum distance

growth property [20]. As a by-product of our main results, we also produce nested protograph
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codes that do not have uniform information size. The rates of these codes range from 1/2

to 9/10 and have thresholds within 0.2 dB of capacity. Although our protograph designs

are constrained within a nested structure, the resulting protograph codes still perform close

to capacity uniformly and have the lowest iterative decoding thresholds among structured

codes with linear minimum distance growth property reported so far in the literature.

3.1 Properties of a Good Protograph

3.1.1 Low Iterative Decoding Threshold

It is well known that optimized degree distribution of unstructured LDPC code ensemble

should contain at least one very high degree variable nodes and a substantial fraction of

degree-2 variable nodes [9]. This also applies to protograph structures [20, 17]. Protograph-

based iterative decoding threshold can be further improved by including a few degree-1 vari-

able nodes (usually called a pre-coder) and a very high degree variable node that is optionally

punctured. This construction appeared in the accumulate-repeat-accumulate code [19]. The

role of degree-1 variable nodes was also observed by Richardson in multi-edge type codes [18].

To summarize, the combination of one or more degree-1 variable node, one very high degree

variable node and several degree-2 variable nodes are likely to lead to a good protograph.

3.1.2 Linear Minimum Distance Growth

Linear minimum distance growth is a desired property of an LDPC code, which can be

verified by computing the asymptotic ensemble weight enumerator [20]. It is known that

the LDPC codes with variable node degrees greater than or equal to 3 automatically have

such a property [9]. However, as seen in the previous subsection, a good protograph usually

includes degree-2 and even degree-1 variable nodes. In order to include degree-2 variables

within the graph structure, Divsalar, et al. [20] proposed a check node splitting method that

allows to build a graph with degree-2 from a graph having variables that have higher degree

(≥ 3) while still preserving its linear minimum distance growth property. This technique
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Rate-1 accumulator part

LDPC part

Figure 3.1. The rate 1/2 AR4JA protograph as a concatenation of a pre-coder and a
protograph-based LDPC code

requires the maximum number of degree-2 variables in the protograph to be limited by total

number of checks minus 1, and also there should be neither parallel edges nor cycles among

these degree-2 nodes [29].

3.1.3 Protograph Structure with Degree-1 Variable Nodes

Degree-1 variable nodes (accumulators) are pre-coders that improve the iterative decoding

threshold. We divide the protograph into two sub-graphs: One sub-graph contains the

degree-1 variables, the corresponding check nodes, and any variables connected to these

check nodes. The other subgraph contains all variables with degree greater than 1. The

latter subgraph is LDPC-like, since good random LDPC codes do not have degree-1 variable

nodes. The two subgraphs have in common certain variables of degree > 1 that are connected

to the check node(s) associated with degree-1 node(s) (see for example Figure 3.1).

Since the degree-1 variables do not affect the growth of minimum distance with codeword

length [20], any discussion regarding linear growth of minimum distance applies only to the

LDPC subgraph.

As an example, the structure of the rate-1/2 AR4JA code from [20] is shown in Figure 3.1

in which dark circles are transmitted variable nodes, the white circle is un-transmitted (punc-

tured) variable node and plus circles are check nodes. It is a concatenation of a pre-coder

(degree-1 part or a rate-1 accumulator) with an LDPC subgraph. The protomatrix of the
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rate-1/2 AR4JA protograph is

H1/2 =




1

0

0

2 0 0 0

3 1 1 1

1 2 2 1


 (3.1)

Using the PEXIT technique, we find this rate-1/2 code has a threshold of 0.6337 dB.

The LDPC protograph subgraph, i.e., the two rows in the right-bottom part of (3.1),

consists of only two check nodes. Following the linear minimum distance criteria, there is

only one degree-2 variable node allowed in the protograph structure.

Although it is a good code, the AR4JA code has not been designed by a systematic search

of the design space and therefore it can be improved upon. In the following, we outline a

method for a systematic and efficient search of the design space that finds better codes.

3.2 Design Method

Based on the discussion above, our design procedure is:

1. Start with a desired code rate, determine number of check and variable nodes.

2. Impose empirical constraints for good threshold (see Section 3.1.1.)

3. Impose constraints for linear minimum distance growth (see Section 3.1.2.)

4. Among the graphs satisfying the constraints, select the graph with the lowest iterative

decoding threshold.

The rate of the code does not uniquely determine the number of check and variable

nodes, rather, if the number of check and variable nodes is respectively nc and nv, assuming

np punctured variable nodes, R = nv−nc

nv−np
. So for the same rate, we may have larger or smaller

protographs. Larger protographs of the same rate may yield better thresholds because of

the larger search space and the design flexibility. However, as protographs grow bigger there
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is a point of diminishing returns for the optimization of threshold and the search algorithm

becomes more complex. Furthermore, if the overall codeword length is constant, a larger

protograph means that the repetition factor of the protograph will be smaller, which restricts

the design of the interleaver and makes it more difficult to avoid an error floor due to trapping

sets.

With all that in mind, consider the following example for the design of a rate-1/2 pro-

tograph code. We begin with a simple protograph structure which has 7 variable nodes (of

which the third node is punctured) and 4 check nodes. We shall see that this choice of the

number of check and variable nodes leads to a threshold that is within a small fraction of a

dB to capacity, therefore a larger protograph is not needed.1 The rate of the proposed proto-

graph is R = 7−4
7−1

= 3
6

= 1
2
. We include a punctured variable node since it has been observed

that punctured (un-transmitted) variable nodes can improve the performance [18, 44, 20].

We represent the protograph by its 4×7 protomatrix. This protomatrix contains 28 elements

each indicating how many parallel edges connect the respective check node (row) and vari-

able node (column). Optimization over these 28 variables is computationally complex and

the finding of the optimum in a high-dimensional space is difficult, therefore adjustments to

this optimization problem are necessary to make a practical solution viable.

As discussed earlier, we institute one degree-1 variable (one column of weight-1), and one

degree-2 variable node (column of weight-2). Therefore the protomatrix is:

Hsearch
1/2 =




1 0 y1 y2 y3 y4 y5

0 1 x1 x4 x7 x10 x13

0 1 x2 x5 x8 x11 x14

0 0 x3 x6 x9 x12 x15




4×7

(3.2)

The variables xi and yj designate the remainder of the protograph to be designed. The

overall code is effectively the concatenation of an LDGM code (first row and column) with

an LDPC code (columns 2 through 7, rows 2 through 4). The linear minimum distance

1Experiments showed that smaller protographs were not satisfactory.
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growth only involves the LDPC part of (3.2), therefore all the comments in the remainder

of this paragraph are focused on this submatrix. As shown in [29], to have linear minimum

distance growth, the number of degree-2 nodes in an LDPC protograph must be limited to

the number of check nodes in the LDPC part minus 1, that is 3 − 1. It is also known that

degree-2 nodes cannot form a cycle among themselves. However, in our design, we only

search for one degree-2 variable node since extensive experiments show that two degree-2

variable nodes will only give an inferior threshold.

Other variable nodes within the LDPC part of the matrix must have degree at least 3,

therefore the sum of columns designated in xi, except for up to two degree-2 nodes, must be

3 or higher.

To limit the search space, we constrain the maximum number of parallel edges in the

protograph. Via experiments, we observed that increasing the number of parallel edges

beyond a certain point is not useful. The reason is that subject to a given code length,

increasing the number of parallel edges will increase the likelihood of short cycles. For the

remaining nodes, we set the maximum number of parallel edges to 3.

These constraints reduce both the dimensionality of the search space as well as the breadth

of the discrete search in each dimension, making a systematic search viable. Thus:

H ′
1/2 =




1 0 2 0 0 1 0

0 1 3 1 1 1 0

0 1 1 2 2 2 1

0 0 2 0 0 0 2




4×7

(3.3)

The threshold of this code is 0.395 dB which shows a gap of 0.208 dB of capacity. The new

protograph is shown in Figure 3.2. This code shows improvements over the AR4JA rate-1/2

code reported in [20]. However, it should also be mentioned that the AR4JA protograph

has fewer nodes, and within the class of protographs with 5 variable nodes the AR4JA code

remains very attractive.
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Protograph-based LDGM code

LDPC part

Figure 3.2. The new rate 1/2 protograph with a threshold of 0.395 dB

Figure 3.3. The rate-1/2 protograph with a threshold of 0.439 dB

If a degree-2 variable node is excluded, a slightly higher threshold protograph is obtained,

having the proto-matrix

H1/2 =




1 1 2 0 0 0 0

0 1 3 1 1 1 0

0 1 1 2 2 2 1

0 0 2 0 0 0 2




(3.4)

The threshold of this code is 0.439 dB, a gap of 0.252 dB of capacity. This code is originally

reported in [47] and plotted in Figure 3.3.

It is instructive to note that if we do not impose the linear minimum distance growth

criteria, the optimization procedure yields a protograph with a lower threshold that has a

protomatrix as follows

Hopt
1/2 =




1 0 2 0 0 1 0

0 1 2 0 0 1 0

0 1 1 2 2 2 0

0 0 3 1 1 1 1




(3.5)
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Protograph-based LDPC code

Figure 3.4. The new rate 1/2 protograph with a threshold of 0.250 dB

This code has a threshold of 0.250 with a gap of only 0.063 dB to capacity. This is the best

iterative decoding threshold reported for a structured (non-random) code in the literature,

but it does not mean it is a good code. In fact, this is the concatenation of two LDGM codes

(the first column-row; and last column-row in (3.5)) with one LDPC code (corresponding to

the middle sub-matrix of (3.5)) as plotted in Figure 3.4. The LDPC subgraph has too many

degree-2 variable nodes (3 degree-2 variables and 2 checks) which violates the condition for

linear minimum distance [20, 29]. Therefore the minimum distance of this code does not

grow linearly with codeword length and it suffers from an error floor.

3.3 Design of High Rate Protograph Codes by Lengthening

So far we have concentrated on rate-1/2 protograph codes. Designing higher rate protographs

is more difficult because the protomatrix contains many more elements than those of a rate-

1/2 protograph. In this section, we propose a simple approach to overcome this difficulty.

We produce codes whose iterative decoding thresholds are close to capacity, form a nested

family of codes and offer a range of rates.

We construct a family of high-rate protograph codes from a low-rate protograph by code

lengthening, i.e., by lengthening the parity check matrix of a lower-rate code (a base code)
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in the form of

Hhigh rate = [H1He] (3.6)

where H1 is the parity check matrix of the low-rate code and He is an extension matrix.

Several families of nested protograph codes based on code lengthening have been reported

in the literature [20, 19] using node splitting and permutation of the edges in an ad-hoc

manner that is not feasible to generalize to various mother codes and various rates. Therefore,

there is motivation in devising a systematic approach for the design of nested protograph

codes.

We will describe in the following an example for the design of high-rate codes with rate

R = n+1
n+2

, n = 1, 2, . . . as an extension of our optimized rate-1/2 protograph of (3.3) (from

previous section). These codes have a minimum distance that grows linearly with code

length. Similar to the previous section, we describe the search space for our code in the

following way

Hsearch
n+1
n+2

=




H ′
n

n+1

y1 y2 y3

x1 x4 x7

x2 x5 x8

x3 x6 x9




(3.7)

where variables yj in the first row correspond to the check node that connects to the degree-

1 variable node. Variables xi in rows 2-4 constitute the extension to the LDPC subgraph.

In order to preserve the linear growth of minimum distance for the new high rate codes,

the column sums in the LDPC subgraph, namely sums of columns designated with variable

xi, should be 3 or higher. This constraint ensures that all variables in LDPC part of the

extension structures have degree ≥ 3.
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Table 3.1. Threshold of the new protograph code family

Code Protograph Capacity Gap to
Rate threshold (dB) threshold (dB) capacity
1/2 0.395 0.187 0.208
2/3 1.181 1.059 0.122
3/4 1.701 1.626 0.075
4/5 2.112 2.040 0.062
5/6 2.445 2.362 0.083
6/7 2.702 2.625 0.077
7/8 2.930 2.845 0.085
8/9 3.123 3.042 0.081
9/10 3.288 3.199 0.089

We further simplify the problem by setting the maximum number of parallel edges to 2

(i.e. xi, yj = 0, 1, 2). We obtain:

H ′
2/3 =




H ′
1/2

0 1 1

1 0 1

2 2 2

0 1 0




H ′
3/4 =




H ′
2/3

0 0 1

1 2 0

2 1 2

0 0 2




H ′
4/5 =




H ′
3/4

0 1 2

1 1 2

2 2 1

0 0 0




H ′
5/6 =




H ′
4/5

0 0 0

0 2 2

2 1 1

2 0 0




(3.8)

H ′
6/7 =




H ′
5/6

0 1 2

1 1 2

2 2 2

0 0 0




H ′
7/8 =




H ′
6/7

0 0 1

2 2 0

1 2 1

0 0 2




H ′
8/9 =




H ′
7/8

0 0 1

1 2 1

2 1 2

0 1 0




H ′
9/10 =




H ′
8/9

0 0 2

2 2 0

1 1 2

0 0 2



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The iterative decoding thresholds of these codes are given in Table 3.1. For rates > 2/3,

the produced codes have decoding thresholds within 0.09 dB of capacity, and the rate-2/3

code has a threshold within 0.122 dB of capacity. This shows an improvement of 0.2 dB

compared with the AR4JA family [20].

3.4 Design of Rate-Compatible Protograph Codes

Although we have successfully designed a family of nested codes in Section 3.3, the infor-

mation block-lengths of the nested codes are not identical. The same is true of AR4JA

codes. Thus, these codes are not truly rate-compatible and are unsuitable e.g. for HARQ

applications. Several works in the literature design irregular LDPC rate-compatible codes

using puncturing and code extension [39, 41, 35, 32, 33] whose code design requires painstak-

ing optimization and furthermore their encoders are unstructured therefore computationally

complex. Our design avoids the weaknesses of puncturing by using a code extension ap-

proach.

El-Khamy et al. [44] designs rate-compatible protograph LDPC codes by first extending

and randomly pruning from an existing protograph to produce a low-rate code, and then

obtaining other high-rate codes by puncturing this low-rate code. As mentioned in the

beginning of this chapter, puncturing has several weaknesses and usually results in codes

that have iterative decoding thresholds with a wider gap to capacity than that of the low-

rate mother code. The weaknesses of puncturing can be avoided by using a code extension

approach, as discussed below for our designs.

The new rate-compatible family of codes is constructed by extending the parity check

matrix H of a high-rate protograph code by an equal number of columns (variable nodes)

and rows (check nodes), ensuring that the new code will have the same information block

size (Figure 3.5). In this figure, the parity check matrix H1/2 of the rate 1/2 code is extended

to create H1/3, which in turn is extended to obtain H1/4. The zero submatrices ensure that



26

H1/2 0
0

H1/3

H1/4

Figure 3.5. Rate-compatible parity check matrices by extension

the incremental variable nodes are indeed new parity bits determined only by the new parity

check equations, thus guaranteeing that the high-rate code is nested inside the low-rate code.

In the interest of brevity, we only present one construction of a nested rate-compatible

family of codes. However, the proposed method is completely general; we can start from

any high-rate code to build a successive set of lower-rate codes. The starting point for the

following construction is the rate-5/6 protograph code designed in the last section. Since

an equal number of columns and rows are added to the protomatrix, the lower-rate codes

obtained from the rate-5/6 code above have rates R = 19−4
19−1+n

= 15
18+n

, where n is the number

of checks and variables added. For each value of n, the new code will require a search.

As a representative sample, we concentrate on the search for n = 2, which yields a rate

R = 15
20

= 0.75 code. The search space for this new code is in the form

H1
0.75 =




0 0

0 0

H ′
5/6 0 0

0 0

0 x1 y1 x3 . . . x17 1 0

0 x2 y2 x4 . . . x34 z 1




(3.9)
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The problem is to find edges that connect the old graph (the rate-5/6 code) to 2 new check

nodes and variable nodes. The unknown edges are represented with variables xi, yj and z,

which are divided into two types. The first edge type connects the variables of the old graph

to new checks, denoted by xi and yj, where variables yj is the number of edges connecting

to the highest degree variable node in the old graph, and variables xi are the remaining

edges connecting to the rest of old variables except degree-1 node. The other type consists

of edges that connect the new variable nodes to the new check nodes, denoted by variable

z in the right-bottom corner sub-matrix. In order to maintain linear growth of minimum

distance, more care is needed in this case since degree-2 variables might arise that form short

cycles. Therefore we also further simplify the problem by setting this submatrix to be lower

triangular.

The optimization process is simplified by further limiting the maximum number of parallel

edges. For example, we can set yj to the values of 1, 2, xi and zk to the values of 0, 1. The

resulting rate-0.75 protograph has a protomatrix given by:

H0.75 =




1 0 2 0 0 1 0 0 1 1 0 0 1 0 1 2 0 0 0 0 0

0 1 3 1 1 1 0 1 0 1 1 2 0 1 1 2 0 2 2 0 0

0 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 1 1 0 0

0 0 2 0 0 0 2 0 1 0 0 0 2 0 0 0 2 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0

0 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1




(3.10)

This protograph has an iterative decoding threshold of 1.706 dB with a gap of only 0.078

dB to capacity. Applying this procedure, we are able to generate a family of rate-compatible

codes with rates ranging from 0.32 to 0.88, based on the rate-5/6 protograph. To get as many

as lower rate codes as possible, we only add one variable node and one check node to the

mother code. These codes have rates R = 15
19−1+n

, n = 1, . . . , 28, i.e., rates from 15
46

= 0.32

to 5
6

= 0.83. The rate-0.88 (15/17) protograph is obtained by puncturing the degree-1

variable node in the rate-5/6 protograph structure. The protomatrix of the smallest rate

(R = 15/46) code in this rate-compatible structure is given in Eq. (3.11), from which all other

protomatrices can be deduced. This protograph has 47 variable and 32 check nodes with
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Table 3.2. Threshold of rate-compatible protograph code family

Code Protograph Capacity Gap to
Rate threshold (dB) threshold (dB) capacity
15/17 3.137 2.945 0.192
5/6 2.445 2.362 0.083

15/19 2.046 1.948 0.098
3/4 1.706 1.628 0.078

15/21 1.434 1.364 0.070
15/22 1.208 1.143 0.065
15/23 1.027 0.968 0.059
15/24 0.878 0.816 0.062
3/5 0.785 0.682 0.103

15/26 0.706 0.559 0.147
5/9 0.548 0.471 0.077

15/28 0.432 0.357 0.075
15/29 0.383 0.265 0.118
1/2 0.278 0.188 0.090

15/31 0.198 0.109 0.089
15/32 0.132 0.050 0.082
15/33 0.080 -0.014 0.094
15/34 0.032 -0.070 0.102
3/7 0.002 -0.118 0.116

15/36 -0.067 -0.170 0.103
15/37 -0.106 -0.217 0.111
15/38 -0.144 -0.256 0.112
15/39 -0.171 -0.295 0.124
15/40 -0.231 -0.334 0.103
15/41 -0.259 -0.375 0.116
15/42 -0.316 -0.410 0.094
15/43 -0.357 -0.432 0.075
15/44 -0.382 -0.469 0.087
1/3 -0.402 -0.501 0.099

15/46 -0.421 -0.532 0.111
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the highest degree variable node is punctured. The thresholds of the new rate-compatible

codes are given in Table 3.2. As seen in the table, these codes have thresholds uniformly

within 0.2 dB of their capacity limits. All the codes have linear minimum distance growth

property [20].

3.5 Simulation Results

In this chapter, a protograph code is derived from our proposed protograph in two lifting

steps. First, the protograph was lifted by a factor of 4 using the progressive edge growth

(PEG) algorithm [48] in order to remove all parallel edges. Then based on desired informa-

tion block-length, the resulting graph was lifted again using PEG to determine a circulant

permutation of each edge class in order to maximize the girth of an overall bipartite graph.

In our nested codes of Section 3.3, the parity check matrix for the lower-rate code can be

obtained by removing certain columns from the parity check matrix of the higher rate code,

and this produces economies in the design of the decoders. In fact, it is enough to design a

decoder for the largest rate code (9/10). To decode the lower-rate codes, the missing coded

bits are replaced by erasure at the decoder. In the same manner, the rate-compatible codes

generated in Section 3.4 only need the decoder of the lowest rate. Other higher-rate codes

are decoded by replacing missing parity bits by erasure at the decoder. The fixed-point

iterative sum-product decoder used for protograph codes is described in the appendix.

The performances of our nested high-rate codes with rates 1/2, 2/3, 3/4, 5/6, 7/8 and

9/10 over the binary-input AWGN channel are shown in Figure 3.6. All codes are simulated

with the information block-length of 16k. The nested high-rate protographs given in Sec-

tion 3.3 are first lifted by a factor of 4. This results in larger protographs that are lifted

again with factors of 1365, 683, 455, 273, 195 and 152, respectively. For the rate-compatible

protographs given in Section 3.4, we only need to lift the largest protograph (rate-15/46),

by factor of 4 and then 273. Other high rate codes are obtained by removing the redundant

parity bits. The performances of rate-compatible codes are shown in Figures 3.7 and 3.8.
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H32×47 =


1 0 2 0 0 1 0 0 1 1 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 3 1 1 1 0 1 0 1 1 2 0 1 1 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 2 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




(3.11)



31

0 0.5 1 1.5 2 2.5 3 3.5 4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R
/F

E
R

 

 

FER−9/10
BER−9/10
FER−7/8
BER−7/8
FER−5/6
BER−5/6
FER−3/4
BER−3/4
FER−2/3
BER−2/3
FER−1/2
BER−1/2

Figure 3.6. Performance of nested codes of Section 3.3.
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The resulting protograph codes have the girth ≥ 8 except the protograph codes with

rates 7/8, 9/10 and 15/46 where the girth is 6. The equivalent parity check matrices of

all protograph codes have full rank except the rate-1/2 protograph plotted in Figure 3.2

whose the parity check matrix has a row null space of dimension one. Thus, the rate loss is

negligible. The maximum number of iterations is set to 200. No error floors were observed

up to FER of 10−6. The practical performance at FER = 10−6 shows a gap of less than 0.6

dB to threshold and 0.8 dB to capacity, thus the waterfall regions are steep.

Figure 3.9 shows a comparison between our rate-1/2 code (protomatrix deduced from

Equation (3.11)) and the rate-1/2 AR4JA code reported in CCSDS standard [49]. The new

code outperforms the AR4JA code by approximately 0.2 dB. A comparison is also shown in

the same figure with the rate-1/2 LDPC code reported in the DVB-S2 standard for video

broadcasting [50]. The standard provides the code structure as a concatenation of BCH and

LDPC codes, and reports the code performance with the information block-length of 32k.

Even with a smaller block-length, the new code outperforms the standard code.

3.6 Conclusion

This chapter presents a simple approach for constructing rate-compatible LDPC codes based

on protographs which perform within 0.2 dB of their capacity limits. The rate-compatible

structure has the advantage of low encoding complexity and efficient decoding algorithm

with one hardware implementation for all members of the code family.
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Figure 3.7. FER performance of rate-compatible codes of Section 3.4.
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Figure 3.8. BER performance of rate-compatible codes of Section 3.4.
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Figure 3.9. Comparison of the rate-1/2 code produced in Section 3.4 and AR4JA, both with
information block-length of 16k, and DVB-S2 code with information block-length of 32k.



CHAPTER 4

BILAYER PROTOGRAPH CODES FOR HALF-DUPLEX

RELAY CHANNELS

To harvest the cooperative gain promised by information theoretic results [51, 52], we are in

need of coding schemes that can approach the fundamental limits of relay channels. Among

the early coding results for the relay channel were distributed coded diversity schemes [53, 54,

55], which proposed convolutional and Turbo codes for the fading channel under cooperation.

Later on, Duman et al. [56, 57] proposed turbo codes for the decode-forward relay channel

in half-duplex and full-duplex modes. There is a large body of work focused on designing

LDPC codes for the relay channel [58, 59, 60, 61, 62, 63, 64]. These LDPC code designs

mainly depend on irregular LDPC codes and use density evolution (or related) techniques

to search for optimized irregular LDPC ensembles operating at two different rates. Razaghi

and Yu [61] produce bilayer LDPC code structures for the decode-and-forward (DF) scheme.

This approach has been refined in other works including [58, 59]. Other examples of LDPC

codes for the half-duplex relay channel include [60, 62, 63, 64].

It has been known that the basic problem of coding for the decode-forward relay channel

in the power-limited regime can be reduced to the following: a code and its sub-code must

be designed simultaneously that operate with two different rates at two different SNRs at

the relay and the destination respectively. Despite significant progress, existing LDPC codes

must be painstakingly optimized to match to a set of channel conditions, many of them

do not offer easy encoding, and lack a structure that facilitates the optimization of design.

This chapter proposes a class of LDPC relay codes that address three important issues

in an integrative manner: low encoding complexity, modular structure allowing for easy

design, and rate-compatibility so that the code can be easily matched to a variety of channel

36
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conditions without extensive re-optimization. In addition, the proposed codes offer excellent

performance.

In this chapter, we concentrate on the decode-and-forward protocol. For practical pur-

poses, we further limit ourselves to the half-duplex relaying where the relay cannot transmit

and receive at the same time. The main contribution of this chapter is a coding scheme for

the relay channel using protographs [17] that are built with bilayer expurgated and bilayer-

lengthened structures [61]. A protograph code [17] is an LDPC code that can be constructed

by extension from a small bipartite graph called a protograph, whose graph topology is rep-

resented by a so-called proto-matrix. Protograph codes can achieve very good thresholds

with low encoder complexity as well as fast decoding [26, 20]. The proposed approach offers

flexibility in designing a family of rate-compatible embedded codes for relay channels. These

embedded codes allow a coding scheme whose rate can easily be adapted to channel con-

ditions, and are thus suitable for designing multi-relay coding systems. We also introduce

a methodology to evaluate the end-to-end error performance of relay coding schemes, and

demonstrate the end-to-end performance of our proposed codes.

4.1 Background

4.1.1 System Model

A half-duplex single-relay channel is shown in Figure 4.1. For the moment we ignore the

coding scheme shown in this figure to introduce the system model. Xi and Wi denote the

transmitted signals from the source (S) and the relay (R) while Yi and Vi denote the received

signals at the destination (D) and relay respectively. Subscript i = 1 denotes the broadcast

mode which is active for a fraction t of the transmission interval, and subscript i = 2 denotes

the multiple access mode which is active for a fraction t′ = 1− t of the transmission interval.

The received signals are:

V1 = hSRX1 + NR1

Y1 = hSDX1 + ND1
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Step 2: Decoding Layer 1

Step 1: Decoding Layer 2
R
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Figure 4.1. Bilayer-lengthened protograph design for half-duplex relay with RSD1 = 1
2

and
RSR1 = n+1

n+2
, n = 1, 2, . . .

Y2 = hSDX2 + hRDW2 + ND2 (4.1)

where hSD and hRD are the S-to-D and R-to-D channel coefficients respectively, NR1 , ND1

and ND2 are the noise samples at the relay and the destination in the first and second

time slots, respectively. All noise samples are assumed to be Gaussian with zero mean and

unit variance. PS1 = E[X2
1 ] represents the source transmission power in the first time slot

(duration t). Similarly PS2 and PR2 represent the source and relay transmission powers in

the relayed time slot (duration t′ = 1 − t). We also define SNRSR, SNRSD and SNRRD

as signal-to-noise ratios by the relay and destination during the first time slot, and by the

destination during the second time slot, respectively.

4.1.2 Coding for Half-Duplex Relay Channels

In the first time slot, a source sends a high-rate CSR1 code to a relay and a destination,

using a rate that is decodable at the relay. In the second time slot, the relay transmits

additional mutual information to help the destination decode, producing an effectively lower-

rate CSD1 .
1 Thus the relay coding problem consists of a simultaneous design of two codes

1In our formulation the source may also be active in the second time slot, but it will
be constrained to synchronously transmit the same signal/codebook as the relay. Thus in
this work the distinction between orthogonal and non-orthogonal transmission is only in the
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that operate at two different SNRs SNRSR > SNRSD, such that one is a subset of the

other. This problem has been attempted a number of times by forceful optimization, but a

more streamlined approach is now available via bilayer expurgated and bilayer-lengthened

LDPC structures [61]. In the bilayer LDPC structure, either the bit nodes or the check nodes

are divided into two sets (called layers) and the graph, although still a bipartite graph, is

re-drawn with two rows of check nodes sandwiching the bit nodes, or vice versa [61, Figure

3 and 6]. This provides a convenient way to build and illustrate subcodes, which we use for

our purposes. For a more comprehensive treatment and justification of the bilayer structure

please see [61, 63].

4.2 Design of Bilayer Protograph Codes for Relay Channels

4.2.1 Bilayer Lengthened Structure

A bilayer lengthened structure for the relay channel [61] is shown in Figure 4.1 where a

high-rate code is constructed by adding variable nodes to the graph of a low-rate code.

Geometrically, the overall graph contains two layers (sets) of variable nodes and one set of

check nodes. One layer of variables connecting to the checks forms a graph of a lower-rate

code, and the entire graph constitutes a high-rate code. The corresponding parity check

matrix has the form:

HSR1 = [HSD1He] (4.2)

where HSD1 is the parity matrix of the lower-rate code which is equivalent to the sub-code

(Layer 1 or CSD1) and He is the extension matrix representing Layer 2. Layers 1 and 2

combined create a capacity-approaching code for the source-relay link (CSR1) as shown in

Figure 4.1. The relay decodes this codeword, then protects the codeword bits in Layer 2 via

k2 parity bits, and the parities are transmitted to the destination with CRD2 at the second

time slot. The destination, using these k2 parity bits, can reliably detect the bits in Layer

received SNR during relay time slots. Since we parameterize our analysis by received SNR
without any direct reference to source and relay powers, both orthogonal and (synchronous)
non-orthogonal transmissions are subsumed in the following developments.
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2, therefore they can be eliminated from the code graph. The remaining graph contains just

Layer 1, which constitutes a capacity approaching code at the SNR of the SD link, which is

decodable at the destination.

We will describe in the following an example for the design of the bilayer lengthened codes

with rates R = n+1
n+2

, n = 1, 2. . . ., as an extension of the rate-1/2 protograph of Eq. (3.4).

For each new code, three variable nodes (or columns) are added, as follows:

Hn+1
n+2

=




H n
n+1

y1 y2 y3

x1 x4 x7

x2 x5 x8

x3 x6 x9




(4.3)

where xi and yi variables denote the number of parallel edges in the extension graph, to

be determined. Variables yi in the first row correspond to the check node that connects

to the degree-1 variable node. Variables xi in rows 2-4 correspond to the remaining check

nodes. In order to preserve the linear growth of minimum distance for the bilayer codes, the

column sums in rows 2-4, namely sums of columns designated with variables xi, should be 3

or higher [29].

We further simplify the problem by setting the maximum number of parallel edges to 2

(i.e. xi, yi = 0, 1, 2). These constraints limit the range of parameters thus simplifying the

optimization. Our cost function is the threshold which is calculated via the PEXIT method.

For this example, the best threshold is given by:

H2/3 =




H1/2

0 1 1

1 1 1

2 1 2

0 1 0




H3/4 =




H2/3

0 0 2

2 2 0

1 1 2

0 0 1



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H4/5 =




H3/4

0 1 2

1 2 2

2 1 1

0 0 0




H5/6 =




H4/5

0 0 1

2 2 0

1 1 2

0 0 2




H6/7 =




H5/6

0 0 1

1 2 1

2 1 2

0 1 0




H7/8 =




H6/5

0 0 2

2 2 0

1 1 2

0 0 2




H8/9 =




H7/8

0 0 0

0 1 2

2 2 1

1 1 0




H9/10 =




H8/9

0 0 2

1 2 0

2 1 2

0 0 2




The iterative decoding thresholds of these codes calculated by PEXIT technique [28] are

given in Table 4.1. For rates > 2/3, the produced codes have iterative decoding thresholds

within 0.1 dB of the capacity, and the rate-2/3 code has a threshold within 0.152 dB.

4.2.2 Design of Bilayer Expurgated Protograph Codes

A bilayer expurgated structure for the relay channel [61] is shown in Figure 4.2 where a

low-rate code is constructed by adding check nodes to the graph of a high-rate code. The

bilayer graph in this case contains two layers (sets) of check nodes and one set of variable

nodes (unlike the bilayer lengthened structure). The variable nodes together with one layer

of check nodes form the graph of a high-rate code, and the entire graph constitutes a low-rate

code. The corresponding parity check matrix has the form

HSD1 =


HSR1

He


 (4.4)

where HSR1 is the parity check matrix of a high-rate LDPC capacity-approaching code for the

source-relay link (representing the sub-code CSR1 of Layer 1), and He is the extension matrix
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Table 4.1. Thresholds of proposed protograph codes

Code Protograph Capacity Gap to
Rate threshold (dB) threshold (dB) capacity

Bilayer lengthened design
1/2 0.439 0.187 0.252
2/3 1.223 1.059 0.164
3/4 1.720 1.626 0.094
4/5 2.136 2.040 0.096
5/6 2.455 2.362 0.093
6/7 2.718 2.625 0.093
7/8 2.941 2.845 0.099
8/9 3.125 3.042 0.083
9/10 3.295 3.199 0.096

Bilayer expurgated design
3/4 1.720 1.626 0.094
2/3 1.182 1.059 0.123
7/12 0.809 0.590 0.219
1/2 0.420 0.187 0.233
5/12 0.144 -0.185 0.329
1/3 -0.263 -0.497 0.234



43

DS

V1

Y1X1

W2

Y2X2

DS

k2 parity bits

R R

CSR1

2n

Layer 2

2n

CRD2

Layer 1

2n

Figure 4.2. Bilayer expurgated protograph design for half-duplex relay with RSD1 = N−k1−k2

N

and RSR1 = N−k1

N
, N is the number of variable nodes

representing Layer 2. Layers 1 and 2 together create a capacity-approaching code CSD1 for

the source-destination link as shown in Figure 4.2. The source transmits a CSR1 codeword.

The relay, after decoding the source codeword, produces k2 additional “parity” bits using

the extension matrix He, re-encodes these k2 bits with codebook CRD2 and transmits to

the destination. At the destination, the k2 parity bits that are reliably detected essentially

provide k2 additional check values on the source codeword from CSR1 . This is equivalent to

decoding a CSD1 codeword (with a lower rate) at the SNR of the source-destination link.

We now describe an example for the design of bilayer expurgated codes. In the interest

of brevity, we only present one construction of bilayer codes. However, the proposed method

is completely general; we can start from any high-rate code to build a family of expurgated

codes. The starting point for the following construction is the rate-3/4 protograph code

designed in the last subsection. The rate-3/4 protograph contains 13 variable nodes (one of

them punctured) and 4 check nodes. Low-rate bilayer codes expurgated from this code have

rates R = 13−4−n
13−1

, where n is the number of checks added. For each value of n, the new code

will require a search. As a representative sample, we concentrate on the search for n = 1,

which yields a rate-2/3 code. The search space for this new code is in the form
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Hsearch
2/3 =




H3/4

0 y x1 x2 . . . x11




(4.5)

where y variable denotes the number of parallel edges connecting to the punctured variable

node and xi variables denote the number of parallel edges connecting to remaining variable

nodes except the degree-1 variable node. Having a degree-1 variable node improves the

iterative decoding threshold of the code [20].

The optimization process is simplified by further limiting the maximum number of parallel

edges. For example, we can limit y ∈ {1, 2} and xi ∈ {0, 1, 2}. Proto-matrices of new

expurgated protographs are given by

He
2/3 =




H3/4

0 1 0 0 0 0 0 1 1 0 0 1 2




He
7/12 =




He
2/3

0 1 0 0 1 0 0 1 0 0 0 0 2




He
1/2 =




He
7/12

0 2 0 0 0 0 0 0 1 0 1 0 0



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He
5/12 =




He
1/2

0 2 0 0 0 0 0 0 1 1 0 0 0




He
1/3 =




He
7/12

0 2 0 0 1 0 0 0 0 0 0 0 0




The iterative decoding thresholds of these codes are given in Table 4.1. The produced

codes all have decoding thresholds within 0.23 dB of the capacity except the rate-7/12 one

which has a decoding threshold within 0.33 dB of the capacity.

4.3 Numerical Results

4.3.1 Coding Thresholds

We design nested bilayer lengthened and expurgated protograph codes for the half-duplex

relay channel, which can operate at any two rates with iterative decoding thresholds close

to capacity, as shown in Table 4.1. For comparison, the thresholds of bilayer lengthened and

bilayer expurgated irregular LDPC codes proposed in the literature are shown in Table 4.2.

All codes use a rate pair (RSD1 ' 0.5, RSR1 ' 0.7). Our proposed bilayer lengthened and

bilayer expurgated codes are better than the codes proposed in [64] and within 0.1 dB of

codes reported in other works2. Thus, a simple design approach has yielded a family of codes

that offer a performance comparable with other highly-optimized bilayer LDPC codes, while

2The rate of [61, 64] is slightly less than 1/2, thus slightly skewing the comparison in
their favor.



46

Table 4.2. Comparison of thresholds (R1 ' 0.5, R2 ' 0.7)

Lengthened Expurgated
[61] [64] [58] Our code [61] [59] [58] [64] Our code

Gap1 0.164 0.3854 0.1039 0.239 0.514 0.258 0.284 0.6323 0.233
Gap2 0.120 0.1758 0.0945 0.152 0.084 0.084 0.084 0.215 0.123

offering important advantages in terms of rate-compatibility, low encoding complexity, and

the fast decoding properties of protograph codes.

4.3.2 Simulation Results

Our protograph codes are derived from protographs in two lifting steps. First, the protograph

is lifted by a factor of 4 using the progressive edge growth (PEG) algorithm [48] in order to

remove all parallel edges. Then, a second lifting using the PEG algorithm was performed to

determine a circulant permutation of each edge class that would yield the desired code block

length.

In our nested bilayer lengthened codes of Section 4.2.1, the parity check matrix for the

lower-rate code can be obtained by removing certain columns from the parity check matrix of

the higher rate code, and this produces economies in the design of the decoders. In fact, it is

enough to design a decoder for the largest rate code (9/10). To decode the lower-rate codes,

the missing coded bits are replaced by erasures at the decoder. In the same manner, the

bilayer expurgated codes generated in Section 4.2.2 only need the decoder of the lowest rates

(1/3). Other higher-rate codes are decoded by ignoring redundant checks at the common

decoder.

The performances of our bilayer lengthened protograph codes with rates 1/2, 2/3 and

3/4 over a binary-input additive white Gaussian noise (BI-AWGN) are shown in Figure 4.3.

In addition, performances of bilayer expurgated protographs with rates 1/3, 5/12, 1/2, 2/3

and 3/4 are shown in Figure 4.4. All codes are simulated with the information block-length

of 16k. To construct codes with this 16k information block-length, the protographs for the

lengthened codes are first lifted by a factor of 4, and subsequently again by factors 1365,
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683, and 455, for codes of rate 1/2, 2/3, and 3/4 respectively. A similar two-step lifting is

used for the expurgated codes.

The decoder is a standard message passing decoder where the maximum number of

iterations is set to 200. LLR clipping and other decoding parameters are according to [65].

No error floors were observed up to WER of 10−6. The gap to capacity of these codes are

within 0.7 dB of their iterative decoding threshold and within 1 dB of their capacity limits

at WER ≈ 3 ∗ 10−6.

We now consider a half-duplex relay channel with information block-length of 16380 bits.

We assume the SR link supports rate RSR1 = 3/4 and the SD link supports rate RSD1 = 1/2.

For this example, the time division t = 0.75 is chosen for the source and relay. The rate

needed in the RD link is RRD2 = 3/4 [63, Eq. 5]. This is the same as the rate of SR code but

with a different codeword-length. Under these conditions, the achievable rate of the relay

channel is 0.5625 [63, Eq. 3].

We now consider the bilayer expurgated coding scheme (Figure 4.2) with information

blocklength 16380. CSR1 is implemented by the rate-3/4 protograph given in Section 4.2.1.

The code CRD2 , which protects additional parities generated at the relay, has information

blocklength 5460. CRD2 is constructed from the same protograph as CSR1 , but with a shorter

length. The destination decodes a CSR1 codeword plus these additional parity values, which

constitutes a codeword of CSD1 in the same manner as [61]. The WER and BER performances

of these codes are shown in Figure 4.5. The shorter block length of the rate-3/4 RD code

has resulted in a wider waterfall region, highlighting a weakness of the successive decoding

approach at smaller block lengths.

The bilayer lengthened structure involves four codes (Figure 4.1). Using the above relay

channel parameters, CSR1 has the information block-length 16380 and codeword block length

21840. Each codeword of CSR1 is composed of a CSD1 codeword with blocklength 10920 and

an extension of 10920 bits derived via the extension matrix He from Eq. (4.2). The relay,

after decoding and recovering the codeword, multiplies the extension bits by the parity check

matrix of a rate-1/2 code C1 to calculate a syndrome of length 5460. C1 is lifted from the
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rate-1/2 protograph given in Eq. (3.4). The syndrome is then encoded by CRD2 , transmitted

and decoded at the destination to recover the syndrome. CSR1 and CRD2 are similar to

their counterparts in the bilayer expurgated scheme. Also, CSD1 and C1 have the same

code structure and blocklength. The WER and BER performances are shown in Figure 4.6.

Performance of CSD1 in the bilayer-lengthening relay structure is worse than in the bilayer

expurgated structure because of its shorter blocklength.

Although the example above was coached in terms of orthogonal transmissions, it also

applies to a non-orthogonal system with correspondingly lower source and relay powers (see

footnote 1).
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4.3.3 End-to-End Performance of Relay Coding Systems

Many works in contemporary literature represent the performance of relay channel codes by

illustrating two component codes: the source-relay code, and the source-destination code.

The price of this simple approach is that one must either ignore or assume perfect the

relay-destination code. We believe there is merit in providing a comprehensive end-to-end

performance because the relay-destination code operates at a smaller block length, thus it

has a wider waterfall and may very well be the bottle neck for the entire system, therefore

providing the thresholds or even simulations for only the two other sub-codes may not always

be fully illuminating of the overall performance.

A complete representation of the error performance of a coding scheme for a relay channel

would show error as a function of the three SNRs of its constituent channels. But this requires

a four-dimensional plot which has limited practical utility. We construct a simpler error plot

by assuming

SNRSR = SNRSD + α SNRRD = SNRSD + β (4.6)

where α and β are fixed constants. The affine relationship of the SNRs allows them to be

displayed on the same axis, producing a simple end-to-end error plot which can be thought

of as a 2-dimensional slice of the general four-dimensional error characterization of the relay

channel. α and β can be carefully chosen (as shown below) to generate a reasonable and

insightful overall representation of the performance of the relay channel that does not ignore

or trivialize any of the parameters of the system.

To simplify the simulations, we develop a tight bound on the end-to-end error based

on component errors in the system. For the purposes of exposition we concentrate on the

expurgated-bilayer codes (Figure 4.2), where three types of errors may happen in the system:

ER is the error event at the relay, ERD is the error in the decoding of the “extra parity”

arriving from the relay to the destination, and finally, ED is the error event at the destination

in the final decoding of the source message, and the complement of event E is shown with
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E. The bound is shown in Eq. (4.9).

Pe = P (ED|ER)P (ER) + P (ED|ER)P (ER) (4.7)

=
[
P (ED|ERD, ER)P (ERD) + P (ED|ERD, ER)P (ERD)

]
P (ER) + P (ED|ER)P (ER)

(4.8)

≤ P (ED|ERD, ER) + P (ERD) + P (ER) (4.9)

It is easy to see the bound is tight because component codes are used in a regime where

their errors are, conservatively, no more than 10−2 ∼ 10−3, therefore with a very good

approximation P (ER) ≈ 1, P (ERD) ≈ 1, P (ED|ER) ≈ 1 and P (ED|ERD, ER) ≈ 1.

We are now ready to calculate the values of α and β, which will determine how the

individual code error characteristics are combined to produce the end-to-end performance.

We are interested in cases where none of the component errors dominate the others, because

when one of the link errors dominates, the performance will be essentially determined by the

code on the dominating link, which is already known from the literature on point-to-point

channels. So the interesting case is when no link errors dominate, i.e. the waterfall regions

of the component curves coincide at their starting points (approximately the threshold).

The performance of two bilayer codes with a rate pair (RSD = 1/2, RSR = 3/4), α = 1.4

dB, β = 1.6 dB and time sharing t = 0.75 are shown in Figure 4.7. To understand how far

is the end-to-end performance of our codes from theoretical limits, we follow the convention

of point-to-point channels and produce a value of SNR at which a random code of infinite

length and rate similar to the code under study is capable of theoretically supporting error-

free communication. Similarly to the point-to-point case, this involves inverting the capacity

formula by inserting the rate and extracting the corresponding SNR. To produce a single

SNR value, we use Eq. (4.6), assume that each of the component code is at the rate the

mutual information the link supports, and use the relay mutual information formulas in [63].

Using these parameters, the relay channel of the above example has a throughput of 0.5625

and the code rates correspond to the limiting SNR of SNRSD = 0.225 dB. As seen in this

figure, the gap-to-capacity of bilayer expurgated and bilayer lengthened relay coding schemes
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Figure 4.7. End-to-end performance bounds for relay coding schemes in Figure 4.6 and
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are about 0.7 dB and 1.2 dB respectively at FER of 2.10−5. The end-to-end error bound

of the bilayer lengthened code is worse than that of the bilayer expurgated code because of

the block-length issues. This phenomenon has also been reported by several previous works

including [61, 64].

4.4 Design of Bilayer Codes for Two-Relay Channels

In a practical two-relay scenario (Figure 4.8) it is likely that the relays do not have precisely

and deterministically identical channels to the source, destination, and each other. Therefore

one relay is likely to be “stronger” and decode first, then this relay will be able to help another

relay to decode, and then the two relays together will assist the destination.



54

W2

P2

D

R1

S

Y2X2

R2

Layer 1

CSR2 k3 bits
CSD

Layer 2
Layer 3

t2

R1

S

V1

X1

R2
P1

t1 D

Y1

DS t3 =1-t1-t2

W3

R1

Y3X3

R2

Q3

CSR1

k2 bits

C1

C2
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We consider transmissions in three time slots for the source and two relays. The trans-

mitted signals from the source (S) and two relays (R1 and R2) are denoted with X, W and

Q, respectively, and the received signals at the destination and two relays are denoted with

Yi, Vi and Pi, respectively, where i indicates the time slot index. In the first time slot, the

source encodes its message using the code CSR1 . The first relay decodes the source message,

but the second relay and the destination cannot (yet). During the second time slot, the

first relay generates k2 parity bits using the sub-graph denoted Layer 2,3 then encodes these

parity bits using another LDPC code C1. The second relay, after decoding the k2 parity

bits, decodes the source message. Then, the second relay computes k3 parity bits using the

subgraph denoted Layer 3, encodes the k3 bits with another LDPC code C2, and transmits

to destination. The destination decodes C1, C2, and finally the source message with the

help of k2 + k3 additional parity bits from two relays. The achievable rate using the above

strategy is a special case of the achievable rate in [66].

For demonstration, consider an example where R1, R2 and D can reliably receive source

signals with a rate RSR1 = 3/4, RSR2 = 7/12 and RSD = 1/3 respectively. The R1-to-D

3Like the one-relay case, these bits are the syndrome of a parity check extension matrix.
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Figure 4.9. Performance of component codes used in a two-relay channel: RSR1 = 3/4,
RSR2 = 7/12, RSD = 1/3, RC1 = 1/2 and RC2 = 3/4. CSR1 , CSR2 and CSD all have
codeword blocklengths of 23660, while C1 and C2 have codeword blocklengths of 7280.

channel supports RR1D = 1/2. Assuming t1 = 0.6, t2 = 0.2 and t3 = 0.2, the achievable rate

of the two-relay channel is 0.45 [63]. The rate of C1 and C2 are 1/2 and 3/4, respectively.

Information block length is 16380. CSR1 , CSR2 and CSD are constructed from protographs

given in Section 4.2.2. CSR2 is rate-7/12 and CSD is rate-1/3, resulting in k2 = 3640 and k3 =

5460. Although the explanation of this example was in terms of orthogonal transmissions,

the precise same example also applies to a non-orthogonal (beamforming) relay channel with

correspondingly lower source and relay power.

C1 arises from the protograph in Eq. (3.4) and C2 is the same code as CSR1 , but with

a shorter blocklength. Figure 4.9 shows the performance of CSR1 , CSR2 , CSD, C1 and C2,

which operate within 0.6 dB, 0.7 dB, 0.9 dB, 1.5 dB and 1 dB respectively of their capacity

limits at WER = 10−5. As expected, C1 is the bottleneck in this two-relay channel because

of its short blocklength. We note that this gap is an outcome of a relatively short overall
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block length and a successive decoding approach, both of which are practical considerations

and can be relaxed.

Remark 4.4.1 In the multi-relay scenario, there are multiple options for the decoding and

transmission at relays. For example, two relays can cooperatively beamform towards a desti-

nation. The required codes in this case are fundamentally similar to the one-relay channel,

therefore we do not consider them separately in this chapter.

Remark 4.4.2 In the multi-relay scenario the transmission time is divided multiple times

which shortens the component block-lengths. Therefore we did not pursue a multi-relay gen-

eralization of the bilayer lengthened structure due to its susceptibility to short block length

effects.

Remark 4.4.3 Optimization of the time division to maximize the achievable rates has been

pursued in chapters on the capacity of relay channel [67] and can be extended to the multi-

relay scenario. Depending on the channel gains, the optimal length for one of the time slots

may be zero, in which case one of the relays must be shut off.

Remark 4.4.4 The developments throughout this chapter apply to either orthogonal relaying

or to non-orthogonal relaying where concurrent transmissions use the same codebook.

4.5 Discussion and Conclusion

This chapter presents a simple approach for constructing relay coding schemes based on

bilayer lengthened and bilayer expurgated protograph codes which perform within a fraction

of dB of the capacity. The proposed codes allow easy design, flexibility in matching to various

relay channel conditions and low encoding complexity and can be extended to multi-relay

networks. A framework for end-to-end performance evaluation of the relay codes is also

provided.
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Nested protograph codes have also been considered for the point-to-point channel [30],

whose similarity with the present work is designing multi-component protograph codes. How-

ever, in relay channels the two component codes are sent by different transmitters, unlike

the point-to-point case, and see different channels with different SNRs. To address the issues

arising from the relay network configuration, a bilayer structure [61] for the overall code and

a coset code at the relay was used, which have no counterpart in the point-to-point case [30].



CHAPTER 5

PROTOGRAPH-BASED CODED BICM

Bit-interleaved coded modulation (BICM) [68] is a technique that allows relatively simple

design of bandwidth-efficient coded modulation systems. This joint design has proven to

be powerful and capacity-approaching for fading channels with applications of low-density

parity-check (LDPC) codes [69, 70, 71, 72]. However, many of the previous works design a

particular code with a specific modulation scheme. It is desirable to find a general scheme

that can support multiple rates and multiple modulation schemes within the context of

BICM.

In this chapter, we address this question via a family of protograph-based LDPC codes to

be mentioned shortly, and combining them with a simple and efficient mapping to high level

modulation schemes i.e. QPSK, 8PSK and 16QAM in Rayleigh fading channels. We proceed

by calculating their iterative decoding thresholds, a useful parameter when designing any

capacity-approaching LDPC code. In the context of Rayleigh fading, this chapter for the

first time presents the calculation of the threshold of protograph-based BICM.

In this chapter, we study two families of protograph codes: AR4JA protograph codes [20]

described in Chapter 2 and our proposed protograph codes reported in Chaper 3, and map

them to high-order modulations. We should mention that the protograph-based LDPC

coded BICM using AR4JA protograph codes with 16QAM in AWGN channel was previously

studied in [73, 74]; the advantage of our design process is that it is modular and easy to

apply to other protographs and modulations. We propose here a general mapping scheme

that maps any protograph structure with any modulation. The effectiveness of our method

is demonstrated via the calculation of the iterative decoding thresholds in Rayleigh faded

channels. We show that certain family of protograph-based coded modulation schemes under

58



59

LDPC
Encoder

Mapper and 
Modulator

Fading 
channel

MAP symbol-to-bit
metric calculator

bi s

yLiLDPC
Decoder

Interleaver

De-
Interleaver

Figure 5.1. Block diagram of BICM system

studies in this chapter are operating within a gap of 0.2 − 0.4 dB or less to their capacity

limits.

5.1 System Model

A general BICM system is shown in Figure 5.1. The information sequence is encoded by

an LDPC encoder to get a coded bit sequence. The coded sequence is then bit-interleaved

before being sent to a modulator. The M -ary modulator maps m = log2 M coded bits at a

time to a complex symbol chosen from an M -ary constellation χ. The discrete-time baseband

channel model can be written as

yt = hst + wt (5.1)

where t is the discrete time index, yt is the received signal, st is the transmitted symbol,

h = hI + ihQ is the zero mean complex Gaussian distributed fading coefficient with the

variance of 1/2 in each dimension and wt is a complex white Gaussian noise sample with

the zero mean and the variance per dimension of N0/2. In this chapter, we assume that the

channel state information is available at the receiver.

The MAP symbol-to-bit metric calculator will compute the symbol-to-bit metrics based

on the received symbol y from the channel. These bit metrics are passed to a decoder,

which employs the iterative belief propagation algorithm. Let χi
b be the subset of all the

signal points x ∈ χ whole label has value b ∈ {0, 1} in position i. The symbol-to-bit metric
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computed by the MAP calculator at each time to feed into the iterative decoder is given by

Li = L(bi|y) = ln

∑
x∈χi

0
exp(− 1

2σ2‖y − x‖2)
∑

x∈χi
1
exp(− 1

2σ2‖y − x‖2)
(5.2)

for i = 1, . . . , m. The BICM capacity [68], with perfect CSI and uniform inputs, is given by

C = m−
m∑

i=1

Eb,y,h

[
log2

∑
x∈χ ph(y|x)∑
x∈χi

b
ph(y|x)

]
(5.3)

In fact, BICM capacity is the sum of mutual information of m parallel channels I(Li, bi).

C =
m∑

i=1

I(Li, bi) (5.4)

This mutual information I(L,X) can be computed by using Monte Carlo simulation [70] as

follows

I(L,X) = 1− E[log2(1 + exp(−xL))]) (5.5)

= 1− 1

N

N∑
n=1

log2(1 + exp(−xnLn) (5.6)

5.2 Protograph-Based Coded BICM

5.2.1 Mapping Algorithm

As seen in the previous chapters, protograph codes can be represented by a small graph

with only a few variable nodes and check nodes. For the purposes of BICM, the binary

variable nodes of the code must be mapped to the bit-levels of the modulation. The iterative

decoding threshold of the overall coded modulation scheme naturally depends in part on the

protograph code, but also on the mapping between the code and the modulation levels.

Divsalar and Jones [73] proposed a mapping algorithm based on Variable Degree Matched

Mapping (VDMM). The idea is to directly assign protograph variable nodes in proportion to

mutual information of coded bits in the modulation symbol. This is a well-known water-filling

problem. Following that idea, Jin et. al [74] carried out an exhaustive search of all possible
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permutations of protograph variable nodes mappings to symbol bits, and find the optimal

mapping pattern for the 16-QAM modulation whose constellation is shown in Figure 5.2,

which gives an iterative decoding threshold improvement of 0.14 dB compared with that of

the water-filling approach in [73].

In both [73] and [74] variable nodes in a protograph are directly assigned to the bits of a

modulation symbol which is shown in Figure 5.3. This limits the coded modulation that can

be designed with these methods. In this chapter, we propose a general method that can work

for any protograph structure and modulation level and achieving BICM-liked performance.

The basic idea of our technique is to use a two-stage lifting approach. Assuming that the

desired modulation is M -ary and the original protograph has n variable nodes, we start with

a smaller lifting of the original protograph by a factor of m = log2 M to a slightly larger

protograph, using the PEG algorithm [48]. An example is shown in Figure 5.4, where we

see an intermediate protograph constructed from four original AR4JA protographs. We now

map this intermediate protograph to n = 4 modulation symbols as follows: each labeling bit

position from all the n modulation symbols will be mapped to the variable nodes of one of

the planes in the intermediate protograph. For example, four b0 bits from four modulation

symbols are mapped to the top plane, four b1 bits are mapped to the next plane, etc.

Now, the mapping between coding and modulation is complete within a relatively small

“intermediate” protograph. The advantage of this intermediate protograph is that it is small

enough to allow optimizations, but it also has enough degrees of freedom to provide a good

mapping. Now this intermediate protograph is lifted (via a circulant matrix) to the expected

codeword length to form a protograph-based LDPC code.

We would like to contrast the proposed method with VDMM in terms of flexibility.

In VDMM as it is proposed, the coded bits in each protograph correspond to the symbol

bits in one transmitted symbol. Thus, for example, a 4-variable-node protograph naturally

corresponds to 16-QAM. With the proposed framework, however, it is very easy to use

any protograph together with any modulation. All that is needed is to produce the right

intermediate protograph.
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{V2, V4, V1, V3} in Divsalar’s paper and {b0, b1, b2, b3} = {V1, V2, V3, V4}

Table 5.1 compares the iterative decoding thresholds of our method compared with [73]

and [74]. By necessity this table is small, as [73, 74], as mentioned above, naturally corre-

spond to only one type of modulation.1 The iterative decoding threshold of our mapping

method is slightly larger than the brute-force optimized version of [74] and slightly smaller

than that of [73]. But we note that the point of the proposed method is not to produce the

absolutely smallest threshold for the specific case of 16 − QAM , but rather to expand the

horizon of available designs. In the sequel, we shall see the threshold gap to capacity for our

method is very good over a large spectrum of rates and modulations.

1The iterative decoding thresholds given in Table 5.1 are calculated with simulations that
use longer codewords than those reported in [74], and thus are slightly more accurate.
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Table 5.1. Mapping of rate-1/2 AR4JA to 16QAM under AWGN

Method [73] [74] Our approach capacity threshold
Threshold 2.853 2.714 2.812 2.286

Table 5.2. Thresholds of AR4JA coded family in Rayleigh faded channels

Code QPSK(dB) 8PSK(dB) 16QAM(dB)
Rate Thd. cap. gap thd. cap. gap thd. cap. gap
1/2 2.326 1.852 0.474 4.019 3.388 0.631 4.783 4.129 0.654
2/3 4.242 3.660 0.582 6.118 5.598 0.520 6.992 6.219 0.773
3/4 5.458 4.944 0.514 7.546 6.972 0.574 8.401 7.665 0.736
4/5 6.598 5.966 0.632 8.666 7.985 0.681 9.364 8.679 0.685
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Table 5.3. Thresholds of 395 coded family in Rayleigh faded channels

Code QPSK(dB) 8PSK(dB) 16QAM(dB)
Rate Thd. cap. gap thd. cap. gap thd. cap. gap
1/2 2.158 1.852 0.306 3.722 3.388 0.334 4.556 4.129 0.427
2/3 3.916 3.660 0.256 5.728 5.598 0.130 6.508 6.219 0.289
3/4 5.146 4.944 0.202 7.100 6.972 0.128 7.879 7.665 0.214
4/5 6.102 5.966 0.136 8.154 7.985 0.169 8.882 8.679 0.203

5.2.2 Iterative Decoding Thresholds of Protograph Coded BICM

The PEXIT algorithm to compute iterative decoding thresholds for protograph coded mod-

ulation is similar to the one proposed in [28] for AWGN channel, except the initialization

step. Instead using exact equation as in initialization step in [28][Section III.C], we need to

compute the mutual information for coded bits using Monte Carlo method as given in (5.6).

The iterative decoding thresholds of our protograph-based LDPC coded BICM schemes

are given in Table 5.2 and 5.3. From Table 5.2, AR4JA protograph-based coded BICM can

operate within about 0.7 dB to the BICM capacity limits. In the other hand, the family

of protograph codes shown in Eq. (3.3) and (3.8) can operate within about 0.2 − 0.4 dB

to the BICM capacity limit, which shows an improvement of about 0.3 dB compared with

that of the AR4JA family. This observation matches with the results reported in [30] which

provided the coding thresholds in AWGN channel.

5.3 Numerical Results

In this section, we will compute the iterative decoding thresholds of AR4JA protographs

given in (2.3) and our proposed nested protographs lengthened from the rate-1/2 proto-

graph with an iterative decoding threshold of 0.395 dB given in (3.3) and (3.8) with three

modulation schemes, i.e. QPSK, 8PSK and 16QAM.

Our protograph codes are built from the protographs in two lifting steps. First, the

protograph is lifted by a small factor in order to accommodate all modulation schemes. In

the case of three above modulation schemes, we need to lift the protograph by a factor of 12
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Figure 5.5. Rate-1/2 rate-1/2 AR4JA code using 8PSK/16QAM over Rayleigh fading.

which is a common divisor of 2, 3 and 4 bits. This first lifting procedure is implemented by

using the progressive edge growth (PEG) algorithm [48] in order to remove all parallel edges.

Secondly, the intermediate protograph is lifted using circulants to an expected codeword

length depending on different applications [20].

In order to support multiple rates, we begin with the highest-rate (4/5) protograph.

Since the protographs have a nested structure, the parity-check matrix of lower rate can be

obtained by removing certain columns from codes of higher rates. To decode the lower-rate

codewords, the missing coded bits are replaced by erasure at the decoder. Thus the family

of protograph codes can be implemented within a common encoder/decoder structure and

at the same time being able to support multiple modulation schemes as well.

The performance of the rate-1/2 AR4JA protograph code transmitted with 8PSK/16QAM

in the Rayleigh channel using the proposed mapping method is plotted in Figure 5.5 with
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the information block-length of 16k. At FER = 10−5, the AR4JA-BICM scheme perform

within a gap of < 1 dB to BICM capacity. Thus, the slope of the BICM coding scheme is

steep.

5.4 Conclusion

This chapter presents a simple method for designing protograph-based BICM that is gen-

eral and applies to any modulation. The iterative decoding thresholds of the protograph

codes while mapped to higher order modulations in Rayleigh faded channels are calculated.

This general coding framework can support not only multiple rates but also adaptive mod-

ulation. We report that certain families of protograph codes achieve a threshold within a

gap of approximately 0.2− 0.4 dB of BICM capacity limit across a wide range of rates and

modulations.



CHAPTER 6

RATE-COMPATIBLE PROTOGRAPH CODES FOR INTER-SYMBOL

INTERFERENCE CHANNELS

Rate-compatiblity is a desirable feature that allows a common encoder/decoder. This gives

a system flexibility to match channel variations. While the rate-compatible structure has

been studies extensively for memoryless AWGN channels, to our knowledge its application

for channels with memory, especially inter-symbol-interference (ISI) channels has been open

until now.

The capacity of ISI channels with finite-alphabet inputs is still open, however, if the source

is restricted to be independent and uniformly distributed (i.u.d.), the capacity of binary-

input ISI channels, also called partial response channels is known as the i.u.d. capacity [75].

Irregular LDPC codes have been designed to approach the i.u.d. capacity of partial response

channels [76, 77, 78, 79], but they generally lack a structure to enable easy encoding and

fast decoding. In this letter, we address the problem of designing rate-compatible structured

LDPC codes that are capacity-approaching for ISI channels.

In this chapter, we design a protograph-based LDPC code over binary-input partial re-

sponse channels. A protograph code [17] is a structured LDPC code that can be constructed

from a small protograph. Protograph codes over AWGN channels have demonstrated very

good thresholds with low encoder complexity as well as fast decoding [26, 20]. In the context

of coding for channels with memory, this chapter for the first time presents a method to

compute an iterative decoding threshold of a protograph-based code. We then provide a

simple optimization method for the threshold to find a protograph that is i.u.d. capacity

approaching.

67
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We briefly review some works related to this area. Franceschini et al. [79] proposed a

design method based on the EXIT chart [70] to optimize an irregular LDPC code for coded

modulation in ISI channels. However, the general EXIT chart cannot be used to compute

an iterative decoding threshold of protograph-based LDPC codes [28]. A general LDPC

code design for partial response channels was proposed by Kavcic et al. [75] via a modified

density evolution [9]. Following the method of [75], several irregular LDPC codes optimized

for certain specific partial response channels were reported including [76, 77, 78] and others.

Recently, Fang et al. [80] designed a nested protograph family that is good for the dicode

and EPR4 channels based on finite-length EXIT chart. However, none of the existing design

methods produce rate-compatible codes for ISI channels.

The main contribution of this chapter is a structured coding scheme based on protographs

that is i.u.d. capacity approaching. We find out that a protograph code that is good for

AWGN channels may not perform well on partial response channels, in particular protograph

codes containing punctured nodes seem to perform poorly with the Bahl-Cocke-Jelinek-

Raviv (BCJR) equalizer. We design two families of protograph codes: the nested high-

rate protographs where high-rate codes are built from a low-rate protograph by adding

more variable nodes; and the rate-compatible protographs where information blocklength

of all members are identical. Rate-compatible codes enjoy lower overall complexity since a

group of codes can be implemented with a common encoder/decoder. All proposed codes

have thresholds that are within a gap of 0.5 dB to i.u.d capacity. The implementation of

the proposed codes with 16k data over the dicode and EPR4 channels are reported. The

performance of our codes exhibits a frame error rate of 3× 10−6 at a gap of 1.1 dB from the

i.u.d capacity limits.

6.1 System Model

A general system with a partial response channel is shown in Figure 6.1. An information

sequence {bi} is encoded by a LDPC encoder to obtain a coded bit sequence {xi}, 1 ≤ i ≤ n,

which is transmitted with BPSK modulation. A partial response channel, also known as
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an inter-symbol interference (ISI) channel, refers to an AWGN channel with memory, often

modeled with a finite impulse response h(D) = 1+h1D+h2D
2+. . .+hνD

ν . The discrete-time

baseband channel model can be written as

yi =
ν∑

k=0

hkxi−k + Ni (6.1)

where ν is the channel memory, yi is the received signal, {hk}ν
0 is a set of channel coefficients,

assumed to be known at the receiver, and Ni is white Gaussian noise with zero mean and

the variance of N0/2. In this chapter, we mainly consider two popular channels for our

code designs, the dicode channel (h(D) = (1 − D)/
√

2) and the EPR4 channel (h(D) =

(1 + D −D2 −D3)/2).

The receiver includes a BCJR equalizer concatenated with a standard message passing

LDPC decoder. After receiving yi, 1 ≤ i ≤ n, the BCJR equalizer outputs the log-likelihood

ratios (LLRs)

L1i = log
P (xi = +1|y)

P (xi = −1|y)
− L2i (6.2)

where L2i is a priori information of xi, obtained from the message passing decoding in the

previous iteration. The message passing decoder takes the inputs L1i and computes an

output soft information Li. The extrinsic information that is passed to the BCJR equalizer

is L2i = Li − L1i.
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6.2 Iterative Decoding Thresholds

An iterative decoding threshold of a protograph is the minimum channel quality that sup-

ports reliable iterative decoding of asymptotically large LDPC codes built from the proto-

graph. The receiver in Figure 6.1 includes a BCJR equalizer concatenated with a LDPC

decoder. The graph representation of a joint protograph with trellis nodes which represent

the state structure of a channel with memory is shown in Figure 6.2. In order to compute

the iterative threshold of the joint graph, we proposed a method that combines the EXIT

analysis for the BCJR equalizer [70, 81, 82] with the protograph-based EXIT analysis [28].

Assuming that a protograph has N variable nodes V1, . . . , VN and M check nodes C1, . . . , CM .

We denote with ei,j the number of edges that connects Vi to Cj, where i = 1, . . . , N and

j = 1, . . . , M . For convenience, we follow the notations of [28]. In each case, we use the

word “knowledge” to indicate the mutual information between the LLRs and the coded bits

of the codeword.

• IAd, IEd: a priori and a posteriori knowledge of the BCJR equalizer

• I i
ch: a priori knowledge of a variable node Vi in the LDPC decoder. If Vi is punctured,

I i
ch = 0.

• I i,j
Ev, I

i,j
Ec: outgoing extrinsic knowledge from a variable node Vi to a check node Cj, and

from a check node Ci to a variable node Cj, respectively.

• I i,j
Av, I

i,j
Ac: incoming a priori knowledge from Ci to V j, and from V i to Cj, respectively.

• I i
APP : a posteriori knowledge evaluated by V i.

The algorithm for the calculation of the iterative decoding threshold is as follows. We

begin with an initial a priori mutual information and an initial Eb/N0 as input parameters

for the BCJR equalizer, which in turn provides an initial mutual information for the LDPC

decoder.



71

yt-1 yt yt+1

IEv

IEc

IEd

Channel outputs

Trellis nodes 

Protograph

IAd

T T T

Figure 6.2. Joint protograph with BCJR equalizer

1. Initialization

Set Eb/N0 = SNR0, and IAd = 0.

2. Computing a posteriori knowledge of the BCJR equalizer

The mutual information IEd can be calculated from the LLR outputs of the BCJR

equalizer [75, 82, 81], which in turn are obtained from the Monte Carlo simulation for

the given Eb/N0 and an a priori mutual information IAd.

3. Mutual information transfers from the BCJR equalizer to the variable nodes

Set I i
ch = IEd, for i = 1, . . . , N . If V i is punctured, I i

ch = 0.

4. Variable to check update

For j = 1, . . . , N and i = 1, . . . , M , if ei,j 6= 0,

I i,j
Ev = J

(( ∑

s 6=i

es,j[J−1(Is,j
Av)]

2 + +(ei,j − 1)[J−1(I i,j
Av)]

2) + [J−1(I i
ch)]

2
)1/2

)

If ei,j = 0, I i,j
Ev = 0. For j = 1, . . . , N and i = 1, . . . ,M , set I i,j

Ac = I i,j
Ev
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5. Check to variable update

For j = 1, . . . , N and i = 1, . . . , M , if ei,j 6= 0,

I i,j
Ec = 1− J

(( ∑

s6=j

es,j[J−1(1− I i,s
Ac)]

2 + +(ei,j − 1)[J−1(1− I i,j
Ac)]

2
)1/2

)

If ei,j = 0, I i,j
Ec = 0. For j = 1, . . . , N and i = 1, . . . ,M , set I i,j

Av = I i,j
Ec

6. Mutual information transfers from the LDPC decoder to the BCJR equalizer as a priori

information IAd

IAd =
1

N

N∑
j=1

J

(( ∑
s

es,j[J−1(Is,j
Av)]

2
)1/2

)
(6.3)

7. APP-LLR mutual information evaluation

For j = 1, . . . , N

Ij
APP = J

(( ∑
s

es,j[J−1(Is,j
Av)]

2 + [J−1(I i
ch)]

2
)1/2

)
(6.4)

8. Repeat steps 2-7 until IAPP = 1, ∀j or until maximum number of iteration.

This algorithm determines whether IAPP = 1 at a given SNR. Via bisection, one may

then find the lowest SNR for which this property is true, i.e., the lowest SNR at which the

decoder converges, which is the decoding threshold.

6.3 Protograph Design

In this section, we propose a simple approach to search for a good protograph with a low

iterative decoding threshold in a partial response channel. We concentrate on graphs that

possess good protograph properties: a low decoding threshold and linear minimum distance

growth property [20] which reduces the likelihood of a shallow error floor. Protographs that

lead to linear minimum distance growth must have degree-1 variable nodes [18, 19], as well

as a fraction of high-degree and degree-2 nodes [9].
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We begin by calculating the threshold of protographs that are designed for the AWGN

channel but are used in ISI channels. This will shed light on whether existing AWGN codes

are good enough for ISI channels. We revisit the proposed rate-1/2 code in Figure 3.2 whose

iterative decoding threshold in the AWGN channel is 0.395 dB that has a gap of only 0.208

dB to capacity.

We calculate the thresholds of the AWGN code over the dicode and the EPR4 channels.

The thresholds are given in Table 6.1. These thresholds are about 1 dB and 1.424 dB away

from the i.u.d. capacity limits of the dicode and EPR4 channels respectively. Such big gaps

show that the AWGN code may not perform well over these partial response channels. We

conjecture that the poor performance may in part be due to punctured nodes (which are

often used in AWGN protograph codes [20]), which may not be beneficial to the extrinsic

information exchange between the LDPC decoder and the BCJR equalizer. That observation

motivates us to seek protographs that do not contain punctured nodes.

To demonstrate with an example, let us search for a rate-1/2 protograph that contains

4 check nodes and 8 variable nodes without any punctured node. As mentioned in the first

paragraph of this section, a good protograph should contain several nodes with degrees 1

and 2. Thus, to greatly reduce the search space, we just start by a search structure with two

degree-1 and one degree-2 variable nodes in the form of

H
1/2
4×8,search =




x1 x5 x9 x13 0 0 0 1

x2 x6 x10 x14 0 0 1 0

x3 x7 x11 x15 1 1 0 0

x4 x8 x12 x16 2 1 0 0




(6.5)

where xi, i = 1, . . . , 16, are the number of edges connecting their associated column (variable

node) and row (check node). In order for the code to have the linear minimum distance

growth property, the edge summation over the last two rows within first 4 columns should

be 3 or higher [29], i.e. x3 + x4 ≥ 3, x7 + x8 ≥ 3, x11 + x12 ≥ 3 and x15 + x16 ≥ 3. We

can further simplify the problem by limiting xi ∈ {0, 1, 2}. Our objective in this specific

example is to find a protograph that has the lowest iterative decoding threshold over the
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Figure 6.3. The rate-1/2 protograph with the 4×8 structure optimized for the dicode channel

Table 6.1. Thresholds (dB) of rate-1/2 AWGN and ISI codes in the dicode and EPR4
channels

Dicode EPR4

h(D) = (1−D)/
√

2 h(D) = (1 + D −D2 −D3)/2
Threshold Gap Threshold Gap

AWGN code 1.821 0.998 2.584 1.424
ISI-code 1.217 0.394 1.531 0.371

dicode channel. The resulting protograph is in the form of

H
1/2
4×8,ISI =




2 2 0 0 0 0 0 1

2 2 1 0 0 0 1 0

2 2 1 1 1 1 0 0

2 2 2 2 2 1 0 0




(6.6)

The designed ISI code is shown in Figure 6.3, and the corresponding thresholds in two

channels are given in Table 6.1. This code has decoding thresholds within gaps of 0.394 dB

and 0.371 away from the i.u.d. capacity limits of the dicode and EPR4 channels, respectively.

The ISI code is also capacity approaching for the EPR4 channel, although it is optimized

for the dicode channel.

It is worth noting that we can also apply the same approach to design a smaller proto-

graph. For example, let us design a rate-1/2 protograph with 6 variable nodes and 3 check

nodes, then using a search structure with two degree-1 and one degree-2 variable nodes in
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Figure 6.4. The rate-1/2 protograph with the 3×6 structure optimized for the dicode channel

the form of

H
1/2
3×6,search =




1 0 x1 x4 x7 y1

0 1 x2 x5 x8 y2

0 1 x3 x6 x9 y3


 (6.7)

where xi, i = 1, . . . , 9 and yj, j = 1, . . . , 3 , are the number of edges connecting their

associated row (check node) and column (variable node) in which yj correspond to the

highest degree variable node. In order for the code to have the linear minimum distance

growth property, the edge summation over the last two rows within last 4 columns should

be 3 or higher [29], i.e. x2 + x3 ≥ 3, x5 + x6 ≥ 3, x8 + x9 ≥ 3 and y2 + y3 ≥ 3. We can

further simplify the problem by limiting xi ∈ {0, 1, 2} and yj ∈ {1, 2, 3, 4}. The resulting

protograph is in the form of

H
1/2
3×6,ISI =




1 0 0 1 0 4

0 1 2 1 2 2

0 1 1 2 1 1


 (6.8)

The designed ISI code is shown in Figure 6.4, and the corresponding thresholds in two

channels are given in Table 6.2. This code has decoding thresholds within gaps of 0.5 dB

away from the i.u.d. capacity limits of the dicode and EPR4 channels. Since the 3 × 6

protograph family has a smaller search space compared with that of the 4 × 8 structure,

it produces the code with a slightly higher iterative threshold compared with the larger

protograph.
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6.4 Nested and Rate-Compatible Codes

In the previous section, we proposed a method to design of a rate-1/2 protograph in ISI

channels. However, practical systems, e.g. magnetic recoding or optical communication

systems, require LDPC codes with rates up to 0.9. Applying this direct method to design

high-rate codes is more time consuming since high-rate codes would have larger code search

space.

Although puncturing is a common method for generating rate-compatible codes, in gen-

eral it is not fruitful for channels with memory, as pointed out by [83] except when only

degree-1 variable nodes are punctured [80]. In this section, we use extension to build rate-

compatible codes. As we show in the sequel, nested high-rate and rate-compatible codes

that can be built by extending from a rate-1/2 code are still i.u.d. capacity approaching.

6.4.1 Nested High-rate Codes

In order to use the extension method to design rate-compatible codes, we first need to design

a high-rate code. We use a nested lengthening structure as follows

Hh = [HlHe] (6.9)

where Hh, Hl are protomatrices of a high-rate and low-rate protographs respectively, He

is an extension matrix whose columns are new added variable nodes and its elements are

number of edges connecting a new variable node to an old check node.

In this example, we start from the rate-1/2 shown in Figure 6.4 as our daughter code.

We then design a family of nested codes with rates in the form of R = n
n+1

, n = 1, 2, . . ..

Within this nested family, each high rate code is built upon adding 3 new variable nodes1

into the lower-rate code. We then apply the same search method used in Section 6.3 to find

the codes with the lowest threshold. We then are able to design the code with rate up to

9/10. Due to space limitation, we only present the result of the rate 0.9 code in which other

eight codes are deduced. The rate-0.9 code protomatrix is given as follows:

1If we use the rate-1/2 code in [83], 4 new variable nodes are needed instead.
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H0.9 =




1 0 0 1 0 4 2 0 0 0 0 2 2 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 1
0 1 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 1 1 1 1 2 2 1
0 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 2 2 1 1 2 1 2 2 2 2 2 1 2


 (6.10)

In the above protomatrix, we separate each code rate level by a line as shown in Equa-

tion (6.10). The thresholds of these nine nested codes are shown in Table 6.2 where the

high-rate codes have their iterative thresholds within 0.4 dB to i.u.d capacity of dicode and

EPR4 channels. Considering this small gap to i.u.d capacity of ISI channels, we can say

that nested high-rate codes are good enough and there no need to design a high-rate code

directly as described in Section 6.3.

6.4.2 Rate-compatible Codes

Using the extension method, the low rate protomatrix is in the following form

Hl =


 H1 0

A B


 (6.11)

where Hl, H1 is the protomatrix of the low-rate and high-rate codes respectively, 0 is the

zero matrix, A is the matrix whose elements are number of edges connecting new check

nodes to the old variable nodes, and B is the matrix whose elements are the number of edges

connecting between new check nodes to new variable nodes. To simplify the problem, we

assume that B is identity.

Starting with the rate-9/10 code, we design a family of rate-compatible codes as follows.

Each time, we add one new variable and one check nodes to the protomatrix of the high-rate

code. The new codes have the rates in the form of R = 27
30+m

, where m is the number

of variable and check nodes added into the rate-9/10 code. Due to space limitation, we

only design nine rate-compatible codes with rates from 27/41 to 9/10, where the biggest

graph/code has the lowest rate of R = 27/41. Equation (6.12) shows its protomatrix from

which other eight rate-compatible code protomatrices are derived. Iterative thresholds of

these rate-compatible codes over dicode and EPR4 channels are shown in Table 6.2. Again,
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Table 6.2. Threshold Eb/N0 (dB) of new codes

dicode EPR4
Code Code Gap to Code Gap to
Rate thres. cap. thres. cap.

The nested family
1/2 1.3 0.5 1.7 0.5
2/3 2.2 0.4 2.6 0.4
3/4 2.7 0.3 3.2 0.4
4/5 3.1 0.3 3.6 0.4
5/6 3.3 0.2 3.9 0.3
6/7 3.6 0.2 4.1 0.3
7/8 3.8 0.2 4.3 0.3
8/9 4.0 0.3 4.2 0.3
9/10 4.2 0.3 4.7 0.4

The rate-compatible family
9/10 4.2 0.3 4.7 0.4
27/31 4.0 0.4 4.3 0.3
27/32 3.6 0.3 4.0 0.3
27/33 3.3 0.3 3.7 0.3
27/34 2.9 0.2 3.5 0.3
27/35 2.9 0.3 3.3 0.3
27/37 2.6 0.3 3.0 0.3
27/39 2.3 0.3 2.7 0.3
27/41 2.1 0.3 2.5 0.3

all these codes can operate closely to capacity with thresholds gaps of 0.4 dB to i.u.d capacity

limits.

6.5 Numerical Results

Our protograph codes are derived from proto-matrices (protographs) designed in Section 6.4

in two lifting steps. First, the protograph is lifted by a factor of 4 using the progressive edge

growth (PEG) algorithm [48] in order to remove all parallel edges. Then, a second lifting

using the PEG algorithm was performed to determine a circulant permutation of each edge

class that would yield the desired code block length. In this section, protograph codes are
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H14×41 =




1 0 0 1 0 4 2 0 0 0 0 2 2 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 1 1 1 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 2 2 1 1 2 1 2 2 2 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 2 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 2 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 2 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1




(6.12)

simulated with the information blocklength of 16k. For nested codes, lifting factors of codes

with rates 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8, 9/10 are 4 × 1364, 4 × 683, 4 × 455, 4 × 342,

4 × 273, 4 × 227, 4 × 195, and 4 × 153, respectively. For rate-compatible codes, only the

lowest rate code whose protomatrix is shown in (6.12) is constructed with the lifting factor

of 4×153. Other codes are obtained by removing redundant coded bits and check equations.

The WER and BER performances of the rate-1/2 AWGN and ISI codes over the dicode

channel are shown in Figure 6.5. No error floors are observed up to WER = 10−6, where

the ISI code has a gain of 0.7 dB over the AWGN code and has a gap of 0.9 dB from the

i.u.d. capacity limit.

The WER performance of the nested and rate-compatible codes over the dicode and

EPR4 channels are shown in Figures 6.6, 6.7, 6.8 and 6.9 respectively. No error floors are

observed up to WER = 3× 10−6, with a gap of 1.1 dB from the i.u.d. capacity limit.
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Figure 6.5. Performance of the rate-1/2 AWGN protograph plotted in Figure 3.2 and the
rate-1/2 ISI protograph plotted in Figure 6.3 in the dicode channel. The information block-
length of 16k.
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Figure 6.6. Performance of nested protograph family over the dicode channel.
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Figure 6.7. Performance of nested protograph family over the EPR4 channel.
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Figure 6.8. Performance of rate-compatible protograph family in the dicode channel.
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Figure 6.9. Performance of rate-compatible protograph family in the EPR4 channel.



83

6.6 Conclusion

This chapter presents a design for nested and rate-compatible protograph-based LDPC codes

for ISI channels. Iterative thresholds and finite-length performance of the codes are reported.

Analysis and simulation results show that our codes, which allow easy encoding and fast

decoding, can perform closely to i.u.d capacity.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of this dissertation and provides some possible

avenues for future research in the area of protograph-based LDPC codes. The findings of

this dissertation also appear in [47, 84, 85, 30, 86, 83].

This dissertation presents a simple yet effective method for designing nested families of

LDPC codes. Rate compatible codes are essential for many communication applications, e.g.

hybrid automatic repeat request (HARQ) systems, and their design is nontrivial due to the

difficulty of simultaneously guaranteeing the quality of several related codes. Puncturing can

be used to generate rate-compatible LDPC codes, but it produces a gap to capacity that, in

practice, often significantly exceeds the gap of the mother code. We propose an alternative

method based on successively extending a high-rate protograph. The resulting codes not only

inherit the advantages of protograph codes, namely low encoding complexity and efficient

decoding algorithms, but also cover a wide range of rates and have very good performance

with iterative decoding thresholds that are within 0.2 dB of their capacity limits.

This dissertation studies the problem of designing protograph codes over relay channels.

Despite encouraging advances in the design of relay codes, several important challenges

remain. Many of the existing LDPC relay codes are tightly optimized for fixed channel

conditions and not easily adapted without extensive re-optimization of the code. Some

have high encoding complexity and some need long block lengths to approach capacity.

A high-performance protograph-based LDPC coding scheme is devised for the half-duplex

relay channel that addresses simultaneously several important issues: structured coding that

permits easy design, low encoding complexity, embedded structure for convenient adaptation

to various channel conditions, and performance close to capacity with a reasonable block

length. The application of the coding structure to multi-relay networks is demonstrated.

84
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Finally, a simple new methodology for evaluating the end-to-end error performance of relay

coding systems is developed and used to highlight the performance of the proposed codes.

This dissertation studies the application of protograph codes in coded modulation schemes.

Protograph-based bit-interleaved coded modulation (BICM) provides an elegant way of de-

signing coded modulation over Rayleigh faded channels, however, to date the available de-

signs have been limited to specific modulations and the corresponding decoding thresholds

have not been known for Rayleigh faded channels. A simple method for designing protograph-

based BICM that is devised is general and applies to any modulation, and furthermore we

calculate the iterative decoding thresholds of the protograph codes while mapped to higher

order modulations. This general coding framework can support not only multiple rates but

also adaptive modulation. We report that certain families of protograph codes achieve a

threshold within a gap of approximately 0.2− 0.4 dB of BICM capacity limit across a wide

range of rates and modulations.

This dissertation presents the design of a family of rate-compatible protograph-based

LDPC codes which can approach the independent and uniformly distributed (i.u.d.) capacity

of inter-symbol interference (ISI) channels. This problem is non-trivial due to the joint design

of structured (protograph-based) LDPC codes and the state structure of ISI channels. We

describe a method to design nested high-rate protograph codes by adding variable nodes into

the protograph of a lower rate code. We then design a family of rate-compatible protograph

codes using extension method, i.e. adding the same number of variable and check nodes into

the graph of a high-rate code. Resulting protograph codes have iterative thresholds close to

i.u.d capacity. Numerical results are provided to support our analysis.

We foresee some extensions to the research topics proposed in this dissertation. Designing

practical coding schemes for multiple node wireless networks has been a long standing open

problem. Our coding scheme for a relay channel could be used as a starting point for

designing general multi-node networks. An interesting direction is to extend our design

framework for channels such as multiple access channels, broadcast channels and interference

channels. Interactions with network coding is also an interesting problem to be considered.
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Another important research topic is to design protograph codes for MIMO and OFDM

fading channels. Even though there are several random LDPC code designs for MIMO

and OFDM configurations, there is a need to design protograph codes to approach the

fundamental limits of practical MIMO-OFDM systems.

Practical coding for non-coherent communication systems is also another interesting di-

rection. A good start research is to extend the proposed framework to design good protograph

codes for differential modulation schemes for the point-to-point AWGN channel.

One promising area where findings from this dissertation can be applied is the problem

of designing practical nested lattice codes. We expect that solving this problem will produce

many new results and facilitate the practical application of network information theory.



APPENDIX A

A.1 The Progressive-Edge-Growth Algorithm

The PEG algorithm [48] generates a LDPC Tanner graph from a degree distribution such

that the Tanner graph has a large local girth. We start with a protograph that has v variable

nodes and c check nodes, and N is the lifting factor. Variable nodes of the protograph are

ordered according to increasing degree. The resulting graph has n = N × v variable nodes

and m = N × c check nodes. Unlike a general irregular LDPC codes, in a protograph

code each variable node is only connected to particular set of check nodes, called a type, as

imposed by the protograph structure.

Our protograph codes are built from a protograph via a two-step lifting. In the first step,

the protograph is lifted by a small factor, which is 4 for all codes in this dissertation, to

remove all parallel edges in the protograph. The first lifting step is not necessarily circulant

(in fact it usually is not). Then in the second step this intermediate protograph is lifted

again to the full code. This second lifting step is via a circulant lifting. Both the lifting

steps are performed using the PEG algorithm. In the first lifting step, the PEG algorithm

operates on all edges. In the second step, the PEG algorithm operates only on the first edge

of each type, since the other edges of the same type follow the same behavior due to the

circulant lifting.

We use the same notations and definitions as in [48] with the exception that N̄ l
sj

is defined

as Vc \N l
s where Vc is the set of checks allowed to connect to the variable node s as imposed

by the protograph structure. The standard PEG algorithm for constructing a protograph

code is described in the following.
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for j = 0 → n− 1 do

for k = 0 → dsj
− 1 do

if k = 0 then E0
sj
← edge (ci, sj), where E0

sj
is the first edge incident to symbol

node sj, and ci is one check node such that it belongs to one of N check nodes of the same

type as imposed by the protograph structure.

else

expand a subgraph from symbol node sj up to depth l under the current graph

setting such that the cardinality of N l
sj

stops increasing but is less than m, or N̄ l
sj
6= ∅

but N̄ l+1
sj

= ∅, then Ek
sj
← edge (ci, sj), where Ek

sj
is the kth edge incident to symbol node

sj, and ci is a check picked from the set N̄ l
sj

.

end if

end for

end for

A.2 Protograph-Based EXIT Analysis for AWGN Channels

The Protograph-based EXIT (PEXIT) analysis was originally proposed by Liva and Chi-

ani [28] by extending the standard extrinsic information transfer (EXIT) analysis [14] to

calculate iterative decoding thresholds of protograph codes.

Assuming that a protograph has N variable nodes V1, . . . , VN and M check nodes C1, . . . , CM .

We denote ei,j the number of edges that connects Vi to Cj, where i = 1, . . . , N and j =

1, . . . , M . For convenience, we follow the notations of [28].

• I i
ch: a priori channel mutual information of a variable node Vi. If Vi is punctured,

I i
ch = 0.

• I i,j
Ev: the mutual information between the message sent by Vj to Ci and associated

codeword bit, on one of the bi,j edges connecting Vj to Ci. (I i,j
Ev = 0 if bi,j = 0)

• I i,j
Ec: the mutual information between the message sent by Ci to Vj and associated

codeword bit, on one of the bi,j edges connecting Ci to Vj. (I i,j
Ec = 0 if bi,j = 0)
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• I i
APP : the mutual information between the a posteriori probability log-likelihood ratio

(modeled as a random variable)

Lj = ln
Pr(xj = +1|r)
Pr(xj = −1|r) (A.8.1)

evaluated by Vj and the associated codeword bit xj. The received vector, given by the

transmitted codeword corrupted by the channel, is denoted by r.

We denote J(σ) the mutual information between a binary random variable X with

Pr(X = +µ) = 1/2 and Pr(X = −µ) = 1/2, and a continuous Gaussian distributed

random variable Y with mean µ and variance σ2 = 2µ. J(σ) represents the capacity of the

binary-input additive Gaussian noise, given in [14].

J(σ) = 1−
∫ +∞

−∞

1√
2πσ2

e−
(y−σ2/2)2

2σ2 log2(1 + e−y)dy (A.8.2)

J(σ) function can be computed easily by simple approximations [70] as follows. For

σ∗ = 1.6363,

J(σ) '





aJ,1σ
3 + bJ,1σ

2 + cJ,1σ, 0 ≤ σ ≤ σ∗

1− eaJ,2σ3+bJ,2σ2+cJ,2σ+dJ,2 , σ∗ ≤ σ ≤ 10

1, σ ≥ 10

(A.8.3)

where

aJ,1 = −0.0421061 bJ,1 = 0.209252 cJ,1 = −0.00640081

aJ,2 = 0.00181491 bJ,2 = −0.142675 cJ,2 = −0.0822054 dJ,2 = 0.0549608.

The inverse function J−1(·) is approximated as follows. For I∗ = 0.3646,

J−1(I) '




aσ,1I
2 + bσ,1I + cσ,1

√
(I), 0 ≤ I ≤ I∗

−aσ,2 ln[bσ,2(1− I)]− cσ,2I, I∗ ≤ I ≤ 1
(A.8.4)

where

aσ,1 = 1.09542 bσ,1 = 0.214217 cσ,1 = 2.33727

aσ,2 = 0.706692 bσ,2 = 0.386013 cσ,2 = −1.75017.
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The algorithm presents an initialization step, which provides the channel mutual infor-

mation for a given channel parameter Eb

N0
. The limit value of this channel parameter, which

allows the decoder to converge successfully to an error probability Pe = 0 in the limit of

infinite blocklengths, is called the iterative decoding threshold ( Eb

N0
)∗.

1. Initialization

Set Ij
ch = J(σch,j), for j = 0, . . . , N − 1, with

σ2
ch,j = 8R

(
Eb

N0

)

V j

(A.8.5)

where R is the code rate of the protograph and
(

Eb

N0

)
V j

represents the signal-to-noise

ratio associated to the channel input to the j-th variable node. Note that if V j is

punctured,
(

Eb

N0

)
V j

= 0.

2. Variable to check update

For j = 0, . . . , N − 1 and i = 0, . . . , M − 1, if bi,j 6= 0,

I i,j
Ev = J

(( ∑

s 6=i

bs,j[J−1(Is,j
Av)]

2 + (bi,j − 1)[J−1(I i,j
Av)]

2) + [J−1(I i
ch)]

2
)1/2

)

If bi,j = 0, I i,j
Ev = 0. For j = 0, . . . , N − 1 and i = 0, . . . , M − 1, set I i,j

Ac = I i,j
Ev

3. Check to variable update

For j = 0, . . . , N − 1 and i = 0, . . . , M − 1, if bi,j 6= 0,

I i,j
Ec =1− J

(( ∑

s 6=j

bs,j[J−1(1− I i,s
Ac)]

2 + (bi,j − 1)[J−1(1− I i,j
Ac)]

2
)1/2

)

If bi,j = 0, I i,j
Ec = 0. For j = 0, . . . , N − 1 and i = 0, . . . ,M − 1, set I i,j

Av = I i,j
Ec

4. APP-LLR mutual information evaluation

For j = 0, . . . , N − 1

Ij
APP = J

(( ∑
s

bs,j[J−1(Is,j
Av)]

2 + [J−1(I i
ch)]

2
)1/2

)
(A.8.6)
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5. Repeat steps 2-5 until IAPP = 1, ∀j or until maximum number of iteration.

The threshold (Eb/N0)
∗ is the lowest value for which the mutual information between the

APP-LLR messages and the associate codeword symbol converges to 1.

A.3 The Sum-Product Algorithm

This section presents the iterative message passing algorithm to decode the protograph codes

that is used throughout this dissertation. In our simulations we use the fixed-point iterative

decoder with 8-bit quantization as described in [65]. Using the same notions and definitions

as in [65], a summary of the decoding algorithm is given in the following.

A.3.1 Quantization

In a practical decoder, log-likelihood ratios (LLRs) are represented by digital quantities. This

quantization limits both the dynamic range and the resolution of the LLRs. A quantization

is in the form of

Q(x) =





127 Cx ≥ 127

−127 Cx ≤ −127

[Cx] otherwise

(A.8.7)

where C is a scalar constant, and [Cx] stands for rounding CX to the nearest integer. In

our code simulations, we use C = 8, which corresponds to a step-size of 1/8 and an LLR

dynamic range of (−157
8
, +157

8
).

A.3.2 Variable Node Processing

A given variable node receives LLR messages u1, u2, . . . , ud from d check nodes, where d is

the degree of the variable node, along with an LLR from the demodulator. The message the

variable node sends back to the jth of the d check nodes connected to it is given by

vj = λ +
d∑

i=1,i 6=j

ui (A.8.8)
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Given the quantized inputs Q(λ) and Q(ui), the outgoing quantized message may be

computed as

Q(vj) = c

(
Q(λ) +

d∑

i=1,i 6=j

Q(ui)

)
(A.8.9)

where

c(x) =





127 x ≥ 127

−127 x ≤ −127

x otherwise

(A.8.10)

This can also be written as

Q(vj) = c(U − uj) (A.8.11)

where U , Q(λ) +
∑d

i=1 Q(ui). U can be clipped prior to the subtraction

Q(vj) = c(c(U)− uj) (A.8.12)

This further clipping improves the performance of protograph codes and is called “Jones

clipping” [65].

As discussed in Chapter 3, a good protograph often includes degree-1 variable nodes. The

performance of protograph codes can be improved further in the error floor region by clipping

the degree-1 variable messages to 116 as described in [65]. Note that the best clipping may

depend on the protograph structure. In our simulations, the degree-1 clipping is set to 90.

A.3.3 Check Node Processing

A given check node receives messages v1, v2, . . . , vd from d variable nodes, where d is the

degree of the check node. The message the check node send back to the jth of the d variable

nodes connected to it is given by

uj = 2 tanh−1

(
d∏

i=1,i6=j

tanh
vi

2

)
(A.8.13)
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This can be computed by repetitively applying the function

min ∗(x, y) = 2 tanh−1
(
tanh

x

2
tanh

y

2

)
(A.8.14)

= sgn(xy)

[
min(|x|, |y|)− ln(1 + e−(||x|−|y||)) + ln(1 + e−(|x|+|y|))

]
(A.8.15)

In the quantization representation, the above relationship is given by

Q(min ∗(Q(x), Q(y))) = Q

{
2 tanh−1

(
tanh

Q(x)

2C
tanh

Q(y)

2C

)}
(A.8.16)

This function can be computed once, ahead of time, using a look-up table.

One additional decoder variation also makes a big different in the error floor performance:

partial hard limiting check node messages. Messages from each check node were partially

hard-limited, so that every message from a check node which has |Q(uj)| ≥ 100, was set to

the maximum magnitude |Q(uj)| = 127.
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