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SECRECY AND COVERTNESS IN THE PRESENCE OF MULTI-CASTING,

CHANNEL STATE INFORMATION, AND COOPERATIVE JAMMING

Hassan ZivariFard, PhD
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Supervising Professor: Aria Nosratinia, Chair

We study secret communication over multi-transmitter multicast problem in the presence of

an eavesdropper, wherein weak and strong secrecy regimes are studied. For the weak secrecy

regime, the method of Chia and El Gamal is extended to two transmitters. We show that the

achievable region calculated for the weak secrecy regime in this channel configuration is no

bigger than the one calculated under strong secrecy. Two examples are presented in which

the inner and outer bounds of secrecy region meet. In the process, we also characterize the

minimum amount of randomness necessary to achieve secrecy in the multiple-access wiretap

channel.

We consider the problem of covert communication over a state-dependent channel when

the Channel State Information (CSI) is available either non-causally, causally, or strictly

causally, either at the transmitter alone, or at both transmitter and receiver. In contrast to

previous work, we do not assume the availability of a large shared key at the transmitter and

legitimate receiver. Instead, we only require a secret key with negligible rate to bootstrap

the communication and our scheme extracts shared randomness from the CSI in a manner

that keeps it secret from the warden, despite the influence of the CSI on the warden’s output.

When CSI is available at the transmitter and receiver, we derive the covert capacity region.

When CSI is only available at the transmitter, we derive inner and outer bounds on the

vi



covert capacity. We also provide examples for which the covert capacity is positive with

knowledge of CSI but is zero without it.

We consider the problem of covert communication in the presence of a cooperative jammer.

It is known that in general, a transmitter and a receiver can communicate only O(
√
n)

covert bits over n channel uses, i.e., zero rate. Here, we show that a cooperative jammer

can facilitate the communication of positive covert rates, subject to the presence of friendly

jammer in the environment. We consider various scenarios in which it is possible to achieve

positive rate for covert communication. For these scenarios, we derive inner and outer bounds

on the covert capacity region, and also we characterize the covert capacity region for some

of these scenarios.
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CHAPTER 1

INTRODUCTION

Communication systems usually separate error correction and data encryption. The former

is usually realized at the physical layer by transforming the noisy communication channel

into a reliable channel. The data encryption is implemented in the higher layers of the Open

System Interconnection (OSI) model by applying cryptographic principles. The encryp-

tion approach is based on computational limits of the eavesdropper. However, the looming

prospect of quantum computers would boost the computational power, which makes some

critical cryptosystems insecure and weakens others. Post quantum computer cryptography

approaches offers partial solutions, which rely on larger keys, but this is an expensive resource

and substantial efforts are made to avoid extravagant use of it. Nonetheless, cryptography

will remain the main practical tool for securing data, at least for the time being.

Physical Layer Security, which is based on information-theoretic principles, is an alter-

native approach for provably secure communication, pioneerd by Wyner’s celebrated paper

on the wiretap channel (WTC) [1]. Essentially, Wyner’s main idea was to exploit the chan-

nel noise together with proper physical layer coding to secure the communication against

an eavesdropper with unlimited compuational power. This dissertation takes the latter ap-

proach.

1.1 Two-Multicast Channel with Confidential Messages

We study the multiuser secure multicast problem (Fig. 1.1), more specifically, when two

transmitters multicast messages securely to two receivers in the presence of an eavesdropper.

All senders, receivers, and eavesdropper are at different terminals. This problem is motivated

in part by secure access of multiple users to data in a distributed cache [2, 3]. Another

application of the considered model is a common situation in cellular networks, in which
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Figure 1.1. Two-sender, two-receiver channel with an eavesdropper

a user is in the coverage range of two different base stations [4, 5]. This problem is also

equivalent to a one-transmitter, two-receiver compound channel with confidential messages

with two different states [6]. It has been known [7] that problems involving compound

channels have an equivalent multicast representation, in which the channel to each multicast

receiver is equivalent to one of the states of the compound channel.1

In this dissertation, we take a two-pronged approach to the analysis of the network men-

tioned above, producing a number of new results and insights. In Section 2.3, we present an

analysis inspired by the work of Chia and El Gamal [11], which uses Marton coding and indi-

rect decoding (also known as non-unique decoding) [12] to achieve an improved secrecy rate

for the transmission of one common message to two receivers that may experience different

channel statistics. In extending the method of Chia and El Gamal to multiple transmitters,

we introduce a two-level Marton-type coding with associated non-unique decoding.

In Section 2.6, we employ the method of output statistics of random binning (OSRB) [13]

for analyzing the two-transmitter two-receiver problem (see also [14] for a related approach).

OSRB analyzes channel coding problems by conversion to a related source coding problem,

where it tests achievability by probability approximation rather than counting arguments on

typical sets, followed by a reverse conversion to complete the analysis. OSRB is well suited

1The problem studied herein is the secrecy counterpart of the classical problem posed by Ahlswede [8],
which proved highly influential for the MAC channel [9] and the interference channel [10].
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for secrecy problems because secrecy is tightly related to probability approximation. OSRB

encoding is purely by random binning and is enabled by (and named after) the following

asymptotic result: apply two independent random binning schemes on the same set and take

a random sample from the set. The two bin indices corresponding to the random sample

are statistically independent as long as binning rates are sufficiently small [15, 13, 14]. We

extend the tools and techniques of OSRB to match the requirements of the two-transmitter

multicast problem.

The different parts of our results complement each other, producing a more complete

picture in the understanding of the problem of multi-transmitter secure multicast. The ex-

tension of the method of Chia and El Gamal is utilized to highlight the minimal amount of

randomness required to achieve secrecy rates over the multiple-access wiretap channel, and

that therein channel prefixing can be replaced with superposition, in a manner reminiscent

of Watanabe and Oohama [16] for minimizing the randomness resources for secrecy encod-

ing. The analysis based on OSRB generates the strong secrecy, which interestingly has an

expression that is a superset of the achievable region under weak secrecy calculated in the

first part. Furthermore, the expression for the strong secrecy region can be greatly simplified

via a constraint found in the weak secrecy analysis, highlighting the synergy between the

two. More broadly, the developments in these two parts each offer techniques and insights

that can potentially be useful in a wider class of problems.

Outer bounds for degraded and non-degraded channels are derived and shown to be tight

against inner bounds in some special cases.

A brief outline of the related literature is as follows. Multicasting with common informa-

tion in the presence of an eavesdropper has been studied in [17, 18], deriving inner bounds

on the secrecy capacity, and in some special cases also deriving the secrecy capacity region.

Salehkalaibar et al. [17] studied a one-receiver, two-eavesdropper broadcast channel with

three degraded message sets. Ekrem and Ulukus [18] studied the transmission of public and

3



confidential messages to two legitimate users, in the presence of an eavesdropper. Benam-

mar and Piantanida [19] calculated the secrecy capacity region of some classes of wiretap

broadcast channels.

The MAC wiretap channel has been investigated in [20, 21, 22, 23, 24, 25, 26, 27]. In [20],

a discrete memoryless MAC with confidential messages has been studied that consists of a

MAC with generalized feedback [28] where each user’s message must be kept confidential

from the other. The multiple access wiretap channel [21, 22, 26] consists of a MAC with an

additional channel output to an eavesdropper. In [21, 22], achievable rate regions for the

secrecy capacity region have been derived. Secrecy in the interference channel and broadcast

channel has been studied in [29], where inner and outer bounds for the broadcast channel

with confidential messages and the interference channel with confidential messages have been

compared.

1.2 Keyless Covert Communication via CSI

Covert communication is a mode of secrecy in which not just the content of communication,

but also the act of communication, is kept secret from an adversary. More precisely, reliable

communication over one channel must occur while simultaneously ensuring that another

channel output, at a node called the warden, has a distribution identical to that induced by

an innocent channel symbol [30, 31, 32, 33, 34]. It is known that in a DMC without state, the

number of bits that can be reliably and covertly communicated over n channel transmissions

scales at most as O(
√
n).2 This result has motivated the study of other models in which

positive rates are achievable [35, 36]. Of particular relevance to this dissertation, Lee et

al. [37] have considered the problem of covert communication over a state-dependent channel

in which the CSI is known either causally or non-causally to the transmitter but unknown

2Except for the special case when the output distribution (at the warden) induced by the innocent symbol
is a convex combination of the output distributions generated by the other input symbols [32].
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Figure 1.2. Model of covert communication over a state-dependent DMC with CSI available
at both the transmitter and the receiver
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Figure 1.3. Model of covert communication over a state-dependent DMC with CSI only
available at the transmitter

to the receiver and the warden. They derived the covert capacity when the transmitter and

the receiver share a sufficiently long secret key, as well as a lower bound on the minimum

secret key length needed to achieve the covert capacity. Since the presence of CSI provides

a natural source of randomness from which to extract secret keys, one may wonder if covert

communication with positive rate is possible without requiring an external secret key. This

dissertation offers conclusive answers to this question in several scenarios.

The usefulness of exploiting CSI for secrecy has been extensively investigated in the

context of state-dependent wiretap channels. A discrete memoryless wiretap channel with

random states known non-causally at the transmitter was first studied by Chen and Vinck

[38], who established a lower bound on the secrecy capacity based on a combination of

wiretap coding with Gel’fand-Pinsker coding. Generally speaking, coding schemes with CSI

outperform those without CSI because perfect knowledge of the CSI not only enables the
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transmitter to align its signal toward the legitimate receiver but also provides a source of

common randomness from which to generate a common secret key and enhance secrecy rates.

Khisti et al. [39] studied the problem of secret key generation from non-causal CSI available

at the transmitter and established inner and outer bounds on the secret key capacity. Chia

and El Gamal [40] studied a wiretap channel in which the state information is available

causally at both transmitter and receiver, proposing a scheme in which the transmitter

and the receiver extract a weakly secret key from the state and protect the confidential

message via a one-time-pad driven with the extracted key (see also [41] and [42]). Han

and Sasaki [43] subsequently extended this result to strong secret keys. Goldfeld et al. [44]

proposed a superposition coding scheme for the problem of transmitting a semantically secure

message over a state-dependent channel with CSI available non-causally at the transmitter.

In the context of covert communications, several works have demonstrated the benefits of

exploiting common randomness and CSI to generate secret keys. For instance, stealth secret

key generation from correlated sources was studied by Lin et al. [45, 46] and covert secret key

generation was studied by Tahmasbi and Bloch [47, 48]. We note that covert communication

over a compound channel was studied by Salehkalaibar et al. [49], although the objective

therein is to mask the state of the compound channel and not to exploit CSI.

This dissertation studies covert communication over a state-dependent discrete memo-

ryless channel with CSI available either non-causally, causally, or strictly causally, either at

both the transmitter and the receiver or at the transmitter alone (see Fig. 1.2). One of the

main contributions of this dissertation is to show that the CSI can be used to simultaneously

and efficiently accomplish two necessary tasks: using the CSI for a Shannon strategy or

Gel’fand-Pinsker coding, while also extracting a shared secret key at the two legitimate ter-

minals to resolve the multiple codebooks that are necessary for covert communication. Secret

key extraction from CSI replaces the external secret key in other models, thus potentially

generalizing and expanding the applicability of covert communication. Our scheme requires
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Figure 1.4. Covert Communications with a Cooperative Jammer

the transmitter and the receiver to share a secret key with negligible rate to bootstrap the

communication. This bootstrapping is common in many security schemes, for instance in all

schemes for secret communication based on seeded invertible extractors [50, 51, 52]. =With

a slight abuse of terminology, we refer to our model as ”keyless” instead of ”asymptotically

keyless.”

Specifically, we characterize the exact covert capacity when CSI is available at both the

transmitter and the receiver, and derive inner and outer bounds on the covert capacity

when CSI is only available at the transmitter. For some channel models for which the

covert capacity is zero without CSI, we show that the covert capacity is positive with CSI.

The code constructions behind our proofs combine different coding mechanisms, including

channel resolvability for covertness, channel randomness extraction for key generation, and

Gel’fand-Pinsker coding for state-dependent channels. The key technical challenge consists

in properly combining these mechanisms to ensure the overall covertness of the transmission

through block-Markov chaining schemes.

1.3 Covert Communication via Cooperative Jamming

Next, we study the problem of covert communication over a DMC when a cooperative jammer

[22] is present. Earlier results [53, 54, 35, 55, 56, 57, 58] have shown that it is possible to

achieve positive covert rate when the warden has uncertainty about the power of noise or

interference at its receiver.
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In this dissertation, we consider four main jamming scenarios. First, we consider a sce-

nario in which there is a jammer that has no cooperation with the transmitter and transmits

codewords independent of the transmitter’s codewords over the channel. In the second sce-

nario, there is a shared secret key between all the legitimate parties (i.e., the transmitter,

the receiver and the jammer). For this problem, we derive general inner and outer bounds

on the covert capacity, and we characterize the covert capacity when the jammer has an

unlimited source of local randomness. Third, we consider a scenario in which the jammer’s

output is available non-causally or causally at the transmitter and there is a shared secret

key between the transmitter and the receiver. Since the jammer can simulate a random

state (given sufficient resources), we expect to achieve a positive covert communication rate

in the considered model. For each causal and non-causal case, an achievable rate region is

calculated that highlights the relation between the covert communication rate, jammer’s ran-

domness (expressed as a rate), and rate of the needed shared secret key between transmitter

and receiver. We also derive an upper bound for each of these cases. In the fourth jam-

ming scenario, the transmitter’s channel input is available non-causally, causally, or strictly

causally available at the jammer. For each of these cases we characterize the covert capacity

when the jammer has an unlimited source of local randomness and derive inner and outer

bounds on the covert capacity otherwise.

Of particular relevance to this dissertation, arbitrarily varying wiretap channels under

strong and semantic secrecy criterion have been studied in [59, 60, 61] and Covert commu-

nication over adversarially jammed channels has been studied in [62]. MAC with cribbing

encoders was first studied by Willems and van der Meulen [63, 64] and channel resolvability

and strong secrecy for a discrete memoryless multiple-access channel with cribbing has been

studied in [65].
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1.4 Preliminaries

Throughout this dissertation, random variables are denoted by capital letters and their

realizations by lower case letters. The set of ε−strongly jointly typical sequences of length

n, according to pX,Y , is denoted by T (n)
ε (pX,Y ). For convenience in notation, whenever there

is no danger of confusion, typicality will reference the random variables rather than the

distribution, e.g., T (n)
ε (X, Y ). The set of sequences {xn : (xn, yn) ∈ T (n)

ε (X, Y )} for a fixed

yn, when the fixed sequence yn is clear from the context, is denoted with the shorthand

notation T (n)
ε (X|Y ). Superscripts denote the dimension of a vector, e.g., Xn. The integer

set {1, . . . ,M} is denoted by J1,MK, and X[i:j] indicates the set {Xi, Xi+1, . . . , Xj}. The

cardinality of a set is denoted by | · |. Following Cuff [66] and [13, Remark 1], we use the

concept of random Probability Mass Function (PMF) denoted by capital letters (e.g. PX).

N is the set of natural numbers, which does not include 0, while R denotes the set of real

numbers. We define R+ = {x ∈ R|x ≥ 0} and R++ = R+\{0}. EX(·) is the expectation

w.r.t. the random variable X and 1{·} denotes the indicator function. The cardinality of

a set is denoted by | · |. The total variation between PMF P and PMF Q is defined as,

||P − Q||1 = 1
2

∑
x |P (x) − Q(x)| and the Kullback-Leibler (KL) divergence between PMFs

is defined as D(P ||Q) =
∑

x p(x) log P (x)
Q(x)

. The support of a probability distribution P is

denoted by supp(P ). The n-fold product distribution constructed from the same distribution

P is denoted P⊗n. Throughout the dissertation, log denotes the base 2 logarithm. For a set

of random variables {Xi}i∈A indexed over a countable set A, E\i(·) is the expectation with

respect to all the random variables in A except the one with index i ∈ A.

Finally, we recall a useful result about the relation between the total variation distance

and the KL-divergence.

Lemma 1 (Reverse Pinsker’s Inequality [67, eq. (323)]). Pinsker’s inequality indicates for

two arbitrary distributions P and Q on the alphabet A we have,

||P −Q||1 ≤
√

1

2
D(P ||Q). (1.1)
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A reverse inequality is valid when the alphabet A is finite. Let P and Q be two arbitrary

distributions on a finite alphabet set A such that P is absolutely continuous with respect to

Q. If µ , mina∈Q:Q(a)>0 Q(a), we have,

D(P ||Q) ≤ log

(
1

µ

)
||P −Q||1. (1.2)

10



CHAPTER 2

TWO-MULTICAST CHANNEL WITH CONFIDENTIAL MESSAGES1

2.1 Introduction

In this chapter, we analyze secrecy rates for a channel in which two transmitters simul-

taneously multicast to two receivers in the presence of an eavesdropper. Achievable rates

are calculated via extensions of a technique due to Chia and El Gamal and the method of

output statistics of random binning. Outer bounds are derived for both the degraded and

non-degraded versions of the channel, and examples are provided in which the inner and

outer bounds meet. The inner bounds recover known results for the multiple-access wiretap

channel, broadcast channel with confidential messages, and the compound MAC channel.

An auxiliary result is also produced that derives an inner bound on the minimal randomness

necessary to achieve secrecy in multiple-access wiretap channels.

2.2 Problem Statement

Definition 1. A (M1,n,M2,n, n) code for the considered model (Fig. 1.1) consists of the

following:

i) Two message sets Wi = J1,Mi,nK, i = 1, 2, from which independent messages W1 and

W2 are drawn uniformly distributed over their respective sets.

ii) Stochastic encoders fi, i = 1, 2, which are specified by conditional probability matrices

fi(X
n
i |wi), where Xn

i ∈ X n
i , wi ∈ Wi are channel inputs and private messages, respec-

tively, and
∑

xni
fi(x

n
i |wi) = 1. Here, fi(x

n
i |wi) is the probability of the encoder producing

the codeword xni for the message wi.

1©2021 IEEE. Reprinted, with permission, from H. ZivariFard, M. R. Bloch, and A. Nosratinia, ”Two
multicast channel with confidential messages,” 2021 IEEE Transactions on Information Forensics and Secu-
rity, 2021, pp. 2743-2758
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iii) A decoding function φ1 : Yn1 →W1×W2 that assigns (ŵ1, ŵ2) ∈ J1,M1,nK× J1,M2,nK to

the received sequence yn1 .

iv) A decoding function φ2 : Yn2 →W1×W2 that assigns (w̌1, w̌2) ∈ J1,M1,nK× J1,M2,nK to

the received sequence yn2 .

The probability of error is given by:

Pe , P
(
{(Ŵ1, Ŵ2) 6= (W1,W2)} ∪ {(W̌1, W̌2) 6= (W1,W2)}

)
.

Definition 2. A rate pair (R1, R2) is said to be achievable if there exists a sequence of

(M1,n,M2,n, n) codes with M1,n ≥ 2nR1 ,M2,n ≥ 2nR2, so that Pe −−→
n→∞

0 and [68]

1

n
I(W1,W2;Zn) −−→

n→∞
0 for the weak secrecy regime, (2.1)

I(W1,W2;Zn) −−→
n→∞

0 for the strong secrecy regime. (2.2)

Definition 3. For any PMFs pX and qX over X we denote ‖pX − qX‖1 < ε with pX ≈ε
qX . Similarly, for any random PMFs PX and QX over, X we denote ‖PX −QX‖1 < ε

with PX ≈ε QX . The same notation applies for the sequential PMFs (i.e. pXn ≈ε qXn if

‖pXn − qXn‖1 < ε).

2.3 Achievable Rate Region Under Weak Secrecy

We start with a lemma that fits Marton coding with indirect decoding in a MAC structure

and produces an entropy bound needed in the secrecy analysis. Its basic idea can be high-

lighted as follows: given Xn, if we independently produce 2nR random code vectors Y n, we

will have approximately 2nR−I(X
n;Y n) jointly typical pairs, i.e., the “excess” rate will deter-

mine the number of jointly typical pairs. This lemma extends the basic idea of excess rate to

multiple codebooks, multiple conditioning, and furthermore, a generalization is made from

a counting argument to the entropy of the index of the codebook, which is essential for the

subsequent secrecy analysis.
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Lemma 2. Consider random variables (Q,U0, V0, U1, V1, Z) distributed according

to pQpU0,U1|QpV0,V1|QpZ|U0,U1,V0,V1. Draw random sequences Qn, Un
0 , V

n
0 according to

∏n
i=1 pQ(qi) pU0|Q(u0,i|qi) pV0|Q(v0,i|qi). Conditioned on Un

0 , draw 2nS i.i.d. copies of Un
1

according to
∏n

i=1 pU1|U0(u1,i|u0,i), denoted Un
1 (`), ` ∈ J1, 2nSK. Similarly, conditioned on V n

0 ,

draw 2nT i.i.d. copies of V n
1 according to

∏n
i=1 pV1|V0(v1,i|v0,i), denoted V n

1 (k), k ∈ J1, 2nT K.

Let L ∈ J1, 2nSK and K ∈ J1, 2nT K be random variables with arbitrary PMF. If

S > I(U1;Z|Q,U0, V0) + δ1(ε)

T > I(V1;Z|Q,U0, V0) + δ1(ε)

S + T > I(U1, V1;Z|Q,U0, V0) + δ1(ε)

for a positive δ1(ε) and if for an arbitrary sequence Zn,

P
(
(Qn, Un

0 , V
n

0 , U
n
1 (L), V n

1 (K), Zn) ∈ T (n)
ε

)
−−→
n→∞

1, (2.3)

there exists a positive δ2(ε) −−→
ε→0

0, such that for n sufficiently large

H(L,K|Qn, Un
0 , V

n
0 , Z

n, C) ≤ n(S + T − I(U1, V1;Z|Q,U0, V0)) + nδ2(ε), (2.4)

where C = {Un
1 (1), . . . , Un

1 (2nS), V n
1 (1), . . . , V n

1 (2nT )}.

The proof is provided in Appendix A. This result is related to, and contains, [11,

Lemma 1]. In particular, [11] considers a single-input channel and explores the properties

of codebooks driven by this input, while observing an output Z. In contrast, this disserta-

tion’s Lemma 2 develops a corresponding result for a multiple-access channel with respect

to Z, motivated by the two-transmitters present in the model of this dissertation. This ac-

counts for the new features of our Lemma 2, namely three rate constraints instead of one, as

well as monitoring the entropy of two index random variables instead of one. Furthermore,

the present result has one additional layer of conditioning to allow for indirect decoding of

multiple confidential messages in the sequel, while in [11] only one confidential message is

decoded.
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Figure 2.1. Structure of Lemma 2: subject to jointly typical sequences
(Qn, Un

0 , V
n

0 , U
n
1 (K), V n

1 (L), Zn), finding a bound on the conditional entropy of (K,L), thus
implicitly bounding the number of sequence pairs that can be jointly typical with (Qn, Zn)
from codebooks with certain size.

Remark 1. In addition to establishing the main results of this dissertation, Lemma 2 also has

broader implications on the necessity of prefixing in multi-transmitter secrecy problems [69]

and deriving the minimum amount of randomness needed to achieve secrecy. Csiszár and

Körner introduced prefixing in [70] to expand the achievable rate region of the non-degraded

broadcast channel with confidential messages, a technique that was subsequently used in es-

sentially the same manner in multi-transmitter settings. Subsequently, Chia and El Gamal

showed that in a single-transmitter wiretap channel, prefixing can be replaced with superposi-

tion coding [11]. Appendix B extends this concept to a multi-transmitter setting and presents

an achievability technique for the multiple access wiretap channel that utilizes minimal ran-

domness and matches the best known achievable rates without prefixing.
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Theorem 1. An inner bound on the secrecy capacity region of the two-transmitter two-

receiver channel with confidential messages is given by the set of non-negative rate pairs

(R1, R2) such that

R1 < I(U0, U1;Y1|Q, V0, V1)− I(U0;Z|Q)− I(U1;Z|U0, V0)

R1 < I(U0, U2;Y2|Q, V0, V2)− I(U0;Z|Q)− I(U2;Z|U0, V0)

R1 < I(U0, U1, V1;Y1|Q, V0)− I(U0;Z|Q)− I(U1, V1;Z|U0, V0)

R1 < I(U0, U2, V2;Y2|Q, V0)− I(U0;Z|Q)− I(U2, V2;Z|U0, V0)

R2 < I(V0, V1;Y1|Q,U0, U1)− I(V0;Z|Q)− I(V1;Z|U0, V0)

R2 < I(V0, V2;Y2|Q,U0, U2)− I(V0;Z|Q)− I(V2;Z|U0, V0)

R2 < I(U1, V0, V1;Y1|Q,U0)− I(V0;Z|Q)− I(U1, V1;Z|U0, V0)

R2 < I(U2, V0, V2;Y2|Q,U0)− I(V0;Z|Q)− I(U2, V2;Z|U0, V0)

R1 +R2 < I(U0, U1, V0, V1;Y1|Q)− I(U0, U1, V0, V1;Z|Q)

R1 +R2 < I(U0, U2, V0, V2;Y2|Q)− I(U0, U2, V0, V2;Z|Q)

R1 +R2 < I(U0, U1;Y1|Q, V0, V1) + I(U1, V0, V1;Y1|Q,U0)

− I(U0, U1, V0, V1;Z|Q)− I(U1;Z|U0, V0)

R1 +R2 < I(U0, U1;Y1|Q, V0, V1) + I(V0, V2;Y2|Q,U0, U2)

− I(U0, V0;Z|Q)− I(U1;Z|U0, V0)− I(V2;Z|U0, V0)

R1 +R2 < I(U0, U1;Y1|Q, V0, V1) + I(U2, V0, V2;Y2|Q,U0)

− I(U1;Z|U0, V0)− I(U0, U2, V0, V2;Z|Q)

R1 +R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U1, V1;Y1|Q, V0)

− I(U0, U1, V0, V1;Z|Q)− I(V1;Z|U0, V0)

R1 +R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U2;Y2|Q, V0, V2)

− I(U0, V0;Z|Q)− I(V1;Z|U0, V0)− I(U2;Z|U0, V0)
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R1 +R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U2, V2;Y2|Q, V0)

− I(V1;Z|U0, V0)− I(U0, U2, V0, V2;Z|Q)

R1 +R2 < I(U0, U2;Y2|Q, V0, V2) + I(U1, V0, V1;Y1|Q,U0)

− I(U0, U1, V0, V1;Z|Q)− I(U2;Z|U0, V0)

R1 +R2 < I(U0, U2;Y2|Q, V0, V2) + I(U2, V0, V2;Y2|Q,U0)

− I(U0, U2, V0, V2;Z|Q)− I(U2;Z|U0, V0)

R1 +R2 < I(V0, V2;Y2|Q,U0, U2) + I(U0, U2, V2;Y2|Q, V0)

− I(U0, U2, V0, V2;Z|Q)− I(V2;Z|U0, V0)

R1 +R2 < I(V0, V2;Y2|Q,U0, U2) + I(U0, U1, V1;Y1|Q, V0)

− I(U0, U1, V0, V1;Z|Q)− I(V2;Z|U0, V0)

R1 +R2 < I(U0, U1, V1;Y1|Q, V0) + I(U1, V0, V1;Y1|Q,U0)

− I(U0, V0;Z|Q)− 2I(U1, V1;Z|U0, V0)

R1 +R2 < I(U0, U1, V1;Y1|Q, V0) + I(U2, V0, V2;Y2|Q,U0)

− I(U0, V0;Z|Q)− I(U1, V1;Z|U0, V0)

− I(U2, V2;Z|U0, V0)

R1 +R2 < I(U1, V0, V1;Y1|Q,U0) + I(U0, U2, V2;Y2|Q, V0)

− I(U0, U1, V0, V1;Z|Q)− I(U2, V2;Z|U0, V0)

R1 +R2 < I(U0, U2, V2;Y2|Q, V0) + I(U2, V0, V2;Y2|Q,U0)

− I(U0, V0;Z|Q)− 2I(U2, V2;Z|U0, V0)

for some

p(q)p(u0|q)p(u1, u2|u0)p(v0|q)p(v1, v2|v0)

p(x1|u0, u1, u2)p(x2|v0, v1, v2)p(y1, y2, z|x1, x2), (2.5)
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Figure 2.2. Coding scheme for the first transmitter

such that

I(U1, U2, V1, V2;Z|U0, V0) ≤ I(U1, V1;Z|U0, V0)

+ I(U2, V2;Z|U0, V0)− I(U1;U2|U0)− I(V1;V2|V0). (2.6)

The proof uses superposition coding, Wyner’s wiretap coding, Marton coding, as well as

indirect decoding. The details of the proof are provided in Appendix C.

This strategy was introduced in [11] to find an achievable rate region for broadcast

channel with confidential messages. In this dissertation, this scheme has been extended to

two transmitters. The codebook for the first transmitter is shown in Fig. 2.2. For the first

transmitter, the message w1 is represented by un0 codewords. Then we superimpose a Marton

codebook consist of Un
1 and Un

2 codewords on this un0 codeword and select a jointly typical pair

(un1 , u
n
2 ) at random from this codebook. The codebook structure for the second transmitter

is the same and the codewords generated at the second transmitter are represented by vn0 ,

vn1 , and vn2 . The receiver j, for j = 1, 2, decodes w1 through (un0 , u
n
j ), and decodes w2 through

(vn0 , v
n
j ). For decoding (w1, w2) at the receiver j it is not necessary to ensure that there is not

any error in decoding (unj , v
n
j ), the efficacy of using (unj , v

n
j ) without decoding them has been

illuminated in [11]. Here, a two-step secrecy analysis is necessary because the (un[1:2], v
n
[1:2])

codewords should not leak any information about (un0 , v
n
0 ). Therefore, the secrecy constraints
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for un0 and vn0 codewords should be derived first, and then secrecy constraints for (un[1:2], v
n
[1:2])

codewords should be derived, assuming that the eavesdropper has access to (un0 , v
n
0 , z

n). This

two-step secrecy can be seen in Theorem 1; for example in the first constraint on R1 the

first negative term stands for the security of un0 and the second negative term stands for the

security of un1 assuming that eavesdropper has access to (un0 , v
n
0 , z

n).

This result covers several known earlier results:

• By setting Z = ∅, U0 = U1 = U2 = X1, and V0 = V1 = V2 = X2, the result in Theorem 1

reduces to the capacity region of compound multiple access channel discussed in [8].

• By setting Y2 = ∅ (or Y1 = ∅), U0 = U1 = U2 = X1 and V0 = V1 = V2 = X2, the result

in Theorem 1 reduces to the achievable rate region of multiple access wiretap channel

without common message [21, 22, 23].

• By setting X2 = ∅ (or X1 = ∅), U0 = U1 = U2, and Y2 = ∅ (or Y1 = ∅), the result

in Theorem 1 reduces to the capacity region of broadcast channel with confidential

message [70, Corollary 2].

• By setting X2 = ∅ (or X1 = ∅), the result in Theorem 1 reduces to the achievable rate

region for two-receiver, one-eavesdropper wiretap channel presented in [11, Theorem 1].

Remark 2. By doing some algebraic manipulation, we can show that the constraint in (2.6)

holds only if,

I(U1, V1;U2, V2|U0, V0, Z) = 0. (2.7)

Intuitively speaking, (2.7) shows that the Marton coding codebooks remain independent even

if the eavesdropper has access to the cloud centers.
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Corollary 1. An inner bound on the secrecy capacity region of degraded two-transmitter two-

receiver channel with confidential messages (Definition 4) is given by the set of non-negative

rate pairs (R1, R2) such that

R1 ≤ I(U0;Y2|V0, Q)− I(U0;Z|Q) (2.8)

R2 ≤ I(V0;Y2|U0, Q)− I(V0;Z|Q) (2.9)

R1 +R2 ≤ I(U0, V0;Y2|Q)− I(U0;Z|Q)− I(V0;Z|Q) (2.10)

for some

p(q)p(u0|q)p(v0|q)p(x1|u0)p(x2|v0). (2.11)

Proof. The proof follows from Theorem 1 by setting U0 = U1 = U2 and V0 = V1 = V2 and

considering the fact that the channel is degraded.

2.4 An Outer Bound for the Degraded Model

We develop an outer bound for the degraded version of the model and provide an example

in which it meets the inner bound of Theorem 1.

Definition 4. The degraded two-transmitter two-receiver channel with confidential messages

obeys:

p(y1, y2, z|x1, x2) = p(y1|x1, x2)p(y2|y1)p(z|y2). (2.12)

Theorem 2. The secrecy capacity region for the degraded two-transmitter two-receiver chan-

nel with confidential messages is included in the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U0;Y2|Q)− I(U0;Z|Q), (2.13)

R2 ≤ I(V0;Y2|Q)− I(V0;Z|Q), (2.14)

R1 +R2 ≤ I(U0, V0;Y2|Q)− I(U0, V0;Z|Q), (2.15)
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for some joint distribution

p(q)p(u0, v0|q)p(x1|u0)p(x2|v0). (2.16)

The details of the proof are provided in Appendix D.

Example (Degraded Switch Model): We consider an example of the two-transmitter two-

receiver channel where the first legitimate receiver has access to the noisy version of each of

the two transmitted values in a time-sharing (switched) manner, without interference from

the other transmitter (Fig. 2.3). The second legitimate receiver has access to a noisy version

of the first receiver, and the eavesdropper has access to a noisy version of the second receiver.

This example illustrates a situation where in cellular networks, a user is in the coverage range

of two different base stations and an eavesdropper has access a noisy version of the receiver’s

signal. The switch channel state information is made available to all terminals. In this

model, the channel outputs are as follows:

y′1 = (y1, s), (2.17)

y′2 = (y2, s), (2.18)

z′ = (z, s). (2.19)

This model consists of a channel with states that are causally available at both the encoders

and decoders.

The statistics of the channel, conditioned on the switch state, are expressed as follows:

p(y′1, y
′
2, z|x1, , x2, s) = p(y1|x1, x2, s) p(y2|y1, s) p(z|y2, s). (2.20)

The switch model describes, e.g., frequency hopping over two frequencies [29]. The state

(switch) is a binary random variable that chooses between listening to the Transmitter 1,

with probability τ , and listening to the Transmitter 2, with probability 1− τ , independently

at each time slot. We further assume the state is i.i.d. across time,
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Figure 2.3. Degraded switch model

p(y1|x1, x2, s) =p(y1|x1)1{s=1} + p(y1|x2)1{s=2},

=p(y1|xs), (2.21)

where 1{·} is the indicator function. Therefore, the channel model for degraded switch model

is as follows

p(y1, y2, z|x, x, s) = p(y1|xs)p(y2|y1, s)p(z|y2, s). (2.22)

Theorem 3. The secrecy capacity region for the degraded switch two-transmitter two-receiver

channel with confidential messages, is given by the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U0;Y ′2 |V0, Q)− I(U0;Z ′|Q), (2.23)

R2 ≤ I(V0;Y ′2 |U0, Q)− I(V0;Z ′|Q), (2.24)

R1 +R2 ≤ I(U0, V0;Y ′2 |Q)− I(U0, V0;Z ′|Q), (2.25)

for some joint distribution

p(q)p(u0|q)p(v0|q)p(x1|u0)p(x2|v0). (2.26)

The details of the proof are provided in Appendix E.

2.5 A General Outer Bound

We now develop a general outer bound for the model of Fig. 1.1 and provide an example in

which it meets the inner bound of Theorem 1.
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Figure 2.4. Noiseless switch model

Theorem 4. The secrecy capacity region for the two-transmitter two-receiver channel with

confidential messages is included in the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U0;Y1, Y2|Q)− I(U0;Z|Q), (2.27)

R2 ≤ I(V0;Y1, Y2|Q)− I(V0;Z|Q), (2.28)

R1 +R2 ≤ I(U0, V0;Y1, Y2|Q)− I(U0, V0;Z|Q), (2.29)

for some joint distribution

p(q)p(u0, v0|q)p(x1|u0)p(x2|v0). (2.30)

The details of the proof are provided in Appendix F.

Example (Noiseless Switch Model): This example is motivated by two transmitters op-

erating on different spectral bands, while the receiving terminals may receive adaptively

on one band at a time [29]. The eavesdropper in our example has access to one noiseless,

interference-free transmitted value at a time. Here, it is assumed that both legitimate re-

ceivers operate according to a common random switch s1 that is connected to Transmitter 1
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with probability τ1 and to Transmitter 2 with probability 1 − τ1, and the eavesdropper

operates according to another random switch s2 that is connected to Transmitter 1 with

probability τ2 and to Transmitter 2 with probability 1 − τ2 (See Fig. 2.4). Aside from the

switches, the channel is noiseless. Both receivers and the eavesdropper have access to their

own switch state information. Therefore, the channel outputs are considered

y′1 = (y1, s1), (2.31)

y′2 = (y2, s1), (2.32)

z′ = (z, s2). (2.33)

Since y1 = y2, we also have y′1 = y′2.

Theorem 5. The secrecy capacity region for the noiseless switch two-transmitter two-receiver

channel with confidential messages is given by the set of rate pairs (R1, R2) satisfying

R1 ≤ (τ1 − τ2)+H(X1), (2.34)

R2 ≤ (τ2 − τ1)+H(X2), (2.35)

where (x)+ = max{0, x}.

The details of the proof are provided in Appendix G. The capacity region in Theorem 5

shows that transmitters can securely communicate to receivers as long as τ1 6= τ2.

2.6 Achievable Rate Region Under Strong Secrecy

Theorem 6. An inner bound on the secrecy capacity region of the two-transmitter two-

receiver channel with confidential messages is given by the set of non-negative rate pairs

(R1, R2) such that

R1 < I(U0, U1;Y1|Q, V0, V1)− I(U0;Z|Q)− I(U1;Z|U0, V0)

R1 < I(U0, U2;Y2|Q, V0, V2)− I(U0;Z|Q)− I(U2;Z|U0, V0)
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R1 < I(U0, U1, V1;Y1|Q, V0)− I(U0;Z|Q)− I(U1, V1;Z|U0, V0)

R1 < I(U0, U2, V2;Y2|Q, V0)− I(U0;Z|Q)− I(U2, V2;Z|U0, V0)

2R1 < I(U0, U1;Y1|Q, V0, V1) + I(U0, U2;Y2|Q, V0, V2)

− 2I(U0;Z|Q)− I(U1, U2;Z|U0, V0)− I(U1;U2|U0)

2R1 < I(U0, U1;Y1|Q, V0, V1) + I(U0, U2, V2;Y2|Q, V0)

− 2I(U0;Z|Q)− I(U1, U2, V2;Z|U0, V0)− I(U1;U2|U0)

2R1 < I(U0, U2;Y2|Q, V0, V2) + I(U0, U1, V1;Y1|Q, V0)

− 2I(U0;Z|Q)− I(U1, U2, V1;Z|U0, V0)− I(U1;U2|U0)

2R1 < I(U0, U1, V1;Y1|Q,U0) + I(U0, U2, V2;Y2|Q,U0)

− 2I(U0;Z|Q)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

R2 < I(V0, V1;Y1|Q,U0, U1)− I(V0;Z|Q)− I(V1;Z|U0, V0)

R2 < I(V0, V2;Y2|Q,U0, U2)− I(V0;Z|Q)− I(V2;Z|U0, V0)

R2 < I(U1, V0, V1;Y1|Q,U0)− I(V0;Z|Q)− I(U1, V1;Z|U0, V0)

R2 < I(U2, V0, V2;Y2|Q,U0)− I(V0;Z|Q)− I(U2, V2;Z|U0, V0)

2R2 < I(V0, V1;Y1|Q,U0, U1) + I(V0, V2;Y2|Q,U0, U2)

− 2I(V0;Z|Q)− I(V1, V2;Z|U0, V0)− I(V1;V2|V0)

2R2 < I(V0, V1;Y1|Q,U0, U1) + I(U2, V0, V2;Y2|Q,U0)

− 2I(V0;Z|Q)− I(U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)

2R2 < I(V0, V2;Y2|Q,U0, U2) + I(U1, V0, V1;Y1|Q,U0)

− 2I(V0;Z|Q)− I(U1, V1, V2;Z|U0, V0)− I(V1;V2|V0)

2R2 < I(U1, V0, V1;Y1|Q,U0) + I(U2, V0, V2;Y2|Q,U0)

− 2I(V0;Z|Q)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

R1 +R2 < I(U0, U1;Y1|Q, V0, V1) + I(V0, V2;Y2|Q,U0, U2)
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− I(U0, V0;Z|Q)− I(U1, V2;Z|U0, V0)

R1 +R2 < I(U0, U1;Y1|Q, V0, V1) + I(U1, V0, V1;Y1|Q,U0)

− I(U0, V0;Z|Q)− I(U1;Z|U0, V0)− I(U1, V1;Z|U0, V0)

R1 +R2 < I(U0, U1;Y1|Q, V0, V1) + I(U2, V0, V2;Y2|Q,U0)

− I(U0, V0;Z|Q)− I(U1, U2, V2;Z|U0, V0)− I(U1;U2|U0)

R1 +R2 < I(U0, U2;Y2|Q, V0, V2) + I(V0, V1;Y1|Q,U0, U1)

− I(U0, V0;Z|Q)− I(U2, V1;Z|U0, V0)

R1 +R2 < I(U0, U2;Y2|Q, V0, V2) + I(U1, V0, V1;Y1|Q,U0)

− I(U0, V0;Z|Q)− I(U1, U2, V1;Z|U0, V0)− I(U1;U2|U0)

R1 +R2 < I(U0, U2;Y2|Q, V0, V2) + I(U2, V0, V2;Y2|Q,U0)

− I(U0, V0;Z|Q)− I(U2;Z|U0, V0)− I(U2, V2;Z|U0, V0)

R1 +R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U1, V1;Y1|Q, V0)

− I(U0, V0;Z|Q)− I(V1;Z|U0, V0)− I(U1, V1;Z|U0, V0)

R1 +R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U2, V2;Y2|Q, V0)

− I(U0, V0;Z|Q)− I(U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)

R1 +R2 < I(V0, V2;Y2|Q,U0, U2) + I(U0, U1, V1;Y1|Q, V0)

− I(U0, V0;Z|Q)− I(U1, V1, V2;Z|U0, V0)− I(V1;V2|V0)

R1 +R2 < I(V0, V2;Y2|Q,U0, U2) + I(U0, U2, V2;Y2|Q, V0)

− I(U0, V0;Z|Q)− I(V2;Z|U0, V0)− I(U2, V2;Z|U0, V0)

R1 +R2 < I(U0, U1, V1;Y1|Q, V0) + I(U1, V0, V1;Y1|Q,U0)

− I(U0, V0;Z|Q)− 2I(U1, V1;Z|U0, V0)

R1 +R2 < I(U0, U1, V1;Y1|Q, V0) + I(U2, V0, V2;Y2|Q,U0)− I(U0, V0;Z|Q)

− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)
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R1 +R2 < I(U0, U2, V2;Y2|Q, V0) + I(U1, V0, V1;Y1|Q,U0)− I(U0, V0;Z|Q)

− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

R1 +R2 < I(U0, U2, V2;Y2|Q, V0) + I(U2, V0, V2;Y2|Q,U0)

− I(U0, V0;Z|Q)− 2I(U2, V2;Z|U0, V0)

R1 +R2 < I(U0, U2, V0, V2;Y2|Q)− I(U0, U2, V0, V2;Z|Q)

R1 +R2 < I(U0, U1, V0, V1;Y1|Q)− I(U0, U1, V0, V1;Z|Q)

2R1 +R2 < I(U0, U1;Y1|Q, V0, V1) + I(U0, U2, V0, V2;Y2|Q)

− I(U0;Z|Q)− I(U0, V0;Z|Q)− I(U1, U2, V2;Z|U0, V0)− I(U1;U2|U0)

2R1 +R2 < I(U0, U2;Y2|Q, V0, V2) + I(U0, U1, V0, V1;Y1|Q)

− I(U0;Z|Q)− I(U0, V0;Z|Q)− I(U1, U2, V1;Z|U0, V0)− I(U1;U2|U0)

2R1 +R2 < I(U0, U1, V1;Y1|Q, V0) + I(U0, U2, V0, V2;Y2|Q)

− I(U0;Z|Q)− I(U0, V0;Z|Q)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 +R2 < I(U0, U2, V2;Y2|Q, V0) + I(U0, U1, V0, V1;Y1|Q)

− I(U0;Z|Q)− I(U0, V0;Z|Q)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

R1 + 2R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U2, V0, V2;Y2|Q)

− I(V0;Z|Q)− I(U0, V0;Z|Q)− I(U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)

R1 + 2R2 < I(V0, V2;Y2|Q,U0, U2) + I(U0, U1, V0, V1;Y1|Q)

− I(V0;Z|Q)− I(U0, V0;Z|Q)− I(U1, V1, V2;Z|U0, V0)− I(V1;V2|V0)

R1 + 2R2 < I(U0, U1, V0, V1;Y1|Q) + I(U2, V0, V2;Y2|Q,U0)

− I(V0;Z|Q)− I(U0, V0;Z|Q)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

R1 + 2R2 < I(U1, V0, V1;Y1|Q,U0) + I(U0, U2, V0, V2;Y2|Q)

− I(V0;Z|Q)− I(U0, V0;Z|Q)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < 2I(U0, U1;Y1|Q, V0, V1) + I(V0, V2;Y2|Q,U0, U2) + I(U1, V0, V1;Y1|Q,U0)
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− 2I(U0, V0;Z|Q)− 2I(U1;Z|U0, V0)− I(U1, V1, V2;Z|U0, V0)− I(V1;V2|V0)

2R1 + 2R2 < 2I(U0, U1;Y1|Q, V0, V1) + I(U1, V0, V1;Y1|Q,U0) + I(U2, V0, V2;Y2|Q,U0)

− 2I(U0, V0;Z|Q)− 2I(U1;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(U0, U1;Y1|Q, V0, V1) + I(U0, U2;Y2|Q, V0, V2)

+ I(U1, V0, V1;Y1|Q,U0) + I(U2, V0, V2;Y2|Q,U0)− 2I(U0, V0;Z|Q)− I(U1, U2;Z|U0, V0)

− I(U1, U2, V1, V2;Z|U0, V0)− I(U1;U2|U0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(U0, U1;Y1|Q, V0, V1) + 2I(V0, V2;Y2|Q,U0, U2) + I(U0, U2, V2;Y2|Q, V0)

− 2I(U0, V0;Z|Q)− 2I(V2;Z|U0, V0)− I(U1, U2, V2;Z|U0, V0)− I(U1;U2|U0)

2R1 + 2R2 < I(U0, U1;Y1|Q, V0, V1) + I(V0, V2;Y2|Q,U0, U2) + I(U0, U1, V0, V1;Y1|Q)

− 2I(U0, V0;Z|Q)− I(U1;Z|U0, V0)− I(U1, V1, V2;Z|U0, V0)− I(V1;V2|V0)

2R1 + 2R2 < I(U0, U1;Y1|Q, V0, V1) + I(V0, V2;Y2|Q,U0, U2) + I(U0, U2, V0, V2;Y2|Q)

− 2I(U0, V0;Z|Q)− I(V2;Z|U0, V0)− I(U1, U2, V2;Z|U0, V0)− I(U1;U2|U0)

2R1 + 2R2 < I(U0, U1;Y1|Q, V0, V1) + I(U1, V0, V1;Y1|Q,U0) + I(U0, U2, V0, V2;Y2|Q)

− 2I(U0, V0;Z|Q)− I(U1;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(U0, U1;Y1|Q, V0, V1) + I(U2, V0, V2;Y2|Q,U0) + I(U0, U1, V0, V1;Y1|Q)

− 2I(U0, V0;Z|Q)− I(U1;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(U0, U2;Y2|Q, V0, V2) + 2I(V0, V1;Y1|Q,U0, U1) + I(U0, U1, V1;Y1|Q, V0)

− 2I(U0, V0;Z|Q)− 2I(V1;Z|U0, V0)− I(U1, U2, V1;Z|U0, V0)− I(U1;U2|U0)

2R1 + 2R2 < 2I(U0, U2;Y2|Q, V0, V2) + I(V0, V1;Y1|Q,U0, U1) + I(U2, V0, V2;Y2|Q,U0)

− 2I(U0, V0;Z|Q)− 2I(U2;Z|U0, V0)− I(U2, V1, V2 : Z|U0, V0)− I(V1;V2|V0)

2R1 + 2R2 < 2I(U0, U2;Y2|Q, V0, V2) + I(U1, V0, V1;Y1|Q,U0) + I(U2, V0, V2;Y2|Q,U0)

− 2I(U0, V0;Z|Q)− 2I(U2;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(U0, U2;Y2|Q, V0, V2) + I(V0, V1;Y1|Q,U0, U1) + I(U0, U1, V0, V1;Y1|Q)
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− 2I(U0, V0;Z|Q)− I(V1;Z|U0, V0)− I(U1, U2, V1;Z|U0, V0)− I(U1;U2|U0)

2R1 + 2R2 < I(U0, U2;Y2|Q, V0, V2) + I(V0, V1;Y1|Q,U0, U1) + I(U0, U2, V0, V2;Y2|Q)

− 2I(U0, V0;Z|Q)− I(U2;Z|U0, V0)− I(U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)

2R1 + 2R2 < I(U0, U2;Y2|Q, V0, V2) + I(U1, V0, V1;Y1|Q,U0) + I(U0, U2, V0, V2;Y2|Q)

− 2I(U0, V0;Z|Q)− I(U2;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(U0, U2;Y2|Q, V0, V2) + I(U2, V0, V2;Y2|Q,U0) + I(U0, U1, V0, V1;Y1|Q)

− 2I(U0, V0;Z|Q)− I(U2;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < 2I(V0, V1;Y1|Q,U0, U1) + I(U0, U1, V1;Y1|Q, V0) + I(U0, U2, V2;Y2|Q, V0)

− 2I(U0, V0;Z|Q)− 2I(V1;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(V0, V1;Y1|Q,U0, U1) + I(V0, V2;Y2|Q,U0, U2)

+ I(U0, U1, V1;Y1|Q, V0) + I(U0, U2, V2;Y2|Q, V0)− 2I(U0, V0;Z|Q)

− I(V1, V2;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U1, V1;Y1|Q, V0) + I(U0, U2, V0, V2;Y2|Q)

− 2I(U0, V0;Z|Q)− I(V1;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U2, V2;Y2|Q, V0) + I(U0, U1, V0, V1;Y1|Q)

− 2I(U0, V0;Z|Q)− I(V1;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < 2I(V0, V2;Y2|Q,U0, U2) + I(U0, U1, V1;Y1|Q, V0) + I(U0, U2, V2;Y2|Q, V0)

− 2I(U0, V0;Z|Q)− 2I(V2;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(V0, V2;Y2|Q,U0, U2) + I(U0, U1, V1;Y1|Q, V0) + I(U0, U2, V0, V2;Y2|Q)

− 2I(U0, V0;Z|Q)− I(V2;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(V0, V2;Y2|Q,U0, U2) + I(U0, U2, V2;Y2|Q, V0) + I(U0, U1, V0, V1;Y1|Q)

− 2I(U0, V0;Z|Q)− I(V2;Z|U0, V0)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

2R1 + 2R2 < I(U0, U1, V0, V1;Y1|Q) + I(U0, U2, V0, V2;Y2|Q)
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− 2I(U0, V0;Z|Q)− I(U1, U2, V1, V2;Z|U0, V0)− I(U1, V1;U2, V2|U0, V0)

3R1 + 3R2 < I(U0, U1;Y1|Q, V0, V1) + I(U1, V0, V1;Y1|Q,U0)

+ 2I(U0, U2, V0, V2;Y2|Q)− 3I(U0, V0;Z)− I(U1, U2, V2;Z|U0, V0)

− I(U1, U2, V1, V2;Z|U0, V0)− I(U1;U2|U0)− I(U1, V1;U2, V2|U0, V0)

3R1 + 3R2 < I(U0, U2;Y2|Q, V0, V2) + I(U2, V0, V2;Y2|Q,U0)

+ 2I(U0, U1, V0, V1;Y1|Q)− 3I(U0, V0;Z|Q)− I(U1, U2, V1;Z|U0, V0)

− I(U1, U2, V1, V2;Z|U0, V0)− I(U1;U2|U0)− I(U1, V1;U2, V2|U0, V0)

3R1 + 3R2 < I(V0, V1;Y1|Q,U0, U1) + I(U0, U1, V1;Y1|Q, V0)

+ 2I(U0, U2, V0, V2;Y2|Q)− 3I(U0, V0;Z|Q)− I(U2, V1, V2;Z|U0, V0)

− I(U1, U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)− I(U1, V1;U2, V2|U0, V0)

3R1 + 3R2 < I(V0, V2;Y2|Q,U0, U2) + I(U0, U2, V2;Y2|Q, V0)

+ 2I(U0, U1, V0, V1;Y1|Q)− 3I(U0, V0;Z|Q)− I(U1, V1, V2;Z|U0, V0)

− I(U1, U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)− I(U1, V1;U2, V2|U0, V0)

3R1 + 3R2 < I(U0, U1, V1;Y1|Q, V0) + I(U1, V0, V1;Y1|Q,U0) + 2I(U0, U2, V0, V2;Y2|Q)

− 3I(U0, V0;Z|Q)− 2I(U1, U2, V1, V2;Z|U0, V0)− 2I(U1, V1;U2, V2|U0, V0)

3R1 + 3R2 < I(U0, U2, V2;Y2|Q, V0) + I(U2, V0, V2;Y2|Q,U0) + 2I(U0, U1, V0, V1;Y1|Q)

− 3I(U0, V0;Z|Q)− 2I(U1, U2, V1, V2;Z|U0, V0)− 2I(U1, V1;U2, V2|U0, V0)

4R1 + 4R2 < I(U0, U1;Y1|V0, V1) + I(U0, U2;Y2|Q, V0, V2) + 2I(U1, V0, V1;Y1|Q,U0)

+ 2I(U0, U2, V0, V2;Y2|Q)− 4I(U0, V0;Z|Q)− I(U1, U2;Z|U0, V0)

− 2I(U1, U2, V1, V2;Z|U0, V0)− I(U1;U2|U0)− 2I(U1, V1;U2, V2|U0, V0)

4R1 + 4R2 < I(U0, U1;Y1|Q, V0, V1) + I(U0, U2;Y2|Q, V0, V2)

+ 2I(U2, V0, V2;Y2|Q,U0) + 2I(U0, U1, V0, V1;Y1|Q)− 4I(U0, V0;Z|Q)

− I(U1, U2;Z|U0, V0)− 2I(U1, U2, V1, V2;Z|U0, V0)− I(U1;U2|U0)− 2I(U1, V1;U2, V2|U0, V0)
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4R1 + 4R2 < I(V0, V1;Y1|Q,U0, U1) + I(V0, V2;Y2|Q,U0, U2)

+ 2I(U0, U1, V1;Y1|Q, V0) + 2I(U0, U2, V0, V2;Y2|Q)− 4I(U0, V0;Z|Q)

− I(V1, V2;Z|U0, V0)− 2I(U1, U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)− 2I(U1, V1;U2, V2|U0, V0)

4R1 + 4R2 < I(V0, V1;Y1|Q,U0, U1) + I(V0, V2;Y2|Q,U0, U2)

+ 2I(U0, U2, V2;Y2|Q, V0) + 2I(U0, U1, V0, V1;Y1|Q)− 4I(U0, V0;Z|Q)

− I(V1, V2;Z|U0, V0)− 2I(U1, U2, V1, V2;Z|U0, V0)− I(V1;V2|V0)− 2I(U1, V1;U2, V2|U0, V0)

for some distribution

p(q)p(u0, u1, u2|q)p(v0, v1, v2|q)p(x1|u0, u1, u2)p(x2|v0, v1, v2)p(y1, y2, z|x1, x2), (2.36)

Proof. The achievability proof is inspired by [13], and is based on solving a dual secret key

agreement problem in the source model that includes shared randomness at all terminals

(see Fig. 2.5). In this dual model, rate constraints are derived so that the input and output

distributions of the dual model approximate that of the original model while satisfying

reliability and secrecy conditions in the dual model. The probability approximation then

guarantees that reliability and secrecy conditions can be achieved in the original model.

Finally, it is shown that there exists one realization of shared randomness for which the

above-mentioned conditions are valid, thus removing the necessity for common randomness.

We begin by developing the encoding and decoding strategies for the source model and

the original model, and derive and compare the joint probability distributions arising from

these two strategies.

We begin with the multi-terminal secret key agreement problem in the source model as

depicted in Fig. 2.5. Let (Un
[0:2], V

n
[0:2], X

n
1 , X

n
2 , Y

n
1 , Y

n
2 , Z

n) be i.i.d. and distributed according

to

p(u[0:2], x1)p(v[0:2], x2)p(y1, y2, z|x1, x2). (2.37)

Random Binning:
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p(y1, y2, z|u[0:2], v[0:2])

Enc. 1

Enc. 2

Dec. 1

Dec. 2

Eve

F1, F
′
[1:2] F[1:2], F

′
1, F

′′
1

F[1:2], F
′
2, F

′′
2F2, F

′′
[1:2]

F[1:2], F
′
[1:2], F

′′
[1:2]

W1

W2

Ŵ1, Ŵ2

W̌1, W̌2
Y n
2

Y n
1U[0:2]

V[0:2]

ZnZn
W1,W2

Figure 2.5. Dual secret key agreement problem in the source model for the original problem.

• To each un0 , uniformly and independently assign two random bin indices w1 ∈ J1, 2nR1K

and f1 ∈ J1, 2nR̃1K.

• To each pair (un0 , u
n
j ) for j = 1, 2 uniformly and independently assign random bin index

f ′j ∈ J1, 2nR̃′jK.

• To each vn0 uniformly and independently assign two random bin indices w2 ∈ J1, 2nR2K

and f2 ∈ J1, 2nR̃2K.

• To each pair (vn0 , v
n
j ) for j = 1, 2 uniformly and independently assign random bin index

f ′′j ∈ J1, 2nR̃′′j K.

• The random variables representing bin indices are:

W[1:2] , F[1:2] , F ′[1:2] , F ′′[1:2]. (2.38)

• Decoder 1 is a Slepian-Wolf decoder observing (yn1 , f[1:2], f
′
1, f

′′
1 ), and producing (ûn0 , û

n
1 )

and (v̂n0 , v̂
n
1 ), thus declaring ŵ1 = W1(ûn0 ) and ŵ2 = W2(v̂n0 ) to be the estimate of the

pair (w1, w2).
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• Decoder 2 is a Slepian-Wolf decoder observing (yn2 , f[1:2], f
′
2, f

′′
2 ), and producing (ǔn0 , ǔ

n
2 )

and (v̌n0 , v̌
n
2 ), thus declaring the bin indices w̌1 = W1(ǔn0 ) and w̌2 = W2(v̌n0 ) as the

estimate of the pair (w1, w2).

To condense the notation, we define the following variables:

f ,
(
f[1:2], f

′
[1:2], f

′′
[1:2]

)
, (2.39)

û ,
(
ûn0 , ǔ

n
0 , û

n
1 , ǔ

n
2 , v̂

n
0 , v̌

n
0 , v̂

n
1 , v̌

n
2

)
. (2.40)

Since the binnings f are random the PMFs induced by f are random, therefore henceforth

we use upper case letter for distributions when they depend on f . The random PMF induced

by random binning is then as follows:

P (un[0:2], v
n
[0:2], x

n
[1:2], y

n
1 , y

n
2 , z

n, w[1:2], f , û)

= p(un[0:2], v
n
[0:2], x

n
[1:2], y

n
1 , y

n
2 , z

n)P (w[1:2], f[1:2]|un0 , vn0 )P (f ′[1:2], f
′′
[1:2]|un[0:2], v

n
[0:2])

× P SW (ûn0 , û
n
1 , v̂

n
0 , v̂

n
1 |yn1 , f[1:2], f

′
1, f

′′
1 )P SW (ǔn0 , ǔ

n
2 , v̌

n
0 , v̌

n
2 |yn2 , f[1:2], f

′
2, f

′′
2 )

= P (w[1:2], f[1:2], u
n
0 , v

n
0 )P (f ′[1:2], f

′′
[1:2], u

n
[1:2], v

n
[1:2]|un0 , vn0 )

× p(xn1 |un[0:2])p(x
n
2 |vn[0:2])p(y

n
1 , y

n
2 , z

n|xn1 , xn2 )

× P SW (ûn0 , û
n
1 , v̂

n
0 , v̂

n
1 |yn1 , f[1:2], f

′
1, f

′′
1 )P SW (ǔn0 , ǔ

n
2 , v̌

n
0 , v̌

n
2 |yn2 , f[1:2], f

′
2, f

′′
2 )

= P (w[1:2], f[1:2])P (un0 , v
n
0 |w[1:2], f[1:2])P (f ′[1:2], f

′′
[1:2]|un0 , vn0 )P (un[1:2], v

n
[1:2]|un0 , vn0 , f ′[1:2], f

′′
[1:2])

× p(xn1 |un[0:2])p(x
n
2 |vn[0:2])p(y

n
1 , y

n
2 , z

n|xn1 , xn2 )

× P SW (ûn0 , û
n
1 , v̂

n
0 , v̂

n
1 |yn1 , f[1:2], f

′
1, f

′′
1 )P SW (ǔn0 , ǔ

n
2 , v̌

n
0 , v̌

n
2 |yn2 , f[1:2], f

′
2, f

′′
2 ). (2.41)

Here, P SW denotes the PMF of the output of the Slepian-Wolf decoder, which is a random

PMF. Ŵ1, Ŵ2 and W̌1, W̌2 are omitted because they are functions of other random variables.

We now return to the original problem illustrated in Fig. 1.1 except that, in addition, a

genie provides all terminals with shared randomness described by (F[1:2], F
′
[1:2], F

′′
[1:2]), whose

distribution will be clarified in the sequel. In this augmented model:
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• The messages W1 and W2 are mutually independent and uniformly distributed with

rates R1 and R2 respectively. The shared randomness (F1, F2) is uniformly distributed

over J1, 2nR̃1K, J1, 2nR̃2K, and independent of W1,W2.

• Encoder 1 and 2 are stochastic encoders producing codewords Un
0 , V

n
0 according to dis-

tributions P (un0 |w[1:2], f[1:2]) and P (vn0 |w[1:2], f[1:2]), respectively, which are the marginals

of distribution P (un0 , v
n
0 |w[1:2], f[1:2]) appearing in (2.41). This choice of encoder estab-

lishes the connection between the two models.

• The four random variables F ′[1:2], F
′′
[1:2] are mutually independent and uniformly dis-

tributed over, respectively, J1, 2nR̃′1K and J1, 2nR̃′2K, J1, 2nR̃′′1 K and J1, 2nR̃′′2 K. They are

also independent of (Un
0 , V

n
0 ) and therefore are independent of (W[1:2], F[1:2]).

• Encoder 1 and 2 further generate Un
[1:2], V

n
[1:2] according to P (un[1:2]|un0 , vn0 , f ′[1:2], f

′′
[1:2])

and P (vn[1:2]|un0 , vn0 , f ′[1:2], f
′′
[1:2]), respectively, which are marginal distributions of

P (un[1:2], v
n
[1:2]|un0 , vn0 , f ′[1:2], f

′′
[1:2]) from (2.41).

• Encoder 1 generates Xn
1 i.i.d. according to p(x1|u[0:2]). Encoder 2 generates Xn

2 i.i.d.

according to p(x2|v[0:2]). X1, X2 are transmitted over the channel.

• Decoders 1 and 2 are Slepian-Wolf decoders inherited from the source model secret key

agreement problem, observing respectively (yn1 , f[1:2], f
′
1, f

′′
1 ) and (yn2 , f[1:2], f

′
2, f

′′
2 ), and

producing (ûn0 , û
n
1 , v̂

n
0 , v̂

n
1 ) and (ǔn0 , ǔ

n
2 , v̌

n
0 , v̌

n
2 ). Therefore, the following random PMFs

for the decoder output distributions are inherited from the source model:

P SW (ûn0 , û
n
1 , v̂

n
0 , v̂

n
1 |yn1 , f[1:2], f

′
1, f

′′
1 ),

P SW (ǔn0 , ǔ
n
2 , v̌

n
0 , v̌

n
2 |yn2 , f[1:2], f

′
2, f

′′
2 ).

• Decoders 1 and 2 then produce estimates of (W1,W2), which are denoted (Ŵ1, Ŵ2) and

(W̌1, W̌2) respectively.
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The random PMF induced by the random binning and the encoding/decoding strategy is as

follows:

P̂ (un[0:2], v
n
[0:2], y

n
1 , y

n
2 , z

n, w[1:2], f , û)

= pU(w[1:2])p
U(f[1:2])P (un0 , v

n
0 |w[1:2], f[1:2])p

U(f ′[1:2])p
U(f ′′[1:2])P (un[1:2], v

n
[1:2]|un0 , vn0 , f ′[1:2], f

′′
[1:2])

× p(xn1 |un[0:2])p(x
n
2 |vn[0:2])p(y

n
1 , y

n
2 , z

n|xn1 , xn2 )

× P SW (ûn0 , û
n
1 , v̂

n
0 , v̂

n
1 |yn1 , f[1:2], f

′
1, f

′′
1 )P SW (ǔn0 , ǔ

n
2 , v̌

n
0 , v̌

n
2 |yn2 , f[1:2], f

′
2, f

′′
2 ), (2.42)

where f and û are defined in (2.39) and (2.40), respectively, and pU is the uniform distribu-

tion.

We now find constraints that ensure that the PMFs P̂ and P are close in total variation

distance. For the source model secret key agreement problem, substituting X1 = X2 ← U0,

and X3 = X4 ← V0, in [13, Theorem 1] implies that W[1:2] is nearly independent of F[1:2] and

Zn, if

R1 + R̃1 < H(U0|Z), (2.43)

R2 + R̃2 < H(V0|Z), (2.44)

R1 + R̃1 +R2 + R̃2 < H(U0, V0|Z), (2.45)

note that [13, Theorem 1] returns a total of 15 inequalities, but the remaining are redundant

because of (2.43)–(2.45). The above constraints imply that

P (zn, w[1:2], f[1:2]) ≈ε p(zn)pU(w[1:2])p
U(f[1:2]).

Similarly, substituting X1 ← (U0, U1), X2 ← (U0, U2), X3 ← (V0, V1), X4 ← (V0, V2), and

Z ← (U0, V0, Z) in [13, Theorem 1] implies that (f ′[1:2], f
′′
[1:2]) are nearly mutually independent

and independent of (U0, V0, Z), therefore they are independent of (w[1:2], f[1:2]), if

R̃′j < H(Uj|U0, V0, Z), (2.46)
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R̃′′j < H(Vj|U0, V0, Z), (2.47)

R̃′1 + R̃′′j < H(U1, Vj|U0, V0, Z), (2.48)

R̃′2 + R̃′′j < H(U2, Vj|U0, V0, Z), (2.49)

R̃′1 + R̃′2 < H(U1, U2|U0, V0, Z), (2.50)

R̃′′1 + R̃′′2 < H(V1, V2|U0, V0, Z), (2.51)

R̃′1 + R̃′2 + R̃′′j < H(U1, U2, Vj|U0, V0, Z), (2.52)

R̃′j + R̃′′1 + R̃′′2 < H(Uj, V1, V2|U0, V0, Z), (2.53)

R̃′1 + R̃′2 + R̃′′1 + R̃′′2 < H(U1, U2, V1, V2|U0, V0, Z), (2.54)

for j = 1, 2. The above constraints imply

P (zn, un0 , v
n
0 , f

′
[1:2], f

′′
[1:2]) ≈ε p(zn, un0 , vn0 )pU(f ′[1:2])p

U(f ′′[1:2]). (2.55)

Hence,

P (w[1:2], f[1:2]) ≈ε P̂ (w[1:2], f[1:2]) = pU(w[1:2])p
U(f[1:2]), (2.56)

P (f ′[1:2], f
′′
[1:2]|un0 , vn0 ) ≈ε P̂ (f ′[1:2], f

′′
[1:2]|un0 , vn0 ) = pU(f ′[1:2])p

U(f ′′[1:2]). (2.57)

In other words, the inequalities (2.43)–(2.45) and (2.46)–(2.54) imply that

P (zn, w[1:2], f[1:2], f
′
[1:2], f

′′
[1:2]) ≈ε p(zn)pU(w[1:2])p

U(f[1:2])p
U(f ′[1:2])p

U(f ′′[1:2]). (2.58)

Here, the PMF P (zn) is equal to p(zn) because the marginal distribution does not include

random binning.

Therefore, the distributions in (2.41) and (2.42) are nearly equal, that is

P (un[0:2], v
n
[0:2], y

n
1 , y

n
2 , z

n, w[1:2], f , û) ≈ε P̂ (un[0:2], v
n
[0:2], y

n
1 , y

n
2 , z

n, w[1:2], f , û). (2.59)

Similar to indirect decoding for channel coding, it is possible to use indirect decoding for

source coding. More precisely, the first and the second decoders only need (un0 , v
n
0 ) to decode
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(w1, w2). Decoder 1 and Decoder 2 can indirectly decode (un0 , v
n
0 ) from (yn1 , f[1:2], f

′
1, f

′′
1 ) and

(yn2 , f[1:2], f
′
2, f

′′
2 ), respectively. From [13, Lemma 1] decoding is successful if

R̃1 + R̃′j > H(U0, Uj|V0, Vj, Yj), (2.60)

R̃2 + R̃′′j > H(V0, Vj|U0, Uj, Yj), (2.61)

R̃1 + R̃′j + R̃′′j > H(U0, Uj, Vj|V0, Yj), (2.62)

R̃1 + R̃2 + R̃′′j > H(V0, Vj|U0, Uj, Yj), (2.63)

R̃′j + R̃2 + R̃′′j > H(Uj, V0, Vj|U0, Yj), (2.64)

R̃1 + R̃′j + R̃2 + R̃′′j > H(U0, Uj, V0, Vj|Yj), (2.65)

for j = 1, 2. Note that, inequality (2.63) is redundant because of (2.61). It yields

P (un[0:2], v
n
[0:2], y

n
1 , y

n
2 , z

n, w[1:2], f , û) ≈ε P (un[0:2], v
n
[0:2], y

n
1 , y

n
2 , z

n, w[1:2], f)

× 1{
ûn0 =ǔn0 =un0 ,û

n
1 =un1 ,ǔ

n
2 =un2

}times1{
v̂n0 =v̌n0 =vn0 ,v̂

n
1 =vn1 ,v̌

n
2 =vn2

}. (2.66)

From equations (2.59), (2.66), and the triangle inequality,

P̂ (un[0:2], v
n
[0:2], y

n
1 , y

n
2 , z

n, w[1:2], f , û) ≈ε P (un[0:2], v
n
[0:2], y

n
1 , y

n
2 , z

n, w[1:2], f)

× 1{
ûn0 =ǔn0 =un0 ,û

n
1 =un1 ,ǔ

n
2 =un2

}1{
v̂n0 =v̌n0 =vn0 ,v̂

n
1 =vn1 ,v̌

n
2 =vn2

}. (2.67)

For convenience, we reintroduce a lemma from [13]:

Lemma 3. ([13, Lemma 4]) Consider distributions pXn, pY n|Xn, qXn, and qY n|Xn and ran-

dom PMFs PXn, PY n|Xn, QXn, and QY n|Xn. Denoting asymptotic equality under total vari-

ation with ≈ε, we have:

1.

PXn ≈ε QXn ⇒ PXnPY n|Xn ≈ε QXnPY n|Xn , (2.68)

PXnPY n|Xn ≈ε QXnQY n|Xn ⇒ PXn ≈ε QXn . (2.69)
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2. If pXnpY n|Xn ≈ε qXnqY n|Xn, then there exists a sequence xn ∈ X n such that

pY n|Xn=xn ≈ε qY n|Xn=xn . (2.70)

3. If PXn ≈ε QXn and PXnPY n|Xn ≈ε PXnQY n|Xn, then

PXnPY n|Xn ≈ε QXnQY n|Xn . (2.71)

Using Lemma 3, Equation (2.69), the marginal distributions of the two sides of (2.67)

are asymptotically equivalent, i.e.,

P̂ (un[0:2], v
n
[0:2], z

n, w[1:2], f , û) ≈ε P (un[0:2], v
n
[0:2], z

n, w[1:2], f)

× 1{
ûn0 =ǔn0 =un0 ,û

n
1 =un1 ,ǔ

n
2 =un2

}1{
v̂n0 =v̌n0 =vn0 ,v̂

n
1 =vn1 ,v̌

n
2 =vn2

}. (2.72)

Using Lemma 3, Equation (2.68) we multiply the two sides of Equation (2.72) by the condi-

tional distribution:

P̂ (ŵ1, w̌1, ŵ2, w̌2|un[0:2], v
n
[0:2], z

n, w[1:2], f , û) = 1{
W1(ûn0 )=ŵ1,W1(ǔn0 )=w̌1

}1{
W2(v̂n0 )=ŵ2,W2(v̌n0 )=w̌2

},

to get:

P̂ (un[0:2], v
n
[0:2], z

n, w[1:2], f , û, ŵ1, w̌1, ŵ2, w̌2) ≈ε P (un[0:2], v
n
[0:2], z

n, w[1:2], f)

× 1{
ûn0 =ǔn0 =un0 ,û

n
1 =un1 ,ǔ

n
2 =un2

}1{
v̂n0 =v̌n0 =vn0 ,v̂

n
1 =vn1 ,v̌

n
2 =vn2

}

× 1{
W1(ûn0 )=ŵ1,W1(ǔn0 )=w̌1

}1{
W2(v̂n0 )=ŵ2,W2(v̌n0 )=w̌2

}

= P (un[0:2], v
n
[0:2], z

n, w[1:2], f)

× 1{
ûn0 =ǔn0 =un0 ,û

n
1 =un1 ,ǔ

n
2 =un2

}1{
v̂n0 =v̌n0 =vn0 ,v̂

n
1 =vn1 ,v̌

n
2 =vn2

}1{
ŵ1=w̌1=w1,ŵ2=w̌2=w2

}, (2.73)

where W1(un0 ) = ŵ1 and W2(vn0 ) = ŵ2 denote the bins assigned to un0 and vn0 , respectively.

Using (2.73) and Lemma 3, Equation (2.68) leads to

P̂ (zn, w[1:2], f , ŵ1, w̌1, ŵ2, w̌2) ≈ε P (zn, w[1:2], f)1{
ŵ1=w̌1=w1,ŵ2=w̌2=w2

}. (2.74)
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Using equations (2.58) and (2.74) and Lemma 3, Equation (2.71) leads to

P̂ (zn, w[1:2], f , ŵ1, w̌1, ŵ2, w̌2) ≈ε p(zn)pU(w[1:2], f[1:2])p
U(f ′[1:2], f

′′
[1:2])1

{
ŵ1=w̌1=w1,ŵ2=w̌2=w2

}.

(2.75)

We now eliminate the shared randomness (F[1:2], F
′
[1:2], F

′′
[1:2]) without affecting the secrecy

and reliability requirements. By using Definition 3, Equation (2.75) ensures that there exists

a fixed binning with corresponding PMF p that, if used in place of the random coding strategy

P in (2.42), will induce the PMF p̂ as follows:

p̂(zn, w[1:2], f[1:2], f
′
[1:2], f

′′
[1:2], ŵ1, w̌1, ŵ2, w̌2)

≈ε p(zn)pU(w[1:2], f[1:2])p
U(f ′[1:2], f

′′
[1:2])1

{
ŵ1=w̌1=w1,ŵ2=w̌2=w2

}. (2.76)

Now, using Lemma 3, Equation (2.70) shows that there exists an instance of (f[1:2], f
′
[1:2], f

′′
[1:2])

such that:

p̂(zn, w[1:2], ŵ1, w̌1, ŵ2, w̌2|f[1:2], f
′
[1:2], f

′′
[1:2]) ≈ε p(zn)pU(w1)pU(w2)1{

ŵ1=w̌1=w1,ŵ2=w̌2=w2

}.

(2.77)

This distribution satisfies the secrecy and reliability requirements as follows:

• Reliability: Using Lemma 3, Equation (2.69) leads to

p̂(w[1:2], ŵ1,1, ŵ1,2, ŵ2,1, ŵ2,2|f[1:2], f
′
[1:2], f

′′
[1:2]) ≈ε 1{ŵ1=w̌1=w1,ŵ2=w̌2=w2

}, (2.78)

which is equivalent to:

p̂
(
{(Ŵ1, Ŵ2) 6= (W1,W2)} ∪ {(W̌1, W̌2) 6= (W1,W2)}

∣∣∣∣f[1:2], f
′
[1:2], f

′′
[1:2]

)
→ 0.

• Security: Again, using Lemma 3, Equation (2.69)

p̂(zn, w[1:2]|f[1:2], f
′
[1:2], f

′′
[1:2]) ≈ε p(zn)pU(w1)pU(w2). (2.79)
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Finally, we identify p(xn1 |w1, f1, f
′
[1:2]) and p(xn2 |w2, f2, f

′′
[1:2]) (which is done by generating u[0:2]

and v[0:2] first, respectively) as encoders and the Slepian-Wolf decoders as decoders for the

channel coding problem. These encoders and decoders lead to reliable and secure encoders

and decoders.

By applying a computer generated Fourier-Motzkin procedure [71] to (2.43)–(2.54),

(2.60), (2.61), and (2.65) the achievable rate region for the strong secrecy regime in Theo-

rem 6 is obtained.

Remark 3. If we assume that (2.6), and therefore (2.7), holds, the inequalities (2.48) for

j = 2, (2.49) for j = 1, and (2.50)–(2.54) will be redundant and by applying the Fourier-

Motzkin procedure [71, 72] to (2.43)–(2.47), (2.48) for j = 1, (2.49) for j = 2, (2.60), (2.61),

and (2.65) the region in Theorem 1 over the distribution (2.36) will be achieved. This shows

that the region derived by OSRB is a superset of the region derived in the weak secrecy regime.

Remark 4. The random distributions P (un0 , v
n
0 |w[1:2], f[1:2]) and P (un[1:2], v

n
[1:2]|un0 , vn0 , f ′[1:2], f

′′
[1:2])

factorize as P (un0 |w1, f1)P (vn0 |w2, f2) and P (un[1:2]|un0 , f ′[1:2])P (vn[1:2]|vn0 , f ′′[1:2]), respectively, which

means that Encoders 1 and 2 are not using the common randomness and the message avail-

able at the other encoder to generate the common and private random variables. The common

randomness (F1, F
′
[1:2]) represents the realization of Encoder 1’s codebook and (F2, F

′′
[1:2]) rep-

resents the realization of Encoder 2’s codebook, which is available at all terminals, but the

codebook at one encoder does not depend on the codebook of the other encoder.

Remark 5. The achievable region described in the proof of Theorem 6 was without time-

sharing, i.e., Q = ∅. One can incorporate this into the proof by generating i.i.d. copies of

Q, and sharing it among all terminals and conditioning everything on it.
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CHAPTER 3

KEYLESS COVERT COMMUNICATION VIA CSI1 2

3.1 Introduction

In this chapter, we consider the problem of covert communication over a state-dependent

channel when the CSI is available either non-causally, causally, or strictly causally, either

at the transmitter alone, or at both transmitter and receiver. Covert communication with

respect to an adversary, called “warden,” is one in which, despite communication over the

channel, the warden’s observation remains indistinguishable from an output induced by

innocent channel-input symbols. Covert communication involves fooling an adversary in

part by a proliferation of codebooks; for reliable decoding at the legitimate receiver, the

codebook uncertainty is typically removed via a shared secret key that is unavailable to the

warden. In contrast to previous work, we do not assume the availability of a large shared

key at the transmitter and legitimate receiver. Instead, we only require a secret key with

negligible rate to bootstrap the communication and our scheme extracts shared randomness

from the CSI in a manner that keeps it secret from the warden, despite the influence of

the CSI on the warden’s output. When CSI is available at the transmitter and receiver, we

derive the covert capacity region. When CSI is only available at the transmitter, we derive

inner and outer bounds on the covert capacity. We also provide examples for which the

covert capacity is positive with knowledge of CSI but is zero without it.

1©2019 IEEE. Reprinted, with permission, from H. ZivariFard, M. R. Bloch, and A. Nosratinia, ”Keyless
covert communication in the presence of non-causal channel state information,” 2019 IEEE Information
Theory Workshop (ITW), 1-5

2©2020 IEEE. Reprinted, with permission, from H. ZivariFard, M. R. Bloch, and A. Nosratinia, ”Keyless
Covert Communication in the Presence of Channel State Information,” 2020 IEEE International Symposium
on Information Theory (ISIT), 834-839
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3.2 Channel model

Consider discrete memoryless state-dependent channels as shown in Fig. 1.2 or Fig. 1.3. The

channel is characterized by input alphabet X , legitimate output alphabet Y , warden output

alphabet Z, state alphabet S, and a transition probability WY Z|XS. We assume that the

CSI is independent and identically distributed (i.i.d.) and drawn according to QS and we let

x0 ∈ X be an ”innocent” symbol corresponding to the absence of communication with the

receiver. The distribution induced at the warden in the absence of communication is then,

Q0(·) =
∑

s∈S
QS(s)WZ|X,S(·|x0, s), (3.1)

and we let Q⊗n0 =
∏n

i=1 Q0. The CSI may be available non-causally, causally, or strictly

causally at the transmitter and may or may not be available at the receiver. Note that the

exact causal or non-causal nature of CSI at the receiver is irrelevant because decoding is

always done after transmission is completed. The warden is kept ignorant of the CSI.

Formally, a code with CSI available at both the transmitter and the receiver is defined

as follows.

Definition 5. A (2nR, n) code Cn with CSI available at both the transmitter and the receiver

consists of:

• a message set M = J1, 2nRK;

• when CSI is available non-causally at the transmitter, for each time slot i ∈ J1, nK,

a deterministic encoder fi : M × Sn 7→ Xi that maps message and the entire CSI

sequence to a channel input symbol xi;

• when CSI is available causally at the transmitter, for each time slot i ∈ J1, nK, a

deterministic encoder fi : M× S i 7→ Xi that maps message and the past and current

CSI samples to a channel input symbol xi;
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• when CSI is available strictly-causally at the transmitter, for each time slot i ∈ J1, nK, a

deterministic encoder fi :M×S i−1 7→ Xi that maps message and the past CSI samples

to a channel input symbol xi;

• a decoding function g : Sn × Yn 7→ M ∪ {?} that maps the channel observations and

the CSI sequence to a message M̂ ∈M or an error message ?.

A code with CSI available only at the transmitter is defined as follows.

Definition 6. A (2nR, n) code Cn with CSI available only at the transmitter consists of

• a message set M = J1, 2nRK and a secret key set K = J1, 2nRKK;

• when CSI is available non-causally, for each time slot i ∈ J1, nK, a stochastic encoder

fi :M×J ×K×Sn 7→ Xi, that maps message, local randomness, secret key, and the

entire CSI sequence to a channel input symbol xi;

• when CSI is available causally, for each time slot i ∈ J1, nK, a stochastic encoder

fi :M×J ×K × S i 7→ Xi, that maps message, local randomness, secret key, and the

past and current CSI samples to a channel input symbol xi;

• when CSI is available strictly-causally, for each time slot i ∈ J1, nK, a stochastic encoder

fi :M×J ×K×S i−1 7→ Xi that maps message, local randomness, secret key, and the

past CSI samples to a channel input symbol xi;

• a decoding function g : Yn × K 7→ M ∪ {?} that maps the channel observations to a

message M̂ ∈M or an error message ?.

The reason for introducing a stochastic encoder when CSI is only available at the trans-

mitter is that our achievability scheme then relies on a likelihood encoder [73]. The stochastic

nature of the likelihood encoder greatly simplifies the covertness analysis by providing finer

control over the statistics induced by the encoder.
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The code is assumed known to all parties and the objective is to design a code that is

reliable, covert, and keyless. Reliable means that the probability of error P
(n)
e = P(M̂ 6= M)

vanishes when n→∞. Covert means that the warden cannot determine whether communi-

cation is happening (hypothesis H1) or not (hypothesis H0). Specifically, the probabilities of

false alarm αn (warden deciding H1 when H0 is true) and missed detection βn (warden de-

ciding H0 when H1 is true) satisfy αn+βn = 1 for an uninformed warden making random de-

cisions. When the channel carries communication, the warden’s channel output distribution

is PZn , and the optimal hypothesis test by the warden satisfies αn+βn ≥ 1−
√
D(PZn||Q⊗n0 )

[74]. Therefore, we define a code as covert if D(PZn||Q⊗n0 ) vanishes when n→∞. We assume

that supp(Q0) = Z for otherwise D(PZn||Q⊗n0 ) diverges. Finally, keyless means that the rate

of secret key 1
n

log |K| vanishes as n→∞.

A rate R is achievable if there exists a sequence of reliable, covert, and keyless (2nR, n)

codes and the covert capacity is the supremum of all achievable covert rates. We denote

the covert capacity by CA-B where A ∈ {NC,C,SC} indicates the non-causal, causal, or

strictly causal nature of the CSI at the transmitter while B ∈ {T,TR} indicates whether

CSI is available only at the transmitter or both the transmitter and receiver. Hence, we are

interested in characterizing CNC-TR, CNC-T, CC-TR, CC-T, CSC-TR, CSC-T.

3.3 Channel State Information Available at the Transmitter and the Receiver

Theorem 7. Let

A ,
{
R ≥ 0 : ∃PS,X,Y,Z ∈ D such that R ≤ I(X;Y |S)

}
, (3.2a)
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where,

D ,





PS,X,Y,Z :

PS,X,Y,Z = QSPX|SWY,Z|S,X

PZ = Q0

H(S|Z) ≥ I(X;Z|S)− I(X;Y |S)





. (3.2b)

The covert capacity of the DMC WY,Z|S,X with non-causal CSI at both the transmitter and

the receiver is

CNC-TR = max{a : a ∈ A}. (3.3)

Theorem 7 suggests that the key rate H(S|Z) extracted from CSI should exceed the

difference between the capacity of the warden and the capacity of the legitimate receiver.

The achievability is proved by superposition encoding and the complete proof is available in

Appendix H.

Theorem 8. Let

A ,
{
R ≥ 0 : ∃PS,U,X,Y,Z ∈ D such that R ≤ I(U ;Y |S)

}
, (3.4a)

where,

D ,





PS,U,X,Y,Z :

PS,U,X,Y,Z = QSPU1{
X=X(U,S)

}WY,Z|S,X

PZ = Q0

H(S|Z) ≥ I(U ;Z|S)− I(U ;Y |S)

|U| ≤ |X |+ 1





. (3.4b)

The covert capacity of the DMC WY,Z|S,X with causal CSI at both the transmitter and the

receiver is

CC-TR = max{a : a ∈ A}. (3.5)
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Again, Theorem 8 suggests that the key rate extracted from CSI should exceed the

difference between the capacity of the warden and the capacity of the legitimate receiver.

The achievability proof is based on block Markov encoding to combine a Shannon strategy for

transmitting the message according to CSI with key generation and is available in Appendix I.

Theorem 9. Let

A ,
{
R ≥ 0 : ∃PS,X,Y,Z ∈ D such that R ≤ I(X;Y |S)

}
, (3.6a)

where,

D ,





PS,X,Y,Z :

PS,X,Y,Z = QSPXWY,Z|S,X

PZ = Q0

H(S|Z) ≥ I(X;Z|S)− I(X;Y |S)





. (3.6b)

The covert capacity of the DMC WY,Z|S,X with strictly causal CSI at both the transmitter and

the receiver is

CSC-TR = max{a : a ∈ A}. (3.7)

Even though strictly causal CSI provides limited opportunities to enhance reliability, it is

still useful, because it provides shared randomness from which to extract a secret key. The

achievability proof merely uses a block Markov encoding scheme for key generation but not

for data transmission and is available in Appendix J.

3.4 Examples of channels with CSI at transmitter and receiver

We now provide two examples of covert communication over state-dependent channels with

CSI at the transmitter and receiver. A positive covert capacity is achieved without an exter-

nal secret key, hence not subject to the square root law. The two examples explore additive
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M M̂

H0: Q
⊗n
0

H1: PZn

Zi
Det.

Yi
Dec.

Xi

Si

Enc.

QS
Si/Sn Si/Sn

Figure 3.1. Binary symmetric channel with additive CSI at the transmitter and the receiver

and multiplicative CSI, respectively, with the former representing channels in which the

channel state can in principle be cancelled and the latter representing fading-like channels.

Binary Additive State: Consider a channel in which X, Y, Z, and S are all binary, QS

obeys a Bernoulli distribution with parameter ζ ∈ (0 : 0.5), and the innocent symbol is

x0 = 0. (See Fig. 3.1). The law of the channel is

Y = Z = X ⊕ S, (3.8)

so that Q0 = QS.

Proposition 1. The covert capacity of the DMC depicted in Fig. 3.1 with causal or non-

causal CSI available at the transmitter and the receiver is

CNC-TR = CC-TR =Hb(ζ) = ζ log
1

ζ
+ (1− ζ) log

1

1− ζ . (3.9)

Intuitively, the encoder perfectly controls the warden’s observations because it knows the

CSI. By manipulating X, the encoder ensures that Z follows the statistics of S. In part,

this means that the symbol X = 1 is associated half the time to S = 0 and half the time to

S = 1 to ensure PZ = QS ∼ Bern(ζ). Further, since the transmitter and receiver share the

CSI, the legitimate channel is error-free.
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Table 3.1. Joint probability distribution of X,S

S
X

0 1

0 α β
1 1− α− β − η η

Proof. We first prove Proposition 1 when CSI is available non-causally at both the trans-

mitter and the receiver. Substituting Y = Z = X ⊕ S in Theorem 7 results in

CNC-TR = max
QSPX|S

H(X|S), (3.10)

with the maximization subject to the constraint PZ = Q0 = QS. Let the joint distribution

between X and S be according to Table 3.1, we have

PZ(z = 0) = PX,S(x = 0, s = 0) + PX,S(x = 1, s = 1) = α + η, (3.11)

QS(s = 0) = PX,S(x = 0, s = 0) + PX,S(x = 1, s = 0) = α + β. (3.12)

Therefore PZ = QS implies that

QZ(z = 0) = QS(s = 0)⇒ α + η = α + β ⇒ η = β. (3.13)

Therefore,

max
QSPX|S

H(X|S) = max
(α,β)
ζ=α+β

[
− α log

α

α + β
− (1− α− 2β) log

1− α− 2β

1− α− β

− β log
β

α + β
− β log

β

1− α− β
]
. (3.14)

Considering QS(s = 0) = ζ = α + β and substituting β = ζ − α in (3.14) results in

max
QSPX|S

H(X|S) = max
α

[
− α log

α

ζ
− (1 + α− 2ζ) log

1 + α− 2ζ

1− ζ

− (ζ − α) log
ζ − α
ζ
− (ζ − α) log

ζ − α
1− ζ

]
. (3.15)
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⊗n
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Det.

Yi Dec.

Xi

(S1,i, S2,i) (S1,i, S2,i)

S1,i

S2,i

QS

Enc.

Figure 3.2. Binary symmetric channel with multiplicative CSI at the transmitter and the
receiver

Since entropy is a continuous concave function, the maximizer of H(X|S) is found at the

root of the first derivative of (3.15). This root is α = ζ2, resulting in maxH(X|S) = H(S).

Since Y = Z, the condition H(S|Z) ≥ I(X;Z|S)− I(X;Y |S) is automatically satisfied.

We now prove Proposition 1 when CSI is available causally at both the transmitter

and the receiver. To prove achievability, we shall substitute specific choices of auxiliary

random variables in Theorem 8. We choose U as a Bernoulli random variable with parameter

η ∈ (0 : 0.5) and independent of S, and we set X = U ⊕ S. Therefore, Y = Z = U and

I(U ;Y |S) = H(U). Since x0 = 0 we have Q0 = QS and the condition QZ = Q0 results in

η = ζ because

QS(z = 0) = P(s = 0) = ζ, (3.16)

QZ(z = 0) = P(u = 0) = η. (3.17)

Since Y = Z, the condition H(S|Z) ≥ I(U ;Z|S) − I(U ;Y |S) is automatically satisfied and

the covert capacity is lower bounded by Hb(ζ). The converse proof follows from the fact

CC-TR ≤ CNC-TR by definition.

Binary Multiplicative State: Consider a channel in which X, Y, Z, S1, and S2 are all

binary and S1 and S2 have a joint distribution with parameters P (S1 = i, S2 = j) = pi,j, for
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i, j ∈ {0, 1} and the innocent symbol is x0 = 0 (See Fig. 3.2). The law of the channel is

Y = X ⊗ S1, Z = X ⊗ S2. (3.18)

Proposition 2. The covert capacity of the DMC depicted in Fig. 3.2 with causal or non-

causal CSI available at the transmitter and the receiver is

CNC-TR = CC-TR =p1,0. (3.19)

Intuitively, covert communication occurs when the warden’s observation is impaired by a

bad realization of CSI while the legitimate receiver simultaneously enjoys a good realization

of the CSI. Since the receiver knows the CSI, the legitimate channel is effectively noise-free.

Proof. We prove Proposition 2 for the non-causal case, the proof for the causal case is similar

and omitted for brevity. Substituting S = (S1, S2) in Theorem 7, we obtain

CNC-TR = max
PX|S1,S2

,

QZ=Q0

[
I(X;Y |S1, S2)

]

= max
PX|S1,S2

,

QZ=Q0

[ 1∑

i=0

1∑

j=0

pi,jI(X;Y |S1 = i, S2 = j)
]

(a)
= max

PX|S1,S2

[
p1,0I(X;Y |S1 = 1, S2 = 0)

]

= max
PX|S1,S2

[
p1,0H(X|S1 = 1, S2 = 0)

]

= p1,0, (3.20)

where (a) holds because Y = 0 when S1 = 0 so that I(X;Y |S1 = 0, S2 = j) = 0 and Z = X

when S2 = 1 so that PX = PZ = Q0 imposes X = 0, and I(X;Y |S1 = i, S2 = 1) = 0. Note

that QZ = Q0 implies that Z is always equal to zero, so that I(X;Z|S) ≤ H(Z) = 0 and the

condition H(S|Z) ≥ I(X;Z|S)− I(X;Y |S) is automatically satisfied.
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3.5 Channel State Information Only Available at the Transmitter

We first recall the definitions of the following classes of broadcast channel, with channel state

available only at the transmitter.

Definition 7 (Less Noisy Broadcast Channel With CSI available only at the transmitter).

A discrete memoryless broadcast channel with CSI available only at the transmitter
(
X ×

S,WY,Z|X,S,Y ×Z
)

is said to be less noisy, if I(U ;Y ) ≥ I(U ;Z) for all U − (X,S)− (Y, Z).

In this case, we say that Y is less noisy than Z.

Definition 8 (More Capable Broadcast Channel With CSI available only at the transmitter).

A discrete memoryless broadcast channel with CSI available only at the transmitter
(
X ×

S,WY,Z|X,S,Y × Z
)

is said to be more capable, if I(X;Y ) ≥ I(X;Z) for all PX,S. In this

case, we say that Y is more capable than Z.

Theorem 10. Let

A ,





R ≥ 0 : ∃PU,V,S,X,Y,Z ∈ D :

R < I(U ;Y )−max
{
I(U ;S), I(U, V ;S)− I(V ;Y |U)

}}




. (3.21a)

where,

D ,





PU,V,S,X,Y,Z :

PU,V,S,X,Y,Z = PUPV PS|U,V 1{
X=X(U,S)

}WY,Z|X,S

QS(·) =
∑

u∈U
∑

v∈V PU(u)PV (v)PS|U,V (·|u, v)

PZ = Q0

I(V ;Y |U) > max{I(V ;Z), I(U, V ;Z)− I(U ;Y )}

|U| ≤ |X |+ 5

|V| ≤ |X |+ 3





. (3.21b)
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The covert capacity of the DMC WY,Z|S,X with non-causal CSI at the transmitter is lower-

bounded as

CNC-T ≥ sup{a : a ∈ A}. (3.22)

The proof relies on block-Markov encoding to combine Gel’fand-Pinsker coding, for trans-

mitting the message according to CSI [75], and Wyner-Ziv coding, for secret key generation

[76]. The transmitter not only generates a key from Sn, but also selects its codeword accord-

ing to Sn by using a likelihood encoder [77, 78, 79]. Instead of directly generating a secret

key from the CSI, the transmitter relies on another random variable that is correlated with

the CSI to help control the secret key rate. In particular, note that secret keys may not

be needed, e.g, when the legitimate receiver’s channel is a less noisy version of the warden’s

channel (see Corollary 2). Proof details are available in Appendix K.

A subset of rated in the region (3.21a) can be achieved without block-Markov coding or

secret key generation. We provide these rates in Theorem 11 for reference. As shown in

Section 3.6, however, secret key generation might be crucial to achieve positive covert rates.

Theorem 11. Let

A ,
{
R ≥ 0 : ∃PS,U,X,Y,Z ∈ D such that R < I(U ;Y )− I(U ;S)

}
, (3.23a)

where,

D ,





PS,U,X,Y,Z :

PS,U,X,Y,Z = QSPU |S1{
X=X(U,S)

}WY,Z|X,S

PZ = Q0

I(U ;Y ) > I(U ;Z)

|U| ≤ |X |+ 2





. (3.23b)
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The covert capacity of the DMC WY,Z|S,X with non-causal CSI at the transmitter is lower-

bounded as

CNC-T ≥ sup{a : a ∈ A}. (3.24)

Theorem 11 follows from Theorem 10 by choosing S independent of V , so that PS|U,V =

PS|U . This choice ensures that I(V ;S) = 0 and I(V ;U, Y ) = 0. Alternatively, Theorem 11

can be established with Gel’fand-Pinsker coding with a likelihood encoder but without block-

Markov encoding or key generation from CSI. Details are omitted for brevity and are avail-

able online [80, Appendix E].

Theorem 12. Let

A ,





R ≥ 0 : ∃PS,U,V,X,Y,Z ∈ D :

R ≤ min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )}
}




. (3.25a)

where,

D ,





PS,U,V,X,Y,Z :

PS,U,V,X,Y,Z = QSPUV |S1{
X=X(U,S)

}WY,Z|X,S

PZ = Q0

min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )} ≥ I(V ;Z)− I(V ;S)

max{|U| , |V|} ≤ |X |+ 3





. (3.25b)

The covert capacity of the DMC WY,Z|S,X with non-causal CSI at the transmitter is upper-

bounded as

CNC-T ≤ max{a : a ∈ A}. (3.26)

Proof details are available in Appendix N.
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Corollary 2. Let

A ,
{
R ≥ 0 : ∃PS,U,X,Y,Z ∈ D such that R ≤ I(U ;Y )− I(U ;S)

}
, (3.27a)

where,

D ,





PS,U,X,Y,Z :

PS,U,X,Y,Z = QSPU |S1{
X=X(U,S)

}WY,Z|X,S

PZ = Q0

|U| ≤ |X |+ 2





. (3.27b)

The covert capacity with CSI available non-causally only at the transmitter when the legiti-

mate receiver’s channel is less noisy than the warden’s channel, is

CNC-T = max{a : a ∈ A}. (3.28)

Proof. The achievability follows from Theorem 11 and the less noisy property of the channel.

We can also prove the achievability by using Theorem 10 while generating S independently

of V (i.e. PS|U,V = PS|U) and the less noisy property of the channel. Furthermore, the

converse proof follows from Theorem 12 and the less noisy property of the channel.

Theorem 13. Let

A ,
{
R ≥ 0 : ∃PU,V,S,X,Y,Z ∈ D such that R < I(U ;Y ) + min {0, I(V ;Y |U)− I(V ;S)} ,

(3.29a)
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where,

D ,





PU,V,S,X,Y,Z :

PU,V,S,X,Y,Z = PUPV PS|V 1{
X=X(U,S)

}WY,Z|X,S

QS(·) =
∑

v∈V PV (v)PS|V (·|v)

PZ = Q0

I(V ;Y |U) > max{I(V ;Z), I(U, V ;Z)− I(U ;Y )}

|U| ≤ |X |+ 2

|V| ≤ |X |+ 3





. (3.29b)

The covert capacity of the DMC WY,Z|S,X with causal CSI at the transmitter is lower-bounded

as

CC-T ≥ sup{a : a ∈ A}. (3.30)

Theorem 13 is proved using block-Markov encoding to combine a Shannon strategy for

sending the message according to CSI and Wyner-Ziv coding for secret key generation. The

details of the proof are available in Appendix O.

Theorem 14. Let

A ,
{
R ≥ 0 : ∃PS,U,X,Y,Z ∈ D such that R < I(U ;Y )

}
, (3.31a)

where,

D ,





PS,U,X,Y,Z :

PS,U,X,Y,Z = QSPU1{
X=X(U,S)

}WY,Z|X,S

PZ = Q0

I(U ;Y ) > I(U ;Z)

|U| ≤ |X |+ 1





. (3.31b)
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The covert capacity of the DMC WY,Z|S,X with causal CSI at the transmitter is lower-bounded

as

CC-T ≥ sup{a : a ∈ A}. (3.32)

The proof is similar to the proof of Theorem 11, the details are omitted for brevity and

are available online; please see [80, Appendix G].

Theorem 15. Let

A ,
{
R ≥ 0 : ∃PS,U,V,X,Y,Z ∈ D such that R ≤ I(U ;Y )

}
, (3.33a)

where,

D ,





PS,U,V,X,Y,Z :

PS,U,V,X,Y,Z = QSPV PU |V 1{
X=X(U,S)

}WY,Z|X,S

PZ = Q0

I(U ;Y ) ≥ I(V ;Z)

max{|U| , |V|} ≤ |X |





. (3.33b)

The covert capacity of the DMC WY,Z|S,X with causal CSI at the transmitter is upper-bounded

as

CC-T ≤ max{a : a ∈ A}. (3.34)

Proof details are available in Appendix Q.

Corollary 3. Let

A ,
{
R ≥ 0 : ∃PS,U,X,Y,Z ∈ D such that R ≤ I(U ;Y )

}
, (3.35a)
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where,

D ,





PS,U,X,Y,Z :

PS,U,X,Y,Z = QSPU1{
X=X(U,S)

}WY,Z|X,S

PZ = Q0

|U| ≤ |X |+ 1





. (3.35b)

The covert capacity with CSI available causally only at the transmitter when the legitimate

receiver’s channel is less noisy than the warden’s channel is

CC-T = max{a : a ∈ A}. (3.36)

Proof. The achievability is proved by using Theorem 14 and the less noisy property of the

channel. We can also prove the achievability by using Theorem 13 while generating S

independently of V (i.e. PS|V = QS) and the less noisy property of the channel. Furthermore,

the converse proof follows from Theorem 15 and the less noisy property of the channel.

Theorem 16. Let

A ,
{
R ≥ 0 : ∃PX,V,S,Y,Z ∈ D such that R < I(X;Y ) + min {0, I(V ;Y |X)− I(V ;S)} ,

(3.37a)

where,

D ,





PX,V,X,Y,Z :

PX,V,S,Y,Z = PXPV PS|VWY,Z|X,S

QS(·) =
∑

v∈V PV (v)PS|V (·|v)

PZ = Q0

I(V ;Y |X) > max{I(V ;Z), I(X, V ;Z)− I(X;Y )}

|V| ≤ |X |+ 3





. (3.37b)
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The covert capacity of the DMC WY,Z|S,X with strictly causal CSI at the transmitter is lower-

bounded as

CSC-T ≥ sup{a : a ∈ A}. (3.38)

The proof is similar to the proof of Theorem 13, and we only use the CSI for key generation

and not for data transmission. The details are omitted for brevity and are available online;

please see [80, Appendix H].

Remark 6. In the proof of Theorem 10, Theorem 13, and Theorem 16, we assume that

there exist a shared secret key for the first two transmission blocks to bootstrap the covert

communication between the transmitter and the receiver. The overall rate of this secret key

asymptotically amortizes to a negligible value as the number of transmission blocks B →∞.

Theorem 17. Let

A ,
{
R ≥ 0 : ∃PS,X,Y,Z ∈ D such that R < I(X;Y )

}
, (3.39a)

where,

D ,





PS,X,Y,Z :

PS,X,Y,Z = QSPXWY,Z|X,S

PZ = Q0

I(X;Y ) > I(X;Z)





. (3.39b)

The covert capacity of the DMC WY,Z|S,X with strictly causal CSI at the transmitter is lower-

bounded as

CSC-T ≥ sup{a : a ∈ A}. (3.40)

The proof is similar to the proof of Theorem 14, the details of the proof are omitted

for brevity and are available online; please see [80, Appendix I]. We now present an upper

bound on the covert capacity when the CSI is available strictly causally at the transmitter.
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Theorem 18. Let

A ,
{
R ≥ 0 : ∃PS,V,X,Y,Z ∈ D such that R ≤ I(X;Y )

}
, (3.41a)

where,

D ,





PS,V,X,Y,Z :

PS,V,X,Y,Z = QSPV PX|VWY,Z|X,S

PZ = Q0

I(X;Y ) ≥ I(V ;Z)

|V| ≤ |X |





. (3.41b)

The covert capacity of the DMC WY,Z|S,X with strictly causal CSI at the transmitter is upper-

bounded as

CSC-T ≤ max{a : a ∈ A}. (3.42)

Proof details are available in Appendix T.

Corollary 4. Let

A ,
{
R ≥ 0 : ∃PS,X,Y,Z ∈ D such that R ≤ I(X;Y )

}
, (3.43a)

where,

D ,





PS,X,Y,Z :

PS,X,Y,Z = QSPXWY,Z|X,S

PZ = Q0





. (3.43b)

The covert capacity when CSI is available strictly causally at the transmitter and the legiti-

mate receiver’s channel is more capable than the warden’s channel is,

CSC-T = max{a : a ∈ A}. (3.44)
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Proof. The achievability is proved by using Theorem 17 and the more capable property of

the channel. We can also prove the achievability by using Theorem 16 while generating

S independently of V (i.e. PS|V = QS) and the more capable property of the channel.

Furthermore, the converse is proved by utilizing Theorem 18 and the more capable property

of the channel.

Remark 7 (Cardinality Bounds). The cardinality bounds on the auxiliary random variables

in Theorems 8 to 16 follows by a standard application of the Eggleston-Fenchel-Carathéodory

theorem [81, Theorem 18]. Details are omitted for brevity.

Remark 8 (Do Stochastic Encoders Improve the Capacity Region?). We use deterministic

encoders when the CSI is available at both of the legitimate terminals, while we use stochastic

encoders when the CSI is only available at the transmitter. The use of stochastic encoders is

merely motivated by technical convenience in our proof, and we could not conclude whether

stochastic encoders outperform deterministic ones.

3.6 Examples of Channels with CSI at transmitter

We provide two examples of covert communication over state-dependent channels with CSI

at the transmitter alone, for which the covert capacity is positive. In both examples, the

CSI is additive; however, in the first example the warden’s channel is a degraded version

of the legitimate receiver’s channel while in the second example the legitimate receiver’s

channel is a degraded version of the warden’s channel. The second example shows that our

proposed coding scheme with block-Markov encoding and Wyner-Ziv encoding for secret key

generation in Theorem 13, can outperform the simple approach for deriving the covert rates

in Theorem 14.

Degraded Channel with Binary Additive State: Consider a channel in which X, Y, Z and

S = (S1, S2) are all binary, and let S1 and S2, be independent Bernoulli random variables
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S1 S2

(
S1, S2

)

Enc.

Figure 3.3. Degraded channel with binary additive CSI at the transmitter

with parameters α ∈ [0 : 0.5] and β ∈ [0 : 0.5], respectively, and let x0 = 0 (See Fig. 3.3).

Here, S1 and S2 are the CSI of the legitimate receiver’s channel and the warden’s channel,

respectively. The CSI is available causally at the Encoder and the law of the channel is as

follows

Y = X ⊕ S1, (3.45)

Z = Y ⊕ S2. (3.46)

Proposition 3. The covert capacity of the DMC depicted in Fig. 3.3 with causal CSI at the

transmitter is

CC-T

(a)
= max

PU ,
PZ=Q0

H(U)
(b)
= Hb(α), (3.47)

where Hb(·) is binary entropy.

Proof. The achievability proof for (a) follows from the achievability part of Corollary 3 by

considering U , which is the auxiliary random variable that represents the message, as a

Bernoulli random variable independent of S1 and S2 with parameter λ ∈ [0 : 0.5] and setting

X = U ⊕ S1. The converse part of (a) follows from the converse part of Corollary 3 and the

fact that I(U ;Y ) ≤ H(U). To prove (b) in Proposition 3, we have

Q0(z = 0) = P(s1 ⊕ s2 = 0)

= P(s1 = 0, s2 = 0) + P(s1 = 1, s2 = 1)

= (1− α)(1− β) + αβ. (3.48)
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S1, S2
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Enc.

Figure 3.4. Reverse degraded channel with binary additive CSI at the transmitter

The distribution induced at the output of the warden when transmitting a codeword is

PZ(z = 0) = P(u⊕ s2 = 0)

= P(u = 0, s2 = 0) + P(u = 1, s2 = 1)

= (1− λ)(1− β) + λβ. (3.49)

Therefore, the covertness constraint PZ = Q0 requires λ = α.

Reverse Degraded Channel with Binary Additive State: To show the benefits of the pro-

posed scheme, we provide an example in which the region in Theorem 13 strictly improves

the region in Theorem 14. Consider a channel in which X, Y, Z and S = (S1, S2) are all

binary, and let S1, S2 and U be independent Bernoulli random variables with parameters

α ∈ (0 : 0.5], β ∈ (0 : 0.5], and λ ∈ (0 : 0.5], respectively, and let x0 = 0 (See Fig. 3.4). Also,

let V be a Bernoulli random variable. Here, S1 and S2 are the CSI of the warden’s channel

and the legitimate receiver’s channel, respectively, U is an auxiliary random variable that

represents the message, and V is an auxiliary random variable that represents a description

of the CSI. The CSI is available causally at the Encoder and the law of the channel is as

follows

Z = X ⊕ S1, (3.50)

Y = Z ⊕ S2. (3.51)

Since for this example I(U ;Z) ≥ I(U ;Y ), the achievable rate region in Theorem 14 results

in zero rate but Theorem 13 results in the following region.
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U X Z

S2V

Y

S1

Figure 3.5. Chaining between the random variables for the reverse degraded channel with
binary additive CSI

Proposition 4. The covert capacity of the DMC depicted in Fig. 3.4 with causal CSI at the

transmitter is lower bounded as

CC-T ≥ Hb(η)−Hb(β), (3.52)

where η = αβ + (1− α)(1− β).

Proof. Here we choose X = U ⊕ S1 therefore Z = U and Y = U ⊕ S2. To prove the region

in Proposition 4 by using Theorem 13, we start with covertness constraint PZ = Q0,

Q0(z = 0) = P(s1 = 0) = α, (3.53)

PZ(z = 0) = P(u = 0) = λ. (3.54)

Therefore, the covertness constraint requires λ = α. We also choose V = S2 therefore,

PV |S = PV |S1,S2 = PV |S2 = 1{V=S2}. (3.55)

The chaining between the random variables for this example is depicted in Fig. 3.5. Now

we show that the fourth condition in Theorem 13 which includes the following conditions is

satisfied,

I(V ;Y |U) > I(V ;Z), (3.56)

I(U, V ;Y ) > I(U, V ;Z). (3.57)
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We now have,

I(V ;Y |U) = H(S2|U)−H(S2|U, Y )

= H(S2)−H(S2|U,U ⊕ S2)

= H(S2) = Hb(β),

I(V ;Z) = H(S2)−H(S2|U)
(a)
= 0.

where (a) follows since U and S2 are independent. Therefore, the condition (3.56) is satisfied.

For the condition in (3.57) we have,

I(U, V ;Y ) = H(U, S2)−H(U, S2|Y )

= H(U) + H(S2)−H(U, S2|U ⊕ S2)

= H(U) + H(S2)−H(S2|U ⊕ S2),

I(U, V ;Z) = I(U, S2;U) = H(U)

since H(S2) − H(S2|U ⊕ S2) > 0 the condition in (3.57) is also satisfied. To calculate the

covert rate (3.29a) in Theorem 13 we have,

I(V ;Y |U) = Hb(β),

I(V ;S) = I(S2;S1, S2)

= H(S2) = Hb(β),

I(U ;Y ) = H(Y )−H(Y |U)

= H(U ⊕ S2)−H(U ⊕ S2|U)

= H(U ⊕ S2)−H(S2)

= Hb(η)−Hb(β),

where η = αβ + (1− α)(1− β).
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Remark 9 (Covertness vs. Security). This example also captures the difference between

covertness and security. In this example, the warden has noiseless access to the transmitted

sequence, and therefore it can decode the transmitted message, but since the transmitted

sequence has the same statistics as the CSI it cannot prove that communication is happening.

Remark 10 (Shared Key). In the examples provided in this section, the codebooks are gen-

erated with the same distribution as the CSI S1 therefore the legitimate terminals need to

have access to a shared secret key of negligible rate to discriminate the codewords from the

CSI which is consistent with our code definition in Definition 6.
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CHAPTER 4

COVERT COMMUNICATION VIA COOPERATIVE JAMMING1

4.1 Introduction

In this chapter, we consider the problem of covert communication in the presence of a

cooperative jammer. We show that a cooperative jammer can facilitate the communication

of positive covert rates, subject to availability of a friendly jammer in the environment. We

consider various scenarios and each of these scenarios have been defined, justified and studied

in a different section of this dissertation.

4.2 Problem Definition

A discrete memoryless (X ,S,Y ,Z,WY,Z|X,S), illustrated in Fig 1.4, consists of channel input

alphabet X at the transmitter, channel input alphabet S at the jammer, channel output

alphabet Y at the receiver, and channel output alphabet Z at the warden. All alphabets are

finite.

Let x0 ∈ X be the innocent symbol which will be sent over the channel by the transmitter

when no communication takes place. When the transmitter sends xn0 ∈ X n, unlike other

jamming problems, in this dissertation the jammer transmits a non-i.i.d. coded sequence Sn.

Therefore, the distribution induced at the output of the channel when no communication

takes place, denoted by Υ
(0)
Zn , is not necessarily i.i.d. The first reason that we use a coded

jammer instead of a jammer that transmits an i.i.d. sequence for the no communication

mode is that random numbers are a precious resource in practice, and we want to use this

resource as little as possible. The second reason that we use a coded jammer is that it

1©2021 IEEE. Reprinted, with permission, from H. ZivariFard, M. R. Bloch, and A. Nosratinia, ”Covert
Communication via Non-Causal Cribbing from a Cooperative Jammer,” 2021 IEEE International Symposium
on Information Theory (ISIT), 202-207
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enables us to design the jammer’s codebook in such a way that it helps the transmitter to

communicate both covertly and reliably.

Here we consider four different jamming models. In the first model, the jammer and the

receiver are assumed to have access to a rate limited and uniformly distributed shared secret

key K ∈ K, this helps the receiver cancel the interference caused by the randomness that

the jammer interpolates into the channel. In this problem, there is no cooperation between

the jammer and the transmitter and the transmitter and the jammer do not have access to

any source of local randomness. Nevertheless, one can extend our results by removing the

shared secret key between the jammer and the receiver and let the jammer use a source of

local randomness.

In the second jamming model, the transmitter, the receiver, and the jammer are assumed

to have access to a rate limited and uniformly distributed shared secret key K ∈ K, this helps

the transmitter to coordinate its channel input according to the jammer’s channel input, and

it also helps the receiver to cancel the interference caused by the jammer’s channel input.

In this problem, the transmitter and the jammer do not have access to any source of local

randomness.

In the third model, the transmitter and the receiver are assumed to have access to a

rate limited and uniformly distributed shared secret key K ∈ K, this helps the transmitter

communicate covertly with the receiver even if the channel from the transmitter to the

receiver is noisier than the channel from the transmitter to the warden. Also, the jammer’s

channel input is assumed to be available non-causally or causally at the transmitter so that

the transmitter can coordinate its channel input according to the jammer’s codeword. In

this problem, the transmitter does not have access to any source of local randomness, but the

jammer has access to a limited amount of local randomness. Nevertheless, one can extend

our results by removing the shared secret key between the transmitter and the receiver.

In the fourth jamming model, the jammer and the receiver are assumed to have access

to a rate limited and uniformly distributed shared secret key K ∈ K, this helps the receiver
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to cancel the interference caused by the randomness that the jammer interpolates into the

channel. Here, the transmitter’s channel input is assumed to be available non-causally,

causally, or strictly-causally at the jammer so that the jammer can coordinate its channel

input according to the transmitter’s codeword. The transmitter does not have access to any

source of local randomness, but the jammer uses a rate limited source of local randomness,

which is shared with the receiver. Nevertheless, one can extend our results by removing the

shared secret key between the jammer and the receiver and let the jammer use a source of

local randomness.

There are three main differences between the covert communication with jamming prob-

lems studied in this dissertation and the covert communication with jamming in the liter-

ature. First, the results for the covert communication with jamming in the literature are

mainly based on the assumptions that the transmitter and the receiver share a secret code-

book unknown to Willie and also there is a long secret key shared between the legitimate

parties. But in the problems studied in this dissertation the codebook is a public knowledge

and is available to all terminals including the warden. The second difference is that unlike

the problems studied in this dissertation, in the jamming problems studied so far the jammer

uses an unlimited source of local randomness, which is a very precious resource in practice.

Therefore, the trade-off between the rate of the covert communication, the rate of the secret

key needed between the legitimate terminals, and the rate of the local randomness used by

jammer is missing in the literature. In this dissertation, we try to shed light on the interplay

between the rate of the local randomness used by the jammer, the rate of the shared secret

key between the legitimate terminals, and the rate of the covert communication. The third

main difference is that, in this dissertation, unlike most of the works on covert communica-

tion with jamming in the literature, the warden is using a statistical detector instead of a

power detector.
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Figure 4.1. Covert communication with blind jammer

Definition 9. (R,RK) ∈ R2
+ is achievable if there exists a (n,R,RK) code Cn, such that

lim
n→∞

P (n)
e → 0, (4.1)

lim
n→∞

D(PZn||ΥZn)→ 0, (4.2)

where

ΥZn(·) =
1

|J |
∑

J∈J
W⊗n
Z|X=x0,S

(
· |xn0 , Sn(J)

)
. (4.3)

The covert capacity region is the closure of the set of the all achievable regions.

4.3 Blind Jamming

In this section, we study a scenario in which a transmitter wishes to communicate a message

M ∈M covertly with a receiver while there is a friendly jammer in the environment. Here,

the jammer and the receiver are assumed to have access to a rate limited and uniformly

distributed shared secret key K ∈ K, this helps the receiver cancel the interference caused

by the randomness that the jammer interpolates into the channel. But, one can simply

extend our scheme to the case that there is no shared secret key between the jammer and

the receiver. We first study this problem when the transmitter and the jammer do not have a

strategy. Then we discuss two different strategies for the jammer which can result to positive
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rate for covert communication. The first strategy is that the jammer stays silent when the

transmitter is communicating with the receiver and transmits when the transmitter is not

communicating with the receiver. The second strategy is that the jammer transmits only

when the transmitter is communicating. Note that having a strategy requires the legitimate

terminals to share a secret key of negligible rate. The strategy described above requires the

jammer to know in which blocks the transmitter is communicating. Then, we compare the

results obtained for these three different cases in the context of three examples.

The following Theorem establishes an inner bound on the covert capacity when we do not

force the jammer to use any specific strategy and the jammer always transmits a codeword

regardless of the transmitter’s action.

Theorem 19. Let

A =





(R,RK) ≥ 0 : ∃
(
PSXY Z ,ΥXSZY

)
∈ D :

R < IP (X;Y |S)

RK > max
{
IΥ(S;Z), IP (S;Z), IP (X,S;Z)− IP (X;Y |S)

}





, (4.4a)

where,

D ,





(
PSXY Z ,ΥXSZY

)
:

PSXY Z = PSPXWY Z|XS

ΥSY Z = PSWY Z|S,X=x0

IP (X;Y |S) > IP (X;Z)

PZ = ΥZ





. (4.4b)

The covert capacity of the DMC WY Z|XS with a blind jammer is lower-bounded as

CB-J ⊇ conv(A), (4.5)

where conv(A) is the convex hull of the set A.
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Theorem 19 is proved in Appendix U.

Remark 11. Theorem 19 results to positive rate for covert communication as long as the

null-space of the legitimate receiver’s channel is not a subset of the null-space of the warden’s

channel and the null-space of the warden’s channel is not empty.

We now provide an upper bound on the covert capacity. Note that in the problem

described above the jammer is using a limited source of local randomness with rate RK ,

which is shared between the jammer and the receiver, and the jammer does not know in

which codeword blocks the transmitter is communicating with the receiver. To derive the

upper bound, we use the fact that the covert capacity when the jammer knows in which

blocks the transmitter is communicating with the receiver and the jammer uses an unlimited

source of local randomness when the transmitter is not communicating with the receiver

is not less than the covert capacity when the jammer does not know in which blocks the

transmitter is communicating with the receiver and the jammer uses a limited source of local

randomness. Hence, we derive an upper bound on the covert capacity when the jammer uses

an unlimited source of local randomness for the no communication mode, by transmitting an

i.i.d. sequence according to some distribution PS2 , and therefore this upper bound is also an

upper bound on the covert capacity when the jammer uses a limited amount of randomness,

which is the problem that we study in this section. In this case, the distribution induced on

the warden’s observation is Q⊗n0 where Q0(·) =
∑

s2∈S2
PS2(s2)WZ|X=x0,S(·|x0, s2).

Theorem 20. Let

A =





(R,RK) ≥ 0 : ∃PQSXY Z ∈ D :

R ≤ I(X;Y |S,Q)

RK ≥ max
{
I(X,S;Z|Q)− I(X;Y |S,Q), I(S;Z|Q)

}





, (4.6a)
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where,

D ,





PQSXY Z :

PQSXY Z = PQPS|QPX|QWY Z|XS

I(X;Y |S,Q) ≥ I(X;Z|Q)

PZ = Q0





. (4.6b)

The covert capacity of the DMC WY Z|XS with a blind jammer is upper-bounded as

CB-J ⊆ conv(A). (4.7)

Theorem 20 is proved in Appendix V.

Now we provide two more achievable rate regions in which the jammer uses a strategy.

The first strategy is that since the transmitter and the jammer share a secret key of negligible

rate, the jammer knows in which blocks the transmitter is communicating with the receiver;

the jammer stays silent when the transmitter is communicating and transmits otherwise

[35, 58]. In this strategy, existence of shared secret key between the jammer and the receiver

does not help the receiver because when the transmitter is communicating the jammer is

silent and therefore its channel input does not interfere with the transmitter’s signals. Hence,

for this strategy, we assume that there is no shared secret key between the jammer and the

receiver and the jammer has access to a source of local randomness with rate RJ . For this

scenario, we can achieve the following inner bound on the covert capacity.

Theorem 21. Let

A =





(R,RK) ≥ 0 : ∃
(
PSXY Z ,ΥXSZY

)
∈ D :

R < IP (X;Y )

RJ > IΥ(S;Z)





, (4.8a)
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where,

D ,





(
PSXY Z ,ΥXSZY

)
:

PXY Z = PXWY Z|S=s0,X

ΥSY Z = PSWY Z|S,X=x0

IP (X;Y ) > IP (X;Z)

PZ = ΥZ





. (4.8b)

The covert capacity of the DMC WY Z|XS with a blind jammer is lower-bounded as

CB-J ⊇ conv(A). (4.9)

Proof. Theorem 21 is proved in Appendix W.

The second strategy is that, having the knowledge of the transmission block, the jammer

transmits a codeword from its first codebook when the transmitter is communicating with

the receiver and transmits a codeword from its second codebook otherwise. This strategy

results to the following achievable region.

Theorem 22. Let

A =





(R,RK) ≥ 0 : ∃
(
PQS1XY Z ,ΥQS2ZY

)
∈ D :

R < IP (X;Y |S1, Q)

RK > max
{
IP (X,S1;Z|Q)− IP (X;Y |S1, Q), IP (S1;Z|Q), IΥ(S2;Z|Q)

}





,

(4.10a)
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where,

D ,





(
PQS1XY Z ,ΥQS2ZY

)
:

PQS1XY Z = PQPS1|QPX|QWY Z|XS

ΥQS2Y Z = PQPS2|QWY Z|S,X=x0

IP (X;Y |S1, Q) > IP (X;Z|Q)

PZ = ΥZ





. (4.10b)

The covert capacity of the DMC WY Z|XS with a blind jammer is lower-bounded as

CB-J ⊇ conv(A). (4.11)

Theorem 22 is proved in Appendix X.

Remark 12. The region in Theorem 19 can be obtained from Theorem 22 by setting PS1 =

PS2. Also, the region in Theorem 21 can be obtained from Theorem 22 by setting S1 = ∅.

Remark 13 (When the Inner and Outer Bound Meet?). One can simply check that the

achievability scheme in Theorem 22 meets the upper bound in Theorem 20 if the jammer has

an unlimited source of local randomness and transmits an i.i.d. sequence when the transmitter

is not communicating with the receiver and transmits a codeword from its codebook otherwise.

This requires the transmitter and the jammer to share a secret key of negligible rate. In this

case, the transmitter and the jammer can use the secret key of negligible rate to coordinate

and use the strategy described above to achieve a higher covert rate.

4.3.1 Examples

We compare the achievable rate regions in Theorem 19, Theorem 21, and Theorem 22 in

the context of three examples and show that the scheme in Theorem 19 can perform better

compared to when the jammer uses a strategy.
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Figure 4.2. Noiseless binary Additive-multiplicative channel

Binary Additive-Multiplicative Channel

We first provide an example in which the schemes presented in Theorem 19, Theorem 21,

and Theorem 22 results to the same positive rate for covert communications. Consider a

scenario in which the channel inputs and outputs are all binary, the innocent symbols x0 = 0

and s0 = 0, and the channel rules are as follows (see Fig. 4.2),

Y = X ⊕ S, (4.12)

Z = X ⊗ S. (4.13)

Proposition 5. The covert capacity for the example described above is,

CB-J =
{

(R,RK) : R ≤ 1, RK ≥ 0
}
. (4.14)

Remark 14. Intuitively speaking, in this channel, to enable covert communication between

the transmitter and the receiver the jammer can force the warden’s output to be always zero,

without affecting the receiver’s channel, by choosing S = 0.

Proof. Here, we show that the region in Theorem 22, reduces to the region in Proposition 5.

Showing that the region in Theorem 19 and Theorem 21 results to the same region is similar

and is omitted for the sake of brevity.
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Achievability Proof

Let the channel input X be a Bernoulli random variable with parameter α ∈ J0, 1K and

the jammer’s channel input S1 when communication is happening be a Bernoulli random

variable with parameter β ∈ J0, 1K and the jammer’s channel input S2 when communication

is not happening be a Bernoulli random variable with parameter η ∈ J0, 1K. To check the

covertness constraint PZ = Q0 we have,

PZ(z = 0) = P(x = 0, s = 1) + P(x = 1, s = 0) + P(x = 0, s = 0)

= α(1− β) + β(1− α) + αβ, (4.15)

Q0(z = 0)
(a)
= 1, (4.16)

where (a) follows by choosing η = 1. Therefore, the covertness constraint PZ = Q0, reduces

to β = 1, which translates to S = 0. We now have,

max
PXPS

I(X;Y |S) = max
PXPS

H(Y |S)

= max
PXPS

H(X ⊕ S|S)

= max
PXPS

H(X|S)

= max
PX

H(X) = 1. (4.17)

Also, since S = 0 and therefore Z = 0

I(S;Z) = 0, (4.18)

I(X,S;Z) = 0. (4.19)

Therefore, the constraint on the key rate in (4.4a) is also satisfied. Also, since I(X;Z) = 0

the condition I(X;Y |S) > I(X;Z) in (4.4b) is also satisfied.

Converse Proof

The converse proof is trivial, since it is not possible to communicate more than one bit for

this channel and the covert capacity is always less than the capacity.

75



M M̂

H0: Q
⊗n
0

H1: PZn

Zi
Det.

Yi
Dec.

Xi

Si

Enc.

Jam.
K

Figure 4.3. Noiseless binary Additive channel

Binary Additive Channel

We now provide an example in which the schemes presented in Theorem 19 and Theorem 22

perform better than the scheme in Theorem 21. Consider a scenario in which the channel

inputs and outputs are all binary, the innocent symbols x0 = 0 and s0 = 0, and the channel

rules are as follows (see Fig. 4.3),

Y = Z = X ⊕ S. (4.20)

Proposition 6. The covert capacity for the example described above is lower-bounded as,

CB-J ⊇
{

(R,RK) : R < 1, RK > 1
}
. (4.21)

Proof. Let the channel input X be a Bernoulli random variable with parameter α ∈ J0, 0.5K,
the jammer’s input be a Bernoulli random variable with parameter β ∈ J0, 0.5K. The covert-

ness constraint PZ = ΥZ implies that,

PZ(z = 0) = P(x = 0, s = 0) + P(x = 1, s = 1) = αβ + (1− α)(1− β), (4.22)

ΥZ(z = 0) = P(s = 0) = β. (4.23)

Therefore, the covertness constraint PZ = ΥZ , reduces to β = 0.5. We now have,

IP (X;Y |S) = HP (Y |S)
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= HP (X ⊕ S|S)

= HP (X|S)

= HP (X) = Hb(α), (4.24)

IΥ(S;Z) = HΥ(Z)−HΥ(Z|S)

= HΥ(x0 ⊕ S)−HΥ(x0 ⊕ S|S)

= HΥ(S) = 1, (4.25)

IP (S;Z) = HP (Z)−HP (Z|S)

= HP (X ⊕ S)−HP (X ⊕ S|S) = 0, (4.26)

IP (S;Z) = IP (S,X;Z)− IP (X;Y |S) = 0. (4.27)

Therefore, the constraints in (4.4a) reduce to R < 1 and RK > 1.

We now show that the region in Theorem 21 does not result to positive covert rate for

this example.

Proof. Note that in the strategy used in Theorem 21 in each block only one of the transmitter

and the jammer uses the channel and the other user is silent. Let the channel input X be

a Bernoulli random variable with parameter α ∈ J0, 0.5K, the jammer’s input be a Bernoulli

random variable with parameter β ∈ J0, 0.5K. We now have,

ΥZ(z = 0) = P(s = 0) = β, (4.28)

PZ(z = 0) = P(x = 0) = α. (4.29)

Therefore, the covertness constraint PZ = ΥZ , reduces to β = α, which means that S and

X should be generated with the same distribution. We now have,

IP (X;Y ) = HP (Y )−HP (Y |X)

= HP (X ⊕ 0)

77



M

M̂

H0: Q
⊗n
0

H1: PZn

Zi
Det.

Yi Dec.

Xi

K

Si

Si

Jam.

Enc.

Figure 4.4. Noiseless binary Additive-multiplicative channel

= Hb(α). (4.30)

We also have,

IΥ(S;Z) = HΥ(Z)−HΥ(Z|S)

= HΥ(S ⊕ 0)

= Hb(α). (4.31)

Similarly, one can show that,

IP (X;Z) = Hb(α). (4.32)

Therefore, the condition IP (X;Y ) > IP (X;Z) in (4.8b) is not satisfied, and the strategy

used in Theorem 21 does not result to positive rate for covert communication.

Remark 15. Similarly, one can show that the region in Proposition 6 can be achieved by

using Theorem 22 by setting PS1 = PS2.

Binary Multiplicative-Additive Channel

Here we provide another example in which the schemes presented in Theorem 19 and The-

orem 22 perform better than the scheme in Theorem 21. Consider a scenario in which the
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channel inputs and outputs are all binary, the innocent symbol x0 = 0, and the channel rules

are as follows (see Fig. 4.4),

Y = X ⊗ S, (4.33)

Z = X ⊕ S. (4.34)

The scheme in Theorem 19 results to the following achievable rate region.

Proposition 7. The covert capacity for the example described above is lower-bounded as,

CB-J ⊇
{

(R,RK) : R < 0.5, RK > 1
}
. (4.35)

Proof. The proof is similar to the proof of the previous examples in this section and is

omitted for the sake of brevity.

Remark 16. For this example one can also show that the regions in Theorem 21 and The-

orem 22 results to zero rate.

4.4 A Shared Key Between all the Legitimate Terminals

Now we study a problem in which there is a rate limited and uniformly distributed shared

secret key K ∈ K between the legitimate terminals (i.e., the transmitter, the receiver, and
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the jammer), this helps the transmitter to coordinate its channel input according to the

jammer’s channel input, and it also helps the receiver to cancel the interference caused by

the jammer’s channel input. In this problem, the transmitter and the jammer do not have

access to any source of local randomness. Inner and outer bounds on the covert capacity of

the DMC WY Z|XS when there is a shared secret key between the transmitter, the receiver

and the jammer are established in the following theorems.

Theorem 23. Let

A =





(R,RK) ≥ 0 :
(
PS1XY Z ,ΥS2ZY

)
∈ D :

R < IP (X;Y |S1)

RK > max{IP (X,S1;Z)− IP (X;Y |S1), IP (S1;Z), IΥ(S2;Z)}





, (4.36a)

where

D =





(
PS1XY Z ,ΥS2ZY

)
:

PS1XY Z = PS1PX|S1WY Z|XS1

ΥS2ZY = PS2WY Z|X=x0,S2

PZ = ΥZ





. (4.36b)

The covert capacity of the DMC WY Z|XS when there is a shared key between all the legitimate

terminals is lower bounded as

CF-K ⊇ conv(A). (4.37)

Theorem 23 is proved in Appendix Y.

We now provide an upper bound on the covert capacity when there is a shared secret

key between the legitimate terminals. Note that in the problem described above the jammer

is using a limited amount of randomness with rate RK , which is shared between all the

legitimate terminals, and therefore the legitimate terminals can coordinate that is the jammer
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and the receiver know in which codeword blocks the transmitter is communicating with

the receiver. Similar to the Theorem 20, to derive the upper bound we use the fact that

the covert capacity when the jammer uses an unlimited amount of randomness when the

transmitter is not communicating with the receiver is not less than the covert capacity when

the jammer uses a limited amount of randomness. Hence, we derive an upper bound on

the covert capacity when the jammer uses an unlimited amount of randomness for the no

communication mode and therefore this upper bound is also an upper bound on the covert

capacity when the jammer uses a limited amount of randomness, which is the problem that

we study in this section.

Theorem 24. Let

A =





(R,RK) ≥ 0 : ∃PSXY Z ∈ D :

R ≤ I(X;Y |S)

RK ≥ max{I(X,S;Z)− I(X;Y |S), I(S;Z)}





, (4.38a)

where

D =





PSXY Z :

PSXY Z = PSPX|SWY Z|XS

PZ = Q0





. (4.38b)

The covert capacity of the DMC WY Z|XS when there is a shared key between all the legitimate

terminals is upper bounded by

CF-K ⊆ conv(A). (4.39)

Theorem 24 is proved in Appendix Z.

Remark 17 (When the Inner and Outer Bound Meet?). Similar to Remark 13, the achiev-

ability scheme in Theorem 23 meets the upper bound in Theorem 24 if the jammer has
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Figure 4.6. Binary Symmetric Additive Channel

unlimited source of local randomness. In this case, the jammer transmits an i.i.d. sequence

when the transmitter is not communicating with the receiver and transmits a sequence from

its codebook when communication is happening.

4.4.1 Examples

Here, we provide two examples in which Theorem 23 leads to a positive rate for covert

communication.

Binary Additive Channel

Consider a scenario in which the channel inputs and outputs are all binary, the innocent

channel input symbol x0 = 0, and the channel rules are as follows, as it can be seen in

Fig. 4.6,

Y = Z = X ⊕ S. (4.40)

Proposition 8. The covert capacity for the example described above is,

CF-K ⊇ conv





(R,RK) : α, β, η ∈ (0 : 0.5)

R < (α + β)Hb

(
α

α+β

)
+ (1− α− β)Hb

(
η

1−α−β

)

RK > Hb(α + η)





. (4.41)
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Table 4.1. Joint probability distribution between X and S

S1

X
0 1

0 α β
1 1− α− β − η η

Remark 18. Intuitively speaking, in this channel, since the transmitter has access to the

jammer’s channel input through the shared key it chooses the channel input Xn such that

after it adds up with the jammer’s channel input the results look like it has been generated

according to PS. The receiver can recover Xn since it has access to Sn through the shared

secret key, but the warden cannot distinguish it is output (i.e., Sn ⊕Xn) from Sn.

Proof. Without loss of generality let’s assume the joint probability distribution between X

and S1 is according to Table 4.1, and S2 be a Bernoulli random variable independent of S1

and X with parameter λ ∈ J0, 1K. We now have,

PZ(z = 0) = P(x = 0, s1 = 0) + P(x = 1, s1 = 1) = α + η, (4.42)

ΥZ(z = 0) = P(s2 = 0) = λ. (4.43)

Therefore, the covertness constraint PZ = ΥZ , reduces to α + η = λ. We now have,

IP (X;Y |S1) = HP (Y |S1)

= HP (X ⊕ S1|S1)

= HP (X|S1)

= P(S1 = 0)HP (X|S1 = 0) + P(S1 = 1)HP (X|S1 = 1)

= (α + β)Hb

(
α

α + β

)
+ (1− α− β)Hb

(
η

1− α− β

)
, (4.44)

IΥ(S2;Z) = HΥ(Z)−HΥ(Z|S2)

= HΥ(x0 ⊕ S2)−HΥ(x0 ⊕ S2|S2) = H(S2) = Hb(α + η). (4.45)
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Figure 4.7. Binary Multiplicative-Additive Channel

Since Y = Z,

IP (X,S1;Z)− IP (X;Y |S1) = IP (S1;Z)

= HP (Z)−HP (Z|S1)

= HP (α + η)−HP (X|S1). (4.46)

From (4.45) and (4.46), the constraint on the key rate in (4.36a) reduces to RK > Hb(α +

η).

Binary Multiplicative-Additive Channel

Consider a scenario in which the channel inputs and outputs are all binary, the innocent

channel input symbol x0 = 0, and the channel rules are as follows, as it can be seen in

Fig. 4.7,

Y = X ⊗ S, (4.47)

Z = X ⊕ S. (4.48)
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Table 4.2. Joint probability distribution between X and S

S1

X
0 1

0 α β
1 1− α− β − η η

Proposition 9. The covert capacity for the example described above is,

CF-K ⊇ conv





(R,RK) : α, β ∈ (0 : 0.5)

R < (1− α− β)Hb

(
η

1−α−β

)

RK > Hb(α + η)





. (4.49)

Proof. Without loss of generality let’s assume the joint probability distribution between X

and S1 is according to the Table 4.2 and S2 be a Bernoulli random variable independent of

S1 and X with parameter λ ∈ J0, 1K. We now have,

PZ(z = 0) = P(x = 0, s1 = 0) + P(x = 1, s1 = 1) = α + η, (4.50)

ΥZ(z = 0) = P(s2 = 0) = λ. (4.51)

Therefore, the covertness constraint PZ = ΥZ , reduces to α + η = λ. We now have,

IP (X;Y |S1) = HP (Y |S1)

= HP (X ⊗ S1|S1)

= P(s1 = 1)HP (X|s1 = 1)

= (1− α− β)Hb

(
η

1− α− β

)
. (4.52)

Also, choosing α = β = η = 0.25 leads to,

IΥ(S2;Z) = HΥ(Z)−HΥ(Z|S2)

= HΥ(x0 ⊕ S2)−HΥ(x0 ⊕ S2|S2) = HΥ(S2) = Hb(α + η), (4.53)

IP (S1;Z) = HP (Z)−HP (Z|S1)
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Table 4.3. Joint probability distribution between X and S

S1

X
0 1

0 α β
1 1− α− β − η η

= Hb(α + η)−HP (X|S1), (4.54)

IP (X,S1;Z) = HP (Z) = Hb(α + η). (4.55)

Therefore, the constraint on the key rate in (4.36a) should be RK > Hb(α + η).

Binary Additive-Multiplicative Channel

Consider a scenario in which the channel inputs and outputs are all binary, the innocent

channel input symbol x0 = 0, and the channel rules are as follows,

Y = X ⊕ S, (4.56)

Z = X ⊗ S. (4.57)

Proposition 10. The covert capacity for the example described above is lower bounded by,

CF-K = 1 (4.58)

Remark 19. Intuitively speaking, in this channel, since x0 = 0 the jammer’s output should

always be equal to zero therefore the transmitter and the jammer should not transmit symbol

1 at the same time.

Proof. Here we provide the achievability proof, the converse proof is trivial since it is not

possible to communicate more than one bit for this channel.

Achievability Proof: Without loss of generality let’s assume the joint probability distribu-

tion between X and S1 is according to the Table 4.3, and S2 be a Bernoulli random variable

independent of S1 and X with parameter λ ∈ J0, 1K. To analyze the covertness we have,

PZ(z = 0) = P(x = 0, s1 = 0) + P(x = 1, s1 = 0) + P(x = 0, s1 = 1) = 1− η, (4.59)
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Figure 4.8. Covert communication by access to cooperative jammer’s codeword

ΥZ(z = 0) = P(x0 ⊗ S2 = 0) = 1. (4.60)

Therefore, the covertness constraint PZ = ΥZ, reduces to η = 0, which means that the

warden’s output should always be zero. We now have,

IP (X;Y |S1) = HP (Y |S1) = H(X ⊕ S1|S1) = H(X|S1)

= (α + β)Hb

(
α

α + β

)
. (4.61)

Also, since we force the warden’s output to be always zero we have,

IΥ(S2;Z) = HΥ(Z)−HΥ(Z|S2)
(a)
= 0, (4.62)

IP (S1;Z)
(b)
= 0, (4.63)

IP (X,S1;Z) = HP (Z)
(c)
= 0, (4.64)

where (a) follows since x0 = 0, and (b) and (c) follow since η = 0. Therefore, the constraint

on the key rate in (4.36a) reduces to RK > 0. Also, by setting α = β = 0.5, we have R < 1.

We can also set λ = 1 so that the jammer does not use any source of local randomness when

communication is not happening.

4.5 Jammer’s Output Available at the Transmitter

In this section we study a case in which the jammer’s output is available non-causally or

causally at the transmitter so that the transmitter can coordinate its channel input according
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to the jammer’s codeword, as seen in Fig. 4.8. Here, the transmitter and the receiver are

assumed to have access to a rate limited and uniformly distributed shared secret key K ∈ K,

this helps the transmitter to communicate covertly with the receiver even if the channel

from the transmitter to the receiver is noisier than the channel from the transmitter to the

warden.

4.5.1 Non-Causal Case

In this subsection, we study the problem described above when the transmitter has non-

causal access to the jammer’s output. Here, we assume that both the transmitter and the

jammer have access to local randomness.

One-Sided MAC Resolvability Lemma

The achievable rate region when the transmitter has non-causal access to the jammer’s

output is based on Lemma 4 below. This lemma describes the rate required for a codebook

exciting one of the inputs of a MAC so that the output distribution is indistinguishable from

that arising from a random excitation of the same input, while the other MAC input is being

excited at the same time by a codebook with an arbitrary, prescribed rate. A key distinction

of this result from the usual resolvability results is that the target distribution may not be

i.i.d..

We begin by characterizing the setup for this lemma. Consider a discrete memoryless

MAC (X1 × X2,WZ|X1X2 ,Z) over which two encoders transmit codewords as in Fig. 4.9.

Let Ci ,
{
Xn
i (mi)

}
mi∈Mi

, where Mi = J1, 2nRiK, be a random codebook consisting of

independent random sequences each generated according to P⊗nXi , for i = 1, 2. We denote

a realization of Ci by Ci ,
{
xni (mi)

}
mi∈Mi

. The codebook construction described above

induces the PMF λ for the codebooks.

λ(C1, C2) =
∏

m1∈M1

∏

m2∈M2

P⊗nX1

(
xn1 (m1)

)
P⊗nX2

(
xn2 (m2)

)
.
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We now consider two scenarios, under both of which Transmitter 2 emits a codeword chosen

randomly and uniformly from the random codebook C2. In the first scenario, Transmitter 1

emits an i.i.d. sequence according to PX1 . The distribution induced at the output of the

channel is,

PZn|C2(zn) ,
1

2nR2

2nR2∑

m2=1

W⊗n
Z|X2

(
zn|Xn

2 (m2)
)
, (4.65)

where

WZ|X2(z|x2) ,
∑

x1∈X1

P (x1)WZ|X1X2(z|x1, x2). (4.66)

In the second scenario, Transmitter 1 emits a codeword uniformly at random from a random

codebook C1. The distribution induced at the channel output is,

PZn|C1,C2(zn) ,
1

2n(R1+R2)

2nR1∑

m1=1

2nR2∑

m2=1

W⊗n
Z|X1X2

(
zn|Xn

1 (m1), Xn
2 (m2)

)
. (4.67)

We wish to find conditions under which the distributions induced at the channel output in

the two scenarios are approximately equal. We call this problem one-sided MAC resolvability.

Definition 10. A rate pair (R1, R2) is achievable for the one-sided resolvability of the dis-

crete memoryless MAC (X1×X2,WZ|X1X2 ,Z) if for a given WZ|X1X2 there exists a sequence

of (2nR1 , 2nR2 , n) codes such that EC1,C2

[
D
(
PZn|C1,C2||PZn|C2

)]
−−→
n→∞

0. The one-sided MAC

resolvability region R is the convex hull of the set of all achievable rate pairs (R1, R2).

The main difference between the resolvability region in Definition 10 and the standard

resolvability defined in [82, 83, 77] is that in this problem the target distribution PZn|C2

at the output of channel is not necessarily i.i.d.. We now find sufficient conditions on the

size of the two codebooks such that the distributions induced at the channel output in the

two scenarios in Eq. (4.67) and (4.65) are approximately equal in terms of expected KL

divergence.
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Lemma 4. For a discrete memoryless MAC, WZ|X1X2 if (R1, R2) belongs to

⋃

PX1
PX2

(R1 ∪R2), (4.68)

where

R1 =





(R1, R2) ∈ R2
+ :

R1 > I(X1;Z)

R2 > I(X2;Z)

R1 +R2 > I(X1, X2;Z)





, (4.69a)

R2 =

{
(R1, R2) ∈ R2

+ : R1 > I(X1;Z|X2)

}
, (4.69b)

then

EC1,C2

[
D
(
PZn|C1,C2||PZn|C2

)]
−−→
n→∞

0. (4.70)

Lemma 4 is proved in Appendix AA.

Remark 20. The region R1 is the channel resolvability region for MAC. Since X1 and X2

are independent therefore I(X1;Z|X2) = I(X1;X2, Z), and the region R2 can be viewed as

the resolvability region of a MAC against a wiretapper who has full access to the channel

input X2 while the first transmitter does not have access to X2.

Remark 21. A related result [23, Theorem 3] states that if (4.68) holds then

EC1,C2V
(
PZn|C1,C2 , PZn|C2

)
−−→
n→∞

0. However, no proof is publicly available for [23, Theo-

rem 3].

90



W⊗n
Z|X1X2

M1

M2

Zn ∼ PZn|C2

Xn
2

Xn
1

Enc. 2

Enc. 1

Figure 4.9. Distribution Approximation in MAC

Achievable Rate Region

Theorem 25. Let

A ,





(R,RK) ≥ 0 : ∃ (PSUV XY Z ,ΥSY Z) ∈ D :

R < IP (U ;Y )− IP (U ;V |S)

RK > max
{
IP (U ;Z), IP (U, S;Z)−RJ

}
− IP (U ;Y )

RJ > IΥ(S;Z)





, (4.71a)

where,

D ,





(PSUV XY Z ,ΥSY Z) :

PSUV XY Z = PSPUPV |US1{
X=X(U,S)

}WY Z|XS

ΥSY Z = PSWY Z|X=x0,S

PZ = ΥZ

|U| ≤ |X |+ 5

|V| ≤ |X |+ 3





. (4.71b)

The covert capacity of the DMC WY Z|XS when the transmitter has non-causal access to the

jammer’s output is lower-bounded as

CCJ-NC ⊇ conv(A). (4.72)

Theorem 25 is proved in Appendix AB.
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Remark 22. The achievable rate region in Theorem 25 is still valid for the scenario in which

the transmitter has access to the jammer’s input, i.e., the dummy messages J .

Remark 23. Two extremal cases for the jammer rate are instructive and are considered

next. First, if the jammer has maximal rate RJ = H(S), the key rate requirements are the

same as in the problem of covert communication over a state-dependent channel [37, 80].

Since U and S are independent, one can show that the constraint on the key rate in (4.71a)

reduces to:

RK > IP (U ;Z)− IP (U ;Y ). (4.73)

This is the condition that has been derived in [37, Eq. (8)]. Second, if we set RJ as its

minimum, i.e., RJ = IP (S;Z) + ε, and since U and S are independent, one can show that

the constraint on the key rate in (4.71a) reduces to

RK > IP (U ;Z|S)− IP (U ;Y ). (4.74)

Since IP (U ;Z|S) ≥ IP (U ;Z), if the size of jammer’s codebook is decreased, a higher rate is

needed for the secret key shared between the legitimate terminals. From the constraint on

the key rate in (4.71a), the smallest jammer codebook allowing minimal secret key rate is

RJ = IP (S;Z|U).

Achievable Rate Region for Both Covert and Secure Communication

To prove Theorem 25 we employ Gel’fand-Pinsker encoding by using the likelihood encoder

[77, 78, 79] to coordinate the transmitter’s codeword according to the jammer’s codeword;

however unlike the channel’s with i.i.d. state in this problem the jammer’s codeword is not

i.i.d. and the likelihood encoder is designed for i.i.d. sources. To overcome this issue, we

randomize the jammer’s codeword at the transmitter and then coordinate the transmitter’s

codeword according to the randomized version of the jammer’s codeword by using the like-

lihood encoder. This shows up in the expression of the penalty term in the covert rate and
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the distribution that we are optimizing over in Theorem 25. However, by adding the security

constraint to make the communication both covert, limn→∞D(PZn||ΥZn) → 0, and secure,

limn→∞ IP (M ;Zn) → 0, similar to [84, Theorem 1] one can use the likelihood encoder to

align the transmitter’s codeword according to the jammer’s codeword. This is because the

jammer’s signal does not convey any information, and the security constraint is more restric-

tive than the covert constraint in this particular problem. The following theorem provides

an achievable rate region for both covert and secure communication of the problem studied

in Theorem 25.

Theorem 26. Let

A ,





(R,RK) ≥ 0 : ∃ (PSUXY Z ,ΥSY Z) ∈ D :

R < IP (U ;Y )− IP (U ;S)

RK > IP (U ;S,Z)− IP (U ;Y )

RJ > IΥ(S;Z)





, (4.75a)

where,

D ,





(PSUXY Z ,ΥSY Z) :

PSUXY Z = PSPU |S1{
X=X(U,S)

}WY Z|XS

ΥSY Z = PSWY Z|X=x0,S

PZ = ΥZ

|U| ≤ |X |+ 3





. (4.75b)

The covert and secure capacity of the DMC WY Z|XS when the transmitter has non-causal

access to the jammer’s output is lower-bounded as

CCJ-NC ⊇ conv(A). (4.76)

The proof for Theorem 26 is similar to that of [84, Theorem 1] and is available in Ap-

pendix AC.
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Upper Bound

We now provide an upper bound on the covert capacity when there is a shared secret key of

negligible rate between the transmitter and the jammer so that they can coordinate. Similar

to the upper bounds in the previous sections, we provide an upper bound on the covert

capacity when the jammer knows in which blocks communication is happening, through the

secret key, and uses an unlimited amount of local randomness when the transmitter is not

communicating with the receiver. The covert capacity in this case is not less than the covert

capacity when the jammer uses a limited amount of local randomness and does not know

when the transmitter is communicating. Hence, this upper bound is also an upper bound

on the covert capacity when the jammer uses a limited amount of randomness, which is the

problem that we study in this section.

Theorem 27. Let

A =





(R,RK) ≥ 0 : ∃PUV SXY Z ∈ D :

R ≤ I(U, V ;Y )− I(U ;S|V )

RK ≥ I(V ;Z)− I(V ;S)− I(U, V ;Y ) + I(U ;S|V )

RK +RJ ≥ I(V ;Z)− I(U, V ;Y ) + I(U ;S|V )

RJ ≥ I(S;Z)





, (4.77a)

where

D =





PUV SXY Z :

PUV SXY Z = PSUV 1{
X=X(U,S)

}WY Z|XS

PZ = Q0

max{|U| , |V|} ≤ |X |+ 3





. (4.77b)
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The covert capacity of the DMC WY Z|XS when the transmitter has non-causal access to the

jammer’s output is upper-bounded as

CIJ-NC ⊆ conv(A). (4.78)

Theorem 27 is proved in Appendix AD.

4.5.2 Causal Case

We now study the problem of covert communication when the transmitter has causal access

to the jammer’s codeword. Here, we assume that the transmitter does not have access to

any source of local randomness, but the jammer has access to a limited amount of local

randomness.

Achievable Rate Region

The following theorem establishes an achievable rate region for the problem described above.

Theorem 28. Let

A ,





(R,RK) ≥ 0 : ∃ (PSUXY Z ,ΥSY Z) ∈ D :

R < IP (U ;Y )

RK > max
{
IP (U ;Z), IP (U, S;Z)−RJ

}
− IP (U ;Y )

RJ > IΥ(S;Z)





, (4.79a)

where,

D ,





(PSUXY Z ,ΥSY Z) :

PSUXY Z = PSPU1{
X=X(U,S)

}WY Z|XS

ΥSY Z = PSWY Z|X=x0,S

PZ = ΥZ

|U| ≤ |X |+ 5





. (4.79b)
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The covert capacity of the DMC WY Z|XS when the transmitter has causal access to the jam-

mer’s output is lower-bounded as

CIJ-C ⊇ conv(A). (4.80)

Theorem 28 is proved in Appendix AE.

Remark 24. Two extremal cases for the jammer rate are instructive and are considered next.

First, if the jammer has maximal rate RJ = H(S), the region in Theorem 28 reduces to the

region for the problem of covert communication over a state-dependent channel [37, 80].

Since U and S are independent, one can show that the constraint on the key rate in (4.79a)

reduces to:

RK > IP (U ;Z)− IP (U ;Y ). (4.81)

This is the condition that has been derived in [37, Eq. (8)]. Second, if we set RJ as its

minimum, i.e., RJ = IP (S;Z) + ε, and since U and S are independent, one can show that

the constraint on the key rate in (4.79a) reduces to

RK > IP (U ;Z|S)− IP (U ;Y ). (4.82)

Since IP (U ;Z|S) ≥ IP (U ;Z), if the size of jammer’s codebook is decreased, a higher rate is

needed for the secret key shared between the legitimate terminals. From the constraint on

the key rate in (4.79a), the smallest jammer codebook allowing minimal secret key rate is

RJ = IP (S;Z|U).

Upper Bound

Similar to the previous sections, we provide an upper bound on the covert capacity when

there is a shared secret key of negligible rate between the transmitter and the jammer so

that they can coordinate, and the jammer uses an unlimited amount of local randomness

when the transmitter is not communicating with the receiver. The covert capacity in this
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case is not less than the covert capacity when the jammer uses a limited amount of local

randomness and does not know when the transmitter is communicating. Hence, this upper

bound is also an upper bound on the covert capacity when the jammer uses a limited amount

of randomness, which is the problem that we study in this section.

Theorem 29. Let

A =





(R,RK) ≥ 0 : ∃PUV SXY Z ∈ D :

R ≤ I(U ;Y )

RK ≥ I(V ;Z)− I(U ;Y )

RJ ≥ I(S;Z)





, (4.83a)

where

D =





PUV SXY Z :

PUV SXY Z = PSUV 1{
X=X(U,S)

}WY Z|XS

PZ = Q0

max{|U| , |V|} ≤ |X |+ 3





. (4.83b)

The covert capacity of the DMC WY Z|XS when the transmitter has causal access to the jam-

mer’s output is upper-bounded as

CIJ-NC ⊆ conv(A). (4.84)

Theorem 29 is proved in Appendix AF.

4.5.3 Examples

Here, we provide an example in which Theorem 28 leads to a positive rate for covert com-

munication. Consider a scenario in which the channel inputs and outputs are all binary,
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Figure 4.10. Binary Symmetric Additive Channel

the innocent channel input symbol x0 = 0, the jammer’s output is available causally at the

transmitter, and the channel rules are as follows, as it can be seen in Fig. 4.10,

Y = Z = X ⊕ S. (4.85)

Proposition 11. The covert capacity for the example described above is lower bounded as,

CF-K ⊇ conv





(R,RJ , RK) : α ∈ J0, 1K

R < Hb(α)

RJ > Hb(α)

RK > 0





. (4.86)

Remark 25. Intuitively speaking, in this channel, since for the transmitter has access to the

jammer’s channel input it chooses the channel input X to be U ⊕ S therefore Y = Z = U

since the distribution of U is same as S the jammer cannot figure out whether communication

is happening or not. But, since the transmitter and the legitimate receiver share a secret key,

the receiver knows when communication is happening.

Proof. Without loss of generality, let’s assume the random variable U , which represent the

message, is a Bernoulli random variable with parameter α ∈ J0, 1K and the random variable

S, which represents the jammer’s channel input and is independent of U , is a Bernoulli
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Figure 4.11. Model of covert communication with cooperative jamming

random variable with parameter β ∈ J0, 1K. We set X = U ⊕ S, therefore

PZ(z = 0) = P(x⊕ s = 0) = P(u = 0) = α, (4.87)

ΥZ(z = 0) = P(s = 0) = β, (4.88)

therefore the covertness constraint PZ = ΥZ implies that α = β. We now have,

IP (U ;Y )
(a)
= HP (U) = Hb(α), (4.89)

where, (a) follows since X = U ⊕ S. Also,

IP (U ;Z) = IP (U ;Y ) = Hb(α), (4.90)

IP (U, S;Z) = HP (Z)−HP (Z|U, S) = HP (U) = Hb(α). (4.91)

Therefore, the constraint on the key rate in (4.79b) reduces to RK > 0. We also have,

IΥ(S;Z) = H(S) = Hb(α), (4.92)

therefore RJ > Hb(α).

4.6 Transmitter’s Output Available at Jammer

In this section we study a problem in which to transmit the covert message, denoted by

M ∈ M, the jammer and the receiver are assumed to share a rate limited and uniformly
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distributed shared secret key K ∈ K, this helps the receiver to cancel the interference caused

by the randomness that the jammer interpolates into the channel. Here, the transmitter’s

channel input is assumed to be available non-causally, causally, or strictly-causally at the

jammer so that the jammer can coordinate its channel input according to the transmitter’s

codeword. The transmitter does not use any source of local randomness, but the jammer

uses a limited amount of local randomness, which is shared with the receiver as a shared

secret key. This problem setup is illustrated in Fig. 4.11.

4.6.1 Strictly-Causal Case

In this subsection, we study the problem described above when the transmitter’s channel

input is available strictly causally at the jammer.

Theorem 30. Let

A =





(R,RK) ≥ 0 : ∃
(
PUXS1Y Z ,ΥS2Y Z

)
∈ D :

R < min{HP (X|U), IP (X,S1;Y )}

RK > max
{
IP (X,S1;Z)−min{HP (X|U), IP (X,S1;Y )}, IΥ(S2;Z)

}





, (4.93a)

where

D =





(
PUXS1Y Z ,ΥS2Y Z

)
:

PUXS1Y Z = PUPX|UPS1|UWY Z|XS

ΥS2Y Z = PS2WY Z|X=x0,S

min{HP (X|U), IP (X,S1;Y )} > IP (U,X;Z)

PZ = ΥZ

|U| ≤ min{|X | |S|+ 1, |Y|+ 2}





. (4.93b)
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The covert capacity of the DMC WY Z|XS when the transmitter’s codeword is available strictly-

causally at the jammer is lower bounded by

CCJ-SC ⊇ conv(A), (4.94)

where conv(A) is the convex hull of the set A.

To prove the achievable rate region in Theorem 30 we assume that the legitimate terminals

share a secret key of negligible rate therefore the transmitter and the jammer can coordinate.

The details of the proof is available in Appendix AG.

We now provide an upper bound on the covert capacity when there is a shared secret

key of negligible rate between the transmitter and the jammer so that they can coordinate.

Similar to the upper bounds in the previous sections, we provide an upper bound on the covert

capacity for the case that the jammer knows in which blocks communication is happening

and uses an unlimited source of local randomness when the transmitter is not communicating

with the receiver by transmitting an i.i.d. sequence according to some distribution PS2 . The

covert capacity in this case is not less than the covert capacity when the jammer uses a

limited amount of local randomness. Hence, this upper bound is also an upper bound on

the covert capacity when the jammer uses a limited amount of randomness, which is the

problem that we study in this section. In this case, the distribution induced on the warden’s

observation is Q⊗n0 where Q0(·) =
∑

s2∈S2
PS2(s2)WZ|X=x0,S(·|x0, s2).

Theorem 31. Let

A =





(R,RK) ≥ 0 : ∃PUSXY Z ∈ D :

R ≤ min{H(X|U), I(X,S;Y )}

RK ≥ I(X,S;Z)−min{H(X|U), I(X,S;Y )}





, (4.95a)
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where

D =





PUSXY Z :

PUSXY Z = PUPX|UPS|UWY Z|XS

min{H(X|U), I(X,S;Y )} ≥ I(U,X;Z)

PZ = Q0

|U| ≤ min{|X | |S|+ 1, |Y|+ 2}





. (4.95b)

The covert capacity of the DMC WY Z|XS when the transmitter’s codeword is available strictly-

causally at the jammer is upper bounded by

CCJ-SC ⊆ conv(A), (4.96)

where conv(A) is the convex hull of the set A.

Theorem 31 is proved in Appendix AH.

Remark 26 (When the Inner and Outer Bound Meet?). Similar to Remark 13, one can sim-

ply check that the achievability scheme in Theorem 30 meets the upper bound in Theorem 31

if the jammer has an unlimited source of local randomness and transmits an i.i.d. sequence

when the transmitter is not communicating with the receiver and transmits a codeword from

its codebook otherwise. This is possible since our achievability scheme in Theorem 30 requires

the transmitter, the receiver, and the jammer to share a secret key of negligible rate. In this

case, the transmitter and the jammer can use the secret key of negligible rate to coordinate

and use the strategy described above to achieve a higher covert rate.

4.6.2 Non-Causal Case

In this subsection we study the problem described in Section 4.6 when the transmitter’s

channel input is available non-causally at the jammer.
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Theorem 32. Let

A =





(R,RK) ≥ 0 : ∃
(
PS1XY Z ,ΥS2Y Z

)
∈ D :

R < min
{
IP (X,S1;Y ),HP (X)

}

RK > max
{
IP (X,S1;Z)−min

{
IP (X,S1;Y ),HP (X)

}
, IΥ(S2;Z)

}





, (4.97a)

where

D =





(
PS1XY Z ,ΥS2Y Z

)
:

PS1XY Z = PXPS1|XWY Z|XS

ΥS2Y Z = PS2WY Z|X=x0,S

min
{
IP (X,S1;Y ),HP (X)

}
> IP (X;Z)

PZ = ΥZ





. (4.97b)

The covert capacity of the DMC WY Z|XS when the transmitter’s codeword is available non-

causally at the jammer is lower bounded by

CCJ-NC ⊇ conv(A), (4.98)

where conv(A) is the convex hull of the set A.

Theorem 32 is proved in Appendix AI.

Similar to the upper bounds in the previous sections, we provide an upper bound on

the covert capacity if the jammer has an unlimited source of local randomness and trans-

mits an i.i.d. sequence, according to some distribution PS2 , when the transmitter is not

communicating with the receiver and transmits a sequence from its codebook otherwise.

In this case, the distribution induced on the warden’s observation is Q⊗n0 where Q0(·) =

∑
s2∈S2

PS2(s2)WZ|X=x0,S(·|x0, s2).
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Theorem 33. Let

A =





(R,RK) ≥ 0 : ∃PXSY Z ∈ D :

R ≤ min{I(X,S;Y ),H(X)}

RK ≥ I(X,S;Z)−min{I(X,S;Y ),H(X)}





, (4.99a)

where

D =





PXSY Z :

PXSY Z = PXPS|XWY Z|XS

min{I(X,S;Y ),H(X)} ≥ I(X;Z)

PZ = Q0





. (4.99b)

The covert capacity of the DMC WY Z|XS when the transmitter’s codeword is available non-

causally at the jammer is upper bounded by

CCJ-NC ⊆ conv(A), (4.100)

where conv(A) is the convex hull of the set A.

Theorem 33 is proved in Appendix AJ.

Remark 27 (When the Inner and Outer Bound Meet?). Similar to Remark 13, the achiev-

ability scheme in Theorem 32 meets the upper bound in Theorem 33 if the jammer has

unlimited source of local randomness. In this case, the jammer transmits an i.i.d. sequence

when the transmitter is not communicating with the receiver and transmits a sequence from

its codebook when communication is happening.

4.6.3 Causal Case

In this subsection we study the problem described in Section 4.6 when the transmitter’s

channel input is available causally at the jammer.
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Theorem 34. Let

A =





(R,RK) ≥ 0 : ∃
(
PS1XY Z ,ΥS2Y Z

)
∈ D :

R < min{IP (X,S1;Y ),HP (X)}

RK > max
{
IP (X,S1;Z)−min{HP (X), IP (X,S1;Y )}, IΥ(S2;Z)

}





, (4.101a)

where

D =





(
PS1XY Z ,ΥS2Y Z

)
:

PS1XY Z = PXS1WY Z|XS1

ΥS2Y Z = PS2WY Z|X=x0,S2

min{IP (X,S1;Y ),HP (X)} > IP (X;Z)

PZ = ΥZ





. (4.101b)

The covert capacity of the DMC WY Z|XS when the transmitter’s codeword is available causally

at the jammer is lower bounded by

CCJ-C ⊇ conv(A), (4.102)

where conv(A) is the convex hull of the set A.

Theorem 34 is proved in Appendix AK.

Since the covert capacity when the transmitter’s codeword is available non-causally at

the jammer is not less than the covert capacity when the transmitter’s codeword is available

causally at the jammer (i.e. CCJ-C ⊆ CCJ-NC), the upper bound provided in Theorem 33 also

is an upper bound when the transmitter’s codeword is available causally at the jammer.

Remark 28 (When the Inner and Outer Bound Meet?). Similar to Remark 13, one can sim-

ply check that the achievability scheme in Theorem 34 meets the upper bound in Theorem 33

if the jammer has an unlimited source of local randomness and transmits an i.i.d. sequence
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Figure 4.12. Model of covert communication with cooperative jamming

when the transmitter is not communicating with the receiver and transmits a codeword from

its codebook otherwise. This is possible since our achievability scheme in Theorem 34 requires

the transmitter, the receiver, and the jammer to share a secret key of negligible rate. In this

case, the transmitter and the jammer can use the secret key of negligible rate to coordinate

and use the strategy described above to achieve a higher covert rate.

4.6.4 Transmitter’s Message available for the Jammer

In this section, we study a case in which the jammer has access to the transmitter’s message

(see Fig.4.12).

Theorem 35. Let

A =





(R,RK) ≥ 0 : ∃
(
PXS1Y Z ,ΥS2Y Z

)
∈ D :

R < IP (X,S1;Y )

RK > max
{
IP (X,S1;Z)− IP (X,S1;Y ), IΥ(S2;Z)

}





, (4.103a)
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where

D =





(
PXS1Y Z ,ΥS2Y Z

)
:

PXS1Y Z = PXPS1|XWY,Z|X,S1

ΥS2Y Z = PS2WY Z|X=x0,S2

IP (X,S1;Y ) > IP (X;Z)

PZ = ΥZ





. (4.103b)

The covert capacity of the DMC WY Z|XS when the transmitter’s message is available at the

jammer is lower bounded by

CCJ-DMS ⊇ conv(A). (4.104)

Theorem 35 is proved in Appendix AL.

Similar to the upper bounds in the previous sections, we provide an upper bound on

the covert capacity for the case that the jammer knows in which blocks communication

is happening and uses an unlimited source of local randomness, by transmitting an i.i.d.

sequence according to some distribution PS2 , when the transmitter is not communicating

with the receiver. In this case, the distribution induced on the warden’s observation is Q⊗n0

where Q0(·) =
∑

s2∈S2
PS2(s2)WZ|X=x0,S(·|x0, s2).

Theorem 36. Let

A =





(R,RK) ≥ 0 : ∃PSXY Z ∈ D :

R ≤ I(X,S;Y )

RK ≥ I(X,S;Z)− I(X,S;Y )





, (4.105a)
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where

D =





(
PSXY Z ,ΥSY Z

)
:

PSXY Z = PXPS|XWY,Z|X,S

I(X,S;Y ) ≥ I(X;Z)

PZ = Q0





. (4.105b)

The covert capacity of the DMC WY Z|XS when the transmitter’s message is available at the

jammer is upper bounded by

CCJ-DMS ⊆ conv(A). (4.106)

Theorem 36 is proved in Appendix AM.

Remark 29 (When the Inner and Outer Bound Meet?). Similar to Remark 13, one can sim-

ply check that the achievability scheme in Theorem 35 meets the upper bound in Theorem 36

if the jammer has an unlimited source of local randomness and transmits an i.i.d. sequence

when the transmitter is not communicating with the receiver and transmits a codeword from

its codebook otherwise. This is possible since the jammer knows the transmitter’s message.

4.6.5 Examples

Binary Additive Channel

Here, we provide an example in which Theorem 32 and Theorem 34 leads to positive rate

for covert communication. Consider a scenario in which the channel inputs and outputs are

all binary, the innocent channel input symbol x0 = 0, the transmitter’s output is available

non-causally or causally at the jammer, and the channel rules are as follows, as it can be

seen in Fig. 4.13,

Y = Z = X ⊕ S. (4.107)
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Figure 4.13. Additive channel with the transmitter’s codeword available at the Jammer

Proposition 12. The covert capacity of the DMC depicted in Fig. 4.13 with the transmitter’s

codeword available non-causally or causally at the jammer is lower bounded by

conv





(R,RK) : α, β, η ∈ (0 : 0.5)

R < min
{
Hb(α + η),Hb(β + η)

}

RK > Hb(α + η)

min
{
Hb(α + η),Hb(β + η)

}
> Hb(β + η)

−(1− β − η)Hb

(
α

1−β−η

)
− (β + η)Hb

(
β

β+η

)





. (4.108)

Intuitively, because the jammer knows the transmitter’s codeword, it can perfectly control

the warden’s observation. Here, the jammer by manipulating S1 can ensure Z follows the

statistics of S2 when the transmitter is not communicating.

Proof. We prove Proposition 12 when the transmitter’s codeword is available non-causally

at the jammer the proof when the transmitter’s codeword is available causally at the jammer

is similar and is omitted for the sake of brevity.

Without loss of generality let’s assume the joint probability distribution between X and

S1 is according to the Table 4.4, and S2 be a Bernoulli random variable independent of S1

and X with parameter λ ∈ J0, 1K. To analyze the covertness we have,

PZ(z = 0) = P(x = 0, s1 = 0) + P(x = 1, s1 = 1) = α + η, (4.109a)
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Table 4.4. Joint probability distribution between X and S

S1

X
0 1

0 α β
1 1− α− β − η η

M

M̂

H0: Q
⊗n
0

H1: PZn

Zi
Det.

Yi Dec.

Xi

Xn K

Si

Si

Jam.

Enc.

Figure 4.14. Noiseless binary channel with additive receiver’s channel and multiplicative
warden’s channel

ΥZ(z = 0) = P(s2 = 0) = λ. (4.109b)

Therefore, PZ = ΥZ implies that α + η = λ. Therefore,

IP (S1, X;Y ) = HP (Y ) = Hb(α + η), (4.110a)

HP (X) = Hb(β + η), (4.110b)

HP (Z|X) = HP (X ⊕ S1|X) = HP (S1|X)

= (1− β − η)Hb

(
α

1− β − η

)
+ (β + η)Hb

(
β

β + η

)
, (4.110c)

IΥ(S2;Z) = IΥ(S2;S2) = HΥ(S2) = Hb(α + η). (4.110d)

The region in Proposition 12 is achieved by substituting (4.110) in Theorem 32.
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Noiseless Binary Additive-Multiplicative Channel

Consider a channel in which X, Y, Z, and S are all binary and the innocent symbol is x0 = 0

(See Fig. 4.14). The law of the channel is

Y = X ⊕ S, Z = X ⊗ S. (4.111)

Proposition 13. The covert capacity of the DMC depicted in Fig. 4.14 is

CCJ-NC = CCJ-C = maxHb(X) = 1. (4.112)

Intuitively speaking, to satisfy the condition QZ = Q0 in this example the jammer can

choose S1 = S2 = 0 therefore Y = X and Z = 0 and the transmitter can communicate with

rate maxH(X) = 1 with the receiver.

Proof. We prove Proposition 13 when the transmitter’s codeword is available non-causally at

the jammer, the proof when the transmitter’s codeword is available causally at the jammer

is similar and is omitted for the sake of brevity.

Achievability Proof

Let the joint probability distribution between X and S1 is according to the Table 4.4, and

S2 be a Bernoulli random variable independent of S1 and X with parameter λ ∈ J0, 1K.
Therefore,

PZ(z = 0) = PX,S1(x = 0, s1 = 0) + PX,S1(x = 0, s1 = 1) + PX,S1(x = 1, s1 = 0) = 1− η.

(4.113)

Also, since x0 = 0 we have ΥZ(z = 0) = 1. Therefore, PZ = ΥZ implies η = 0. We now

have,

IP (X,S1;Y ) = HP (Y ) = −(α + η) log(α + η)− (1− α− η) log(1− α− η)
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Figure 4.15. Noiseless binary channel with multiplicative receiver’s channel and additive
warden’s channel

= −α logα− (1− α) log(1− α) = Hb(α), (4.114a)

IP (S1, X;Z) = HP (Z)
(a)
= 0, (4.114b)

HP (X) = −(β + η) log2(β + η)− (1− β − η) log2(1− β − η),

= −β log2 β − (1− β) log2(1− β) = Hb(β), (4.114c)

IP (X;Z)
(b)
= 0, (4.114d)

IΥ(S2;Z)
(c)
= 0, (4.114e)

where, (a) and (b) follow since η = 0 and (c) follows since x0 = 0. The region in Proposi-

tion 13 is achieved by setting (α, β, η, 1− α− β − η) = (0.5, 0.5, 0, 0) and substituting these

choices of α, β, and η in (4.114). We can also set λ = 1 so that the jammer does not use

any source of local randomness when communication is not happening.

Converse Proof

The converse proof is trivial, since it is not possible to communicate more than one bit in

this channel.
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Table 4.5. Joint probability distribution between X and S

S1

X
0 1

0 α β
1 1− α− β − η η

Noiseless Binary Multiplicative-Additive Channel

Consider a channel in which X, Y, Z, and S are all binary and the innocent symbol is x0 = 0

(See Fig. 4.15). The law of the channel is

Y = X ⊗ S, Z = X ⊕ S. (4.115)

Proposition 14. The covert capacity of the DMC depicted in Fig. 4.15 is lower bounded as

CCJ-NC = CCJ-C = 1. (4.116)

Intuitively speaking, to satisfy the condition PZ = ΥZ the jammer can choose S = X

therefore Y = X and Z = 0 and the transmitter can communicate with rate maxH(X) = 1

with the receiver.

Proof. We prove Proposition 14 when the transmitter’s codeword is available non-causally at

the jammer, the proof when the transmitter’s codeword is available causally at the jammer

is similar and is omitted for the sake of brevity.

Achievability Proof

Let the joint probability distribution between X and S1 is according to the Table 4.5, and

S2 be a Bernoulli random variable independent of S1 and X with parameter λ ∈ J0, 1K.
Therefore,

PZ(z = 0) = PX,S1(x = 0, s1 = 0) + PX,S1(x = 1, s1 = 1) = α + η, (4.117a)

ΥZ(z = 0) = PS2(s = 0) = λ. (4.117b)
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Therefore, PZ = ΥZ implies α + η = λ. Hence,

IP (S1, X;Y ) = HP (Y ) = −η log η − (1− η) log(1− η) = Hb(η), (4.118a)

IP (S1, X;Z) = HP (Z) = −(α + η) log2(α + η)− (1− α− η) log2(1− α− η)

= Hb(α + η), (4.118b)

HP (X) = Hb(β + η), (4.118c)

HP (Z|X) = HP (S1|X) = P(X = 0)HP (S1|X = 0) + P(X = 1)HP (S1|X = 1)

= (1− β − η)Hb

(
α

1− β − η

)
+ (β + η)Hb

(
β

β + η

)
, (4.118d)

IΥ(S2;Z) = HΥ(S2) = Hb(α + η). (4.118e)

The region in Proposition 14 is achieved by setting (α, β, η, 1 − α − β − η) = (0.5, 0, 0.5, 0)

and substituting these choices of α, β, and η in (4.118).

Converse Proof

The converse proof is trivial, since it is not possible to communicate more than one bit for

this channel.
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CHAPTER 5

CONCLUSION

We have studied three problems. First, the multi-transmitter multicast problem in the

presence of an external eavesdropper. We have studied this problem under the weak and the

strong secrecy regime. For the weak secrecy regime the method of Chia and El Gamal has

been extended to multi-transmitter case, showing that by using this method one can find the

minimum randomness necessary to achieve secrecy. For the strong secrecy regime, we used

OSRB and showed that the region derived by this method is a super set of the achievable

region derived for the weak secrecy regime. We have also provided some examples where

these bounds are optimal.

Second, we have studied keyless covert communication over state dependent channels,

when the CSI is available either at the transmitter alone, or at both the transmitter and

receiver, but not to the adversary (warden). Our results show the feasibility of covertly

communicating with a positive rate without an externally shared key between the transmitter

and the receiver. This is in stark contrast with the known results showing that in the absence

of CSI, covert communication without a shared key is impossible at positive rates.

Third, we have studied covert communication in the presence of a cooperative jammer.

We show that a cooperative jammer can facilitate the communication of positive covert

rates, when the transmitter have non-causal or causal access to the jammer’s channel input,

the jammer have non-causal, causal, strictly-causal access to the transmitter’s channel in-

put, there is a shared secret key between all the legitimate terminals, or when the jammer

transmits codewords independent of transmitter’s codewords.
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APPENDIX A

PROOF OF LEMMA 2

Let N(Qn, Un
0 , V

n
0 , Z

n) = |{(k, `) ∈ J1, 2nSK × J1, 2nT K : (Qn, Un
0 , V

n
0 , U

n
1 (k), V n

1 (`), Zn) ∈

T (n)
ε }|. Next, let’s define the following error events.

Let E1(Qn, Un
0 , V

n
0 , Z

n) = 1 if N(Qn, Un
0 , V

n
0 , Z

n) ≥ (1+δ1(ε))2n(S+T−I(U1,V1;Z|Q,U0,V0)+δ(ε))

and E1 = 0 otherwise.

Let E = 0 if (Qn, Un
0 , V

n
0 , U

n
1 (K), V n

1 (L), Zn) ∈ T (n)
ε and E1(Qn, Un

0 , V
n

0 , Z
n, K, L) = 0,

and E = 1 otherwise.

We now show that if S ≥ I(U1;Z|Q,U0, V0) + δ(ε), T ≥ I(V1;Z|Q,U0, V0) + δ(ε), and

S + T ≥ I(U1, V1;Z|Q,U0, V0) + δ(ε), then P(E = 1)→ 0 as n→∞.

By the union bound we have

P(E = 1) ≤ P
(
(Qn, Un

0 , V
n

0 , U
n
1 (K), V n

1 (L), Zn) /∈ T (n)
ε

)
+ P

(
E1(Qn, Un

0 , V
n

0 , Z
n, K, L) = 1

)
.

(A.1)

The first term tends to zero by the main assumption of the Lemma.

We then partition the event {E1 = 1} based on the composition of the typical sequences

(Qn, Un
0 , V

n
0 , U

n
1 (k), V n

1 (`), Zn) ∈ T (n)
ε :

• When all such typical sequences share the same Un
1 (k), i.e., correspond to a single k.

• When all such typical sequences share the same V n
1 (`), i.e., correspond to a single `.

• Neither of the above

As usual, each of the three partitioned E1 events gives rise to one rate constraint. We

discuss the first in detail; the remaining two follow similarly. Define A(Qn, Un
0 , V

n
0 , z

n) as

the event {E1(Qn, Un
0 , V

n
0 , Z

n) = 1} ∩ {Zn = zn},

P
(
E1(Qn, Un

0 , V
n

0 , Z
n) = 1

)
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=
∑

(qn,un0 ,v
n
0 )∈T (n)

ε

[
p(qn)p(un0 |qn)p(vn0 |qn)×

P
(

(E1(Qn, Un
0 , V

n
0 , Z

n) = 1)|Qn = qn, Un
0 = un0 , V

n
0 = vn0

)]

=
∑

(qn,un0 ,v
n
0 )∈T (n)

ε (Q,U0,V0)

zn∈T (n)
ε (Z|Q,U0,V0)

p(qn)p(un0 |qn)p(vn0 |qn)P
(
A(qn, un0 , v

n
0 , z

n)|Qn = qn, Un
0 = un0 , V

n
0 = vn0

)

≤
∑

(qn,un0 ,v
n
0 )∈T (n)

ε (Q,U0,V0)

p(qn)p(un0 |qn)p(vn0 |qn)
∑

zn∈T (n)
ε (Z|Q,U0,V0)

P
(
(E1(qn, un0 , v

n
0 , z

n) = 1)

|Qn = qn, Un
0 = un0 , V

n
0 = vn0

)
. (A.2)

Then,

P
(
E1(qn, un0 , v

n
0 , z

n) = 1|Qn = qn, Un
0 = un0 , V

n
0 = vn0

)
=

P
(
N(qn, un0 , v

n
0 , z

n) ≥ (1 + δ1(ε))2n(T−I(V1;Z|Q,U0,V0)+δ(ε))
)
.

Define X` = 1 if (qn, un0 , v
n
0 , V

n
1 (`), zn) ∈ T (n)

ε and 0 otherwise. Here, X`, ` ∈ J1, 2nT K, are

i.i.d. Bernoulli-α random variables, where

2−n(I(V1;Z|Q,U0,V0)+δ(ε)) ≤ α ≤ 2−n(I(V1;Z|Q,U0,V0)−δ(ε))

Then

P
(
N(qn, un0 , v

n
0 , z

n) ≥ (1 + δ1(ε))2n(T−I(V1;Z|Q,U0,V0)+δ(ε))
∣∣∣Qn = qn, Un

0 = un0 , V
n

0 = vn0

)
≤

P

(
2nT∑

`=1

X` ≥ (1 + δ1(ε))2nTα
∣∣∣Qn = qn, Un

0 = un0 , V
n

0 = vn0

)
.

Applying the Chernoff Bound (e.g., see [85, Appendix B]), leads to

P

(
2nT∑

`=1

X` ≥ (1 + δ1(ε))2nTα
∣∣∣Qn = qn, Un

0 = un0 , V
n

0 = vn0

)

≤ exp(−2nTαδ2
1(ε)/4)

≤ exp(−2n(T−I(V1;Z|Q,U0,V0)−δ(ε))δ2
1(ε)/4). (A.3)
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Therefore,

P(E1(Qn, Un
0 , V

n
0 , Z

n) = 1)

≤
∑

(qn,un0 ,v
n
0 )∈T (n)

ε

p(qn)p(un0 |qn)p(vn0 |qn)
∑

zn∈T (n)
ε (Z|Q,U0,V0)

exp(−2n(T−I(V1;Z|Q,U0,V0)−δ(ε))δ2
1(ε)/4)

≤ 2n log |Z| exp(−2n(T−I(V1;Z|Q,U0,V0)−δ(ε))δ2
1(ε)/4), (A.4)

which tends to zero as n→∞ if T ≥ I(V1;Z|Q,U0, V0) + δ(ε).

Similarly, the bounding of error probability for the second and third partition of E1

(please see above) will give rise to the rate constraints S ≥ I(U1;Z|Q,U0, V0) + δ(ε), and

S + T ≥ I(U1, V1;Z|Q,U0, V0) + δ(ε), respectively. Details are omitted for brevity.

Finally, we bound H(L,K|Qn, Un
0 , V

n
0 , Z

n, C) as follows:

H(L,K,E|Qn, Un
0 , V

n
0 , Z

n, C)

≤ 1 + P(E = 1)H(L,K|E = 1, Qn, Un
0 , V

n
0 , Z

n, C)

+ P(E = 0)H(L,K|E = 0, Qn, Un
0 , V

n
0 , Z

n, C)

≤ 1 + P(E = 1)n(S + T ) + log
(
(1 + δ1(ε))2n(S+T−I(U1,V1;Z|Q,U0,V0)+δ(ε))

)

≤ n(S + T − I(U1, V1;Z|Q,U0, V0) + δ2(ε)). (A.5)
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APPENDIX B

MAC-WTC UNDER RANDOMNESS CONSTRAINT

It is well-known that a stochastic encoding is required to avoid leaking information about the

transmitted confidential messages to an eavesdropper. Here, a new achievability technique for

characterizing the trade-off between the rate of the random number to realize the stochastic

encoding and the communication rates in multiple access wiretap channel, by employing a

variation of superposition coding, is presented.

Consider a MAC-WTC (X1,X2, p(y, z|x1, x2),Y ,Z), in which X1, X2 are finite input

alphabets and Y and Z are finite output alphabets at the legitimate receiver and the eaves-

dropper, respectively (as depicted in Fig. B.1). In this problem, each transmitter sends a

confidential message which is supposed to be decoded by the legitimate receiver and must

be kept secret from the eavesdropper. Furthermore, for stochastic encoding, Encoder 1 and

Encoder 2 are allowed to use a limited amount of randomness. Thus, we are interested in

the trade-off between the rate of randomness, and the rates of confidential messages.

Definition 11. A (M1,n,M2,n, n) code for the considered model (Fig. B.1) consists of the

following:

i) Two message setsWi = J1,Mi,nK, i = 1, 2, from which independent messages W1 and W2

are drawn uniformly distributed over their respective sets. Also, Two dummy message

sets Ai = J1,M ′
i,nK, i = 1, 2, from which independent dummy messages A1 and A2 are

drawn uniformly distributed over their respective sets.

ii) Deterministic encoders fi,n, i = 1, 2, are defined by function fi,n :Wi ×Ai → X n
i .

iii) A decoding function φ : Yn →W1 ×W2 that assigns (ŵ1, ŵ2) ∈ J1,M1,nK× J1,M2,nK to

the received sequence yn.
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Figure B.1. Multiple access wiretap channel with deterministic encoders

The probability of error is given by:

Pe , P
(
{(Ŵ1, Ŵ2) 6= (w1, w2)}

)
. (B.1)

Definition 12 ([68]). A quadruple (R1, Rd1 , R2, Rd2) is achievable under weak secrecy if there

exists a sequence of (M1,n,M2,n,M
′
1,n,M

′
2,n, n) codes with M1,n ≥ 2nR1 ,M2,n ≥ 2nR2 ,M ′

1,n ≤

2nRd1 ,M ′
2,n ≤ 2nRd2 , so that Pe −−→

n→∞
0 and

1

n
I(W1,W2;Zn) −−→

n→∞
0. (B.2)

Theorem 37. An inner bound on the secrecy capacity region of the multiple access wiretap

channel is given by the set of non-negative quadruple (R1, Rd1 , R2, Rd2) such that

R1 ≤ I(U ;Y |Q, V )− I(U ;Z|Q), (B.3)

R2 ≤ I(V ;Y |Q,U)− I(V ;Z|Q), (B.4)

R1 +R2 ≤ I(U, V ;Y |Q)− I(U, V ;Z|Q), (B.5)

Rd1 ≥ I(U ;Z|Q) + I(X1;Z|Q,U, V ), (B.6)

Rd2 ≥ I(V ;Z|Q) + I(X2;Z|Q,U, V ), (B.7)

Rd1 +Rd2 ≥ I(U, V ;Z|Q) + I(X1, X2;Z|Q,U, V ), (B.8)

for some

p(q)p(u|q)p(v|q)p(x1|u)p(x2|v)p(y, z|x1, x2). (B.9)
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Remark 30. By setting U = X1, V = X2, and by taking sufficiently large Rd1 and Rd2, the

result in Theorem 37 reduces to the achievable rate region of multiple access wiretap channel

without common message [21, 22, 23].

Remark 31. By setting X2 = ∅ and V = ∅ (or X1 = ∅ and U = ∅), the result in Theorem 37

reduces to the capacity rate region of broadcast channel with confidential messages under

randomness constraint in [16, Corollary 11].

Proof. Rate Splitting: Divide the dummy message A1 into independent dummy messages

A1,1 ∈ J1, 2nR1,1K and A1,2 ∈ J1, 2nR1,2K. Also, divide the dummy message A2 into independent

dummy messages A2,1 ∈ J1, 2nR2,1K and A2,2 ∈ J1, 2nR2,2K. Therefore, Rd1 = R1,1 + R1,2 and

Rd2 = R2,1 +R2,2.

Codebook Generation: Fix p(q), p(u|q), p(v|q), p(x1|u), p(x2|v), and ε > 0. Randomly

and independently generate a typical sequence qn according to p(qn) =
n∏
i=1

p(qi). We suppose

that all the terminals know qn.

i) Generate 2n(R1+R1,1) sequences according to
∏n

i=1 pU |Q(ui|qi). Then, randomly bin

these 2n(R1+R1,1) sequences into 2nR1 bins. We index these sequences as un(w1, a1,1).

For each (w1, a1,1), generate 2nR1,2 codewords xn1 (w1, a1,1, a1,2) each according to
∏n

i=1 pX1|U(x1,i|ui).

ii) Generate 2n(R2+R2,1) sequences according to
∏n

i=1 pV |Q(vi|qi). Then, randomly bin

these 2n(R2+R2,1) sequences into 2nR2 bins. We index these sequences as vn(w2, a2,1).

For each (w2, a2,1), generate 2nR2,2 codewords xn1 (w2, a2,1, a2,2) each according to
∏n

i=1 pX2|V (x2,i|vi).

Encoding: To send the message w1, the Encoder 1 splits a1 into (a1,1, a1,2), and chooses

un(w1, a1,1). Then it chooses codeword xn1 (w1, a1,1, a1,2) and send it over the channel.

To send the message w2, the Encoder 2 splits a2 into (a2,1, a2,2), and chooses vn(w2, a2,1).

Then it chooses codeword xn2 (w2, a2,1, a2,2) and send it over the channel.

121



Decoding and Error Probability Analysis:

• Decoder decodes (w1, w2) by finding a unique pair (w1, w2) such that

(qn, un(w1, a1,1), vn(w2, a2,1), yn) ∈ T (n)
ε (pU,V,Y ) for some (a1,1, a2,1). The proba-

bility of error for Receiver goes to zero as n→∞ if we choose [85]

R1 +R1,1 ≤ I(U ;Y |Q, V )− ε, (B.10)

R2 +R2,1 ≤ I(V ;Y |Q,U)− ε, (B.11)

R1 +R1,1 +R2 +R2,1 ≤ I(U, V ;Y |Q)− ε. (B.12)

Equivocation Calculation: We analyze mutual information between (W1,W2) and Zn,

averaged over all random codebooks,

I(W1,W2;Zn|Qn, C)

= I(W1,W2, A1,1, A1,2, A2,1, A2,2;Zn|Qn, C)− I(A1,1, A1,2, A2,1, A2,2;Zn|W1,W2, Q
n, C)

(a)
= I(W1,W2, A1,1, A1,2, A2,1, A2,2, X

n
1 , X

n
2 ;Zn|Qn, C)− I(A1,1, A1,2, A2,1, A2,2;Zn|W1,W2, Q

n, C)
(b)
= I(Xn

1 , X
n
2 ;Zn|Qn, C)− I(A1,1, A1,2, A2,1, A2,2;Zn|W1,W2, Q

n, C)

= I(Xn
1 , X

n
2 ;Zn|Qn, C)− I(A1,1, A2,1;Zn|W1,W2, Q

n, C)

− I(A1,2, A2,2;Zn|W1,W2, A1,1, A1,2, Q
n, C)

= I(Xn
1 , X

n
2 ;Zn|Qn, C)−H(A1,1, A2,1|W1,W2, Q

n, C) + H(A1,1, A2,1|W1,W2, Z
n, Qn, C)

−H(A1,2, A2,2|W1,W2, A1,1, A2,1, Q
n, C) + H(A1,2, A2,2|W1,W2, A1,1, A2,1, Z

n, Qn, C),

(B.13)

where (a) is due to Xn
1 and Xn

2 are deterministic functions of (W1, A1,1, A1,2) and

(W2, A2,1, A2,2), respectively. Also, (b) is due to the fact that, given Xn
1 and Xn

2 , the in-

dices W1, W2, A1,1, A1,2 ,A2,1, and A2,2 are uniquely determined.

The first term in (B.13) is bounded as:

I(Xn
1 , X

n
2 ;Zn|Qn, C) ≤ nI(X1, X2;Z|Q) + nε, (B.14)
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where ε −−→
n→∞

0 similar to [85].

For the second term in (B.13) we have

H(A1,1, A2,1|W1,W2, Q
n, C) = n(R1,1 +R2,1). (B.15)

For the third term, substituting U0 ← Q, V0 ← Q, U1 ← U , and V1 ← V in Lemma 2 result

that if P
(
(Qn, Un(W1, A1,1), V n(W2, A2,1), Zn) ∈ T (n)

ε

)
−−→
n→∞

1 and

R1,1 ≥ I(U ;Z|Q) + ε, (B.16)

R2,1 ≥ I(V ;Z|Q) + ε, (B.17)

R1,1 +R2,1 ≥ I(U, V ;Z|Q) + ε. (B.18)

Then,

H(A1,1, A2,1|W1,W2, Z
n, Qn, C) ≤ n(R1,1 +R2,1 − I(U, V ;Z|Q) + ε). (B.19)

Here, this condition holds because

P
(
(Qn, Un(W1, A1,1), Xn

1 (W1, A1,1, A1,2), V n(W2, A2,1), Xn
2 (W2, A2,1, A2,2), Zn) ∈ T (n)

ε

)
−−→
n→∞

1.

(B.20)

To bound the fourth term in (B.13), we have

H(A1,2, A2,2|W1,W2, A1,1, A2,1, Q
n, C) = n(R1,2 +R2,2). (B.21)

Now, we bound the last term in (B.13) by applying Lemma 2,

H(A1,2, A2,2|W1,W2, A1,1, A2,1, Z
n, Qn, C) ≤ n(R1,2 +R2,2 − I(X1, X2;Z|Q,U, V ) + ε),

(B.22)

if (B.20) holds and

R1,2 ≥ I(X1;Z|Q,U, V ) + ε, (B.23)
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R2,2 ≥ I(X2;Z|Q,U, V ) + ε, (B.24)

R1,2 +R2,2 ≥ I(X1, X2;Z|Q,U, V ) + ε. (B.25)

Substituting (B.14), (B.15), (B.19), (B.21), and (B.22) into (B.13) yields

I(W1,W2;Zn|Qn, C) ≤ nI(X1, X2;Z|Q)− n(R1,1 +R2,1)

+ n(R1,1 +R2,1 − I(U, V ;Z|Q) + ε)− n(R1,2 +R2,2)

+ n(R1,2 +R2,2 − I(X1, X2;Z|Q,U, V ) + ε). (B.26)

Therefore I(W1,W2;Zn|Qn, C) ≤ 2nε. By applying the Fourier-Motzkin procedure [71] to

(B.10)–(B.12), (B.16)–(B.18), (B.23)–(B.25), Rd1 = R1,1 + R1,2, and Rd2 = R2,1 + R2,2 we

obtain the region in Theorem 37.
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APPENDIX C

PROOF OF THEOREM 1

The coding scheme is based on superposition coding, Wyner’s random binning [1], Marton

coding, and applying indirect decoding [11].

The random code generation is as follows:

Fix p(q), p(u0|q), p(u1, u2|u0), p(v0|q), p(v1, v2|v0), p(x1|u0, u1, u2), p(x2|v0, v1, v2), ε1 <

min{ε′, ε′′}, and ε2 < min{ε′, ε′′}.

Codebook Generation: Randomly and independently generate a typical sequence qn according

to p(qn) =
n∏
i=1

p(qi). We suppose that all the terminals know qn.

i) Generate 2nR̃1 codewords un0 (`0) each according to
∏n

i=1 pU0|Q(u0,i|qi). Then, randomly

bin the 2nR̃1 codewords into 2nR1 bins, B(w1), w1 ∈ J1, 2nR1K. For each `0, generate 2nρ1

codewords un1 (`0, t1) each according to
∏n

i=1 pU1|U0(u1,i|u0,i). Then, randomly bin the

2nρ1 codewords into 2nρ
′
1 bins, B(`0, `1), `1 ∈ J1, 2nρ′1K. Similarly, for each `0, generate

2nρ̃1 codewords un2 (`0, t2) each according to
∏n

i=1 pU2|U0(u2,i|u0,i). Then, randomly bin

the 2nρ̃1 codewords into 2nρ̃
′
1 bins, B(`0, `2), `2 ∈ J1, 2nρ̃′1K.

ii) Similarly, generate 2nR̃2 codewords vn0 (`′0) each according to
∏n

i=1 pV0|Q(v0,i|qi). Then,

randomly bin the 2nR̃2 codewords into 2nR2 bins, B(w2), w2 ∈ J1, 2nR2K. For each

`′0, generate 2nρ2 codewords vn1 (`′0, s1) each according to
∏n

i=1 pV1|V0(v1,i|v0,i). Then,

randomly bin the 2nρ2 codewords into 2nρ
′
2 bins, B(`′0, `

′
1), `′1 ∈ J1, 2nρ′2K. Similarly, for

each `′0, generate 2nρ̃2 codewords vn2 (`′0, s2) each according to
∏n

i=1 pV2|V0(v2,i|v0,i). Then,

randomly bin the 2nρ̃2 codewords into 2nρ̃
′
2 bins, B(`′0, `

′
2), `′2 ∈ J1, 2nρ̃′2K.

Encoding: To send the message w1, the encoder f1 first uniformly chooses the index L0 ∈

B(w1). Then, it uniformly chooses a pair of indices (L1, L2) and selects a jointly typical

sequence pair (un1 (L0, t1(L0, L1)), un2 (L0, t2(L0, L1))) ∈ T (n)
ε1 (U1, U2|U0) in the product bin.
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If the encoder f1 finds more than one such pair, then it chooses one of them uniformly

at random. We have an error if there is no such pair, in which the encoder f1 uniformly

at random chooses t1 ∈ B(L0, L1), t2 ∈ B(L0, L2). The error probability of the last event

approaches to zero as n→∞, if [86]

ρ′1 + ρ̃′1 ≤ ρ1 + ρ̃1 − I(U1;U2|U0)− ε1. (C.1)

Finally, the encoder f1 generates a sequence Xn
1 at random according to

∏n
i=1 p(x1,i|u0,i, u1,i, u2,i). Encoder 2 proceeds similarly to encode w2 and sends

codeword Xn
2 . The probability of not finding a jointly typical sequence pair

(vn1 (L′0, s1(L′0, L
′
1)), vn2 (L′0, s2(L′0, L

′
1))) ∈ T (n)

ε2 (V1, V2|V0) in the product bin approaches

to zero as n→∞, if [86]

ρ′2 + ρ̃′2 ≤ ρ2 + ρ̃2 − I(V1;V2|V0)− ε2. (C.2)

Decoding and Error Probability Analysis:

• Let (W1, L0, T1) and (W2, L
′
0, S1) denote the transmitted indices by the first and

second transmitter, respectively, and let (Ŵ1, L̂0, T̂1) and (Ŵ2, L̂
′
0, Ŝ1) denote the

corresponding decoded messages by the first receiver, respectively. Receiver 1 de-

codes (L0, L
′
0) and therefore (w1, w2) indirectly by finding a unique pair (ˆ̀

0, ˆ̀′
0)

such that (qn, un0 (ˆ̀
0), un1 (ˆ̀

0, t1), vn0 (ˆ̀′
0), vn1 (ˆ̀′

0, s1), yn1 ) ∈ T (n)
ε′ (U0, U1, V0, V1, Y1) for some

t1 ∈ J1, 2nρ1K and s1 ∈ J1, 2nρ2K. The idea of indirect decoding for the situation that

there is just one transmitter is shown in Fig. C.1. The error event (Ŵ1, Ŵ1) 6= (W1,W1)

occurs only if at least one of the following events occurs:

E1 =
{(
Qn, Un

0 (`0), Un
1 (`0, t1), V n

0 (`′0), V n
1 (`′0, s1), Y n

1

)
/∈ T (n)

ε

}
, (C.3)

E2 =
{(
Qn, Un

0 (ˆ̀
0), Un

1 (ˆ̀
0, t̂1), V n

0 (`′0), V n
1 (`′0, s1), Y n

1

)
∈ T (n)

ε for some ˆ̀
0 6= `0, t̂1

}
,

(C.4)
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n
1 (1, t1), y

n
1 ) ∈ T (n)

ǫ

t1 ∈ J1, 2nT1K

(un
0 (1), u

n
2 (1, t2), y

n
2 ) ∈ T (n)

ǫ

t2 ∈ J1, 2nT2K

Figure C.1. Codebook structure and indirect decoding for un0 (1) via un1 (1, t1) and un2 (1, t2)
for the situation that there is just one transmitter.
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E3 =
{(
Qn, Un

0 (`0), Un
1 (`0, t1), V n

0 (ˆ̀′
0), V n

1 (ˆ̀′
0, ŝ1), Y n

1

)
∈ T (n)

ε for some ˆ̀′
0 6= `′0, ŝ1

}
,

(C.5)

E4 =
{(
Qn, Un

0 (ˆ̀
0), Un

1 (ˆ̀
0, t̂1), V n

0 (`′0), V n
1 (`′0, ŝ1),

Y n
1

)
∈ T (n)

ε for some ˆ̀
0 6= `0, t̂1, ŝ1 6= s1

}
, (C.6)

E5 =
{(
Qn, Un

0 (`0), Un
1 (`0, t̂1), V n

0 (ˆ̀′
0), V n

1 (ˆ̀′
0, ŝ1),

Y n
1

)
∈ T (n)

ε for some t̂1 6= t1, ˆ̀′
0 6= `′0, ŝ1

}
, (C.7)

E6 =
{(
Qn, Un

0 (ˆ̀
0), Un

1 (ˆ̀
0, t̂1), V n

0 (ˆ̀′
0), V n

1 (ˆ̀′
0, ŝ1)

, Y n
1

)
∈ T (n)

ε for some ˆ̀
0 6= `0, t̂1, ˆ̀′

0 6= `′0, ŝ1

}
. (C.8)

Therefore, by Union Bound the average probability of error for decoder 1 is upper

bounded as

Pe1 ≤ P(E1) + P(E2) + P(E3) + P(E4) + P(E5) + P(E6).

By law of large numbers, P(E1) tends to zero as n → ∞. By packing lemma [85,

Lemma 3.1] P(E2) to P(E6) respectively tend to zero as n → ∞ if The probability of

error for Receiver 1 goes to zero as n→∞ if we choose [85]

R̃1 + ρ1 < I(U0, U1;Y1|Q, V0, V1), (C.9)

R̃2 + ρ2 < I(V0, V1;Y1|Q,U0, U1), (C.10)

R̃1 + ρ1 + ρ2 < I(U0, U1, V1;Y1|Q, V0), (C.11)

ρ1 + R̃2 + ρ2 < I(U1, V0, V1;Y1|Q,U0), (C.12)

R̃1 + ρ1 + R̃2 + ρ2 < I(U0, U1, V0, V1;Y1|Q). (C.13)

• Similarly, Receiver 2 decodes (L0, L
′
0) and therefore (w1, w2) indirectly by find-

ing a unique pair (ˇ̀
0, ˇ̀′

0) such that (qn, un0 (ˇ̀
0), un2 (ˇ̀

0, t2), vn0 (ˇ̀′
0), vn2 (ˇ̀′

0, s2), yn2 ) ∈

T (n)
ε′′ (U0, U2, V0, V2, Y2) for some t2 ∈ J1, 2nρ̃1K and s2 ∈ J1, 2nρ̃2K. The error analysis
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for the second receiver is similar to the first receiver, and for the interest of brevity it

is omitted here. Similar to Receiver 1 the probability of error for Receiver 2 goes to

zero as n→∞ if we choose [85]

R̃1 + ρ̃1 < I(U0, U2;Y2|Q, V0, V2), (C.14)

R̃2 + ρ̃2 < I(V0, V2;Y2|Q,U0, U2), (C.15)

R̃1 + ρ̃1 + ρ̃2 < I(U0, U2, V2;Y2|Q, V0), (C.16)

ρ̃1 + R̃2 + ρ̃2 < I(U2, V0, V2;Y2|Q,U0), (C.17)

R̃1 + ρ̃1 + R̃2 + ρ̃2 < I(U0, U2, V0, V2;Y2|Q). (C.18)

Equivocation Calculation: We analyze mutual information between (W1,W2) and Zn, aver-

aged over all random codebooks

I(W1,W2;Zn|Qn, C)

= I(W1,W2, L0, T1, T2, L
′
0, S1, S2;Zn|Qn, C)− I(L0, T1, T2, L

′
0, S1, S2;Zn|W1,W2, Q

n, C)

≤ I(Un
0 , U

n
1 , U

n
2 , V

n
0 , V

n
1 , V

n
2 ;Zn|Qn, C)− I(L0, L

′
0;Zn|W1,W2, Q

n, C)

− I(T1, T2, S1, S2;Zn|L0, L
′
0, Q

n, C)

= I(Un
0 , U

n
1 , U

n
2 , V

n
0 , V

n
1 , V

n
2 ;Zn|Qn, C)−H(L0, L

′
0|W1,W2, Q

n, C)

+ H(L0, L
′
0|Zn,W1,W2, Q

n, C)− I(T1, T2, S1, S2;Zn|L0, L
′
0, Q

n, C), (C.19)

where the inequality is due to the data processing inequality. Here, T1, T2, S1, and S2 are

deterministic functions of (L0, L1), (L0, L2), (L′0, L
′
1), and (L′0, L

′
2), respectively.

The first term in (C.19) is bounded as:

I(Un
0 , U

n
1 , U

n
2 , V

n
0 , V

n
1 , V

n
2 ;Zn|Qn, C) ≤ nI(U0, U1, U2, V0, V1, V2;Z|Q) + nε, (C.20)

as n→∞ where ε→ 0 [85].
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For the second term in (C.19) we have

H(L0, L
′
0|W1,W2, Q

n, C) = n(R̃1 −R1 + R̃2 −R2). (C.21)

For the third term, substituting U0 ← Q, V0 ← Q, U1 ← U0, and V1 ← V0 in Lemma 2 result

that,

H(L0, L
′
0|Zn,W1,W2, Q

n, C) ≤ n(R̃1 −R1 + R̃2 −R2 − I(U0, V0;Z|Q) + ε), (C.22)

if P
(
(Qn, Un

0 (L0), V n
0 (L′0), Zn) ∈ T (n)

ε

)
→ 1 as n → ∞ and R̃1 − R1 ≥ I(U0;Z|Q) + ε,

R̃2 −R2 ≥ I(V0;Z|Q) + ε, and R̃1 −R1 + R̃2 −R2 ≥ I(U0, V0;Z|Q) + ε.

Here, the first condition holds because

P
(
(Qn, Un

0 (L0), Un
1 (L0, t1(L0, L1)), Un

2 (L0, t2(L0, L1)), V n
0 (L′0), V n

1 (L′0, s1(L′0, L
′
1))

, V n
2 (L′0, s2(L′0, L

′
1)), Zn) ∈ T (n)

ε

)
→ 1, (C.23)

as n→∞. Now, we bound the last term in (C.19)

I(T1, T2, S1, S2;Zn|L0, L
′
0, Q

n, C)

= H(T1, T2, S1, S2|L0, L
′
0, Q

n, C)−H(T1, T2, S1, S2|Zn, L0, L
′
0, Q

n, C)
(a)
= H(T1, T2, S1, S2, L1, L2, L

′
1, L

′
2|L0, L

′
0, Q

n, C)−H(T1, T2, S1, S2|Zn, L0, L
′
0, Q

n, C)

≥ H(L1, L2, L
′
1, L

′
2|L0, L

′
0, Q

n, C)−H(T1, S1|Zn, L0, L
′
0, Q

n, C)−H(T2, S2|Zn, L0, L
′
0, Q

n, C)
(b)
= H(L1, L2|L0, L

′
0, Q

n, C) + H(L′1, L
′
2|L0, L

′
0, Q

n, C)

−H(T1, S1|Zn, L0, L
′
0, Q

n, C)−H(T2, S2|Zn, L0, L
′
0, Q

n, C), (C.24)

where (a) follows since given the codebook C and (L0, L
′
0), (L1, L2, L

′
1, L

′
2) is a deterministic

function of (T1(L0, L1), T2(L0, L2), S1(L′0, L
′
1), S2(L′0, L

′
2)), and (b) holds due to the fact that

given (L0, L
′
0, Q

n, C), (L1, L2) and (L′1, L
′
2) are independent. Now,

H(L1, L2|L0, L
′
0, Q

n, C) = n(ρ′1 + ρ̃′1), (C.25)
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H(L′1, L
′
2|L0, L

′
0, Q

n, C) = n(ρ′2 + ρ̃′2), (C.26)

H(T1, S1|Zn, L0, L
′
0, Q

n, C)
(a)

≤ n(ρ1 + ρ2 − I(U1, V1;Z|Q,U0, V0) + ε), (C.27)

H(T2, S2|Zn, L0, L
′
0, Q

n, C)
(b)

≤ n(ρ̃1 + ρ̃2 − I(U2, V2;Z|Q,U0, V0) + ε), (C.28)

where (a) is due to the following. Consider,

H(T1, S1|Zn, L0, L
′
0, Q

n, C) = H(T1, S1|Un
0 (L0), V n

0 (L′0), Zn, L0, L
′
0, Q

n, C)

≤ H(T1, S1|Un
0 (L0), V n

0 (L′0), Zn, Qn, C).

We now upper bound the term H(T1, S1|Un
0 (L0), V n

0 (L′0), Zn, Qn, C). From (C.23) we have

P
(
(Qn, Un

0 (L0), Un
1 (L0, t1(L0, L1)), V n

0 (L′0), V n
1 (L′0, s1(L′0, L

′
1)), Zn) ∈ T (n)

ε

)
→ 1 as n → ∞.

Applying Lemma 2 leads to,

H(T1, S1|Un
0 (L0), V n

0 (L′0), Zn, Qn, C) ≤ n(ρ1 + ρ2 − I(U1, V1;Z|Q,U0, V0) + ε), (C.29)

if ρ1 ≥ I(U1;Z|Q,U0, V0)+ε, ρ2 ≥ I(V1;Z|Q,U0, V0)+ε, and ρ1+ρ2 ≥ I(U1, V1;Z|Q,U0, V0)+ε.

By the same argument the inequality (b) holds, if the following inequalities hold,

ρ̃1 ≥ I(U2;Z|Q,U0, V0) + ε,

ρ̃2 ≥ I(V2;Z|Q,U0, V0) + ε,

ρ̃1 + ρ̃2 ≥ I(U2, V2;Z|Q,U0, V0) + ε.

Substituting (C.25)–(C.28) into (C.24) leads to,

I(T1, T2, S1, S2;Zn|L0, L
′
0, Q

n, C) ≥n(ρ′1 + ρ̃′1) + n(ρ′2 + ρ̃′2)

− n(ρ1 + ρ2 − I(U1, V1;Z|Q,U0, V0) + ε)

− n(ρ̃1 + ρ̃2 − I(U2, V2;Z|Q,U0, V0) + ε). (C.30)

Substituting (C.20)–(C.22) and (C.30) into (C.19) yields

I(W1,W2;Zn|Qn, C) ≤ nI(U0, U1, U2, V0, V1, V2;Z|Q)− n(R̃1 −R1 + R̃2 −R2)
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+ n(R̃1 −R1 + R̃2 −R2 − I(U0, V0;Z|Q))− n(ρ′1 + ρ̃′1)− n(ρ′2 + ρ̃′2)

+ n(ρ1 + ρ2 − I(U1, V1;Z|Q,U0, V0) + ε) + n(ρ̃1 + ρ̃2 − I(U2, V2;Z|Q,U0, V0) + ε). (C.31)

Therefore I(W1,W2;Zn|Qn, C) ≤ nε if

I(U1, U2, V1, V2;Z|U0, V0)− ρ′1 − ρ̃′1 − ρ′2 − ρ̃′2 + ρ1 + ρ2 − I(U1, V1;Z|Q,U0, V0)

+ ρ̃1 + ρ̃2 − I(U2, V2;Z|Q,U0, V0) ≤ ε. (C.32)

As a result, the rate constraints derived in equivocation analysis are

R̃1 −R1 + R̃2 −R2 ≥ I(U0, V0;Z|Q), (C.33)

R̃1 −R1 ≥ I(U0;Z|Q), (C.34)

R̃2 −R2 ≥ I(V0;Z|Q), (C.35)

ρ1 + ρ2 ≥ I(U1, V1;Z|Q,U0, V0), (C.36)

ρ1 ≥ I(U1;Z|Q,U0, V0), (C.37)

ρ2 ≥ I(V1;Z|Q,U0, V0), (C.38)

ρ̃1 + ρ̃2 ≥ I(U2, V2;Z|Q,U0, V0), (C.39)

ρ̃1 ≥ I(U2;Z|Q,U0, V0), (C.40)

ρ̃2 ≥ I(V2;Z|Q,U0, V0), (C.41)

ρ1 + ρ2 + ρ̃1 + ρ̃2 − ρ′1 − ρ̃′1 − ρ′2 − ρ̃′2 ≤ I(U1, V1;Z|Q,U0, V0) + I(U2, V2;Z|Q,U0, V0)

− I(U1, U2, V1, V2;Z|U0, V0). (C.42)

Finally, by applying the Fourier-Motzkin procedure [72] to (C.1), (C.2), (C.9)–(C.18), and

(C.33)–(C.42) we obtain the inequalities in Theorem 1.
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APPENDIX D

PROOF OF THEOREM 2

To prove Theorem 2, we first show that any achievable rate pairs (R1, R2) will satisfy (2.13)-

(2.15) for some distribution factorized as (2.16).

Applying Fano’s inequality [85] results in

H(W1,W2|Y n
1 ) ≤ nε1, (D.1)

H(W1,W2|Y n
2 ) ≤ nε2, (D.2)

where εi → 0, i = 1, 2 as P n
e → 0.

We first derive the bound on R1. Note that the secrecy condition (2.1) implies that

nR1 − nδ ≤ H(W1|Zn), (D.3)

nR2 − nδ ≤ H(W2|Zn). (D.4)

We first define

Qi = (Zn
i+1, Y

i−1
2 ), (D.5)

U0,i = (W1, Qi), (D.6)

V0,i = (W2, Qi). (D.7)

From (D.3) we have,

nR1 ≤ H(W1|Zn) + nδ

= H(W1)− I(W1;Zn) + nδ

(a)

≤H(W1)−H(W1|Y n
2 )− I(W1;Zn) + n(ε2 + δ)

(b)
= I(W1;Y n

2 )− I(W1;Zn) + nε

=
n∑

i=1

[I(W1;Y2,i|Y i−1
2 )− I(W1;Zi|Zn

i+1)] + nε
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=
n∑

i=1

[I(W1, Z
n
i+1;Y2,i|Y i−1

2 )− I(Zn
i+1;Y2,i|W1, Y

i−1
2 )

− I(W1, Y
i−1

2 ;Zi|Zn
i+1) + I(Y i−1

2 ;Zi|W1, Z
n
i+1)] + nε

(c)
=

n∑

i=1

[I(W1, Z
n
i+1;Y2,i|Y i−1

2 )− I(W1, Y
i−1

2 ;Zi|Zn
i+1)] + nε

=
n∑

i=1

[I(Zn
i+1;Y2,i|Y i−1

2 ) + I(W1;Y2,i|Zn
i+1, Y

i−1
2 )

− I(Y i−1
2 ;Zi|Zn

i+1)− I(W1;Zi|Zn
i+1, Y

i−1
2 )] + nε

(d)
=

n∑

i=1

[I(W1;Y2,i|Zn
i+1, Y

i−1
2 )− I(W1;Zi|Zn

i+1, Y
i−1

2 )] + nε

(e)
=

n∑

i=1

[I(U0,i;Y2,i|Qi)− I(U0,i;Zi|Qi)] + nε, (D.8)

where (a) follows from Fano’s inequality, (b) follows by setting ε = ε2 + δ. Equalities in (c)

and (d) result from Csiszár’s sum identity [70] where we have

n∑

i=1

I(Zn
i+1;Y2,i|W1, Y

i−1
2 ) =

n∑

i=1

I(Y i−1
2 ;Zi|W1, Z

n
i+1), (D.9)

n∑

i=1

I(Zn
i+1;Y2,i|Y i−1

2 ) =
n∑

i=1

I(Y i−1
2 ;Zi|Zn

i+1). (D.10)

The equality (e) follows from definition of random variables in (D.5)-(D.7).

Now, based on (D.8) we have:

nR1 ≤ n

n∑

i=1

1

n
[I(U0,K ;Y2,K |QK , K = i)− I(U0,K ;ZK |QK , K = i)] + nε

= n

n∑

i=1

p(K = i)[I(U0,K ;Y2,K |QK , K = i)− I(U0,K ;ZK |QK , K = i)] + nε

= n[I(U0,K ;Y2,K |QK , K)− I(U0,K ;ZK |QK , K)] + nε

= n[I(U0;Y2|Q)− I(U0;Z|Q)] + nε (D.11)

where U0,K = U0, Y2,K = Y2, ZK = Z, (QK , K) = Q and K has a uniform distribution over

{1, 2, ..., n} outcomes.
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The bounds on R2 and R1 +R2 can be proven similar to the bound on R1 by substitution

of W1 by W2 and W1 by (W1,W2), respectively. We omit the details for brevity.
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APPENDIX E

PROOF OF THEOREM 3

The proof of achievability follows from Theorem 1 by setting U0 = U1 = U2 and V0 = V1 = V2

and considering the fact that the channel is degraded. Now, we show that for the degraded

switch model the outer bound in Theorem 2 will reduce to the region in Theorem 3. We need

to show that the outer bound distribution for the degraded switch case is equal to (2.26).

Therefore, we need to show that given Q, U0 and V0 are independent, i.e.,

I(U0;V0|Q) = 0. (E.1)

Moreover, we have to show that

I(U0;Y ′2 |V0, Q) = I(U0;Y ′2 |Q), (E.2)

I(V0;Y ′2 |U0, Q) = I(V0;Y ′2 |Q). (E.3)

To prove (E.2) and (E.3) we need to show that

I(U0;V0|Y ′2 , Q) = 0, (E.4)

because if this equation holds we have

I(U0;Y ′2 |Q) = I(U0;V0|Q) + I(U0;Y ′2 |V0, Q)− I(U0;V0|Y ′2 , Q)

= I(U0;Y ′2 |V0, Q), (E.5)

I(V0;Y ′2 |Q) = I(V0;U0|Q) + I(V0;Y ′2 |U0, Q)− I(V0;U0|Y ′2 , Q)

= I(V0;Y ′2 |U0, Q). (E.6)

From (D.5)-(D.7) and (2.17)-(2.19) the equations in (E.1) and (E.4) are equal to the

following equalities, respectively,

I(W1;W2|Zn
i+1, S

n
i+1, Y

i−1
2 , Si−1) = 0, (E.7)
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I(W1;W2|Y2,i, Si, Z
n
i+1, S

n
i+1, Y

i−1
2 , Si−1) = 0. (E.8)

First, we prove (E.7),

I(W1;W2|Zn
i+1, S

n
i+1, Y

i−1
2 , Si−1)

=
∑

sni+1

∑

si−1

p(Sni+1 = sni+1, S
i−1 = si−1)I(W1;W2|Zn

i+1, S
n
i+1 = sni+1, Y

i−1
2 , Si−1 = si−1)

=
∑

sni+1

∑

si−1

n∏

j=1
j 6=i

[p(Sj = sj)]I(W1;W2|Zn
i+1, S

n
i+1 = sni+1, Y

i−1
2 , Si−1 = si−1). (E.9)

For a given si, (2.22) implies that y1,i and therefore y2,i and zi only depend on the channel

input xsi,i. By using functional dependence graphs [87], one can show that

I(W1;W2|Zn
i+1, S

n
i+1 = sni+1, Y

i−1
2 , Si−1 = si−1) = 0, (E.10)

for fixed switch state information si−1 and sni+1. This completes the proof of the equality

(E.1). By following the same approach, we can also prove (E.8).
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APPENDIX F

PROOF OF THEOREM 4

To prove Theorem 4, we first show that any achievable rate pairs (R1, R2) will satisfy (2.27)-

(2.29) for some distribution factorized as (2.30).

Applying Fano’s inequality [85] results in

H(W1,W2|Y n
1 ) ≤ nε1 (F.1)

H(W1,W2|Y n
2 ) ≤ nε2 (F.2)

where εi → 0, i = 1, 2 as P n
e → 0.

We first derive the bound on R1. Note that the perfect secrecy (2.1) implies that

nR1 − nδ ≤ H(W1|Zn) (F.3)

nR2 − nδ ≤ H(W2|Zn). (F.4)

Define,

Qi = (Zn
i+1, Y

i−1
1 , Y i−1

2 ), (F.5)

U0,i = (W1, Qi), (F.6)

V1,i = (W2, Qi), (F.7)

From (F.3) we have,

nR1 ≤ H(W1|Zn) + nδ

= H(W1)− I(W1;Zn) + nδ

(a)

≤H(W1)−H(W1|Y n
1 , Y

n
2 )− I(W1;Zn) + n(ε2 + δ)

(b)
= I(W1;Y n

1 , Y
n

2 )− I(W1;Zn) + nε

=
n∑

i=1

[I(W1;Y1,i, Y2,i|Y i−1
1 , Y i−1

2 )− I(W1;Zi|Zn
i+1)] + nε
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=
n∑

i=1

[I(W1, Z
n
i+1;Y1,i, Y2,i|Y i−1

1 , Y i−1
2 )− I(Zn

i+1;Y1,i, Y2,i|W1, Y
i−1

1 , Y i−1
2 )

− I(W1, Y
i−1

1 , Y i−1
2 ;Zi|Zn

i+1) + I(Y i−1
1 , Y i−1

2 ;Zi|W1, Z
n
i+1)] + nε

(c)
=

n∑

i=1

[I(W1, Z
n
i+1;Y1,i, Y2,i|Y i−1

1 , Y i−1
2 )− I(W1, Y

i−1
1 , Y i−1

2 ;Zi|Zn
i+1)] + nε

=
n∑

i=1

[I(Zn
i+1;Y1,i, Y2,i|Y i−1

1 , Y i−1
2 ) + I(W1;Y1,i, Y2,i|Zn

i+1, Y
i−1

1 , Y i−1
2 )

− I(Y i−1
1 , Y i−1

2 ;Zi|Zn
i+1)− I(W1;Zi|Zn

i+1, Y
i−1

1 , Y i−1
2 )] + nε

(d)
=

n∑

i=1

[I(W1;Y1,i, Y2,i|Zn
i+1, Y

i−1
1 , Y i−1

2 )− I(W1;Zi|Zn
i+1, Y

i−1
1 , Y i−1

2 )] + nε

(e)
=

n∑

i=1

[I(U0,i;Y1,i, Y2,i|Qi)− I(U0,i;Zi|Qi)] + nε (F.8)

where (a) follows from Fano’s inequality, (b) follows by setting ε = ε2 + δ. Equalities in (c)

and (d) result from Csiszár’s sum identity [70] where we have

n∑

i=1

I(Zn
i+1;Y1,i, Y2,i|W1, Y

i−1
1 , Y i−1

2 ) =
n∑

i=1

I(Y i−1
1 , Y i−1

2 ;Zi|W1, Z
n
i+1), (F.9)

n∑

i=1

I(Zn
i+1;Y1,i, Y2,i|Y i−1

1 , Y i−1
2 ) =

n∑

i=1

I(Y i−1
1 , Y i−1

2 ;Zi|Zn
i+1). (F.10)

The equality (e) follows from definition of random variables in (F.5)-(F.7).

Now, by applying the same time-sharing strategy as (D.11) we have

R1 ≤ I(U0;Y1, Y2|Q)− I(U0;Z|Q) + nε. (F.11)

The bounds on R2 and R1 +R2 can be proven similar to the bound on R1 by substitution

of W1 by W2 and W1 by (W1,W2), respectively. We omit the details for brevity.
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APPENDIX G

PROOF OF THEOREM 5

First, we rewrite the achievable rate region in Theorem 1 and the outer bound in Theorem 4

for the considered model in this subsection, and then we show that these two bounds are

equal, and they are equal to the rate region in Theorem 5.

Corollary 5. By setting U0 = U1 = U2 and V0 = V1 = V2 and considering the fact that

Y1 = Y2, and therefore Y ′1 = Y ′2 , the achievable rate region in Theorem 1 will reduce to the

set of non-negative rate pair (R1, R2) such that

R1 ≤ I(U0;Y ′1 |Q, V0)− I(U0;Z|Q) (G.1)

R2 ≤ I(V0;Y ′1 |Q,U0)− I(V0;Z|Q) (G.2)

R1 +R2 ≤ I(U0, V0;Y ′1 |Q)− I(U0, V0;Z|Q) (G.3)

for some

p(q)p(u0|q)p(v0|q)p(x1|u0)p(x2|v0). (G.4)

Corollary 6. By considering the fact that Y ′1 is equal to Y ′2 the outer bound in Theorem 4

will reduce to the set of couple rates (R1, R2) satisfying

R1 ≤ I(U0;Y ′1 |Q)− I(U0;Z|Q) (G.5)

R2 ≤ I(V0;Y ′1 |Q)− I(V0;Z|Q) (G.6)

R1 +R2 ≤ I(U0, V0;Y ′1 |Q)− I(U0, V0;Z|Q) (G.7)

for some joint distribution

p(q)p(u0, v0|q)p(x1|u0)p(x2|v0). (G.8)
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By using a similar approach to the proof of Theorem 4 one can show that for the outer

bound we have

I(U0;V0|Q) = 0, (G.9)

I(U0;V0|Q, Y ′1) = 0. (G.10)

Therefore, the achievable rate region in Corollary 5 and the outer bound in Corollary 6

meet. By setting Q = ∅, U0 = X1, and V0 = X2 and considering the fact that the channel is

noiseless one can verify the region in Theorem 5.
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APPENDIX H

PROOF OF THEOREM 7

Achievability Proof: Fix PX|S(x|s) and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation: For every sn ∈ Sn let Cn , {Xn(sn,m)}(sn,m)∈Sn×M, where M ,

J1, 2nRK, be a random codebook consisting of independent random sequences each generated

according to P⊗nX|S(·|si). We denote a realization of Cn by Cn , {xn(sn,m)}(sn,m)∈Sn×M.

Encoding: Given the CSI sn, to send the message m, the transmitter computes xn(sn,m)

and transmits it over the channel. For a fixed codebook Cn, the induced joint distribution is

P
(Cn)
Sn,M,Xn,Zn(sn,m, x̃n, zn) = Q⊗nS (sn)2−nR1{x̃n=xn(sn,m)}W

⊗n
Z|S,X(zn|sn, x̃n). (H.1)

Covert Analysis: We now show ECn [D(PZn|Cn||Q⊗nZ )] −−→
n→∞

0, where

QZ(·) =
∑

s∈S

∑

x∈X
QS(s)PX|S(x|s)WZ|X,S(·|x, s). (H.2)

Then we choose PX|S such that it satisfies QZ = Q0. Henceforth, we denote by P (Cn) the

distributions induced by a fixed codebook Cn, and by P·|Cn the distributions induced by a

random codebook Cn. First, consider the following marginal from (H.1),

PZn|Cn(zn) =
∑

sn

∑

m

Q⊗nS (sn)2−nRW⊗n
Z|S,X

(
zn|sn, Xn(sn,m)

)
. (H.3)

We now have,

ECn
[
D
(
PZn|Cn||Q⊗nZ

)]
= ECn

[∑

zn

PZn|Cn(zn) log
(PZn|Cn(zn)

Q⊗nZ (zn)

)]

= ECn

[∑

zn

∑

sn

∑

m

1

2nR
Q⊗nS (sn)W⊗n

Z|S,X
(
zn|sn, Xn(sn,m)

)

× log




∑
(s̃n,m̃)

Q⊗nS (s̃n)W⊗n
Z|S,X

(
zn|s̃n, Xn(s̃n, m̃)

)

2nRQ⊗nZ (zn)
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(a)

≤
∑

zn

∑

sn

∑

m

1

2nR

∑

xn(sn,m)

P⊗nS,X,Z
(
sn, xn(sn,m), zn

)

× logE\(sn,m)




∑
(s̃n,m̃)

Q⊗nS (s̃n)W⊗n
Z|S,X

(
zn|s̃n, Xn(s̃n, m̃)

)

2nRQ⊗nZ (zn)




=
∑

zn

∑

sn

∑

m

1

2nR

∑

xn(sn,m)

P⊗nS,X,Z
(
sn, xn(sn,m), zn

)

× log

(
Q⊗nS (sn)W⊗n

Z|S,X
(
zn|sn, xn(sn,m)

)

2nRQ⊗nZ (zn)

+ E\(sn,m)




∑
(s̃n,m̃)6=(sn,m)

Q⊗nS (s̃n)W⊗n
Z|S,X

(
zn|s̃n, Xn(s̃n, m̃)

)

2nRQ⊗nZ (zn)







(b)

≤
∑

zn

∑

sn

∑

m

1

2nR

∑

xn(sn,m)

P⊗nS,X,Z
(
sn, xn(sn,m), zn

)

× log

(
Q⊗nS (sn)W⊗n

Z|S,X
(
zn|sn, xn(sn,m)

)

2nRQ⊗nZ (zn)

+ E\sn



∑

m̃6=m

E\m
∑
s̃n

(
Q⊗nS (s̃n)W⊗n

Z|S,X
(
zn|s̃n, Xn(s̃n, m̃)

))

2nRQ⊗nZ (zn)







=
∑

zn

∑

sn

∑

m

1

2nR

∑

xn(sn,m)

P⊗nS,X,Z
(
sn, xn(sn,m), zn

)

× log

(
Q⊗nS (sn)W⊗n

Z|S,X
(
zn|sn, xn(sn,m)

)

2nRQ⊗nZ (zn)
+ E\sn

[∑

m̃6=m

Q⊗nZ
(
zn
)

2nRQ⊗nZ (zn)

])

≤
∑

zn

∑

sn

∑

m

1

2nR

∑

xn(sn,m)

P⊗nS,X,Z
(
sn, xn(sn,m), zn

)

× log

(
Q⊗nS (sn)W⊗n

Z|S,X
(
zn|sn, xn(sn,m)

)

2nRQ⊗nZ (zn)
+ 1

)

, Ψ1 + Ψ2, (H.4)
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where (a) follows from Jensen’s inequality and (b) follows by adding some terms to the

nominator of the second term in the argument of the log function. We define Ψ1 and Ψ2 as

Ψ1 =
∑

m

1

2nR

∑

(sn,xn(sn,m),zn)∈T (n)
ε

P⊗nS,X,Z
(
sn, xn(sn,m), zn

)

× log

(
Q⊗nS (sn)W⊗n

Z|S,X
(
zn|sn, xn(sn,m)

)

2nRQ⊗nZ (zn)
+ 1

)

≤ log

(
2−n(1−ε)

(
H(S)+H(Z|S,X)

)

2nR2−n(1+ε)H(Z)
+ 1

)
(H.5)

Ψ2 =
∑

m

1

2nR

∑

(sn,xn(sn,m),zn)/∈T (n)
ε

P⊗nS,X,Z
(
sn, xn(sn,m), zn

)

× log

(
Q⊗nS (sn)W⊗n

Z|S,X
(
zn|sn, xn(sn,m)

)

2nRQ⊗nZ (zn)
+ 1

)

≤ 2|S||X||Z|e−nε2µS,X,Zn log
( 3

µZ
+ 1
)

(H.6)

where µS,X,Z = min
(s,x,z)∈(S,X ,Z)

PS,X,Z(s, x, z) and µZ = min
z∈Z

PZ(z). When n→∞ then Ψ2 → 0;

and Ψ1 → 0 when n→∞ if,

R > I(S,X;Z)−H(S). (H.7)

Basic information identities yield:

I(X,S;Z) = I(X;S,Z) + I(S;Z)− I(X;S). (H.8)

Substituting (H.8) into (H.7) leads to

R > I(X;Z|S)−H(S|Z). (H.9)

Decoding and Error Probability Analysis: By access to the CSI sn, the receiver declares

that m̂ = m if there exists a unique index m̂ such that (xn(sn, m̂), yn, sn) ∈ T (n)
ε (X, Y, S).

According to the law of large numbers and the packing lemma the probability of error goes

to zero as n→∞ if [85],

R < I(X;Y |S). (H.10)
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The region in Theorem 7 is derived by combining (H.9) and (H.10).

Converse Proof: We now develop an upper bound for the non-causal side informa-

tion. Consider any sequence of length-n codes for a state-dependent channel with CSI

available non-causally at both the transmitter and the receiver, such that P
(n)
e ≤ εn and

D(PZn||Q⊗n0 ) ≤ δ with limn→∞ εn = 0. Note that the converse is consistent with the model

and does not require δ to vanish.

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (3.2) as follows.

Aε ,
{
R ≥ 0 : ∃PS,X,Y,Z ∈ Dε : R ≤ I(X;Y |S) + ε

}
, (H.11a)

where

Dε =





PS,X,Y,Z :

PS,X,Y,Z = QSPX|SWY,Z|X,S

D (PZ‖Q0) ≤ ε

H(S|Z) ≥ I(X;Z|S)− I(X;Y |S)− 2ε





. (H.11b)

We next show that if a rate R is achievable, then R ∈ Aε for any ε > 0. For any εn > 0 and

ν > 0, we start by upper bounding nR using standard techniques,

nR = H(M)

(a)

≤ H(M |Sn)−H(M |Y n, Sn) + nεn

= I(M ;Y n|Sn) + nεn

=
n∑

i=1

I(M ;Yi|Y i−1, Sn) + nεn

=
n∑

i=1

[H(Yi|Y i−1, Sn)−H(Yi|M,Y i−1, Sn)] + nεn

(b)

≤
n∑

i=1

[H(Yi|Si)−H(Yi|M,Y i−1, Sn, Xn)] + nεn
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=
n∑

i=1

[H(Yi|Si)−H(Yi|Si, Xi)] + nεn

=
n∑

i=1

I(Xi;Yi|Si) + nεn

(c)

≤ nI(X̃; Ỹ |S̃) + nεn

(d)

≤ nI(X̃; Ỹ |S̃) + nε

(e)
= nI(X;Y |S) + nε, (H.12)

where

(a) follows from Fano’s inequality and since M is independent of Sn;

(b) holds because conditioning does not increase entropy;

(c) follows from the concavity of mutual information, with the resulting random variables

X̃, S̃, Ỹ , and Z̃ having the following distributions

P̃X,S(x, s) ,
1

n

n∑

i=1

PXi,Si(x, s), (H.13a)

P̃X,S,Y,Z(x, s, y, z) , P̃X,S(x, s)WY,Z|X,S(y, z|x, s); (H.13b)

(d) follows by defining ε , max{εn, ν}, where we choose n large enough such that ν ≥ δ
n
;

(e) follows by defining X = X̃, Y = Ỹ , and S = S̃.

We also have,

nR = H(M)

= H(M |Sn)

≥ I(M ;Zn|Sn)

(a)
= I(M,Xn;Zn|Sn)
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≥ I(Xn;Zn|Sn)

= I(Xn, Sn;Zn)− I(Sn;Zn)

=
∑

xn

∑

sn

∑

zn

P (xn, sn, zn) log
W⊗n
Z|X,S(zn|xn, sn)

P (zn)
−H(Sn) + H(Sn|Zn)

≥
∑

xn

∑

sn

∑

zn

P (xn, sn, zn) log
W⊗n
Z|X,S(zn|xn, sn)

P (zn)
+ D(PZn||Q⊗n0 )−H(Sn)− δ

≥
n∑

i=1

∑

xi

∑

si

∑

zi

P (xi, si, zi) log
WZ|X,S(zi|xi, si)

Q0(zi)
−

n∑

i=1

H(Si)− δ

=
n∑

i=1

D(PXi,Si,Zi||PXi,SiQ0)−
n∑

i=1

H(Si)− δ

(b)

≥ nD(P̃X,S,Z ||P̃X,SQ0)− nH(S̃)− δ

= nD(P̃X,S,Z ||P̃X,SP̃Z) + D(P̃Z ||Q0)− nH(S̃)− δ
(c)

≥ nI(X̃, S̃; Z̃)− nH(S̃)− δ
(d)
= nI(X,S;Z)− nH(S)− δ, (H.14)

where

(a) follows because Xn is a function of (M,Sn);

(b) follows from Jensen’s inequality, the convexity of D(·||·), and concavity of H(·);

(c) follows from the positivity of the KL-divergence and the definition of random variables

X̃, S̃, Ỹ , and Z̃ in (H.13);

(d) follows by defining X = X̃, Z = Z̃, and S = S̃.

For any ν > 0, by choosing n large enough and substituting (H.8) into (H.14) ensures that

R ≥ I(X;Z|S)−H(S|Z)− ν,

≥ I(X;Z|S)−H(S|Z)− ε, (H.15)
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where the last inequality follows from the definition of ε , max{εn, ν}. To show that

D(PZ ||Q0) ≤ ε, note that for n large enough,

D(PZ ||Q0) = D(PZ̃ ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (H.16)

Combining (H.12) and (H.15) shows that ∀εn, ν > 0, R ≤ max{a : a ∈ Aε}. Therefore,

CNC-TR = max

{
a : a ∈

⋂

ε>0

Aε
}
. (H.17)

Continuity at Zero: One can prove the continuity at zero of Aε by substituting min{I(U ;Y )−

I(U ;S), I(U, V ;Y )−I(U ;S|V )} with I(X;Y |S) and I(V ;Z)−I(V ;S) with I(X;Z|S)−H(S|Z)

in the continuity at zero proof in Appendix N and following the exact same arguments.
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APPENDIX I

PROOF OF THEOREM 8

Achievability Proof: To prove the achievability of Theorem 8 it is convenient to introduce

an associated channel WY,Z|U,S as follows: Let U ∈ U be an arbitrary auxiliary random

variable which is independent of the state S, and let x : U × S 7→ X be a deterministic

mapping subject to 1{x=x(s,u)}. According to the Shannon strategy [88], we define theWY,Z|U,S

as a channel specified by

WY,Z|U,S =
∑

x∈X
1{x=x(s,u)}WY,Z|X,S(y, z|x, s), (I.1)

which results in a channel with input U , outputs Y , Z, and state S. Therefore, we only

focus on the coding problem for the channel WY,Z|U,S for the achievability proof.

We use block-Markov coding in which B independent messages are transmitted over B

channel blocks, each of length r, therefore the overall codeword length is n = rB symbols.

The warden’s observation Zn can be described in terms of observations in individual block-

Markov blocks Zn = (Zr
1 , . . . , Z

r
B). The distribution of the warden’s observation, induced

by the block-Markov coding, is PZn , PZr1 ,...,ZrB and the target output distribution is Q⊗n0 =
∏B

j=1Q
⊗r
0 . Therefore,

D(PZn||Q⊗n0 ) = D(PZr1 ...ZrB ||Q
⊗rB
0 )

=
B∑

j=1

D(PZrj |Z
B,r
j+1
||Q⊗r0 |PZB,rj+1

)

=
B∑

j=1

[D(PZrj ||Q
⊗r
0 ) + D(PZrj |Z

B,r
j+1
||PZrj |PZB,rj+1

)]

=
B∑

j=1

[D(PZrj ||Q
⊗r
0 ) + I(Zr

j ;Z
B,r
j+1)], (I.2)

where ZB,r
j+1 = {Zr

j+1, . . . Z
r
B}. Hence, D(PZn||Q⊗n0 ) −−→

n→∞
0, is equivalent to;

D(PZrj ||Q
⊗r
0 ) −−→

r→∞
0, I(Zr

j ;Z
B,r
j+1) −−→

r→∞
0, ∀j ∈ J1, BK. (I.3)
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This requires constructing a code that approximates Q⊗r0 in each block, while eliminating the

dependencies across blocks created by block-Markov coding. The random code generation

is as follows.

Fix PU(u), x = x(s, u), and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation for Keys: For each block j ∈ J1, BK, create a function Φ : Srj 7→

J1, 2rRKK through random binning by choosing the value of Φ(srj) independently and uni-

formly at random for every srj ∈ Sr. The key kj = Φ(srj) obtained in the block j ∈ J1, BK
from the state sequence srj is used to assist the encoder in the next block.

Codebook Generation for Messages: For each block j ∈ J1, BK, let Cr ,

{U r(mj, kj−1)}(mj ,kj−1)∈M×K, where M , J1, 2rRK and K , J1, 2rRkK, be a random code-

book consisting of independent random sequences each generated according to P⊗rU . We

denote a realization of Cr by Cr , {ur(mj, kj−1)}(mj ,kj−1)∈M×K.

Encoding: For the first block, we assume that the transmitter and the receiver have access

to a shared secret key k0, in this block to transmit m1 the encoder computes ur(m1, k0) and

transmits codeword xr, where xi = x(ui(m1, k0), si). At the end of the first block, the encoder

generates a key from CSI sr1 to be used in Block 2.

For block j ∈ J2, BK, to send the message mj according to the generated key kj−1 from

the previous block, the encoder computes ur(mj, kj−1) and transmits codeword xr, where

xi = x(ui(mj, kj−1), si). Also, at the end of each block j ∈ J2, BK, the encoder generates a

key from CSI srj to be used in the next block.

Define

Υ
(Cr)
Mj ,Kj−1,Ur,Srj ,Z

r
j ,Kj

(mj, kj−1, ũ
r, srj , z

r
j , kj) ,2−r(Rk+R)1{ũr=ur(mj ,kj−1)}Q

⊗r
S (srj)

×W⊗r
Z|U,S(zrj |ũr, srj)1{kj=Φ(s̃rj )}. (I.4)

For a fixed codebook Cr, the induced joint distribution by our code design (i.e. P (Cr)) satisfies

D
(
P

(Cr)
Mj ,Kj−1,Ur,Srj ,Z

r
j ,Kj
||Υ(Cr)

Mj ,Kj−1,Ur,Srj ,Z
r
j ,Kj

)
≤ ε. (I.5)
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Block j Block j + 1

Mj Xr
j Zr

j

Sr
j Kj

Y r
j

Kj−1

Mj+1 Xr
j+1 Zr

j+1

Sr
j+1

Y r
j+1

Figure I.1. Functional dependence graph for the block-Markov encoding scheme

This intermediate distribution Υ(Cr) approximates the true distribution P (Cr) and will be

used in the sequel for bounding purposes. Expression (I.5) holds because the main difference

between P (Cr) and Υ(Cr) is that the key Kj−1 is assumed to be uniformly distributed in Υ(Cr),

which is made (arbitrarily) nearly uniform in P (Cr) with appropriate control of rate as in

(I.17).

Covert Analysis: We now show ECn [D(PZn|Cn||Q⊗nZ )] −−→
n→∞

0, where Cn is the set of all

codebooks from all blocks, and

QZ(·) =
∑

s∈S

∑

u∈U

∑

x∈X
QS(s)PU(u)1{

X=X(u,s)
}WZ|X,S(·|x, s). (I.6)

Then we choose PU and X(U, S) such that it satisfies QZ = Q0. From the expansion in (I.2),

by substituting Q0 with QZ , for every block j ∈ J2, BK,

I(Zr
j ;Z

B,r
j+1) ≤ I(Zr

j ;Kj, Z
B,r
j+1)

(a)
= I(Zr

j ;Kj), (I.7)

where (a) holds because Zr
j − Kj − ZB,r

j+1 forms a Markov chain, as seen in the functional

dependence graph depicted in Fig. I.1. Also,

I(Zr
j ;Kj) = D(P

(Cn)
Zrj ,Kj

||P (Cn)
Zrj

P
(Cn)
Kj

)
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(b)

≤D(P
(Cn)
Zrj ,Kj

||Q⊗rZ QKj), (I.8)

where QKj is the uniform distribution over J1, 2rRKK and (b) follows from the positivity of

relative entropy and

D(PZrj ,Kj ||PZrjPKj) = D(PZrj ,Kj ||Q
⊗r
Z QKj)− D(PKj ||QKj)− D(PZrj ||Q

⊗r
Z ). (I.9)

Therefore by combining (I.2), (I.8), and (I.9),

D(PZn|Cn||Q⊗nZ ) ≤ 2
B∑

j=1

D(PZrj ,Kj |Cr ||Q
⊗r
Z QKj). (I.10)

We now proceed to bound the right-hand side of (I.10). First, consider the following marginal

from (I.4),

ΥZrj ,Kj |Cr(z
r
j , kj) =

∑

mj

∑

kj−1

∑

srj

1

2r(R+Rk)
Q⊗rS (srj)W

⊗r
Z|U,S

(
zrj |U r(mj, kj−1), srj

)
1{kj=Φ(srj )}.

(I.11)

From (I.5) and the monotonicity of KL-divergence we have,

D
(
ΥZrj ,Kj |Cr ||PZrj ,Kj |Cr

)
≤ ε. (I.12)

To bound the Right Hand Side (RHS) of (I.10) by using Lemma 1 and the triangle inequality

we have,

ECr ||PZrj ,Kj |Cr −Q
⊗r
Z QKj ||1 ≤ ECr ||PZrj ,Kj |Cr −ΥZrj ,Kj |Cr ||1 + ECr ||ΥZrj ,Kj |Cr −Q

⊗r
Z QKj ||1.

(I.13)

From Lemma 1 and (I.12) the first term on the RHS of (I.13) vanishes as r grows; to bound

the second term on the RHS of (I.13) by using Lemma 1 we have,

ECr [D(ΥZrj ,Kj |Cr ||Q
⊗r
Z QKj)] = ECr

[∑

zrj ,kj

ΥZrj ,Kj |Cr(z
r
j , kj) log

(ΥZrj ,Kj |Cr(z
r
j , kj)

Q⊗rZ (zrj )QKj(kj)

)]
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= ECr

[ ∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk)

∑

srj

Q⊗rS (srj)W
⊗r
Z|U,S

(
zrj |U r(mj, kj−1), srj

)
1{kj=Φ(srj )}

× log

(∑
m̃j

∑
k̃j−1

∑
s̃rj

Q⊗rS (s̃rj)W
⊗r
Z|U,S

(
zrj |U r(m̃j, k̃j−1), s̃rj

)
1{kj=Φ(s̃rj )}

2r(R+Rk−RK)Q⊗rZ (zrj )

)]

(a)

≤
∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk)

∑

srj

∑

ur(mj ,kj−1)

Υ⊗rUr,Sr,Zr
(
ur(mj, kj−1), srj , z

r
j

)
EΦ(srj )

[
1{kj=Φ(srj )}

]

× logE\((mj ,kj−1),Φ(srj ))

[∑
m̃j

∑
k̃j−1

∑
s̃rj

Q⊗rS (s̃rj)W
⊗r
Z|U,S

(
zrj |U r(m̃j, k̃j−1), s̃rj

)
1{kj=Φ(s̃rj )}

2r(R+Rk−RK)Q⊗rZ (zrj )

]

(b)

≤
∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk)

∑

srj

∑

ur(mj ,kj−1)

Υ⊗rUr,Sr,Zr
(
ur(mj, kj−1, s

r
j , z

r
j )
) 1

2rRK

× log
1

2r(R+Rk−RK)Q⊗rZ (zrj )

(
Q⊗rS (srj)W

⊗r
Z|U,S

(
zrj |ur(mj, kj−1), srj

)

+ E\(mj ,kj−1)

[ ∑

(m̃j ,k̃j−1)6=(mj ,kj−1)

Q⊗rS (srj)W
⊗r
Z|U,S

(
zrj |U r(m̃j, k̃j−1), srj

)
]

+ E\Φ(srj )

[∑

s̃rj

Q⊗rS (s̃rj)W
⊗r
Z|U,S

(
zrj |ur(mj, kj−1), s̃rj

)
1{kj=Φ(s̃rj )}

]

+ E\((mj ,kj−1),Φ(srj ))

[∑

s̃rj

∑

(m̃j ,k̃j−1)6=(mj ,kj−1)

Q⊗rS (s̃rj)W
⊗r
Z|U,S

(
zrj |U r(m̃j, k̃j−1), s̃rj

)
1{kj=Φ(s̃rj )}

])

≤
∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk+RK)

∑

srj

∑

ur(mj ,kj−1)

Υ⊗rUr,Sr,Zr
(
ur(mj, kj−1), srj , z

r
j

)

× log

(
Q⊗rS (srj)W

⊗r
Z|U,S

(
zrj |ur(mj, kj−1), srj

)

2r(R+Rk−RK)Q⊗rZ (zrj )
+

∑

(k̃j−1,m̃j)6=(mj ,kj−1)

Q⊗rS,Z(srj , z
r
j )

2r(R+Rk−RK)Q⊗rZ (zrj )

+
W⊗r
Z|U
(
zrj |ur(mj, kj−1)

)

2r(R+Rk)Q⊗rZ (zrj )
+ 1

)

≤
∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk+RK)

∑

srj

∑

ur(mj ,kj−1)

Υ⊗rUr,Sr,Zr
(
ur(mj, kj−1), srj , z

r
j

)

× log

(
Q⊗rS (srj)W

⊗r
Z|U,S

(
zrj |ur(mj, kj−1), srj

)

2r(R+Rk−RK)Q⊗rZ (zrj )
+

2rRKQ⊗rS,Z(srj , z
r
j )

Q⊗rZ (zrj )
+
W⊗r
Z|U
(
zrj |ur(mj, kj−1)

)

2r(R+Rk)Q⊗rZ (zrj )
+ 1

)
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, Ψ1 + Ψ2, (I.14)

where (a) follows from Jensen’s inequality and (b) holds because 1{·} ≤ 1. We define Ψ1 and

Ψ2 as

Ψ1 =
∑

kj

∑

mj

∑

kj−1

1

2r(R+Rk+RK)

∑
(
ur(mj ,kj−1),srj ,z

r
j

)
∈T (n)

ε

Υ⊗rUr,Sr,Zr
(
ur(mj, kj−1), srj , z

r
j

)

× log

(
Q⊗rS (srj)W

⊗r
Z|U,S

(
zrj |ur(mj, kj−1), srj

)

2r(R+Rk−RK)Q⊗rZ (zrj )

+
2rRKQ⊗rS,Z(srj , z

r
j )

Q⊗rZ (zrj )
+
W⊗r
Z|U
(
zrj |ur(mj, kj−1)

)

2r(R+Rk)Q⊗rZ (zrj )
+ 1

)

≤ log

(
2rRK2−r(1−ε)(H(S)+H(Z|U,S))

2r(R+Rk)2−r(1+ε)H(Z)
+

2rRK2−r(1−ε)H(S,Z)

2−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|U)

2r(R+Rk)2−r(1+ε)H(Z)
+ 1

)
(I.15)

Ψ2 =
∑

kj

∑

mj

∑

kj−1

1

2r(R+Rk+RK)

∑
(
ur(mj ,kj−1),srj ,z

r
j

)
/∈T (n)
ε

Υ⊗rUr,Sr,Zr
(
ur(mj, kj−1), srj , z

r
j

)

× log

(
Q⊗rS (srj)W

⊗r
Z|U,S

(
zrj |ur(mj, kj−1), srj

)

2r(R+Rk−RK)Q⊗rZ (zrj )

+
2rRKQ⊗rS,Z(srj , z

r
j )

Q⊗rZ (zrj )
+
W⊗r
Z|U
(
zrj |ur(mj, kj−1)

)

2r(R+Rk)Q⊗rZ (zrj )
+ 1

)

≤ 2|U ||S||Z|e−rε2µU,S,Zr log
( 3

µZ
+ 1
)
, (I.16)

where µU,S,Z = min
(u,s,z)∈(U ,S,Z)

PU,S,Z(u, s, z) and µZ = min
z∈Z

PZ(z). When r →∞ then Ψ2 → 0,

by choosing RK = H(S|Z)− ε, Ψ1 vanishes when r grows if,

R +Rk > I(U ;Z|S), (I.17a)

R +Rk > I(U ;Z). (I.17b)

Since U and S are independent, (I.17b) is redundant because of (I.17a).

Decoding and Error Probability Analysis: At the end of the block j ∈ J1, BK, using its

knowledge of the CSI srj of the current block and the key kj−1 generated from the previous
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block, the receiver finds a unique m̂j such that
(
ur(m̂j, kj−1), srj , y

r
j

)
∈ T (r)

ε . To analyze the

probability of error, we define the following error events for j ∈ J1, BK

E =
{
M̂ 6= M

}
, (I.18a)

Ej =
{
M̂j 6= Mj

}
, (I.18b)

E1,j =
{(
U r(Mj, Kj−1), Srj

)
/∈ T (r)

ε1
(QSPU)

}
, (I.18c)

E2,j =
{(
U r(Mj, Kj−1), Srj , Y

r
j

)
/∈ T (r)

ε2
(QSPUWY |U,S)

}
, (I.18d)

E3,j =
{(
U r(kj−1, m̂j), S

r
j , Y

r
j

)
∈ T (r)

ε2
, for some m̂j 6= Mj

}
, (I.18e)

where ε2 > ε1 > ε > 0. The probability of error is upper bounded as follows,

P(E) ≤ P
{⋃B

j=1
Ej
}
≤

B∑

j=1

P(Ej). (I.19)

Now we bound P(Ej) by using union bound

P(Ej) ≤ P(E1,j) + P(Ec1,j ∩ E2,j) + P(Ec2,j ∩ E3,j). (I.20)

By the law of large numbers the first and second term on RHS of (I.20) vanishes when r

grows. According to the law of large numbers and the packing lemma, the last term on RHS

of (I.20) vanishes when r grows if [85],

R < I(U ;S, Y ) = I(U ;Y |S). (I.21)

Furthermore, this scheme requires that

Rk ≤ RK = H(S|Z)− ε, (I.22)

The region in Theorem 8 is obtained by applying Fourier-Motzkin to (I.17a), (I.21), and

(I.22).

Converse Proof: We now develop an upper bound when CSI is available causally

at both of the legitimate terminals. Consider any sequence of length-n codes for a state-

dependent channel with CSI available causally at both the transmitter and the receiver
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such that P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ with limn→∞ εn = 0. Note that the converse is

consistent with the model and does not require δ to vanish.

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (3.4) as follows,

Aε ,
{
R ≥ 0 : ∃PS,U,X,Y,Z ∈ Dε : R ≤ I(U ;Y |S) + ε

}
, (I.23a)

where

Dε =





PS,U,X,Y,Z :

PS,U,X,Y,Z = QSPU1{
X=X(U,S)

}WY,Z|X,S

D (PZ‖Q0) ≤ ε

H(S|Z) ≥ I(U ;Z|S)− I(U ;Y |S)− 2ε

|U| ≤ |X |+ 1





. (I.23b)

We next show that if a rate R is achievable then R ∈ Aε for any ε > 0. For any εn > 0 and

ν > 0, we start by upper bounding nR using standard techniques,

nR = H(M)

(a)

≤ H(M |Sn)−H(M |Y n, Sn) + nεn

= I(M ;Y n|Sn) + nεn

=
n∑

i=1

I(M ;Yi|Y i−1, Sn) + nεn

=
n∑

i=1

[H(Yi|Y i−1, Sn)−H(Yi|M,Y i−1, Sn)] + nεn

(b)

≤
n∑

i=1

[H(Yi|Si)−H(Yi|Ui, Si)] + nεn

=
n∑

i=1

I(Ui;Yi|Si) + nεn
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(c)

≤ nI(Ũ ; Ỹ |S̃) + nεn

(d)

≤ nI(Ũ ; Ỹ |S̃) + nε

(e)
= nI(U ;Y |S) + nε (I.24)

where

(a) follows from Fano’s inequality and since M is independent of Sn;

(b) holds because conditioning does not increase entropy and Ui = (M,Y i−1, Sn∼i);

(c) follows from the concavity of mutual information, with the resulting random variables

Ũ , S̃, and Ỹ having the following distributions

P̃U,S,X(u, s, x) ,
1

n

n∑

i=1

PUi,Si,Xi(u, s, x), (I.25a)

P̃U,S,X,Y,Z(u, s, x, y, z) , P̃U,S,X(u, s, x)WY,Z|X,S(y, z|x, s); (I.25b)

(d) follows by defining ε , max{εn, ν}, where we choose n large enough such that ν ≥ δ
n
;

(e) follows by defining U = Ũ , Y = Ỹ , and S = S̃.

We now have,

nR
(a)

≥ nI(X̃, S̃; Z̃)− nH(S̃)− ε
(b)

≥ nI(Ũ , S̃; Z̃)− nH(S̃)− ε
(c)
= I(U, S;Z)−H(S)− ε, (I.26)

where

(a) follows from the exact same steps as in (H.15);

(b) follows from the Markov chain U − (X,S) − Z and from the definition of random

variables Ũ , X̃, S̃, Ỹ , and Z̃ in (I.25);
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(c) follows by defining U = Ũ , Z = Z̃, and S = S̃.

Rewriting the bound in (I.26) by using the basic property in (H.8) leads to

R ≥ I(U ;Z|S)−H(S|Z)− ε. (I.27)

To show that D(PZ ||Q0) ≤ ε, note that for n large enough,

D(PZ ||Q0) = D(PZ̃ ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (I.28)

Combining (I.24) and (I.27) shows that ∀εn, ν > 0, R ≤ max{a : a ∈ Aε}. Therefore,

CC-TR = max

{
a : a ∈

⋂

ε>0

Aε
}
. (I.29)

Continuity at Zero: Continuity at zero for Aε is established by substituting min{I(U ;Y ) −

I(U ;S), I(U, V ;Y )−I(U ;S|V )} with I(U ;Y |S) and I(V ;Z)−I(V ;S) with I(U ;Z|S)−H(S|Z)

in the continuity at zero proof in Appendix N and following the same arguments.
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APPENDIX J

PROOF OF THEOREM 9

Achievability Proof: We adopt a block-Markov encoding scheme in which B independent

messages are transmitted over B channel blocks each of length r, such that n = rB. The

warden’s observation is Zn = (Zr
1 , . . . , Z

r
B), the target output distribution is Q⊗n0 , and Equa-

tion (I.2), describing the distance between the two distributions, continues to hold. The

random code generation is as follows.

Fix PX and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation for Keys: For each block j ∈ J1, BK, create a function Φ : Srj 7→

J1, 2rRKK through random binning by choosing the value of Φ(srj) independently and uni-

formly at random for every srj ∈ Sr. The key kj = Φ(srj) obtained in the block j ∈ J1, BK
from the state sequence srj is used to assist the encoder in the next block.

Codebook Generation for Messages: For each block j ∈ J1, BK, let Cr ,

{Xr(mj, kj−1)}(mj ,kj−1)∈M×K, where M , J1, 2rRK and K , J1, 2rRkK, be a random code-

book consisting of independent random sequences each generated according to P⊗rX . We

denote a realization of Cr by Cr , {xr(mj, kj−1)}(mj ,kj−1)∈M×K.

Encoding: For the first block, we assume that the transmitter and the receiver have access

to a shared secret key k0, in this block to transmit m1 the encoder computes xr(m1, k0) and

transmits it over the channel. At the end of the first block, the encoder generates a key from

CSI sr1 to be used in Block 2.

For block j ∈ J2, BK, to send the message mj according to the generated key kj−1 from

the previous block, the encoder computes xr(mj, kj−1) and transmits it over the channel.

Also, at the end of the block j ∈ J2, BK, the encoder generates a key from CSI srj to be used

in the next block.

Define

Υ
(Cr)
Mj ,Kj−1,Xr,Srj ,Z

r
j ,Kj

(mj, kj−1, x̃
r, srj , z

r
j , kj) , 2−r(R+Rk)1{x̃r=xr(mj ,kj−1)}Q

⊗r
S (srj)
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Block j Block j + 1

Mj Xr
j Zr

j

Sr
j Kj

Y r
j

Kj−1

Mj+1 Xr
j+1 Zr

j+1

Sr
j+1

Y r
j+1

Figure J.1. Functional dependence graph for the block-Markov encoding scheme

×W⊗r
Z|X,S

(
zrj |x̃r, srj

)
1{kj=Φ(s̃rj )}. (J.1)

For a fixed codebook Cr, the induced joint distribution by our code design (i.e. P (Cr)) satisfies

D
(
P

(Cr)
Mj ,Kj−1,Xr,Srj ,Z

r
j ,Kj
||Υ(Cr)

Mj ,Kj−1,Xr,Srj ,Z
r
j ,Kj

)
≤ ε. (J.2)

This intermediate distribution Υ(Cr) approximates the true distribution P (Cr) and will be

used in the sequel for bounding purposes. Expression (J.2) holds because the main difference

between P (Cr) and Υ(Cr) is that the key Kj−1 is assumed to be uniformly distributed in Υ(Cr),

which is made (arbitrarily) nearly uniform in P (Cr) with appropriate control of rate as in

(J.10).

Covert Analysis: We now show that this coding scheme guarantees that

ECn [D(PZn|Cn||Q⊗nZ )] −−→
n→∞

0, where Cn is the set of all the codebooks for all blocks, and

QZ(·) =
∑

s∈S

∑

x∈X
QS(s)PX(x)WZ|X,S(·|x, s). (J.3)

Then we choose PX such that it satisfies QZ = Q0. Similar to (I.10), by using the functional

dependence graph depicted in Fig. J.1,

D(PZn|Cn||Q⊗nZ ) ≤ 2
B∑

j=1

D(PZrj ,Kj |Cr ||Q
⊗r
Z QKj). (J.4)
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We now proceed to bound the RHS of (J.4). First, consider the following marginal from

(J.1),

ΥZrj ,Kj |Cr(z
r
j , kj) =

∑

mj

∑

kj−1

∑

srj

1

2r(R+Rk)
Q⊗rS (srj)W

⊗r
Z|X,S

(
zrj |Xr(mj, kj−1), srj

)
1{kj=Φ(srj )}.

(J.5)

To bound the RHS of (J.4) by using Lemma 1 and the triangle inequality we have,

ECr ||PZrj ,Kj |Cr −Q
⊗r
Z QKj ||1 ≤ ECr ||PZrj ,Kj |Cr −ΥZrj ,Kj |Cr ||1 + ECr ||ΥZrj ,Kj |Cr −Q

⊗r
Z QKj ||1.

(J.6)

From Lemma 1 and (J.2) the first term on the RHS of (J.6) vanishes as r grows; to bound

the second term by using Lemma 1 we have,

ECr [D(ΥZrj ,Kj |Cr ||Q
⊗r
Z QKj)] = ECr

[ ∑

(zrj ,kj)

ΥZrj ,Kj |Cr(z
r
j , kj) log

(
ΥZrj ,Kj |Cr(z

r
j , kj)

Q⊗rZ (zrj )QKj(kj)

)]

= ECr

[ ∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk)

∑

srj

Q⊗rS (srj)W
⊗r
Z|X,S

(
zrj |Xr(mj, kj−1), srj

)
1{kj=Φ(srj )}

× log

(∑
m̃j

∑
k̃j−1

∑
s̃rj

Q⊗rS (s̃rj)W
⊗r
Z|X,S

(
zrj |Xr(m̃j, k̃j−1), s̃rj

)
1{kj=Φ(s̃rj )}

2r(R+Rk−RK)Q⊗rZ (zrj )

)]

(a)

≤
∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk)

∑

srj

∑

xr(mj ,kj−1)

Υ⊗rXr,Sr,Zr

(
xr(mj, kj−1), srj , z

r
j

)
× EΦ(srj )

[
1{kj=Φ(srj )}

]

× logE\((mj ,kj−1),Φ(srj ))

[∑
m̃j

∑
k̃j−1

∑
s̃rj

Q⊗rS (s̃rj)W
⊗r
Z|X,S

(
zrj |Xr(m̃j, k̃j−1), s̃rj

)
1{kj=Φ(s̃rj )}

2r(R+Rk−RK)Q⊗rZ (zrj )

]

(b)

≤
∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk)

∑

srj

∑

xr(mj ,kj−1)

Υ⊗rXr,Sr,Zr

(
xr(mj, kj−1), srj , z

r
j

)
× 1

2rRK

× log
1

2r(R+Rk−RK)Q⊗rZ (zrj )

(
Q⊗rS (srj)W

⊗r
Z|X,S

(
zrj |xr(mj, kj−1), srj

)

+ E\(mj ,kj−1)

[ ∑

(m̃j ,k̃j−1)6=(mj ,kj−1)

Q⊗rS (srj)W
⊗r
Z|X,S

(
zrj |Xr(m̃j, k̃j−1), srj

)
]
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+ E\Φ(srj )

[ ∑

s̃rj 6=srj

Q⊗rS (s̃rj)×W⊗r
Z|X,S

(
zrj |xr(mj, kj−1), s̃rj

)
1{kj=Φ(s̃rj )}

]

+ E\((mj ,kj−1),Φ(srj ))

[ ∑

s̃rj 6=srj

∑

(m̃j ,k̃j−1)6=(mj ,kj−1)

Q⊗rS (s̃rj)W
⊗r
Z|X,S

(
zrj |Xr(m̃j, k̃j−1), s̃rj

)
1{kj=Φ(s̃rj )}

])

(c)

≤
∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk+RK)

∑

srj

∑

xr(mj ,kj−1)

Υ⊗rXr,Sr,Zr

(
xr(mj, kj−1), srj , z

r
j

)

× log

(
Q⊗rS (srj)W

⊗r
Z|X,S

(
zrj |xr(mj, kj−1), srj

)

2r(R+Rk−RK)Q⊗rZ (zrj )
+

∑

(m̃j ,k̃j−1)6=(mj ,kj−1)

Q⊗rS,Z(srj , z
r
j )

2r(R+Rk−RK)Q⊗rZ (zrj )

+
∑

s̃rj 6=srj

Q⊗rS (s̃rj)W
⊗r
Z|X,S

(
zrj |xr(mj, kj−1), s̃rj

)

2r(R+Rk)Q⊗rZ (zrj )
+ 1

)

≤
∑

(zrj ,kj)

∑

mj

∑

kj−1

1

2r(R+Rk+RK)

∑

srj

∑

xr(mj ,kj−1)

Υ⊗rXr,Sr,Zr

(
xr(mj, kj−1), srj , z

r
j

)

× log

(
Q⊗rS (srj)W

⊗r
Z|X,S

(
zrj |xr(mj, kj−1), srj

)

2r(R+Rk−RK)Q⊗rZ (zrj )
+

2rRKQ⊗rS,Z(srj , z
r
j )

Q⊗rZ (zrj )
+
W⊗r
Z|X
(
zrj |xr(mj, kj−1)

)

2r(R+Rk)Q⊗rZ (zrj )
+ 1

)

, Ψ1 + Ψ2, (J.7)

where (a) follows from Jensen’s inequality, (b) and (c) are because 1{·} ≤ 1, and the last

term in the RHS of (b) is smaller than 1. We define Ψ1 and Ψ2 as

Ψ1 =
∑

kj

∑

kj−1

∑

mj

1

2r(R+Rk+RK)

∑
(
xr(mj ,kj−1),srj ,z

r
j

)
∈T (n)

ε

Υ⊗rXr,Sr,Zr

(
xr(mj, kj−1), srj , z

r
j

)

× log

(
Q⊗rS (srj)W

⊗r
Z|X,S

(
zrj |xr(mj, kj−1), srj

)

2r(R+Rk−RK)Q⊗rZ (zrj )

+
2rRKQ⊗rS,Z(srj , z

r
j )

Q⊗rZ (zrj )
+
W⊗r
Z|X
(
zrj |xr(mj, kj−1)

)

2r(R+Rk)Q⊗rZ (zrj )
+ 1

)

≤ log

(
2rRK2−r(1−ε)

(
H(S)+H(Z|X,S)

)

2r(R+Rk)2−r(1+ε)H(Z)
+

2rRK2−r(1−ε)H(S,Z)

2−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|X)

2r(R+Rk)2−r(1+ε)H(Z)
+ 1

)
(J.8)

Ψ2 =
∑

kj

∑

kj−1

∑

mj

1

2r(R+Rk+RK)

∑
(
xr(mj ,kj−1),srj ,z

r
j

)
/∈T (n)
ε

Υ⊗rXr,Sr,Zr

(
xr(mj, kj−1), srj , z

r
j

)
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× log

(
Q⊗rS (srj)W

⊗r
Z|X,S

(
zrj |xr(mj, kj−1), srj

)

2r(R+Rk−RK)Q⊗rZ (zrj )

+
2rRKQ⊗rS,Z(srj , z

r
j )

Q⊗rZ (zrj )
+
W⊗r
Z|X
(
zrj |xr(mj, kj−1)

)

2r(R+Rk)Q⊗rZ (zrj )
+ 1

)

≤ 2|X||S||Z|e−rε2µX,S,Zr log
( 3

µZ
+ 1
)
, (J.9)

where µX,S,Z = min
(x,s,z)∈(X ,S,Z)

PX,S,Z(x, s, z) and µZ = min
z∈Z

PZ(z). When r →∞ then Ψ2 → 0,

by choosing RK = H(S|Z)− ε, Ψ1 vanishes when r grows if,

R +Rk > I(X;Z|S), (J.10a)

R +Rk > I(X;Z). (J.10b)

Since X and S are independent, (J.10b) is redundant because of (J.10a).

Decoding and Error Probability Analysis: At the end of the block j ∈ J1, BK, using its

knowledge of the CSI srj of the current block and the key kj−1 generated from the previous

block, the receiver finds a unique m̂j such that
(
ur(m̂j, kj−1), srj , y

r
j

)
∈ T (r)

ε . To analyze the

probability of error, we define the following error events for j ∈ J1, BK,

E =
{
M̂ 6= M

}
, (J.11a)

Ej =
{
M̂j 6= Mj

}
, (J.11b)

E1,j =
{(
Xr(Mj, Kj−1), Srj

)
/∈ T (r)

ε1
(QSPX)

}
, (J.11c)

E2,j =
{(
Xr(Mj, Kj−1), Srj , Y

r
j

)
/∈ T (r)

ε2
(QSPXWY |X,S)

}
, (J.11d)

E3,j =
{(
Xr(kj−1, m̂j), S

r
j , Y

r
j

)
∈ T (r)

ε2
, for some m̂j 6= Mj

}
, (J.11e)

where ε2 > ε1 > ε > 0. The probability of error is upper bounded as follows,

P(E) ≤ P
{⋃B

j=1
Ej
}
≤

B∑

j=1

P(Ej). (J.12)

Now we bound P(Ej) by using union bound

P(Ej) ≤ P(E1,j) + P(Ec1,j ∩ E2,j) + P(Ec2,j ∩ E3,j). (J.13)

163



By the law of large numbers the first and second term on RHS of (J.13) vanishes when r

grows. According to the law of large numbers and the packing lemma, the last term on RHS

of (J.13) vanishes when r grows if [85],

R < I(X;S, Y ) = I(X;Y |S). (J.14)

Furthermore, this scheme requires that,

Rk ≤ RK = H(S|Z)− ε. (J.15)

The region in Theorem 9 is obtained by applying Fourier-Motzkin to (J.10a), (J.14), and

(J.15).

Remark 32. In the achievability proof of Theorem 8 and Theorem 9 we transmit B messages

over B blocks. We assume that there exists a shared secret key between the transmitter and the

receiver that is used in the first block to bootstrap the covert communication. Consequently,

the shared secret key rate is negligible. However, to eliminate the need for this secret key,

similar to the block Markov encoding schemes in [89, 64] we can transmit B − 1 messages

over B blocks and remove the decodability condition of the message of the first block, this

results in a slight rate loss in the first block, which becomes asymptotically negligible as the

number of blocks B →∞.

Converse Proof: To establish the upper bound, consider any sequence of length-n codes

for a state-dependent channel with CSI available strictly causally at both the transmitter

and the receiver, such that P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ with limn→∞ εn = 0. Note that

the converse is consistent with the model and does not require δ to vanish.

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (3.6) as follows,

Aε ,
{
R ≥ 0 : ∃PS,X,Y,Z ∈ Dε : R ≤ I(X;Y |S) + ε

}
, (J.16a)
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where

Dε =





PS,X,Y,Z :

PS,X,Y,Z = QSPXWY,Z|X,S

D (PZ‖Q0) ≤ ε

H(S|Z) ≥ I(X;Z|S)− I(X;Y |S)− 2ε





. (J.16b)

We next show that if a rate R is achievable then R ∈ Aε for any ε > 0. For any εn > 0 and

ν > 0, we start by upper bounding nR using standard techniques.

nR = H(M)

(a)

≤ H(M |Sn)−H(M |Y n, Sn) + nεn

= I(M ;Y n|Sn) + nεn

=
n∑

i=1

I(M ;Yi|Y i−1, Sn) + nεn

≤
n∑

i=1

[H(Yi|Y i−1, Sn)−H(Yi|Y i−1, Sn, Xi,M)] + nεn

(b)

≤
n∑

i=1

I(Xi;Yi|Si) + nεn

(c)

≤ nI(X̃; Ỹ |S̃) + nεn

(d)

≤ nI(X̃; Ỹ |S̃) + nε

(e)
= nI(X;Y |S) + nε, (J.17)

where

(a) follows from Fano’s inequality and since M is independent of Sn;

(b) holds because conditioning does not increase entropy and (M,Y i−1, Sn∼i, X
n
∼i) −

(Xi, Si)− Yi forms a Markov chain;
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(c) follows from concavity of mutual information, with respect to the input distribution,

with the random variables X̃, S̃, Ỹ , and Z̃ having the following distributions

P̃X,S(x, s) ,
1

n

n∑

i=1

PXi,Si(x, s), (J.18a)

P̃X,S,Y,Z(x, s, y, z) , P̃X,S(x, s)WY,Z|X,S(y, z|x, s); (J.18b)

(d) follows by defining ε , max{εn, ν}, where we choose n large enough such that ν ≥ δ
n
;

(e) follows by defining U = Ũ , Y = Ỹ , and S = S̃.

By following the same steps as in (H.15) we also have,

nR ≥ nI(X̃, S̃; Z̃)− nH(S̃)− ε, (J.19)

where the random variables X̃, S̃, Ỹ , and Z̃ have been defined in (J.18). Substituting (H.8)

into (J.19) leads to

R ≥ I(X̃; Z̃|S̃)−H(S̃|Z̃)− ε

= I(X;Z|S)−H(S|Z)− ε, (J.20)

where the last equality follows by defining U = Ũ , Z = Z̃, and S = S̃. To show that

D(PZ ||Q0) ≤ ε, note that for n large enough,

D(PZ ||Q0) = D(PZ̃ ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (J.21)

Combining (J.17) and (J.20) shows that ∀εn, ν > 0, R ≤ max{a : a ∈ Aε}. Therefore,

CSC-TR = max

{
a : a ∈

⋂

ε>0

Aε
}
. (J.22)

Continuity at Zero: One can prove the continuity at zero of Aε by substituting

min{I(U ;Y ) − I(U ;S), I(U, V ;Y ) − I(U ;S|V )} with I(X;Y |S) and I(V ;Z) − I(V ;S) with

I(X;Z|S) − H(S|Z) in the continuity at zero proof in Appendix N and following the exact

same arguments.
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APPENDIX K

PROOF OF THEOREM 10

We adopt a block-Markov encoding scheme in which B independent messages are transmitted

over B channel blocks each of length r, such that n = rB. The warden’s observation is

Zn = (Zr
1 , . . . , Z

r
B), the distribution induced at the output of the warden is PZn , the target

output distribution is Q⊗n0 , and Equation (I.2), describing the distance between the two

distributions, continues to hold. The random code generation is as follows.

Fix PU |S(u|s), PV |S(v|s), x(u, s), and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation for Keys: For each block j ∈ J1, BK, let C
(r)
1 ,

{
V r(aj)

}
aj∈A, where

A , J1, 2rR̃K, be a random codebook consisting of independent random sequences each

generated according to P⊗rV , where PV =
∑

s∈S QS(s)PV |S(v|s). We denote a realization

of C
(r)
1 by C(r)

1 ,
{
vr(aj)

}
aj∈A. Partition the set of indices aj ∈ J1, 2rR̃K into bins B(t),

t ∈ J1, 2rRT K by using function ϕ : V r(aj) 7→ J1, 2rRT K through random binning by choosing

the value of ϕ(vr(aj)) independently and uniformly at random for every vr(aj) ∈ Vr. For

each block j ∈ J1, BK, create a function Φ : V r(aj) 7→ J1, 2rRKK through random binning by

choosing the value of Φ(vr(aj)) independently and uniformly at random for every vr(aj) ∈ Vr.

The key kj = Φ(vr(aj)) obtained in block j ∈ J1, BK from the description of the CSI sequence

vr(aj) is used to assist the encoder in block j + 2.

Codebook Generation for Messages: For each block j ∈ J1, BK, let C
(r)
2 ,

{
U r(mj, tj−1, kj−2, `j)

}
(mj ,tj−1,kj−2,`j)∈M×T ×K×L, where M , J1, 2rRK, T , J1, 2rRtK, K ,

J1, 2rRkK, and L , J1, 2rR′K, be a random codebook consisting of independent random

sequences each generated according to P⊗rU . We denote a realization of C
(r)
2 by C(r)

2 ,
{
ur(mj, tj−1, kj−2, `j)

}
(mj ,tj−1,kj−2,`j)∈M×T ×K×L. Let, Cr =

{
C

(r)
1 , C

(r)
2

}
and Cr =

{
C(r)

1 , C(r)
2

}
.

The indices (mj, tj−1, kj−2, `j) can be viewed as a three layer binning. We define an ideal

PMF for codebook Cr, as an approximate distribution to facilitate the analysis

Γ
(Cr)
Mj ,Tj−1,Kj−2,Lj ,Aj ,Ur,V r,Srj ,Z

r
j ,Kj−1,Tj ,Kj

(mj, tj−1, kj−2, `j, aj, ũ
r, ṽrj , s

r
j , z

r
j , kj−1, tj, kj)
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Likelihood
Encoder

. . .

mj = 1 mj = 2 mj = 2rR

Each bin contains 2rR
′
sequences.

C(r)
2 : generated according to

∏
PU (·)

(
ur(1, 1, 1, ℓj), v

r(aj)
)
: (ℓj , aj) is choosen

by likelihood encoder

kj−2 = tj−1 = 1

Sr
j

•
•• • •◦ • ••• •

• ••• •

Mj ∼Unif[1 : 2rR]

Tj−1 ∼Unif[1 : 2rRt ]

Kj−2 ∼Unif[1 : 2rRk ]

Qs

(
Ur(Kj−2, Tj−1,Mj , Lj), V

r(Aj)
)

C(r)
1 : generated according to

∏
PV (·)

Contains 2rR̃ sequences

•
• • •

• • •
•◦ • •

• • •
•

Figure K.1. Proposed coding scheme for the dual use of CSI

= 2−r(R+Rt+Rk+R′+R̃)1{ũr=ur(mj ,tj−1,kj−2,`j)}1{ṽr=vr(aj)}P
⊗r
S|U,V (srj |ũr, ṽr)

×W⊗r
Z|U,S(zrj |ũr, srj)2−rRk1{tj=σ(ṽr)}1{kj=Φ(ṽr)}, (K.1)

where WZ|U,S is the marginal distribution WZ|U,S =
∑

x∈X 1{x=x(u,s)}WZ|X,S and PS|U,V is

defined as follows

PS|U,V (s|u, v) ,
PS,U,V (s, u, v)

PU,V (u, v)
=

QS(s)PU |S(u|s)PV |S(v|s)∑
s∈S QS(s)PU |S(u|s)PV |S(v|s) . (K.2)

Encoding: We assume that the transmitter and the receiver have access to shared secret

keys k−1 and k0 for the first two blocks, but after the first two blocks they use the key that

they generate from the CSI.

In the first block, to send the message m1 according to k−1, the encoder generates the

index t0 uniformly at random and then generates the indices `1 and a1 according to the

following distribution with j = 1,

f(`j, aj|srj ,mj, tj−1, kj−2) =
P⊗rS|U,V

(
srj |ur(mj, tj−1, kj−2, `j), v

r(aj)
)

∑
`′j∈J1,2rR′K

∑
a′j∈J1,2rR̃K

P⊗rS|U,V
(
srj |ur(mj, tj−1, kj−2, `′j), v

r(a′j)
) ,

(K.3)
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where PS|U,V is defined in (K.2). Based on these indices, the encoder computes

ur(m1, t0, k−1, `1) and vr(a1) and transmits codeword xr, where xi = x(ui(m1, t0, k−1, `1), si).

Note that, the index t0 does not convey any useful information. Simultaneously, it uses the

description of the CSI vr(a1) to generate a reconciliation index t1 and a key k1 to be used in

the second and the third blocks, respectively.

In the second block, to send the message m2 and reconciliation index t1 according to k0,

the encoder generates the indices `2 and a2 according to the likelihood encoder described in

(K.3) with j = 2. Based on these indices, the encoder computes ur(m2, t1, k0, `2) and vr(a2)

and transmits codeword xr, where xi = x(ui(m2, t1, k0, `1), si). Simultaneously, it uses the

description of the CSI vr(a2) to generate a reconciliation index t2 and a key k2 to be used in

the third and the fourth block, respectively.

In block j ∈ J3, BK, to send the message mj and the reconciliation index tj−1, generated in

the previous block, according to the key kj−2, generated in the block j−2, and the CSI of the

current block, the encoder generates indices `j and aj from the bin (mj, tj−1, kj−2) according

to the likelihood encoder described in (K.3). The encoder then transmits the codeword xr,

where each coordinate of the transmitted signal is a function of the CSI, as well as the

corresponding sample of the transmitter’s codeword ui, i.e., xi = x(ui(mj, tj−1, kj−2, `j), si).

Simultaneously, the encoder uses the description of the CSI vr(aj) to generate a reconciliation

index tj and a key kj to be used in the block j + 1 and the block j + 2, respectively. The

encoding scheme in block j ∈ J3, BK is depicted in Fig. K.1.

Define

Υ
(Cr)
Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj ,Kj−1,Tj ,Kj
(mj, tj−1, kj−2, s

r
j , `j, aj, ũ

r, ṽr, zrj , kj−1, tj, kj)

, 2−r(R+Rt+Rk)Q⊗rS (srj)f(`j, aj|srj ,mj, tj−1, kj−2)1{ũr=ur(mj ,tj−1,kj−2,`j)}1{ṽr=vr(aj)}

×W⊗r
Z|U,S(zrj |ũr, srj)2−rRk1{tj=σ(ṽr)}1{kj=Φ(ṽr)}. (K.4)

For a given codebook Cr, the induced joint distribution over the codebook (i.e. P (Cr)) satisfies

D
(
P

(Cr)
Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj ,Kj−1,Tj ,Kj
||Υ(Cr)

Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U
r,V r,Zrj ,Kj−1,Tj ,Kj

)
≤ ε. (K.5)
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This intermediate distribution Υ(Cr) approximates the true distribution P (Cr) and will be used

in the sequel for bounding purposes. Expression (K.5) holds because the main difference

between P (Cr) and Υ(Cr) is that the keys Kj−2, Kj−1 and the reconciliation index Tj−1 are

assumed to be uniformly distributed in Υ(Cr), which are made (arbitrarily) nearly uniform

in P (Cr) with appropriate control of rate as in (K.14) and (K.20).

Covert Analysis: We now show ECn [D(PZn|Cn||Q⊗nZ )] −−→
n→∞

0, where Cn is the set of all

the codebooks for all blocks and,

QZ(·) =
∑

u∈U

∑

v∈V

∑

s∈S

∑

x∈X
PU(u)PV (v)PS|U,V (s|u, v)1{

X=X(u,s)
}WZ|X,S(·|x, s), (K.6)

such that
∑

u∈U
∑

v∈V PU(u)PV (v)PS|U,V (·|u, v) = QS(·). Then we choose PU , PV , PS|U,V ,

and x(u, s) such that it satisfies QZ = Q0. For every j ∈ J2, BK,

I(Zr
j ;Z

B,r
j+1) ≤ I(Zr

j ;Kj−1, Tj, Kj, Z
B,r
j+1)

(a)
= I(Zr

j ;Kj−1, Tj, Kj), (K.7)

where (a) holds because Zr
j − (Kj−1, Tj, Kj) − ZB,r

j+1 forms a Markov chain, as seen in the

functional dependence graph depicted in Fig. K.2. Also,

I(Zr
j ;Kj−1, Tj, Kj) = D(P

(Cr)
Zrj ,Kj−1,Tj ,Kj

||PZrjPKj−1,Tj ,Kj)

(b)

≤D(P
(Cr)
Zrj ,Kj−1,Tj ,Kj

||Q⊗rZ QKj−1
QTjQKj), (K.8)

where QKj−1
QKjQTj is the uniform distribution over J1, 2rRkK× J1, 2rRKK× J1, 2rRT K and (b)

follows from

D(P
(Cr)
Zrj ,Kj−1,Tj ,Kj

||P (Cr)
Zrj

P
(Cr)
Kj−1,Tj ,Kj

) = D(P
(Cr)
Zrj ,Kj−1,Tj ,Kj

||Q⊗rZ QKj−1
QTjQKj)

− D(P
(Cr)
Zrj
||Q⊗rZ )− D(P

(Cr)
Kj−1,Tj ,Kj

||QKj−1
QTjQKj).

(K.9)
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Figure K.2. Functional dependence graph for the block-Markov encoding scheme

Therefore, from the expansion in (I.2), by substituting Q0 with QZ , and also from (K.8) and

(K.9),

D(P
(Cr)
Zn ||Q⊗nZ ) ≤ 2

B∑

j=1

D(P
(Cr)
Zrj ,Kj−1,Tj ,Kj

||Q⊗rZ QKj−1
QTjQKj). (K.10)

To bound the RHS of (K.10) by using Lemma 1 and the triangle inequality we have,

ECr ||PZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1 ≤ ECr ||PZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj |Cr ||1

+ ECr ||ΓZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1

≤ ECr ||PZrj ,Kj−1,Tj ,Kj |Cr −ΥZrj ,Kj−1,Tj ,Kj |Cr ||1 + ECr ||ΥZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj |Cr ||1

+ ECr ||ΓZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1. (K.11)

From (K.5) and the monotonicity of KL-divergence the first term on the RHS of (K.11)

vanishes when r grows. To bound the second term on the RHS of (K.11) for a fixed codebook

Cr, we have,

Γ
(Cr)
Mj ,Tj−1,Kj−2

= 2−r(R+Rt+Rk) = Υ
(Cr)
Mj ,Tj−1,Kj−2

, (K.12a)

Γ
(Cr)
Lj ,Aj |Mj ,Tj−1,Kj−2,Srj

= f(`j, aj|srj ,mj, tj−1, kj−2) = Υ
(Cr)
Lj ,Aj |Mj ,Tj−1,Kj−2,Srj

,

(K.12b)

Γ
(Cr)
Ur|Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj

= 1{ũr=ur(mj ,tj−1,kj−2,`j)} = Υ
(Cr)
Ur|Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj

,

(K.12c)
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Γ
(Cr)
V r|Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r = 1{ṽr=vr(aj)} = Υ
(Cr)
V r|Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r , (K.12d)

Γ
(Cr)
Zrj |Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r = W⊗r
Z|U,S = Υ

(Cr)
Zrj |Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r , (K.12e)

Γ
(Cr)
Kj−1|Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj
= 2−rRk = Υ

(Cr)
Kj−1|Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj
, (K.12f)

Γ
(Cr)
Tj |Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj ,Kj−1
= 1{tj=σ(vr)} = Υ

(Cr)
Tj |Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj ,Kj−1
,

(K.12g)

Γ
(Cr)
Kj |Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj ,Kj−1,Tj
= 1{kj=Φ(vr)} = Υ

(Cr)
Kj |Mj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj ,Kj−1,Tj
,

(K.12h)

where (K.12b) follows from (K.3). Hence,

ECr ||ΥZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj |Cr ||1

≤ ECr ||ΥMj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U
r,V r,Zrj ,Kj−1,Tj ,Kj |Cr − ΓMj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U

r,V r,Zrj ,Kj−1,Tj ,Kj |Cr ||1
(a)
= ECr ||ΥMj ,Tj−1,Kj−2,Srj |Cr − ΓMj ,Tj−1,Kj−2,Srj |Cr ||1
(b)
= ECr ||Q⊗rS − ΓSrj |Mj=1,Tj−1=1,Kj−2=1,Cr ||1, (K.13)

where (a) follows from (K.12b)-(K.12h) and (b) follows from the symmetry of the code-

book construction with respect to Mj, Tj−1, and Kj−2 and (K.12a). Based on [90] or [23,

Theorem 2] the RHS of (K.13) vanishes if

R′ > I(U ;S), (K.14a)

R̃ > I(V ;S), (K.14b)

R′ + R̃ > I(U, V ;S). (K.14c)

We now proceed to bound the third term on the RHS of (K.11). First, consider the following

marginal from (K.1),

ΓZrj ,Kj−1,Tj ,Kj |Cr(z
r
j , kj−1, tj, kj) =

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

∑

srj

1

2r(R+Rt+2Rk+R′+R̃)
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× P⊗rS|U,V
(
srj |U r(mj, tj−1, kj−2, `j), V

r(aj)
)
W⊗r
Z|U,S

(
zrj |U r(mj, tj−1, kj−2, `j), s

r
j

)

× 1{tj=σ(V r(aj))}1{kj=Φ(V r(aj))} (K.15)

=
∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

1

2r(R+Rt+2Rk+R′+R̃)
W⊗r
Z|U,V

(
zrj |U r(mj, tj−1, kj−2, `j), V

r(aj)
)

× 1{tj=σ(V r(aj))}1{kj=Φ(V r(aj))}, (K.16)

where WZ|U,V (z|u, v) =
∑

s∈S PS|U,V (s|u, v)WZ|U,S(z|u, s). To bound the third term

on the RHS of (K.11) by using Pinsker’s inequality, it is sufficient to bound

ECr [D(ΓZrj ,Kj−1,Tj ,Kj |Cr ||Q⊗rZ QKj−1
QTjQKj)] as follows,

ECr [D(ΓZrj ,Kj−1,Tj ,Kj |Cr ||Q⊗rZ QKj−1
QTjQKj)]

= ECr
[ ∑

(zrj ,kj−1,tj ,kj)

ΓZrj ,Kj−1,Tj ,Kj |Cr(z
r
j , kj−1, tj, kj) log

( ΓZrj ,Kj−1,Tj ,Kj |Cr(z
r
j , kj−1, tj, kj)

Q⊗rZ (zrj )QKj−1
(kj−1)QTj(tj)QKj(kj)

)]

= ECr

[ ∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

W⊗r
Z|U,V

(
zrj |U r(mj, tj−1, kj−2, `j), V

r(aj)
)

2r(R+Rt+2Rk+R′+R̃)

× 1{tj=σ(V r(aj))}1{kj=Φ(V r(aj))}

× log

(∑
m̃j

∑
t̃j−1

∑
k̃j−2

∑
˜̀
j

∑
ãj

W⊗r
Z|U,V

(
zrj |U r(m̃j, t̃j−1, k̃j−2, ˜̀

j), V
r(ãj)

)
1{tj=σ(V r(ãj))}1{kj=Φ(V r(ãj))}

2r(R+Rt+Rk+R′+R̃−RT−RK)Q⊗rZ (zrj )

)]

(a)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

1

2r(R+Rt+2Rk+R′+R̃)

×
∑

(ur,vr)

Γ⊗rUr,V r,Zr
(
ur(mj, tj−1, kj−2, `j), v

r(aj), z
r
j

)

× Eσ(vr(aj))

[
1{tj=σ(vr(aj))}

]
× EΦ(vr(aj))

[
1{kj=Φ(vr(aj))}

]

× logE\(mj ,tj−1,kj−2,`j ,aj),
\(σ(vr(aj)),Φ(vr(aj)))

[
1

2r(R+Rt+Rk+R′+R̃−RT−RK)Q⊗rZ (zrj )

×
∑

m̃j

∑

t̃j−1

∑

k̃j−2

∑

˜̀
j

∑

ãj

W⊗r
Z|U,V

(
zrj |U r(, m̃j, t̃j−1, k̃j−2, ˜̀

j), V
r(ãj)

)
1{tj=σ(V r(ãj))}1{kj=Φ(V r(ãj))}

]

(b)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

1

2r(R+Rt+2Rk+R′+R̃+RT+RK)
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×
∑

(ur,vr)

Γ⊗rUr,V r,Zr
(
ur(mj, tj−1, kj−2, `j), v

r(aj), z
r
j

)

× log
1

2r(R+Rt+Rk+R′+R̃−RT−RK)Q⊗rZ (zrj )

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2, `j), v

r(aj)
)

+ E\(mj ,tj−1,kj−2,`j)

[ ∑

(m̃j ,t̃j−1,k̃j−2,˜̀j)6=(mj ,tj−1,kj−2,`j)

W⊗r
Z|U,V

(
zrj |U r(m̃j, t̃j−1, k̃j−2, ˜̀

j), v
r(aj)

)
]

+ E\(aj ,σ(vr(aj)),Φ(vr(aj)))

[ ∑

ãj 6=aj
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2, `j), V

r(ãj)
)

× 1{tj=σ(V r(ãj))}1{kj=Φ(V r(ãj))}

]

+ E\(mj ,tj−1,kj−2,`j ,aj),
\(σ(vr(aj)),Φ(vr(aj)))

[ ∑

(m̃j ,t̃j−1,k̃j−2,˜̀j)6=(mj ,tj−1,kj−2,`j)

∑

ãj 6=aj
W⊗r
Z|U,V

(
zrj |U r(m̃j, t̃j−1, k̃j−2, ˜̀

j), V
r(ãj)

)

× 1{tj=σ(V r(ãj))}1{kj=Φ(V r(ãj))}

])

(c)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

1

2r(R+Rt+2Rk+R′+R̃+RT+RK)

×
∑

(ur,vr)

Γ⊗rUr,V r,Zr
(
ur(mj, tj−1, kj−2, `j), v

r(aj), z
r
j

)

× log

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2, `j), v

r(aj)
)

2r(R+Rt+Rk+R′+R̃−RT−RK)Q⊗rZ (zrj )

+
∑

(m̃j ,t̃j−1,k̃j−2,˜̀j)6=(mj ,tj−1,kj−2,`j)

W⊗r
Z|V
(
zrj |vr(aj)

)

2r(R+Rt+Rk+R′+R̃−RT−RK)Q⊗rZ (zrj )

+
∑

ãj 6=aj

W⊗r
Z|U
(
zrj |ur(mj, tj−1, kj−2, `j)

)

2r(R+Rt+Rk+R′+R̃)Q⊗rZ (zrj )
+ 1

)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

1

2r(R+Rt+2Rk+R′+R̃+RT+RK)

×
∑

(ur,vr)

Γ⊗rUr,V r,Zr
(
ur(mj, tj−1, kj−2, `j), v

r(aj), z
r
j

)

× log

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2, `j), v

r(aj)
)

2r(R+Rt+Rk+R′+R̃−RT−RK)Q⊗rZ (zrj )
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+
W⊗r
Z|V
(
zrj |vr(aj)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )
+
W⊗r
Z|U
(
zrj |ur(mj, tj−1, kj−2, `j)

)

2r(R+Rt+Rk+R′)Q⊗rZ (zrj )
+ 1

)

, Ψ1 + Ψ2, (K.17)

where (a) follows from Jensen’s inequality, (b) and (c) hold because 1{·} ≤ 1. We define Ψ1

and Ψ2 as

Ψ1 =
∑

(kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

1

2r(R+Rt+2Rk+R′+R̃+RT+RK)

×
∑

(ur(mj ,tj−1,kj−2,`j),vr(aj),zrj )∈T (n)
ε

Γ⊗rUr,V r,Zr
(
ur(mj, tj−1, kj−2, `j), v

r(aj), z
r
j

)

× log

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2, `j), v

r(aj)
)

2r(R+Rt+Rk+R′+R̃−RT−RK)Q⊗rZ (zrj )
+

W⊗r
Z|V
(
zrj |vr(aj)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )

+
W⊗r
Z|U
(
zrj |ur(mj, tj−1, kj−2, `j)

)

2r(R+Rt+Rk+R′)Q⊗rZ (zrj )
+ 1

)

≤ log

(
2r(RT+RK) × 2−r(1−ε)H(Z|U,V )

2r(R+Rt+Rk+R′+R̃) × 2−r(1+ε)H(Z)
+

2r(RT+RK) × 2−r(1−ε)H(Z|V )

2rR̃ × 2−r(1+ε)H(Z)

+
2−r(1−ε)H(Z|U)

2r(R+Rt+Rk+R′) × 2−r(1+ε)H(Z)
+ 1

)
(K.18)

Ψ2 =
∑

(kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

aj

1

2r(R+Rt+2Rk+R′+R̃+RT+RK)

×
∑

(ur(mj ,tj−1,kj−2,`j),vr(aj),zrj )/∈T (n)
ε

Γ⊗rUr,V r,Zr
(
ur(mj, tj−1, kj−2, `j), v

r(aj), z
r
j

)

× log

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2, `j), v

r(aj)
)

2r(R+Rt+Rk+R′+R̃−RT−RK)Q⊗rZ (zrj )
+

W⊗r
Z|V
(
zrj |vr(aj)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )

+
W⊗r
Z|U
(
zrj |ur(mj, tj−1, kj−2, `j)

)

2r(R+Rt+Rk+R′)Q⊗rZ (zrj )
+ 1

)

≤ 2|V ||U ||Z|e−rε2µS,V,U,Zr log
( 3

µZ
+ 1
)
. (K.19)
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In (K.19) µV,U,Z = min
(v,u,z)∈(V,U ,Z)

PV,U,Z(v, u, z) and µZ = min
z∈Z

PZ(z). When r → ∞ then

Ψ2 → 0 and Ψ1 goes to zero when r grows if

R +Rt +Rk +R′ + R̃−RT −RK > I(U, V ;Z), (K.20a)

R̃−RT −RK > I(V ;Z), (K.20b)

R +Rt +Rk +R′ > I(U ;Z). (K.20c)

Decoding and Error Probability Analysis: At the end of the block j ∈ J1, BK, using its

knowledge of the key kj−2 generated from the block j − 2, the receiver finds a unique triple

(m̂j, t̂j−1, ˆ̀
j) such that

(
ur(m̂j, t̂j−1, kj−2, ˆ̀

j), y
r
j

)
∈ T (r)

ε . To bound the probability of error

at the encoder and the decoder, we use the following lemma.

Lemma 5 (Typical With High Probability). If (R′, R̃) ∈ R2
+ satisfies (K.14), then for any

(mj, tj−1, kj−2) ∈ (M, T ,K) and ε > 0, we have

ECrPP
((
U r(mj, tj−1, kj−2, Lj), V

r(Aj), S
r
j

)
/∈ T (r)

ε |Cr
)
−−→
r→∞

0, (K.21)

where P is the induced distribution over the codebook defined in (K.5).

The proof of Lemma 5 is given in Appendix L.

To analyze the probability of error, we define the following error events for j ∈ J1, BK,

E ,
{
M 6= M̂

}
, (K.22a)

Ej ,
{
Mj 6= M̂j

}
, (K.22b)

E1,j ,
{(
U r(Mj, Tj−1, Kj−2, Lj), S

r
j

)
/∈ T (r)

ε1
(U, S)

}
, (K.22c)

E2,j ,
{(
U r(Mj, Tj−1, Kj−2, Lj), Y

r
j

)
/∈ T (r)

ε2
(U, Y )

}
, (K.22d)

E3,j ,
{(
U r(Mj, Tj−1, Kj−2, Lj), Y

r
j

)
∈ T (r)

ε2
(U, Y ) for some mj 6= Mj and `j ∈ [1 : 2rR

′
]
}
.

(K.22e)
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where ε2 > ε1 > ε > 0. The probability of error is upper bounded as follows,

P(E) = P
{⋃B

j=1
Ej
}
≤

B∑

j=1

P(Ej). (K.23)

Now we bound P(Ej) by using union bound,

P(Ej) ≤ P(E1,j) + P(Ec1,j ∩ E2,j) + P(Ec2,j ∩ E3,j). (K.24)

According to Lemma 5 the first term on the RHS of (K.24) vanishes when r grows, and

by the law of large numbers the second term on the RHS of (K.24) vanishes when r grows.

Also, according to the law of large numbers and the packing lemma, the last term on the

RHS of (K.24) vanishes when r grows if [85],

R +Rt +R′ ≤ I(U ;Y ). (K.25)

We now analyze the probability of error at the encoder and the decoder for key generation.

Let (Aj−1, Tj−1) denote the chosen indices at the encoder and Âj−1 and T̂j−1 be the estimates

of the indices Aj−1 and Tj−1 at the decoder. At the end of block j, by decoding U r
j , the

decoder knows T̂j−1. To find Aj−1 we define the error event,

E ′ =
{(
V r
j−1(Âj−1), Srj−1, U

r
j−1, Y

r
j−1

)
/∈ T (r)

ε

}
. (K.26)

Also, consider the error events,

E ′1 =
{(
V r
j−1(aj−1), Srj−1

)
/∈ T (r)

ε′ for all aj−1 ∈ J1, 2rR̃K
}
, (K.27a)

E ′2 =
{(
V r
j−1(Aj−1), Srj−1, U

r
j−1, Y

r
j−1

)
/∈ T (r)

ε

}
, (K.27b)

E ′3 =
{(
V r
j−1(ãj−1), U r

j−1, Y
r
j−1

)
∈ T (r)

ε for some ãj−1 ∈ B(T̂j−1), ãj−1 6= Aj−1

}
, (K.27c)

where ε > ε′ > 0. By the union bound we have,

P (E ′) ≤ P (E ′1) + P (E ′c1 ∩ E ′2) + P (E ′3). (K.28)
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According to Lemma 5 the first term on the RHS of (K.28) vanishes when r grows if we have

(K.14). Following the steps in [85, Sec. 11.3.1], the last two terms on the RHS of (K.28) go

to zero when r grows if,

R̃ > I(V ;S), (K.29a)

R̃−Rt < I(V ;U, Y ). (K.29b)

The region in Theorem 10 is derived by remarking that the scheme requires RK + RT ≥

Rk +Rt and applying Fourier-Motzkin to (K.14) and (K.20), (K.25), and (K.29).
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APPENDIX L

PROOF OF LEMMA 5

For a fix ε > 0, consider the PMF Γ defined in (K.1). For the random experiment described by

Γ; since U r(mj, tj−1, kj−2, Lj) ∼ P⊗rU , for every (mj, tj−1, kj−2) ∈M×T ×K) and V r(Aj) ∼

P⊗rV , for every aj ∈ A), and Srj is derived by passing
(
U r(mj, tj−1, kj−2, Lj), V

r(Aj)
)

through

the DMC P⊗rS|U,V by the weak law of large numbers we have

ECrPΓ

((
U r(mj, tj−1, kj−2, Lj), V

r(Aj), S
r
j

)
/∈ T (r)

ε |Cr
)
−−→
r→∞

0. (L.1)

We also have

ECr ||PUr,V r,Srj |Cr − ΓUr,V r,Srj |Cr ||1

≤ ECr ||PMj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U
r,V r,Zrj ,Kj−1,Tj ,Kj |Cr

− ΓMj ,Tj−1,Kj−2,Srj ,Lj ,Aj ,U
r,V r,Zrj ,Kj−1,Tj ,Kj |Cr ||1 −−→

r→∞
0, (L.2)

where the RHS of (L.2) vanishes when r grows because of (K.13). We now define gr :

U r × Vr × Srj 7→ R as gr(u
r, vr, srj) , 1{(ur,vr,srj )/∈T

(r)
ε }. We now have,

ECrPP
((
U r(mj, tj−1, kj−2, Lj), V

r(Aj), S
r
j

)
/∈ T (r)

ε |Cr
)

= ECrEP
[
gr(U

r(mj, tj−1, kj−2, Lj), V
r(Aj), S

r
j )|Cr

]

≤ ECrEΓ

[
gr(U

r(mj, tj−1, kj−2, Lj), V
r(Aj), S

r
j )|Cr

]

+ ECr
∣∣∣EP

[
gr(U

r(mj, tj−1, kj−2, Lj), V
r(Aj), S

r
j )|Cr

]

− EΓ

[
gr(U

r(mj, tj−1, kj−2, Lj), V
r(Aj), S

r
j )|Cr

]∣∣∣
(a)

≤ ECrEΓ

[
gr(U

r(mj, tj−1, kj−2, Lj), V
r(Aj), S

r
j )|Cr

]
+ ECr ||PUr,V r,Srj |Cr − ΓUr,V r,Srj |Cr ||1,

(L.3)

where (a) follows from [91, Property 1] for gr being bounded by 1. From (L.1) and (L.2) the

RHS of (L.3) vanishes when r grows.
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APPENDIX M

PROOF OF THEOREM 11

Fix PU |S(u|s), x(u, s), and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation: Let Cn , {Un(m, `)}(m,`)∈M×L, where M , J1, 2nRK and L ,

J1, 2nR′K, be a random codebook consisting of independent random sequences each generated

according to
∏n

i=1 PU(ui). We denote a realization of Cn by Cn , {un(m, `)}(m,`)∈M×L. We

define an ideal PMF for codebook Cn, as an approximate distribution to facilitate the analysis

Γ
(Cn)
M,L,Un,Sn,Zn(m, `, ũn, sn, zn) = 2−n(R+R′)1{ũn=un(m,`)}P

⊗n
S|U(sn|ũn)W⊗n

Z|U,S(zn|ũn, sn), (M.1)

where WZ|U,S is the marginal distribution WZ|U,S =
∑

x∈X 1{x=x(u,s)}WZ|X,S and PS|U is

defined as follows,

PS|U(s|u) ,
PS,U(s, u)

PU(u)
=

QS(s)PU |S(u|s)∑
s∈S QS(s)PU |S(u|s) . (M.2)

Encoding: To send the message m the encoder generates ` according to

f(`|sn,m) =
P⊗nS|U

(
sn|un(m, `)

)
∑

`′∈J1,2nR′K
P⊗nS|U

(
snj |un(m, `′)

) , (M.3)

where PS|U is defined in (M.2). Based on (m, `), the encoder computes un(m, `) and trans-

mits codeword xn, where xi = x(ui(m, `), si). For a fixed codebook Cn, the induced joint

distribution over the codebook is as follows

P
(Cn)
M,Sn,L,Un,Zn(m, sn, `, ũn, zn) = 2−nRQ⊗nS (sn)f(`|sn,m)1{ũn=un(m,`)}W

⊗n
Z|U,S(zn|ũn, sn).

(M.4)

Covert Analysis: We now show that this coding scheme guarantees that

ECn
[
D(PZn|Cn||Q⊗nZ )

]
−−→
n→∞

0, (M.5)
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where

QZ(·) =
∑

s∈S

∑

u∈U

∑

x∈X
QS(s)PU |S(u|s)1{

X=X(U,S)
}WZ|X,S(·|x, s). (M.6)

Then we choose PU |S and x(u, s) such that it satisfies QZ = Q0. By Combining Lemma 1

and the triangle inequality a sufficient condition for (M.5) is to show that the RHS of the

following inequality vanishes when n grows,

ECn||PZn|Cn −Q⊗nZ ||1 ≤ ECn||PZn|Cn − ΓZn|Cn||1 + ECn||ΓZn|Cn −Q⊗nZ ||1. (M.7)

By [77, Corollary VII.5] the second term on the RHS of (M.7) vanishes when n grows if

R +R′ > I(U ;Z). (M.8)

To bound the first term on the RHS of (M.7) we have,

Γ
(Cn)
M = 2−nR = P

(Cn)
M , (M.9a)

Γ
(Cn)
L|M,Sn = f(`|sn,m) = P

(Cn)
L|M,Sn , (M.9b)

Γ
(Cn)
Un|M,Sn,L = 1{ũn=un(m,`)} = P

(Cn)
Un|M,Sn,L, (M.9c)

Γ
(Cn)
Zn|M,Sn,L,Un = W⊗n

Z|U,S = P
(Cn)
Zn|M,Sn,L,Un , (M.9d)

where (M.9b) follows from (M.3). Hence,

ECn||PZn|Cn − ΓZn|Cn||1 ≤ ECn||PM,Sn,L,Un,Zn|Cn − ΓM,Sn,L,Un,Zn|Cn||1
(a)
= ECn||PSn,L,Un,Zn|M=1,Cn − ΓSn,L,Un,Zn|M=1,Cn||1
(b)
= ECn||Q⊗nS − ΓSn|M=1,Cn||1, (M.10)

where (a) follows from (M.9b)-(M.9d) and (b) follows from the symmetry of the codebook

construction with respect to M and (M.9a). Based on the soft covering lemma [77, Corol-

lary VII.5] the RHS of (M.10) vanishes if

R′ > I(U ;S). (M.11)
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Decoding and Error Probability Analysis: To decode the message m, the receiver finds a

unique pair (m̂, ˆ̀) such that
(
un(m̂, ˆ̀), yn

)
∈ T (n)

ε . To analyze the probability of error, we

define the following error events,

E ,
{
M 6= M̂

}
, (M.12a)

E1 ,
{(
Un(M,L), Sn

)
/∈ T (n)

ε1
(U, S)

}
, (M.12b)

E2 ,
{(
Un(M,L), Y n

)
/∈ T (n)

ε2
(U, Y )

}
, (M.12c)

E3 ,
{(
Un(M,L), Y n

)
∈ T (n)

ε2
(U, Y ) for some m 6= M and ` ∈ [1 : 2nR

′
]
}
, (M.12d)

where ε2 > ε1 > 0. Now we bound P(E) by using union bound,

P(E) ≤ P(E1) + P(Ec1 ∩ E2) + P(Ec2 ∩ E3). (M.13)

Similar to Lemma 5 one can show that the first term on the RHS of (M.13) vanishes when

n grows, and by the law of large numbers the second term on the RHS of (M.13) vanishes

when n grows. Also, according to the law of large numbers and the packing lemma, the last

term on the RHS of (M.13) vanishes when n grows if [85],

R +R′ < I(U ;Y ). (M.14)

The region in Theorem 11 is derived by applying Fourier-Motzkin to (M.8), (M.11), and

(M.14).

182



APPENDIX N

PROOF OF THEOREM 12

Consider any sequence of length-n codes for a state-dependent channel with CSI available

non-causally only at the transmitter such that P
(n)
e ≤ εn, D(PZn||Q⊗n0 ) ≤ δ, and RK/n ≤ λn

with limn→∞ εn = limn→∞ λn = 0. Note that the converse is consistent with the model

and does not require δ to vanish. The following lemma, a version of which with variational

distance can be found in [77, Lemma VI.3], will prove useful.

Lemma 6. If D(PZn||Q⊗n0 ) ≤ δ, then
∑n

i=1 I(Zi;Zi−1) ≤ δ and
∑n

i=1 I(Zi;Zn
i+1) ≤ δ. In

addition, if T ∈ J1, nK is an independent variable uniformly distributed, then I(T ;ZT ) ≤ ν,

where ν , δ
n

.

Note that Lemma 6 is slightly different from [77, Lemma VI.3], as the upper bounds are

tighter and do not include a factor of n. This is a consequence of using a constraint based

on relative entropy instead of total variation. This is crucial in what follows, as we do no

necessarily require δ → 0.

Proof. First note that,

n∑

i=1

I(Zi;Zi−1) =
n∑

i=1

[H(Zi)−H(Zi|Zi−1)]

=
n∑

i=1

H(Zi)−H(Zn)

= −
n∑

i=1

∑

z

PZi(z) logPZi(z) +
∑

zn

PZn(zn) logPZn(zn)

= −
n∑

i=1

∑

z

PZi(z) logPZi(z) +
n∑

i=1

∑

z

PZi(z) logQ0(z)

−
n∑

i=1

∑

z

PZi(z) logQ0(z) +
∑

zn

PZn(zn) logPZn(zn)

= −
n∑

i=1

D(PZi||Q0)−
∑

zn

PZn(zn) logQ⊗n0 (zn) +
∑

zn

PZn(zn) logPZn(zn)
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≤ D(PZn||Q⊗n0 )

≤ δ.

Similarly, one can prove
∑n

i=1 I(Zi;Zn
i+1) ≤ δ. Next,

I(T ;ZT ) = H(ZT )−H(ZT |T )

= −
∑

z

1

n

n∑

i=1

PZi(z) log
1

n

n∑

j=1

PZj(z) +
1

n

n∑

i=1

∑

z

PZi(z) logPZi(z)

= −
∑

z

1

n

n∑

i=1

PZi(z) log
1

n

n∑

j=1

PZj(z) +
∑

z

1

n

n∑

i=1

PZi(z) logQ0(z)

−
∑

z

1

n

n∑

i=1

PZi(z) logQ0(z) +
1

n

n∑

i=1

∑

z

PZi(z) logPZi(z)

= −D
(

1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)
+

1

n

n∑

i=1

D(PZi||Q0)

≤ 1

n

n∑

i=1

D(PZi||Q0)

≤ 1

n
D(PZn||Q⊗n0 )

≤ δ

n
. (N.1)

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (3.25) as follows,

Aε ,
{
R ≥ 0 : ∃PU,V,S,X,Y,Z ∈ Dε : R ≤ min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )}+ ε

}
,

(N.2a)
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where

Dε =





PU,V,S,X,Y,Z :

PU,V,S,X,Y,Z = QSPUV |S1{
X=X(U,S)

}WY,Z|X,S

D (PZ‖Q0) ≤ ε

min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )} ≥ I(V ;Z)− I(V ;S)− 4ε

max{|U| , |V|} ≤ |X |+ 3





.

(N.2b)

We next show that if a rate R is achievable then R ∈ Aε for any ε > 0. For any εn > 0 and

ν > 0, we start by upper bounding nR using standard techniques,

nR = H(M)

(a)

≤ I(M ;Y n) + nεn

=
n∑

i=1

I(M ;Yi|Y i−1) + nεn

≤
n∑

i=1

I(M,Y i−1;Yi) + nεn

=
n∑

i=1

[
I(M,Y i−1, Sni+1;Yi)− I(Sni+1;Yi|M,Y i−1)

]
+ nεn

(b)
=

n∑

i=1

[
I(M,Y i−1, Sni+1;Yi)− I(Y i−1;Si|M,Sni+1)

]
+ nεn

(c)
=

n∑

i=1

[
I(M,Y i−1, Sni+1;Yi)− I(M,Y i−1, Sni+1;Si)

]
+ nεn

(d)
=

n∑

i=1

[I(Ui;Yi)− I(Ui;Si)] + nεn

= n

n∑

i=1

1

n

[
I(Ui;Yi|T = i)− I(Ui;Si|T = i)

]
+ nεn

= n

n∑

i=1

P(T = i)
[
I(Ui;Yi|T = i)− I(Ui;Si|T = i)

]
+ nεn
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= n
[
I(UT ;YT |T )− I(UT ;ST |T )

]
+ nεn

(e)
= n
[
I(UT ;YT |T )− I(UT , T ;ST )

]
+ nεn

≤
[
I(UT , T ;YT )− I(UT , T ;ST )

]
+ nεn

(f)
= n

[
I(U ;Y )− I(U ;S)

]
+ nεn

(g)

≤ n
[
I(U ;Y )− I(U ;S)

]
+ nε (N.3)

where

(a) follows from Fano’s inequality for n large enough;

(b) follows from Csiszár-Körner sum identity [70, Lemma 7];

(c) follows since Si is independent of (M,Sni+1);

(d) follows by defining Ui , (M,Y i−1, Sni+1);

(e) follows from the independence of ST and T ;

(f) follows by defining U = (UT , T ), Y = YT , and S = ST ;

(g) follows by defining ε , max{εn, λn, ν}, where we choose n large enough such that

ν ≥ δ
n
.

We also have,

nR = H(M)

= H(M |K)

(a)

≤ I(M ;Y n|K) + nεn

=
n∑

i=1

I(M ;Yi|Y i−1, K) + nεn

≤
n∑

i=1

I(M,K, Y i−1, Zi−1;Yi) + nεn
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=
n∑

i=1

[
I(M,K, Y i−1, Zi−1, Sni+1;Yi)− I(Sni+1;Yi|M,K, Y i−1, Zi−1)

]
+ nεn

(b)
=

n∑

i=1

[
I(M,K, Y i−1, Zi−1, Sni+1;Yi)− I(Y i−1;Si|M,K, Sni+1, Z

i−1)
]

+ nεn

(c)
=

n∑

i=1

[I(Ui, Vi;Yi)− I(Ui;Si|Vi)] + nεn

= n

n∑

i=1

1

n

[
I(UT , VT ;YT |T = i)− I(UT ;ST |VT , T = i)

]
+ nεn

= n
n∑

i=1

P(T = i)
[
I(UT , VT ;YT |T = i)− I(UT ;ST |VT , T = i)

]
+ nεn

= n
[
I(UT , VT ;YT |T )− I(UT ;ST |VT , T )

]
+ nεn

≤
[
I(UT , VT , T ;YT )− I(UT ;ST |VT , T )

]
+ nεn

(d)
= n

[
I(U, V ;Y )− I(U ;S|V )

]
+ nεn

(e)

≤ n
[
I(U, V ;Y )− I(U ;S|V )

]
+ nε, (N.4)

where

(a) follows from Fano’s inequality for n large enough and the fact that conditioning does

not increase entropy;

(b) follows from Csiszár-Körner sum identity [70, Lemma 7];

(c) follows by defining Ui , (M,Y i−1, Sni+1) and Vi , (M,K,Zi−1, Sni+1);

(d) follows by defining U = (UT , T ), V = (VT , T ), Y = YT , and S = ST ;

(e) follows from definition ε , max{εn, λn, ν}.

Next, we lower bound nR as follows,

nR +RK ≥ H(M,K)

≥ I(M,K;Zn)
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=
n∑

i=1

I(M,K;Zi|Zi−1)

=
n∑

i=1

[
I(M,K, Sni+1;Zi|Zi−1)− I(Sni+1;Zi|M,K,Zi−1)

]

(a)
=

n∑

i=1

[
I(M,K, Sni+1;Zi|Zi−1)− I(Zi−1;Si|M,K, Sni+1)

]

(b)

≥
n∑

i=1

[
I(M,K, Sni+1, Z

i−1;Zi)− I(Zi−1;Si|M,K, Sni+1)
]
− δ

(c)
=

n∑

i=1

[
I(M,K, Sni+1, Z

i−1;Zi)− I(M,K, Sni+1, Z
i−1;Si)

]
− δ

(d)
=

n∑

i=1

[
I(Vi;Zi)− I(Vi;Si)

]
− δ

= n
n∑

i=1

1

n

[
I(VT ;ZT |T = i)− I(VT ;ST |T = i)

]
− δ

= n
n∑

i=1

P(T = i)
[
I(VT ;ZT |T = i)− I(VT ;ST |T = i)

]
− δ

= n
[
I(VT ;ZT |T )− I(VT ;ST |T )

]
− δ

(e)
= n
[
I(VT ;ZT |T )− I(VT , T ;ST )

]
− δ

(f)

≥ n
[
I(VT , T ;ZT )− I(VT , T ;ST )

]
− 2δ

(g)
= n

[
I(V ;Z)− I(V ;S)

]
− 2δ (N.5)

where

(a) follows from Csiszár-Körner sum identity [70, Lemma 7];

(b) follows from Lemma 6;

(c) follows since Si is independent of (M,K, Sni+1);

(d) follows by defining Vi , (M,K, Sni+1, Z
i−1);

(e) follows from the independence of ST and T ;
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(f) follows from Lemma 6;

(g) follows by defining V = (VT , T ), Z = ZT , and S = ST .

For any ν > 0, choosing n large enough ensures that,

R +
RK

n
≥ I(V ;Z)− I(V ;S)− 2ν. (N.6)

Therefore,

R ≥ I(V ;Z)− I(V ;S)− 2ν − RK

n

≥ I(V ;Z)− I(V ;S)− 2ν − λn

≥ I(V ;Z)− I(V ;S)− 3ε, (N.7)

where the last inequality follows since ε , max{εn, λn, ν}. To show that D(PZ ||Q0) ≤ ε, note

that for n large enough

D(PZ ||Q0) = D(PZT ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (N.8)

Combining (N.3), (N.4), (N.7), and (N.8) shows that ∀εn, λn, ν > 0, R ≤ max{a : a ∈ Aε}.
Therefore,

R ≤ max

{
a : a ∈

⋂

ε>0

Aε
}
. (N.9)

Continuity at Zero: Our objective is to show that the capacity region is included in the

region defined in (3.25). The challenge, first highlighted in [77, Section VI.D], is that our

converse arguments only establish that the capacity region is included in the region
⋂
ε>0Aε

where Aε is defined in (N.2). In the sequel, the continuity of the slackness in the mutual

information inequality (N.2b) will assume some importance, hence for ease of expression we

define and refer to g(ε) , 3ε. As ε vanishes, both the region Aε and the set of distributions

Dε shrink, so that proving the continuity at ε = 0 is not completely straightforward. We

carefully lay out the arguments leading to the result in a series of lemmas.
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Lemma 7. For all ε > 0, the set Dε is closed and bounded, hence compact.

Proof. We need to check that every constraint defining the set Dε defines a closed set of

distributions, so that Dε is an intersection of closed sets and remains closed. First note that:

• the function that outputs the marginal PZ of PU,V,S,X,Y,Z is continuous in PZ ;

• Q0 has support Z so that the divergence D(PZ ||Q0) is a continuous function of PZ ;

• mutual information, viewed as a function of the joint distribution of the random vari-

ables involved, is continuous;

• all the constraints in the definition of Dε are non-strict inequalities.

Consequently, the pre-images of the closed sets defined by the inequalities are pre-images of

closed sets through continuous functions, hence closed. Dε is bounded because it is a subset

of the probability simplex, hence it is compact.

Lemma 8. For all ε > 0, the set Aε is non-empty, closed, and bounded.

Proof. The set of Pareto optimal points in Aε is the image of Dε through a continuous

function. Since Dε is compact, the set of Pareto optimal points is compact. In R, compact

sets are closed, hence the set of Pareto optimal points is closed and Aε itself is closed by

definition. Aε is also non-empty because it contains 0. Aε is bounded because we can upper

bound R by 2 log |X |+ ε.

Now define the set

A′ε ,
{
R ≥ 0 : ∃PU,V,S,X,Y,Z ∈ Dε : R ≤ min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )}

}
.

(N.10)

Note that A′ε differs from Aε in the absence of ε in the rate constraint.
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Lemma 9. For all ε > 0, the set A′ε is closed and bounded.

Proof. The proof is similar to the proof of Lemma 8.

Lemma 10.

⋂

ε>0

A′ε =
⋂

ε>0

Aε (N.11)

Proof. First, note that
⋂
ε>0A′ε is closed, since it is an intersection of closed sets, and

bounded, since the sets A′ε are nested and bounded. Hence,
⋂
ε>0A′ε is compact. Con-

sequently, there exists a maximal element, r†. Consider any r ∈ [0, r†]. Then ∀ε >

0 ∃PU,V,S,X,Y,Z ∈ Dε r ≤ r† ≤ min{I(U ;Y ) − I(U ;S), I(U, V ;Y ) − I(U ;S|V )} and

r ∈ ⋂ε>0A′ε.

We now want to show that
⋂
ε>0A′ε =

⋂
ε>0Aε. The hard part is showing that,

⋂
ε>0Aε ⊂

⋂
ε>0A′ε since the other direction follows by the definition of Aε and A′ε. We proceed by

contradiction. Assume ∃r∗ ∈ ⋂ε>0Aε such that r∗ /∈ ⋂ε>0A′ε. It must be that r† < r∗ for

otherwise r∗ ∈ ⋂ε>0A′ε as noted earlier.

Set r0 , 1
2
(r†+r∗), which is such that r0 > r† and therefore r0 /∈

⋂
ε>0A′ε. Set ε′ > 0 such

that ∀ε ≤ ε′ g(ε) < r∗−r†
2

, which exists by the assumptions on g. Assume that ∀ε ∈ (0; ε′]

r0 ∈ A′ε. Then, r0 ∈
⋂
ε>0A′ε which contradicts our assumption. Hence, there exists 0 < ε0 ≤

ε′ such that r0 /∈ A′ε0 . Hence ∀PU,V,S,X,Y,Z ∈ Dε0 r0 > min{I(U ;Y ) − I(U ;S), I(U, V ;Y ) −

I(U ;S|V )}. Then ∀PU,V,S,X,Y,Z ∈ Dε0

r0 > min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )} (N.12)

⇒ r∗ + r†

2
> min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )} (N.13)

⇒ r∗ + r†

2
+
r∗ − r†

2
> min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )}+

r∗ − r†
2

(N.14)

⇒ r∗ > min{I(U ;Y )− I(U ;S), I(U, V ;Y )− I(U ;S|V )}+ g(ε0) (N.15)
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Since r∗ ∈ ⋂ε>0Aε, we have ∀ε > 0 ∃PU,V,S,X,Y,Z ∈ Dε such that r∗ ≤ min{I(U ;Y ) −

I(U ;S), I(U, V ;Y ) − I(U ;S|V )} + g(ε). Hence, there is a contradiction, and we must have

r∗ ∈ ⋂ε>0A′ε.

To conclude, one can prove that
⋂
ε>0A′ε = A0, following the exact same arguments as

in [77, Section IV.C].
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APPENDIX O

PROOF OF THEOREM 13

We adopt a block-Markov encoding scheme in which B independent messages are transmitted

over B channel blocks each of length r, such that n = rB. The warden’s observation is

Zn = (Zr
1 , . . . , Z

r
B), the distribution induced at the output of the warden is PZn , the target

output distribution is Q⊗n0 , and Equation (I.2), describing the distance between the two

distributions, continues to hold. The random code generation is as follows.

Fix PU(u), PV |S(v|s), x(u, s), and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation for Keys: For each block j ∈ J1, BK, let C
(r)
1 ,

{
V r(`j)

}
`j∈L, where

L , J1, 2rR̃K, be a random codebook consisting of independent random sequences each

generated according to P⊗rV , where PV =
∑

s∈S QS(s)PV |S(v|s). We denote a realization

of C
(r)
1 by C(r)

1 ,
{
vr(`j)

}
`j∈L. Partition the set of indices `j ∈ J1, 2rR̃K into bins B(t),

t ∈ J1, 2rRT K by using function ϕ : V r(`j) 7→ J1, 2rRT K through random binning by choosing

the value of ϕ(vr(`j)) independently and uniformly at random for every vr(`j) ∈ Vr. For

each block j ∈ J1, BK, create a function Φ : V r(`j) 7→ J1, 2rRKK through random binning by

choosing the value of Φ(vr(`j)) independently and uniformly at random for every vr(`j) ∈ Vr.

The key kj = Φ(vr(`j)) obtained in block j ∈ J1, BK from the description of the CSI sequence

vr(`j) is used to assist the encoder in block j + 2.

Codebook Generation for Messages: For each block j ∈ J1, BK, let C
(r)
2 ,

{
U r(mj, tj−1, kj−2)

}
(mj ,tj−1,kj−2)∈M×T ×K, where M , J1, 2rRK, T , J1, 2rRtK, and

K , J1, 2rRkK, be a random codebook consisting of independent random sequences

each generated according to P⊗rU . We denote a realization of C
(r)
2 by C(r)

2 ,
{
ur(mj, tj−1, kj−2)

}
(mj ,tj−1,kj−2)∈M×T ×K. Also, let Cr =

{
C

(r)
1 , C

(r)
2

}
and Cr =

{
C(r)

1 , C(r)
2

}
.

The indices (mj, tj−1, kj−2) can be viewed as a two layer binning. We define an ideal PMF

for codebook Cn, as an approximate distribution to facilitate the analysis as follows

Γ
(Cn)
Mj ,Tj−1,Kj−2,Lj ,Ur,V r,Srj ,Z

r
j ,Kj−1,Tj ,Kj

(mj, tj−1, kj−2, `j, ũ
r, ṽr, srj , z

r
j , kj−1, tj, kj)
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= 2−r(R+Rt+Rk+R̃)1{ũr=ur(mj ,tj−1,kj−2)}1{ṽr=vr(`j)}P
⊗r
S|V (srj |ṽr)W⊗r

Z|U,S(zrj |ũr, srj)

× 2−rRk1{tj=ϕ(ṽr)}1{kj=Φ(ṽr)}, (O.1)

where WZ|U,S is the marginal distribution of WZ|U,S =
∑

x∈X 1{x=x(u,s)}WZ|X,S and

PS|V =
PS,V (s, v)

PV (v)
=

QS(s)PV |S(v|s)∑
s∈S QS(s)PV |S(v|s) . (O.2)

Encoding: We assume that the transmitter and the receiver have access to the shared

secret keys k−1 and k0 for the first two blocks, but after the first two blocks they use the key

that they generate from the CSI.

In the first block, to send the message m1 according to k−1, the encoder generates the

index t0 uniformly at random and computes ur(m1, t0, k−1) and transmits a codeword xr,

where xi = x(ui(m1, t0, k−1), s1,i). Note that, the index t0 does not convey any useful infor-

mation. At the end of the first block, to generate a secret key shared between the transmitter

and the receiver, the encoder generates the index `1 according to the following distribution

with j = 1,

f
(
`j|srj

)
=

P⊗rS|V
(
srj |vr(`j)

)
∑

`′∈J1,2rR̃K

P⊗rS|V
(
srj |vr(`′j)

) , (O.3)

where PS|V is defined in (O.2). Then generates the reconciliation index t1 = ϕ(vn(`1));

simultaneously, the transmitter generates a key k1 = Φ(vr(`1)) from the description of its

CSI of the first block vr(`1) to be used in Block 3.

In the second block, to transmit the message m2 and the reconciliation index t1 according

to the key k0, the encoder computes ur(m2, t1, k0) and transmits a codeword xr, where

xi = x(ui(m2, t1, k0), s2,i). At the end of the second block, to generate a secret key shared

between the transmitter and the receiver, the encoder generates the index `2 based sr2 by

using the likelihood encoder described in (O.3) with j = 2. Then generates the reconciliation

index t2 = ϕ(vn(`2)); simultaneously, the transmitter generates a key k2 = Φ(vr(`2)) from

the description of its CSI of the second block vr(`1) to be used in Block 4.
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In block j ∈ J3, BK, to send the message mj and the reconciliation index tj−1 according

to the generated key kj−2 from the previous blocks and the CSI of the current block srj ,

the encoder computes ur(mj, tj−1, kj−2) and transmits a codeword xr, where each coordinate

of the transmitted signal is a function of the current state srj as well as the corresponding

sample of the transmitter’s codeword ui, i.e., xi = x(ui(mj, tj−1, kj−2), sj,i). At the end of

this block, the encoder first selects the index `j based srj by using the likelihood encoder

described in (O.3) and then generates the reconciliation index tj = ϕ(vr(`j)); simultaneously

the encoder generates a key kj = Φ(vr(`j)) from the description of its CSI of the block j,

vr(`j), to be used in the Block j + 2.

Define

Υ
(Cr)
Mj ,Tj−1,Kj−2,Ur,Srj ,Lj ,V

r,Zrj ,Kj−1,Tj ,Kj
(mj, tj−1, kj−2, ũ

r, srj , `j, ṽ
r, zrj , kj−1, tj, kj)

, 2−r(R+Rt+Rk)1{ũr=ur(mj ,tj−1,kj−2)}Q
⊗r
S (srj)f(`j|srj)1{ṽr=vr(`j)}

×W⊗r
Z|U,S(zrj |ũr, srj)2−rRk1{tj=ϕ(ṽr)}1{kj=Φ(ṽr)}. (O.4)

For a fixed codebook Cr, the induced joint distribution by our code design (i.e. P (Cr)) satisfies

D
(
P

(Cr)
Mj ,Tj−1,Kj−2,Ur,Srj ,Lj ,V

r,Zrj ,Kj−1,Tj ,Kj
||Υ(Cr)

Mj ,Tj−1,Kj−2,Ur,Srj ,Lj ,V
r,Zrj ,Kj−1,Tj ,Kj

)
≤ ε. (O.5)

This intermediate distribution Υ(Cr) approximates the true distribution P (Cr) and will be used

in the sequel for bounding purposes. Expression (O.5) holds because the main difference

between P (Cr) and Υ(Cr) is that the keys Kj−2, Kj−1 and the reconciliation index Tj−1 are

assumed to be uniformly distributed in Υ(Cr), which are made (arbitrarily) nearly uniform

in P (Cr) with appropriate control of rate as in (O.11) and (O.16).

Covert Analysis: We now show that this coding scheme guarantees that

ECn [D(PZn|Cn||Q⊗nZ )] −−→
n→∞

0, where Cn is the set of all the codebooks for all blocks, and

QZ(·) =
∑

u∈U

∑

v∈V

∑

s∈S

∑

x∈X
PU(u)PV (v)PS|V (s|v)1{

X=X(u,s)
}WZ|X,S(·|x, s), (O.6)
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Block j Block j + 1 Block j + 2

Mj Ur
j Xr

j Zr
j

V r
jSr

j Tj

Y r
j

Tj−1

Kj−2

Mj+1 Ur
j+1 Xr

j+1 Zr
j+1

V r
j+1

Y r
j+1

Kj−1

Sr
j+1

Mj+2 Ur
j+2 Xr

j+2 Zr
j+2

V r
j+2

Y r
j+2

Tj+1

Kj

Sr
j+2

Figure O.1. Functional dependence graph for the block-Markov encoding scheme

such that
∑

v∈V PV (v)PS|V (·|v) = QS(·). Then, we choose PU , PV , PS|V , and x(u, s) such

that it satisfies QZ = Q0. Similar to (K.10) using the functional dependence graph depicted

in Fig. O.1 it follows that,

D(P
(Cr)
Zn ||Q⊗nZ ) ≤ 2

B∑

j=1

D(P
(Cr)
Zrj ,Kj−1,Tj ,Kj

||Q⊗rZ QKj−1
QTjQKj). (O.7)

To bound the RHS of (O.7) by using Lemma 1 and the triangle inequality we have,

ECr ||PZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1

≤ ECr ||PZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj |Cr ||1 + ECr ||ΓZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1

≤ ECr ||PZrj ,Kj−1,Tj ,Kj |Cr −ΥZrj ,Kj−1,Tj ,Kj |Cr ||1 + ECr ||ΥZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj |Cr ||1

+ ECr ||ΓZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1. (O.8)

From (O.5) and the monotonicity of KL-divergence the first term on the RHS of (O.8) goes

to zero when r grows. To bound the second term on the RHS of (O.8) for a fixed codebook

Cr, we have,

Γ
(Cr)
Mj ,Tj−1,Kj−2

= 2−r(R+Rt+Rk) = Υ
(Cr)
Mj ,Tj−1,Kj−2

, (O.9a)

Γ
(Cr)
Ur|Mj ,Tj−1,Kj−2,Srj

= 1{ũr=ur(mj ,tj−1,kj−2)} = Υ
(Cr)
Ur|Mj ,Tj−1,Kj−2,Srj

, (O.9b)

Γ
(Cr)
Lj |Mj ,Tj−1,Kj−2,Srj ,U

r = f(`j|srj) = Υ
(Cr)
Lj |Mj ,Tj−1,Kj−2,Srj ,U

r , (O.9c)

Γ
(Cr)
V r|Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r = 1{ṽr=vr(`j)} = Υ
(Cr)
V r|Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r , (O.9d)
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Γ
(Cr)
Zrj |Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r = W⊗r
Z|U,S = Υ

(Cr)
Zrj |Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r , (O.9e)

Γ
(Cr)
Kj−1|Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r,Zrj
= 2−rRk = Υ

(Cr)
Kj−1|Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r,Zrj
, (O.9f)

Γ
(Cr)
Tj |Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r,Zrj ,Kj−1
= 1{tj=σ(vr(`j))} = Υ

(Cr)
Tj |Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r,Zrj ,Kj−1
,

(O.9g)

Γ
(Cr)
Kj |Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r,Zrj ,Kj−1,Tj
= 1{kj=Φ(vr(`j))} = Υ

(Cr)
Kj |Mj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r,Zrj ,Kj−1,Tj
,

(O.9h)

where (O.9c) follows from (O.3). Hence,

ECr ||ΥZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj |Cr ||1

≤ ECr ||ΥMj ,Tj−1,Kj−2,Srj ,Lj ,U
r,V r,Zrj ,Kj−1,Tj ,Kj |Cr − ΓMj ,Tj−1,Kj−2,Srj ,Lj ,U

r,V r,Zrj ,Kj−1,Tj ,Kj |Cr ||1
(a)
= ECr ||ΥMj ,Tj−1,Kj−2,Srj |Cr − ΓMj ,Tj−1,Kj−2,Srj |Cr ||1
(b)
= ECr ||Q⊗rS − ΓSrj |Mj=1,Tj−1=1,Kj−2=1,Cr ||1, (O.10)

where (a) follows from (O.9b)-(O.9h) and (b) follows from the symmetry of the codebook

construction with respect to Mj, Tj−1, and Kj−2 and (O.9a). Based on the soft covering

lemma [77, Corollary VII.5] the RHS of (O.10) vanishes when r grows if

R̃ > I(S;V ). (O.11)

We now proceed to bound the third term on the RHS of (O.8). First, consider the following

marginal from (O.1),

ΓZrj ,Kj−1,Tj ,Kj |Cr(z
r
j , kj−1, tj, kj)

=
∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

srj

1

2r(R+Rt+2Rk+R̃)
P⊗rS|V

(
srj |V r(`j)

)

×W⊗r
Z|U,S

(
zrj |U r(mj, tj−1, kj−2), srj

)
1{tj=ϕ(V r(`j))}1{kj=Φ(V r(`j))}

=
∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃)
W⊗r
Z|U,V

(
zrj |U r(mj, tj−1, kj−2), V r(`j)

)
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× 1{tj=ϕ(V r(`j))}1{kj=Φ(V r(`j))}, (O.12)

where WZ|U,V (z|u, v) =
∑

s∈S PS|V (s|v)WZ|U,S(z|u, s). To bound the third term

on the RHS of (O.8) by using Pinsker’s inequality, it is sufficient to bound

ECr [D(ΓZrj ,Kj−1,Tj ,Kj |Cr ||Q⊗rZ QKj−1
QTjQKj)] as follows,

ECr
[
D(ΓZrj ,Kj−1,Tj ,Kj |Cr ||Q⊗rZ QKj−1

QTjQKj)
]

= ECr

[ ∑

zrj ,kj−1,tj ,kj

ΓZrj ,Kj−1,Tj ,Kj |Cr(z
r
j , kj−1, tj, kj) log

(
ΓZrj ,Kj−1,Tj ,Kj |Cr(z

r
j , kj−1, tj, kj)

Q⊗rZ (zrj )QKj−1
(kj−1)QTj(tj)QKj(kj)

)]

= ECr

[ ∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃)

×W⊗r
Z|U,V

(
zrj |U r(mj, tj−1, kj−2), V r(`j)

)
1{tj=ϕ(V r(`j))}1{kj=Φ(V r(`j))}

× log

(∑
m̃j

∑
t̃j−1

∑
k̃j−2

∑
˜̀
j

W⊗r
Z|U,V

(
zrj |U r(m̃j, t̃j−1, k̃j−2), V r(˜̀

j)
)
1{tj=ϕ(V r(˜̀

j))}1{kj=Φ(V r(˜̀
j))}

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

)]

(a)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃)

×
∑

(
ur(mj ,tj−1,kj−2),vr(`j)

)Γ
⊗r
Ur,V r,Zrj

(
ur(mj, tj−1, kj−2), vr(`j), z

r
j

)

× Eϕ(vr(`j))

[
1{tj=ϕ(vr(`j))}

]
× EΦ(vr(`j))

[
1{kj=Φ(vr(`j))}

]

× logE\(mj ,tj−1,kj−2,`j),
\(ϕ(vr(`j)),Φ(vr(`j)))

[
1

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

×
∑

m̃j

∑

t̃j−1

∑

k̃j−2

∑

˜̀
j

W⊗r
Z|U,V

(
zrj |U r(m̃j, t̃j−1, k̃j−2), V r(˜̀

j)
)
1{tj=ϕ(V r(˜̀

j))}1{kj=Φ(V r(˜̀
j))}

]

(b)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃+RT+RK)

×
∑

(
ur(mj ,tj−1,kj−2),vr(`j)

)Γ
⊗r
Ur,V r,Zrj

(
ur(mj, tj−1, kj−2), vr(`j), z

r
j

)

× log
1

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )
×
(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2), vr(`j)

)
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+ E\(mj ,tj−1,kj−2)

[ ∑

(m̃j ,t̃j−1,k̃j−2)6=(mj ,tj−1,kj−2)

W⊗r
Z|U,V

(
zrj |U r(m̃j, t̃j−1, k̃j−2), vr(`j)

)
]

+ E \`j ,
\(ϕ(vr(`j)),Φ(vr(`j)))

[ ∑

˜̀
j 6=`j

W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2), V r(˜̀

j)
)
1{tj=ϕ(V r(˜̀

j))}1{kj=Φ(V r(˜̀
j))}

]

+ E\(mj ,tj−1,kj−2,`j),
\(ϕ(vr(`j)),Φ(vr(`j)))

[ ∑

˜̀
j 6=`j

∑

(m̃j ,t̃j−1,k̃j−2)6=(mj ,tj−1,kj−2)

W⊗r
Z|U,V

(
zrj |U r(m̃j, t̃j−1, k̃j−2), V r(˜̀

j)
)

× 1{tj=ϕ(V r(˜̀
j))}1{kj=Φ(V r(˜̀

j))}

])

(c)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃+RT+RK)

×
∑

(
ur(mj ,tj−1,kj−2),vr(`j)

)Γ
⊗r
Ur,V r,Zrj

(
ur(mj, tj−1, kj−2), vr(`j), z

r
j

)

× log

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2), vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

+
∑

(m̃j ,t̃j−1,k̃j−2)6=(mj ,tj−1,kj−2)

W⊗r
Z|V
(
zrj |vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

+
∑

˜̀
j 6=`j

W⊗r
Z|U
(
zrj |ur(mj, tj−1, kj−2)

)

2r(R+Rt+Rk+R̃)Q⊗rZ (zrj )
+ 1

)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃+RT+RK)

×
∑

(
ur(mj ,tj−1,kj−2),vr(`j)

)Γ
⊗r
Ur,V r,Zrj

(
ur(mj, tj−1, kj−2), vr(`j), z

r
j

)

× log

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2), vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )
+

W⊗r
Z|V
(
zrj |vr(`j)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )

+
W⊗r
Z|U
(
zrj |ur(mj, tj−1, kj−2)

)

2r(R+Rt+Rk)Q⊗rZ (zrj )
+ 1

)

, Ψ1 + Ψ2, (O.13)
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where (a) follows from Jensen’s inequality, (b) and (c) hold because 1{·} ≤ 1. We define Ψ1

and Ψ2 as

Ψ1 =
∑

(kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃+RT+RK)

×
∑

(
ur(mj ,tj−1,kj−2),vr(`j),zrj

)
∈T (r)

ε

Γ⊗rUr,V r,Zrj

(
ur(mj, tj−1, kj−2), vr(`j), z

r
j

)

× log

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2), vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )
+

W⊗r
Z|V
(
zrj |vr(`j)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )

+
W⊗r
Z|U
(
zrj |ur(mj, tj−1, kj−2)

)

2r(R+Rt+Rk)Q⊗rZ (zrj )
+ 1

)

≤ log

(
2r(RT+RK) × 2−r(1−ε)H(Z|U,V )

2r(R+Rt+Rk+R̃) × 2−r(1+ε)H(Z)
+

2r(RT+RK) × 2−r(1−ε)H(Z|V )

2rR̃ × 2−r(1+ε)H(Z)

+
2−r(1−ε)H(Z|U)

2r(R+Rt+Rk) × 2−r(1+ε)H(Z)
+ 1

)
(O.14)

Ψ2 =
∑

(kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃+RT+RK)

×
∑

(
ur(mj ,tj−1,kj−2),vr(`j),zrj

)
/∈T (r)
ε

Γ⊗rUr,V r,Zrj

(
ur(mj, tj−1, kj−2), vr(`j), z

r
j

)

× log

(
W⊗r
Z|U,V

(
zrj |ur(mj, tj−1, kj−2), vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )
+

W⊗r
Z|V
(
zrj |vr(`j)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )

+
W⊗r
Z|U
(
zrj |ur(mj, tj−1, kj−2)

)

2r(R+Rt+Rk)Q⊗rZ (zrj )
+ 1

)

≤ 2|V ||U ||Z|e−rε2µV,U,Zr log
( 3

µZ
+ 1
)
. (O.15)

In (O.15) µV,U,Z = min
(v,u,z)∈(V,U ,Z)

PV,U,Z(v, u, z) and µZ = min
z∈Z

PZ(z). When r → ∞ then

Ψ2 → 0 and Ψ1 goes to zero when r grows if

R +Rt +Rk + R̃−RT −RK > I(U, V ;Z), (O.16a)

R̃−RT −RK > I(V ;Z), (O.16b)

R +Rt +Rk > I(U ;Z). (O.16c)
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Decoding and Error Probability Analysis: At the end of the block j ∈ J1, BK, using its

knowledge of the key kj−2 generated from the block j − 2, the receiver finds a unique pair

(m̂j, t̂j−1) such that
(
ur(m̂j, t̂j−1, kj−2), yrj

)
∈ T (r)

ε . According to the law of large numbers

and the packing lemma probability of error vanishes when r grows if [85],

R +Rt < I(U ;Y ). (O.17)

We now analyze the probability of error at the encoder and the decoder for key generation.

Let (Lj−1, Tj−1) denote the chosen indices at the encoder and L̂j−1 and T̂j−1 be the estimate

of the index Lj−1 and Tj−1 at the decoder. At the end of block j, by decoding U r
j , the

receiver knows Tj−1 and to find Lj−1 we define the error event,

E =
{(
V r
j−1(L̂j−1), Srj−1, U

r
j−1, Y

r
j−1

)
/∈ T (r)

ε

}
. (O.18)

Also, consider the error events,

E1 =
{(
V r
j−1(`j−1), Srj−1

)
/∈ T (r)

ε′ for all `j−1 ∈ J1, 2rR̃K
}
, (O.19a)

E2 =
{(
V r
j−1(Lj−1), Srj−1, U

r
j−1, Y

r
j−1

)
/∈ T (r)

ε

}
, (O.19b)

E3 =
{(
V r
j−1(˜̀

j−1), U r
j−1, Y

r
j−1

)
∈ T (r)

ε for some `j−1 ∈ B(Tj−1), ˜̀
j−1 6= `j−1

}
, (O.19c)

where ε > ε′ > 0. By the union bound we have,

P (E) ≤ P (E1) + P (Ec1 ∩ E2) + P (E3). (O.20)

Similar to the proof of Lemma 5 one can show that the first term on the RHS of (O.20)

vanishes when r grows if we have (O.11). Following the steps in [85, Sec. 11.3.1], the last

two terms on the RHS of (O.20) go to zero when r grows if,

R̃ > I(S;V ), (O.21a)

R̃−Rt < I(V ;U, Y ). (O.21b)

Applying Fourier-Motzkin to (O.11), (O.16), (O.17), and (O.21) and remarking that the

scheme requires Rt +Rk ≤ RT +RK results in the achievable region in Theorem 13.
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APPENDIX P

PROOF OF THEOREM 14

Fix PU(u), x(u, s), and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation: Let Cn , {Un(m)}m∈M, where M , J1, 2nRK, be a random code-

book consisting of independent random sequences each generated according to
∏n

i=1 PU(ui).

We denote a realization of Cn by Cn , {un(m)}m∈M.

Encoding: To send the message m, the encoder computes un(m) and transmits codeword

xn, where xi = x(ui(m), si). For a fixed codebook Cn, the induced joint distribution over the

codebook is as follows

P
(Cn)
M,Sn,Un,Zn(m, sn, ũn, zn) = 2−nRQ⊗nS (sn)1{ũn=un(m)}W

⊗n
Z|U,S(zn|ũn, sn). (P.1)

Covert Analysis: We now show that this coding scheme guarantees that

ECn
[
D(PZn|Cn||Q⊗nZ )

]
−−→
n→∞

0, (P.2)

where

QZ(·) =
∑

s∈S

∑

u∈U

∑

x∈X
QS(s)PU(u)1{

X=X(U,S)
}WZ|X,S(·|x, s). (P.3)

Then we choose PU and x(u, s) such that it satisfies QZ = Q0. First, consider the following

marginal from (P.1)

PZn|Cn(zn) =
∑

m

∑

sn

2−nRQ⊗nS (sn)W⊗n
Z|U,S

(
zn|un(m), sn

)
(P.4)

=
∑

m

2−nRW⊗n
Z|U
(
zn|un(m)

)
, (P.5)

where WZ|U =
∑

s∈S QS(s)WZ|U,S(z|u, s). By [92, Theorem 1] one can show that (P.2) holds

if,

R > I(U ;Z). (P.6)
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Decoding and Error Probability Analysis: Upon receiving yn, the receiver finds a unique

message m̂ such that
(
un(m̂), yn

)
∈ T (n)

ε . According to the law of large numbers and the

packing lemma, probability of error vanishes when n grows if [85],

R < I(U ;Y ). (P.7)
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APPENDIX Q

PROOF OF THEOREM 15

Consider any sequence of length-n codes for a state-dependent channel with CSI available

causally only at the transmitter such that P
(n)
e ≤ εn, D(PZn||Q⊗n0 ) ≤ δ, and RK/n ≤ λn

with limn→∞ εn = limn→∞ λn = 0. Note that the converse is consistent with the model and

does not require δ to vanish.

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (3.33) as follows,

Aε ,
{
R ≥ 0 : ∃PU,V,S,X,Y,Z ∈ Dε : R ≤ I(U ;Y ) + ε

}
, (Q.1a)

where

Dε =





PU,V,S,X,Y,Z :

PU,V,S,X,Y,Z = QSPV PU |V 1{
X=X(U,S)

}WY,Z|X,S

D (PZ‖Q0) ≤ ε

I(U ;Y ) ≥ I(V ;Z)− 4ε

max{|U| , |V|} ≤ |X |





. (Q.1b)

We next show that if a rate R is achievable then R ∈ Aε for any ε > 0. For any εn > 0 and

ν > 0, we start by upper bounding nR using standard techniques,

nR = H(M)

= H(M |K)

(a)

≤ I(M ;Y n|K) + nεn

=
n∑

i=1

I(M ;Yi|Y i−1, K) + nεn

≤
n∑

i=1

I(M,K, Y i−1;Yi) + nεn
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(b)

≤
n∑

i=1

I(M,K, Si−1;Yi) + nεn

(c)
=

n∑

i=1

I(Ui;Yi) + nεn

= n
n∑

i=1

1

n
I(Ui;Yi) + nεn

= n

n∑

i=1

P(T = i)I(UT ;YT |T = i) + nεn

= nI(UT ;YT |T ) + nεn

≤ nI(UT , T ;YT ) + nεn

(d)
= nI(U ;Y ) + nεn

(e)

≤ nI(U ;Y ) + nε, (Q.2)

where

(a) follows from Fano’s inequality;

(b) follows since (M,K, Y i−1)−(M,K, Si−1)−Yi, note that we also have Vi−(M,K, Si−1)−

Yi, where Vi , (M,K,Zi−1);

(c) follows by defining Ui , (M,K, Si−1);

(d) follows by defining U = (UT , T ) and Y = YT ;

(e) follows by defining ε , max{εn, λn, ν}, where we choose n large enough such that

ν ≥ δ
n
.

Next, we lower bound nR as follows,

nR +RK ≥ H(M,K)

≥ I(M,K;Zn)
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=
n∑

i=1

I(M,K;Zi|Zi−1)

(a)

≥
n∑

i=1

I(M,K,Zi−1;Zi)− δ

(b)
=

n∑

i=1

I(Vi;Zi)− δ

= n

n∑

i=1

P(T = i)I(VT ;ZT |T = i)− δ

= nI(VT ;ZT |T )− δ
(c)

≥ nI(VT , T ;ZT )− 2δ

(d)
= nI(V ;Z)− 2δ (Q.3)

where

(a) and (c) follow from Lemma 6;

(b) follows from the definition of Vi , (M,K,Zi−1), which is defined in the process of

deriving (Q.2);

(d) follows by defining V = (VT , T ) and Z = ZT .

For any ν > 0, choosing n large enough ensures that,

R +
RK

n
≥ I(V ;Z)− 2ν. (Q.4)

Therefore,

R ≥ I(V ;Z)− 2ν − RK

n

≥ I(V ;Z)− 2ν − λn

≥ I(V ;Z)− 3ε, (Q.5)
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where the last inequality follows since ε , max{εn, λn, ν}. To show that D(PZ ||Q0) ≤ ε, note

that for n large enough

D(PZ ||Q0) = D(PZT ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (Q.6)

Combining (Q.2) and (Q.5), and (Q.6) shows that ∀εn, λn, ν > 0, R ≤ max{a : a ∈ Aε}.

Therefore,

R ≤ max

{
a : a ∈

⋂

ε>0

Aε
}
. (Q.7)

Continuity at Zero: One can prove the continuity at zero of Aε by substituting

min{I(U ;Y )−I(U ;S), I(U, V ;Y )−I(U ;S|V )} with I(U ;Y ) and I(V ;Z)−I(V ;S) with I(V ;Z)

in the continuity at zero proof in Appendix N and following the exact same arguments.
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APPENDIX R

PROOF OF THEOREM 16

We adopt a block-Markov encoding scheme in which B independent messages are transmitted

over B channel blocks each of length r, such that n = rB. The warden’s observation is

Zn = (Zr
1 , . . . , Z

r
B), the distribution induced at the output of the warden is PZn , the target

output distribution is Q⊗n0 , and Equation (I.2), describing the distance between the two

distributions, continues to hold. The random code generation is as follows.

Fix PX(x), PV |S(v|s), and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation for Keys: For each block j ∈ J1, BK, let C
(r)
1 ,

{
V r(`j)

}
`j∈L, where

L , J1, 2rR̃K, be a random codebook consisting of independent random sequences each

generated according to P⊗rV , where PV =
∑

s∈S QS(s)PV |S(v|s). We denote a realization

of C
(r)
1 by C(r)

1 ,
{
vr(`j)

}
`j∈L. Partition the set of indices `j ∈ J1, 2rR̃K into bins B(t),

t ∈ J1, 2rRT K by using function ϕ : V r(`j) 7→ J1, 2rRT K through random binning by choosing

the value of ϕ(vr(`j)) independently and uniformly at random for every vr(`j) ∈ Vr. For

each block j ∈ J1, BK, create a function Φ : V r(`j) 7→ J1, 2rRKK through random binning by

choosing the value of Φ(vr(`j)) independently and uniformly at random for every vr(`j) ∈ Vr.

The key kj = Φ(vr(`j)) obtained in block j ∈ J1, BK from the description of the CSI sequence

vr(`j) is used to assist the encoder in block j + 2.

Codebook Generation for Messages: For each block j ∈ J1, BK, let C
(r)
2 ,

{
Xr(mj, tj−1, kj−2)

}
(mj ,tj−1,kj−2)∈M×T ×K, where M , J1, 2rRK, T , J1, 2rRtK, and

K , J1, 2rRkK, be a random codebook consisting of independent random sequences

each generated according to P⊗rX . We denote a realization of C
(r)
2 by C(r)

2 ,
{
xr(mj, tj−1, kj−2)

}
(mj ,tj−1,kj−2)∈M×T ×K. Let, Cr =

{
C

(r)
1 , C

(r)
2

}
and Cr =

{
C(r)

1 , C(r)
2

}
. The

indices (mj, tj−1, kj−2) can be viewed as a two layer binning. We define an ideal PMF for

codebook Cr, as an approximate distribution to facilitate the analysis

Γ
(Cr)
Mj ,Tj−1,Kj−2,Lj ,Xr,V r,Srj ,Z

r
j ,Kj−1,Tj ,Kj

(mj, tj−1, kj−2, `j, x̃
r, ṽr, srj , z

r
j , kj−1, tj, kj)
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= 2−r(R+Rt+Rk+R̃)1{x̃r=xr(mj ,tj−1,kj−2)}1{ṽr=vr(`j)}P
⊗r
S|V (srj |ṽr)W⊗r

Z|X,S(zrj |x̃r, srj)

× 2−rRk1{tj=ϕ(ṽr)}1{kj=Φ(ṽr)}, (R.1)

where WZ|X,S is the marginal distribution of WY,Z|X,S defined in Theorem 16 and

PS|V =
PS,V (s, v)

PV (v)
=

QS(s)PV |S(v|s)∑
s∈S QS(s)PV |S(v|s) . (R.2)

Encoding: We assume that the transmitter and the receiver have access to shared secret

keys k−1 and k0 for the first two blocks, but after the first two blocks they use the key that

they generate from the CSI.

In the first block, to send the message m1 according to k−1, the encoder generates the

index t0 uniformly at random and computes xr(m1, t0, k−1) and transmits it over the channel.

Note that, the index t0 does not convey any useful information.

At the beginning of the second block, to generate a secret key shared between the trans-

mitter and the receiver, the encoder generates the index `1 according to the following distri-

bution with j = 1,

f(`j|srj) =
P⊗rS|V

(
srj |vr(`j)

)
∑

`′∈J1,2rR̃K

P⊗rS|V
(
srj |vr(`′j)

) , (R.3)

where PS|V is defined in (R.2). Then generates the reconciliation index t1 = ϕ
(
vn(`1)

)
;

simultaneously, the transmitter generates a key k1 = Φ
(
vr(`1)

)
from the description of the

CSI of the first block vr(`1) to be used in the next block. To transmit the message m2 and

the reconciliation index t1 according to the key k0, the encoder computes xr(m2, t1, k0) and

transmits it over the channel.

In block j ∈ J3, BK, the encoder first selects the index `j−1 based srj−1 by using the

likelihood encoder described in (R.3) and then generates the reconciliation index tj−1 =

ϕ
(
vr(`j−1)

)
; simultaneously the transmitter generates a key kj−1 = Φ

(
vr(`j−1)

)
from the

description of the CSI of the block j − 1, vr(`j−1), to be used in the next block. Then to
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Block j Block j + 1 Block j + 2

Mj Xr
j Zr

j

Sr
j Tj

Y r
j

Tj−1

Kj−2

V r
j

Mj+1 Xr
j+1 Zr

j+1

Sr
j+1

Y r
j+1

Kj−1

V r
j+1

Mj+2 Xr
j+2 Zr

j+2

Sr
j+2

Y r
j+2

Tj+1

Kj

V r
j+2

Figure R.1. Functional dependence graph for the block-Markov encoding scheme

send the message mj and the reconciliation index tj−1 according to the generated key kj−2

from the previous block, the encoder computes xr(mj, tj−1, kj−2) and transmits it over the

channel.

Define

Υ
(Cr)
Mj ,Tj−1,Kj−2,Xr,Srj ,Lj ,V

r,Zrj ,Kj−1,Tj ,Kj
(mj, tj−1, kj−2, x̃

r, srj , `j, v
r, zrj , kj−1, tj, kj)

, 2−r(R+Rt+Rk)1{x̃r=xr(mj ,tj−1,kj−2)}Q
⊗r
S (srj)f(`j|srj)1{ṽr=vr(`j)}

×W⊗r
Z|X,S(zrj |x̃r, srj)2−rRk1{tj=σ(vr(`j))}1{kj=Φ(vr(`j))}. (R.4)

For a fixed codebook Cr, the induced joint distribution by our code design (i.e. P (Cr)) satisfies

D
(
P

(Cr)
Mj ,Tj−1,Kj−2,Xr,Srj ,Lj ,V

r,Zrj ,Kj−1,Tj ,Kj
||Υ(Cn)

Mj ,Tj−1,Kj−2,Xr,Srj ,Lj ,V
r,Zrj ,Kj−1,Tj ,Kj

)
≤ ε. (R.5)

This intermediate distribution Υ(Cr) approximates the true distribution P (Cr) and will be

used in the sequel for bounding purposes. Expression (R.5) holds because the main difference

between P (Cr) and Υ(Cr) is that the keys Kj−2, Kj−1 and the reconciliation index Tj−1 are

assumed to be uniformly distributed in Υ(Cr), which are made (arbitrarily) nearly uniform

in P (Cr) with appropriate control of rate as in (R.11) and (R.16).

210



Covert Analysis: We now show that this coding scheme guarantees that

ECn [D(PZn|Cn||Q⊗nZ )] −−→
n→∞

0, where Cn is the set of all the codebooks for all blocks, and

QZ(·) =
∑

x∈X

∑

v∈V

∑

s∈S
PX(x)PV (v)PS|V (s|v)WZ|X,S(·|x, s), (R.6)

such that QS(·) =
∑

v∈V PV (v)PS|V (·|v). Then, we choose PX , PV , and PS|V such that it

satisfies QZ = Q0. Similar to (K.10) by using functional dependence graph depicted in

Fig. R.1 one can show that,

D(P
(Cr)
Zn ||Q⊗nZ ) ≤ 2

B∑

j=1

D(P
(Cr)
Zrj ,Kj−1,Tj ,Kj

||Q⊗rZ QKj−1
QTjQKj). (R.7)

To bound the RHS of (R.7) by using Lemma 1 and the triangle inequality we have,

ECr ||PZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1

≤ ECr ||PZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj |Cr ||1 + ECr ||ΓZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1

≤ ECr ||PZrj ,Kj−1,Tj ,Kj |Cr −ΥZrj ,Kj−1,Tj ,Kj |Cr ||1 + ECr ||ΥZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj |Cr ||1

+ ECr ||ΓZrj ,Kj−1,Tj ,Kj |Cr −Q⊗rZ QKj−1
QTjQKj ||1. (R.8)

From (R.5) and the monotonicity of KL-divergence the first term on the RHS of (R.8) goes

to zero when n grows. To bound the second term on the RHS of (R.8) for a fixed codebook

Cr, we have,

Γ
(Cr)
Mj ,Tj−1,Kj−2

= 2−r(R+Rt+Rk) = Υ
(Cr)
Mj ,Tj−1,Kj−2

, (R.9a)

Γ
(Cr)
Xr|Mj ,Tj−1,Kj−2,Srj

= 1{x̃r=xr(mj ,tj−1,kj−2)} = Υ
(Cr)
Xr|Mj ,Tj−1,Kj−2,Srj

, (R.9b)

Γ
(Cr)
Lj |Mj ,Tj−1,Kj−2,Srj ,X

r = f(`j|srj) = Υ
(Cr)
Lj |Mj ,Tj−1,Kj−2,Srj ,X

r , (R.9c)

Γ
(Cr)
V r|Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r = 1{ṽr=vr(`j)} = Υ
(Cr)
V r|Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r , (R.9d)

Γ
(Cr)
Zrj |Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r = W⊗r
Z|X,S = Υ

(Cr)
Zrj |Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r , (R.9e)

Γ
(Cr)
Kj−1|Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r,Zrj
= 2−rRk = Υ

(Cr)
Kj−1|Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r,Zrj
, (R.9f)
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Γ
(Cr)
Tj |Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r,Zrj ,Kj−1
= 1{tj=σ(vr(`j))} = Υ

(Cr)
Tj |Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r,Zrj ,Kj−1
,

(R.9g)

Γ
(Cr)
Kj |Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r,Zrj ,Kj−1,Tj
= 1{kj=Φ(vr(`j))} = Υ

(Cr)
Kj |Mj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r,Zrj ,Kj−1,Tj
,

(R.9h)

where (R.9c) follows from (R.3). Hence,

ECr ||ΥZrj ,Kj−1,Tj ,Kj |Cr − ΓZrj ,Kj−1,Tj ,Kj ||1

≤ ECr ||ΥMj ,Tj−1,Kj−2,Srj ,Lj ,X
r,V r,Zrj ,Kj−1,Tj ,Kj |Cr − ΓMj ,Tj−1,Kj−2,Srj ,Lj ,X

r,V r,Zrj ,Kj−1,Tj ,Kj |Cr ||1
(a)
= ECr ||ΥMj ,Tj−1,Kj−2,Srj |Cr − ΓMj ,Tj−1,Kj−2,Srj |Cr ||1
(b)
= ECr ||Q⊗rS − ΓSrj |Mj=1,Tj−1=1,Kj−2=1,Cr ||1, (R.10)

where (a) follows from (R.9b)-(R.9h) and (b) follows from the symmetry of the codebook

construction with respect to Mj, Tj−1, and Kj−2 and (R.9a). Based on the soft covering

lemma [77, Corollary VII.5] the RHS of (R.10) vanishes if

R̃ > I(S;V ). (R.11)

We now proceed to bound the third term on the RHS of (R.8). First, consider the marginal

ΓZrj ,Kj−1,Tj ,Kj |Cr(z
r
j , kj−1, tj, kj) =

∑

mj

∑

tj−1

∑

kj−2

∑

`j

∑

srj

1

2r(R+Rt+Rk+R̃)
P⊗rS|V

(
srj |V r(`j)

)

×W⊗r
Z|X,S

(
zrj |Xr(mj, tj−1, kj−2), srj

)
2−rRk1{tj=σ(V r(`j))}1{kj=Φ(V r(`j))}

=
∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+Rk+R̃)
W⊗r
Z|X,V

(
zrj |Xr(mj, tj−1, kj−2), V r(`j)

)
2−rRk

× 1{tj=σ(V r(`j))}1{kj=Φ(V r(`j))}, (R.12)

where WZ|X,V (z|x, v) =
∑

s∈S PS|V (s|v)WZ|X,V (z|x, v). To bound the third term

on the RHS of (R.8) by using Pinsker’s inequality, it is sufficient to bound

ECr [D(ΓZrj ,Kj−1,Tj ,Kj |Cr ||Q⊗rZ QKj−1
QTjQKj)] as follows,

ECr [D(ΓZrj ,Kj−1,Tj ,Kj |Cr ||Q⊗rZ QKj−1
QTjQKj)]
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= ECr
[ ∑

zrj ,kj−1,tj ,kj

ΓZrj ,Kj−1,Tj ,Kj |Cr(z
r
j , kj−1, tj, kj) log

(
ΓZrj ,Kj−1,Tj ,Kj |Cr(z

r
j , kj−1, tj, kj)

Q⊗rZ (zrj )QKj−1
(kj−1)QTj(tj)QKj(kj)

)]

= ECr

[ ∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃)
W⊗r
Z|X,V

(
zrj |Xr(mj, tj−1, kj−2), V r(`j)

)

× 1{tj=ϕ(V r(`j))}1{kj=Φ(V r(`j))}

× log

(∑
m̃j

∑
t̃j−1

∑
k̃j−2

∑
˜̀
j

W⊗r
Z|X,V

(
zrj |Xr(m̃j, t̃j−1, k̃j−2), V r(˜̀

j)
)
1{tj=ϕ(V r(˜̀

j))}1{kj=Φ(V r(˜̀
j))}

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

)]

(a)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃)

×
∑

(
xr(mj ,tj−1,kj−2),vr(`j)

)Γ
⊗r
Xr,V r,Zrj

(
xr(mj, tj−1, kj−2), vr(`j), z

r
j

)

× Eϕ(vr(`j))

[
1{tj=ϕ(vr(`j))}

]
× EΦ(vr(`j))

[
1{kj=Φ(vr(`j))}

]

× logE\(mj ,tj−1,kj−2,`j),
\(ϕ(vr(`j)),Φ(vr(`j)))

[
1

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

×
∑

m̃j

∑

t̃j−1

∑

k̃j−2

∑

˜̀
j

W⊗r
Z|X,V

(
zrj |Xr(m̃j, t̃j−1, k̃j−2), V r(˜̀

j)
)
1{tj=ϕ(V r(˜̀

j))}1{kj=Φ(V r(˜̀
j))}

]

(b)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃)

×
∑

(
xr(mj ,tj−1,kj−2),vr(`j)

)Γ
⊗r
Xr,V r,Zrj

(
xr(mj, tj−1, kj−2), vr(`j), z

r
j

)

× 1

2r(RT+RK)
log

1

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

(
W⊗r
Z|X,V

(
zrj |xr(mj, tj−1, kj−2), vr(`j)

)

+ E\(mj ,tj−1,kj−2)

[ ∑

(m̃j ,t̃j−1,k̃j−2)6=(mj ,tj−1,kj−2)

W⊗r
Z|X,V

(
zrj |Xr(m̃j, t̃j−1, k̃j−2), vr(`j)

)
]

+ E \`j ,
\(ϕ(vr(`j)),Φ(vr(`j)))

[ ∑

˜̀
j 6=`j

W⊗r
Z|X,V

(
zrj |xr(mj, tj−1, kj−2), V r(˜̀

j)
)
1{tj=ϕ(V r(˜̀

j))}1{kj=Φ(V r(˜̀
j))}

]
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+ E\(mj ,tj−1,kj−2,`j),
\(ϕ(vr(`j)),Φ(vr(`j)))

[ ∑

˜̀
j 6=`j

∑

(m̃j ,t̃j−1,k̃j−2)6=(mj ,tj−1,kj−2)

W⊗r
Z|X,V

(
zrj |Xr(m̃j, t̃j−1, k̃j−2), V r(˜̀

j)
)

× 1{tj=ϕ(V r(˜̀
j))}1{kj=Φ(V r(˜̀

j))}

])

(c)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃)

×
∑

(
xr(mj ,tj−1,kj−2),vr(`j)

)Γ
⊗r
Xr,V r,Zrj

(
xr(mj, tj−1, kj−2), vr(`j), z

r
j

)

× 1

2r(RT+RK)
log

(
W⊗r
Z|X,V

(
zrj |xr(mj, tj−1, kj−2), vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

+
∑

(m̃j ,t̃j−1,k̃j−2)6=(mj ,tj−1,kj−2)

W⊗r
Z|V
(
zrj |vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )

+
∑

˜̀
j 6=`j

W⊗r
Z|X
(
zrj |xr(mj, tj−1, kj−2)

)

2r(R+Rt+Rk+R̃) ×Q⊗rZ (zrj )
+ 1

)

≤
∑

(zrj ,kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+R̃+RT+RK)

×
∑

(
xr(mj ,tj−1,kj−2),vr(`j)

)Γ⊗rXr,V r,Zrj

(
xr(mj, tj−1, kj−2), vr(`j), z

r
j

)

× log

(
W⊗r
Z|X,V

(
zrj |xr(mj, tj−1, kj−2), vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )
+

W⊗r
Z|V
(
zrj |vr(`j)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )

+
W⊗r
Z|X
(
zrj |xr(mj, tj−1, kj−2)

)

2r(R+Rt+Rk)Q⊗rZ (zrj )
+ 1

)

, Ψ1 + Ψ2, (R.13)

where (a) follows from Jensen’s inequality, (b) and (c) hold because 1{kj=Φ(s̃rj )} ≤ 1. We

define Ψ1 and Ψ2 as

Ψ1 =
∑

(kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+RT+RK)

214



×
∑

(
xr(mj ,tj−1,kj−2),vr(`j),zrj

)
∈T (r)

ε

Γ⊗rXr,V r,Zrj
(xr(mj, tj−1, kj−2), vr(`j), z

r
j )

× log

(
W⊗r
Z|X,V

(
zrj |xr(mj, tj−1, kj−2), vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )
+

W⊗r
Z|V
(
zrj |vr(`j)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )

+
W⊗r
Z|X
(
zrj |xr(mj, tj−1, kj−2)

)

2r(R+Rt+Rk)Q⊗rZ (zrj )
+ 1

)

≤ log

(
2r(RT+RK) × 2−r(1−ε)H(Z|X,V )

2r(R+Rt+Rk+R̃) × 2−r(1+ε)H(Z)

+
2r(RT+RK) × 2−r(1−ε)H(Z|V )

2rR̃ × 2−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|X)

2r(R+Rt+Rk) × 2−r(1+ε)H(Z)
+ 1

)
(R.14)

Ψ2 =
∑

(kj−1,tj ,kj)

∑

mj

∑

tj−1

∑

kj−2

∑

`j

1

2r(R+Rt+2Rk+RT+RK)

×
∑

(
xr(mj ,tj−1,kj−2),vr(`j),zrj

)
/∈T (r)
ε

Γ⊗rXr,V r,Zrj
(xr(mj, tj−1, kj−2), vr(`j), z

r
j )

× log

(
W⊗r
Z|X,V

(
zrj |xr(mj, tj−1, kj−2), vr(`j)

)

2r(R+Rt+Rk+R̃−RT−RK)Q⊗rZ (zrj )
+

W⊗r
Z|V
(
zrj |vr(`j)

)

2r(R̃−RT−RK)Q⊗rZ (zrj )

+
W⊗r
Z|X
(
zrj |xr(mj, tj−1, kj−2)

)

2r(R+Rt+Rk)Q⊗rZ (zrj )
+ 1

)

≤ 2|V ||X||Z|e−rε2µV,X,Zr log
( 3

µZ
+ 1
)
. (R.15)

In (R.15) µX,V,Z = min
(x,v,z)∈(X ,V,Z)

PX,V,Z(x, v, z) and µZ = min
z∈Z

PZ(z). When r → ∞ then

Ψ2 → 0 and Ψ1 goes to zero when r grows if

R +Rt +Rk + R̃−RT −RK > I(X, V ;Z), (R.16a)

R̃−RT −RK > I(V ;Z), (R.16b)

R +Rt +Rk > I(X;Z). (R.16c)

Decoding and Error Probability Analysis: At the end of the block j ∈ J1, BK, using its

knowledge of the key kj−2 generated from the block j − 2, the receiver finds a unique pair

(m̂j, t̂j−1) such that
(
xr(m̂j, t̂j−1, kj−2), yrj

)
∈ T (r)

ε . According to the law of large numbers
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and the packing lemma probability of error vanishes when r grows if [85],

R +Rt < I(X;Y ). (R.17)

We now analyze the probability of error at the encoder and the decoder for key generation.

Let (Lj−1, Tj−1) denote the chosen indices at the encoder and L̂j−1 and T̂j−1 be the estimate

of the index Lj−1 and Tj−1 at the decoder. At the end of block j, by decoding U r
j , the

receiver knows Tj−1 and to find Lj−1 we define the error event,

E =
{(
V r
j−1(L̂j−1), Srj−1, X

r
j−1, Y

r
j−1

)
/∈ T (r)

ε

}
. (R.18)

Also, consider the events

E1 =
{(
V r
j−1(`j−1), Srj−1

)
/∈ T (r)

ε′ for all `j−1 ∈ J1, 2rR̃K
}
, (R.19a)

E2 =
{(
V r
j−1(Lj−1), Srj−1, X

r
j−1, Y

r
j−1

)
/∈ T (r)

ε

}
, (R.19b)

E3 =
{(
V r
j−1(˜̀

j−1), Xr
j−1, Y

r
j−1

)
∈ T (r)

ε for some `j−1 ∈ B(Tj−1), ˜̀
j−1 6= `j−1

}
. (R.19c)

By the union bound we have

P (E) ≤ P (E1) + P (Ec1 ∩ E2) + P (E3). (R.20)

According to [84, Lemma 2] the first term on the RHS of (R.20) vanishes when r grows if

we have (R.11). Following the steps in [85, Sec. 11.3.1], the last two terms on the RHS of

(R.20) go to zero when r grows if we have

R̃ > I(V ;S), (R.21a)

R̃−Rt < I(V ;X, Y ). (R.21b)

Applying Fourier-Motzkin to (R.11), (R.16), (R.17), and (R.21) and remarking that the

scheme requires Rt +Rk ≤ RT +RK results in the region in Theorem 16.
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APPENDIX S

PROOF OF THEOREM 17

Fix PX(x) and ε1 > ε2 > 0 such that, PZ = Q0.

Codebook Generation: Let Cn , {Xn(m)}m∈M, whereM , J1, 2nRK, be a random code-

book consisting of independent random sequences each generated according to
∏n

i=1 PX(xi).

We denote a realization of Cn by Cn , {xn(m)}m∈M.

Encoding: To send the message m, the encoder computes xn(m) and transmits it over

the channel. For a fixed codebook Cn, the induced joint distribution over the codebook is as

follows

P
(Cn)
M,Sn,Xn,Zn(m, sn, x̃n, zn) = 2−nRQ⊗nS (sn)1{x̃n=xn(m)}W

⊗n
Z|X,S(zn|x̃n, sn). (S.1)

Covert Analysis: We now show that this coding scheme guarantees that

ECn
[
D(PZn|Cn||Q⊗nZ )

]
−−→
n→∞

0, (S.2)

where

QZ(·) =
∑

s∈S

∑

x∈X
QS(s)PX(x)WZ|X,S(·|x, s). (S.3)

Then we choose PX such that it satisfies QZ = Q0. Here, PZn|Cn is the marginal distribution

of the joint distribution induced by our code design defined in (S.1) and is as follows,

PZn|Cn(zn) =
∑

m

∑

sn

2−nRQ⊗nS (sn)W⊗n
Z|X,S

(
zn|xn(m), sn

)
(S.4)

=
∑

m

2−nRW⊗n
Z|X
(
zn|xn(m)

)
, (S.5)

where WZ|X =
∑

s∈S QS(s)WZ|X,S(z|x, s). By [92, Theorem 1] one can show that (S.2) holds

if

R > I(X;Z). (S.6)
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Decoding and Error Probability Analysis: Upon receiving yn, the receiver finds a unique

message m̂ such that
(
xn(m̂), yn

)
∈ T (n)

ε . According to the law of large numbers and the

packing lemma, probability of error vanishes when n grows if [85],

R < I(X;Y ). (S.7)
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PROOF OF THEOREM 18

Consider any sequence of length-n codes for a state-dependent channel with CSI available

strictly causally only at the transmitter such that P
(n)
e ≤ εn, D(PZn||Q⊗n0 ) ≤ δ, and RK/n ≤

λn with limn→∞ εn = limn→∞ λn = 0. Note that the converse is consistent with the model

and does not require δ to vanish.

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (3.41) as follows,

Aε ,
{
R ≥ 0 : ∃PV,S,X,Y,Z ∈ Dε : R ≤ I(X;Y ) + ε

}
, (T.1a)

where

Dε =





PV,S,X,Y,Z :

PV,S,X,Y,Z = QSPV PX|VWY,Z|X,S

D (PZ‖Q0) ≤ ε

I(X;Y ) ≥ I(V ;Z)− 4ε

|V| ≤ |X |





. (T.1b)

We next show that if a rate R is achievable then R ∈ Aε for any ε > 0. For any εn > 0 and

ν > 0, we start by upper bounding nR using standard techniques.

nR = H(M)

= H(M |K)

(a)

≤ I(M ;Y n|K) + nεn

=
n∑

i=1

I(M ;Yi|Y i−1, K) + nεn

≤
n∑

i=1

I(M,K, Y i−1;Yi) + nεn
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(b)

≤
n∑

i=1

I(M,K, Si−1;Yi) + nεn

≤
n∑

i=1

I(M,K, Si−1, Zi−1;Yi) + nεn

(c)

≤
n∑

i=1

I(Xi;Yi) + nεn (T.2)

= n

n∑

i=1

1

n
I(Xi;Yi) + nεn

= n

n∑

i=1

P(T = i)I(Xi;Yi|T = i) + nεn

= nI(XT ;YT |T ) + nεn

≤ nI(XT , T ;YT ) + nεn

(d)
= nI(X;Y ) + nεn

(e)

≤ nI(X;Y ) + nε, (T.3)

where

(a) follows from Fano’s inequality;

(b) follows from the Markov chain (M,K, Y i−1)− (M,K, Si−1)− Yi;

(c) follows since Si is independent of
(
M,K, Si−1, Zi−1, Xi(M,Si−1)

)
and therefore

I(M,K, Si−1, Zi−1;Yi|Xi) ≤ I(M,K, Si−1, Zi−1;Yi|Xi, Si) = 0, (T.4)

that is (M,K, Si−1, Zi−1)−Xi− Yi forms a Markov chain, which implies Vi−Xi− Yi,

where Vi , (M,K,Zi−1), also forms a Markov chain;

(d) follows by defining X = (XT , T ) and Y = YT .

(e) follows by defining ε , max{εn, λn, ν}, where we choose n large enough such that

ν ≥ δ
n
.
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Next, we lower bound nR as follows,

nR +RK ≥ H(M,K)

≥ I(M,K;Zn)

=
n∑

i=1

I(M,K;Zi|Zi−1)

(a)

≥
n∑

i=1

I(M,K,Zi−1;Zi)− δ

(b)
=

n∑

i=1

[
I(Vi;Zi)

]
− δ

= nI(VT ;ZT |T )− δ
(c)

≥ nI(VT , T ;ZT )− 2δ

(d)
= nI(V ;Z)− 2δ (T.5)

where

(a) and (c) follow from Lemma 6;

(b) follows by defining Vi , (M,K,Zi−1) which is defined in the process of deriving (T.3);

(d) follows by defining V = (VT , T ) and Z = ZT .

For any ν > 0, choosing n large enough ensures that,

R +
RK

n
≥ I(V ;Z)− 2ν. (T.6)

Therefore,

R ≥ I(V ;Z)− 2ν − RK

n

≥ I(V ;Z)− 2ν − λn

≥ I(V ;Z)− 3ε, (T.7)
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where the last inequality follows since ε , max{εn, λn, ν}. To show that D(PZ ||Q0) ≤ ε, note

that for n large enough

D(PZ ||Q0) = D(PZT ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (T.8)

Combining (T.3) and (T.7), and (T.8) shows that ∀εn, ν > 0, R ≤ max{a : a ∈ Aε}.

Therefore,

R ≤ max

{
a : a ∈

⋂

ε>0

Aε
}
. (T.9)

Continuity at Zero: One can prove the continuity at zero of Aε by substituting

min{I(U ;Y ) − I(U ;S), I(U, V ;Y ) − I(U ;S|V )} with I(X;Y ) and I(V ;Z) − I(V ;S) with

I(V ;Z) in the continuity at zero proof in Appendix N and following the exact same argu-

ments.
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APPENDIX U

PROOF OF THEOREM 19

Fix PS(s), PX(x), and ε > 0 such that, QZ = Q0.

Codebook Generation: Let C
(n)
1 ,

{
Xn(m)

}
m∈Mn

, where Mn = J1, 2nRK, be a random

codebook consisting of independent random sequences each generated according to P⊗nX . We

denote a realization of C
(n)
1 by C(n)

1 ,
{
xn(m)

}
m∈Mn

.

Let C
(n)
2 ,

{
Sn(k)

}
k∈Kn , where Kn = J1, 2nRKK, be a random codebook consisting of

independent random sequences each generated according to P⊗nS . We denote a realization

of C
(n)
2 by C(n)

2 ,
{
sn(k)

}
k∈Kn .

Also, Cn =
{
C

(n)
1 , C

(n)
2

}
denotes a random codebook and Cn =

{
C(n)

1 , C(n)
2

}
denotes a fixed

codebook. The set of all possible values of Cn is denoted by Cn. The codebook construction

described above induces the PMF λ ∈ P(Cn) over the codebook ensemble. For each Cn ∈ Cn

λ(Cn) =
∏

m∈Mn

P⊗nX
(
xn(m)

) ∏

k∈Kn
P⊗nS

(
sn(k)

)
. (U.1)

Encoding: To send the message m, the transmitter computes xn(m) and transmits it over

the channel. Also, given the key k, the jammer computes sn(k) and transmits it over the

channel.

For a fixed codebook Cn, the induced joint distribution is

P
(Cn)
KMSnXnZn(k,m, s̃n, x̃n, zn) =2−n(RK+R)1{

s̃n=sn(k)
}⋂{

x̃n=xn(m)
}W⊗n

Z|XS(zn|x̃n, s̃n). (U.2)

Considering the random codebook generation, we have

P (Cn, k,m, s̃n, x̃n, zn) = λ(Cn)P (Cn)(k,m, s̃n, x̃n, zn), (U.3)

where λ ∈ P(Cn) is defined in (U.1).

Covert Analysis: Henceforth, we use P (Cn) when the codebook is fixed, and we use P·|Cn

when the codebook is random. Consider a scenario in which the jammer selects a codeword
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from its codebook (i.e. C(n)
2 ) according to the key k, but the transmitter chooses the innocent

sequence xn0 as the channel input. For this scenario for a fixed codebook C(n)
2 , the induced

joint distribution is as follows

Υ
(Cn)
KSnZn(k, s̃n, zn) =

1

2nRK
1{s̃n=sn(k)}W

⊗n
Z|X=x0,S

(
zn|xn0 , s̃n

)
. (U.4)

Therefore, the distribution induced at the output of the warden is

Υ
(Cn)
Zn (zn) =

1

2nRK

2nRK∑

j=1

W⊗n
Z|X=x0,S

(
zn|xn0 , sn(k)

)
. (U.5)

For this scenario if RK > IΥ(S;Z) then according to soft covering lemma [83, Theorem 4]

or [77, Corollary VII.4], we have

ECnV
(
ΥZn|Cn , Q

⊗n
0

)
−−→
n→∞

0, (U.6)

where

Q0(·) =
∑

s∈S
PS(s)WZ|XS

(
· |x0, s

)
. (U.7)

Note that if RK < IΥ(S;Z) according to Shannon’s channel coding theorem, the warden

might be able to decode J , which reduces the problem to the point to point channel for

which the covert rate will be zero.

From (U.2) the distribution induced at the output of the channel by our code design is

as follows

PZn|Cn(zn) =
2nRK∑

k=1

2nR∑

m=1

2−n(RK+R)W⊗n
Z|XS(zn|Xn(m), Sn(k)). (U.8)

Let Q⊗nZ =
n∏
i=1

QZ where

QZ(·) =
∑

s∈S

∑

x∈X
PS(s)PX|S(x|s)WZ|XS

(
· |x, s

)
. (U.9)
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One can show that ECn [D(PZn|Cn||Q⊗nZ )] −−→
n→∞

0 if

RK > IP (S;Z), (U.10a)

R > IP (X;Z), (U.10b)

RK +R > IP (X,S;Z). (U.10c)

Now, by using the triangle inequality we have

ECnV
(
PZn|Cn ,ΥZn|Cn

)
≤ ECnV

(
PZn|Cn , Q

⊗n
0

)
+ ECnV

(
ΥZn|Cn , Q

⊗n
0

)
. (U.11)

Using Pinsker inequality the first term on the RHS of (U.11) vanishes when n grows if (U.10)

holds, and we choose PS and PX such that QZ = Q0. Also, from (U.6) the second term on

the RHS of (U.11) vanishes when n grows. Therefore, from (U.11) and using Lemma 1 we

have ECnD(PZn|Cn||Q⊗nZ ) −−→
n→∞

0.

Decoding and Error Probability Analysis: By following the same steps as in [37], the

probability of error vanishes when n grows if

R < IP (X;Y |S). (U.12)
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PROOF OF THEOREM 20

To prove the upper bound for the case that the jammer knows in which blocks the transmitter

is communicating with the receiver and has an unlimited source of local randomness and

transmits an i.i.d. sequence when communication is not happening, consider any sequence of

codes with length n such that P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ where limn→∞ εn = 0. Note

that the converse is consistent with the model and does not require δ to vanish.

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (4.6) as follows.

Aε =





(R,RK) ≥ 0 : ∃PQSXY Z ∈ Dε :

R ≤ I(X;Y |S,Q) + ε

RK ≥ max{I(S;Z|Q), I(X,S;Z|Q)− I(X;Y |S,Q)} − 2ε





, (V.1a)

where

Dε =





PQSXY Z :

PQSXY Z = PQPS|QPX|QWY Z|XS

I(X;Y |S,Q) ≥ I(X;Z|Q)− 2ε

D (PZ‖Q0) ≤ ε





. (V.1b)

We next show that if a rate R is achievable, then R ∈ Aε for any ε > 0. For any εn > 0, we

start by upper bounding nR using standard techniques.

nR = H(M)

(a)

≤ H(M |Sn)−H(M |Y n, Sn) + nεn

= I(M ;Y n|Sn) + nεn
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=
n∑

i=1

I(M ;Yi|Y i−1, Sn) + nεn

=
n∑

i=1

[H(Yi|Y i−1, Sn)−H(Yi|M,Y i−1, Sn)] + nεn

(b)

≤
n∑

i=1

[H(Yi|Si)−H(Yi|M,Y i−1, Sn, Xn)] + nεn

=
n∑

i=1

[H(Yi|Si)−H(Yi|Si, Xi)] + nεn

=
n∑

i=1

I(Xi;Yi|Si) + nεn

= n
n∑

i=1

1

n
I(Xi;Yi|Si) + nεn

= n
n∑

i=1

P(Q = i)I(XQ;YQ|SQ, Q = i) + nεn

= nI(XQ;YQ|SQ, Q) + nεn

(c)
= nI(X;Y |S,Q) + nεn (V.2)

(d)

≤ nI(X;Y |S,Q) + nε (V.3)

where

(a) follows from Fano’s inequality and independence of M from Sn;

(b) holds because conditioning does not increase entropy;

(c) follows by defining XQ = X, YQ = Y , and SQ = S;

(d) follows by defining ε , max{εn, ν ≥ δ
n
}.

We also have,

n(R +RK) ≥ H(M,K)

= H(M,K)
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≥ I(M,K;Zn)

(a)
= I(M,K,Xn, Sn;Zn)

≥ I(Xn, Sn;Zn)

=
n∑

i=1

[H(Zi|Zi−1)−H(Zi|Zi−1, Xn, Sn)]

(b)

≥
n∑

i=1

[H(Zi)−H(Zi|Xi, Si)]− δ

=
n∑

i=1

I(Xi, Si;Zi)− δ

= n
n∑

i=1

1

n
I(Xi, Si;Zi)− δ

= n
n∑

i=1

P(Q = i)I(XQ, SQ;ZQ|Q = i)− δ

= nI(XQ, SQ;ZQ|Q)− δ
(c)
= nI(X,S;Z|Q)− δ, (V.4)

where

(a) follows because Xn is a function of M and Sn is a function of K;

(b) follows from [80, Lemma 3];

(c) follows by defining XQ = X, ZQ = Z, and SQ = S.

From (V.4) for any ν > 0, choosing n large enough ensures that

R +RK ≥ I(X,S;Z|Q)− ν,

≥ I(X,S;Z|Q)− ε, (V.5)

where the last equality follows from the definition of ε , max{εn, ν}. We now have,

nRK ≥ H(K)

228



≥ I(K;Zn)

(a)
= I(K,Sn;Zn)

≥ I(Sn;Zn)

=
n∑

i=1

[H(Zi|Zi−1)−H(Zi|Zi−1, Sn)]

(b)

≥
n∑

i=1

[H(Zi)−H(Zi|Si)]− δ

=
n∑

i=1

I(Si;Zi)− δ

= n
n∑

i=1

1

n
I(Si;Zi)− δ

= n
n∑

i=1

P(Q = i)I(SQ;ZQ|Q = i)− δ

= nI(SQ;ZQ|Q)− δ
(d)
= nI(S;Z|Q)− δ (V.6)

where

(a) follows because Sn is a function of J ;

(b) follows from [80, Lemma 3] and the fact that conditioning does not increase the entropy;

(c) follows by defining ZQ = Z and SQ = S.

From (V.6) for any ν > 0, choosing n large enough ensures that

RK ≥ I(S;Z|Q)− ν,

≥ I(S;Z|Q)− ε, (V.7)

where the last equality follows from the definition of ε , max{εn, ν}. Similarly, one can show

that,

R ≥ I(X;Z|Q)− ε, (V.8)
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To show that D(PZ ||Q0) ≤ ε, note that for n large enough

D(PZ ||Q0) = D(PZQ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (V.9)

Continuity at Zero: The proof for continuity at zero is similar to that of Appendix N.

Combining (V.3), (V.5), (V.7), and (V.8) shows that ∀εn, ν > 0, CB-J ⊆ Aε.
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Fix PS(s), PX(x), and ε > 0 such that, QZ = Q0.

Codebook Generation: Let C
(n)
1 ,

{
Xn(m)

}
m∈Mn

, where Mn = J1, 2nRK, be a random

codebook consisting of independent random sequences each generated according to P⊗nX . We

denote a realization of C
(n)
1 by C(n)

1 ,
{
xn(m)

}
m∈Mn

.

Let C
(n)
2 ,

{
Sn(j)

}
j∈Jn , where Jn = J1, 2nRJ K, be a random codebook consisting of

independent random sequences each generated according to P⊗nS . We denote a realization

of C
(n)
2 by C(n)

2 ,
{
sn(j)

}
j∈Jn .

Also, Cn =
{
C

(n)
1 , C

(n)
2

}
denotes a random codebook and Cn =

{
C(n)

1 , C(n)
2

}
denotes a fixed

codebook. The set of all possible values of Cn is denoted by Cn. The codebook construction

described above induces the PMF λ ∈ P(Cn) over the codebook ensemble. For each Cn ∈ Cn

λ(Cn) =
∏

m∈Mn

P⊗nX
(
xn(m)

) ∏

j∈Jn
P⊗nS

(
sn(j)

)
. (W.1)

Encoding: To send the message m, the transmitter computes xn(m) and transmits it over

the channel when the transmitter is communicating the jammer transmits the innocent sym-

bol sn0 . When the transmitter is not communicating with the receiver, and it transmits the

innocent sequence xn0 , the jammer computes a codeword sn(j) from its codebook according

to the local randomness j and transmits it over the channel.

For a fixed codebook Cn, the induced joint distribution when the transmitter is commu-

nicating with the receiver is

P
(Cn)
MXnZn(m, x̃n, zn) =2−nR1{

x̃n=xn(m)
}W⊗n

Z|XS=s0
(zn|x̃n, sn0 ). (W.2)

Considering the random codebook generation, we have

P (Cn, k,m, s̃n, x̃n, zn) = λ(Cn)P (Cn)(k,m, s̃n, x̃n, zn), (W.3)
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where λ ∈ P(Cn) is defined in (W.1).

Covert Analysis: Henceforth, we use P (Cn) when the codebook is fixed, and we use P·|Cn

when the codebook is random. Consider a scenario in which the jammer selects a codeword

from its codebook (i.e. C(n)
2 ) according to the local randomness j, but the transmitter chooses

the innocent sequence xn0 as the channel input. For this scenario for a fixed codebook C(n)
2 ,

the induced joint distribution is as follows

Υ
(Cn)
JSnZn(j, s̃n, zn) =2−nRJ1{

s̃n=sn(j)
}W⊗n

Z|X=x0,S
(zn|xn0 , s̃n). (W.4)

Therefore, the distribution induced at the output of the warden is

Υ
(Cn)
Zn (zn) =

1

2nRJ

2nRJ∑

j=1

W⊗n
Z|X=x0,S

(
zn|xn0 , sn(j)

)
. (W.5)

Also, from (W.2) the distribution induced at the output of the channel by our code design

is as follows

PZn|Cn(zn) =
2nR∑

m=1

2−nRW⊗n
Z|XS=s0

(zn|Xn(m), sn0 ). (W.6)

Here, the goal is to show that ECn [D(PZn|Cn||ΥZn|Cn)] −−→
n→∞

0. Now, by using the triangle

inequality and Lemma 1 we have

ECnV
(
PZn|Cn ,ΥZn|C(n)

2

)
≤ ECnV

(
PZn|Cn , Q

⊗n
1

)
+ ECnV

(
Υ
Zn|C(n)

2
, Q⊗n2

)
, (W.7)

where

Q1(·) =
∑

x∈X
PX(x)WZ|XS

(
· |x, s0

)
, (W.8)

Q2(·) =
∑

s∈S
PS(s)WZ|XS

(
· |x0, s

)
. (W.9)

Therefore, we should have Q1 = Q2. According to the soft covering lemma [83, Theorem 4]

or [77, Corollary VII.4] the first and the second term on the RHS of (W.7) vanishes when n

grows if

R > IP (X;Z), (W.10a)
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RJ > IΥ(S;Z). (W.10b)

Decoding and Error Probability Analysis: By following the same steps as in [37], the

probability of error vanishes when n grows if

R < IP (X;Y ). (W.11)

Combining (W.10) and (W.11) and noting that Q1 = Q2 completes the proof of Theorem 21.
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APPENDIX X

PROOF OF THEOREM 22

For simplicity, we consider the case where the time-sharing random variable Q is constant.

One can incorporate this into our proof by generating its i.i.d. copies, and sharing it among

all parties and conditioning everything on it.

Fix PS1 , PX , PS2 , and ε > 0 such that, QZ = Q0.

Random Codebook Generation for Communication Mode:

• Let C
(n)
1 ,

{
Xn(m)

}
m∈Mn

, where Mn = J1, 2nRK, be a random codebook consisting

of independent random sequences each generated according to P⊗nX . We denote a

realization of C
(n)
1 by C(n)

1 ,
{
xn(m)

}
m∈Mn

.

• Let C
(n)
2 ,

{
Sn1 (k)

}
k∈Kn , where Kn = J1, 2nRKK, be a random codebook consisting

of independent random sequences each generated according to P⊗nS1
. We denote a

realization of C
(n)
2 by C(n)

2 ,
{
sn1 (k)

}
k∈Kn .

Random Codebook Generation for No-Communication Mode:

• Let C
(n)
3 ,

{
Sn2 (k)

}
k∈K be a random codebook consisting of independent random

sequences, each generated according to P⊗nS2
. We denote a realization of C

(n)
3 by C(n)

3 ,
{
sn2 (k)

}
k∈K.

Also, Cn =
{
C

(n)
1 , C

(n)
2 , C

(n)
3

}
denotes a random codebook and Cn =

{
C(n)

1 , C(n)
2 , C(n)

3

}
denotes

a fixed codebook. The set of all possible values of Cn is denoted by Cn. The codebook

construction described above induces the PMF λ ∈ P(Cn) over the codebook ensemble. For

each Cn ∈ Cn

λ(Cn) =
∏

m∈Mn

P⊗nX
(
xn(m)

) ∏

k′∈Kn
P⊗nS

(
sn(k′)

) ∏

k′′∈Kn
P⊗nS

(
sn(k′′)

)
. (X.1)
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Encoding for Communication Mode: To send the message m, the transmitter computes

xn(m) and transmits it over the channel. Also, given the key k, the jammer computes sn1 (k)

and transmits it over the channel.

For a fixed codebook Cn, the induced joint distribution is

P
(Cn)
KMSn1X

nZn(k,m, s̃n1 , x̃
n, zn) =2−n(RK+R)1{

s̃n1 =sn1 (k)
}⋂{

x̃n=xn(m)
}W⊗n

Z|XS(zn|x̃n, s̃n1 ). (X.2)

Considering the random codebook generation, we have

P (Cn, k,m, s̃n, x̃n, zn) = λ(Cn)P (Cn)(k,m, s̃n, x̃n, zn), (X.3)

where λ ∈ P(Cn) is defined in (X.1).

Encoding for No-Communication Mode: When the transmitter is not communicating

with the receiver, and therefore it transmits xn0 , the jammer computes a sequence sn2 (k)

according to the key k, and transmits it over the channel. For this scenario for a fixed

codebook Cn, the induced joint distribution is as follows

Υ
(Cn)
KSn2 Z

n(k, s̃n2 , z
n) =

1

2nRK
1{s̃n2 =sn2 (k)}W

⊗n
Z|X=x0,S

(
zn|xn0 , s̃n2

)
. (X.4)

Therefore, the distribution induced at the output of the warden is

Υ
(Cn)
Zn (zn) =

1

2nRK

2nRK∑

j=1

W⊗n
Z|X=x0,S

(
zn|xn0 , sn2 (k)

)
. (X.5)

For this scenario if RK > IΥ(S2;Z) then according to soft covering lemma [83, Theorem 4]

or [77, Corollary VII.4], we have

ECnV
(
ΥZn|Cn , Q

⊗n
0

)
−−→
n→∞

0, (X.6)

where

Q0(·) =
∑

s2∈S2

PS2(s2)WZ|X=0,S2

(
· |x0, s2

)
. (X.7)
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Note that if RK < IΥ(S2;Z) according to Shannon’s channel coding theorem, the warden

might be able to decode J , which reduces the problem to the point to point channel for

which the covert rate will be zero.

Covert Analysis: Henceforth, we use P (Cn) when the codebook is fixed, and we use P·|Cn

when the codebook is random. Our goal is to show that the coding scheme described above

guarantees that

ECn [D(PZn|Cn||ΥZn|Cn)] −−→
n→∞

0. (X.8)

To show that (X.8) holds by using Lemma 1 and the triangle inequality we have

ECnV
(
PZn|Cn ,ΥZn|Cn

)
≤ ECnV

(
PZn|Cn , Q

⊗n
0

)
+ ECnV

(
ΥZn|Cn , Q

⊗n
0

)
. (X.9)

From (X.6) the second term on the RHS of (X.9) vanishes when n grows. To bound the first

term on the RHS of (X.9) we first show that the coding scheme described above guarantees

that

ECn
[
D
(
PZn|Cn||Q⊗nZ

)]
−−→
n→∞

0, (X.10)

where

PZn|Cn(zn) =
2nRK∑

k=1

2nR∑

m=1

2−n(RK+R)W⊗n
Z|XS(zn|Xn(m), Sn1 (k)), (X.11)

QZ(·) =
∑

s1∈S1

∑

x∈X
PS1(s1)PX(x)WZ|XS

(
· |x, s1

)
. (X.12)

Then, we choose PS1 , PX , and PS2 such that QZ = Q0. One can show that

ECn
[
D
(
PZn|Cn||Q⊗nZ

)]
−−→
n→∞

0 if

RK > IP (S1;Z), (X.13a)

R > IP (X;Z), (X.13b)

RK +R > IP (X,S1;Z). (X.13c)
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Therefore, from (X.9) and using Lemma 1 we have ECn
[
D
(
PZn|Cn||Q⊗nZ

)]
−−→
n→∞

0.

Decoding and Error Probability Analysis: By following the same steps as in [37], the

probability of error vanishes when n grows if

R < IP (X;Y |S1). (X.14)
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APPENDIX Y

PROOF OF THEOREM 23

Fix PS1 , PX|S1 , PS2 , and ε > 0 such that, QZ = Q0.

Random Codebook Generation for Communication Mode:

• Let C
(n)
1 ,

{
Sn1 (k)

}
k∈Kn , where Kn = J1, 2nRKK, be a random codebook consisting

of independent random sequences each generated according to P⊗nS1
. We denote a

realization of C
(n)
1 by C(n)

1 ,
{
sn1 (k)

}
k∈Kn .

• Fix C(n)
1 and for every k ∈ Kn let C

(n)
2 ,

{
Xn(k,m)

}
m∈Mn

, where Mn = J1, 2nRK,

be a random codebook consisting of independent random sequences each generated

according to P⊗nX|S1=s1(k). We denote a realization of C
(n)
2 by C(n)

2 ,
{
xn(k,m)

}
m∈M.

Random Codebook Generation for No-Communication Mode:

• Let C
(n)
3 ,

{
Sn2 (k)

}
k∈K be a random codebook consisting of independent random

sequences, each generated according to P⊗nS2
. We denote a realization of C

(n)
3 by C(n)

3 ,
{
sn2 (k)

}
k∈K.

Also, Cn =
{
C

(n)
1 , C

(n)
2 , C

(n)
3

}
denotes a random codebook and Cn =

{
C(n)

1 , C(n)
2 , C(n)

3

}

denotes a fixed codebook. The set of all possible values of Cn is denoted by Cn. The

codebook construction described above induces the PMF λ ∈ P(Cn) over the codebook

ensemble. For each Cn ∈ Cn

λ(Cn) =
∏

k∈Kn
P⊗nS

(
sn(k)

) ∏

(k′,m)∈Kn×Mn

P⊗nX|S

(
xn
(
k′,m

)∣∣sn(k′)
) ∏

k′′∈Kn
P⊗nS

(
sn(k′′)

)
. (Y.1)

Encoding for Communication Mode: The jammer computes sn(k) according to the shared

key k and transmits it over the channel. Given the key k, the encoder computes xn(k,m)

according to the message m and transmits it over the channel.
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For a fixed codebook Cn, the induced joint distribution is

P
(Cn)
K,M,Sn,Xn,Zn(k,m, s̃n, x̃n, zn) =2−n(RK+R)1{

s̃n=sn(k)
}⋂{

x̃n=xn(k,m)
}W⊗n

Z|XS(zn|x̃n, s̃n).

(Y.2)

Considering the random codebook generation, we have

P (Cn, k,m, s̃n, x̃n, zn) = λ(Cn)P (Cn)(k,m, s̃n, x̃n, zn), (Y.3)

where λ ∈ P(Cn) is defined in (Y.1).

Encoding for No-Communication Mode: When the transmitter is not communicating

with the receiver, and therefore it transmits xn0 , the jammer computes a sequence sn2 (k)

according to the key k, and transmits it over the channel. For this scenario for a fixed

codebook Cn, the induced joint distribution is as follows

Υ
(Cn)
KSn2 Z

n(k, s̃n2 , z
n) =

1

2nRK
1{sn2 =sn2 (k)}W

⊗n
Z|XS

(
zn|xn0 , s̃n2

)
. (Y.4)

Therefore, the distribution induced at the output of the warden for a random codebook is

ΥZn|Cn(zn) = 2−nRK
2nRK∑

k=1

W⊗n
Z|XS

(
zn|xn0 , Sn2 (k)

)
. (Y.5)

For this scenario if RK > IΥ(S2;Z) according to soft covering lemma [83, Theorem 4] or [77,

Corollary VII.4], we have

ECn
[
V
(
ΥZn|Cn , Q

⊗n
0

)]
−−→
n→∞

0, (Y.6)

where

Q0(·) =
∑

s2∈S2

PS2(s2)WZ|XS
(
· |x0, s2

)
. (Y.7)

Note that if RK < IΥ(S2;Z) according to Shannon’s channel coding theorem, the warden

might be able to decode K, which reduces the problem to the point to point channel for

which the covert rate will be zero.
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Covert Analysis: Our goal is to show that the coding scheme described above guarantees

that

ECn [D(PZn|Cn||ΥZn|Cn)] −−→
n→∞

0. (Y.8)

To show that (Y.8) holds by using Lemma 1 and the triangle inequality we have

ECn
[
V
(
PZn|Cn ,ΥZn|Cn

)]
≤ ECn

[
V
(
PZn|Cn , Q

⊗n
0

)]
+ ECn

[
V
(
ΥZn|Cn , Q

⊗n
0

)]
. (Y.9)

From (Y.6) the second term on the RHS of (Y.9) vanishes when n grows. To bound the first

term on the RHS of (Y.9) we first show that the coding scheme described above guarantees

that

ECn [D(PZn|Cn||Q⊗nZ )] −−→
n→∞

0, (Y.10)

where Q⊗nZ =
n∏
i=1

QZ and

QZ(·) =
∑

s1∈S1

∑

x∈X
PS1(s1)PX|S1(x|s1)WZ|XS

(
· |x, s1

)
. (Y.11)

Then, we choose PS1 , PX|S1 , and PS2 such that QZ = Q0. From (Y.2) we have,

PZn|Cn(zn) =2−n(RK+R)

2nRK∑

k=1

2nR∑

m=1

W⊗n
Z|XS

(
zn|Xn(k,m), Sn1 (k)

)
. (Y.12)

Therefore,

ECr
[
D
(
PZn|Cr ||Q⊗nZ

)]

= ECr

[∑

zn

PZn|Cr(z
n) log

PZn|Cr(z
n)

Q⊗nZ (zn)

]

= ECr

[∑

zn

1

2n(RK+R)

∑

(k,m)

W⊗n
Z|XS

(
zn|Xn(k,m), Sn1 (k)

)

× log

1
2n(RK+R)

∑
(k̃,m̃)

W⊗n
Z|XS

(
zn|Xn(k̃, m̃), Sn1 (k̃)

)

Q⊗nZ (zn)

]
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(a)

≤ 1

2n(RK+R)

∑

(k,m)

∑

(xn,sn1 ,z
n)

P⊗nXS1Z

(
xn(k,m), sn1 (k), zn

)

× logE\(k,m)

[ ∑
(k̃,m̃)

W⊗n
Z|XS

(
zn|Xn(k̃, m̃), Sn1 (k̃)

)

2n(RK+R)Q⊗nZ (zn)

]

=
1

2n(RK+R)

∑

(k,m)

∑

(xn,sn1 ,z
n)

P⊗nXS1Z

(
xn(k,m), sn1 (k), zn

)
logE\(k,m)

[
W⊗n
Z|XS

(
zn|xn(k,m), sn1 (k)

)

2n(RK+R)Q⊗nZ (zn)

+

∑
m̃6=m

W⊗n
Z|XS

(
zn|Xn(k, m̃), sn1 (k)

)

2n(RK+R)Q⊗nZ (zn)
+

∑
k̃ 6=k

∑
m̃

W⊗n
Z|XS

(
zn|Xn(k̃, m̃), Sn1 (k̃)

)

2n(RK+R)Q⊗nZ (zn)

]

(b)

≤ 1

2n(RK+R)

∑

(k,m)

∑

(xn,sn1 ,z
n)

P⊗nX,S1,Z

(
xn(k,m), sn1 (k), zn

)
log

[
W⊗n
Z|XS

(
zn|xn(k,m), sn1 (k)

)

2n(RK+R)Q⊗nZ (zn)

+

∑
m̃6=m

W⊗n
Z|S
(
zn|sn1 (k)

)

2n(RK+R)Q⊗nZ (zn)
+ 1

]

≤ 1

2n(RK+R)

∑

(k,m)

∑

(xn,sn1 ,z
n)

P⊗nXS1Z

(
xn(k,m), sn1 (k), zn

)
log

[
W⊗n
Z|XS

(
zn|xn(k,m), sn1 (k)

)

2n(RK+R)Q⊗nZ (zn)

+
W⊗n
Z|S
(
zn|sn1 (k)

)

2nRKQ⊗nZ (zn)
+ 1

]

, Ψ1 + Ψ2 (Y.13)

where (a) follows from Jensen’s inequality and (b) follows by taking expectation with respect

to \(k,m) and by removing some terms from the denominator of the first term in the log

function and adding one term to the nominator of the second term in the log function. We

defined Ψ1 and Ψ2 as

Ψ1 =
1

2n(RK+R)

∑

(k,m)

∑

(xn,sn1 ,z
n)∈T (r)

ε

P⊗nXS1Z

(
xn(k,m), sn1 (k), zn

)

× log

[
W⊗n
Z|XS

(
zn|xn(k,m), sn1 (k)

)

2n(RK+R)Q⊗nZ (zn)
+
W⊗n
Z|S
(
zn|sn1 (k)

)

2nRKQ⊗nZ (zn)
+ 1

]

≤ log

(
2−r(1−ε)H(Z|X,S1)

2n(RK+R)2−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|S1)

2nRK2−r(1+ε)H(Z)
+ 1

)
(Y.14)
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and

Ψ2 =
1

2n(RK+R)

∑

(k,m)

∑

(xn,sn1 ,z
n)/∈T (r)

ε

P⊗nXS1Z

(
xn(k,m), sn1 (k), zn

)

× log

[
W⊗n
Z|XS

(
zn|xn(k,m), sn1 (k)

)

2n(RK+R)Q⊗nZ (zn)
+
W⊗n
Z|S
(
zn|sn1 (k)

)

2nRKQ⊗nZ (zn)
+ 1

]

≤ 2|X ||S1||Z|e−nε
2µX,S1,Zn log(

2

µZ
+ 1). (Y.15)

where

µZ = min
z∈Z

s.t.Qz>0

Q(z) (Y.16)

µX,S,Z = min
(x,s1,z)∈(X ,S1,Z)

s.t.Q(x,s1,z)>0

Q(x, s1, z) (Y.17)

When n→∞ then Ψ2 → 0 and Ψ1 → 0 when n grows if

RK > IP (S1;Z), (Y.18a)

RK +R > IP (X,S1;Z). (Y.18b)

Decoding and Error Probability Analysis: By following the same steps as in [37], the

probability of error vanishes when n grows if

R < IP (X;Y |S1). (Y.19)
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APPENDIX Z

PROOF OF THEOREM 24

To prove the upper bound for the case that the jammer has an unlimited source of local

randomness and transmits an i.i.d. sequence when communication is not happening, consider

any sequence of codes with length n such that P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ where

limn→∞ εn = 0. Note that the converse is consistent with the model and does not require δ

to vanish.

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (4.38) as follows.

Aε =





(R,RK) ≥ 0 : ∃PSXY Z ∈ Dε :

R ≤ I(X;Y |S) + ε

RK ≥ max{I(X,S;Z)− I(X;Y |S), I(S;Z)} − 3ε





, (Z.1a)

where

Dε =





PSXY Z :

PSXY Z = PSPX|SWY Z|XS

D (PZ‖Q0) ≤ ε





. (Z.1b)

We next show that if a rate R is achievable, then R ∈ Aε for any ε > 0. For any εn > 0, we

start by upper bounding nR using standard techniques.

nR = H(M)

(a)

≤ H(M |Sn)−H(M |Y n, Sn) + nεn

= I(M ;Y n|Sn) + nεn

=
n∑

i=1

I(M ;Yi|Y i−1, Sn) + nεn
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=
n∑

i=1

[H(Yi|Y i−1, Sn)−H(Yi|M,Y i−1, Sn)] + nεn

(b)

≤
n∑

i=1

[H(Yi|Si)−H(Yi|M,Y i−1, Sn, Xn)] + nεn

=
n∑

i=1

[H(Yi|Si)−H(Yi|Si, Xi)] + nεn

=
n∑

i=1

I(Xi;Yi|Si) + nεn

(c)

≤ nI(X̃; Ỹ |S̃) + nεn (Z.2)

(d)

≤ nI(X̃; Ỹ |S̃) + nε (Z.3)

where

(a) follows from Fano’s inequality and independence of M from Sn;

(b) holds because conditioning does not increase entropy;

(c) follows from the concavity of mutual information, with the resulting random variables

X̃, S̃, Ỹ , and Z̃ to having the following distributions

P̃X,S(x, s) ,
1

n

n∑

i=1

PXi,Si(x, s), (Z.4a)

P̃X,S,Y,Z(x, s, y, z) , P̃X,S(x, s)WY Z|XS(y, z|x, s); (Z.4b)

(d) follows by defining ε , max{εn, ν ≥ δ
n
}.

We also have,

n(R +RK) ≥ H(M,K)

= H(M,K)

≥ I(M,K;Zn)

(a)
= I(M,K,Xn, Sn;Zn)
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≥ I(Xn, Sn;Zn)

=
∑

xn

∑

sn

∑

zn

P (xn, sn, zn) log
W⊗n
Z|XS(zn|xn, sn)

P (zn)

≥
∑

xn

∑

sn

∑

zn

P (xn, sn, zn) log
W⊗n
Z|XS(zn|xn, sn)

P (zn)
+ D(PZn||Q⊗n0 )− δ

≥
n∑

i=1

∑

xi

∑

si

∑

zi

P (xi, si, zi) log
WZ|XS(zi|xi, si)

Q0(zi)
− δ

=
n∑

i=1

D(PXi,Si,Zi||PXi,SiQ0)− δ

(b)

≥ nD(P̃X,S,Z ||P̃X,SQ0)− δ

= nD(P̃X,S,Z ||P̃X,SP̃Z) + D(P̃Z ||Q0)− δ
(c)

≥ nI(X̃, S̃; Z̃)− 2δ (Z.5)

where

(a) follows because Xn is a function of (M,K, Sn) and Sn is a function of K;

(b) follows from Jensen’s inequality, the convexity of D(·||·), and concavity of H(·);

(c) follows from the definition of random variables X̃, S̃, Ỹ , and Z̃ in (Z.4).

From (Z.5) for any ν > 0, choosing n large enough ensures that

R +RK ≥ I(X̃, S̃; Z̃)− 2ν,

≥ I(X̃, S̃; Z̃)− 2ε, (Z.6)

where the last equality follows from the definition of ε , max{εn, ν}. We now have,

nRK ≥ H(K)

≥ I(K;Zn)

(a)
= I(K,Sn;Zn)
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≥ I(Sn;Zn)

= I(Xn, Sn;Zn)− I(Xn;Zn|Sn)

(b)

≥
∑

xn

∑

sn

∑

zn

P (xn, sn, zn) log
W⊗n
Z|XS(zn|xn, sn)

P (zn)
−

n∑

i=1

I(Xi;Zi|Si)

≥
∑

xn

∑

sn

∑

zn

P (xn, sn, zn) log
W⊗n
Z|XS(zn|xn, sn)

P (zn)
+ D(PZn||Q⊗n0 )−

n∑

i=1

I(Xi;Zi|Si)− δ

≥
n∑

i=1

∑

xi

∑

si

∑

zi

P (xi, si, zi) log
WZ|XS(zi|xi, si)

Q0(zi)
−

n∑

i=1

I(Xi;Zi|Si)− δ

=
n∑

i=1

∑

xi

∑

si

∑

zi

P (xi, si, zi) log
WZ|XS(zi|xi, si)

Q0(zi)

−
n∑

i=1

∑

xi

∑

si

∑

zi

P (xi, si, zi) log
WZ|XS(zi|xi, si)
PZ|S(zi|si)

− δ

=
n∑

i=1

∑

xi

∑

si

∑

zi

P (xi, si, zi)
[

log
WZ|XS(zi|xi, si)

Q0(zi)
− log

WZ|XS(zi|xi, si)
PZ|S(zi|si)

]
− δ

=
n∑

i=1

∑

xi

∑

si

∑

zi

P (xi, si, zi) log
PZ|S(zi|si)
Q0(zi)

− δ

=
n∑

i=1

D(PSi,Zi||PSiQ0)− δ

(c)

≥ nD(P̃S,Z ||P̃SQ0)− δ

= nD(P̃S,Z ||P̃SP̃Z) + D(P̃Z ||Q0)− δ

≥ nI(S̃; Z̃)− 2δ (Z.7)

where

(a) follows because Sn is a function of J ;

(b) follows from Jensen’s inequality, the convexity of D(·||·), and concavity of H(·);

(c) follows from the definition of random variables X̃, S̃, Ỹ , and Z̃ in (Z.4).

From (Z.7) for any ν > 0, choosing n large enough ensures that

RK ≥ I(S̃; Z̃)− 2ν,
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≥ I(S̃; Z̃)− 2ε, (Z.8)

where the last equality follows from the definition of ε , max{εn, ν}. To show that

D(PZ ||Q0) ≤ ε, note that for n large enough

D(PZ ||Q0) = D(PZ̃ ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (Z.9)

Combining (Z.3), (Z.6), and (Z.8) shows that ∀εn, ν > 0, CFK ⊆ Aε.

Continuity at Zero: The proof for continuity at zero is similar to that of Appendix N.
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APPENDIX AA

PROOF OF LEMMA 4

We Prove Lemma 4 in two different cases. First when R2 > I(X2;Z), for this case we have

EC1,C2

[
D
(
PZn|C1,C2 ||PZn|C2

)]

(a)

≤
√

2 ln 2 log

(
1

µQ

)
EC1,C2

[√
D
(
PZn|C1,C2||Q⊗nZ

)
+
√

D
(
PZn|C2||Q⊗nZ

)]
,

(b)

≤
√

2 ln 2 log

(
1

µQ

)[√
EC1,C2

(
D
(
PZn|C1,C2||Q⊗nZ

))
+
√

EC1,C2

(
D
(
PZn|C2||Q⊗nZ

))]
, (AA.1)

where (a) follows from [93, Lemma 38], for finite output alphabet Z, QZ(·) =
∑

x1

∑
x2
P (x1)P (x2)WZ|X1X2(·|x1, x2), and µQ , min

z∈Z:QZ>0
QZ(z), and (b) follows from

Jensen’s inequality. For the first term on the RHS of (AA.1) we have

EC1,C2

[
D
(
PZn|C1,C2||Q⊗nZ

)]
= EC1,C2

[∑

zn

PZn|C1,C2(zn) log
PZn|C1,C2(zn)

Q⊗nZ (zn)

]

= EC1,C2

[∑

zn

1

2n(R1+R2)

∑

(m1,m2)

W⊗n
Z|X1X2

(
zn|Xn

1 (m1), Xn
2 (m2)

)

× log

1
2n(R1+R2)

∑
(m̃1,m̃2)

W⊗n
Z|X1X2

(
zn|Xn

1 (m̃1), Xn
2 (m̃2)

)

Q⊗nZ (zn)

]

(a)

≤ 1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)

× logE\(m1,m2)

[ ∑
(m̃1,m̃2)

W⊗n
Z|X1X2

(
zn|Xn

1 (m̃1), Xn
2 (m̃2)

)

2n(R1+R2)Q⊗nZ (zn)

]

=
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 )

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)

× logE\(m1,m2)

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2n(R1+R2)Q⊗nZ (zn)
+

∑
m̃2 6=m2

W⊗n
Z|X1X2

(
zn|xn1 (m1), Xn

2 (m̃2)
)

2n(R1+R2)Q⊗nZ (zn)

+

∑
m̃1 6=m1

W⊗n
Z|X1X2

(
zn|Xn

1 (m̃1), xn2 (m2)
)

2n(R1+R2)Q⊗nZ (zn)
+

∑
m̃1 6=m1

∑
m̃2 6=m2

W⊗n
Z|X1X2

(
zn|Xn

1 (m̃1), Xn
2 (m̃2)

)

2n(R1+R2)Q⊗nZ (zn)

]
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=
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)
log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2n(R1+R2)Q⊗nZ (zn)

+

∑
m̃2 6=m2

W⊗n
Z|X1

(
zn|xn1 (m1)

)

2n(R1+R2)Q⊗nZ (zn)
+

∑
m̃1 6=m1

W⊗n
Z|X2

(
zn|xn2 (m2)

)

2n(R1+R2)Q⊗nZ (zn)
+

∑
m̃1 6=m1

∑
m̃2 6=m2

Q⊗nZ
(
zn
)

2n(R1+R2)Q⊗nZ (zn)

]

≤ 1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)
log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2n(R1+R2)Q⊗nZ (zn)

+
W⊗n
Z|X1

(
zn|xn1 (m1)

)

2nR1Q⊗nZ (zn)
+
W⊗n
Z|X2

(
zn|xn2 (m2)

)

2nR2Q⊗nZ (zn)
+ 1

]

, Ψ1 + Ψ2 (AA.2)

where (a) follows from Jensen’s inequality. We defined Ψ1 and Ψ2 as

Ψ1 =
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)∈T (n)
ε

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)

× log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2n(R1+R2)Q⊗nZ (zn)
+
W⊗n
Z|X1

(
zn|xn1 (m1)

)

2nR1Q⊗nZ (zn)
+
W⊗n
Z|X2

(
zn|xn2 (m2)

)

2nR2Q⊗nZ (zn)
+ 1

]

≤ log
( 2−r(1−ε)H(Z|X1,X2)

2n(R1+R2)2−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|X1)

2nR12−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|X2)

2nR22−r(1+ε)H(Z)
+ 1
)

(AA.3)

and

Ψ2 =
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)/∈T (n)
ε

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)

× log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2n(R1+R2)Q⊗nZ (zn)
+
W⊗n
Z|X1

(
zn|xn1 (m1)

)

2nR1Q⊗nZ (zn)
+
W⊗n
Z|X2

(
zn|xn2 (m2)

)

2nR2Q⊗nZ (zn)
+ 1

]

≤ 2|X1||X2||Z|e−nε
2µX1,X2,Zn log(

2

µZ
+ 1). (AA.4)

where

µZ = min
z∈Z

s.t.Qz>0

Q(z) (AA.5)

µX1,X2,Z = min
(x1,x2,z)∈(X1,X2,Z)

s.t.Q(x1,x2,z)>0

Q(x1, x2, z). (AA.6)
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When n→∞ then Ψ2 → 0 and Ψ1 → 0 when n grows if1

R1 > I(X1;Z), (AA.7a)

R2 > I(X2;Z), (AA.7b)

R1 +R2 > I(X1, X2;Z). (AA.7c)

Also, since PZn|C2 is for a scenario where the first transmitter, transmits an i.i.d. sequence

and the second transmitter, transmits a codeword from C2 by using (AA.7) one can show

that the second term on the RHS of (AA.1) vanishes when n grows if R2 > I(X2;Z). This

results to the region in R1.

When R2 ≤ I(X2;Z) we have

EC1,C2

[
D
(
PZn|C1,C2||PZn|C2

)]
= EC1,C2

[∑

zn

PZn|C1,C2(zn) log
PZn|C1,C2(zn)

PZn|C2(zn)

]

= EC1,C2

[∑

zn

1

2n(R1+R2)

∑

(m1,m2)

W⊗n
Z|X1X2

(
zn|Xn

1 (m1), Xn
2 (m2)

)

× log

1
2n(R1+R2)

∑
(m̃1,m̃2)

W⊗n
Z|X1X2

(
zn|Xn

1 (m̃1), Xn
2 (m̃2)

)

1
2nR2

∑
m′2

W⊗n
Z|X2

(
zn|Xn

2 (m′2)
)

]

(a)

≤ 1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)

× logE\(m1,m2)

[ ∑
(m̃1,m̃2)

W⊗n
Z|X1X2

(
zn|Xn

1 (m̃1), Xn
2 (m̃2)

)

2nR1
∑
m′2

W⊗n
Z|X2

(
zn|Xn

2 (m′2)
)

]

=
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 )

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)

× logE\(m1,m2)

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2nR1
∑
m′2

W⊗n
Z|X2

(
zn|xn2 (m′2)

) +

∑
m̃2 6=m2

W⊗n
Z|X1X2

(
zn|xn1 (m1), Xn

2 (m̃2)
)

2nR1
∑
m′2

W⊗n
Z|X2

(
zn|xn2 (m′2)

)

1In [23] and [94] it has been shown that the first term on the RHS of (AA.1) under total variation distance
vanishes when n grows.
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+

∑
m̃1 6=m1

W⊗n
Z|X1X2

(
zn|Xn

1 (m̃1), xn2 (m2)
)

2nR1
∑
m′2

W⊗n
Z|X2

(
zn|xn2 (m′2)

) +

∑
m̃1 6=m1

∑
m̃2 6=m2

W⊗n
Z|X1X2

(
zn|Xn

1 (m̃1), Xn
2 (m̃2)

)

2nR1
∑
m′2

W⊗n
Z|X2

(
zn|xn2 (m′2)

)
]

(b)

≤ 1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)
log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

)

+ E\(m1,m2)

( ∑
m̃2 6=m2

W⊗n
Z|X1X2

(
zn|xn1 (m1), Xn

2 (m̃2)
)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

)
)

+ E\m2

( ∑
m̃1

W⊗n
Z|X2

(
zn|xn2 (m2)

)

2nR1
∑
m′2

W⊗n
Z|X2

(
zn|Xn

2 (m′2)
) +

∑
m̃1

∑
m̃2 6=m2

W⊗n
Z|X2

(
zn|Xn

2 (m̃2)
)

2nR1
∑
m′2

W⊗n
Z|X2

(
zn|Xn

2 (m′2)
)
)]

=
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)
log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

)

+ E\m2

( ∑
m̃2 6=m2

W⊗n
Z|X1X2

(
zn|xn1 (m1), Xn

2 (m̃2)
)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

)
)

+ E\m2

(
2nR1

2nR1
×

W⊗n
Z|X2

(
zn|xn2 (m2)

)
∑
m′2

W⊗n
Z|X2

(
zn|xn2 (m′2)

) +
2nR1

2nR1
×

∑
m̃2 6=m2

W⊗n
Z|X2

(
zn|xn2 (m̃2)

)

∑
m′2

W⊗n
Z|X2

(
zn|xn2 (m′2)

)
)]

=
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)
log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

)

+

∑
m̃2 6=m2

W⊗n
Z|X1

(
zn|xn1 (m1)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

) + 1

]

≤ 1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)
log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

)

+
2nR2W⊗n

Z|X1

(
zn|xn1 (m1)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

) + 1

]

, Ψ1 + Ψ2 (AA.8)

where (a) follows from Jensen’s inequality and (b) follows by taking expectation with respect

to \m1, removing some terms from the denominator of the first and the second term in the

log function, and adding one term to the nominator of the third and the fourth terms in the
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R1

R2

•

•

R1

R2

I(X1;Z)

I(X2;Z|X1)

I(X2;Z)

I(X1;Z|X2)

Figure AA.1. The orange region depicts R1 and the blue region depicts R2.

log function. We defined Ψ1 and Ψ2 as

Ψ1 =
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)∈T (r)
ε

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)

× log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

) +
2nR2W⊗n

Z|X1

(
zn|xn1 (m1)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

) + 1

]

≤ log
( 2−n(1−ε)H(Z|X1,X2)

2nR12−n(1+ε)H(Z|X2)
+

2nR22−n(1−ε)H(Z|X1)

2nR12−n(1+ε)H(Z|X2)
+ 1
)

(AA.9)

and

Ψ2 =
1

2n(R1+R2)

∑

(m1,m2)

∑

(xn1 ,x
n
2 ,z

n)/∈T (r)
ε

P⊗nX1,X2,Z

(
xn1 (m1), xn2 (m2), zn

)

× log

[
W⊗n
Z|X1X2

(
zn|xn1 (m1), xn2 (m2)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

) +
2nR2W⊗n

Z|X1

(
zn|xn1 (m1)

)

2nR1W⊗n
Z|X2

(
zn|xn2 (m2)

) + 1

]

≤ 2|X1||X2||Z|e−nε
2µX1,X2,Zn log(

3

µZ
+ 1), (AA.10)

where

µZ = min
z∈Z

s.t.Qz>0

Q(z), (AA.11)
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µX1,X2,Z = min
(x1,x2,z)∈(X1,X2,Z)

s.t.Q(x1,x2,z)>0

Q(x1, x2, z). (AA.12)

When r →∞ then Ψ2 → 0 and Ψ1 → 0 when n grows if

R1 > I(X1;Z|X2), (AA.13a)

R1 > R2 + I(X1;Z)− I(X2;Z). (AA.13b)

When R2 ≤ I(X2;Z), (AA.13b) is redundant because of (AA.13a). This is because the

corner points
(
R1 = I(X1;Z|X2), R2 = 0

)
and

(
R1 = I(X1;Z|X2), R2 = I(X2;Z)

)
satisfy

(AA.13b). As it can be seen from Fig. AA.1, R1 > I(X1;Z|X2) is also achievable when

R2 > I(X2;Z). This completes the achievability proof for the region R2.
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APPENDIX AB

PROOF OF THEOREM 25

Fix PS(s), PU(u), PV |US(v|u, s), x(u, s), and ε > 0 subject to the conditions PZ = ΥZ .

Codebook Generation: Let C
(n)
1 ,

{
Un(k,m, `)

}
(k,m,`)∈K×M×L, where K = J1, 2nRKK,

M = J1, 2nRK, and L = J1, 2nR′K, be a random codebook consisting of independent random

sequences each generated according to P⊗nU . We denote a realization of C
(n)
1 by C(n)

1 ,
{
un(k,m, `)

}
(k,m,`)∈K×M×L. The indices (k,m, `) can be viewed as a two-layer binning.

Let C
(n)
2 ,

{
Sn(j)

}
j∈J , where J = J1, 2nRJ K, be a random codebook consisting of

independent random sequences each generated according to P⊗nS . We denote a realization

of C
(n)
2 by C(n)

2 ,
{
sn(j)

}
j∈J .

Let, Cn =
{
C

(n)
1 , C

(n)
2

}
and Cn =

{
C(n)

1 , C(n)
2

}
. The set of all possible values of Cn is

denoted by Cn. The codebook construction described above induces the PMF λ(Cn) for the

codebooks,

λ(Cn) =
∏

j∈J
P⊗nS

(
sn(j)

) ∏

(k,m,`)∈K×M×L
P⊗nU

(
un
(
k,m, `

))
. (AB.1)

To facilitate the analysis, we define a so-called ideal joint PMF for all input, output,

message, key, and auxiliary variables, conditioned on the choice of codebooks Cn,

Γ
(Cn)
KMJLSnUnV nZn(k,m, j, `, s̃n, ũn, vn, zn) = 2−n(RK+R+RJ+R′)1{

s̃n=sn(j)
}⋂{

ũn=un(k,m,`)
}

× P⊗nV |S,U(vn|s̃n, ũn)W⊗n
Z|US(zn|ũn, s̃n), (AB.2)

where PV |S,U is a test channel and WZ|US is the marginal distribution of WZ,Y |U,S defined in

Theorem 25.

Encoding: The jammer selects an index j uniformly at random and transmits sn(j). The

encoder cribs this sn and, conditioned on it, generates a sequence vn i.i.d. according to P⊗nV |S.

To do so, the encoder employs local randomness in a manner reminiscent of Csiszár and
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Körner’s stochastic encoder [70]. Then, given vn as well as the cribbed signal sn(j), the key

k, and the message m, the encoder chooses the index ` via a likelihood encoder [77, 78, 79],

according to the following distribution:

f
(Cn)
LE (`|k,m, j, vn) =

P⊗nV |US
(
vn|un(k,m, `), sn(j)

)
∑

`′∈J1,2nR′K
P⊗nV |US

(
vn|un(k,m, `′), sn(j)

) . (AB.3)

Using the resulting index ` as well as the key k and message m, the encoder computes

un(k,m, `) and transmits codeword xn, where xi = x(ui(k,m, `), si). For a fixed codebook

Cn, the induced joint distribution is

P
(Cn)
KMJSnV nLUnZn(k,m, j, s̃n, vn, `, ũn, zn) = 2−n(RK+R+RJ )1{

s̃n=sn(j)
}P⊗nV |S(vn|s̃n)

× f (Cn)
LE (`|k,m, j, vn)1{

ũn=un(k,m,`)
}W⊗n

Z|US(zn|ũn, s̃n). (AB.4)

Considering the random codebook generation, we have

P (Cn, k,m, j, s̃n, `, ũn, zn) = λ(Cn)P (Cn)(k,m, j, s̃n, `, ũn, zn), (AB.5)

where λ ∈ P is defined in (AB.1).

Covert Analysis: We denote by P (Cn) the distributions induced by a fixed codebook

Cn, and by P·|Cn the distributions induced by a random codebook Cn. Consider a scenario

in which the jammer selects a codeword from its codebook uniformly at random, and the

transmitter chooses the innocent sequence xn0 . Under a fixed codebook Cn, the induced joint

distribution is as follows

Υ
(Cn)
JSnZn(j, sn, zn) =

1

2nRJ
1{sn=sn(j)}W

⊗n
Z|X=x0,S

(
zn|xn0 , sn

)
.

Therefore, the distribution induced on the warden’s observation by a random codebook is

ΥZn|Cn(zn) =
1

2nRJ

2nRJ∑

j=1

W⊗n
Z|X=x0,S

(
zn|xn0 , Sn(j)

)
. (AB.6)
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If RJ > I(S;Z) then according to the soft covering lemma [83, Theorem 4] or [77, Corol-

lary VII.4],

ECnV
(
ΥZn|Cn , Q

⊗n
0

)
−−→
n→∞

0, (AB.7)

where

Q0(·) =
∑

s∈S
PS(s)WZ|X=x0,S

(
· |x0, s

)
. (AB.8)

Note that if RK < IΥ(S;Z) according to Shannon’s channel coding theorem, the warden

might be able to decode J , which reduces the problem to the point to point channel for

which the covert rate will be zero. We aim to show that the coding scheme described above

guarantees

ECnD
(
PZn|Cn||ΥZn|Cn

)
−−→
n→∞

0. (AB.9)

To show that (AB.9) holds by using Lemma 1 and the triangle inequality we have

ECnV
(
PZn|Cn ,ΥZn|Cn

)
≤ ECnV

(
PZn|Cn , Q

⊗n
0

)
+ ECnV

(
ΥZn|Cn , Q

⊗n
0

)
. (AB.10)

According to the soft covering lemma [83, Theorem 4] or [77, Corollary VII.4], the second

term on the RHS of (AB.10) vanishes when n grows if

RJ > IΥ(S;Z). (AB.11)

To bound the first term on the RHS of (AB.10) we first show

ECnV
(
PZn|Cn , Q

⊗n
Z

)
−−→
n→∞

0, (AB.12)

and then we choose PS, PU , PV |US and x(u, s) such that PZ = ΥZ . To prove (AB.12) by

using the triangle inequality,

ECnV
(
PZn|Cn , Q

⊗n
Z

)
≤ECnV

(
PZn|Cn ,ΓZn|Cn

)
+ ECnV

(
ΓZn|Cn , Q

⊗n
Z

)
. (AB.13)
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We proceed to bound the first term on the RHS of (AB.13). For every codebook Cn,

Γ
(Cn)
KMJ = 2−n(RK+R+RJ ) = P

(Cn)
KMJ , (AB.14a)

Γ
(Cn)
Sn|KMJ = 1{

s̃n=sn(j)
} = P

(Cn)
Sn|KMJ , (AB.14b)

Γ
(Cn)
L|KMJSnV n = f

(Cn)
LE (`|k,m, j, vn) = P

(Cn)
L|KMJSnV n , (AB.14c)

Γ
(Cn)
Un|KMJSnV nL = 1{

ũn=un(k,m,`)
} = P

(Cn)
Un|KMJSnV nL, (AB.14d)

Γ
(Cn)
Zn|KMJSnV nLUn = W⊗n

Z|US(zn|ũn, s̃n) = P
(Cn)
Zn|KMJSnV nLUn , (AB.14e)

where (AB.14a)-(AB.14b) and (AB.14d)-(AB.14e) follow directly from (AB.2) and (AB.4)

and (AB.14c) follow since for every codebook Cn,

Γ
(Cn)
L|KMJV n(`|k,m, j, vn) =

Γ
(Cn)
KMLJV n(k,m, `, j, vn)

Γ
(Cn)
KMJV n(k,m, j, vn)

=

∑
ũn

2−n(RK+R+R′+RJ )1{
s̃n=sn(j),ũn=un(k,m,`)

}P⊗nV |SU(vn|s̃n, ũn)

∑
ũn

∑
`′

2−n(RK+R+R′+RJ )1{
s̃n=sn(j),ũn=un(k,m,`)

}P⊗nV |SU(vn|s̃n, ũn)

=
P⊗nV |US

(
vn|un(k,m, `), sn(j)

)
∑

`′∈J1,2nR′K
P⊗nV |US

(
vn|un(k,m, `′), sn(j)

)

= f
(Cn)
LE (`|k,m, j, vn). (AB.15)

Thus, the first term on the RHS of (AB.13) is bounded as

ECnV
(
PZn|Cn ,ΓZn|Cn

)
≤ ECnV

(
PKMJSnV nLUnZn|Cn ,ΓKMJSnV nLUnZn|Cn

)

(a)
= ECnV

(
PSnV nLUnZn|K=1,M=1,J=1,Cn ,ΓSnV nLUnZn|K=1,M=1,J=1,Cn

)

(b)
= ECnV

(
P⊗nV |S

(
· |Sn(1)

)
,ΓV n|K=1,M=1,J=1,Cn

)
, (AB.16)

where (a) follows from (AB.14a), the independence of (K,M, J) and Cn, and symmetry of

codebook construction with respect to (K,M, J); and (b) follows from (AB.14b)-(AB.14e).

According to Lemma 4 the RHS of (AB.16) vanishes when n grows if

R′ > IP (U ;V |S). (AB.17)
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This follows since conditioning on M2 = 1 the distribution in (4.65) reduces to

PZn|M2=1(zn) = W⊗n
Z|X2

(zn|Xn
2 (1)) and the distribution in (4.67) reduces to

PZn|C1,M2=1(zn) ,
2nR1∑

m1=1

1

2nR1
W⊗n
Z|X1X2

(
zn|Xn

1 (m1), Xn
2 (1)

)
.

Also, according to [90, 23] the second term on the RHS of (AB.13) vanishes when n grows

if

RJ > IP (S;Z), (AB.18a)

RK +R +R′ > IP (U ;Z), (AB.18b)

RK +R +R′ +RJ > IP (U, S;Z). (AB.18c)

Decoding and Error Probability Analysis: We show that the average probability of error

can be made arbitrarily small. By access to the key K, the receiver declares that M̂ = M

if there exists a unique index M̂ such that (Un(K, M̂, `), Y n) ∈ T (n)
ε (U, Y ). Then the error

event (M̂ 6= M) occurs only if one or more of the following error events occur:

E1 , {(Un(K,M,L), V n) /∈ T (n)
ε′ (U, V )}, (AB.19a)

E2 , {(Un(K,M,L), Y n) /∈ T (n)
ε (U, Y )}, (AB.19b)

E3 , {(Un(K,m, `), Y n) ∈ T (n)
ε (U, Y ) for some m 6= M and ` ∈ [1 : 2rR

′
]}. (AB.19c)

Therefore, from the union bound we can bound the probability of error as follows,

P(M̂ 6= M) ≤ P(E1) + P(Ec1 ∩ E2) + P(E3). (AB.20)

According to the law of large numbers the second term on the RHS of (AB.20) goes to zero

as n→∞ [85]. According to the law of large numbers the third term on the RHS of (AB.20)

goes to zero as n→∞ if [85],

R +R′ < IP (U ;Y ). (AB.21)
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We now show that the first term on the RHS of (AB.20) also vanishes as n → ∞. For a

fix ε > 0, consider the PMF Γ defined in (AB.2). With respect to the random experiment

described by Γ, we have

ECnPΓ

((
Un(m, k, L), V n, Sn(j)

)
/∈ T (n)

ε′ |Cn
)
−−→
n→∞

0, (AB.22)

this follows because V n is derived by passing Un(k,m,L) ∼ P⊗nU , for every (m, k) ∈ (M,K),

and Sn(j) ∼ P⊗nS , for every j ∈ J , through the DMC P⊗nV |US. Therefore, (AB.22) holds by

weak law of large numbers. We also have

ECnV
(
PUnSnV n|Cn ,ΓUnSnV n|Cn

)

≤ ECnV
(
PJKMSnLUnV nZn|Cn ,ΓJKMSnLUnV nZn|Cn

)
, (AB.23)

where based on (AB.16) the RHS of (AB.23) vanishes when n grows.

We now define gn : Un×Vn×Sn → R as gn(un, sn, vn) , 1{(un,sn,vn)/∈T (n)

ε′ }
. We now have

ECnPP
((
Un(k,m,L), Sn(j), V n

)
/∈ T (n)

ε′ |Cn
)

= ECnEP
[
gn(Un(k,m,L), Sn(j), V n)|Cn

]

≤ ECnEΓ

[
gn(Un(k,m,L), Sn(j), V n)|Cn

]
+ ECn

∣∣∣EP
[
gn(Un(k,m,L), Sn(j), V n)|Cn

]

− EΓ

[
gn(Un(k,m,L), Sn(j), V n)|Cn

]∣∣∣
(a)

≤ ECnEΓ

[
gn(Un(k,m,L), Sn(j), V n)|Cn

]
+ ECnV

(
PUnV nSnj |Cn ,ΓUnV nSnj |Cn

)
, (AB.24)

where (a) follows from [91, Property 1] for gn being bounded by 1. From (AB.22) and

(AB.23) the RHS of (AB.24) vanishes when n grows.

The region in Theorem 25 is derived by applying Fourier-Motzkin [71] to (AB.11),

(AB.17), (AB.18), and (AB.21).
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APPENDIX AC

PROOF OF THEOREM 26

Fix PS(s), PU |S(u|s), x(u, s), and ε > 0 such that, PZ = ΥZ .

Codebook Generation: Let C
(n)
1 ,

{
Un(k,m, `)

}
(k,m,`)∈K×M×L be a random codebook

consisting of independent random sequences each generated according to P⊗nU . We denote a

realization of C
(n)
1 by C(n)

1 ,
{
un(k,m, `)

}
(k,m,`)∈K×M×L. The indices (k,m, `) can be viewed

as a two layer binning.

Let C
(n)
2 ,

{
Sn(j)

}
j∈J be a random codebook consisting of independent random se-

quences each generated according to P⊗nS . We denote a realization of C
(n)
2 by C(n)

2 ,
{
sn(j)

}
j∈J .

Also, Cn =
{
C

(n)
1 , C

(n)
2

}
denotes a random codebook and Cn =

{
C(n)

1 , C(n)
2

}
denotes a fixed

codebook. The set of all possible values of Cn is denoted by Cn. The codebook construction

described above induces the PMF λ ∈ P(Cn) over the codebook ensemble. For each Cn ∈ Cn

λ(Cn) =
∏

j∈J
P⊗nS

(
sn(j)

) ∏

(k,m,`)∈K×M×L
P⊗nU

(
un
(
k,m, `

))
. (AC.1)

Encoding: Given the jammer’s channel input, the message m, and the key k, the encoder

chooses the index ` according to

f (Cn)(`|sn, k,m) =
P⊗nS|U (sn|un(k,m, `))
∑

`′∈J1,2nR′K
P⊗nS|U (sn|un(k,m, `′))

. (AC.2)

Based on these indices, the encoder computes un(k,m, `) and transmits codeword xn, where

xi = x(ui(k,m, `), si). For a fixed codebook Cn, the induced joint distribution is

P
(Cn)
KMJSnLUnZn(k,m, j, s̃n, `, ũn, zn) , 2−n(RK+R+RJ )1{s̃n=sn(j)}f(`|sn(j), k,m, j)

× 1{ũn=un(k,m,`)}W
⊗n
Z|US(zn|ũn, s̃n). (AC.3)

Considering the random codebook generation, we have

P (k,m, j, s̃n, `, ũn, zn) = λ(Cn)P (Cn)(k,m, j, s̃n, `, ũn, zn), (AC.4)
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where λ ∈ P(Cn) is defined in (AC.1).

Covert and Security Analysis: Throughout the proof, we use P (Cn) when the codebook

is fixed, and we use P·|Cn when the codebook is random. Consider a scenario in which

the jammer selects a codeword from its codebook (i.e. C(n)
2 ) uniformly at random, but the

transmitter chooses the innocent sequence xn0 as the channel input. For this scenario for a

fixed codebook C(n)
2 , the induced joint distribution is as follows

Υ
(Cn)
JSnZn(j, sn, zn) =

1

2nRJ
1{sn=sn(j)}W

⊗n
Z|XS

(
zn|xn0 , sn(j)

)
. (AC.5)

Therefore, the distribution induced at the output of the warden is

Υ
(Cn)
Zn (zn) =

1

2nRJ

2nRJ∑

j=1

W⊗n
Z|XS

(
zn|xn0 , sn(j)

)
. (AC.6)

For this scenario if

RJ > IΥ(S;Z). (AC.7)

Then according to soft covering lemma [83, Theorem 4] or [77, Corollary VII.4] and Pinsker’s

inequality, we have

ECnV
(
ΥZn|Cn , Q

⊗n
0

)
−−→
n→∞

0, (AC.8)

where Q⊗n0 =
∏n

i=1Q0 and

Q0(·) =
∑

s∈S
PS(s)WZ|X=x0,S

(
· |x0, s

)
. (AC.9)

Note that if RK < IΥ(S;Z) according to Shannon’s channel coding theorem, the warden

might be able to decode J , which reduces the problem to the point to point channel for

which the covert rate will be zero.

We now show that this coding scheme guarantees both covert and secure communication,

i.e., ECn [D(PZn|Cn||Q⊗n0 )] −−→
n→∞

0 and IP (M ;Zn) −−→
n→∞

0. For every codebook Cn ∈ Cn we have

D
(
P

(Cn)
Zn

∣∣∣∣Q⊗nZ
) (a)

≤ D
(
P

(Cn)
ZnMJSn

∣∣∣∣P (Cn)
MJSnQ

⊗n
Z|S

)
,
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= D
(
P

(Cn)
Zn|MJSn

∣∣∣∣Q⊗nZ|S
∣∣P (Cn)

MJSn

)
, (AC.10)

where (a) follows from the monotonicity of KL-divergence and

QZ(z) =
∑

s∈S

∑

u∈U

∑

x∈X
PS(s)PU |S(u|s)1{x=x(u,s)}WZ|XS

(
z|x, s

)
, (AC.11a)

QZ|S(z|s) =
∑

u∈U

∑

x∈X
PU |S(u|s)1{x=x(u,s)}WZ|XS(z|x, s). (AC.11b)

Also, we have

I(M ;Zn) ≤ I(M ; J, Sn, Zn),

= I(M ;Zn|J, Sn),

= D
(
P

(Cn)
Zn|MJSn

∣∣∣∣P (Cn)
Zn|JSn

∣∣P (Cn)
MJSn

)

(a)

≤ D
(
P

(Cn)
Zn|MJSn

∣∣∣∣Q⊗nZ|S
∣∣P (Cn)

MJSn

)
, (AC.12)

where (a) follows from

D
(
P

(Cn)
Zn|MJSn

∣∣∣∣P (Cn)
Zn|JSn

∣∣P (Cn)
MJSn

)
= D

(
P

(Cn)
Zn|MJSn

∣∣∣∣Q⊗nZ|S
∣∣P (Cn)

MJSn

)
− D

(
P

(Cn)
Zn|JSn

∣∣∣∣Q⊗nZ|S
∣∣P (Cn)

JSn

)
.

(AC.13)

From (AC.10) and (AC.12) it follows

IP (M ;Zn) + D
(
P

(Cn)
Zn

∣∣∣∣Q⊗nZ
)
≤ 2D

(
P

(Cn)
Zn|MJSn

∣∣∣∣Q⊗nZ|S
∣∣P (Cn)

MJSn

)
. (AC.14)

Taking the expectation of the RHS of (AC.14) with respect to the ensemble of codebooks

results to

ECn
[
D
(
PZn|MJSn(J)Cn

∣∣∣∣Q⊗nZ|S
∣∣PMJSn(J)Cn

)]

= ECn
[ ∑

(m,j,sn)

2−n(R+RJ )1{Sn(j)=sn}D
(
PZn|M=m,J=j,Sn(j)=sn,Cn

∣∣∣∣Q⊗nZ|S(·|sn)
)]

(a)
=
∑

sn

ECn
[
1{Sn(1)=sn}D

(
PZn|M=1,J=1,Sn(1)=sn,Cn

∣∣∣∣Q⊗nZ|S(·|sn)
)]
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(b)
=
∑

sn

E
C

(n)
2

[
1{Sn(1)=sn}EC(n)

1 |C(n)
2

[
D
(
PZn|M=1,J=1,Sn(1)=sn,Cn

∣∣∣∣Q⊗nZ|S(·|sn)
)]]

(AC.15)

where (a) is due to the symmetry of the codebook with respect to J ; and (b) follows by the

law of total expectation. Thus far, when Cn ∈ Cn is fixed P
(Cn)
Zn|M=1,J=1,Sn(1)=sn is defined only

when sn = sn(1). For any other sn, we can set this conditional PMF to any arbitrary PMF

on Zn. Therefore, when sn 6= sn(1), we define

P
(Cn)
Zn|M=1,J=1,Sn(1)=sn = Q⊗nZ|S(·|sn). (AC.16)

For any C
(n)
2 = C(n)

2 and sn ∈ Sn we have

E
C

(n)
1 |C(n)

2 =C(n)
2

[
D
(
PZn|M=1,J=1,Sn(1)=sn,Cn

∣∣∣∣Q⊗nZ|S(·|sn)
)]

= E
C

(n)
1 |C(n)

2 =C(n)
2

[
1{sn(1)=sn}D

(
PZn|M=1,J=1,Sn(1)=sn,Cn

∣∣∣∣Q⊗nZ|S(·|sn)
)

+ 1{sn(1)6=sn}D
(
PZn|M=1,J=1,Sn(1)=sn,Cn

∣∣∣∣Q⊗nZ|S(·|sn)
)]

(a)
= E

C
(n)
1 |Sn(1)=sn(1)

[
1{sn(1)=sn}D

(
P
Zn|M=1,J=1,Sn(1)=sn,C

(n)
1

∣∣∣∣Q⊗nZ|S(·|sn)
)]

(b)

≤ E
C

(n)
1 |Sn(1)=sn(1)

[
D
(
P
Zn|M=1,J=1,Sn(1)=sn,C

(n)
1

∣∣∣∣Q⊗nZ|S(·|sn)
)]

(AC.17)

where (a) follows from (AC.16) and because conditioned on Sn(1), PZn|J=1,Sn(1)=sn is inde-

pendent of all the other codewords in C
(n)
2 and (b) follows by 1{·} ≤ 1.

We now show that this problem falls within the framework of [84, Lemma 1]. Let C̃n ,

{Ũn(k, `)}(k,`)∈K×L be a set of i.i.d. sequences distributed according to P⊗nU (·). The set C̃n

is independent of Cn and is distributed according to

λ̃(C̃n) =
∏

(k,`)∈K×L
P⊗nU

(
ũn(k, `)

)
. (AC.18)

where C̃n , {ũn(k, `)}(k,`)∈K×L is a realization of C̃n. For each sn ∈ Sn let

P̃ (C̃n)(k, `, ũn, zn|sn) = 2−nRK f̃ (C̃n)(`|k, sn)1{ũn=ũn(k,`)}W
n
Z|US(zn|ũn, sn), (AC.19)
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where f (C̃n)(`|k, sn) is defined as

f (C̃n)(`|sn, k,m) =
P⊗nS|U (sn|un(k,m, `))
∑

`′∈J1,2nR′K
P⊗nS|U (sn|un(k,m, `′))

, (AC.20)

Also, let

P̃ (k, `, ũn, zn|sn) = λ̃(C̃n)P̃ (C̃n)(k, `, ũn, zn|sn). (AC.21)

Now for any sn ∈ Sn we further bound the RHS of (AC.17) by

EC̃n
[
D
(
P̃Zn|Sn=sn,C̃n

∣∣∣∣Q⊗nZ|S(·|sn)
)]
. (AC.22)

This is because when C(n)
1 = C̃n the distribution P

Zn|M=1,J=1,Sn(1)=sn,C
(n)
1 =C(n)

1
and

P̃Zn|Sn=sn,C̃n=C̃n are equal as PMFs on Zn. Substituting (AC.22) in (AC.15) we have

ECn
[
D
(
PZn|MJSn(J)Cn

∣∣∣∣Q⊗nZ|S
∣∣PMJSn(J)Cn

)]

≤
∑

sn

E
C

(n)
2

[
1{Sn(1)=sn}

]
EC̃n

[
D
(
P̃Zn|Sn=sn,C̃n

∣∣∣∣Q⊗nZ|S(·|sn)
)]

=
∑

sn

P⊗nS (sn)EC̃n
[
D
(
P̃Zn|Sn=sn,C̃n

∣∣∣∣Q⊗nZ|S(·|sn)
)]

= EC̃n
[
D
(
P̃Zn|SnC̃n

∣∣∣∣Q⊗nZ|S
∣∣P⊗nS

)]
. (AC.23)

Substituting (AC.23) back into (AC.14) yields to

ECn
[
I(M ;Zn|Cn) + D

(
PZn|Cn

∣∣∣∣Q⊗nZ
)]
≤ 2EC̃n

[
D
(
P̃Zn|SnC̃n

∣∣∣∣Q⊗nZ|S
∣∣P n

S

)]
. (AC.24)

From [84, Lemma 1], while seeing WZ|US as a DMC with state from U to Z with state S,

the RHS of (AC.24), and therefore the LHS of (AC.24), vanishes when n grows if

R′ > IP (U ;S) (AC.25a)

RK +R +R′ > IP (U ;S,Z). (AC.25b)
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To proof covertness ECnD
(
PZn|Cn||ΥZn|Cn

)
−−→
n→∞

0, by using Lemma 1 and the triangle in-

equality we have,

ECnV
(
PZn|Cn ,ΥZn|Cn

)
≤ ECnV

(
PZn|Cn , Q

⊗n
0

)
+ ECnV

(
ΥZn|Cn , Q

⊗n
0

)
. (AC.26)

Using Pinsker inequality and (AC.24) the first term on the RHS of (AC.26) vanishes when

n grows if we choose PS(s), PU |S(u|s), and x(u, s) such that QZ = Q0 and (AC.25) holds.

Also, from (AC.8) the second term on the RHS of (AC.26) vanishes when n grows.

Decoding and Error Probability Analysis: By following the same steps as in [37], the

probability of error vanishes when n grows if

R +R′ < IP (U ;Y ). (AC.27)

The region in Theorem 26 is derived by applying Fourier-Motzkin to (AC.7), (AC.25),

and (AC.27).
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APPENDIX AD

PROOF OF THEOREM 27

To prove the upper bound for the case that the jammer knows in which blocks the transmitter

is communicating with the receiver and has an unlimited source of local randomness and

transmits an i.i.d. sequence when communication is not happening. Consider any sequence

of codes with length n such that P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ where limn→∞ εn = 0. Note

that the converse is consistent with the model and does not require δ to vanish.

Epsilon Rate Region: First we define a region Aε for ε > 0 which extends the region

defined in (4.77) as follows.

Aε =





(R,RK) ≥ 0 : ∃PUV SXY Z ∈ Dε :

R ≤ I(U, V ;Y )− I(U ;S|V ) + ε

RK ≥ I(V ;Z)− I(V ;S)− I(U, V ;Y ) + I(U ;S|V )− 3ε

RK +RJ ≥ I(V ;Z)− I(U, V ;Y ) + I(U ;S|V )− 3ε

RJ ≥ I(S;Z)− 2ε





, (AD.1a)

where

Dε =





PUV SXY Z :

PUV SXY Z = PSUV 1{
X=X(U,S)

}WY Z|XS

D (PZ‖Q0) ≤ ε

max{|U| , |V|} ≤ |X |+ 3





. (AD.1b)

We next show that if a rate R is achievable, then R ∈ Aε for any ε > 0. For any εn > 0, we

start by upper bounding nR using standard techniques,

nR = H(M)
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= H(M |K)

(a)

≤ I(M ;Y n|K) + nεn

=
n∑

i=1

I(M ;Yi|K,Y i−1) + nεn

≤
n∑

i=1

I(M,K, Y i−1, Zi−1;Yi) + nεn

=
n∑

i=1

[
I(M,K, Y i−1, Zi−1, Sni+1;Yi)− I(Sni+1;Yi|M,K, Y i−1, Zi−1)

]
+ nεn

(b)
=

n∑

i=1

[
I(M,K, Y i−1, Zi−1, Sni+1;Yi)− I(Y i−1;Si|M,K, Sni+1, Z

i−1)
]

+ nεn

(c)
=

n∑

i=1

[I(Ui, Vi;Yi)− I(Ui;Si|Vi)] + nεn

= n
n∑

i=1

1

n

[
I(Ui, Vi;Yi|T = i)− I(Ui;Si|Vi, T = i)

]
+ nεn

= n
n∑

i=1

P(T = i)
[
I(Ui, Vi;Yi|T = i)− I(Ui;Si|Vi, T = i)

]
+ nεn

= n
[
I(UT , VT ;YT |T )− I(UT ;ST |VT , T )

]
+ nεn

≤
[
I(UT , VT , T ;YT )− I(UT ;ST |VT , T )

]
+ nεn

(d)
= n

[
I(U, V ;Y )− I(U ;S|V )

]
+ nεn

(e)

≤ n
[
I(U, V ;Y )− I(U ;S|V )

]
+ nε, (AD.2)

where

(a) follows from Fano’s inequality and the entropy function property that conditioning does

not increase entropy;

(b) follows from Csiszár-Körner sum identity [70, Lemma 7];

(c) follows by defining Ui , (M,K, Y i−1, Sni+1) and Vi , (M,K,Zi−1, Sni+1);

(d) follows by defining U = (UT , T ), V = (VT , T ), Y = YT , and S = (ST , T );
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(e) follows from definition ε , max{εn, ν}.

Next, we lower bound n(R +RK) as follows,

n(R +RK) ≥ H(M,K)

≥ I(M,K;Zn)

=
n∑

i=1

I(M,K;Zi|Zi−1)

=
n∑

i=1

[
I(M,K, Sni+1;Zi|Zi−1)− I(Sni+1;Zi|M,K,Zi−1)

]

(a)
=

n∑

i=1

[
I(M,K, Sni+1;Zi|Zi−1)− I(Zi−1;Si|M,K, Sni+1)

]

(b)

≥
n∑

i=1

[
I(M,K, Sni+1, Z

i−1;Zi)− I(Zi−1;Si|M,K, Sni+1)
]
− δ

(c)

≥
n∑

i=1

[
I(M,K, Sni+1, Z

i−1;Zi)− I(M,K, Sni+1, Z
i−1;Si)

]
− δ

(d)
=

n∑

i=1

[
I(Vi;Zi)− I(Vi;Si)

]
− δ

= n
n∑

i=1

1

n

[
I(VT ;ZT |T = i)− I(VT ;ST |T = i)

]
− δ

= n
n∑

i=1

P(T = i)
[
I(VT ;ZT |T = i)− I(VT ;ST |T = i)

]
− δ

= n
[
I(VT ;ZT |T )− I(VT ;ST |T )

]
− δ

≥ n
[
I(VT ;ZT |T )− I(VT , T ;ST )

]
− δ

(e)

≥ n
[
I(VT , T ;ZT )− I(VT , T ;ST )

]
− 2δ

(f)
= n

[
I(V ;Z)− I(V ;S)

]
− 2δ (AD.3)

where

(a) follows from Csiszár-Körner sum identity [70, Lemma 7];

(b) follows from [80, Lemma 3];
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(c) follows since Si is independent of (M,K, Sni+1);

(d) follows by defining Vi , (M,K, Sni+1, Z
i−1);

(e) follows from [80, Lemma 3];

(f) follows by defining V = (VT , T ), Z = ZT , and S = (ST , T ).

For any ν > 0, choosing n large enough ensures that

R +RK ≥ I(V ;Z)− I(V ;S)− 2ν

≥ I(V ;Z)− I(V ;S)− 2ε, (AD.4)

where the last inequality follows from definition ε , max{εn, ν}. Next, we have

n(R +RK +RJ) ≥ H(M,K, J)

≥ I(M,K, J ;Zn)

(a)
= I(M,K, J, Sn;Zn)

≥ I(M,K, Sn;Zn)

=
n∑

i=1

[H(Zi|Zi−1)−H(Zi|M,K,Zi−1, Sn)]

(b)

≥
n∑

i=1

[H(Zi)−H(Zi|M,K,Zi−1, Sn)]− δ

≥
n∑

i=1

[H(Zi)−H(Zi|M,K,Zi−1, Sni+1)]− δ

(c)
=

n∑

i=1

I(Vi;Zi)− δ

= n
n∑

i=1

1

n
I(Vi;Zi|T = i)− δ

= n
n∑

i=1

P(T = i)I(Vi;Zi|T = i)− δ

= nI(VT ;ZT |T )− δ
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(d)

≥ nI(VT , T ;ZT )− 2δ

(e)
= nI(V ;Z)− 2δ (AD.5)

where

(a) follows because Sn is a function of J ;

(b) and (d) follow from [80, Lemma 3];

(c) follows by defining Vi , (M,K, Sni+1, Z
i−1);

(e) follows by defining V = (VT , T ) and Z = ZT .

For any ν > 0, choosing n large enough ensures that

R +RK +RJ ≥ I(V ;Z)− 2ν

≥ I(V ;Z)− 2ε, (AD.6)

where the last inequality follows from definition ε , max{εn, ν}. We now have,

nRJ ≥ H(J)

≥ I(J ;Zn)

(a)
= I(J, Sn;Zn)

≥ I(Sn;Zn)

=
n∑

i=1

[
H(Zi|Zi−1)−H(Zi|Sn, Zi−1)

]

(b)

≥
n∑

i=1

[
H(Zi)−H(Zi|Sn, Zi−1)

]
− δ

≥
n∑

i=1

[
H(Zi)−H(Zi|Si)

]
− δ

= n

n∑

i=1

1

n
I(Si;Zi)− δ

270



= n

n∑

i=1

P(T = i)I(ST ;ZT |T = i)− δ

= nI(ST ;ZT |T )− δ
(c)

≥ nI(ST , T ;ZT )− 2δ

(d)
= nI(S;Z)− 2δ (AD.7)

where

(a) follows because Sn is a function of J ;

(b) and (c) follows from [80, Lemma 3];

(d) follows by defining S = (ST , T ) and Z = ZT .

From (AD.7) for any ν > 0, choosing n large enough ensures that

R ≥ I(S;Z)− 2ν,

≥ I(S;Z)− 2ε, (AD.8)

where the last equality follows from the definition of ε , max{εn, ν}. To prove Covertness

(i.e., D(PZ ||Q0) ≤ ε), note that for n large enough

D(PZ ||Q0) = D(PZT ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (AD.9)

Combining (AD.2), (AD.4), (AD.6), (AD.8), and (AD.9) shows that ∀εn, ν > 0, R ≤

max{x : x ∈ Aε}. Therefore,

CIJ-NC ≤ max

{
x : x ∈

⋂

ε>0

Aε
}
. (AD.10)

Continuity at Zero: The proof for continuity at zero of Aε is similar to that of Appendix Y

and is omitted for the sake of brevity.
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APPENDIX AE

PROOF OF THEOREM 28

Fix PS, PU , x(u, s), and ε > 0 such that, QZ = Q0.

Codebook Generation: Let C
(n)
1 ,

{
Un(k,m)

}
(k,m)∈K×M be a random codebook con-

sisting of independent random sequences, each generated according to P⊗nU . We denote a

realization of C
(n)
1 by C(n)

1 ,
{
un(k,m)

}
(k,m)∈K×M. The indices (k,m) can be viewed as a

one layer binning.

Let C
(n)
2 ,

{
Sn(j)

}
j∈J be a random codebook consisting of independent random se-

quences, each generated according to P⊗nS . We denote a realization of C
(n)
2 by C(n)

2 ,
{
sn(j)

}
j∈J .

Also, Cn =
{
C

(n)
1 , C

(n)
2

}
denotes a random codebook and Cn =

{
C(n)

1 , C(n)
2

}
denotes a fixed

codebook. The set of all possible values of Cn is denoted by Cn. The codebook construction

described above induces the PMF λ ∈ P(Cn) over the codebook ensemble. For each Cn ∈ Cn

λ(Cn) =
∏

j∈J
P⊗nS

(
sn(j)

) ∏

(k,m)∈K×M
P⊗nU

(
un(k,m)

)
. (AE.1)

Encoding: To send the message m according to the key k, the encoder computes un(k,m)

from the codebook and given the jammer’s channel input it transmits codeword xn, where

xi = x(ui(k,m), si). For a fixed codebook Cn, the induced joint distribution is

P
(Cn)
KMUnJSnZn(k,m, j, s̃n, ũn, zn) = 2−n(RK+R+RJ )1{

ũn=un(k,m)
}⋂{

s̃n=sn(j)
}W⊗n

Z|US(zn|ũn, s̃n).

(AE.2)

Considering the random codebook generation, we have

P (Cn, k,m, ũn, j, s̃n, zn) = λ(Cn)P (Cn)(k,m, ũn, j, s̃n, zn), (AE.3)

where λ ∈ P(Cn) is defined in (AE.1). From (AE.2) we have

PZn|Cn(zn) =
1

2n(RK+R+RJ )

∑

(k,m,j)

W⊗n
Z|US

(
zn|Un(k,m), Sn(j)

)
. (AE.4)
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Covert Analysis: Consider a scenario in which the jammer selects a codeword from its

codebook (i.e. C(n)
2 ) uniformly at random, but the transmitter chooses the innocent sequence

xn0 as the channel input. For this scenario for a fixed codebook C(n)
2 , the induced joint

distribution is as follows

Υ
(Cn)
JSnZn(j, sn, zn) =

1

2nRJ
1{sn=sn(j)}W

⊗n
Z|XS

(
zn|xn0 , sn(j)

)
. (AE.5)

Therefore, the distribution induced at the output of the warden for a random codebook is

ΥZn|Cn(zn) =
1

2nRJ

2nRJ∑

f=1

W⊗n
Z|XS

(
zn|xn0 , Sn(j)

)
. (AE.6)

For this scenario if RJ > IΥ(S;Z) then according to soft covering lemma [83, Theorem 4] or

[77, Corollary VII.4] and Pinsker’s inequality, we have

ECnV
(
ΥZn|Cn , Q

⊗n
0

)
−−→
n→∞

0, (AE.7)

where

Q0(·) =
∑

s∈S
PS(s)WZ|XS

(
· |x0, s

)
. (AE.8)

Note that if RK < IΥ(S;Z) according to Shannon’s channel coding theorem, the warden

might be able to decode J , which reduces the problem to the point to point channel for

which the covert rate will be zero. We aim to show that the coding scheme described above

guarantees

ECnD(PZn|Cn||ΥZn|Cn) −−→
n→∞

0. (AE.9)

To show that (AE.9) holds by using Lemma 1 and the triangle inequality we have

ECnV
(
PZn|Cn ,ΥZn|Cn

)
≤ ECnV

(
PZn|Cn , Q

⊗n
0

)
+ ECnV

(
ΥZn|Cn , Q

⊗n
0

)
. (AE.10)
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According to the soft covering lemma [83, Theorem 4] or [77, Corollary VII.4], the second

term on the RHS of (AE.10) vanishes when n grows if

RJ > IΥ(S;Z). (AE.11)

To bound the first term on the RHS of (AE.10) by using Lemma 1 we first show

ECnD
(
PZn|Cn||Q⊗nZ

)
−−→
n→∞

0, (AE.12)

where

QZ(·) =
∑

s∈S

∑

u∈U

∑

x∈X
PS(s)PU(u)1{x=x(u,s)}WZ|XS

(
· |x, s

)
. (AE.13)

Then we choose PS, PU , and x(u, s) such that QZ = Q0. We now have,

ECn
[
D
(
PZn|Cn||Q⊗nZ

)]

= ECn

[∑

zn

PZn|Cn(zn) log
PZn|Cn(zn)

Q⊗nZ (zn)

]

= ECn

[∑

zn

1

2n(RK+R+RJ )

∑

(k,m,j)

W⊗n
Z|US

(
zn|Un(k,m), Sn(j)

)

log

∑
(k̃,m̃,j̃)

W⊗n
Z|US

(
zn|Un(k̃, m̃), Sn(j̃)

)

2n(RK+R+RJ )Q⊗nZ (zn)

]

(a)

≤ 1

2n(RK+R+RJ )

∑

(k,m,j)

∑

(un,sn,zn)

P⊗nUSZ
(
un(k,m), sn(j), zn

)

logE\(k,m,j)

[ ∑
(k̃,m̃,j̃)

W⊗n
Z|US

(
zn|Un(k̃, m̃), Sn(j̃)

)

2n(RK+R+RJ )Q⊗nZ (zn)

]

=
1

2n(RK+R+RJ )

∑

(k,m,j)

∑

(un,sn,zn)

P⊗nUSZ
(
un(k,m), sn(j), zn

)

logE\(k,m,j)

[
W⊗n
Z|US

(
zn|un(k,m), sn(j)

)

2n(RK+R+RJ )Q⊗nZ (zn)

+

∑
(k̃,m̃)6=(k,m)

W⊗n
Z|US

(
zn|Un(k̃, m̃), sn(j)

)

2n(RK+R+RJ )Q⊗nZ (zn)
+

∑
j̃ 6=j

W⊗n
Z|US

(
zn|un(k,m), Sn(j̃)

)

2n(RK+R+RJ )Q⊗nZ (zn)
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+

∑
(k̃,m̃)

∑
j̃ 6=j

W⊗n
Z|US

(
zn|Un(k̃, m̃), Sn(j̃)

)

2n(RK+R+RJ )Q⊗nZ (zn)

]

(b)

≤ 1

2n(RK+R+RJ )

∑

(k,m,j)

∑

(un,sn,zn)

P⊗nUSZ
(
un(k,m), sn(j), zn

)
log

[
W⊗n
Z|US

(
zn|un(k,m), sn(j)

)

2n(RK+R+RJ )Q⊗nZ
(
zn
)

+

∑
(k̃,m̃)6=(k,m)

W⊗n
Z|S
(
zn|sn(j)

)

2n(RK+R+RJ )Q⊗nZ (zn)
+

∑
j̃ 6=j

W⊗n
Z|U
(
zn|un(k,m)

)

2n(RK+R+RJ )Q⊗nZ (zn)
+ 1

]

≤ 1

2n(RK+R+RJ )

∑

(k,m,j)

∑

(un,sn,zn)

P⊗nUSZ
(
un(k,m), sn(j), zn

)

× log

[
W⊗n
Z|US

(
zn|un(k,m), sn(j)

)

2n(RK+R+RJ )Q⊗nZ
(
zn
) +

W⊗n
Z|S
(
zn|sn(j)

)

2nRJQ⊗nZ (zn)
+
W⊗n
Z|U
(
zn|un(k,m)

)

2n(RK+R)Q⊗nZ (zn)
+ 1

]

, Ψ1 + Ψ2 (AE.14)

where (a) follows from Jensen’s inequality and (b) follows by taking expectation with respect

to \(k,m) and by removing some terms from the denominator of the first term in the log

function and adding one term to the nominator of the second term in the log function. We

defined Ψ1 and Ψ2 as

Ψ1 ≤
1

2n(RK+R+RJ )

∑

(k,m,j)

∑

(un,sn,zn)∈T (n)
ε

P⊗nUSZ
(
un(k,m), sn(j), zn

)

× log

[
W⊗n
Z|US

(
zn|un(k,m), sn(j)

)

2n(RK+R+RJ )Q⊗nZ (zn)
+
W⊗n
Z|S
(
zn|sn(j)

)

2nRJQ⊗nZ (zn)
+
W⊗n
Z|U
(
zn|un(k,m)

)

2n(RK+R)Q⊗nZ (zn)
+ 1

]

≤ log

(
2−n(1−ε)H(Z|U,S)

2n(RK+R+RJ )2−n(1+ε)H(Z)
+

2−n(1−ε)H(Z|S)

2nRJ2−n(1+ε)H(Z)
+

2−n(1−ε)H(Z|U)

2n(RK+R)2−n(1+ε)H(Z)
+ 1

)

(AE.15)

and

Ψ2 ≤
1

2n(RK+R+RJ )

∑

(k,m,j)

∑

(un,sn,zn)/∈T (n)
ε

P⊗nUSZ
(
un(k,m), sn(j), zn

)

× log

[
W⊗n
Z|US

(
zn|un(k,m), sn(j)

)

2n(RK+R+RJ )Q⊗nZ (zn)
+
W⊗n
Z|S
(
zn|sn(j)

)

2nRJQ⊗nZ (zn)
+
W⊗n
Z|U
(
zn|un(k,m)

)

2n(RK+R)Q⊗nZ (zn)
+ 1

]
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≤ 2|U||S||Z|e−nε2µU,S,Zn log(
2

µZ
+ 1). (AE.16)

where

µZ = min
z∈Z

s.t.Qz>0

Q(z) (AE.17)

µU,S,Z = min
(u,s,z)∈(U ,S,Z)

s.t.Q(u,s,z)>0

Q(u, s, z) (AE.18)

When n→∞ then Ψ2 → 0 and Ψ1 → 0 when n grows if

RJ > IP (S;Z), (AE.19a)

RK +R > IP (U ;Z), (AE.19b)

RK +R +RJ > IP (U, S;Z). (AE.19c)

Decoding and Error Probability Analysis: By following the standard error analysis one

can show that probability of error vanishes when n grows if,

R < IP (U ;Y ). (AE.20)

The region in Theorem 28 is derived by combining (AE.11), (AE.19), and (AE.20).
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APPENDIX AF

PROOF OF THEOREM 29

To prove the upper bound for the case that the jammer knows in which blocks the transmitter

is communicating with the receiver and has an unlimited source of local randomness and

transmits an i.i.d. sequence when communication is not happening. Consider any sequence

of codes with length n such that P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ where limn→∞ εn = 0. Note

that the converse is consistent with the model and does not require δ to vanish.

Epsilon Rate Region: First we define a region Aε for ε > 0 which extends the region

defined in (4.83) as follows.

Aε =





(R,RK) ≥ 0 : ∃PUV SXY Z ∈ Dε :

R ≤ I(U ;Y ) + ε

R +RK ≥ I(V ;Z)− 3ε

RJ ≥ I(S;Z)− 2ε





, (AF.1a)

where

Dε =





PUV SXY Z :

PUV SXY Z = PSUV 1{
X=X(U,S)

}WY Z|XS

D (PZ‖Q0) ≤ ε

max{|U| , |V|} ≤ |X |+ 3





, (AF.1b)

Next, we prove that if a rate R is achievable, then R ∈ Aε for ∀ε > 0. For any εn > 0, we

start by upper bounding nR using standard techniques.

nR = H(M)

= H(M |K)
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(a)

≤ I(M ;Y n|K) + nεn

=
n∑

i=1

I(M ;Yi|K,Y i−1) + nεn

≤
n∑

i=1

I(M,K, Y i−1;Yi) + nεn

(b)

≤
n∑

i=1

I(M,K, Si−1;Yi) + nεn

(c)
=

n∑

i=1

I(Ui;Yi) + nεn

= n

n∑

i=1

1

n
I(Ui;Yi) + nεn

= n
n∑

i=1

P(T = i)I(Ui;Yi|T = i) + nεn

= nI(UT ;YT |T ) + nεn

≤ nI(UT , T ;YT ) + nεn

(d)
= nI(U ;Y ) + nεn

(e)

≤ nI(U ;Y ) + nε, (AF.2)

where

(a) follows from Fano’s inequality;

(b) follows because (M,K, Y i−1) − (M,K, Si−1) − Yi, note that we also have Vi −

(M,K, Si−1)− Yi, where Vi , (M,K,Zi−1);

(c) follows by defining Ui , (M,K, Si−1);

(d) follows by defining U = (UT , T ) and Y = YT ;

(e) follows by defining ε , max{εn, ν ≥ δ
n
}.
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Next, we lower bound nR as follows,

n(R +RK) ≥ H(M,K)

≥ I(M,K;Zn)

=
n∑

i=1

I(M,K;Zi|Zi−1)

(a)

≥
n∑

i=1

I(M,K,Zi−1;Zi)− δ

(b)
=

n∑

i=1

I(Vi;Zi)− δ

= n
n∑

i=1

P(T = i)I(Vi;Zi|T = i)− δ

= nI(VT ;ZT |T )− δ
(c)

≥ nI(VT , T ;ZT )− 2δ

(d)
= nI(V ;Z)− 2δ (AF.3)

where

(a) follows from [80, Lemma 3];

(b) follows from the definition of Vi , (M,K,Zi−1), that has been defined in the process of

the derivation of (AF.2);

(c) follows from [80, Lemma 3];

(d) follows by defining V = (VT , T ) and Z = ZT .

For any ν > 0, choosing n large enough ensures that

R +RK ≥ I(V ;Z)− 2ν

≥ I(V ;Z)− 2ε, (AF.4)
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where the last equality follows from the definition ε , max{εn, ν}. Also, similar to (AD.8)

one can show that,

RJ ≥ I(S;Z)− 2ε. (AF.5)

To prove Covertness (i.e., D(PZ ||Q0) ≤ ε), for n large enough

D(PZ ||Q0) = D(PZT ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (AF.6)

Combining (AF.2), (AF.4), (AF.5), and (AF.6) shows that ∀εn, ν > 0, R ≤ max{x : x ∈

Aε}. Therefore,

R ≤ max

{
x : x ∈

⋂

ε>0

Aε
}
. (AF.7)

Continuity at Zero: The proof for continuity at zero of Aε is similar to that of Appendix Y

and is omitted for the sake of brevity.
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APPENDIX AG

PROOF OF THEOREM 30

Our achievability scheme is based on a block-Markov encoding scheme in which B − 1

independent messages will be transmitted over B channel blocks, each of length r, therefore

the overall codeword length is n = rB symbols. The warden’s observation Zn will be

described in terms of observations in each block Zn = (Zr
1 , . . . , Z

r
B). The distribution induced

on the warden’s observation, by the block-Markov encoding, is PZn , PZr1 ,...,ZrB and the target

distribution on the warden’s observation is Q⊗n0 =
∏B

j=1 Q
⊗r
0 . Therefore,

D(PZn||Q⊗n0 ) = D(PZr1 ...ZrB ||Q
⊗rB
0 )

=
B∑

b=1

D(PZrb |Z
B,r
b+1
||Q⊗r0 |PZB,rb+1

)

=
B∑

b=1

[D(PZrb ||Q
⊗r
0 ) + D(PZrb |Z

B,r
b+1
||PZrb |PZB,rb+1

)]

=
B∑

b=1

[D(PZrb ||Q
⊗r
0 ) + I(Zr

b ;Z
B,r
b+1)], (AG.1)

where ZB,r
b+1 = {Zr

b+1, . . . Z
r
B}. Consequently, D(PZn||Q⊗n0 ) −−→

n→∞
0, is equivalent to ∀b ∈ J1, BK;

D(PZrb ||Q
⊗r
0 ) −−→

r→∞
0 (AG.2a)

I(Zr
b ;Z

B,r
b+1) −−→

r→∞
0. (AG.2b)

This suggests that our code design should induce Q⊗r0 on the warden’s observation in each

block, while the dependencies across blocks created by block-Markov coding should be elim-

inated. The random code scheme generation is described as follows:

Fix PU , PX|U , PS1|U , PS2 and ε > 0 such that, QZ = Q0.

Random Codebook Generation for Communication Mode: For each block b ∈ J1, BK:

281



• Let C
(r)
0 ,

{
U r(m

(b)
0 )
}
m

(b)
0 ∈M0

, whereM0 = J1, 2rRK, be a random codebook consisting

of independent random sequences each generated according to P⊗rU . We denote a

realization of C
(r)
0 by C(r)

0 ,
{
ur(m

(b)
0 )
}
m

(b)
0 ∈M0

.

• For every m
(b)
0 , let C

(r)
1 ,

{
Xr(m

(b)
0 ,m(b))

}
m(b)∈M, where M = J1, 2rRK, be a random

codebook consisting of independent random sequences each generated according to

P⊗rX|U
(
· |ui(m(b)

0 )
)
. We denote a realization of C

(r)
1 by C(r)

1 ,
{
xr(m

(b)
0 ,m(b))

}
(m(b))∈M.

• For every m
(b)
0 , let C

(r)
2 ,

{
Sr1(m

(b)
0 , k(b))

}
k(b)∈K, where K = J1, 2rRKK, be a random

codebook consisting of independent random sequences each generated according to

P⊗rS1|U
(
· |ui(m(b)

0 )
)
. We denote a realization of C

(r)
2 by C(r)

2 ,
{
sr1(m

(b)
0 , k(b))

}
k(b)∈K.

Cr =
{
C

(r)
0 , C

(r)
1 , C

(r)
2

}
denotes a random codebook, Cr =

{
C(r)

0 , C(r)
1 , C(r)

2

}
denotes a fixed

codebook, and the set of all possible values of Cr is denoted by Cr.

Random Codebook Generation for No-Communication Mode:

• Let C
(n)
3 ,

{
Sn2 (k)

}
k∈K be a random codebook consisting of independent random

sequences, each generated according to P⊗nS2
. We denote a realization of C

(n)
3 by C(n)

3 ,
{
sn2 (k)

}
k∈K.

The set of all possible values of C
(n)
3 is denoted by C

(n)
3 ; and the set of all Cr codebooks from

all blocks and the codebook C
(n)
3 is denoted by Cn.

This codebook construction induces the PMFs λ1 ∈ P(Cr) and λ2 ∈ P(C
(n)
3 ) over the

ensemble of codebooks. For every Cr ∈ Cr and C(n)
3 ∈ C

(n)
3

λ1(Cr) =
∏

m
(b)
0 ∈M0

P⊗rU
(
ur(m

(b)
0 )
) ∏

(m
′(b)
0 ,m(b))∈M0×M

P⊗rX|U
(
xr(m

′(b)
0 ,m

(b)
1 )|ur(m′(b)0 )

)

×
∏

(m
′′(b)
0 ,k′(b))∈M0×K

P⊗rS1|U
(
sr1(m

′′(b)
0 , k′(b))|ur(m′′(b)0 )

)
, (AG.3)

λ2(C(n)
3 ) =

∏

k(b)∈K
P⊗nS2

(
sn2 (k(b))

)
. (AG.4)
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Block b Block b+ 1

K(b)

Sr
b

M(b)

Zr
b

Xr
b

K(b+1)

Sr
b+1

M(b+1)

Zr
b+1

Xr
b+1

Figure AG.1. Functional dependence graph for the block-Markov encoding scheme

Encoding for Communication Mode: We assume that the transmitter, the jammer, and

the receiver have access to common randomness M
(1)
0 and M (B). As a result of cribbing, the

jammer has access to xrb−1 at the end of the block b − 1, therefore it finds an index m̂(b−1)

such that

(
ur(m̂

(b−1)
0 ), xrb−1(m̂

(b−1)
0 , m̂(b−1)), xrb−1

)
∈ T (r)

ε (PU,X), (AG.5)

where m̂(b−1) is an estimate of m(b−1). After decoding m̂(b−1), the jammer sets m̂
(b)
0 = m̂(b−1)

to be used in the next block.

In the first block, to send the message m(1) by access to m
(1)
0 , the transmitter com-

putes xrb(m
(1)
0 ,m(1)) and transmits it over the channel. Also, by access to m

(1)
0 , the jammer

computes sr1,b(m̂
(1)
0 , k(1)) according to k(1) and transmits it over the channel.

In block b ∈ J1, BK, to send the message m(b) by access to m
(b)
0 = m(b−1), the transmitter

computes xrb(m
(b)
0 ,m(b)) and transmits it over the channel. Also, the jammer computes

sr1,b(m̂
(b)
0 , k(b)) and transmits it over the channel. Here, k(b) is the shared key between the

jammer and the receiver and m̂
(b)
0 = m̂(b−1) is the jammer’s estimate of the message m(b−1)

from the previous block.

The encoding procedure ensures that at the end of block b the transmitter and the jammer

know M
(b)
0 with high probability, therefore the transmitter and the jammer can coordinate
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their channel inputs. Also, the dependencies across the blocks is created through M (b) (see

Fig. AG.1). The dependencies can be hidden from the warden by transmitting M (b) securely

over a conceptual wiretap channel.

For a fixed codebook Cr and for each block b, let P denote the induced joint distribution

by our code design when the transmitter uses M
(b)
0 and the jammer uses an estimate M̂

(b)
0 ,

which is derived from its estimate M̂ (b−1), at the end of the block b− 1. Also, let P̄ denote

the induced joint distribution by our code design when both the transmitter and the jammer

use M
(b)
0 ,

P
(Cr)
M

(b)
0 M̂

(b)
0 M(b)K(b)UrbX

r
bS

r
1,bZ

r
b

(m
(b)
0 , m̂

(b)
0 ,m(b), k(b), ũrb, x̃

r
b, s̃

r
1,b, z

r
b ) = 2−r(3R+RK)

× 1{
ũrb=u

r
b(m

(b)
0 )
}⋂{

ũrb=u
r
b(m̂

(b)
0 )
}⋂{

x̃rb=x
r
b(m

(b)
0 ,m(b))

}⋂{
s̃r1,b=s

r
1,b(m̂

(b)
0 ,k(b))

}W⊗r
Z|UXS(zrb |ũrb, x̃rb, s̃r1,b).

(AG.6a)

P̄
(Cr)
M

(b)
0 M(b)K(b)UrbX

r
bS

r
1,bZ

r
b

(m
(b)
0 , m̂

(b)
0 ,m(b), k(b), ũrb, x̃

r
b, s̃

r
1,b, z

r
b ) = 2−r(2R+RK)

× 1{
ũrb=u

r
b(m

(b)
0 )
}⋂{

ũrb=u
r
b(m̂

(b)
0 )
}⋂{

x̃rb=x
r
b(m

(b)
0 ,m(b))

}⋂{
s̃r1,b=s

r
1,b(m̂

(b)
0 ,k(b))

}W⊗r
Z|UXS(zrb |ũrb, x̃rb, s̃r1,b).

(AG.6b)

Considering the random codebook generation, we have

P (Cr,m0,m, k, s̃
r
1, ũ

r, zrb ) = λ1(Cr)P (Cr)(m0,m, k, s̃
r
1, ũ

r, zrb ), (AG.7)

where λ ∈ P is defined in (AG.3).

Encoding for No-Communication Mode: When the transmitter is not communicating

with the receiver, and therefore it transmits the innocent sequence xn0 , the jammer computes

sn2 (k) according to the key k and transmits it aver the channel. For this scenario for a fixed

codebook C(n)
2 , the induced joint distribution is as follows

Υ
(Cn)
KSn2 Z

n(k, s̃n2 , z
n) =

1

2nRK
1{s̃n2 =sn2 (k)}W

⊗n
Z|XS

(
zn|xn0 , s̃n2

)
. (AG.8)
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Therefore, the distribution induced at the output of the warden for a random codebook is

ΥZn|Cn(zn) =
1

2nRK

2nRK∑

j=1

W⊗n
Z|XS

(
zn|xn0 , Sn2 (k)

)
. (AG.9)

Decoding: The legitimate receiver waits until the transmission of the block B is complete

and starts decoding each message in the sub-blocks going backwards b ∈ [B,B−1, ..., 1]. By

access to the key and m(B) the decoder first finds ˆ̂m
(B)
0 such that

(
ur( ˆ̂m

(B)
0 ), xr( ˆ̂m

(B)
0 ,m(B)), sr1( ˆ̂m

(B)
0 , k(B)), yrB

)
∈ T (r)

ε (PUXS1Y ). (AG.10)

In block b ∈ J1, BK, assuming that the decoder has successfully decoded ˆ̂m
(B)
0 , ˆ̂m

(B−1)
0 , . . . ,

ˆ̂m
(b+1)
0 it sets ˆ̂m

(b+1)
0 = ˆ̂m(b) and finds ˆ̂m

(b)
0 such that

(
ur( ˆ̂m

(b)
0 ), xr( ˆ̂m

(b)
0 , ˆ̂m(b)), sr1( ˆ̂m

(B)
0 , k(b)), yrb

)
∈ T (r)

ε (PUXS1Y ). (AG.11)

Using the error analysis arguments in [95, Lemma 4], the probability of error in each block

decreases exponentially with r and in turn vanishes across blocks if

R ≤ HP (X|U), (AG.12a)

R ≤ IP (X,S1;Y ). (AG.12b)

Covert Analysis: We aim to show that the coding scheme described above guarantees

ECnD
(
PZn|Cn||ΥZn|Cn

)
−−→
n→∞

0. (AG.13)

To show that (AG.13) holds by using Lemma 1 and the triangle inequality we have

ECnV
(
PZn|Cn ,ΥZn|Cn

)
≤ ECnV

(
PZn|Cn , Q

⊗n
0

)
+ ECnV

(
ΥZn|Cn , Q

⊗n
0

)
, (AG.14)

where

Q0(·) =
∑

s2∈S2

PS2(s2)WZ|X=x0,S

(
· |x0, s2

)
. (AG.15)
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According to soft covering lemma [83, Theorem 4] or [77, Corollary VII.4] the second term

on the RHS of (AG.14) vanishes when n grows if

RK > IΥ(S2;Z). (AG.16)

Note that if RK < IΥ(S2;Z), according to Shannon’s channel coding theorem, the warden

might be able to decode J , which reduces the problem to the point to point channel for

which the covert rate will be zero. To bound the first term on the RHS of (AG.14) by using

Pinsker’s inequality in Lemma 1 we first show ECnD(PZn|Cn||Q⊗nZ ) −−→
n→∞

0, where

QZ(·) =
∑

u∈U

∑

x∈X

∑

s1∈S1

PU(u)PX|U(x|u)PS1|U(s1|u)WZ|XS(·|x, s1). (AG.17)

Then we choose PU , PX|U , PS1|U , and PS2 such that it satisfies QZ = Q0. From the expansion

in (AG.1), for every block b ∈ J2, BK, by substituting Q0 with QZ ,

I(Zr
b ;Z

B,r
b+1) ≤ I(Zr

b ;M
(b), ZB,r

b+1)

(a)
= I(Zr

b ;M
(b)), (AG.18)

where (a) holds because Zr
b −M (b) − ZB,r

b+1 forms a Markov chain, as seen in the functional

dependence graph depicted in Fig. AG.1. Also,

I(Zr
b ;M

(b)) = D
(
P

(Cn)

ZrbM
(b)||P (Cn)

Zrb
P

(Cn)

M(b)

)

(b)

≤D
(
P

(Cn)

ZrbM
(b) ||Q⊗rZ QM(b)

)
, (AG.19)

where QM(b) is the uniform distribution on J1, 2rRK and (b) follows from the positivity of

relative entropy and

D
(
PZrbM(b)||PZrbPM(b)

)
= D

(
PZrbM(b)||Q⊗rZ QM(b)

)
− D

(
PM(b)||QM(b)

)
− D

(
PZrb ||Q

⊗r
Z

)
.

(AG.20)
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Therefore by combining (AG.1), (AG.19), and (AG.20)

D
(
PZn|Cn||Q⊗nZ

)
≤ 2

B∑

b=1

D
(
PZrbM(b)|Cr ||Q⊗rZ QM(b)

)
. (AG.21)

We now proceed to bound the RHS of (AG.21). For this purpose, we first show that our

coding scheme guarantees that

ECr
[
D
(
P̄ZrbM(b)|Cr

∣∣∣∣Q⊗rZ QM(b)

)]
−−→
r→∞

0, (AG.22)

and then show that (AG.22) implies

ECr
[
D
(
PZrbM(b)|Cr

∣∣∣∣Q⊗rZ QM(b)

)]
−−→
r→∞

0. (AG.23)

To bound (AG.22) from (AG.6b) we have,

P̄ZrbM(b)|Cr(z
r
b ,m

(b)) =
∑

(
m

(b)
0 ,k(b)

) 2−r(2R+RK)W⊗r
Z|UXS

(
zrb |U r

b

(
m

(b)
0

)
, Xr

b

(
m

(b)
0 ,m(b)

)
, Sr1,b

(
m

(b)
0 , k(b)

))
.

(AG.24)

We now have,

ECr
[
D
(
P̄ZrbM(b)|Cr

∣∣∣∣Q⊗rZ QM(b)

)]
= ECr

[ ∑
(
zrb ,m

(b)
) P̄
(
zrb ,m

(b)|Cr
)

log

(
P̄
(
zrb ,m

(b)|Cr
)

Q⊗rZ (zrb )QM(b)(m(b))

)]

= ECr

[ ∑
(
zrb ,m

(b)
)
∑

(i,j)

2−r(2R+RK)W⊗r
Z|UXS

(
zrb |U r

b (i), Xr
b

(
i,m(b)

)
, Sr1,b

(
i, j
))

× log

(∑
(̃i,j̃)

2−r(2R+RK)W⊗r
Z|UXS

(
zrb |U r

b (̃i), Xr
b (̃i,m(b)), Sr1,b(̃i, j̃)

)

2−rRQ⊗rZ (zrb )

)]

(a)

≤
∑

(
zrb ,m

(b)
)
∑

(i,j)

1

2r(2R+RK)

∑

urb(i)

∑

xrb(i,m
(b))

∑

sr1,b(i,j)

P̄⊗rUrXrSr1Z
r
b

(
urb(i), x

r
b(i,m

(b)), sr1,b(i, j), z
r
b )

× logE\(i,j)

[∑
(̃i,j̃)

W⊗r
Z|UXS

(
zrb |U r

b (̃i), Xr
b (̃i,m(b)), Sr1,b(̃i, j̃)

)

2r(R+RK)Q⊗rZ (zrb )

]
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(b)
=

∑
(
zrb ,m

(b)
)
∑

(i,j)

1

2r(2R+RK)

∑

urb(i)

∑

xrb(i,m
(b))

∑

sr1,b(i,j)

P̄⊗rUrXrSr1Z
r
b

(
urb(i), x

r
b(i,m

(b)), sr1,b(i, j), z
r
b )

× log

(
W⊗r
Z|UXS

(
zrb |urb(i), xrb(i,m(b)), sr1,b(i, j)

)

2r(R+RK)Q⊗rZ (zrb )

+ E\j

[∑
j̃ 6=j

W⊗r
Z|UXS

(
zrb |urb(i), xrb(i,m(b)), Sr1,b(i, j̃)

)

2r(R+RK)Q⊗rZ (zrb )

]

+ E\(i,j)

[∑
ĩ6=i

∑
j̃

W⊗r
Z|UXS

(
zrb |U r

b (̃i), Xr
b (̃i,m(b)), Sr1,b(̃i, j̃)

)

2r(R+RK)Q⊗rZ (zrb )

])

=
∑

(
zrb ,m

(b)
)
∑

(i,j)

1

2r(2R+RK)

∑

urb(i)

∑

xrb(i,m
(b))

∑

sr1,b(i,j)

P̄⊗rUrXrSr1Z
r
b

(
urb(i), x

r
b(i,m

(b)), sr1,b(i, j), z
r
b )

× log

(
W⊗r
Z|UXS

(
zrb |urb(i), xrb(i,m(b)), sr1,b(i, j)

)

2r(R+RK)Q⊗rZ (zrb )
+
∑

j̃ 6=j

W⊗r
Z|UX

(
zrb |urb(i), xrb(i,m(b))

)

2r(R+RK)Q⊗rZ (zrb )
+ 1

)

≤
∑

(
zrb ,m

(b)
)
∑

(i,j)

1

2r(2R+RK)

∑

urb(i)

∑

xrb(i,m
(b))

∑

sr1,b(i,j)

P̄⊗rUrXrSr1Z
r
b

(
urb(i), x

r
b(i,m

(b)), sr1,b(i, j), z
r
b )

× log

(
W⊗r
Z|UXS

(
zrb |urb(i), xrb(i,m(b)), sr1,b(i, j)

)

2r(R+RK)Q⊗rZ (zrb )
+
W⊗r
Z|UX

(
zrb |urb(i), xrb(i,m(b))

)

2rRQ⊗rZ (zrb )
+ 1

)

, Ψ1 + Ψ2, (AG.25)

where (a) follows from Jensen’s inequality, (b) is because 1{·} ≤ 1, and the last term in the

RHS of (b) is smaller than 1. We defined Ψ1 and Ψ2 as

Ψ1 =
∑

(i,m(b),j)

1

2r(2R+RK)

∑
(
urb(i),x

r
b(i,m

(b)),sr1,b(i,j),z
r
b

)
∈T (r)

ε

P̄⊗rUrXrSr1Z
r
b

(
urb(i), x

r
b(i,m

(b)), sr1,b(i, j), z
r
b

)

× log

(
W⊗r
Z|UXS

(
zrb |urb(i), xrb(i,m(b)), sr1,b(i, j)

)

2r(R+RK)Q⊗rZ (zrb )
+
W⊗r
Z|UX

(
zrb |urb(i), xrb(i,m(b))

)

2rRQ⊗rZ (zrb )
+ 1

)

≤ log

(
2−r(1−ε)(H(Z|X,S1))

2r(R+RK)2−r(1+ε)H(Z)
+

2−r(1−ε)H(Z|U,X)

2rR2−r(1+ε)H(Z)
+ 1

)
(AG.26)
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Ψ2 =
∑

(i,m(b),j)

1

2r(2R+RK)

∑
(
urb(i),x

r
b(i,m

(b)),sr1,b(i,j),z
r
b

)
/∈T (r)
ε

P̄⊗rUrXrSr1Z
r
b

(
urb(i), x

r
b(i,m

(b)), sr1,b(i, j), z
r
b

)

× log

(
W⊗r
Z|UXS

(
zrb |urb(i), xrb(i,m(b)), sr1,b(i, j)

)

2r(R+RK)Q⊗rZ (zrb )
+
W⊗r
Z|UX

(
zrb |urb(i), xrb(i,m(b))

)

2rRQ⊗rZ (zrb )
+ 1

)

≤ 2|U ||S1||X||Z|e−rεµU,S1,X,Zr log(
4

µZ
+ 1), (AG.27)

Ψ2 goes to zero when r →∞ and Ψ1 goes to zero when r →∞ if,

R +RK > IP (X,S1;Z), (AG.28a)

R > IP (U,X;Z). (AG.28b)

Finally, we show that (AG.22) implies (AG.23). Using the properties of total variation

distance results to

V
(
PZrbM(b) , P̄ZrbM(b)

)

≤ V
(
P
ZrbM

(b)
0 M(b)M̂

(b)
0 K(b) , P̄ZrbM

(b)
0 M(b)M

(b)
0 K(b)

)

= 2P
(
M

(b)
0 6= M̂

(b)
0

)
. (AG.29)

Since PM(b) = P̄M(b) = QM(b) ,

V
(
PZrbM(b) , Q⊗rZ QM(b)

)

≤ V
(
PZrbM(b) , P̄ZrbM(b)

)
+ V

(
P̄ZrbM(b) , Q⊗rZ QM(b)

)
. (AG.30)

Since the probability of error vanishes as r grows and using (AG.29) the first term on the

RHS of (AG.30) vanishes as r grows. Also, Pinsker’s inequality ensures that the second term

on the RHS of (AG.30) vanishes as r grows if we have (AG.28). Using (AG.30) together

with Lemma ? ensures that (AG.23) holds. The region in Theorem 30 is derived by applying

Fourier-Motzkin to (AG.12), (AG.16), and (AG.28).
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APPENDIX AH

PROOF OF THEOREM 31

To prove the upper bound for the case that the transmitter’s codeword is available strictly-

causally at the jammer and the jammer has unlimited source of local randomness and trans-

mits an i.i.d. sequence when communication is not happening, consider any sequence of codes

with length n such that P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ where limn→∞ εn = 0. Note that

the converse is consistent with the model and does not require δ to vanish.

Epsilon Rate Region: We first define a region Aε for ε > 0 that expands the region defined

in (4.95) as follows.

Aε =





(R,RK) ≥ 0 : ∃PUSXY Z ∈ Dε :

R ≤ min{H(X|U), I(X,S;Y )}+ ε

RK ≥ I(X,S;Z)−min{H(X|U), I(X,S;Y )} − 3ε





, (AH.1a)

where

Dε =





PUSXY Z :

PUSXY Z = PUPX|UPS|UWY Z|XS

min{H(X|U), I(X,S;Y )} ≥ I(U,X;Z)− 3ε

D(PZ ||Q0) ≤ ε

|U| ≤ min{|X | |S|+ 1, |Y|+ 2}





. (AH.1b)

We next show that for any ε > 0 and for any achievable rate pair (R,RK) we have (R,RK) ∈

Aε. For any εn > 0, using standard techniques, we start by upper bounding nR.

nR = H(M)

= H(M |K)
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(a)

≤ I(M ;Y n|K) + nεn

≤ I(M,K,Xn, Sn;Y n) + nεn

(b)
= I(Xn, Sn;Y n) + nεn

=
n∑

i=1

[
H(Yi|Y i−1)−H(Yi|Xn, Sn, Y i−1)

]
+ nεn

≤
n∑

i=1

[
H(Yi)−H(Yi|Xn, Sn, Y i−1)

]
+ nεn

(c)
=

n∑

i=1

I(Xi, Si;Yi) + nεn

= n
n∑

i=1

1

n
I(Xi, Si;Yi) + nεn

= n
n∑

i=1

P(T = i)I(XT , ST ;YT |T = i) + nεn

= nI(XT , ST ;YT |T ) + nεn

≤ nI(XT , ST , T ;YT ) + nεn

(d)
= nI(X,S;Y ) + nεn

(e)
= nI(X,S;Y ) + nε,

where

(a) follows from Fano’s inequality;

(b) holds because of the Markov chain (M,K)− (Xn, Sn)− Y n;

(c) follows because the channel is memoryless;

(d) follows by defining X = (XT , T ), S = ST , and Y = YT ;

(e) follows by defining ε , max{εn, ν ≥ δ
n
}.
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We also have,

nR = H(M)

(a)

≤ I(M ;Y n) + nεn

≤ I(M,Xn;Y n) + nεn

(b)

≤ I(Xn;Y n) + nεn

≤ H(Xn) + nεn

=
n∑

i=1

H(Xi|X i−1) + nεn

(c)
=

n∑

i=1

H(Xi|Ui) + nεn

= n
n∑

i=1

1

n
H(Xi|Ui) + nεn

= n
n∑

i=1

P(T = i)H(XT |UT , T = i) + nεn

= nH(XT |UT , T ) + nεn

(d)

≤ nH(X|U) + nεn

(e)

≤ nH(X|U) + nε (AH.2)

where

(a) follows from Fano’s inequality;

(b) holds because of the Markov chain M −Xn − Y n;

(c) follows by defining Ui , X i−1;

(d) follows by defining X = (XT , T ) and U = (UT , T );

(e) follows by defining ε , max{εn, ν ≥ δ
n
}.
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We now have,

nR = H(M)

≥ I(M ;Zn)

(a)
= I(M,Xn;Zn)

≥ I(Xn;Zn)

=
n∑

i=1

[
H(Zi|Zi−1)−H(Zi|Zi−1, Xn)

]

(b)

≥
n∑

i=1

[
H(Zi)−H(Zi|Zi−1, Xn)

]
− δ

≥
n∑

i=1

[
H(Zi)−H(Zi|Xi, X

i−1)
]
− δ

(c)
=

n∑

i=1

I(Ui, Xi;Zi)− δ

= n
n∑

i=1

1

n

[
I(Ui, Xi;Zi)

]
− δ

= n
n∑

i=1

P(T = i)I(UT , XT ;ZT |T = i)− δ

= nI(UT , XT ;ZT |T )− δ
(d)

≥ nI(UT , XT , T ;ZT )− 2δ

(e)
= nI(U,X;Z)− 2δ

where

(a) follows since Xn is a deterministic function of M ;

(b) and (d) follows from [80, Lemma 3];

(c) follows by defining Ui , X i−1;

(e) follows by defining X = (XT , T ), U = (UT , T ), and Z = ZT .
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For any ν > 0, choosing n large enough ensures that

R≥ I(U,X;Z)− 2ν

≥ I(U,X;Z)− 2ε, (AH.3)

where the last inequality follows from definition ε , max{εn, ν}. We now have,

n(R +RK) = H(M,K)

≥ I(M,K;Zn)

(a)
= I(M,K,Xn, Sn;Zn)

≥ I(Xn, Sn;Zn)

=
n∑

i=1

[
H(Zi|Zi−1)−H(Zi|Zi−1, Xn, Sn)

]

(b)

≥
n∑

i=1

[
H(Zi)−H(Zi|Zi−1, Xn, Sn)

]
− δ

≥
n∑

i=1

[
H(Zi)−H(Zi|Xi, Si)

]
− δ

=
n∑

i=1

I(Xi, Si;Zi)− δ

= n
n∑

i=1

1

n

[
I(Xi, Si;Zi)

]
− δ

= n
n∑

i=1

P(T = i)I(XT , ST ;ZT |T = i)− δ

= nI(XT , ST ;ZT |T )− δ
(c)

≥ nI(XT , ST , T ;ZT )− 2δ

(d)
= nI(X,S;Z)− 2δ

where

(a) follows since Xn is a deterministic function of M and Sn is a deterministic function

of (K,Xn−1);
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(b) and (c) follow from [80, Lemma 3];

(d) follows by defining X = (XT , T ), S = ST , and Z = ZT .

For any ν > 0, choosing n large enough ensures that

R +RK ≥ I(X,S;Z)− 2ν

≥ I(X,S;Z)− 2ε, (AH.4)

where the last inequality follows from definition ε , max{εn, ν}.

To show that D(PZ ||Q0) ≤ ε, note that for n large enough

D(PZ ||Q0) = D(PZT ||Q0) = D

(
1

n

n∑

i=1

PZi

∣∣∣∣∣

∣∣∣∣∣Q0

)

≤ 1

n

n∑

i=1

D(PZi||Q0) ≤ 1

n
D(PZn||Q⊗n0 ) ≤ δ

n
≤ ν ≤ ε. (AH.5)

Continuity at zero: The proof for continuity at zero is similar to that of Appendix N.
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APPENDIX AI

PROOF OF THEOREM 32

Fix PX , PS1|X , PS2 and ε > 0 such that, QZ = Q0.

Random Codebook Generation for Communication Mode:

• Let C
(n)
1 ,

{
Xn(m)

}
m∈M be a random codebook consisting of independent random

sequences, each generated according to P⊗nX . We denote a realization of C
(n)
1 by C(n)

1 ,
{
xn(m)

}
m∈M.

• For everym ∈M, let C
(n)
2 ,

{
Sn1 (Xn(m), k)

}
(m,k)∈M×K be a random codebook consist-

ing of independent random sequences, each generated according to P⊗nS1|X . We denote

a realization of C
(n)
2 by C(n)

2 ,
{
sn1 (xn(m), k)

}
(m,k)∈M×K.

Random Codebook Generation for No-Communication Mode:

• Let C
(n)
3 ,

{
Sn2 (k)

}
k∈K be a random codebook consisting of independent random

sequences, each generated according to P⊗nS2
. We denote a realization of C

(n)
3 by C(n)

3 ,
{
sn2 (k)

}
k∈K.

Also, Cn =
{
C

(n)
1 , C

(n)
2 , C

(n)
3

}
denotes a random codebook and Cn =

{
C(n)

1 , C(n)
2 , C(n)

3

}
denotes

a fixed codebook. The set of all possible values of Cn is denoted by Cn.

The codebook construction described above induces the PMF λ ∈ P(Cn) over the code-

book ensemble. For each Cn ∈ Cn

λ(Cn) =
∏

m∈M
P⊗nX

(
xn(m)

) ∏

(xn(m),k)∈Xn×K
P⊗nS1|X

(
sn1
(
xn(m), k

)
|xn(m)

) ∏

k′∈K
P⊗nS2

(
sn2 (k′)

)
.

(AI.1)

Encoding for Communication Mode: To send the message m, the transmitter chooses

the codeword xn(m). Also, given the codeword xn(m) and the key k, the jammer computes

sn1 (xn(m), k) and transmits it over the channel. As a result of cribbing, the jammer has access
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to xn in advance, therefore before transmission, it finds an index m such that
(
xn(m̂), xn

)
∈

T (n)
ε (PX) where m̂ is an estimate of m. According to the law of large numbers and the

packing lemma, as n → ∞ the jammer with a vanishing probability of error can find m

uniquely if

R ≤ H(X). (AI.2)

For a fixed codebook Cn ∈ Cn, the induced joint distribution is,

P (Cn)(m, k, x̃n, s̃n1 , z
n) , 2−n(R+RK)1{

x̃n=xn(m)
}⋂{

s̃n1 =sn1 (x̃n,k)
}W⊗n

Z|XS(zn|x̃n, s̃n1 ). (AI.3)

Therefore, the distribution induced on the warden’s observation by our code design is

P
(Cn)
Zn (zn) =

1

2n(R+RK)

2nR∑

m=1

2nRK∑

k=1

W⊗n
Z|XS

(
zn|xn(m), sn1

(
xn(m), k

))
. (AI.4)

Encoding for No-Communication Mode: When the transmitter is not communicating

with the receiver, and therefore it transmits xn0 , the jammer computes a sequence sn2 (k)

according to the key k, and transmits it over the channel. For a fixed codebook Cn, the

induced joint distribution for this case is,

Υ
(Cn)
KSn2 Z

n(m, k, x̃n, s̃n, zn) =
1

2n(R+RK)
1{

s̃n2 =sn2 (k)
}W⊗n

Z|X=x0,S

(
zn|xn0 , s̃n2

)
.

Therefore, the distribution induced on the warden’s observation is

Υ
(Cn)
Zn (zn) =

1

2nRK

2nRK∑

k=1

W⊗n
Z|X=x0,S

(
zn|xn0 , sn2 (k)

)
. (AI.5)

Decoding and Error Probability Analysis: Upon receiving yn by access to k the decoder

finds a unique m such that

(
xn(m), sn1

(
xn(m), k

)
, yn
)
∈ T (n)

ε (PX,S1,Y ). (AI.6)
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According to the law of large numbers and the packing lemma, the probability of error goes

to zero as n→∞ if [85],

R < IP (X,S1;Y ). (AI.7)

Covert Analysis: We aim to show that the coding scheme described above guarantees

ECnD
(
PZn|Cn||ΥZn|Cn

)
−−→
n→∞

0. (AI.8)

To prove (AI.8) by using Lemma 1 and the triangle inequality we have

ECnV
(
PZn|Cn ,ΥZn|Cn

)
≤ ECnV

(
PZn|Cn , Q

⊗n
0

)
+ ECnV

(
ΥZn|Cn , Q

⊗n
0

)
, (AI.9)

where

Q0(·) =
∑

s2∈S2

PS2(s2)WZ|X=x0,S(·|x0, s2). (AI.10)

To bound the first term on the RHS of (AI.9) by using Pinsker’s inequality we first show

ECnD
(
PZn|Cn||Q⊗nZ

)
−−→
n→∞

0, (AI.11)

where

QZ(·) =
∑

x∈X

∑

s1∈S1

PX(x)PS1|X(s1|x)WZ|XS
(
· |x, s1

)
. (AI.12)

Then we choose PX , PS1|X , and PS2 such that QZ = Q0. From [65, Theorem 3], (AI.11) is

satisfied if

R > IP (X;Z), (AI.13a)

RK > IP (X,S1;Z)−H(X), (AI.13b)

R +RK > IP (X,S1;Z). (AI.13c)

Also, according to the soft covering lemma [83, Theorem 4] or [77, Corollary VII.4], the

second term on the RHS of (AI.9) vanishes when n grows if

RK > I(S2;Z). (AI.14)

Combining (AI.2), (AI.7), (AI.13), and (AI.14) completes the achievability proof of The-

orem 32.
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APPENDIX AJ

PROOF OF THEOREM 33

To prove the upper bound for the case that the transmitter’s codeword is available non-

causally at the jammer and the jammer has unlimited source of local randomness and trans-

mits an i.i.d. sequence when communication is not happening, consider any sequence of codes

with length n such that P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ where limn→∞ εn = 0. Note this

assumption is consistent with the problem setup and does not require δ to vanish.

Epsilon Rate Region: First we define a region Aε for ε > 0 which extends the region

defined in (4.97) as follows.

Aε =





(R,RK) ≥ 0 : ∃(PSXY Z ,ΥSZ) ∈ Dε :

R ≤ min{IP (X,S;Y ),HP (X)}+ ε

RK ≥ IP (X,S;Y )−HP (X)− 3ε

R +RK ≥ IΥ(S;Z)− 2ε





, (AJ.1a)

where

Dε =





(PSXY Z ,ΥSZ) :

PSXY Z = PXPS|X1{
X=X(U,S)

}WY Z|XS

ΥSZ = PS|X=x0WZ|X=x0,S

min{I(X,S;Y ),H(X)} ≥ I(X;Z)− 3ε

D (PZ‖ΥZ) ≤ ε





. (AJ.1b)

We next show that if a rate R is achievable, then R ∈ Aε for any ε > 0. For any εn > 0, we

start by upper bounding nR using standard techniques.

nR = H(M)
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= H(M |K)

= I(M ;Y n|K) + H(M |Y n, K)

(a)

≤ I(M ;Y n|K) + nεn

=
n∑

i=1

I(M ;Yi|K,Y i−1) + nεn

=
n∑

i=1

[
H(Yi|K,Y i−1)−H(Yi|K,M, Y i−1)

]
+ nεn

≤
n∑

i=1

[
H(Yi)−H(Yi|K,M, Y i−1)

]
+ nεn

(b)
=

n∑

i=1

[
H(Yi)−H(Yi|K,M, Y i−1, Xn, Sn)

]
+ nεn

=
n∑

i=1

[
H(Yi)−H(Yi|Xi, Si)

]
+ nεn

=
n∑

i=1

I(Xi, Si;Yi) + nεn

(c)

≤ nI(X̃, S̃; Ỹ ) + nεn

(d)

≤ nI(X̃, S̃; Ỹ ) + nε (AJ.2)

where

(a) follows from Fano’s inequality;

(b) follows because Xn is a function of M and Sn is a function of (K,Xn);

(c) follows from the concavity of mutual information, with the resulting random variables

X̃, S̃, and Ỹ having the following distributions

PX̃,S̃,Ỹ (x) ,
1

n

n∑

i=1

PXi,Si,Yi(x) (AJ.3a)

PX̃,S̃,Ỹ (x, s, y) , PX̃,S̃(x, s)WY |X,S(y|x, s); (AJ.3b)
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(c) follows from the definition of ε , max{εn, ν ≥ δ
n
}.

We also have,

nR = H(M)

(a)

≤ I(M ;Y n) + nεn

≤ I(M,Xn;Y n) + nεn

(b)
= I(Xn;Y n) + nεn

≤ H(Xn) + nεn

=
n∑

i=1

H(Xi|X i−1) + nεn

≤
n∑

i=1

H(Xi) + nεn

(c)

≤ nH(X̃) + nεn

(d)

≤ nH(X̃) + nε, (AJ.4)

where

(a) follows from Fano’s inequality;

(b) holds because of the Markov chain M −Xn − Y n;

(c) follows from the concavity of the entropy function, with the resulting random variable

X̃ having the distribution defined in (AJ.3);

(d) follows by defining ε , max{εn, ν ≥ δ
n
}.

Also, by following the same steps as [65, Theorem 5] one can prove the following upper

bounds,

R > I(X̃; Z̃), (AJ.5a)
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RK > I(X̃, S̃; Z̃)−H(X̃), (AJ.5b)

R +RK > I(X̃, S̃; Z̃). (AJ.5c)

Combining the conditions (AJ.2), (AJ.4), and (AJ.5) results to the region in (AJ.1).

Continuity at zero: The proof for continuity at zero is similar to that of Appendix N.
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APPENDIX AK

PROOF OF THEOREM 34

The achievability of the discrete memoryless channel with a cooperative jammer described

in Section 4.6 when the jammer has causal access to the transmitter’s codeword is similar

to that of with strictly causal case in Section 4.6.1; except that here instead of generating

codewords for S1 we use Shannon strategy [64]. We denote the set of all strategies (functions)

by T , SX1 which map X to S1; and for t ∈ T we denote the image of x ∈ X by t(x) ∈ S1.

The channel induced by the Shannon strategy is denoted by (X ×T ,W+
Y Z|XS,Y ×Z) where

W+
Y Z|XS1

, WY Z|X,S1=T (X). From Theorem 30, rate pairs (R,RK) that satisfy the following

conditions are achievable when the jammer has strictly causal access to the transmitter’s

signals,

R < HP (X|U), (AK.1a)

R < IP (X,T ;Y ), (AK.1b)

R +RK > IP (X,T ;Z), (AK.1c)

R > IP (U,X;Z), (AK.1d)

R +RK > IΥ(T ;Z), (AK.1e)

for any joint probability distributions PUXSY Z = PUPX|UPS1|UW
+
Y Z|XS1

and ΥS2Y Z =

PS2WY Z|X=x0,S2 such that PZ = ΥZ . Therefore, the rate pair (R,RK) in (AK.1) are also

achievable when the jammer has causal access to the transmitter’s signal. Restricting the

joint distributions to be PUXS1Y Z = PUPXPS1W
+
Y Z|XS and ΥS2Y Z = PS2WY Z|X=x0,S2 results

to,

HP (X|U) = HP (X), (AK.2a)

IP (U,X;Z) = IP (X;Z), (AK.2b)

IP (X,T ;Z) = IP (X,S1, T ;Z) = IP (X,S1;Z), (AK.2c)
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where PXS1Y Z(x, s1, y, z) = PX(x)
∑

t:t(x)=s1
PT (t)WY Z|XS1(y, z|x, s1) and ΥS2Y Z(s2, y, z) =

PS2(s2)WY Z|X=x0,S2(y, z|x0, s2). This is possible since for an arbitrary joint distribution

P ∗XS1
, always there exist a product distribution PX,T = PXPT such that P ∗XS1

(x, s1) =

PX(x)
∑

t:t(x)=s1
PT (t). This is done by choosing [64, Eq. (44)],

PX(x) =
∑

s1

P ∗XS1
(x, s1), (AK.3a)

PT (t) =
∏

x

P ∗XS1
(x, s1 = t(x))

PX(x)
. (AK.3b)

Therefore, from the arguments above all the rate pairs (R,RK) satisfying the following

conditions are achievable when the jammer has causal access to the transmitter’s signal,

R < HP (X), (AK.4a)

R < IP (X,S1;Y ), (AK.4b)

R +RK > IP (X,S1;Z), (AK.4c)

R > IP (X;Z), (AK.4d)

RK > IΥ(S2;Z), (AK.4e)

for any joint probability distributions PXS1Y Z = PXS1W
+
Y Z|XS and ΥS2Y Z = PS2WY Z|X=x0,S2

such that PZ = ΥZ .

304



APPENDIX AL

PROOF OF THEOREM 35

First we prove the achievability of Theorem 35. Fix PX , PS1|X , PS2 and ε > 0 such that,

QZ = Q0.

Random Codebook Generation for Communication Mode:

• Let C
(n)
1 ,

{
Xn(m)

}
m∈M be a random codebook consisting of independent random

sequences, each generated according to P⊗nX . We denote a realization of C
(n)
1 by C(n)

1 ,
{
xn(m)

}
m∈M.

• For every m ∈ M, let C
(n)
2 ,

{
Sn1 (m, k)

}
(m,k)∈M×K be a random codebook consisting

of independent random sequences, each generated according to P⊗nS1|X
(
sn1 |xn(m)

)
. We

denote a realization of C
(n)
2 by C(n)

2 ,
{
sn1 (m, k)

}
(m,k)∈M×K.

Random Codebook Generation for No-Communication Mode:

• Let C
(n)
3 ,

{
Sn2 (k)

}
k∈K be a random codebook consisting of independent random

sequences, each generated according to P⊗nS2
. We denote a realization of C

(n)
3 by C(n)

3 ,
{
sn2 (k)

}
k∈K.

Also, Cn =
{
C

(n)
1 , C

(n)
2 , C

(n)
3

}
denotes a random codebook and Cn =

{
C(n)

1 , C(n)
2 , C(n)

3

}

denotes a fixed codebook. The set of all possible values of Cn is denoted by Cn.

The codebook construction described above induces the PMF λ ∈ P(Cn) over the code-

book ensemble. For each Cn ∈ Cn

λ(Cn) =
∏

m′∈M
P⊗nX

(
xn(m′)

) ∏

(m′′,k′)∈M×K
P⊗nS|X

(
sn1 |xn(m′′)

) ∏

k′′∈K
P⊗nS2

(
sn2 (k′′)

)
. (AL.1)

Encoding for Communication Mode: To send the message m, the transmitter computes

the codeword xn(m) and transmits it over the channel. Also, given the message m and the

key k, the jammer computes sn1 (m, k) and transmits it over the channel.
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For a fixed codebook Cn ∈ Cn, the induced joint distribution is,

P (Cn)(m, k, x̃n, s̃n1 , z
n) , 2−n(R+RK) × 1{

x̃n=xn(m)
}⋂{

s̃n1 =sn1 (m,k)
} ×W⊗n

Z|XS(zn|x̃n, s̃n1 ).

(AL.2)

Therefore, the distribution induced on the warden’s observation by our code design is

P
(Cn)
Zn (zn) =

1

2n(R+RK)

2nR∑

m=1

2nRK∑

k=1

W⊗n
Z|XS

(
zn|xn(m), sn

(
m, k

))
. (AL.3)

Encoding for No-Communication Mode: When the transmitter is not communicating

with the receiver, and therefore it transmits xn0 the jammer computes sn2 (k), according to

the key k, and transmits it over the channel. For a fixed codebook Cn, the induced joint

distribution for this case is,

Υ
(Cn)
KSn2 Z

n(k, sn2 , z
n) =

1

2nRK
1{

s̃n2 =sn2 (k)
}W⊗n

Z|X=x0,S

(
zn|xn0 , sn2

)
.

Therefore, the distribution induced on the warden’s observation is

Υ
(Cn)
Zn (zn) =

1

2nRK

2nRK∑

k=1

W⊗n
Z|X=x0,S

(
zn|xn0 , sn2 (k)

)
. (AL.4)

Decoding and Error Probability Analysis: Upon receiving yn by access to k the decoder

finds a unique m such that

(
xn(m), sn1

(
m, k

)
, yn
)
∈ T (n)

ε (PXS1Y ). (AL.5)

According to the law of large numbers and the packing lemma, the probability of error goes

to zero as n→∞ if [85],

R < IP (X,S1;Y ). (AL.6)

Covert Analysis: We aim to show that the coding scheme described above guarantees

ECnD
(
PZn|Cn||ΥZn|Cn

)]
−−→
n→∞

0. (AL.7)

306



To prove (AL.7) by using Lemma 1 and the triangle inequality we have

ECnV
(
PZn|Cn ,ΥZn|Cn

)
≤ ECnV

(
PZn|Cn , Q

⊗n
0

)
+ ECnV

(
ΥZn|Cn , Q

⊗n
0

)
, (AL.8)

where

Q0(·) =
∑

s2∈S2

PS2(s2)WZ|X=x0,S

(
· |x0, s2

)
. (AL.9)

According to the soft covering lemma [83, Theorem 4] or [77, Corollary VII.4], the second

term on the RHS of (AL.8) vanishes when n grows if

RK > IΥ(S2;Z). (AL.10)

To bound the first term on the RHS of (AL.8) we first show

ECnV
(
PZn|Cn , Q

⊗n
Z

)
−−→
n→∞

0, (AL.11)

where

QZ(·) =
∑

x∈X

∑

s1∈S1

PX(x)PS1|X(s1|x)WZ|XS
(
· |x, s1

)
. (AL.12)

Then we choose PX , PS1|X , and PS2 such that QZ = Q0. From [65, Theorem 6],

ECn
[
D(PZn|Cn||Q⊗nZ )

]
−−→
n→∞

0 and therefore (AL.11) is satisfied if

R > IP (X;Z), (AL.13a)

R +RK > IP (X,S1;Z). (AL.13b)

Combining (AL.6), (AL.10), and (AL.13) completes the achievability proof of Theorem 35.
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APPENDIX AM

PROOF OF THEOREM 36

To prove the upper bound for the case that the jammer knows the transmitter’s message and

the jammer has unlimited source of local randomness and transmits an i.i.d. sequence when

communication is not happening, consider any sequence of codes with length n such that

P
(n)
e ≤ εn and D(PZn||Q⊗n0 ) ≤ δ where limn→∞ εn = 0. Note this assumption is consistent

with the problem setup and does not require δ to vanish.

Epsilon Rate Region: First we define a region Aε for ε > 0 which extends the region

defined in (4.103) as follows.

Aε =





(R,RK) ≥ 0 : ∃
(
PSXY Z ,ΥSY Z

)
∈ Dε :

R ≤ IP (X,S;Y ) + ε

RK > max
{
IP (X,S;Z)− IP (X,S;Y ), IP (X,S;Z)−HP (X)

}
− 3ε

R +RK ≥ IΥ(S;Z)− 2ε





, (AM.1a)

where

Dε =





(
PSXY Z ,ΥSY Z

)
:

PSXY Z = PXPS|XWY,Z|X,S

ΥSY Z = PSWY Z|X=x0,S

IP (X,S;Y ) ≥ IP (X;Z)− 3ε

D (PZ‖ΥZ) ≤ ε





. (AM.1b)

Next, we prove that if a rate R is achievable, then R ∈ Aε for ∀ε > 0. For any εn > 0, we

start by upper bounding nR using standard techniques. By using standard techniques,

nR = H(M)
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= H(M |K)

= I(M ;Y n|K) + H(M |Y n, K)

(a)

≤ I(M ;Y n|K) + nε

=
n∑

i=1

I(M ;Yi|K,Y i−1) + nε

=
n∑

i=1

[
H(Yi|K,Y i−1)−H(Yi|K,M, Y i−1)

]
+ nε

≤
n∑

i=1

[
H(Yi)−H(Yi|K,M, Y i−1)

]
+ nε

(b)
=

n∑

i=1

[
H(Yi)−H(Yi|K,M, Y i−1, Xn, Sn)

]
+ nε

=
n∑

i=1

[
H(Yi)−H(Yi|Xi, Si)

]
+ nε

=
n∑

i=1

I(Xi, Si;Yi) + nε (AM.2)

(c)

≤ nI(X̃, S̃; Ỹ ) + nε (AM.3)

where

(a) follows from Fano’s inequality;

(b) follows because Xn is a function of M and Sn is a function of (K,Xn);

(c) follows from the concavity of mutual information, with the resulting random variables

X̃, S̃, and Ỹ having the following distributions

PX̃,S̃,Ỹ (x) ,
1

n

n∑

i=1

PXi,Si,Yi(x) (AM.4a)

PX̃,S̃,Ỹ (x, s, y) , PX̃,S̃(x, s)WY |X,S(y|x, s). (AM.4b)
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Also, by following the same steps as [65, Theorem 6] one can prove the following upper

bounds,

R > I(X̃; Z̃), (AM.5a)

RK > I(X̃, S̃; Z̃)−H(X̃), (AM.5b)

R +RK > I(X̃, S̃; Z̃). (AM.5c)

Combining the conditions (AM.3) and (AM.5) results to the region in (AM.1).

Continuity at zero: The proof for continuity at zero is similar to that of Appendix N.
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