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Space-time block codes alone generally have little or no coding gain. To extract coding

gain, space-time block codes have been previously concatenated with an outer trellis

to generate simple and powerful codes, known as super-orthogonal codes. This work

has two main themes: it explores methods and algorithms that generate coding gain

in block codes without a trellis, as well as improve the coding gain in the presence of

a trellis.

When an outer trellis is available, our results generalize the super-orthogonal codes by

finding new code supersets and corresponding set partitioning, resulting in improved

coding gain. New algorithms are developed to efficiently build trellises for various

full-rate MIMO codes, therefore we extend the concept of trellis-block MIMO coding

beyond orthogonal and quasi-orthogonal codes.

In the absence of a trellis, a technique called single-block coded modulation is proposed

to improve the coding gain of all varieties of space-time block codes. Because no

trellis is used, there is no dependency between successive transmission blocks, which
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has favorable consequences in terms of delay and complexity. This new class of block

codes outperforms corresponding known space-time block codes.
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CHAPTER 1

INTRODUCTION

Space-time coding reduces the detrimental effect of channel fading. The space-time

receiver takes advantage of diverse propagation paths between transmit and receive

antennas to improve the performance of wireless communication. Chapter 2 contains

a literature survey of the recent developments in MIMO signaling.

The main types of space-time codes are block and trellis codes. Space-time

block codes (BSTC) operate on a block of input symbols, producing a matrix output.

Space-time block codes do not generally provide coding gain. Their main feature is

the provision of diversity with a very simple decoding scheme.

Concatenation of orthogonal space-time block codes (OSTBC) with an outer

trellis has led to simple and powerful codes, known as super-orthogonal codes or

STB-TCM. In Chapter 3, we generalize these codes by finding new code supersets

and corresponding set partitioning, resulting in improved coding gain. We provide

design guidelines for the labeling of the generalized code trellises and demonstrate

the gains by several example designs for two and four transmit antennas.

In Chapter 4, we develop algorithms to efficiently build trellises for various

full-rate MIMO codes. By full-rate, we refer to codes for multiple antenna systems

whose rate scales with the minimum of the number of transmit and receive antennas,

e.g., BLAST and the linear dispersion codes of Hassibi and Hochwald. This is in

part inspired by the so-called super-orthogonal codes, which build efficient trellises

on orthogonal block space-time codes (e.g. the Alamouti code). Unfortunately that

approach cannot be directly applied to a code with insufficient structure, because

1



2

set partitioning over an irregular set, such as the one represented by an arbitrary

space-time code, is not straight forward. The central contribution of this chapter is

an efficient set partitioning algorithm for an arbitrary set. We then built trellises for

the resulting set partitions and demonstrate via simulations the gains obtained by

such trellis codes.

It is well-known that diversity, despite being widely used as a design criterion,

may not be enough to ensure good performance of a wireless system. This is partly

due to the fact that the diversity factor may not appear until unrealistically high

values of SNR. Chapter 5 proposes a new class of layered space-time codes with a

new design criterion that works well in moderate SNR’s. Specifically, we propose

to relax some of the constraints of Threaded Algebraic Space-Time (TAST) codes,

leading to a class of codes with better error performance, which we call Relaxed

Threaded Space Time (RTST) codes. We also propose a modified design criterion,

the Average Union Bound (AUB), which ensures good performance at medium SNR.

In Chapter 6, we propose a new class of block codes that outperforms known

space-time block codes at low rates. The new codes are designed by starting with

a quasi-orthogonal structure, and then making certain modifications to increase the

coding gain distance. By using appropriate rotations and set partitions for two quasi-

orthogonal codes, and combining subsets of their codewords, we are able to obtain

higher coding gain distance at a given rate, and thus improve performance. Simula-

tions confirm the advantages of this code compared to other codes operating at the

same rate and SNR. We also provide an efficient ML decoding algorithm for the new

code.

Chapter 7 presents a method for increasing the coding gain of all varieties of

space-time block codes (STBC), without using a trellis or introducing dependency

between successive transmission blocks. For a given STBC, we first increase the



3

constellation size, then prune the codewords of the expanded codebook according to

distance criteria, so that we arrive at the original transmission rate. We show that

it is possible to improve the performance of a wide variety of space-time signalings,

including orthogonal codes, quasi-orthogonal codes. An algorithm for the code design

is presented. In the case of orthogonal codes, a decoding algorithm for the modified

orthogonal codes is presented, showing that despite altering the regular structure of

the orthogonal code, the complexity of decoding is only affected by a small constant.

The same principle also applies to a wide variety of codes such as LD and TAST

codes.



CHAPTER 2

LITERATURE SURVEY

Multiple-input multiple-output (MIMO) techniques are one of the most brilliant

breakthroughs in the history of wireless communications. It has already being ap-

plied in commercial wireless products and networks such as broadband wireless access

systems, wireless local area networks (WLAN), third-generation (3G) networks and

beyond.

2.1 MIMO Overview

A wireless communication system with multiple transmitting and receiving antenna

elements is called a MIMO system. The purpose of this setup is that transmit signals

can be so designed, and receive signals so processed, that bit-error rate (quality) or

data rate (bit/sec) of the communication is improved.

MIMO signaling operates by spreading the information across both space and

time. Signal processing in time is the natural dimension of the digital communication

data. Spatial processing is possible through the use of multiple spatially distributed

antennas.

MIMO spatial processing takes advantage of multipath propagation, which is a

key feature of wireless channel. Multipath fading has been traditionally a difficulty in

wireless transmission. However, MIMO effectively takes advantage of random fading

[1, 2, 3, 4, 5], and when available, multipath delay spread [6, 7], for improving the

quality of wireless communication. This improved performance requires no extra

spectrum, but demands added hardware and complexity.
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Weighting/Mapping
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Figure 2.1. MIMO wireless system diagram. The transmitter and receiver have
multiple antennas. Coding, modulation, and mapping are part of MIMO signaling
which may be realized jointly or separately.

Figure 2.1 illustrates a MIMO system. The MIMO transmitter potentially

includes error control coding as well as a complex modulation symbol mapper. After

frequency up-conversion to RF, filtering and amplification, the signals are transmitted

through the wireless channel. The signal is captured by multiple receive antennas

on the receive side. The receiver performs demodulation and demapping operation

are performed to recover the message. The coding method and antenna mapping

algorithm may vary due to several considerations such as channel estimation and

complexity.

In MIMO systems, data is transmitted over a matrix rather than a vector

channel, which creates many opportunities beyond just the added diversity or ar-

ray gain benefits. In [4, 8, 9], the authors show one may, under certain conditions,

transmit independent data streams simultaneously over the eigenmodes of a matrix

channel created by transmit and receive antennas.

Among the methods that utilize this spatial multiplexing one may name the

Bell Labs Layered Space-Time codes (BLAST). Other schemes in this family include

vertical-BLAST (VBLAST) and diagonal-BLAST (DBLAST). There are also other

codes that achieve high transmission rates. Linear dispersion (LD) coding is a space-

time transmission scheme that has many of the coding and diversity advantages of

the above codes, but also has the decoding simplicity of V-BLAST at high data
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rates. Furthermore, LD codes can be considered a generalization of many other

MIMO structures. For example, threaded algebraic space-time (TAST) codes and

quaternionic lattices for space-time codes can be considered as special examples of

linear dispersion codes.

Although the number of independent input streams is very important factor

in MIMO communication, from an engineering perspective, the link efficiency can

be determined by both the number of transmitted streams (throughput per transmit

antenna) as well as the BER of each stream. To improve this BER, or in general, the

reliability of reception, one may use diversity methods. The class of methods that

leverage diversity to improve the quality of multi-antenna wireless communication is

known as space-time coding.

Two outstanding examples of transmit diversity schemes for the multiple-

antenna flat-fading channels are space-time trellis coding (STTC) and space-time

block coding (STBC). Space-time trellis codes are designed to achieve full diversity

via a trellis structure (Section 2.3). However, space-time trellis coding has high decod-

ing complexity. In comparison, space-time block coding is much simpler (Section 2.4).

Block space-time codes can be represented in a simple matrix format. Orthogonal and

quasi-orthogonal space-time block codes provide a low complexity transmit/receive

communication system with good performance at low rates. These codes provide lim-

ited or no coding gain. However, by concatenating them with an outer trellis, one may

achieve significant coding gain. These composite codes are called super-orthogonal

space-time codes.

To summarize, there are two major categories for current transmission schemes

over MIMO channels which are data rate maximization [10, 11] and diversity maxi-

mization [12, 13, 14] schemes. Data rate maximizing schemes focus on improving the

average capacity behavior and the diversity maximizing schemes improve the perfor-
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mance in terms of BER. There has been some effort toward unification of these two

methods [15, 16].

2.2 MIMO Information Theory

For Lt transmit and Lr receive antennas, we have the famous capacity equation [3,

5, 17]

CEP = log2[det(ILt
+

ρ

N
HH∗)] b/s/Hz (2.1)

where ILt
is the identity matrix of size Lt, ρ is the SNR at any receive antenna, (∗)

means transpose-conjugate and H is the LR×Lt channel matrix. Note that both (2.1)

is based on equal power (EP) uncorrelated sources, hence, its subscript. Foschini [3]

and Telatar [5] both demonstrated that the capacity in (2.1) grows linearly with

m = min(Lr, Lt) rather than logarithmically. This result can be intuited as follows:

the determinant operator yields a product of min(Lr, Lt) nonzero eigenvalues of its

(channel-dependent) matrix argument, each eigenvalue characterizing the SNR over

a so-called channel eigenmode. An eigenmode corresponds to the transmission using

a pair of right and left singular vectors of the channel matrix as transmit antenna

and receive antenna weights, respectively. Thanks to the properties of the log(·) , the

overall capacity is the sum of capacities of each of these modes. Clearly, linear growth

in the number of antennas is dependent on the properties of the eigenvalues. If they

decay rapidly, then linear growth would not occur in practice. However (for simple

channels), the eigenvalues have a known limiting distribution [18]; it is unlikely that

most eigenvalues are very small and the linear growth is indeed achieved.

The capacity (2.1) is a random variable and does not give a single-number

representation of channel quality. Two simple summaries are commonly used: the

mean (or ergodic) capacity [5, 17, 19] and capacity outage [3, 20, 21, 22]. Capacity

outage measures (usually based on simulation) are often denoted C0 .1 or C0 .01 , i.e.,
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those capacity values supported 90% or 99% of the time, and indicate the system

reliability.

Now we can focus on the information theoretic capacity of a MIMO system.

The MIMO signal model is

r = Hs + n, (2.2)

where r is the Lr×1 received signal vector, s is the Lt×1 transmitted signal vector and

n is an Lr × 1 vector of additive noise terms, assumed i.i.d. complex Gaussian with

each element having a variance equal to σ2 . For convenience we normalize the noise

power so in this chapter we assume σ2 = 1. Note that the system equation represents a

single MIMO user communicating over a fading channel with additive white Gaussian

noise (AWGN). The only interference present is self-interference between the input

streams to the MIMO system. Some authors have considered more general systems

but most information theoretic results can be discussed in this simple context, so we

use (2.2) as the basic system equation.

Let Q denote the covariance matrix of , then the capacity of the system de-

scribed by (2.2) is given by [5, 17]

C = log2[det(ILt
+

ρ

N
HQH∗)] b/s/Hz, (2.3)

where tr(Q) ≤ ρ holds to provide a global power constraint. Note that for equal power

uncorrelated sources Q = (ρ/Lt)ILt
and (2.3) collapses to (2.1). This is optimal when

H is unknown at the transmitter and the input distribution maximizing the mutual

information is the Gaussian distribution. With channel feedback H may be known

at the transmitter and the optimal Q is not proportional to the identity matrix but

is constructed from a waterfilling argument[22, 23, 24].
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2.3 Space-Time Trellis codes

For every input symbol sl, a space-time encoder generates Lt code symbols cl1, cl2, ..., clLt
.

These Lt code symbols are transmitted simultaneously from the Lt transmit anten-

nas. We define the code vector as cl = [cl1 cl2 ... clLt
]T . Suppose that the code

vector sequence

C = {c1, c2, ..., cL}

was transmitted. We consider the probability that the decoder decides erroneously

in favor of the legitimate code vector sequence

C̃ = {c̃1, c̃2, ..., c̃L}.

Consider a frame or block of data of length L and define the Lt × Lt error

matrix A as

A(C, C̃) =
L
∑

l=1

(cl − c̃l)(cl − c̃l)
∗. (2.4)

If ideal channel state information (CSI) H(l), l = 1, ..., L, is available at the

receiver, then it is possible to show that the probability of transmitting C and deciding

in favor of C̃ is upper bounded for a Rayleigh fading channel by [25]

P(C→ C̃) ≤ (
r
∏

i=1

βi)
−Lr .(Es/4No)

−rLr , (2.5)

where Es is the symbol energy and No is the noise spectral density, r is the rank

of the error matrix A and βi, i = 1, . . . , r are the nonzero eigenvalues of the error

matrix A. We can easily see that the bound in (2.5) is similar to the probability of

error bound for trellis coded modulation in fading channels. The term gr =
∏r

i=1 βi

represents the coding gain achieved by the STC and the term (Es/4No)
−rL represents
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a diversity gain of rLr. Since r ≤ Lt, the overall diversity order is always less or equal

to LrLt. It is clear that in designing a STTC, the rank of the error matrix r should be

maximized (thereby maximizing the diversity gain called rank criterion) and at the

same time gr should also be maximized (determinant criterion), thereby maximizing

the coding gain.

As an example for STTCs, consider an 8-PSK eight-state STC designed for

two transmit antennas [14]. Figure 2.2 provides a labeling of the 8-PSK constellation

and the trellis description for this code. Each row in the matrix shown in this figure

represents the edge labels for transitions from the corresponding state. The edge label

S1S2 indicates that symbol s1 is transmitted over the first antenna and that symbol

s2 is transmitted over the second antenna. The input bit stream to the ST encoder is

divided into groups of 3 bits and each group is mapped into one of eight constellation

points. This code has a bandwidth efficiency of 3 bits per channel use.

Since the original STTC were introduced by Tarokh et al. in [14], there has

been extensive research aiming at improving the performance of the original STTC

designs. These original STTC designs were hand crafted (according to the proposed

design criteria) and, therefore, are not optimum designs. More recently, new code

constructions have been proposed, either using systematic search, or by employing

variations of the original design criteria proposed by Tarokh et al. Examples in-

clude [26, 27, 28, 29, 30, 31]. We note that there also exist many other published

results that address the same issue. These new code constructions provide better

coding gain compared to the original scheme by Tarokh et al., however, only small

gains were obtained in most cases in the presence of one receive antenna. In the

special case of two transmit and two receive antennas, gains of up to 1dB over the

original work of Tarokh has been reported [32].
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Figure 2.2. The 8-State 8-PSK STC with two transmit antennas.
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2.4 Block space time codes

The decoding complexity of space-time trellis coding (measured by the number of

trellis states at the decoder) increases exponentially as a function of the diversity level

and transmission rate [14] for a given number of transmit antennas. In addressing

the issue of decoding complexity, space-time block coding gives a promising solution.

Space-time block codes operate on a block of input symbols producing a ma-

trix output. One dimension of the matrix represents time and the other represents

antennas. Unlike traditional single-antenna block codes, most space-time block codes

do not provide coding gain. Their key feature is to provide diversity with very low

encoder/decoder complexity. In this section, we review several well-known space-time

block codes.

2.4.1 Orthogonal Space-Time Codes

The Alamouti space-time code [33] supports maximum-likelihood (ML) detection with

linear processing at the receiver. The simple structure and linear detection of this

code makes it very attractive; it has been adopted for both the W-CDMA and CDMA-

2000 standards. This scheme was later generalized in [34] to an arbitrary number of

antennas. Here, we will briefly review the basics of STBCs. Figure 2.3 shows the

baseband representation for Alamouti STBC with two antennas at the transmitter.

The input symbols to the space-time block encoder are divided into groups of two

symbols each. At a given symbol period, the two symbols in each group {c1, c2}

are transmitted simultaneously from the two antennas. The signal transmitted from

Antenna 1 is c1 and the signal transmitted from Antenna 2 is c2. In the next symbol

period, the signal −c∗2 is transmitted from Antenna 1 and the signal c∗1 is transmitted

from Antenna 2. We assume a single-antenna receiver, and denote with h1 and h2

be the channels from the first and second transmit antennas to the receive antenna,
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Figure 2.3. Transmitter diversity with space-time block coding.

respectively. The channel gains are constant over two consecutive symbol periods.

The received signals can be expressed as

r1 = h1c1 + h2c2 + n1 (2.6)

r2 = h1c
∗
2 + h2c

∗
1 + n2, (2.7)

where r1 and r2 are the received signals over two consecutive symbol periods and

n1 and n2 represent the receiver noise and are modeled as i.i.d. complex Gaussian

random variables with zero mean and power spectral density No/2 per dimension.

We define the received signal vector r = [r1 r∗2]
T , the code symbol vector c = [c1 c2]

T ,

and the noise vector n = [n1 n∗
2]

T . Equations (2.7) and (2.7) can be rewritten in a

matrix form as

r = Hc + n, (2.8)

where

H =

(

h1 h2

h∗
2 −h∗

1

)

. (2.9)

The matrix H represents a concatenation of the channel vector (h1 h2)
t and

the Alamouti code. The vector n is a complex Gaussian random vector with zero

mean and covariance NoI2. Let us define C as the set of all possible symbol pairs

c = {c1, c2} . Assuming that all symbol pairs are equiprobable, and since the noise
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vector n is assumed to be a multivariate AWGN, we can easily see that the optimum

ML decoder is

ĉ = arg min
ĉ∈C

|| r−H.ĉ ||2 . (2.10)

The ML decoding rule in (2.10) can be further simplified by realizing that the

channel matrix H is always orthogonal regardless of the channel coefficients. Hence,

H∗H = αI2 where α = |h1|2 + |h2|2 . Consider the modified signal vector given by

r̃ = H∗.r = α.c + ñ, (2.11)

where ñ = H∗n. In this case, the decoding rule becomes

ĉ = arg min
ĉ∈C

|| r̃− α.ĉ ||2 . (2.12)

Since H is orthogonal, we can easily verify that the noise vector ñ will have

a zero mean and covariance αNoI2, i.e., the elements of ñ are i.i.d. Hence, it follows

immediately that by using this simple linear combining, the decoding rule in (2.12)

reduces to two separate, and much simpler decoding rules for c1 and c2, as established

in [33].

When the receiver uses Lr receive antennas, the received signal vector rm at

receive antenna m is

rm = Hmc + nm, (2.13)

where nm is the noise vector at the two time instants and Hm is the channel matrix

from the two transmit antennas to the mth receive antenna. In this case, the optimum

ML decoding rule is

ĉ = arg min
ĉ∈C

Lr
∑

m=1

|| rm −Hm.ĉ ||2 . (2.14)

As before, in the case of Lr receive antennas, the decoding rule can be further

simplified by premultiplying the received signal vector rm by H∗
m. In this case, the
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Figure 2.4. Receiver for orthogonal space-time block coding.

diversity order provided by this scheme is 2Lr. Figure 2.4 shows a simplified block di-

agram for the receiver with two receive antennas. Note that the decision rule in (2.12)

and (2.14) amounts to performing a hard decision on r̃ and r̃M =
∑Lr

m=1 H∗
mrm, respec-

tively. Therefore, as shown in Figure 2.4, the received vector after linear combining,

r̃M , can be considered as a soft decision for c1 and c2, which can be utilized by any

outer channel codes used in the system. Note also that for the above 2×2 STBC, the

transmission rate is one symbol/transmission, and it achieves the maximum diversity

order of 4 that is possible with a 2× 2 system.

The method of Alamouti can be generalized to more than two transmit an-

tennas [34, 14, 35, 36]. The resulting orthogonal codes are still optimally decoded

with a linear receiver [33]. Unfortunately, only a few codes with a rate of one sym-

bol/transmission are available, and for the case of general complex-valued signals,

there is no orthogonal rate-1 code beyond the Alamouti code [34]. However, it is

possible to design orthogonal codes by relaxing the rate requirement below one sym-

bol/transmission. For example, for Lt = 4, a rate 1/2 STBC is given by

C =









c1 −c2 −c3 −c4 c∗1 −c∗2 −c∗3 −c∗4
c2 c1 c4 −c3 c∗2 c∗1 c∗4 −c∗3
c3 −c4 c1 c2 c∗3 −c∗4 c∗1 c∗2
c4 c3 −c2 c1 c∗4 c∗3 −c∗2 c∗1









. (2.15)
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In this case, at time t = 1, c1, c2, c3, c4 are transmitted from antenna 1

through 4, respectively. At time t = 1, −c2, c1, − c4, c3, are transmitted from

antenna 1 through 4, respectively, and so on. For this example, rewriting the received

signal in a way analogous to (2.8) (where c = [ c1, ..., c4] ) will yield a 8 × 4 virtual

MIMO matrix H that is orthogonal i.e., the decoding is linear, and H∗H = α4.I,

where α4 = 2.
∑4

i=1 |hi|2 (fourth-order diversity). This scheme provides a 3-dB power

gain that comes from the intuitive fact that eight time slots are used to transmit four

information symbols.

2.4.2 Quasi Orthogonal Space-time codes

Earlier we saw that orthogonal codes allow a linear receiver, but in general they

support a rate smaller than one symbol per transmission for Lt > 2. Quasi-orthogonal

codes compromise on a fully orthogonal code in order to achieve the full rate of one

symbol per transmission for Lt > 2

Recall that the Alamouti code is defined by the following transmission matrix

A12 =

(

c1 c2

−c∗2 c∗1

)

, (2.16)

where the subscript 12 is to represent the indeterminates c1 and c2 in the transmission

matrix. Now, let us consider the following space-time block code for four transmit

antennas as

A =

(

A12 A34

−A∗
34 A∗

12

)

=









c1 c2 c3 c4

−c∗2 c∗1 −c∗4 c∗3
−c∗3 −c∗4 c∗1 c∗2

c4 −c3 −c2 c1









. (2.17)

For decoding, the maximum-likelihood decision metric can be calculated as the

sum of two terms, each representing two transmit symbols. The metric calculation is

the same as (2.14) which simplifies to
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f14(c1, c4) + f23(c2, c3), (2.18)

where f14 and f23 have been calculated in [36]. Since f14(c1, c4) is independent of

(c2, c3) and f23(c2, c3) is independent of (c1, c4), the pairs (c2, c3) and (c1, c4) can be

decoded separately.

For Lr receive antennas, a diversity of 2Lr is achieved, while the rate of the

code is one. Note that it has been proved in [37] that the maximum diversity of 4Lr

for a rate one complex quasi-orthogonal code is impossible in this case if all signals

are chosen from the same constellation.

The quasi-orthogonal space-time code, despite lower diversity, has good perfor-

mance at low SNR. Simulations (Figure 2.5) show that full transmission rate is more
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important for low SNRs and high BERs, while full diversity is the right choice for high

SNRs and low BERs. This is due to the fact that the degree of diversity dictates the

slope of the BER-SNR curve. Therefore, although a rate-one quasi-orthogonal code

starts from a better point in the BER-SNR plane, a code with full-diversity benefits

more from increasing the SNR. Therefore, the BER-SNR curve of the full-diversity

scheme passes the curve for the new code at some moderate SNR.

It is possible to modify quasi-orthogonal codes to give them full diversity [38,

39, 40, 41]. The idea is to use different constellations for the two components of the

quasi-orthogonal code, by rotating symbols c3 and c4 before transmission. We denote

c̃3 and c̃4 as the rotated version of c3 and c4 respectively. The resulting code with

optimal rotation is very powerful, since it provides full diversity, rate of one symbol

per transmission, and simple pairwise decoding with good performance.

2.4.3 Super-Orthogonal Space time codes

Space-time block codes (STBC) provide full diversity and small decoding complexity,

however, one of the drawbacks of STBC is that it has little or no coding gain. To

solve this problem, STBC could be treated as a modulation scheme and concatenated

with an outer trellis code [42, 43, 44]. In this way we can achieve coding gain while

preserving the benefits of STBC. The basic idea is similar to space-time trellis code

explained in Section (2.3). Super-orthogonal codes are designed using set partitioning

ideas similar to TCM [45]. In particular, for slow fading channel, it is shown in [46]

that the trellis code should be based on the set partitioning concept of Ungerböck

codes for AWGN channel. The super-orthogonal codes were shown to perform better

than STTC of similar complexity.

To design super-orthogonal codes, we consider each of the possible orthogonal

matrices generated by a STBC as a constellation point in a high dimensional space.
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Figure 2.6. Left: set partitioning in a BPSK 2 × 2 system. Right: corresponding
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The outer trellis selects one of these high dimensional signal points to be transmitted

based on the current state and the input bits.

The code design process for SOSTC is through a set partitioning technique.

Intuitively, we separate the codewords which may be mistaken with each other easily,

into separate partitions. Figure 2.6 shows a set-partitioning example of the Alamouti

code using BPSK constellation. The codes consists of four codewords which are

S00 =

(

1 1
−1 1

)

S01 =

(

1 −1
1 1

)

S10 =

(

−1 1
−1 −1

)

S11 =

(

−1 −1
1 −1

)

. (2.19)

The same figure illustrates a two state trellis code using BPSK modulation.

As shown, at State 0 the original set has been used. However on State 1, a new

set has been created by multiplying each codeword of the original code by a matrix

U = diag(−1, 1). In this way, we can build a rate-one trellis code without having

catastrophic events [42].

Jafarkhani and Hassanpour [38] extend the idea of super orthogonal codes to

four transmit antennas. The code employs a family of quasi-orthogonal space-time

block codes as building blocks in a trellis codes. These codes combine set partitioning

and a super set of quasi-orthogonal space-time block codes in a systematic way to

provide full diversity and improved coding gain.
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Figure 2.7. Simple block diagram of VBLAST

2.4.4 Spatial Multiplexing

Using multiple antenna systems increases the capacity of the MIMO channels shown

in (2.2), which can be achieved via spatial multiplexing. For example, the data is

demultiplexed into N separate streams, using a serial-to-parallel converter, and each

stream is transmitted from an independent antenna. As a result, the throughput is

Lt symbols per channel use. This is Lt times more than the rate of the orthogonal

space-time code. This increase in throughput will generally come at the cost of a

lower diversity gain compared to space-time coding. Therefore, spatial multiplexing

is a better choice for high-rate systems operating at relatively high SNR while space-

time coding is more appropriate for transmitting at relatively low rates and low SNR.

Foschini proposed the first high throughput space-time architecture [4]. Since

then, different flavors of such a space-time architectures have been proposed under

the general framework of Bell Labs Layered Space-Time (BLAST) architectures [47]

such as vertical-BLAST (VBLAST) and diagonal-BLAST (DBLAST) .

The encoder of VBLAST is depicted in Figure 2.7. The input bitstream is

first multiplexed into Lt parallel substreams. Then each substream is modulated and

transmitted from the corresponding transmit antenna. It is also possible to use coding

for each substream to improve the performance in a trade-off with the bandwidth [47].

Since the substreams are independent from each other, their decoding is similar to

that of synchronized multi-user systems.
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The decoder looks for the best codeword that

min
c∈Zm

|| r−Hc ||2, (2.20)

where r ∈ Rn and H ∈ Rn×m, Zm is the field of possible m-dimensional received vec-

tors. To solve this least-squares problem all practical systems employ some approx-

imations, heuristics or combinations thereof. These approximations can be broadly

categorized into three classes.

• Solve the unconstrained least-squares problem to obtain ĉ = H†r, where H†

denotes the pseudo-inverse of H. Since the entries of ĉ will not necessarily be

integers, round them off to the closest integer (a process referred to as slicing)

to obtain

ŝB = [H†r]Z . (2.21)

The above ĉB is often called the Babai estimate [48]. In communications par-

lance, this procedure is referred to as zero-forcing equalization.

• In nulling and cancelling method, the Babai estimate is used for only one of the

entries of c, say the first entry c1, which is then assumed to be known and its

effect is subtracted from the received signal to obtain a reduced order integer

least-square problem with m − 1 unknowns. The process is then repeated to

find c2, etc. In communications parlance this is known as decision-feedback

equalization.

• Nulling and cancelling can suffer from error-propagation. If c1 is estimated

incorrectly it can have an adverse effect on the estimation of the remaining

unknowns c2, c3 etc. To minimize the effect of error propagation, it is advan-

tageous to perform nulling and cancelling from the strongest to the weakest

signal [4, 49]. The above heuristic method called nulling and cancelling with

optimal ordering.
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Figure 2.8. Sphere decoding

• In [50], it is shown that in the context of V-BLAST that the exact solution sig-

nificantly outperforms even the best heuristics from the above mentioned meth-

ods. However, the complexity of the exact ML method is growing exponentially

with the size of the code. There do, however, exist exact methods that are

less complex than the full search. These include Kannans algorithm [51](which

searches only over restricted parallelograms), the KZ algorithm [52] (based on

the Korkin-Zolotarev reduced basis [53]) and the sphere decoding algorithm of

Fincke and Pohst [54]. It is noteworthy that the sphere decoding algorithm has

been rediscovered several times in diverse contexts.

The basic premise in sphere decoding is rather simple. The decoder limits

the search to the lattice points that lie in a certain hypersphere of radius λ around

the receive vector r, thereby reducing the search space and limiting the required

computations. Figure 2.8 shows a simple example of sphere decoding. Obviously, the

closest lattice point inside the hypersphere will also be the closest lattice point for

the whole lattice [55, 56].

A variation on vertical BLAST is known as diagonal BLAST (DBLAST). The

encoder of DBLAST is very similar to that of VBLAST as illustrated in Figure 2.9.

The main difference is in the ordering of transmit signals In VBLAST all signal in

each layer are transmitted from the same antenna. However, in DBLAST the signals

are shifted before transmission, so the signals from each layer are transmitted through
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Figure 2.9. Simple block diagram of DBLAST

all antennas. The distribution of symbols exposes each stream to the fading channels

of all antennas, thus providing diversity.

Assuming that one path is in deep fade, then only one out of Lt blocks of

each layer is affected by the deep fade. Therefore it is easier to overcome the fading

through transmit diversity. The role of cyclic shifting in combating the fading is

similar to the job of the interleavers to overcome burst errors.

The receiver architecture of the DBLAST is similar to the VBLAST although

the shifting creates more complexity. Layers are detected one by one following the

diagonal pattern of the transmitter. For more details the interested reader is referred

to [4].

2.4.5 Linear Dispersion codes

The linear dispersion (LD) code is a space-time transmission scheme that has many

of the coding and diversity advantages of previously designed codes, but also has the

decoding simplicity of V-BLAST at high data rates. LD codes work with arbitrary

numbers of transmit and receive antennas. LD codes break the data stream into

substreams that are dispersed in linear combinations over space and time.

The LD code is a block code, so the transmitted signal is a T × Lt matrix

S. We assume that the data sequence has been broken into Q substreams and that

c1, c2, ..., cQ are the complex symbols chosen from an arbitrary, say r-PSK or r-QAM,
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constellation. We call a rate R = (Q/T ) log2 r linear dispersion code one for which S

obeys

S =

Q
∑

q=1

(αqAq + jβqBq), (2.22)

where the real scalars {αq, βq} are determined by

cq = αq + jβq, q = 1, ..., Q.

The design of LD codes depends crucially on the choices of the parameters T ,

Q and the dispersion matrices {Aq,Bq}. To choose the {Aq,Bq} one must optimize

a nonlinear information-theoretic criterion: namely, the mutual information between

the transmitted signals {αq, βq} and the received signal.

The capacity of the LD code is [15]

CLD(ρ, T,M,N) = max
Aq ,Bq ,q=1,...Q

1

2T
E log det(I2LrT +

ρ

Lt

HHt), (2.23)

where E denotes expectation and

H =







A1h̄1 B1h̄1 · · · AQh̄1 BQh̄1
...

...
. . .

...
...

A1h̄Lr
B1h̄Lr

· · · AQh̄Lr
BQh̄Lr






, (2.24)

Aq =

(

R(Aq) −I(Aq)
I(Aq) −R(Aq)

)

, (2.25)

Bq =

(

−I(Bq) −R(Bq)
R(Bq) −I(Bq)

)

, (2.26)

h̄n =

(

R(hn)
I(hn)

)

, (2.27)

and R(·) and I(·) denote the real and imaginary part of their arguments respectively.

hn is the column n of channel matrix H.
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The original LD codes in [15] were designed to maximize the ergodic capacity of

the system. However, it has recently been pointed out that such capacity-optimal LD

codes do not necessarily perform well in practice [16, 57]. Moreover, the maximization

of the ergodic capacity is performed under an implicit assumption that maximum-

likelihood (ML) detection will be performed at the receiver (a task that requires

an exhaustive search that is often computationally infeasible). These observations

prompt the search for codes that jointly achieve high data rates and perform well

when only a suboptimal detector is available at the receiver.

In [16], a simpler format of the LD codes has been proposed which is

S =
N−1
∑

n=0

Mncn, (2.28)

where Mn, n = 0, ..N − 1 are the set of Lt × T codeword matrices. The received

signal at the decoder is

r =

√

ρ

Lt

Ht S + n

r =

√

ρ

Lt

Ht

N−1
∑

n=0

Mncn + n, (2.29)

where r is a Lr × T matrix constructed by concatenating the receive vectors, Ht is

the transpose of the Lt × Lr channel matrix H, and n is Lr × T a matrix whose

columns represent realizations of an i.i.d. circular complex additive white Gaussian

noise (AWGN) process. To continue analysis, it is desirable to write the matrix

input-output relationship in (2.29) in an equivalent vector notation. Define the linear

transformation matrix

X 4
= [vec(M0), vec(M1), ..., vec(MN−1)], (2.30)

and the stacked channel matrix H̄ 4
= IT ⊗Ht (where vec denotes the stacking of all

columns of the input matrix in a vector and ⊗ denotes Kronecher product). Taking
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the vec of both sides of (2.29) gives

r̄ =

√

ρ

LT

H̄Xc + n̄, (2.31)

where r̄ = vec(r), c = [c0, c1, ..., cN−1]
t, and n̄ = vec(n). Essentially, matrix modula-

tion transforms the Lr × Lt linear system into an expanded LtT ×N system.

The ML decoding rule, assuming equally likely transmitted symbols, is used at

the receiver. In a vector AWGN channel, the detected vector symbol obtained using

the ML decoder is the solution of

ĉ = arg min
c∈S
|| r−

√

ρ

Lt

H̄Xc ||2, (2.32)

where S is the set of all possible vector symbols .

Using the input-output relationship in (2.29), the ergodic capacity of this

AWGN system with Rayleigh fading for capacity-optimum complex LD codes is given

by

C = max
tr(XX ∗)≤T

1

T
E log det(ILrT + ρH̄XX ∗H̄∗). (2.33)

In general, finding a code design that induces an equivalent channel with full

channel capacity is difficult since the mutual information cost function is non-convex.

In [16], it has been shown that for the special case of N = LtT , we have the following

result.

Theorem 1 For N = MtT , any X such that XX ∗ = 1
Lt

ILt
is a capacity-optimal LD

code.

This theorem will help us to analyze easier some of the properties of special LD

codes, such as diagonal algebraic space-time codes (DAST) and threaded algebraic

space-codes (TAST) and quaternion block space-time codes in future.
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2.4.6 Threaded Algebraic Space-Time Codes

Threaded algebraic space-time (TAST) code [58] is a generalized form of BLAST

architecture (special case of LD). We start by explaining a simpler precedent of TAST,

the diagonal algebraic space-time (DAST) code. DAST is defined as an Lt×Lt block

code such that

GLt
=











x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xLt











.ALt
, (2.34)

where x1, x2, .., xLt
are defined as

(x1, x2, ..., xLt
)T = MLT

.(c1, c2, ..., cLt
)T , (2.35)

where MLt
is an Lt × Lt orthogonal matrix and ALt

is an Lt × Lt Hadamard matrix

which is defined as a binary matrix with elements {−1, 1} such that

ALt
AT

Lt
= AT

Lt
ALt

= LT ILt
. (2.36)

By the use of transform matrix MLT
, full diversity can be achieved. The

resulting STBC is not orthogonal and a sphere decoder in general must be used. Also,

because symbols are combined we have transmission constellation expansion with the

accompanying peak-to-average power issues, in a manner similar to LD codes. The

transmitted constellation consists of all linear combinations of the symbols in the

original constellation.

Now we proceed to explain TAST [59, 60].. First, data is demultiplexed into

several streams, each of them called a thread. We must also define the notion of a

layer, which consists of a set of locations in space and time. An example of layers in

a code for Lt = T = 4 is

(T ime× Space) −→









Layer1 Layer2 Layer3 Layer4
Layer4 Layer1 Layer2 Layer3
Layer3 Layer4 Layer1 Layer2
Layer2 Layer3 Layer4 Layer1









. (2.37)
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Much like DAST, the vector of transmit symbols is multiplied by a rotation

matrix to generate diversity. The difference with DAST is that now we have more

than one such vector, in fact there is one vector per thread.1 Denoting the symbols

transmitted in thread i by xi1, xi2, ..., xiLt
, we have

xi = (xi1, xi2, ..., xiLt
)T = Mi

LT
(ci1, ci2, ..., ciLt

)T , (2.38)

where cij are data symbols to be transmitted, and M i
Lt

is an Lt ×Lt rotation matrix

to be used for thread i. It is possible that the same rotation could be used for all

threads, in which case the code is known as a symmetric TAST code.

The resulting signals xi are multiplied by constants φi chosen from among

Diophantine numbers [59], and then the results are fed into the threads mentioned

above.

For two transmit antennas, a TAST code is given as
(

x11 φ
1

2 x21

φ
1

2 x22 x12

)

, (2.39)

where x11 and x12 belong to the first thread and can be obtain by
(

x11

x12

)

= M2

(

c11

c12

)

. (2.40)

The second thread formula is calculated similarly. The transform matrix M2 is in

this form [61]

M2 =
1√
2

(

1 ej π
4

1 −ej π
4

)

, (2.41)

and φ is set to maximize the coding gain. For the QPSK example, φ = ej π
6 is the

optimal choice.

For three transmit antennas TAST code structure is




x11 φ
1

3 x21 φ
2

3 x31

φ
2

3 x32 x12 φ
1

3 x22

φ
1

3 x23 φ
2

3 x33 x13



 , (2.42)

1In this way spatial multiplexing is generated.
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where φ = ej π
12 is the best choice.

In order to ensure that ML decoding can be performed using the polynomial

complexity sphere decoder [62, 50, 63], the number of threads should be restricted to

min{Lt, Lr} threads.

2.4.7 Quaternionic Lattices for Space-Time Codes

Quaternionic lattices for space-time block codes are a structure proposed to maximize

the coding gain [64, 65]. TAST codes satisfy the rank criterion but they have a draw-

back: the eigenvalues of c∗i ci is vanishing specially for higher rates. This causes less

coding gain for higher SNR. Quaternionic design proposes a method using quaternion

algebra that ensure a lower bound on the value of

min
ci∈C,ci 6=0

det(c∗i ci), (2.43)

where C is the code and ci are codewords. The resulting code for two transmit

antennas is

c =

(

(c1 + c2θ) p
1

2 (c3 + c4θ)

p
1

2 (c3 − c4θ) (c1 − c2θ)

)

, (2.44)

where p = 1 + 2j and θ = ej π
4 give a non-vanishing determinant on (2.43) (≥ 1) no

matter what the spectral efficiency of the QAM constellation is.

The linear transformation (2.30) of the code can be shown as

X =









1 θ 0 0

0 0 p
1

2 p
1

2 θ

0 0 p
1

2 −p
1

2 θ
1 −θ 0 0









. (2.45)

It can be shown that XX ∗ 6= I which means the code does not provide maxi-

mum mutual information (Theorem 1) and also modulated symbols ci are not trans-

mitted with equal power.



30

8 10 15 20 23
10−5

10−4

10−3

10−2

10−1

SNR (dB)

Bi
t E

rro
r R

at
e

TAST
Quaternionic

Figure 2.10. TAST and Quaternionic code performance comparison for rate = 4
bits/s/Hz using QPSK with two transmit and two receive antennas.

Figure 2.10 illustrates the performance of this code for two transmit and two

receive antennas using 4-QAM constellation. As seen, the code gives some gain at

high SNR regimes over TAST. On the other hand at low SNR, the code has about

0.3 dB loss. This can be due to the capacity loss of the code.



CHAPTER 3

IMPROVED SUPER-ORTHOGONAL CODES THROUGH GENERALIZED
ROTATIONS

Ever since the first works on space-time coding appeared, the research community

has been seeking space-time codes with good complexity/performance tradeoff. Thus,

as in other branches of coding, a continual effort has been made to find codes with

a structure that allows simple decoding, while maintaining good performance. An

attractive tradeoff between structure and performance is made possible by a concate-

nation of orthogonal space-time block codes (OSTBC) with a trellis, which provides

high performance at a relatively small computational cost. The contribution of this

chapter consists of generalizations, improvements, and systematic code design for this

new class of codes.

A brief background of work in this area is as follows. Recently, Jafarkhani and

Seshadri proposed super-orthogonal space-time codes [42] (SOSTC). Super-orthogonal

codes consist of an orthogonal space-time block code concatenated with a block-wise

trellis. The design process is similar to the TCM of Ungerböck: the codebook of the

orthogonal block codes is expanded and then partitioned into sets with suitable dis-

tance properties. Then the trellis is labeled appropriately with the set partitions. At

the same time, Siwamogsathan and Fitz [44] independently proposed similar trellis-

block codes, with an approach that is somewhat more general. Both of these codes

must be hand crafted.

In this chapter we address the problem of building trellises over space-time

block codes, and propose a generalized mapping of modulations to the antenna signals

that leads to better codes. We provide design criteria for the generalized block-trellis

31
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codes. The proposed systematic method for the design of OSTBC ensures that good

codes are not overlooked. The search complexity is reduced by observing certain

properties of trellises over OSTBC.

We use the following notation throughout this chapter. Uppercase bold let-

ters denote matrices, for example codewords are denoted with X,Y,Z and unitary

transforms with U,V,W which we concisely (but not entirely accurately) refer to as

“rotations” in the sequel. Script letters denote sets of codewords, e.g. T ,S. Sub-

scripts are used to denote set partitioning and assignment of codeword sets to trellis

states and trellis branches. In particular, T =
⋃

i Ti, where Ti is a set partition for

trellis state i, and Ti =
⋃

j Ti,j , where Ti,j denotes the set of codewords assigned to

the trellis branch going from state i to state j. For convenience we define the mul-

tiplication of a set and a matrix, for example T0U, as a new set whose members are

the members of T0 each multiplied by U. The function D(·, ·) computes the minimum

distance between two sets of codewords. With an abuse of notation we may see a

codeword as one of the arguments of this function, which should be interpreted as

the set consisting of that single codeword.

The system model consists of a MIMO system with Lt transmit and Lr receive

antennas. The overall code is a concatenation of a multiple trellis coded modulation

(MTCM) outer code and an orthogonal space-time block (OSTBC) inner code. To

each state of the trellis code NB OSTB codewords of size T ×Lt are assigned. There-

fore the overall rate of the code is log2(NB)/T .

A flat fading channel is assumed, where the channel gains are constant dur-

ing each fade interval and independent in successive intervals. The received sig-

nal, denoted by a T × Lr matrix R, after matched filtering has the following form:

R =
√

ρ
Lt

XH + N. The average received signal-to-noise ratio per antenna shown by

ρ. The matrix X is an OSTB codeword of size T ×Lt. The channel matrix H = {hij}



33

has the size of Lt×Lr where hij is the fading channel coefficient between jth received

antenna and ith transmit antenna. The AWGN is shown by the matrix N. The re-

ceiver employs maximum likelihood (ML) decoder with perfect knowledge of channel

state information.

3.1 Trellis Design for Block Space-Time Codes

We follow the well-known trellis design principles developed by Ungerböck and applied

to OSTBC in [42, 44]. Ungerböck extended the original constellation set into a larger

codebook (a superset), each subset of the expanded codebook is called a subcode.

Subcodes are designed and allocated to trellis branches in a manner that maximizes

the performance of the code.

In the context of OSTBC, the extension of the original codebook is accom-

plished via transformations Ui. Each trellis state is allocated one rotation of the

codebook Ti = T0Ui. Then, within each trellis state, we partition the codebook

Ti = Ti,0 ∪ · · · ∪ Ti,M−1 into subsets each assigned to a trellis transition, where M

is the number of connected states. Thus, Ti,j is the set of codewords assigned to

the trellis branch that connects state i to state j. If a transition does not have par-

allel branches, Ti,j will consist of one codeword, otherwise it will have more than

one codeword. The design question boils down to finding good transformations Ui.

Our contribution consists of generalizations, as well as providing design criteria that

systematize code design, thus leading to improvements over existing codes.

The process can be made more clear by an example. Consider a system with

two transmit antennas, with the following orthogonal block code due to Alamouti:

X(s0, s1) =

(

s0 s1

−s∗1 s∗0

)

. (3.1)
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which, with BPSK modulation, has the four codewords

X0 =

(

1 1
−1 1

)

X1 =

(

−1 1
−1 −1

)

X2 =

(

1 −1
1 1

)

X3 =

(

−1 −1
1 −1

)

. (3.2)

The four codewords of the above block code form the subcode T0, which we as-

sign to state 0 of the trellis (see Figure 3.1(a)). For the other state of the trellis, we use

a different set of codewords obtained using a transformation U = diag(ejπ/2, ej3π/2),

i.e., the four codewords used in state 1 are T1 = {XiU, i = 0, . . . , 3}. We denote

T1 = T0U. For the example above, the rotation U suggested by our design procedure

results in 1 dB gain compared to similar codes from [42] (see Figure 3.2).

From this example it is seen that our unitary transforms, unlike [42], generate

modulation symbols that may not be in the original constellation. This is similar to

the constellation expansion of Ungerböck [66], and much like that case, the peak-to-

average power ratio remains the same and detector complexity is not much affected,

because for each trellis state only a smaller (original) constellation is transmitted. We

further comment on computational complexity in the sequel.

We now proceed to analyze the structure of the rotation matrices U. The

per-antenna power constraint implies that the matrices U must be not only unitary,

but also either diagonal or anti-diagonal, as shown below. Because either will serve

our purposes, we choose diagonal matrices in the sequel.

Lemma 1 Assuming equal transmit power from all antennas, the transformation ma-

trices U used for expanding codeword sets must be either diagonal or anti-diagonal.

Proof: Transform one codeword to anther via Y = XU, i.e.,

Y = X

(

a b
c d

)

=

(

as0 + cs1 bs0 + ds1

−cs∗1 + ds∗0 −bs∗1 + ds∗0

)

.
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Because this must be true for any two modulation symbols s0 and s1, the per-antenna

power constraint yields that either c = b = 0 and |a| = |d| = 1, or a = d = 0

and |c| = |b| = 1. We have two acceptable representations, thus without loss of

generality we can choose the diagonal transform between two codewords, namely

U = diag(ejθ1 , ejθ2). �

The next step is set partitioning and trellis labeling. Set partitioning requires

a distance measure. Following [42], we introduce the Coding Gain Distance (CGD)

thus: For two codewords X and Y construct A
4
= (X − Y)(X − Y)H , and then

define CGD = det(A). By extension, the minimum CGD of a codebook T is defined

as the minimum of CGD of all non-identical codeword pairs in T × T . Similarly

the distance between two codebooks T ,S is D(T ,S) = min det(A(X,Y)), where the

minimization is over all pairs (X,Y) ∈ T × S.

3.1.1 Reduced-Complexity Code Design

The set partitioning and index assignment involve CGD calculations. A complexity

problem arises partially from the fact that our overall codes are not only nonlinear,

they may not even possess a uniform error probability (UEP) property, so in principle,

code design requires an exhaustive search over all error events. Also, in general, CGD

of each pair of branches requires calculation of distances between all codeword pairs.

In this section we simplify and streamline the code design process by highlighting

certain properties of our codes.

The key result of this section shows that a large number of calculations can be

bypassed, because despite the lack of UEP, many of the distances remain symmetric.

Theorem 2 The distances between two converging trellis paths are invariant to the

converging state, i.e., D(Tm,0, Tn,0) = D(Tm,i, Tn,i),∀m,n,∀i. Furthermore, this dis-
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tance can be calculated by considering only one reference codeword, that is, for any

X ∈ Tm,0

D(Tm,0, Tn,0) = D(X, Tn,0).

To prove this result, we need the following lemma, which shows that OSTBC code-

words (for MPSK) can be mapped to one another by simple pre- and post-multiplication

by diagonal matrices.

Lemma 2 Assuming a constant-modulus (MPSK) modulation, for any two OSTBC

codewords X1,X2 ∈ T there exist unitary matrices V and W such that X2 = VX1W.

The transform matrices obviously depend on the codewords.

Proof: First consider Lt = 2, where

X1 =

(

s0 s1

−s∗1 s∗0

)

,

and s0 and s1 are MPSK symbols. Take any other codeword Xj ∈ T with two symbols

s′0 = s0e
jθ and s′1 = s1e

jφ where θ and φ are multiples of 2π
M

. Then

X2 =

(

ej θ+φ

2 0

0 e−j θ+φ

2

)

X1

(

ej θ−φ

2 0

0 e−j θ−φ

2

)

.

For general Lt, each entry of the STBC codeword is either a modulation symbol or its

conjugate, thus the mapping between two OSTBC codewords consists of element-wise

phase change on the codeword matrix. Element-wise multiplication of a matrix can

be accomplished via multiplying rows and columns of the matrix by scalars. This

in turn is accomplished by left-multiplication by a diagonal matrix (multiplies rows

by diagonal elements) and right-multiplication by another diagonal matrix (multi-

plies columns by diagonal elements). Thus the mapping of one OSTBC codeword to

another is always possible by left- and right-multiplication by diagonal matrices. �
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Proof: (Theorem 1)

D(Tm,0, Tn,0) = D(ViTm,0Wi,ViTn,0Wi) (3.3)

= D(ViTm,0Wi,ViTm,0UnWi) (3.4)

= D(ViTm,0Wi,ViTm,0WiUn) (3.5)

= D(Tm,i, Tn,i), (3.6)

where Vi and Wi are codeword transform matrices in the sense of Lemma 2. Equa-

tion (3.3) holds because unitary transforms are distance preserving, and Equation (3.5)

holds due to commutativity of diagonal matrices. To get the second part of the result

we can write

D(Tm,0, Tn,0) = min
Xi∈Tm,0

D(Xi, Tn,0) , (3.7)

However, D(Xi, Tn,0) is the same for all Xi ∈ Tm,0 because

D(X1, Tn,0) = D(X1, Tm,0Un)

= min
i=0,...,M−1

D(X1,ViX1WiUn)

= min
i=0,...,M−1

D(VjX1Wj,VjViX1WiUnWj)

= min
i=0,...,M−1

D(Xj,ViXjWiUn)

= D(Xj, Tm,0Un) (3.8)

= D(Xj, Tn,0),

where in Equation (3.8) we have used the property that if Y = VXW for some

X,Y ∈ Tm,0, then VZW ∈ Tm,0 for all Z ∈ Tm,0. �

Using the above results, we can illustrate the CGD calculations. Consider

a section of a trellis with length two in Figure 3.1(b), and consider events Ei that

start at State 0, go to State i, and terminate on State 0, i.e. Ei = T0,i × Ti,0. There
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may be multiple such events because there may be parallel paths. Likewise define

Ej = T0,j × Tj,0. The distance between Ei and Ej is defined as

D(Ei, Ej) = min
(X,X̃)∈Ei , (Y,Ỹ)∈Ej

det
(

A(X,Y) + A(X̃, Ỹ)
)

.

Knowing that for positive semi-definite matrices det(A1 + A2) ≤ det(A1) + det(A2),

we can bound the distance

D(Ei, Ej) ≤ min
(X,X̃)∈Ei , (Y,Ỹ)∈Ej

det(A(X,Y)) + det(A(X̃, Ỹ))

= min
(Y,Ỹ)∈Ej

det(A(X0,Y)) + min
(Y,Ỹ)∈Ej

det(A(X̃0, Ỹ)), (3.9)

where (X0, X̃0) is an arbitrary codeword in Ei. The simplification is achieved by

invoking Theorem 2: the distance of two sets is identical to the distance of one set to

an arbitrary codeword of the other. Finally, we identify the dominant error event by

finding the minimum of D(Ei, Ej) over all pairs (Ei, Ej).

This result is easily extended to partially connected trellises where dominant

error events can have length greater than two. In that case the CGD is bounded by

det(
∑

k

Ak) ≤
∑

k

det(Ak) ≤ det(A1) + det(Ak) . (3.10)

In this case we bound the CGD by the distances of the diverging and converging

paths det(A1) and det(Ak), respectively, because the contribution of the interior

trellis sections to the CGD is generally unclear, a phenomenon familiar from TCM

design [66]. Therefore, only the contribution of the beginning and end trellis sections

are used in the cost function, leading to a result similar to (3.9).

The developments in this section were geared towards generality and insights,

thus only bounds were obtained. However, for the special case of the fully connected

trellis with length-two error event, it is possible to obtain a precise calculation, which

is as follows.
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Consider a section of a trellis with length two in Figure 3.1(b), and denote the

set of events starting at State k, ending at State p, and passing through State i with

Ek,i,p, i.e. Ek,i,p = Tk,i×Ti,p. Likewise define Ek,j,p = Tk,j ×Tj,p. The distance between

Ek,i,p and Ek,j,p is defined as

D(Ek,i,p, Ek,j,p) = min
X∈Tk,i , X̃∈Ti,p ,Y∈Tk,j , Ỹ∈Tj,p

det
(

A(X,Y) + A(X̃, Ỹ)
)

. (3.11)

To simplify the expression (thus saving computation) we note that

A(X,Y) = (X−Y)(X−Y)H = (X̄− Ȳ)UkU
H
k (X̄− Ȳ)H = A(X̄, Ȳ) ,

where X̄ ∈ T0,i and Ȳ ∈ T0,j , which means the starting State k can be set to a fixed

state, e.g. State 0, without loss of generality, i.e. D(Ek,i,p, Ek,j,p) = D(E0,i,p, E0,j,p).

Since the set partitioning for T0 is carried out before finding the rotations, this term

is calculated only once. Therefore, in the calculation of (3.11) only the second term

involves the rotation matrices Ui and Uj.

The dominant error event is the minimum of D(E0,i,p, E0,j,p) over all pairs

(E0,i,p, E0,j,p). In the design process, a search is conducted to find rotations that

maximize the minimum distance obtained above.

3.2 Code Design Examples

We now proceed with specific code examples, simulations, and comparisons with codes

in the literature. In our simulations, a frame consists of 130 transmissions and the

number of receive antennas is one. We have extensively used the design tools that

we developed in Section 3.1 to reduce the search space. While in the literature the

search over the space of codes is based on CGD criterion, we choose partial union

bound criterion which takes into account the multiplicities and provides better codes.

In the trellises demonstrating our design examples (Figure 3.1(c), (d), and (e)) we

follow the signaling notation of [42].
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Figure 3.1(c) shows a 4-state fully connected trellis designed for BPSK mod-

ulation, full-rate 1 bit/s/Hz, and Lt = 2. We designed the code to maximize the

minimum CGD of events with length two, the minimum length error event. The

transforms (rotations) for states 1, 2 and 3 are U1 = diag(−j, j), U2 = diag(j,−1),

and U3 = diag(−1,−j). Figure 3.2 shows the frame error probability versus SNR for

our 2-state (Figure 3.1(a)) and 4-state code (Figure 3.1(c)), both labeled as new, in

slow fading and compare them with the 2-sate and 4-state codes given in [42] (labeled

as JS). Our 2-state code outperforms JS by about 1 dB and performs the same as JS

4-state code.

Figure 3.3 compares our proposed 4-state code and the JS 4-state code in slow

and fast fading. Since the new 4-state code of (Figure 3.1(c)) does not have parallel

branches, it enjoys higher time diversity and thus outperforms JS significantly in fast

fading.

Figure 3.1(d) shows the 4-state trellis designed for QPSK, full-rate 2 bit/s/Hz,

using two transmit antennas. The structure of our 4-state trellis is the same as the

trellis in [42, 44] (JS, SF). The only difference is in the rotation U. Our rotation is

U = diag(ej3π/4, e−j3π/4) but the rotation in [42, 44] is U = diag(ejπ, 1). A gain of

0.3dB over the JS, SF code is achieved.

Our 8-state QPSK trellis is shown in Figure 3.1(e), whose performance is

slightly better than the 16-state code given in [44]. The transformation matrices for

our 8-state trellis is as follows: Ui = diag(ejθiπ, ejφiπ) where the pairs of (θi, φi) for

the states i = 1, · · · , 7 are respectively ( 7
4
, 5

4
),(3

2
, 3

2
),(5

4
, 3

4
),(5

4
, 1

4
), (1, 3

2
), (3

4
, 7

4
) , (1

2
, 1).

Now consider four transmit antennas. Figure 3.4 shows the the frame error

rate and bit error rate for a simple 2-state trellis code with 4 transmit antennas in

slow fading. For this code U = diag(ej3π/2, ejπ/2, ej3π/2, ejπ/2). This code gives about
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1 dB gain over the code given in [42] which also outperforms the code in [38] which

uses a quasi-orthogonal code.

As a final note, we mention that the decoding complexity is essentially unaf-

fected by rotations U, because a coherent receiver can merge the diagonal matrix U

into the channel matrix. Specifically, the received signal is R =
√

ρXUH + N. The

effective channel gain H̃ = UH has the same statistics as H, since U is unitary. From

the receiver point of view, H̃ is the effective channel gain matrix. The complexity

consists of re-calculation of H̃ whenever channel state information is updated.

3.3 Conclusion

We propose a generalization of the codes known as super-orthogonal codes or, al-

ternatively, STC-TCM codes. In these codes, an inner orthogonal block space-time

code is concatenated with an outer trellis code to yield a powerful overall code with

reasonable decoding complexity. Our generalization extends the number of allowable

rotations, yielding more powerful codes. We present several properties of codewords

and set partitions so that the design process can be simplified. Simulations demon-

strate the performance of our generalized codes.
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X0 X3 X1 X2

X U0 X U3 X U1 X U2

(a)

T0,0 T0,1 T0,2 T0,3

T1,0 T1,1 T1,2 T1,3

T2,0 T2,1 T2,2 T2,3

T3,0 T3,1 T3,2 T3,3

(b)

S00     S10     S01     S11 

(c)

(d) (e)

S00U1 S10U1 S01U1 S11U1 

S00U2 S10U2 S01U2 S11U2 

S00U3 S10U3 S01U3 S11U3 

S00U4 S10U4 S01U4 S11U4 

S00U5 S10U5 S01U5 S11U5 

S00U6 S10U6 S01U6 S11U6 

S00U7 S10U7 S01U7 S11U7 

S00     S01     S10     S11 

S00U1 S01U1 S10U1 S11U1 

S00U2 S01U2 S10U2 S11U2 

S00U3 S01U3 S10U3 S11U3 

S0     S1   

S0U   S1U 

S1     S0   

S1U   S0U 

Figure 3.1. (a) A two-state trellis code for Lt = 2. Xi, i = 0, 1, 2, 3, are defined
in (3.2), and U = diag(ejπ/2, ej3π/2). (b) A fully-connected trellis. The trellises of (c)
4-state BPSK, (d) 4-state QPSK, and (e) 8-state QPSK codes. In parts (c), (d), and
(e) we follow the signaling notation of [42] for set partitions.
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Figure 3.2. Lt = 2, two- and four-state BPSK codes in slow fading
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Figure 3.3. Lt = 2, four-state BPSK codes in slow and fast fading
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Figure 3.4. Lt = 4, two-state BPSK code in slow fading



CHAPTER 4

GENERALIZED BLOCK SPACE-TIME TRELLIS CODES

Space-time codes have been designed to take advantage of the structure of the fading

channel in various ways. Some, like block space-time codes, aim to transfer at most

one symbol per transmission. Others, the so-called “full rate”1 codes, transmit mul-

tiple symbols per transmission, depending on the degrees of freedom of the MIMO

channel. Many of these techniques, such as block space-time codes, do not have any

coding gain. Others, such as trellis space-time codes [14] include some coding gain.

Recently, Jafarkhani and Seshadri [42] showed that, by building an appropriate

trellis on a block space-time codes (which they call super-orthogonal space-time codes)

one may achieve a complexity-performance tradeoff that is not easily attained by

trellis space-time codes. Furthermore, certain codes were obtained in [42] that did

not have a direct counterpart in ordinary trellis space-time codes.

Motivated by this past work, we seek to build trellises on linear dispersion

codes and other MIMO signaling methods. The difficulty, however, is that many

of these codes do not enjoy the same structure that made super orthogonal codes

possible. In particular, set partitioning on a non-lattice signaling is not straight

forward.

There has been some algorithms in the literature on graph theory and compu-

tational geometry for partitioning. On the problem of metric min-bisection [67], they

divide a finite set of points into two equal partitions such that the sum of the distances

1Here by “full rate” we mean multiple symbols per transmission. This is not to be mistaken

with the interpretation of this phrase in the block space-time coding, which means one symbol per

transmission.
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from the points of one part to the points of the other is minimized. In the metric

k-clustering [68], the objective is to minimize the sum of all intra-cluster distances.

However, for our set-partitioning, we need to maximize the minimum distance of each

point within each partition.

In this chapter, we first produce a general set partitioning algorithm on an

arbitrary signal constellation and show its optimality. We then use this set parti-

tioning to build space-time trellis codes (STTC). In order to achieve full rate, we

build a superset by creating new codes via using unitary matrices. We then show the

code design procedure for some example codes and demonstrate their performance

via simulations.

Throughout this chapter, we use this notation. Uppercase bold letters denote

matrices, e.g. H. The codewords of the block code are also matrices, e.g., Gi
m, the

subscript denotes the set partition to which the codeword belongs, and the superscript

denotes the rotation2 of the codeword, a matter that will become clear in the sequel.

Script letters denote sets of codewords, e.g. S i
m, where again superscripts mean that

the entire set has been rotated, and the subscript denotes the location of this set in

the partitioning. We define the multiplication of a set and a matrix, e.g., S i
mX, as a

new set whose members are the members of S i
m each multiplied by X. |S| denotes

the cardinality of S.

4.1 System Model

We consider a space-time system with Lt transmit and Lr receive antennas. We

use a concatenated coding scheme where the outer code is a multiple trellis coded

modulation (MTCM) code and the inner code is a space-time block code such as

2Strictly speaking, the codewords undergo a unitary transform that may not be a rotation. But

we use the word rotation in a generic sense for all unitary transforms.
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S 1

S 1

S 2

S 2
c i

c j

S 1

S 1

*

*

*

Figure 4.1. Merging of groups

linear dispersion codes, and orthogonal space-time block codes. To each state of the

trellis code NB OSTB codewords of size T × Lt are assigned. Therefore the overall

rate of the code is log2(NB)/T .

The channels between the transmit and receive antennas are modeled as fre-

quency non-selective flat Rayleigh fading. For slow fading channel assumption, the

channel is constant during a frame and fades independently from frame to frame.

The received signal, denoted by a T × Lr matrix R, after match filtering has

the following form:

R =
√

ρSH + N ,

The averaged received signal to noise ratio scaled by Lt is shown by ρ. The matrix S

is an OSTB codeword of size T × Lt. The channel matrix H = {hij} has the size of

Lt × Lr where hij is the fading channel coefficient between jth received antenna and

ith transmit antenna. The additive white Gaussian noise with zero mean and unit

variance i.i.d. components is shown by the matrix N. The receiver employs maximum

likelihood (ML) decoder with perfect knowledge of channel state information.
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4.2 Set-Partitioning Algorithm

We assume that a code set S with 2N codewords is given. The codewords of S are

taken from a constellation set, i.e. a scaler such as MPSK, MQAM or a matrix space

such as a space-time code. The goal is to divide S into two disjoint subsets, S1 and

S∗
1 , so as to maximize the minimum pairwise distances of each subset. Each subset

has N codewords and S = S1 ∪ S∗
1 .

The ultimate goal of set-partitioning is to achieve a better coding gain through

using a trellis code structure. The pairwise distance is a measure that can be used to

achieve a better coding gain. Depending on the kind of code, the pairwise distance

could be defined differently. For example for the orthogonal space-time block codes

the pairwise distance is the determinant criterion. However pairwise error probability

and Euclidean distance could be other criteria for different kind of codes. We maxi-

mize the minimum pairwise distance in each subset via our set partitioning algorithm.

The function D(·, ·) denotes the minimum distance between two sets of code-

words. With an abuse of notation we sometimes see a codeword as one of the argu-

ments of this function, which should be interpreted as the set consisting of that single

codeword.

The job of (one stage) of a set partitioning algorithm is to separate the code-

words into two sets, such that each set has maximal (internal) minimum distance.

This objective can be achieved if any two codewords that have small distance belong

to separate sets. To achieve this end, we construct pairs of sets, denoted by Si and S∗
i

(which we call dual sets) and we use them as depository of codewords that are close

to each other, to ensure they are separated. It is a property of our algorithm that

throughout, two sets that are dual will never be mixed or combined, thus assigning

a pair of codewords to dual sets guarantees that henceforth that minimum distance
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will never be visited again.

Thus, the strategy is to visit all codeword pairs in increasing order of pairwise

distance. Whenever we see a (close) pair, if one of them already belongs to a set, we

put the other in the dual set. If none of them belongs to a set, in order not to restrict

future action, we create a pair of dual sets for them and assign the pair to them. This

proliferation of sets will have to be dealt with in merging steps later in the algorithm.

In a merging step, as shown in Figure 4.1, there is more than one pair of sets

remaining, so we merge them in such a way as to maximize the resulting min distance

inside each set. As illustrated, the codewords of the pair, (cp, c
′

p) which should be

separated belongs to set S1 and S2. Therefore S2 shouldn’t be in the same subset

that S1 is. On the other hand, S1 and S∗
1 are to be separated due to the previous

steps of the algorithm. Therefore we merge S2 and S∗
1 into one subset and the same

is done for S1 and S∗
2 .

We note that this algorithm is a greedy process. Thankfully, we can show that

this greedy algorithm with its small associated computational complexity, is optimal.

The algorithm itself is given in Figure 4.2, and we describe it below.

At the beginning, the algorithm starts with the minimum-distance pair of

codewords. Two sets S1 and S∗
1 are created and each of the two mentioned codewords

is assigned to one of them. Recall that these two sets are “duals,” which means

they will never merge together in any step of the algorithm. Now, calculate the

minimum distance between all other pairs of so far unassigned codewords and call

it d1. Let define d2 as the minimum of distance between sets and codewords and

d3 as the minimum of distance between two sets (we defined the distance function

above). If d1 < min(d2, d3), it means the distance between unassigned codewords is

the bottleneck, thus the two codewords involved in d1 are separated by creating a

new pair of dual sets and assigning the codeword pair to them.
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1. Find mini,j D(ci, cj) then S1 := {ci} and S∗
1 := {cj}

2. while{there are unassigned codewords}

(a) recalculate mini,j D(ci, cj) := d1

find mink,l D(Sk, cl) := d2

find minm,n D(Sm,Sn) := d3

(b) if d1 < min(d2, d3)
Create new dual sets {ci} and {cj}
continue

elseif d2 < min(d1, d3)
absorb cl in S∗

k

else do merging:
Sm ← Sm ∪ S∗

n

S∗
m ← S∗

m ∪ Sn

Eliminate Sn and S∗
n

end

end

3. while{max |Si| < N} Do merging
end

Figure 4.2. Set partitioning algorithm

On the other hand, if d2 < min(d1, d3), the bottleneck is a codeword which is

too close to a set, thus we take the offending codeword and put it in the dual of the

mentioned set.

Now, we check to see if there are sets that have grown too close in terms of

minimum distance. In this case d3 < min(d1, d2)) then we merge each set with the

dual of the other, thus eliminating the problem of closeness of the two sets. The

algorithm continues until all codewords are assigned to a set. To ultimately end up

with two sets, we do the merging of sets while one set cardinality reaches the N

codewords. If it goes over N , the two sets cardinality should be equalized.
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Theorem 3 The mentioned set partitioning algorithm yields an optimal partition,

in the sense that no other partition provides sets with larger within-set minimum

distance.

Proof: ssume that the pair of codewords (ci, cj) belong to one subset and give the

minimum distance. In order to increase the minimum distance of that subset, one of

these codewords must be moved to the other subset. On the other hand, this pair

of points have been assigned to one subset by the algorithm because there has been

another codeword in the other subset which gives a lesser minimum distance with

these two codewords. Therefore having a better minimum distance is impossible. �

4.3 Block Space-Time Trellis code Design

To design a full rate trellis code, the original space-time block code must be expanded.

The expanded codebook is called a superset and denoted by S. Each subset of the

expanded codebook is called a sub-code. For example the original code is called a

sub-code.

We assign a sub-code to each state of the trellis. The sub-code at state k is

denoted with Sk, where Sk ∈ S. Using the set partitioning algorithm in Section 4.2,

each sub-code can be divided into several subsets denoted as Sk
i , where the cardinality

of Sk
i are equal to the emerging branches at each state of the trellis. Each Sk

i in Sk is

assigned to the outgoing branches of state k. Figure 4.3 is an example for two-state

trellis where S0 = S0
0 ∪ S0

1 and S1 = S1
0 ∪ S1

1.

To build a superset, more sub-codes must be designed. A sub-code can be

obtained from the original sub-code S0 as follows

Sk = UkS0, (4.1)
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S0
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0 S1

1

Figure 4.3. Two-State Trellis

S0
0 S0

1

US0
0 US0

1

S0
0

US0
0

Figure 4.4. Error events for two-State trellis

where Uk is a unitary transform. The choice of rotation matrices, Uk is our goal to

achieve the optimal coding gain. The advantages of building the sub-codes by unitary

rotations is as follows, First, the set partitioning scheme remains the same as that for

the original sub-code,i.e.

Sk
i = UkS0

i , (4.2)

because the distance between each pair of rotated codewords remains the same, sec-

ond, the capacity of each sub-code is the same as the original sub-code [15], and third,

the transmitted power of each codeword remains the same.

Set partitioning helps to increase the minimum distance for parallel branches

emerging from a state. As shown in Figure 4.4, the minimum distance of the error

events with length two or higher are also needed to be maximize with the best choice

of Uk. A key challenge in the design process is that the codes are nonlinear, and

unless they possess a uniform error probability(UEP) property, it does not suffice

to analyze the performance for the all-zero codeword. Therefore, for every pair of

codewords starting and ending at the same state (any state) must be included in the

error analysis. However, depending on the structure of the original code, it is possible

to narrow down the set of the events considered in our search.
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4.3.1 Code Design Example

In this section, we provide an example of the two-state trellis code design for linear

dispersion code with Lt = 3. As in [16], the code is

S =
N
∑

i=1

Misi , (4.3)

where Mi is the LD base matrix of size T × LT , T = 3, and si is the signal symbol.

Following the design procedure of [16], we designed an LD code for N = 3 and si

taken from BPSK constellation. The overall rate for this example is 1 bit/sec/Hz.

The distance criterion is the pairwise error probability of each two pair of codes. The

resulting LD code is

M1 =





0.168 + 0.432i −0.057− 0.310i 0.127− 0.038i
−0.101− 0.001i −0.164 + 0.184i 0.511− 0.013i
0.257 + 0.202i 0.218 + 0.352i 0.000 + 0.231i





M2 =





0.418− 0.105i 0.322 + 0.095i −0.076 + 0.168i
−0.139 + 0.188i −0.003− 0.054i 0.040 + 0.523i
0.030− 0.301i −0.308 + 0.349i 0.046 + 0.147i





M3 =





0.018 + 0.195i 0.273 + 0.396i −0.228 + 0.102i
0.083 + 0.269i 0.136 + 0.040i 0.304− 0.375i
−0.252− 0.389i 0.267 + 0.096i 0.050− 0.186i



 .

By applying the set partitioning algorithm, the total eight codewords, ci for

i = 1, 2, .., 8 of this code is divided into two subsets, S1 = {c1, c4, c6, c7} and S2 =

{c2, c3, c5, c8}. Figure 4.5 shows the block error rate of the original code and subset

S1. As shown, the algorithm has successfully partitioned the original set into subsets

that a gain of 2.5 dB is obtained.

Next step is to expand the original code by deriving the rotation matrix, U.

By maximizing PEP of the error events with length two, we can obtain the best U.
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Figure 4.5. r = 1 bit/sec/Hz, LD codes, Lt = 3, and Lr = 1
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Figure 4.7. Two-state LD-STTC for Lt = 3, and Lr = 3

It can be written as,

max
U

D({S0
0 ,S0

0}, {S0
1 ,US0

0}) (4.4)

However, because S1 = −S2, it is easy to show that it suffices to compute the
optimization for only all zero code. The resulting U after 100,000 search over unitary
matrices is,

U =





0.385− 0.481i −0.142 + 0.614i −0.044 + 0.469i

0.007 + 0.562i 0.374− 0.041i −0.079 + 0.731i

0.128 + 0.535i 0.081 + 0.673i 0.297− 0.385i



 .

4.3.2 Simulation Results

For the simulations, we consider a two-state linear dispersion space time code (LD-

STTC). A frame consists of 129 transmissions. The length of the LD code is T = 3 for

Lt = 3. All the simulations is for the quasi-static flat Rayleigh fading. The symbols

for the LD codes is taken from BPSK constellation.
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Figure 4.6 shows the frame error rate for the rate 1 bit/Sec/Hz and one receive

antenna. The diversity of three can be seen when compared with the diversity two

super-orthogonal codes using Alamouti code with two transmit antennas [42].

Figure 4.7 shows FER for several LD-STTCs with rates 1, 1.33, and 1.67

bit/Sec/Hz. As seen, a gain of 2 dB is archived through using this method when

compared with the LD code results. However more gain can be archived by designing

trellis codes with more memory and setting the codes more apart in parallel branches.

Also this method can be applied to different coding schemes which more results are

part of our future work.



CHAPTER 5

RELAXED THREADED SPACE-TIME CODES

MIMO systems have introduced the possibility of unprecedented data rates in wireless

communication, through the concept of spatial multiplexing. Several classes of MIMO

codes have been designed that take advantage of this concept, among them variations

of BLAST [4], Linear Dispersion codes [15, 16], and Threaded Algebraic Space-Time

codes (TAST) [59]. Also, alongside high capacity, we would like the systems to have

high reliability, which at high SNR is characterized by the diversity advantage. For

example, TAST is known to provide full-diversity as well as a rate of up to LT symbols

per transmission, where LT is the number of transmit antennas. In the following we

refer to codes that provide this rate as full-rate codes.

Unfortunately the presence of full diversity may not be enough to ensure good

performance, because the diversity may apply at unrealistically high values of SNR.

This chapter is dedicated to the design of improved full-rate codes that work well in

realistic SNR.

We propose a new threaded space time code with improved performance. We

keep the layered structure proposed in TAST, but remove its algebraic constraint.

This is equivalent to using non-unitary matrices in the code design process, where

TAST used unitary matrices.

The search for the best rotation matrix is done by a new design criterion,

the average union bound (AUB), to ensure good performance at medium SNR. The

resulting codes are called Relaxed Threaded Space Time (RTST) codes.

We are motivated to concentrate on the medium SNR regime due to the de-
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velopment of modern wireless systems with fast power control. These systems are

able to maintain the effective average SNR of the wireless link within a fairly narrow

range. It is within this range that most of the existing codes must operate.

We propose the average union bound (AUB) as a comprehensive criterion for

the medium SNR regime. For full rate codes such as LD and TAST codes, full diver-

sity advantage appears at very high SNR which practically is not useful. AUB gives

a better approximation of the codeword error rate at medium range SNR. Since mul-

tiplicity at medium range SNR is as important as the worst case scenario. Simulation

results show significant coding gain for the new RTST codes. The result show that

the AUB is a tight upper bound for the codeword error rate.

In Section 5.1, we discuss the system model. In Section 4.3.1, the new code

design algorithm is proposed. In Section 5.2.2, we explain the AUB criterion for full

rate codes and give some examples. Section 5.3 proposes some example code design

with simulation results.

5.1 System Model

We consider a wireless system with Lt transmit and Lr receive antennas. The channel

is assumed to be quasi-static flat Rayleigh fading. The channel coefficient between

any pair of antennas is independent and perfectly known at the receiver. In the system

under consideration, we use the space-time threading which induces a partitioning of

the space-time code into multiple independent codes. The K × 1 information symbol

vector u = (u1, ..., uK)T , which belongs to a given alphabet YK , is first partitioned

into a set of L disjoint component vectors uj of length Kj, j = 1, ..., L. Each one of the

component vector uj is then mapped by a constituent channel encoder γj : YKj → ST ,

j = 1, ..., L, so that K = K1+K2+...+KL. Each constituent encoder, γj, operates on

independent information streams, and gives a set of constituent codeword γj(uj) of
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length T . Then a component space-time formatter assigns the constituent codeword

γj(uj) to the thread lj, j = 1, ..., L and sets all off thread elements to zero. For

simplicity we assume that Kj = K/L for j = 1, ..., L. The nr × T space-time block

code C is the summation of all space-time threads, where nr encoded symbols cit

(i = 1, ..., nr) are transmitted simultaneously from all transmit antennas at time t

(t = 1, ..., T ).

At time instant t, the received signal by antenna j is given by

rjt =
√

Es

Lt
∑

i=1

hi,j(t)cit + wjt, (5.1)

where hi,j(t) is the channel coefficient between transmit antenna i and receive antenna

j with zero mean and variance 0.5 per dimension. Es is the energy per symbol at

each transmit antennas. wjt is the additive white complex Gaussian noise received

by antenna j at time slot t with zero mean and variance N0

2
per dimension. Therefore

the average received SNR at the receiver is ρ = Es

N0
.

Let R be the nr × T received signal matrix, H be the nr × nt channel matrix,

and W be the nr × T noise matrix; then we have

R =
√

EsHC + W. (5.2)

Whenever an erroneous codeword e is detected, then the codeword difference

matrix is defined as B(c, e) = c−e. We also define A(c, e) = B(c, e)B(c, e)H , where

superscript H denotes the conjugate transpose operation.
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5.2 Code Design

5.2.1 Code Structure

We use the layered structure of the TAST code as the starting point of our code

design. In TAST with an arbitrary number of threads,

γj(uj) = φjMjuj (5.3)

is transmitted over thread lj, where Mj are nt × nt real or complex rotations that

achieve full diversity, and φj are Diophantine numbers which ensure full diversity and

maximize the coding gain for the composite code.

We remove the algebraic constraints, thus Mj could be any arbitrary non-

uniform matrices and φj could be any numbers with unit magnitude. Relaxing the

constraint will provide a larger code search space and, as will be observed, does not

incur a serious penalty, a fact that to our knowledge has not been noticed to date.

The result is a layered code; we call it a Threaded Space Time (RTST) code. The

RTST codewords can be written as:

c =
K−1
∑

i=0

Viui, (5.4)

where Vi are the dispersion matrices and K is the total number of symbols used in

all threads.

Substituting (5.4) in (5.2), the received signal is

R =
√

EsH

K
∑

i=0

Viui + W. (5.5)

By rewriting (5.5) in an equivalent vector notation as described in [16], we

have

r =
√

EsHXu + W, (5.6)



61

where

u = [u0, u1, ..., uk−1],

X = [vec(V0), vec(V1), ..., vec(Vk−1],

H = IT ⊗H, and

w = vec(W),

where IT is an identity matrix of size T , ⊗ denotes Kronecher product, and vec

function of a matrix creates a vector by stacking columns of that vector. We can

show that for the layered codes such as RTST when ntT = k, in order to have a

capacity optimal code, X should be unitary or equivalently Mi should be unitary.

This means that by selecting non-unitary Mi, the code may be capacity sub-optimal.

We address this concern in the sequel.

In order to meet the power constraint and achieve a better coding gain as

suggested in [15], we normalize the dispersion matrices by

Vi ← Vi(V
H
i Vi)

− 1

2 , (5.7)

which gives unitary dispersion matrices.

5.2.2 Design criteria

We propose the average union bound as a comprehensive design criterion. In this

chapter, we focus our investigation on the design of RTST codes, however, this crite-

rion can be used to design all kinds of full rate codes such as linear dispersion (LD)

codes.

In [14], the rank and determinant criteria have been derived for high SNR.

Full diversity is achievable when the eigenvalues of A(ci, cj) for all i and j are non-

zero. The range of SNR where the effect of full diversity advantage can be observed

depends on the eigenvalues of A.
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In our experiments we observed that many full-rate codes, despite full diversity,

do not perform well in intermediate SNR. This is due to ill-conditioned A matrices,

i.e., the ratio of largest and smallest eigenvalues of A, λmax/λmin, is large. Figure 5.2

and 5.3 respectively depict the λmin and λmax/λmin of A over all pairs for the TAST

code [59] for two transmit and two receive antennas, using 4-QAM constellation. The

minimum λmin = 0.02 and the number of codewords are 28. As illustrated, there are

many codeword pairs which have very small λmin(< 0.1).

In many communication systems such as 3G cellular networks, the quality of

the received signal is controlled via a fast power control mechanism. Power control

mechanism keeps the transmitted power at a certain range in order to minimize the

interference and maximize the capacity of the networks. Therefore, the goal is to

design a code operating in moderate BLER or medium range SNR.

For pragmatic design of the full rate codes, we concentrate on the SNR range

ρ ≤ 1
λmin

. The advantage of full diversity appears at ρ� 1
λmin

which means it is only

achievable at very high SNR, correspondingly very high BER (� 10−6). Therefore the

full diversity advantage is not an appropriate practical measure. The design criterion

should help to get better performance at medium range SNR.

Let’s define the Average Union Bound as

PU
4
=

1

nc

∑

i,j,i6=j

Pe(ci, cj), (5.8)

where nc is the total number of codewords and Pe(ci, cj) is the PEP expression [69],

Pe(c, e) =
1

π

∫ π/2

0

r
∏

i=1

(1 +
λiρ

4sin2θ
)−Lrdθ, (5.9)

where r = min(Lt, Lr) and λi are the singular values of A(c, e).

AUB gives a better estimation of the codeword error rate of full-rate codes at

medium SNR. This is due to the fact that AUB considers the multiplicity of the worst-
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Figure 5.1. 2D examples of two different codeword scenarios

Table 5.1. LD codes designed with different criteria at SNR= 20dB, QPSK symbols
with R = 4, and T = 2

Max PEP Avg. PEP AUB (20dB) AUB (30dB)
XTAST 1.84E-05 2.40E-04 4.01E-04 1.53E-07
XAUB 1.78E-05 7.60E-04 3.62E-04 1.06E-07
XPEP 1.51E-05 6.36E-04 4.00E-04 2.17E-07
XAPEP 1.77E-05 1.40E-04 3.69E-04 2.70E-07

case scenarios. AUB criterion is a sum over all PEPs, so it also considers the effect

of having many codewords close to worst case scenario. We can clarify this through

an example. Figure 5.1 illustrates two different scenarios. Scenario 1 is better than

Scenario 2 in terms of minimum distance however, at medium range SNR, Scenario

2 performs better.

We investigate different design criteria to design an LD code for two transmit

and two receives antennas. Table 5.1 shows the the result for various code design

criteria such as average union band (XAUB), minimum PEP (XPEP ), and average

PEP [15] (XAPEP ). The dispersion matrix of these codes have been reported in

(5.10).

Figure 5.4 shows codeword error rate (BLER) of these codes. The target
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Figure 5.3. λmax/λmin of Ai for T2,2,2.
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XAPEP =









0.4319 + 0.6660i −0.5615 + 0.2337i 0 0
0 0 0.3007 + 0.7385i 0.5454− 0.2582i
0 0 0.5774− 0.1755i 0.2739 + 0.7489i

−0.1716 + 0.5835i 0.7088 + 0.3573i 0 0









XPEP =









0.1481 + 0.2235i −0.0112 + 0.1655i −0.2757 + 0.3675i 0.3925− 0.1700i
0.2787 + 0.3170i 0.4658− 0.0743i −0.1458− 0.1331i −0.2498 + 0.0681i
−0.2222− 0.3588i 0.4199 + 0.2149i −0.0392 + 0.1935i 0.0928 + 0.2417i
0.1707 + 0.2067i −0.0406 + 0.1608i 0.4394 + 0.1339i 0.0949 + 0.4171i









XAUB =









−0.2578− 0.0023i 0.0163 + 0.1702i 0.3075 + 0.3711i 0.1654 + 0.2916i
0.1920 + 0.3830i 0.2202− 0.4151i 0.1329 + 0.0101i −0.2586 + 0.2659i
0.3092− 0.2966i 0.4152 + 0.2200i 0.1161− 0.0655i 0.1305 + 0.3472i
0.2437 + 0.0841i 0.0820 + 0.1500i −0.1214 + 0.4664i 0.2683− 0.2010i









(5.10)

BLER for the design is at about 10−4 for SNR = 20dB. As shown, AUB gives a

better approximation of the BLER specially for medium range SNR. As seen, XAUB

shows better performance.

5.3 RTST Code Design Example and Simulation Results

We perform this design example by modifying a known TAST code, namely, T2,2,2 [59]

for a 2× 2 system, 8PSK, with rate R = 6bits/sec/Hz. The rotation matrix in T2,2,2

is

M = m(θ) = (1/2)

(

1 ejθ

1 −ejθ

)

, (5.11)

where at θ = π/4 M is unitary. Therefore the resulting X is unitary and the T2,2,2 is

capacity optimal.

We employ the same structure of (5.11) but use two different rotation matrices
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Figure 5.4. TAST and LD codes for two transmit and receive antennas, two layers,
R=6 bit/transmission, and QPSK modulation.

Mi = m(θi), i = 1, 2, one for each thread. Following the design algorithm in Sec-

tion 5.2.1, the best X is obtained via exhaustive search over θi and φi to minimize

AUB. The optimization is done at SNR= 20dB and the resulting parameters are

M1 = m(π/4),M2 = m(0.06π), φ1 = 1 and φ2 = ej0.26π.

Figure 5.5 shows the codeword error rate of the RTST code and compares it

with the TAST code. As shown, there is 1dB and 1.6dB coding gain at codeword error

rate 10−5 and 10−6 respectively which is achieved over the TAST code. It should be

mentioned that both of these codes have the same layered structure, so the decoding

complexity of both codes is the same. As illustrated in the figure, the AUB is a tight

upper bound.

Similarly, for the design of RTST code for three transmit and three receive

antennas, we use the rotation matrix of T3,3,3 [59]. The rotation matrix in T3,3,3 is
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Figure 5.5. TAST codes and new code, for two transmit and two receive antennas,
R=6 bit/channel use, with 8PSK modulation.

M = m(θ, β) = (1/3)





1 −ejθ e2jθ

1 −ejβejθ −(1 + ejβ)e2jθ

1 −e2jβejθ −(1 + e2jβ)e2jθ



 , (5.12)

where for TAST θ = 2π/9 and β = 2pi/3. The rotation matrix M is unitary therefore

resulting X is also unitary, so the T3,3,3 is capacity optimal.

We employ three different rotation matrices Mi = m(θi, βi) for i = 1, 2, 3 in

the code design algorithm explained in Section 5.2.1. Then the best X is obtained by

minimizing AUB over θi,βi, and φi. The optimization is done at SNR= 20dB. The

resulting parameters are M1 = m(0.222π, 0.667π),M2 = m(0.135π, 0.900π), M3 =

m(1.10π, 0.800π), φ1 = 1, φ2 = ej0.553π and φ3 = ej1.107π. The linear transformation

matrix of the RTST code is shown in (5.13)

Figure 5.6 illustrate the capacity of the new RTST code. Obviously, the loss in

capacity of the new code compared to the optimal-capacity TAST code is negligible.
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Figure 5.6. TAST codes and the new code, for three transmit and receive antennas,
R=6 bit/channel use, with QPSK modulation.

XRTST =











0.3333 −0.2553 0.0579 0 0 0 0 0 0
0 0 0 0.3321 −0.2357 0.0291 0 0 0
0 0 0 0 0 0 0.3283 −0.2143 0.0000
0 0 0 0 0 0 0.3283 0.3283 0.2887

0.3333 0.3132 0.2553 0 0 0 0 0 0
0 0 0 0.3321 0.3220 0.2731 0 0 0
0 0 0 0.3321 −0.0863 −0.3021 0 0 0
0 0 0 0 0 0 0.3283 −0.1140 −0.2887

0.3333 −0.0579 −0.3132 0 0 0 0 0 0











+ i











0 −0.2143 0.3283 0 0 0 0 0 0
0 0 0 0.0291 −0.2357 0.3321 0 0 0
0 0 0 0 0 0 0.0579 −0.2553 0.3333
0 0 0 0 0 0 0.0579 −0.0579 −0.1667
0 −0.1140 −0.2143 0 0 0 0 0 0
0 0 0 0.0291 −0.0863 −0.1912 0 0 0
0 0 0 0.0291 0.3220 −0.1409 0 0 0
0 0 0 0 0 0 0.0579 0.3132 −0.1667
0 0.3283 −0.1140 0 0 0 0 0 0











(5.13)
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Figure 5.7. TAST codes and the Modified TAST, for three transmit and receive
antennas, R=6 bit/transmission, and QPSK modulation.

Figure 5.7 shows the codeword error rate of the RTST code and compares it

with the TAST code. As shown, there is 0.5dB gain at codeword error rate of 10−6

which is achieved over the TAST code.

5.4 conclusion

In this chapter, we introduced a new layered space-time code by modifying Threaded

Algebraic Space-Time (TAST) codes. The new code has the layered structure of

the TAST code without having its algebraic constraint. We also propose a new

design criterion for medium range SNR, Average Union Bound (AUB). The new

codes designed with AUB criterion show a significant coding gain over TAST codes

without any added complexity.



CHAPTER 6

EFFICIENT SPACE-TIME BLOCK CODES DERIVED FROM
QUASI-ORTHOGONAL STRUCTURES

In this chapter, We design a new class of codes with excellent performance which are

derived from a quasi-orthogonal structure (but are not quasi-orthogonal codes).

Quasi-orthogonal space-time codes (QOSTC) [36] were designed with an eye

towards low-SNR performance while having simple decoding complexity. However,

QOSTC could not achieve full diversity. A pairwise constellation rotation was pro-

posed [39, 40] to overcome this problem. It is possible to apply the constellation

rotation to either of the two parts of the quasi-orthogonal code, so two different fam-

ilies of quasi-orthogonal codes can be obtained for the case of, e.g., four transmit

antennas.

We design a new code by combining these modified quasi-orthogonal codes

and then pruning codewords from the combined code to achieve superior coding

gain. To be specific, we choose our codewords from among a superset consisting

of the union of two modified quasi-orthogonal codes. The pruning is achieved by a

set partitioning algorithm applied to each of the constituent quasi-orthogonal codes.

This set partitioning is inspired by the techniques first proposed by [38] and further

enhanced by the authors in [70]. The former method is specifically for QOSTC and

the second one is the general space-time code set partitioning method.

As a result of the manner in which we construct our code, the overall design is

no longer quasi-orthogonal and therefore it does not directly inherit the easy decoding

enjoyed by quasi-orthogonal codes. Therefore, we propose an efficient ML decoding

algorithm whose average complexity is close to twice the complexity of the quasi-

70
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orthogonal decoder of similar rate. The performance of the new code, in terms of

error rate, is superior to any of the block space-time codes we tested, when compared

at the same rate and SNR. This includes enhanced quasi-orthogonal codes and the

enhanced LD codes of [16].

We use the following notation throughout this chapter. Uppercase bold letters

denote matrices, for example codewords are denoted with X,Y,Z and unitary trans-

form with U which we concisely (but not entirely accurately) refer to as “rotations”

in the sequel. Script letters denote sets of codewords, e.g. S, T . Subscripts are used

to denote set partitioning. For convenience we define the multiplication of a set and

a matrix, for example SU, as a new set whose members are the members of S each

multiplied by U.

The function D(·, ·) computes the distance between two sets of codewords.

With an abuse of notation we may see a codeword as one of the arguments of this

function, which should be interpreted as the set consisting of that single codeword.

6.0.1 System Model

The system model consists of a MIMO system with Lt transmit and Lr receive an-

tennas. A flat fading channel is assumed, where the channel gains are constant

during each fade interval and independent in successive intervals. The received sig-

nal, denoted by a T × Lr matrix R, after matched filtering has the following form:

R =
√

ρ/Lt XH + N. T represents the number of time slots for transmitting one

block of symbols. ρ is the average received signal-to-noise ratio per antenna. The

matrix S is a QOSTB codeword of size T × Lt. The channel matrix H = {hij} has

the size of Lt × Lr where hij is the fading channel coefficient between jth received

antenna and ith transmit antenna. The AWGN is shown by the matrix N. The re-

ceiver employs maximum likelihood (ML) decoder with perfect knowledge of channel
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state information.

6.0.2 Modified Quasi-Orthogonal Space-Time Codes

We focus on the case of Lt = 4 where each codeword transmits four symbols at four

timing slots. We start with the modified QOSTC [39], which achieves full diversity.

The modified code applies a constellation rotation either on the first pair or the second

pair of symbols. The code structure is

X(φ1, φ2) =









ejφ1x1 ejφ1x2 ejφ2x3 ejφ2x4

−e−jφ1x∗
2 e−jφ1x∗

1 −e−jφ2x∗
4 e−jφ2x∗

3

ejφ2x3 ejφ2x4 ejφ1x1 ejφ1x2

−e−jφ2x∗
4 e−jφ2x∗

3 −e−jφ1x∗
2 e−jφ1x∗

1









, (6.1)

where x1, x2, x3, and x4 are symbols from the constellation considered and φ1 and

φ2 are the rotation angles. For each pair (φ1, φ2), matrices X(φ1, φ2) constitute a

complete quasi-orthogonal codebook. Thus by changing (φ1, φ2) we can generate a

family of codebooks, to be used in our design process below.

6.0.3 Distance Criterion

We use the Coding Gain Distance (CGD) as the design criterion, which we introduce

below in a manner similar to [42]. For two codewords X and Y construct A
4
=

(X − Y)(X − Y)H , and then define CGD = det(A). By extension, the minimum

CGD of a codebook S is defined as the minimum of CGD of all non-identical codeword

pairs in S × S. Similarly the distance between two codebooks S and T is D(S, T ) =

min det(A(X,Y)).

6.1 Code Design

To design the new codebook, we start from a union of quasi-orthogonal codebooks,

which obviously has more code vectors than we need for our desired rate. Then we
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use pruning to reduce the number of codewords in a way that the minimum distance

of the codebook is increased, and thus the performance of the code is improved.

In particular, we start with the union of two quasi-orthogonal codebooks T ∪S,

where S = {X(φ1, 0)} and T = {X(0, φ2)}. Since S∪T has twice as many codewords,

the union is pruned down by one-half to arrive at the new codebook C, which has the

original rate.

Clearly the performance of the new codebook C is bounded below by the

performance of quasi-orthogonal codes S and T , because each of them is one possible

pruning of S ∪ T . Therefore, this process can only improve the code. The empirical

fact is that it indeed does so in a significant way, and the resulting code is better, for

example in the case of BPSK it is better by 1.3 dB.

Next, we explore the pruning of the superset S∪T . The most general (globally

optimal) pruning of this superset would be very difficult. Instead, we present one

systematic way of doing so. We note that the new codebook can be written as

C = S∗ ∪ T ∗, where S∗ and T ∗ are the surviving members of S and T after pruning.

It is evident that if the code C is to be a good code, then constituent codes S∗ and

T ∗ must also have good distance properties.

The above observation suggests a technique for designing the new code. We

first partition the codebooks S and T such that each partition has good distance

properties. Then we combine partitions in a judicious way to construct C.

In order to clarify the method, let’s first focus on the code design example for

BPSK symbols where φ1 = φ2 = π/2 is the optimum value. The set partitioning of

the code S into two subcodes gives

S1 = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} (6.2)

S2 = {0001, 0010, 0100, 0111, 1000, 1011, 1101, 1110}, (6.3)
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Figure 6.1. New code design from quasi-orthogonal using BPSK modulation

where each codeword has been represented by its four binary symbols (x1, x2, x3, x4).

In the same manner, the code T can be set partitioned into T1 and T2, which are,

respectively, similar to S1 and S2 with the second pairs in each codeword rotated by

π/2.

Table 6.1 shows the inter subcode distances. The minimum CGD of the new

code S or T is

D(S1,S2) = D(T1, T2) = 256.

Looking at the inter-distances of subcodes, we can pick S1 from S and T2 from T to

form a new code as shown in Figure 6.1. The minimum CGD of the code has risen

up to

D(S1, T2) = 2304

which is much greater than the distance of the code S or T . This guarantees better

performance.
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Table 6.1. CGD of the set partitions for BPSK constellation
D(., .) S1 S2 T1 T2
S1 0 256 0 2304
S2 256 0 2304 0
T1 0 2304 0 256
T2 2304 0 256 0

6.1.1 Augmented Code Design

Unfortunately we found that for higher rate codes, the pick-and-choose method alone

does not always improve the distance properties of the original (constituent) code-

books. In other words, the quasi-orthogonal families mentioned above do not always

provide a sufficiently rich set of codewords to choose from. In order to overcome this

limitation, we allow the rotation of the constituent codebooks. To preserve quasi-

orthogonality of the constituent codebooks, we use unitary operations, that is

T ← TU, (6.4)

where U is a unitary rotation.

More specifically, we propose to use diagonal unitary rotations, for the fol-

lowing reason. One of the properties of the QOSTC is that the transmitted power

from each antenna at each transmission time is one. Using diagonal unitary rotation

matrix preserves this property. In other words, peak-to-average transmitted power at

each time instance remains one. Thus,

U = diag(ejθ1 , ejθ2 , ejθ3 , ejθ4), (6.5)

where diag(·) denotes a diagonal matrix.

A unitary rotation does not change the distance property of a code. Therefore,

set partitioning of the code still remains the same, but each subcode is rotated. Now
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Table 6.2. CGD of the set partitions for QPSK constellation
D(., .) S1 S2 T1 T2
T1 0 2.33 0 16
T2 2.33 0 16 0
T1U 0 43.94 0 16
T2U 43.94 0 16 0

we can build the new code. We can pick one subcode from S and one rotated subcode

from T . The goal is to design a good unitary matrix that increases the minimum

distance of the code, in other words

max
U

D(S1, T2U).

U could be obtained by exhaustive search. Table 6.2 shows the cross distances

for QPSK constellation and U =diag(ej0.9π, ej1.1π, ej1.6π, ej0.4π). As shown, U helps

to increase the minimum distance from 16 to 43.94.

6.2 Decoding Algorithm

One of the advantages of quasi-orthogonal codes is simple decoding. In particular,

each quasi-orthogonal codeword consists of two types of sub-matrices, each of them

possibly an orthogonal or quasi-orthogonal codeword of lower dimension. The stan-

dard decoding process for quasi-orthogonal codes allows the distance metric to be

written as a sum of metrics for these two sections, thus simplifying the ML detec-

tion. We refer to this construction of the metric, and the corresponding detection

algorithm, as quasi-orthogonal decoding [42].

For our new code, we are interested to maintain, as much as possible, the simple

decoding afforded by the quasi-orthogonal structure, while achieving the performance

of ML decoding. In general the new codebook C does not by itself present a direct
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way of simple ML decoding. However, our knowledge that the codewords of C come

from either S or T , can be used to construct an efficient decoding algorithm.

The decoding algorithm is motivated by the conditioning ideas that have been

used, e.g., in sphere decoding. Consider that each received codeword either belongs to

S or to T . Of course the decoder does not know a-priori which is the case. Therefore,

the decoder performs two quasi-orthogonal detections, according to codebooks S and

T , resulting in two codeword candidates X̂s and X̂t respectively. We then check to

see if either or both of these two candidates are actually members of C. If exactly

one is a valid codeword, the decoding is successful. If both are valid codewords, then

we choose the one that has the better ML metric. If neither is a valid codeword, we

have no choice but to do (the equivalent of) an exhaustive search on C. However,

thankfully the probability of this last event is very small for reasonable codeword

error rates, and thus the average complexity of decoding is minimally impacted by

the last case. The flow of decoding is summarized in Figure 6.2.

1. Do quasi-orthogonal decoding using codebook S, call the result X̂s.

2. Do quasi-orthogonal decoding using codebook T , call the result X̂t.

3. If X̂s or X̂t (but not both) belongs to C, it is declared the decoded codeword.

4. If both belong to C, then the one with the better ML metric is declared the decoded
codeword.

5. If neither X̂s nor X̂t belongs to the new codebook C, do exhaustive search.

Figure 6.2. Decoding algorithm

The computational complexity of this decoder depends on how often quasi-

orthogonal decoding produces a valid codeword. Whenever that happens, no further

action is required and thus a codeword has been cheaply detected. Whenever it

fails, the decoder can either declare failure (similar to the concept of a bounded
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distance decoder) or if we wish to build a complete decoder, we must search more

extensively among codeword candidates. Thankfully the probability of this event is

low unless codeword error probability is very high, in which case one might argue

that the decoder is not working and the question of complexity is moot. For example,

simulations show that for a 4×1 system employing a BPSK constellation, at codeword

error rates Pe = 10−2 and Pe = 10−3 the probability of being forced into exhaustive

search are only Pex = 0.0185 and Pex = 0.0021 respectively.

We now proceed to calculate the metric for the pairwise decoding. Each code-

word of the new code belongs to one of the quasi orthogonal codebooks. The decoding

metric after simplification is

f13(x1, x3, φ1, φ2,U) + f24(x2, x4, φ1, φ2,U), (6.6)

where,

f13(x1, x3, φ1, φ2) =(
4
∑

i=1

|hi|2)(|x1e
jφ1|2 + |x3e

jφ2|2)

− 2Re
{

x1e
jφ1(r∗1h1e

jθ1 + r2h
∗
2e

−jθ2 + r∗3h3e
jθ3 + r4h

∗
4e

−jθ4)

+ x3e
jφ2(r∗1h3e

jθ3 + r2h
∗
4e

−jθ4 + r∗3h1e
jθ1 + r4h

∗
2e

−jθ2)
}

+ 4Re{x1x
∗
3e

j(φ1−φ2)}Re{h1e
jθ1h∗

3e
−jθ3 + h2e

jθ2h∗
4e

−jθ4}

,

(6.7)

and

f24(x2, x4, φ1, φ2) =(
4
∑

i=1

|hi|2)(|x2e
jφ1|2 + |x2e

jφ2|2)

− 2Re{x2e
jφ1(r∗1h2e

jθ2 − r2h
∗
1e

−jθ1 + r∗3h4e
jθ4 − r4h

∗
3e

−jθ3)

+ x4e
jφ2(r∗1h4e

jθ4 − r2h
∗
3e

−jθ3 + r∗3h2e
jθ2 − r4h

∗
1e

−jθ1)}

+ 4Re{x2x
∗
4e

j(φ1−φ2)}Re{h1e
jθ1h∗

3e
−jθ3 + h2e

jθ2h∗
4e

−jθ4 , }

(6.8)

and Re{.} is the real part of the argument. For the BPSK code where θi = 0 for all

i, the decoding is very simpler and the calculations is significantly decreased.
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6.3 Simulations

We assume a slow fading channel and one receive antenna. Figure 6.3 shows the

codeword error rate for the rate-one code, which uses BPSK modulation. At codeword

error rate of 10−4, gains of 1.3 dB and 1.7 dB have been obtained over modified quasi-

orthogonal space time code [39] and orthogonal space time code [34], respectively.

Figures 6.4 shows the bit error rate for the code which uses BPSK modulation.

In order to clarify the gain achieved by the new code at rate 1 bit/s/Hz,

using BPSK modulation, we compare the code performance with that of super quasi-

orthogonal space-time code [38] in Figure 6.5. However, the complexity of the latter

one is much higher than our block code, we just want to highlight the significant

coding gain that we can get without using any trellis structure.

Figure 6.6 depicts the performance of the code for QPSK. The parameters of

the new codes are φ1 = φ2 = π/4 with U =diag(ej0.9π, ej1.1π, ej1.6π, ej0.4π). The code

has 0.5 and 1.1 dB gain respectively over modified QOSTC [39] and LD codes of [16].

6.4 Conclusion

We propose a new space-time code whose codewords are derived from two different

quasi-orthogonal space-time codes (QOSTC). Employing constellation rotations on

different pairs of QOSTC gives these two sets. We select the codewords from these

two sets through set partitioning in order to increase the minimum codeword pairwise

distance. The resulting codes exhibit very good performance and significant coding

gain over existing codes.
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CHAPTER 7

SINGLE-BLOCK CODED MODULATION FOR MIMO SYSTEMS

We propose a new class of space-time coding that provides coding gain without any

outer code or trellis. The new code derives its codewords from block space-time

codes such as orthogonal [34] and quasi orthogonal [36, 39, 40] space-time codes. In

principle, this method can also be applied to any other class of block space-time codes.

Although a space-time block code may provide full diversity and a simple

decoding scheme, they usually do not provide much (if any) coding gain. This is in

contrast to space-time trellis codes [14], which provide full diversity as well as coding

gain but at a cost of higher decoding complexity. Thus there is a natural motivation

to combine better coding gain with the simple decoding offered by STBC. One way

to do so is to build trellises over STBC, and in fact Jafarkhani and Seshadri [42]

and Siwamogsatham and Fitz [44] independently proposed a full rate code which is

a concatenation of an outer trellis code with an inner space-time block code. These

codes were named super-orthogonal codes by [42]. Naturally the outer trellis imposes

some complexity on the decoder.

A natural question at this point would be: why not add coding gain to the

block code itself? One would expect that the methodology of Ungerböck, namely

expanding the constellation size, followed by a careful choice of codewords from the

enlarged constellation, should be applicable to block signaling for MIMO system.

Figure 7.1 shows a figurative idea of how expansion and selection could help to improve

the code performance.

For larger number of antennas and more complicated constellations, it is diffi-

82
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Original Codewords Expanded Codebook Selected Codewords

Figure 7.1. Expansion and selection idea

cult to systematically perform set partitioning, which is equivalent to selecting code-

words out of expanded constellations, for two reasons: First, by increasing the number

of antennas and constellation dimension, the number of choices increases. For exam-

ple, constellation expansion by a factor of two via QAM in an Lt antenna system

results in a factor of 22Lt expansion in total number of codewords. Second, this ex-

pansion happens in a higher dimensional space, and in general it is not clear how to

systematically approximate centers of packed spheres from the elements of a given

higher-rate lattice in high-dimensional spaces.

However, consider that set partitioning is nothing but a systematic method for

pruning a larger codebook. Even without a systematic set partitioning, one should

still be able to do the pruning. This basic idea is the cornerstone of the developments

in this chapter.

In this chapter, we present a coded modulation technique for space time block

codes. In order to design a code, we employ the existing space-time block codes, e.g.,

orthogonal and quasi-orthogonal block space-time codes (OBSTC and QOBSTC).

Due to decoding simplicity of orthogonal codes, in this chapter we focus on this type

of codes, however the proposed method is general and can be applied to any MIMO

block code, including, e.g., LD and TAST codes. We employ a coding technique

via selection of certain space-time constellation to increase the minimum distance
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between the codewords. Because our codes do not involve a trellis, their decoding

complexity is smaller than either trellis space-time codes or super-orthogonal codes.

7.1 System Model

The system model consists of a MIMO system with Lt transmit and Lr receive anten-

nas. A flat fading channel is assumed, where the channel gains are constant during

each fade interval and independent in successive intervals. The received signal, de-

noted by a T × Lr matrix R, after matched filtering has the following form:

R =

√

ρ

Lt

SH + N . (7.1)

T represents the number of time slots for transmitting one block of symbols. ρ is the

average received signal-to-noise ratio per antenna. The matrix S is a block space-time

codeword of size T ×Lt. The channel matrix H = {hij} has the size of Lt×Lr where

hij is the fading channel coefficient between jth received antenna and ith transmit

antenna. The AWGN is shown by the matrix N. The receiver employs maximum

likelihood (ML) decoder with perfect knowledge of channel state information.

We use the so-called average union bound (AUB) as the design criterion which

ensures good performance [71]. We introduce AUB below in a manner similar to [69].

PU =
1

nc

∑

i,j,i6=j

Pe(ci, cj) (7.2)

where ci and cj are codewords from code S and nc is the total number of codewords

and Pe(ci, cj) is the PEP expression,

Pe(ci, cj)i6=j =
1

π

∫ π/2

0

r
∏

i=1

(1 +
λiρ

4sin2θ
)−Lrdθ (7.3)

where r = min(Lt, Lr) and λi are the singular values of

A = (ci − cj)(ci − cj)
H .
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7.2 Code Design

The new code is derived from expurgation of the expanded original code, i.e. our

code utilizes the codewords of the expanded orthogonal space-time code. The expan-

sion is made possible through the use of higher modulation constellation size in the

orthogonal or quasi-orthogonal structure. The resulting expanded code obviously has

more codewords than we need for our desired rate. Then we use pruning to reduce

the number of codewords in a way that the minimum distance of the codebook is

increased, and thus the performance of the code is improved.

We start with an example of Alamouti code [33] using 8PSK constellation. In

this case, we have Lt = 2, and the code is

X2×2 =

(

x1 x2

−x∗
2 x∗

1

)

(7.4)

where x1 and x2 are taken from 8PSK constellation. The code consists of 64 code-

words. We can expand the code by switching to 16QAM constellation, which increases

the number of codewords to 256. Then the expanded code can be pruned down by a

factor of four to arrive at a new codebook which has the original rate. The new code

has shown about 0.9dB gain when compared with the original Alamouti code using

8PSK.

The pruning method plays an important role in achieving this gain. We explain

the pruning through two steps. First consider a basic greedy algorithm. We will use

the following notation in the sequel: The basic (original) codebook will be denoted

C, the expanded codebook C ′, and the pruned (optimal) codebook C∗.

The basic algorithm starts by picking a codeword at random from the expanded

orthogonal codebook. We pick the codewords one after another according to distance,

in other words, at each step, we pick the next codeword to be as far as possible from
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3rd 
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Figure 7.2. Incremental codeword selection algorithm. Paths with bad distance prop-
erties are terminated.

all previously picked codewords. We continue until the required number of codewords

have been selected from among the expanded codebook.

The basic (greedy) algorithm, however, has a weakness shared by many such

optimization algorithms: it has a tendency of falling into a local minimum. Therefore,

we modify it slightly as follows.

At each step of the algorithm we may have several good choices for codewords

whose minimum distances are not that different. Picking the very best one might

be shortsighted because it may block future options. Therefore, instead of only one,

we consider several codewords as candidates in each step. This will lead to a tree-

based algorithm. Naturally, if we allow the tree to expand indefinitely, the design

complexity will run out of hand. Therefore, at each step, we delete some of the least

attractive paths in the design tree. Without further embellishment, we mention that

this method is similar to discrete optimization methods utilized in some decoding
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algorithms, however, we omit a complete description of lineage of such algorithms in

the interest of brevity.

Figure 7.2 shows how the code selection process works for the first four code-

words in a hypothetical example. The first codeword is selected randomly. For the

second codeword, we keep a few of the best choices. For each of the possibilities

that are alive, a third codeword is sought, and so on. At each step, the paths that

do not yield attractive distance properties (between so-far selected codewords) are

eliminated. The others are kept alive to allow choices for the future. Experience has

shown that a fully greedy algorithm that keeps only the best codeword at each step,

is too susceptible to local optima.

The performance of the algorithm depends also on a good choice of initial

point. Although it is possible to start from (several) random point(s), a better way

is to do the set partitioning on the original code [42] and pick a set partition as an

initial set. In this way, we are sure that the initial codeword candidates already have

a good distance criterion.

The algorithm consists of simple steps that can be expressed as follows.

1. Select a codeword or a set of codewords as initial set S1,

2. Make new sets by augmenting the sets Si via adding only one codeword from

the expanded code C′,

3. Check the distance of each new normalized sets and only keep the sets that give

minimum PEP,

4. If number of codewords in Si is not sufficient then go to Step 2,

5. All remaining Si are potential new codes.
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In cases that the expansion is done through non-unit power constellations such

as 16QAM, power normalization should be performed. Although the average power

of the expanded code is unity at each transmission time, but each codeword may have

more or less than unit power at each transmission time. Therefore, we may compare

different sets that have different power level. In order to avoid such a problem, power

normalization can be done for each set at each step of the algorithm.

7.3 Decoding

The key issue at the decoder is to ensure that the simplicity of the decoding is to

some extent maintained. In other words, to ensure that we can still make use of

the structure of the codebook even though it is no longer quite as structured as the

original codebook (due to expurgations). In particular, each orthogonal codeword

consists of elements of a given expanded constellation. The standard decoding process

for orthogonal codes allows the distance metric to be written as a sum of element-

wise metrics, thus simplifying the ML detection. We refer to this construction of the

metric, and the corresponding detection algorithm, as orthogonal decoding [34].

For our new code, we are interested to maintain, as much as possible, the simple

decoding afforded by the orthogonal structure, while achieving the performance of ML

decoding. In general the new codebook C∗ does not by itself present a direct way of

simple ML decoding. However, our knowledge that the codewords of C∗ are also

members of the expanded orthogonal code C ′, can be used to construct an efficient

decoding algorithm.

The decoding algorithm is motivated by the conditioning ideas that have been

used, e.g., in sphere decoding [56]. Consider that each received codeword belongs

to the expanded code. The decoder performs orthogonal decoding according to the

expanded codebook, arriving at a candidate solution. We then check to see if this can-



89

didate is actually a member of the expurgated code. If it is, the decoding is successful.

If it is not a valid codeword, we have no choice but to do a wider search. However,

thankfully the probability of this last event is very small for reasonable codeword

error rates, and thus the average complexity of decoding is minimally impacted by

the last case. The flow of decoding is summarized below.

1. Do orthogonal (quasi-orthogonal) decoding on the expanded codebook C ′, call

the result ĉ.

2. If ĉ ∈ C∗, it is declared the decoded codeword.

3. If ĉ /∈ C∗, look for the other closest points till the closest valid point is found.

The complexity of the wider search, in the unlikely events when it is required,

may be managed by using a list decoding method. The list decoder successively tests

for the second, or third, . . . closest codeword to the received vector, from the expanded

codebook, until a valid codeword in the pruned codebook is found as illustrated in

Figure 7.3. Due to the orthogonal structure of the expanded codebook, each step of

the list decoding is easy.

For the case of orthogonal codes, we propose a simple search method to find

the closest valid codeword to the received point. In this case, the metric for each

symbol is calculated separately. So the detection for every symbol is reduced to a

2-dimensional case.

As an example, consider the general M-QAM constellation. Figure 7.4 shows

a simple scenario of a received point. Similar to the sphere decoding method, the

closest neighbors to the received point has been labeled accordingly. Now we can

pick the first k closest neighbors of each symbols of the codeword. Then the metric
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can be calculated for all possible combinations of the selected neighbors (= kLt) and

the closet valid point is the ML decoded codeword.

The relative distance to nearby constellation points naturally depends on the

received signal. To arrive at an ordered list of distances, we start from the nearest

constellation point, which was obtained in the first step of decoding. Then, depend-

ing on the location of received vector with respect to that nearest point, we can

systematically list other nearby constellation points in increasing order of distance.

Inspection shows that 8 such lists exist. We divide the area around an MQAM point

into 8 regions, and depending where the receive vector falls with respect to its closest

constellation point, one of these zones is chosen, and the respective list is used. The

idea is that, because these lists have to be calculated and stored only once, the list

itself does not impact the decoding complexity, since its execution is equivalent to a

table-lookup.

Figure 7.5 illustrates the zone assignment for a given constellation point which

is labeled as ij. The table in Figure 7.5 gives the first nine closest neighbors for each

zone. The neighbors are represented as sij where i represents the column and j

represents the row of the given codeword in the QAM constellation structure. It

should be noted that the zones for the border points is less than eight. However, the

ordering in the table is still valid but the neighbors with i or j negative or bigger

than the constellation size should be omitted.

We may also design new codes using quasi-orthogonal codes. Each quasi-

orthogonal codeword consists of two types of sub-matrices, each of them possibly an

orthogonal or quasi-orthogonal codeword of lower dimension. The standard decoding

process for quasi-orthogonal codes allows the distance metric to be written as a sum

of metrics for these two sections, thus simplifying the ML detection. We refer to

this construction of the metric, and the corresponding detection algorithm, as quasi-
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Figure 7.3. Decoder checks all candidate (expanded) codevectors until a valid code-
vector is found.
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Figure 7.4. Symbol-wise detection using M-QAM constellation. Labeling shows the
order of the closet constellation points to the received point
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a

b

c

d e

f

g

h

Zones around each constellation point

i i+1i-1

j

j+1

j-1

Zone n1 n2 n3 n4 n5 n6 , n7 n8 , n9

a sij s(i+1)j si(j−1) s(i+1)(j−1) si(j+1) s(i−1)j , s(i+1)(j+1) s(i−1)(j−1) , s(i+2)j

b sij si(j−1) s(i+1)j s(i+1)(j−1) si(j−1) si(j+1) , s(i−1)(j−1) s(i+1)(j+1) , si(j−2)

c sij si(j−1) s(i−1)j s(i−1)(j−1) s(i+1)j si(j+1) , s(i+1)(j−1) s(i−1)(j+1) , si(j−2)

d sij s(i−1)j si(j−1) s(i−1)(j−1) si(j+1) si(j+1) , s(i−1)(j+1) s(i+1)(j−1) , s(i−2)j

e sij s(i−1)j si(j+1) s(i−1)(j+1) si(j−1) s(i+1)j , s(i−1)(j−1) s(i+1)(j+1) , s(i−2)j

f sij si(j+1) s(i−1)j s(i−1)(j+1) s(i+1)j si(j−1) , s(i+1)(j+1) s(i−1)(j−1) , si(j+2)

g sij si(j+1) s(i+1)j s(i+1)(j+1) s(i−1)j si(j−1) , s(i−1)(j+1) s(i+1)(j−1) , si(j+2)

h sij s(i+1)j si(j+1) s(i+1)(j+1) si(j−1) s(i−1)j , s(i+1)(j−1) s(i−1)(j+1) , s(i+2)j

Figure 7.5. Zone assignment for sij, i and j respectively represent the columns and
rows of M-QAM constellation and the table shows the neighbors list ordered distance-
wise for each zone
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orthogonal decoding [42]. The decoding algorithm is similar to the orthogonal codes

except the type of decoding.

For the case of quasi-orthogonal codes, we can employ the sphere decoding

method suggested by [72] incorporated in the same decoding algorithm. In cases

that the decoded codeword is a non-valid codeword, the list decoding method can be

applied. It is needed to properly detect the first n neighbors of the received point for

a given reliability. The radius of the sphere for each decoupled metric part can be

determined with regard to the noise power to make sure that we have selected the

required number of neighbors.

7.3.1 Decoding Complexity

We study the decoding complexity along two directions: the average complexity and

the instantaneous complexity. Average complexity, as the name implies, represents

the complexity of decoding averaged over all possible codewords and received vectors.

This gives a rough overall idea about the requirements of the algorithm, and as we

show below, our codes can be decoded in an average complexity that is polynomial

in constellation size. Instantaneous complexity represents the complexity for a given

codeword and receive noise. This is an important factor because any implementation

of the decoding has finite processing power, and real-time processing requires that

if the calculation is not finished within the allowed time, a decoding error must be

issued. The instantaneous complexity is of course a random quantity, and we wish to

understand its distribution.

Average Complexity

Define the expansion factor a as follows

a
4
=

pe

po

(7.5)
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where pe = |C ′|, po = |C∗|, and |.| gives the cardinality of the argument.

We assume that our code is designed well, therefore the distance between the

valid codewords are maximized in the space of all codewords, as shown in Figure 7.3.

As shown in the figure, to decode, we can start from the received value and do a list

decoding of successive codewords, moving away from the received value, until a valid

codeword is found. However, the figure also shows that we would visit at most a

codewords in this manner for a typical valid codeword. Each of these visits requires

an orthogonal decoding. Therefore, the overall complexity is represented by a times

a constant, which is independent of the constellation size.

Instantaneous Complexity

We now look at the list decoding mentioned above. We are now interested to see

what is the probability of visiting a certain number of expanded codewords before

arriving at a valid codeword, at which point the decoding terminates.

We note that in many practical scenarios, the closest codeword is a valid

codeword with high probability, therefore the search terminates after the first try. For

example, simulations show that for a 4× 1 system employing a BPSK constellation,

at codeword error rates 10−2 and 10−3 the probability of being forced into a wider

search (after the first try) is less than 0.01 and 0.001 respectively.

Now we calculate an approximation of the probability distribution of list de-

coding length. We know that on average a neighbors are visited, however, for a

given codeword the search depth could be higher or lower. This calculation is needed

because we need to design a receiver such that with high probability, it can accommo-

date the depth of list decoding that is necessary. The following result demonstrates

that the list decoding depth has at worst a geometric probability distribution.
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Theorem 4 Randomly label po codewords of a code of size pe as valid codewords and

label the rest as invalid. Then if we randomly pick n codewords, the probability of

having at least one valid codeword among them is lower bounded by

1− (1− a−1)n.

Proof: he probability of having no valid codeword in n randomly selected codewords

is

pnv(n) =

(

pe−po

n

)

(

pe

n

) ,

where
(

pe

n

)

gives the number of all possible combinations of choosing n from pe. Now

the probability of having at least one valid codeword is

pv(n) = 1− pnv(n)

= 1− (pe − po)(pe − po − 1) · · · (pe − po − n + 1)

pe(pe − 1) · · · (pe − n + 1)

> 1− (
pe − po

pe

)n

= 1− (1− a−1)n. (7.6)

�

Since n is in the exponent in (7.6), pv converges to one very fast, however, for

the code selected via our selection algorithm the convergence is even faster over n. The

code selection algorithm tries to separate the codewords as much as possible in the

space in a way that having codewords clustered together is highly unlikely. In other

words, from every a neighbor codewords of C ′

, on average one codeword is valid.

Therefore, many possible outcomes of random selection are ruled out. Figure 7.6

illustrate the lower bound and the exact pv for po = 64 codewords taken from pe = 256

codewords of the expanded code. For instance pv(16) = 0.9915 and pv(25) = 0.9995.

For the example code stated in Table 7.1 which is derived from an Alamouti code
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using 16-QAM, pv equals to 0.9828, 0.9998 and 1 respectively for n equals to 9, 16

and 25. This means the search for the first 25 neighbors, or in other words the first

5 neighbors for each symbol, gives the exact ML result.

7.4 Simulations

The simulation results are provided for two, three, and four transmit antennas in block

fading. In this chapter, we focus on examples of Lt = 2 and Lt = 3 for orthogonal

codes. However the generalization for higher number of transmit antennas is straight

forward.

Figure 7.7 shows the codeword error rate for the code rate R = 3 bits/Hz/Sec

and two receive antenna system. The original orthogonal code is an Alamouti code

using 8PSK modulation. The code consists of 64 codewords. Our code is a selection

of 64 codewords taken from Alamouti code using 16QAM constellation. A gain of

0.9dB has been obtained over the original Alamouti code.

For the case of Lt = 3 the code is

X4×3 =









x1 x2 x3

−x∗
2 x∗

1 0
−x∗

3 0 x∗
1

0 −x∗
3 x∗

2









(7.7)

where x1, x2, and x3 are symbols from the chosen constellation and “∗” denotes the

complex conjugate operator.

Figure 7.8 shows the codeword error rate for the code rate R = 3/4 bits/Hz/Sec.

The original orthogonal codes is a 4× 3 code of (7.7) using BPSK modulation. The

original code consists of 8 codewords. Our codes are a selection of 8 codewords taken

from the code using the same structure but with QPSK and 8PSK constellation. Our

codes derived from 8PSK shows a gain of 1dB and 1.3dB respectively for one- and

two receive antennas.
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Figure 7.6. Probability of having at least one valid codeword for n closest neighbors
where a = 1/4, po = 64 and pe = 256.
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Figure 7.7. Orthogonal space time codes and expurgated orthogonal code for Lt = 2,
T = 2 and rate 3 bits per channel use in slow fading.
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Figure 7.8. Orthogonal space time codes and expurgated orthogonal code for Lt = 3,
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3 4 5 6 7 8 9 10 11

10−4

10−3

10−2

10−1

SNR (dB)

Bl
oc

k 
Er

ro
r R

at
e

Mr=1, Modified Quasi, BPSK
Mr=1, New out of 4QAM
Mr=2, Modified Quasi, BPSK
Mr=2, New out of 4QAM

Figure 7.9. Modified quasi-orthogonal space time codes and expurgated codes for
Lt = 4, T = 4, and rate 1 bits per channel use in slow fading.
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Table 7.1. New code expressed with the indices of the codewords taken from expanded
code

Code Constellation Lr Indices

X2×2 16-QAM 2 1, 4, 7, 13, 16, 18, 26, 31, 37, 40, 43, 46, 49, 52, 55, 61,
64, 66, 72, 74, 85, 87, 92, 93, 97, 99, 105, 111, 120, 122,
133, 135, 140, 141, 143, 145, 148, 155, 166, 173, 176, 178,
181, 188, 190, 193, 196, 202, 208, 210, 215, 217, 220, 222,
227, 229, 232, 239, 241, 244, 247, 250, 253, 256

X4×3 4-QAM 1 1, 7, 9, 15, 35, 37, 43, 45

X4×3 8-PSK 1 1, 21, 107, 160, 293, 305, 335, 444

X4×3 4-QAM 2 1, 7, 9, 15, 35, 37, 43, 45

X4×3 8-PSK 2 1, 21, 107, 160, 293, 305, 335, 444

X4×4 4-QAM 1 1, 11, 35, 41, 88, 94, 118, 128, 131, 137, 161, 171, 214,
224, 248, 254

X4×4 4-QAM 2 1, 11, 35, 41, 88, 94, 118, 128, 131, 137, 161, 171, 214,
224, 248, 254
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When Lt = 4, each codeword transmits four symbols at four timing slots.

To design our codes, we start with the modified QOSTC [39], which achieves full

diversity. The modified code applies a constellation rotation either on the first pair

or the second pair of symbols. The code structure is

X4×4 =









ejφx1 ejφx2 x3 x4

e−jφx∗
2 e−jφx∗

1 x∗
4 x∗

3

x3 x4 ejφx1 ejφx2

x∗
4 x∗

3 e−jφx∗
2 e−jφx∗

1









(7.8)

where x1, x2, x3, and x4 are symbols from the constellation and φ is the rotation

angle applied on the first pair of symbols. For each φ, matrices X4×4 constitute a

complete quasi-orthogonal codebook. Thus by changing φ we can generate a family

of codebooks.

Figure 7.9 shows the codeword error rate for the code rate R = 1 bits/Hz/Sec.

The original modified quasi-orthogonal codes is a 4 × 4 code of (7.8) using BPSK

modulation. The original code consists of 16 codewords. Our code is a selection of 16

codewords taken from the code using the same structure but with QPSK constellation.

Our code driven from QPSK shows a gain of 1.5dB and 1.8dB respectively for one

and two received antennas at 10−3 block error rate. The optimum rotation for the

original code is set to φ = π/2.

Table 7.1 shows the designed codebook, via indices in the expanded codebook.

We use a simple labeling according to the following convention. Each M -ary constel-

lation is labeled naturally (not Gray) as shown in Figure 7.10. The codeword symbols

are x1, . . . , xN taking values on this constellation. The function label(·) returns the

label of a constellation symbol. The indices of the expanded codebook are calculated

via the following simple expression:

I =
N
∑

i=1

label(xi) ·MN−i + 1 (7.9)
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Figure 7.10. Constellation labeling

7.5 Conclusion

We propose a new space-time code design technique by pruning codewords from an

expanded set of orthogonal space-time codewords. We select the codewords from

the expanded set through an expurgation algorithm. The resulting codes exhibit

attractive coding gains, while maintaining very reasonable decoding complexity.

It is instructive to revisit the varieties of space-time codes designed for diversity

that also provide coding gain. The first type is trellis space-time codes [14], which allow

coding gain but whose complexity is generally higher than block space-time codes.

The second type is the super-orthogonal codes of [42, 44] which are constructed by

expanding block codebooks (e.g. Alamouti) and building trellises on them. The third

type consists of codes presented in this chapter, which incorporate coding gain into

the block code itself. Because they do not involve a trellis, their decoding complexity

is smaller than either [14] or [42, 44].
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