
479

Security Checking in Relational Database
Management Systems Augmented
with Inference Engines

M.B. Thuraisingham
Honeywell, Corporate Systems Development Division, Golden

Valley, Minnesota, USA

In this paper we will discuss the notion of multilevel

security and the difficulties encountered in designing an imple-

mentation scheme for a security policy for a multilevel secure

database management system (MLS/DBMS). We will then

describe how these difficulties may be overcome in augmenting

a database with an inference engine so that it functions like a

knowledge based system.

Keyword: Multilevel security, Multilevel secure database

management systems, Inference engine, Knowledge based sys-

tems, Security policy, Logic and databases

Dr. M.B. Thnraisingham is a Principal
Research Scientist at Honeywell Cor-
porate Systems Development Division
and an Adjunct Professor of Com-
puter Science at the University of
Minnesota. Her research interests in-
clude database security, distributed
processing and applications of logic
and recursion theory in computer sci-
ence. Previously she worked at Con-
trol Data designing and developing
computer networks. She has also
served as a faculty member in the

Department of Computer Science, New Mexico Institute of
Mining and Technology, and in the Department of Mathe-
matics, University of Minnesota. Dr. Thuraisingham received
the BSc. degree in Mathematics and Physics from the Univer-
sity of Sri-Lanka, M.Sc. degree in Mathematical Logic from
the University of Bristol, U.K., and Ph.D. degree in Recursion
Theory and Theory of Computation from the University of
Wales, U.K. in 1975, 1977 and 1979 respectively. She also has
the M.S. degree in Computer Science from the University of
Minnesota. She has published articles in Computers & Secur-
ity, Journal of Computer and many System Sciences, Notre
Dame Journal of Formal Logic, and the Zeitschrift fur
Mathematische turd Grundlagen der Log&. She is a member of
ACM, IEEE, and Sigma-Xi.

North-Holland

Computers & Security 6 (1987) 479-492

1. Multilevel Security in Database Management
Systems

Security is the control of the flow of data and
information through the system and its interfaces
with the outside world. This is done to prevent the
unauthorized disclosure of information or modifi-
cation of data protected by the system. This can
be achieved by assigning data to sensitivity classes
and restricting the types of access individuals and
code acting on their behalf can have to each of the
sensitivity classes. A security policy describes the
set of restrictions. One reasonable approach is to
associate an element from a partially ordered set
of security levels with each of the sensitivity classes
and with each individual, and then to restrict
accesses so that information and data can only
flow upward in level [7]. Such a policy is called a
multilevel security policy, and a system which
enforces one is said to be multilevel secure.

When there is a database on a multilevel secure
system, it is possible that not all of the data
contained in the database is equally sensitive.
However, present-day database management sys-
tems are not built with adequate controls and
mechanisms to assure that users are allowed to
access only the data for which they have been
granted a clearance and for which they have a
legitimate need to know, but at the same time
provide for the sharing of data by these users.
Thus an (MLS/DBMS) is different from a conven-
tional DBMS in at least the following ways:

0

0

Every data item in the database has associated
with it one of several classifications or sensitivi-
ties, that may need to change dynamically over
time;

A user’s access to data must be controlled
based upon the user’s authorization with re-
spect to these data classifications.
Providing a MLS/DBMS service on current com-

puting systems presents a new set of problems
than those encountered in developing secure oper-

0167~4048/87/$3.50 0 1987, Elsevier Science Publishers B.V. (North-Holland)

480 M.B. Thuraisingham / Security Checking in Relational DBMS

ating systems. The most obvious of these problems
is that the granularity of classification in a DBMS is
generally finer than a file, and may be as fine as a
single data element. Another problem that is
unique to databases is the necessity to classify
data based on content, time, aggregation and con-
text. Furthermore, DBMSS are also vulnerable to (1)
inference attacks where a user infers unauthorized
data from the knowledge that he has accumulated
and/or the context in which data is displayed,
and (2) Trojan Horse programs which are hostile
code residing in the system. Any security policy
for MLS/DBMS must not only protect against di-
rect disclosure of data, but it must also attempt to
limit the attacks from hostile users. The aim of the
mandatory security policies is to confine Trojan
Horse programs in such a manner that their at-
tempts at hostile behaviour are frustrated.

A formulation of a mandatory security policy
that handles inference threats in a read only rela-

tional database management system is stated as
follows: A subject has read access to an object
only if the following conditions are satisfied:
1. Its classification level (referred to as clearance)

is greater than that of the object, and
2. By combining the information in the object

with the information that it has obtained previ-
ously by reading other objects and with the
knowledge that it has gleaned from the outside
world, the subject will not acquire any new
information to which it has no authorization.

The formalization of this policy will be de-
scribed progressively. For any classification level
L, there is a corresponding environment E(L)
which consists of all responses that have been
properly classified at a level less than or equal to
L, i.e. all the responses that a user at level L is
authorized to know. The following relationship
holds among the environments. If L, > L,, then
E(L,) is a subset of E(L,). A response R is
properly classified at a level L if R combined with
information already in E(L) will not result in the
inference of any information at a level not less
than or equal to L, i.e. the following condition

holds

tlL, > L, CLASSIFICATION(INFER(R, E(L,)) < L,

where CLASSIFICATION(X) is the level assigned to
X. (R, E(L)) is E(L) union the response R, and
INFER(R, E(L)) is the information that can be
inferred from R and E(L). Then the policy states

that for any query Q posed by a subject at a level
L, the response R that is released by the DBMS

should be properly classified at level L.
Partial solutions to the implementation of this

policy in a relational DBMS using standard lan-

guages such as relational algebra have been pro-

posed [lo]. However, the techniques employed by
standard relational database management systems
are not sufficient to resolve the major compromise
to security in databases due to the inference of
unauthorized information from the information
that users can legitimately acquire. Also this ap-
proach does not facilitate the expression and
management of mechanisms which classify the
data.

Any complete implementation of this policy
requires a suitable definition for the INFER predi-

cate described in the policy. In [8], a definition of
inference has been given based on the uncertainty
of acquiring a particular information. It states that
X can be inferred from Y if by acquiring Y all
uncertainty on X has been removed. The disad-
vantage of this definition of inference is the lack
of a suitable formalization of the notion of uncer-
tainty. In the past, uncertainty has been related to
the program size complexity [6]. Whether this can
be applied to the programs which compute queries
to databases remains to be investigated further.

Our formulation of the definition of inference
and consequently a solution to the design of an
implementation scheme for the policy is described
in detail in Section 3. The essence of our approach
is to apply artificial intelligence techniques by
means of formal logic. A previous approach to
partially implement the policy is described briefly
in Section 2. For the database theory terminology
used in this paper, we refer the reader to [18]. An
introduction to concepts in Mathematical Logic
can be obtained in [14]. A survey of mandatory
security policies has been presented in [2].

2. Previous Approach to Implement the Security
Policy

Security constrains have been used in the past to
associate classification levels with all data in the
relational database [lo]. They provide the basis for
a versatile, powerful classification policy because
any subset of data can be specified and assigned a
level statically or dynamically.

M. B. Thuraisingham / Security Checking in Relational DBMS 481

Simple constraints provide for the classification

of the entire database, as well as the classification
by relation and by attribute. Constraints that clas-
sify by content provide the mechanism for classifi-
cation by tuple and by element. Context based
constraints classify relationships between data. In
addition, the results of applying functions to an
attribute or a subset of an attribute, such as sum,
average, and count can be assigned different clas-
sification levels than the underlying data. Finally,
the classification levels of the data can change
dynamically based upon changes in time, content,
or context.

A constraint consists of a data specification
and a classification. The data specification defines
any subset of the database using relational algebra
and the classification defines the classification level
of this subset. For example, consider a database
which consists of a relation EMP(NAME, SALARY,

soc_S~C#) with soc_S~C# as the key.
The content based constraint which classifies

all names who earn more than 50K as secret is
expressed as

LEVEL(PROJECT[NAME]

(SELECT[SALARY > 5OK] EMP)) = SECRET

and the context based constraint which classifies
all names and salaries taken together as secret is
expressed as

LEVEL(PROJECT[NAME, SALARY]EMP)= SECRET

The simple constraint which classifies all names
and salaries taken individually as secret is ex-
pressed as

LEVEL(PROJECT[NAME]EMP)= SECRET

LEVEL(PROJECT[SALARY]EMP)= SECRET

It is important to note that simple and content
based constraints can be applied to data as it is
actually stored in the database, while context,
functional, and dynamically based constraints can
be only applied in the computation of the result
which is to be output in response to a user’s query.
For example, the content based constraint which
classifies all names who earn more than 50K as
secret will result in the storage of the relation EMP

in secret and unclassified files in our design. The
salaries and ss will be stored in an unclassified file
and the names will be placed either in a secret file
or an unclassified file depending on its sensitivity.

Instead, if the context based constraint which
assigns secret classification to names and salaries
taken together is enforced then the relation is
stored in unclassified files, and the classification
level is assigned to the response only when it is

released.
The security constraints are used in evaluating

queries in a technique called query modification.
Variations of this technique have been used to
solve other database problems in the past [17].
The user’s query is first modified according to the
security constraints so that the response can be
assigned a classification level which will make it
observable to the user. The modified query is
compiled and executed. We will illustrate this
technique with an example. Suppose an unclassi-
fied user poses the query ‘Retrieve all names from
EMP' and there is a constraint which classifies all
names who earn more than 50K at a secret level.
Then this query is modified to ‘Retrieve all names

from EMP who earn less than or equal to 50K’.
This modified query is posed and the response
returned will not contain any secret values.

This approach is inadequate to handle threats
due to inference attacks. To overcome such at-
tacks, the history of all the queries that have been
posed, and the responses that have been released
by the DBMS has to be maintained. Furthermore,
for each additional query that is posed certain
constraints have to be examined to determine

whether the release of any information by the
DBMS may lead to the inference of unauthorized
information. Standard relational database mana-

gement systems do not provide any mechanism to
accomplish these tasks. Although the concept of a
relation is well defined and any object can be
modelled as a relation, the manipulation of rela-
tions used to model complex objects can be ex-
tremely intricate.

In addition to the inability to handle multiple
queries, another disadvantage with this method is
that it is not possible to include any information
which is not present in the database. For example,
one cannot define a senior-emp as a person who
earns more than 40K unless this information is in
the database. In the next section we shall describe
a formalism that is powerful to represent con-
straints as well as real world information, and at
the same time be flexible so that the data can be
manipulated easily.

482 M.B. Thuraisingham / Security Checking in Relational DBMS

3. Enhancing Database Management Systems with
Inferencing Capability

The desire to integrate database technology, artifi-
cial intelligence technology and logic program-
ming technology resulted in the investigation of
extending database systems to provide them with
the functionality of expert systems, thus creating
knowledge based systems [l]. A solution that has
been proposed to extend the power and capability
of database management systems is to augment a

database with a knowledge base which consists of
all information for which the relational model is
not an appropriate representation, and a
processing system separate from the DBMS to pro-
cess the information in the knowledge base [4].

Since standard relational databases are not power-
ful enough to overcome inference threats, the aug-
mented database approach can be taken to design
a MLS/DBMS. The database consists of only those
information which can be manipulated easily by
the relational DBMS. The knowledge base consists
of all security constraints, integrity constraints,
the environments at the various classification
levels, and the real world information. The infor-
mation in the knowledge base is more complex
than the information in the database, and there-
fore a model other than the relational model is
needed to represent it. Furthermore, it is also
desirable to have a uniform model to represent all

the data in the knowledge base. Since the con-
straints are easily expressed as rules, ‘Logic’ is an
extremely appropriate candidate to model the

knowledge base.
Logic is powerful enough to be used to formal-

ize programs, specifications, databases, legislation
and natural language among others [12]. All secur-
ity constraints, real world information, environ-
ments, and integrity constraints are expressed as
formulas in first order logic. This set of formulas
which constitutes the knowledge base will also be
referred to as the universe or the rule base. The
system which processes the formulas in the rule
base to deduce new formulas by some rule of
inference is an inference engine. A rule of in-
ference that is used in first order logic is ‘Modus
Ponens’ where B is deduced from the formulas ‘A ’
and ‘If A then B’ [14]. Consequently most logic
programming systems which deal with Horn clause
logic, a subset of first order logic, use ‘Resolution’
as the rule of inference [16]. Subsequently varia-

tions to the resolution principle have been for-
mulated by many researchers [13]. In addition to
the ease of expression and manipulation of the
constraints expressed in logic, another advantage
in using logic is that logical deduction of formulas
fits in naturally with the deduction of information
which may lead to the violation of security by
inference. Consequently a definition of ‘ violation
of security by inference’ can be formulated as
follows. Let R be the response released by the
DBMS to a query posed by a user at a level L. Let
S be the set of formulas which represents all the
information in (E(L), R). Let A be a formula
that can be deduced from S by a logical rule of
inference, i.e. there is a sequence of formulas B,,
B,,...,B,,whereB,,=A,eachB,(l<i<n)either
belongs to S or there exist j, k where (1 <j, k G n)
such that B, results from B, and B, by applying
some rule of inference. Then a violation of secur-
ity by inference has occurred if the sensitivity of A
is greater than L.

A high level architecture of standard relational
databases and relational databases augmented with
inference engines are shown in Fig. I. This ap-
proach in augmenting database systems with an
inference engine originates in the study of Logic
and Databases [II]. In this study, there are three
possible approaches to view a database using logic
as a framework. The first approach which is com-
monly used in question-answering systems repre-
sents the database as a first order theory, i.e. the
proper axioms of this theory are the facts in the
database and the general laws. The general laws
are any rules that are enforced on the relations in

Standard Data Base Augmented Data Base

Fig. 1. High level architecture of standard relational databases

and relational databases augmented with inference engines.

M.B. Thuraisingham / Security Checking in Relational DBMS 483

the database. Queries are expressed as formulas in
first order logic. Responses to queries are those
instances of the corresponding formulas which can
be proved as theorems of this first order theory.
The second approach considers the set of elemen-
tary information which constitutes the database as
an interpretation of a first order theory whose
proper axioms are the general laws. The general
laws here are all used as integrity rules. Responses
to queries are those instances which evaluate to
true under this interpretation. Standard relational
databases implicitly follow this approach. The
third approach is similar to the second one except
that the general laws consist of the integrity rules
as well as the derivation rules. These derivation
rules are used to generate extensions to the rela-
tions in the database. We will illustrate the three
approaches with examples.

Suppose, the database consists of the two rela-
tions FATHER(father, child) and GF(grandfather,
grandchild), and the two laws ‘The age of the
father is greater than that of the child’, and ‘the
father of the father is a grandfather’. In the first
approach the facts in the database as well as two
laws are considered to be proper axioms of a first
order theory. Then a query to retrieve all the
(grandfather, grandson) pairs results in all pairs
(X, Y) such that GF(X, Y), can be proved to be a
theorem of this theory from the axioms. In the
second approach the database is an interpretation
of a first order theory whose proper axioms are
the two laws which are integrity rules. Therefore,
if a tuple (X, Y) is in the GF relation, then there
should be tuples (X, Z), and (Z, Y) already pre-
sent in the FATHER relation. In the third approach
the first law is considered to be an integrity rule
and the second law a derivation rule. This deriva-
tion rule generates new tuples which belong to the
extension of the GF relation. Therefore, although
the pair (X, Y) may not be present in the GF

relation in the database, it will be returned as part
of the response to the query to retrieve all pairs
(grandfather, grandchild) if there is a Z such that
(X, Z) and (Z, Y) are in the FATHER relation.

Our approach closely follows the third view of
the database, but incorporates security as an ad-
ditional feature. Throughout this section, we will
illustrate our augmented database approach with
examples. The main issues that will be addressed
are the expression and management of the uni-
verse and the evaluation of queries.

3.1 Expression and Management of the Universe

As shown in Fig. 2, the universe, whose elements
are expressed as formulas in first order logic,
consists of the integrity constraints, security con-
straints, the real world information, and the en-
vironments corresponding to the various classifi-
cation levels. The classification levels under con-
sideration in increasing order of sensitivity are
unclassified, secret and top-secret. This section
will be devoted to a description of this universe.

3.1. I Integrity Constraints

Integrity constraints which are laws enforced
on the data have been studied extensively in the
past [18]. Whenever data is updated, these con-
straints are checked to ensure that the update is
valid. In addition to enforcing integrity con-
straints on the data in the database, we will also
enforce on the security constraints and the real
world information. However the techniques

utilized to enforce integrity on security constraints
are identical to those used for the data in the
database. These techniques will be described when
we discuss security constraints.

3.1.2 Security Constraints

Security constraints, which we will also refer to
as constraints, are the rules which assign classifi-
cation levels to data either directly by a user who
is authorized to do so, or by deduction from the
other rules. These constraints are expressed as
formulas of the form A ---f B(read ‘IF A THEN B’)

where the formula A specifies conditions imposed
and the formula B specifies the level assigned to
the data to be classified.

Consider the following constraints enforced on
the relation EMP:

1. Salary is secret.

Security
Constaints

Real-Work!
Information
(Includes

Derivation Rules)

Unclassitied
Environment

Secret
Environment

integrity Top-Secret
Constraints Environment

Fig. 2. The universe (or the rule base).

484 M.B. Thuraisingham / Security Checking in Relational DBMS

2. Name where salary > 50K is secret.
3. If Reagan is the president, then Name is secret.
4. Name and Salary taken together are secret.
These constraints are expressed by the following
respective formulas.

CI: EMP(X, Y, 2) + LEVEL(Y, SECRET)

C2: EMP(X, Y, Z)r\GREATER(Y,50K)

+LEVEL(X, SECRET)

C3: EMP(X, Y, z) A PRESIDENT(REAGAN)

+ LEVEL(X, SECRET)

C4: EMP(X, Y, z) - LEVEL(XY, SECRET)

where LEVEL(X, L) is the level assigned to X.
In the case of constraint C4, if we assume that

if one of name or salary is released by the DBMS at
an unclassified level, then the other is classified at
a secret level, then C4 can be expressed by the
following two constraints.

C5: EMP(X, Y, z) A RELEASE(X, UNCLASSIFIED)

+LEVEL(Y, SECRET)

C6: EMP(X, Y, 2) A RELEASE(Y, UNCLASSIFIED)

-+ LEVEL@, SECRET)

where RELEASE(X, L) implies that X is released
into the environment E(L).

Whenever a security constraint is updated (i.e.
inserted, deleted, or modified) then the integrity of
the data (in the universe or database) has to be
maintained. Therefore, the insertion, deletion or
modification of security constraints can be treated
in the same way as the update of data in the
database. When data is updated certain semantic
integrity constraints may be checked for the
maintenance of consistency. If the data is not
updatable, then recovery mechanisms are needed.
Concurrency control is essential when more than
one user is simultaneously modifying the data. A
detailed treatment of handling integrity in data-
bases has been investigated in [15].

A similar argument can be applied when con-
straints are updated. Some of the essential points
in this treatment are explained here. When insert-
ing a security constraint, one must first check
whether any integrity constraints enforced are
violated. Then through a deduction process all the
information that can be deduced from the added
information must be found and made explicit.
When deleting information, due to the fact that

the deduced information was made explicit in the
add phase, this deduced information should also
be deleted unless it can be deduced from other
information. Modifying information can be treated
as a deletion followed by an insertion. Therefore
the operations performed during both the insert
and delete phases have to be applied. We will
illustrate this process with examples. Suppose, in
addition to the relation EMP, the database also
contains another relation DEPT(NAME, DEPT# ,
PROJECT) with DEPT# as the key. The NAME at-
tribute specifies the names of employees working
on a project in a department. Then, if the con-
straint C2 is enforced, the names in DEPT who are
earning more than 50K have to be assigned a
secret classification level. This information has to
be made explicit. Therefore the following con-
straint C5 should also be inserted.

C7: EMP(X, Y, z) A DEPT(X, u, v)

A GREATER(Y, 50K)+ LEVEL(X, SECRET)

The same argument applies when C2 is already
enforced and DEPT is entered as a new relation
into the database. Again C7 has to be made
explicit. If C2 is deleted, then since C7 cannot be
deduced any other way, it also has to be deleted.
But the converse does not hold.

In certain cases, the insertion of a constraint
may cause data to have conflicting levels. Suppose
the following constraint is enforced in addition to
c2.

C8: DEPT(X, Y, z) A EQUAL@, PI)

+ LEVEL(X,TOP-SECRET)

That is, all those who work in project Pl are
classified at a top-secret level. If there exists a
person who earns more than 50K and who works
in project Pi, then this person has two levels
assigned to him. The resulting level assigned to
this data depends on the integrity constraints that
are enforced. There are two solutions to this prob-
lem. One solution is to enforce the integrity con-
straint that a data cannot have conflicting levels.
Another solution is to enforce the integrity con-
straint that if the two levels assigned to the data
are comparable, then the data is assigned the
higher level, and the security constraints which
caused the data to be classified at the lower level
should be updated. If the levels are incomparable,
then the constraint that caused the inconsistency
should not be inserted.

M. 8. Thuraisingham / Security Checking in Relational DBMS 485

In the previous example, if we adopt the first Any information released into an environment
solution, then the constraint C8 cannot be in- is visible to the users at levels greater than or
serted. If we adopt the second solution, then since equal to that of the environment. Furthermore

the top-secret level dominates the secret level in information classified at level L can be released
the lattice, the name is assigned a top-secret clas- into the environment E(L) if other information at

sification, the constraints C2 and C5 are deleted, level Ll > L cannot be deduced from a user at

and the following constraints are inserted. level L. This is represented by the following rules.

C9: EMP(X, Y, Z)GREATER(Y, 50K) C12: RELEASE(X, L)r\ DOMINATE& L)

NOT(LEVEL(X, TOP-SECRET))

+ LEVEL(X, SECRET)

--) RELEASE(X, L,)

c13: LEVEL(X, L)r\LEVEL(Y, L,)

ClO:EMP(X, Y, Z)GREATER(Y, 50K) r\DOMINATE(&, L)

DEPT(X, u, v) NOT(LEVEL(X, TOP-SECRET))

+ LEVEL(X, SECRET)

In addition to maintaining the consistency of a

r\NOT(RELEASE(X, L) +LEVEL(Y, L))

-+ RELEASE(X, L)

set of constraints, we also want the set to be
complete. That is each data in the database should
be assigned a classification level. However, if the
database is very large, this will require a great
number of constraints. One way to overcome this
is to assume that any data that is not explicitly
classified takes a default classification level. Sup-
pose the classification levels that are considered
are top-secret, secret and unclassified, then this
assumption can be expressed by the rule

C11: NOT(LEVEL(X, SECRET))

The rules Cll, C12, and Cl3 are examples of
derivation rules. In our discussion we shall include
such rules as part of the real world information.

3.1.4 Real World Information

ANOT(LEVEL(X, TOPKSECRET))

+ LEVEL(X, UNCLASSIFIED)

3.1.3 Environment
The environment for a classification level con-

tains all the information that has been released by
the DBMS at its level, and also it contains all the
environments whose classification levels are less
than its level. For example, the top-secret environ-
ment includes all the information that has been
released by the DBMS at a top-secret level, and it
also includes all the information in the secret and
unclassified environments. The format of the in-
formation in an environment will be explained in
the next section when we discuss the evaluation of
queries. In our treatment of the environment, we
do not distinguish between the users at a particu-
lar clearance level. Therefore, in our discussion we
accommodate only three different users. It should
be noted that our results can be easily extended to
differentiate between the various users at a level
by incorporating the user-id as an argument.

Real world information is any information
which is either a derivation rule which defines
extensions to the relations in the database or it is
not present in the database. Some examples of real
world information in the form of derivation rules
have been presented in the previous sections. In
the database consisting of the FATHER and GF

relation, the rule that ‘the father of a father is a
grandfather’ is real world information. So is the
rule which specifies the default classification level
that is assigned to the data. We can also include
information which has no connection to the data
in the database as part of the real world informa-
tion. For example, in our sample database which
consists of the relation EMP and DEPT, the fact that
Reagan is the president has no relevance, but we

can include this information in the universe by the
rule

C14: +PRESIDENT(REAGAN)

We can also define new relations not in the data-
base from relations in the database. The fact that
an employee is a senior employee if he earns more
than 40K can be expressed by the rule

C15: EMP(X, Y, z) A GREATER(Y, 40K)

-+ SEN_EMP(X)

Since NAME is a common attribute to both EMP

and DEPT, the names in DEPT whose corresponding
salaries in EMP are greater than 40K are also

486 M.B. Thuraisingham / Security Checking in Relational DBMS

senior employees. This information is made ex-
plicit by the following rule.

C16: DEPT(x, Y, z) A EMP(x, u, v)

A GREATER(Y, 40K) + SEN_EMP(x)

Alternative definitions can be given for senior
employees. For instance, senior employees can
also be defined to be those employees who work
in project P2. This is expressed by the rule

C17: DEPT(x, Y, z) A EQUAL(z, P,)

-+ SEN_EMP(x)

Since NAME is a common attribute to both EMP

and DEPT, the names in EMP whose project in DEPT

is P2 are also senior employees. Therefore the
insertion of the rule Cl7 necessitates the insertion
of the following rule.

C18: DEPT(x, Y, z) A EMP(x, u, v)

A EQUAL(z, P,) + SEN _EMP(x)

Classification levels can also be assigned to data
not in the database. The following rule Cl9 as-
signs a top-secret classification level to all senior
employees.

C19: SENpEMP(x) ---) LEVEL(x, TOP-SECRET)

This means that all employees who earn more
than 40K or who work in project Pz are assigned
top secret classification levels. This results in the
generation of the following rules C20-C23

C20: EMP(x, Y, z) A GREATER(Y, 40K)

+ LEVEL(x, TOP- SECRET)

C21: EMP(x, Y, z) A DEPT(x, u, v)

A GREATER(Y, 40K)

-+ LEVEL(x, TOP_ SECRET)

C22: DEPT(x, u, v) A EQUAL(u, P,)

-+ LEVEL(x, TOP_ SECRET)

C23: EMP(x, Y, z) A DEPT(x, u, v)

A EQUAL(u, P,) + LEVEL(x, TOP_ SECRET)

The insertion of the above rules may cause data to
have conflicting classification levels. For example,
along with the above rules, if rule C2 is enforced,
then an employee may have secret as well as
top-secret classification levels. As explained earlier,
there are two possible options. One is to prohibit
the insertion of the constraint C19, and the other
option is to assign the top-secret classification to

the data, and to update the constraints that re-
sulted in the lower classification level.

3.2 Query Eualuation

The difference between non-secure DBMS and

secure DBMS in processing queries is the modifi-
cation of the queries according to the security
constraints. Once the query is modified, standard

techniques can be used to evaluate queries ex-
pressed in relational algebra. However, relational

algebra itself is not sufficient to express all the
queries. For example, the query to retrieve all
senior employees cannot be expressed in relational
algebra. Furthermore, since all the rules are ex-
pressed in logic, the expression of queries in rela-
tional algebra would necessitate the translation of
these queries into logic. Therefore, in our ap-
proach we express queries in first order logic and
use the rules to modify the query. This modifi-
cation is performed by the inference engine. Then
techniques such as those investigated in [5] can be
applied to translate the modified queries into rela-
tional algebra and evaluate them against the rela-
tional database.

There are two types of queries that can be
evaluated. The first type are those queries whose
evaluation does not necessitate any database
accesses, i.e. the responses to these queries can be
generated by accessing only the rule base. An
example of such a query is ‘retrieve the father of
John’ and the rule base contains the rule ‘Peter is

the father of John’. The answer to this query is
‘PETER’ and will be released provided there is no
security violation. This is the technique that is
used in the first approach to view databases
through logic where all the facts in the database
are encoded as rules. The second type are those
queries whose evaluation involves accesses to the
database. Since our main concern is the design of
a secure database management system, we shall
only consider queries of the second type in the
ensuing discussion.

The graphical representation of the query
processing strategy in an augmented database is
depicted in Fig. 3. The query posed in first order
logic is modified in such a way that if this mod-
ified query is posed and there is no Trojan Horse
in the system, then the response that is released by
the DBMS will be properly classified at the level of
the user who posed the query. The modified query

M.B. Thuraisingham / Security Checking in Relational DBMS 487

Ouw
Expressed

in Lcgk

1

ReSpOllSe

t

user lmelface

4 t
lmormation on the
Strategy in Lwic

Inference
Engine Petforms 4

and the Response

. Query
Modilication

. Assignment of
Classification
LW&

Response and
Actual strategy
Executed

Relational A!gebra

b
DBMS

PWiOnS

- View Mcdificatiin
- Cuery Optimization
. Generatiin of

Execution Strategy
and Response

T

Fig. 3. Query processing in an augmented database.

is translated into relational algebra using some of
the existing techniques. The translated query is
evaluated against the relational database. While
generating the response to the query, the DBMS

also assembles the actual strategy that was
executed which consists of the files that were

opened and read, and the operations performed
on these files. Due to Trojan Horse threats, this
actual strategy may not be the correct strategy
that should be executed for the corresponding
query. We actual strategy along with the attribute
names corresponding to the files in the strategy,
retrieved from the data dictionary, is passed to the
response translator which translates this informa-
tion into formulas in first order logic. The in-
ference engine by accessing the rule base eventu-
ally assigns a classification level to the response
released by the DBMS. This response is released
into the appropriate environment.

A crucial issue that has to be addressed in the
design of the query processing strategy, is the
amount of code that has to be verified to protect
against the operation of Trojan Horses. Our objec-
tive is to minimize the expensive process of verifi-
cation. The verification issues involved in the de-
sign of a standard MLS/DBMS has been investi-
gated in [3]. In this design, when a query is
evaluated, the verification process is deliberately
delayed because once the verification process is

terminated, the remaining events should not con-
tain any hostile code that could damage the re-

sults. If this philosophy is adapted to augmented
databases, then it is sufficient to commence the
verification only when the actual strategy that is
executed by the DBMS is assembled. Then the
remaining events of translating the strategy into
logic, and the assignment of classification level to
the response by the inference engine should also
be verified. It should be noted that not verifying
the query modification process may result in the
incorrect modification of the query and conse-
quently cause incorrect information to be present
in the response. However, the verification of the
assembly of the actual strategy, the translation of
the strategy, and the assignment of classification
level to response will ensure that the information
in the response will not lead to any violation of

security. The two additional algorithms that have
been devised due to the augmented database ap-
proach to security are the query modification al-
gorithm and the classification level assignment
algorithm. These algorithms will be described be-
low.

3.2.1 Query Modification Algorithm
Step 1.

Step 2.

Let a query Q be posed by a user at a level
L. Let Xi, X,, . . . , X,, be the attributes
that are requested to be released in the
query. At the user interface this query will
be extended and will be expressed as

Q A RELEASE(x1, L) A RELEASE(&, L)

A . . . A RELEASE(x, , L) .

Let the above expression be P.

Examine the rules in the universe which
lowers the classification level of any infor-
mation by releasing one or more of the
Xj’s at the level L. In other words, search
for the existence of the following two rules

A(X,> X,,..., X,,, I’)

AB(T,, r,,..., Tk, Y)

A RELEASE(Z,, L)

ARELEASE(Z~, L) A . . .

. . . A RELEASE(Z,,, , L) + LEVEL(Y, L)

B(T,, C,...,Tk, Y)

--j LEVEL(y, L,) A DOMINATE(L,, L)

488

Step 3.

Step 4.

Step 5.

M. B. Thuraisingham / Securi!y Checking in Relational DBMS

where m G n, each Z,(l G i < m) belongs

to (X1, X,, Xx,..., X, }, A is a relation-
shipbetween X1, X, ,..., X,, Yand Bisa
relationship between T,, T2,. . . , Tk, Y. If
there are such rules, then the query will

not be posed.
If the condition in Step 2 is not satisfied,
from the information in the rule base de-
rive a formula of the form R + P where R
consists of only relations in the database.
If such a formula can be derived, then R
is the modified query. This modified query
is translated and evaluated. Also insert the
following rule into the environment at the
level L

-+RARELEASE(~~, L)

ARELEASE(X*, L) A . . .

A RELEASE(X, , L)

where RELEASE(X,, L) implies that attri-

bute X, can be released at level L.
If such formula cannot be derived, i.e. if a

derivation of

-+ (NOT P)

can be obtained, then no response should
be released to the user, and therefore the
query will not be evaluated. It should be
noted that since each data in the database
or real world is assigned a classification

level, either a formula of the form R + P,
or + (NOT P) can be derived.

3.2.2 Classification Level Assignment Algorithm
Step 1. The rule that is passed to the inference

engine from the response translator will be

of the form

-+R(Y,, Y,,...,Y,>

A RESPONSE(X1, X,, X,, . . _, x,,)

where R is a conjunction of some relations
in the database, Y,, Y,, . . . , Y, are the
attributes in these relations, m > n, each
Xi(l<i<m)belongsto{Y,, Y,,...,Y,},
and RESPONSE(X,, X,, . . . , X,) implies that

X,, X,7..., X, are all the attributes in the
response generated by the DBMS.

Step 2. The inference engine will attempt a de-
rivation of the following formula

+R(Y,, Y,,..., Y,) A RELEASE(X,, L)

ARELEASE(Xz, L) A . . .

A RELEASE(X, , L)

for some classification level L.
Step 3. Such a formula can be derived because

any data that is not assigned an explicit
classification level will default to the un-
classified level. The response is then as-
signed the classification level L, and the
following rule is inserted into E(L).

-+R(Y,, Yz,..., Y,) A RELEASE(X,, L)

ARELEASE(Xz, L) A . . .

A RELEASE(X, , L)

Therefore any user at level L will be able
to see the response.

We will now state and prove a theorem which
guarantees the correctness of the query modifica-
tion algorithm.
Theorem:
For a given query Q posed at a level L, the query
modification algorithm will produce a modified

query Q* in such a way that if this modified
query is posed, the DBMS will release a response
that is properly classified at a level L.
Proof:
To make the proof simpler, we will assume that
there is no Trojan Horse in the system. The proof
is by contradiction. Suppose the response S is not
properly classified at level L. Then the following
condition holds.

3L, > L, CLASSIFICATION(INFER(S, E(L))) = L,

We will prove that this condition is never true. Let
Y be the attribute (or attributes) inferred from
(S, E(L)). Let the attributes in (S, E(L)) that
resulted in Y be X,, X,, . . , X,. Then X,,
X2, . . . , X,, Y are in some relationship which is
denoted say by A. Also the universe would have
had the following two rules before the query Q
was posed.

A(X,, X,,..., X,, Y)

AB(T,, T2 ,..., Tk, Y) ARELEAsE(X1, L)

ARELEAsE(X~, L) A . . . ARELEASE(X,,, L)

+ LEVEL(Y, L)

M. B. Thuraisingham / Security Checking in Relarional DBMS 489

B(T,, T2 ,..., Tk, Y) +LEVEL(Y, L,)

A DOMINATE(L,, L)

In Step 2 of the algorithm, it would have been
ensured that the query is never posed. This con-
tradicts the assumption that the query is not prop-
erly classified at level L.

We will now illustrate the techniques with ex-
amples. First we will assume that there is no
Trojan Horse in the system and consider the
evaluation of the following four queries all posed
by unclassified users.
Ql.

Q2.

Q3.

Q4.

Retrieve names in EMP and the constraint C2
is enforced.
Retrieve all senior employees and the con-
straint C2 is enforced.
Retrieve all salaries from EMP and the con-
straints that are enforced are ‘The names in
EMP are secret’ and ‘If the salaries in EMP are
released, then the names are unclassified’.
First retrieve all names, and then retrieve all
salaries, and the constraint C4 is enforced.

The queries Ql, Q2 and Q3 are single queries.
Ql involves only relations in the database, whereas
Q2 does not. No query will be evaluated in
processing the query Q3 because the condition in
Step 2 of the query modification algorithm will be
satisfied. The query Q4 is an example of a multi-
ple query. It should be noted that due to the fact
that there is no Trojan Horse in the system, it
suffices to explain only the query modification
algorithm for these four examples. We will then
relax our assumption and evaluate the following

query.
Q5. Retrieve all social security numbers from EMP

and the constraint C is enforced.
In evaluating the query Q5, the query modifica-
tion algorithm as well as the classification level
assignment algorithm will be applied.

3.2.3 Evaluation of the Query QI

This query is expressed by the rule

C24: + EMP(X, Y, Z)

A RELEASE(X, UNCLASSIFIED)

Note that since only the names have to be retri-
eved, we assume that the variables Y and Z are
existentially quantified although we have not ex-
plicitly represented it here. In other words the

response that is returned is the set

{X:3Y, ZEMP(X, Y, 2)

A RFLEASE(X, UNCLASSIFIED)}

Note also that the sub-formula RFLEASE(X, UN-
CLASSIFIED) will be inserted by the user interface
to the query { X: 3 Y, Z EMP(X, Y, Z)}. The for-
mula in C24 is the expression P. The condition in
Step 2 of the algorithm is not satisfied and there-
fore a derivation of the formula R + P will be
attempted as follows:

C25: EMP(X, Y, Z) A NOT(GREATER(Y, 50K))

-+ LEVEL(X, UNCLASSIFIED)

x { c2, c12)

C26: EMP(X, Y, Z) A NOT(GREATER(Y, SOK))

+ EMP(X, Y, Z)

A LEVEL(X, UNCLASSIFIED)

x { C26)

C27: EMP(X, Y, Z) A NOT(GREATER(Y, 50K))

+ EMP(X, Y, Z)

A RELEASE(X, UNCLASSIFIED)

x { C27, C14)

Therefore the modified query is

C28: + EMP(X, Y, Z) A NOT(GREATER(Y, 50K))

and the following rule will be inserted into the
unclassified environment.

C29: + EMP(X, Y, Z) A NOT(GREATER(Y, 50K))

A RFLEASE(X, UNCLASSIFIED)

3.2.4 Evaluation of Query Q2

This query is expressed by the rule

C30: + SEN_EMP(X)

A RFLEASE(X, UNCLASSIFIED)

Assume that senior employees are defined by the
rule C12. Then the query is equivalent to:

C31: --f EMP(X, Y, Z) A GREATER(Y, 40X)

A RELEASE(X, UNCLASSIFIED)

The derivation of the query to be posed so that the
information returned is observable to the user is
as follows:

C32: EMP(X, Y, Z) A NOT(GREATER(Y, 50K))

3 LEVEL(X, UNCLASSIFIED) { C2, C12)

490 M.B. Thuraisingham / Security Checking in Relational DBMS

C33 : EMP(x, Y, z) A GREATER(Y, 40K)

A NOT(GREATER(Y, 50K))

+EMP(X, Y, z)

A GREATER(Y, 40K)

A LEVEL(x, UNCLASSIFIED) { C33)

C34: EMP(x, Y, z) A GREATER(Y, 40K)

A NOT(GREATER(Y, 50K))

+ SEN_EMP(x)

A RELEASE(x, UNCLASSIFIED) { C34, C16)

Therefore the modified query is

C35 : -+ EMP(x, Y, z) A GREATER(Y, 40K)

A NOT(GREATER(Y, 50K))

and the following rule will be inserted into the
unclassified environment.

C36: + EMP(x, Y, z) A GREATER(Y, 40K)

A NOT(GREATER(Y, 50K))

A RELEASE(x, UNCLASSIFIED)

3.2.5 Evaluation of Query Q3
The query will be expressed as

C37: -+ EMP(x, Y, 2)

A RELEASE(Y, UNCLASSIFIED)

The condition in step 2 of the algorithm will be
satisfied due to the two constraints expressed by
the following two rules.

C38: -+ EMP(x, Y, z) A LEVEL(x, SECRET)

c39: EMP(x, Y, z) A RELEASE(Y, UNCLASSIFIED)

- LEVEL(x, UNCLASSIFIED)

Therefore the query will not be posed.

3.2.6. Evaluation of Query Q4
Since names and salaries only when taken to-

gether are secret, if one of them has been released
to an unclassified user, then the other will be
assigned a secret level. This is represented by the

rules C5 and C6.
Suppose an unclassified user wants to retrieve

all names. The query posed will be expressed by
the rule C24. The derivation of the formula R + P
is as follows:

C40: EMP(x, Y, z)

- EMP(x, Y, z) A LEVEL(x, UNCLASSIFIED)

x { C12)

C41: EMP(x, Y, z)

--j EMP(x, Y, z)

A RELEASE(x, UNCLASSIFIED)

x { c39, C13)

Therefore the query that will be evaluated is

C42: + EMP(x, Y, Z)

and all the names will be released. The rule C24
will be inserted into the unclassified environment.

Suppose at a later time the unclassified user
requests all salaries from EMP. The query that will
be posed is expressed by rule C37.

Rule R - P cannot be derived as (NOT P j can
be deduced as follows:

C43: -+EMP(X, Y, z)

A RELEASE(Y, SECRET) { C41, C5}

C44: + NOT(EMP(x, Y, z)

A RELEASE(Y, UNCLASSIFIED)) { C43)

Therefore the query to retrieve the salaries will not
be evaluated.

Note that if a secret user had requested for the
salaries, the query posed will be expressed by rule
C43 and the salaries will be released as a deriva-
tion of a rule of the form R -+ P can be obtained
as follows:

C45: EMP(x, Y, z)

+EMP(x, Y, z)

A LEVEL(Y, SECRET) { C43)

C46: EMP(x, Y, Z)

+ EMP(x, Y, z)

A RELEASE(Y, SECRET) { C45, C13)

The rule C43 will be inserted into the secret
environment.

If a top-secret user requests salaries, the query
posed will be

C47: + EMP(x, Y, z) A LEVEL(Y, TOP-SECRET)

and the formula of the form R -+ P can be derived
as follows.

C48: EMP(x, Y, z)

-+EMP(x, Y, z)

A RELEASE(Y, TOP-SECRET) { c45, c13)

Therefore the salaries will be released and rule
C47 will be inserted into the top-secret environ-

ment.

C49: --j EMP(x, Y, z) A RELEASE(z, UNCLASSIFIED)
In this paper we have presented a design for a
multilevel augmented relational DBMS. In particu-

Case 1: Somewhere in the process the query is
incorrectly modified to retrieve all names
from EMP.

Since the names in EMP are unclassified, this
query is translated and evaluated. The DBMS will
generate all names in EMP. From the information
maintained in the data dictionary the DBMS will
retrieve the attribute name corresponding to the
file that was opened, and pass this information to
the response translator. The response translator
will generate and pass the following rule to the
inference engine.

C50: --, EMP(x, Y, z) A RESPONSE(x)

The inference engine will attempt a derivation of
the following rule.

lar we have addressed the issues on the manage-
ment of the information in the rule base, and the
operation of the inference engine for query
processing. In addition to enhancing the tech-
niques described in this paper, some of the other
issues that are currently being addressed are the
evaluation of recursive queries in MLS/DBMS and
handling of updates in a database. Recursive
queries are recognized as being of considerable
importance to knowledge based systems. Even in
non secure database management systems, al-
though strategies have been proposed to evaluate
recursive queries, no method is yet known to
choose from these algorithms [l].

C51: + EMP(x, Y, z) A RELEASE(x, L)

and it will succeed in deducing rule C24.
The names released by the DBMS will be as-

signed an unclassified classification level and rule
C24 will be inserted into the unclassified environ-
ment. It should be noted that the information that
is returned to the user is not what he requested.
But the user will not acquire any information to
which he is not authorized.
Case 2: Somewhere in the process the query is

incorrectly modified to retrieve all salaries
in EMP.

The DBMS will generate the salaries in the re-
sponse. Although the salaries are secret, since the
unclassified user posed the original query, the
response translator will pass the following rule to
the inference engine.

Our security policy for read only databases has
to be extended to include the read/write data-
bases. To accomplish this, in addition to the policy
for queries, we need to formulate a policy for
updates, and devise algorithms to implement the
policy. The main problem that has to be overcome
in the case of updates is the covert channel attacks
where sensitive information is encoded in other-
wise benign fields. Such attacks are prevented if
the policy for update ensures that higher level
information is never written into a lower classifi-
cation level. However it is extremely difficult to
build systems which satisfy this policy at all times
[9]. We need to address the issue as to whether the
benefits gained by augmenting databases with in-
ference engines in handling queries may cause
additional problems in handling updates.

C52: -+ EMP(x, Y, z) A RESPONSE(Y)

The inference engine will attempt a deduction of
the rule

C53 : + EMP(x, Y, z) A RELEASE(Y, L)

and will succeed in deriving rule C43.
Therefore the response will be assigned a secret

level and rule C43 will be inserted into the secret
environment. The unclassified user who posed the
query will not acquire any information.

The successful design and implementation of
secure database management systems are crucial
as computerized information is a critical resource
in numerous enterprises, whether industrial, com-
mercial or government, and compromise to infor-
mation security is a serious problem that faces the
world today. The ideas presented in this paper
provide a sound theoretical foundation upon which
practical solutions to the design of MLS/DBMS can
be provided.

References

M.B. Thuraisingham / Securiiy Checking in Relational DBMS

3.2.7 Evaluation of Query Q5 3.3 Future Considerations

The query will be expressed as

491

(11 F. Bancilhon and R. Ramakrishnan: “An Amateur’s In-
troduction to Recursive Processing Strategies”, Proceed-

ings of ACM Sigmod ‘86, pp. 16-52.

492 M.B. Thuraisingham / Security Checking in Relational DBMS

[2] W.E. Boebert, B.B. Dillaway and J.T. Haigh: “Mandatory

Access Control Policies”, DBMS Security Workshop, Bal-

timore, MD, June 1986.

[3] W.E. Boebert, B.B. Dillaway, P.A. Dwyer, J.T. Ha&

R.Y. Kain, M.B. Thuraisingham and W.D. Young: “De-

sign of a Multilevel Secure Database Management System

Hosted on a Trusted Computing Base”, To be submitted.

[4] M. Brodie, J. Mylopoulos and J. Schmidt: On Conceptual

Modelling Perspectives from Artificial Intelligence, Data-

bases, and Programming Languages, Springer-Verlag, 1984.

[5] S. Ceri, G. Gottlob and L. Vavazza: “Translation and

Optimization of Logic Queries: The Algebraic Approach”,

Proceedings of the 12th International Conference on Very

Large Databases, Kyoto, Japan, 1986, pp. 395-479.

[6] G. Chaitin: “A Theory of Program Size Formally Identi-

cal to Information Theory”, Vol. 22, #3, 1975, pp.

329-339.
[7] D.E. Denning: “A Lattice Model of Secure Information

Flow”, Communications of the ACM, May 1916, pp.

236-243.

[8] D.E. Denning, S.K. Akl, M. Morgenstem, P.G. Neumann,
R.R. Schell and M. Heckman: “Views for Multilevel

Database Security”, Proceedings of the 1986 IEEE Sym-

posium on Security and Privacy, April 1986, pp. 156-172.

[9] B.B. Dillaway and J.T. Ha&: “A Practical Design for a

Multilevel Secure Database Management System”,

Aerospace Security Conference, December 1986.

[lo] P.A. Dwyer, G.D. Jelatis and M.B. Thuraisingham: “Mul-
tilevel Security in Database Management Systems”, Com-

puters & Security, Vol. 6, Nr. 3, 1987.

[ll] H. GaIlaire and J. Minker: Logic and Databases, Plenum

Press, 1978.

[12] R. Kowalski and M. Sergot: “A Logic-based Calculus of

Events”, New Generation Computing, Vol. 4, 1986, pp.

67-95.

[13] J. Lloyd: Foundations of Logic Programming, Springer

Verlag, 1984.

[14] E. Mendleson: Introduction to Mathematical Logic, Van

Nostrand, 1978.

[15] J.M. Nicholas and K. Yazdanian: “Integrity Checking in

Deductive Databases”, Logic and Databases, Plenum

Press, 1978, pp. 325-344.

[16] J.A. Robinson: “A Machine-Oriented Logic Based on the

Resolution Principle”, JACM, Vol. 12, #l, 1965, pp.

23-41.

[17] M. Stonebraker: “Implementation of Integrity Con-

straints and Views by Query Modification”, ACM Na-

tional Conference Proceedings, 1974, pp. 180-186.

[18] J. Ullman: Principles of Database Systems, Computer

Science Press, 1982.

