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In this paper we will discuss the notion of multilevel 

security and the difficulties encountered in designing an imple- 
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1. Multilevel Security in Database Management 
Systems 

Security is the control of the flow of data and 
information through the system and its interfaces 
with the outside world. This is done to prevent the 
unauthorized disclosure of information or modifi- 
cation of data protected by the system. This can 
be achieved by assigning data to sensitivity classes 
and restricting the types of access individuals and 
code acting on their behalf can have to each of the 
sensitivity classes. A security policy describes the 
set of restrictions. One reasonable approach is to 
associate an element from a partially ordered set 
of security levels with each of the sensitivity classes 
and with each individual, and then to restrict 
accesses so that information and data can only 
flow upward in level [7]. Such a policy is called a 
multilevel security policy, and a system which 
enforces one is said to be multilevel secure. 

When there is a database on a multilevel secure 
system, it is possible that not all of the data 
contained in the database is equally sensitive. 
However, present-day database management sys- 
tems are not built with adequate controls and 
mechanisms to assure that users are allowed to 
access only the data for which they have been 
granted a clearance and for which they have a 
legitimate need to know, but at the same time 
provide for the sharing of data by these users. 
Thus an (MLS/DBMS) is different from a conven- 
tional DBMS in at least the following ways: 

0 

0 

Every data item in the database has associated 
with it one of several classifications or sensitivi- 
ties, that may need to change dynamically over 
time; 

A user’s access to data must be controlled 
based upon the user’s authorization with re- 
spect to these data classifications. 
Providing a MLS/DBMS service on current com- 

puting systems presents a new set of problems 
than those encountered in developing secure oper- 
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ating systems. The most obvious of these problems 
is that the granularity of classification in a DBMS is 
generally finer than a file, and may be as fine as a 
single data element. Another problem that is 
unique to databases is the necessity to classify 
data based on content, time, aggregation and con- 
text. Furthermore, DBMSS are also vulnerable to (1) 
inference attacks where a user infers unauthorized 
data from the knowledge that he has accumulated 
and/or the context in which data is displayed, 
and (2) Trojan Horse programs which are hostile 
code residing in the system. Any security policy 
for MLS/DBMS must not only protect against di- 
rect disclosure of data, but it must also attempt to 
limit the attacks from hostile users. The aim of the 
mandatory security policies is to confine Trojan 
Horse programs in such a manner that their at- 
tempts at hostile behaviour are frustrated. 

A formulation of a mandatory security policy 
that handles inference threats in a read only rela- 

tional database management system is stated as 
follows: A subject has read access to an object 
only if the following conditions are satisfied: 
1. Its classification level (referred to as clearance) 

is greater than that of the object, and 
2. By combining the information in the object 

with the information that it has obtained previ- 
ously by reading other objects and with the 
knowledge that it has gleaned from the outside 
world, the subject will not acquire any new 
information to which it has no authorization. 

The formalization of this policy will be de- 
scribed progressively. For any classification level 
L, there is a corresponding environment E(L) 
which consists of all responses that have been 
properly classified at a level less than or equal to 
L, i.e. all the responses that a user at level L is 
authorized to know. The following relationship 
holds among the environments. If L, > L,, then 
E(L,) is a subset of E(L,). A response R is 
properly classified at a level L if R combined with 
information already in E(L) will not result in the 
inference of any information at a level not less 
than or equal to L, i.e. the following condition 

holds 

tlL, > L, CLASSIFICATION(INFER(R, E( L,)) < L, 

where CLASSIFICATION(X) is the level assigned to 
X. (R, E(L)) is E(L) union the response R, and 
INFER(R, E(L)) is the information that can be 
inferred from R and E(L). Then the policy states 

that for any query Q posed by a subject at a level 
L, the response R that is released by the DBMS 

should be properly classified at level L. 
Partial solutions to the implementation of this 

policy in a relational DBMS using standard lan- 

guages such as relational algebra have been pro- 

posed [lo]. However, the techniques employed by 
standard relational database management systems 
are not sufficient to resolve the major compromise 
to security in databases due to the inference of 
unauthorized information from the information 
that users can legitimately acquire. Also this ap- 
proach does not facilitate the expression and 
management of mechanisms which classify the 
data. 

Any complete implementation of this policy 
requires a suitable definition for the INFER predi- 

cate described in the policy. In [8], a definition of 
inference has been given based on the uncertainty 
of acquiring a particular information. It states that 
X can be inferred from Y if by acquiring Y all 
uncertainty on X has been removed. The disad- 
vantage of this definition of inference is the lack 
of a suitable formalization of the notion of uncer- 
tainty. In the past, uncertainty has been related to 
the program size complexity [6]. Whether this can 
be applied to the programs which compute queries 
to databases remains to be investigated further. 

Our formulation of the definition of inference 
and consequently a solution to the design of an 
implementation scheme for the policy is described 
in detail in Section 3. The essence of our approach 
is to apply artificial intelligence techniques by 
means of formal logic. A previous approach to 
partially implement the policy is described briefly 
in Section 2. For the database theory terminology 
used in this paper, we refer the reader to [18]. An 
introduction to concepts in Mathematical Logic 
can be obtained in [14]. A survey of mandatory 
security policies has been presented in [2]. 

2. Previous Approach to Implement the Security 
Policy 

Security constrains have been used in the past to 
associate classification levels with all data in the 
relational database [lo]. They provide the basis for 
a versatile, powerful classification policy because 
any subset of data can be specified and assigned a 
level statically or dynamically. 
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Simple constraints provide for the classification 

of the entire database, as well as the classification 
by relation and by attribute. Constraints that clas- 
sify by content provide the mechanism for classifi- 
cation by tuple and by element. Context based 
constraints classify relationships between data. In 
addition, the results of applying functions to an 
attribute or a subset of an attribute, such as sum, 
average, and count can be assigned different clas- 
sification levels than the underlying data. Finally, 
the classification levels of the data can change 
dynamically based upon changes in time, content, 
or context. 

A constraint consists of a data specification 
and a classification. The data specification defines 
any subset of the database using relational algebra 
and the classification defines the classification level 
of this subset. For example, consider a database 
which consists of a relation EMP(NAME, SALARY, 

soc_S~C#) with soc_S~C# as the key. 
The content based constraint which classifies 

all names who earn more than 50K as secret is 
expressed as 

LEVEL(PROJECT[NAME] 

(SELECT[SALARY > 5OK] EMP)) = SECRET 

and the context based constraint which classifies 
all names and salaries taken together as secret is 
expressed as 

LEVEL(PROJECT[NAME, SALARY]EMP)= SECRET 

The simple constraint which classifies all names 
and salaries taken individually as secret is ex- 
pressed as 

LEVEL(PROJECT[NAME]EMP)= SECRET 

LEVEL(PROJECT[SALARY]EMP)= SECRET 

It is important to note that simple and content 
based constraints can be applied to data as it is 
actually stored in the database, while context, 
functional, and dynamically based constraints can 
be only applied in the computation of the result 
which is to be output in response to a user’s query. 
For example, the content based constraint which 
classifies all names who earn more than 50K as 
secret will result in the storage of the relation EMP 

in secret and unclassified files in our design. The 
salaries and ss will be stored in an unclassified file 
and the names will be placed either in a secret file 
or an unclassified file depending on its sensitivity. 

Instead, if the context based constraint which 
assigns secret classification to names and salaries 
taken together is enforced then the relation is 
stored in unclassified files, and the classification 
level is assigned to the response only when it is 

released. 
The security constraints are used in evaluating 

queries in a technique called query modification. 
Variations of this technique have been used to 
solve other database problems in the past [17]. 
The user’s query is first modified according to the 
security constraints so that the response can be 
assigned a classification level which will make it 
observable to the user. The modified query is 
compiled and executed. We will illustrate this 
technique with an example. Suppose an unclassi- 
fied user poses the query ‘Retrieve all names from 
EMP' and there is a constraint which classifies all 
names who earn more than 50K at a secret level. 
Then this query is modified to ‘Retrieve all names 

from EMP who earn less than or equal to 50K’. 
This modified query is posed and the response 
returned will not contain any secret values. 

This approach is inadequate to handle threats 
due to inference attacks. To overcome such at- 
tacks, the history of all the queries that have been 
posed, and the responses that have been released 
by the DBMS has to be maintained. Furthermore, 
for each additional query that is posed certain 
constraints have to be examined to determine 

whether the release of any information by the 
DBMS may lead to the inference of unauthorized 
information. Standard relational database mana- 

gement systems do not provide any mechanism to 
accomplish these tasks. Although the concept of a 
relation is well defined and any object can be 
modelled as a relation, the manipulation of rela- 
tions used to model complex objects can be ex- 
tremely intricate. 

In addition to the inability to handle multiple 
queries, another disadvantage with this method is 
that it is not possible to include any information 
which is not present in the database. For example, 
one cannot define a senior-emp as a person who 
earns more than 40K unless this information is in 
the database. In the next section we shall describe 
a formalism that is powerful to represent con- 
straints as well as real world information, and at 
the same time be flexible so that the data can be 
manipulated easily. 
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3. Enhancing Database Management Systems with 
Inferencing Capability 

The desire to integrate database technology, artifi- 
cial intelligence technology and logic program- 
ming technology resulted in the investigation of 
extending database systems to provide them with 
the functionality of expert systems, thus creating 
knowledge based systems [l]. A solution that has 
been proposed to extend the power and capability 
of database management systems is to augment a 

database with a knowledge base which consists of 
all information for which the relational model is 
not an appropriate representation, and a 
processing system separate from the DBMS to pro- 
cess the information in the knowledge base [4]. 

Since standard relational databases are not power- 
ful enough to overcome inference threats, the aug- 
mented database approach can be taken to design 
a MLS/DBMS. The database consists of only those 
information which can be manipulated easily by 
the relational DBMS. The knowledge base consists 
of all security constraints, integrity constraints, 
the environments at the various classification 
levels, and the real world information. The infor- 
mation in the knowledge base is more complex 
than the information in the database, and there- 
fore a model other than the relational model is 
needed to represent it. Furthermore, it is also 
desirable to have a uniform model to represent all 

the data in the knowledge base. Since the con- 
straints are easily expressed as rules, ‘Logic’ is an 
extremely appropriate candidate to model the 

knowledge base. 
Logic is powerful enough to be used to formal- 

ize programs, specifications, databases, legislation 
and natural language among others [12]. All secur- 
ity constraints, real world information, environ- 
ments, and integrity constraints are expressed as 
formulas in first order logic. This set of formulas 
which constitutes the knowledge base will also be 
referred to as the universe or the rule base. The 
system which processes the formulas in the rule 
base to deduce new formulas by some rule of 
inference is an inference engine. A rule of in- 
ference that is used in first order logic is ‘Modus 
Ponens’ where B is deduced from the formulas ‘A ’ 
and ‘If A then B’ [14]. Consequently most logic 
programming systems which deal with Horn clause 
logic, a subset of first order logic, use ‘Resolution’ 
as the rule of inference [16]. Subsequently varia- 

tions to the resolution principle have been for- 
mulated by many researchers [13]. In addition to 
the ease of expression and manipulation of the 
constraints expressed in logic, another advantage 
in using logic is that logical deduction of formulas 
fits in naturally with the deduction of information 
which may lead to the violation of security by 
inference. Consequently a definition of ‘ violation 
of security by inference’ can be formulated as 
follows. Let R be the response released by the 
DBMS to a query posed by a user at a level L. Let 
S be the set of formulas which represents all the 
information in (E(L), R). Let A be a formula 
that can be deduced from S by a logical rule of 
inference, i.e. there is a sequence of formulas B,, 
B,,...,B,,whereB,,=A,eachB,(l<i<n)either 
belongs to S or there exist j, k where (1 <j, k G n) 
such that B, results from B, and B, by applying 
some rule of inference. Then a violation of secur- 
ity by inference has occurred if the sensitivity of A 
is greater than L. 

A high level architecture of standard relational 
databases and relational databases augmented with 
inference engines are shown in Fig. I. This ap- 
proach in augmenting database systems with an 
inference engine originates in the study of Logic 
and Databases [II]. In this study, there are three 
possible approaches to view a database using logic 
as a framework. The first approach which is com- 
monly used in question-answering systems repre- 
sents the database as a first order theory, i.e. the 
proper axioms of this theory are the facts in the 
database and the general laws. The general laws 
are any rules that are enforced on the relations in 

Standard Data Base Augmented Data Base 

Fig. 1. High level architecture of standard relational databases 

and relational databases augmented with inference engines. 
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the database. Queries are expressed as formulas in 
first order logic. Responses to queries are those 
instances of the corresponding formulas which can 
be proved as theorems of this first order theory. 
The second approach considers the set of elemen- 
tary information which constitutes the database as 
an interpretation of a first order theory whose 
proper axioms are the general laws. The general 
laws here are all used as integrity rules. Responses 
to queries are those instances which evaluate to 
true under this interpretation. Standard relational 
databases implicitly follow this approach. The 
third approach is similar to the second one except 
that the general laws consist of the integrity rules 
as well as the derivation rules. These derivation 
rules are used to generate extensions to the rela- 
tions in the database. We will illustrate the three 
approaches with examples. 

Suppose, the database consists of the two rela- 
tions FATHER(father, child) and GF(grandfather, 
grandchild), and the two laws ‘The age of the 
father is greater than that of the child’, and ‘the 
father of the father is a grandfather’. In the first 
approach the facts in the database as well as two 
laws are considered to be proper axioms of a first 
order theory. Then a query to retrieve all the 
(grandfather, grandson) pairs results in all pairs 
(X, Y) such that GF( X, Y), can be proved to be a 
theorem of this theory from the axioms. In the 
second approach the database is an interpretation 
of a first order theory whose proper axioms are 
the two laws which are integrity rules. Therefore, 
if a tuple (X, Y) is in the GF relation, then there 
should be tuples (X, Z), and (Z, Y) already pre- 
sent in the FATHER relation. In the third approach 
the first law is considered to be an integrity rule 
and the second law a derivation rule. This deriva- 
tion rule generates new tuples which belong to the 
extension of the GF relation. Therefore, although 
the pair (X, Y) may not be present in the GF 

relation in the database, it will be returned as part 
of the response to the query to retrieve all pairs 
(grandfather, grandchild) if there is a Z such that 
(X, Z) and (Z, Y) are in the FATHER relation. 

Our approach closely follows the third view of 
the database, but incorporates security as an ad- 
ditional feature. Throughout this section, we will 
illustrate our augmented database approach with 
examples. The main issues that will be addressed 
are the expression and management of the uni- 
verse and the evaluation of queries. 

3.1 Expression and Management of the Universe 

As shown in Fig. 2, the universe, whose elements 
are expressed as formulas in first order logic, 
consists of the integrity constraints, security con- 
straints, the real world information, and the en- 
vironments corresponding to the various classifi- 
cation levels. The classification levels under con- 
sideration in increasing order of sensitivity are 
unclassified, secret and top-secret. This section 
will be devoted to a description of this universe. 

3.1. I Integrity Constraints 

Integrity constraints which are laws enforced 
on the data have been studied extensively in the 
past [18]. Whenever data is updated, these con- 
straints are checked to ensure that the update is 
valid. In addition to enforcing integrity con- 
straints on the data in the database, we will also 
enforce on the security constraints and the real 
world information. However the techniques 

utilized to enforce integrity on security constraints 
are identical to those used for the data in the 
database. These techniques will be described when 
we discuss security constraints. 

3.1.2 Security Constraints 

Security constraints, which we will also refer to 
as constraints, are the rules which assign classifi- 
cation levels to data either directly by a user who 
is authorized to do so, or by deduction from the 
other rules. These constraints are expressed as 
formulas of the form A ---f B(read ‘IF A THEN B’) 

where the formula A specifies conditions imposed 
and the formula B specifies the level assigned to 
the data to be classified. 

Consider the following constraints enforced on 
the relation EMP: 

1. Salary is secret. 

Security 
Constaints 

Real-Work! 
Information 
(Includes 

Derivation Rules) 

Unclassitied 
Environment 

Secret 
Environment 

integrity Top-Secret 
Constraints Environment 

Fig. 2. The universe (or the rule base). 
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2. Name where salary > 50K is secret. 
3. If Reagan is the president, then Name is secret. 
4. Name and Salary taken together are secret. 
These constraints are expressed by the following 
respective formulas. 

CI: EMP(X, Y, 2) + LEVEL(Y, SECRET) 

C2: EMP(X, Y, Z)r\GREATER(Y,50K) 

+LEVEL(X, SECRET) 

C3: EMP(X, Y, z) A PRESIDENT(REAGAN) 

+ LEVEL(X, SECRET) 

C4: EMP(X, Y, z) - LEVEL(XY, SECRET) 

where LEVEL( X, L) is the level assigned to X. 
In the case of constraint C4, if we assume that 

if one of name or salary is released by the DBMS at 
an unclassified level, then the other is classified at 
a secret level, then C4 can be expressed by the 
following two constraints. 

C5: EMP(X, Y, z) A RELEASE(X, UNCLASSIFIED) 

+LEVEL(Y, SECRET) 

C6: EMP(X, Y, 2) A RELEASE(Y, UNCLASSIFIED) 

-+ LEVEL@, SECRET) 

where RELEASE( X, L) implies that X is released 
into the environment E(L). 

Whenever a security constraint is updated (i.e. 
inserted, deleted, or modified) then the integrity of 
the data (in the universe or database) has to be 
maintained. Therefore, the insertion, deletion or 
modification of security constraints can be treated 
in the same way as the update of data in the 
database. When data is updated certain semantic 
integrity constraints may be checked for the 
maintenance of consistency. If the data is not 
updatable, then recovery mechanisms are needed. 
Concurrency control is essential when more than 
one user is simultaneously modifying the data. A 
detailed treatment of handling integrity in data- 
bases has been investigated in [15]. 

A similar argument can be applied when con- 
straints are updated. Some of the essential points 
in this treatment are explained here. When insert- 
ing a security constraint, one must first check 
whether any integrity constraints enforced are 
violated. Then through a deduction process all the 
information that can be deduced from the added 
information must be found and made explicit. 
When deleting information, due to the fact that 

the deduced information was made explicit in the 
add phase, this deduced information should also 
be deleted unless it can be deduced from other 
information. Modifying information can be treated 
as a deletion followed by an insertion. Therefore 
the operations performed during both the insert 
and delete phases have to be applied. We will 
illustrate this process with examples. Suppose, in 
addition to the relation EMP, the database also 
contains another relation DEPT(NAME, DEPT# , 
PROJECT) with DEPT# as the key. The NAME at- 
tribute specifies the names of employees working 
on a project in a department. Then, if the con- 
straint C2 is enforced, the names in DEPT who are 
earning more than 50K have to be assigned a 
secret classification level. This information has to 
be made explicit. Therefore the following con- 
straint C5 should also be inserted. 

C7: EMP(X, Y, z) A DEPT(X, u, v) 

A GREATER(Y, 50K)+ LEVEL(X, SECRET) 

The same argument applies when C2 is already 
enforced and DEPT is entered as a new relation 
into the database. Again C7 has to be made 
explicit. If C2 is deleted, then since C7 cannot be 
deduced any other way, it also has to be deleted. 
But the converse does not hold. 

In certain cases, the insertion of a constraint 
may cause data to have conflicting levels. Suppose 
the following constraint is enforced in addition to 
c2. 

C8: DEPT(X, Y, z) A EQUAL@, PI) 

+ LEVEL(X,TOP-SECRET) 

That is, all those who work in project Pl are 
classified at a top-secret level. If there exists a 
person who earns more than 50K and who works 
in project Pi, then this person has two levels 
assigned to him. The resulting level assigned to 
this data depends on the integrity constraints that 
are enforced. There are two solutions to this prob- 
lem. One solution is to enforce the integrity con- 
straint that a data cannot have conflicting levels. 
Another solution is to enforce the integrity con- 
straint that if the two levels assigned to the data 
are comparable, then the data is assigned the 
higher level, and the security constraints which 
caused the data to be classified at the lower level 
should be updated. If the levels are incomparable, 
then the constraint that caused the inconsistency 
should not be inserted. 
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In the previous example, if we adopt the first Any information released into an environment 
solution, then the constraint C8 cannot be in- is visible to the users at levels greater than or 
serted. If we adopt the second solution, then since equal to that of the environment. Furthermore 

the top-secret level dominates the secret level in information classified at level L can be released 
the lattice, the name is assigned a top-secret clas- into the environment E(L) if other information at 

sification, the constraints C2 and C5 are deleted, level Ll > L cannot be deduced from a user at 

and the following constraints are inserted. level L. This is represented by the following rules. 

C9: EMP(X, Y, Z)GREATER(Y, 50K) C12: RELEASE(X, L)r\ DOMINATE& L) 

NOT(LEVEL(X, TOP-SECRET)) 

+ LEVEL(X, SECRET) 

--) RELEASE(X, L,) 

c13: LEVEL(X, L)r\LEVEL(Y, L,) 

ClO:EMP(X, Y, Z)GREATER(Y, 50K) r\DOMINATE(&, L) 

DEPT(X, u, v) NOT(LEVEL(X, TOP-SECRET)) 

+ LEVEL(X, SECRET) 

In addition to maintaining the consistency of a 

r\NOT(RELEASE(X, L) +LEVEL(Y, L)) 

-+ RELEASE(X, L) 

set of constraints, we also want the set to be 
complete. That is each data in the database should 
be assigned a classification level. However, if the 
database is very large, this will require a great 
number of constraints. One way to overcome this 
is to assume that any data that is not explicitly 
classified takes a default classification level. Sup- 
pose the classification levels that are considered 
are top-secret, secret and unclassified, then this 
assumption can be expressed by the rule 

C11: NOT(LEVEL(X, SECRET)) 

The rules Cll, C12, and Cl3 are examples of 
derivation rules. In our discussion we shall include 
such rules as part of the real world information. 

3.1.4 Real World Information 

ANOT(LEVEL(X, TOPKSECRET)) 

+ LEVEL(X, UNCLASSIFIED) 

3.1.3 Environment 
The environment for a classification level con- 

tains all the information that has been released by 
the DBMS at its level, and also it contains all the 
environments whose classification levels are less 
than its level. For example, the top-secret environ- 
ment includes all the information that has been 
released by the DBMS at a top-secret level, and it 
also includes all the information in the secret and 
unclassified environments. The format of the in- 
formation in an environment will be explained in 
the next section when we discuss the evaluation of 
queries. In our treatment of the environment, we 
do not distinguish between the users at a particu- 
lar clearance level. Therefore, in our discussion we 
accommodate only three different users. It should 
be noted that our results can be easily extended to 
differentiate between the various users at a level 
by incorporating the user-id as an argument. 

Real world information is any information 
which is either a derivation rule which defines 
extensions to the relations in the database or it is 
not present in the database. Some examples of real 
world information in the form of derivation rules 
have been presented in the previous sections. In 
the database consisting of the FATHER and GF 

relation, the rule that ‘the father of a father is a 
grandfather’ is real world information. So is the 
rule which specifies the default classification level 
that is assigned to the data. We can also include 
information which has no connection to the data 
in the database as part of the real world informa- 
tion. For example, in our sample database which 
consists of the relation EMP and DEPT, the fact that 
Reagan is the president has no relevance, but we 

can include this information in the universe by the 
rule 

C14: +PRESIDENT(REAGAN) 

We can also define new relations not in the data- 
base from relations in the database. The fact that 
an employee is a senior employee if he earns more 
than 40K can be expressed by the rule 

C15: EMP(X, Y, z) A GREATER(Y, 40K) 

-+ SEN_EMP(X) 

Since NAME is a common attribute to both EMP 

and DEPT, the names in DEPT whose corresponding 
salaries in EMP are greater than 40K are also 
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senior employees. This information is made ex- 
plicit by the following rule. 

C16: DEPT( x, Y, z) A EMP( x, u, v) 

A GREATER( Y, 40K) + SEN_EMP( x) 

Alternative definitions can be given for senior 
employees. For instance, senior employees can 
also be defined to be those employees who work 
in project P2. This is expressed by the rule 

C17: DEPT( x, Y, z) A EQUAL( z, P,) 

-+ SEN_EMP( x) 

Since NAME is a common attribute to both EMP 

and DEPT, the names in EMP whose project in DEPT 

is P2 are also senior employees. Therefore the 
insertion of the rule Cl7 necessitates the insertion 
of the following rule. 

C18: DEPT( x, Y, z) A EMP( x, u, v) 

A EQUAL( z, P,) + SEN _EMP( x) 

Classification levels can also be assigned to data 
not in the database. The following rule Cl9 as- 
signs a top-secret classification level to all senior 
employees. 

C19: SENpEMP( x) ---) LEVEL( x, TOP-SECRET) 

This means that all employees who earn more 
than 40K or who work in project Pz are assigned 
top secret classification levels. This results in the 
generation of the following rules C20-C23 

C20: EMP( x, Y, z) A GREATER( Y, 40K) 

+ LEVEL( x, TOP- SECRET) 

C21: EMP( x, Y, z) A DEPT( x, u, v) 

A GREATER( Y, 40K) 

-+ LEVEL( x, TOP_ SECRET) 

C22: DEPT( x, u, v) A EQUAL( u, P,) 

-+ LEVEL( x, TOP_ SECRET) 

C23: EMP( x, Y, z) A DEPT( x, u, v) 

A EQUAL( u, P, ) + LEVEL( x, TOP_ SECRET) 

The insertion of the above rules may cause data to 
have conflicting classification levels. For example, 
along with the above rules, if rule C2 is enforced, 
then an employee may have secret as well as 
top-secret classification levels. As explained earlier, 
there are two possible options. One is to prohibit 
the insertion of the constraint C19, and the other 
option is to assign the top-secret classification to 

the data, and to update the constraints that re- 
sulted in the lower classification level. 

3.2 Query Eualuation 

The difference between non-secure DBMS and 

secure DBMS in processing queries is the modifi- 
cation of the queries according to the security 
constraints. Once the query is modified, standard 

techniques can be used to evaluate queries ex- 
pressed in relational algebra. However, relational 

algebra itself is not sufficient to express all the 
queries. For example, the query to retrieve all 
senior employees cannot be expressed in relational 
algebra. Furthermore, since all the rules are ex- 
pressed in logic, the expression of queries in rela- 
tional algebra would necessitate the translation of 
these queries into logic. Therefore, in our ap- 
proach we express queries in first order logic and 
use the rules to modify the query. This modifi- 
cation is performed by the inference engine. Then 
techniques such as those investigated in [5] can be 
applied to translate the modified queries into rela- 
tional algebra and evaluate them against the rela- 
tional database. 

There are two types of queries that can be 
evaluated. The first type are those queries whose 
evaluation does not necessitate any database 
accesses, i.e. the responses to these queries can be 
generated by accessing only the rule base. An 
example of such a query is ‘retrieve the father of 
John’ and the rule base contains the rule ‘Peter is 

the father of John’. The answer to this query is 
‘PETER’ and will be released provided there is no 
security violation. This is the technique that is 
used in the first approach to view databases 
through logic where all the facts in the database 
are encoded as rules. The second type are those 
queries whose evaluation involves accesses to the 
database. Since our main concern is the design of 
a secure database management system, we shall 
only consider queries of the second type in the 
ensuing discussion. 

The graphical representation of the query 
processing strategy in an augmented database is 
depicted in Fig. 3. The query posed in first order 
logic is modified in such a way that if this mod- 
ified query is posed and there is no Trojan Horse 
in the system, then the response that is released by 
the DBMS will be properly classified at the level of 
the user who posed the query. The modified query 



M.B. Thuraisingham / Security Checking in Relational DBMS 487 

Ouw 
Expressed 

in Lcgk 

1 

ReSpOllSe 

t 

user lmelface 

4 t 
lmormation on the 
Strategy in Lwic 

Inference 
Engine Petforms 4 

and the Response 

. Query 
Modilication 

. Assignment of 
Classification 
LW& 

Response and 
Actual strategy 
Executed 

Relational A!gebra 

b 
DBMS 

PWiOnS 

- View Mcdificatiin 
- Cuery Optimization 
. Generatiin of 

Execution Strategy 
and Response 

T 

Fig. 3. Query processing in an augmented database. 

is translated into relational algebra using some of 
the existing techniques. The translated query is 
evaluated against the relational database. While 
generating the response to the query, the DBMS 

also assembles the actual strategy that was 
executed which consists of the files that were 

opened and read, and the operations performed 
on these files. Due to Trojan Horse threats, this 
actual strategy may not be the correct strategy 
that should be executed for the corresponding 
query. We actual strategy along with the attribute 
names corresponding to the files in the strategy, 
retrieved from the data dictionary, is passed to the 
response translator which translates this informa- 
tion into formulas in first order logic. The in- 
ference engine by accessing the rule base eventu- 
ally assigns a classification level to the response 
released by the DBMS. This response is released 
into the appropriate environment. 

A crucial issue that has to be addressed in the 
design of the query processing strategy, is the 
amount of code that has to be verified to protect 
against the operation of Trojan Horses. Our objec- 
tive is to minimize the expensive process of verifi- 
cation. The verification issues involved in the de- 
sign of a standard MLS/DBMS has been investi- 
gated in [3]. In this design, when a query is 
evaluated, the verification process is deliberately 
delayed because once the verification process is 

terminated, the remaining events should not con- 
tain any hostile code that could damage the re- 

sults. If this philosophy is adapted to augmented 
databases, then it is sufficient to commence the 
verification only when the actual strategy that is 
executed by the DBMS is assembled. Then the 
remaining events of translating the strategy into 
logic, and the assignment of classification level to 
the response by the inference engine should also 
be verified. It should be noted that not verifying 
the query modification process may result in the 
incorrect modification of the query and conse- 
quently cause incorrect information to be present 
in the response. However, the verification of the 
assembly of the actual strategy, the translation of 
the strategy, and the assignment of classification 
level to response will ensure that the information 
in the response will not lead to any violation of 

security. The two additional algorithms that have 
been devised due to the augmented database ap- 
proach to security are the query modification al- 
gorithm and the classification level assignment 
algorithm. These algorithms will be described be- 
low. 

3.2.1 Query Modification Algorithm 
Step 1. 

Step 2. 

Let a query Q be posed by a user at a level 
L. Let Xi, X,, . . . , X,, be the attributes 
that are requested to be released in the 
query. At the user interface this query will 
be extended and will be expressed as 

Q A RELEASE( x1, L) A RELEASE( &, L) 

A . . . A RELEASE( x, , L) . 

Let the above expression be P. 

Examine the rules in the universe which 
lowers the classification level of any infor- 
mation by releasing one or more of the 
Xj’s at the level L. In other words, search 
for the existence of the following two rules 

A(X,> X,,..., X,,, I’) 

AB(T,, r,,..., Tk, Y) 

A RELEASE( Z,, L) 

ARELEASE(Z~, L) A . . . 

. . . A RELEASE( Z,,, , L) + LEVEL( Y, L) 

B(T,, C,...,Tk, Y) 

--j LEVEL( y, L,) A DOMINATE( L,, L) 
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Step 3. 

Step 4. 

Step 5. 
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where m G n, each Z,(l G i < m) belongs 

to (X1, X,, Xx,..., X, }, A is a relation- 
shipbetween X1, X, ,..., X,, Yand Bisa 
relationship between T,, T2,. . . , Tk, Y. If 
there are such rules, then the query will 

not be posed. 
If the condition in Step 2 is not satisfied, 
from the information in the rule base de- 
rive a formula of the form R + P where R 
consists of only relations in the database. 
If such a formula can be derived, then R 
is the modified query. This modified query 
is translated and evaluated. Also insert the 
following rule into the environment at the 
level L 

-+RARELEASE(~~, L) 

ARELEASE(X*, L) A . . . 

A RELEASE( X, , L) 

where RELEASE(X,, L) implies that attri- 

bute X, can be released at level L. 
If such formula cannot be derived, i.e. if a 

derivation of 

-+ (NOT P) 

can be obtained, then no response should 
be released to the user, and therefore the 
query will not be evaluated. It should be 
noted that since each data in the database 
or real world is assigned a classification 

level, either a formula of the form R + P, 
or + (NOT P) can be derived. 

3.2.2 Classification Level Assignment Algorithm 
Step 1. The rule that is passed to the inference 

engine from the response translator will be 

of the form 

-+R(Y,, Y,,...,Y,> 

A RESPONSE( X1, X,, X,, . . _, x,,) 

where R is a conjunction of some relations 
in the database, Y,, Y,, . . . , Y, are the 
attributes in these relations, m > n, each 
Xi(l<i<m)belongsto{Y,, Y,,...,Y,}, 
and RESPONSE( X,, X,, . . . , X,) implies that 

X,, X,7..., X, are all the attributes in the 
response generated by the DBMS. 

Step 2. The inference engine will attempt a de- 
rivation of the following formula 

+R(Y,, Y,,..., Y,) A RELEASE( X,, L) 

ARELEASE(Xz, L) A . . . 

A RELEASE( X, , L ) 

for some classification level L. 
Step 3. Such a formula can be derived because 

any data that is not assigned an explicit 
classification level will default to the un- 
classified level. The response is then as- 
signed the classification level L, and the 
following rule is inserted into E(L). 

-+R(Y,, Yz,..., Y,) A RELEASE( X,, L) 

ARELEASE(Xz, L) A . . . 

A RELEASE( X, , L) 

Therefore any user at level L will be able 
to see the response. 

We will now state and prove a theorem which 
guarantees the correctness of the query modifica- 
tion algorithm. 
Theorem: 
For a given query Q posed at a level L, the query 
modification algorithm will produce a modified 

query Q* in such a way that if this modified 
query is posed, the DBMS will release a response 
that is properly classified at a level L. 
Proof: 
To make the proof simpler, we will assume that 
there is no Trojan Horse in the system. The proof 
is by contradiction. Suppose the response S is not 
properly classified at level L. Then the following 
condition holds. 

3L, > L, CLASSIFICATION(INFER( S, E(L))) = L, 

We will prove that this condition is never true. Let 
Y be the attribute (or attributes) inferred from 
(S, E(L)). Let the attributes in (S, E(L)) that 
resulted in Y be X,, X,, . . , X,. Then X,, 
X2, . . . , X,, Y are in some relationship which is 
denoted say by A. Also the universe would have 
had the following two rules before the query Q 
was posed. 

A(X,, X,,..., X,, Y) 

AB(T,, T2 ,..., Tk, Y) ARELEAsE(X1, L) 

ARELEAsE(X~, L) A . . . ARELEASE(X,,, L) 

+ LEVEL( Y, L) 
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B(T,, T2 ,..., Tk, Y) +LEVEL(Y, L,) 

A DOMINATE( L,, L) 

In Step 2 of the algorithm, it would have been 
ensured that the query is never posed. This con- 
tradicts the assumption that the query is not prop- 
erly classified at level L. 

We will now illustrate the techniques with ex- 
amples. First we will assume that there is no 
Trojan Horse in the system and consider the 
evaluation of the following four queries all posed 
by unclassified users. 
Ql. 

Q2. 

Q3. 

Q4. 

Retrieve names in EMP and the constraint C2 
is enforced. 
Retrieve all senior employees and the con- 
straint C2 is enforced. 
Retrieve all salaries from EMP and the con- 
straints that are enforced are ‘The names in 
EMP are secret’ and ‘If the salaries in EMP are 
released, then the names are unclassified’. 
First retrieve all names, and then retrieve all 
salaries, and the constraint C4 is enforced. 

The queries Ql, Q2 and Q3 are single queries. 
Ql involves only relations in the database, whereas 
Q2 does not. No query will be evaluated in 
processing the query Q3 because the condition in 
Step 2 of the query modification algorithm will be 
satisfied. The query Q4 is an example of a multi- 
ple query. It should be noted that due to the fact 
that there is no Trojan Horse in the system, it 
suffices to explain only the query modification 
algorithm for these four examples. We will then 
relax our assumption and evaluate the following 

query. 
Q5. Retrieve all social security numbers from EMP 

and the constraint C is enforced. 
In evaluating the query Q5, the query modifica- 
tion algorithm as well as the classification level 
assignment algorithm will be applied. 

3.2.3 Evaluation of the Query QI 

This query is expressed by the rule 

C24: + EMP( X, Y, Z) 

A RELEASE( X, UNCLASSIFIED) 

Note that since only the names have to be retri- 
eved, we assume that the variables Y and Z are 
existentially quantified although we have not ex- 
plicitly represented it here. In other words the 

response that is returned is the set 

{X:3Y, ZEMP(X, Y, 2) 

A RFLEASE( X, UNCLASSIFIED)} 

Note also that the sub-formula RFLEASE( X, UN- 
CLASSIFIED) will be inserted by the user interface 
to the query { X: 3 Y, Z EMP( X, Y, Z)}. The for- 
mula in C24 is the expression P. The condition in 
Step 2 of the algorithm is not satisfied and there- 
fore a derivation of the formula R + P will be 
attempted as follows: 

C25: EMP( X, Y, Z) A NOT(GREATER( Y, 50K)) 

-+ LEVEL( X, UNCLASSIFIED) 

x { c2, c12) 

C26: EMP( X, Y, Z) A NOT(GREATER( Y, SOK)) 

+ EMP( X, Y, Z) 

A LEVEL( X, UNCLASSIFIED) 

x { C26) 

C27: EMP( X, Y, Z) A NOT(GREATER( Y, 50K)) 

+ EMP( X, Y, Z) 

A RELEASE( X, UNCLASSIFIED) 

x { C27, C14) 

Therefore the modified query is 

C28: + EMP( X, Y, Z) A NOT(GREATER( Y, 50K)) 

and the following rule will be inserted into the 
unclassified environment. 

C29: + EMP( X, Y, Z) A NOT(GREATER( Y, 50K)) 

A RFLEASE( X, UNCLASSIFIED) 

3.2.4 Evaluation of Query Q2 

This query is expressed by the rule 

C30: + SEN_EMP( X) 

A RFLEASE( X, UNCLASSIFIED) 

Assume that senior employees are defined by the 
rule C12. Then the query is equivalent to: 

C31: --f EMP( X, Y, Z) A GREATER( Y, 40X) 

A RELEASE( X, UNCLASSIFIED) 

The derivation of the query to be posed so that the 
information returned is observable to the user is 
as follows: 

C32: EMP( X, Y, Z) A NOT(GREATER( Y, 50K)) 

3 LEVEL( X, UNCLASSIFIED) { C2, C12) 
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C33 : EMP( x, Y, z) A GREATER( Y, 40K) 

A NOT( GREATER( Y, 50K)) 

+EMP(X, Y, z) 

A GREATER( Y, 40K ) 

A LEVEL( x, UNCLASSIFIED) { C33) 

C34: EMP( x, Y, z) A GREATER( Y, 40K) 

A NOT(GREATER( Y, 50K)) 

+ SEN_EMP( x) 

A RELEASE( x, UNCLASSIFIED) { C34, C16) 

Therefore the modified query is 

C35 : -+ EMP( x, Y, z) A GREATER( Y, 40K) 

A NOT(GREATER( Y, 50K )) 

and the following rule will be inserted into the 
unclassified environment. 

C36: + EMP( x, Y, z) A GREATER( Y, 40K) 

A NOT(GREATER( Y, 50K)) 

A RELEASE( x, UNCLASSIFIED) 

3.2.5 Evaluation of Query Q3 
The query will be expressed as 

C37: -+ EMP( x, Y, 2) 

A RELEASE( Y, UNCLASSIFIED) 

The condition in step 2 of the algorithm will be 
satisfied due to the two constraints expressed by 
the following two rules. 

C38: -+ EMP( x, Y, z) A LEVEL( x, SECRET) 

c39: EMP( x, Y, z) A RELEASE( Y, UNCLASSIFIED) 

- LEVEL( x, UNCLASSIFIED) 

Therefore the query will not be posed. 

3.2.6. Evaluation of Query Q4 
Since names and salaries only when taken to- 

gether are secret, if one of them has been released 
to an unclassified user, then the other will be 
assigned a secret level. This is represented by the 

rules C5 and C6. 
Suppose an unclassified user wants to retrieve 

all names. The query posed will be expressed by 
the rule C24. The derivation of the formula R + P 
is as follows: 

C40: EMP( x, Y, z) 

- EMP( x, Y, z) A LEVEL( x, UNCLASSIFIED) 

x { C12) 

C41: EMP( x, Y, z) 

--j EMP( x, Y, z) 

A RELEASE( x, UNCLASSIFIED) 

x { c39, C13) 

Therefore the query that will be evaluated is 

C42: + EMP( x, Y, Z) 

and all the names will be released. The rule C24 
will be inserted into the unclassified environment. 

Suppose at a later time the unclassified user 
requests all salaries from EMP. The query that will 
be posed is expressed by rule C37. 

Rule R - P cannot be derived as (NOT P j can 
be deduced as follows: 

C43: -+EMP(X, Y, z) 

A RELEASE( Y, SECRET) { C41, C5} 

C44: + NOT(EMP( x, Y, z) 

A RELEASE( Y, UNCLASSIFIED)) { C43) 

Therefore the query to retrieve the salaries will not 
be evaluated. 

Note that if a secret user had requested for the 
salaries, the query posed will be expressed by rule 
C43 and the salaries will be released as a deriva- 
tion of a rule of the form R -+ P can be obtained 
as follows: 

C45: EMP( x, Y, z) 

+EMP( x, Y, z) 

A LEVEL( Y, SECRET) { C43) 

C46: EMP( x, Y, Z) 

+ EMP( x, Y, z) 

A RELEASE( Y, SECRET) { C45, C13) 

The rule C43 will be inserted into the secret 
environment. 

If a top-secret user requests salaries, the query 
posed will be 

C47: + EMP( x, Y, z) A LEVEL( Y, TOP-SECRET) 

and the formula of the form R -+ P can be derived 
as follows. 

C48: EMP( x, Y, z) 

-+EMP( x, Y, z) 

A RELEASE( Y, TOP-SECRET) { c45, c13) 

Therefore the salaries will be released and rule 
C47 will be inserted into the top-secret environ- 

ment. 



C49: --j EMP( x, Y, z) A RELEASE( z, UNCLASSIFIED) 
In this paper we have presented a design for a 
multilevel augmented relational DBMS. In particu- 

Case 1: Somewhere in the process the query is 
incorrectly modified to retrieve all names 
from EMP. 

Since the names in EMP are unclassified, this 
query is translated and evaluated. The DBMS will 
generate all names in EMP. From the information 
maintained in the data dictionary the DBMS will 
retrieve the attribute name corresponding to the 
file that was opened, and pass this information to 
the response translator. The response translator 
will generate and pass the following rule to the 
inference engine. 

C50: --, EMP( x, Y, z) A RESPONSE(x) 

The inference engine will attempt a derivation of 
the following rule. 

lar we have addressed the issues on the manage- 
ment of the information in the rule base, and the 
operation of the inference engine for query 
processing. In addition to enhancing the tech- 
niques described in this paper, some of the other 
issues that are currently being addressed are the 
evaluation of recursive queries in MLS/DBMS and 
handling of updates in a database. Recursive 
queries are recognized as being of considerable 
importance to knowledge based systems. Even in 
non secure database management systems, al- 
though strategies have been proposed to evaluate 
recursive queries, no method is yet known to 
choose from these algorithms [l]. 

C51: + EMP( x, Y, z) A RELEASE( x, L) 

and it will succeed in deducing rule C24. 
The names released by the DBMS will be as- 

signed an unclassified classification level and rule 
C24 will be inserted into the unclassified environ- 
ment. It should be noted that the information that 
is returned to the user is not what he requested. 
But the user will not acquire any information to 
which he is not authorized. 
Case 2: Somewhere in the process the query is 

incorrectly modified to retrieve all salaries 
in EMP. 

The DBMS will generate the salaries in the re- 
sponse. Although the salaries are secret, since the 
unclassified user posed the original query, the 
response translator will pass the following rule to 
the inference engine. 

Our security policy for read only databases has 
to be extended to include the read/write data- 
bases. To accomplish this, in addition to the policy 
for queries, we need to formulate a policy for 
updates, and devise algorithms to implement the 
policy. The main problem that has to be overcome 
in the case of updates is the covert channel attacks 
where sensitive information is encoded in other- 
wise benign fields. Such attacks are prevented if 
the policy for update ensures that higher level 
information is never written into a lower classifi- 
cation level. However it is extremely difficult to 
build systems which satisfy this policy at all times 
[9]. We need to address the issue as to whether the 
benefits gained by augmenting databases with in- 
ference engines in handling queries may cause 
additional problems in handling updates. 

C52: -+ EMP( x, Y, z) A RESPONSE(Y) 

The inference engine will attempt a deduction of 
the rule 

C53 : + EMP( x, Y, z) A RELEASE( Y, L) 

and will succeed in deriving rule C43. 
Therefore the response will be assigned a secret 

level and rule C43 will be inserted into the secret 
environment. The unclassified user who posed the 
query will not acquire any information. 

The successful design and implementation of 
secure database management systems are crucial 
as computerized information is a critical resource 
in numerous enterprises, whether industrial, com- 
mercial or government, and compromise to infor- 
mation security is a serious problem that faces the 
world today. The ideas presented in this paper 
provide a sound theoretical foundation upon which 
practical solutions to the design of MLS/DBMS can 
be provided. 
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