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This paper describes a sccurity model for object-oriented
systems. The model supports a flexible data classification policy
based on inheritance. The classification policy allows for a
smooth transition between rigid classification rules and
unlimited polyinstantiation. The security model treats the data
model as well as the computational modcl of object-oriented
systems allowing more flexibilicy. This model trades an
increase in complexity for a more flexible security model.
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1. Introduction

ecently much research has been devoted to the
design of multilevel secure relational DBMS
[5, 6, 9, 14]. The relational data model is well
defined and generally applicable to a wide range of
data-modelling problems. For some problem
domains involving multimedia DBMS and CAD/
CAM, object—oricnted systems present a more suit-
_able data modecl and have become popular in these
~ domains.

Object-oriented systems began as programming
systems and are only now dealing with issues such
as transactions and controlled sharing of data [7,
17]. Resolving these issues paves the way for more

*Present address: The MITRE Corporation, Burlington Road,
Belford, MA 01730, US.A.

uscful object-oricnted DBMSs and generates a
need for sccurity.

Object-oricnted DBMSs support a powerful com-
putational model which can be used to express
applications. The relational algebra does not deal
with the subject of updating or creating new rela-
tions cven though most relational DBMSs do
provide this capability. The fact that the
object-oriented model includes an explicit compu-
tational model allows the incorporation of the
computational model into the sccurity model.

Providing security for an MLS/DBMS-using query
modification is discussed in ref. [13]. Query modi-
fication is suited to systems with a simply defined
set of composable operators. Object-oriented
systems provide a fairly large set of primitive
operators. These operators can be combined pro-
cedurally to form functions with complex seman-
tics. Query modification does not consider the
problem of updates. Data modification and crea-
tion are common operations in object-oriented
programs and an important issue in our model.

Security in object-oriented systems is discussed in
ref. [16]. Objects, object schemas, classes, instance
variables, methods, composite objects and messages
are all given classifications. The paper develops a
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In an object-oriented system cverything is repre-
sented as an object. An object is made up of private
statc information and a sct of actions which repre-
sent the interface to the object. The state informa-
tion is represented as a set of instance variables
whose values arc objects. The actions defined on
objects are called methods. A method carrices out
its action by sending messages. A message consists
of a method sclector, which 1s the name of the
method to be invoked, followed by a list of objects
used as arguments. Sending a message to an
object causes a method to be exccuted. Objects are
passive entties which store information. A method
is also passive. It represents a function which can be
performed on an object. A message sent to an
object creates a method activation. Mcthod activa-
tions arc active and perform computations.

Primitive objects represent their state  directly;
cxamples of these primitive objects are numeric
valucs, strings and identifiers. Primitive methods
represent actions carried out directly without send-
ing messages; examples are adding numeric values
and indexing arrays.

Each object has a type or class it belongs to. All
objects in a class are equivalent computationally.
Each may have a different state but the type of
computation which can be performed on an object
is uniform throughout the class. The class defincs
what methods arc available in instances of the class
and what instance variables are included in the
instance objects. The class of an object is also an
object. A class object creates new instances of its
own type. A class object defines a type by specializ-
ing other types and defining additional behavior.
The refined types are referred to as its sub-types.
An object inherits methods and access to instance
variables from its class object and cach super-type
of the class object all the way up the inheritance
lattice to the root, OBJECT.

Mcthods arc specified such that only data con-
rained in the object receiving the message are
modified dircctly. A method activation has no
knowledge about the states of other objects and it
cannot directly affect other objects.
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Fig. 1. Concepts of object-oriented model.

Figurc 1 illustrates some of the concepts discussed
above.

4. Security Model

This scction introduces a security model with
several unique features. First, it is proposcd for usc
in object-oriented systems.

Secondly, the protected passive data in our modecl
arc instance variables and objects. Access to them is
arbitrated by the TCB. Another common choice
for protected objects is a message [3, 20]. In this
approach cach object is given a classification. To
enforce the *-property [2], messages can only be
sent to objects of an cqual or higher level and
responses can only be received from objects of a
lower or equal level. This technique is well suited
to distributed systems where the message passing is
part of the system kernel. However, this approach
has several problems. First, the need to enforce the
*_property cnsurcs that only objects of the same



sct of application-independent propertics which
describe relations between entity classifications. It
defines integrity rules for these entity classifica-
tions. It is difficult to determine which entitics in
the model act as protected objects and which act as
subjects. This makes the sccurity properties of the
model difficule to evaluace.

Mandatory sccurity is investigated in ref. [18].
Sccurity is cnforced with a combination of com-
pile-time and run-time checks. The security model
classifies variables as having a fixed or indetermin-
ate sensitivity level. The indeterminate levels are
mcant to deal with indeterminate informaton
flows and must be checked at run-time. The
security model does not support automatic object
classification rules nceded in 2 DBMS,

The usc of a sensitivity level range to control the
sensitivity levels of data in a container is used in
SEAVIEW [15] and TRUDATA [14]. TRUDATA uscs it to
limit vulnerability. seaview uscs it to limit poly-
instantiation where it is augmented with sccurity
constraints for tuple labelling. In our approach
these constraints are the sccurity constraints. Con-
straint satisfaction is enforced as part of mandatory
sccurity. Constraint satisfaction guides the action of
the reference monitor.

We propose a sccurity model for a multilevel
secure object-oriented database (SODA) with the
following advantages. It is posed in terms of an
object-oriented model, and it enforces information
containment and sccurity label integrity. The
model covers the computational model as well as
data access and classification. This allows the inter-
action of the two concerns. The classification level
of a computation is adjusted based on its clearance
level, the data it has access to, and classification
constraints enforced on data it wishes to create.

The model supports a data classification policy
which fits naturally into the object-oriented model.
The classification technique is based on the inheri-
tance lattice which allows a natural way of cxpres-
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sing sccurity constraints. The classification method
allows the classification rigidity to be tuned on a
class-by-class basis. This provides for wide varia-
tions in labelling requirements.

2. Multilevel Security

Multlevel secure computers protect objects classi-
ficd at more than one level and allow sharin
between users of different clearance levels. Objects
arc labelled with their sensitivity levels. Subjects are
associated with clearance levels. A muldlevel secure
computer arbitrates all access of objects by subjects.
The arbitration is carried out by the reference
monitor according to a sccurity policy.

MLS/DBMSs must deal with large numbers of
objects, interrelated in complex ways which have
scmantic mcaning. This causcs several problems.
The first is cfficiency. Large numbers of objects
can causc a large burden on the access monitor.
Sccondly, all of these objects must be classified in a
complete and consistent way. The third problem is
representing and manipulating objects containing
data of muldple sensitivity levels. The inter-
relations of the data and their semantics lead to an
inference problem. Inference occurs when infor-
mation which can be retrieved from the database
allows other data to be deduced. Inference provides
a flow of data which is not arbitrated by the
reference monitor.

3. Object-Oriented Systems

This scction gives a bricf background on object-
oriented systems. There is a wide variation in what
is meant by “objcct oriented.” Most of our inter-
pretation comes from sMALLTALK-80 [11]. Varia-
tions on this model arc given in ref. [19]. The
object-oriented model began as a programming
system. Our definition of an object-oriented
system also stems from our desire to incorporate
databasc considerations such as schema cvolution,
transactions and controlled sharing of dara. Our
understanding of these issues comes from refs. [1],

[7] and [17).
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level can send and receive messages. Secondly, mes-
sages arc sent to the class to carry out actions on the
instances of the class. When the instances of the
class have different sensitivity levels, the class
objects must cither be trusted to handle muldlevel
objects, or there must be a version of the class for
cach sensitivity level. These models also have diffi-
culty with shared variables, e.g. variables in the class
which arc available to all of the instances. Unless
the instance objects and the class share the same
sensitivity level, class variables will cither be
unrcadable or unwritable. These problems stem
trom the fact that a method when exccuting in this
modcl has access to all of the object’s data.

Data classification in our model is based on
inheritance. Each object in a class shares the same
classification constraint. Each may have a different
sensitivity level but all satisty the common con-
straint. The classification constraint of a class is
inherited by its sub-types. The constraint may be
redefined in the new class but only by the system
sccurity officer.

Attaching classification constraints to classes and
allowing subclasses to inherit classification con-
straints simplifics data classification. It uscs the
existing structure of the system as the basis for
classification. The inheritance of constraints
cnsurcs that they only need to be specified when
there is a change.

Data classification specifics a range of sensitivity
levels which can be assigned to an object and is
strictly enforced by the model. This allows the clas-
sification rigidity to be adjusted on a fine scale.

Each method activation is independent. The
current classification level of the method activation
represents the sensitivity level of data which the
activadon has read. Once the activation finishes,
this information disappears and control is returned
to the caller acting with its original authority.

A tundamental concept of the model is that since
everything in the object-oriented model is an
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object, there is good assurance that no portions of
the system are unprotected. The view that every-
thing is an object is interesting, It gives a simple
understanding of the syscem but does not tell the
whole story. To rcally understand the object-
oriented model and our sccurity model it is neces-
sary to understand the practical limitations of this
view. For example, all objects store their state in
instancc variables in the form of other objects. This
view lcads to an indefinite recursion. Each object
stores its state in terms of other objects and no values
are actually stored. The missing concept is the
primitive object. Thesc objects represent their state
dircctly without using other objects and therefore
terminate the recursion. Another cxample of a
special case involves methods. Methods carry out
their actions by sending messages. This is also a
problem; cach method sends messages but none
performs a computation. Primitive methods arc the
answer to this problem; they perform actions
directly and send no messages. Another concept of
object-oriented systems is that cach object is an
instance of another. The solution here is the object
Mectaclass which is an instance of itself.

These discontinuities point to special cases in the
object-oriented model and special cases in our
security model. The three cases described above
must be considered as special cases of the security
model as well. Firse, all objects in the model arc
labelled except primitive objects which are not
labelled at all. They represent basic data elements
which have little meaning out of context. Secondly,
all methods have an independent current classifica-
tion level except for primitive methods. These
mcthods inherit the current classification of the
method activation which called them. Each object
inherits classification constraints from its class.
Metaclass is an instance of itself and must provide a
built-in classification constraint.

4.1 Security Entities

This section identifies the security role played by
cach entity in the object-oriented model. The
portions of the object-oriented model discussed are
as follows: classes, primitive objects, objects,
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instance variables, messages and method activa-
tons.

Classes

A class represents the type of its instances. The class
defines the methods and instance variables its
instances have. It also defines class variables which
are available to all instances. Classification con-
straints arc recorded in the class and apply to all
instances.

Primitive Objects

Thesc objects arc the basic clements which all
objects can be broken into. They are not assigned
sensitivity levels. They represent basic data cle-
ments which have little meaning out of context.

Objects

Each object can have a scnsitivity level. This sensi-
tivity level restricts access to the whole object
rather than just onc instance variable. This classifi-
cation method can be uscd to protect the objects
regardless of where the reference is from.

Instance Variables

Each instance variable can have a sensitivity level.
The value of the instance variable is the protected
data. This classification can be used to protect
primitve values and associations between objects.

Messages

A message is sent on behalf of, and represents a
subject. It is sent to an object requesting execution
of a selected mcthod with the authority of the
sccurity subject which the message represents.
Messages are  conceptually labelled with two
security classification levels. The first is the clear-
ance level of the user. The second level is the cur-
rent security classification of the originating
method. These two levels act as an upper and lower
bound on the authority of the new method activa-
tion.

Method Activations
Method activations are the only active entites in
the model. Each method executes in a scparate

context described by an activation. The cxecution is
carried out by sending messages to objects. Primi-
tive methods are carried out directly by the
mcthod activation without sending messages.

4.2 Labelled Entities

This model supports two types of labelled entitics,
objects and instance variables. Each object can
support only one type. Either the object is labelled
or its instance variables arc, but not both. Object
labelling associates a sensitivity label with an object.
This label is used to arbitrate access to the entire
object regardless of the context in which it is used.
This type of labelling is illustrated in Fig. 2.

An object with instance variables labelled has a
sensitivity level for cach instance variable of the
object. The label controls access to the contents of
the instance variable. This labelling protects the
associations between instance variables. Since an
object can be referenced by more than onc object,
variable labclling allows a classification to be asso-
ciated with cach context in which the data arce seen.
Variable labelling is illustrated in Fig. 3.

Label

nsitivity Valug
Security Label Department

ID# Name |Manager
Confidential
16 'Covert 'A. Mexico'

Operations'

Fig. 2. Object labelling.

Empioyee

=] Name Dy
Label Label Label
Scnsitivity Value Sensiuvity Value Sensitivity Value
Unclassified | 470-55-2777 Unclassified| "T.Johnson' Secret ‘Covert
Operations’

Fig. 3. Instance variable labelling.
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4.3 Active Entities

In this model the active entity is a method activa-
tion. A method activation is similar to a function
invocation. It is the result of a message being sent
to an object. A method activation on its surfacc is
similar to a process with no state. The objects
accessed by the method activation are protected.
Information encoded in the exccution state of the
program is not protected. Each method activation
has its own statc and is capable of cncoding infor-
mation. To control the information in the state of
the activation, a method activation is assigned a
current classification level. This level records the
lcast upper bound of all information the method
activatdon has read or has access to. This informa-
tion can come directly from reading an object or
indirectly from what the calling method has read.
The clearance level of the method activation comes
from the associated user. The clearance level serves
as an upper bound on the current classification
level.

TRUDATA [14] associates a range of authority with
subjects. This range is changed by the user but is
not modified dynamically.

4.4 Data Classification Policy

A classification constraint consists of two parts. The
first part specifies the type of labdhng, object or
instance variable. The sccond part consists of scnsi-
tivity level ranges for cach labelled object. In' the
casc of object labclling there is one range for the
object itsclf. For instance variable labelling there is
onc range for cach instance variable. The range
specifies allowable limits on the sensitivity level of
the protected object.

Data classification is based on the inheritance
lattice of the system. Classification is determined in
two ways, type and specialization.

(1) The classification constraints for an object are
obtained from its class.

(2) The classification constraint ranges of a new
class are inherited from its super-type.
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The inheritance lattice provides a natural way of
categorizing objects into semantically meaningful
groups. From (1), cach class is assigned a classifica-
tion constraint which applics to its instances.

The classification range of a subclass is inherited
from its super-class, (2). The labelling type and
ranges for corresponding labels are the same. In
the case of variable labelling the sub-type may
declare additional variables. These variables are
unrestricted, fe. they have a range of [sysTEm Low,
sysTem HIGH). This allows users to create new
classes. They are not however allowed to modity
constraints for the new class. The modification of
constraints is donc by the system sccurity officer.

This classification mechanism can be used to hide
associations between  objects. Consider a class
named “Flights” whosc instances contain informa-
tion describing the destination and cargo of flights.
“Flights” is classificd using variable labelling with
“Destination™ and “Cargo” both classified [secreT,
SECRET|. To correlate the destination and cargo for
a flight, a uscr must have a SECReT clearance. This
constraint classifics the path to the information,
but not the information itsclf.

Classification can be based on the value of an
instance variable. [t requires the creation of a sub-
type for cach classification group. For cxample,
to classify information about flights with a destina-
tion of Iran as SECRET, a sub-type of the “Flights”
class is created called “FlightsTolran.” All instances
of the class “Flights” arc classified [uNCLASSIFIED,
UNCLASSIFIED]. The instances of “FlightsTolran” arc
classified [sECRET, SECRET]. In this casc it is undesir-
able to have a class which 1s visible to UNCLASSIFIED
users called “FlightsTolran.” To hide the class
object, the class “FlightsTolran™ itself can be classi-
fied secret by the System Security Officer.

Limits sct by the classification constraints arc
cnforced by the TCB. If a sensitivity level for a new
object cannot be found which both satisfies the
classification constraint and maintains information
containment, the object will not be created. For
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cxample, consider a method activation which has
rcad secreT data and tries to create an object which
is constrained to be [UNCLASSIFIED, UNCLASSIFIED|. The
object will not be created. The object created must
be labelled sEcret to avoid writing down but this
docs not satisfy the constraint.

Sensitivity level ranges provide a conceptually
simple way of classifying data. The technique pro-
vides a simple enforcement which can be carried
out in the TCB. The task of assigning constraints
and their verificadon is donc by a scparate trusted
application, the sensitivity labeller.

4.5 Mandatory Access Restrictions

This scction describes mandatory access restric-
tions. The restrictions definc a set of allowable
object accesses. There arc three parts in the model.
The first part describes which object accesses arc
allowed based on the sensitivity level of the object
and the current classification level of the method
making the request. The second part shows how
these restrictions are modified to support poly-
instantiation. The last section describes assignments
and allowable changes to security classification
levels of method activations.

4.5.1 Object Access

The discussion of object access is simplified by
considering labelled object access. Figures 2 and 3
diagram the role of labelled objects for object and
instance variable labelling. For the following dis-
cussion consider a mcthod activation cxecuting
with a clearance level of Ly, and a current classi-
fication level of Lq,,,... accessing a labelled object
stored in a slot with a sensitvity constraint range
defined by [Lycoms Liop]- The method activation is
allowed to

Rule 1.1

Read the value of a labelled object with sensidvity
level L, if Ly<Lg,,. An unrcadable object
returns nil. (Nil is the value stored in an instance
variable when an object is created. It means that no
object is stored there.)

Rule 1.2

Creatc and store in the constrained slot a labelled
object with sensitivity level L, = Ly e 1 Lioreom <
Locerr  a0d  Lgeuprene S Ly otherwise  reject  the
update and inform the user.

Figurc 4 represents the range of object sensitivity
levels which a method activation can read. The
dashed line represents the fact that the current clas-
sification level will be increased up to L, (Rule 2.3).
Figurc 5 illustrates the conditions in which an
object can be written. The condition is described in
terms of the method activadon’s current classifica-
tion and clearance level, and their relation to the
classification constraint of the object. The dashed
linc illustrates the range in which the current clas-
sification will be raised (Rule 2.3). This is to satisty
the requirement that the data is classified above
Liocom The clearance restriction disallows writing
up. This allows polyinstantiation to be avoided
when the classification range of the data is degen-
crate, 1.¢. Ligqom = Leop. The restriction on the cur-
rent classification level maintains the *-property.

Rules 1.1 and 1.2 by themselves do not ensure the
simplc security property or the *-property [2] since
the current classification levels of methods are

Object L
Level Range 1 Read Nil Object
Objects Returned
by Read
| I— l | N
I I I |
System Current Clearance Sysem
Low Classification Leve High
Level
Fig. 4. Labelled object read rules
Clearance [ »l
Level Range I ]
Current
Classification |<— - >|<——————>|
Level Range
1 | [ §
¥ 1 1 1
System Lbotiom Liop Sysicm
Low High

Fig. 5. Labelled object modification rules.
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allowed to change and these changes have not yet
been defined. The maintenance of these propertics
can be cnsured only after examining the modifica-
ton policy for method classification levels. The
security propertics enforced by the model are dis-
cussed in Section 5.

4.5.2 Polyinstantiation

The multiparty update conflict is noted by Den-
ning et al. in [4, 5] and is the problem which poly-
instantiation addresses. The conflict arises when
low-level users unknowingly attempt to overwrite
higher level data which are invisible to them. If the
write is rejected a storage channel is created. If it is
allowed, high level users have no way to protect
their data.

Undl now, we have ignored this problem. If the
classification range for an instance variable is
degenerate, i.e. Ly = Loy, this is adequate. In this
case, the slot in which a labelled object is stored has
one allowable sensitivity level. The model requires
that to store a labelled object the user’s classifica-
tion level be cqual to the level of the slot (Rule 1.2).
Now if an update is rejected it is so because the
uscr’s classification does not satisfy Rule 1.2. This
r¢jection cannot cause a covert channel.

When L, strictly dominates Ly, ¢ach slot has a
range of sensitivity levels. In this case polyinstantia-
tion is used to climinate the conflict. Polyinstantia-
tion allows each slot to contain an object of each
sensitivity level between Ly, and L.
Polyinstantiation is added to the model by allowing
each instance variable to contain a collecton of
labelled objects. This collection is called a poly-
instantiated set. Each element of the sct is a labelled
object. The sensitivity level of cach clement is
unique in the set. When an element is added with
the same sensitivity level it replaces the original
member.

Rules 1.1 and 1.2 of the previous section can be
revised to include polyinstantiation as follows:
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Rule 1.1’
Read the value of all labelled objects in the poly-
instantiated sct with sensitivity level Lo if
Lo < Ly Nil is returned when no objects are
readable.

Rule 1.2/

Add a labelled object to the polyinstantiated set
with sensitivity level L = Lrene if Lioronm < Loclear
and Ly e S Ligps otherwise reject the update and

inform the user.

Polyinstantiation introduces scveral problems. Firse,
the interpretation of the data becomes more com-
plex. Many simple values become sets of values
when polyinstantiation is used. This complicates
understanding of the data and makes applications
harder to devclop. The sccond problem deals with
replacement. Normally, when a labelled object is
stored in an instance variable it replaces the
labelled object that is alrcady there. With poly-
instantiation this is not nccessarily the case. It may
just add another value to the set.

4.5.3 Method Activation Security Levels

A method activation exccutes with a sccurity classi-
fication leycl L urren: determined by two quantities.
The first is the clearance level Lg,,,, of the user.
The second quantity is the current security classifi-
cati.on level Lsoriginaror of the mcthod activation
which started this method by sending a message.
Below is a set of rules determining the current
security classification of a method activation.

Rule 2.1

The login method begins execution with classifica-
tion level Lg e =SYSTEM LOW, (the method
begins when the system is started and has no
originator).

Rule 2.2
A method activation begins with a classification
ICVCI LScurrent = LSoriginaror'

Rule 2.3
If a labelled object with sensitivity level Ly such
that Ly rene < Lo is read or added to a polyinstan-
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dated sct the current classification level of the
method will be increased to the least upper bound
of Louyrrene a0d Lo, 7€ Lo yrene 180 L.

Rule 2.4

The object returned by a method activation is
labelled with the method activation’s L.yenc
These rules ensure Ly, will always dominate the
level of the information available to the activation.
The current classification level will begin at the
lowest possible level to allow the method activation
the most flexibility possible.

One point that is not explicidy stated is that the
current classification level pertains to a method
activation. When the method returns, the informa-
tion encoded in the state of the activation dis-
appears. The caller then resumes with its original
current classification level.

An example of how these rules work is shown in
Fig. 6. Each line shows the authority range [current
classification level, clearance level] for a method
activation. The action which causes the change in
authority level is described in italicized text
between the lines.

The “Login Activation” begins with a current clas-
sification level of System Low (Rule 2.1). It sends a
message to another object which starts execution of

Login | ——|
Activation Write Object of
Level L2
Login
Activation Method Activation |
ime Completes
Method
Activation'l Read Object of
Level L1
Method s ]

Activation | Send message to start

Method activaiion 1

Login | |
Aclivaton Initial Authoriry
Range
1 1 3 1 i
r T T T 1
System L1 L2 Clearance System
Low Level High

Fig. 6. Method activation rules.

“Method Activation 1”7 (Rule 2.2). “Mcthod Activa-
tion 17 rcads an object with a sensitivity level L1. In
the process of doing this its current classification
level is raised to L1 (Rule 2.3). When “Mecthod
Activation 1”7 returns, the “Login Activation”
resumes with its original current classification level
of System Low. Finally, it writes an object with
constraint [L2, L2] and subscquently raises its
current classification level to L2 (Rule 2.3).

5. Model Properties

This scction discusses properties of the sccurity
modcl. We do not attempt formal proofs of these
propertics  but usc informal arguments to
demonstrate them.

5.1 Simple Security Property

The simple security property states that a subject
with a clearance level Lg is not allowed to read an
object with a sensitivity level L, such that L, > L.
In the notation used in this model, a subject with
clearance level L., is not allowed to rcad an
object with sensitivity level L, if Ly > Ly, This
is cnsured by Rule 1.1".

5.2 *-Property

The *-property states that a subject with current
security classification level Lg cannot write objects
with sensitivity level L such that Ly > L. The
proposed model docs not allow information to be
written down. Evidence is based on two facts. First,
the current classification level dominates the sensi-
tvity level of all information accessible to the
method (Rule 2.3) and secondly the method activa-
tion cannot write or create objects such that
LScurrem > LO (from RUIe 1. 2 ’ Le. LO LScurrenr)

The information accessible to a method activation
can come from its instance variables, information
about its calling context and information available
about the existence of unreadable objects. The
information accessible from instance variables is
covered by Rule 2.3, Lo ... dominates the sensi-
tvity level of all objects which have been read by

the method activation.
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Information read by the calling method activation
can be passed on by the mere fact that the method
is executed. For example

SecretObject 1FTRUE: [UnclassifiedObject aT
“Answer” puT: Truc]

This expression sends the conditional message
IFTRUE: to SceretObject. The action taken by this
message is to exccute the block which is the argu-
ment to the message if SceretObject is Truc. The
block consists of the expression in brackets. This
expression will associate the value True with the
index value “Answer” in the dictionary Unclassi-
fiedObject. (Sce Appendix A for a brief description
of the SMALLTALK syntax.)

The truc block is only executed if the SecretObject
is truc. Once called, the true block implicity knows
the value of the SecretObject. Therefore the
method activation must start cxecution at the
SECRET level (Rule 2.2). Ly o, dominates the level
of its caller and thus the scnsitivity level of all
informaton it has access to. This also addresses the
problem of information being transferred when the
SccretObject is False. The program cannot store
UNCLASSIFED information when the vaue is True
and it does not attempt to when the value is False.
This program will not writec down information
about SceretObject.

Information about the existence of objects is given
to a method activadon when it can distinguish
between null objects and objects it is not allowed to
read. This transfer of information is disallowed by
Rulc 1.1', (i.e. Nil is returned when no objects are

rcadablc).

5.3 Message Safety

Sending and receiving messages does not violate
mandatory sccurity. This will be discussed in two
parts. Sending a message to begin exccution of a
method is discussed first, followed by a discussion
of the object returned on completion of the
method execution.
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A message is sent by a method activation, M, to a
passive object creating another method activation,
M,. M, exccutes with a clearance level of L., and
a current classification level of L, e From Rule
2.2, the method activation M, is started with the
same current classification level and the same clear-
ance level. Any information which is transferred to
the method activation M, by beginning its exccu-
tion is acceptable since both methods execute with
the same current classification level.

Rules 1.17, 1.2" and 2.3 place the upper bound for
Loscurrene 10 be Ly The object returned by M, is
labelled, (Rule 2.4). Thus the upper bound on any
object returned to M; by M, is also L, by Rule
1.2". This object can always be read by M, because
of Rule 1.1" and the fact that the same level for
Ly applics to both method activations. Security
can only be violated if M, can rcturn higher level
information to M, and M, does not increase its
current classification level to match that of M,. If
M, attempts to rcad the object returned, ic will raise
its classification level according to Rule 2.3 and
sccurity will not be violated. If M, does not rcad
the object it will not reccive the information and
sccurity will again not be violated.

5.4 Covert Channeis

This scction will discuss covert channels. We will
consider storage channels and then timing chan-
nels.

5.4.1 Storage Channels

We will discuss two aspects of our model which
seem to allow storage channcls. The first aspect is
the automatic change in current classification level
predicated on the cxistence of invisible data. Rule
2.3 allows the change of a method’s security level
conditioned on the existence of an object with a
higher classification level. This can allow a covert
storage channel if another method activation can
monitor the classification level of the method acti-
vation. A method activation will maintain some
state information. This will include the temporary
variables of the method activation, the program
counter and a pointer to the calling method activa-
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tion. This information is only available to the
method activation itself and cannot be used to
form a storage channel.

The sccond aspect is alerting the user when an
updatc does not satisty classification constraints.
Rule 1.2" allows the user to be notified when the
update is not allowed. This model requires that a
uscr satisfics the constraint without writing up or
down. This rejection is different from when an
update is disallowed because there are higher level
data stored there. A rejected update in our model
mecans that the constraint cannot be satisfied. It
docs not indicate whether higher level informaton
is stored there.

5.4.2 Timing Channels

There is a covert timing channel in this model. It
arises when a method starts a new method activa-
tion which raises its sccurity level and then returns
to the calling method which retains its original
sccurity level. The new activadon can rcad high
level data and communicate it by modulating its
execution time. This channel exists only between
two mecthods onc of which calls the other. It can
channel information owing to the differential in
current classification levels of the two methods.
The channel docs not involve multiprocessing,
because the calling method is suspended undl the
called method returns.

Timing channels arc climinated when all methods
of determining time arc removed. Even if there are
no functions which return real time, it can be
determined in other ways. Gasser [10] mentions
scveral ways of measuring real time, including
countering characters  received by a terminal,
counting the number of disk accesses or by having
a uscr enter the time from a stop watch. Although
this is not a complete list, several of these methods
can be ruled out. Since there is no conspiring user,
the techniques relying on this approach can be
ruled out. The fact that there is no multiprocessing
will constrain the methods as well. We are examin-
ing methods of dealing with this channel.

6. Implementation

Now we will consider the difficulty in imple-
mentation. We will outline the design of the
implementation and discuss the amount of trust
required for cach. The design is described in terms
of objects and the methods which they support.
The trusted components of the design are
described in Table 1.

There arc two important issucs to consider in
mapping this modcl to an implementation. The
modcl supports a large number of labelled objects,
and there arce a large number of context switches
implied by the model. We will consider mapping
the model to a sccure operating system, supporting
protected data segments, and secure processes.

First, let us consider the mapping of objects in the
model to protection objects. Each protected object
is object or variable labelled. Object labelling places
a classification on the object memory of the object.
Variable labelling places a classification on cach of
the instance variables.

Objcct-oriented systems such as SMALLTALK use an
object table to simplify garbage collection. The
table has an entry for cach object in the system
which points to the object. All references to an
object go through the object table. The object table
and the object itself are both given a classification
level in this mapping. In the casc of object labelling
the object table entry is classified with the same
level as the object. It should be noted that in this
case, instance variables do not require polyinstan-
tiation. Object labelling leads to polyinstantiated
objects.

For variable labelling, the object table entry is clas-
sified at the lowest level (ie. the greatest lower
bound) of all the instance variable classifications.
For each instance variable with a non-degenerate
classification rangc a polyinstandated sct of sensitiv-
ity Liogom 1s inserted which contains the instance
variable’s value, where the classification constraint
for the instance variable is [Lyom» Liop]- The frag-
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TABLE 1

Trusted design components

Object

Description

OBJECTMEMORY

OBJECT

OBJECT CLASS

POLYINSTANTIATED SET

This represents the interface between the onject and the osjrcTMeMory. It muse allocate objects to the
proper sensitivity memory segment.

If an attempt is made to read or write above the current classification level in accordance with Rule 1.1

and 1.2/, the SUBJECT is requested o raise its current classification level to allow the read or writc.

When a method begins execution, the sujecT is instructed to stack its current classification level. The
supjecT will unstack its previous current classification level when the method completes.

OBJECT CLASS supports the classification of opjrct. It provides protocol for recording the security
constraints and providing access to them by the object memory.

This object must support sets of labelled objects. It supports methods to insert and retrieve objects
determined by their sensitivity level. This object hides the polyinstantiated sets from the user, but relics
on the object memory for sccurity.

SUBJECT This object represents the subject. It supports requests to change the current classification level, stack and
unstack its current classification level.
SENSITIVITYLABELLER This class provides the interface for setting the classification of osjecT CLass by the system security

officer. This is a trusted application.

mented objects will require an cxtra level of
indirection to access the multlevel instance var-
iables. Figure 7 shows the mapping for the objects
from Fig, 2.

The object table is a multilevel structure in several
protected segments. Objects and polyinstantiated
scts can be grouped together into single-level files.

The sccond issuc is the large number of secure
context  switches. The conceptually  simple
approach of placing cach method execution in a
scparatc process is sccurc. The large number of
processes would be inefficient in a traditional
operating system. There are ways the number of
processes can be reduced. Starting a new process
only when a method actually rcads higher level
data and returning when there is a need to lower
the current classification level would be a first step.

The most profound improvement comes in exe-
cuting in one process and modifying the current
classification levcl of the process as required. The
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model described in ref. [2] provides a command to
change the classification level of a subject. The
command relies on a subject not maintaining state
information outside the virtual memory scgments
which are protected.

This approach can be used in the implementation
of this modecl. A method activation has a small
amount of state information which is not protected
in objects. Carcful attention must be paid to
removing this statc information when the level is
reduced, to avoid information being transferred to
a lower level method activation.

7. Prototype
Floyd defines three classes of prototyping [8].

(1) Exploration.
(2) Experimentation.
(3) Evolution.

Exploratory prototyping is used when require-
ments arc unknown or difficult to establish. Ex-
perimental prototyping is used to test a require-
ment’s specification. An evolutionary prototype
deals with requirements which evolve over time.

We have developed an exploratory prototype of the
SODA security policy model. The prototype is
written in SMALLTALK and was initially based on the
modcl specified in [12]. The main purpose of the
prototypc was to test the feasibility and soundness
of the model. The development and use of the pro-
totype inspired refinements to the model which are

described in this paper.

SMALLTALK was choscn as an implementation lan-
guage because of the great similarity between the
language concepts and the security model concepts.
We attempted to implement the model by modify-
ing the primitive methods which make up the
TCB. In this way the restrictions of the security
model are inherited by the entire SMALLTALK system.
All accesses would then be arbitrated by these
primitive methods.

We identified several primitive methods used for
creating new objects, accessing instance variables
and performing mcthods. These methods are
inherited by all objects in the system and served as
the basis for access control. These methods are

described briefly below.

NEW
This method answers a new instance of the class
which reccives the message.

INSTVARAT: index
This method answers the contents of the instance
variable denoted by index.

INSTVARAT: index pUT: object
This method stores object in the instance variable

denoted by index.

PERFORM: method WITH: argument
This method starts an activation as if the message,
“method argument” werce sent.

Access control depends on a class called Labelled-
Objects. Instances have a value and a sensitvity
level. These objects contain and protect other
objects and instance variables. The method NEw
inserts LabelledObjects when an object is created.
The method INsTVARAT: above is modified to check
these labels before retricving the value.

Data classification for an object is inherited from’
its class. Object creation is also carried out by
the object’s class. In our prototype class objects
include methods to support classification. They
| retrieve and modify the sccurity constraints. The
| INSTVARAT:PUT: method queries the object’s class to
| retricve security constraints to determine if a value
should be stored. The prototype includes an appli-
cation called sensitivity labeller. This application
provides a window interface for modifying security
constraints. It is trusted but is not part of the
kernel.

|Each subject is modelled as a clearance level and a
stack of current classification levels. The current
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classification level is stacked before a method is
cxccuted and is unstacked when the method com-
pletes. This functionality is included in the Pper-
FORM:WITH: method. Each subject has a window
interface. Since sMALLTALK does not support muld-
ple simultancous uscrs this gives us a way o
simulating their interaction.

With polyinstantiation comes a new class Poly-
instantiatedSet. Instances scrve as repositorics of
labelled objects. The labelled objects in a Poly-
instantiatedSct have unique sensitivity levels. The
class supports methods for sclecting visible objects,
adding objccts to the set, and methods to support
heuristic sclection strategics, such as “most sensitive
member”,

The prototype has been modified to follow the
specification in this paper and now scrves as an
experimental prototype. An experimental proto-
type necessarily has a limited focus. This prototype
limits its focus to the tollowing issucs

1) Access restrictions.
2) Security constraints.
3) Polyinstantation.

It docs not address

(1) System architecture.
(2) Performance.

This focus determines the types of tests that can be
carried out using this prototype. We intend to usc
the prototype to cxplore the impact of polyinstan-
tiation on the user and the application developer.

The prototype clarified our understanding of the
SODA model and helped us to refine it. The pro-
cess of prototyping also gave support to the feasi-
bility and soundness of the model. Our increased
understanding came in part from a better under-
standing of the object-oriented model. This learn-
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ing was especially useful because by bulldlng the
prototype we learned precisely the parts of the
object-oriented model which we needed to under-
stand.

Dynamic modification of the current classification
level was the biggest unknown in our model. In
our original model [12] the current classification
level was associated with a user and not the subject.
In this model, the current classification level of a
uscr cannot decrease. The prototype made apparent
how restrictive this model was. The prototype
helped us to cxplore the feasibility of associating
the current classification with the method activa-
tion. This cffectively allows the current classifica-
tion as scen by the user to decrease. The prototype
helped us to understand the risks and gather evi-

dence of the approach’s feasibility.

We originally thought it would be rclatively casy
to develop a secure databasc on top of SMALLTALK.
We assumed that certain low level operations such
as scnding messages or accessing instance variables
could be modified directly. We planned to modity
these methods and embed the sccurity model in
the sMaLLTALK system itself. This turned out to be
difficult since these operations are carried out
dlrcctly by the interpreter. Changing these func-
tions requires modifications to the compiler or the
interpreter.  Regardless, the  prototype  was
developed according to this modcl. The model can
be cxercised but the security it provides can be

bypassed.

By trying to implement certain aspects of the
model we found out immediately its complexity.
While a simple function may have a complex
implementation, if the complexity cannot be
reduced, it is likely that the function is complex.
One place wherc we have noticed a lot of complex-
ity is in our implementation of Polyinstantiated-
Sets. The selection of clements to retrieve and
replace is quite complex in the prototype. We
believe more clarification of polyinstantation in
our model is needed.



Computers and Security, Vol. 8 No. 6

Logical structuring of the modcl was improved
from the prototype. The prototype makes apparent
the inappropriate distribution of responsibilitics. In
the object-oriented model an object only has access
to its own data. This cncapsulation makes poor
logical structure readily apparent. If responsibility
is distributed unrcasonably it will Icad to a compli-
cated implementation. An cxample of this is
responsibility for inidalizing secure objects. This
includes cxamining the classification and cither
enclosing the object in a labelled object or storing
labelled objects in cach instance variable of the
object. We originally wanted the class to carry out
this function since it had access to the classification
information. It became clear in prototyping that
this solutdon was not sound and the function
became the responsibility of the instance.

8. Conclusion

We have proposed a sccurity model for a muldi-
level sccure object-oriented system, SODA. It is
posed in terms of an object-oriented computation
modcl. Each objcct is assumed to be a self-con-
tained computing element whose only interaction
with other objects is through sending and receiving
messages.

The model allows a flexible labelling strategy based
on the inheritance lattice. The strategy accounts for
the instance-of and sub-type rclation. The two
labelling  strategics allow classification of the
objects themsclves, or of their instance variables.
This allows a scnsitivity to be associated with the
information contained in the object or the context
in which the information is seen. Each object
inherits a labelling constraint from its class. The
constraint specifics a range of allowable scnsitivity
levels for the data being labelled. These types of
constraints allow one to control the rigidness of the
classification rules on a class by class basis.

Access control in the model accounts for the com-
putational model of the application program. This
simplifies the task of multilevel updates on objects
with rigid classification rules. Polyinstantiation is

only used when it is indicated by the data being
stored and not because of restrictiveness of the
sccurity model.

Onc distinct advantage of our approach is that the
object-oriented computation model provides a
uniform trcatment for all objects in the system.
This simplifies the statement of a sccurity model
and provides a high level of assurance.

We have developed an exploratory prototype of the
model to cxamine its feasibility. The prototype has
been modified to adhere to the model described in
this paper and we intend to usc it to explore imple-
mentation issucs, the ability of the model to
support application development, and performance
issucs.
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Appendix A—SMALLTALK Syntax

This appendix provides a bricf introduction to
the smaLLTalk syntax. A method specification
consists of a message pattern and a sequence of

expressions  scparated by periods. The message
pattern dctermines the message sclector  the
method will be uscd for and assigns names to the
formal parameters of the method. An example of a
message pattern is shown below

SPEND: amount ON: reason

The message sclector for this method is spEND:ON:.
The two formal paramecters in this method are
“amount” and “rcason.” The cxpressions which
make up the body of the method consist of
message expressions with an optional assignment.
Message statcments are described briefly below

UNARY MESSAGES

A unary message cxpression consists of the name of
the receiver object followed by the sclector of the
method to be executed. The statement below sends
the message consisting of a sclector named saLary
and no parameters to the object “Emp01:”

EmpO1 satary

KEYWORD MESSAGES

A message can be constructed from parts of the
sclector or keywords alternated with arguments.
The following message sends the object “House-
HoldFinances” the selector spenp:oN: along with
objects representing the real number 30.45 and the
string “food.”

HouseHoldFinances spEND: 30.45 ON: “food”

A mcssage expression returns an object as a result
which represents the value of the expression. This
object can be assigned to an instance variable. This
is done by preceding the message expression with
the name of the variable and the assignment
symbol + as in the cxample below

TotalFinances « TotalFinances + (HouseHoldFinances TOTALSPENTFOR: “food”)

BLOCKS
A block is similar to a function in a traditional pro-
gramming language. It takes a list of arguments and
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produces a result. A block is similar in form to a
method. It is enclosed in square brackets and begins
with a list of parameters. Separated from the pata-
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“|”

meters by a is a list of expressions which form
the body of the block. The block shown below is a
function of onc argument “objectToClassify” and
returns a boolean result

[:objectToClassity|(objectToClassify salary)> 100000]
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