
Computers & Security, 8 (1989) 517-533

Refereed Article

SODA: A Secure
Object-oriented
Database System
T. F. Keefel, W. T. Tsai’ and
M. B. Thuraisingham**
’ Department ofcomputer Science, CTt~iversity of‘Mitzrl~sota, Minneapohs, MN 55455, U.S.A.
“Honeywell Inc., Corporate Systems, Developrn~rrt Divisiow, Golden V&y, MN 55427, U.S.A.

This paper describes a security model for object-oriented

systems. The model supports a flexible data classification policy

based on inheritance. The classification policy allows for a

smooth transition bctwccn rigid classification rules and

unlimited polyinstantiation. The security model treats the data

model as well as the computational model of object-oriented

systems allowing more flexibility. This model trades an
increase in complexity for a more flexible security model.

Kqwords: Secure database, Data classification, Object-oricntcd
m&l. Security cntitics.

1. Introduction

R ecently much research has been devoted to the
design of multilevel secure relational DBMS

[5, 6, 9, lb]. The relational data model is well
defined and generally applicable to a wide range of
data-modelling problems. For some problem
domains involving multimedia DBMS and CAD/
CAM, object-oriented systems present a more suit-
able data model and have become popular in these

‘d omains.

Object-oriented systems began as programming
systems and are only now dealing with issues such
as transactions and controlled sharing of data [7,
171. Resolving these issues paves the way for more

‘Present address: The MITE Corporation, Burlington Road,

Belford, MA 01730, U.S.A.

useful object-oriented DBMSs and generates a
need for security.

Object-oricntcd DBMSs support a powerful com-
putational model which can be used to express
applications. The relational algebra does not deal
with the subject of updating or creating new rela-
tions even though most relational DBMSs do
provide this capability. The fact that the
object-oriented model includes an explicit compu-
tational model allows the incorporation of the
computational model into the security model.

Providing security for an MLS/DBMS-using query
modification is discussed in refI [13]. Query modi-
fication is suited to systems with a simply defined
set of composable operators. Object-oriented
systems provide a fairly large set of primitive
operators. These operators can be combined pro-
cedurally to form functions with complex seman-
tics. Query modification does not consider the
problem of updates. Data modification and crea-
tion are common operations in object-oriented
programs and an important issue in our model.

Security in object-oriented systems is discussed in
ref. [16]. Objects, object schcmas, classes, instance
variables, methods, composite objects and messages
are all given classifications. The paper develops a

0167-4048/89/$3.50 0 1989, Elsevier Science Publishers Ltd. 517

Computers and Securh-y., Vol. 8, No. 6

In an object-oriented system everything is rcpre-
sentcd as an object. An object is made up of private
state information and a set of actions which rcpre-
sent the interface to the object. The state informa-
tion is reprcscnted as a set of instance variables
whose values arc objects. The actions d&cd on
objects are called methods. A method carries out
its action by sending mcssagcs. A message consists
of a method sclcctor, which is the name of the
method to bc invoked, followed by a list of objects
used as arguments. Sending a message to an
object causes a method to be executed. Objects arc
passive entities which store information. A method
is also passive. It represents a function which can bc
performed on an object. A message sent to an
object creates a method activation. Method activa-
tions arc active and perform computations.

Primitive objects represent their state directly;
cxamplcs of thcsc primitive objects arc numeric
values, strings and identifiers. Primitive methods
represent actions carried out directly without send-
ing messages; examples arc adding numeric values
and indexing arrays.

Each object has a type or class it belongs to. All
objects in a class arc cquivalcnt computationally.
Each may have a diffcrcnt state but the type of
computation which can bc performed on an object
is uniform throughout the class. The class d&tics
what methods arc available in instances of the class
and what instance variables arc included in the
instance objects. The class of an object is also an
object. A class object crcatcs new instances of its
own type. A class object de&s a type by specializ-
ing other types and defining additional behavior.
The refined types arc referred to as its sub-types.
An object inherits methods and access to instance
variables from its class object and each super-type
of the class object all the way up the inheritance
lattice to the root, OISJECT.

Methods arc specified such that only data con-
tained in the object receiving the message arc
mod&d directly. A method activation has no
knowledge about the states of other objects and it
cannot directly affect other objects.

518

Class Object

MdlOdS

Instance Object

\
’ PRODUCES

Fig. I. Concepts of object-oriented m&1.

Figure 1 illustrates some of the concepts discussed
above.

4. Security Model

This section introduces a security model with
several unique features. First, it is proposed for use
in object-oriented systems.

Secondly, the protected passive data in our model
arc instance variables and objects. Access to them is
arbitrated by the TCB. Another common choice
for protected objects is a mcssagc [3, 201. In this
approach each object is given a classification. To
enforce the *-property [2], messages can only be
sent to objects of an equal or higher lcvcl and
responses can only bc rcccived from objects of a
lower or equal level. This technique is well suited
to distributed systems where the message passing is
part of the system kernel. Howcvcr, this approach
has several problems. First, the need to enforce the
*-property ensures that only objects of the same

Computers and Security Vol. 8, No. 6

set of application-indcpcndcnt propcrtics which
describe relations bctwcen entity classifications. It
defines integrity rules for thcsc entity classifica-
tions. It is difficult to determine which entities in
the model act as protected objects and which act as
subjects. This makes the security propcrtics of the
model difficult to evaluate.

Mandatory security is investigated in ref. [181.
Security is cnforccd with a combination of com-
pile-time and run-time checks. The security model
classifies variables as having a fixed or indctermin-
ate sensitivity level. The indeterminate levels are
meant to deal with indeterminate information
flows and must bc checked at run-time. The
security model does not support automatic object
classification rules nccdcd in a DBMS.

The USC of a sensitivity level range to control the
sensitivity lcvcls of data in a container is used in
SEAVIEW [151 and TNJIIATA [141. TNJIIATA uses it to
limit vulnerability. SEAVIEW uses it to limit poly-
instantiation where it is augmented with security
constraints for tuplc labclling. In our approach
these constraints are the security constraints. Con-
straint satisfaction is enforced as part of mandatory
security. Constraint satisfaction guides the action of
the reference monitor.

WC propose a security model for a multilcvcl
secure object-oriented database (SODA) with the
following advantages. It is posed in terms of an
object-oriented model, and it enforces information
containment and security label integrity. The
model covers the computational model as well as
data access and classification. This allows the inter-
action of the two concerns. The classification lcvcl
of a computation is adjusted based on its clearance
level, the data it has access to, and classification
constraints enforced on data it wishes to create.

The model supports a data classification policy
which fits naturally into the object-oriented model.
The classification technique is based on the inhcri-
tance lattice which allows a natural way of expres-

sing security constraints. The classification method
allows the classification rigidity to be tuned on a
class-by-class basis. This provides for wide varia-
tions in labclling rcquiremcnts.

2. Multilevel Security

Multilevel secure computers protect objects classi-
ficd at more than one level and allow sharing
between users of different clearance levels. Objects
arc labcllcd with their sensitivity lcvcls. Subjects arc
associated with clearance lcvcls. A multilevel secure
computer arbitrates all access of objects by subjects.
The arbitration is carried out by the rcfcrcncc
monitor according to a security policy.

MLS/DRMSs must deal with large numbers of
objects, intcrrclatcd in complex ways which have
semantic meaning. This causes scvcral problems.

The first is efficiency. Large numbers of objects
can cause a large burden on the access monitor.
Secondly, all of thcsc objects must be classified in a
complete and consistent way. The third problem is
rcprcscnting and manipulating objects containing
data of multiple sensitivity levels. The inter-
relations of the data and their semantics lead to an
infcrencc problem. Inference occurs when infor-
mation which can be rctricvcd from the database
allows other data to be deduced. Inference provides
a flow of data which is not arbitrated by the
rcferencc monitor.

3. Object-Oriented Systems

This section gives a brief background on objcct-
oriented systems. Thcrc is a wide variation in what
is meant by “object oriented.” Most of our inter-
pretation comes from SMALLTALK-80 [1 I]. Varia-
tions on this model arc given in ref. [191. The
object-oriented model began as a programming
system. Our definition of an object-oriented
system also stems from our desire to incorporate
database considerations such as schema evolution,
transactions and controlled sharing of data. Our
understanding of these issues comes from rcfs. [I],
[7] and [IT].

519

T.. F. Keefe et al.ISODA: A Secure Object-oriented Database System

lcvcl can send and receive messages. Secondly, mcs-
sages arc sent to the class to carry out actions on the
instances of the class. When the instances of the

class have different sensitivity levels, the class
objects must tither bc trusted to handle multilcvcl
objects, or thcrc must be a version of the class for
each sensitivity lcvcl. Thcsc models also have diff-

culty with shared variables, c.<q. variables in the class
which arc available to all of the instances. Unless
the instance objects and the class sham the same
sensitivity lcvcl, -1 c ass variables will tither be
unreadable or unwritablc. These problems stem
from the fact that a method when executing in this

model has access to all of the object’s data.

Data classification in our model is based on
inheritance. Each object in a class shares the same
classification constraint. Each may have a different
sensitivity level but all satisfy the common con-
straint. The classification constraint of a class is
inherited by its sub-types. The constraint may be
redcfincd in the new class but only by the system
security officer.

Attaching classification constraints to classes and
allowing subclasses to inherit classification con-
straints simplifies data classification. It uses the
existing structure of the system as the basis for
classification. The inheritance of constraints
cnsurcs that they only need to be spccificd when
there is a change.

Data classification specifics a range of sensitivity
lcvcls which can be assigned to an object and is
strictly enforced by the model. This allows the clas-
sification rigidity to bc adjusted on a fine scale.

Each method activation is independent. The
current classification level of the method activation
rcprcscnts the sensitivity level of data which the
activation has read. Once the activation finishes,
this information disappears and control is returned
to the caller acting with its original authority.

A fundamental concept of the model is that since
everything in the object-oriented model is an

object, there is good assurance that no portions ot
the system are unprotcctcd. The view that cvcry-
thing is an object is interesting. It gives a simple
understanding of the system but dots not tell the
whole story. To really understand the objcct-
oriented model and our security model it is ncccs-
sary to understand the practical limitations of this
view. For cxamplc, all objects store their state in
instance variables in the form of other objects. This
view leads to an indcfinitc recursion. Each object
stores its state in terms of other objects and no values

arc actually stored. The missing concept is the
primitive object. These objects reprcscnt their state
directly without using other objects and thcrcfore
tcrminatc the recursion. Another example of a
special case involves methods. Methods carry out
their actions by sending messages. This is also a
problem; each method sends mcssagcs but none
performs a computation. Primitive methods arc the
answer to this problem; they perform actions
directly and send no messages. Another concept of
object-oriented systems is that each object is an
instance of another. The solution here is the object
Mctaclass which is an instance of itself.

These discontinuities point to special cases in the
object-oriented model and special casts in our
security model. The three cases dcscribcd above
must be considered as special cases of the security
model as well. First, all objects in the model arc
labcllcd except primitive objects which are not
labelled at all. They represent basic data elements
which have little meaning out of context. Secondly,
all methods have an independent current classifka-
tion level except for primitive methods. Thcsc
methods inherit the current classification of the
method activation which called them. Each object
inherits classification constraints from its class.
Metaclass is an instance of itself and must provide a
built-in classification constraint.

4.1 Security Entities

This section identifies the security role played by
each entity in the object-oriented model. The
portions of the object-oriented model discussed arc
as follows: classes, primitive objects, objects,

520

Computers and Security, Vol. 8, No. 6

instance variables, messages and method activa-
tions.

Classes
A class represents the type of its instances. The class
defines the methods and instance variables its
instances have. It also defines class variables which
arc available to all instances. Classification con-
straints arc recorded in the class and apply to all
instances.

Primitive Objects
Thcsc objects arc the basic clemcnts which all
objects can be broken into. They arc not assigned
sensitivity lcvcls. They represent basic data elc-
ments which have little meaning out of context.

Objects
Each object can have a sensitivity level. This sensi-
tivity level restricts access to the whole object
rather than just one instance variable. This classifi-
cation method can be used to protect the objects
regardless of where the rcferencc is from.

Instance Variables
Each instance variable can have a sensitivity level.
The value of the instance variable is the protected
data. This classification can bc used to protect
primitive values and associations between objects.

Messages
A message is sent on behalf of, and represents a
subject. It is sent to an object requesting execution
of a sclectcd method with the authority of the
security subject which the message represents.
Messages arc conceptually labelled with two
security classification levels. The first is the clcar-
ante level of the user. The second level is the cur-
rent security classification of the originating
method. These two levels act as an upper and lower
bound on the authority of the new method activa-
tion.

Method Activations
Method activations are the only active entities in
the model. Each method executes in a separate

context described by an activation. The execution is
carried out by sending mcssagcs to objects. Primi-
tive methods are carried out directly by the
method activation without sending mcssagcs.

4.2 Labelled Entities

This model supports two types of labclled entities,
objects and instance variables. Each object can
support only one type. Either the object is labelled
or its instance variables arc, but not both. Object
labelling associates a sensitivity label with an object.
This label is used to arbitrate access to the cntirc
object regardless of the context in which it is used.
This type of labelling is illustrated in Fig. 2.

An object with instance variables labelled has a
sensitivity level for each instance variable of the
object. The label controls access to the contents of
the instance variable. This labelling protects the
associations between instance variables. Since an
object can bc refcrcnced by more than one object,
variable labclling allows a classification to be asso-
ciated with each context in which the data arc seen.
Variable labelling is illustrated in Fig. 3.

t

Label

~

Fig. 2. Object labclling.

imphgee

Fig. 3. Instance variable labelling.

521

T. F. Keefe et aLlSODA: A Secure Object-oriented Database System

4.3 Active Entities

In this model the active entity is a method activa-
tion. A method activation is similar to a function
invocation. It is the result of a mcssagc being sent
to an object. A method activation on its surface is
similar to a process with no state. The objects
acccsscd by the method activation arc protcctcd.
Information cncodcd in the execution state of the
program is not protcctcd. Each method activation
has its own state and is capable of encoding infor-
mation. To control the information in the state of
the activation, a method activation is assigned a
current classification lcvcl. This level records the
least upper bound of all information the method
activation has read or has access to. This informa-
tion can conic directly from reading an object or
indirectly from what the calling method has read.
The clcarancc level of the method activation comes
from the associated user. The clcarancc lcvcl serves
as an upper bound on the current classification
lcvcl.

Tllul)~TA [l’] associates a range of aUthOrity with

subjects. This range is changed by the user but is
not mod&cd dynamically.

4.4 Data Classification Policy

A classification constraint consists of two parts. The
first part specifies the type of labclling, object or
instance variable. The second part consists of scnsi-
tivity lcvcl ranges for each labcllcd object. In, the
case of object labclling thcrc is one range for the
object itself. For instance variable labclling there is
one range for each instance variable. The range
specifies allowable limits on the sensitivity lcvcl of
the protcctcd object.

Data classification is based on the inhcritancc
lattice of the system. Classification is detcrmincd in
two ways, type and specialization.

(I) The classification constraints for an object arc
obtained from its class.
(2) The classification constraint ranges of a new
class are inherited from its super-type.

The inhcritancc lattice provides a natural way of
categorizing objects into semantically meaningful
groups. From (l), each class is assigned a classifica-
tion constraint which applies to its instance.

The classification range of a subclass is inherited
from its super-class, (2). The labclling type and
ranges for corresponding labels arc the same. In
the cast of variable labclling the sub-type may
dcclarc additional variables. Thcsc variables arc
unrestricted, i.e. they have a range of [SYSTEM LOW,

SYSTEM HIGH]. This allows users to crcatc new
classes. They arc not howcvcr allowed to modify

constraints for the new class. The modification of
constraints is done by the system security officer.

This classification mechanism can be used to hide
associations bctwccn objects. Consider a class
named “Flights” whose instances contain informa-
tion describing the destination and cargo of flights.
“Flights” is classified using variable labelling with
“Destination” and “Cargo” both classified [SECRET,

SECXET]. To correlate the destination and cargo for
a flight, a user must have a SECRET clcarancc. This
constraint classifies the path to the information,
but not the information itself.

Classification can bc based on the value of an
instance variable. It rcquircs the creation of a sub-
type for each classification group. For cxamplc,
to classify information about flights with a dcstina-
tion of Iran as ~ECIWT, a sub-type of the “Flights”
class is created called “FlightsTolran.” All instances
of the class “Flights” arc class&cd [UNCLASSIFIEI),

UNC‘LASSIFIEI I]. The instances of “FlightsToIran” arc
classifkd [WXET, SECRET]. In this cast it is undcsir-
able to have a class which is visible to UNCLASSIFIEI)
users called “FlightsToIran.” To hide the class
object, the class “FlightsToIran” itself can bc classi-
fkd SECRET by the System Security Officer.

Limits set by the classification constraints arc
enforced by the TCB. If a sensitivity level for a new
object cannot bc found which both satisfies the
classification constraint and maintains information
containment, the object will not bc crcatcd. For

522

Computers and Security, Vol. 8, No. 6

cxamplc, consider a method activation which has
read SECRET data and tries to create an object which
is constrained to bc [UNCLASSIFIEI),UNCLASSIFIEI)]. The

object will not bc created. The object created must
be labcllcd SECRET to avoid writing down but this
does not satisfy the constraint.

Sensitivity level ranges provide a conceptually
simple way of classifying data. The technique pro-
vides a simple cnforcemcnt which can be carried
out in the TCB. The task of assigning constraints
and their verification is done by a separate trusted
application, the sensitivity lab&r.

4.5 Mandatory Access Restrictions

This section describes mandatory access rcstric-
tions. The restrictions d&c a set of allowable
object accesses. There arc three parts in the model.
The first part describes which object accesses arc
allowed based on the sensitivity level of the object
and the current classification level of the method
making the rcqucst. The second part shows how
these restrictions are modified to support poly-
instantiation. The last section describes assignments
and allowable changes to security classification
levels of method activations.

4.5.1 Object Access

The discussion of object access is simplified by
considering lab&d object access. Figures 2 and 3
diagram the role of labclled objects for object and
instance variable labelling. For the following dis-
cussion consider a method activation executing
with a clearance level of LSclca, and a current classi-
fication level of LscUrrent accessing a labclled object
stored in a slot with a sensitivity constraint range

de&cd by [Lbotrom9
allowed to

Lrop]. The method activation is

Rule 1.1
Read the value of a labelled object with sensitivity
lcvc! Lo if Lo G Ls,,,,,. An unreadable object
returns nil. (Nil is the val.uc stored in an instance
variable when an object is created. It means that no
object is stored there.)

Rule 1.2
Create and store in the constrained slot a labelled
object with sensitivity level L,, = Lscuricnr if Lbc:rto,,, <
LSclca, and Lscurrc,,, < L,,+ otherwise reject the
update and inform the user.

Figure 4 represents the range of object sensitivity
lcvcls which a method activation can read. The
dashed line represents the fact that the current clas-
sification level will be increased up to L,, (Rule 2.3).
Figure 5 illustrates the conditions in which an
object can be written. The condition is described in
terms of the method activation’s current classifica-
tion and clearance level, and their relation to the
classification constraint of the object. The dashed
line illustrates the range in which the current clas-
sification will bc raised (Rule 2.3). This is to satis@
the rcquircment that the data is classified above
L b0rron1 . The clearance restriction disallows writing
up. This allows polyinstantiation to be avoided
when the classification range of the data is dcgcn-

crate, i.e. Lborrolll = LroF. The restriction on the cur-
rent classification level maintains the *-property.

Rules 1 .l and 1.2 by themselves do not cnsurc the
simple security property or the *-property [2] since
the current classification levels of methods arc

Fig. 4. Labelled object read rules.

Fig. 5. Labelled object modification rules.

523

T. F. Keefe et al.ISODA: A Secure Object-oriented Database System

allowed to change and thcsc changes have not yet
been defined. The maintenance of these properties
can be ensured only after examining the modifica-
tion policy for method classification levels. The
security propertics cnforccd by the model arc dis-
cussed in Section 5.

4.52 Polyinstantiation

The multiparty update conflict is noted by Den-
ning et al. in [4, 51 and is the problem which poly-
instantiation addresses. The conflict arises when
low-level users unknowingly attempt to overwrite
higher level data which are invisible to them. If the
write is rcjectcd a storage channel is created. If it is
allowed, high level users have no way to protect
their data.

Until now, WC have ignored this problem. If the
classification range for an instance variable is
dcgeneratc, i.e. LbOlfO,,, = Lrop, this is adequate. In this
case, the slot in which a labelled object is stored has
one allowable sensitivity level. The model requires
that to store a labcllcd object the user’s classifica-
tion level be equal to the lcvcl of the slot (Rule 1.2).
Now if an update is rejected it is so because the
user’s classification does not satisfy Rule 1.2. This
rejection cannot cause a covert channel.

When Lrop strictly dominates Lbotrom each slot has a
range of sensitivity levels. In this case polyinstantia-
tion is used to eliminate the conflict. Polyinstantia-
tion allows each slot to contain an object of each
sensitivity level between Lbottom and Ltoy.

Polyinstantiation is added to the model by allowing
each instance variable to contain a collection of
labelled objects. This collection is called a poly-
instantiated set. Each element of the set is a labelled
object. The sensitivity level ‘of each clement is
unique in the set. When an element is added with
the same sensitivity level it replaces the original
member.

Rules 1 .l and I.2 of the previous section can be
revised to include polyinstantiation as follows:

Rule 1.1’

Read the value of all labcllcd objects in the poly-
instantiated set with sensitivity level Lo if
Lo 6 Ls,,,,,. Nil is returned when no objects arc
readable.

Rule 1.2’
Add a labclled object to the polyinstantiatcd set
with sensitivity level Lo = Lsrorrrnr if LbOllO,,, < Ls,,,,,

and LsC,,,C,,l 6 L,,,; otherwise reject the update and
inform the user.

Polyinstantiation introduces scvcral problems. First,
the intcrprctation of the data bccomcs more com-
plex. Many simple values bccomc sets of values
when polyinstantiation is used. This complicates
understanding of the data and makes applications
harder to develop. The second problem deals with
replacement. Normally, when a labelled object is
stored in an instance variable it replaces the
lab&d object that is already thcrc. With poly-
instantiation this is not necessarily the cast. It may
just add another value to the set.

4.5.3 Method Activation Security Levels

A method activation executes with a security classi-
fication level LScu,,c,,t determined by two quantities.
The first is the clcarancc level LSclca, of the user.
The second quantity is the current security classifi-

cation level LSorlglnaror of the method activation
which started this method by sending a message.
Below is a set of rules determining the current
security classification of a method activation.

Rule 2.1
The login method begins execution with classifica-
tion level Ls,,,,,,,_ = SYSTEM LOW, (the method
begins when the system is started and has no
originator).

Rule 2.2
A method activation begins with a classification

level Lscurrenr = LSorigi*mor~

Rule 2.3
If a labelled object with sensitivity level Lo such

that LsCurrcnr =G Lo is read or added to a polyinstan-

524

Computers and Security, Vol. 8, No. 6

tiatcd set the current classification level of the
method will be increased to the least upper bound
ofLScurrcllt and Lo, i.e. LkurrcIlr lub L,.

Rule 2.4
The object rcturncd by a method activation is
labcllcd with the method activation’s LsCu,rcnr.

Thcsc rules cnsurc LsCUlrCllf will always dominate the
lcvcl of the information available to the activation.
The current classification level will begin at the
lowest possible level to allow the method activation
the most flexibility possible.

One point that is not explicitly stated is that the
current classification level pertains to a method
activation. When the method returns, the informa-
tion encoded in the state of the activation dis-
appears. The caller then resumes with its original
current classification lcvcl.

An cxamplc of how these rules work is shown in
Fig. 6. Each line shows the authority range [current
classification level, clearance level] for a method
activation. The action which causes the change in
authority level is described in italicized text
bctwecn the lines.

The “Login Activation” begins with a current clas-
sification level of System Low (Rule 2.1). It sends a
message to another object which starts execution of

system
Low

I_* Cl-CC
Level

sysm
H@l

Fig. 6. Method activation rules.

“Method Activation 1” (Rule 2.2). “Method Activa-
tion 1” reads an object with a sensitivity level L 1. In
the process of doing this its current classification
level is raised to Ll (Rule 2.3). When “Method
Activation 1” returns, the “Login Activation”
resumes with its original current classification level
of System Low. Finally, it writes an object with
constraint [~2, L2) and subscqucntly raises its
current classification level to L2 (Rule 2.3).

5. Model Properties

This section discusses properties of the security
model. WC do not attempt formal proofs of these
properties but use informal arguments to
dcmonstratc them.

5.1 Simple Security Property

The simple security property states that a subject
with a clearance level L, is not allowed to read an
object with a sensitivity level L, such that Lo > L,.
In the notation used in this model, a subject with
clearance level LSclca, is not allowed to read an
object with sensitivity level L,, if Lo > Ls,,,,,. This
is ensured by Rule I. 1’.

5.2 *-Property

The *-property states that a subject with current
security classification level L, cannot write objects
with sensitivity level Lo such that L, > Lo. The
proposed model does not allow information to bc
written down. Evidence is based on two facts. First,
the current classification level dominates the sensi-
tivity level of all information accessible to the
method (Rule 2.3) and secondly the method activa-
tion cannot write or create objects such that
L Scurrent > L, (from Rule 1.2 I, i.e. Ld = LsCUrrenr).

The information accessible to a method activation
can come from its instance variables, information
about its calling context and information available
about the existence of unreadable objects. The
information accessible from instance variables is
covered by Rule 2.3, LScurretlt dominates the sensi-
tivity level of all objects which have been read by
the method activation.

525

T. F. Keefe et al.ISODA: A Secure Object-oriented Database System

Information by the method activation
be passed by the fact that method

is For cxamplc

IFTRUE: [Unclassificdobjcct AI

“Answer” PUT: True]

This cxprcssion sends the conditional mcssagc
IFTIIUE: to SccrctObjcct. The action taken by this
mcssagc is to cxccutc the block which is the argu-
mcnt to the mcssagc if SccrctObjcct is True. The
block consists of the cxprcssion in brackets. This
cxprcssion will associate the value True with the
index value “Answer” in the dictionary Unclassi-
ficdobjcct. (See Appendix A for a brief description
of the SMALLTALK syntax.)

The true block is only cxccutcd if the SccrctObject
is true. Once called, the true block implicitly knows
the value of the SecretObject. Therefore the
method activation must start cxccution at the
SECRET level (Rule 2.2). Ls,,,,,,,l dominates the lcvcl

of its caller and thus the sensitivity lcvcl of all
information it has access to. This also addrcsscs the
problem of information being transferred when the
SccrctObjcct is False. The program cannot store
UNCLASSIFIEI) information when the vauc is True
and it dots not attempt to when the value is False.
This program will not write down information
about SccrctObjcct.

Information about the cxistencc of objects is given
to a method activation when it can distinguish
between null objects and objects it is not allowed to
read. This transfer of information is disallowed by
Rule 1 .I (i.e.

rcadablc).

5.3 Message Safety

Sending and receiving messages does not violate
mandatory security. This will be discussed in two
parts. Sending a message to begin execution of a
method is discussed first, followed by a discussion
of the object returned on completion of the
method execution.

A mcssagc is sent by a method activation, M,, to a
passive object creating another method activation,
M3. M, cxccutcs with a clcarancc lcvcl of LscICJT and
a current classification lcvcl of L\,,,,,,,,,I. From Rule
2.2, the method activation Mz is started with the
same current classification lcvcl and the same clcar-
ancc lcvcl. Any information which is transfcrrcd to
the method activation M2 by beginning its cxccu-
tion is acceptable since both methods cxccute with
the same current classification lcvcl.

Rules 1 .l’, 1.2’ and 2.3 place the upper bound for
LsrcurrCnr to bc Ls,,,,,. The object rcturncd by M? is
labellcd, (Rule 2.4). Thus the upper bound on any
object rcturncd to M, by M? is also Ls,,,,,, by Rule
1.2’. This object can always bc read by M, bccausc
of Rule 1 .l

classification level to match that of Ma. If
M, attempts to read the object rcturncd, it will raise
its classification level according to Rule 2.3 and
security will not bc violated. If M, does not read
the object it will not rcccivc the information and
security will again not be violated.

5.4 Covert Channels

This section will discuss covert channels. WC will
consider storage channels and then timing chan-
nels.

5.4.1 Storage Channels

We will discuss two aspects of our model which
seem to allow storage channels. The first aspect is
the automatic change in current classification lcvcl
prcdicatcd on the existence of invisible data. Rule
2.3 allows the change of a method’s security level
conditioned on the cxistcnce of an object with a
higher classification level. This can allow a covert
storage channel if another method activation can
monitor the classification level of the method acti-
vation. A method activation will maintain some
state information. This will include the temporary
variables of the method activation, the program
counter and a pointer to the calling method activa-

526

Computers and Security, Vol. 8, No. 6

tion. This information is only available to the
method activation itself and cannot be used to
form a storage channel.

The second aspect is alerting the user when an
update does not satisfy classification constraints.
Rule 1.2’ allows the user to be notified when the
update is not allowed. This model requires that a
user satisfies the constraint without writing up or
down. This rejection is different from when an
update is disallowed bccausc there arc higher level
data stored there A rejected update in our model
means that the constraint cannot be satisfied. It
does not indicate whether higher level information
is stored there.

5.4.2 Timing Channels

There is a covert timing channel in this model. It
arises when a method starts a new method activa-
tion which raises its security level and then returns
to the calling method which retains its original
security lcvcl. The new activation can read high
lcvcl data and communicate it by modulating its
execution time This channel exists only bctwccn
two methods one of which calls the other. It can
channel information owing to the differential in
current classification levels of the two methods.
The chamrcl does not involve multiprocessing,
because the calling method is suspended until the
called method returns.

Timing channels arc eliminated when all methods
of determining time arc removed. Even if there arc
no functions which return real time, it can be
determined in other ways. Gasser [lo] mentions
scvcral ways of measuring rca,l time, including
countering characters received by a terminal,
counting the number of- disk accesses or by having
a user enter the time from a stop watch. Although
this is not a complete list, several of these methods
can bc ruled out. Since there is no conspiring user,
the techniques relying on this approach can be
ruled out. The fact that there is no multiprocessing
will constrain the methods as well. We arc cxamin-
ing methods of dealing with this channel.

6. Implementation

Now WC will consider the difficulty in implc-
mcntation. WC will outline the design of the
implementation and discuss the amount of trust
required for each. The design is described in terms
of objects and the methods which they support.
The trusted components of the design are
described in Table 1.

There arc two important issues to consider in
mapping this model to an implementation. The
model supports a large number of lab&d objects,
and thcrc arc a large number of context switches
implied by the model. We will consider mapping
the model to a secure operating system, supporting
protcctcd data segments, and secure processes.

First, let us consider the mapping of objects in the
model to protection objects. Each protected object
is object or variable labelled. Object labclling places
a classification on the object memory of the object.
Variable labclling places a classification on each of
the instance variables.

Object-oriented systems such as SMALLTALK use an
object table to simplify garbage collection. The
table has an entry for each object in the system
which points to the object. All rcfcrenccs to an
object go through the object table. The object table
and the object itself arc both given a classification
level in this mapping. In the cast of object labclling
the object table entry is classified with the same
level as the object. It should be noted that in this
case, instance variables do not require polyinstan-
tiation. Object labelling leads to polyinstantiatcd
objects.

For variable labelling, the object table entry is clas-
sified at the lowest level (i.e. the greatest lower
bound) of all the instance variable classifications.
For each instance variable with a non-degenerate
classification range a polyinstantiatcd set of scnsitiv-

ity Lbortotn is inserted which contains the instance
variable’s value, where the classification constraint
for the instance variable is [Lbottorn, Lrop]. The frag-

527

T. F. Keefe et al. ISODA: A Secure Object-oriented Database System

TABLE I
Trusted design components

Lkcriptior2

This represents the interface between the OHJ~CT and the OHJECTM~MOKY. It must allocate objects to the
proper sensitivity memory scgmcnt.

If an attempt is made to read or write above the current classification level in accordance with I<ulc 1 .l ’
and 1.2’, the WHJECT is requested to raise its current classification level to allow the read or write.

OHJK’T When a method begins execution, the WIIJE~T is instructed to stack its current classification lcvcl. The

WHJKT will unstack its previous current classification level when the method completes.

OI~JECT c’~.Ass supports the classification of oHJt(‘l. It provides protocol for recording the security

constraints and providing access to them by the object memory.

I’OLYIN5TANTIAl~tl) \I:1 This object must support sets of labellcd objects. It supports methods to insert and retricvc objects

determined by their sensitivity level. This object hides the polyinstantiated sets from the user, but relics
on the object memory for security.

\UHJK’l This object represents the subject. It supports requests to change the current classification level, stack and

unstack its current classification level.

This class provides the interface for setting the classification of oIjJE(:l (‘LA\> by the system security

officer. This is a trusted application.

mcntcd objects will require an extra lcvcl of
indirection to access the multilevel instance var-
iables. Figure 7 shows the mapping for the objects
from Fig. 2.

The object table is a multilevel structure in several
protected segments. Objects and polyinstantiatcd
sets can be grouped together into single-level files.

The second issue is the large number of secure
context switches. The conceptually simple
approach of placing each method execution in a
separate process is sccurc. The large number of
processes would be inefficient in a traditional
operating system. Thcrc arc ways the number of
processes can be reduced. Starting a new process
only when a method actually reads higher level
data and returning when there is a need to lower
the current classification level would be a first step.

The most profound improvement comes in exe-
cuting in one process and modifying the current
classification level of the process as required. The

I Clwificatin Key

Fig. 7. Object allocation for labelled objects.

528

Computers and Securiv, Vol. 8, No. 6

model described in ref. [2] provides a command to
change

relies on a subject not maintaining
memory segments

model. A activation
amount of state information

method activation.

Prototype

Floyd defines three classes of prototyping [8].

(I) Exploration.
(2) Experimentation.
(3) Evolution.

Exploratory prototyping is used when require-
ments arc unknown or difficult to establish. Ex-
perimental prototyping is used to test a require-
ment’s specification. An evolutionary prototype
deals with requirements which evolve over time.

We have developed an exploratory prototype of the
SODA security policy model. The prototype is
written in SMALLTALK and was initially based on the
model specified in [12]. The main purpose of the
prototype was to test the feasibility and soundness
of the model. The development and use of the pro-
totype inspired refinements to the model which arc
described in this paper.

SMALLTALK was chosen as an implementation lan-
guage because of the great similarity between the
language concepts and the security model concepts.
We attempted to implement the model by modify-
ing the primitive methods which make up the
TCB. In this way the restrictions of the security
model are inherited by the entire SMALLTALK system.
All accesses would then be arbitrated by these
primitive methods.

We identified several primitive methods used for
creating new objects, accessing instance variables
and performing methods. These methods are
inherited by all objects in the system and served as
the basis for access control. These methods are
described briefly below.

NEW

This method answers a new instance of the class
which rcccivcs the message.

iNsrv.4RA-r: index
This method answers the contents of the instance
variable denoted by index.

INSTVARAT: index PUT: object
This method stores object in the instance variable
denoted by index.

PERFORM: method WITH: argument
This method starts an activation as if the message,
“method argument” were sent.

Access control depends on a class called Labelled-
Objects. Instances have a value and a sensitivity
level. These objects contain and protect other
objects and instance variables. The method NEW

inserts Labelledobjccts when an object is created.
The method INSTVARAT: above is mod&cd to cheek
these labels before retrieving the value.

Data classification for an object is inherited from
its class. Object creation is also carried out by
the object’s class. In our prototype class objects
include methods to support classification. They

1 retrieve and modify the security constraints. The
) INSTVAIUT:PUT: method queries the object’s class to
1 retricvc security constraints to dctcrminc if a value
should be stored. The prototype includes an appli-
cation called sensitivity labcller. This application
provides a window interface for modifying security
constraints. It is trusted but is not part of the
kernel.

/Each subject is modelled as a clearance level and a
stack of current classification levels. The current

529

T. F. Keefe et al. ISODA: A Secure Object-oriented Database System

classification level is stacked before a method is
cxccuted and is unstacked when the method com-
plctcs. This functionality is included in the PER-

FORM:WITH: method. Each subject has a window
intcrfacc. Since SMALLTALK does not support multi-
ple simultaneous users this gives us a way of
simulating their interaction.

With polyinstantiation comes a new class Poly-
instantiatedsct. Instances serve as repositories of
labcllcd objects. The labcllcd objects in a Poly-
instantiatedset have unique sensitivity lcvcls. The
class supports methods for selecting visible objects,
adding objects to the set, and methods to support
heuristic selection stratcgics, such as “most sensitive

member”.

The prototype has been modified to follow the
spcciflcation in this paper and now scrvcs as an
cxpcrimcntal prototype. An experimental proto-
type necessarily has a limited focus. This prototype
limits its focus to the following issues

(1) Access restrictions.
(2) Security constraints.
(3) Polyinstantiation.

?Jna”‘c modification of subject security
,

(5) Sensitivity labellcr.

It dots not address

(1) System architecture.
(2) Pcrformancc.

This focus determines the types of tests that can be
carried out using this prototype. We intend to USC
the prototype to explore the impact of polyinstan-
tiation on the user and the application developer.

The prototype clarified our understanding of the
SODA model and helped us to refine it. The pro-
cess of prototyping also gave support to the feasi-
bility and soundness of the model. Our increased
understanding came in part from a better undcr-
standing of the object-oriented model. This learn-

ing was especially useful bccausc by building the
prototype WC learned precisely the parts of the
object-oriented model which we needed to undcr-
stand.

Dynamic modification of the current classification
lcvcl was the biggest unknown in our model. In
our original model (121 the current classification
level was associated with a user and not the subject.
In this model, the current classification level of a
user cannot decrcasc. The prototype made apparent
how restrictive this model was. The prototype
helped us to explore the feasibility of associating
the current classification with the method activa-
tion. This cffcctivcly allows the current classifica-
tion as seen by the user to dccreasc. The prototype
hclpcd us to understand the risks and gather evi-
dcncc of the approach’s feasibility.

We originally thought it would be relatively easy
to develop a secure database on top of SMALLTALK.

We assumed that certain low level operations such
as sending mcssagcs or accessing instance variables
could be mod&cd directly. We planned to modify
thcsc methods and embed the security model in
the SMALLTALK system itself. This turned out to be
difficult since these operations are carried out
directly by the interpreter. Changing these func-
tions requires modifications to the compiler or the
interpreter. Regardless, the prototype was
dcvelopcd according to this model. The model can
be exercised but the security it provides can be
bypassed.

By trying to implement certain aspects of the
model WC found out immediately its complexity.
While a simple function may have a complex
implementation, if the complexity cannot be
reduced, it is likely that the function is complex.
One place where we have noticed a lot of complex-
ity is in our implementation of Polyinstantiatcd-
Sets. The selection of elements to retrieve and
replace is quite complex in the prototype. WC
believe more clarification of polyinstantiation in
our model is needed.

530

Computers and Security, Vol. 8, No. 6

Logical structuring of the model was improved
from the prototype. The prototype makes apparent
the inappropriate distribution of responsibilities. In
the object-oriented model an object only has access
to its own data. This encapsulation makes poor
logical structure readily apparent. If responsibility
is distributed unreasonably it will lead to a compli-
cated implcmcntation. An example of this is
responsibility for initializing secure objects. This
includes examining the classification and either
enclosing the object in a labcllcd object or storing
labelled objects in each instance variable of the
object. We originally wanted the class to carry out
this function since it had access to the classification
information. It became clear in prototyping that
this solution was not sound and the function
bccamc the responsibility of the instance.

8. Conclusion

We have proposed a security model for a multi-
level secure object-oriented system, SODA. It is
posed in terms of an object-oriented computation
model. Each object is assumed to be a self-con-
tained computing element whose only interaction
with other objects is through sending and receiving
mcssagcs.

The model allows a flexible labelling strategy based
on the inhcritancc lattice. The strategy accounts for
the instance-of and sub-type relation. The two
labclling strategies allow classification of the
objects themselves, or of their instance variables.
This allows a sensitivity to be associated with the
information contained in the object or the context
in which the information is seen. Each object
inherits a labelling constraint from its class. The
constraint specifics a range of allowable sensitivity
levels for the data being labellcd. These types of
constraints allow one to control the rigidness of the
classification rules on a class by class basis.

Access control in the model accounts for the com-
putational model of the application program. This
simplifies the task of multilevel updates on objects
with rigid classification rules. Polyinstantiation is

only used when it is indicated by the data being
stored and not because of rcstrictivcness of the
security model.

One distinct advantage of our approach is that the
object-oricntcd computation model provides a
uniform treatment for all objects in the system.
This simplifies the statcmcnt of a security model
and provides a high lcvcl of assurance.

We have developed an exploratory prototype of the
model to examine its feasibility. The prototype has
been modified to adhcrc to the model described in
this paper and we intend to USC it to explore imple-
mcntation issues, the ability of the model to
support application devclopmcnt, and pcrformancc
issues.

References

[‘I

PI

PI

PI

151

PI

PI

PI

J. Banerjee, H. T. Chou, J, F. Garza, W. Kim, D. Woclk, N.

hllou and H. J. Kim, I>ata model issues for object-

oricntcd applications, ACM 7ians. O@r Ir$rnj. Sysf., (I)

Uanuary 1 Y87) 3-26.

I>. E. Bell and L. J. LaPadula, Secure computer systems:

unified exposition and mulrics interpretations, ?>c/I. Rep.

M7’R-Z997, March lY76 (Mitrc Corporation, Burlington

Itoad, Belford, MA 01730, U.S.A).

T. A. Casey, Jr., S. T. Vinter, D. G. Weber, II. Varadarajan

and D. Rosenthal, A secure distributed operating system.

I’rt~c. 19X8 IEEE Sywp. ON Smrriry atrd Privacy, Oak/aud, CA,

Apri/ 1988, pp. 27-38.
D. E. Denning, S. K. Akl, M. Heckman, T. F. Lunt, M.

Morgenstcrn, P. G. Neumann and K. II. Schcll, Views for

multilcvcl database security, IEEE Trans. Sofiwar~ Erg., SE-

13 (2) (February 1087) 12Y- 140.

D. E. Denning, T. F. Ixnt, l<. Ii. Schell, M. Hcckman and

W. li. Shockley, A multilevel relational data model, Proc.

1987 Symp. on Security and Privacy, April 1987, pp. 220-234.

B. B. Dillaway and J. T. Haigh, A practical design for

multilevel security in secure database management sys-

tems, Aerospace Security ConJ, December 1986.

D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Con-

nors, J. W. Davis, N. Derret, C. G. Ho&, W. Kent,

P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A. Kyan and M.

C. Shan, IKIS: an object-oriented database management

system, ACM Tram. Ofice Inform. Syxf., 5 (1) (January 1987)
48-69.

C. Floyd, A systematic look at prototyping. In I<. Budde,

K. Kuhlenkamp, L. Mathiassen and H. Ziillighoven (eds.),
Approach IO Profotypin~, Springer, Berlin, 1984.

531

T. F. Keefe et aLlSODA: A Secure Object-oriented Database System

7. F. Lunt, I<. l<. Schcll, W. II. Shocklq, M. Hccknun and

I). Warren, A war-tcrln design for the SeaView tnulti-
lcvcl database system, Proc. 1988 IEEE Synrp. O~I Security orrn

Privacy, Oakhf, CA, April 1988, pp. 231-241.

T. F. Lunt, Sccurc distributed data views: identification of

dcficicncics and directions for future rcscarch, A007: I’innl

I+., Vol. 4, Sill International, January IOXY, pp. 05-74.

I>. Maicr and J. Stein, Dcvcloptncnt and i~nplclnc~~tatiot~
of an object-oriented DUMS. H. Shriver and P. Wcgncr
(cds.). In Ktwarclr Dirdor2.s in Ol+ct-Orimtrd I’roprtmii~g,
Massachusetts Institute of Technolog Press. Cambridge,

MA, 1987, pp. 35.5392.

M. Mizutw and A. E. Oldchocft, Information flow control

111 a distriburcd object-oriented systelx ‘with statically
bound object variables, Pm. fOt/l NBS’NCSC Nariorrn/

GJrnyrrt~rSt,~urity ChJ.~ Bahnorr, MD, 1987, pp. 36-07.
M. St&k and 11. G. Sobrow, Object-oriented program-

,ning: thcmcs and variations, AI Max., 6 (4) (Winter 1086)

40-62.
II. S. Tostcn, Data security in an object-oriented environ-

tncnt such as Stnalltalk-80, hr. f 988 Int. Conf: O~I COWI-

puler Lanpqes, Miami, FL, October 1988, pp. 234-241.

Appendix A-SMALLTALK Syntax

This appendix provides a brief introduction to
the SMALLTALK syntax. A method specification
consists of a message pattern and a sequence of

expressions separated by periods. The message
pattern dctcrmines the message selector the
method will bc used for and assigns names to the
formal parameters of the method. An example of a
message pattern is shown below

sPENI>: amount ON: reason

The message selector for this method is SPENDON:.

The two formal parameters in this method are
“amount” and “reason.” The expressions which
make up the body of the method consist of
message expressions with an optional assignment.
Mcssagc statcmcnts are dcscribcd briefly below

UNARY MESSAGES

A unary message cxprcssion consists of the name of
the rcccivcr object followed by the sclcctor of the
method to be executed. The statement below sends
the message consisting of a selector named SALARY

and no parameters to the object “EmpO 1:”

EmpO 1 SALARY

KEYWORII MESSAGES

A message can bc constructed from parts of the
selector or keywords alternated with arguments.
The following message sends the object “House-
HoldFinances” the selector SPENII:~N: along with
objects representing the real number 30.45 and the
string “food.”

HouseHoldFinances SPEND: 30.45 ON: “food”

A message expression returns an object as a result
which represents the value of the expression. This
object can be assigned to an instance variable. This
is done by preceding the message expression with
the name of the variable and the assignment
symbol - as in the example below

TotalFinances + TotalFinances + (HouseHoldFinances TOTALSPENTFOK: “food”)

BLOCKS produces a result. A block is similar in form to a
A block is similar to a function in a traditional pro- method. It is enclosed in square brackets and begins
gramming language. It takes a list of arguments and with a list of parameters. Separated from the para-

532

meters by a “I ” is a list of expressions which form
the body of the block. The block shown below is a

function of one argument “objectToClassify” and
returns a boolean result

[:objectToClassifyl (ObjectToClassify salary) > 1 OOOOO]

Dr. Bhavani Thuraisingham is a lead
engineer at the MITW Corporation

researching in database security and

integrity. Previously- she was at Honcy-

well Inc., and before that at Control

Data Corporation where she worked on

database security, knowledge-based sys-

tems and networks. She was also an

adjunct professor and member of the

graduate faculty in the Department of

he University of Minnesota.

Dr. Thuraisingham received her 13s degree in mathematics and
physics from the University of Sri-Lanka, t&j degree in com-

putcr science from the University of Minnesota, MSc. dcgrcc
in mathematical logic from the University of Bristol, U.K., and

Ph.D. degree in recursive functions and computability theory

from the University of Wales, Swansca, U.K. She has published

more than 30 technical papers in the arcas of database security,

knowledge-based systems and computability theory. She is a

member of the LEEE Computer Socicw, ACM and L &ma-Xi.

Computers and Securiv, Vol. 8, No. 6

The block sends its argument the message “salary”
and to the resulting object it sends the message
with selector > and argument 100000. A block-is
an object and can be used as an argument to a
method.

W. T. Tsai rcceivcd his Ph.D. and M.S.
d cgrees in computer science from the

University of California, Berkeley, in
1982 and 1986 respectively, and an SS.

d egrcc m computer science and engi-

neering from MIT in lY70. He is cur-

rently an assistant professor in ‘the

Department of Computer Science at the

University of Minnesota. His areas of

intcrest arc software engineering, artifi-

cial intelligence, computer security, and computer systems. Hc

is a member of IEEE and AAAI.

T. F. Keefe is a graduate student in the

Department of Computer Science at the

University of Minnesota. His. rcscarch
intcrcsts include database security and

software cnginccring. He rcceivcd a B.S.

degree in clcctrical cngincering and an

MS. degree in computer science from

the University of Minnesota in I X30 and

1985 rcspcctivcly. He is a mcmbcr of
IEEE.

533

