
Computers & Security, 8 (1989) 517-533 

Refereed Article 

SODA: A Secure 
Object-oriented 
Database System 
T. F. Keefel, W. T. Tsai’ and 
M. B. Thuraisingham** 
’ Department ofcomputer Science, CTt~iversity of‘Mitzrl~sota, Minneapohs, MN 55455, U.S.A. 
“Honeywell Inc., Corporate Systems, Developrn~rrt Divisiow, Golden V&y, MN 55427, U.S.A. 

This paper describes a security model for object-oriented 

systems. The model supports a flexible data classification policy 

based on inheritance. The classification policy allows for a 

smooth transition bctwccn rigid classification rules and 

unlimited polyinstantiation. The security model treats the data 

model as well as the computational model of object-oriented 

systems allowing more flexibility. This model trades an 
increase in complexity for a more flexible security model. 
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1. Introduction 

R ecently much research has been devoted to the 
design of multilevel secure relational DBMS 

[5, 6, 9, lb]. The relational data model is well 
defined and generally applicable to a wide range of 
data-modelling problems. For some problem 
domains involving multimedia DBMS and CAD/ 
CAM, object-oriented systems present a more suit- 
able data model and have become popular in these 

‘d omains. 

Object-oriented systems began as programming 
systems and are only now dealing with issues such 
as transactions and controlled sharing of data [7, 
171. Resolving these issues paves the way for more 
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useful object-oriented DBMSs and generates a 
need for security. 

Object-oricntcd DBMSs support a powerful com- 
putational model which can be used to express 
applications. The relational algebra does not deal 
with the subject of updating or creating new rela- 
tions even though most relational DBMSs do 
provide this capability. The fact that the 
object-oriented model includes an explicit compu- 
tational model allows the incorporation of the 
computational model into the security model. 

Providing security for an MLS/DBMS-using query 
modification is discussed in refI [13]. Query modi- 
fication is suited to systems with a simply defined 
set of composable operators. Object-oriented 
systems provide a fairly large set of primitive 
operators. These operators can be combined pro- 
cedurally to form functions with complex seman- 
tics. Query modification does not consider the 
problem of updates. Data modification and crea- 
tion are common operations in object-oriented 
programs and an important issue in our model. 

Security in object-oriented systems is discussed in 
ref. [16]. Objects, object schcmas, classes, instance 
variables, methods, composite objects and messages 
are all given classifications. The paper develops a 
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In an object-oriented system everything is rcpre- 
sentcd as an object. An object is made up of private 
state information and a set of actions which rcpre- 
sent the interface to the object. The state informa- 
tion is reprcscnted as a set of instance variables 
whose values arc objects. The actions d&cd on 
objects are called methods. A method carries out 
its action by sending mcssagcs. A message consists 
of a method sclcctor, which is the name of the 
method to bc invoked, followed by a list of objects 
used as arguments. Sending a message to an 
object causes a method to be executed. Objects arc 
passive entities which store information. A method 
is also passive. It represents a function which can bc 
performed on an object. A message sent to an 
object creates a method activation. Method activa- 
tions arc active and perform computations. 

Primitive objects represent their state directly; 
cxamplcs of thcsc primitive objects arc numeric 
values, strings and identifiers. Primitive methods 
represent actions carried out directly without send- 
ing messages; examples arc adding numeric values 
and indexing arrays. 

Each object has a type or class it belongs to. All 
objects in a class arc cquivalcnt computationally. 
Each may have a diffcrcnt state but the type of 
computation which can bc performed on an object 
is uniform throughout the class. The class d&tics 
what methods arc available in instances of the class 
and what instance variables arc included in the 
instance objects. The class of an object is also an 
object. A class object crcatcs new instances of its 
own type. A class object de&s a type by specializ- 
ing other types and defining additional behavior. 
The refined types arc referred to as its sub-types. 
An object inherits methods and access to instance 
variables from its class object and each super-type 
of the class object all the way up the inheritance 
lattice to the root, OISJECT. 

Methods arc specified such that only data con- 
tained in the object receiving the message arc 
mod&d directly. A method activation has no 
knowledge about the states of other objects and it 
cannot directly affect other objects. 
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Fig. I. Concepts of object-oriented m&1. 

Figure 1 illustrates some of the concepts discussed 
above. 

4. Security Model 

This section introduces a security model with 
several unique features. First, it is proposed for use 
in object-oriented systems. 

Secondly, the protected passive data in our model 
arc instance variables and objects. Access to them is 
arbitrated by the TCB. Another common choice 
for protected objects is a mcssagc [3, 201. In this 
approach each object is given a classification. To 
enforce the *-property [2], messages can only be 
sent to objects of an equal or higher lcvcl and 
responses can only bc rcccived from objects of a 
lower or equal level. This technique is well suited 
to distributed systems where the message passing is 
part of the system kernel. Howcvcr, this approach 
has several problems. First, the need to enforce the 
*-property ensures that only objects of the same 
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set of application-indcpcndcnt propcrtics which 
describe relations bctwcen entity classifications. It 
defines integrity rules for thcsc entity classifica- 
tions. It is difficult to determine which entities in 
the model act as protected objects and which act as 
subjects. This makes the security propcrtics of the 
model difficult to evaluate. 

Mandatory security is investigated in ref. [ 181. 
Security is cnforccd with a combination of com- 
pile-time and run-time checks. The security model 
classifies variables as having a fixed or indctermin- 
ate sensitivity level. The indeterminate levels are 
meant to deal with indeterminate information 
flows and must bc checked at run-time. The 
security model does not support automatic object 
classification rules nccdcd in a DBMS. 

The USC of a sensitivity level range to control the 
sensitivity lcvcls of data in a container is used in 
SEAVIEW [ 151 and TNJIIATA [ 141. TNJIIATA uses it to 
limit vulnerability. SEAVIEW uses it to limit poly- 
instantiation where it is augmented with security 
constraints for tuplc labclling. In our approach 
these constraints are the security constraints. Con- 
straint satisfaction is enforced as part of mandatory 
security. Constraint satisfaction guides the action of 
the reference monitor. 

WC propose a security model for a multilcvcl 
secure object-oriented database (SODA) with the 
following advantages. It is posed in terms of an 
object-oriented model, and it enforces information 
containment and security label integrity. The 
model covers the computational model as well as 
data access and classification. This allows the inter- 
action of the two concerns. The classification lcvcl 
of a computation is adjusted based on its clearance 
level, the data it has access to, and classification 
constraints enforced on data it wishes to create. 

The model supports a data classification policy 
which fits naturally into the object-oriented model. 
The classification technique is based on the inhcri- 
tance lattice which allows a natural way of expres- 

sing security constraints. The classification method 
allows the classification rigidity to be tuned on a 
class-by-class basis. This provides for wide varia- 
tions in labclling rcquiremcnts. 

2. Multilevel Security 

Multilevel secure computers protect objects classi- 
ficd at more than one level and allow sharing 
between users of different clearance levels. Objects 
arc labcllcd with their sensitivity lcvcls. Subjects arc 
associated with clearance lcvcls. A multilevel secure 
computer arbitrates all access of objects by subjects. 
The arbitration is carried out by the rcfcrcncc 
monitor according to a security policy. 

MLS/DRMSs must deal with large numbers of 
objects, intcrrclatcd in complex ways which have 
semantic meaning. This causes scvcral problems. 

The first is efficiency. Large numbers of objects 
can cause a large burden on the access monitor. 
Secondly, all of thcsc objects must be classified in a 
complete and consistent way. The third problem is 
rcprcscnting and manipulating objects containing 
data of multiple sensitivity levels. The inter- 
relations of the data and their semantics lead to an 
infcrencc problem. Inference occurs when infor- 
mation which can be rctricvcd from the database 
allows other data to be deduced. Inference provides 
a flow of data which is not arbitrated by the 
rcferencc monitor. 

3. Object-Oriented Systems 

This section gives a brief background on objcct- 
oriented systems. Thcrc is a wide variation in what 
is meant by “object oriented.” Most of our inter- 
pretation comes from SMALLTALK-80 [ 1 I]. Varia- 
tions on this model arc given in ref. [ 191. The 
object-oriented model began as a programming 
system. Our definition of an object-oriented 
system also stems from our desire to incorporate 
database considerations such as schema evolution, 
transactions and controlled sharing of data. Our 
understanding of these issues comes from rcfs. [I], 
[7] and [IT]. 
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lcvcl can send and receive messages. Secondly, mcs- 
sages arc sent to the class to carry out actions on the 
instances of the class. When the instances of the 

class have different sensitivity levels, the class 
objects must tither bc trusted to handle multilcvcl 
objects, or thcrc must be a version of the class for 
each sensitivity lcvcl. Thcsc models also have diff- 

culty with shared variables, c.<q. variables in the class 
which arc available to all of the instances. Unless 
the instance objects and the class sham the same 
sensitivity lcvcl, -1 c ass variables will tither be 
unreadable or unwritablc. These problems stem 
from the fact that a method when executing in this 

model has access to all of the object’s data. 

Data classification in our model is based on 
inheritance. Each object in a class shares the same 
classification constraint. Each may have a different 
sensitivity level but all satisfy the common con- 
straint. The classification constraint of a class is 
inherited by its sub-types. The constraint may be 
redcfincd in the new class but only by the system 
security officer. 

Attaching classification constraints to classes and 
allowing subclasses to inherit classification con- 
straints simplifies data classification. It uses the 
existing structure of the system as the basis for 
classification. The inheritance of constraints 
cnsurcs that they only need to be spccificd when 
there is a change. 

Data classification specifics a range of sensitivity 
lcvcls which can be assigned to an object and is 
strictly enforced by the model. This allows the clas- 
sification rigidity to bc adjusted on a fine scale. 

Each method activation is independent. The 
current classification level of the method activation 
rcprcscnts the sensitivity level of data which the 
activation has read. Once the activation finishes, 
this information disappears and control is returned 
to the caller acting with its original authority. 

A fundamental concept of the model is that since 
everything in the object-oriented model is an 

object, there is good assurance that no portions ot 
the system are unprotcctcd. The view that cvcry- 
thing is an object is interesting. It gives a simple 
understanding of the system but dots not tell the 
whole story. To really understand the objcct- 
oriented model and our security model it is ncccs- 
sary to understand the practical limitations of this 
view. For cxamplc, all objects store their state in 
instance variables in the form of other objects. This 
view leads to an indcfinitc recursion. Each object 
stores its state in terms of other objects and no values 

arc actually stored. The missing concept is the 
primitive object. These objects reprcscnt their state 
directly without using other objects and thcrcfore 
tcrminatc the recursion. Another example of a 
special case involves methods. Methods carry out 
their actions by sending messages. This is also a 
problem; each method sends mcssagcs but none 
performs a computation. Primitive methods arc the 
answer to this problem; they perform actions 
directly and send no messages. Another concept of 
object-oriented systems is that each object is an 
instance of another. The solution here is the object 
Mctaclass which is an instance of itself. 

These discontinuities point to special cases in the 
object-oriented model and special casts in our 
security model. The three cases dcscribcd above 
must be considered as special cases of the security 
model as well. First, all objects in the model arc 
labcllcd except primitive objects which are not 
labelled at all. They represent basic data elements 
which have little meaning out of context. Secondly, 
all methods have an independent current classifka- 
tion level except for primitive methods. Thcsc 
methods inherit the current classification of the 
method activation which called them. Each object 
inherits classification constraints from its class. 
Metaclass is an instance of itself and must provide a 
built-in classification constraint. 

4.1 Security Entities 

This section identifies the security role played by 
each entity in the object-oriented model. The 
portions of the object-oriented model discussed arc 
as follows: classes, primitive objects, objects, 

520 



Computers and Security, Vol. 8, No. 6 

instance variables, messages and method activa- 
tions. 

Classes 
A class represents the type of its instances. The class 
defines the methods and instance variables its 
instances have. It also defines class variables which 
arc available to all instances. Classification con- 
straints arc recorded in the class and apply to all 
instances. 

Primitive Objects 
Thcsc objects arc the basic clemcnts which all 
objects can be broken into. They arc not assigned 
sensitivity lcvcls. They represent basic data elc- 
ments which have little meaning out of context. 

Objects 
Each object can have a sensitivity level. This sensi- 
tivity level restricts access to the whole object 
rather than just one instance variable. This classifi- 
cation method can be used to protect the objects 
regardless of where the rcferencc is from. 

Instance Variables 
Each instance variable can have a sensitivity level. 
The value of the instance variable is the protected 
data. This classification can bc used to protect 
primitive values and associations between objects. 

Messages 
A message is sent on behalf of, and represents a 
subject. It is sent to an object requesting execution 
of a sclectcd method with the authority of the 
security subject which the message represents. 
Messages arc conceptually labelled with two 
security classification levels. The first is the clcar- 
ante level of the user. The second level is the cur- 
rent security classification of the originating 
method. These two levels act as an upper and lower 
bound on the authority of the new method activa- 
tion. 

Method Activations 
Method activations are the only active entities in 
the model. Each method executes in a separate 

context described by an activation. The execution is 
carried out by sending mcssagcs to objects. Primi- 
tive methods are carried out directly by the 
method activation without sending mcssagcs. 

4.2 Labelled Entities 

This model supports two types of labclled entities, 
objects and instance variables. Each object can 
support only one type. Either the object is labelled 
or its instance variables arc, but not both. Object 
labelling associates a sensitivity label with an object. 
This label is used to arbitrate access to the cntirc 
object regardless of the context in which it is used. 
This type of labelling is illustrated in Fig. 2. 

An object with instance variables labelled has a 
sensitivity level for each instance variable of the 
object. The label controls access to the contents of 
the instance variable. This labelling protects the 
associations between instance variables. Since an 
object can bc refcrcnced by more than one object, 
variable labclling allows a classification to be asso- 
ciated with each context in which the data arc seen. 
Variable labelling is illustrated in Fig. 3. 

t 

Label 

~ 

Fig. 2. Object labclling. 

imphgee 

Fig. 3. Instance variable labelling. 
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4.3 Active Entities 

In this model the active entity is a method activa- 
tion. A method activation is similar to a function 
invocation. It is the result of a mcssagc being sent 
to an object. A method activation on its surface is 
similar to a process with no state. The objects 
acccsscd by the method activation arc protcctcd. 
Information cncodcd in the execution state of the 
program is not protcctcd. Each method activation 
has its own state and is capable of encoding infor- 
mation. To control the information in the state of 
the activation, a method activation is assigned a 
current classification lcvcl. This level records the 
least upper bound of all information the method 
activation has read or has access to. This informa- 
tion can conic directly from reading an object or 
indirectly from what the calling method has read. 
The clcarancc level of the method activation comes 
from the associated user. The clcarancc lcvcl serves 
as an upper bound on the current classification 
lcvcl. 

Tllul)~TA [l’] associates a range of aUthOrity with 

subjects. This range is changed by the user but is 
not mod&cd dynamically. 

4.4 Data Classification Policy 

A classification constraint consists of two parts. The 
first part specifies the type of labclling, object or 
instance variable. The second part consists of scnsi- 
tivity lcvcl ranges for each labcllcd object. In, the 
case of object labclling thcrc is one range for the 
object itself. For instance variable labclling there is 
one range for each instance variable. The range 
specifies allowable limits on the sensitivity lcvcl of 
the protcctcd object. 

Data classification is based on the inhcritancc 
lattice of the system. Classification is detcrmincd in 
two ways, type and specialization. 

(I) The classification constraints for an object arc 
obtained from its class. 
(2) The classification constraint ranges of a new 
class are inherited from its super-type. 

The inhcritancc lattice provides a natural way of 
categorizing objects into semantically meaningful 
groups. From (l), each class is assigned a classifica- 
tion constraint which applies to its instance. 

The classification range of a subclass is inherited 
from its super-class, (2). The labclling type and 
ranges for corresponding labels arc the same. In 
the cast of variable labclling the sub-type may 
dcclarc additional variables. Thcsc variables arc 
unrestricted, i.e. they have a range of [SYSTEM LOW, 

SYSTEM HIGH]. This allows users to crcatc new 
classes. They arc not howcvcr allowed to modify 

constraints for the new class. The modification of 
constraints is done by the system security officer. 

This classification mechanism can be used to hide 
associations bctwccn objects. Consider a class 
named “Flights” whose instances contain informa- 
tion describing the destination and cargo of flights. 
“Flights” is classified using variable labelling with 
“Destination” and “Cargo” both classified [SECRET, 

SECXET]. To correlate the destination and cargo for 
a flight, a user must have a SECRET clcarancc. This 
constraint classifies the path to the information, 
but not the information itself. 

Classification can bc based on the value of an 
instance variable. It rcquircs the creation of a sub- 
type for each classification group. For cxamplc, 
to classify information about flights with a dcstina- 
tion of Iran as ~ECIWT, a sub-type of the “Flights” 
class is created called “FlightsTolran.” All instances 
of the class “Flights” arc class&cd [UNCLASSIFIEI), 

UNC‘LASSIFIEI I]. The instances of “FlightsToIran” arc 
classifkd [WXET, SECRET]. In this cast it is undcsir- 
able to have a class which is visible to UNCLASSIFIEI) 
users called “FlightsToIran.” To hide the class 
object, the class “FlightsToIran” itself can bc classi- 
fkd SECRET by the System Security Officer. 

Limits set by the classification constraints arc 
enforced by the TCB. If a sensitivity level for a new 
object cannot bc found which both satisfies the 
classification constraint and maintains information 
containment, the object will not bc crcatcd. For 
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cxamplc, consider a method activation which has 
read SECRET data and tries to create an object which 
is constrained to bc [UNCLASSIFIEI),UNCLASSIFIEI)]. The 

object will not bc created. The object created must 
be labcllcd SECRET to avoid writing down but this 
does not satisfy the constraint. 

Sensitivity level ranges provide a conceptually 
simple way of classifying data. The technique pro- 
vides a simple cnforcemcnt which can be carried 
out in the TCB. The task of assigning constraints 
and their verification is done by a separate trusted 
application, the sensitivity lab&r. 

4.5 Mandatory Access Restrictions 

This section describes mandatory access rcstric- 
tions. The restrictions d&c a set of allowable 
object accesses. There arc three parts in the model. 
The first part describes which object accesses arc 
allowed based on the sensitivity level of the object 
and the current classification level of the method 
making the rcqucst. The second part shows how 
these restrictions are modified to support poly- 
instantiation. The last section describes assignments 
and allowable changes to security classification 
levels of method activations. 

4.5.1 Object Access 

The discussion of object access is simplified by 
considering lab&d object access. Figures 2 and 3 
diagram the role of labclled objects for object and 
instance variable labelling. For the following dis- 
cussion consider a method activation executing 
with a clearance level of LSclca, and a current classi- 
fication level of LscUrrent accessing a labclled object 
stored in a slot with a sensitivity constraint range 

de&cd by [Lbotrom9 
allowed to 

Lrop]. The method activation is 

Rule 1.1 
Read the value of a labelled object with sensitivity 
lcvc! Lo if Lo G Ls,,,,,. An unreadable object 
returns nil. (Nil is the val.uc stored in an instance 
variable when an object is created. It means that no 
object is stored there.) 

Rule 1.2 
Create and store in the constrained slot a labelled 
object with sensitivity level L,, = Lscuricnr if Lbc:rto,,, < 
LSclca, and Lscurrc,,, < L,,+ otherwise reject the 
update and inform the user. 

Figure 4 represents the range of object sensitivity 
lcvcls which a method activation can read. The 
dashed line represents the fact that the current clas- 
sification level will be increased up to L,, (Rule 2.3). 
Figure 5 illustrates the conditions in which an 
object can be written. The condition is described in 
terms of the method activation’s current classifica- 
tion and clearance level, and their relation to the 
classification constraint of the object. The dashed 
line illustrates the range in which the current clas- 
sification will bc raised (Rule 2.3). This is to satis@ 
the rcquircment that the data is classified above 
L b0rron1 . The clearance restriction disallows writing 
up. This allows polyinstantiation to be avoided 
when the classification range of the data is dcgcn- 

crate, i.e. Lborrolll = LroF. The restriction on the cur- 
rent classification level maintains the *-property. 

Rules 1 .l and 1.2 by themselves do not cnsurc the 
simple security property or the *-property [2] since 
the current classification levels of methods arc 

Fig. 4. Labelled object read rules. 

Fig. 5. Labelled object modification rules. 
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allowed to change and thcsc changes have not yet 
been defined. The maintenance of these properties 
can be ensured only after examining the modifica- 
tion policy for method classification levels. The 
security propertics cnforccd by the model arc dis- 
cussed in Section 5. 

4.52 Polyinstantiation 

The multiparty update conflict is noted by Den- 
ning et al. in [4, 51 and is the problem which poly- 
instantiation addresses. The conflict arises when 
low-level users unknowingly attempt to overwrite 
higher level data which are invisible to them. If the 
write is rcjectcd a storage channel is created. If it is 
allowed, high level users have no way to protect 
their data. 

Until now, WC have ignored this problem. If the 
classification range for an instance variable is 
dcgeneratc, i.e. LbOlfO,,, = Lrop, this is adequate. In this 
case, the slot in which a labelled object is stored has 
one allowable sensitivity level. The model requires 
that to store a labcllcd object the user’s classifica- 
tion level be equal to the lcvcl of the slot (Rule 1.2). 
Now if an update is rejected it is so because the 
user’s classification does not satisfy Rule 1.2. This 
rejection cannot cause a covert channel. 

When Lrop strictly dominates Lbotrom each slot has a 
range of sensitivity levels. In this case polyinstantia- 
tion is used to eliminate the conflict. Polyinstantia- 
tion allows each slot to contain an object of each 
sensitivity level between Lbottom and Ltoy. 

Polyinstantiation is added to the model by allowing 
each instance variable to contain a collection of 
labelled objects. This collection is called a poly- 
instantiated set. Each element of the set is a labelled 
object. The sensitivity level ‘of each clement is 
unique in the set. When an element is added with 
the same sensitivity level it replaces the original 
member. 

Rules 1 .l and I.2 of the previous section can be 
revised to include polyinstantiation as follows: 

Rule 1.1’ 

Read the value of all labcllcd objects in the poly- 
instantiated set with sensitivity level Lo if 
Lo 6 Ls,,,,,. Nil is returned when no objects arc 
readable. 

Rule 1.2’ 
Add a labclled object to the polyinstantiatcd set 
with sensitivity level Lo = Lsrorrrnr if LbOllO,,, < Ls,,,,, 

and LsC,,,C,,l 6 L,,,; otherwise reject the update and 
inform the user. 

Polyinstantiation introduces scvcral problems. First, 
the intcrprctation of the data bccomcs more com- 
plex. Many simple values bccomc sets of values 
when polyinstantiation is used. This complicates 
understanding of the data and makes applications 
harder to develop. The second problem deals with 
replacement. Normally, when a labelled object is 
stored in an instance variable it replaces the 
lab&d object that is already thcrc. With poly- 
instantiation this is not necessarily the cast. It may 
just add another value to the set. 

4.5.3 Method Activation Security Levels 

A method activation executes with a security classi- 
fication level LScu,,c,,t determined by two quantities. 
The first is the clcarancc level LSclca, of the user. 
The second quantity is the current security classifi- 

cation level LSorlglnaror of the method activation 
which started this method by sending a message. 
Below is a set of rules determining the current 
security classification of a method activation. 

Rule 2.1 
The login method begins execution with classifica- 
tion level Ls,,,,,,,_ = SYSTEM LOW, (the method 
begins when the system is started and has no 
originator). 

Rule 2.2 
A method activation begins with a classification 

level Lscurrenr = LSorigi*mor~ 

Rule 2.3 
If a labelled object with sensitivity level Lo such 

that LsCurrcnr =G Lo is read or added to a polyinstan- 
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tiatcd set the current classification level of the 
method will be increased to the least upper bound 
ofLScurrcllt and Lo, i.e. LkurrcIlr lub L,. 

Rule 2.4 
The object rcturncd by a method activation is 
labcllcd with the method activation’s LsCu,rcnr. 

Thcsc rules cnsurc LsCUlrCllf will always dominate the 
lcvcl of the information available to the activation. 
The current classification level will begin at the 
lowest possible level to allow the method activation 
the most flexibility possible. 

One point that is not explicitly stated is that the 
current classification level pertains to a method 
activation. When the method returns, the informa- 
tion encoded in the state of the activation dis- 
appears. The caller then resumes with its original 
current classification lcvcl. 

An cxamplc of how these rules work is shown in 
Fig. 6. Each line shows the authority range [current 
classification level, clearance level] for a method 
activation. The action which causes the change in 
authority level is described in italicized text 
bctwecn the lines. 

The “Login Activation” begins with a current clas- 
sification level of System Low (Rule 2.1). It sends a 
message to another object which starts execution of 

system 
Low 

I_* Cl-CC 
Level 

sysm 
H@l 

Fig. 6. Method activation rules. 

“Method Activation 1” (Rule 2.2). “Method Activa- 
tion 1” reads an object with a sensitivity level L 1. In 
the process of doing this its current classification 
level is raised to Ll (Rule 2.3). When “Method 
Activation 1” returns, the “Login Activation” 
resumes with its original current classification level 
of System Low. Finally, it writes an object with 
constraint [~2, L2) and subscqucntly raises its 
current classification level to L2 (Rule 2.3). 

5. Model Properties 

This section discusses properties of the security 
model. WC do not attempt formal proofs of these 
properties but use informal arguments to 
dcmonstratc them. 

5.1 Simple Security Property 

The simple security property states that a subject 
with a clearance level L, is not allowed to read an 
object with a sensitivity level L, such that Lo > L,. 
In the notation used in this model, a subject with 
clearance level LSclca, is not allowed to read an 
object with sensitivity level L,, if Lo > Ls,,,,,. This 
is ensured by Rule I. 1’. 

5.2 *-Property 

The *-property states that a subject with current 
security classification level L, cannot write objects 
with sensitivity level Lo such that L, > Lo. The 
proposed model does not allow information to bc 
written down. Evidence is based on two facts. First, 
the current classification level dominates the sensi- 
tivity level of all information accessible to the 
method (Rule 2.3) and secondly the method activa- 
tion cannot write or create objects such that 
L Scurrent > L, (from Rule 1.2 I, i.e. Ld = LsCUrrenr). 

The information accessible to a method activation 
can come from its instance variables, information 
about its calling context and information available 
about the existence of unreadable objects. The 
information accessible from instance variables is 
covered by Rule 2.3, LScurretlt dominates the sensi- 
tivity level of all objects which have been read by 
the method activation. 
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Information by the method activation 
be passed by the fact that method 

is For cxamplc 

IFTRUE: [Unclassificdobjcct AI 

“Answer” PUT: True] 

This cxprcssion sends the conditional mcssagc 
IFTIIUE: to SccrctObjcct. The action taken by this 
mcssagc is to cxccutc the block which is the argu- 
mcnt to the mcssagc if SccrctObjcct is True. The 
block consists of the cxprcssion in brackets. This 
cxprcssion will associate the value True with the 
index value “Answer” in the dictionary Unclassi- 
ficdobjcct. (See Appendix A for a brief description 
of the SMALLTALK syntax.) 

The true block is only cxccutcd if the SccrctObject 
is true. Once called, the true block implicitly knows 
the value of the SecretObject. Therefore the 
method activation must start cxccution at the 
SECRET level (Rule 2.2). Ls,,,,,,,l dominates the lcvcl 

of its caller and thus the sensitivity lcvcl of all 
information it has access to. This also addrcsscs the 
problem of information being transferred when the 
SccrctObjcct is False. The program cannot store 
UNCLASSIFIEI) information when the vauc is True 
and it dots not attempt to when the value is False. 
This program will not write down information 
about SccrctObjcct. 

Information about the cxistencc of objects is given 
to a method activation when it can distinguish 
between null objects and objects it is not allowed to 
read. This transfer of information is disallowed by 
Rule 1 .I (i.e. 

rcadablc). 

5.3 Message Safety 

Sending and receiving messages does not violate 
mandatory security. This will be discussed in two 
parts. Sending a message to begin execution of a 
method is discussed first, followed by a discussion 
of the object returned on completion of the 
method execution. 

A mcssagc is sent by a method activation, M,, to a 
passive object creating another method activation, 
M3. M, cxccutcs with a clcarancc lcvcl of LscICJT and 
a current classification lcvcl of L\,,,,,,,,,I. From Rule 
2.2, the method activation Mz is started with the 
same current classification lcvcl and the same clcar- 
ancc lcvcl. Any information which is transfcrrcd to 
the method activation M2 by beginning its cxccu- 
tion is acceptable since both methods cxccute with 
the same current classification lcvcl. 

Rules 1 .l’, 1.2’ and 2.3 place the upper bound for 
LsrcurrCnr to bc Ls,,,,,. The object rcturncd by M? is 
labellcd, (Rule 2.4). Thus the upper bound on any 
object rcturncd to M, by M? is also Ls,,,,,, by Rule 
1.2’. This object can always bc read by M, bccausc 
of Rule 1 .l 

classification level to match that of Ma. If 
M, attempts to read the object rcturncd, it will raise 
its classification level according to Rule 2.3 and 
security will not bc violated. If M, does not read 
the object it will not rcccivc the information and 
security will again not be violated. 

5.4 Covert Channels 

This section will discuss covert channels. WC will 
consider storage channels and then timing chan- 
nels. 

5.4.1 Storage Channels 

We will discuss two aspects of our model which 
seem to allow storage channels. The first aspect is 
the automatic change in current classification lcvcl 
prcdicatcd on the existence of invisible data. Rule 
2.3 allows the change of a method’s security level 
conditioned on the cxistcnce of an object with a 
higher classification level. This can allow a covert 
storage channel if another method activation can 
monitor the classification level of the method acti- 
vation. A method activation will maintain some 
state information. This will include the temporary 
variables of the method activation, the program 
counter and a pointer to the calling method activa- 
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tion. This information is only available to the 
method activation itself and cannot be used to 
form a storage channel. 

The second aspect is alerting the user when an 
update does not satisfy classification constraints. 
Rule 1.2’ allows the user to be notified when the 
update is not allowed. This model requires that a 
user satisfies the constraint without writing up or 
down. This rejection is different from when an 
update is disallowed bccausc there arc higher level 
data stored there A rejected update in our model 
means that the constraint cannot be satisfied. It 
does not indicate whether higher level information 
is stored there. 

5.4.2 Timing Channels 

There is a covert timing channel in this model. It 
arises when a method starts a new method activa- 
tion which raises its security level and then returns 
to the calling method which retains its original 
security lcvcl. The new activation can read high 
lcvcl data and communicate it by modulating its 
execution time This channel exists only bctwccn 
two methods one of which calls the other. It can 
channel information owing to the differential in 
current classification levels of the two methods. 
The chamrcl does not involve multiprocessing, 
because the calling method is suspended until the 
called method returns. 

Timing channels arc eliminated when all methods 
of determining time arc removed. Even if there arc 
no functions which return real time, it can be 
determined in other ways. Gasser [lo] mentions 
scvcral ways of measuring rca,l time, including 
countering characters received by a terminal, 
counting the number of- disk accesses or by having 
a user enter the time from a stop watch. Although 
this is not a complete list, several of these methods 
can bc ruled out. Since there is no conspiring user, 
the techniques relying on this approach can be 
ruled out. The fact that there is no multiprocessing 
will constrain the methods as well. We arc cxamin- 
ing methods of dealing with this channel. 

6. Implementation 

Now WC will consider the difficulty in implc- 
mcntation. WC will outline the design of the 
implementation and discuss the amount of trust 
required for each. The design is described in terms 
of objects and the methods which they support. 
The trusted components of the design are 
described in Table 1. 

There arc two important issues to consider in 
mapping this model to an implementation. The 
model supports a large number of lab&d objects, 
and thcrc arc a large number of context switches 
implied by the model. We will consider mapping 
the model to a secure operating system, supporting 
protcctcd data segments, and secure processes. 

First, let us consider the mapping of objects in the 
model to protection objects. Each protected object 
is object or variable labelled. Object labclling places 
a classification on the object memory of the object. 
Variable labclling places a classification on each of 
the instance variables. 

Object-oriented systems such as SMALLTALK use an 
object table to simplify garbage collection. The 
table has an entry for each object in the system 
which points to the object. All rcfcrenccs to an 
object go through the object table. The object table 
and the object itself arc both given a classification 
level in this mapping. In the cast of object labclling 
the object table entry is classified with the same 
level as the object. It should be noted that in this 
case, instance variables do not require polyinstan- 
tiation. Object labelling leads to polyinstantiatcd 
objects. 

For variable labelling, the object table entry is clas- 
sified at the lowest level (i.e. the greatest lower 
bound) of all the instance variable classifications. 
For each instance variable with a non-degenerate 
classification range a polyinstantiatcd set of scnsitiv- 

ity Lbortotn is inserted which contains the instance 
variable’s value, where the classification constraint 
for the instance variable is [Lbottorn, Lrop]. The frag- 
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TABLE I 
Trusted design components 

Lkcriptior2 

This represents the interface between the OHJ~CT and the OHJECTM~MOKY. It must allocate objects to the 
proper sensitivity memory scgmcnt. 

If an attempt is made to read or write above the current classification level in accordance with I<ulc 1 .l ’ 
and 1.2’, the WHJECT is requested to raise its current classification level to allow the read or write. 

OHJK’T When a method begins execution, the WIIJE~T is instructed to stack its current classification lcvcl. The 

WHJKT will unstack its previous current classification level when the method completes. 

OI~JECT c’~.Ass supports the classification of oHJt(‘l. It provides protocol for recording the security 

constraints and providing access to them by the object memory. 

I’OLYIN5TANTIAl~tl) \I:1 This object must support sets of labellcd objects. It supports methods to insert and retricvc objects 

determined by their sensitivity level. This object hides the polyinstantiated sets from the user, but relics 
on the object memory for security. 

\UHJK’l This object represents the subject. It supports requests to change the current classification level, stack and 

unstack its current classification level. 

This class provides the interface for setting the classification of oIjJE(:l (‘LA\> by the system security 

officer. This is a trusted application. 

mcntcd objects will require an extra lcvcl of 
indirection to access the multilevel instance var- 
iables. Figure 7 shows the mapping for the objects 
from Fig. 2. 

The object table is a multilevel structure in several 
protected segments. Objects and polyinstantiatcd 
sets can be grouped together into single-level files. 

The second issue is the large number of secure 
context switches. The conceptually simple 
approach of placing each method execution in a 
separate process is sccurc. The large number of 
processes would be inefficient in a traditional 
operating system. Thcrc arc ways the number of 
processes can be reduced. Starting a new process 
only when a method actually reads higher level 
data and returning when there is a need to lower 
the current classification level would be a first step. 

The most profound improvement comes in exe- 
cuting in one process and modifying the current 
classification level of the process as required. The 

I Clwificatin Key 

Fig. 7. Object allocation for labelled objects. 
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model described in ref. [2] provides a command to 
change 

relies on a subject not maintaining 
memory segments 

model. A activation 
amount of state information 

method activation. 

Prototype 

Floyd defines three classes of prototyping [8]. 

(I) Exploration. 
(2) Experimentation. 
(3) Evolution. 

Exploratory prototyping is used when require- 
ments arc unknown or difficult to establish. Ex- 
perimental prototyping is used to test a require- 
ment’s specification. An evolutionary prototype 
deals with requirements which evolve over time. 

We have developed an exploratory prototype of the 
SODA security policy model. The prototype is 
written in SMALLTALK and was initially based on the 
model specified in [12]. The main purpose of the 
prototype was to test the feasibility and soundness 
of the model. The development and use of the pro- 
totype inspired refinements to the model which arc 
described in this paper. 

SMALLTALK was chosen as an implementation lan- 
guage because of the great similarity between the 
language concepts and the security model concepts. 
We attempted to implement the model by modify- 
ing the primitive methods which make up the 
TCB. In this way the restrictions of the security 
model are inherited by the entire SMALLTALK system. 
All accesses would then be arbitrated by these 
primitive methods. 

We identified several primitive methods used for 
creating new objects, accessing instance variables 
and performing methods. These methods are 
inherited by all objects in the system and served as 
the basis for access control. These methods are 
described briefly below. 

NEW 

This method answers a new instance of the class 
which rcccivcs the message. 

iNsrv.4RA-r: index 
This method answers the contents of the instance 
variable denoted by index. 

INSTVARAT: index PUT: object 
This method stores object in the instance variable 
denoted by index. 

PERFORM: method WITH: argument 
This method starts an activation as if the message, 
“method argument” were sent. 

Access control depends on a class called Labelled- 
Objects. Instances have a value and a sensitivity 
level. These objects contain and protect other 
objects and instance variables. The method NEW 

inserts Labelledobjccts when an object is created. 
The method INSTVARAT: above is mod&cd to cheek 
these labels before retrieving the value. 

Data classification for an object is inherited from 
its class. Object creation is also carried out by 
the object’s class. In our prototype class objects 
include methods to support classification. They 

1 retrieve and modify the security constraints. The 
) INSTVAIUT:PUT: method queries the object’s class to 
1 retricvc security constraints to dctcrminc if a value 
should be stored. The prototype includes an appli- 
cation called sensitivity labcller. This application 
provides a window interface for modifying security 
constraints. It is trusted but is not part of the 
kernel. 

/Each subject is modelled as a clearance level and a 
stack of current classification levels. The current 
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classification level is stacked before a method is 
cxccuted and is unstacked when the method com- 
plctcs. This functionality is included in the PER- 

FORM:WITH: method. Each subject has a window 
intcrfacc. Since SMALLTALK does not support multi- 
ple simultaneous users this gives us a way of 
simulating their interaction. 

With polyinstantiation comes a new class Poly- 
instantiatedsct. Instances serve as repositories of 
labcllcd objects. The labcllcd objects in a Poly- 
instantiatedset have unique sensitivity lcvcls. The 
class supports methods for selecting visible objects, 
adding objects to the set, and methods to support 
heuristic selection stratcgics, such as “most sensitive 

member”. 

The prototype has been modified to follow the 
spcciflcation in this paper and now scrvcs as an 
cxpcrimcntal prototype. An experimental proto- 
type necessarily has a limited focus. This prototype 
limits its focus to the following issues 

(1) Access restrictions. 
(2) Security constraints. 
(3) Polyinstantiation. 

?Jna”‘c modification of subject security 
, 

(5) Sensitivity labellcr. 

It dots not address 

(1) System architecture. 
(2) Pcrformancc. 

This focus determines the types of tests that can be 
carried out using this prototype. We intend to USC 
the prototype to explore the impact of polyinstan- 
tiation on the user and the application developer. 

The prototype clarified our understanding of the 
SODA model and helped us to refine it. The pro- 
cess of prototyping also gave support to the feasi- 
bility and soundness of the model. Our increased 
understanding came in part from a better undcr- 
standing of the object-oriented model. This learn- 

ing was especially useful bccausc by building the 
prototype WC learned precisely the parts of the 
object-oriented model which we needed to undcr- 
stand. 

Dynamic modification of the current classification 
lcvcl was the biggest unknown in our model. In 
our original model (121 the current classification 
level was associated with a user and not the subject. 
In this model, the current classification level of a 
user cannot decrcasc. The prototype made apparent 
how restrictive this model was. The prototype 
helped us to explore the feasibility of associating 
the current classification with the method activa- 
tion. This cffcctivcly allows the current classifica- 
tion as seen by the user to dccreasc. The prototype 
hclpcd us to understand the risks and gather evi- 
dcncc of the approach’s feasibility. 

We originally thought it would be relatively easy 
to develop a secure database on top of SMALLTALK. 

We assumed that certain low level operations such 
as sending mcssagcs or accessing instance variables 
could be mod&cd directly. We planned to modify 
thcsc methods and embed the security model in 
the SMALLTALK system itself. This turned out to be 
difficult since these operations are carried out 
directly by the interpreter. Changing these func- 
tions requires modifications to the compiler or the 
interpreter. Regardless, the prototype was 
dcvelopcd according to this model. The model can 
be exercised but the security it provides can be 
bypassed. 

By trying to implement certain aspects of the 
model WC found out immediately its complexity. 
While a simple function may have a complex 
implementation, if the complexity cannot be 
reduced, it is likely that the function is complex. 
One place where we have noticed a lot of complex- 
ity is in our implementation of Polyinstantiatcd- 
Sets. The selection of elements to retrieve and 
replace is quite complex in the prototype. WC 
believe more clarification of polyinstantiation in 
our model is needed. 
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Logical structuring of the model was improved 
from the prototype. The prototype makes apparent 
the inappropriate distribution of responsibilities. In 
the object-oriented model an object only has access 
to its own data. This encapsulation makes poor 
logical structure readily apparent. If responsibility 
is distributed unreasonably it will lead to a compli- 
cated implcmcntation. An example of this is 
responsibility for initializing secure objects. This 
includes examining the classification and either 
enclosing the object in a labcllcd object or storing 
labelled objects in each instance variable of the 
object. We originally wanted the class to carry out 
this function since it had access to the classification 
information. It became clear in prototyping that 
this solution was not sound and the function 
bccamc the responsibility of the instance. 

8. Conclusion 

We have proposed a security model for a multi- 
level secure object-oriented system, SODA. It is 
posed in terms of an object-oriented computation 
model. Each object is assumed to be a self-con- 
tained computing element whose only interaction 
with other objects is through sending and receiving 
mcssagcs. 

The model allows a flexible labelling strategy based 
on the inhcritancc lattice. The strategy accounts for 
the instance-of and sub-type relation. The two 
labclling strategies allow classification of the 
objects themselves, or of their instance variables. 
This allows a sensitivity to be associated with the 
information contained in the object or the context 
in which the information is seen. Each object 
inherits a labelling constraint from its class. The 
constraint specifics a range of allowable sensitivity 
levels for the data being labellcd. These types of 
constraints allow one to control the rigidness of the 
classification rules on a class by class basis. 

Access control in the model accounts for the com- 
putational model of the application program. This 
simplifies the task of multilevel updates on objects 
with rigid classification rules. Polyinstantiation is 

only used when it is indicated by the data being 
stored and not because of rcstrictivcness of the 
security model. 

One distinct advantage of our approach is that the 
object-oricntcd computation model provides a 
uniform treatment for all objects in the system. 
This simplifies the statcmcnt of a security model 
and provides a high lcvcl of assurance. 

We have developed an exploratory prototype of the 
model to examine its feasibility. The prototype has 
been modified to adhcrc to the model described in 
this paper and we intend to USC it to explore imple- 
mcntation issues, the ability of the model to 
support application devclopmcnt, and pcrformancc 
issues. 
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Appendix A-SMALLTALK Syntax 

This appendix provides a brief introduction to 
the SMALLTALK syntax. A method specification 
consists of a message pattern and a sequence of 

expressions separated by periods. The message 
pattern dctcrmines the message selector the 
method will bc used for and assigns names to the 
formal parameters of the method. An example of a 
message pattern is shown below 

sPENI>: amount ON: reason 

The message selector for this method is SPENDON:. 

The two formal parameters in this method are 
“amount” and “reason.” The expressions which 
make up the body of the method consist of 
message expressions with an optional assignment. 
Mcssagc statcmcnts are dcscribcd briefly below 

UNARY MESSAGES 

A unary message cxprcssion consists of the name of 
the rcccivcr object followed by the sclcctor of the 
method to be executed. The statement below sends 
the message consisting of a selector named SALARY 

and no parameters to the object “EmpO 1:” 

EmpO 1 SALARY 

KEYWORII MESSAGES 

A message can bc constructed from parts of the 
selector or keywords alternated with arguments. 
The following message sends the object “House- 
HoldFinances” the selector SPENII:~N: along with 
objects representing the real number 30.45 and the 
string “food.” 

HouseHoldFinances SPEND: 30.45 ON: “food” 

A message expression returns an object as a result 
which represents the value of the expression. This 
object can be assigned to an instance variable. This 
is done by preceding the message expression with 
the name of the variable and the assignment 
symbol - as in the example below 

TotalFinances + TotalFinances + (HouseHoldFinances TOTALSPENTFOK: “food”) 

BLOCKS produces a result. A block is similar in form to a 
A block is similar to a function in a traditional pro- method. It is enclosed in square brackets and begins 
gramming language. It takes a list of arguments and with a list of parameters. Separated from the para- 
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meters by a “I ” is a list of expressions which form 
the body of the block. The block shown below is a 

function of one argument “objectToClassify” and 
returns a boolean result 

[:objectToClassifyl (ObjectToClassify salary) > 1 OOOOO] 
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The block sends its argument the message “salary” 
and to the resulting object it sends the message 
with selector > and argument 100000. A block-is 
an object and can be used as an argument to a 
method. 
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