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Chapter 1

Duality Theory

The pair of LPs :
mincx : Ax > bz >0 (1.1)

max bly : Aly < cliy >0 (1.2)

are said to be a dual pair of linear programs. One of these (arbitrarily chosen)
is called the primal and the other its dual. It is easy to see that the dual of
the dual is the primal. Since every linear program can be written in either of
these forms we can restrict our analysis to these. Just for the sake of clarity we
describe the relationship in greater detail.

If Aismxn,cand x are 1 X n, bis m x 1 then y is m x 1. Thus, there
is a wvariable in the dual corresponding to every constraint in the primal and
a constraint in the dual corresponding to every variable in the primal; what is
the right hand side in the primal is the objective in the dual and conversely;
minimization in the primal changes to maximization in the dual; the direction
of the constraint inequalities changes. This is best described in the following
diagram:

Exercise:

Consider the general LP:

ALL  AL2 413 21 > pl
A21 A2.2 423 22 < b2
A3 432 433 23 _ b3

xl > 0; 22 < 0; 23 unrestricted
min[clz! + 2a? + 323

Transform it to the standard form and then write the dual; see if you can
do the reverse of the transformation and set up the rules for writing dual in
general.



1.1 Theorems Connecting the Two Problems

Theorem 1 (Weak Duality): Let x° be any feasible solution to P and let y° be
any feasible solution to D. Then cx® > bty .

Corollary 2 If 2° and y° are as above and satisfy cx® = b'y° , then they are
optimal to the respective problems.

Proof: Since 20 is feasible to P, Ax? > b; since y° is feasible to D, y° > 0.
Hence

(%) A2° > ()b = b'y°
By using a similar argument we get

(xO)tAtyO S (xO)tCt — CxO

Since
(yO)tAxO — ((yo)tA:EO)t — (xO)tAtyO

weak duality theorem follows. The corollary is a simple consequence of the
theorem and the definition of optimality.O

Theorem 3 (Strong Duality): If both P and D are feasible then both have
optimal solutions and cx = bly for any pair of optimal solutions to the two
problems.

Proof: By weak duality theorem, neither problem is unbounded. Since 3 a finite
algorithm which terminates for any LP in one of three conditions: infeasibility,
unboundedness, optimality and we have ruled out the first two the third must be
true for both problems. Furthermore, the algorithm terminates with an optimal
basis B* which satisfies 7 > 0; ¢ — mA > 0 where m = ¢« (B*)7!. It is easy to
see that y* = 7t is feasible to D. Since

bly* =7b = CB*(B*)_lb =cp+Th. = cz”

it follows from weak duality theorem, that y* is optimal to D and hence the
theorem.O

Theorem 4 (Weak Complementary Slackness): Let x* be any optimal solution
to P and let y* be any optimal solution to D. Then the following statements
are true:

Zaiﬂc; > by = y; :0;Zaijyf <cj=x;=0
j i

J
Zaijx; =b; <=y; > O;Zaijyf =cj=uz;>0
. ,

K2



Conversely if 20 is a feasible solution to P and y° is a feasible solution to D
satisfying:

Zaijacg > b; :>y? :0;Zaijy? < ¢j :>x? =0
j i

D aial =bi =y >0;) iyl = ¢ <=a§ >0
3 %

then these are optimal to the respective problems.

Proof: By strong duality theorem, cx* = b'y*. Since xz* and y* are feasible, by
weak duality theorem,

C.Z‘* — (ac*)tct Z (.Z‘*)tAty* — (y*)tAac* Z (y*)tb — bty*

Since the first and the last terms are equal everything in between is also equal
to these quantities. Hence, (z*)!(c! — Aly*) = 0; but z* > 0 and ¢! — Aly* > 0.
Thus, the two conditions:

Zaijyf <cj=zj :0;Zaijyf =cj=uz;>0

K2 K2

follow. The other two conditions are shown by a similar argument. To show the
converse, we use weak duality theorem and the fact that these conditions imply
that cz® = bty? and then use the corollary.0

Please note that all these proofs are made possible by the existence of an
algorithm. Such proofs are called algorithmic proofs. We will now give a purely
algebraic proof of these results. There is a set of results that together go under
the name “Theorems of the Alternative”. Each of these is of the form: “Exactly
one of a given set of alternatives is true”. In many of these there are two
alternatives labeled I and II. The following is a preliminary set that we need
now (we will mention a few more and show how these are proved later on).

Theorem 5

Jx>Ax =0 (1.3)
Jys5yA=0,yb#0 (1.4)

Theorem 6
JxsAr=0b,2>0 (1.5)
Jys3yA>0;yb<0 (1.6)

Theorem 7
dxsAx >b;z >0 (1.7)
Jys3yA<0;yb>0 (1.8)



Theorem A deals with solvability of equations and the inconsistent equation.
Theorem B is called the Farkas Lemma and deals with solvability of inequalities.
Theorem C is an alternative form of B.

Definition 1 A square matriz K is said to be skew (anti) symmetric if K! =
-K (ze k‘ji = —kijv Z,j)

Theorem 8 If K is a skewsymmetric matrix then the system::
x>0,Ke>0,Ke+x2>0 (1.9)
always has a solution.
Proof: First we will show that the system :
' >0,Ka" >0, (Ka' +2%); >0 (1.10)

has a solution. Then letting =z = )", x* proves the theorem. For this purpose
let b = e; (the i'" unit vector), and A = K in theorem C. If C.I is true, then

32’ 5 Kot Zei;xi >0
This is the required x?. If C.II is true in C' then
JysKy=—-K'y>0y>0efy=1y >0

Let 2* = —y. Thus, in any case, we have the theorem.D
In theorem D, if we let

0 A -b
K=| -A" 0 ¢
b —c 0

note that K is (m+n+1)x(m+mn+1) then we get the results needed for duality.
We indicate these below.

The immediate consequences of theorem D are: 3 vectors z°, 39, and a scalar
t0 satisfying the relations:

Az® — 19 > 0;9° > 0; Az® —t% +4° >0
—A + %t > 0,20 > 0, — A% + % +2° >0
bl —ea® > 0;4° > 0;0'y° — ca® +19 >0
Theorem 9 FEzxactly one of the following alternatives is true:

I Both P and D have optimal solutions and their values are equal.

IT One of the problems is infeasible and the other is feasible but unbounded.



III Neither problem is feasible.

Proof:We know that 20,4°, and t° of the type mentioned above exist. There
are two cases to consider:

Case (i) t% > 0: Let (z*,y*) = (2°,9y°)/t0. It is easy to verify that these are
optimal to P and D respectively.

Case(ii) t = 0: Then we have

Az® > 0,90 > 0; A0 < 0;2° > 0; 0890 > ca®

If one of the two problems is feasible (say P), then 3 2! 3 Az! > b;2! > 0.
From these it follows that (y°)!Az! > (y°)'b = b'y%;blyY < 0 since Aly? <
0,z > 0, and (y°)! Azt = (21)!Ay®. Hence cz® < 0 and this combined with
Az% > 0 = P is unbounded. If D is the one that is feasible then its unbound-
edness is shown similarly. This completes the proof of the theorem; the equality
of the values is shown by combining these with weak duality theorem shown
before. O

Weak complementary slackness is shown as before (recall that the proofs
were algebraic). We instead show :

Theorem 10 (Strong) Complementary Slackness: If both problems have op-
timal solutions, then 3 a pair x*,y* of optimal solutions to the two problems
B

Zaija:; >y :0Vi;2aijyf <cj<=a;=0Vj

J i

Proof: We have the case (i) above; z*, y* defined there will do the job.O

1.2 Algorithms Based on Duality

There are several algorithms based on these theorems. First is the set of al-
gorithms that are commonly known as variants of the simplex method. This
class includes: (i)the dual simplex method; and (ii)the self dual algorithm in
addition to the regular simplex now called the primal simplex method. These
are described now:

Dual Simplex Algorithm:

Here to we start with a canonical form; but instead of requiring the b to be
nonnegative as in the regular simplex, we need the vector ¢ to be nonnegative.
Just as the regular simplex maintains the nonnegativity of b, the dual simplex
maintains ¢ nonnegative. Just as the primal simplex stops with optimality when
¢ becomes nonnegative, the dual simplex stops with optimality when b becomes
nonnegative. For this reason, the condition that b > 0 is often referred to as
primal feasibility where as the condition of ¢ > 0 is referred to as dual feasibility.



These also correspond to bases that provide feasible solutions to the primal and
the dual problems respectively.

There is the case of unboundedness in the primal algorithm as one of the
terminating conditions. this is the same as dual infeasibility. This occurs when
we have a column with ¢; < 0;and a; ; < 0 Vi. The corresponding case in the
dual simplex is termination with indication of primal infeasibility which occurs
when there is a row with b; < 0; and a; ; > 0V j.

In the primal algorithm we select a column with ¢; < O if one exists. In the
dual algorithm we select a row with b; < 0 if one exists. In the primal algorithm
we select a row so that new b will remain nonnegative; in the dual, we select a
column so that the new ¢ will remain nonnegative.

Finiteness in the primal rests on the fact that the value of z is decreasing;
the corresponding argument for the dual algorithm is that it is increasing; keep
in mind that at any step we do not have feasibility for the primal in the dual
algorithm.

The primary reasons for the need for such an algorithm occurs in two areas.
The first is sensitivity analysis when we change the rhs and the new value is
out of the range that has the current basis feasible. it is certainly dual feasible
since the primal algorithm stops with optimality only when ¢ > 0. In this case
we can continue if we use the dual algorithm. Another application is when we
have to add ”forgotten” constraints and the old solution does not satisfy the
new constraints. This especially occurs when we try to solve integer programs
using LP.

1.2.1 Self Dual Algorithm

Here we start with any canonical form. Let l;?wd = b; + 0 whenever b; < 0 and
od __

also let ¢j'°¢ = ¢; + 6 whenever ¢; < 0. For ¢ sufficiently large, this basis will
be optimal. As 6 decreases, one of these values goes to zero first; if it is one of
the rhs numbers then follow the primal simplex; else follow the dual simplex.
Finiteness follows from the fact that 6 keeps decreasing until it either goes to
zero or there is an indication of either primal or dual infeasibility.

This completes the description of variants of the simplex that we will discuss.
There is one other variant due to Wang that we will not discuss here. We will
now consider algorithms based on complementary slackness theorems. These
preserve complementary slackness but not primal or dual feasibility nor do they
rely on bases. These are therefore, not simplex type algorithms in general. The

foremost among these is the primal-dual algorithm which we now take up.

1.3 Primal Dual Algorithm

Consider the pair P & D of LPs :
mincz : Axr =bjz >0 (1.11)



maxbly : Aly < (1.12)

Primal dual algorithm starts with (an easily found) feasible (but not necessarily
basic) solution y° to D. Let S = (j : >, a;;y? = ¢;). If y° were an optimal
solution to D, then complementary slackness would require x; = 0V j ¢ S
in any optimal solution to P and, conversely, any such feasible solution to P
is optimal. The primal dual algorithm behaves as if y° is optimal to D and
hence tries to find a feasible solution to P with the additional condition that

z; =0V j ¢S We try to find
2% 2% >0, 455 =b (1.13)

This is called the restricted primal problem. If we succeed, then the pair (29, y°)

is optimal to P and D, respectively (with :1:9 = :1:59 for j € S and x? = 0 for

Jj ¢ S); this is because they are feasible and satisfy complementary slackness
conditions. If not, we have the optimal dual solution ¢* to the phase I problem
for this restricted primal problem:

minZvi:ASxSJrIv:b;xSZO;vZO

which is used to produce a “better” solution to D, and the entire process is
repeated. The algorithm terminates with one of two conclusions: (i) exhibit-
ing an optimal pair of solutions, or (ii) indicating infeasibility of P and hence
unboundedness of D.

1.3.1 Details

1 If y is a feasible solution to D and x is feasible to P in which . a;;y; <
cj = x; = 0, then these are optimal to P and D, respectively.

2 Let 3° be feasible to D. Let S be defined as above. Let o* be an optimal
solution to the dual of the LP:
minZvi c A% + T :b;xS >0;v>0

and suppose that the optimal value of this LP is positive. Thus, we cannot

find #° > 0 satisfying A%2° = b. 0* satisfies the relations:

(A%)to* < 0;0* <e
w* = blo* >0

(a)By Farkas Lemma, we have:

Ato* < 0 = 3 no solution to: = > 0; Az = b since bfc* > 0.



(b)[Afo* < 0] is false = 360 > 02 y' =% + 6 o™ is feasible to D

and satisfies the relations: b'y! > b'y® and 3, a;;y) = ¢; for some j ¢ S.
Proof:(b)>", aiyt = Y, aijy) + 60>, aijof. For j € S, Y, aijy) = ¢j and
> aiiof <0 and hence Y, a;yt < ¢; for V.6 > 0. For j ¢ S, since 3" a;;y) <
cj, 360 >0 3 Y a;yl < ¢j, and if we choose 6 as large as possible without
violating this condition, equality will hold for at least one j ¢ S as promised.
(Note: If for some j € S, x; is in the optimal basis in the restricted primal, then
for this j, >, a;jof = 0 and hence Y a;;y} = ¢; for this j; hence we “lose” only
those variables that are not in the optimal basis of the restricted primal.) This
means that we can continue the restricted primal from where we left off.

btyl — btyO +9bt(7'* > btyO
since § > 0 and bto* = w* > 0.

3 If we used the “lexicographic” version of the simplex method for the re-
stricted primal, then the whole algorithm is finite.

Proof:Since the objective of the restricted primal decreases lexicographically,
not only is it finite but we cannot return to the same restricted problem.

- oyl = gnew 4. o¥
4cj =)0y =5 +ais 0% aijo;

(Note: d; =0 — 3, a;jof = =, a;;0¢ ¥V j). This provides an easy way to
produce the new S and 6* the largest value of # > y! is feasible to D.

5 Note: It is not necessary that the restricted primal be solved using some
form simplex method. Indeed, in most applications of the primal dual algo-
rithm this is not done. A special algorithm is used that not only solves the
restricted primal but also provides o™ that is needed to implement primal
dual algorithm. We will use the transportation problem as an illustra-
tion in this course. Matching will be another example solved using this
algorithm in the networks course.

1.3.2 Open Question

Consider the following implementation of primal dual algorithm: Start as usual
with 3 feasible to D. Let there be a black box that has as input y° and as
output either an z® 3 x° > 0, A°z® = b or the set (¢, ((x®)*,v*)) required as
in the above description. Would the entire algorithm be finite ?

Now we take up the special case of the transportation and assignment prob-
lems for which the primal dual algorithm is especially suited. Indeed, these
were the first problems on which this algorithm was used; the high degree of
degeneracy in these problems made the regular simplex unsuitable for these
problems.



1.4 Transportation and Assignment Problems

In an introductory course in operations research one of the first topics introduced
is the transportation problem. Its history dates back at least to the works of
L.Kantarovitch and F.L. Hitchcock. The problem stated as a linear program

1S:
[min 3, >° ci @i
25T = (
: 1.14)
> Tij = b
;> 0;1<e<ml1<j<n
Its LP dual is
max ) ; @it 32505 (1.15)
u+v; <l <i<m;l<j<n]

We illustrate the primal dual algorithm of linear programming on this problem.
We will use such an algorithm in matching and other problems later on. This
type of algorithm starts with an (easily found) feasible (not necessarily basic)
solution to the dual. In our example, start with any set of values for {u;}. Let
v; = miny[e; ; —u;). The set of values usually chosen for u; is u = min; ¢; ; and
this yields v9 = miny[c; ; — u)].

Now the algorithm forces the values of x; ; for which u; +v; < ¢;; to zero.
Using only the remaining variables we try to find a feasible solution to the
primal problem; if we succeed, then any such solution is optimal to the original
problem. If we fail to find such a solution, then we modify the dual solution
to a better one and repeat the process. The problem of trying to find a feasible
solution to the primal under the restriction that some variables be zero is called
the restricted primal problem. We will solve the restricted primal problem by
solving a maximal flow problem which is described next before we resume the

discussion of the primal dual algorithm.

1.5 Single Commodity Maximum Flows

In this section, we consider single commodity flow problems. The first of these
is called the maximum flow problem and its description is given below:

PROBLEM: Given a directed network G = [N; A], a special node, s, called
the source or origin and a node, t, called the sink or destination and positive
numbers u; ;j representing the capacity of arc (4,5) € A we want to maximize
the total shipment from s to t. This problem is called the maximum flow
problem in the literature and is one starting point in this area.



1.5.1 FORMULATION

Let f; ; be the flow on arc (¢,j) € A and F' be the total flow across the network.
Then:

F 1=35
Z(‘fi’j — fj,i) = 0 ) 7é S,t (116)
i —F 1=t

0< fij <wui;V(i,j) €A

max F'

This is, of course, a linear program and can, in principle, be solved by the
simplex method. However, the problem could be highly degenerate and unless
special precautions are taken, it could be very inefficient to use the simplex
method. Before describing methods to solve the problem we remark that it
is easy to find a feasible solution for this problem as it has been stated. For
example [F = 0; f; ; = 0V (i,7) € A] will suffice. First some definitions and a
few preliminary results.

The notion of a cut or a cut set separating s and t can be defined in several
slightly different ways. The first is to think of it as a partition of the node set
N into two disjoint sets S and S with s € S and ¢ € S. The next is to think of
a cut as the set of arcs that connect these two sets mentioned above. A slightly
weaker version is a minimal set of arcs whose removal disconnects the nodes s
and ¢. Unless otherwise stated, we will use the first form.

Lemma 11 Let [f, F] be any feasible flow and let (S, S) be any cut separating
s and t. Then F < u(S,S) where u(S,S) = Y iesijes Wij u(S, S) is called
the value of the cut (S, S). If equality holds then [F, f] is optimal to the mai-
mum flow problem and (S, S*) is a cut whose value is minimum among all cuts
separating s and t.

Proof: The first part of the lemma clearly implies the second. To prove the
first consider 1.16. Adding the equations corresponding to nodes in S we get:

F=3% s> jenfij— fii) = f(S;N) = f(N,S)

The last of these inequalities follows from the fact that 0 < f; ; < u; ; for
all arcs (7, 7) in the network.O

The following algorithm, known in the literature as the (flow) labeling algo-
rithm, is one way to show that there exist solutions that achieve equality in the
relation above. It is usually attributed to Ford and Fulkerson.

1.5.2 Labeling Algorithm

Input: A feasible solution [f, F.
Step 0: Label s (-, c0) and let s € S, the set of labeled nodes.

10



Step 1: If ¢t € S stop; a flow augmenting path has been found. (This is a
path along which additional flow can be sent thereby increasing the total flow
F). If not look for a pair (i,j) with i € S and j € S and either (i) [(i,5) € A
and f; ; < u; ;| or (i) [(j,7) € A and f;; > 0]. If no such (¢, ) exists, then
stop; [f, F] is the optimal solution to the maximal flow problem and (5, S) is a
minimal cut separating s and ¢. If (, ) of type (i) exists label j(i*, €;) where
€; = minfe;, u; ; — fi ;] and include j in S. If (4, 7) is of type (ii) then label
j(i™, €;) where €; = min[e;, f;;] and include j in S. Return to step 1. Type (i)
arcs are called forward arcs and those of type (ii) are called reverse arcs. If we
succeed in labeling t, we get an augmenting path as well as the nature of these
arcs from the labels themselves. This is done as follows: If the label of ¢ is (5T,
€;) then the previous node to ¢ in the flow augmenting path is j and the last arc
is a forward arc; if it is (7, €) then the previous node is still j but the arc is a
reverse arc. Now we look at the label of the node j and the process is repeated
until we reach s and this identifies the entire path. We now augment the flow
by €; along the path — by which we mean that flows on forward arcs along the
path are increased by ¢; and those on reverse arcs are decreased by the same
amount. This gives us a new feasible flow and the process is repeated. If the
starting solution is optimal then at some point before labeling ¢ we will find no
arc of type (i) or (ii). At this point the set S of labeled nodes gives a minimum
cut separating s and t. Further, all arcs across the cut (S, S) with the initial
end in S will be saturated (i.e. f =u) and all arcs with the terminal end in S
will be flowless (f = 0). In other words, all forward arcs across the cut will be
saturated and all reverse arcs will be flowless. Of course, if this happens with
any feasible flow and any cut separating s and t then this flow is optimal and
the corresponding cut is minimal.

Now we resume the main discussion of the primal dual algorithm for trans-
portation and s assignment problems.

For this purpose we construct a restricted network: G" = [N = {s} U {t} U
SUT; A" = {(i,5) : wi +vj = ¢;;} U{(s,4)} U{(4,t)}]. Such a network is
sometimes called the equality graph for obvious reasons. s is the origin and ¢
is the destination and the capacity of arc (s,) is a; and that of (j,t) is b,.
Capacity of arcs of type (i, /) with i € N and j € N is co. Since >, a; = Zj b,
if maximum flow in the above network is equal to this amount, then and only
then we have a feasible flow to the original problem; and in this case this flow is
optimal as claimed before by duality theory of LP. If max flow is less than this
amount, then we get a minimal cut separating s and ¢ and we use this cut to
improve the dual solution. Such a minimal cut splits the set S, of supply points
as well as the set T, of demand points. Let the labeled nodes be I C S and
J C T; and let the set of unlabeled nodes be I € S and J C T. As mentioned
before if I = J = ¢, then we are done. If not let § = min,; ;¢ 7[c; ; —u;—v;] > 0.
The last statement is true since we can not have an arc of the form ¢ € I, and

11



j € J in the restricted network. Now change the dual solution as follows:

’ U; Z¢I
YT wit+s iel
’U/.: U‘j j¢J
J Uj‘f’(ﬁ jed

Note that ¢; j — uj —v; = ¢;; —u; — v; for (7, j) of either of two types:(i)i € I
and j € Jor (ii)i ¢ [ and j ¢ J. For the case i ¢ [ and j € J, ¢; j — uj — v} =
¢j —u; —vj+ 6> 0. For the case i € I and j ¢ J, the choice of § is such that
¢i,j —u; —vj > 0. Hence the new u; and v; form a feasible solution to the dual.

ZCLZ’U; + ijU; = Zaiui + ijvj + 6[2&1 - Zb]]
% 7 % J i€l JjeJ

Since we know that the current flow F' across the network satisfies:

F = [Zal—f—Zbﬂ < Zai

igl jeJ ieN
it follows that:

S0 Y50

iel jeJ

Hence the new dual solution is an improved solution as claimed. The new
equality graph will have all old arcs of the type (i) or (ii) above. It will have at
least one new arc of the type i € I and j ¢ J. We may lose some arcs of the
type i ¢ I and j € J; but all these arcs have zero flow at the point in time we
made a dual variable change. This allows us to retain the old flows and proceed
further without redoing all this work from scratch; indeed, we may even retain
the old labels in flow labeling and increase the set of labeled nodes because of
the new arc of type ¢ € I and j ¢ J. Thus, each time we do a dual variable
change the set of labeled nodes enlarges and hence we can not have a continuous
string of dual variable changes for more than |S'UT| number of iterations; at
the end of this set of dual variable changes total flow must increase. If all data
are integral this alone guarantees finiteness of the algorithm. If the data are
not integral, then we need to use a finite algorithm for flow maximization at
each step. If we do this finiteness is guaranteed because flow will increase in
at most |S UT| steps and each time we do a dual variable change, the current
flow equals [}-;5;a; + 37 ;b;] and therefore the same I,J combination can
not repeat. The number of such combinations is finite and hence the algorithm
is also finite. This last argument is very useful to show finiteness of algorithms.
In order to make the algorithm polynomial, we need to use scaling techniques
as in Edmonds and Karp.
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