
Non-Functional Requirements

Computer Science Program, The University of Texas, Dallas

Lawrence Chung

What are NFRs?

Types of NFRs

Product- vs. Process-Oriented Approaches

Process-Oriented Approach

Product-Oriented Approach

Portability, Reliability, Efficiency, Usability

Lawrence Chung

"... Requirements definition is a careful assessment of the needs that
a system needs to fulfill.
It must say why a system is needed, based on current and foreseen
conditions, which may be internal operations or an external market.

It must say what system features will serve and satisfy this context.
[Ross77]

"non-functional requirement - in software system engineering,
a software requirement that describes not what the software will do,

but how the software will do it,
for example, software performance requirements,

software design constraints,
software external interface requirements

and software quality attributes.

Nonfunctional requirements are difficult to test; therefore, they are usually
evaluated subjectively." [IEEE]

desirable system attributes, extra-functional requirements, quality factors,
 (not dysfunctional requirements)

"-ilities": accessibility, adaptability, adjustability, availability, capability, compatibility, composability,
comprehensibility, configurability, controllability, customizability, enhanceability,
evolvability, expandability, extensibility, flexibility, inter-operability, learnability, maintanability,
modifiability, portability, reconfigurability, reliability, repeatability, replaceability, reusability,
scalability, standardizability, supportability, survivability, sustainability, testability, traceability
trainability, transferability, usability, variability, versatility, ...

"-ities": additivity, distributivity, diversity, modularity, plasticity, safety, security, similarity, simplicity, ...
Other: accuracy, completeness, performance, responsiveness, user-friendliness, ...

affordability

Non-Functional Requirements: What?

✈

And it must say how the system is to be constructed ..."

✈

✈

Lawrence Chung

Types of NFRs

[Roman, IEEE Computer85]:

describe how the system is to interface with its
environment, users and other systems.
e.g., user interfaces and their qualities (e.g., user-friendliness)

describe performance constraints involving

include physical constraints (size, weight), personnel availability, skill level considerations,
system accessibility for maintenance, etc.

can be classified under two subcategories:

s Quality of the design: measured in terms such as maintainability, enhanceability, portability.

s Limits on development, such as development time limitations, resource availability,
methodological standards, etc.

s time/space bounds, such as workloads, response time, throughput and available
storage space, e.g., "system must handle 100 transactions/second"

s reliability involving the availability of components and integrity of information maintained
and supplied to the system , e.g., "system must have less than 1hr downtime/3 months".

s security, such as permissible information flows

s survivability, such as system endurance under fire, natural catastrophes.

immediate and/or long-term costs

generally informally stated, often contradictory,
difficult to enforce during development and evaluate
for the customer prior to delivery

1 Interface requirements:

1 Performance requirements:

1 Operating requirements:

1 Lifecycle requirements:

1 Economic requirements:

1 Political requirements:

Lawrence Chung

portability

reliability

efficiency

human engineering

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

general utility

as-is utility

maintainability

Software Quality Tree
[Boehm76]

Lawrence Chung

Influences on

system qualities

Process Product External

considerations considerations considerations

Development
method

Implementation
environment

Decision
tracing

Design choices

Integration

Performance

Capacity

Security

Integrity

Etc.

Economic
factors

Contract
factors

Political
factors

factors
Social

[Sommerville92]

Process, Product & External Considerations

measure the degree to which a finished product meets a particular NFR.
Product-oriented approaches:

P
r
o
c
e
s
s

P r o d u c t

Requirements
Customer

Process-oriented approaches:

Lawrence Chung

integrate the enforcement of NFRs
with the development process
to build quality in

Product- vs. Process-oriented Approaches

Lawrence Chung

expected size of data is small;
hence use of indexing will not significantly
increase space requirement

-

Use indexing

+ -

Good performance of MSS

Minimum response time for MSS

Minimum space for MSS

Decompose

Satisfice

Argument

Process-oriented approach

Lawrence Chung

Process-oriented approach

S Disambiguate
S Design alternatives
S Tradeoff analysis
S Evaluate

S Prioritize
S Design rationale

expected size of data is small;
hence use of indexing will not significantly
increase space requirement

-

Use indexing

+ -

Good performance of MSS

Minimum response time for MSS

Minimum space for MSS

Decompose

Satisfice

ArgumentDecompose
Use hashing Use key

+
drop-dead date

Flexibility

-

Property Metric
Speed transactions/sec, response time, screen refresh time

Size KBytes, LOCs, Function Points, Complexity measures

Ease of use transactions/sec, response time, screen refresh time

Lawrence Chung

weighted ratingratingrelative weight

.3 6 1.8

.6 5 3.0

.1 7 0.7

Overall Quality 5.5/10

Speed

Size

Ease of use

usual metrification process:

however, aids in understanding the factors that affect sw quality
an inexact science at this point

a first-cut approximation very poor quality factor

1. determine a set of desirable attributes (i.e., ilities)
2. determine relative importance/weight of such attributes
3. evaluate the quality (rating) of each of the attributes
4. compute weighted rating for each
5. sum up all the weighted ratings

Property

Product-oriented approaches

^ Quality Metrics:

*

*
*

Portability

* the degree to which software running on one platform
can easily be converted to run on another.

* E.g., number of target statements (e.g., from Unix to PC)

* hard to quantify, because it is hard to predict
what a "next generation" platform might be like

* can be enhanced by using languages, OSs and tools that are
universally available and standardized,
e.g., Fortran, Cobol, C (for languages),

Unix, Windows, OS/2 (OSs)

Lawrence Chung

* the ability of the system to behave consistently

the environment for which the system was intended.
in a user-acceptable manner when operating within

* theory and practice of hardware reliability are

*

well established; some try to adopt them for sofwtare

one popular metric for hardware reliability is mean-time-to-failure (MTTF)
"Bathtub" curve characterizes MTTF:

time

nu
m

be
r o

f f
ai

lu
re

s infant
mortality

* Given a large population of a particular component, many willinfant mortality:
fail soon after development due to inaccuracies in the manufacturing process;

constant operation

wear & tear

* Do 2 different software copies have different characteristics?
Does software wear & tear by decomposition?
Does software obey physical laws?

Reliability

Lawrence Chung

Lawrence Chung

Sometimes reliability requirements take the form:
"The software shall have no more than X bugs/1K LOC"

But how do we measure bugs at delivery time?
Begugging Process - based on a Monte Carlo technique for

statistical analysis of random events.

1. before testing, a known number of bugs (seeded bugs) are secretly inserted.
2. estimate the number of bugs in the system
3. remove (both known and new) bugs.

of seeded bugs
of detected seeded bugs # of detected bugs

of bugs in the system
=

of bugs in the system = # of detected seeded bugs
of seeded bugs # of detected bugs

Example: secretely seed 10 bugs
an independent test team detects 120 bugs (6 for the seeded)
of bugs in the system = 10 x 120

6
= 200

of bugs in the system after removal = 200 - 120 - 4 = 76
But, deadly bugs vs. insignifant ones; not all bugs are equally detectable;

"No more than X bugs/1K LOC may be detected during testing"

as calculated by the Monte Carlo seeding technique"
"No more than X bugs/1K LOC may be remain after delivery,

Counting Bugs

(Suggestion [Musa87]:

Lawrence Chung

refers to the level at which a software system uses scarce computational
resources, such as CPU cycles, memory, disk space, buffers and
communication channels
can be characterized along a number of dimensions:

maximum number of users/terminals/transactions ...

what happens when a system with capacity
X widgets per time unit receives X+1 widgets?

_ Let the system handle the load, perhaps with degraded performance

_ Let the system crash

Let stimulus refer to an action performed by the user/environment,
and response refer to an action generated by the system.

response

response

stimulus

stimulus

e.g., "the system will generate a dial tone within 10 secs
from the time the phone is picked up"

e.g., "the system will record that the phone is in use
no later than 1 micro-second after it had generated a dial tone"

e.g., "the user will start dialing the phone number
within 1 minute from getting the dial tone"

e.g., "the user will type her password within 15 secs
from typing her login name"

Efficiency

@Capacity:

@Degradation of service:

@Timing constraints:

_ stimulus-response:

_ response-response:

_ stimulus-stimulus:

_ response-stimulus:

Lawrence Chung

broadly - quality - fit to use
narrowly - good UI
Usability inspection:
finding usability problems in UI design, making recommendations for fixing them,
and improving UI design.

"9 usability heuristics" [Nielsen90]

a set of criteria against which usability of UI design is evaluated

"10 usability heuristics" [Molich and Nielsen90]

Promptness no undue delay in accepting info items and responding to requests
Tolerance no hang-ups against errors, delays, unexpected behavior, etc.
guidance providing guidance for correcting errors, generating reminders, etc.

Coherence ...
...

Simple and natural dialogue; Speak the user’s language
Minimize the user’s memory; Consistency; Feedback
Clearly makred exits; Shortcuts
Precise and constructive error messages; Prevent errors
Help and documentation

Usability

^

^

Heuristics:

Lawrence Chung

All users will be satisfied with the usability of the product.

without requiring assistance (e.g., modifying exclusion date set)

by the third attempt
95% of the users will be able to complete representative tasks

by the third attempt
95% of the users will be able to complete tasks X Y Z

95% of the users will be able to complete tasks X Y Z
in less than 10 minutes

95% of the users will be able to complete representative tasks

95% of all users will be satisfied with the usability of the product.

without requiring assistance

without requiring assistance

without requiring assistance

in less than 10 minutes
95% of the users will be able to complete task X

in less than 10 minutes
80% of the users will be able to complete task Y

77% of the users will be able to complete task Z
in less than 5 minutes

Usability

^
^

^

^

^

^

^

"... The fundamentality of satisficing - the fact that

it is the *basic* structure of all real decision making,

moral, prudential, economic or even evolutionary -

gives birth to a familiar slipperiness of claim that

bedevils theory in several quarters ..."
[Dennett, 1995]

