

Sample Unified Process Artifacts and Timing (s-start; r-refine)

Sample Unified Process Artifact Relationships

Discipline Artifact
Iteration^

Incep.
11

Elab.
EL.En

Const.
CL.Cn

Trans.
T1..T2

Business Modeling Domain Model s
Requirements Use-Case Model s r

Vision a r
Supplementary Specification s r
Glossary s r

Design Design Model SW
Architecture Document Data
Model

s s
s

r r

Implementation Implementation Model s r r
Project Managemen t SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

: System

enterItem
(id, quantity)

...

Process Sale

1. Customer
arrives ...
2. Cashier
makes new
sale.
3. ...

Use Cases System Sequence Diagrams

make
NewSale()

Sale

timeStamp

Register

...11

ProductCatalog

. . .

domain concepts

system
events

Domain Model

Use-Case Model

Design Model

: Register

enterItem(id, quantity)

: ProductCatalog

spec := getSpecification(id)

addLineItem(spec, quantity)

: Sale

. . .

use-case
realization with
interaction
diagrams

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

makeNewSale()
create()

Register

...

makeNewSale()
enterItem(...)
...

ProductCatalog

...

getSpecification(...) : ProductSpecification
...

the design
classes
discovered
while designing
UCRs can be
summarized in
class diagrams

Cashier

Process
Sale

Use Case Diagrams

: Cashier

1 1

. . .

. . .
Captured-on

General Responsibility Assignment Software Patterns (GRASI

Pattern Description

Information
Expert

A general principle of object design and responsibility assignment?
Assign a responsibility to the information expert — the class that has the information necessary
to fulfill the responsibility.

Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true: 1.
B contains A 4. B records A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A

Controller Who handles a system event?
Assign the responsibility for handling a system event message to a class representing one of
these choices: 1. Represents the overall system, device, or a subsystem (facade controller). 2.
Represents a use case scenario within which the system event occurs (use-case or session
controller)

Low Coupling
(evaluative)

How to support low dependency and increased reuse? Assign

responsibilities so that (unnecessary) coupling remains low.

High
Cohesion
(evaluative)

How to keep complexity manageable? Assign

responsibilities so that cohesion remains high.

Polymorphism Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the
behavior — using polymorphic operations — to the types for which the behavior varies.

Pure
Fabrication

Who is responsible when you are desperate, and do not want to violate high cohesion and low
coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience "behavior"
class that does not represent a problem domain concept — something made up, in order to
support high cohesion, low coupling, and reuse.

Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or
services, so that they are not directly coupled.

Protected
Variations

How to assign responsibilities to objects, subsystems, and systems so that the variations or
instability in these elements do not have an undesirable impact on other elements?
Identify points of predicted variation or instability; assign responsibilities to create a stable
"interface" around them.

TABLE OF CONTENTS

Foreword xv
Preface xvii
PART I INTRODUCTION
1 Object-Oriented Analysis and Design 3

Applying UML and Patterns in OOA/D 3
Assigning Responsibilities 6
What Is Analysis and Design? 6
What Is Object-Oriented Analysis and Design? 7
An Example 7
The UML 10
Further Readings 11

2 Iterative Development and the Unified Process 13
The Most Important UP Idea: Iterative Development 14
Additional UP Best Practices and Concepts 18
The UP Phases and Schedule-Oriented Terms 19
The UP Disciplines (was Workflows) 20
Process Customization and the Development Case 23
The Agile UP 24
The Sequential "Waterfall" Lifecycle 25
You Know You Didn't Understand the UP When... 26
Further Readings 26

3 Case Study: The NextGen POS System 29
The NextGen POS System 29
Architectural Layers and Case Study Emphasis 30
The Book's Strategy: Iterative Learning and Development 31

PART II INCEPTION
4 Inception 35

Inception: An Analogy 36
Inception May Be Very Brief 36
What Artifacts May Start in Inception? 37
You Know You Didn't Understand Inception When... 38

5 Understanding Requirements 41
Types of Requirements
42 Further Readings 43

6 Use-Case Model: Writing Requirements in Context 45
Goals and Stories 46
Background 46
Use Cases and Adding Value 47
Use Cases and Functional Requirements 48
Use Case Types and Formats 49
Fully Dressed Example: Process Sale 50
Explaining the Sections 54
Coals and Scope of a Use Case 59
Finding Primary Actors, Goals, and Use Cases 63
Congratulations: Use Cases Have Been Written, and Are Imperfect 67
Write Use Cases in an Essential Ul-Free Style 68
Actors 70
Use Case Diagrams 71
Requirements in Context and Low-Level Feature Lists 73
Use Cases Are Not Object-Oriented 75

vii

TABLE OF CONTENTS

Use Cases Within the UP 75
Case Study: Use Cases in the NextGen Inception Phase 79
Further Readings 79
UP Artifacts and Process Context 81

7 Identifying Other Requirements 83
NextGen POS Examples 84
NextGen Example: (Partial) Supplementary Specification 84
Commentary: Supplementary Specification 88
NextGen Example: (Partial) Vision 91
Commentary: Vision 93
NextGen Example: A (Partial) Glossary 98
Commentary: Glossary (Data Dictionary) 99
Reliable Specifications: An Oxymoron? 100
Online Artifacts at the Project Website 101
Not Much UML During Inception? 101
Other Requirement Artifacts Within the UP 101
Further Readings 104
UP Artifacts and Process Context 105

8 From Inception to Elaboration 107
Checkpoint: What Happened in Inception? 108
On to Elaboration 109
Planning the Next Iteration 110

Iteration 1 Requirements and Emphasis: Fundamental OOA/D Skills 112
What Artifacts May Start in Elaboration? 118
You Know You Didn't Understand Elaboration When... 114

PART III ELABORATION ITERATION 1
9 Use-Case Model: Drawing System Sequence Diagrams 117

System Behavior 118
System Sequence Diagrams 118
Example of an SSD 119
Inter-System SSDs 120
SSDs and Use Cases 120
System Events and the System Boundary 120
Naming System Events and Operations 121
Showing Use Case Text 122
SSDs and the Glossary 122
SSDs Within the UP 123
Further Readings 124
UP Artifacts 125

10 Domain Model: Visualizing Concepts 127
Domain Models 128
Conceptual Class Identification 132

Candidate Conceptual Classes for the Sales Domain 136
Domain Modeling Guidelines 137
Resolving Similar Conceptual Classes—Register vs. "POST" 139
Modeling the Unreal World 140

Specification or Description Conceptual Classes 140
UML Notation, Models, and Methods: Multiple Perspectives 144
Lowering the Representational Gap 146
Example: The NextGen POS Domain Model 148
Domain Models Within the UP 148
Further Readings 150

viii

TABLE OF CONTENTS

UP Artifacts 151
11 Domain Model: Adding Associations 153

Associations 153
The UML Association Notation 154
Finding Associations—Common Associations List 155
Association Guidelines 157
Roles 157
How Detailed Should Associations Be? 159
Naming Associations 160
Multiple Associations Between Two Types 161
Associations and Implementation 161
NextGen POS Domain Model Associations 162
NextGen POS Domain Model 163

12 Domain Model: Adding Attributes 167
Attributes 167
UML Attribute Notation 168
Valid Attribute Types 168
Non-primitive Data Type Classes 170
Design Creep: No Attributes as Foreign Keys 172
Modeling Attribute Quantities and Units 173
Attributes in the NextGen Domain Model 174
Multiplicity From SalesLineltem to Item 175
Domain Model Conclusion 175

13 Use-Case Model: Adding Detail with Operation Contracts 177
Contracts 177
Example Contract: enterltem 178
Contract Sections 179
Postconditions 179
Discussion—enterltem Postconditions 182
Writing Contracts Leads to Domain Model Updates 183
When Are Contracts Useful? Contracts vs. Use Cases? 183
Guidelines: Contracts 184
NextGen POS Example: Contracts 185
Changes to the Domain Model 186
Contracts, Operations, and the UML 186
Operation Contracts Within the UP 188
Further Readings 191

14 From Requirements to Design in this Iteration 193
Iteratively Do the Right Thing, Do the Thing Right 193
Didn't That Take Weeks To Do? No, Not Exactly. 194 On
to Object Design 194

15 Interaction Diagram Notation 197
Sequence and Collaboration Diagrams 198 Example
Collaboration Diagram: makePayment 199 Example
Sequence Diagram: makePayment 200 Interaction
Diagrams Are Valuable 200 Common Interaction
Diagram Notation 201 Basic Collaboration Diagram
Notation 202 Basic Sequence Diagram Notation 208

16 GRASP: Designing Objects with Responsibilities 215
Responsibilities and Methods 216
Responsibilities and Interaction Diagrams
217 Patterns 218

 iX

TABLE OF CON T EN Ts

GRASP: Patterns of General Principles in Assigning Responsibilities 219
The UML Class Diagram Notation 220
Information Expert (or Expert) 221
Creator 226
Low Coupling '229
High Cohesion 232
Controller 237
Object Design and CRC Cards 245
Further Readings 246

17 Design Model: Use-Case Realizations with GRASP Patterns 247
Use-Case Realizations 248
Artifact Comments 249

Use-Case Realizations for the NextGen Iteration 2.52
Object Design: makeNewSale 253
Object Design: enter-Item 255
Object Design: endSale 260
Object Design: makePayment 264
Object Design: startUp 269
Connecting the UI Layer to the Domain Layer 273
Use-Case Realizations Within the UP 276
Summary 278

18 Design Model: Determining Visibility 279
Visibility Between Objects 279
Visibility 280
Illustrating Visibility in the UML 284

19 Design Model: Creating Design Class Diagrams 285
When to Create DCDs 285
Example DCD 286
DCD and UP Terminology 286
Domain Model vs. Design Model Classes 287
Creating a NextGen POS BCD 287
Notation for Member Details 296
DCDs, Drawing, and CASE Tools 298
DCDs Within the UP 298
UP Artifacts 299

20 Implementation Model: Mapping Designs to Code 301
Programming and the Development Process 302
Mapping Designs to Code 304
Creating Class Definitions from DCDs 304
Creating Methods from Interaction Diagrams 307
Container/Collection Classes in Code 309
Exceptions and Error Handling 309
Defining the Sale--makeLineItem Method 310
Order of Implementation 311
Test-First Programming 311
Summary of Mapping Designs to Code 313
Introduction to the Program Solution 313

PART IV ELABORATION ITERATION 2
21 Iteration 2 and its Requirements 319

Iteration 2 Emphasis: Object Design and Patterns
319 From Iteration 1 to 2 319 Iteration 2
Requirements 321

X

TABLE OF CONTENTS

Refinement of Analysis-oriented Artifacts in this Iteration 322
22 GRASP: More Patterns for Assigning Responsibilities 325

Polymorphism 326 Pure
Fabrication 329
Indirection 332
Protected Variations
334

23 Designing Use-Case Realizations with GoF Design Patterns 341
Adapter (GoF) 342
"Analysis" Discoveries During Design: Domain Model 345
Factory (GoF) 346
Singleton (GoF) 348
Conclusion of the External Services with Varying Interfaces Problem 352
Strategy (GoF) 353
Composite (GoF) and Other Design Principles 358
Facade (GoF) 368
Observer/Publish-Subscribe/Delegation Event Model (GoF) 372
Conclusion 380
Further Readings 380

PART V ELABORATION ITERATION 3
24 Iteration 3 and Its Requirements 383

Iteration 3 Requirements
383 Iteration 3 Emphasis
383

25 Relating Use Cases 385
The include Relationship 386
Terminology: Concrete, Abstract, Base, and Addition Use Cases 388
The extend Relationship 389
The generalize Relationship 390
Use Case Diagrams 391

26 Modeling Generalization 393
New Concepts for the Domain Model 393
Generalization 396
Defining Conceptual Superclasses and Subclasses 397
When to Define a Conceptual Subclass 400
When to Define a Conceptual Superclass 403
NextGen POS Conceptual Class Hierarchies 403
Abstract Conceptual Classes 406
Modeling Changing States 408
Class Hierarchies and Inheritance in Software 409

27 Refining the Domain Model 411
Association Classes 411
Aggregation and Composition 414
Time Intervals and Product Prices—Fixing an Iteration 1 "Error" 418
Association Role Names 419
Roles as Concepts vs. Roles in Associations 420
Derived Elements 421
Qualified Associations 422
Reflexive Associations 423
Ordered Elements 423
Using Packages to Organize the Domain Model 423

28 Adding New SSDs and Contracts 431
New System Sequence Diagrams 431
New System Operations 433
New System Operation Contracts 434

xi

TABLE OF CONTENTS

29 Modeling Behavior in Statechart Diagrams 437
Events, States, and Transitions 437
Statechart Diagrams 438
Statechart Diagrams in the UP? 439
Use Case Statechart Diagrams 439
Use Case Statechart Diagrams for the POS Application 441

Classes that Benefit from Statechart Diagrams 441
Illustrating External and Interval Events 443
Additional Statechart Diagram Notation 444
Further Readings 446

30 Designing the Logical Architecture with Patterns 447
Software Architecture 448 Architectural
Pattern: Layers 450 The Model-View
Separation Principle 471 Further Readings
474

31 Organizing the Design and Implementation Model Packages 475
Package Organization Guidelines 476
More UML Package Notation 482
Further Readings 483

32 Introduction to Architectural Analysis and the SAD 485
Architectural Analysis 486
Types and Views of Architecture 488
The Science: Identification and Analysis of Architectural Factors
488
Example: Partial NextGen POS Architectural Factor Table 491
The Art: Resolution of Architectural Factors 493

Summary of Themes in Architectural Analysis 499
Architectural Analysis within the UP 500
Further Readings 505

33 Designing More Use-Case Realizations with Objects and Patterns
507

Failover to Local Services; Performance with Local Caching 507
Handling Failure 512
Failover to Local Services with a Proxy (GoF) 519 Designing for
Non-Functional or Quality Requirements 523 Accessing External
Physical Devices with Adapters; Buy vs. Build 523 Abstract Factory
(GoF) for Families of Related Objects 525 Handling Payments with
Polymorphism and Do It Myself 528 Conclusion 535

34 Designing a Persistence Framework with Patterns 537
The Problem: Persistent Objects 538

The Solution: A Persistence Service from a Persistence Framework 538
Frameworks 539
Requirements for the Persistence Service and Framework 540
Key Ideas 540
Pattern: Representing Objects as Tables 541
UML Data Modeling Profile 541
Pattern: Object Identifier 542

Accessing a Persistence Service with a Facade 543
Mapping Objects: Database Mapper or Database Broker Pattern 543
Framework Design with the Template Method Pattern 546
Materialization with the Template Method Pattern 546
Configuring Mappers with a MapperFactory 552
Pattern: Cache Management 552
Consolidating and Hiding SQL Statements in One Class 553

xii

TABLE OF CONTENTS

29 Modeling Behavior in Statechart Diagrams 437
Events, States, and Transitions 437
Statechart Diagrams 438
Statechart Diagrams in the UP? 439
Use Case Statechart Diagrams 439
Use Case Statechart Diagrams for the POS Application 441

Classes that Benefit from Statechart Diagrams 441
Illustrating External and Interval Events 443
Additional Statechart Diagram Notation 444
Further Readings 446

30 Designing the Logical Architecture with Patterns 447
Software Architecture 448 Architectural
Pattern: Layers 450 The Model-View
Separation Principle 471 Further Readings
474

31 Organizing the Design and Implementation Model Packages 475
Package Organization Guidelines 476
More UML Package Notation 482
Further Readings 483

32 Introduction to Architectural Analysis and the SAD 485
Architectural Analysis 486
Types and Views of Architecture 488
The Science: Identification and Analysis of Architectural Factors
488
Example: Partial NextGen POS Architectural Factor Table 491
The Art: Resolution of Architectural Factors 493

Summary of Themes in Architectural Analysis 499
Architectural Analysis within the UP 500
Further Readings 505

33 Designing More Use-Case Realizations with Objects and Patterns
507

Failover to Local Services; Performance with Local Caching 507
Handling Failure 512
Failover to Local Services with a Proxy (GoF) 519 Designing for
Non-Functional or Quality Requirements 523 Accessing External
Physical Devices with Adapters; Buy vs. Build 523 Abstract Factory
(GoF) for Families of Related Objects 525 Handling Payments with
Polymorphism and Do It Myself 528 Conclusion 535

34 Designing a Persistence Framework with Patterns 537
The Problem: Persistent Objects 538

The Solution: A Persistence Service from a Persistence Framework 538
Frameworks 539
Requirements for the Persistence Service and Framework 540
Key Ideas 540
Pattern: Representing Objects as Tables 541
UML Data Modeling Profile 541
Pattern: Object Identifier 542

Accessing a Persistence Service with a Facade 543
Mapping Objects: Database Mapper or Database Broker Pattern 543
Framework Design with the Template Method Pattern 546
Materialization with the Template Method Pattern 546
Configuring Mappers with a MapperFactory 552
Pattern: Cache Management 552
Consolidating and Hiding SQL Statements in One Class 553

xii

TABLE OF CONTENTS

Transactional States and the State Pattern 554 Designing
a Transaction with the Command Pattern 556 Lazy
Materialization with a Virtual Proxy 559 How to Represent
Relationships in Tables 562 PersistentObject Superclass and
Separation of Concerns 563 Unresolved Issues 564

PART VI SPECIAL TOPICS
35 On Drawing and Tools 567

On Speculative Design and Visual Thinking 567
Suggestions for UML Drawing Within the Development Process 568
Tools and Sample Features 571
Example Two 573

36 Introduction to Iterative Planning and Project Issues 575
Ranking Requirements 576
Ranking Project Risks 579
Adaptive vs. Predictive Planning 579
Phase and Iteration Plans 581
Iteration Plan: What to Do in the Next Iteration? 582
Requirements Tracking Across Iterations 583
The (Invalidity of Early Estimates 585
Organizing Project Artifacts 585
Some Team Iteration Scheduling Issues 586
You Know You Didn't Understand Planning in the UP When... 588
Further Readings 588

37 Comments on Iterative Development and the UP 589
Additional UP Best Practices and Concepts 589
The Construction and Transition Phases 591
Other Interesting Practices 592
Motivations for Timeboxing an Iteration 593
The Sequential "Waterfall" Lifecycle 593
Usability Engineering and User Interface Design 599
The UP Analysis Model 599
The RUP Product 600
The Challenge and Myths of Reuse 601

38 More UML Notation 603
General Notation 603
Implementation Diagrams 604
Template (Parameterized, Generic) Class 606
Activity Diagrams 607

Bibliography 609 Glossary 615 Index 621

xiii

FOREWORD

Programming is fun, but developing quality software is hard. In between the
nice ideas, the requirements or the "vision," and a working software product,
there is much more than programming. Analysis and design, defining how to
solve the problem, what to program, capturing this design in ways that are easy
to communicate, to review, to implement, and to evolve is what lies at the core of
this book. This is what you will learn.
The Unified Modeling Language (UML) has become the universally-accepted
language for software design blueprints. UML is the visual language used to
convey design ideas throughout this book, which emphasizes how developers
really apply frequently used UML elements, rather than obscure features of the
language.
The importance of patterns in crafting complex systems has long been recog-
nized in other disciplines. Software design patterns are what allow us to
describe design fragments, and reuse design ideas, helping developers leverage
the expertise of others. Patterns give a name and form to abstract heuristics,
rules and best practices of object-oriented techniques. No reasonable engineer
wants to start from a blank slate, and this book offers a palette of readily usable
design patterns.
But software design looks a bit dry and mysterious when not presented in the
context of a software engineering process. And on this topic, I am delighted that
for his second edition, Craig Larman has chosen to embrace and introduce the
Unified Process, showing how it can be applied in a relatively simple and
low-ceremony way. By presenting the case study in an iterative, risk-driven,
architecture-centric process, Craig's advice has realistic context; he exposes
the dynamics of what really happens in software development, and shows the
external forces at play. The design activities are connected to other tasks, and
they no longer appear as a purely cerebral activity of systematic transformations
or creative intuition. And Craig and I are convinced of the benefits of iterative
development, which you will see abundantly illustrated throughout.
So for me, this book has the right mix of ingredients. You will learn a systematic
method to do Object-Oriented Analysis and Design (OOA/D) from a great
teacher, a brilliant methodologist, and an "OO guru" who has taught it to thou-
sands around the world. Craig describes the method in the context of the Uni-

xv

XVI

FOREWORD

fled Process. He gradually presents more sophisticated design
patterns—this will make the book very handy when you are faced with
real-world design challenges. And he uses the most widely accepted
notation.
I'm honored to have had the opportunity to work directly with the author
of this major book. I enjoyed reading the first edition, and was delighted
when he asked me to review the draft of his second edition. We met several
times and exchanged many e-mails. I have learned much from Craig, even
about our own process work on the Unified Process and how to improve it
and position it in various organizational contexts. I am certain that you will
learn a lot, too, in reading this book, even if you are already familiar with
OOA/D. And, like me, you will find yourself going back to it, to refresh your
memory, or to gain further insights from Craig's explanations and experience.
In an iterative process, the result of the second iteration improves on the first.
Similarly, the writing matures, I suppose; even if you have the first edition,
you'll enjoy and benefit from the second one.
Happy reading!

Philippe Kruchten
Rational Fellow
Rational Software
Canada Vancouver, BC

PREFACE

Design robust and
maintainable
object systems.

Follow a roadmap
through require-
ments, analysis,
design, and coding.

Use the UML to
illustrate analysis
and design models.

Improve designs by
applying the
"gang-of-four" and
GRASP design
patterns.

Learn efficiently by
following a refined
presentation.

Learn from a
realistic exercise.

Thank you for reading this book! This is a practical introduction to object-ori-
ented analysis and design (OOA/D), and to related aspects of iterative develop-
ment. I am grateful that the first edition was received as a popular introduction
to OOA/D throughout the world, translated into many languages. Therefore,
this second edition builds upon and refines—rather than replaces—the
content in the first. I want to sincerely thank all the readers of the first edition.
Here is how the book will benefit you.

First, the use of object technology has proliferated in the development of soft-
ware, and mastery of OOA/D is critical for you to create robust and maintain-
able object systems.

Second, if you are new to OOA/D, you are understandably challenged about
how to proceed through this complex subject; this book presents a well-defined
roadmap—the Unified Process—so that you can move in a step-by-step process
from requirements to code.

Third, the Unified Modeling Language (UML) has emerged as the standard
notation for modeling; so it is useful for you to be conversant in it. This book
teaches the skills of OOA/D using the UML notation.

Fourth, design patterns communicate the "best practice" idioms and solutions
that object-oriented design experts apply in order to create systems. In this book
you will learn to apply design patterns, including the popular "gang-of-four" pat-
terns, and the GRASP patterns, which communicate fundamental principles of
responsibility assignment in object design. Learning and applying patterns will
accelerate your mastery of analysis and design.

Fifth, the structure and emphasis in this book is based on years of experience in
training and mentoring thousands of people in the art of OOA/D. It reflects that
experience by providing a refined, proven, and efficient approach to learning the
subject so your investment in reading and learning is optimized.

Sixth, it exhaustively examines a single case study—to realistically illustrate
the entire OOA/D process, and goes deeply into thorny details of the problem; it
is a realistic exercise.

Translate to code. Seventh, it shows how to map object design artifacts to code in Java.

Design a layered
architecture.

Eighth, it explains how to design a layered architecture and relate the graphi-
cal user interface layer to domain and technical services layers.

XVII

Design a
framework.

PREFACE

Finally, it shows you how to design an object-oriented framework and applies
this to the creation of a framework for persistent storage in a database.

Objectives

The overarching objective is this:

XVIII

Help students and developers create object designs through the application of
a set of explainable principles and heuristics.

By studying and applying the information and techniques presented here, you
will become more adept at understanding a problem in terms of its processes
and concepts, and designing a solid solution using objects.

Intended Audience

This book is an introduction to OOA/D, related requirements analysis, and to
iterative development with the Unified Process as a sample process; it is not
meant as an advanced text. It is for the following audience:

• Developers and students with experience in an object-oriented programming
language, but who are new—or relatively new—to object-oriented
analysis
and design.

• Students in computer science or software engineering courses studying
object technology.

• Those with some familiarity in OOA/D who want to learn the UML notation,
apply patterns, or who want to sharpen and deepen their analysis and
design skills.

Prerequisites

Some prerequisite knowledge is assumed—and necessary—to benefit from
this book:
• Knowledge and experience in an object-oriented programming language

such as Java, C#, C++, or Smalltalk.

• Knowledge of fundamental object technology concepts, such as
class,
instance, interface, polymorphism, encapsulation, interfaces, and inherit
ance.

Fundamental object technology concepts are not defined.

Java Examples

In general, the book presents code examples in Java or discusses Java imple-
mentations, due to its widespread familiarity. However, the ideas presented are
applicable to most—if not all—object-oriented programming languages.

PREFACE

Book Organization

The overall strategy in the organization of this book is that analysis and design
topics are introduced in an order similar to that of a software development
project running across an "inception" phase (a Unified Process term) followed by
three iterations (see Figure P.I).

1. The inception phase chapters introduce the basics of requirements analysis.
2. Iteration 1 introduces fundamental OOA/D and how to assign responsibili

ties to objects.
3. Iteration 2 focuses on object design, especially on introducing some high-use

"design patterns."

4. Iteration 3 introduces a variety of subjects, such as architectural analysis
and framework design.

Figure P.I. The organization of the book follows that of a development project.

Web-Related Resources

• Please see www.craiglarman.com for articles related to object technology,
patterns, and process.

• Some instructor resources can be found at www.phptr.com/larman.

Enhancements to the First Edition

While retaining the same core as the first edition, the second is refined in many
ways, including:

• Use cases are updated to follow the very popular approach of [CockburnOl].
• The well-known Unified Process (UP) is used as the example iterative pro

cess within which to introduce OOA/D. Thus, all artifacts are named accord
ing to UP terms, such as Domain Model.

• New requirements in the case study, leading to a third iteration.

XIX

Overview Inception Iteration
1

Iteration
2

Iteration
3

Object-Oriented
Analysis

Object-Oriented
Design

Translating
Designs to Code

The Book

Topics such as OO analysis and OO
design are incrementally introduced in
iteration 1, 2, and 3.

Special
Topics

xx

PREFACE

Updated treatment of design patterns.
Introduction to architectural analysis.
Introduction of Protected Variations as a GRASP pattern.
A 50/50 balance between sequence and collaboration diagrams.
The latest UML notation updates.
Discussion of some practical aspects of drawing using whiteboards or UML
CASE tools.

Acknowledgments

First, a very special thanks to my friends and colleagues at Valtech, world-class
object developers and iterative development experts, who in some way contrib-
uted to, supported, or reviewed the book, including Chris Tarr, Michel Ezran,
Tim Snyder, Curtis Hite, Celso Gonzalez, Pascal Roques, Ken DeLong, Brett
Schuchert, Ashley Johnson, Chris Jones, Thomas Liou, Darryl Gebert, Frank
Rodorigo, Jean-Yves Hardy, and many more than I can name.
To Philippe Kruchten for writing the foreword, reviewing, and helping in so
many ways.
To Martin Fowler and Alistair Cockburn for many insightful discussions on pro-
cess and design, quotes, and reviews.
To John Vlissides and Cris Kobryn for the kind quotes.
To Chelsea Systems and John Gray for help with some requirements inspired by
their Java technology ChelseaStore POS system.
To Pete Goad and Dave Astels at TogetherSoft for their support.
Many thanks to the other reviewers, including Steve Adolph, Bruce Anderson,
Len Bass, Gary K. Evans, Al Goerner, Luke Hohmann, Eric Lefebvre, David
Nunn, and Robert J. White.
Thanks to Paul Becker at Prentice-Hall for believing the first edition would be a
worthwhile project, and to Paul Petralia and Patti Guerrieri for shepherding the
second.
Finally, a special thanks to Graham Glass for opening a door.

About the Author

Craig Larman serves as Director of Process for Valtech, an international con-
sulting company with divisions in Europe, Asia, and North America, specializ-
ing in e-business systems development, object technologies, and iterative
development with the Unified Process.
Since the mid 1980s, Craig has helped thousands of developers to apply
object-oriented programming, analysis, and design, and assisted organizations
adopt iterative development practices.

PREFACE

After a failed career as a wandering street musician, he built systems in APL,
PL/I, and CICS in the 1970s. Starting in the early 1980s—after a full
recovery-he became interested in artificial intelligence (having little of his own),
natural language processing, and knowledge representation, and built
knowledge systems with Lisp machines, Lisp, Prolog, and Smalltalk. He plays
bad lead guitar in his part-time band, the Changing Requirements (it used to be
called the Requirements, but some band members changed...).
He holds a B.Sc. and M.Sc. in computer science from Simon Fraser University in
Vancouver, Canada.

Craig can be reached at clarman@acm.org and www.craiglarman.com.

Typographical Conventions

This is a new term in a sentence. This is a Class or method name in a sentence.
This is an author reference [Bob67]. A language independent scope resolution
operator "--" is used to indicate a class and its associated method as follows:
ClassName--methodName.

Production Notes

The manuscript of this book was created with Adobe FrameMaker. All drawings
were done with Microsoft Visio. The body font is New Century Schoolbook. The
final print images were generated as PDF files using Adobe Acrobat Distiller,
from PostScript generated by an AGFA driver.

XXI

PART1 INTRODUCTION

Chapter 1

OBJECT-ORIENTED ANALYSIS AND
DESIGN

The shift of focus (to patterns) will have a profound and
enduring effect on the way we write programs.

—Ward Cunningham and Ralph Johnson

Objectives

• Compare and contrast analysis and design.
• Define object-oriented analysis and design (OOA/D).
• Illustrate a brief example.

1.1 Applying UML and Patterns in OOA/D

This is an
introduction

What does it mean to have a good object design? This book is a tool to help devel-
opers and students learn core skills in object-oriented analysis and design
(OOA/D). These skills are essential for the creation of well-designed, robust, and
maintainable software using object technologies and languages such as Java,
C++, Smalltalk, and C#.
The proverb "owning a hammer doesn't make one an architect" is especially true
with respect to object technology. Knowing an object-oriented language (such as
Java) is a necessary but insufficient first step to create object systems. Knowing
how to "think in objects" is also critical.

This is an introduction to OOA/D while applying the Unified Modeling Lan-
guage (UML), patterns, and the Unified Process. It is not meant as an advanced
text; it emphasizes mastery of the fundamentals, such as how to assign respon-
sibilities to objects, frequently used UML notation, and common design pat-

1 - OBJECT-ORIENTED ANALYSIS AND DESIGN

Applying UML

Applying patterns
and assigning
responsibilities

One case study

Use cases and
requirements
analysis

An example
iterative process—
the Unified Process

terns. At the same time, primarily in later chapters, the material progresses to a
few intermediate-level topics, such as framework design.

The book is not just about the UML. The UML is a standard diagramming nota-
tion. As useful as it is to learn notation, there are more critical object-oriented
things to learn; specifically, how to think in objects—how to design object-ori-
ented systems. The UML is not OOA/D or a method, it is simply notation. It is
not so helpful to learn syntactically correct UML diagramming and perhaps a
UML CASE tool, but then not be able to create an excellent design, or evaluate
and improve an existing one. This is the harder and more valuable skill. Conse-
quently, this book is an introduction to object design.

Yet, one needs a language for OOA/D and "software blueprints," both as a tool of
thought and as a form of communication with others. Therefore, this book
explores how to apply the UML in the service of doing OOA/D, and covers fre-
quently used UML notation. But the emphasis is on helping people learn the art
and science of building object systems, rather than notation.

How should responsibilities be allocated to classes of objects? How should
objects interact? What classes should do what? These are critical questions in
the design of a system. Certain tried-and-true solutions to design problems can
be (and have been) expressed as best-practice principles, heuristics, or pat-
terns—named problem-solution formulas that codify exemplary design princi-
ples. This book, by teaching how to apply patterns, supports quicker learning
and skillful use of these fundamental object design idioms.

This introduction to OOA/D is illustrated in a single case study that is fol-
lowed throughout the book, going deep enough into the analysis and design so
that some of the gory details of what must be considered and solved in a realistic
problem are considered, and solved.

OOA/D (and all software design) is strongly related to the prerequisite activity
of requirements analysis, which includes writing use cases. Therefore, the
case study begins with an introduction to these topics, even though they are not
specifically object-oriented.

Given many possible activities from requirements through to implementation,
how should a developer or team proceed? Requirements analysis and OOA/D
needs to be presented in the context of some development process. In this case,
the well-known Unified Process is used as the sample iterative develop-
ment process within which these topics are introduced. However, the analysis
and design topics that are covered are common to many approaches, and learn-
ing them in the context of the Unified Process does not invalidate their applica-
bility to other methods.

APPLYING UML AND PATTERNS IN OOA/D

In conclusion, this book helps a student or developer:
• Apply principles and patterns to create better object designs.
• Follow a set of common activities in analysis and design, based on the

Unified Process as an example.
• Create frequently used diagrams in the UML notation.

It illustrates this in the context of a single case study.

Topics and Skills

UML notation

Requirements
analysis

Principles and
guidelines

Patterns

Iterative
development with

the Unified
Process

OOA/D

Figure 1.1 Topics and skills covered

Many Other Skills Are Important

Building software involves myriad skills and steps beyond requirements analy-
sis, OOA/D, and object-oriented programming. For example, usability engineer-
ing and user interface design are critical to success; so is database design.
However, this introduction emphasizes OOA/D, and does not attempt to cover all
topics in software development. It is one piece of a larger picture.

5

1 - OBJECT-ORIENTED ANALYSIS AND DESICN

1.2 Assigning Responsibilities

There are many possible activities and artifacts in introductory OOA/D, and a
wealth of principles and guidelines. Suppose we must choose a single practical
skill from all the topics discussed here—a "desert island" skill. What would it
be?

A critical, fundamental ability in OOA/D is to skillfully assign responsibilities
to software components.

Why? Because it is one activity that must be performed—either while drawing a
UML diagram or programming—and it strongly influences the robustness,
maintainability, and reusability of software components.
Of course, there are other necessary skills in OOA/D, but responsibility assign-
ment is emphasized in this introduction because it tends to be a challenging
skill to master, and yet vitally important. On a real project, a developer might
not have the opportunity to perform any other analysis or design activities—the
"rush to code" development process. Yet even in this situation, assigning respon-
sibilities is inevitable.
Consequently, the design steps in this book emphasize principles of responsibil-
ity assignment.

Nine fundamental principles in object design and responsibility assignment
are presented and applied. They are organized in a learning aid called the
GRASP patterns.

1.3 What Is Analysis and Design?

Analysis emphasizes an investigation of the problem and requirements, rather
than a solution. For example, if a new computerized library information system
is desired, how will it be used?

"Analysis" is a broad term, best qualified, as in requirements analysis (an inves-
tigation of the requirements) or object analysis (an investigation of the domain
objects).
Design emphasizes a conceptual solution that fulfills the requirements, rather
than its implementation. For example, a description of a database schema and
software objects. Ultimately, designs can be implemented.

6

WHAT Is OBJECT-ORIENTED ANALYSIS AND DESIGN?

As with analysis, the term is best qualified, as in object design or database
design.
Analysis and design have been summarized in the phase do the right thing
(analysis), and do the thing right (design).

1.4 What Is Object-Oriented Analysis and Design?

During object-oriented analysis, there is an emphasis on finding and describ-
ing the objects—or concepts—in the problem domain. For example, in the case
of the library information system, some of the concepts include Book, Library,
and Patron.
During object-oriented design, there is an emphasis on defining software
objects and how they collaborate to fulfill the requirements. For example, in the
library system, a Book software object may have a title attribute and a
getChap-ter method (see Figure 1.2).
Finally, during implementation or object-oriented programming, design objects
are implemented, such as a Book class in Java.

Figure 1.2 Object-orientation emphasizes representation of objects.

1.5 An Example

Before diving into the details of requirements analysis and
OOA/D, this section presents a birds-eye view of a few key
steps and diagrams, using a simple example—a "dice
game" in which a player rolls two die. If the total is seven,
they win; otherwise, they lose.

7

Book

title

public class Book
{
private String title;

public Chapter getChapter(int) {...}
}

domain concept visualization of
domain concept

representation in an
object-oriented
programming language

8 1 - OBJECT-ORIENTED ANALYSIS AND DESIGN

Define Use Cases

Requirements analysis may include a description of related domain processes;
these can be written as use cases.

Use cases are not an object-oriented artifact—they are simply written stories.
However, they are a popular tool in requirements analysis and are an important
part of the Unified Process. For example, here is a brief version of the Play a
Dice Game use case:

Play a Dice Game: A player picks up and rolls the dice. If the
dice face value total seven, they win; otherwise, they lose.

Define a Domain Model

Object-oriented analysis is concerned with creating a description of the domain
from the perspective of classification by objects. A decomposition of the domain
involves an identification of the concepts, attributes, and associations that are
considered noteworthy. The result can be expressed in a domain model, which
is illustrated in a set of diagrams that show domain concepts or objects.

For example, a partial domain model is shown in Figure 1.3.

Figure 1.3 Partial domain model of the dice game.

Define domain
model

Define
interaction
diagrams

Define design
class diagramsDefine use cases

Define domain
model

Define
interaction
diagrams

Define design
class diagramsDefine use cases

Player

name

DiceGame

Die

faceValue
Rolls

Plays

Includes

2

2

1

1

1

1

AN EXAMPLE

This model illustrates the noteworthy concepts Player, Die, and DiceGame, with
their associations and attributes.

Note that a domain model is not a description of software objects; it is a visual-
ization of concepts in the real-world domain.

Define Interaction Diagrams

Object-oriented design is concerned with defining software objects and their col-
laborations. A common notation to illustrate these collaborations is the interac-
tion diagram. It shows the flow of messages between software objects, and
thus the invocation of methods.

For example, assume that a software implementation of the dice game is
desired. The interaction diagram in Figure 1.4 illustrates the essential step of
playing, by sending messages to instances of the DiceGame and Die classes.

Figure 1.4 Interaction diagram illustrating messages between software objects.

Notice that although in the real world a player rolls the dice, in the software
design the DiceGame object "rolls" the dice (that is, sends messages to Die
objects). Software object designs and programs do take some inspiration from
real-world domains, but they are not direct models or simulations of the real
world.

9

Define domain
model

Define
interaction
diagrams

Define design
class diagramsDefine use cases

:DiceGame

play()

die1 : Die

fv1 := getFaceValue()

die2 : Die

roll()

roll()

fv2 := getFaceValue()

1 - OBJECT-ORIENTED ANALYSIS AND DESIGN

Define Design Class Diagrams

In addition to a dynamic view of collaborating objects shown in interaction dia-
grams, it is useful to create a static view of the class definitions with a design
class diagram. This illustrates the attributes and methods of the classes.

For example, in the dice game, an inspection of the interaction diagram leads to
the partial design class diagram shown in Figure 1.5. Since a play message is
sent to a DiceGame object, the DiceGame class requires a play method, while
class Die requires a roll and getFaceValue method.

In contrast to the domain model, this diagram does not illustrate real-world con-
cepts; rather, it shows software classes.

Figure 1.5 Partial design class diagram.

Summary

The dice game is a simple problem, presented to focus on a few steps and arti-
facts in analysis and design. To keep the introduction simple, not all the illus-
trated UML notation was explained. Future chapters explore analysis and
design and these artifacts in closer detail.

1.6 The UML

To quote:

The Unified Modeling Language (UML) is a language for speci-
fying, visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other
non-software systems [OMG01].

The UML has emerged as the de facto and de jure standard diagramming nota-
tion for object-oriented modeling. It started as an effort by Grady Booch and Jim
Rumbaugh in 1994 to combine the diagramming notations from their two popu-

10

Define domain
model

Define
interaction
diagrams

Define design
class diagramsDefine use cases

2

Die

faceValue : int

getFaceValue() : int
roll()

DiceGame

die1 : Die
die2 : Die

play()

1

FURTHER READINGS

lar methods—the Booch and OMT (Object Modeling Technique) methods. They
were later joined by Ivar Jacobson, the creator of the Objectory method, and as a
group came to be known as the three amigos. Many others contributed to the
UML, perhaps most notably Cris Kobryn, a leader in its ongoing refinement.
The UML was adopted in 1997 as a standard by the OMG (Object Management
Group, an industry standards body), and has continued to be refined in new
OMG UML versions.
This book does not cover every minute aspect of the UML, which is a large body
of notation (some say, too large1). It focuses on diagrams which are frequently
used, the most commonly used features within those diagrams, and core nota-
tion that is unlikely to change in future versions of the UML.

Why Won't We See Much UML fora Few Chapters?

This is not just a UML notation book, but one that explores the larger picture of
applying the UML, patterns, and an iterative process in the context of software
development. The UML is primarily applied during OOA/D, which is normally
preceded by requirements analysis. Therefore, the initial chapters present an
introduction to the important topics of use cases and requirements analysis,
which are then followed by chapters on OOA/D and more UML details.

1.7 Further Readings

A very readable and popular summary of essential UML notation is UML Dis-
tilled, by Martin Fowler.
A succinct and popular introduction to the Unified Process (and its refinement
in the Rational Unified Process) is The Rational Unified Process—An Introduc-
tion by Philippe Kruchten.
For a detailed discussion of UML (version 1.3) notation, The Unified Modeling
Language Reference Manual and The Unified Modeling Language User Guide,
by Booch, Jacobson, and Rumbaugh are worthwhile. Note that these texts were
not meant for learning how to do object modeling or OOA/D—they are UML dia-
gram notation references.
For a description of the current version of the UML, the on-line OMG Unified
Modeling Language Specification at www.omg.org is necessary. UML revision
work and soon-to-be released versions can be found at www.celigent.com/uml.
There are many books on software patterns, but the seminal classic is Design
Patterns, by Gamma, Helm, Johnson, and Vlissides. It is truly required reading

1. The UML 2.0 effort includes exploration of the goal of simplifying and reducing the
notation. This book presents high-use UML likely to survive future simplification.

11

12

1 - OBJECT-ORIENTED ANALYSIS AND DESIGN

for those studying object design. However, it is not an introductory text and is
best read after developing comfort with the fundamentals of object design and
programming.

Chapter 2

ITERATIVE DEVELOPMENT AND
THE UNIFIED PROCESS

People are more important than any process.

Good people with a good process will
outperform good people with no process every time.

—Grady Booch

Objectives

• Provide motivation for the content and order of subsequent chapters.
• Define an iterative and adaptive process.
• Define fundamental concepts in the Unified Process.

Introduction

Iterative development is a skillful approach to software development, and lies at
the heart of how OOA/D is presented in this book. The Unified Process is an
example iterative process for projects using OOA/D, and it shapes the book's
presentation. Consequently, it is useful to read this chapter so that these core
concepts and their influence on the book's structure are clear.
This chapter summarizes a few key ideas; please see Chapter 37 for further dis-
cussion of the UP and iterative process practices.
Informally, a software development process describes an approach to build-
ing, deploying, and possibly maintaining software. The Unified Process
[JBR99] has emerged as a popular software development process for building
object-oriented systems. In particular, the Rational Unified Process or RUP

13

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

[KruchtenOO], a detailed refinement of the Unified Process, has been widely
adopted.

The Unified Process (UP) combines commonly accepted best practices, such as
an iterative lifecycle and risk-driven development, into a cohesive and well-doc-
umented description. Consequently, it is used in this book as the example pro-
cess within which to introduce OOA/D.

This book starts with an introduction to the UP for two reasons:

1. The UP is an iterative process. Iterative development is a valuable practice
that influences how this book introduces OOA/D, and how it is best prac
ticed.

2. UP practices provide an example structure to talk about how to do—and
how to learn—OOA/D.

This text presents an introduction to the UP, not complete coverage. It
emphasizes common ideas and artifacts related to an introduction to OOA/D
and requirements analysis.

What If I Don't Care About the UP?

The UP is used as an example process within which to explore requirements
analysis and OOA/D, since it is necessary to introduce the subject in the context
of some process, and the UP (or the RUP refinement) is relatively widely used.
Also, the UP presents common activities and best practices. Nevertheless, the
central ideas of this book—such as use cases and design patterns—are indepen-
dent of any particular process, and apply to many.

2.1 The Most Important UP Idea: Iterative Development

The UP promotes several best practices, but one stands above the others: itera-
tive development. In this approach, development is organized into a series of
short, fixed-length (for example, four week) mini-projects called iterations; the
outcome of each is a tested, integrated, and executable system. Each iteration
includes its own requirements analysis, design, implementation, and testing
activities.

The iterative lifecycle is based on the successive enlargement and refinement of
a system through multiple iterations, with cyclic feedback and adaptation as
core drivers to converge upon a suitable system. The system grows incremen-
tally over time, iteration by iteration, and thus this approach is also known as
iterative and incremental development (see Figure 2.1).

14

Figure 2.1 Iterative and incremental development.

Example
As an example (not a recipe), in a two-week iteration half-way through a
project, perhaps Monday is spent primarily on distributing and clarifying the
tasks and requirements of the iteration, while one person reverse-engineers
the last iteration's code into UML diagrams (via a CASE tool), and prints
and displays noteworthy diagrams. Tuesday is spent at whiteboards doing
pair design work drawing rough UML diagrams captured on digital cameras,
and writing some pseudocode and design notes. The remaining eight days
are spent on implementation, testing (unit, acceptance, usability, ...), further
design, integration, daily builds, system testing, and stabilization of the par-
tial system. Other activities include demonstrations and evaluations with
stakeholders, and planning for the next iteration.

Notice in this example that there is neither a rush to code, nor a long drawn-out
design step that attempts to perfect all details of the design before program-
ming. A "little" forethought regarding the design with visual modeling using
rough and fast UML drawings is done; perhaps a half or full day by developers
doing design work in pairs.
The result of each iteration is an executable but incomplete system; it is not
ready to deliver into production. The system may not be eligible for production
deployment until after many iterations; for example, 10 or 15 iterations.

15

THE MOST IMPORTANT UP IDEA: ITERATIVE DEVELOPMENT

Early iterative process ideas were known as spiral development and evolution-
ary development [Boehm.88, Gilb88].

Requirements

Design

Implementation &
Test & Integration

& More Design

Final Integration
& System Test

Requirements

Design

4 weeks (for example)
The system grows
incrementally.

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

Iterations are fixed in
length, or timeboxed.

Time
Implementation &
Test & Integration

& More Design

Final Integration
& System Test

16

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

The output of an iteration is not an experimental or throw-away prototype, and
iterative development is not prototyping. Rather, the output is a
production-grade subset of the final system.
Although, in general, each iteration tackles new requirements and incremen-
tally extends the system, an iteration may occasionally revisit existing software
and improve it; for example, one iteration may focus on improving the perfor-
mance of a subsystem, rather than extending it with new features.

Embracing Change: Feedback and Adaptation

The subtitle of one book that discusses iterative development is Embrace
Change [BeckOO]. This phrase is evocative of a key attitude of iterative develop-
ment: Rather than fighting the inevitable change that occurs in software devel-
opment by trying (usually unsuccessfully) to fully and correctly specify, freeze,
and "sign off" on a frozen requirement set and design before implementation,
iterative development is based on an attitude of embracing change and adapta-
tion as unavoidable and indeed essential drivers.

This is not to say that iterative development and the UP encourages an uncon-
trolled and reactive "feature creep"-driven process. Subsequent chapters explore
how the UP balances the need—on the one hand—to agree upon and stabilize a
set of requirements, with—on the other hand—the reality of changing require-
ments, as stakeholders clarify their vision or the marketplace changes.

Each iteration involves choosing a small subset of the requirements, and quickly
designing, implementing, and testing. In early iterations the choice of require-
ments and design may not be exactly what is ultimately desired. But the act of
swiftly taking a small step, before all requirements are finalized, or the entire
design is speculatively defined, leads to rapid feedback—feedback from the
users, developers, and tests (such as load and usability tests).

This early feedback is worth its weight in gold; rather than speculating on the
correct requirements or design, the feedback from realistic building and testing
something provides crucial practical insight and an opportunity to modify or
adapt understanding of the requirements or design. End-users have a chance to
quickly see a partial system and say, "Yes, that's what I asked for, but now that I
try it, what I really want is something slightly different."1 This "yes...but" pro-
cess is not a sign of failure; rather, early and frequent structured cycles of
"yes...buts" are a skillful way to make progress and discover what is of real value
to the stakeholders. Yet, as mentioned, this is not an endorsement of chaotic and
reactive development in which developers continually change direction—a mid-
dle way is possible.

In addition to requirements clarification, activities such as load testing will
prove if the partial design and implementation are on the right path, or if in the

1. Or more likely, "You didn't understand what I wanted!"

THE MOST IMPORTANT UP IDEA: ITERATIVE DEVELOPMENT

next iteration, a change in the core architecture is required. Better to resolve
and prove the risky and critical design decisions early rather than late—and
iterative development provides the mechanism for this.

Consequently, work proceeds through a series of structured
build-feedback-adapt cycles. Not surprisingly, in early iterations the deviation
from the "true path" of the system (in terms of its final requirements and design)
will be larger than in later iterations. Over time, the system converges towards
this path, as illustrated in Figure 2.2.

Figure 2.2 Iterative feedback and adaptation leads towards the desired system.
The requirements and design instability lowers over time.

Benefits of Iterative Development

Benefits of iterative development include:

• early rather than late mitigation of high risks (technical, requirements,
objectives, usability, and so forth)

• early visible progress

• early feedback, user engagement, and adaptation, leading to a refined sys
tem that more closely meets the real needs of the stakeholders

• managed complexity; the team is not overwhelmed by "analysis paralysis" or
very long and complex steps

• the learning within an iteration can be methodically used to improve the
development process itself, iteration by iteration

Early iterations are farther from the "true
path" of the system. Via feedback and
adaptation, the system converges towards
the most appropriate requirements and
design.

In late iterations, a significant change in
requirements is rare, but can occur. Such
late changes may give an organization a
competitive business advantage.

one iteration of design,
implement, integrate, and test

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

Iteration Length and Timeboxing

The UP (and experienced iterative developers) recommends an iteration length
between two and six weeks. Small steps, rapid feedback, and adaptation are
central ideas in iterative development; long iterations subvert the core motiva-
tion for iterative development and increase project risk. Much less than two
weeks, and it is difficult to complete sufficient work to get meaningful through-
put and feedback; much more than six or eight weeks, and the complexity
becomes rather overwhelming, and feedback is delayed. A very long iteration
misses the point of iterative development. Short is good.

A key idea is that iterations are timeboxed, or fixed in length. For example, if
the next iteration is chosen to be four weeks long, then the partial system should
be integrated, tested, and stabilized by the scheduled date—date slippage is dis-
couraged. If it seems that it will be difficult to meet the deadline, the recom-
mended response is to remove tasks or requirements from the iteration, and
include them in a future iteration, rather than slip the completion date. Chapter
37 summarizes reasons for timeboxing.

Massive teams (for example, several hundred developers) may require longer
than six-week iterations to compensate for the overhead of coordination and
communication; but no more than three to six months is recommended. For
example, the successful replacement in the 1990s of the Canadian air traffic
control system was developed with an iterative lifecycle and other UP practices.
It involved 150 programmers and was organized into six-month iterations.2 But
note that even in the case of an overall six-month project iteration, a subsystem
team of 10 or 20 developers can break down their work into a series of six
one-month iterations.

A six-month iteration is the exception for massive teams, not the rule. To reiter-
ate, the UP recommends that normally an iteration should be between two and
six weeks in duration.

2.2 Additional UP Best Practices and Concepts

The central idea to appreciate and practice in the UP is short timeboxed itera-
tive, adaptive development.
Another implicit, but core, UP idea is the use of object technologies, including
OOA/D and object-oriented programming.

2. Philippe Kruchten, who also led the development of the RUP, served as chief architect
for the project.

18

THE UP PHASES AND SCHEDULE-ORIENTED TERMS

Some additional best practices and key concepts in the UP include:
• tackle high-risk and high-value issues in early iterations
• continuously engage users for evaluation, feedback, and requirements
• build a cohesive, core architecture in early iterations
• continuously verify quality; test early, often, and realistically
• apply use cases
• model software visually (with the UML)
• carefully manage requirements
• practice change request and configuration management
See Chapter 37 for a more detailed description of these practices.

2.3 The UP Phases and Schedule-Oriented Terms

A UP project organizes the work and iterations across four major phases:
1. Inception— approximate vision, business case, scope, vague estimates.
2. Elaboration—refined vision, iterative implementation of the core architec

ture, resolution of high risks, identification of most requirements and scope,
more realistic estimates.

3. Construction—iterative implementation of the remaining lower risk and
easier elements, and preparation for deployment.

4. Transition—beta tests, deployment.
These phases are more fully defined in subsequent chapters.
This is not the old "waterfall" or sequential lifecycle of first defining all the
requirements, and then doing all or most of the design.
Inception is not a requirements phase; rather, it is a kind of feasibility phase,
where just enough investigation is done to support a decision to continue or
stop.
Similarly, elaboration is not the requirements or design phase; rather, it is a
phase where the core architecture is iteratively implemented, and high risk
issues are mitigated.
Figure 2.3 illustrates common schedule-oriented terms in the UP. Notice that
one development cycle (which ends in the release of a system into production) is
composed of many iterations.

19

Figure 2.3 Schedule-oriented terms in the UP.

2.4 The UP Disciplines (was Workflows)

The UP describes work activities, such as writing a use case, within disciplines
(originally called workflows).3 Informally, a discipline is a set of activities (and
related artifacts) in one subject area, such as the activities within requirements
analysis. In the UP, an artifact is the general term for any work product: code,
Web graphics, database schema, text documents, diagrams, models, and so on.
There are several disciplines in the UP; this book focuses on some artifacts in
the following three:

• Business Modeling—When developing a single application, this includes
domain object modeling. When engaged in large-scale business analysis or
business process reengineering, this includes dynamic modeling of the busi
ness processes across the entire enterprise.

• Requirements—Requirements analysis for an application, such as writing
use cases and identifying non-functional requirements.

• Design—All aspects of design, including the overall architecture, objects,
databases, networking, and the like.

3. In 2001, the old UP term "workflow" was replaced by the new term "discipline" in
order to harmonize with an international standardization effort called the OMG
SPEM; because of its prior meaning in the UP, many continue to use the term work-
flow to mean discipline, although this is not strictly correct. The term "workflow" took
on a new but slightly different meaning within the UP: On a particular project, it is a
particular sequence of activities (perhaps across disciplines)—a flow of work.

20

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

inc. elaboration construction transition

iteration phase

development cycle

release

A stable executable
subset of the final
product. The end of
each iteration is a
minor release.

increment

The difference
(delta) between the
releases of 2
subsequent
iterations.

final production
release

At this point, the
system is released
for production use.

milestone

An iteration end-
point when some
significant decision
or evaluation
occurs.

Figure 2.4 UP disciplines.4

In the UP, Implementation means programming and building the system, not
deployment. The Environment discipline refers to establishing the tools and
customizing the process for the project—that is, setting up the tool and process
environment.

Disciplines and Phases

As illustrated in Figure 2.4, during one iteration work goes on in most or all dis-
ciplines. However, the relative effort across these disciplines changes over time.
Early iterations naturally tend to apply greater relative emphasis to require-
ments and design, and later ones less so, as the requirements and core design
stabilize through a process of feedback and adaptation.
Relating this to the UP phases (inception, elaboration, ...), Figure 2.5 illustrates
the changing relative effort with respect to the phases; please note these are
suggestive, not literal. In elaboration, for example, the iterations tend to have a

4. Diagram adapted from the RUP product.

THE UP DISCIPLINES (WAS WORKFLOWS)

A longer list of UP disciplines is shown in Figure 2.4.

Iterations

Sample
UP Disciplines

Business Modeling

Requirements

Design

Implementation

Test

Deployment

Configuration & Change
Management

Project Management

Environment

Focus
of this
book

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

22

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

relatively high level of requirements and design work, although definitely some
implementation as well. During construction, the emphasis is heavier on imple-
mentation and lighter on requirements analysis.

Book Structure and UP Phases and Disciplines

With respect to the phases and disciplines, what is the focus of the case study?
Answer:

The case study emphasizes the inception and elaboration phase. It focuses
on some artifacts in the Business Modeling, Requirements, and Design disci-
plines, as this is where requirements analysis, OOA/D, patterns, and the
UML are primarily applied.

The earlier chapters introduce activities in inception; later chapters explore sev-
eral iterations in elaboration. The following list and Figure 2.6 describe the
organization with respect to the UP phases.
1. The inception phase chapters introduce the basics of requirements analysis.
2. Iteration 1 introduces fundamental OOA/D and how to assign responsibili

ties to objects.
3. Iteration 2 focuses on object design, especially on introducing some high-use

"design patterns."
4. Iteration 3 introduces a variety of subjects, such as architectural analysis

and framework design.

Figure 2.5 Disciplines and phases

Sample
UP Disciplines

Business
Modeling

Requirements

Design

Implementation

...

The relative effort in
disciplines shifts
across the phases.

This example is
suggestive, not literal.

incep-
tion elaboration construction transi-

tion

...

Figure 2.6 Book organization is related to the UP phases and iterations.

2.5 Process Customization and the Development Case

Optional Artifacts

Some UP practices and principles are invariant, such as iterative and
risk-driven development, and continuous verification of quality.
However, a key insight into the UP is that all activities and artifacts (models,
diagrams, documents, ...) are optional—well, maybe not the code! The set of pos-
sible artifacts described in the UP should be viewed like a set of medicines in a
pharmacy. Just as one does not indiscriminately take many medicines, but
matches the choice to the ailment, likewise on a UP project, a team should select
a small subset of artifacts that address its particular problems and needs. In
general, focus on a small set of artifacts that demonstrate high practical value.

The Development Case

The choice of UP artifacts for a project may be written up in a short document
called the Development Case (an artifact in the Environment discipline). For
example, Table 2.1 could be the Development Case describing the artifacts for
the "NextGen Project" case study explored in this book.
Subsequent chapters describe the creation of some of these artifacts, including
the Domain Model, Use-Case Model, and Design Model.
The example artifacts presented in this case study are by no means sufficient
for, or suitable for, all projects. For example, a machine control system may ben-
efit from doing many state diagrams. A Web-based e-commerce system may
require a focus on user interface prototypes. A "green-field" new development

23

PROCESS CUSTOMIZATION AND THE DEVELOPMENT CASE

Overview Inception
Elaboratio

n
Iteration 1

Elaboratio
n

Iteration 2

Elaboratio
n

Iteration 3

Object-Oriented
Analysis

Object-Oriented
Design

Translating
Designs to Code

The Book

Topics such as OO analysis and OO
design are incrementally introduced in
iteration 1, 2, and 3.

Special
Topics

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

project has very different design artifact needs than a systems integration
project.

Discipline Artifact
Iteration-*

Incep.
11

Elab.
El. .En

Const.
CL.Cn

Trans.
T1..T2

Business Modeling Domain Model s
Use-Case Model s r
Vision s r
Supplementary Specification s r

Requirements

Glossary s r
Design Model s r
SW Architecture Document s

Design

Data Model s r
Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 2.1 Sample Development Case of UP artifacts, s - start; r - refine

2.6 The Agile UP

Methodologists speak of processes as heavy vs. light, and predictive vs. adaptive.
A heavy process is a pejorative term meant to suggest one with the following
qualities [FowlerOO]:
• many artifacts created in a bureaucratic atmosphere

• rigidity and control

• elaborate, long-term, detailed planning

• predictive rather than adaptive

A predictive process is one that attempts to plan and predict the activities
and resource (people) allocations in detail over a relatively long time span, such
as the majority of a project. Predictive processes usually have a "waterfall" or
sequential lifecycle—first, defining all the requirements; second, defining a
detailed design; and third, implementing. In contrast, an adaptive process is
one that accepts change as an inevitable driver and encourages flexible adapta-
tion; they usually have an iterative lifecycle. An agile process implies a light
and adaptive process, nimble in response to changing needs.

The UP was not meant by its authors to be either heavy or predictive, although
its large optional set of activities and artifacts have understandably led to that

24

THE SEQUENTIAL "WATERFALL" LIFECYCLE

impression in some. Rather, it was meant to be adopted and applied in the spirit
of an agile process—agile UP. Some examples of how this applies:
• Prefer a small set of UP activities and artifacts. Some projects will benefit

from more than others, but, in general, keep it simple.
• Since the UP is iterative, requirements and designs are not completed

before implementation. They adaptively emerge through a series of itera
tions, based on feedback.

• There isn't a detailed plan for the entire project. There is a high level plan
(called the Phase Plan) that estimates the project end date and other major
milestones, but it does not detail the fine-grained steps to those milestones.
A detailed plan (called the Iteration Plan) only plans with greater detail
one iteration in advance. Detailed planning is done adaptively from itera
tion to iteration. Please see Chapter 36 for some comments on planning iter
ative projects, and the justification for this approach.

The case study emphasizes a relatively small number of artifacts, and iterative
development, in the spirit of an agile UP.

2.7 The Sequential "Waterfall" Lifecycle

In contrast to the iterative lifecycle of the UP, an old alternative was the sequen-
tial, linear, or "waterfall" lifecycle [RoyceTO]. In common usage, it defined steps
similar to the following:
1. Clarify, record, and commit to a set of complete and frozen requirements.
2. Design a system based on these requirements.
3. Implement, based on the design.
A two year study reported in the MIT Sloan Management Review of successful
software projects identified four common factors for success; iterative develop-
ment, rather than a waterfall process, was first on the list [MacCormackO!!.•''
A brief description of its problems, and how they are mitigated by iterative
development, is presented in Chapter 37.

5. The others were: 2) at least daily incorporation of new code into a complete system
build, and rapid feedback on design changes (via testing); 3) a team experienced in
shipping multiple products; and 4) an early focus on building and proving a cohesive
architecture. Three of these four factors are explicit practices in the UP.

25

2 - ITERATIVE DEVELOPMENT AND THE UNIFIED PROCESS

2.8 You Know You Didn't Understand the UP When...

Here are some signs that indicate when you have not understood what it means
to adopt the UP and iterative development in the agile spirit intended by the
UP.

• You think that inception = requirements, elaboration = design, and con
struction = implementation (that is, superimposing a waterfall lifecycle on
to the UP).

• You think that the purpose of elaboration is to fully and carefully define
models, which are translated into code during construction.

• You try to define most of the requirements before starting design or imple
mentation.

• You try to define most of the design before starting implementation; you try
to fully define and commit to an architecture before iterative programming
and testing.

• A "long time" is spent doing requirements or design work before program
ming starts.

• You believe that a suitable iteration length is four months long, rather than
four weeks long (excluding projects with hundreds of developers).

• You think UML diagramming and design activities are a time to fully and
accurately define designs and models in great detail, and of programming as
a simple mechanical translation of these into code.

• You think that adopting the UP means to do many of the possible activities
and create many documents, and thinks of or experiences the UP as a for
mal, fussy process with many steps to be followed.

• You try to plan a project in detail from start to finish; you try to specula-
tively predict all the iterations, and what should happen in each one.

• You want believable plans and estimates for projects before the elaboration
phase is finished.

2.9 Further Readings

A very readable introduction to the UP and its refinement in the RUP is The
Rational Unified Process—An Introduction by Philippe Kruchten, the lead
architect of the RUP.

A description of the original UP can be found in The Unified Software Develop-
ment Process by Jacobson, Booch, and Rumbaugh. It is worth study, but
Kruchten's introduction is recommended first, as it is smaller and more suc-
cinct, and the RUP updates and refines the original UP.

26

FURTHER READINGS

Rational Software sells the online Web-based RUP documentation product,
which provides comprehensive reading on RUP artifacts and activities, and tem-
plates for most artifacts. See Chapter 37 for a brief discussion. An organization
can run a UP project just using mentors and books as learning resources, but
some find the RUP product a useful learning and process aid.
UP activities are also loosely described in a series of books edited by Ambler and
Constantine (for example, The Unified Process: Elaboration Phase [AmblerOO]).
These books contain reprints of articles published over the years in Software
Development magazine, categorized into their respective phase and activity in
terms of a UP taxonomy. Note that the articles were not originally written for
the UP, although they definitely contain useful advice. Also note one slight error
in the series: They describe the UP elaboration phase as a phase in which
throw-away prototypes are created, thus reducing the need for attention to care
in the programming or design. This is not accurate; production-quality (albeit
partial) designs and code are created during elaboration. Ambler recognizes the
inaccuracy and may correct it in a subsequent edition.6

For other agile methods, the Extreme Programming (XP) series of books
IBeckOO, BFOO, JAHOO] are recommended, such as Extreme Programming
Explained. Some XP practices are mentioned in later chapters. Most XP prac-
tices (such as test-first programming and iterative development) are compati-
ble—or identical—with UP practices, and I encourage their adoption on a UP
project. Note that the XP did not (nor did it claim too) invent short timeboxed
iterative and adaptive development, which has been a practice in the UP and
other iterative methods for years. Two noteworthy differences—this is not a
complete list—between the UP and XP are: 1) The UP recommends incremen-
tally writing use cases and a non-functional requirements document (XP does
not); and, 2) The UP recommends more visual design diagramming (such as a
half-day or day) near the start of an iteration, before major programming. The
XP leaders recommend very little, such as 30 minutes.

Highsmith provides justification for the value of adaptive development in Adap-
tive Software Development [HighsmithOO].

6. Ambler, private communication.

27

Chapter 3

CASE STUDY: THE NEXTGEN
POS SYSTEM

Few things are harder to put up with than a good example.

—Mark Twain

Introduction

This chapter briefly describes the case study. If you understand the problem
domain, it may be skipped. Indeed, this problem was chosen because it is familiar,
but rich with interesting design and architectural problems, and thus allows one
to concentrate on how to do analysis and design, rather than explain the
problem and domain.

3.1 The NextGen POS System

The case study is the NextGen point-of-sale (POS) system. In this apparently
straightforward problem domain, we shall see that there are very interesting
requirement and design problems to solve. In addition, it is a realistic problem;
organizations really do write POS systems using object technologies.
A POS system is a computerized application used
(in part) to record sales and handle payments; it is
typically used in a retail store. It includes hardware
components such as a computer and bar code scanner,
and software to run the system. It interfaces to
various service applications, such as a third-party
tax calculator and inventory control. These systems
must be relatively fault-tolerant; that is, even if
remote services are temporarily unavailable (such as
the inventory system), they must still be capable

29

3 - CASE STUDY: THE NEXTGEN POS SYSTEM

of capturing sales and handling at least cash payments (so that the business is
not crippled).
A POS system increasingly must support multiple and varied client-side termi-
nals and interfaces. These include a thin-client Web browser terminal, a regular
personal computer with something like a Java Swing graphical user interface,
touch screen input, wireless PDAs, and so forth.

Furthermore, we are creating a commercial POS system that we will sell to dif-
ferent clients with disparate needs in terms of business rule processing. Each
client will desire a unique set of logic to execute at certain predictable points in
scenarios of using the system, such as when a new sale is initiated or when a
new line item is added. Therefore, we will need a mechanism to provide this
flexibility and customization.

Using an iterative development strategy, we are going to proceed through
requirements, object-oriented analysis, design, and implementation.

3.2 Architectural Layers and Case Study Emphasis

A typical object-oriented information system is designed in terms of several
architectural layers or subsystems (see Figure 3.1). The following is not a com-
plete list, but provides an example:

• User Interface—graphical interface; windows.

• Application Logic and Domain Objects—software objects representing
domain concepts (for example, a software class named Sale) that fulfill
application requirements.

• Technical Services—general purpose objects and subsystems that provide
supporting technical services, such as interfacing with a database or error
logging. These services are usually application-independent and reusable
across several systems.

OOA/D is generally most relevant for modeling the application logic and tech-
nical service layers.

The NextGen case study primarily emphasizes the problem domain objects, allo-
cating responsibilities to them to fulfill the requirements of the application.
Object-oriented design is also applied to create a technical service subsystem for
interfacing with a database.

In this design approach, the UI layer has very little responsibility; it is said to
be thin. Windows do not contain code that performs application logic or process-
ing. Rather, task requests are forwarded on to other layers.

30

Figure 3.1 Sample layers and objects in an object-oriented system, and the case
study focus.

3.3 The Book's Strategy: Iterative Learning and
Development

This book is organized to follow an iterative development strategy. OOA/D is
applied to the NextGen POS system in multiple iterations; the first iteration is
for some core functions. Later iterations expand the functionality of the system
(see Figure 3.2). In conjunction with iterative development, the presentation of
analysis and design topics, UML notation, and patterns are introduced
itera-tively and incrementally. In the first iteration, a core set of analysis and
design topics and notation is presented. The second iteration expands into new
ideas, UML notation, and patterns. And likewise in the third iteration.

31

THE BOOK'S STRATEGY: ITERATIVE LEARNING AND DEVELOPMENT

Figure 3.2 Learning path follows iterations.

Interface

Sale Payment

Log PersistenceFacade

application
logic and
domain object
layer

technical
services layer

minor focus

explore how to connect to
other layers

primary focus of
case study

explore how to
design objects

secondary
focus

explore how
to design
objects

Iteration 1

Iteration 2

Iteration 3
Introduces just those
analysis and design
skills related to
iteration one.

Additional analysis and
design skills introduced.

Likewise.

PART2 INCEPTION

Chapter 4

INCEPTION

Le mieux est I'ennemi du bien (The best is the enemy of the good).

—Voltaire

Objectives

• Define the inception step.
• Motivate the following chapters in this section.

Introduction

This chapter defines the inception phase of a project. If process ideas are not
your priority, or you prefer to first focus on learning the main practical activity
in this phase—use case modeling—then this chapter can be skipped.
Most projects require a short initial step in which the following kinds of ques-
tions are explored:
• What is the vision and business case for this project?
• Feasible?
• Buy and/or build?
• Rough estimate of cost: Is it $10K-100K or in the millions?
• Should we proceed or stop?
Defining the vision and obtaining an order-of-magnitude (unreliable) estimate
necessitates doing some requirements exploration. However, the purpose of the
inception step is not to define all the requirements, or generate a believable esti-
mate or project plan. At the risk of over-simplification, the idea is to do just
enough investigation to form a rational, justifiable opinion of the overall pur-
pose and feasibility of the potential new system, and decide if it is worthwhile to
invest in deeper exploration (the purpose of the elaboration phase).

35

4 - INCEPTION

Thus, the inception phase should be relatively short for most projects, such as
one or a few weeks long. Indeed, on many projects, if it is more than a week long,
then the point of inception has been missed: It is to decide if the project is worth
a serious investigation (during elaboration), not to do that investigation.

Inception in one sentence:
Envision the product scope, vision, and business case.

The main problem solved in one sentence:
Do the stakeholders have basic agreement on the vision of

the project, and is it worth investing in serious investigation?

4.1 Inception: An Analogy

In the oil business, when a new field is being considered, some of the steps
include:
1. Decide if there is enough evidence or a business case to even justify explor

atory drilling.
2. If so, do measurements and exploratory drilling.
3. Provide scope and estimate information.
4. Further steps...
The inception phase is like step one in this analogy. In step one people do not
predict how much oil there is, or the cost or effort to extract it. It is premature—
there is insufficient information. Although it would be nice to be able to answer
"how much" and "when" questions without the cost and effort of the exploration,
in the oil business it is understood to not be realistic.
In UP terms, the realistic exploration step is the elaboration phase. The preced-
ing inception phase is akin to a feasibility study to decide if it is even worth
investing in exploratory drilling. Only after exploration (elaboration) do we have
the data and insight to make somewhat believable estimates and plans. There-
fore, in iterative development and the UP, plans and estimates are not to be con-
sidered reliable in the inception phase. They merely provide an
order-of-magnitude sense of the level of effort, to aid the decision to continue or
not.

4.2 Inception May Be Very Brief

The intent of inception is to establish some initial common vision for the objec-
tives of the project, determine if it is feasible, and decide if it is worth some seri-

36

WHAT ARTIFACTS MAY START IN INCEPTION?

ous investigation in elaboration. If it has been decided beforehand that the
project will definitely be done, and it is clearly feasible (perhaps because the
team has done projects like this before), then the inception phase will be espe-
cially brief. It may include the first requirements workshop, planning for the
first iteration, and then quickly moving forward to elaboration.

4.3 What Artifacts May Start in Inception?

Table 4.1 lists common inception (or early elaboration) artifacts and indicates
the issues they address. Subsequent chapters will examine some of these in
greater detail, especially the Use-Case Model. A key insight regarding iterative
development is to appreciate that these are only partially completed in this
phase, will be refined in later iterations, and should not even be created unless
it is deemed likely they will add real practical value. And since it is inception,
the investigation and artifact content should be light.
For example, the Use-Case Model (to be described in following chapters) may list
the names of most of the expected use cases and actors, but perhaps only
describe 10% of the use cases in detail—done in the service of developing a
rough high-level vision of the system scope, purpose, and risks.
Note that some programming work may occur in inception in order to create
"proof of concept" prototypes, to clarify a few requirements via (typically)
Ul-ori-ented prototypes, and to do programming experiments for key "show
stopper" technical questions.

Artifact1 Comment

Vision and Business Case Describes the high-level goals and constraints, the business
case, and provides an executive summary.

Use-Case Model Describes the functional requirements, and related non-func-
tional requirements.

Supplementary Specification Describes other requirements.

Glossary Key domain terminology.

Risk List & Risk Management
Plan

Describes the business, technical, resource, schedule risks, and
ideas for their mitigation or response.

Prototypes and proof-of-concepts To clarify the vision, and validate technical ideas.

Iteration Plan Describes what to do in the first elaboration iteration.

37

4 - INCEPTION

Artifact1 Comment

Phase Plan & Software Develop-
ment Plan

Low-precision guess for elaboration phase duration and effort.
Tools, people, education, and other resources.

Development Case A description of the customized UP steps and artifacts for this
project. In the UP, one always customizes it for the project.

Table 4.1 Sample inception artifacts.

t-These artifacts are only partially completed in this phase. They will be
itera-tively refined in subsequent iterations. Name capitalization implies it is an
officially named UP artifact.

Isn't That a Lot of Documentation?

Recall that artifacts should be considered optional. Choose to create only those
that really add value for the project, and drop them if their worth is not proved.

The point of an artifact is not the document or diagram itself, but the thinking,
analysis, and proactive readiness (and then its recording, to avoid re-invention
or having to repeat things verbally). As General Eisenhower said, "In preparing
for battle I have always found that plans are useless, but planning indispens-
able" [Nixon90, BFOO].
Record artifacts digitally and online—available on the project's website—rather
than on paper.
Note also that UP artifacts from previous projects can be reused on later ones. It
is common for there to be many similarities in risk, project management, testing,
and environment artifacts across projects. All UP projects will (or should)
organize artifacts the same way, with the same names (Risk List, Development
Case, and so on). This simplifies finding reusable artifacts from prior projects on
new UP engagements.

4.4 You Know You Didn't Understand Inception When...

• It is more than "a few" weeks long for most projects.

• There is an attempt to define most of the requirements.

• Estimates or plans are expected to be reliable.

• You define the architecture; rather, this should be done iteratively in
elaboration.

38

You KNOW You DIDN'T UNDERSTAND INCEPTION WHEN...

• You believe that the proper sequence of work should be: 1) define
the
requirements; 2) design the architecture; 3) implement.

• There is no Business Case or Vision artifact.
• The names of most of the use cases and actors were not identified.
• All the use cases were written in detail.
• None of the use cases were written in detail; rather, 10-20% should be writ

ten in detail to obtain some realistic insight into the scope of the problem.

39

Chapter 5

UNDERSTANDING
REQUIREMENTS

Fast, Cheap, Good: Choose any two.

—anonymous

Objectives

• Define the FURPS+ model.
• Relate types of requirements to UP artifacts.

Introduction

Not all requirements are created equal. This chapter introduces the FURPS+
requirements categories.
Requirements are capabilities and conditions to which the system—and more
broadly, the project—must conform [JBR99]. A prime challenge of requirements
work is to find, communicate, and remember (that usually means record) what
is really needed, in a form that clearly speaks to the client and development
team members.
The UP promotes a set of best practices, one of which is manage requirements.
This does not refer to the waterfall attitude of attempting to fully define and sta-
bilize the requirements in the first phase of a project, but rather—in the context
of inevitably changing and unclear stakeholder's wishes—"a systematic
approach to finding, documenting, organizing, and tracking the changing
requirements of a system" [RUP]; in short, doing it skillfully and not being
sloppy. Note the word changing', the UP embraces change in requirements as a
fundamental driver on projects. Finding is another important term; that is,

41

5 - UNDERSTANDING REQUIREMENTS

skillful elicitation via techniques such as use case writing and requirements
workshops.
As indicated in Figure 5.1, one study of factors on challenged projects revealed
that 37% of factors related to problems with requirements, making require-
ments issues the largest single contributor to problems [Standish94]. Conse-
quently, masterful requirements management is important. The waterfall
response to this data would be to try harder to polish, stabilize, and freeze the
requirements before any design or implementation, but history shows this to be
a losing battle. The iterative response is to use a process that embraces change
and feedback as core drivers in discovering requirements.

Figure 5.1 Factors on challenged software projects.

5.1 Types of Requirements

In the UP, requirements are categorized according to the FURPS+
model [Grady92], a useful mnemonic with the following meaning:1

• Functional—features, capabilities, security.

• Usability—human factors, help, documentation.

• Reliability—frequency of failure, recoverability, predictability.

1. There are several systems of requirements categorization and quality attributes pub-
lished in books and by standards organizations, such as ISO 9126 (which is similar to
the FURPS+ list), and several from the Software Engineering Institute (SE1); any can
be used on a UP project.

42

FURTHER READINGS

• Performance—response times, throughput, accuracy, availability, resource
usage.

• Supportability—adaptability, maintainability, internationalization,
con
figurability.

The "+" in FURPS+ indicates ancillary and sub-factors, such as:

• Implementation—resource limitations, languages and tools, hardware, ...

• Interface—constraints imposed by interfacing with external systems.

• Operations—system management in its operational setting.

• Packaging

• Legal—licensing and so forth.

It is helpful to use FURPS+ categories (or some categorization scheme) as a
checklist for requirements coverage, to reduce the risk of not considering some
important facet of the system.

Some of these requirements are collectively called the quality attributes,
quality requirements, or the "-ilities" of a system. These include usability,
reliability, performance, and supportability. In common usage, requirements are
categorized as functional (behavioral) or non-functional (everything else);
some dislike this broad generalization [BCK98], but it is very widely used.

Functional requirements are explored and recorded in the Use-Case Model, the
subject of the next chapter, and in the system features list of the Vision artifact.
Other requirements can be recorded in the use cases they relate to, or in the
Supplementary Specifications artifact. The Vision artifact summarizes
high-level requirements that are elaborated in these other documents. The
Glossary records and clarifies terms used in the requirements. The Glossary in
the UP also encompasses the concept of the data dictionary, which records
requirements related to data, such as validation rules, acceptable values, and so
forth. Prototypes are a mechanism to clarify what is wanted or possible.

As we shall see when exploring architectural analysis, the quality requirements
have a strong influence on the architecture of a system. For example, a high-per-
formance, high-reliability requirement will influence the choice of software and
hardware components, and their configuration. The need for easy adaptability
due to frequent changes in the functional requirements would likewise funda-
mentally shape the design of the software.

5.2 Further Readings

References related to requirements with use cases are covered in a subsequent
chapter. Use-case-oriented requirements texts, such as Writing Effective Use
Cases [CockburnOl] are the recommended starting point in requirements study,
rather than more general (and usually, traditional) requirements texts.

43

44

5 - UNDERSTANDING REQUIREMENTS

There is a broad effort to discuss requirements—and a wide variety of software
engineering topics—under the umbrella of the Software Engineering Body of
Knowledge (SWEBOK), available at www.swebok.org.
The SEI (www.sei.cmu.edu) has several proposals related to quality require-
ments. The ISO 9126, IEEE Std 830, and IEEE Std 1061 are standards related
to requirements and quality attributes, and available on the Web at various
sites.
Some cautions regarding general requirements books, even those that purport
to cover use cases, iterative development, or indeed even requirements in the
UP:
1. Most are written with a waterfall bias of significant or "thorough" up-front

requirements definition before moving on to design and implementation.
This is not meant to invalidate their broader value or often deep and useful
method-independent requirements insights, but to clarify that they do not
represent an accurate view of iterative development. This is because the
authors may have a primary background in waterfall projects, working to
refine, carefully and thoroughly define, and finalize the requirements before
continuing to design. Those books that also mention iterative development
may do so superficially, perhaps with "iterative" material added to appeal to
modern trends. Thus, requirements books and articles should be read with
alertness; one could be lulled into the idea of trying to carefully define all
the requirements in the initial phase, which is not consistent with an itera
tive process.

2. Many general requirements books that also purport to include use cases do
so superficially, or misunderstand what use-case driven requirements really
means. This may be because the authors' primary background is in tradi
tional requirements methods, and there has been an attempt to recently
append use cases to their prior method, without appreciating that a central
idea of use cases as envisioned by Ivar Jacobson and the Ul' is to make use
cases the heart-and-center overarching requirements approach—replacing
other requirements documents as the central element; use cases suffuse and
drive the requirements work, rather than being some minor or medium-
level adjunct technique appended to traditional requirements documents or
approaches.

In summary, general requirements books offer useful advice on techniques and
issues of requirements gathering, written by skilled practitioners, but often
present the advice in a waterfall process context, and without great insight into
the deeper implications of use cases. Any variant of process advice implying "try
to define most of the requirements, and then move forward to design and imple-
mentation" is not consistent with iterative development and the UP.

Chapter 6

USE-CASE MODEL: WRITING
REQUIREMENTS IN CONTEXT

The indispensable first step to getting the things
you want out of life: decide what you want.

—Ben Stein

Objectives

• Identify and write use cases.
• Relate use cases to user goals and elementary business processes.
• Use the brief, casual, and fully dressed formats, in an essential style.
• Relate use case work to iterative development.

Introduction

This chapter is worth studying during a first read of the book because use cases
are a widely used mechanism to discover and record requirements (especially
functional); they influence many aspects of a project, including OOA/D. It is
worth both knowing about and creating use cases.
Writing use cases—stories of using a system—is an excellent technique to
understand and describe requirements. This chapter explores key use case con-
cepts and presents sample use cases for the NextGen application.
The UP defines the Use-Case Model within the Requirements discipline.
Essentially, this is the set of all use cases; it is a model of the system's function-
ality and environment.

45

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

6.1 Goals and Stories

Customers and end users have goals (also known as needs in the UP) and want
computer systems to help meet them, ranging from recording sales to estimat-
ing the flow of oil from future wells. There are several ways to capture these
goals and system requirements; the better ones are simple and familiar because
this makes it easier—especially for customers and end users—to contribute to
their definition or evaluation. That lowers the risk of missing the mark.
Use cases are a mechanism to help keep it simple and understandable for all
stakeholders. Informally, they are stories of using a system to meet goals. Here
is an example brief format use case:

Process Sale: A customer arrives at a checkout with items to
purchase. The cashier uses the POS system to record each pur-
chased item. The system presents a running total and line-item
details. The customer enters payment information, which the
system validates and records. The system updates inventory.
The customer receives a receipt from the system and then leaves
with the items.

Use cases often need to be more elaborate than this, but the essence is discover-
ing and recording functional requirements by writing stories of using a system
to help fulfill various stakeholder goals; that is, cases of use.] It isn't supposed to
be a difficult idea, although it may indeed be difficult to discover or decide what
is needed, and write it coherently at a useful level of detail.
Much has been written about use cases, and while worthwhile, there is always
the risk among creative, thoughtful people to obscure a simple idea with layers
of sophistication. It is usually possible to spot a novice use-case modeler (or a
serious Type A analyst) by an over-concern with secondary issues such as use
case diagrams, use case relationships, use case packages, optional attributes,
and so forth, rather than writing the stories. That said, a strength of the use
case mechanism is the capacity to scale both up and down in terms of sophistica-
tion and formality, depending on need.

6.2 Background

The idea of use cases to describe functional requirements was introduced in
1986 by Ivar Jacobson [Jacobson92], a main contributor to the UML and UP.
Jacobson's use case idea was seminal and widely appreciated; simplicity and

1. The original term in Swedish literally translates as "usage case."

46

USE CASES AND ADDING VALUE

utility being its chief virtues. Although many have made contributions to the
subject, arguably the most influential, comprehensive, and coherent next step in
defining what use cases are (or should be) and how to write them came from
Alistair Cockburn, summarized in the very popular text Writing Effective Use
Cases [CockburnOl], based on his earlier work and writings stemming from
1992 onwards. This introduction is therefore based upon and consistent with the
latter work.

: 6.3 Use Cases and Adding Value

First, some informal definitions: an actor is something with behavior, such as a
person (identified by role), computer system, or organization; for example, a
cashier.
A scenario is a specific sequence of actions and interactions between actors and
the system under discussion; it is also called a use case instance. It is one par-
ticular story of using a system, or one path through the use case; for example,
the scenario of successfully purchasing items with cash, or the scenario of failing
to purchase items because of a credit card transaction denial.
Informally then, a use case is a collection of related success and failure scenar-
ios that describe actors using a system to support a goal. For example, here is a
casual format use case that includes some alternate scenarios:

Handle Returns

Main Success Scenario: A customer arrives at a checkout with
items to return. The cashier uses the POS system to record each
returned item ...
Alternate Scenarios:
If the credit authorization is reject, inform the customer and ask
for an alternate payment method.
If the item identifier is not found in the system, notify the Cash-
ier and suggest manual entry of the identifier code (perhaps it is
corrupted).
If the system detects failure to communicate with the external
tax calculator system, ...

An alternate, but similar definition of a use case is provided by the RUP:
A set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of
value to a particular actor [RUP].

47

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

The phrasing "an observable result of value" is subtle but important, because it
stresses the attitude that the system behavior should emphasize providing
value to the user.

A key attitude in use case work is to focus on the question "How can using the
system provide observable value to the user, or fulfill their goals?", rather
than merely thinking of system requirements in terms of a "laundry list" of
features or functions.

Perhaps it seems obvious to stress providing observable user value, but the soft-
ware industry is littered with failed projects that did not deliver what people
really needed. The feature and function list approach to capturing requirements
can contribute to that negative outcome because it does not encourage the stake-
holders to consider the requirements in a larger context of using the system in a
scenario to achieve some observable result of value, or some goal. In contrast,
use cases place features and functions in a goal-oriented context. Hence the
chapter title.2

This is a key idea that Jacobson was trying to convey in the use case concept: Do
requirements work with a focus on how a system can add value and fulfill goals.

6.4 Use Cases and Functional Requirements

Use cases are requirements; primarily they are functional requirements that
indicate what the system will do. In terms of the FURPS+ requirements types,
they emphasize the "F" (functional or behavioral), but can also be used for other
types, especially when those other types strongly relate to a use case. In the
UP—and most modern methods—use cases are the central mechanism that is
recommended for their discovery and definition. Use cases define a promise or
contract of how a system will behave.

To be clear: Use cases are requirements (although not all requirements). Some
think of requirements only as "the system shall do..." function or feature lists.
Not so, and a key idea of use cases is to (usually) reduce the importance or use of
detailed older-style feature lists and rather, write use cases for the functional
requirements. More on this point in a later section.

Use cases are text documents, not diagrams, and use-case modeling is primarily
an act of writing text, not drawing. However, the UML defines a use case dia-
gram to illustrate the names of use cases and actors, and their relationships.

2. Originally from the aptly titled Uses Cases: Requirements in Context |GKOO| (chapter
title adapted with permission of the authors).

48

USE CASE TYPES AND FORMATS

6.5 Use Case Types and Formats

Black-Box Use Cases and System Responsibilities

Black-box use cases are the most common and recommended kind; they do not
describe the internal workings of the system, its components, or design. Rather,
the system is described as having responsibilities, which is a common unifying
metaphorical theme in object-oriented thinking—software elements have
responsibilities and collaborate with other elements that have responsibilities.

By defining system responsibilities with black-box use cases, it is possible to
specify what the system must do (the functional requirements) without deciding
how it will do it (the design). Indeed, the definition of "analysis" versus "design"
is sometimes summarized as "what" versus "how." This is an important theme in
good software development: During requirements analysis avoid making "how"
decisions, and specify the external behavior for the system, as a black box. Later,
during design, create a solution that meets the specification.

Black-box style Not

The system records the sale. The system writes the sale to a data-
base. ...or (even worse):
The system generates a SQL INSERT
statement for the sale...

Formality Types

Use cases are written in different formats, depending on need. In addition to the
black-box versus white-box visibility type, use cases are written in varying
degrees of formality:

• brief—terse one-paragraph summary, usually of the main success scenario.
The prior Process Sale example was brief.

• casual—informal paragraph format. Multiple paragraphs that cover vari
ous scenarios. The prior Handle Returns example was casual.

• fully dressed—the most elaborate. All steps and variations are written in
detail, and there are supporting sections, such as preconditions and success
guarantees.

The following example is a fully dressed case for our NextGen case study.

49

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

6.6 Fully Dressed Example: Process Sale

Fully dressed use cases show more detail and are structured; they are useful in
order to obtain a deep understanding of the goals, tasks, and requirements. In
the NextGen POS case study, they would be created during one of the early
requirements workshops in a collaboration of the system analyst, subject matter
experts, and developers.

The usecases.org Format

Various format templates re available for fully dressed use cases. However, per-
haps the most widely used and shared format is the template available at
www.usecases.org. The following example illustrates this style.

Please note that this is the book's primary case study example of a detailed use
case; it shows many common elements and issues.

Use Case UC1: Process Sale

Primary Actor: Cashier
Stakeholders and Interests:
- Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short

ages are deducted from his/her salary.
- Salesperson: Wants sales commissions updated.
- Customer: Wants purchase and fast service with minimal effort. Wants proof of pur

chase to support returns.
- Company: Wants to accurately record transactions and satisfy customer interests.

Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

- Government Tax Agencies: Want to collect tax from every sale. May be multiple agen
cies, such as national, state, and county.

- Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is generated.
Payment authorization approvals are recorded.

Main Success Scenario (or Basic Flow):
1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running total.

Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.

50

FULLY DRESSED EXAMPLE: PROCESS SALE

5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.
8. System logs completed sale and sends sale and payment information to the external

Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.
10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, System fails:

To support recovery and correct accounting, ensure all transaction sensitive state
and events can be recovered from any step of the scenario.

1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean

state.
2. Cashier starts a new sale.

3a. Invalid identifier:
1. System signals error and rejects entry. 3b. There are multiple of same item

category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters item identifier for removal from sale.
2. System displays updated running total.

3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.

3-6c. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS terminal. 4a.

The system generated item price is not wanted (e.g., Customer complained about
something and is offered a lower price):
1. Cashier enters override price.
2. System presents new price.

5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues. 1a. System
detects that the service does not restart.

1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.

5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.

5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.

6a. Customer says they intended to pay by cash but don't have enough cash:
1a. Customer uses an alternate payment method.
1b. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

51

52

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

7b. Paying by credit:

1. Customer enters their credit account information.
2. System sends payment authorization request to an external Payment Authoriza

tion Service System, and requests payment approval.
2a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

3. System receives payment approval and signals approval to Cashier.
3a. System receives payment denial:

1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

4. System records the credit payment, which includes the payment approval.
5. System presents credit payment signature input mechanism.
6. Cashier asks Customer for a credit payment signature. Customer enters signa

ture.
7c. Paying by check...
7d. Paying by debit...
7e. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier. 9a.
There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible): 1.
Cashier requests gift receipt and System presents it.

Special Requirements:
- Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
- Credit authorization response within 30 seconds 90% of the time.
- Somehow, we want robust recovery when access to remote services such the inven

tory system is failing.
- Language internationalization on the text displayed.
- Pluggable business rules to be insertable at steps 3 and 7.

Technology and Data Variations List:
3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-

board.
3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.
7b. Credit payment signature captured on paper receipt. But within two years, we pre-

dict many customers will want digital signature capture.

FULLY DRESSED EXAMPLE: PROCESS SALE

Frequency of Occurrence: Could be nearly continuous.

Open Issues:
- What are the tax law variations?
- Explore the remote service recovery issue.
- What customization is needed for different businesses?
- Must a cashier take their cash drawer when they log out?
- Can the customer directly use the card reader, or does the cashier have to do it?

This use case is illustrative rather than exhaustive (although it is based on a
real POS system's requirements). Nevertheless, there is enough detail and com-
plexity here to offer a realistic sense that a fully-dressed use case can record
many requirement details. This example will serve well as a model for many use
case problems.

The Two-Column Variation

Some prefer the two-column or conversational format, which emphasizes the
fact that there is an interaction going on between the actors and the system. It
was first proposed by Rebecca Wirfs-Brock in [Wirfs-Brock93], and is also pro-
moted by Constantine and Lockwood to aid usability analysis and engineering
[CL99]. Here is the same content using the two-column format:

Use Case UC1: Process Sale

Primary Actor: ...
... as before ...

Main Success Scenario:
Actor Action (or Intention)
1. Customer arrives at a POS checkout

with goods and/or services to
purchase.

2. Cashier starts a new sale.
3. Cashier enters item identifier.

Cashier repeats steps 3-4 until indi-
cates done.
6. Cashier tells Customer the total, and

asks for payment.
7. Customer pays.

System Responsibility

4. Records each sale line item and pre
sents item description and running
total.

5. System presents total with taxes
calculated.

8. Handles payment.

53

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

9. Logs the completed sale and sends
information to the external account-
ing (for all accounting and commis-
sions) and inventory systems (to
update inventory). System presents
receipt.

The Best Format?

There isn't one best format; some prefer the one-column style, some the two-col-
umn. Sections may be added and removed; heading names may change. None of
this is particularly important; the key thing is to write the details of the main
success scenario and its extensions, in some form. [Cockburnl] summarizes
many usable formats.

Personal Practice

This is my practice, not a recommendation. For some years, I used the
two-column format because of its clear visual separation in the conversation.
However, I have reverted to a one-column style as it is more compact and
easier to format, and the slight value of the visually separated conversation
does not for me outweigh these benefits. I find it still simple to visually iden-
tify the different parties in the conversation (Customer, System, ...) if each
party and the System responses are usually allocated to their own steps.

6.7 Explaining the Sections

Preface Elements

Many optional preface elements are possible. Only place elements at the start
which are important to read before the main success scenario. Move extraneous
"header" material to the end of the use case.

Primary Actor: The principal actor that calls upon system services to fulfill a goal.

Important: Stakeholders and Interests List

This list is more important and practical than may appear at first glance. It sug-
gests and bounds what the system must do. To quote:

54

EXPLAINING THE SECTIONS

The [system] operates a contract between stakeholders, with the
use cases detailing the behavioral parts of that contract...The
use case, as the contract for behavior, captures all and only the
behaviors related to satisfying the stakeholders' interests
[Cockburn0l].

This answers the question: What should be in the use case? The answer is: That
which satisfies all the stakeholders' interests. In addition, by starting with the
stakeholders and their interests before writing the remainder of the use case,
we have a method to remind us what the more detailed responsibilities of the
system should be. For example, would I have identified a responsibility for sales-
person commission handling if I had not first listed the salesperson stakeholder
and their interests? Hopefully eventually, but perhaps I would have missed it
during the first analysis session. The stakeholder interest viewpoint provides a
thorough and methodical procedure for discovering and recording all the
required behaviors.

Stakeholders and Interests:
- Cashier: Wants accurate, fast entry and no payment errors, as cash drawer shortages

are deducted from his/her salary.
- Salesperson: Wants sales commissions updated.
- �

Preconditions and Success Guarantees (Postconditions)

Preconditions state what must always be true before beginning a scenario in
the use case. Preconditions are not tested within the use case; rather, they are
conditions that are assumed to be true. Typically, a precondition implies a sce-
nario of another use case that has successfully completed, such as logging in, or
the more general "cashier is identified and authenticated." Note that there are
conditions that must be true, but are not of practical value to write, such as "the
system has power." Preconditions communicate noteworthy assumptions that
the use case writer thinks readers should be alerted to.

Success guarantees (or postconditions) state what must be true on success-
ful completion of the use case�either the main success scenario or some alter-
nate path. The guarantee should meet the needs of all stakeholders.

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Main Success Scenario and Steps (or Basic Flow)

This has also been called the "happy path" scenario, or the more prosaic "Basic
Flow." It describes the typical success path that satisfies the interests of the

55

56

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

stakeholders. Note that it often does not include any conditions or branching.
Although not wrong or illegal, it is arguably more comprehensible and extend-ible
to be very consistent and defer all conditional handling to the Extensions section.

Suggestion

Defer all conditional and branching statements to the Extensions section.

The scenario records the steps, of which there are three kinds:

1. An interaction between actors.3
2. A validation (usually by the system).
3. A state change by the system (for example, recording or modifying

something).
Step one of a use case does not always fall into this classification, but indicates
the trigger event that starts the scenario.
It is a common idiom to always capitalize the actors' names for ease of identification.
Observe also the idiom that is used to indicate repetition.

Main Success Scenario:
1. Customer arrives at a POS checkout with items to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. ...
Cashier repeats steps 3-4 until indicates done.
5. ...

Extensions (or Alternate Flows)

Extensions are very important. They indicate all the other scenarios or
branches, both success and failure. Observe in the fully dressed example that
the Extensions section was considerably longer and more complex than the
Main Success Scenario section; this is common and to be expected. They are also
known as "Alternative Flows."

In thorough use case writing, the combination of the happy path and extension
scenarios should satisfy "nearly" all the interests of the stakeholders. This point is
qualified, because some interests may best be captured as non-functional

3. Note that the system under discussion itself should be considered an actor when it plays
an actor role collaborating with other systems.

EXPLAINING THE SECTIONS

requirements expressed in the Supplementary Specification rather than the use
cases.
Extension scenarios are branches from the main success scenario, and so can be
notated with respect to it. For example, at Step 3 of the main success scenario
there may be an invalid item identifier, either because it was incorrectly entered
or unknown to the system. An extension is labeled "3a"; it first identifies the
condition and then the response. Alternate extensions at Step 3 are labeled "3b"
and so forth.

Extensions:
3a. Invalid identifier:

1. System signals error and rejects entry.
3b. There are multiple of same item category and tracking unique item identity not

important (e.g., 5 packages of veggie-burgers): 1. Cashier can enter item
category identifier and the quantity.

An extension has two parts: the condition and the handling.

Guideline: Write the condition as something that can be detected by the system
or an actor. To contrast:

5a. System detects failure to communicate with external tax calculation system service:
5a. External tax calculation system not working:

The former style is preferred because this is something the system can detect;
the latter is an inference.
Extension handling can be summarized in one step, or include a sequence, as in
this example, which also illustrates notation to indicate that a condition can
arise within a range of steps:

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters the item identifier for removal from the sale.
2. System displays updated running total.

At the end of extension handling, by default the scenario merges back with the
main success scenario, unless the extension indicates otherwise (such as by
halting the system).
Sometimes, a particular extension point is quite complex, as in the "paying by
credit" extension. This can be a motivation to express the extension as a sepa-
rate use case.

This extension example also demonstrates the notation to express failures
within extensions.

57

58

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

7b. Paying by credit:
1. Customer enters their credit account information.
2. System requests payment validation from external Payment Authorization Ser

vice System.

2a. System detects failure to collaborate with external system:
1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

3. ...

If it is desirable to describe an extension condition as possible during any (or at
least most) steps, the labels *a, *b, ..., can be used.

*a. At any time, System crashes:
In order to support recovery and correct accounting, ensure all transaction sensitive

state and events can be recovered at any step in the scenario.
1. Cashier restarts the System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

Special Requirements

If a non-functional requirement, quality attribute, or constraint relates specifi-
cally to a use case, record it with the use case. These include qualities such as
performance, reliability, and usability, and design constraints (often in I/O
devices) that have been mandated or considered likely.

Special Requirements:
- Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
- Credit authorization response within 30 seconds 90% of the time.
- Language internationalization on the text displayed.
- Pluggable business rules to be insertable at steps 2 and 6.

Recording these with the use case is classic UP advice, and a reasonable location
when first writing the use case. However, many practitioners find it useful to
ultimately consolidate all non-functional requirements in the Supplementary
Specification, for content management, comprehension, and readability, because
these requirements usually have to be considered as a whole during architec-
tural analysis.

Technology and Data Variations List

Often there are technical variations in how something must be done, but not
what, and it is noteworthy to record this in the use case. A common example is a

GOALS AND SCOPE OF A USE CASE

technical constraint imposed by a stakeholder regarding input or output tech-
nologies. For example, a stakeholder might say, "The POS system must support
credit account input using a card reader and the keyboard." Note that these are
examples of early design decisions or constraints; in general, it is skillful to
avoid premature design decisions, but sometimes they are obvious or unavoid-
able, especially concerning input/output technologies.

It is also necessary to understand variations in data schemes, such as using
UPCs or EANs for item identifiers, encoded in bar code symbology.

This list is the place to record such variations. It is also useful to record varia-
tions in the data that may be captured at a particular step.

Technology and Data Variations List:
3a. Item identifier entered by laser scanner or keyboard.
3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.
7b. Credit payment signature captured on paper receipt. But within two years, we predict
many customers will want digital signature capture.

Suggestion

This section should not contain multiple steps to express varying behavior
for different cases. If that is necessary, say it in the Extensions section.

6.8 Goals and Scope of a Use Case

How should use cases be discovered? It is common to be unsure if something is a
valid (or more practically, a useful) use case. Tasks can be grouped at many lev-
els of granularity, from one or a few small steps, up to enterprise-level activities.

At what level and scope should use cases be expressed?

The following sections examine the simple ideas of elementary business pro-
cesses and goals as a framework for identifying the use cases for an application.

Use Cases for Elementary Business Processes

Which of these is a valid use case?

� Negotiate a Supplier Contract

� Handle Returns

� Log In

59

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

An argument can be made that all of these are use cases at different levels,
depending on the system boundary, actors, and goals. Evaluation of these candi-
dates is presented after an introduction to elementary business processes.

Rather than asking in general, "What is a valid use case?",
question for the POS case study is: What is a useful level to
express use cases for application requirements analysis?

60

Guideline: The EBP Use Case

For requirements analysis for a computer application, focus on use cases at
the level of elementary business processes (EBPs).

EBP is a term from the business process engineering field,4 defined as:

A task performed by one person in one place at one time, in
response to a business event, which adds measurable business
value and leaves the data in a consistent state. e.g., Approve
Credit or Price Order [original source lost].

This can be taken too literally: Does a use case fail as an EBP if two people are
required, or if a person has to walk around? Probably not, but the feel of the def-
inition is about right. It's not a single small step like "delete a line item" or
"print the document." Rather, the main success scenario is probably five or ten
steps. It doesn't take days and multiple sessions, like "negotiate a supplier con-
tract;" it is a task done during a single session. It is probably between a few min-
utes and an hour in length. As with the UP's definition, it emphasizes adding
observable or measurable business value, and it comes to a resolution in which
the system and data are in a stable and consistent state.

A common use case mistake is defining many use cases at too low a level; that is,
as a single step, subfunction, or subtask within an EBP.

Reasonable Violations of the EBP Guideline

Although the "base" use cases for an application should satisfy the EBP guide-
line, it is frequently useful to create separate "sub" use cases representing
sub-tasks or steps within a base use case. Use cases can exist that fail the EBP
test; many potentially exist at a lower level. The guideline is only used to find the
dominant level of use cases in requirements analysis for an application; that is,
the level to focus on for naming and writing them.

4. EBP is similar to the term user task in usability engineering, although the meaning
is less strict in that domain.

a more relevant

GOALS AND SCOPE OF A USE CASE

For example, a subtask or extension such as "paying by credit" may be repeated
in several base use cases. It is desirable to separate this into its own use case
(that does not satisfy the EBP guideline) and link it to several base use cases, to
avoid duplication of the text.
Chapter 25 explores the issue of use case relationships.

Use Cases and Goals

Actors have goals (or needs) and use applications to help satisfy them. Conse-
quently, an EBP-level use case is called a user goal-level user case, to empha-
size that it serves (or should serve) to fulfill a goal of a user of the system, or the
primary actor.
And it leads to a recommended procedure:
1. Find the user goals.
2. Define a use case for each.
This is slight shift in emphasis for the use-case modeler. Rather than asking
"What are the use cases?", one starts by asking: "What are your goals?" In fact,
the name of a use case for a user goal should reflect its name, to emphasize this
viewpoint�Goal: capture or process a sale; use case: Process Sale.
Note that because of this symmetry, the EBP guideline can be equally applied to
decide if a goal or a use case is at a suitable level.
Thus, here is a key idea regarding investigating user goals vs. investigating use
cases:

Imagine we are together in a requirements workshop. We could ask either:
� "What do you do?" (roughly a use case-oriented question) or,
� "What are your goals?"
Answers to the first question are more likely to reflect current solutions and
procedures, and the complications associated with them.
Answers to the second question, especially combined with an investigation to
move higher up the goal hierarchy ("what is the goal of that goal?") open up
the vision for new and improved solutions, focus on adding business value,
and get to the heart of what the stakeholders want from the system under
discussion.

61

62

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Example: Applying the EBP Guideline

As the system analyst responsible for the NextGen system requirements discov-
ery, you are investigating user goals. The conversation goes like this: During a
requirements workshop:

System analyst: "What are some of your goals in the context of using a POS
system?"
Cashier: "One, to quickly log in. Also, to capture sales."
System analyst: "What do you think is the higher level goal motivating log-
ging in?"
Cashier: "I'm trying to identify myself to the system, so it can validate that
I'm allowed to use the system for sales capture and other tasks." System
analyst: "Higher than that?"
Cashier: "To prevent theft, data corruption, and display of private company
information."

Note the analyst's strategy of searching up the goal hierarchy to find higher
level user goals that still satisfy the EBP guideline, to get at the real intent
behind the action, and also to understand the context of the goals.

"Prevent theft, ..." is higher than a user goal; it may be called an enterprise goal,
and is not an EBP. Therefore, although it can inspire new ways of thinking
about the problem and solutions (such as eliminating POS systems and cashiers
completely), we will set it aside for now.

Lowering the goal level to "identify myself and be validated" appears closer to
the user goal level. But is it at the EBP level? It does not add observable or mea-
surable business value. If the CEO asked, "What did you do today?" and you
said "I logged in 20 times!", she would not be impressed. Consequently, this is a
secondary goal, always in the service of doing something useful, and is not an
EBP or user goal. By contrast, "capture a sale" does fit the criteria of being an
EBP or user goal.

As another example, in some stores there is a process called "cashing in", in
which a cashier inserts their own cash drawer tray into the terminal, logs in,
and tells the system how much cash is in drawer. Cashing In is an EBP-level (or
user goal level) use case; the log in step, rather than being a EBP-level use case,
is a subfunction goal in support of the goal of cashing in.

Subfunction Goals and Use Cases

Although "identify myself and be validated" (or "log in") has been eliminated as
a user goal, it is a goal at a lower level, called a subfunction goal�subgoals
that support a user goal. Use cases should only occasionally be written for these
subfunction goals, although it is a common problem that use case experts
observe when asked to evaluate and improve (usually simplify) a set of use
cases.

FINDING PRIMARY ACTORS, GOALS, AND USE CASES

It is not illegal to write use cases for subfunction goals, but it is not always help-
ful, as it adds complexity to a use-case model; there can be hundreds of
subfunc-tion goals�or subfunction use cases�for a system.
Important point: The number and granularity of use cases influences the time
and difficulty to understand, maintain, and manage the requirements.
The most common, valid motivation to express a subfunction goal as a use case
is when the subfunction is repeated in or is a precondition for multiple user
goal-level use cases. This in fact is probably true of "identify myself and be vali-
dated," which is a precondition of most, if not all, other user goal-level use cases.
Consequently, it may be written as the use case Authenticate User.

Goals and Use Cases Can Be Composite

Goals are usually composite, from the level of an enterprise ("be profitable"), to
many supporting intermediate goals while using applications ("sales are cap-
tured"), to supporting subfunction goals within applications ("input is valid").
Similarly, use cases can be written at different levels to satisfy these goals, and
can be composed of lower level use cases.

These varying goal and use case levels are a common source of confusion in
identifying the appropriate level of use cases for an application. The EBP
guideline provides guidance to filter out excessive low-level use cases.

6.9 Finding Primary Actors, Goals, and Use Cases

Use cases are defined to satisfy the user goals of the primary actors. Hence, the
basic procedure is:
1. Choose the system boundary. Is it just a software application, the hardware

and application as a unit, that plus a person using it, or an entire organiza
tion?

2. Identify the primary actors�those that have user goals fulfilled through
using services of the system.

3. For each, identify their user goals. Raise them to the highest user goal level
that satisfies the EBP guideline.

4. Define use cases that satisfy user goals; name them according to their goal.
Usually, user goal-level use cases will be one-to-one with user goals, but
there is at least one exception, as will be examined.

63

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Step 1: Choosing the System Boundary

For this case study, the POS system itself is the system under design; every-
thing outside of it is outside the system boundary, including the cashier, pay-
ment authorization service, and so on.
If it is not clear, defining the boundary of the system under design can be clari-
fied by defining what is outside�the external primary and supporting actors.
Once the external actors are identified, the boundary becomes clearer. For
example, is the complete responsibility for payment authorization within the
system boundary? No, there is an external payment authorization service actor.

Steps 2 and 3: Finding Primary Actors and Goals

It is artificial to strictly linearize the identification of primary actors before user
goals; in a requirements workshop, people brainstorm and generate a mixture of
both. Sometimes, goals reveal the actors, or vice versa.
Guideline: Emphasize brainstorming the primary actors first, as this sets up the
framework for further investigation.

Reminder Questions to Find Actors and Goals

In addition to obvious primary actors and user goals, the following questions
help identify others that may be missed:

Who starts and stops the system?
Who does user and security
management?

Is there a monitoring process that
restarts the system if it fails?
How are software updates handled?
Push or pull update?

Who does system administration?
Is "time" an actor because the sys-
tem does something in response to a
time event?
Who evaluates system activity or
performance?
Who evaluates logs? Are they
remotely retrieved?

64

Primary and Supporting Actors

Recall that primary actors have user goals fulfilled through using services of the
system. They call upon the system to help them. This is in contrast to support-
ing actors, which provide services to the system under design. For now, the focus
is on finding the primary actors, not the supporting ones.

FINDING PRIMARY ACTORS, GOALS, AND USE CASES

Recall also that primary actors can be�among other things�other computer
systems, such as "watchdog" software processes.

Suggestion

Be suspicious if no primary actors are external computer systems.

The Actor-Goal List

Record the primary actors and their user goals in an actor-goal list. In terms of
UP artifacts it should be a section in the Vision artifact (which is described in
the next chapter).

For example:

Actor Goal Actor Goal

Cashier process sales
process rentals
handle returns

System
Administra-
tor

add users
modify users
delete users

 cash in
cash out
�

 manage security
manage system tables
�

Manager start up
shut down
�

Sales Activ-
ity System

analyze sales and per-
formance data

� � � �

The Sales Activity System is a remote application that will frequently request
sales data from each POS node in the network.

Project Planning Dimension

In practice, this list has additional columns for priority, effort, and risk; this is
briefly covered in Chapter 36.

The Messy Reality

This list looks neat, but the reality of its creation is anything but. Lots of
brain-storming and thrashing about in a requirements workshop goes on.
Consider the earlier example that illustrated applying the EBP rule to the "log
in" goal. During the workshop while creating this list the cashier may offer
"log in" as one of the user goals. The system analyst digs deeper and raises the
level of the

65

66

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

goal beyond the low-level mechanism of logging in (the cashier was probably
thinking of using a dialog box on a GUI) up to the level of "identify and authen-
ticate user." Yet, the analyst then realizes it does not pass the EBP guideline,
and discards it as a user goal. Of course, the reality is even somewhat different
than this because an experienced analyst has a set of heuristics from past expe-
rience or study, one of which is "user authentication is seldom an EBP," and so is
likely to have filtered this out quickly.

Primary Actor and User Goals Depend on System Boundary

Why is the cashier, and not the customer, the primary actor in the use case Pro-
cess Sale? Why doesn't the customer appear in the actor-goal list?

The answer depends on the system boundary of the system under design, as
illustrated in Figure 6.1. If viewing the enterprise or checkout service as an
aggregate system, the customer is a primary actor, with the goal of getting goods
or services and leaving. However, from the viewpoint of just the POS system
(which is the choice of system boundary for this case study), it services the goal
of the cashier (and the store) to process the customer's sale.

Figure 6.1 Primary actors and goals at different system boundaries.

Actors and Goals via Event Analysis

Another approach to aid in finding actors, goals, and use cases is to identify
external events. What are they, where from, and why? Often, a group of events
belong to the same EBP-level goal or use case. For example:

Goal: Process sales

Cashier

Customer

POS System

Checkout Service

Goal: Buy items

Enterprise Selling Things

Sales Tax
Agency

Goal: Collect
taxes on sales Sales Activity

System

Goal: Analyze sales
and performance data

CONGRATULATIONS: USE CASES HAVE BEEN WRITTEN, AND ABE IMPERFECT

External Event From Actor Goal

enter sale line item Cashier process a sale

enter payment Cashier or Customer process a sale

�

Step 4: Define Use Cases

In general, define one EBP-level use case for each user goal. Name the use case
similar to the user goal�for example, Goal: process a sale; Use Case: Process
Sale.

Also, name use cases starting with a verb.

A common exception to one use case per goal is to collapse CRUD (create,
retrieve, update, delete) separate goals into one CRUD use case, idiomatically
called Manage <X>. For example, the goals "edit user," "delete user," and so forth
are all satisfied by the Manage Users use case.

"Define use cases" has several levels of effort, ranging from a few minutes to
simply record names, up to weeks to write fully dressed versions. The later UP
process section of this chapter puts this work�when and how much�in the
context of iterative development and the UP.

6.10 Congratulations: Use Cases Have Been Written, and Are
Imperfect

The Need for Communication and Participation

The NextGen POS team is writing use cases in multiple requirements work-
shops over a series of short development iterations, incrementally adding to the
set, and refining and adapting based on feedback. Subject matter experts, cash-
iers, and programmers actively participate in the writing process. There are no
intermediaries between the cashiers, other users, and the developers; rather,
there is direct communication.

Good, but not good enough. Written requirement specifications give the illusion
of correctness; they are not. The use cases and other requirements still will not
be correct�guaranteed. They will lack critical information and contain wrong

67

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

statements. The solution is not the "waterfall" process attitude of trying harder
to record requirements perfect and complete at the start, although of course we
do the best we can in the time available. But it will never be enough.
A different approach is required. A large part of this is iterative development,
but something else is needed: ongoing personal communication. Continual�
daily�close participation and communication between the developers and
someone who understands the domain and can make requirement decisions.
Someone the programmers can walk up to in a matter of seconds and get clarifi-
cation, whenever a question arises. For example, the XP practices [Beck00]
con-tain an excellent recommendation: User full-time on the project, in the
project room.

6.11 Write Use Cases in an Essential Ill-Free Style

New and Improved! The Case for Fingerprinting

Investigating and asking about goals rather than tasks and procedures encour-
ages a focus on the essence of the requirements�the intent behind them. For
example, during a requirements workshop, the cashier may say one of his goals
is to "log in." The cashier was probably thinking of a GUI, dialog box, user ID,
and password. This is a mechanism to achieve a goal, rather than the goal itself.
By investigating up the goal hierarchy ("What is the goal of that goal?"), the sys-
tem analyst arrives at a mechanism-independent goal: "identify myself and get
authenticated," or an even higher goal: "prevent theft ...".
This discovery process can open up the vision to new and improved solutions.
For example, keyboards and mice with biometric readers, usually for a finger-
print, are now common and inexpensive. If the goal is "identification and
authentication" why not make it easy and fast, using a biometric reader on the
keyboard? But properly answering that question involves some usability analy-
sis work as well, such as knowing the typical users' profiles. Are their fingers
covered in grease? Do they have fingers?

Essential Style Writing

This idea has been summarized in various use case guidelines as "keep the user
interface out; focus on intent" [Cockburn0l]. Its motivation and notation has
been most fully explored by Larry Constantine in the context of creating better
user interfaces (UIs) and doing usability engineering [Constantine94, CL99].
Constantine calls the writing style essential when it avoids UI details and
focuses on the real user intent.5

5. The term comes from "essential models" in Essential Systems Analysis |MP84|.

68

WRITE USE CASES IN AN ESSENTIAL UI-FREE STYLE

In an essential writing style, the narrative is expressed at the level of the user's
intentions and system's responsibilities rather than their concrete actions. They
remain free of technology and mechanism details, especially those related to the
UI.

Write use cases in an essential style; keep the user interface out and focus on
actor intent.

All the previous example use cases in this chapter, such as Process Sale, were
written aiming towards an essential style.
Note that the dictionary defines goal as a synonym for intention [MW89], illus-
trating the connection between the essential style idea of Constantine and the
goal-oriented viewpoint previously stressed in this chapter. Indeed, many actor
intention steps in an essential use case can also be characterized as subfunction
goals.

Contrasting Examples

Essential Style

Assume that the Manage Users use case requires identification and authentica-
tion. The Constantine-inspired essential style uses the two-column format.
However, it can be written in one column.

Actor Intention
1. Administrator identifies self.
3. . . .

System Responsibility
2. Authenticates identity.

In the one-column format this is shown as:

1. Administrator identifies self.
2. System authenticates identity.
3. . . .

The design solution to these intentions and responsibilities is wide open:
bio-metric readers, graphical user interfaces (GUIs), and so forth.

Concrete Style�Avoid During Early Requirements Work

In contrast, there is a concrete use case style. In this style, user interface deci-
sions are embedded in the use case text. The text may even show window screen

69

6.12 Actors

70

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

shots, discuss window navigation, GUI widget manipulation and so forth. For
example:

1. Adminstrator enters ID and password in dialog box (see Picture 3).
2. System authenticates Adminstrator.
3. System displays the "edit users" window (see Picture 4).
4. . . .

These concrete use cases may be useful as an aid to concrete or detailed GUI
design work during a later step, but they are not suitable during the early
requirements analysis work. During early requirements work, "keep the user
interface out�focus on intent."

An actor is anything with behavior, including the system under discussion (SuD)
itself when it calls upon the services of other systems.6 Primary and supporting
actors will appear in the action steps of the use case text. Actors are not only
roles played by people, but organizations, software, and machines. There are
three kinds of external actors in relation to the SuD:
� Primary actor�has user goals fulfilled through using services of the SuD.

For example, the cashier.
) Why identify? To find user goals, which drive the use cases.

� Supporting actor�provides a service (for example, information) to the
SuD. The automated payment authorization service is an example. Often a
computer system, but could be an organization or person.

) Why identify? To clarify external interfaces and protocols.
� Offstage actor�has an interest in the behavior of the use case, but is not

primary or supporting; for example, a government tax agency.
) Why identify? To ensure that all necessary interests are

identified and satisfied. Offstage actor interests are sometimes
subtle or easy to miss unless these actors are explicitly named.

6. This was a refinement and improvement to alternate definitions of actors, including
those in early versions of the UML and UP [Cockburn97]. Older definitions inconsis-
tently excluded the SuD as an actor, even when it called upon services of other sys-
tems. All entities may play multiple roles, including the SuD.

6.13 Use Case Diagrams

The UML provides use case diagram notation to illustrate the names of use cases can
actors, and the relationships between them (see Figure 6.2)

Figure 6.2 Partial use case context diagram.

Use case diagrams and use case relationships are secondary in use case work.
Use cases are text documents. Doing use case work means to write text.

A common sign of a novice (or academic) use-case modeler is a preoccupation
with use case diagrams and use case relationships, rather than writing text.
World-class use case experts such as Anderson, Fowler, Cockburn, among oth-
ers, downplay use case diagrams and use case relationships, and instead focus
on writing. With that as a caveat, a simple use case diagram provides a succinct

71

USE CASE DIAGRAMS

NextGen

Manage Users

. . .

Cashier

System
Administrator

actor

use case

communicationsystem boundary

Handle Returns
Payment

Authorization
Service

«actor»
Tax Calculator

«actor»
Accounting

System

alternate
notation for
a computer
system actor

Process Rental

«actor»
HR System

Cash In

Process Sale

«actor»
Sales Activity

System

Manage Security

Analyze Activity

72 6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

visual context diagram for the system, illustrating the external actors and how
they use the system.

Suggestion

 Draw a simple use case diagram in conjunction with an actor-goal list.

A use case diagram is an excellent picture of the system context; it makes a good
context diagram, that is, showing the boundary of a system, what lies outside
of it, and how it gets used. It serves as a communication tool that summarizes
the behavior of a system and its actors. A sample partial use case context dia-
gram for the NextGen system is shown in Figure 6.2.

Diagramming Suggestions

Figure 6.3 offers some diagram advice. Notice the actor box with the symbol
«actor». This symbol is called a UML stereotype; it is a mechanism to catego-
rize an element in some way. A stereotype name is surrounded by guillemets
symbols�special single-character brackets (not "«" and "»") most widely
known by their use in French typography to indicate a quote.

Figure 6.3 Notation suggestions.

NextGen

Process Sale

. . .
Cashier

Show computer system actors
with an alternate notation to
human actors.

primary actors on
the left

supporting actors
on the right

For a use case context
diagram, limit the use cases to
user-goal level use cases.

«actor»
Payment

Authorization
Service

Figure 6.4 Alternate actor notation.

A Caution on Over-Diagramming

To reiterate, the important use case work is to write text, not diagram or focus
on use case relationships. If an organization is spending many hours (or worse,
days) working on a use case diagram and discussing use case relationships,
rather than focussing on writing text, relative effort has been misplaced.

6.14 Requirements in Context and Low-Level Feature Lists

As implied by the title of the book Uses Cases: Requirements in Context [GK00], a
key motivation of the use case idea is the consideration and organization of
requirements in the context of the goals and scenarios of using a system. That's
a good thing�it improves cohesion and comprehension. However, use cases are
not the only necessary requirements artifact. Some non-functional require-
ments, domain rules and context, and other hard-to-place elements are better
captured in the Supplementary Specification, which is described in the next
chapter.

One idea behind use cases is to replace detailed, low-level feature lists (which
were common in traditional requirements methods) with use cases (with some
exceptions). These lists tended to look as follows, usually grouped into func-
tional areas:

ID Feature

FEAT1 .9 The system shall accept entry of item identifiers.

73

REQUIREMENTS IN CONTEXT AND LOW-LEVEL FEATURE LISTS

To clarify, some prefer to highlight external computer system actors with an
alternate notation, as illustrated in Figure 6.4.

NextGen

Process Sale

«system»
Payment

Authorization
Service

...

«actor»
Payment

Authorization
Service

Some UML alternatives to
illustrate external actors that
are other computer systems.

The class box style can be
used for any actor, computer or
human. Using it for computer
actors provides visual
distinction.

Payment
Authorization

Service

74

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

ID Feature

� �

FEAT2.4 The system shall log credit payments to the accounts receivable
system.

Such detailed lists of low-level features are somewhat usable. However, the com-
plete list is not a half-page; more likely it is dozens or a hundred pages. This
leads to some drawbacks, which use cases help address. These include:

� Long, detailed function lists do not relate the requirements in a cohesive
context; the different functions and features increasingly appear like a dis
jointed "laundry list" of items. In contrast, use cases place the requirements
in the context of the stories and goals of using the system.

� If both use case and detailed feature lists are used, there is duplication.
More work, more volume to write and read, more consistency and synchroni
zation problems.

Suggestion

 Strive to replace detailed, low-level feature lists with use cases.

High-Level System Feature Lists Are Acceptable

It is common and useful to summarize system functionality with a terse,
high-level feature list called system features in a Vision document. In contrast to
100 pages of low-level, detailed features, a system features list tends to include
only a few dozen items. The list provides a very succinct summary of system
functionality, independent of the use case view. For example:

Summary of System Features

� sales capture

� payment authorization (credit, debit, check)

� system administration for users, security, code and constants tables, and so on

� automatic offline sales processing when external components fail

� real-time transactions, based on industry standards, with third-party systems, including inventory,
accounting, human resources, tax calculators, and payment authorization services

� definition and execution of customized "pluggable" business rules at fixed, common points in the
processing scenarios

� �
This is explored in the next chapter.

USE CASES ARE NOT OBJECT-ORIENTED

When Are Detailed Feature Lists Appropriate?

Sometimes use cases do not really fit; some applications call out for a
feature-driven viewpoint. For example, application servers, database products,
and other middleware or back-end systems need to be primarily considered
and evolved in terms of features ("We need XML support in the next release").
Use cases are not a natural fit for these applications or the way they need to
evolve in terms of market forces.

6.15 Use Cases Are Not Object-Oriented

There is nothing object-oriented about use cases; one is not doing object-oriented
analysis if writing use cases. This is not a defect, but a point of clarification.
Indeed, use cases are a broadly applicable requirements analysis tool that can
be applied to non-object-oriented projects, which increases their usefulness as a
requirements method. However, as will be explored, use cases are a pivotal
input into classic OOA/D activities.

6.16 Use Cases Within the UP

Use cases are vital and central to the UP, which encourages use-case driven
development. This implies:
� Requirements are primarily recorded in use cases (the Use-Case Model);

other requirements techniques (such as functions lists) are secondary, if
used at all.

� Use cases are an important part of iterative planning. The work of an itera
tion is�in part�defined by choosing some use case scenarios, or entire use
cases. And use cases are a key input to estimation.

� Use-case realizations drive the design. That is, the team designs collabo
rating objects and subsystems in order to perform or realize the use cases.

� Use cases often influence the organization of user manuals.
The UP distinguishes between system and business use cases. System use
cases are what have been examined in this chapter, such as Process Sale. They
are created in the Requirements discipline, and are part of the Use-Case Model.
Business use cases are less commonly written. If done, they are created in the
Business Modeling discipline as part of a large-scale business process
reengi-neering effort, or to help understand the context of a new system in the
busi-ness. They describe a sequence of actions of a business as a whole to fulfill a
goal of a business actor (an actor in the business environment, such as a
customer or supplier). For example, in a restaurant, one business use case is
Serve a Meal.

75

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Use Cases and Requirements Specification Across the Iterations

This section reiterates a key idea in the UP and iterative development: The tim-
ing and level of effort of requirements specification across the iterations. Table
6.1 presents a sample (not a recipe) which communicates the UP strategy of how
requirements are developed.
Note that a technical team starts building the production core of the system
when only perhaps 10% of the requirements are detailed, and in fact, there is a
deliberate delay in continuing with concerted requirements work until near the
end of the first elaboration iteration.
This is the key difference in iterative development to a waterfall process: Pro-
duction-quality development of the core of a system starts quickly, long before
all the requirements are known.

Comments and Level of Requirements Effort Discipline Artifact
Incep
1 week

Elab 1
4 weeks

Elab 2
4 weeks

Elab 3
3 weeks

Elab 4
3 weeks

Requirements Use-Case
Model

2-day require-
ments work-
shop. Most use
cases identified
by name, and
summarized in a
short paragraph.
Only 10% writ-
ten in detail.

Near the end of
this iteration,
host a 2-day
requirements
workshop.
Obtain insight
and feedback
from the imple-
mentation work,
then complete
30% of the use
cases in detail.

Near the end of
this iteration,
host a 2-day
requirements
workshop.
Obtain insight
and feedback
from the imple-
mentation work,
then complete
50% of the use
cases in detail.

Repeat, com-
plete 707 of all
use cases in
detail.

Repeal with the
goal of 80-90% of
the use cases
clarified and
written in detail.
Only a small por-
tion of these
have been built
in elaboration;
the remainder
are done in con-
struction.

Design Design Model none Design for a
small set of high-
risk architectur-
ally significant
requirements.

repeat repeat Repeat. The high
risk and archi-
tecturally signifi-
cant aspects
should now be
stabilized.

Implementa-
tion

Implementa-
tion Model
(code, etc.)

none Implement these. Repeat. 5% of the
final system is
built.

Repeat. 10% of
the final system
is built.

Repeat. 15% of
the final system
is built.

Project Man-
agement

SW Develop-
ment Plan

Very vague esti-
mate of total
effort.

Estimate starts
to take shape.

a little better... a little bettor... Overall project
duration, major
milestones,
effort, and cost
estimates can
now be ralionally
committed to.

Table 6.1 Sample requirements effort across the early iterations; this is not a
recipe.

76

USE CASES WITHIN THE UP

Observe that near the end of the first iteration of elaboration, there is a second
requirements workshop, during which perhaps 30% of the use cases are written
in detail. This staggered requirements analysis benefits from the feedback of
having built a little of the core software. The feedback includes user evaluation,
testing, and improved "knowing what we don't know." That is, the act of building
software rapidly surfaces assumptions and questions that need clarification.

Timing of UP Artifact Creation

Table 6.2 illustrates some UP artifacts, and an example of their start and refine-
ment schedule. The Use-Case Model is started in inception, with perhaps only
10% of the use cases written in any detail. The majority are incrementally writ-
ten over the iterations of the elaboration phase, so that by the end of elabora-
tion, a large body of detailed use cases and other requirements (in the
Supplementary Specification) are written, providing a realistic basis for estima-
tion through to the end of the project.

Discipline Artifact
Iteration->

Incep.
I1

Elab.
El. .En

Const.
CL..Cn

Trans.
T1..T2

Business Modeling Domain Model s
Use-Case Model s r
Vision s r
Supplementary Specification s r

Requirements

Glossary s r
Design Model s r
SW Architecture Document s

Design

Data Model s r
Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 6.2 Sample UP artifacts and timing. s - start; r - refine

Use Cases Within Inception

The following discussion expands on the information in Table 6.1.

Not all use cases are written in their fully dressed format during the inception
phase. Rather, suppose there is a two-day requirements workshop during the
early NextGen investigation. The earlier part of the day is spent identifying
goals and stakeholders, and speculating what is in and out of scope of the
project. An actor-goal-use case table is written and displayed with the computer
projector. A use case context diagram is started. After a few hours, perhaps 20
user goals (and thus, user goal level use cases) are identified, including Process

77

78

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

Sale, Handle Returns, and so on. Most of the interesting, complex, or risky use
cases are written in brief format; each averaging around two minutes to write.
The team starts to form a high-level picture of the system's functionality.

After this, 10% to 20% of the use cases that represent core complex functions, or
which are especially risky in some dimension, are rewritten in a fully dressed
format; the team investigates a little deeper to better comprehend the magni-
tude, complexities, and hidden demons of the project, through a small sample of
interesting use cases. Perhaps this means two use cases: Process Sale and Han-
dle Returns.

A requirements management tool that integrates with a word processor is used
for the writing, and the work is displayed via a projector while the team collabo-
rates on the analysis and writing. The Stakeholders and Interests lists are writ-
ten for these use cases, to discover more subtle (and perhaps costly) functional
and key non-function requirements�or system qualities�such as for reliability
or throughput.

The analysis goal is not to exhaustively complete the use cases, but spend a few
hours to obtain some insight.

The project sponsor needs to decide if the project is worth significant investiga-
tion (that is, the elaboration phase). The inception work is not meant to do that
investigation, but to obtain low-fidelity (and admittedly error-prone) insights
regarding scope, risk, effort, technical feasibility, and business case, in order to
decide to move forward, where to start if they do, or if to stop.

Perhaps the NextGen project inception step lasts five days. The combination of
the two day requirements workshop and its brief use case analysis, and other
investigation during the week, lead to the decision to continue on to an elabora-
tion step for the system.

Use Cases Within Elaboration

The following discussion expands on the information in Table 6.1.

This is a phase of multiple timeboxed iterations (for example, four iterations) in
which risky, high-value, or architecturally significant parts of the system are
incrementally built, and the "majority" of requirements identified and clarified.
The feedback from the concrete steps of programming influences and informs
the team's understanding of the requirements, which are iteratively and
adap-tively refined. Perhaps there is a two-day requirements workshop in each
iteration�four workshops. However, not all use cases are investigated in each
workshop. They are prioritized; early workshops focus on a subset of the most
important use cases.

Each subsequent short workshop is a time to adapt and refine the vision of the
core requirements, which will be unstable in early iterations, and stabilizing in
later ones. Thus, there is an iterative interplay between requirements discovery,
and building parts of the software.

CASE STUDY: USE CASES IN THE NEXTGEN INCEPTION PHASE

During each requirements workshop, the user goals and use case list are
refined. More of the use cases are written, and rewritten, in their fully dressed
format. By the end of elaboration, "80-90%" of the use cases are written in
detail. For the POS system with 20 user goal level use cases, 15 or more of the
most complex and risky should be investigated, written, and rewritten in a fully
dressed format.

Note that elaboration involves programming parts of the system. At the end of
this step, the NextGen team should not only have a better definition of the use
cases, but some quality executable software.

Use Cases Within Construction

The construction step is composed of timeboxed iterations (for example, 20 itera-
tions of two weeks each) that focus on completing the system, once the risky and
core unstable issues have settled down in elaboration. There will still be some
minor use case writing and perhaps requirements workshops, but much less so
than in elaboration. By this step, the majority of core functional and non-func-
tional requirements should have iteratively and adaptively stabilized. That does
not mean to imply requirements are frozen or investigation finished, but the
degree of change is much lower.

6.17 Case Study: Use Cases in the NextGen Inception Phase

As described in the previous section, not all use cases are written in their fully
dressed form during inception. The Use-Case Model at this phase of the case
study could be detailed as follows:

Fully Dressed Casual Brief

Process Sale
Handle Returns

Process Rental
Analyze Sales Activity
Manage Security
�

Cash In
Cash Out
Manage Users
Start Up
Shut Down
Manage System Tables
�

6.18 Further Readings

The most popular use-case guide, translated into several languages, is Writing
Effective Use Cases [Cockburn0l].7 This has emerged with good reason as the

79

80

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

most widely read and followed use-case book and is therefore recommended as a
primary reference. This introductory chapter is consequently based on and con-
sistent with its content. Suggestion: Do not be put off the book by the author's
use of icons for different use case levels, or the early emphasis on levels and use
case taxonomy. The icons are optional and minor. And although the discussion of
levels and goals may at first seem a diversion to those new to use cases, those
who have worked with them for some time appreciate that the level and scope of
use cases are key practical issues, because their misunderstanding is a common
source of complication in use-case modeling.
"Structuring Use Cases with Goals" [Cockburn97] is the most widely cited paper
on use cases, available online at www.usecases.org.
Use Cases: Requirements in Context [GK00] is another useful text. It emphasizes
the important viewpoint�as the title states�that use cases are not just
another requirements artifact, but that they are the central vehicle that drives
requirements work and information.
Another worthwhile read is Applying Use Cases: A Practical Guide [SW98],
written by an experienced use case teacher and practitioner that understand
and communicate how to apply use cases in an iterative lifecycle.

7. Note that Cockburn rhymes with slow burn.

UP ARTIFACTS AND PROCESS CONTEXT

6.19 UP Artifacts and Process Context

As illustrated in Figure 6.5, use cases influence many UP artifacts.

Figure 6.5 Sample UP artifact influence.

81

82

6 - USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

In the UP, use case work is a requirements discipline activity which could be initiated during
a requirements workshop. Figure 6.6 offers suggestions on the time and space for doing
this work.

Figure 6.6 Process and setting context.

January February

Use Case: Capture a Sale
. . .
Main Success Scenario:
1. ...
2. ...
3. ...
Extensions:

Use Case: Handle Returns
. . .
Main Success Scenario:
1. ...
2. ...
3. ...
Extensions:

When
Once during inception. Short; do not try to
define or polish all requirements.

Several times during elaboration iterations.

Where
At a requirements workshop.

Who
Many, including, end users and developers, will play
the role of requirements specifier, helping to write
use cases.

Led by system analyst, who is responsible for
requirements definition.

How: Tools
Software:

For use case text, use a web-enabled requirements tool
that integrates with a popular word processor.

For use case diagrams, a UML CASE tool.
Hyperlink the use cases; present them on the project

website.

Hardware: Use two projectors attached to dual video cards
and set the display width double, to improve the
spaciousness of the drawing area or display 2 adjacenct
word processor windows .

Developer

Customer
System
Analyst

End User

Two adjacent projections.

Software
Architect

Chapter 7

IDENTIFYING OTHER
REQUIREMENTS

When ideas fail, words come in very handy.

�Johann Wolfgang von Goethe

Objectives

Write a Supplementary Specification, Glossary, and Vision.
Compare and contrast system features with use cases. Relate the
Vision to other artifacts, and to iterative development. Define
quality attributes.

Introduction

It is not sufficient to write use cases. There are other kinds of requirements that
need to be identified, such as documentation, packaging, supportability, licens-
ing, and so forth. These are captured in the Supplementary Specification.
The Glossary captures terms and definitions; it can also play the role of a data
dictionary.
The Vision summarizes the "vision" of the project. It serves to tersely communi-
cate the big ideas regarding why the project was proposed, what the problems
are, who the stakeholders are, what they need, and what the proposed solution
looks like.
To quote:

The Vision defines the stakeholders' view of the product to be
developed, specified in terms of the stakeholders' key needs and

83

7 - IDENTIFYING OTHER REQUIREMENTS

features. Containing an outline of the envisioned core require-
ments, it provides the contractual basis for the more detailed
technical requirements [RUP].

7.1 NextGen POS Examples

The purpose of the following examples is not to present an exhaustive Vision,
Glossary, or Supplementary Specification, as some of the sections�although
useful for a project�are not relevant to the learning objectives.1 The book's goal
is core skills in object design, use case requirements analysis, and object-ori-
ented analysis, not POS problems or Vision statements. Therefore, only some
sections are briefly touched upon in order to make connections between prior
and future work, highlight noteworthy issues, provide a feel for the contents,
and move forward quickly.

7.2 NextGen Example: (Partial) Supplementary Specification

Supplementary Specification

Revision History

Version Date Description Author
Inception draft Jan 10, 2031 First draft. To be refined primarily during elabora-

tion.
Craig Larman

Introduction

This document is the repository of all NextGen POS requirements not captured in the use cases.

Functionality

(Functionality common across many use cases)
Logging and Error Handling Log all errors to
persistent storage. Pluggable Business Rules
At various scenario points of several use cases (to be defined) support the ability to customize the func-
tionality of the system with a set of arbitrary rules that execute at that point or event.
Security
All usage requires user authentication.

1. Scope creep is not only a problem in requirements, but in writing about requirements.

84

NEXTGEN EXAMPLE: (PARTIAL) SUPPLEMENTARY SPECIFICATION

Usability

Human Factors
The customer will be able to see a large-monitor display of the POS.Therefore:
� Text should be easily visible from 1 meter.

� Avoid colors associated with common forms of color blindness.

Speed, ease, and error-free processing are paramount in sales processing, as the buyer wishes to leave
quickly, or they perceive the purchasing experience (and seller) as less positive.
The cashier is often looking at the customer or items, not the computer display. Therefore, signals and
warnings should be conveyed with sound rather than only via graphics.

Reliability

Recoverability
If there is failure to use external services (payment authorizer, accounting system, ...) try to solve with a
local solution (e.g., store and forward) in order to still complete a sale. Much more analysis is needed
here...

Performance

As mentioned under human factors, buyers want to complete sales processing very quickly. One potential
bottleneck is external payment authorization. Our goal is to achieve authorization in less than 1 minute,
90% of the time.

Supportability

Adaptability
Different customers of the NextGen POS have unique business rule and processing needs while pro-
cessing a sale. Therefore, at several defined points in the scenario (for example, when a new sale is initi-
ated, when a new line item is added) pluggable business rule will be enabled.
Configurability
Different customers desire varying network configurations for their POS systems, such as thick versus
thin clients, two-tier versus N-tier physical layers, and so forth. In addition, they desire the ability to modify
these configurations, to reflect their changing business and performance needs. Therefore, the system
will be somewhat configurable to reflect these needs. Much more analysis is needed in this area to dis-
cover the areas and degree of flexibility, and the effort to achieve it.

Implementation Constraints

NextGen leadership insists on a Java technologies solution, predicting this will improve long-term porting
and supportability, in addition to ease of development.

Purchased Components

� Tax calculator. Must support pluggable calculators for different countries.

Free Open Source Components

In general, we recommend maximizing the use of free Java technology open source components on this
project.

85

86

7 - IDENTIFYING OTHER REQUIREMENTS

Although it is premature to definitively design and choose components, we suggest the following as likely
candidates:
� JLog logging framework
� �

Interfaces

Noteworthy Hardware and Interfaces
� Touch screen monitor (this is perceived by operating systems as a regular monitor, and the touch

gestures as mouse events)

� Barcode laser scanner (these normally attach to a special keyboard, and the scanned input is per
ceived in software as keystrokes)

� Receipt printer

� Credit/debit card reader

� Signature reader (but not in release 1)

Software Interfaces
For most external collaborating systems (tax calculator, accounting, inventory, ...) we need to be able to
plug in varying systems and thus varying interfaces.

Domain (Business) Rules

ID Rule Changeability Source
RULE1 Signature required for credit payments. Buyer "signature" will

continue to be required,
but within 2 years most
of our customers want
signature capture on a
digital capture device,
and within 5 years we
expect there to be
demand for support of
the new unique digital
code "signature" now
supported by USA law.

The policy of virtually
all credit authorization
companies.

RULE2 Tax rules. Sales require added taxes. See
government statutes for current details.

High. Tax laws change
annually, at all govern-
ment levels.

law

RULE3 Credit payment reversals may only be paid as
a credit to the buyer's credit account, not as
cash.

Low credit
authorization company
policy

RULE4 Purchaser discount rules. Examples:
Employee� 20% off. Preferred
Customer� 1 0% off. Senior� 15%
off.

High. Each retailer
uses different rules.

Retailer policy.

NEXTGEN EXAMPLE: (PARTIAL) SUPPLEMENTARY SPECIFICATION

ID Rule Changeability Source
RULE5 Sale (transaction-level) discount

rules. Applies to pre-tax total. Examples:
10% off if total greater than $100 USD. 5% off
each Monday.
10% off all sales between 10am and 3pm
today.
Tofu 50% off from 9am-10am today.

High. Each retailer
uses different rules,
and they may change
daily or hourly.

Retailer policy.

RULE6 Product (line item level) discount
rules. Examples:
10% off tractors this week. Buy 2
veggieburgers, get 1 free.

High. Each retailer
uses different rules,
and they may change
daily or hourly.

Retailer policy.

Legal Issues

We recommend some open source components if their licensing restrictions can be resolved to allow
resale of products that include open source software.
All tax rules must, by law, be applied during sales. Note that these can change frequently.

Information in Domains of Interest

Pricing
In addition to the pricing rules described in the domain rules section, note that products have an original
price, and optionally a permanent markdown price. A product's price (before further discounts) is the per-
manent markdown price, if present. Organizations maintain the original price even if there is a permanent
markdown price, for accounting and tax reasons.
Credit and Debit Payment Handling
When an electronic credit or debit payment is approved by a payment authorization service, they are
responsible for paying the seller, not the buyer. Consequently, for each payment, the seller needs to
record monies owing in their accounts receivable, from the authorization service. Usually on a nightly
basis, the authorization service will perform an electronic funds transfer to the seller's account for the
daily total owing, less a (small) per transaction fee that the service charges.
Sales Tax
Sales tax calculations can be very complex, and regularly change in response to legislation at all levels of
government. Therefore, delegating tax calculations to third-party calculator software (of which there are
several available) is advisable. Tax may be owing to city, region, state, and national bodies. Some items
may be tax exempt without qualification, or exempt depending on the buyer or target recipient (for exam-
ple, a farmer or a child).
Item Identifiers: UPCs, EANs, SKUs, Bar Codes, and Bar Code Readers
The NextGen POS needs to support various item identifier schemes. UPCs (Universal Product Codes),
EANs (European Article Numbering) and SKUs (Stock Keeping Units) are three common identifier sys-
tems for products that are sold. Japanese Article Numbers (JANs) are a kind of EAN version.
SKUs are completely arbitrary identifiers defined by the retailer.
However, UPCs and EANs have a standards and regulatory component. See
www.adams1.com/pub/rus-sadam/upccode.html for a good overview. Also see www.uc-council.org and
www.ean-int.org.

87

7 - IDENTIFYING OTHER REQUIREMENTS

7.3 Commentary: Supplementary Specification

The Supplementary Specification captures other requirements, information,
and constraints not easily captured in the use cases or Glossary, including sys-
tem-wide "URPS+" quality attributes or requirements. Note that requirements
specific to a use case can (and probably should) be first written with the use
case, in a Special Requirements section, but some prefer to also consolidate all of
them in the Supplementary Specification.. Elements of the Supplementary
Specification could include:

� FURPS+ requirements�functionality, usability, reliability,
performance,
and supportability

� reports

� hardware and software constraints (operating and networking systems, ...)

� development constraints (for example, process or development tools)

� other design and implementation constraints

� internationalization concerns (units, languages, ...)

� documentation (user, installation, administration) and help

� licensing and other legal concerns

� packaging

� standards (technical, safety, quality)

� physical environment concerns (for example, heat or vibration)

� operational concerns (for example, how do errors get handled, or how often
to do backups?)

� domain or business rules

� information in domains of interest (for example, what is the entire cycle of
credit payment handling?)

Constraints are not behaviors, but some other kind of restriction on the design
or project. They are also requirements, but are commonly called "constraints" to
emphasize their restrictive influence. For example:

Must use Oracle (we have a licensing arrangement with them).
Must run on Linux (it will lower cost).

88

COMMENTARY: SUPPLEMENTARY SPECIFICATION

Suggestion

Early design decisions and constraints ("premature elaboration") are almost
always a bad idea, so it is worth being suspicious and challenging of these,
especially during the inception phase when very little has been carefully
analyzed. Some constraints are imposed for unavoidable reasons, such as a
legal restriction or an existing external system interface that must be
invoked.

Quality Attributes

Some requirements are called quality attributes [BCK98] (or "-ilities") of a
system. These include usability, reliability, and so forth. Note that these refer to
the qualities of the system, not that these attributes are necessarily of high
quality (the word is overloaded in English). For example, the quality of
support-ability might deliberately be chosen to be low if the product is not
intended to serve a long-term purpose.

They are of two types:

1. Observable at execution (functionality, usability, reliability, performance, ...)

2. Not observable at execution (supportability, testability, ...)

Functionality is specified in the use cases, as are other quality attributes related
to specific use cases (for example, the performance qualities in the Process Sale
use case).

Other system-wide FURPS+ quality attributes are described in the Supplemen-
tary Specification.

Although functionality is a valid quality attribute, in common usage, the term
"quality attribute" is most often meant to imply "qualities of the system other
than functionality." Herein, the term is likewise used. This is not exactly the
same as non-functional requirements, which is a broader term including every-
thing but functionality (for example, packaging and licensing).

When we put on our "architect hat," the system-wide quality attributes (and
thus the Supplementary Specification where one records them) are especially
interesting because�as will be introduced in Chapter 32�architectural analy-
sis and design are largely concerned with the identification and resolution of the
quality attributes in the context of the functional requirements. For example,
suppose one of the quality attributes is that the NextGen system must be quite
fault-tolerant when remote services fail. From an architectural viewpoint, that
will have an overarching influence on large-scale design decisions.

Quality attributes have interdependencies and involve trade-offs. As a simple
example in the POS, "very reliable (fault-tolerant)" and "easy to test" are in

89

90

7 - IDENTIFYING OTHER REQUIREMENTS

some opposition, because there are many subtle ways a distributed system can
fail.

Domain (Business) Rules

Domain rules [Ross97, GK00] dictate how a domain or business may operate.
They are not requirements of any one application, although an application's
requirements are often by domain rules. Company policies, physical laws, and
government laws are common domain rules.
They are commonly called business rules, which is the most common type, but
that term is limited, as some software applications are for non-business prob-
lems, such as weather simulation or military logistics. A weather simulation has
"domain rules" that influence the application requirements, related to physical
laws and relationships.
It is often useful to identify and record those domain rules that influence the
requirements, usually realized in the use cases, because they can clarify incom-
plete or ambiguous use case content. For example, in the NextGen POS, if some-
one asks if the Process Sale use case should be written with an alternative to
allow credit payments without signature capture, there is a business rule
(RULE1) that clarifies whether this will not be allowed by any credit authoriza-
tion company.

Caution

Rules are not application requirements. Do not record system features as
rules. They describe the constraints and behaviors of how the domain works,
not the application.

Information in Domains of Interest

It is often valuable for a subject matter expert to write (or provide URLs to)
some explanation of domains related to the new software system (sales and
accounting, the geophysics of underground oil/water/gas flows, ...), to provide
context and deeper insight for the development team. It may contain pointers to
important literature or experts, formulas, laws, or other references. For exam-
ple, the arcana of UPC and EAN coding schemes, and bar code symbology, must
be understood to some degree by the NextGen team.

NEXTGEN EXAMPLE: (PARTIAL) VISION

7.4 NextGen Example: (Partial) Vision

Vision

Revision History

Version Date Description Author
inception draft Jan 10, 2031 First draft. To be refined primarily during elabora-

tion.
Craig Larman

The analysis in
this example is
illustrative, but
fictitious.

Introduction

We envision a next generation fault-tolerant point-of-sale (POS) application, NextGen POS, with the
flexibility to support varying customer business rules, multiple terminal and user interface
mechanisms, and integration with multiple third-party supporting systems.

Positioning

Business Opportunity
Existing POS products are not adaptable to the customer's business, in terms of varying business
rules and varying network designs (for example, thin client or not; 2, 3, or 4 tier architectures). In
addition, they do not scale well as terminals and business increase. And, none can work in either
on-line or off-line mode, dynamically adapting depending on failures. None easily integrate with
many third-party systems. None allow for new terminal technologies such as mobile PDAs. There is
marketplace dissatisfaction with this inflexible state of affairs, and demand for a POS that rectifies
this.
Problem Statement
Traditional POS systems are inflexible, fault intolerant, and difficult to integrate with third-party
systems. This leads to problems in timely sales processing, instituting improved processes that
don't match the software, and accurate and timely accounting and inventory data to support
measurement and planning, among other concerns. This affects cashiers, store managers, system
administrators, and corporate management.
Product Position Statement
�Terse summary of who the system is for, its outstanding features, and what differentiates it from
the competition.
Alternatives and Competition...

Understand who
the players are, and
their problems.

Stakeholder Descriptions

Market Demographics...

Stakeholder (Non-User) Summary... User Summary...

Key High-Level Goals and Problems of the Stakeholders

 91

7 - IDENTIFYING OTHER REQUIREMENTS

Consolidate input
from the Actor and
Goals List, and the
Stakeholder
Interests section of
the use cases.

A one day requirements workshop with subject matter experts and other stakeholders, and surveys at several
retail outlets led to identification of the following key goals and problems:

High-Level Goal Priority Problems and Concerns Current Solutions
Fast, robust, inte-
grated sales pro-
cessing

high Reduced speed as load increases.
Loss of sales processing capability if components fail.
Lack of up-to-date and accurate information from
accounting and other systems due to non-integration
with existing accounting, inventory, and HR systems.
Leads to difficulties in measuring and
planning.
Inability to customize business rules to unique business
requirements.
Difficulty in adding new terminal or user interface
types (for example, mobile PDAs).

Existing POS products
provide basic sales
processing, but do not
address these problems.

� � � �

This may be the
Actor-Goal List

created during
use-case modeling,
or a more terse
summary.

User-Level Goals
The users (and external systems) need a system to fulfill these goals:
� Cashier: process sales, handle returns, cash in, cash out

� System administrator: manage users, manage security, manage system tables

� Manager: start up, shut down

� Sales activity system: analyze sales data

� �

User Environment...

Product Overview

Product Perspective

The NextGen POS will usually reside in stores; if mobile terminals are used, they will be in close proximity to the
store network, either inside or close outside. It will provide services to users, and collaborate with other systems, as
indicated in Figure Vision-1.

Summarized from
the use case
diagram.

Context diagrams
come in different
formats with
vary-ing detail, but.
all show the major
external actors
related to a system. Figure Vision-1. NextGen POS system context diagram

92

Cashier

System
Administrator

Store
Manager

Calls upon
services

«actor»
Sales Activity

System

NextGen POS

Cashier

System
Administrator

Store
Manager

Calls upon
services

Calls upon
services

«actor»
Payment

Authorization
Service

«actor»
Tax Calculator

«actor»
Accounting

System

«actor»
Human

Resources
System

«actor»
Inventory
System

«actor»
Sales Activity

System

COMMENTARY: VISION

Summary of Benefits

Similar to the
Actor-Goal list, this
table relates goals,
benefits, and
solutions, but at a
higher level not
solely related to use
cases.

It summarizes
the value and
differentiating
qualities of the
product.

As discussed below,
system features are
a terse format to
summarize func-
tionality.

Supporting Feature Stakeholder Benefit
Functionally, the system will provide all the common ser-
vices a sales organization requires, including sales capture,
payment authorization, return handling, and so forth.

Automated, fast point-of-sale services.

Automatic detection of failures, switching to local offline pro-
cessing for unavailable services.

Continued sales processing when exter-
nal components fail.

Pluggable business rules at various scenario points during
sales processing.

Flexible business logic configuration.

Real-time transactions with third-party systems, using
industry standard protocols.

Timely, accurate sales, accounting, and
inventory information, to support measur-
ing and planning.

� �

Assumptions and Dependencies...
Cost and Pricing... Licensing and
Installation...

Summary of System Features

� sales capture

� payment authorization (credit, debit, check)

� system administration for users, security, code and constants tables, and so forth.

� automatic offline sales processing when external components fail

� real-time transactions, based on industry standards, with third-party systems, including inventory,
accounting, human resources, tax calculators, and payment authorization services

� definition and execution of customized "pluggable" business rules at fixed, common points in the
processing scenarios

�

Other Requirements and Constraints

Including design constraints, usability, reliability, performance, supportability, design constraints, docu-
mentation, packaging, and so forth: See the Supplementary Specification and use cases.

7.5 Commentary: Vision

Are We Solving the Same Problem? The Right Problem?

The Problem Statement

During early requirements work in the inception phase, collaborate to define a
terse problem statement; it will reduce the likelihood that stakeholders are try-
ing to solve slightly different problems, and is usually quickly created. Occasion-

93

94

7 - IDENTIFYING OTHER REQUIREMENTS

ally, the effort reveals fundamental differences of opinion in what the parties are
trying to achieve.
Rather than plain prose, a table format offered in the RUP templates for prob-
lem statements is:

The problem of �

affects �

the impact of which is �

a successful solution would be �

The Key High-Level Goals and Problems of the Stakeholders

This table summarizes the goals and problems at a higher level than task level
use cases, and reveals important nonfunctional and quality goals that may
belong to one use case or span many, such as:

� We need fault-tolerant sales processing.

� We need the ability to customize the business rules.

What Are the Root Problems and Goals?

It is common for stakeholders to express their goals in terms of envisioned solu-
tions, such as: "We need a full-time programmer to customize the business rules
as we change them." The solutions are sometimes perceptive, because they
understand their problem domain and options well. But sometimes stakeholder
jump to solutions that are not the most appropriate or do not address the root
underlying major problems.
Thus, the system analyst needs to investigate the problem and goal chain�as
discussed in the previous chapter on use cases and goals�in order' to learn the
underlying problems, and their relative importance and impact, in order to pri-
oritize and solve the most egregious concerns with a skillful solution.

Group Idea Facilitation Methods

Although outside the scope of this discussion, it is especially during activities
such as high-level problem definition and goal identification that creative,
investigative group work occurs. Here are some useful group facilitation tech-
niques to discover root problems and goals, and support idea generation and
pri-oritization: mind mapping, fishbone diagrams, pareto diagrams,
brainstorming, multi-voting, dot voting, nominal group process, brainwriting,
and affinity grouping. Check them out on the web. I prefer to apply several of
these during

COMMENTARY: VISION

the same workshop, to discover common problems and requirements from differ-
ent angles.

System Features�Functional Requirements

Use cases are not necessarily the only way one needs to express functional
requirements for the following reasons:

� They are detailed. Stakeholders often want a short summary that identifies
the most noteworthy functions.

� What about simply listing the use case names (Process Sale,
Handle
Returns, ...) to summarize the functionality? First, the list may still be too
long. Also, the names can hide interesting functionality stakeholders really
want to know about; that is, the level of granularity can obscure noteworthy
functions. For example, suppose that the description of automated payment
authorization functionality is embedded in the Process Sale use case. A
reader of a list of use case names cannot tell if the system will do payment
authorization. Furthermore, one may wish to group a set of use cases into
one feature (for brevity), such as System administration for users, security,
code and constants tables, and so forth.

� Some noteworthy functionality is naturally expressed as short statements
that do not conveniently map to use case names or Elementary Business
Process-level goals. It may span or be orthogonal to the use cases. For exam
ple, during the first NextGen requirements workshop, someone might say
"The system should be able to do transactions with existing third-party
accounting, inventory, and tax calculation systems." This statement of func
tionality does not represent one particular use case, but is a comfortable and
succinct way to express, record, and communicate features.

) As a stronger variation of the last point, some applications call out
primarily for a description of functionality as features; use cases
are not a natural fit. This is common, for example, with middle-
ware products such as application servers�use cases are not
really motivated. Suppose the team is considering their next
release. During a requirements discussion, people (such as mar-
keting) will say, "The next version needs EJB 2.0 entity bean sup-
port." The requirements are primarily conceived in terms of a list
of features, not use cases.

Therefore, an alternative, a complementary way to express system functions is
with features, or more specifically in this context, system features, which are
high-level, terse statements summarizing system functions. More formally, in

95

96

7 - IDENTIFYING OTHER REQUIREMENTS

the UP, a system feature is "an externally observable service provided by the
system which directly fulfills a stakeholder need" [Kruchten00].

Features are things a system can do. They should pass this linguistic test:
The system shall do <feature X>.

For example:
The system shall do payment authorization.

Recall that the Vision may be used as a formal or informal contract between
development and business. System features are a mechanism to summarize in
this contract what the system will do. This is complementary to the use cases, as
the features are terse.
Features are to be contrasted with various kinds of non-functional requirements
and constraints, such as: "The system must run on Linux, must have 24/7 avail-
ability, and must have a touch-screen interface." Note that these fail the linguis-
tic test.
At times, the admonition "an externally observable service..." is difficult to
decide upon. For example, should the following be a system feature:

The system shall do transactions with third-party accounting,
inventory, human resource, and tax calculation systems.

It is a kind of behavior, and probably noteworthy to the stakeholders, but the
collaboration itself may not be externally visible, depending on your time frame,
and how close and where you look. Include it�fine-grained classification ques-
tions are seldom worth the worry.
Finally, note that most system features will find detailed expression in use case
text.

Notation and Organization

First and foremost, short high-level descriptions are important. One should be
able to read the system features list quickly.
It is not necessary to include the canonical "The system shall do..." or a variant
phrase, although it is common.
Here is a features example at a high level, for a large multi-system project of
which the POS is just one element:

COMMENTARY: VISION

The major features include:

� POS services
� Inventory management
� Web-based shopping

It is common to organize a two-level hierarchy of system features. But in the
Vision document more than two levels leads to excessive detail; the point of sys-
tem features in the Vision is to summarize the functionality, not decompose it
into a long list of fine-grained elements. A reasonable example in terms of detail:
The major features include: �

� POS services:
) sales capture

) payment authorization

) . . .

 �Inventory management:

) automatic reordering

) . . .

Sometimes, these second level features are essentially equivalent to use case
names (or user-level goals), but that is not required; features are an alternative
way to summarize functionality. Nevertheless, most system features will find
detailed expression in the use cases.
How many system features should the Vision contain?

Suggestion

A Vision with less than 50 features is desirable. If more, consider grouping
and abstracting the features.

Other Requirements in the Vision

In the Vision, system features briefly summarize functional requirements
expressed in detail in the use cases. Likewise, the Vision can summarize other
requirements (for example, reliability and usability) that are detailed in the
Special Requirements sections of use cases, and in the Supplementary Specifica-
tion (SS). However, there is some risk of unhelpful duplication. For example, the
RUP product provides templates for the Vision and SS that contain identical or
similar sections for other requirements such as usability, reliability, perfor-
mance, and so forth. Such duplication is inevitably awkward to maintain. Fur-

97

7 - IDENTIFYING OTHER REQUIREMENTS

thermore, the level of detail for similar sections (for example, performance) in
the Vision and the SS needs to be quite similar to be meaningful; that is, "essen-
tial" and "detailed" other requirement descriptions tend to be much the same,

Suggestion

For other requirements, avoid their duplication or near-duplication in both
the Vision and Supplementary Specification (SS)�and in use cases. Rather,
record them only in the SS or uses cases (if use case specific). In the Vision,
direct the reader to these for the other requirements.

This is a minor documentation nuance on the standard RUP templates that may
reduce complications. If one prefers the standard template approach, that is also
fine.

Vision, Features, or Use Cases�Which First?

It is not useful to be rigid about the order of some artifacts. While collaborating
to create different requirements artifacts, a synergy emerges in which working
on one influences and helps clarify another. Nevertheless, a suggested sequence
is:
1. Write a brief first draft of the Vision.
2. Identify user goals and the supporting use cases.
3. Write some use cases and start the Supplementary Specification.
4. Refine the Vision, summarizing information from these.

7.6 NextGen Example: A (Partial) Glossary

Glossary

Revision History

Version Date Description Author
Inception draft Jan 10, 2031 First draft. To be refined primarily during elabora-

tion.
Craig Larman

98

COMMENTARY: GLOSSARY (DATA DICTIONARY)

Definitions

Term Definition and Information Aliases
item A product or service for sale
payment
authorization

Validation by an external payment authorization service that they
will make or guarantee the payment to the seller.

payment
authorization
request

A composite of elements electronically sent to an authorization
service, usually as a char array. Elements include: store ID, cus-
tomer account number, amount, and timestamp.

UPC 12 digit code that identifies a product. Usually symbolized with a
bar code placed on products. See http://www.uc-council.org for
details.

Universal
Product Code

� �

7.7 Commentary: Glossary (Data Dictionary)

In its simplest form, the Glossary is a list of noteworthy terms and their defini-
tions. It is surprisingly common that a term, often technical or particular to the
domain, will be used in slightly different ways by different stakeholders; this
needs to be resolved to reduce problems in communication and ambiguous
requirements.

Suggestion

Start the Glossary early. I'm reminded of an experience working with simu-
lation experts, in which the seemingly innocuous, but important, word "cell"
was discovered to have slippery and varying meanings among the group
members.

The goal is not to record all possible terms, but those that are unclear, ambigu-
ous, or which require some kind of noteworthy elaboration, such as format infor-
mation or validation rules.

Glossary as Data Dictionary

In the UP, the Glossary also plays the role of a data dictionary, a document
that records data about the data�that is, metadata. During inception the glos-
sary should be a simple document of terms and descriptions. During elabora-
tion, it may expand into a data dictionary.

99

7 - IDENTIFYING OTHER REQUIREMENTS

Term attributes could include:
� aliases
� description
� format (type, length, unit)
� relationships to other elements
� range of values
� validation rules

Note that the range of values and validation rules in the Glossary constitute
requirements with implications on the behavior of the system.

Units

As Martin Fowler underscores in Analysis Patterns [Fowler96], units (currency,
measures, ...) must be considered, especially in this age of internationalized soft-
ware applications. For example, in the NextGen system, which will hopefully be
sold to many customers in different countries, price cannot be just a raw num-
ber. It must be in a Money or Currency unit that captures the notion of varying
currencies.

Composite Terms

The Glossary is not only for atomic terms such as "product price." It can and
should include composite elements such as "sale" (which includes other ele-
ments, such as date and location), and nicknames used to describe a collection of
data transmitted between actors in the use cases. For example, in the Process
Sale use case, consider the following statement:

System sends payment authorization request to an external
Payment Authorization Service, and requests payment
approval.

"Payment authorization request" is a nickname for an aggregate of data, which
needs to be explained in the Glossary.

7.8 Reliable Specifications: An Oxymoron?

Written requirements can promote the illusion that the real requirements are
understood and well-defined, and can (early on) be used to reliably estimate and
plan the project. This illusion is more true for non-software developers; pro-

100

ONLINE ARTIFACTS AT THE PROJECT WEBSITE

grammers know from painful experience how unreliable it is. This is part of the
motivation for the opening quote by Goethe.
What really matters is building software that passes the acceptance tests
defined by the users and stakeholders, and that meets their true goals (which
are often not discovered until they are evaluating or working with the software).
Writing a Vision and Supplementary Specification is worthwhile as an exercise
in clarifying a first approximation of what is wanted, the motivation for the
product, and as a repository for the big ideas. But they are not�nor is any
requirements artifact�a reliable specification. Only writing code, testing it, get-
ting feedback, ongoing close collaboration with users and customers, and adapt-
ing, truly hit the mark.
This is not a call to abandon analysis and thinking, and just rushing to code, but
a suggestion to treat written requirements lightly, and continually�indeed,
daily�engage users.

7.9 Online Artifacts at the Project Website

Since this is a book, these examples and the preceding use cases have a static
and perhaps paper-oriented feel. Nevertheless, these should be digital artifacts
recorded only online at the project website. And instead of being plain static doc-
uments, they may be hyperlinked, or recorded in tools other than a word proces-
sor or spreadsheet. For example, the Glossary could be stored in a database
table.

7.10 Not Much UML During Inception?

The purpose of inception is to collect just enough information to establish a com-
mon vision, decide if moving forward is feasible, and if the project is worth seri-
ous investigation in the elaboration phase. As such, beyond simple UML use
case diagrams, not much diagramming is often motivated. There is more focus
in inception on understanding the basic scope and 10% of the requirements,
expressed in textual forms. In practice, and thus in this presentation, most
UML diagramming will occur in the next phase�elaboration.

7.11 Other Requirement Artifacts Within the UP

As in the prior use case chapter, Table 7.1 summarizes a sample of artifacts and
their timing. All requirements artifacts are started in inception, and primarily
worked on through elaboration.

101

7 - IDENTIFYING OTHER REQUIREMENTS

Discipline Artifact
Iteration->

Incep.
I1

Elab.
El. .En

Const.
C1..Cn

Trans.
T1..T2

Business Modeling Domain Model s
Use-Case Model s r
Vision s r
Supplementary Specification s r

Requirements

Glossary s r
Design Model s r
SW Architecture Document s

Design

Data Model s r
Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 7.1 Sample UP artifacts and timing. s - start; r - refine

Inception

It should not be the case that these requirements artifacts are finalized in the
inception phase. Indeed, they will barely be started.

Stakeholders need to decide if the project is worth serious investigation; that
real investigation occurs during elaboration, not inception. During inception,
the Vision summarizes the project idea in a form to help decision makers deter-
mine if it is worth continuing, and where to start.

Since most requirements work occurs during elaboration, the Supplementary
Specification should be only lightly developed during inception, highlighting
noteworthy quality attributes (for example, the NextGen POS must have
recov-erability when external services fail) that expose major risks and
challenges.

Input into these artifacts could be generated during an inception phase require-
ments workshop, both through explicit consideration of its topics, and indirectly
via use case analysis. Draft, readable artifacts will not get written in the work-
shop, but afterwards by the system analyst.

Elaboration

Through the elaboration iterations, the "vision" and the Vision are refined,
based upon feedback from incrementally building parts of the system, adapting,
and multiple requirements workshops over several development iterations.

Through ongoing requirements investigation and iterative development, the
other requirements will become more clear and can be recorded in the SS. The
quality attributes (for example, reliability) identified in the SS will be key driv-

102

OTHER REQUIREMENT ARTIFACTS WITHIN THE UP

ers in shaping the core architecture that is designed and programmed during
elaboration. They may also be key risk factors that influence what gets worked
on in early iterations. For example, the NextGen POS quality requirement of cli-
ent-side recoverability if external components fail will be explored during elabo-
ration.

The majority of terms will be discovered and elaborated in the Glossary during
this phase.

By the end of elaboration, it is feasible to have use cases, a Supplementary Spec-
ification, and a Vision that reasonably reflects the stabilized major features and
other requirements to be completed for delivery. Nevertheless, the Supplemen-
tary Specification and Vision are not something to freeze and "sign off" on as a
fixed specification; adaptation�not rigidity�is a core value of iterative develop-
ment and the UP.

To clarify this "frozen sign off" comment: It is perfectly sensible�at the end of
elaboration�to form an agreement with stakeholders about what will be done
in the remainder of the project, and to make commitments (perhaps contractual)
regarding requirements and schedule. At some point (the end of elaboration, in
the UP), we need a reliable idea of "what, how much, and when." In that sense, a
formal agreement on the requirements is normal and expected. It is also neces-
sary to have a change control process (one of the explicit best practice in the UP)
so that changes in requirements are formally considered and approved, rather
than chaotic and uncontrolled change.

Rather, several ideas are implied by the "frozen sign off" comment:

� In iterative development and the UP it is understood that no matter how
much due diligence is given to requirements specification, some change is
inevitable, and should be acceptable. This change could be a late-breaking
opportunistic improvement in the system that gives its owners a competitive
advantage, or change due to improved insight.

� In iterative development, it is a core value to have continual engagement by
the stakeholders to evaluate, provide feedback, and steer the project as they
really want it. It does not benefit stakeholders to "wash their hands" of
attentive engagement by signing off on a frozen set of requirements and
waiting for the finished product, because they will seldom get what they
really needed.

Construction

By construction, the major requirements�both functional and otherwise�
should be stabilized�not finalized, but settled down to minor pertubation.
Therefore, the SS and Vision are unlikely to experience much change in this
phase.

103

7 - IDENTIFYING OTHER REQUIREMENTS

7.12 Further Readings

Vision and Supplementary Specification-like documents are not new. They are
used on many projects and described in many requirements books. Most such
books implicitly assume the waterfall attitude that the objective is to get them
detailed and correct at the beginning, and commit to them, before moving on to
design and implementation. In that sense, their traditional descriptions are not
helpful, although they otherwise provide good advice for possible sections and
their content.

Most books on software architecture include discussion of requirements analysis
for quality attributes of the application, since these quality requirements tend
to strongly influence architectural design. One example is Software Architecture
in Practice [BCK98].

Business rules get an exhaustive treatment in The Business Rule Book [Ross97].
The book presents a broad, deep, and thoroughly-considered theory of business
rules, but the method is not well-connected to other modern requirements tech-
niques such as use cases, or to iterative development.

104

UP ARTIFACTS AND PROCESS CONTEXT

7.13 UP Artifacts and Process Context

Artifact influence emphasizing the Vision, Supplementary Specification, and
Glossary are show in Figure 7.1.

Figure 7.1 Sample UP artifact influence.

105

106

7 - IDENTIFYING OTHER REQUIREMENTS

In the UP, Vision and Supplementary Specification work is a requirements discipline
activity which could be initiated during a requirements workshop, along with use case
analysis. Figure 7.2 offers suggestions on the time and space for doing this work.

Figure 7.2 Process and setting context.

January February

Problem Statement
. . .
The problem of: . . .
affects: . . .
the impact of which is: . . .
a succesful solution is: . . .

Vision Features
. . .
The system shall record sales
The system shall process
payments.
. . .

When
Once during inception. Short; do not try to
define or polish all requirements.

Several times during elaboration iterations.

Where
Started in a requirements
workshop, but usually written
afterwards.

Who
Utlimately written by the system analyst, who is
responsible for requirements definition.

The software architect is experienced in considering
quality requirements, such as reliability or
performance.

Collaboration on high-level requirements from end
users, developers and the paying or responsible
customer. Minimize intermediaries.

How: Tools
Software: A web-enabled requirements management
tool integrated with a popular word processor.

Other: Mind-maps, fishbone diagrams, and so forth
on whiteboards, for idea generation and clarification.
Use a digital camera to easily capture the results.

Hardware: Use two projectors attached to dual video
cards and set the display width double .

Developer

CustomerSystem
Analyst

End User

Two adjacent projections.

Software
Architect

Chapter 8

FROM INCEPTION TO
ELABORATION

The hard and stiff breaks. The supple prevails.

�Tao Te Ching

Objectives

� Define the elaboration step.
� Motivate the following chapters in this section.

Introduction

Elaboration is the initial series of iterations during which:
� the majority of requirements are discovered and stabilized
� the major risks are mitigated or retired
� the core architectural elements are implemented and proven
Rarely, the architecture is not a risk�for example, if building a website like oth-
ers the team has successfully built, with the same tools and similar require-
ments�in which case, it does not have to be a focus of these early iterations. In
that case, critical but non-architecturally significant features or use cases may
be implemented.
It is in this phase that the book emphasizes an introduction to OOA/D, applying
the UML, patterns, and architecture.

107

8 - FROM INCEPTION TO ELABORATION

8.1 Checkpoint: What Happened in Inception?

The inception step of the NextGen POS project may last only one week. The arti-
facts created should be brief and incomplete, the phase quick, and the investiga-
tion light.
It is not the requirements phase of the project, but a short step to determine
basic feasibility, risk, and scope, and decide if the project is worth more serious
investigation, which occurs in elaboration. Not all activities that could reason-
ably occur in inception have been covered; this exploration emphasizes require-
ments-oriented artifacts. Some likely activities and artifacts in inception
include:

� a short requirements workshop

� most actors, goals, and use cases named
� most use cases written in brief format; 10-20% of the use cases are written

in fully dressed detail to improve understanding of the scope and complexity
� most influential and risky quality requirements identified

� version one of the Vision and Supplementary Specification written
� risk list

) For example, leadership really wants a demo at the POSWorld
trade show in Hamburg, in 18 months. But the effort for a demo
cannot yet be even roughly estimated until deeper investigation.

� technical proof-of-concept prototypes and other investigations to explore the
technical feasibility of special requirements ("Does Java Swing work prop
erly on touch-screen displays?")

� user interface-oriented prototypes to clarify the vision of functional
requirements

� recommendations on what components to buy/build/reuse, to be refined in
elaboration

) For example, a recommendation to buy a tax calculation
package.

� high-level candidate architecture and components proposed

) This is not a detailed architectural description, and it is not meant
to be final or correct. Rather, it is brief speculation to use as a
starting point of investigation in elaboration. For example, "A Java
client-side application, no application server, Oracle for the data-
base, ..." In elaboration, it may be proven worthy, or discovered to
be a poor idea and rejected.

� plan for the first iteration
� candidate tools list

108

ON TO ELABORATION

8.2 On to Elaboration

Elaboration is the initial series of iterations during which the team does serious
investigation, implements (programs and tests) the core architecture, clarifies
most requirements, and tackles the high-risk issues. In the UP, "risk" includes
business value. Therefore, early work may include implementing scenarios that
are deemed important, but are not especially technically risky.

Elaboration often consists of between two and four iterations; each iteration is
recommended to be between two and six weeks, unless the team size is massive.
Each iteration is timeboxed, meaning its end date is fixed; if the team is not
likely to meet the date, requirements are placed back on the future tasks list, so
that the iteration can end on time with a stable and tested release.

Elaboration is not a design phase or a phase when the models are fully devel-
oped in preparation for implementation in the construction step�that would be
an example of superimposing waterfall ideas on to iterative development and
the UP.

During this phase, one is not creating throw-away prototypes; rather, the code
and design are production-quality portions of the final system. In some UP
descriptions, the potentially misunderstood term "architectural prototype" is
used to describe the partial system. This is not meant to be a prototype in the
sense of a discardable experiment; in the UP, it means a production subset of the
final system. More commonly it is called the executable architecture or
architectural baseline.

Elaboration in one sentence:

Build the core architecture, resolve the high-risk elements, define most require-
ments, and estimate the overall schedule and resources.

Some key ideas and best practices that will manifest in elaboration include:

� do short timeboxed risk-driven iterations

� start programming early

� adaptively design, implement, and test the core and risky parts of the
architecture

� test early, often, realistically

� adapt based on feedback from tests, users, developers

� write most of the use cases and other requirements in detail, through a
series of workshops, once per elaboration iteration

109

8 - FROM INCEPTION TO ELABORATION

What Is Architecturally Significant in Elaboration?

Early iterations build and prove the core architecture. For the NextGen POS
project�indeed, most�this will include:

� Employing "wide and shallow" design and implementation; or "designing at
the seams" as Grady Booch has called it.

) That is, identifying the separate processes, layers, packages, and
subsystems, and their high-level responsibilities and interfaces.
Partially implement these in order to connect them and clarify the
interfaces. Modules may contain mostly "stubbed" code.

� Refining the inter-module local and remote interfaces (this includes the fin
est details of the parameters and return values).

) For example, the interface to the object which will wrap access to
third-party accounting systems.

) Version one of an interface is seldom perfect. Early attention to
stress testing, "breaking," and refining the interfaces supports
later multi-team parallel work relying on stable interfaces.

� Integrating existing components.

) For example, a tax calculator.

� Implementing simplified end-to-end scenarios that force design, implemen
tation, and test across many major components.

) For example, the main success scenario of Process Sale, using the
credit payment extension scenario.

Elaboration phase testing is important, to obtain feedback, adapt, and prove
that the core is robust. Early testing for the NextGen project will include:

� Usability testing of the user interface for Process Sale.

� Testing of recovery when remote services, such as the credit authorizer, fail.

� Testing of high load to remote services, such as load on the remote tax calcu
lator.

8.3 Planning the Next Iteration

Planning and project management are important but large topics. Some key
ideas are briefly presented here, and an introduction is given in Chapter 36.

110

PLANNING THE NEXT ITERATION

Organize requirements and iterations by risk, coverage, and criticality.

� Risk includes both technical complexity and other factors, such as uncer
tainty of effort or usability.

� Coverage implies that all major parts of the system are at least touched on
in early iterations�perhaps a "wide and shallow" implementation across
many components.

� Criticality refers to functions of high business value.

These criteria are used to rank work across iterations. Use cases or use case sce-
narios are ranked for implementation�early iterations implement high ranking
scenarios. In addition, some requirements are expressed as high-level features
unrelated to a particular use case, such as a logging service. These are also
ranked.

The ranking is done before Iteration 1, but then again before Iteration 2, and so
forth, as new requirements and new insights influence the order. That is, the
plan is adaptive, rather than speculatively frozen at the beginning of the
project.

Usually based on some small-group collaborative ranking technique, a fuzzy
grouping of requirements will emerge. For example:

Rank
Requirement (Use
Case or Feature) Comment

High Process Sale
Logging
�

Scores high on all ranking criteria.
Pervasive. Hard to add late.
�

Medium Maintain Users
�

Affects security subdomain.
�

Low � �

Based on this ranking, we see that some key architecturally significant scenar-
ios of the Process Sale use case should be tackled in early iterations. This list is
not exhaustive; other requirements will also be tacked. In addition, an implicit
or explicit Start Up use case will be worked on in each iteration, to meet its ini-
tialization needs.

111

8 - FROM INCEPTION TO ELABORATION

In terms of UP artifacts, a few comments on this planning information:

� The chosen requirements for the next iteration are briefly listed in an Itera
tion Plan. This is not a plan of all the iterations, only a plan of the next.

� If the short description in the Iteration Plan is insufficient, a task or
requirement for the iteration may be written in greater detail in a separate
Change Request, and given to the responsible party.

� The overall requirements ranking is recorded in the Software Develop
ment Plan.

8.4 Iteration 1 Requirements and Emphasis: Fundamental
OOA/D Skills

In this case study, Iteration 1 of the elaboration phase emphasizes a range of
fundamental and common OOA/D skills used in building object systems, such as
assigning responsibilities to objects. Of course, many other skills and steps�
such as database design, usability engineering, and UI design�are needed to
build software, but they are out of scope in this introduction to OOA/D and the
UP.

Iteration 1 Requirements

The requirements for the first iteration of the NextGen POS application follow:

� Implement a basic, key scenario of the Process Sale use case: entering items
and receiving a cash payment.

� Implement a Start Up use case as necessary to support the initialization
needs of the iteration.

� Nothing fancy or complex is handled, just a simple happy path scenario, and
the design and implementation to support it.

� There is no collaboration with external services, such as a tax calculator or
product database.

� No complex pricing rules are applied.

The design and implementation of the supporting UI would also be done, but is
not covered.

Subsequent iterations will grow on this foundation.

112

WHAT ARTIFACTS MAY START IN ELABORATION?

Incremental Development for the Same Use Case Across Iterations

Note that not all requirements in the Process Sale use case are being handled in
iteration 1. It is common to work on varying scenarios or features of the same
use case over several iterations and gradually extend the system to ultimately
handle all the functionality required (see Figure 8.1). On the other hand, short,
simple use cases may be completed within one iteration.

1
A use case or feature is
often too complex to
complete in one short
iteration.

Therefore, different part
or scenarios must be
allocated to different
iterations.

Use Case
Process Sale

2 3 . . .

Use Case
Process Sale

Use Case
Process Sale

Use Case
Process Rentals

Feature:
Logging

Figure 8.1 Use case implementation may be spread across iterations.

8.5 What Artifacts May Start in Elaboration?

Table 8.1 lists sample artifacts that may be started in elaboration, and indicates
the issues they address. Subsequent chapters will examine some of these in
greater detail, especially the Domain Model and Design Model. For brevity, the
table excludes artifacts that may have begun in inception (and were listed in
Chapter 4); it introduces artifacts that are more likely to start in elaboration.
Note these will not be completed in one iteration; rather, they will be refined
over a series of iterations.

Artifact Comment

Domain Model This is a visualization of the domain concepts; it is similar to a
static information model of the domain entities.

Design Model
This is the set of diagrams that describes the logical design.
This includes software class diagrams, object interaction dia-
grams, package diagrams, and so forth.

113

8 - FROM INCEPTION TO ELABORATION

Artifact Comment

Software Architecture
Document

A learning aid that summarizes the key architectural issues
and their resolution in the design. It is a summary of the out-
standing design ideas and their motivation in the system.

Data Model This includes the database schemas, and the mapping strate-
gies between object and non-object representations.

Test Model A description of what will be tested, and how.

Implementation Model This is the actual implementation — the source code, executa-
bles, database, and so on.

Use-Case Storyboards,
UI Prototypes

A description of the user interface, paths of navigation, usabil-
ity models, and so forth.

Table 8.1 Sample elaboration artifacts, excluding those started in inception.

8.6 You Know You Didn't Understand Elaboration When...

• It is more than "a few" months long for most projects.
• It only has one iteration (with rare exceptions for well-understood problems)
• Most requirements were defined before elaboration.
• The risky elements and core architecture are not being tackled.
• It does not result in an executable architecture; there is no production-code

programming.
• It is considered primarily a requirements phase, preceding an implementa-

tion phase in construction.
• There is an attempt to do a full and careful design before programming.
• There is minimal feedback and adaptation; users are not continually

engaged in evaluation and feedback
• There is no early and realistic testing.
• The architecture is speculatively finalized before programming.
• It is considered a step to do the proof-of-concept programming, rather than

programming the production core executable architecture.
• There are not multiple short requirements workshops that adapt and refine

the requirements based on feedback from the prior and current iterations.
If a project exhibits these symptoms, the elaboration phase was not understood.

114

PARTS ELABORATION
ITERATION 1

Chapter 9

USE-CASE MODEL: DRAWING
SYSTEM SEQUENCE DIAGRAMS

In theory, there is no difference between theory
and practice. But, in practice, there is.

—Jan L.A. van de Snepscheut

Objectives

Identify system events.
Create system sequence diagrams for use cases.

Moving on to Iteration 1

The NextGen POS project has entered the first real development iteration.
Some light requirements work was done in inception to help decide if the project
was worth more serious investigation. Planning for the first iteration has been
completed, and it has been decided to tackle a simple cash-only success scenario
of Process Sale (with no remote collaborations), with the goal of starting a "wide
and shallow" design and implementation that touches on many major architec-
tural elements of the new system. In the first iteration, many tasks related to
establishing the environment (tools, people, process, and setting) occur; this will
be skipped.
Rather, we turn our attention to use case and domain modeling analysis. Before
starting iteration 1 design work, some further investigation of the problem
domain is useful. Part of this investigation is the clarification of the input and
output system events related to our system, which can be illustrated in UML
sequence diagrams.

117

9 - USE-CASE MODEL: DRAWING SYSTEM SEQUENCE DIAGRAMS

Introduction

A system sequence diagram is a fast and easily created artifact that illustrates
input and output events related to the systems under discussion. The UML con-
tains notation in the form of sequence diagrams to illustrate events from exter-
nal actors to a system.

9.1 System Behavior

Before proceeding to a logical design of how a software application will work, it
is useful to investigate and define its behavior as a "black box." System behav-
ior is a description of what a system does, without explaining how it does it. One
part of that description is a system sequence diagram. Other parts include the
use cases, and system contracts (to be discussed later).

9.2 System Sequence Diagrams

Use cases describe how external actors interact with the software system we are
interested in creating. During this interaction an actor generates events to a
system, usually requesting some operation in response. For example, when a
cashier enters an item's ID, the cashier is requesting the POS system to record
that item's sale. That request event initiates an operation upon the system.
It is desirable to isolate and illustrate the operations that an external actor
requests of a system, because they are an important part of understanding sys-
tem behavior. The UML includes sequence diagrams as a notation that can
illustrate actor interactions and the operations initiated by them.
A system sequence diagram (SSD) is a picture that shows, for a particular
scenario of a use case, the events that external actors generate, their order, and
inter-system events. All systems are treated as a black box; the emphasis of the
diagram is events that cross the system boundary from actors to systems.

An SSD should be done for the main success scenario of the use case, and fre-
quent or complex alternative scenarios.

The UML does not define something called a "system" sequence diagram, but
simply a sequence diagram. The qualification is used to emphasize its applica-
tion to systems as black boxes. Later, sequence diagrams will be used in another
context—to illustrate the design of interacting software objects to fulfill work.

118

EXAMPLE OF AN SSD

9.3 Example of an SSD

An SSD shows, for a particular course of events within a use case, the external
actors that interact directly with the system, the system (as a black box), and
the system events that the actors generate (see Figure 9.1). Time proceeds
downward, and the ordering of events should follow their order in the use case.

System events may include parameters.

This example is for the main success scenario of the Process Sale use case. It
indicates that the cashier generates makeNewSale, enteritem, endSale, and
makePayment system events.

enterItem(itemID, quantity)

:System: Cashier

endSale()

makePayment(amount)

box may enlose an
iteration area

the * [...] is an iteration
marker and clause
indicating the box is for
iteration

external actor to
system

Process Sale Scenario

system as black box

the name could be "NextGenPOS" but "System" keeps i

the ":" and underline imply an instance, and are explaine
later chapter on sequence diagram notation in the UML

a message with
parameters

it is an abstractio
representing the
system event of
entering the
payment data by
some mechanism

description, total

return value(s)
associated with the
previous message

an abstraction that
ignores presentation
and medium

the return line is
optional if nothing is
returned

total with taxes

change due, receipt

* [more items]

makeNewSale()

Figure 9.1 SSD for a Process Sale scenario.

119

9 - USE-CASE MODEL: DRAWING SYSTEM SEQUENCE DIAGRAMS

9.4 Inter-System SSDs

SSDs can also be used to illustrate collaborations between systems, such as
between the NextGen POS and the external credit payment authorizer. How-
ever, this is deferred until a later iteration in the case study, since this iteration
does not include remote systems collaboration.

9.5 SSDs and Use Cases

An SSD shows system events for a scenario of a use case, therefore it is gener-
ated from inspection of a use case (see Figure 9.2).

: Cashier :System

Simple cash-only Process Sale scenario:

1. Customer arrives at a POS checkout
with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and
presents item description, price, and
running total.
Cashier repeats steps 3-4 until indicates
done.
5. System presents total with taxes
calculated.
6. Cashier tells Customer the total, and
asks for payment.
7. Customer pays and System handles
payment.
...

enterItem(itemID, quantity)

endSale()

makePayment(amount)

description, total

total with taxes

change due, receipt

* [more items]

makeNewSale()

Figure 9.2 SSDs are derived from use cases.

9.6 System Events and the System Boundary

To identify system events, it is necessary to be clear on the choice of system
boundary, as discussed in the prior chapter on use cases. For the purposes of
software development, the system boundary is usually chosen to be the software

120

NAMING SYSTEM EVENTS AND OPERATIONS

(and possibly hardware) system itself; in this context, a system event is an
external event that directly stimulates the software (see Figure 9.3).
Consider the Process Sale use case to identify system events. First, we must
determine the actors that directly interact with the software system. The cus-
tomer interacts with the cashier, but for this simple cash-only scenario, does not
directly interact with the POS system—only the cashier does. Therefore, the
customer is not a generator of system events; only the cashier is.

enterItem(itemID, quantity)

: Cashier

endSale()

makePayment(amount)

system boundary

:System

makeNewSale()

Figure 9.3 Defining the system boundary.

9.7 Naming System Events and Operations

System events (and their associated system operations) should be expressed at
the level of intent rather than in terms of the physical input medium or inter-
face widget level.

It also improves clarity to start the name of a system event with a verb (add...,
enter..., end..., make...), as in Figure 9.4, since it emphasizes the command ori-
entation of these events.

Thus "enteritem" is better than "scan" (that is, laser scan) because it captures
the intent of the operation while remaining abstract and noncommittal with
respect to design choices about what interface is used to capture the system
event.

121

enterItem(itemID, quantity)

scan(itemID, quantity)

: Cashier

worse name

better name

:System

Figure 9.4 Choose event and operation names at an abstract level.

9.8 Showing Use Case Text

It is sometimes desirable to show at least fragments of use case text for the sce-
nario, to clarify or enhance the two views (see Figure 9.5). The text provides the
details and context; the diagram visually summarizes the interaction.

9.9 SSDs and the Glossary

The terms shown in SSDs (operations, parameters, return data) are terse. These
may need proper explanation so that during design work it is clear what is com-
ing in and going out. If this was not explicated in the use cases, the Glossary
could be used.
However, as always when discussing the creation of artifacts other than code
(the heart of the project), be suspicious. There should be some truly meaningful
use or decision made with the Glossary data, otherwise it is simply low-value
unnecessary work.

122

9 - USE-CASE MODEL: DRAWING SYSTEM SEQUENCE DIAGRAMS

: Cashier :System

Simple cash-only Process Sale scenario:

1. Customer arrives at a POS checkout
with goods and/or services to purchase.
2. Cashier starts a new sale.

3. Cashier enters item identifier.
4. System records sale line item and
presents item description, price, and
running total.

Cashier repeats steps 3-4 until indicates
done.

5. System presents total with taxes
calculated.

6. Cashier tells Customer the total, and
asks for payment.
7. Customer pays and System handles
payment.
...

enterItem(itemID, quantity)

endSale()

makePayment(amount)

description, total

total with taxes

change due, receipt

* [more items]

makeNewSale()

Figure 9.5 SSD with use case text.

9.10 SSDs Within the UP

SSDs are part of the Use-Case Model—a visualization of the interactions
implied in the use cases. SSDs were not explicitly mentioned in the original UP
description, although the UP creators are aware of and understand the useful-
ness of such diagrams. SSDs are an example of the many possible skillful analy-
sis and design artifacts or activities that the UP or RUP documents do not
mention.

Phases

Inception—SSDs are not usually motivated in inception.

Elaboration—Most SSDs are created during elaboration, when it is useful to
identify the details of the system events to clarify what major operations the
system must be designed to handle, write system operation contracts (discussed
in Chapter 13), and possibly support estimation (for example, macroestimation
with unadjusted function points and COCOMO II).

123

SSDs WITHIN THE UP

9 - USE-CASE MODEL: DRAWING SYSTEM SEQUENCE DIAGRAMS

Note that it is not necessary to create SSDs for all scenarios of all use cases—at
least not at the same time. Rather, create them only for some chosen scenarios of
the current iteration.

Finally, it should only take a few minutes or an half hour to create the SSDs.

Discipline Artifact
Iteration→

Incep.
11

Elab.
El. .En

Const.
CL.Cn

Trans.
T1..T2

Business Modeling Domain Model s
Requirements Use-Case Model (SSDs) s r
 Vision s r
 Supplementary Specification s r
 Glossary s r
Design Design Model s r
 SW Architecture Document s
 Data Model s r
Implementation Implementation Model s r R
Project Management SW Development Plan s r r R
Testing Test Model s r
Environment Development Case s r

Table 9.1 Sample UP artifacts and timing, s - start; r - refine

9.11 Further Readings

Variations of diagrams that illustrate the I/O events for a system treated as a
black box have been in widespread use for decades; for example, in telecommu-
nications as call-flow diagrams. They were especially popularized in object-ori-
ented methods via their use in the Fusion method |Coleman+94|, which
provided a detailed example of the relationship of SSDs and system operations
to other analysis and design artifacts.

124

UP ARTIFACTS

9.12 UP Artifacts

Sample relationships of SSDs to other artifacts are shown in Figure 9.6.

Figure 9.6 Sample UP artifact influence.

125

Glossary

Software
Architecture Doc.

Domain
Model

Requirements

Project
Management

Business
Modeling

Design

Sample UP Artifacts Partial artifacts,
refined in each

iteration.

Test

Test
Plan

Software
Dev. Plan

. . .

Use-Case Model

text
use

cases

:System

foo(x)

system
operation
contracts

system
sequence
diagrams

system
events &
data

system
operations

design objects
to handle the
system events

parameter or
return data may be
elaborated in the
Glossary

Design Model

bar(y)

Environment

Development
Case

Chapter 10

DOMAIN MODEL-
VISUALIZING CONCEPTS

It's all very well in practice, but it will never work in theory.

—anonymous management maxim

Objectives
Identify conceptual classes related to the current iteration
requirements.
Create an initial domain model.
Distinguish between correct and incorrect attributes.
Add specification conceptual classes, when appropriate.
Compare and contrast conceptual and implementation views.

Introduction

A domain model is widely used as a source of inspiration for designing software
objects, and will be a required input to several subsequent artifacts discussed in
this book. Therefore, it is important to read this chapter if the subject of domain
modeling is unfamiliar.
A domain model illustrates meaningful (to the modelers) conceptual classes in a
problem domain; it is the most important artifact to create during object-ori-
ented analysis.1 This chapter explores introductory skills in creating domain

1. Use cases are an important requirements analysis artifact, but are not object-oriented.
They emphasize a process view of the domain.

127

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

models. The following two chapters expand on domain modeling skills—adding
attributes and associations.
Identifying a rich set of objects or conceptual classes is at the heart of object-ori-
ented analysis, and well worth the effort in terms of payoff during the design
and implementation work.

The identification of conceptual classes is part of an investigation of the problem
domain. The UML contains notation in the form of class diagrams to illustrate
domain models.

Key Idea
A domain model is a representation of real-world conceptual classes, not of
software components. It is not a set of diagrams describing software classes,
or software objects with responsibilities.

10.1 Domain Models

The quintessential object-oriented step in analysis or investigation is the decom-
position of a domain of interest into individual conceptual classes or objects—
the things we are aware of. A domain model is a visual representation of con-
ceptual classes or real-world objects in a domain of interest [MO95, Fowler96].
They have also been called conceptual models (the term used in the first edi-
tion of this book), domain object models, and analysis object models.2

The UP defines a Domain Model3 as one of the artifacts that may be created in
the Business Modeling discipline.

Using UML notation, a domain model is illustrated with a set of class dia-
grams in which no operations are defined. It may show:

• domain objects or conceptual classes

• associations between conceptual classes

• attributes of conceptual classes

For example, Figure 10.1 shows a partial domain model. It illustrates that the
conceptual class of Payment and Sale are significant in this domain, that a Pay-

2. They are also related to conceptual entity relationship models, which are capable of
showing purely conceptual views of domains, but that have been widely re-interpreted
as data models for database design. Domain models are not data models.

3. Capitalization of Domain Model is used when I wish to emphasize it as an official
model defined in the UP, vs. the general well-known concept of "domain models."

128

Figure 10.1 Partial domain model—a visual dictionary. The numbers at each
end of the line indicate multiplicity, which is described in a subsequent chapter.

Key Idea: Domain Model—A Visual Dictionary of Abstractions

Please reflect on Figure 10.1 for a moment. It visualizes and relates some words
or conceptual classes in the domain. It also depicts an abstraction of the concep-
tual classes, because there are many things one could communicate about regis-
ters, sales, and so forth. The model displays a partial view, or abstraction, and
ignores uninteresting (to the modelers) details.

The information it illustrates (using UML notation) could alternatively have
been conveyed in prose, in statements in the Glossary or elsewhere. But it is
easy to comprehend the discrete elements and their relationships in this visual
language, since a significant percentage of the brain participates in visual pro-
cessing—it is a human strength.

Thus, the domain model may be considered a visual dictionary of the notewor-
thy abstractions, domain vocabulary, and information content of the domain.

129

Register

Item

Store

address
name

Sale

date
time

Payment

amount

Sales
LineItem

quantity

Stocked-in

*

Houses

1..*

Contained-in

1..*

Records-sale-of

0..1

Paid-by

1

1

1

1

1

1

1

1

Captured-on 4

concept
or domain
object

association

attributes

DOMAIN MODELS

merit is related to a Sale in a way that is meaningful to note, and that a Sale has
a date and time. The details of the notation are not important at this time.

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Domain Models Are not Models of Software Components

A domain model, as shown in Figure 10.2, is a visualization of things in the real-
world domain of interest, not of software components such as a Java or C++
class (see Figure 10.3), or software objects with responsibilities. Therefore, the
following elements are not suitable in a domain model:
• Software artifacts, such as a window or a database, unless the domain being

modeled is of software concepts, such as a model of graphical user interfaces.

• Responsibilities or methods.4

Figure 10.2 A domain model shows real-world conceptual classes, not software
classes.

Figure 10.3 A domain model does not show software artifacts or classes.

4. In object modeling, we usually speak of responsibilities related to software compo-
nents. And methods are purely a software concept. But, the domain model describes
real-world concepts, not software components. Considering object responsibilities dur-
ing design work is very important; it is just not part of this model. One valid case in
which responsibilities may be shown in a domain model is if it includes human worker
roles (such as Cashier), and the modeler wishes to record the responsibilities of these
human workers.

130

Sale

date
time

visualization of a rea
world concept in the
domain of interest

it is a not a picture of a
software class

SalesDatabase software artifact; not part
of domain modelavoid

software class; not part
of domain model

Sale

date
time

print()

avoid

DOMAIN MODELS

Conceptual Classes

The domain model illustrates conceptual classes or vocabulary in the domain.
Informally, a conceptual class is an idea, thing, or object. More formally, a con-
ceptual class may be considered in terms of its symbol, intension, and extension
[MO95] (see Figure 10.4).

• Symbol—words or images representing a conceptual class.

• Intension—the definition of a conceptual class.

• Extension—the set of examples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase transac-
tion. I may choose to name it by the symbol Sale. The intension of a Sale may
state that it "represents the event of a purchase transaction, and has a date and
time." The extension of Sale is all the examples of sales; in other words, the set
of all sales.

Sale

date
time

concept's symbol

"A sale represents the event
of a purchase transaction. It
has a date and time."

concept's intension

sale-1

sale-3
sale-2

sale-4

concept's extension

Figure 10.4 A conceptual class has a symbol, intension, and extension.

When creating a domain model, it is usually the symbol and intensional view of
a conceptual class that are of most practical interest.

131

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Domain Models and Decomposition

Software problems can be complex; decomposition—divide-and-conquer—is a
common strategy to deal with this complexity by division of the problem space
into comprehensible units. In structured analysis, the dimension of decompo-
sition is by processes or functions. However, in object-oriented analysis, the
dimension of decomposition is fundamentally by things or entities in the
domain.

A central distinction between object-oriented and structured analysis is: divi-
sion by conceptual classes (objects) rather than division by functions.

Therefore, a primary analysis task is to identify different concepts in the prob-
lem domain and document the results in a domain model.

Conceptual Classes in the Sale Domain

For example, in the real-world domain of sales in a store, there are the concep-
tual classes of Store, Register, and Sale. Therefore, our domain model, shown in
Figure 10.5, may include Store, Register, and Sale.

Store Register Sale

Figure 10.5 Partial domain model in the domain of the store.

10.2 Conceptual Class Identification

Our goal is to create a domain model of interesting or meaningful conceptual
classes in the domain of interest (sales). In this case, that means concepts
related to the use case Process Sale.
In iterative development, one incrementally builds a domain model over several
iterations in the elaboration phase. In each, the domain model is limited to the
prior and current scenarios under consideration, rather than a "big bang" model
which early on attempts to capture all possible conceptual classes and relation-
ships. For example, this iteration is limited to a simplified cash-only Process
Sale scenario; therefore, a partial domain model will be created to reflect just
that—not more.
The central task is therefore to identify conceptual classes related to the scenar-
ios under design.

132

CONCEPTUAL CLASS IDENTIFICATION

The following is a useful guideline in identifying conceptual classes:

It is better to overspecify a domain model with lots of fine-grained conceptual
classes than to underspecify it.

Do not think that a domain model is better if it has fewer conceptual classes;
quite the opposite tends to be true.
It is common to miss conceptual classes during the initial identification step,
and to discover them later during the consideration of attributes or associations,
or during design work. When found, they may be added to the domain model.
Do not exclude a conceptual class simply because the requirements do not indi-
cate any obvious need to remember information about it (a criterion common in
data modeling for relational database design, but not relevant to domain model-
ing), or because the conceptual class has no attributes.
It is valid to have attributeless conceptual classes, or conceptual classes which
have a purely behavioral role in the domain instead of an information role.

Strategies to Identify Conceptual Classes

Two techniques are presented in the following sections:
1. Use a conceptual class category list.
2. Identify noun phrases.
Another excellent technique for domain modeling is the use of analysis pat-
terns, which are existing partial domain models created by experts, using pub-
lished resources such as Analysis Patterns [Fowler96] and Data Model Patterns
[Hay96].

Use a Conceptual Class Category List

Start the creation of a domain model by making a list of candidate conceptual
classes. Table 10.1 contains many common categories that are usually worth
considering, though not in any particular order of importance. Examples are
drawn from the store and airline reservation domains.

133

134

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Conceptual Class Category Examples

physical or tangible objects Register
Airplane

specifications, designs, or descriptions
of things

ProductSpecification
FlightDescription

places Store
Airport

transactions Sale, Payment
Reservation

transaction line items SalesLineItem

roles of people Cashier
Pilot

containers of other things Store, Bin
Airplane

things in a container Item
Passenger

other computer or electro-mechanical
systems external to the system

CreditPaymentAuthorizationSystem
AirTrafficControl

abstract noun concepts Hunger
Acrophobia

organizations SalesDepartment
ObjectAirline

events Sale, Payment, Meeting
Flight, Crash, Landing

processes
(often not represented as a concept,
but may be)

SellingAProduct
BookingASeat

rules and policies RefundPolicy
CancellationPolicy

catalogs ProductCatalog
PartsCatalog

CONCEPTUAL CLASS IDENTIFICATION

Conceptual Class Category Examples

records of finance, work, contracts,
legal matters

Receipt, Ledger, EmploymentContract
MaintenanceLog

financial instruments and services LineOfCredit
Stock

manuals, documents, reference
papers, books

DailyPriceChangeList
RepairManual

Table 10.1 Conceptual Class Category List.

Finding Conceptual Classes with Noun Phrase Identification

Another useful technique (because of its simplicity) suggested in [Abbot83] is
linguistic analysis: identify the nouns and noun phrases in textual descriptions
of a domain, and consider them as candidate conceptual classes or attributes.

Care must be applied with this method; a mechanical noun-to-class mapping
isn't possible, and words in natural languages are ambiguous.

Nevertheless, it is another source of inspiration. The fully dressed use cases are
an excellent description to draw from for this analysis. For example, the current
scenario of the Process Sale use case can be used.

Main Success Scenario (or Basic Flow):
1. Customer arrives at a POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.
Cashier repeats steps 2-3 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.
8. System logs the completed sale and sends sale and payment information to the

external Accounting (for accounting and commissions) and Inventory systems (to
update inventory).

9. System presents receipt.
10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):

7a. Paying by cash:
1. Cashier enters the cash amount tendered.

135

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

The domain model is a visualization of noteworthy domain concepts and vocabu-
lary. Where are those terms found? In the use cases. Thus, they are a rich source
to mine via noun phrase identification.

Some of these noun phrases are candidate conceptual classes, some may refer to
conceptual classes that are ignored in this iteration (for example, "Accounting"
and "commissions"), and some may be attributes of conceptual classes. Please
see the subsequent section and chapter on attributes for advice on distinguish-
ing between the two.

A weakness of this approach is the imprecision of natural language; different
noun phrases may represent the same conceptual class or attribute, among
other ambiguities. Nevertheless, it is recommended in combination with the
Conceptual Class Category List technique.

10.3 Candidate Conceptual Classes for the Sales Domain

From the Conceptual Class Category List and noun phrase analysis, a list is
generated of candidate conceptual classes for the domain. The list is constrained
to the requirements and simplifications currently under consideration—the sim-
plified scenario of Process Sale.

Register

Item

Store

Sale

Payment
ProductCatalog

ProductSpecification

SalesLineItem

Cashier

Customer

Manager

136

There is no such thing as a "correct" list. It is a somewhat arbitrary collection of
abstractions and domain vocabulary that the modelers consider noteworthy.
Nevertheless, by following the identification strategies, similar lists will be pro-
duced by different modelers.

DOMAIN MODELING GUIDELINES

Report Objects—Include Receipt in the Model?

A receipt is a record of a sale and payment and a relatively prominent concep-
tual class in the domain, so should it be shown in the model?

Here are some factors to consider:

• A receipt is a report of a sale. In general, showing a report of other informa-
tion in a domain model is not useful since all its information is derived from
other sources; it duplicates information found elsewhere. This is one reason
to exclude it.

• A receipt has a special role in terms of the business rules: it usually confers
the right to the bearer of the receipt to return bought items. This is a reason
to show it in the model.

Since item returns are not being considered in this iteration, Receipt will be
excluded. During the iteration that tackles the Handle Returns use case, it
would be justified to include it.

10.4 Domain Modeling Guidelines

How to Make a Domain Model

Apply the following steps to create a domain model:

1. List the candidate conceptual classes using the Conceptual Class Cate-
gory List and noun phrase identification techniques related to the current
requirements under consideration.
2. Draw them in a domain model.
3. Add the associations necessary to record relationships for which there is a
need to preserve some memory (discussed in a subsequent chapter).
4. Add the attributes necessary to fulfill the information requirements (dis-
cussed in a subsequent chapter).

An adjunct useful method is to learn and copy analysis patterns, which are dis-
cussed in a later chapter.

137

138

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

On Naming and Modeling Things: The Mapmaker

The mapmaker strategy applies to both maps and domain models.

Make a domain model in the spirit of how a cartographer or mapmaker
works:
• Use the existing names in the territory.
• Exclude irrelevant features.
• Do not add things that are not there.

A domain model is a kind of map of concepts or things in a domain. This spirit
emphasizes the analytical role of a domain model, and suggests the following:
• A mapmaker uses the names of the territory—they do not change the names

of cities on a map. For a domain model, this means use the vocabulary of the
domain when naming conceptual classes and attributes. For example, if
developing a model for a library, name the customer a "Borrower" or
"Patron"—the terms used by the library staff.

• A mapmaker deletes things from a map if they are not considered relevant
to the purpose of the map; for example, topography or populations need not
be shown. Similarly, a domain model may exclude conceptual classes in the
problem domain not pertinent to the requirements. For example, we may
exclude Pen and PaperBag from our domain model (for the current set of
requirements) since they do not have any obvious noteworthy role.

• A mapmaker does not show things that are not there, such as a mountain
that does not exist. Similarly, the domain model should exclude things not in
the problem domain under consideration.

The principle is also named the Use the Domain Vocabulary strategy [Coad95].

A Common Mistake in Identifying Conceptual Classes

Perhaps the most common mistake when creating a domain model is to repre-
sent something as an attribute when it should have been a concept. A rule of
thumb to help prevent this mistake is:

If we do not think of some conceptual class X as a number or text in the real
world, X is probably a conceptual class, not an attribute.

In the real world, a store is not considered a number or text—the term suggests a
legal entity, an organization, and something occupies space. Therefore, Store
should be a concept.

As another example, consider the domain of airline reservations. Should desti-
nation be an attribute of Flight, or a separate conceptual class Airport?

Flight Airport

name

Flight

destination
or... ?

In the real world, a destination airport is not considered a number or text—it is a
massive thing that occupies space. Therefore, Airport should be a concept.

If in doubt, make it a separate concept. Attributes should be fairly rare in a
domain model.

10.5 Resolving Similar Conceptual Classes—Register vs.
"POST"

POST stands for point-of-sale terminal. In computerese, a terminal is any
end-point device in a system, such as a client PC, a wireless networked PDA, and
so forth. In earlier times, long before POSTs, a store maintained a register—a book
that logged sales and payments. Eventually, this was automated in a mechanical
"cash register." Today, a POST fulfills the role of the register (see Figure 10.6).

A register is a thing that records sales and payments, but so is a POST. However,
the term register seems somewhat more abstract and less implementation
oriented than POST. So, in the domain model, should the symbol Register be
used instead of POST?

First, as a rule of thumb, a domain model is not absolutely correct or wrong, but
more or less useful; it is a tool of communication.

139

Sale Store

phoneNumber r

Sale

store
or... ?

RESOLVING SIMILAR CONCEPTUAL CLASSES—REGISTER vs. "POST"

As an example, should store be an attribute of Sale, or a separate conceptual
class Store?

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

By the mapmaker principle, "POST" is a term familiar in the territory, so it is a
useful symbol from the point of view of familiarity and communication. By the
goal of creating models that represent abstractions and are implementation
independent, Register is appealing and useful.5 Register may be fairly consid-
ered to represent both the conceptual class of a place to register sales, and/or an
abstraction of various kinds of terminals, such as a POST.

Both choices have merit; Register has been chosen in this case study somewhat
arbitrarily, but POST would also have been understandable to the stakeholders.

POST Registeror?

similar concepts with
different names

Sale

Records 6

1

*
Sale

Records 6

1

*

Figure 10.6 POST and register are similar conceptual classes.

10.6 Modeling the Unreal World

Some software systems are for domains that find very little analogy in natural
or business domains; software for telecommunications is an example. It is still
possible to create a domain model in these domains, but it requires a high
degree of abstraction and stepping back from familiar designs.

For example, here are some candidate conceptual classes related to a telecom-
munication switch: Message, Connection, Port, Dialog, Route, Protocol.

10.7 Specification or Description Conceptual Classes

The following discussion may at first seem related to a rare, highly specialized
issue. However, it turns out that the need for specification conceptual classes (as
will be defined) is common in many domain models. Thus, it is emphasized.

5. Note that in earlier times a register was just one possible implementation of how to
record sales. The term has acquired a generalized meaning over time.

140

SPECIFICATION OR DESCRIPTION CONCEPTUAL CLASSES

Assume the following:
• An Item instance represents a physical item in a store; as such, it may even

have a serial number.
• An Item has a description, price, and itemID, which are not recorded any-

where else.
• Everyone working in the store has amnesia.
• Every time a real physical item is sold, a corresponding software instance of

Item is deleted from "software land."
With these assumptions, what happens in the following scenario?

There is strong demand for the popular new vegetarian burger—ObjectBurger.
The store sells out, implying that all Item instances of ObjectBurgers are
deleted from computer memory.
Now, here is the heart of the problem: If someone asks, "How much do Object-
Burgers cost?", no one can answer, because the memory of their price was
attached to inventoried instances, which were deleted as they were sold.
Notice also that the current model, if implemented in software as described, has
duplicate data and is space-inefficient because the description, price, and
itemID are duplicated for every Item instance of the same product.

The Need for Specification or Description Conceptual Classes

The preceding problem illustrates the need for a concept of objects that are spec-
ifications or descriptions of other things. To solve the Item problem, what is
needed is a ProductSpecification (or ItemSpecification, ProductDescription, ...)
conceptual class that records information about items. A ProductSpecification
does not represent an Item, it represents a description of information about
items. Note that even if all inventoried items are sold and their corresponding
Item software instances are deleted, the ProductSpecifications still remain.
Description or specification objects are strongly related to the things they
describe. In a domain model, it is common to state that an XSpecification
Describes an X (see Figure 10.7).
The need for specification conceptual classes is common in sales and product
domains. It is also common in manufacturing, where a description of a manufac-
tured thing is required that is distinct from the thing itself. Time and space
have been taken in motivating specification conceptual classes because they are
very common; it is not a rare modeling concept.

141

 10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Item

description
price
serial number
itemID

ProductSpecification

description
price
itemID

Item

serial number
Describes Better

Worse

1 *

Figure 10.7 Specifications or descriptions about other things. The "*" means a
multiplicity of "many." It indicates that one ProductSpecification may describe
many (*) Items.

When Are Specification Conceptual Classes Required?

The following guideline suggests when to use specifications:

Add a specification or description conceptual class (for example, Prod-
uctSpecification) when:
 There needs to be a description about an item or service, independent of the

current existence of any examples of those items or services.
 Deleting instances of things they describe (for example, Item) results in a loss

of information that needs to be maintained, due to the incorrect association
of information with the deleted thing.

 It reduces redundant or duplicated information.

Another Specification Example

As another example, consider an airline company that suffers a fatal crash of
one of its planes. Assume that all the flights are cancelled for six months pending
completion of an investigation. Also assume that when flights are cancelled, their
corresponding Flight software objects are deleted from computer memory.
Therefore, after the crash, all Flight software objects are deleted.

If the only record of what airport a flight goes to is in the Flight software
instances, which represent specific flights for a particular date and time, then
there is no longer a record of what flight routes the airline has.

142

SPECIFICATION OR DESCRIPTION CONCEPTUAL CLASSES

To solve this problem, a FlightDescription (or FlightSpecification) is required
that describes a flight and its route, even when a particular flight is not sched-
uled (see Figure 10.8).

Worse

Flight

date
time

FlightDescription

number

Airport

name

Describes-flights-to

Described-by

Flight

date
number
time

Airport

name
Flies-to

Better

1*

1*

1

*

Figure 10.8 Specifications about other things.

Descriptions of Services

Note that the prior example is about a service (a flight) rather than a good (such
as a veggieburger). Descriptions of services or service plans are commonly
needed.
As another example, a mobile phone company sells packages such as "bronze,"
"gold," and so forth. It is necessary to have the concept of a description of the
package (a kind of service plan describing rates per minute, wireless Internet
content, the cost, and so forth) separate from the concept of an actual sold pack-
age (such as "gold package sold to Craig Larman on Jan 1, 2002 at $55 per
month"). Marketing needs to define and record this service plan or MobileCom-
municationsPackageDescription before any are sold.

143

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

10.8 UML Notation, Models, and Methods: Multiple
Perspectives

The UP defines something called a Domain Model, which is illustrated with
UML notation. However, there is no term "Domain Model" to be found in the
official UML documentation. This points to an important insight:

The UML simply describes raw diagram types, such as class diagrams and
sequence diagrams. It does not superimpose a method or modeling perspec-
tive on these. Rather, a process (such as the UP) applies raw UML in the con-
text of methodologist-defined models.

For example, raw UML class diagramming notation can be used to create pic-
tures of domain conceptual classes (a domain model), software classes, rela-
tional database tables, and so forth.

Thus, do not confuse the basic UML diagram notation with its application to
visualizing various kinds of models defined by methodologists (see Figure 10.9).
This point applies not only to UML class diagrams, but to most UML notation.

As another example of raw diagrams being interpreted differently in different
models, UML sequence diagrams can be used to illustrate messaging between
software objects (as in the UP Design Model), or interaction between people and
parties in the real world (as in the UP Business Object Model).

This insight was emphasized in the Syntropy object-oriented method [CD94],
and reiterated by Martin Fowler in UML Distilled [FSOO]. That is, the same dia-
gramming notation may be used for three perspectives and types of models:

1. Essential or conceptual perspective—the diagrams are interpreted as
describing things in the real world or domain of interest.

2. Specification perspective—the diagrams (using the same notation as for
essential models) are interpreted as describing software abstractions or
components with specifications and interfaces, but no commitment to a par-
ticular implementation (for example, not specifically a class in C# or Java).

3. Implementation perspective—the diagrams (using the same notation as
for essential models) are interpreted as describing software implementa-
tions in a particular technology and language (such as Java).

144

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money
. . .

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model

Raw UML class diagra
notation used in an
essential model
visualizing real-world
concepts.

UP Design Model

Raw UML class diagra
notation used in a
specification model
visualizing software
components.

1 1

1 1

Figure 10.9 Raw UML notation is applied in different perspectives and models
defined by a process or method.

Superimposing Terminology: UML vs. Methods

In the raw UML, the rectangular boxes shown in Figure 10.9 are called classes,
but note that in the UML, this term encompasses a variety of phenomenon—
physical things, software things, events, and so forth.6 A process or method will
superimpose alternative terminology on top of the UML. For example, in the UP,
when the UML boxes are drawn in the Domain Model, they may be called
domain concepts or conceptual classes; the Domain Model offers a concep-
tual perspective. In the UP, when UML boxes are drawn in the Design Model,
they are officially called design classes; the Design Model offers a specification
or implementation perspective, as desired by the modeler.

Regardless of the definition, the bottom line is that it is useful to distinguish
between the perspective of an analyst looking at real-world concepts such as a
sale (a conceptual perspective), and software designers specifying software com-
ponents such as a Sale software class (a specification or implementation per-
spective).

The UML can be used to illustrate both perspectives with very similar notation
and terminology, so it is important to bear in mind which perspective is being
taken.

A UML class is a special case of the very general UML model element classifier—
something with structural features and/or behavior, including classes, actors, inter-
faces, and use cases.

145

UML NOTATION, MODELS, AND METHODS: MULTIPLE PERSPECTIVES

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

To keep things clear, this book will use class-related terms as follows, which is
consistent with the UML and the UP:
• Conceptual class — real-world concept or thing. A conceptual or essen-
tial perspective. The UP Domain Model contains conceptual classes.
• Software class — a class representing a specification or implementation
perspective of a software component, regardless of the process or method.
• Design class — a member of the UP Design Model. It is a synonym for
software class, but for some reason I wish to emphasize that it is a class
in the Design Model. The UP allows a design class to be either a specifica-
tion or implementation perspective, as desired by the modeler.
• Implementation class — a class implemented in an object-oriented lan-
guage such as Java.
• Class — as in the UML, the general term representing either a real-world
thing (a conceptual class) or software thing (a software class).

10.9 Lowering the Representational Gap

Please consider Figure 10.10. Why do books and educators discussing object
design common only show the use of software classes whose names reflect
domain vocabulary? Why choose a software class name such as Sale, and what
does a Sale do?

Simply, choosing names that reflect the domain vocabulary (Sale) enhances
quick comprehension and provides a clue as to what to expect from the chunk of
code in a Sale software class. We have a mental or domain model of the domain
in question (for example, a store selling things). In the real world, we know that
a sale has a date. Consequently, if we create a Java class named Sale, and give it
the responsibility of knowing about a real sale and its date, then the Java class
Sale somewhat corresponds to our mental or domain model of the real domain;
that is, it appeals to our "intuitions" of the domain.

The Domain Model provides a visual dictionary of the domain vocabulary
and concepts from which to draw inspiration for the naming of some things
in the software design.

This relates to the issue of representational gap or semantic gap—the gap
between our mental model of the domain and its representation in software.

146

LOWERING THE REPRESENTATIONAL GAP

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real w
in creating software classes.

Therefore, the representational gap between how stakeholders con
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

Figure 10.10 In object design and programming it is common to create software classes
whose names and information is inspired from the real world domain.

At one extreme, we could directly program the NextGen POS application in raw binary
code to invoke the processor instruction set. We understand that the gap in
representations is huge, and there will be a real cost—albeit hard to quantify—in
software with such a large representational gap because it is hard to comprehend or
relate to the problem domain. Closer to the other end of the spectrum are object
technologies that allow us to chunk code into classes whose names reflect the kind of
chunking we perceive in the domain. In the real world we perceive a "chunk" (or event)
called a sale, so in software land we have a software class called Sale. This closer
one-to-one mapping between the domain vocabulary and our software vocabulary and its
chunking reduces the representational gap. This speeds comprehension of existing code
(because it works in ways we expect, knowing the domain) and suggests "natural" ways to
extend the code in ways that similarly correspond to the domain, or appeal to our
intuitions of the domain. Put simply, the software model reminds us of the conceptual or
mental model, and works in predictable ways.
There is a practical advantage to software models that reduce the representational gap.
Most software engineers know this is true, even if it is hard to quantify. Indeed, a proof of
this is that Java obfuscators make source code hard to practically reverse-engineer
from bytecode by changing the names of Java

147

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

classes and methods so they are unintelligible, and thus no longer appeal to our
intuitions of the domain, even though the control and data structures are
unchanged.

Of course, object technology is also of value because it can support the design of
elegant, loosely coupled systems that scale and extend easily, as will be explored
in the remainder of the book. A lowered representational gap is useful, but argu-
ably secondary to the advantage of objects to support ease of change and exten-
sion, and their support to manage and hide complexity.

10.10 Example: The NextGen POS Domain Model

The list of conceptual classes generated for the NextGen POS domain may be
represented graphically (see Figure 10.11) to show the start of the Domain
Model.

StoreRegister SaleItem

Payment

Sales
LineItem Cashier Customer Manager

Product
Catalog

Product
Specification

Figure 10.11 Initial Domain Model.

Consideration of attributes and associations for the Domain Model will be
deferred to subsequent chapters.

10.11 Domain Models Within the UP

As suggested in the example of Table 10.2, a Domain Model is usually both
started and completed in elaboration.

Inception

Domain models are not strongly motivated in inception, since inception's pur-
pose is not to do a serious investigation, but rather to decide if the project is
worth deeper investigation in an elaboration phase.

148

DOMAIN MODELS WITHIN THE UP

Discipline Artifact
Iteration→

Incep.
I1

Elab.
E1..En

Const.
C1..Cn

Trans.
T1..T2

Business Modeling Domain Model s
Use-Case Model (SSDs) s r
Vision s r
Supplementary Specification s r

Requirements

Glossary s r
Design Model s r
SW Architecture Document s

Design

Data Model s r
Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 10.2 Sample UP artifacts and timing, s - start; r - refine

Elaboration

The Domain Model is primarily created during elaboration iterations, when the
need is highest to understand the noteworthy concepts and map some to soft-
ware classes during design work.

Although ironically a significant number of pages will be devoted to explaining
domain object modeling, in experienced hands the development of a (partial,
incrementally growing) domain model in each iteration should only take a few
hours. This is further shortened by the use of predefined analysis patterns.

The UP Business Object Model vs. Domain Model

The UP Domain Model is an official variation of the less common UP Business
Object Model (BOM). The UP BOM—not to be confused with how other people
or methods may define a BOM, which is a widely used term with different mean-
ings—is a kind of enterprise model used to describe the entire business. It may
be used when doing business process engineering or reengineering, independent
of any one software application (such as the NextGen POS). To quote:

[The UP BOM] serves as an abstraction of how business workers
and business entities need to be related and how they need to
collaborate in order to perform the business. [RUP]

The BOM is represented with several different diagrams (class, activity, and
sequence) that illustrate how the entire enterprise runs (or should run). It is
most useful if doing enterprise-wide business process engineering, but that is a
less common activity than creating a single software application.

149

10 - DOMAIN MODEL: VISUALIZING CONCEPTS

Consequently, the UP defines the Domain Model as the more commonly created
subset artifact or specialization of the BOM. To quote:

You can choose to develop an "incomplete" business object model,
focusing on explaining "things" and products important to a
domain. ... This is often referred to as a domain model. [RUP]

10.12 Further Readings

Odell's Object-Oriented Methods: A Foundation provides a solid introduction to
conceptual domain modeling. Cook and Daniel's Designing Object Systems is
also useful.
Fowler's Analysis Patterns offers worthwhile patterns in domain models, and is
definitely recommended. Another good book that describes patterns in domain
models is Hay's Data Model Patterns: Conventions of Thought. Advice from data
modeling experts who understand the distinction between pure conceptual mod-
els and database schema models can be very useful for domain object modeling.
Java Modeling in Color with UML [CDL99] has more relevant domain modeling
advice than the title suggests. The authors identify common patterns in related
types and their associations; the color aspect is really a visualization of the com-
mon categories of these types, such as descriptions (blue), roles (yellow), and
moment-intervals (pink). Color is used to aid in seeing the patterns.
Since the original work by Abbot, linguistic analysis has acquired more sophisti-
cated techniques for object-oriented analysis, generally called natural language
modeling, or a variant. See [Moreno97] as an example.

150

UP ARTIFACTS

10.13 UP Artifacts

Artifact influence emphasizing the Domain Model is shown in Figure 10.12.

Figure 10.12 Sample UP artifact influence.

151

Glossary

Software
Architecture Doc.

Domain
Model

Requirements

Project
Management

Business
Modeling

Design

Sample UP Artifacts Partial artifacts,
refined in each

iteration.

Test

Test
Plan

Software
Dev. Plan

. . .

Use-Case Model

text
use

cases

:System

foo(x)

system
operation
contracts

system
sequence
diagrams

the domain objects,
attributes, and associations
that undergo state changes

the system operations are
handled by designing
software to fulfill the post-
conditions of the
contracts

bar(y)

use
case

diagrams

*
*

Design Model

system
operations

Environment

Development
Case

Chapter 11

DOMAIN MODEL:
ADDING ASSOCIATIONS

Objectives
• Identify associations for a domain model.
• Distinguish between need-to-know and comprehension-only
associations.

Introduction

It is useful to identify those associations of conceptual classes that are needed to
satisfy the information requirements of the current scenarios under develop-
ment, and which aid in comprehending the domain model. This chapter explores
the identification of suitable associations, and adds associations to the domain
model for the NextGen case study.

11.1 Associations

An association is a relationship between types (or more specifically, instances
of those types) that indicates some meaningful and interesting connection (see
Figure 11.1).

153

Figure 11.1 Associations.

Criteria for Useful Associations

Associations worth noting usually imply knowledge of a relationship that needs
to be preserved for some duration—it could be milliseconds or years, depending
on context. In other words, between what objects do we need to have some mem-
ory of a relationship? For example, do we need to remember what SalenLineItem
instances are associated with a Sale instance? Definitely, otherwise it would not
be possible to reconstruct a sale, print a receipt, or calculate a sale total.

Consider including the following associations in a domain model:
• Associations for which knowledge of the relationship needs to be pre-
served for some duration ("need-to-know" associations).
• Associations derived from the Common Associations List.

By contrast, do we need to have memory of a relationship between a current
Sale and a Manager? No, the requirements do not suggest that any such rela-
tionship is needed. It is not wrong to show a relationship between a Sale and
Manager, but it is not compelling or useful in the context of our requirements.
This is an important point. On a domain model with n different conceptual
classes, there can be n-(n-l) associations to other conceptual classes—a poten-
tially large number. Many lines on the diagram will add "visual noise" and make
it less comprehensible. Therefore, be parsimonious about adding association
lines. Use the criterion guidelines suggested in this chapter.

11.2 The UML Association Notation

An association is represented as a line between classes with an association
name. The association is inherently bidirectional, meaning that from instances
of either class, logical traversal to the other is possible.

154

SaleRegister
Records-current

1 1

association

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

In the UML associations are defined as "the semantic relationship between two
or more classifiers that involve connections among their instances."

SaleRegister Records-current 4
11

association name multiplicity

-"reading direction arrow"
-it has no meaning except to indicate direction
 reading the association label
-often excluded

Figure 11.2 The UML notation for associations.

The ends of an association may contain a multiplicity expression indicating the
numerical relationship between instances of the classes.

An optional "reading direction arrow" indicates the direction to read the association
name; it does not indicate direction of visibility or navigation.

If not present, it is conventional to read the association from left to right or top to
bottom, although the UML does not make this a rule (see Figure 11.2).

The reading direction arrow has no meaning in terms of the model; it is only an
aid to the reader of the diagram.

11.3 Finding Associations—Common Associations List

Start the addition of associations by using the list in Table 11.1.

It contains common categories that are usually worth considering. Examples are
drawn from the store and airline reservation domains.

155

FINDING ASSOCIATIONS—COMMON ASSOCIATIONS LIST

This traversal is purely abstract; it is not a statement about connections
between software entities.

156

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

Category Examples

A is a physical part of B Drawer — Register (or more specif-
ically, a POST)
Wing — Airplane

A is a logical part of B SalesLineItem — Sale
FlightLeg—FlightRoute

A is physically contained in/on B Register — Store, Item — Shelf
Passenger — Airplane

A is logically contained in B ItemDescription — Catalog
Flight— FlightSchedule

A is a description for B ItemDescription — Item
FlightDescription — Flight

A is a line item of a transaction or report B SalesLineItem — Sale
Maintenance Job — Maintenance-
Log

A is known/logged/recorded/reported/cap-
tured in B

Sale — Register
Reservation — FlightManifest

A is a member of B Cashier — Store
Pilot — Airline

A is an organizational subunit of B Department — Store
Maintenance — Airline

A uses or manages B Cashier — Register
Pilot — Airplane

A communicates with B Customer — Cashier
Reservation Agent — Passenger

A is related to a transaction B Customer — Payment
Passenger — Ticket

A is a transaction related to another trans-
action B

Payment — Sale
Reservation — Cancellation

A is next to B SalesLineItem — SalesLineItem
City— City

ASSOCIATION GUIDELINES

Category Examples

A is owned by B Register — Store
Plane — Airline

A is an event related to B Sale — Customer, Sale — Store
Departure — Flight

Table 11.1 Common Associations List.

High-Priority Associations

Here are some high-priority association categories that are invariably useful to
include in a domain model:
• A is a physical or logical part of B.
• A is physically or logically contained in/on B.
• A is recorded in B.

11.4 Association Guidelines

• Focus on those associations for which knowledge of the relationship needs
to be preserved for some duration ("need-to-know" associations).
• It is more important to identify conceptual classes than to identify
associations.
• Too many associations tend to confuse a domain model rather than illu-
minate it. Their discovery can be time-consuming, with marginal benefit.
• Avoid showing redundant or derivable associations.

11.5 Roles

Each end of an association is called a role. Roles may optionally have:
• name
• multiplicity expression
• navigability
Multiplicity is examined next, and the other two features are discussed in later
chapters.

157

158

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

Multiplicity

Multiplicity defines how many instances of a class A can be associated with
one instance of a class B (see Figure 11.3).

ItemStore Stocks

*

multiplicity of the role

1

Figure 11.3 Multiplicity on an association.

For example, a single instance of a Store can be associated with "many" (zero or
more, indicated by the *) Item instances.
Some examples of multiplicity expressions are shown in Figure 11.4.

zero or more;
"many"

one or more

one to 40

exactly 5

T

T

T

T

*

1..*

1..40

5

T
3, 5, 8

exactly 3, 5, or

Figure 11.4 Multiplicity values.

The multiplicity value communicates how many instances can be validly associ-
ated with another, at a particular moment, rather than over a span of time. For
example, it is possible that a used car could be repeatedly sold back to used car
dealers over time. But at any particular moment, the car is only Stocked-by one
dealer. The car is not Stocked-by many dealers at any particular moment. Simi-
larly, in countries with monogamy laws, a person can be Married-to only one
other person at any particular moment, even though over a span of time, they
may be married to many persons.

How DETAILED SHOULD ASSOCIATIONS BE?

The multiplicity value is dependent on our interest as a modeler and software
developer, because it communicates a domain constraint that will be (or could
be) reflected in software. See Figure 11.5 for an example and explanation.

ItemStore Stocks 4
1

or 0..1

Multiplicity should "1" or "0..1"?

The answer depends on our interest in using the model. Typically and practically, the muliplicity co
domain constraint that we care about being able to check in software, if this relationship was imple
in software objects or a database. For example, a particular item may become sold or discarded, a
stocked in the store. From this viewpoint, "0..1" is logical, but ...

Do we care about that viewpoint? If this relationship was implemented in software, we would proba
that an Item software instance would always be related to 1 particular Store instance, otherwise it indicates a fau
corruption in the software elements or data.

This partial domain model does not represent software objects, but the multiplicities record constra
value is usually related to our interest in building software or databases (that reflect our real-world d
checks. From this viewpoint, "1" may be the desired value.

*

Figure 11.5 Multiplicity is context dependent.

Rumbaugh gives another example of Person and Company in the Works-for asso-
ciation [Rumbaugh91]. Indicating if a Person instance works for one or many
Company instances is dependent on the context of the model; the tax depart-
ment is interested in many; a union probably only one. The choice usually prac-
tically depends on whom we are building the software for, and thus the valid
multiplicities in an implementation.

11.6 How Detailed Should Associations Be?

Associations are important, but a common pitfall in creating domain models is
to spend too much time during investigation trying to discover them.
It is critical to appreciate the following:

159

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

11.7 Naming Associations

Name an association based on a TypeName-VerbPhrase-TypeName format
where the verb phrase creates a sequence that is readable and meaningful in
the model context.

Association names should start with a capital letter, since an association repre-
sents a classifier of links between instances; in the UML, classifiers should start
with a capital letter. Two common and equally legal formats for a compound
association name are:
• Paid-by

• PaidBy

In Figure 11.6, the default direction to read an association name is left to right
or top to bottom. This is not a UML default, but a common convention.

Store

Contains

Person

Airline

Employs

1..*

SaleRegister Captures
1..*

1..*

PaymentPaid-by
1

FlightAssigned-to Plane
*

3Assigned-to
*

Supervises

*

1

1

1

1

1 1

1

160

Figure 11.6 Association names.

MULTIPLE ASSOCIATIONS BETWEEN Two TYPES

11.8 Multiple Associations Between Two Types

Two types may have multiple associations between them; this is not uncommon.
There is no outstanding example in our POS case study, but an example from
the domain of the airline is the relationships between a Flight (or perhaps more
precisely, a FlightLeg) and an Airport (see Figure 11.7); the flying-to and flying-
from associations are distinctly different relationships, which should be shown
separately.

Flight Airport

Flies-to

Flies-from

*

* 1

1

Figure 11.7 Multiple associations.

11.9 Associations and Implementation

During domain modeling, an association is not a statement about data flows,
instance variables, or object connections in a software solution; it is a statement
that a relationship is meaningful in a purely conceptual sense—in the real
world. Practically speaking, many of these relationships will typically be imple-
mented in software as paths of navigation and visibility (both in the Design
Model and Data Model), but their presence in a conceptual (or essential) view of
a domain model does not require their implementation.

When creating a domain model, we may define associations that are not neces-
sary during implementation. Conversely, we may discover associations that
need to be implemented but were missed during domain modeling. In these
cases, the domain model can be updated to reflect these discoveries.

Suggestion
Should prior investigative models such as a domain model be updated with
insights (such as new associations) revealed during implementation work?
Do not bother unless there is some future practical use for the model. If it is
just (as is sometimes the case) a temporary artifact used to provide inspira-
tion for a later step, and will not be meaningfully used later on, why update
it? Avoid making or updating any documentation or model unless there is a
concrete justification for future use.

Later on we will discuss ways to implement associations in an object-oriented
programming language (the most common is to use an attribute that references

161

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

an instance of the associated class), but for now, it is valuable to think of them
as purely conceptual expressions, not statements about a database or software
solution. As always, deferring design considerations frees us from extraneous
information and decisions while doing pure "analysis" investigations and maxi-
mizes our design options later on.

11.10 NextGen POS Domain Model Associations

We can now add associations to our POS domain model. We should add those
associations which the requirements (for example, use cases) suggest or imply a
need to remember, or which otherwise are strongly suggested in our perception
of the problem domain. When tackling a new problem, the common categories of
associations presented earlier should be reviewed and considered, as they repre-
sent many of the relevant associations that typically need to be recorded.

Unforgettable Relationships in the Store

The following sample of associations is justified in terms of a need-to-know. It is
based on the use cases currently under consideration.

Register Records Sale

Sale Paid-by Payment

ProductCatalog Records Prod-
uctSpecification

To know the current sale, gener-
ate a total, print a receipt.
To know if the sale has been paid,
relate the amount tendered to the
sale total, and print a receipt.
To retrieve an ProductSpecifica-
tion, given an itemID.

162

Applying the Category of Associations Checklist

We will run through the checklist, based on previously identified types, consid-
ering the current use case requirements.

Category System

A is a physical part of B Register — CashDrawer

A is a logical part of B SalesLineItem — Sale

A is physically contained in/on B Register — Store
Item — Store

NEXTGEN POS DOMAIN MODEL

Category System

A is logically contained in B ProductSpecification — Product-
Catalog
ProductCatalog — Store

A is a description for B ProductSpecification — Item

A is a line item of a transaction or report B SalesLineItem — Sale

A is logged/recorded/reported/captured in B (completed) Sales — Store
(current) Sale — Register

A is a member of B Cashier — Store

A is an organizational subunit of B not applicable

A uses or manages B Cashier — Register
Manager — Register
Manager — Cashier, but probably
not applicable.

A communicates with B Customer — Cashier

A is related to a transaction B Customer — Payment
Cashier — Payment

A is a transaction related to another trans-
action B

Payment — Sale

A is next to B SalesLineItem — SalesLineItem

A is owned by B Register — Store

11.11 NextGen POS Domain Model

The domain model in Figure 11.8 shows a set of conceptual classes and associa-
tions that are candidates for our POS application. The associations were prima-
rily derived from the candidate association checklist.

Preserve Only Need-to-Know Associations?

The set of associations shown in the domain model of Figure 11.8 were, for the
most part, mechanically derived from the association checklist. However, it may
be desirable to be more choosy in the associations included in our domain model.
Viewed as a tool of communication, it is undesirable to overwhelm the domain

163

164 11 - DOMAIN MODEL: ADDING ASSOCIATIONS

model with associations that are not strongly required and which do not illumi-
nate our understanding. Too many uncompelling associations obscure rather
than clarify.
As previously suggested, the following criteria for showing associations is rec-
ommended:

• Focus on those associations for which knowledge of the relationship needs
to be preserved for some duration ("need-to-know" associations).
• Avoid showing redundant or derivable associations.

Register

ItemStore

Sale

Payment

Sales
LineItem

CashierCustomer

Manager

Product
Catalog

Product
Specification

Stocks

*

Houses
1..*

Used-by

*

Contains
1..*

Describes

*

Captured-on

Contained-in

1..*

Described-by

*

Records-sale-of

0..1

Started-by

Paid-by Initiated-by

Logs-
completed
6

*

3 Records-sales-on

1

1

1

1

1

1..*

11

1

1

1

1

1

1

1

1 1

1

Initiated-by

1

1

Figure 11.8 A partial domain model.

NEXTGEN POS DOMAIN MODEL

Based on this advice, not every association currently shown is compelling. Con-
sider the following:

Association Discussion

Sale Entered-by Cashier The requirements do not indicate a need-to-
know or record the current cashier. Also, it is
derivable if the Register Used-by Cashier asso-
ciation is present.

Register Used-by Cashier The requirements do not indicate a need-to-
know or record the current cashier.

Register Started-by Manager The requirements do not indicate a need-to-
know or record the manager who starts up a
Register.

Sale Initiated-by Customer The requirements do not indicate a need-to-
know or record the current customer who ini-
tiates a sale.

Store Stocks Item The requirements do not indicate a need-to-
know or maintain inventory information.

SalesLineItem Records-sale-of
Item

The requirements do not indicate a need-to-
know or maintain inventory information.

Note that the ability to justify an association in terms of need-to-know is depen-
dent on the requirements; obviously a change in these—such as requiring that
the cashier's ID show on a receipt—changes the need to remember a relation-
ship.
Based on the above analysis, it may be justifiable to delete the associations in
question.

Associations for Need-to-Know vs. Comprehension

A strict need-to-know criterion for maintaining associations will generate a min-
imal "information model" of what is needed to model the problem domain—
bounded by the current requirements under consideration. However, this
approach may create a model that does not convey (to us or anyone else) a full
understanding of the domain.
In addition to being a need-to-know model of information about things, the
domain model is a tool of communication in which we are trying to understand
and communicate to others important concepts and their relationships. From
this viewpoint, deleting some associations that are not strictly demanded on a

165

166

11 - DOMAIN MODEL: ADDING ASSOCIATIONS

need-to-know basis can create a model that misses the point—it does not com-
municate key ideas and relationships.
For example, in the POS application: although on a strict need-to-know basis it
might not be necessary to record Sale Initlated-by Customer, its absence leaves
out an important aspect in understanding the domain—that a customer gener-
ates sales.
In terms of associations, a good model is constructed somewhere between a min-
imal need-to-know model and one that illustrates every conceivable relation-
ship. The basic criterion for judging its value?—Does it satisfy all need-to-know
requirements and additionally clearly communicate an essential understanding
of the important concepts in the problem domain?

Emphasize need-to-know associations, but add choice comprehension-only
associations to enrich critical understanding of the domain.

Chapter 12

DOMAIN MODEL:
ADDING ATTRIBUTES

Any sufficiently advanced bug is indistinguishable from a feature.

—Rich Kulawiec

Objectives

• Identify attributes in a domain model.
• Distinguish between correct and incorrect attributes.

Introduction

It is useful to identify those attributes of conceptual classes that are needed to
satisfy the information requirements of the current scenarios under develop-
ment. This chapter explores the identification of suitable attributes, and adds
attributes to the domain model for the NextGen domain model.

12.1 Attributes

An attribute is a logical data value of an object.

Include the following attributes in a domain model: Those for which the
requirements (for example, use cases) suggest or imply a need to remember
information.

167

12 - DOMAIN MODEL: ADDING ATTRIBUTES

For example, a receipt (which reports the information of a sale) normally
includes a date and time, and management wants to know the dates and times
of sales for a variety of reasons. Consequently, the Sale conceptual class needs a
date and time attribute.

12.2 UML Attribute Notation

Attributes are shown in the second compartment of the class box (see Figure
12.1). Their type may optionally be shown.

Sale

date
startTime : Time

attributes

Figure 12.1 Class and attributes.

12.3 Valid Attribute Types

There are some things that should not be represented as attributes, but rather
as associations. This section explores valid attributes.

Keep Attributes Simple

Intuitively, most simple attribute types are what are often thought of as primi-
tive data types, such as numbers. The type of an attribute should not normally
be a complex domain concept, such as a Sale or Airport. For example, the follow-
ing currentRegister attribute in the Cashier class in Figure 12.2 is undesirable
because its type is meant to be a Register, which is not a simple attribute type
(such as Number or String). The most useful way to express that a Cashier uses
a Register is with an association, not with an attribute..

The attributes in a domain model should preferably be simple attributes or
data types.
Very common attribute data types include: Boolean, Date, Number, String
(Text), Time
Other common types include: Address, Color, Geometries (Point, Rectangle),
Phone Number, Social Security Number, Universal Product Code (UPC), SKU,
ZIP or postal codes, enumerated types

168

Cashier

name
currentRegister

Cashier

name

Register

number
Uses

Worse

Better

not a "simple" attribute

1 1

Figure 12.3 Avoid representing complex domain concepts as attributes; use associations.

To repeat an earlier example, a common confusion is modeling a complex domain concept
as an attribute. To illustrate, a destination airport is not really a string; it is a complex thing
that occupies many square kilometers of space. Therefore, Flight should be related to Airport
via an association, not with an attribute, as shown in Figure 12.3.

Relate conceptual classes with an association, not with an attribute.

Conceptual vs. Implementation Perspectives: What About Attributes in
Code?

The restriction that attributes in the domain model be only of simple data types does not
imply that C++ or Java attributes (data members, instance fields) must only be of simple,
primitive data types. The domain model focuses on pure conceptual statements about a
problem domain, not software components.
Later, during design and implementation work, it will be seen that the associations between
objects expressed in the domain model will often be implemented as attributes that reference
other complex software objects. However, this is but one of a number of possible design
solutions to implement an association, and so the decision should be deferred during domain
modeling.

169

Flight

Flight

destination
Worse

Better
Flies-to Airport1 1

destination is a complex
concept

VALID ATTRIBUTE TYPES

Figure 12.2 Relate with associations, not attributes.

12 - DOMAIN MODEL: ADDING ATTRIBUTES

Data Types

Attributes should generally be data types. This is a UML term that implies a
set of values for which unique identity is not meaningful (in the context of our
model or system) [RJB99]. For example, it is not (usually) meaningful to distin-
guish between:

• Separate instances of the Number 5.

• Separate instances of the String 'cat'.

• Separate instances of PhoneNumber that contain the same number.

• Separate instances of Address that contain the same address.

By contrast, it is meaningful to distinguish (by identity) between two separate
instances of a Person whose names are both "Jill Smith" because the two
instances can represent separate individuals with the same name.

In terms of software, there are few situations where one would compare the
memory addresses of instances of Number, String, PhoneNumber, or Address;
only value-based comparisons are relevant. By contrast, it is conceivable to com-
pare the memory addresses of Person instances, and to distinguish them, even if
they had the same attribute values, because their unique identity is important.

Thus, all primitive types (number, string) are UML data types, but not all data
types are primitives. For example, PhoneNumber is a non-primitive data type.

These data type values are also known as value objects.

The notion of data types can get subtle. As a rule of thumb, stick to the basic test
of "simple" attribute types: Make it an attribute if it is naturally thought of as
number, string, boolean, date, or time (and so on); otherwise, represent it as a
separate conceptual class.

If in doubt, define something as a separate conceptual class rather than as an
attribute.

12.4 Non-primitive Data Type Classes

The type of an attribute may be expressed as a non-primitive class in its own
right in a domain model. For example, in the POS system there is an item iden-
tifier. It is typically viewed as just a number. So should it be represented as a
non-primitive class? Apply this guideline:

170

NON-PRIMITIVE DATA TYPE CLASSES

Represent what may initially be considered a primitive data type (such as a
number or string) as a non-primitive class if:

• It is composed of separate sections.

o phone number, name of person
• There are operations usually associated with it, such as parsing or valida-
tion.

o social security number

• It has other attributes.
o promotional price could have a start (effective) date and end
date

• It is a quantity with a unit.

o payment amount has a unit of currency

• It is an abstraction of one or more types with some of these qualities.
o item identifier in the sales domain is a generalization of types
such as Universal Product Code (UPC) or European Article
Number (EAN)

Applying these guidelines to the POS domain model attributes yields the follow-
ing analysis:

• The item identifier is an abstraction of various common coding schemes,
including UPC-A, UPC-E, and the family of EAN schemes. These numeric
coding schemes have subparts identifying the manufacturer, product, coun-
try (for EAN), and a check-sum digit for validation. Therefore, there should
be a non-primitive ItemID class, because it satisfies many of the guidelines
above.

• The price and amount attributes should be non-primitive Quantity or Money
classes because they are quantities in a unit of currency.

• The address attribute should be a non-primitive Address class because it
has separate sections.

The classes ItemID, Address, and Quantity are data types (unique identity of
instances is not meaningful) but they are worth considering as separate classes
because of their qualities.

Where to Illustrate Data Type Classes?

Should the ItemID class be shown as a separate conceptual class in a domain
model? It depends on what you want to emphasize in the diagram. Since ItemID

171

12 - DOMAIN MODEL: ADDING ATTRIBUTES

is a data type (unique identity of instances is not important), it may be shown in
the attribute compartment of the class box, as shown in Figure 12.4. But since it
is a non-primitive class, with its own attributes and associations, it may be
interesting to show it as a conceptual class in its own box. There is no correct
answer; it depends on how the domain model is being used as a tool of communi-
cation, and the significance of the concept in the domain.

OK

OK

ItemIDProduct
Specification

Product
Specification

id : ItemID

1
AddressStore

Store

address : Address

11 1

Figure 12.4 If the attribute class is a data type, it may be shown in the attribute
box.

A domain model is a tool of communication; choices about what is shown
should be made with that consideration in mind.

12.5 Design Creep: No Attributes as Foreign Keys

Attributes should not be used to relate conceptual classes in the domain model.
The most common violation of this principle is to add a kind of foreign key
attribute, as is typically done in relational database designs, in order to associ-
ate two types. For example, in Figure 12.5 the currentRegisterNumber attribute
in the Cashier class is undesirable because its purpose is to relate the Cashier to
a Register object. The better way to express that a Cashier uses a Register is
with an association, not with a foreign key attribute. Once again, relate types
with an association, not with an attribute.

There are many ways to relate objects—foreign keys being one—and we will
defer how to implement the relation until design, in order to avoid design
creep.

172

Cashier

name
currentRegisterNumber

Cashier

name

Register

number
Uses

Worse

Better

a "simple" attribute, but being
used as a foreign key to rela t
another object

1 1

Figure 12.5 Do not use attributes as foreign keys.

12.6 Modeling Attribute Quantities and Units

Most numeric quantities should not be represented as plain numbers. Consider
price or velocity. These are quantities with associated units, and it is common to
require knowing the unit, and to support conversions. The NextGen POS soft-
ware is for an international market and needs to support prices in multiple cur-
rencies. In the general case, the solution is to represent Quantity as a distinct
conceptual class, with an associated Unit [Fowler96]. Since quantities are con-
sidered data types (unique identity of instances is not important), it is accept-
able to collapse their illustration into the attribute section of the class box (see
Figure 12.6). It is also common to show Quantity specializations. Money is a
kind of quantity whose units are currencies. Weight is a quantity with units
such as kilograms or pounds.

MODELING ATTRIBUTE QUANTITIES AND UNITS

Payment

amount : Number

Payment Quantity

amount : Number

Unit

...

Payment

amount : Quantity

Has-amount4
1*

Is-in4
1*

not useful

quantities are pure data
values, so suitable to show
in attribute section better

Payment

amount : Money

variation : Money is a
specialized Quality whose
unit is a currency

Figure 12.6 Modeling quantities.

173

12 - DOMAIN MODEL: ADDING ATTRIBUTES

12.7 Attributes in the NextGen Domain Model

The attributes chosen reflect the requirements for this iteration—the Process
Sale scenarios of this iteration.

Payment

Product-
Specification

Sale

SalesLineItem

Store

amount—To determine if sufficient payment was
provided, and to calculate change, an amount (also
known as "amount tendered") must be captured.
description—To show the description on a display
or receipt.
id—To look up a ProductSpecification, given an
entered itemID, it is necessary to relate them to a
id.
price—To calculate the sales total, and show the
line item price.
date, time—A receipt is a paper report of a sale. It
normally shows date and time of sale.
quantity—To record the quantity entered, when
there is more than one item in a line item sale (for
example, five packages of tofu).
address, name—The receipt requires the name and
address of the store.

174

Figure 12.7 Domain model showing attributes.

Register Item Store

address : Address
name : Text

Sale

date : Date
time : Time

Payment

amount : Money

Sales
LineItem

quantity : Integer

Cashier Customer Manager

Product
Catalog

Product
Specification

description : Text
price : Money
id: ItemID

MULTIPLICITY FROM SALESLINEITEM TO ITEM

12.8 Multiplicity From SalesLineItem to Item

It is possible for a cashier to receive a group of like items (for example, six tofu
packages), enter the itemID once, and then enter a quantity (for example, six).
Consequently, an individual SalesLineItem can be associated with more than
one instance of an item.
The quantity that is entered by the cashier may be recorded as an attribute of
the SalesLineItem (Figure 12.8). However, the quantity can be calculated from
the actual multiplicity value of the relationship, so it may be characterized as a
derived attribute—one that may be derived from other information. In the
UML, a derived attribute is indicated with a "/" symbol.

SalesLineItem ItemRecords-sale-of 10..1

SalesLineItem ItemRecords-sale-of0..1 1..*

Each line item records a
separate item sale.
For example, 1 tofu package

Each line item can record a
group of the same kind of ite
For example, 6 tofu package

SalesLineItem

/quantity

ItemRecords-sale-of0..1 1..*

derived attribute from
the multiplicity value

Figure 12.8 Recording the quantity of items sold in a line item.

12.9 Domain Model Conclusion

Combining the conceptual classes, associations, and attributes discovered in the
previous investigation yields the model illustrated in Figure 12.9.
A relatively useful domain model for the domain of the POS application has
been created. There is no such thing as a single correct model. All models are
approximations of the domain we are attempting to understand. A good domain
model captures the essential abstractions and information required to under-
stand the domain in the context of the current requirements, and aids people in
understanding the domain—its concepts, terminology, and relationships.

175

12 - DOMAIN MODEL: ADDING TTRIBUTES

Register

ItemStore

address
name

Sale

date

time

Payment

amount

Sales
LineItem

quantity

CashierCustomer

Manager

Product
Catalog

Product
Specification

description
price
itemID

Stocks

*

Houses
1..*

Used-by

*

Contains
1..*

Describes

*

Captured-on

Contained-in

1..*

Described-by

*

Records-sale-of

0..1

Started-by

Paid-by Initiated-by

Logs-
completed
6

*

3 Records-sales-on

1

1

1

1

1

1..*

11

1

1

1

1

1

1

1

1 1

1

Figure 12.9 A partial domain model.

176

Chapter 13

USE-CASE MODEL:
ADDING DETAIL WITH
OPERATION CONTRACTS

A verbal contract isn't worth the paper it's written on.

—Samuel Goldwyn

Objectives
• Create contracts for system operations.

Introduction

Contracts for operations can help define system behavior; they describe the out-
come of executing system operation in terms of state changes to domain objects.
This chapter explores their use.

13.1 Contracts

Use cases are the primary mechanism in the UP to describe system behavior,
and are usually sufficient. However, sometimes a more detailed description of
system behavior has value. Contracts describe detailed system behavior in
terms of state changes to objects in the Domain Model, after a system operation
has executed.

177

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

System Operations and the System Interface

Contracts may be defined for system operations�operations that the system
as a black box offers in its public interface to handle incoming system events.
System operations can be identified by discovering these system events, as
shown in Figure 13.1.

: Cashier
:System

addLineItem(itemID, quantity)

endSale()

makePayment(amount)

description, total

total with taxes

change due, receipt

* [more items]

makeNewSale()

these input system events
invoke system operations

the system event
makeNewSale invokes a
system operation called
makeNewSale and so forth

this is the same as in object-
oriented programming when
we say the message foo
invokes the method (handling
operation) foo

Figure 13.1 System operations handle input system events.

The entire set of system operations, across all use cases, defines the public system
interface, viewing the system as a single component or class. In the UML, the
system as a whole can be represented by a class.

13.2 Example Contract: enterltem

Before examining the reason to write a contract, an example is worthwhile. The
following describes a contract for the enterltem system operation.

178

CONTRACT SECTIONS

Contract CO2: enterltem

Operation: Cross
References:
Preconditions:

Postconditions:

enterltem(itemlD : ItemID, quantity : integer) Use
Cases: Process Sale There is a sale underway.

- A SalesLineltem instance sli was created (instance cre
ation).

- sli was associated with the current Sale (association
formed).

-sli.quantity became quantity (attribute modification).
- sli was associated with a ProductSpecification, based on

itemID match (association formed).

13.3 Contract Sections

A description of each section in a contract is shown in the following schema.

Operation: Cross

References:

Preconditions:

Postconditions:

Name of operation, and parameters

(optional) Use cases this operation can occur within

Noteworthy assumptions about the state of the system or
objects in the Domain Model before execution of the opera-
tion. These will not be tested within the logic of this operation,
are assumed to be true, and are non-trivial assumptions the
reader should know were made.

-The state of objects in the Domain Model after completion of
the operation. Discussed in detail in a following section.

13.4 Postconditions

Notice that each of the postconditions in the enterltem example included a cate-
gorization such as instance creation or association formed. Here is a key point:

The postconditions describe changes in the state of objects in the Domain
Model. Domain Model state changes include instances created, associations
formed or broken, and attributes changed.

179

180

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

Postconditions are not actions to be performed during the operation; rather, they
are declarations about the Domain Model objects that are true when the operation
has finished�after the smoke has cleared.
To summarize, the postconditions fall into these categories:

! Instance creation and deletion.
! Attribute modification.
! Associations (to be precise, UML links) formed and broken.

As an example of a post-condition that breaks an association, consider an opera-
tion to allow the deletion of line items. The post-condition could read "The
selected SalesLineltem's association with the Sale was broken." In other
domains, when a loan is paid off or someone cancels their membership in some-
thing, associations are broken.
Instance deletion postconditions are most rare, because one does not usually
care about explicitly enforcing the destruction of a thing in the real world. How-
ever, as an example: In many countries, after a person has declared bankruptcy
and seven or ten years have passed, all records of their bankruptcy declaration
must be destroyed, by law. Note that this is a conceptual perspective, not imple-
mentation. These are not statements about freeing up memory in a computer
occupied by software objects.
The important quality is to be declarative and state change-oriented rather than
action-oriented, since postconditions are declarations about states or outcomes
rather than a description of actions to execute, or a design of a solution.

Postconditions Are Related to the Domain Model

These postconditions are expressed in the context of the Domain Model objects.
What instances can be created?�those from the Domain Model; What associa-
tions can be formed?�those in the Domain Model; and so on.

An Advantage of Postconditions: Analytical Detail

Expressed in a declarative state-change fashion, the contract is an excellent tool
for requirements analysis that describes the state changes required of a system
operation (in terms of the Domain Model objects) without having to describe
how they are to be achieved. In other words, the software design and solution
can be deferred, and one can focus analytically on what must happen, rather
than how it is to be accomplished. Furthermore, the postconditions support fine-
grained detail and specificity in declaring what the outcome of the operation
must be.

POSTCONDITIONS

It is also possible to express this level of detail in the use cases, but usually
undesirable, as they would then become overly verbose and detailed.

Consider the postconditions:

Postconditions: - A SalesLineltem instance sli was created (instance cre-
ation).

- sli was associated with the current Sale (association
formed).

-sli.quantity became quantity (attribute modification).
- sli was associated with a ProductSpecification, based on

itemID match (association formed).

No comment is made about how a SalesLineltem instance is created, or associated
with a Sale. This could be a statement about writing on bits of paper and stapling
them together, using Java technologies to create software objects and connect
them, or inserting rows in a relational database.

The Spirit of Postconditions: The Stage and Curtain

Express postconditions in the past tense, to emphasize they are declarations
about a state change in the past. For example:
� (better) A SalesLineltem was created,

rather than

� (worse) Create a SalesLineltem.

Think about postconditions using the following image: The
system and its objects are presented on a theatre stage.

1. Before the operation, take a picture of the stage.

2. Close the curtains on the stage, and apply the system operation (background
noise of clanging, screams, and screeches...).

3. Open the curtains and take a second picture.
4. Compare the before and after pictures, and express as postconditions the

changes in the state of the stage (A SalesLineltem was created...).

If Contracts Are Used, How Complete Should Postconditions Be?

First, contracts may not be needed. This question is discussed in a subsequent
section. But assuming some contracts are desired, generating a complete and
detailed set of postconditions for a system operation is not likely�or even neces-
sary�during requirements work. Treat their creation as an initial best guess,
with the understanding that the contracts will not be complete. Their early cre-
ation�even if incomplete�is certainly better than deferring this investigation

181

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

until design work, when developers should be concerned with the design of a
solution, rather than investigating what should be done.
Some of the fine details�and perhaps even larger ones�will be discovered during
the design work. That is not necessarily a bad thing; there is a diminishing return
on effort expended during requirements analysis if it is drawn out too long.
Some discovery naturally arises during design work, which can then inform
the requirements work of a later iteration. This is one of the advantages of
iterative development: discoveries generated during a prior iteration can
enhance the investigation and analysis work of the following one.

13.5 Discussion�enterltem Postconditions

The following section dissects the motivation for the postconditions of the
enter-Item system operation.

Instance Creation and Deletion

After the itemID and quantity of an item have been entered, what new object
should have been created? A SalesLineltem. Thus:
� A SalesLineltem instance sll was created (instance creation).
Note the naming of the instance. This name will simplify references to the new
instance in other post-condition statements.

Attribute Modification

After the itemID and quantity of an item have been entered by the cashier, what
attributes of new or existing objects should have been modified? The quantity of
the SalesLineltem should have become equal to the quantity parameter. Thus:
� sll.quantity became quantity (attribute modification).

Associations Formed and Broken

After the itemID and quantity of an item have been entered by the cashier, what
associations between new or existing objects should have been formed or broken?
The new SalesLineltem should have been related to its Sale, and related to its
ProductSpeciflcation. Thus:
� sli was associated with the current Sale (association formed).
� sli was associated with a ProductSpeciflcation, based on ItemID match

(association formed).

182

WRITING CONTRACTS LEADS TO DOMAIN MODEL UPDATES

Note the informal indication that it forms a relationship with a particular
Prod-uctSpecification�the one whose itemID matches the parameter. More fancy
and formal language approaches are possible, such as using the Object
Constraint Language (OCL). Recommendation: Keep it plain and simple.

13.6 Writing Contracts Leads to Domain Model Updates

It is common during the creation of the contracts to discover the need to record
new conceptual classes, attributes, or associations in the Domain Model. Do not
be limited to the prior definition of the Domain Model; enhance it as you make
new discoveries while thinking through the operation contracts.

13.7 When Are Contracts Useful? Contracts vs. Use Cases?

The use cases are the main repository of requirements for the project. They may
provide most or all of the detail necessary to know what to do in the design, in
which case, contracts are not helpful. However, there are situations where the
details and complexity of required state changes are awkward to capture in use
cases.
For example, consider an airline reservation system and the system operation
addNewReservatlon. The complexity is very high regarding all the domain
objects that must be changed, created, and associated. These fine-grained
details can be written up in the use case associated with this operation, but it
will make the use case extremely detailed (for example, noting each attribute in all
the objects that must change).
Observe that the contract post-condition format offers and encourages a very
precise, analytical, exacting language that supports detailed thoroughness.
If, just based on the use cases and through ongoing (verbal) collaboration with a
subject matter expert, the developers can comfortably understand what to do,
then avoid writing contracts.
However, in those situations were there is high complexity and detailed preci-
sion adds value, contracts are another requirements tool.
They will not be practically motivated very often, so if a team is making con-
tracts for every system operation of every use case, it is a warning that either
the use cases are poorly done, there is not enough ongoing collaboration or
access to a subject matter expert, or the team is doing too much unnecessary
documentation.
This NextGen POS case study shows more contracts than are probably necessary,
for educational reasons. In practice, most of the details they record are obviously
inferable from the use case text. On the other hand, "obvious" is a very slippery
concept.

183

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

13.8 Guidelines: Contracts

Apply the following advice to create contracts:

To make contracts:

1. Identify system operations from the SSDs.

2. For system operations that are complex and perhaps subtle in their
results, or which are not clear in the use case, construct a contract.

3. To describe the postconditions, use the following categories:

o instance creation and deletion

o attribute modification

o associations formed and broken

Advice on Writing Contracts

" State the postconditions in a declarative, passive past tense form (was ...)
to emphasize the declaration of a state change rather than a design of
how it is going to be achieved. For example:

(better) A SalesLineltem was created. .)

(worse) Create a SalesLineltem.

" Remember to establish a memory between existing objects or those
newly created by defining the forming of an association. For example,
it is not enough that a new SalesLineltem instance is created when the
enterltem operation occurs. After the operation is complete, it should
also be true that the newly created instance was associated with Sale;
thus:

The SalesLineltem was associated with the Sale (association
formed).

The Most Common Mistake in Creating Contracts

The most common problem is forgetting to include the forming of associations.
Particularly when new instances are created, it is very likely that associations to
several objects need be established. Don't forget!

184

NEXTGEN POS EXAMPLE: CONTRACTS

13.9 NextGen POS Example: Contracts

System Operations of Process Sale

Contract CO1: makeNewSale

Operation: Cross
References:
Preconditions:

Postconditions:

makeNewSale()
Use Cases: Process Sale
none

- A Sale instance s was created (instance creation).
- s was associated with the Register (association formed).
- Attributes of s were initialized.

Note the vague description in the last post-condition. If sufficient, this is fine.

On a project, all these particular postconditions are so obvious from the use case
that the makeNewSale contract should probably not be written.

Recall one of the guiding principles of healthy process and the UP: Keep it as
light as possible, and avoid all artifacts unless they really add value.

Contract CO2: enterltem

Operation: Cross
References:
Preconditions:

Postconditions:

enterltem(itemlD : ItemID, quantity : integer)
Use Cases: Process Sale There is a sale
underway.

- A SalesLineltem instance sli was created (instance cre
ation).

- sli was associated with the current Sale (association
formed).

- sli.quantity became quantity (attribute modification).
- sli was associated with a ProductSpecification, based on

itemID match (association formed).

Contract COS: endSale

Operation: Cross
References:
Preconditions:

Postconditions:

endSaleQ
Use Cases: Process Sale
There is a sale underway.

- Sale.isComplete became true (attribute modification).

185

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

Contract CO4: makePayment

Operation: Cross
References:
Preconditions:

Postconditions:

makePayment(amount: Money) Use
Cases: Process Sale There is a sale
underway.

- A Payment instance p was created (instance creation).
- p.amountTendered became amount (attribute modification).
- p was associated with the current Sale (association

formed).
- The current Sale was associated with the Store (associa

tion formed); (to add it to the historical log of completed
sales)

13.10 Changes to the Domain Model

There is one datum suggested by these contracts that is not yet represented in the
domain model: completion of item entry to the sale. The endSale specification
modifies it, and it is probably a good idea later during design work for the
makePayment operation to test it, to disallow payments until a sale is complete.

One way to represent this information is with an isComplete attribute in the Sale,
of boolean data type:

There are alternatives, especially considered during design work. One technique is
called the State pattern, which is explored in Chapter 34. Another is the use of
"session" objects that track the state of a session and disallow out-of-order
operations; this too will be explored later.

13.11 Contracts, Operations, and the UML

Contracts in the UML: Operation Specifications

The UML formally defines operations. To quote:

An operation is a specification of a transformation or query that an
object may be called to execute [RJB99]

186

CONTRACTS, OPERATIONS, AND THE UML

For example, the elements of an interface are operations, in UML terms. An
operation is an abstraction, not an implementation. By contrast, a method (in the
UML) is an implementation of an operation.

A UML operation has a signature (name and parameters), and also an operation
specification, which describes the effects produced by executing the operation;
that is, the postconditions. The UML operation specification format is flexible,
and does not have be the contract format shown in this chapter. However, the
UML documents give as examples the contract style with pre- and postconditions,
as this is the most well-known approach to formal operation specifications.

To summarize: The UML defines operation specifications, which are specifiable in
the pre- and post-condition contract style. Note that, as emphasized in this
chapter, a UML operation specification may not show an algorithm or solution,
but only the state changes or effects of the operation.

In addition to using contracts to specify public operations of the entire System
(system operations), contracts can be applied to operations at any level of granu-
larity: the public operations (or interface) of a subsystem, an abstract class, and so
forth. The operations discussed in this chapter belong to a System class. In the
UML operations belong to classes. Furthermore, in the UML, "subsystems" are
modeled as classes (and simultaneously also as packages). In the UML, the overall
"system" is the top-level subsystem, and modeled as a class named System
(actually, any name is legal) with public operations and specifications.

Operation Contracts Expressed with the OCL

Associated with the UML is a formal language called the Object Constraint Lan-
guage (OCL) [WK99], which can be used to express constraints in models. The
OCL could be used instead of the informal natural language used in this chapter;

the UML allows any format for an operation specification.
Further OCL details are beyond the scope of this introduction.

187

13 - USE-CASE MODEL: ADDING DETAIL WITH OPERATION CONTRACTS

Contracts in Design by Contract

The pre- and post-condition contract form used for UML operation specifications
has been promoted for many years by Bertrand Meyer, formalized in a design
approach called Design by Contract [Meyer97 (first ed. 1989)], although its
origin is from earlier work in the 1960s on formal specification languages. In
Design by Contract, contracts are also written for operations of fine-grained
classes, not only the public operations of systems or subsystems.

In addition, Design by Contract promotes the inclusion of an invariant section, as
is common in thorough contract specifications. Invariants define things that must
not change state before and after the operation has executed. Invariants have not
been used in this chapter for the sake of simplicity.

Programming Language Support for Contracts

Some languages, such as Eiffel, have first-class support for invariants and pre-and
postconditions. There are pre-processors that provide similar support in Java.

13.12 Operation Contracts Within the UP

A pre- and postcondition contract is a well-known style to specify an operation in
the UML. In the UML, operations exists at many levels, from System, down to
fine-grained classes, such as Sale. Operation specification contracts for the System
level are part of the Use-Case Model, although they were not formally highlighted
in the original RUP or UP documentation; their inclusion in this model was
verified with the RUP authors.1

Phases

Inception�Contracts are not motivated during inception�they are too
detailed.

Elaboration�If used at all, most contracts will be written during elaboration,
when most use cases are written. Only write contracts for the most complex and
subtle system operations.

1. Private communication.

188

189

: System

enterItem
(id, quantity)

endSale()

makePayment
(amount)

Process Sale

1. Customer
arrives ...
2. ...
3. Cashier
enters item
identifier.
4....

Use Cases System Sequence Diagrams

Operation: enterItem

Post-conditions:
- A SalesLineItem instance
sli was created
- . . .

Operation: makeNewSale

Post-conditions:
- . . .

Contracts

make
NewSale()

: Cashier

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

domain objects

system
events

system
operations

the domain objects, attributes, and
associations that undergo state changes

Domain Model

Use-Case Model

some ideas and inspiration for the post-
conditions derive from the use cases

Design Model

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

. . .

in addition to the use cases,
requirements that must be
satisfied by the design of the
software

requirements that
must be satisfied by
the design of the
software

Figure 13.3 Contract relationship to other artifacts.

190

FURTHER READINGS

13.13 Further Readings

Operation contracts come out of the formal specifications area, and have been
used and refined since the 1960s, such as in the Vienna Development Method
(VDM) [BJ78]; there is a wealth of literature on VDM and other formal specifi-
cation languages.
Bertrand Meyer contributed to a much wider awareness of formal specifications
and contracts with the inclusion of pre- and postconditions within the Eiffel lan-
guage; his Object-Oriented Software Construction provides details. He is respon-
sible for the notion of Design by Contract.
Within the UML, operation contracts can also be specified more rigorously in
the Object Constraint Language (OCL), for which Warmer and Kleppe's The
Object Constraint Language: Precise Modeling with UML is required reading.

191

FROM REQUIREMENTS TO
DESIGN IN THIS ITERATION

Introduction

So far, the case study has emphasized investigation of the requirements, concepts,
and operations related to a system. Following the UP guidelines, perhaps 10% of
the requirements were investigated in inception, and a slightly deeper
investigation was started in this first iteration of elaboration. The following
chapters are a shift in emphasis toward designing a solution for this iteration in
terms of collaborating software objects.

14.1 Iteratively Do the Right Thing, Do the Thing Right

The requirements and object-oriented analysis has focused on learning to do the
right thing; that is, understanding some of the outstanding goals for the
Next-Gen POS, and related rules and constraints. By contrast, the following
design work will stress do the thing right; that is, skillfully designing a solution to
satisfy the requirements for this iteration.

193

Chapter 14

14 - FROM REQUIREMENTS TO DESIGN IN THIS ITERATION

In iterative development, a transition from primarily a requirements focus to
primarily a design and implementation focus will occur in each iteration. Fur-
thermore, it is natural and healthy to discover and change some requirements
during the design and implementation work of the early iterations. These dis-
coveries will both clarify the purpose of the design work of this iteration and
refine the requirements understanding for future iterations. Over the course of
these early elaboration iterations, the requirements discovery will stabilize, so
that by the end of elaboration, perhaps 80% of the requirements are reliably
defined in detail.

14.2 Didn't That Take Weeks To Do? No, Not Exactly.

After many chapters of detailed discussion, it must surely seem like the prior
modeling would take weeks of effort. Not so. When one is comfortable with the
skills of use case writing, domain modeling, and so forth, the duration to do all
the actual modeling that has been explored so far is realistically just a few days.
However, that does not mean that only a few days have passed since the start of
the project. Many other activities, such as proof-of-concept programming, finding
resources (people, software, ...), planning, setting up the environment, and so on,
could consume a few weeks of preparation.

14.3 On to Object Design

During object design, a logical solution based on the object-oriented paradigm is
developed. The heart of this solution is the creation of interaction diagrams,
which illustrate how objects collaborate to fulfill the requirements.
After�or in parallel with�drawing interaction diagrams, (design) class dia-
grams can be drawn. These summarize the definition of the software classes
(and interfaces) that are to be implemented in software.
In terms of the UP, these artifacts are part of the Design Model.

In practice, the creation of interaction and class diagrams happens in parallel
and synergistically, but their introduction is linear in this case study, for
simplicity and clarity.

The Importance of Object Design Skill vs. UML Notation Skill

The following chapters explore the creation of these artifacts, or more precisely,
the object design skills underlying their creation. What is important is knowing

194

ON TO OBJECT DESIGN

how to think and design in objects, which is a very different and much more
important ability than knowing UML diagramming notation. At the same time, a
standard visual language is great, and thus the required UML notation to support
the design work is presented.
Of the two artifacts that will be explored, interactions diagrams are the most
important�from the point of view of developing a good design�and require the
greatest degree of creative effort. The creation of interaction diagrams requires
the application of principles for assigning responsibilities and the use of
design principles and patterns. Therefore, the emphasis of the following
chapters is on these principles and patterns in object design.

195

Chapter 15

INTERACTION DIAGRAM
NOTATION

Cats are smarter than dogs. You can't
get eight cats to pull a sled through snow.

�JeffVaidez

Objectives

Read basic UML interaction (sequence and collaboration) diagram
notation.

Introduction

The following chapters explore object design. The language used to illustrate the
designs is primarily interaction diagrams. Thus, it is advisable to at least skim
the examples in this chapter and get familiar with the notation before moving
on.
The UML includes interaction diagrams to illustrate how objects interact via
messages. This chapter introduces the notation, while subsequent chapters
focus on using them in the context of learning and doing object design for the
NextGen POS case study.

Read the Following Chapters for Design Guidelines

This chapter introduces notation. To create well-designed objects, design princi-
ples must also be understood. After acquiring some familiarity with the notation
of interaction diagrams, it is important to study the following chapters on these
principles and how to apply them while drawing interaction diagrams.

197

15 - INTERACTION DIAGRAM NOTATION

15.1 Sequence and Collaboration Diagrams

The term interaction diagram, is a generalization of two more specialized UML
diagram types; both can be used to express similar message interactions:
� collaboration diagrams
� sequence diagrams
Throughout the book, both types will be used, to emphasize the flexibility in
choice.
Collaboration diagrams illustrate object interactions in a graph or network
format, in which objects can be placed anywhere on the diagram, as shown in
Figure 15.1.

Figure 15.1 Collaboration diagram

Figure 15.2 Sequence diagram.

Each type has strengths and weaknesses. When drawing diagrams to be pub-
lished on pages of narrow width, collaboration diagrams have the advantage of
allowing vertical expansion for new objects; additional objects in a sequence dia-
grams must extend to the right, which is limiting. On the other hand, collabora-
tion diagram examples make it harder to easily see the sequence of messages.

198

EXAMPLE COLLABORATION DIAGRAM: MAKEPAYMENT
EXAMPLE COLLABORATION 1JIAGRAM: MAKEfAYMENT

Most prefer sequence diagrams when using a CASE tool to reverse engineer
source code into an interaction diagram, as they clearly illustrate the sequence
of messages.

15.2 Example Collaboration Diagram: makePayment

Figure 15.3 Collaboration diagram.

The collaboration diagram shown in Figure 15.3 is read as follows:
1. The message makePayment is sent to an instance of a Register. The sender is

not identified.
2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

199

15 - INTERACTION DIAGRAM NOTATION

15.3 Example Sequence Diagram: makePayment

Figure 15.4 Sequence diagram.

The sequence diagram shown in Figure 15.4 has the same intent as the prior
collaboration diagram.

15.4 Interaction Diagrams Are Valuable

A common problem in object technology projects is a lack of appreciation for the
value of doing object design via the medium of interaction diagrams. A related
problem is doing them in a vague way, such as showing messages to objects that
actually require much further elaboration; for example, showing the message
runSimulation to some Simulation object, but not continuing on with the more
detailed design, as though by virtue of a well-named message the design is mag-
ically complete.
Some non-trivial time and effort should be spent in the creation of interaction
diagrams, as a reflection of thinking through details of the object design. For
example, if the length of the timeboxed iteration is two weeks, perhaps a half or
full day near the start of the iteration should be spent on their creation (and in
parallel, class diagrams), before proceeding to programming. Yes, the design
illustrated in the diagrams will be imperfect and is speculative, and it will be
modified during programming, but it will provide a thoughtful, cohesive, com-
mon starting point for inspiration during programming.

Note that it is primarily during this step that the application of design skill is
required, in terms of patterns, idioms, and principles. Relatively speaking, the
creation of use cases, domain models, and other artifacts is easier than the

200

Create interaction diagrams in pairs, not alone. The collaborative design will
be improved, and the partners will learn quickly from each other.

: Sale

makePayment(cashTendered)
: Paymentcreate(cashTendered)

implies Sale objects have a
responsibility to create Payments

: Sale

makePayment(cashTendered)

COMMON INTERACTION DIAGRAM NOTATION

assignment of responsibilities and the creation of well-designed interaction dia-
grams. This is because there is a larger number of subtle design principles and
"degrees of freedom" that underlie a well-designed interaction diagram than
most other OOA/D artifacts.

The design principles necessary for the successful construction of interaction
diagrams can be codified, explained, and applied in a methodical fashion. This
approach to understanding and using design principles is based on patterns�
structured guidelines and principles. Therefore, after introducing the syntax of
interaction diagrams, attention (in subsequent chapters) will turn to design pat-
terns and their application in interaction diagrams.

15.5 Common Interaction Diagram Notation

Illustrating Classes and Instances

The UML has adopted a simple and consistent approach to illustrate instances
vs. classifiers (see Figure 15.5):

� For any kind of UML element (class, actor, ...), an instance uses the same graphic
symbol as the type, but the designator string is underlined.

Figure 15.5 Class and instances.

Therefore, to show an instance of a class in an interaction diagram, the regular
class box graphic symbol is used, but the name is underlined.

A name can be used to uniquely identify the instance. If none is used, note that a
":" precedes the class name.

201

Sale :Sale s1: Sale

class instance named instance

15 - INTERACTION DIAGRAM NOTATION

Basic Message Expression Syntax

The UML has a standard syntax for message expressions:

return := message(parameter : parameterType) : returnType

Type information may be excluded if obvious or unimportant. For example:

spec := getProductSpect(id)
spec := getProductSpect(id:ItemID)
spec := getProductSpect(id:ItemID) ProductSpecification

15.6 Basic Collaboration Diagram Notation

Links

A link is a connection path between two objects; it indicates some form of navi-
gation and visibility between the objects is possible (see Figure 15.6). More for-
mally, a link is an instance of an association. For example, there is a link�or path
of navigation�from a Register to a Sale, along which messages may flow, such as
the makePayment message.

Figure 15.6 Link lines.

202

Note that multiple messages, and messages both ways, can flow along the
same single link.

Messages

Each message between objects is represented with a message expression and
small arrow indicating the direction of the message. Many messages may flow

1: makePayment(cashTendered)
2: foo()

2.1: bar()
: Register :Sale

link line

BASIC COLLABORATION DIAGRAM NOTATION

along this link (Figure 15.7). A sequence number is added to show the sequential
order of messages in the current thread of control.

Figure 15.7 Messages.

Messages to "self" or "this"

A message can be sent from an object to itself (Figure 15.8). This is illustrated by
a link to itself, with messages flowing along the link.

Figure 15.8 Messages to "this."

Creation of Instances

Any message can be used to create an instance, but there is a convention in the
UML to use a message named create for this purpose. If another (perhaps less
obvious) message name is used, the message may be annotated with a special
feature called a UML stereotype, like so: «create».

The create message may include parameters, indicating the passing of initial
values. This indicates, for example, a constructor call with parameters in Java.

203

1: msg2()
2: msg3()
3: msg4()

3.1: msg5()
: Register :Sale

all messages flow on the same link

msg1()

: Register

msg1()

1: clear()

15 - INTERACTION DIAGRAM NOTATION

Furthermore, the UML property {new} may optionally be added to the instance box to
highlight the creation.

Figure 15.9 Instance creation.

Message Number Sequencing

The order of messages is illustrated with sequence numbers, as shown in Figure
15.10. The numbering scheme is:
1. The first message is not numbered. Thus,msg1() is unnumbered.
2. The order and nesting of subsequent messages is shown with a legal num

bering scheme in which nested messages have a number appended to them.
Nesting is denoted by prepending the incoming message number to the out
going message number.

In Figure 15.11 a more complex case is shown.

204

1: create(cashier)
: Register :Sale {new}

create message, with optional initializing parameters. This will
normally be interpreted as a constructor call.

«create»
1: make(cashier)

: Register :Sale {new}

if an unobvious creation message name is used, the
message may be stereotyped for clarity

:ClassAmsg1() :ClassB1: msg2()

:ClassC

1.1: msg3()
not numbered

legal numbering

BASIC COLLABORATION DIAGRAM NOTATION

Figure 15.11 Complex sequence numbering.
Conditional Messages

A conditional message (Figure 15.12) is shown by following a sequence number
with a conditional clause in square brackets, similar to an iteration clause. The
message is only sent if the clause evaluates to true.

Figure 15.12 Conditional message.

Mutually Exclusive Conditional Paths

The example in Figure 15.13 illustrates the sequence numbers with mutually
exclusive conditional paths.

205

;ClassAmsg1() :ClassB1: msg2()

:ClassC

1.1: msg3()

2.1: msg5()

2: msg4()

:ClassD

2.2: msg6()

first second

fourth

sixth

fifth

third

1 [color = red] : calculate()
: Foo : Bar

message1()

conditional message, with test

15 - INTERACTION DIAGRAM NOTATION

Figure 15.13 Mutually exclusive messages.

In this case it is necessary to modify the sequence expressions with a conditional
path letter. The first letter used is a by convention. Figure 15.13 states that
either 1a or 1b could execute after msg1. Both are sequence number 1 since
either could be the first internal message.
Note that subsequent nested messages are still consistently prepended with
their outer message sequence. Thus Ib. 1 is nested message within Ib.

Iteration or Looping

Iteration notation is shown in Figure 15.14. If the details of the iteration clause
are not important to the modeler, a simple '*' can be used.

Figure 15.14 Iteration.

206

1a [test1] : msg2()
:ClassA :ClassB

:ClassC

1a.1: msg3()

msg1()

:ClassD

1b [not test1] : msg4()

1b.1: msg5()

:ClassE

2: msg6()

unconditional after
either msg2 or msg4 1a and 1b are mutually

exclusive conditional paths

1 * [i:=1..N]: num := nextInt(): SimulatorrunSimulation() : Random

iteration is indicated with a * and an optional
iteration clause following the sequence number

BASIC COLLABORATION DIAGRAM NOTATION

Iteration Over a Collection (Multiobject)

A common algorithm is to iterate over all members of a collection (such as a list or
map), sending a message to each. Often, some kind of iterator object is ultimately
used, such as an implementation of java.util.Iterator or a C++ standard library
iterator. In the UML, the term multiobject is used to denote a set of
instances�a collection. In collaboration diagrams, this can be summarized as
shown in Figure 15.15.

Figure 15.15 Iteration over a multiobject.

The "*" multiplicity marker at the end of the link is used to indicate that the
message is being sent to each element of the collection, rather than being
repeatedly sent to the collection object itself.

Messages to a Class Object

Messages may be sent to a class itself, rather than an instance, to invoke class or
static methods. A message is shown to a class box whose name is not underlined,
indicating the message is being sent to a class rather than an instance (see
Figure 15.16).

Figure 15.16 Messages to a class object (static method invocation).

207

1 *: st := getSubtotal(): Salet := getTotal()

double box indicates a multiobject (collection)

for example, a List object containing many
SalesLineItem objects

*
:SalesLineItem

:SalesLineItem

these two * symbols used together imply
iteration over the multiobject and sending the
getSubtotal message to each member

list := synchronizedList(aList)
: InstanceOfFoo java.util.Collections

msg1()

not underlined,
therefore a class

message to class, or a
static method call

15 - INTERACTION DIAGRAM NOTATION

Consequently, it is important to be consistent in underlining your instance
names when an instance is intended, otherwise messages to instances versus
classes may be incorrectly interpreted.

15.7 Basic Sequence Diagram Notation

Links

Unlike collaboration diagrams, sequence diagrams do not show links.

Messages

Each message between objects is represented with a message expression on an
arrowed line between the objects (see Figure 15.17). The time ordering is orga-
nized from top to bottom.

Figure 15.17 Messages and focus of control with activation boxes.

Focus of Control and Activation Boxes

As illustrated in Figure 15.17, sequence diagrams may also show the focus of
control (that is, in a regular blocking call, the operation is on the call stack)
using an activation box. The box is optional, but commonly used by UML prac-
titioners.

208

: Register : Sale

msg2()

msg3()

msg1()

msg4()

msg5()

BASIC SEQUENCE DIAGRAM NOTATION

Illustrating Returns

A sequence diagram may optionally show the return from a message as a
dashed open-arrowed line at the end of an activation box (see Figure 15.18).
Many practitioners exclude them. Some annotate the return line to describe
what is being returned (if anything) from the message.

Figure 15.18 Showing returns.

Messages to "self" or "this"

A message can be illustrated as being sent from an object to itself by using a
nested activation box (see Figure 15.19).

209

Figure 15.19 Messages to "this."

: Register : Sale

msg2()

msg3()

msg1()

msg4()

msg5()

: Register

msg1()

clear()

210

Figure 15.20 Instance creation and object lifelines.

Object Lifelines and Object Destruction

Figure 15.20 also illustrates object lifelines�the vertical dashed lines under-
neath the objects. These indicate the extent of the life of the object in the diagram.
In some circumstances it is desirable to show explicit destruction of an object (as
in C++, which does not have garbage collection); the UML lifeline notation
provides a way to express this destruction (see Figure 15.21).

Figure 15.21 Object destruction

: Register : Sale

makePayment(cashTendered)
: Paymentcreate(cashTendered)

authorize()

note that newly created
objects are placed at their
creation "height"

an object lifeline shows the extent of
the life of the object in the diagram

15 -

Creation of Instances

: Sale

: Paymentcreate(cashTendered)

...
the «destroy» stereotyped
message, with the large
X and short lifeline
indicates explicit object
destruction

«destroy» X

Figure 15.22 A conditional message.

Mutually Exclusive Conditional Messages

The notation for this case is a kind of angled message line emerging from a com-
mon point, as illustrated in Figure 15.23.

Figure 15.23 Mutually exclusive conditional messages.

Iteration for a Single Message

Iteration notation for one message is shown in Figure 15.24.

211

A conditional message is shown in Figure 15.22.

BASIC SEQUENCE DIAGRAM NOTATION

Conditional Messages

Figure 15.24 Iteration for one message.

: Bar: Foo

[color = red] calculate()
message1()

: B: A

[x < 10] calculate()
message1()

: C

[x > 15] calculate()

: Simulator : Random

* [i:=1..N]: num := nextInt()

runSimulation()

212

15 - INTERACTION DIAGRAM NOTATION

Iteration of a Series of Messages

Notation to indicate iteration around a series of messages is shown in Figure
15.25.

Iteration Over a Collection (Multiobject)

In sequence diagrams, iteration over a collection is shown in Figure 15.26.
With collaboration diagrams the UML specifies a '*' multiplicity marker at the
end of the role (next to the multiobject) to indicate sending a message to each
element rather than repeatedly to the collection itself. However, the UML does
not specify how to indicate this with sequence diagrams.

Messages to Class Objects

As in a collaboration diagram, class or static method calls are shown by not
underlining the name of the classifier, which signifies a class object rather than
an instance (see Figure 15.27).

Figure 15.25 Iteration for a sequence of

: Simulator : Random

hours := nextInt()

runSimulation()

: Programmer

work(hours)

* [i:=1..N]

eat()

BASIC SEQUENCE DIAGRAM NOTATION

213

Figure 15.26 Iteration over a multiobject

Figure 15.27 Invoking class or static methods

: Sale

* : st := getSubtotal()

t := getTotal()

:SalesLineItem
:SalesLineItem

: Foo

list := synchronizedList(aList)
message1()

java.util.Collections

not underlined,
therefore a class

message to class, or a
static method call

Chapter 16

GRASP: DESIGNING OBJECTS
WITH RESPONSIBILITIES

The most likely way for the world to be destroyed, most
experts agree, is by accident. That's where we come in;

we're computer professionals. We cause accidents.

�Nathaniel Borenstein

Objectives

Define patterns.
Learn to apply five of the GRASP patterns.

Introduction

Object design is sometimes described as some variation of the following:
After identifying your requirements and creating a domain
model, then add methods to the software classes, and define the
messaging between the objects to fulfill the requirements.

Such terse advice is not especially helpful, because there are deep principles and
issues involved in these steps. Deciding what methods belong where, and how
the objects should interact, is terribly important and anything but trivial. It
takes careful explanation, applicable while diagramming and programming.
And this is a critical step�this is at the heart of what it means to develop an
object-oriented system, not drawing domain model diagrams, package diagrams,
and so forth.

215

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

GRASP as a Methodical Approach to Learning Basic Object
Design

It is possible to communicate the detailed principles and reasoning required to
grasp basic object design, and to learn to apply these in a methodical approach
that removes the magic and vagueness.

The GRASP patterns are a learning aid to help one understand essential object
design, and apply design reasoning in a methodical, rational, explainable way.
This approach to understanding and using design principles is based on patterns of
assigning responsibilities.

16.1 Responsibilities and Methods

The UML defines a responsibility as "a contract or obligation of a classifier"
[OMG01]. Responsibilities are related to the obligations of an object in terms of its
behavior. Basically, these responsibilities are of the following two types:
� knowing

� doing

Doing responsibilities of an object include:

o doing something itself, such as creating an object or
doing a calculation

o initiating action in other objects

o controlling and coordinating activities in other objects

Knowing responsibilities of an object include:

o knowing about private encapsulated data

o knowing about related objects

o knowing about things it can derive or calculate

Responsibilities are assigned to classes of objects during object design. For
example, I may declare that "a Sale is responsible for creating SalesLineltems" (a
doing), or "a Sale is responsible for knowing its total" (a knowing). Relevant
responsibilities related to "knowing" are often inferable from the domain model,
because of the attributes and associations it illustrates.

The translation of responsibilities into classes and methods is influenced by the
granularity of the responsibility. The responsibility to "provide access to rela-
tional databases" may involve dozens of classes and hundreds of methods, pack-
aged in a subsystem. By contrast, the responsibility to "create a Sale" may
involve only one or few methods.

216

RESPONSIBILITIES AND INTERACTION DIAGRAMS

A responsibility is not the same thing as a method, but methods are imple-
mented to fulfill responsibilities. Responsibilities are implemented using meth-
ods that either act alone or collaborate with other methods and objects. For
example, the Sale class might define one or more methods to know its total; say, a
method named getTotal. To fulfill that responsibility, the Sale may collaborate
with other objects, such as sending agetSubtotal message to each SalesLineltem
object asking for its subtotal.

16.2 Responsibilities and Interaction Diagrams

The purpose of this chapter is to help methodically apply fundamental principles
for assigning responsibilities to objects. This will often be done while pro-
gramming. Within the UML artifacts, a common context where these
responsibilities (implemented as methods) are considered is during the creation
of interaction diagrams (which are part of the UP Design Model), whose basic
notation we examined in the previous chapter.

Figure 16.1 Responsibilities and methods are related.

Figure 16.1 indicates that Sale objects have been given a responsibility to create
Payments, which is invoked with a makePayment message and handled with a
corresponding makePayment method. Furthermore, the fulfillment of this
responsibility requires collaboration to create the SalesLineltem object and
invoke its constructor.
In summary, interaction diagrams show choices in assigning responsibilities to
objects. When created, decisions in responsibility assignment are made, which
are reflected in what messages are sent to different classes of objects. This chapter
emphasizes fundamental principles�expressed in the GRASP patterns�to
guide choices in where to assign responsibilities. These choices are reflected in
interaction diagrams.

217

: Sale

makePayment(cashTendered)
: Paymentcreate(cashTendered)

implies Sale objects have a
responsibility to create Payments

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

16.3 Patterns

Experienced object-oriented developers (and other software developers) build up a
repertoire of both general principles and idiomatic solutions that guide them in
the creation of software. These principles and idioms, if codified in a structured
format describing the problem and solution, and given a name, may be called
patterns. For example, here is a sample pattern:

Pattern Name:
Solution:

Problem It Solves:

Information Expert
Assign a responsibility to the class that has the
information needed to fulfill it.
What is a basic principle by which to assign
responsibilities to objects?

In object technology, a pattern is a named description of a problem and solution
that can be applied to new contexts; ideally, it provides advice in how to apply it in
varying circumstances, and considers the forces and trade-offs.1 Many patterns
provide guidance for how responsibilities should be assigned to objects, given a
specific category of problem.

Most simply, a pattern is a named problem/solution pair that can be applied
in new context, with advice on how to apply it in novel situations and
discussion of its trade-offs.

"One person's pattern is another person's primitive building block" is an object
technology adage illustrating the vagueness of what can be called a pattern
[GHJV94]. This treatment of patterns will bypass the issue of what is appropriate
to label a pattern, and focus on the pragmatic value of using the pattern style as
a vehicle for naming, presenting, learning, and remembering useful software
engineering principles.

Repeating Patterns

New pattern could be considered an oxymoron, if it describes a new idea. The
very term "pattern" is meant to suggest a repeating thing. The point of patterns is
not to express new design ideas. Quite the opposite is true�patterns attempt to
codify existing tried-and-true knowledge, idioms, and principles; the more honed
and widely used, the better.

1. The formal notion of patterns originated with the (building) architectural patterns of
Christopher Alexander [AIS77]. Patterns for software originated in the 1980s with
Kent Beck, who became aware of Alexander's pattern work in architecture, and then
were developed by Beck with Ward Cunningham [BC87, Beck94].

GRASP: PATTERNS OF GENERAL PRINCIPLES IN ASSIGNING RESPONSIBILITIES

Consequently, the GRASP patterns�which will soon be introduced�do not
state new ideas; they are a codification of widely used basic principles. To an
object expert, the GRASP patterns�by idea if not by name�will appear very
fundamental and familiar. That's the point!

Patterns Have Names

All patterns ideally have suggestive names. Naming a pattern, technique, or
principle has the following advantages:
� It supports chunking and incorporating that concept into our understanding

and memory.

� It facilitates communication.
Naming a complex idea such as a pattern is an example of the power of abstrac-
tion�reducing a complex form to a simple one by eliminating detail. Therefore,
the GRASP patterns have concise names such as Information Expert, Creator,
Protected Variations.

Naming Patterns Improves Communication

When a pattern is named, we can discuss with others a complex principle or
design idea with a simple name. Consider the following discussion between two
software designers, using a common vocabulary of patterns (Creator, Factory,
and so on) to decide upon a design:

Fred: "Where do you think we should place the responsibility for creating a
SalesLineltem? I think a Factory."

Wilma: "By Creator, I think Sale will be suitable."

Fred: "Oh, right�I agree."

Chunking design idioms and principles with commonly understood names facili-
tates communication and raises the level of inquiry to a higher degree of
abstraction.

16.4 GRASP: Patterns of General Principles in Assigning
Responsibilities

To summarize the preceding introduction:
� The skillful assignment of responsibilities is extremely important in object

design.

� Determining the assignment of responsibilities often occurs during the cre
ation of interaction diagrams, and certainly during programming.

219

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Understanding and being able to apply these principles during the creation of
interaction diagrams is important because a software developer new to object
technology needs to master these basic principles as quickly as possible; they
form the foundation of how a system will be designed.
GRASP is an acronym that stands for General Responsibility Assignment Soft-
ware Patterns.2 The name was chosen to suggest the importance of grasp ing
these principles to successfully design object-oriented software.

How to Apply the GRASP Patterns

The following sections present the first five GRASP patterns:
� Information Expert
� Creator
� High Cohesion
� Low Coupling
� Controller
There are others, introduced in a later chapter, but it is worthwhile mastering
these five first because they address very basic, common questions and funda-
mental design issues.
Please study the following patterns, note how they are used in the example
interaction diagrams, and then apply them during the creation of new interaction
diagrams. Start by mastering Information Expert, Creator, Controller, High
Cohesion, and Low Coupling. Later, learn the remaining patterns.

16.5 The UML Class Diagram Notation

A UML class box used to illustrate software classes often shows three compart-
ments; the third illustrates the methods of the class, as shown in Figure 16.2.

2. Technically, one should write "GRAS Patterns" rather than "GRASP Patterns," but the
latter sounds better.

220

Patterns are named problem/solution pairs that codify good advice and prin-
ciples often related to the assignment of responsibilities.

INFORMATION EXPERT (OR EXPERT)

Figure 16.2 Software classes illustrate method names.

The details of this notation are explored in a subsequent chapter. In the following
discussion on patterns, this form of class box will occasionally be used.

16.6 Information Expert (or Expert)

Solution Assign a responsibility to the information expert�the class that has the infor-
mation necessary to fulfill the responsibility.

Problem What is a general principle of assigning responsibilities to objects?

A Design Model may define hundreds or thousands of software classes, and an
application may require hundreds or thousands of responsibilities to be fulfilled.
During object design, when the interactions between objects are defined, we
make choices about the assignment of responsibilities to software classes. Done
well, systems tend to be easier to understand, maintain, and extend, and there is
more opportunity to reuse components in future applications.

Example In the NextGEN POS application, some class needs to know the grand total of a
sale.

By this advice, the statement is:

Who should be responsible for knowing the grand total of a sale"?

By Information Expert, we should look for that class of objects that has the
information needed to determine the total.
Now we come to a key question: Do we look in the Domain Model or the Design
Model to analyze the classes that have the information needed? The Domain
Model illustrates conceptual classes of the real-world domain; the Design Model
illustrates software classes.

221

ClassName

attributes

methods

third section is for
methods

222

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Answer:

1. If there are relevant classes in the Design Model, look there first.

2. Else, look in the Domain Model, and attempt to use (or expand) its represen
tations to inspire the creation of corresponding design classes.

For example, assume we are just starting design work and there is no or a minimal
Design Model. Therefore, we look to the Domain Model for information experts;
perhaps the real-world Sale is one. Then, we add a software class to the Design
Model similarly called Sale, and give it the responsibility of knowing its total,
expressed with the method named getTotal. This approach supports low
representational gap in which the software design of objects appeals to our con-
cepts of how the real domain is organized.

To examine this case in detail, consider the partial Domain Model in Figure
16.3.

Figure 16.3 Associations of Sale.

What information is needed to determine the grand total? It is necessary to
know about all the SalesLineltem instances of a sale and the sum of their subtotals.
A Sale instance contains these; therefore, by the guideline of Information Expert,
Sale is a suitable class of object for this responsibility; it is an information expert
for the work.

As mentioned, it is in the context of the creation of interaction diagrams that
these questions of responsibility often arise. Imagine we are starting to work
through the drawing of diagrams in order to assign responsibilities to objects. A
partial interaction diagram and class diagram in Figure 16.4 illustrate some
decisions.

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
itemID

Described-by*

Contains

1..*

1

1

INFORMATION EXPERT (OR EXPERT)

Figure 16.4 Partial interaction and class diagrams.

We are not done yet. What information is needed to determine the line item sub-
total? SalesLineltem.quantity and ProductSpecification.price are needed. The
SalesLineltem knows its quantity and its associated ProductSpecification;
therefore, by Expert, SalesLineltem should determine the subtotal; it is the
information expert.
In terms of an interaction diagram, this means that the Sale needs to send
get-Subtotal messages to each of the SalesLineltems and sum the results; this
design is shown in Figure 16.5.

Figure 16.5 Calculating the Sale total

To fulfill the responsibility of knowing and answering its subtotal, a Sales-
Lineltem needs to know the product price.
The ProductSpecification is an information expert on answering its price; there-
fore, a message must be sent to it asking for its price.
The design is shown in Figure 16.6.
In conclusion, to fulfill the responsibility of knowing and answering the sale's
total, three responsibilities were assigned to three design classes of objects as
follows.

223

Sale

date
time

getTotal()

:Salet := getTotal()

New method

Sale

date
time

getTotal()

SalesLineItem

quantity

getSubtotal()New method

1 *: st := getSubtotal(): Salet := getTotal()

*
:SalesLineItem

:SalesLineItem

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Design Class Responsibility

Sale knows sale total

SalesLineltem knows line item subtotal

ProductSpecification knows product price

The context in which these responsibilities were considered and decided upon
was while drawing an interaction diagram. The method section of a class diagram
can then summarize the methods.

The principle by which each responsibility was assigned was Information
Expert�placing it with the object that had the information needed to fulfill it.

Figure 16.6 Calculating the Sale total.

Discussion Information Expert is frequently used in the assignment of responsibilities; it is a
basic guiding principle used continuously in object design. Expert is not meant to
be an obscure or fancy idea; it expresses the common "intuition" that objects do
things related to the information they have.

Notice that the fulfillment of a responsibility often requires information that is
spread across different classes of objects. This implies that there are many "partial"
information experts who will collaborate in the task. For example, the sales total
problem ultimately required the collaboration of three classes of objects.

224

Sale

date
time

getTotal()

SalesLineItem

quantity

getSubtotal()

Product
Specification

description
price
itemID

getPrice()New method

:Product
Specification

1.1: p := getPrice()

1 *: st := getSubtotal(): Salet := getTotal()

*
:SalesLineItem

:SalesLineItem

INFORMATION EXPERT (OR EXPERT)

Whenever information is spread across different objects, they will need to interact
via messages to share the work.
Expert usually leads to designs where a software object does those operations
that are normally done to the inanimate real-world thing it represents; Peter
Goad calls this the "Do It Myself" strategy [Coad95]. For example, in the real
world, without the use of electro-mechanical aids, a sale does not tell you its
total; it is an inanimate thing. Someone calculates the total of the sale. But in
object-oriented software land, all software objects are "alive" or "animated," and
they can take on responsibilities and do things. Fundamentally, they do things
related to the information they know. I call this the "animation" principle in
object design; it is like being in a cartoon where everything is alive.
The Information Expert pattern�like many things in object technology�has a
real-world analogy. We commonly give responsibility to individuals who have
the information necessary to fulfill a task. For example, in a business, who
should be responsible for creating a profit-and-loss statement? The person who
has access to all the information necessary to create it�perhaps the chief finan-
cial officer. And just as software objects collaborate because the information is
spread around, so it is with people. The company's chief financial officer may
ask accountants to generate reports on credits and debits.

Contraindications There are situations where a solution suggested by Expert is undesirable, usually
because of problems in coupling and cohesion (these principles are discussed
later in this chapter).
For example, who should be responsible for saving a Sale in a database? Certainly,
much of the information to be saved is in the Sale object, and thus by Expert an
argument could be made to put the responsibility in the Sale class. And the
logical extension of this decision is that each class has its own services to save
itself in a database. But this leads to problems in cohesion, coupling, and
duplication. For example, the Sale class must now contain logic related to data-
base handling, such as related to SQL and JDBC (Java Database Connectivity).
The class is no longer focused on just the pure application logic of "being a sale;" it
now has other kinds of responsibilities, which lowers its cohesion. The class must
be coupled to the technical database services of another subsystem, such as
JDBC services, rather than just being coupled to other objects in the domain layer
of software objects, which raises its coupling. And it is likely that similar database
logic would be duplicated in many persistent classes.
All these problems indicate violation of a basic architectural principle: design
for a separation of major system concerns. Keep application logic in one place
(such as the domain software objects), keep database logic in another place
(such as a separate persistence services subsystem), and so forth, rather than
intermingling different system concerns in the same component.3

3. See Chapter 32 for a discussion of separation of concerns.

225

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Benefits

Related Patterns
or Principles

Supporting a separation of major concerns improves coupling and cohesion in a
design. Thus, even though by Expert there could be some justification to put the
responsibility for database services in the Sale class, for other reasons (usually
cohesion and coupling), it is a poor design.

� Information encapsulation is maintained, since objects use their own infor
mation to fulfill tasks. This usually supports low coupling, which leads to
more robust and maintainable systems. (Low Coupling is also a GRASP pat
tern that is discussed in a following section).

� Behavior is distributed across the classes that have the required informa
tion, thus encouraging more cohesive "lightweight" class definitions that are
easier to understand and maintain. High cohesion is usually supported
(another pattern discussed later).

� Low Coupling
� High Cohesion

Also Known As; "Place responsibilities with data," "That which knows, does," "Do It Myself," "Put
Similar To Services with the Attributes They Work On."

16.7 Creator

Solution Assign class B the responsibility to create an instance of class A if one or more of
the following is true:
� B aggregates A objects.
� B contains A objects.
� B records instances of A objects.
� B closely uses A objects.
� B has the initializing data that will be passed to A when it is created (thus B

is an Expert with respect to creating A).
B is a creator of A objects.
If more than one option applies, prefer a class B which aggregates or contains
class A.

Problem Who should be responsible for creating a new instance of some class?

The creation of objects is one of the most common activities in an object-oriented
system. Consequently, it is useful to have a general principle for the assignment
of creation responsibilities. Assigned well, the design can support low coupling,
increased clarity, encapsulation, and reusability.

226

CREATOR

Example In the POS application, who should be responsible for creating a SalesLineltem
instance? By Creator, we should look for a class that aggregates, contains, and so
on, SalesLineltem instances. Consider the partial domain model in Figure 16.7.

Figure 16.7 Partial domain model.

Since a Sate contains (in fact, aggregates) many SalesLineltem objects, the Cre-
ator pattern suggests that Sale is a good candidate to have the responsibility of
creating SalesLineltem instances.

This leads to a design of object interactions as shown in Figure 16.8.

Figure 16.8 Creating a SalesLineltem.

This assignment of responsibilities requires that a makeLineltem method be
defined in Sate.

Once again, the context in which these responsibilities were considered and
decided upon was while drawing an interaction diagram. The method section of

227

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
itemID

Described-by*

Contains

1..*

1

1

: Register : Sale

makeLineItem(quantity)
: SalesLineItemcreate(quantity)

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

a class diagram can then summarize the responsibility assignment results, con-
cretely realized as methods.

Discussion Creator guides assigning responsibilities related to the creation of objects, a
very common task. The basic intent of the Creator pattern is to find a creator
that needs to be connected to the created object in any event. Choosing it as the
creator supports low coupling.
Aggregate aggregates Part, Container contains Content, and Recorder records
Recorded are all very common relationships between classes in a class diagram.
Creator suggests that the enclosing container or recorder class is a good candi-
date for the responsibility of creating the thing contained or recorded. Of course,
this is only a guideline.
Note that the concept of aggregation has been used in considering the Creator
pattern. Aggregation is discussed in Chapter 27; a brief definition is that aggre-
gation involves things that are in a strong Whole-Part or Assembly-Part rela-
tionship, such as Body aggregates Leg or Paragraph aggregates Sentence.
Sometimes a creator is found by looking for the class that has the initializing
data that will be passed in during creation. This is actually an example of the
Expert pattern. Initializing data is passed in during creation via some kind of
initialization method, such as a Java constructor that has parameters. For
example, assume that a Payment instance needs to be initialized, when created,
with the Sale total. Since Sale knows the total, Sale is a candidate creator of the
Payment.

Contraindications Often, creation requires significant complexity, such as using recycled instances
for performance reasons, conditionally creating an instance from one of a family
of similar classes based upon some external property value, and so forth. In
these cases, it is advisable to delegate creation to a helper class called a Factory
[GHJV95] rather than use the class suggested by Creator. Factories are dis-
cussed in Chapter 23.

Benefits

Related Patterns
or Principles

Low coupling (described next) is supported, which implies lower mainte-
nance dependencies and higher opportunities for reuse. Coupling is probably
not increased because the created class is likely already visible to the creator
class, due to the existing associations that motivated its choice as creator.

Low Coupling
Factory

Whole-Part [BMRSS96] describes a pattern to define aggregate objects that
support encapsulation of components.

228

Low COUPLING

16.8 Low Coupling

Solution Assign a responsibility so that coupling remains low.

Problem How to support low dependency, low change impact, and increased reuse?

Coupling is a measure of how strongly one element is connected to, has knowl-
edge of, or relies on other elements. An element with low (or weak) coupling is
not dependent on too many other elements; "too many" is context-dependent,
but will be examined. These elements include classes, subsystems, systems, and
so on.
A class with high (or strong) coupling relies on many other classes. Such classes
may be undesirable; some suffer from the following problems:
� Changes in related classes force local changes.
� Harder to understand in isolation.
� Harder to reuse because its use requires the additional presence of the

classes on which it is dependent.

Example Consider the following partial class diagram from a NextGen case study:

Assume we have a need to create a Payment instance and associate it with the
Sale. What class should be responsible for this? Since a Register "records" a Pay-
ment in the real-world domain, the Creator pattern suggests Register as a candi-
date for creating the Payment. The Register instance could then send an
addPayment message to the Sale, passing along the new Payment as a parameter.
A possible partial interaction diagram reflecting this is shown in Figure 16.9.

Figure 16.9 Register creates Payment.

This assignment of responsibilities couples the Register class to knowledge of
the Payment class.

229

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

UML notation: Note that the Payment instance is explicitly named p so that in
message 2 it can be referenced as a parameter.
An alternative solution to creating the Payment and associating it with the Sale is
shown in Figure 16.10.

Figure 16.10 Sale creates Payment.

Which design, based on assignment of responsibilities, supports Low Coupling?
In both cases we will assume the Sale must eventually be coupled to knowledge of
a Payment. Design 1, in which the Register creates the Payment, adds coupling of
Register to Payment, while Design 2, in which the Sale does the creation of a
Payment, does not increase the coupling. Purely from the point of view of coupling,
Design Two is preferable because overall lower coupling is maintained. This an
example where two patterns�Low Coupling and Creator�may suggest different
solutions.

Discussion Low Coupling is a principle to keep in mind during all design decisions; it is an

underlying goal to continually consider. It is an evaluative principle that a
designer applies while evaluating all design decisions.
In object-oriented languages such as C++, Java, and C#, common forms of coupling
from TypeX to TypeY include:
� TypeX has an attribute (data member or instance variable) that refers to a

TypeY instance, or TypeY itself.
� A TypeX object calls on services of a TypeY object.
� TypeX has a method that references an instance of TypeY, or TypeY itself, by

any means. These typically include a parameter or local variable of type
TypeY, or the object returned from a message being an instance of TypeY.

� TypeX is a direct or indirect subclass of TypeY.

230

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

Low COUPLING

Contraindications

� TypeY is an interface, and TypeX implements that interface.
Low Coupling encourages assigning a responsibility so that its placement does
not increase the coupling to such a level that it leads to the negative results that
high coupling can produce.
Low Coupling supports the design of classes that are more independent, which
reduces the impact of change. It can't be considered in isolation from other pat-
terns such as Expert and High Cohesion, but rather needs to be included as one of
several design principles that influence a choice in assigning a responsibility.
A subclass is strongly coupled to its superclass. The decision to derive from a
superclass needs to be carefully considered since it is such a strong form of coup-
ling. For example, suppose that objects need to be stored persistently in a rela-
tional or object database. In this case it is a relatively common design to create an
abstract superclass called PersistentObject from which other classes derive. The
disadvantage of this subclassing is that it highly couples domain objects to a
particular technical service and mixes different architectural concerns,
whereas the advantage is automatic inheritance of persistence behavior.
There is no absolute measure of when coupling is too high. What is important is
that a developer can gauge the current degree of coupling, and assess if increasing
it will lead to problems. In general, classes that are inherently very generic in
nature, and with a high probability for reuse, should have especially low
coupling.
The extreme case of Low Coupling is when there is no coupling between classes.
This is not desirable because a central metaphor of object technology is a system of
connected objects that communicate via messages. If Low Coupling is taken to
excess, it yields a poor design because it leads to a few incohesive, bloated, and
complex active objects that do all the work, with many very passive zero-coupled
objects that act as simple data repositories. Some moderate degree of coupling
between classes is normal and necessary to create an object-oriented system in
which tasks are fulfilled by a collaboration between connected objects.

High coupling to stable elements and to pervasive elements is seldom a problem.
For example, a Java J2EE application can safely couple itself to the Java libraries
(java.util, and so on), because they are stable and widespread.

Pick Your Battles

It is not high coupling per se that is the problem; it is high coupling to elements
that are unstable in some dimension, such as their interface, implementation, or
mere presence.
This is an important point: As designers, we can add flexibility, encapsulate
details and implementations, and in general design for lower coupling in many
areas of the system. But, if we put effort into "future proofing" or lowering the
coupling at some point where in fact there is no realistic motivation, this is not
time well spent.

231

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Designers have to pick their battles in lowering coupling and encapsulating
things. Focus on the points of realistic high instability or evolution. For example,
in the NextGen project, it is known that different third-party tax calculators
(with unique interfaces) need to be connected to the system. Therefore, designing
for low coupling at this variation point is practical.

Benefits � not affected by changes in other components

� simple to understand in isolation
� convenient to reuse

Background Coupling and cohesion (described next) are truly fundamental principles in
design, and should be appreciated and applied as such by all software developers.
Larry Constantine, also a founder of structured design in the 1970s and a current
advocate of more attention to usability engineering [CL99], was primarily
responsible in the 1960s for identifying and communicating coupling and
cohesion as critical principles [ConstantineGS, CMS74].

Solution Assign a responsibility so that cohesion remains high.

Problem How to keep complexity manageable?

In terms of object design, cohesion (or more specifically, functional cohesion) is
a measure of how strongly related and focused the responsibilities of an element
are. An element with highly related responsibilities, and which does not do a
tremendous amount of work, has high cohesion. These elements include classes,
subsystems, and so on.
A class with low cohesion does many unrelated things, or does too much work.
Such classes are undesirable; they suffer from the following problems:
� hard to comprehend
� hard to reuse
� hard to maintain
� delicate; constantly effected by change
Low cohesion classes often represent a very "large grain" of abstraction, or have
taken on responsibilities that should have been delegated to other objects.

Example The same example problem used in the Low Coupling pattern can be analyzed
for High Cohesion.

232

HIGH COHESION

Assume we have a need to create a (cash) Payment instance and associate it
with the Sale. What class should be responsible for this? Since Register records a
Payment in the real-world domain, the Creator pattern suggests Register as a
candidate for creating the Payment. The Register instance could then send an
addPayrnent message to the Sale, passing along the new Payment as a parameter,
as shown in Figure 16.11.

Figure 16.11 Register creates Payment.

This assignment of responsibilities places the responsibility for making a pay-
ment in the Register. The Register is taking on part of the responsibility for ful-
filling the makePayment system operation.
In this isolated example, this is acceptable; but if we continue to make the
Register class responsible for doing some or most of the work related to more
and more system operations, it will become increasingly burdened with tasks
and become incohesive.
Imagine that there were fifty system operations, all received by Register. If it did
the work related to each, it would become a "bloated" incohesive object. The
point is not that this single Payment creation task in itself makes the Register
incohesive, but as part of a larger picture of overall responsibility assignment, it
may suggest a trend toward low cohesion.
And most important in terms of developing skills as an object designer, regardless
of the final design choice, the valuable thing is that at least a developer knows
to consider the impact on cohesion.
By contrast, as shown in Figure 16.12, the second design delegates the payment
creation responsibility to the Sale, which supports higher cohesion in the

Since the second design supports both high cohesion and low coupling, it is
desirable.

233

: Register : Sale

addPayment(p)

p : Paymentcreate()
makePayment()

Discussion Like Low Coupling, High Cohesion is a principle to keep in mind during all
design decisions; it is an underlying goal to continually consider. It is an evalua-
tive principle that a designer applies while evaluating all design decisions.
Grady Booch describes high functional cohesion as existing when the elements
of a component (such as a class) "all work together to provide some well-bounded
behavior" [Booch94].
Here are some scenarios that illustrate varying degrees of functional cohesion:
1. Very low cohesion�A class is solely responsible for many things in very dif

ferent functional areas.
o Assume a class exists called RDB-RPC-Interface which is com-

pletely responsible for interacting with relational databases and
for handling remote procedure calls. These are two vastly different
functional areas, and each requires lots of supporting code. The
responsibilities should be split into a family of classes related to
RDB access and a family related to RFC support.

2. Low cohesion�A class has sole responsibility for a complex task in one func
tional area.

o Assume a class exists called RDBInterface which is completely
responsible for interacting with relational databases. The methods
of the class are all related, but there are lots of them, and a tre-
mendous amount of supporting code; there may be hundreds or
thousands of methods. The class should split into a family of light-
weight classes sharing the work to provide RDB access.

234

Figure 16.12 Sale creates Payment

In practice, the level of cohesion alone can�t be considered in isolation from other responsibilities and other
principles such as Expert and Low Coupling.

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

: Register : Sale

makePayment()
 : Paymentcreate()

makePayment()

HIGH COHESION

3. High cohesion�A class has moderate responsibilities in one functional area
and collaborates with other classes to fulfill tasks.

o Assume a class exists called RDBInterface which is only partially
responsible for interacting with relational databases. It interacts
with a dozen other classes related to RDB access in order to
retrieve and save objects.

4. Moderate cohesion�A class has lightweight and sole responsibilities in a
few different areas that are logically related to the class concept, but not to
each other.

o Assume a class exists called Company which is completely respon-
sible for (a) knowing its employees and (b) knowing its financial
information. These two areas are not strongly related to each
other, although both are logically related to the concept of a com-
pany. In addition, the total number of public methods is small, as is
the amount of supporting code.

As a rule of thumb, a class with high cohesion has a relatively small number of
methods, with highly related functionality, and does not do too much work. It
collaborates with other objects to share the effort if the task is large.
A class with high cohesion is advantageous because it is relatively easy to main-
tain, understand, and reuse. The high degree of related functionality, combined
with a small number of operations, also simplifies maintenance and enhance-
ments. The fine grain of highly related functionality also supports increased
reuse potential.
The High Cohesion pattern�like many things in object technology�has a
real-world analogy. It is a common observation that if a person takes on too many
unrelated responsibilities�especially ones that should properly be delegated to
others�then the person is not effective. This is observed in some managers who
have not learned how to delegate. These people suffer from low cohesion; they
are ready to become "unglued."

Another Classic Principle: Modular Design

Coupling and cohesion are old principles in software design; designing with
objects does not imply ignoring well-established fundamentals. Another of
these�which is strongly related to coupling and cohesion�is to promote modu-
lar design. To quote:

Modularity is the property of a system that has been decom-
posed into a set of cohesive and loosely coupled modules
[Booch94].

We promote a modular design by creating methods and classes with high cohe-
sion. At the basic object level, modularity is achieved by designing each method
with a clear, single purpose, and grouping a related set of concerns into a class.

235

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Cohesion and Coupling; Yin and Yang

Bad cohesion usually begets bad coupling, and vice versa. 1 call
cohesion and coupling the yin and yang of software engineering
because of their interdependent influence. For example, consider a GUI widget
class that represents and paints a widget, saves data to a database, and invokes
remote object services. Not only is it profoundly incohesive, but it is coupled to
many (and disparate) elements.

Contraindications There are a few cases in which accepting lower cohesion is justified.

One case is the grouping of responsibilities or code into one class or component to
simplify maintenance by one person�although be warned that such grouping may
also make maintenance worse. But for example, suppose an application contains
embedded SQL statements that by other good design principles should be
distributed across ten classes, such as ten "database mapper" classes. Now, it is
common that only one or two SQL experts know how to best define and maintain
this SQL, even if there are dozens of object-oriented (OO) programmers on the
project; few OO programmers may have strong SQL skills. Suppose the SQL
expert is not even a comfortable OO programmer. The software architect may
decide to group all the SQL statements into one class, RDBOperations, so that it is
easy for the SQL expert to work on the SQL in one location.
Another case for components with lower cohesion is with distributed server
objects. Because of overhead and performance implications associated with
remote objects and remote communication, it is sometimes desirable to create
fewer and larger, less cohesive server objects that provide an interface for many
operations. This is also related to the pattern called Coarse-Grained Remote
Interface, in which the remote operations are made more coarse-grained in
order to do or request more work in remote operation call, because of the perfor-
mance penalty of remote calls over a network. As a simple example, instead of a
remote object with three fine-grained operations setName, setSalary, and
setHi-reDate, there is one remote operation setData which receives a set of data.
This results in less remote calls, and better performance.

Benefits � Clarity and ease of comprehension of the design is increased.

� Maintenance and enhancements are simplified.

� Low coupling is often supported.

� The fine grain of highly related functionality supports increased reuse
because a cohesive class can be used for a very specific purpose.

236

CONTROLLER

16.10 Controller

Solution Assign the responsibility for receiving or handling a system event message to a
class representing one of the following choices:

� Represents the overall system, device, or subsystem (facade controller).

� Represents a use case scenario within which the system event occurs, often
named <UseCaseName>Handler, <UseCaseName>Coordinator, or
<Use-CaseName>Session (use-case or session controller).

o Use the same controller class for all system events in the same use
case scenario.

o Informally, a session is an instance of a conversation with an actor.
Sessions can be of any length, but are often organized in terms of
use cases (use case sessions).

Corollary: Note that "window," "applet," "widget," "view," and "document" classes
are not on this list. Such classes should not fulfill the tasks associated with system
events, they typically receive these events and delegate them to a controller.

Problem Who should be responsible for handling an input system event?

An input system event is an event generated by an external actor. They are
associated with system operations�operations of the system in response to
system events, just as messages and methods are related.

For example, when a cashier using a POS terminal presses the "End Sale" button,
he is generating a system event indicating "the sale has ended." Similarly, when a
writer using a word processor presses the "spell check" button, he is generating a
system event indicating "perform a spell check."

A Controller is a non-user interface object responsible for receiving or handling a
system event. A Controller defines the method for the system operation.

Example In the NextGen application, there are several system operations, as illustrated in
Figure 16.13, showing the system itself as a class or component (which is legal
in the UML).

237

Figure 16.13 System operations associated with the system events.

System

endSale()
enterItem()
makeNewSale()
makePayment()
. . .

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Who should be the controller for system events such as enterltem and endSalel

Figure 16.14 Controller for enterltem?

By the Controller pattern, here are some choices:

represents the overall "system," device, or Register, POSSystem
subsystem
represents a receiver or handler of all system ProcessSaleHandler,
events of a use case scenario ProcessSaleSestsion

238

Which class of object should be responsible for receiving this
system event message?

It is sometimes called the controller or coordinator. It does not
normally do the work, but delegates it to other objects.

The controller is a kind of "facade" onto the domain layer from
the interface layer.

actionPerformed(actionEvent)

: ???

: Cashier

:SaleJFrame

presses button

enterItem(itemID, qty)

Interface
Layer

Domain
Layer

system event message

Figure 16.15 Controller choices.

The choice of which of these classes is the most appropriate controller is influ-
enced by other factors, which the following section explores.

During design, the system operations identified during system behavior analysis
are assigned to one or more controller classes, such as Register, as shown in Figure
16.16.

Discussion Systems receive external input events, typically involving a GUI operated by a
person. Other mediums of input include external messages such as in a call pro-
cessing telecommunications switch, or signals from sensors such as in process
control systems.

In all cases, if an object design is used, some handler for these events must be
chosen. The Controller pattern provides guidance for generally accepted, suitable
choices. As illustrated in Figure 16.14, the controller is a kind of facade into the
domain layer from the interface layer.

It is often desirable to use the same controller class for all the system events of
one use case so that it is possible to maintain information about the state of the use
case in the controller. Such information is useful, for example, to identify
out-of-sequence system events (for example, a makePayment operation before an
endSale operation). Different controllers may be used for different use cases.

A common defect in the design of controllers is to give them too much responsi-
bility.

Normally, a controller should delegate to other objects the work that needs to be
done; it coordinates or controls the activity. It does not do much work itself.

Please see the "Issues and Solutions" section later for elaboration.

The first category of controller is a facade controller representing the overall
system, device, or a subsystem. The idea is to choose some class name that sug-
gests a cover, or facade, over the other layers of the application, and that provides
the main point of service calls from the UI layer down to other layers. It

239

CONTROLLER

In terms of interaction diagrams, it means that one of the examples in Figure
16.15 may be useful.

:RegisterenterItem(id, quantity)

:ProcessSaleHandlerenterItem(id, quantity)

240

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

could be an abstraction of the overall physical unit, such as a Register4,
TelecommSwitch, Phone, or Robot; a class representing the entire software sys-
tem, such as POSSystem, or any other concept which the designer chooses to
represent the overall system or a subsystem, even, for example, ChessGame if it
was game software.
Facade controllers are suitable when there are not "too many" system events, or it
is not possible for the user interface (UI) to redirect system event messages to
alternating controllers, such as in a message processing system.
If a use-case controller is chosen, then there is a different controller for each use
case. Note that this is not a domain object; it is an artificial construct to support
the system (a Pure Fabrication in terms of the GRASP patterns). For example, if
the NextGen application contains use cases such as Process Sale and Handle
Returns, then there may be a ProcessSaleHandler class and so forth.
When should you choose a use-case controller? It is an alternative to consider
when placing the responsibilities in a facade controller leads to designs with low
cohesion or high coupling, typically when the facade controller is becoming
"bloated" with excessive responsibilities. A use-case controller is a good choice
when there are many system events across different processes; it factors their
handling into manageable separate classes, and also provides a basis for knowing
and reasoning about the state of the current scenario in progress.
In the UP and Jacobson's older Objectory method [Jacobson92], there are the
(optional) concepts of boundary, control, and entity classes. Boundary objects
are abstractions of the interfaces, entity objects are the application-indepen-
dent (and typically persistent) domain software objects, and control objects
are use case handlers as described in this Controller pattern.
A important corollary of the Controller pattern is that interface objects (for
example, window objects or widgets) and the presentation layer should not have
responsibility for fulfilling system events. In other words, system operations
should be handled in the application logic or domain layers of objects rather
than in the interface layer of a system. See the "Issues and Solutions" section for
an example.
The Controller object is typically a client-side object within the same process as
the UI (for example, an application with a Java Swing GUI), and so is not
exactly applicable when the UI is a Web client in a browser, and there is
server-side software involved. In the latter case, there are various common
patterns of handling the system events that are strongly influenced by the chosen
server-side technical framework, such as Java servlets. Nevertheless, it is a
common idiom to create server-side use-case controllers with either a servlet for
each use case or an Enterprise JavaBeans (EJB) session bean for each use
case. The

4. Various terms are used for a physical POS unit, including register, point-of-sale terminal
(POST), and so forth. Over time, "register" has come to embody the notion of both a
physical unit, and the logical abstraction of the thing that registers sales and payments.

CONTROLLER

server-side session object represents a "session" of interaction with an external
actor.

Register

...

endSale()
enterItem()
makeNewSale()
makePayment()

makeNewReturn()
enterReturnItem()
. . .

System

endSale()
enterItem()
makeNewSale()
makePayment()

makeNewReturn()
enterReturnItem()
. . .

system operations
discovered during system
behavior analysis

allocation of system
operations during design,
using one facade controller

ProcessSale
Handler

...

endSale()
enterItem()
makeNewSale()
makePayment()

System

endSale()
enterItem()
makeNewSale()
makePayment()

enterReturnItem()
makeNewReturn()
. . .

allocation of system
operations during design,
using several use case
controllers

HandleReturns
Handler

...

enterReturnItem()
makeNewReturn()
. . .

Figure 16.16 Allocation of system operations.

If the UI is not a web client (for example, it is a Swing or Windows GUI), but the
application calls on remote services, it is still common to use the Controller pattern.
The UI forwards the request to the local client-side Controller, and the Controller
may forward all or part of the request handling on to remote services. This design
lowers the coupling of the UI to remote services, and makes it easier, for example,
to provide the services either locally or remotely, through the indirection of the
client-side Controller.

To summarize, the Controller receives the service requests from the UI layer and
coordinates their fulfillment, usually by delegation to other objects.

241

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Benefits � Increased potential for reuse, and pluggable interfaces�It ensures that
application logic is not handled in the interface layer. The responsibilities of a
controller could technically be handled in an interface object, but the
implication of such a design is that program code and logic related the ful-
fillment of application logic would be embedded in interface or window
objects. An interface-as-controller design reduces the opportunity to reuse
logic in future applications, since it is bound to a particular interface (for
example, window-like objects) that is seldom applicable in other applications.
By contrast, delegating a system operation responsibility to a controller
supports the reuse of the logic in future applications. And since the
application logic is not bound to the interface layer, it can be replaced with a
different interface.

� Reason about the state of the use case�It is sometimes necessary to ensure that
system operations occur in a legal sequence, or to be able to reason about
the current state of activity and operations within the use case that is
underway. For example, it may be necessary to guarantee that the
makePay-ment operation can not occur until the endSale operation has
occurred. If so, this state information needs to be captured somewhere; the
controller is one reasonable choice, especially if the same controller is used
throughout the use case (which is recommended).

Issues and
Solutions

Bloated Controllers

Poorly designed, a controller class will have low cohesion�unfocused and han-
dling too many areas of responsibility; this is called a bloated controller. Signs of
bloating include:

� There is only a single controller class receiving all system events in the sys
tem, and there are many of them. This sometimes happens if a facade con
troller is chosen.

� The controller itself performs many of the tasks necessary to fulfill the sys
tem event, without delegating the work. This usually involves a violation of
Information Expert and High Cohesion.

� A controller has many attributes, and maintains significant information
about the system or domain, which should have been distributed to other
objects, or duplicates information found elsewhere.

242

There are several cures to a bloated controller, including:

1. Add more controllers�a system does not have to have only one. Instead of
facade controllers, use use-case controllers. For example, consider an appli-
cation with many system events, such as an airline reservation system.

CONTROLLER

It may contain the following controllers:

Use-case controllers

MakeReservationHandler

ManageSchedulesHandler

ManageFaresHandler

2. Design the controller so that it primarily delegates the fulfillment of
each system operation responsibility on to other objects.

Interface Layer Does Not Handle System Events

To reiterate: an important corollary of the Controller pattern is that interface
objects (for example, window objects) and the interface layer should not have
responsibility for handling system events. As an example, consider a design in
Java that uses a JFrame to display the information.

Assume the NextGen application has a window that displays sale information
and captures cashier operations. Using the Controller pattern, Figure 16.17
illustrates an acceptable relationship between the JFrame and Controller and
other objects in a portion of the POS system (with simplifications).

Notice that the SaleJFrame class—part of the interface layer—passes the
enter-Item message to the Register object. It did not get involved in processing
the operation or deciding how to handle it; the window only delegated it to
another layer.

Assigning the responsibility for system operations to objects in the application
or domain layer—using the Controller pattern rather than the interface layer
supports increased reuse potential. If an interface layer object (like the SaleJ-
Frame) handles a system operation—which represents part of a business pro-
cess—then business process logic would be contained in an interface (for
example, window-like) object, which has low opportunity for reuse because of its
coupling to a particular interface and application.

Consequently, the design in Figure 16.18 is undesirable.

Placing system operation responsibility in a domain object controller makes it
easier to reuse the program logic supporting the associated business process in
future applications. It also makes it easier to unplug the interface layer and use
a different interface framework or technology, or to run the system in an offline
"batch" mode.

243

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

Message Handling Systems and the Command Pattern

Some applications are message-handling systems or servers that receive
requests from other processes. A telecommunications switch is a common exam-
ple. In such systems, the design of the interface and controller is somewhat dif-
ferent. The details are explored in a later chapter, but in essence, a common
solution is to use the Command pattern [GHJV95] and Command Processor pat-
tern [BMRSS96], introduced in Chapter 34.

Related Patterns

Figure 16.17 Desirable coupling of interface layer to domain layer.

• Command—In a message-handling system, each message may be repre
sented and handled by a separate Command object [GHJV95].

• Facade—A facade controller is a kind of Facade [GHJV95].
• Layers—This is a POSA pattern [BMRSS96]. Placing domain logic in the

domain layer rather than the presentation layer is part of the Layers
pattern.

244

actionPerformed(actionEvent)

:Register

: Cashier

:SaleJFrame

presses button

1: enterItem(itemID, qty)

:Sale1.1: makeLineItem(itemID, qty)

Interface Layer

Domain Layer

system event message

controller

OBJECT DESIGN AND CRC CARDS

Pure Fabrication—This is another GRASP pattern. A Pure Fabrication is an
arbitrary creation of the designer, not a software class whose name is
inspired by the Domain Model. A use-case controller is a kind of Pure
Fabrication.

Cashier

:SaleJFrame

actionPerformed(actionEvent)

:Sale
1: makeLineItem(itemID, qty)

Interface Layer

Domain Layer

It is undesirable for an interface
layer object such as a window to get
involved in deciding how to handle
domain processes.

Business logic is embedded in the
presentation layer, which is not useful.

SaleJFrame should not
send this message.

presses button

Figure 16.18 Less desirable coupling of interface layer to domain layer.

16.11 Object Design and CRC Cards

Although not formally part of the UML, another device sometimes used to help
assign responsibilities and indicate collaboration with other objects are CRC
cards (Class-Responsibility-Collaborator cards) [BC89]. These were pioneered
by Kent Beck and Ward Cunningham, who are largely responsible for encourag-
ing objects designers to think more abstractly in terms of responsibility assign-
ment and collaborations, and also for the use of patterns.

245

16 - GRASP: DESIGNING OBJECTS WITH RESPONSIBILITIES

CRC cards are index cards, one for each class, upon which the responsibilities of
the class are briefly written, and a list of collaborator objects to fulfill those
responsibilities. They are usually developed in a small group session. The
GRASP patterns may be applied when considering the design while using CRC
cards.

CRC cards are one approach to recording the results of responsibility assign-
ment and collaborations. The recording can be enhanced with the use of interac-
tion and class diagrams. The real value is not the cards or the diagrams, but the
consideration of responsibility assignment.

16.12 Further Readings

The metaphor of collaborating objects with responsibilities, or
Responsibility-Driven Design, especially emerged from the influential object
work in Smalltalk at Tektronix in Portland, from Kent Beck, Ward Cunningham,
Rebecca Wirfs-Brock, and others. Designing Object-Oriented Software [WWW90]
is the landmark text, and as relevant today as when it was written.

Two other recommended texts emphasizing fundamental object design princi-
ples are Object-Oriented Design Heuristics by Riel, and Object Models by Coad.

246

Chapter 17

DESIGN MODEL: USE-CASE

REALIZATIONS WITH
GRASP PATTERNS

To invent, you need a good imagination and a pile of junk.

— Thomas Edison

Objectives

• Design use-case realizations.

• Apply the GRASP patterns to assign responsibilities to classes.

• Use the UML interaction diagram notation to illustrate the design of
objects.

Introduction

This chapter explores how to create a design of collaborating objects with
responsibilities. Particular attention is given to the application of the GRASP
patterns to develop a well-designed solution. Please note that the GRASP pat-
terns as such or by name are not the important thing; they are just a learning
aid to help talk about and methodically do fundamental object design.

This chapter communicates the principles, using the NextGen POS example, by
which an object-oriented designer assigns responsibilities and establishes object
interactions—a core skill in object-oriented development.

247

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

Note:

The assignment of responsibilities and design of collaborations are very
important and creative steps during design, either while diagraming or while
programming.

The material is intentionally detailed; it attempts to exhaustively illustrate that
there is no "magic" or unjustifiable decisions in object design—assignment of
responsibilities and the choice of object interactions can be rationally explained
and learned.

17.1 Use-Case Realizations

To quote, "A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects" [RUP]. More pre-
cisely, a designer can describe the design of one or more scenarios of a use case;
each of these is called a use-case realization. Use-case realization is a UP term
or concept used to remind us of the connection between the requirements
expressed as use cases, and the object design that satisfies the requirements.

UML interaction diagrams are a common language to illustrate use-case real-
izations. And as was explored in the prior chapter, there are principles and pat-
terns of object design, such as Information Expert and Low Coupling, that can
be applied during this design work.

To review, Figure 17.20 (near the end of this chapter) illustrates the relationship
between some UP artifacts:

• The use case suggests the system events that are explicitly shown in system
sequence diagrams.

• Details of the effect of the system events in terms of changes to domain
objects may optionally be described in system operation contracts.

• The system events represent messages that initiate interaction diagrams,
which illustrate how objects interact to fulfill the required tasks—the use
case realization.

• The interaction diagrams involve message interaction between software
objects whose names are sometimes inspired by the names of conceptual
classes in the Domain Model, plus other classes of objects.

248

ARTIFACT COMMENTS

17.2 Artifact Comments

Interaction Diagrams and Use-Case Realizations

In the current iteration we are considering various scenarios and system events
such as:

• Process Scale: makeNewSale, enterItem, endSale, makePayment
If collaboration diagrams are used to illustrate the use-case realizations, a dif-
ferent collaboration diagram will be required to show the handling of each sys-
tem event message. For example (Figure 17.1):

:RegisterenterItem()

:RegisterendSale()

:RegistermakePayment()

1: ???()

1: ???()

1: ???()

:RegistermakeNewSale() 1: ???()

Figure 17.1 Collaboration diagrams and system event message handling.

On the other hand, if sequence diagrams are used, it may be possible to fit all
system event messages on the same diagram, as in Figure 17.2.

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getProductSpec(itemID)
addLineItem(spec, quantity)

: Sale

. . .

makeNewSale()
create()

endSale()
. . .

makePayment(...)
. . .

Figure 17.2 One sequence diagram and system event message handling.

249

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

However, it is often the case that the sequence diagram is then too complex or
long. It is legal, as with interaction diagrams, to use a sequence diagram for
each system event message, as in Figure 17.3.

Figure 17.3 Multiple sequence diagrams and system event message handling.

Contracts and Use-Case Realizations

To reiterate, it may be possible to design use-case realizations directly from the
use case text. In addition, for some system operations, contracts may have been
written that add greater detail or specificity. For example:

Contract CO2: enterltem

Operation: Cross
References:
Preconditions:

Postconditions:

enterltem(itemlD : ItemID, quantity : integer) Use
Cases: Process Sale There is a sale underway.

- A SalesLineltem instance sli was created (instance cre-
ation).

250

In conjunction with contemplating the use case text, for each contract, we work
through the postcondition state changes and design message interactions to sat-
isfy the requirements. For example, given this partial enterItem system opera-

: Register

: Sale

makeNewSale()
create()

: Register
enterItem

(itemID, quantity)

: ProductCatalog

spec := getProductSpec(itemID)
addLineItem(spec, quantity)

: Sale

. . .

Figure 17.4 Partial interaction diagram.

Caution: The Requirements Are Not Perfect

It is useful to bear in mind that previously written use cases and contracts are
only a guess of what must be achieved. The history of software development is
one of invariably discovering that the requirements are not perfect, or have
changed. This is not an excuse to ignore trying to do a good requirements job,
but a recognition of the need to continuously engage customers and subject mat-
ter experts in review and feedback on the growing system's behavior.

An advantage of iterative development is that it naturally supports the discov-
ery of new analysis and design results during design and implementation work.
The spirit of iterative development is to capture a "reasonable" degree of infor-
mation during requirements analysis, filling in details during design and imple-
mentation.

The Domain Model and Use-Case Realizations

Some of the software objects that interact via messages in the interaction dia-
grams are inspired from the Domain Model, such as a Sale conceptual class and
Sale design class. The choice of appropriate responsibility placement using the
GRASP patterns relies, in part, upon information in the Domain Model. As men-
tioned, the existing Domain Model is not likely to be perfect; errors and omis-
sions are to be expected. You will discover new concepts that were previously
missed, ignore concepts that were previously identified, and do likewise with
associations and attributes.

Conceptual vs. Design Classes

Recall that the UP Domain Model does not illustrate software classes, but may
be used to inspire the presence and names of some software classes in the

251

1: makeLineItem(...)enterItem(id, qty)

1.1: create(...

:Register :Sale

:SalesLineItem

ARTIFACT COMMENTS

tion, a partial interaction diagram is shown in Figure 17.4 that satisfies the
state change of SalesLineItem instance creation.

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

Design Model. During interaction diagramming or programming, the developers
may look to the Domain Model to name some design classes, thus creating a
design with lower representational gap between the software design and our
concepts of the real domain to which the software is related (see Figure 17.5).

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model

Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model

The object developer has taken inspiration from the real-world domain in
creating software classes. Therefore, the representational gap between h
stakeholders conceive the domain, and its representation in software, has
been lowered.

1 1

1 1

inspires
objects

and
names in

conceptual
classes

design
classes

Figure 17.5 Lowering representational gap with design classes named from
conceptual classes.

Must the design classes in the Design Model be limited to classes with names
inspired from the Domain Model? Not at all; it is appropriate to discover new
conceptual classes during this design work that were missed during earlier
domain analysis, and also to make up software classes whose names and pur-
pose is completely unrelated to the Domain Model.

17.3 Use-Case Realizations for the NextGen Iteration

The following sections explore the choices and decisions made while designing a
use-case realization with objects based on the GRASP patterns. The explana-
tions are intentionally detailed, in an attempt to illustrate that there does not
have be any "hand waving" in the creation of well-designed interaction dia-
grams; their construction is based on justifiable principles.

252

OBJECT DESIGN: MAKENEWSALE

Notationally, the design of objects for each system event message will be shown
in a separate diagram, to focus on the design issues of each. However, they could
have been grouped together on one sequence diagram.

17.4 Object Design: makeNewSale

The makeNewSale system operation occurs when a cashier requests to start a
new sale, after a customer has arrived with things to buy. The use case may
have been sufficient to decide what was necessary, but for this case study we
wrote contracts for all the system events, for explanation and completeness.

Contract CO1: makeNewSale

Operation: Cross
References:
Preconditions:

Postconditions:

makeNewSale()
Use Cases: Process Sale
none

- A Sale instance s was created (instance creation).
- s was associated with the Register (association formed).
- Attributes of s were initialized.

Choosing the Controller Class

Our first design choice involves choosing the controller for the system operation
message enterItem. By the Controller pattern, here are some choices:

represents the overall "system," device,
or subsystem
represents a receiver or handler of all
system events of a use case scenario.

Register, POSSystem

ProcessSaleHandler,
ProcessSaleSession

Choosing a facade controller like Register is satisfactory if there are only a few
system operations and the facade controller is not taking on too many responsi-
bilities (in other words, if it is becoming incohesive). Choosing a use-case con-
troller is suitable when there are many system operations and we wish to
distribute responsibilities in order to keep each controller class lightweight and
focused (in other words, cohesive). In this case, Register will suffice, since there
are only a few system operations.

This Register is a software object in the Design Model. It is not a real physical
register but a software abstraction whose name was chosen to lower the rep-
resentational gap between our concept of the domain and the software.

253

254

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

Thus, the interaction diagram shown in Figure 17.6 begins by sending the
makeNewSale message to a Register software object.

Figure 17.6 Applying the GRASP Controller pattern.

Creating a New Sale

A software Sale object must be created, and the GRASP Creator pattern sug-
gests assigning the responsibility for creation to a class that aggregates, con-
tains, or records the object to be created.

:Register

makeNewSale()

:Salecreate()

Register creates a
Sale by Creator

create() :Sales
LineItem

by Creator, Sale
creates an empty
multiobject (such as
a List) which will
eventually hold
SalesLineItem
instances

CAUTION:
This is not a SalesLineItem instance. This is a
collection object (such as a List) that can hold
SalesLineitem objects.

by Creator
and
Controller

this activation is implied to be within the
constructor of the Sale instance

:Register

makeNewSale()

by Controller

Figure 17.7 Sale and multiobject creation.

OBJECT DESIGN: ENTERITEM

Analyzing the Domain Model reveals that a Register may be thought of as
recording a Sale; indeed, the word "register" in business has for many years
meant the thing that recorded (or registered) account transactions, such as
sales.

Thus, Register is a reasonable candidate for creating a Sale. And by having the
Register create the Sale, the Register can easily be associated with it over time,
so that during future operations within the session, the Register will have a ref-
erence to the current Sale instance.

In addition to the above, when the Sale is created, it must create an empty col-
lection (container, such as a Java List) to record all the future SalesLineItem
instances that will be added. This collection will be contained within and main-
tained by the Sale instance, which implies by Creator that the Sale is a good
candidate for creating it.

Therefore, the Register creates the Sale, and the Sale creates an empty collec-
tion, represented by a multiobject in the interaction diagram.

Hence, the interaction diagram in Figure 17.7 illustrates the design.

Conclusion

The design was not difficult, but the point of its careful explanation in terms of
Controller and Creator was to illustrate that the details of a design can be
rationally and methodically decided and explained in terms of principles and
patterns, such as GRASP.

17.5 Object Design: enterltem

The enterItem system operation occurs when a cashier enters the itemID and
(optionally) the quantity of something to be purchased. Here is the complete
contract:

Contract CO2: enterltem

Operation: Cross
References:
Preconditions:

Postconditions:

enterltem(itemlD : ItemID, quantity : integer) Use
Cases: Process Sale There is an underway sale.

- A SalesLineltem instance sli was created (instance cre-
ation).

- sli was associated with the current Sale (association
formed).

- sli.quantity became quantity (attribute modification).
- sli was associated with a ProductSpecification, based on

itemID match (association formed).

255

256

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

An interaction diagram will be constructed to satisfy the postconditions of
enter-Item, using the GRASP patterns to help with the design decisions.

Choosing the Controller Class

Our first choice involves handling the responsibility for the system operation
message enterItem. Based on the Controller pattern, as for makeNewSale, we
will continue to use Register as a controller.

Display Item Description and Price?

Because of a design principle called Model-View Separation, it is not the
responsibility of non-GUI objects (such as a Register or Sale) to get involved in
output tasks. Therefore, although the use case states that the description and
price are displayed after this operation, the design will be ignored at this time.

All that is required with respect to responsibilities for the display of information
is that the information is known, which it is in this case.

Creating a New SalesLineItem

The enterItem contract postconditions indicate the creation, initialization, and
association of a SalesLineItem. Analyzing the Domain Model reveals that a Sale
contains SalesLineItem objects. Taking inspiration from the domain, a software
Sale may similarly contain software SalesLineItem. Hence, by Creator, a soft-
ware Sale is an appropriate candidate to create a SalesLineItem.

The Sale can be associated with the newly created SalesLineItem by storing the
new instance in its collection of line items. The postconditions indicate that the
new SalesLineItem needs a quantity, when created; therefore, the Register must
pass it along to the Safe, which must pass it along as a parameter in the create
message (in Java, that would be implemented as a constructor call with a
parameter).

Therefore, by Creator, a makeLineItem message is sent to a Sale for it to create a
SalesLineItem. The Sale creates a SalesLineItem, and then stores the new
instance in its permanent collection.

The parameters to the makeLineItem message include the quantity, so that the
SalesLineItem can record it, and likewise the ProductSpecification which
matches the itemID.

OBJECT DESIGN: ENTERITEM

Finding a ProductSpecification

The SalesLineItem needs to be associated with the ProductSpecification that
matches the incoming itemID. This implies it is necessary to retrieve a
Product-Specification, based on an itemID match.

Before considering how to achieve the lookup, it is useful to consider who should
be responsible for it. Thus, a first step is:

Start assigning responsibilities by clearly stating the responsibility.

To restate the problem:

Who should be responsible for knowing a ProductSpecification,
based on an itemID match?

This is neither a creation problem nor one of choosing a controller for a system
event. Now we see our first application of Information Expert in the design.

In many cases, the Expert pattern is the principal one to apply. Information
Expert suggests that the object that has the information required to fulfill the
responsibility should do it. Who knows about all the ProductSpecification
objects?

Analyzing the Domain Model reveals that the ProductCatalog logically contains
all the ProductSpecifications. Once again, taking inspiration from the domain,
we design software classes with similar organization: a software ProductCatalog
will contain software ProductSpecifications.

With that decided, then by Information Expert ProductCatalog is a good candi-
date for this lookup responsibility since it knows all the ProductSpecification
objects.

This may be implemented, for example, with a method called getSpecification.1

Visibility to a ProductCatalog

Who should send the getSpecification message to the ProductCatalog to ask for
a ProductSpecification?

It is reasonable to assume that a Register and ProductCatalog instance were
created during the initial Start Up use case, and that there is a permanent con-
nection from the Register object to the ProductCatalog object. With that assump-

1. The naming of accessing methods is of course idiomatic to each language. Java always
uses the object.getFoo() form, C++ tends to use object.foo(), and C# uses object.Foo,
which hides (like Eiffel and Ada) if it is a method call or direct access of a public
attribute. The Java style is used in the examples.

257

258

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

tion (which we might record on a task list of things to ensure in the design when
we get to designing the initialization), then it is possible for the Register to send
the getSpecification message to the ProductCatalog.

This implies another concept in object design: visibility. Visibility is the ability
of one object to "see" or have a reference to another object.

For an object to send a message to another object it must have visibility to it.

Since we will assume that the Register has a permanent connection—or refer-
ence—to the ProductCatalog, it has visibility to it, and hence can send it mes-
sages such as getSpecification.

The following chapter will explore the question of visibility more closely.

Figure 17.8 The enterItem interaction diagram.

2: makeLineItem(spec, qty)enterItem(id, qty)

1: spec := getSpecification(id) 2.1: create(spec, qty)

1.1: spec := find(id)

:Register :Sale

:Product
Catalog

sl: SalesLineItem

SalesLineItem
:SalesLineItem:Product

Specification

2.2: add(sl)

by Expert

by Controller

This find message is to the
Map object (the multiobject),
not to a ProductSpecification.

CAUTION:
This is a multiobject collection (such as a Map), not a
ProductSpecification. It may contain many
ProductSpecifications.

CAUTION:
This is a multiobject collection (such as a List), not a
SalesLineItem. It may contain many SalesLineItems.

by Creator

add the newly created
SalesLineItem instance to the
multiobject (e.g., List)

OBJECT DESIGN: ENTERITEM

Retrieving ProductSpecifications from a Database

In the final version of the NextGen POS application, it is unlikely that all the
ProductSpecifications will actually be in memory. They will most likely be stored
in a relational or object database and retrieved on demand; some may be cached
in the client process for performance or fault-tolerance reasons. However, the
issues surrounding retrieval from a database will be deferred for now in the
interest of simplicity. It will be assumed that all the ProductSpecifications are in
memory.

Chapter 34 explores the topic of database access of persistent objects, which is a
large topic usually influenced by the choice of technologies, such as J2EE, .NET,
and so forth.

The enterItem Object Design

Given the above discussion, the interaction diagram in Figure 17.8 reflects the
decisions regarding the assignment of responsibilities and how objects should
interact. Observe that considerable reflection was done to arrive at this design,
based on the GRASP patterns; the design of object interactions and responsibil-
ity assignment require some deliberation.

Messages to Multiobjects

Notice that the interpretation of a message sent to a multiobject in the UML is
that it is a message to the collection object itself, rather than an implicit broad-
cast to the collection's members. This is especially obvious for generic collection
operations such as find and add.

For example, in the enterItem interaction diagram:

• The find message sent to the ProductSpecification multiobject is a message
being sent once to the collection data structure represented by the multiob
ject (such as a Java Map).

o The language-independent and generic find message will, during
programming, be translated for a specific language and library.
Perhaps it will actually be Map.get in Java. The message get could
have been used in the diagram; find was used to make the point
that design diagrams may require some mapping to different lan-
guages and libraries.

• The add message sent to the SalesLineItem multiobject is to add an element
to the collection data structure represented by the multiobject (such as a
Java List).

259

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

17.6 Object Design: endSale

The endSale system operation occurs when a cashier presses a button indicating
the end of a sale. Here is the contract:

Contract CO3: endSale

Operation: Cross
References:
Preconditions:

Postconditions:

endSale()
Use Cases: Process Sale
There is an underway sale.

Sale.isComplete became true (attribute modification).

Choosing the Controller Class

Our first choice involves handling the responsibility for the system operation
message endSale. Based on the Controller GRASP pattern, as for enterItem, we
will continue to use Register as a controller.

Setting the Sale.isComplete Attribute

The contract postconditions state:

• Sale.isComplete became true (attribute modification).

As always, Expert should be the first pattern considered unless it is a controller
or creation problem (which it is not).

Who should be responsible for setting the isComplete attribute of the Sale to
true?

By Expert, it should be the Sale itself, since it owns and maintains the isCom-
plete attribute. Thus the Register will send a becomeComplete message to the
Sale to set it to true.

Figure 17.9 Completion of item entry.

260

:RegisterendSale() s :Sale1: becomeComplete()

by Expertby Controller

OBJECT DESIGN: ENDSALE

UML Notation to Show Constraints, Notes, and Algorithms

Figure 17.9 shows the becomeComplete message, but does not communicate the
details of what happens in the becomeComplete method (although it is admit-
tedly trivial in this case). Sometimes in the UML we wish to use text to describe
the algorithm of a method, or specify some constraint.

For these needs, the UML provides both constraints and notes. A UML con-
straint is some semantically meaningfully information attached to a model ele-
ment. UML constraints are text enclosed in { } braces; for example, { x > 20).
Any informal or formal language can be used for the constraint, and the UML
especially includes the OCL (object constraint language) [WK99] if one desires
to use that.

A UML note is a comment that has no semantic impact, such as date of creation
or author.

A note is always shown in a note box (a dog-eared text box).

A constraint may be shown as simple text with braces, which is suitable for
short statements. However, long constraints may be also placed within a "note
box," in which case the so-called note box actually holds a constraint rather than
a note. The text in the box is within braces, to indicate it is a constraint.

In Figure 17.10 both styles are used. Note that the simple constraint style (in
braces but not in a box) just shows a statement which must hold true (the classic
meaning of a constraint in logic). On the other hand, the "constraint" in the note
box shows a Java method implementation of the constraint. Both styles are legal
in the UML for a constraint.

:RegisterendSale() s : Sale1: becomeComplete()

{
public void becomeComplete()
{
 isComplete = true;
}
} { s.isComplete = true }

a constraint implementation in a note box

observe the outer braces around the method
signifying a constraint within a note box

a constraint that doesn't define the
algorithm, but specifies what must hold as true

// a note
created by Craig

Figure 17.10 Constraints and notes.

261

262

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

Calculating the Sale Total

Consider this fragment of the Process Sale use case:

Main Success Scenario:
1. Customer arrives ...
2. Cashier tells System to create a new sale.
3. Cashier enters item identifier.
4. System records sale line item and ...
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.

In step 5, a total is presented (or displayed). Because of the Model-View Separa-
tion principle, we should not concern ourselves with the design of how the sale
total will be displayed, but it is necessary to ensure that the total is known. Note
that no design class currently knows the sale total, so we need to create a design
of object interactions that satisfies this requirement.

As always, Information Expert should be a pattern to consider unless it is a con-
troller or creation problem (which it is not).

It is probably obvious the Sale itself should be responsible for knowing its total,
but just to make the reasoning process to find an Expert crystal clear—with a
simple example—please consider the following analysis.

1. State the responsibility:

o Who should be responsible for knowing the sale total?

2. Summarize the information required:

o The sale total is the sum of the subtotals of all the sales line-items.

o sales line-item subtotal := line-item quantity * product
description price

3. List the information required to fulfill this responsibility and the classes
that know this information.

Information Required
for Sale Total Information Expert

ProductSpecification.price ProductSpecification

SalesLineItem. quantity SalesLineItem

all the SalesLineItems in the cur-
rent Sale

Sale

OBJECT DESIGN: ENDSALE

A detailed analysis follows:

• Who should be responsible for calculating the Sale total? By Expert, it
should be the Sale itself, since it knows about all the
SalesLineItem
instances whose subtotals must be summed to calculate the sale total.
Therefore, Sale will have the responsibility of knowing its total, imple
mented as a getTotal method.

• For a Sale to calculate its total, it needs the subtotal for each SalesLineItem.
Who should be responsible for calculating the SalesLineItem subtotal? By
Expert, it should be the SalesLineItem itself, since it knows the quantity
and the ProductSpecification it is associated with. Therefore, SalesLineItem
will have the responsibility of knowing its subtotal, implemented as a get-
Subtotal method.

• For the SalesLineItem to calculate its subtotal, it needs the price of the
ProductSpecification. Who should be responsible for providing the Product-
Specification price? By Expert, it should be the ProductSpecification itself,
since it encapsulates the price as an attribute. Therefore,
Product-
Specification will have the responsibility of knowing its price, implemented
as agetPrice operation.

Although the above analysis is trivial in this case, and the degree of excruci-
ating elaboration presented is uncalled for in actual design practice, the same
reasoning strategy to find an Expert can and should be applied in more diffi-
cult situations. You will find that once you learn these principles you can
quickly perform this kind of reasoning mentally.

The Sale-getTotal Design

Given the above discussion, it is now desirable to construct an interaction dia-
gram that illustrates what happens when a Sale is sent a getTotal message. The
first message in this diagram is getTotal, but observe that the getTotal message
is not a system event.

This leads to the following observation:

Not every interaction diagram starts with a system event message; they can
start with any message for which the designer wishes to show interactions.

The interaction diagram is shown in Figure 17.11. First, the getTotal message is
sent to a Sale instance. The Sale will then send a getSubtotal message to each
related SalesLineItem instance. The SalesLineItem will in turn send a getPrice
message to its associated ProductSpecifications.

263

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

Figure 17.11 Sale-getTotal interaction diagram.

Since arithmetic is not (usually) illustrated via messages, the details of the cal-
culations can be illustrated by attaching algorithms or constraints to the dia-
gram that defines the calculations.

Who will send the getTotal message to the Sale? Most likely, it will be an object
in the UI layer, such as a Java JFrame.

Observe in Figure 17.12 the use of algorithm notes and constraints, to communi-
cate details of getTotal and getSubtotal.

17.7 Object Design: makePayment

The makePayment system operation occurs when a cashier enters the amount of
cash tendered for payment. Here is the complete contract:

Contract CO4: makePayment

Operation: Cross
References:
Preconditions:

Postconditions:

makePayment(amount: Money) Use
Cases: Process Sale There is an
underway sale.

- A Payment instance p was created (instance creation).
- p.amountTendered became amount (attribute modification).
- p was associated with the current Sale (association

formed).
- The current Sale was associated with the Store (associa

tion formed); (to add it to the historical log of completed
sales).

264

A design will be constructed to satisfy the postconditions of makePayment.

:Saletot := getTotal() 1 *: st := getSubtotal()

:ProductSpecification

1.1: pr := getPrice()

: SalesLineItem
*

by Expert by Expert

recall this special notation to
indicate iteration over the
elements of a collection

:Saletot := getTotal() 1 *: st := getSubtotal()

:ProductSpecification

1.1: pr := getPrice()

: SalesLineItem
*

{ st = aSLI.quantity * aSLI.prodSpec.price }

// observe the seudo code style here
{
public void getTotal()
{
 int tot = 0;
 for each SalesLineItem, sli
 tot = tot + sli.getSubtotal();
 return tot
}
}

Note the semi-formal style of the constraint. "aSLI" is no
formally defined, but most developers will reasonably
understand this to mean an instance of SalesLineItem.
Likewise with the expression aSLI.prodSpec.price.

The point is that the constraint language can be informal
to support quick and easy writing, if desired.

Figure 17.12 Algorithm notes and constraints.

Creating the Payment

One of the contract postconditions states:

• A Payment instance p was created (instance creation).

This is a creation responsibility, so the Creator GRASP pattern should be
applied.

Who records, aggregates, most closely uses, or contains a Payment? There is
some appeal in stating that a Register logically records a Payment, because in
the real domain a "register" records account information, so it is a candidate by
the goal of reducing the representational gap in the software design. Addition-
ally, it is reasonable to expect that a Sale software will closely use a Payment;
thus, it may be a candidate.

Another way to find a creator is to use the Expert pattern in terms of who is the
Information Expert with respect to initializing data—the amount tendered in
this case. The Register is the controller which receives the system operation
makePayment message, so it will initially have the amount tendered. Conse-
quently the Register is again a candidate.

265

OBJECT DESIGN: MAKEPAYMENT

266

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

In summary, there are two candidates:

• Register

• Sale

Now, this leads a key design idea:

When there are alternative design choices, take a closer look at the cohesion
and coupling implications of the alternatives, and possibly at the future evo-
lution pressures on the alternatives. Choose an alternative with good cohe-
sion, coupling, and stability in the presence of likely future changes.

Consider some of the implications of these choices in terms of the High Cohesion
and Low Coupling GRASP patterns. If the Sale is chosen to create the Payment,
the work (or responsibilities) of the Register is lighter—leading to a simpler
Register definition. Also, the Register does not need to know about the existence
of a Payment instance because it can be recorded indirectly via the Sale—lead-
ing to lower coupling in the Register. This leads to the design shown in Figure
17.13.

Figure 17.13 Register-makePayment interaction diagram.

This interaction diagram satisfies the postconditions of the contract: the Pay-
ment has been created, associated with the Sale, and its amountTendered has
been set.

Logging a Sale

Once complete, the requirements state that the sale should be placed in an his-
torical log. As always, Information Expert should be an early pattern considered
unless it is a controller or creation problem (which it is not), and the responsibil-
ity should be stated:

Who is responsible for knowing all the logged sales, and doing the
logging?

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register :Sale

:Payment

makePayment(cashTendered)

by Controller by Creator and Low Coupling

OBJECT DESIGN: MAKEPAYMENT

By the goal of low representational gap in the software design (in relation to our
concepts of the domain) it is reasonable for a Store to know all the logged sales,
since they are strongly related to its finances. Other alternatives include classic
accounting concepts, such as a SalesLedger. Using a SalesLedger object makes
sense as the design grows and the Store becomes incohesive (see Figure 17.14).

Store

...

addSale(s : Sale)
...

SalesLedger

...

addSale(s : Sale)
...

Store is responsible for
knowing and adding
completed Sales.

Acceptable in early
development cycles if the
Store has few
responsibilities.

SalesLedger is responsible
for knowing and adding
completed Sales.

Suitable when the design
grows and the Store
becomes uncohesive.

Sale

...

...

Sale

...

...

Logs-completed5 Logs-completed5
* *

1 1

Figure 17.14 Who should be responsible for knowing the completed sales?

Note also that the postconditions of the contract indicate relating the Sale to the
Store. This is an example where the postconditions may not be what we want to
actually achieve in the design. Perhaps we didn't think of a SalesLedger earlier,
but now that we have, we choose to use it instead of a Store. If this were the
case, SalesLedger would ideally be added to the Domain Model as well, as it is a
name of a concept in the real-world domain. This kind of discovery and change
during design work is to be expected.

In this case, we will stick with the original plan of using the Store (see Figure
17.15).

267

268

Figure 17.15 Logging a completed sale.

Calculating the Balance

The Process Sale use case implies that the balance due from a payment be
printed on a receipt and displayed somehow.

Because of the Model-View Separation principle, we should not concern our-
selves with how the balance will be displayed or printed, but it is necessary to
ensure that it is known. Note that no class currently knows the balance, so we
need to create a design of object interactions that satisfies this requirement.

As always, Information Expert should be considered unless it is a controller or
creation problem (which it is not), and the responsibility should be stated:

Who is responsible for knowing the balance?

To calculate the balance, the sale total and payment cash tendered are required.
Therefore, Sale and Payment are partial Experts on solving this problem.

If the Payment is primarily responsible for knowing the balance, it would need
visibility to the Sale, in order to ask the Sale for its total. Since it does not cur-
rently know about the Sale, this approach would increase the overall coupling in
the design—it would not support the Low Coupling pattern.

In contrast, if the Sale is primarily responsible for knowing the balance, it needs
visibility to the Payment, in order to ask it for its cash tendered. Since the Sale

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register s :Sale

:Payment

makePayment(cashTendered)

:Store

2: addSale(s)

completedSales: Sale
completedSales: Sale

2.1: add(s)

by Expert

note that the Sale instance is named
's' so that it can be referenced as a
parameter in messages 2 and 2.1

OBJECT DESIGN: STARTUP

already has visibility to the Payment—as its creator—this approach does not
increase the overall coupling, and is therefore a preferable design.

Consequently, the interaction diagram in Figure 17.16 provides a solution for
knowing the balance.

:Sale pmt: Payment1: amt := getAmount()bal := getBalance()

2: t := getTotal()

{ bal = pmt.amount - self.total }

Note the use of "self" in the constraint. The formal OCL uses the special variable "self"
for "this" (in Java and C++). "self" in this constraint implies the instance of the Sale.

Although official OCL is not being used, this style is borrowing from it.

A constraint can be in any formal or informal language.

Figure 17.16 Sale—getBalance interaction diagram.

17.8 Object Design: startup

When to Create the startup Design?

Most, if not all, systems have a Start Up use case, and some initial system oper-
ation related to the starting up of the application. Although this startUp system
operation is the earliest one to execute, delay the development of an interaction
diagram for it until after all other system operations have been considered. This
ensures that information has been discovered concerning the initialization
activities required to support the later system operation interaction diagrams.

Do the initialization design last.

269

270

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

How Applications Start Up

The startUp operation abstractly represents the initialization phase of execu-
tion when an application is launched. To understand how to design an interac-
tion diagram for this operation, it is helpful to understand the contexts in which
initialization can occur. How an application starts and initializes is dependent
on the programming language and operating system.

In all cases, a common design idiom is to ultimately create an initial domain
object, which is the first software "domain" object created.

A note on terminology: As will be explored, applications are organized into logi-
cal layers that separate the major concerns of the application. These include a
UI layer (for UI concerns) and a "domain" layer (for domain logic concerns). The
domain layer of the Design Model is composed of software classes whose names
are inspired from the domain vocabulary, and which contain application logic.
Virtually all the design objects we have considered, such as Sale and Register,
are domain objects in the domain layer of the Design Model.

The initial domain object, once created, is responsible for the creation of its
direct child domain objects. For example, if a Store is chosen as the initial
domain object, it may be responsible for the creation of a Register object.

The place where this initial domain object is created is dependent on the object
technology chosen. For example, in a Java application, the main method may
create it, or delegate the work to a factory object that creates it.

public class Main {

public static void main(String [] args)

 {
// Store is the initial domain object.
// The Store creates some other domain objects.

Store store = new Store () ;

Register register = store. getRegister ();

ProcessSaleJFrame frame = new ProcessSaleJFrame (register);

 …
 }
 }

Interpretation of the startup System Operation

The preceding discussion illustrates that the startUp system operation is a lan-
guage-independent abstraction. During design, there is variation in where the
initial object is created, and whether or not it takes control of the process. The
initial domain object does not usually take control if there is a GUI; otherwise, it
often does.

OBJECT DESIGN: STARTUP

The interaction diagrams for the startUp operation represent what happens
when the initial problem domain object is created, and optionally what happens
if it takes control. They do not include any prior or subsequent activity in the
GUI layer of objects, if one exists.

Hence, the startUp operation may be reinterpreted as:

1. In one interaction diagram, send a create() message to create the initial
domain object.

2. (optional) If the initial object is taking control of the process, in a second
interaction diagram, send a run message (or something equivalent) to the
initial object.

The POS Application startup Operation

The startUp system operation occurs when a manager powers on the POS sys-
tem and the software loads. Assume that the initial domain object is not respon-
sible for taking control of the process; control will remain in the UI layer (such
as a Java JFrame) after the initial domain object is created. Therefore, the inter-
action diagram for the startUp operation may be reinterpreted solely as a
cre-ate() message sent to create the initial object.

Choosing the Initial Domain Object

What should the class of the initial domain object be?

Choose as an initial domain object a class at or near the root of the contain-
ment or aggregation hierarchy of domain objects. This may be a facade con-
troller, such as Register, or some other object considered to contain all or most
other objects, such as a Store.

Choosing between these alternatives may be influenced by High Cohesion and
Low Coupling considerations. In this application, the Store is chosen as the ini-
tial object.

Persistent Objects: ProductSpecification

The ProductSpecification instances will reside in a persistent storage medium,
such as relational or object database. During the startUp operation, if there are
only a few of these objects, they may all be loaded into the computer's direct
memory. However, if there are many, loading them all would consume too much

271

272

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

memory or time. Alternately—and more likely—individual instances will be
loaded on demand into memory as they are required.

The design of how to dynamically on-demand load objects from a database into
memory is simple if an object database is used, but difficult for a relational data-
base. This problem is deferred for now and makes a simplifying assumption that
all the ProductSpecification instances can be "magically" created in memory by
the ProductCatalog object.

Chapter 34 explores the question of persistent objects and one way to load them
into memory.

Store--create() Design

The tasks of creation and initialization derive from the needs of the prior design
work, such as the design for handling enterItem and so on. By reflecting on the
prior interaction designs, the following initialization work can be identified:

• A Store, Register, ProductCatalog and ProductSpecifications need to be
created.

• The ProductCatalog needs to be associated with ProductSpecifications.

• Store needs to be associated with ProductCatalog.
• Store needs to be associated with Register.
• Register needs to be associated with ProductCatalog.
Figure 17.17 shows a design. The Store was chosen to create the ProductCatalog
and Register by the Creator pattern. ProductCatalog was likewise chosen to cre-
ate the ProductSpecifications. Recall that this approach to creating the specifi-
cations is temporary. In the final design, they will be materialized from a
database, as needed.

UML notation: Observe that the creation of all the ProductSpecification
instances and their addition to a container happens in a repeating section, indi-
cated by the "*" following the sequence numbers.

An interesting deviation between modeling the real-world domain and the
design is illustrated in the fact that the software Store object only creates one
Register object. A real store may house many real registers or POS terminals.
However, we are considering a software design, not real life. In our current
requirements, our software Store only needs to create a single instance of a soft-
ware Register.

Multiplicity between classes of objects in the Domain Model and Design
Model may not be the same.

:Store :Register

pc:
ProductCatalog

create() 2: create(pc)

1: create()

1.2: loadProdSpecs()

:Product
Specification

1.1: create()

1.2.2*: add(ps)

1.2.1*: create(id, price, description)

ps:
ProductSpecification

the * in sequence number
indicates the message occurs in
a repeating section

pass a reference to the
ProductCatalog to the
Register, so that it has
permanent visibility to it

by Creator create an empty multiobject (e.g., a
Map), not a ProductSpecification

Figure 17.17 Creation of the initial domain object and subsequent objects.

17.9 Connecting the UI Layer to the Domain Layer

As has been briefly discussed, applications are organized into logical layers that
separate the major concerns of the application, such as the UI layer (for UI con-
cerns) and a "domain" layer (for domain logic concerns).

Common designs by which objects in the UI layer obtain visibility to objects in
the domain layer include the following:

• An initializing routine (for example, a Java main method) creates both a UI
and a domain object, and passes the domain object to the UI.

• A UI object retrieves the domain object from a well-known source, such as a
factory object that is responsible for creating domain objects.

The sample code shown before is an example of the first approach:

public class Main
{

273

CONNECTING THE UI LAYER TO THE DOMAIN LAYER

274

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

public static void main(String[] args) { Store store = new Store(); Register register = store.getRegister(); ProcessSaleJFrame frame = new ProcessSaleJFrame(register); ...

}
}

Once the UI object has a connection to the Register instance (the facade control-
ler in this design), it can forward system event messages to it, such as the
enter-Item and endSale message (see Figure 17.18).

Figure 17.18 Connecting the UI and domain layers.

In the case of the enterItem message, the window needs to show the running
total after each entry. There are several design solutions:

• Add a getTotal method to the Register. The UI sends the getTotal message to
the Register, which forwards it to the Sale. This has the possible advantage
of maintaining lower coupling from the UI to the domain layer—the UI only
knows of the Register object. But it starts to expand the interface of the
Register object, making it less cohesive.

• A UI asks for a reference to the current Sale object, and then when it needs
the total (or any other information related to the sale), it directly sends mes
sages to the Sale. This design increases the coupling from the UI to the
domain layer. However, as was explored in the Low Coupling GRASP pat
tern discussion, higher coupling in and of itself is not a problem; rather, it is
especially coupling to unstable things that is a problem. Assume we decide

:Register

Cashier

:ProcessSale
JFrame

actionPerformed(actionEvent)

1: enterItem(id, qty) system event

UI
Layer

Domain
Layer

presses button

CONNECTING THE UI LAYER TO THE DOMAIN LAYER

the Sale is a stable object that will be an integral part of the design—which
is very reasonable. Then, coupling to the Sale is not a problem.

As illustrated in Figure 17.19, this design follows the second approach.

Notice in these diagrams that the Java window (ProcessSaleJFrame), which is
part of the UI layer, is not responsible for handling the logic of the application. It
forwards requests for work (the system operations) to the domain layer, via the
Register. This leads to the following design principle:

Interface and Domain Layer Responsibilities

The UI layer should not have any domain logic responsibilities. It should only
be responsible for user interface tasks, such as updating widgets.

The UI layer should forward requests for all domain-oriented tasks on to the
domain layer, which is responsible for handling them.

:Register

Cashier

:ProcessSale
JFrame

actionPerformed(actionEvent)

1: enterItem(id, qty)

2 [no sale] : s := getSale() : Sale

UI
Layer

Domain
Layer s : Sale

3: t := getTotal()

presses button

note the UML notation for a conditional message

Figure 17.19 Connecting the UI and domain layers.

275

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

17.10 Use-Case Realizations Within the UP

Use-case realizations are part of the UP Design Model. This chapter has empha-
sized drawing interaction diagrams, but it is common and recommended to draw
class diagrams in parallel. Class diagrams are examined in Chapter 19.

Discipline Artifact
Iteration->

Incep.
I1

Elab.
E1..En

Const.
C1..Cn

Trans.
T1..T2

Business Modeling Domain Model s
Use-Case Model (SSDs) s r
Vision s r
Supplementary Specification s r

Requirements

Glossary s r
Design Model s r
SW Architecture Document s

Design

Data Model s r
Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 17.1 Sample UP artifacts and timing. s - start; r - refine

Phases

Inception—The Design Model and use-case re alizations will not usually be
started until elaboration because it involves detailed design decisions which are
premature during inception.

Elaboration—During this phase, use-case realizations may be created for the
most architecturally significant or risky scenarios of the design. However, UML
diagramming will not be done for every scenario, and not necessarily in com-
plete and fine-grained detail. The idea is to do interaction diagrams for the key
use-case realizations that benefit from some forethought and exploration of
alternatives, focusing on the major design decisions.

Construction-
problems.

-Use-case realizations are created for remaining design

276

USE-CASE REALIZATIONS WITHIN THE UP

UP Artifacts and Process Context

Figure 17.20 Sample UP artifact influence.

277

: System

enterItem
(id, quantity)

endSale()

makePayment
(amount)

Process Sale

1. Customer
arrives ...
2. Cashier
makes new
sale.
3. Cashier
enters item
identifier.
4....

Use Cases System Sequence Diagrams

Operation: enterItem

Post-conditions:
- A SalesLineItem instance
sli was created
- . . .

Operation: makeNewSale

Post-conditions:
- . . .

Contracts

make
NewSale()

: Cashier

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

domain objects

system
events

system
operations

the domain objects, attributes, and
associations that undergo state changes

Domain Model

Use-Case Model

some ideas and inspiration for the post-
conditions derive from the use cases

Design Model

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)
addLineItem(spec, quantity)

: Sale

. . .

in addition to the use
cases, requirements that
must be satisfied by the
design of the software

use-case
realization

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

makeNewSale()
create()

endSale()
.

Sample UP Artifact Relationships for Use-Case Realization

17 - DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

In the UP, use-case realization work is a design activity. Figure 17.21 offers sug-
gestions on the time and space for doing this work.

January February

When
Near the beginning of each iteration, for a
"short" period before programming.

Where
In a project room with lots of support
for drawing and viewing drawings.

Who
Perhaps developers will do some design work in
pairs. The software architect will collaborate, mentor,
and visit with different design groups.

How: Tools
Software: A UML CASE tool that can also reverse engineer
diagrams from code.

Hardware:
- Use two projectors attached to dual video cards.
- For whiteboard drawings, perhaps a digital camera.
- To print noteworthy diagrams for the entire team, a plotter
 for large-scale drawings to hang on walls.

Developer
Developer

Software
Architect

Two adjacent projections.

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)
addLineItem(spec, quantity)

: Sale

. . .

makeNewSale()
create()

. . .

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)
addLineItem(spec, quantity)

: Sale

. . .

makeNewSale()
create()

. . .

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

getSpecification()

ProductSpecification

description : Text
price : Money
itemID: ItemID

Store

address : Address
name : Text

addSale()

Payment

amount : Money

1..*

1..*

Register

endSale()
enterItem()
makeNewSale()
makePayment()

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
getTotal()

1 1

1

1 1

1

1
1

1

1

1

1

1

*

*

1

whiteboards

Figure 17.21 Sample process and setting context.

17.11 Summary

Designing object interactions and assigning responsibilities is at the heart of
object design. These choices have can have a profound impact on the extensibil-
ity, clarity, and maintainability of an object software system, plus on the degree
and quality of reusable components. There are principles by which the choices of
responsibility assignment can be made; the GRASP patterns summarize some of
the most general and common used by object-oriented designers.

278

Chapter 18

DESIGN MODEL: DETERMINING
VISIBILITY

A mathematician is a device for turning coffee into theorems.

— Paul Erdos

Objectives

• Identify four kinds of visibility.

• Design to establish visibility.

• Illustrate kinds of visibility in the UML notation.

Introduction

Visibility is the ability of one object to see or have reference to another. This
chapter explores design issues related to visibility.

18.1 Visibility Between Objects

The designs created for the system events (enterItem, and so on) illustrate mes-
sages between objects. For a sender object to send a message to a receiver object,
the sender must be visible to the receiver—the sender must have some kind of
reference or pointer to the receiver object.

For example, the getSpecification message sent from a Register to a
ProductCat-a/og implies that the ProductCatalog instance is visible to the
Register instance, as shown in Figure 18.1.

279

: RegisterenterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)

{
public void enterItem(itemID, qty)
{
 ...
 spec = catalog.getSpecification(itemID)
 ...
}
}

class Register
{
 ...
 private ProductCatalog catalog;
 ...
}

Figure 18.1 Visibility from the Register to ProductCatalog is required.1

When creating a design of interacting objects, it is necessary to ensure that the
necessary visibility is present to support message interaction.

The UML has special notation for illustrating visibility; this chapter explores
various kinds of visibility and their depiction.

18.2 Visibility

In common usage, visibility is the ability of an object to "see" or have a refer-
ence to another object. More generally, it is related to the issue of scope: Is one
resource (such as an instance) within the scope of another? There are four com-
mon ways that visibility can be achieved from object A to object B:
m Attribute visibility—B is an attribute of A.

• Parameter visibility—B is a parameter of a method of A.
• Local visibility—B is a (non-parameter) local object in a method of A.
• Global visibility—B is in some way globally visible.

1. In this and subsequent code examples, language simplifications may be made for the
sake of brevity and clarity.

280

18 - DESIGN MODEL: DETERMINING VISIBILITY

VISIBILITY

The motivation to consider visibility is this:

For an object A to send a message to an object B, B must be visible to A.

For example, to create an interaction diagram in which a message is sent from a
Register instance to a ProductCatalog instance, the Register must have visibility
to the ProductCatalog. A typical visibility solution is that a reference to the Pro-
ductCatalog instance is maintained as an attribute of the Register.

Attribute Visibility

Attribute visibility from A to B exists when B is an attribute of A. It is a rela-
tively permanent visibility because it persists as long as A and B exist. This is a
very common form of visibility in object-oriented systems.

To illustrate, in a Java class definition for Register, a Register instance may have
attribute visibility to a ProductCatalog, since it is an attribute (Java instance
variable) of the Register.
public class Register
{
…
private ProductCatalog catalog;
…
}

This visibility is required because in the enterItem diagram shown in Figure
18.2, a Register needs to send the getSpecification message to a ProductCatalog:

: RegisterenterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)

{
public void enterItem(itemID, qty)
{
 ...
 spec = catalog.getSpecification(itemID)
 ...
}
}

class Register
{
 ...
 private ProductCatalog catalog;
 ...
}

Figure 18.2 Attribute visibility.

281

18 - DESIGN MODEL: DETERMINING VISIBILITY

Parameter Visibility

Parameter visibility from A to B exists when B is passed as a parameter to a
method of A. It is a relatively temporary visibility because it persists only within
the scope of the method. After attribute visibility, it is the second most common
form of visibility in object-oriented systems.

To illustrate, when the makeLineItem message is sent to a Sale instance, a
Prod-uctSpecification instance is passed as a parameter. Within the scope of the
makeLineItem method, the Sale has parameter visibility to a
ProductSpecifica-tion (see Figure 18.3).

2: makeLineItem(spec, qty)enterItem(id, qty)

1: spec := getSpecification(id)
2.1: create(spec, qty

:Register :Sale

:Product
Catalog

sl : SalesLineItem
{
makeLineItem(ProductSpecification spec, int qty)
{
 ...
 sl = new SalesLineItem(spec, qty);
 ...
}
}

282

Figure 18.3 Parameter visibility.

It is common to transform parameter visibility into attribute visibility. For
example, when the Sale creates a new SalesLineItem, it passes a
ProductSpecifi-cation in to its initializing method (in C++ or Java, this would
be its constructor). Within the initializing method, the parameter is assigned
to an attribute, thus establishing attribute visibility (Figure 18.4).

Local Visibility

Local visibility from A to B exists when B is declared as a local object within a
method of A. It is a relatively temporary visibility because it persists only within
the scope of the method. After parameter visibility, it is the third most common
form of visibility in object-oriented systems.

2: makeLineItem(spec, qty)enterItem(id, qty)

2: spec := getSpecification(id)
2.1: create(spec, qty

:Register :Sale

:Product
Catalog

sl : SalesLineItem
// initializing method (e.g., a Java constructor)
{
SalesLineItem(ProductSpecification spec, int qty)
{
...
productSpec = spec; // parameter to attribute visibility
...
}
}

Figure 18.4 Parameter to attribute visibility.

Two common means by which local visibility is achieved are:

• Create a new local instance and assign it to a local variable.

• Assign the returning object from a method invocation to a local variable.

As with parameter visibility, it is common to transform locally declared visibility
into attribute visibility.

An example of the second variation (assigning the returning object to a local
variable) can be found in the enterItem method of class Register (Figure 18.5).

A subtle version on the second variation is when the method does not explicitly
declare a variable, but one implicitly exists as the result of a returning object
from a method invocation. For example:
// there is implicit local visibility to the foo object

// returned via the getFoo call

anObj ect.getFoo().doBar();

Global Visibility

Global visibility from A to B exists when B is global to A. It is a relatively per-
manent visibility because it persists as long as A and B exist. It is the least com-
mon form of visibility in object-oriented systems.

One way to achieve global visibility is to assign an instance to a global variable,
which is possible in some languages, such as C++, but not others, such as Java.

283

VISIBILITY

18 - DESIGN MODEL: DETERMINING VISIBILITY

The preferred method to achieve global visibility is to use the Singleton pat-
tern [GHJV95], which is discussed in a later chapter.

: Register
enterItem

(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)

{
enterItem(id, qty)
{
...
// local visibility via assignment of returning object
ProductSpecification spec = catalog.getSpecification(id);
...
}
}

Figure 18.5 Local visibility.

18.3 Illustrating Visibility in the UML

The UML includes notation to show the kind of visibility in a collaboration dia-
gram (see Figure 18.6). These adornments are optional and not normally called
for; they are useful when clarification is needed.

:A :B1: msg()

:C
2: msg()

:D
3: msg()

«association»

«parameter»

«local»

:E
4: msg()

«global»

«association» is used for
attribute visibility

Figure 18.6 Implementation stereotypes for visibility.

284

Chapter 19

DESIGN MODEL: CREATING
DESIGN CLASS DIAGRAMS

To iterate is human, to recurse, divine.

— anonymous

Objectives

Create design class diagrams (DCDs).

Identify the classes, methods, and associations to show in a DCD.

Introduction

With the completion of interaction diagrams for use-case realizations for the
current iteration of the NextGen POS application, it is possible to identify the
specification for the software classes (and interfaces) that participate in the soft-
ware solution, and annotate them with design details, such as methods.

The UML has notation for showing design details in class diagrams; in this
chapter, we explore it and create DCDs.

19.1 When to Create DCDs

Although this presentation of DCDs follows the creation of interaction dia-
grams, in practice they are usually created in parallel. Many classes, method
names and relationships may be sketched out very early in design by applying
responsibility assignment patterns, prior to the drawing of interaction dia-
grams. It is possible and desirable to do a little interaction diagramming, then
update the DCDs, then extend the interaction diagrams some more, and so on.

285

19 - DESIGN MODEL: CREATING DESIGN CLASS DIAGRAMS

These class diagrams may be used as an alternative, more graphical notation
over CRC cards in order to record responsibilities and collaborators.

19.2 Example DCD

The DCD in Figure 19.1 illustrates a partial software definition of the Register
and Sale classes.

F igure 19.1 Sample design c lass d iagram.

In addition to basic associations and attributes, the diagram is extended to illus-
trate, for example, the methods of each class, attribute type information, and
attribute visibility and navigation between objects.

19.3 DCD and UP Terminology

A design class diagram (DCD) illustrates the specifications for software
classes and interfaces (for example, Java interfaces) in an application. Typical
information includes:

• classes, associations and attributes

• interfaces, with their operations and constants

• methods

• attribute type information

• navigability

• dependencies

In contrast to conceptual classes in the Domain Model, design classes in the
DCDs show definitions for software classes rather than real-world concepts.

286

Register

enterItem(...)

Sale

date
isComplete : Boolean
time

makeLineItem(...)

Captures

Navigability

1 1

Three section box for
class definition.

methods; there are parameters, but unspecified type information

DOMAIN MODEL vs. DESIGN MODEL CLASSES

The UP does not specifically define an artifact called a "design class diagram."
The UP defines the Design Model, which contains several diagram types, includ-
ing interaction, package, and class diagrams. The class diagrams in the UP
Design Model contain "design classes" in UP terms. Hence, it is common to
speak of "design class diagrams," that is shorter than, and implies, "class dia-
grams in the Design Model."

19.4 Domain Model vs. Design Model Classes

To reiterate, in the UP Domain Model, a Sale does not represent a software defi-
nition; rather, it is an abstraction of a real-world concept about which we are
interested in making a statement. By contrast, DCDs express—for the software
application—the definition of classes as software components. In these dia-
grams, a Sale represents a software class (see Figure 19.2).

Register

...

endSale()
enterItem(...)
makePayment(...)

Sale

date
isComplete : Boolean
time

makeLineItem(...)

Captures

Register
Sale

date
isComplete : Boolean
time

Captures

software class

1 1

11Domain Model

Design Model

Concept; conceptual class

Figure 19.2 Domain model vs. Design Model classes.

19.5 Creating a NextGen POS DCD

Identify Software Classes and Illustrate Them

The first step in the creation of DCDs as part of the solution model is to identify
those classes that participate in the software solution. These can be found by
scanning all the interaction diagrams and listing the classes mentioned.

287

19 - DESIGN MODEL: CREATING DESIGN CLASS DIAGRAMS

For the POS application, these are:

Register

ProductCatalog

Store Payment

Sale
ProductSpecification
SalesLineItem

288

The next step is to draw a class diagram for these classes and include the
attributes previously identified in the Domain Model that are also used in the
design (see Figure 19.3).

Note that some of the concepts in the Domain Model, such as Cashier, are not
present in the design. There is no need—f or the current iteration—to represent
them in software. However, in later iterations, as new requirements and use
cases are tackled, they may enter into the design. For example, when security
and log-in requirements are implemented, it is likely that a software class
named Cashier will be relevant.

Figure 19.3 Software classes in the application.

Add Method Names

The methods of each class can be identified by analyzing the interaction dia-
grams. For example, if the message makeLineItem is sent to an instance of class
Sale, then class Sale must define a makeLineItem method (see Figure 19.4).

In general, the set of all messages sent to a class X across all interaction dia-
grams indicates the majority of methods that class X must define.

Inspection of all the interaction diagrams for the POS application yields the
allocation of methods shown in Figure 19.5.

Register

...

...

Sale

date
isComplete
time

...

SalesLineItem

quantity

...

ProductCatalog

...

ProductSpecification

description
price
itemID

...

Store

address
name

...

Payment

amount

...

CREATING A NEXTGEN POS DCD

Figure 19.5 Methods in the application.

Method Name Issues

The following special issues must be considered with respect to method names:

• interpretation of the create message

• depiction of accessing methods

• interpretation of messages to multiobjects

• language-dependent syntax

Method Names—create

The create message is a possible UML language independent form to indicate
instantiation and initialization. When translating the design to an object-ori-
ented programming language, it must be expressed in terms of its idioms for
instantiation and initialization. There is no actual create method in C++, Java,

289

:Register :Sale2: makeLineItem(spec, qty)

Sale

...

makeLineItem(...)

Figure 19.4 Method names from interaction diagrams.

SalesLineItem

- quantity

+ getSubtotal()

ProductCatalog

...

+ getSpecification(...)

ProductSpecification

- description
- price
- itemID

...

Store

- address
- name

+ addSale(...)

Payment

- amount

...

Register

...

+ endSale()
+ enterItem(...)
+ makeNewSale()
+ makePayment(...) Sale

- date
- isComplete
- time

+ becomeComplete()
+ makeLineItem(...)
+ makePayment(...)
+ getTotal()

290

19 - DESIGN MODEL: CREATING DESIGN CLASS DIAGRAMS

or Smalltalk. For example, in C++, it implies automatic allocation, or free store
allocation with the new operator, followed by a constructor call. In Java, it
implies the invocation of the new operator, followed by a constructor call.

Because of its multiple interpretations, and also because initialization is a very
common activity, it is common to omit creation-related methods and construc-
tors from a DCD.

Method Names—Accessing Methods

Accessing methods retrieve (accessor method) or set (mutator method)
attributes. In some languages (such as Java) it is a common idiom to have an
accessor and mutator for each attribute, and to declare all attributes private (to
enforce data encapsulation). These methods are usually excluded from depiction
in the class diagram because of the high noise-to-value ratio they generate; for n
attributes, there are 2n uninteresting methods. For example, the
Product-Specification's getPrice (or price) method is not shown, although
present, because getPrice is a simple accessor method.

Method Names—Multiobjects

A message to a multiobject is interpreted as a message to the container/collec-
tion object itself. For example, the following find message to the multiobject is
meant be interpreted as a message to the container/collection object, such as to a
Java Map, a C++ map or a Smalltalk Dictionary (see Figure 19.6).

Figure 19.6 Message to a multiobject.

Therefore, the find method is not part of the Productspecification class; rather,
it is part of the multiobject's interface. Consequently, it is incorrect to add find
as a method to the Productspecification class.

1: spec := getSpecification(id)

1.1: spec := find(id)

:Product
Catalog

:Product
Specification

The find message is to the
container object, not to a
ProductSpecification.

CREATING A NEXTGEN POS DCD

These container/collection interfaces or classes (such as the interface
java.util.Map) are usually predefined library elements, and it is not useful to
show these classes explicitly in the DCD, since they add noise, but little new
information.

Method Names—Language-Dependent Syntax

Some languages, such as Smalltalk, have a syntax that is very different from
the basic UML format of methodName(parameterList). It is recommended that
the basic UML format be used, even if the planned implementation language
uses a different syntax. The translation should ideally take place during code
generation time, instead of during the creation of the class diagrams. However,
the UML does allow other syntax for method specification.

Adding More Type Information

The types of the attributes, method parameters, and method return values may
all optionally be shown. The question as to whether to show this information or
not should be considered in the following context:

The DCD should be created by considering the audience.

• If it is being created in a CASE tool with automatic code generation, full
and exhaustive details are necessary.

• If it is being created for software developers to read, exhaustive low-level
detail may adversely affect the noise-to-value ratio.

For example, is it necessary to show all the parameters and their type informa-
tion? It depends on how obvious the information is to the intended audience.

The design class diagram in Figure 19.7 shows more type information.

Adding Associations and Navigability

Each end of an association is called a role, and in the DCDs the role may be dec-
orated with a navigability arrow. Navigability is a property of the role that
indicates that it is possible to navigate uni-directionally across the association
from objects of the source to target class. Navigability implies visibility—usually
attribute visibility (see Figure 19.8).

291

292 19 - DESIGN MODEL: CREATING DESIGN CLASS DIAGRAMS

Figure 19.7 Adding type information.

Figure 19.8 Showing navigability, or attribute visibility.

SalesLineItem

quantity : Integer

getSubtotal() : Money

ProductCatalog

...

getSpecification(id: ItemID) : ProductSpecification

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Store

address : Address
name : Text

addSale(s : Sale)

Payment

amount : Money

...

Register

...

endSale()
enterItem(id : ItemID, qty : Integer)
makeNewSale()
makePayment(cashTendered : Money)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(spec : ProdSpecification , qty : Integer)
makePayment(cashTendered : Money)
getTotal() : Money

Return type of method void; no return value

Captures

Register

currentSale : Sale

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date
isComplete
time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

Navigability arrow indicates
Register objects are
connected uni-directionally to
Sale objects.

Absence of navigability
arrow indicates no
connection from Sale to
Register.

Register class will
have an attribute pointing to a
Sale object.

1

1

the currentSale
attribute is often
excluded, as it is
implied by the
navigable
association from
Register to Sale.

CREATING A NEXTGEN POS DCD

The usual interpretation of an association with a navigability arrow is attribute
visibility from the source to target class. During implementation in an
object-oriented programming language it is usually translated as the source
class having an attribute that refers to an instance of the target class. For
instance, the Register class will define an attribute that references a Sale
instance.

Most, if not all, associations in DCDs should be adorned with the necessary
navigability arrows.

In a DCD, associations are chosen by a spartan software-oriented, need-to-know
criterion—what associations are required to satisfy the visibility and ongoing
memory needs indicated by the interaction diagrams? This is in contrast with
associations in the Domain Model, which may be justified by the intention to
enhance comprehension of the problem domain. Once again, we see a distinction
between the goals of the Design Model and the Domain Model: one is analytical,
the other a description of software components.

The required visibility and associations between classes are indicated by the
interaction diagrams. Here are common situations suggesting a need to define
an association with a navigability adornment from A to B:

• A sends a message to B.

• A creates an instance B.

• A needs to maintain a connection to B.

Figure 19.9 Navigability is identified from interaction diagrams.

293

:Store :Register

pc:
ProductCatalog

create() 2: create(pc)

1: create()

1.2: loadProdSpecs()
:Product

Specification

1.1: create()

1.2.2*: add(ps)

1.2.1*: create(id, price, description)

ps:
ProductSpecification

294

19 - DESIGN MODEL: CREATING DESIGN CLASS DIAGRAMS

For example, from the interaction diagram in Figure 19.9 starting with the cre-
ate message to a Store, and from the larger context of the other interaction dia-
grams, it is discernible that the Store should probably have an ongoing
connection to the Register and ProductCatalog instances that it created. It is
also reasonable that the ProductCatalog needs an ongoing connection to the col-
lection of Product Specifications it created. In fact, the creator of another object
very typically requires an ongoing connection to it. The implied connections will
therefore be present as associations in the class diagram.

Based on the above criterion for associations and navigability, analysis of all the
interaction diagrams generated for the NextGen POS application will yield a
class diagram (seen in Figure 19.10) with the following associations (exhaustive
type information is hidden for the sake of clarity).

Figure 19.10 Associations with navigability adornments.

Note that this is not exactly the same set of associations that was generated for
the class diagrams in the Domain Model. For instance, there was no Looks-in
association between Register and ProductCatalog in the domain model—it was
not discovered as an important lasting relationship at that time. But during the
creation of the interaction diagrams, it was decided that a Register software
object should have a lasting connection to a software ProductCatalog in order to
look up ProductSpecifications.

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Store

address : Address
name : Text

addSale(...)

Payment

amount : Money

...

Contains

1..*

Contains
1..*

Register

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1 1

1

1 1

1

1
1

1

1

1

1

1

*

Logs-completed4 *

1

CREATING A NEXTGEN POS DCD

Adding Dependency Relationships

The UML includes a general dependency relationship, which indicates that
one element (of any kind, including classes, use cases, and so on) has knowledge
of another element. It is illustrated with a dashed arrow line. In class diagrams
the dependency relationship is useful to depict non-attribute visibility between
classes; in other words, parameter, global, or locally declared visibility. By con-
trast, plain attribute visibility is shown with a regular association line and a
navigability arrow. For example, the Register software object receives a return
object of type ProductSpecification from the specification message it sent to a
ProductCatalog. Thus Register has a short-term locally declared visibility to
ProductSpecifications. And Sale receives a ProductSpecification as a parameter
in the makeLineItem message; it has parameter visibility to one.

These non-attribute visibilities may be illustrated with the dashed arrow line
indicating a dependency relationship (see Figure 19.11). There is no significance
in the curving of the dependency lines; it is graphically convenient.

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID: ItemID

...

Store

address : Address
name : Text

addSale(...)

Payment

amount : Money

...

Contains

1..*

Contains
1..*

Register

...

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1 1

1

1 1

1

1
1

1

1

1

1

1

*

A dependency of Register knowing about
ProductSpecification.

Recommended when there is parameter,
global or locally declared visibility.

Logs-completed4 *

1

Figure 19.11 Dependency relationships indicating non-attribute visibility.

295

19 - DESIGN MODEL: CREATING DESIGN CLASS DIAGRAMS

19.6 Notation for Member Details

The UML provides a rich notation to describe features of class and interface
members, such as visibility, initial values, and so on. An example is shown in
Figure 19.12.

SampleClass

classAttribute
+ publicAttribute
- privateAttribute
attributeWithVisibilityUnspecified
attribute1 : type
burgers : List of VeggieBurger
attribute2 : type = initial value
finalConstantAttribute : int = 5 { frozen }
/derivedAttribute

classMethod()
+ «constructor» SampleClass(int)
methodWithVisibilityUnspecified()
methodReturnsSomething() : Foo
abstractMethod()
abstractMethod2() { abstract } // alternate
+ publicMethod()
- privateMethod()
protectedMethod()
~ packageVisibleMethod()
finalMethod() { leaf }
methodWithoutSideEffects() { query }
synchronizedMethod() { guarded }
method1WithParms(in parm1:String, inout parm2:int)
method2WithParms(parm1:String, parm2:float)
method3WithParms(parm1, parm2)
method4WithParms(String, int)
methodWithParmsAndReturn(parm1: String) : Foo
methodWithParmsButUnspecified(...) : Foo
methodWithParmsAndReturnBothUnspecified()

java.awt.Font

plain : Integer = 0 { frozen }
bold : Integer = 1 { frozen }
name : String
style : Integer = 0
...

+ getFont(name : String) : Font
+ getName() : String
...

java.awt.Toolkit
or

java.awt.Toolkit { abstract }

... // there are attributes, but not shown

createButton(target : Button) : ButtonPeer
+ getColorModel() : ColorModel
...

FinalClass { leaf }

... // there are methods, but not shown

«interface»
Runnable

run()

AlarmClock

run()
...

an empty
compartment
without ellipsis
means there is
definitely no
members (in
this case, no
attributes)

Figure 19.12 Some UML class diagram member notation details.

Visibility Defaults in the UML?

If no explicit visibility marker is shown for an attribute or method, what is the
default? Answer: there isn't a default. If none is shown, it implies "not specified"
in the UML. However, there is a common convention to assume that attributes
are private and methods public, unless otherwise noted.

The current iteration of the NextGen POS design class diagram (see Figure
19.13) does not have many interesting member details; all attributes are private
and all methods public.

296

SalesLineItem

- quantity

+ getSubtotal()

ProductCatalog

...

+ getSpecification(...)

ProductSpecification

- description
- price
- itemID

...

Store

- address
- name

+ addSale(...)

Payment

- amount

...

Register

...

+ endSale()
+ enterItem(...)
+ makeNewSale()
+ makePayment(...) Sale

- date
- isComplete
- time

+ becomeComplete()
+ makeLineItem(...)
+ makePayment(...)
+ getTotal()

Figure 19.13 Member details in the POS class diagram.

Notation for Method Bodies in DCDs (and Interaction Diagrams)

A method body can be shown as illustrated in Figure 19.14 in both a DCD and
an interaction diagram.

NOTATION FOR MEMBER DETAILS

Register

...

endSale()
enterItem(id, qty)
makeNewSale()
makePayment(cashTendered)

{
 ProductSpecification spec = catalog.getSpecification(id);
 sale.makeLineItem(spec, qty);
}

{
public void enterItem(id, qty)
{

 ProductSpecification spec = catalog.getSpecification(id);
 sale.makeLineItem(spec, qty);
}
}

UML notation:
A method body implementation may be shown in a UML note box. It should be placed within braces, wh
signifies it is semantic influence (it is more than just a comment).

The synax may be pseudo-code, or any language.

It is common to exclude the method signature (public void ...), but it is legal to include it.

Figure 19.14 Method body notation.

297

19 - DESIGN MODEL: CREATING DESIGN CLASS DIAGRAMS

19.7 DCDs, Drawing, and CASE Tools

CASE tools can reverse-engineer (generate) DCDs from source code. In Chapter
35 on drawing and CASE tools, there is a brief discussion on the process context
and the practice of drawing DCDs.

19.8 DCDs Within the UP

DCDs are part of the use-case realizations and thus members of the UP Design
Model.

Discipline Artifact
Iteration->

Incep.
I1

Elab.
El. .En

Const.
C1..Cn

Trans.
T1..T2

Business Modeling Domain Model s
Use-Case Model (SSDs) s r
Vision s r
Supplementary Specifications s r

Requirements

Glossary s r
Design Model s r
SW Architecture Document s

Design

Data Model s r
Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Table 19.1 Sample UP artifacts and timing. s - start; r - refine

Phases

Inception—The Design Model and DCDs will not usually be started until elab-
oration because it involves detailed design decisions, which are premature dur-
ing inception.

Elaboration—During this phase, DCDs will accompany the use-case realiza-
tion interaction diagrams; they may be created for the most architecturally sig-
nificant classes of the design.

Note that CASE tools can reverse-engineer (generate) DCDs from source code. It
is recommended to generate DCDs regularly from the source code, to visualize
the static structure of the system.

Construction—DCDs will continue to be generate d from the source code as an
aid in visualizing the static structure of the system.

298

UP ARTIFACTS

19.9 UP Artifacts

Artifact influence emphasizing the DCDs is shown in Figure 19.15.

Figure 19.15 Sample UP artifact influence.

299

Register

. . .

Sale

date
. . .

1 . . .

. . .

Domain Model

Use-Case Model

Design Model

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)
. . .

inspires
the names
and
attributes
of some
software
classes in
the design

makeNewSale()

Sample UP Artifact Relationships for Design Class Diagrams

Register

...

makeNewSale()
enterItem(...)
...

ProductCatalog

...

getSpecification(...)
...

1*

. . .

. . .

. . .

1

Sale

date
...

...

use-case
realizations
(UCRs)

design
class
diagrams
(DCDs)

the design classes
discovered while
designing UCRs are
summarized in DCDs

requires UCRs

suggests domain
concepts

Chapter 20

IMPLEMENTATION MODEL:
MAPPING DESIGNS TO CODE

Beware of bugs in the above code; I
have only proved it correct, not tried it.

— Donald Knuth

Objectives

Map design artifacts to code in an object-oriented language.

Introduction

With the completion of interaction diagrams and DCDs for the current iteration
of the NextGen application, there is sufficient detail to generate code for the
domain layer of objects.

The UML artifacts created during the design work—the interaction diagrams
and DCDs—will be used as input to the code generation process.

The UP defines the Implementation Model. This contains the implementation
artifacts such as the source code, database definitions, JSP/XML/HTML pages,
and so forth. Thus, the code being created in this chapter is part of the Imple-
mentation Model.

Language Samples

Java is used for the examples because of its widespread use and familiarity.
However, this is not meant to imply a special endorsement of Java; C#, Visual
Basic, C++, Smalltalk, Python, and many more languages are amenable to the
object design principles and mapping to code presented in this case study.

301

20 - IMPLEMENTATION MODEL: MAPPING DESIGNS TO CODE

20.1 Programming and the Development Process

The prior design work should not be taken to imply that there is no prototyping
or design while programming; modern development tools provide an excellent
environment to quickly explore alternate approaches, and some (or even lots)
design-while-programming is usually worthwhile.

However, some developers find that a little forethought with visual modeling
before programming is helpful, especially those who are comfortable with visual
thinking or diagrammatic languages.

Suggestion

For a two-week iteration, consider spending at least a half-day near the start
of the iteration doing some visual modeling design work, before moving on to
programming. Use simple "tools" that support quick creative diagramming,
such as a whiteboard and digital camera. If you find a UML computer-aided
software engineering (CASE) tool that is equally fast, easy, and convenient,
excellent.

The creation of code in an object-oriented programming language—such as Java
or C#—is not part of OOA/D; it is an end goal. The artifacts created in the UP
Design Model provide some of the information necessary to generate the code.

A strength of OOA/D and OO programming—when used with the UP—is that
they provide an end-to-end roadmap from requirements through to code. The
various artifacts feed into later artifacts in a traceable and useful manner, ulti-
mately culminating in a running application. This is not to suggest that the
road will be smooth, or can simply be mechanically followed—there are too
many variables. But having a roadmap provides a starting point for experimen-
tation and discussion.

Creativity and Change During Implementation

Some decision-making and creative work was accomplished during design work.
It will be seen during the following discussion that the generation of the code—
in this example—is a relatively mechanical translation process.

However, in general, the programming work is not a trivial code generation
step—quite the opposite. Realistically, the results generated during design are
an incomplete first step; during programming and testing, myriad changes will
be made and detailed problems will be uncovered and resolved.

Done well, the design artifacts will provide a resilient core that scales up with
elegance and robustness to meet the new problems encountered during pro-

302

PROGRAMMING AND THE DEVELOPMENT PROCESS

gramming. Consequently, expect and plan for change and deviation from the
design during programming.

Code Changes and the Iterative Process

A strength of an iterative and incremental development process is that the
results of a prior iteration can feed into the beginning of the next iteration (see
Figure 20.1). Thus, subsequent analysis and design results are continually
being refined and enhanced from prior implementation work. For example,
when the code in iteration N deviates from the design of iteration N (which it
inevitably will), the final design based on the implementation can be input to
the analysis and design models of iteration N+l.

Requirements
Analysis

Design

Implementation
and Testing

Iterative Cycles
of Development

Requirements
Analysis

Design

Implementation
and Testing

Requirements
Analysis

Design

Implementation
and Testing

Time

Figure 20.1 Implementation in an iteration influences later design.

An early activity within an iteration is to synchronize the design diagrams; the
earlier diagrams of iteration N will not match the final code of iteration N, and
they need to be synchronized before being extended with new design results.

Code Changes, CASE Tools, and Reverse-Engineering

It is desirable for the diagrams generated during design to be
semi-automati-cally updated to reflect changes in the subsequent coding work.
Ideally this should be done with a CASE tool that can read source code and
automatically generate, for example, package, class, and sequence diagrams.
This is an aspect of reverse-engineering—the activity of generating
diagrams from source (or sometimes, executable) code.

303

20 - IMPLEMENTATION MODEL: MAPPING DESIGNS TO CODE

20.2 Mapping Designs to Code

Implementation in an object-oriented programming language requires writing
source code for:

• class and interface definitions

• method definitions

The following sections discuss their generation in Java (as a typical case).

20.3 Creating Class Definitions from DCDs

At the very least, DCDs depict the class or interface name, superclasses, method
signatures, and simple attributes of a class. This is sufficient to create a basic
class definition in an object-oriented programming language. Later discussion
will explore the addition of interface and namespace (or package) information,
among other details.

Defining a Class with Methods and Simple Attributes

From the DCD, a mapping to the basic attribute definitions (simple Java
instance fields) and method signatures for the Java definition of SalesLineItem
is straightforward, as shown in Figure 20.2.

public class SalesLineItem
{
private int quantity;

public SalesLineItem(ProductSpecification spec, int qty) { ... }

public Money getSubtotal() { ... }

}

SalesLineItem

quantity : Integer

getSubtotal() : Money

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Described-by
1*

Figure 20.2 SalesLineItem in Java.

304

CREATING CLASS DEFINITIONS FROM DCDs

Note the addition in the source code of the Java constructor SalesLineItem(...). It
is derived from the create(spec, qty) message sent to a SalesLineItem in the
enterItem interaction diagram. This indicates, in Java, that a constructor sup-
porting these parameters is required. The create method is often excluded from
the class diagram because of its commonality and multiple interpretations,
depending on the target language.

Adding Reference Attributes

A reference attribute is an attribute that refers to another complex object, not
to a primitive type such as a String, Number, and so on.

The reference attributes of a class are suggested by the associations and nav-
igability in a class diagram.

For example, a SalesLineItem has an association to a ProductSpecification, with
navigability to it. It is common to interpret this as a reference attribute in class
SalesLineItem that refers to a ProductSpecification instance (see Figure 20.3).

In Java, this means that an instance field referring to a ProductSpecification
instance is suggested.

SalesLineItem

quantity : Integer

getSubtotal() : Money

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Described-by

public class SalesLineItem
{
private int quantity;

private ProductSpecification productSpec;

public SalesLineItem(ProductSpecification spec, int qty) {... }

public Money getSubtotal() { ... }
}

* 1

Simple attribute

Reference attribute

Figure 20.3 Adding reference attributes.

Note that reference attributes of a class are often implied, rather than
explicit, in a DCD.

305

2
0

-

I
M
P
L
E
M
E
N
T
A
T
I
O
N

M
O
D
E
L
:
M
A
P
P
I
N
G

D
E
S
I
G
N
S

T
O

C
O
D
E

306 20 - IMPLEMENTATION MODEL: MAPPING DESIGNS TO CODE

For example, although we have added an instance field to the Java definition of
SalesLineltem to point to a ProductSpecification, it is not explicitly declared as an
attribute in the attribute section of the class box. There is a suggested attribute
visibility—indicated by the associatio n and navigability—which is explicitly
defined as an attribute during the code generation phase.

Reference Attributes and Role Names

The next iteration will explore the concept of role names in static structure dia-
grams. Each end of an association is called a role. Briefly, a role name is a
name that identifies the role and often provides some semantic context as to the
nature of the role.

If a role name is present in a class diagram, use it as the basis for the name of the
reference attribute during code generation, as shown in Figure 20.4.

Figure 20.4 Role names may be used to generate instance variable names.

Mapping Attributes

The Sale class illustrates that in some cases one must consider the mapping of
attributes from the design to the code in different languages. Figure 20.5 illus-
trates the problem and its resolution.

SalesLineItem

quantity : Integer

getSubtotal() : Money

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Described-by

public class SalesLineItem
{
...

private int quantity;

private ProductSpecification productSpec;
}

productSpec

Role name used in
attribute name.

*

1

CREATING METHODS FROM INTERACTION DIAGRAMS

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
getTtotal()

public class Sale
{
private Date dateTime = new Date();
...
}

In Java, the java.util.Date class combines both date and
timestamp information. Therefore, the separate
attributes in the design can be collapsed when mapping
to Java.

Figure 20.5 Mapping date and time to Java.

Creating Methods from Interaction Diagrams

An interaction diagram shows the messages that are sent in response to a
method invocation. The sequence of these messages translates to a series of
statements in the method definition. The enterltem interaction diagram in Figure
20.6 illustrates the Java definition of the enterltem method.

In this example, the Register class will be used. A Java definition is shown in
Figure 20.7.

2: makeLineItem(spec, qty)enterItem(id, qty)

1: spec := getSpecification(id) 2.1: create(spec, qty

1.1: spec := find(id)

:Register :Sale

:Product
Catalog

sl: SalesLineItem

SalesLineItem
:SalesLineItem:Product

Specification

2.2: add(sl)

Figure 20.6 The enterltem interaction diagram.

307

308

Figure 20.7 The Register class.

The enterltem message is sent to a Register instance; therefore, the enterltem
method is defined in class Register.
public void enterltem (ItemID itemID, int qty)

Message 1: A getSpecification message is sent to the ProductCatalog to retrieve
a ProductSpecification.
ProductSpecif ication spec = catalog. getSpecif ication(itemID);

Message 2: The makeLineltem message is sent to the Sale.

sale .makeLineltemf spec, qty);

In summary, each sequenced message within a method, as shown on the interac-
tion diagram, is mapped to a statement in the Java method.

The complete enterltem method and its relationship to the interaction diagram is
shown in Figure 20.8.

ProductCatalog

...

getSpecification(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

Captures

Looks-in

Register

...

endSale()
enterItem(id: ItemID, qty : Integer)
makeNewSale()
makePayment(cashTendered : Money)

public class Register
{
private ProductCatalog catalog;
private Sale sale;

public Register(ProductCatalog pc) {...}

public void endSale() {...}
public void enterItem(ItemID id, int qty) {...}
public void makeNewSale() {...}
public void makePayment(Money cashTendered) {...}
}

1

11

1

20 - IMPLEMENTATION MODEL: MAPPING DESIGNS TO CODE

The Register-enterltem Method

2: makeLineItem(spec, qty)enterItem(id, qty)

1: spec := getSpecification(id)

:Register :Sale

:Product
Catalog

{
 ProductSpecification spec = catalog.getSpecification(id);
 sale.makeLineItem(spec, qty);
}

Figure 20.8 The enterltem method.

Container/Collection Classes in Code

It is often necessary for an object to maintain visibility to a group of other
objects; the need for this is usually evident from the multiplicity value in a class
diagram—it may be greater than one. For example, a Sale must maintain visi-
bility to a group of SalesLineltem instances, as shown in Figure 20.9.

In OO programming languages, these relationships are often implemented with
the introduction of a intermediate container or collection. The one-side class
defines a reference attribute pointing to a container/collection instance, which
contains instances of the many-side class.

For example, the Java libraries contain collection classes such as ArrayList and
HashMap, which implement the List and Map interfaces, respectively. Using
ArrayList, the Sale class can define an attribute that maintains an ordered list of
SalesLineltem instances.

The choice of collection class is of course influenced by the requirements;
key-based lookup requires the use of a Map, a growing ordered list requires a List,
and so on.

Exceptions and Error Handling

Exception handling has been ignored so far in the development of a solution.
This was intentional to focus on the basic questions of responsibility assignment
and object design. However, in application development, it is wise to consider
exception handling during design work, and certainly during implementation.

309

CONTAINER/COLLECTION CLASSES IN CODE

20 - IMPLEMENTATION MODEL: MAPPING DESIGNS TO CODE

Briefly, in the UML, exceptions are illustrated as asynchronous messages in
interaction diagrams. This is examined in Chapter 33.

SalesLineItem

quantity : Integer

getSubtotal()

Contains
1..*

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
getTtotal()

public class Sale
{
...

private List lineItems = new ArrayList();
}

A collection class is necessary to
maintain attribute visibility to all the
SalesLineItems.

1

Figure 20.9 Adding a collection.

7 Defining the Sale--makeLineltem Method

As a final example, the makeLineltem method of class Sale can also be written
by inspecting the enterltem collaboration diagram. An abridged version of the
interaction diagram, with the accompanying Java method, is shown in Figure
20.10.

{
 lineItems.add(new SalesLineItem(spec, qty));
}

2: makeLineItem(spec, qty)enterItem(id, qty)

2.1: create(spec, qty

:Register :Sale

sl: SalesLineItemSalesLineItem
:SalesLineItem

2.2: add(sl)

Figure 20.10 Sale-makeLineltem method.

310

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Store

address : Address
name : Text

addSale(...)

Payment

amount : Money

...

Contains

1..*

Contains
1..*

Register

...

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1 1

1

1 1

1

1
1

1

1

1

1

1

*

Logs-completed4 *

1

1

23

4

5
6

7

Figure 20.11 Possible order of class implementation and testing.

20.8 Order of Implementation

Classes need to be implemented (and ideally, fully unit tested) from least-cou-
pled to most-coupled (see Figure 20.11). For example, possible first classes to
implement are either Payment or ProductSpecification; next are classes only
dependent on the prior implementations— ProductCatalog or SalesLineltem.

20.9 Test-First Programming

An excellent practice promoted by the Extreme Programming (XP) method
[BeckOO], and applicable to the UP (as most XP practices are), is test-first pro-
gramming. In this practice, unit testing code is written before the code to be
tested, and the developer writes unit testing code for all production code. The
basic rhythm is to write a little test code, then write a little production code,
make it pass the test, then write some more test code, and so forth.

311

ORDER OF IMPLEMENTATION

20 - IMPLEMENTATION MODEL: MAPPING DESIGNS TO CODE

Advantages include:

• The unit tests actually get written—Human (or at least programmer)
nature is such that avoidance of writing unit tests is very common, if left as
an afterthought.

• Programmer satisfaction—If a developer writes the production code,
informally debugs it, and then as an afterthought adds unit tests, it does not
feel very satisfying. However, if the tests are written first, and then produc
tion code is created and refined to pass the tests, there is some feeling of
accomplishment—of passing a test. The psychological aspects of develop
ment can't be ignored—programming is a human endeavor.

• Clarification of interface and behavior—Often, the exact public inter
face and behavior of a class is not perfectly clear until programming it. By
writing the unit test for it first, one clarifies the design of the class.

• Provable verification—Obviously, having hundreds or thousands of unit
tests provides some meaningful verification of correctness.

• The confidence to change things—In test-first programming, there are
hundreds or thousands of unit tests, and a unit test class for each produc
tion class. When a developer needs to change existing code—written by
themselves or others—there is a unit te st suite that can be run, providing
immediate feedback if the change caused an error.

As an example, a popular, simple and free unit testing framework is JUnit
(www.junit.org) for Java. Suppose we are using JUnit and test-first program-
ming to create the Sale class. Before programming the Sale class, we write a
unit testing method in a SaleTest class that does the following:

1. Set up a new sale.

2. Add some line items to it.

3. Ask for the total, and verify it is the expected value.

For example:

public class SaleTest extends TestCase {
// ...

public void testTotal() {
// set up the test
Money total = new Money(7 . 5);
Money price = new Money(2 . 5);
ItemID id = new ItemID(1);
ProductSpecification spec;
spec = new ProductSpecification(id, price, "product 1");
Sale sale = new SaleO;

// add the items
sale.makeLineltern(spec, 1);
sale.makeLineltern(spec, 2);

// verify the total is 7 . 5

SUMMARY OF MAPPING DESIGNS TO CODE

assertEquals(sale.getTotal(), total); } }

Only after this SaleTest class is created do we then write the Sale class to pass
this test. However, not all unit testing methods need to be written beforehand. A
developer writes one testing method, then the production code to satisfy it, then
another testing method, and so on.

Summary of Mapping Designs to Code

The translation process from DCDs to class definitions, and from interaction
diagrams to methods, is relatively straightforward. There is still lots of room for
decision-making, design changes, and exploration during programming work,
but some of the big design ideas have been considered prior to the programming.

Introduction to the Program Solution

This section presents a sample domain object layer program solution in Java for
this iteration. The code generation is largely derived from the design class dia-
grams and interaction diagrams defined in the design work, based on the princi-
ples of mapping designs to code as previously explored.

The main point of this listing is to show that there is a translation from
design artifacts to a foundation of code. This code defines a simple case; it is
not meant to illustrate a robust, fully developed Java program with synchro-
nization, exception handling, and so on.

Class Payment

public class Payment {
private Money amount;
public Payment(Money cashTendered){ amount = cashTendered; }
public Money getAmount() { return amount; } }

Class ProductCatalog

public class ProductCatalog {
private Map productSpecifications = new HashMap();

313

20 - IMPLEMENTATION MODEL: MAPPING DESIGNS TO CODE

public ProductCatalog() {
// sample data
ItemID idl = new ItemID(100);
ItemID id2 = new ItemID(200);
Money price = new Money(3);

ProductSpecification ps;
ps = new ProductSpecification(idl, price, "product 1");
productSpecifications.put(idl, ps);

ps = new ProductSpecification(id2, price, "product 2");
ProductSpecifications.put(id2, ps); }

public ProductSpecification getSpecification(ItemID id) {
return (ProductSpecification)productSpecifications.get(id);

}
 }

Class Register

public class Register {
private ProductCatalog catalog;
private Sale sale;

public Register(ProductCatalog catalog) {
this.catalog = catalog; }

public void endSaleO {
sale.becomeComplete();

 }

public void enterltem(ItemID id, int quantity) {
ProductSpecification spec = catalog.getSpecification(id);

sale.makeLineItem(spec, quantity); }

public void makeNewSale() {
sale = new Sale(); }

public void makePayment(Money cashTendered) {
sale.makePayment(cashTendered); }

}

INTRODUCTION TO THE PROGRAM SOLUTION

Class ProductSpecification

public class ProductSpecification {
private ItemID id;
private Money price;
private String description;

public ProductSpecification
(ItemID id. Money price. String description) {
this.id = id;
this.price = price;
this.description = description; }

public ItemID getltemlDO { return id;}

public Money getPrice() { return price; }

public String getDescription() { return description; }
}

Class Sale

public class Sale
{

private List lineltems = new ArrayListO;
private Date date = new Date();
private boolean isComplete = false;
private Payment payment;

public Money getBalanceO {
return payment.getAmount().minus(getTotal()); }

public void becomeComplete() { isComplete = true; }

public boolean isComplete() { return isComplete; }

public void makeLineltem
(ProductSpecification spec, int quantity) {
lineltems.add(new SalesLineltem(spec, quantity)); }

public Money getTotal()
{

Money total = new MoneyO;
Iterator i = lineltems.iterator() ;
while (i.hasNextO)
{
SalesLineltem sli = (SalesLineltem) i.nextO;
total.add(sli.getSubtotal());
}
return total; }

315

20 - IMPLEMENTATION MODEL: MAPPING DESIGNS TO CODE

public void makePayment(Money cashTendered)
{
payment = new Payment(cashTendered); } }

Class SalesLineltem

public class SalesLineltem {
private int quantity;
private ProductSpecification productSpec;

public SalesLineltem (ProductSpecification spec, int quantity)
{

this.productSpec = spec;
this.quantity = quantity; }

public Money getSubtotal() {
return productSpec.getPrice().times(quantity);

} }

Class Store

public class Store
{

private ProductCatalog catalog = new ProductCatalog();
private Register register = new Register(catalog);

public Register getRegister() { return register; } }

PART 4
ELABORATION
ITERATION 2

Chapter

ITERATION 2 AND ITS
REQUIREMENTS

Iteration 2 Emphasis: Object Design and Patterns

The inception phase chapters and those for iteration 1 in the elaboration phase
emphasized a range of fundamental analysis and object design skills, in order to
share information on a breadth of common steps in building object systems.

In this iteration, the case study just emphasizes:

• essential object design

• the use of patterns to create a solid design

• application of the UML to visualize the models

These are primary objectives of the book, and critical skills.

There is minimal discussion of requirements analysis or domain modeling, and
the explanation of the design is more succinct, now that (in iteration 1) a
detailed explanation of the basics of how to think in objects has been presented.

Many other analysis, design, and implementation activities would of course
occur in this iteration, but these are de-emphasized in favor of sharing informa-
tion about how to do object design.

From Iteration 1 to 2

When iteration 1 ends, the following should be accomplished:

• All the software has been vigorously tested: unit, acceptance, load, usability,
and so on. The idea in the UP is to do early, realistic, and continuous verifi
cation of quality and correctness, so that early feedback guides the develop
ers to adapt and improve the system, finding its "true path."

319

320

21 - ITERATION 2 AND ITS REQUIREMENTS

• Customers have been regularly engaged in evaluating the partial system, to
obtain feedback for adaptation and clarification of requirements. And the
customers get to see early visible progress with the system.

• The system, across all subsystems, has been completely integrated and sta
bilized as a baselined internal release.

In the interest of brevity, many activities concluding iteration 1 and initiating
iteration 2 are skipped, since the emphasis of this presentation is an introduction
to OOA/D. Comments on a few of the myriad activities that are skipped include:

• At the start of the new iteration, use a CASE tool to reverse-engineer UML
diagrams from the source code of the last iteration (the results are part of
the UP Design Model). These can be printed in large size on a plotter and
posted on the walls of the project room, as a communication aid to illustrate
the starting point of the logical design for the next iteration.

• Usability analysis and engineering for the UI is underway. This is an
extraordinarily important skill and activity for the success of many systems.
However, the subject is detailed and non-trivial, and outside the scope of
this book.

• Database modeling and implementation is underway.

• Near the end of the prior iteration, requirements for the next are chosen.

• Another two-day (for example) requirements workshop occurs, in which
more use cases are written in their fully dressed format. During elaboration,
while perhaps 10% of the most risky requirements are being designed and
implemented, there is a parallel activity to deeply explore and define per
haps 80% of the use cases for the system, even though most of these require
ments won't be implemented until construction.

o Participants will include a few developers (such as the software
architect) from the first iteration, so that the investigation and
questioning during this workshop is informed from the insights
(and confusions) gained from actually quickly building some soft-
ware. There's nothing like building some software to discover what
we really don't know about the requirements—this is a key idea in
the UP and iterative development.

Simplifications in the Case Study

In a skillful UP project, the requirements chosen for the early iterations are
organized by risk and high business value, so that the high-risk issues are iden-
tified and resolved early. However, if this case study exactly followed that strat-
egy, it would not be possible to help explain fundamental ideas and principles of
OOA/D in the early iterations. Therefore, some license is taken with the
prioriti-zation of requirements, preferring those that support the educational
goals, rather than project risk goals.

ITERATION 2 REQUIREMENTS

Iteration 2 Requirements

Iteration 2 of the NextGen POS application handles several interesting
requirements:

1. Support for variations in third-party external services. For example, differ
ent tax calculators must be connectable to the system, and each has a
unique interface. Likewise with different accounting systems and so forth.
Each will offer a different API and protocol for a core of common functions.

2. Complex pricing rules.

3. Pluggable business rules.

4. A design to refresh a GUI window when the sale total changes.

These requirements will only be considered (for this iteration) in the context of
scenarios of the Process Sale use case.

Note that these are not newly discovered requirements; they were identified
during inception. For example, the original Process Sale use case indicates the
pricing problem:

Main Success Scenario:
1. Customer arrives at a POS checkout with goods and/or services to purchase.
2. Cashier tells System to create a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running total.

Price calculated from a set of price rules.

Furthermore, sections in the Supplementary Specification record details of the
domain rules for pricing, and indicate the need to support varying external
systems:

Supplementary Specification

Interfaces

Software Interfaces
For most external collaborating systems (tax calculator, accounting, inventory, ...) we need to be able to
plug in varying systems and thus varying interfaces.

321

21 - ITERATION 2 AND ITS REQUIREMENTS

Domain (Business) Rules

ID Rule Changeability Source
RULE4 Purchaser discount rules.

Examples:
Empio-yee-20% off.
Preferred Customer— 10%
off.
Senior— 15% off.

High. Each
retailer uses
different rules

Retailer policy.

… … … …

Information in Domains of Interest

Pricing
In addition to the pricing rules described in the domain rules section, note that products have an original
price, and optionally a permanent markdown price. A product's price (before further discounts) is the per-
manent markdown price, if present. Organizations maintain the original price even if there is a permanent
markdown price, for accounting and tax reasons.

Incremental Development for the Same Use Case Across Iterations

Because of these requirements, we are revisiting the Process Sale use case in
iteration 2, but implementing more scenarios, so that the system incrementally
grows. It is common to work on varying scenarios or features of the same use
case over several iterations and gradually extend the system to ultimately handle
all the functionality required. On the other hand, short, simple use cases may be
completely implemented within one iteration.

Iteration 1 made simplifications so that the problem and solution were not
overly complex to explore. Once again—for the same reason—a relatively small
amount of additional functionality is considered.

In a development project the requirements chosen for this iteration in the book
would not be the undisputed choice—another possibility is updating inventory,
credit payment handling, or a completely different use case. However, this
choice is rich with valuable learning opportunities.

I Refinement of Analysis-oriented Artifacts in this Iteration

Use-Case Model: Use Cases

No refinement is required of the use cases as a result of the chosen requirements
for this iteration, although they may change as a result of other insights.

However, in addition to object design and programming, a parallel activity of a
second short requirements workshop will occur in this iteration, within which
more use cases will be investigated and written in detail. The previously fully
dressed use cases (for example, Process Sale) will be revisited and probably

J3£2_

REFINEMENT OF ANALYSIS-ORIENTED ARTIFACTS IN THIS ITERATION

refined based on insights gained from iteration 1. Some of these use case
updates may be considered for the next elaboration phase iteration, but many
will be deferred until construction (because they are not architecturally signifi-
cant or risky).

Use-Case Model: SSDs

This iteration includes adding support for third-party external systems with
varying interfaces, such as a tax calculator. The NextGen POS system will be
remotely communicating with external systems. Consequently, the SSDs should
be updated to reflect at least some of the inter-system collaborations, in order to
clarify what the new system-level events are.

Figure 21.1 illustrates an SSD for one scenario of paying by credit, which
requires collaboration with several external systems. Even though the design of
paying by credit is not handled in this iteration, the designer (me) has drawn an
SSD based on it (and probably several others as well), to better understand the
inter-system collaboration, and thus the required support for varying interfaces in
the external systems.

Domain Model

After a little experience in domain modeling, a modeler can estimate if a set of
new requirements will have a minor or major impact on the Domain Model in
terms of many new concepts, associations, and attributes. In contrast to the
prior iteration, the requirements being tackled this time do not involve many
new domain concepts. A brief survey of the new requirements suggests something
like PriceRule as a domain concept, but there are probably not dozens of new
things.

In this situation, it is quite reasonable to skip refining the Domain Model, move
quickly on to design work, and let the discovery of new domain concepts occur
during object design, when the designers are thinking through a solution. A sign
of process maturity with the UP is understanding when creating an artifact will
add significant value, or is a kind of mechanical "make work" step, and better
skipped.

This flexibility is a double-edged sword. All too often, the flexibility to skip pre-
programming activities occurs out of an overly optimistic belief that the problem
can be solved simply by rushing to code. If it truly can, great, because program-
ming is the work that really matters, not drawing domain models. On the other
hand, most developers have stories where a little reflection, investigation, and
forethought before programming would have reduced pain and suffering.

323

324

21 - ITERATION 2 AND ITS REQUIREMENTS

Use-Case Model: System Operation Contracts

No new system operations are being considered in this iteration, and thus con-
tracts are not required. In any event, contracts are just an option to consider
when the detailed precision they offer is an improvement over the descriptions in
the use cases.

makeCreditPayment
(credNum, expiryDate)

reply := requestApproval(request)

postReceivable(receivable)

«actor»
:CreditAuthorization

Service

«actor»
:Accounts

enterItem(itemID, quantity)

:NextGenPOS
System

: Cashier

endSale()

Process Sale
Pay by Credit Scenario

description, total

total with taxes

* [more items]

makeNewSale()

«actor»
:TaxCalculator

taxLineItems :=
getTaxes(sale)

postSale(sale)

Figure 21.1 An SSD scenario that illustrate some external systems

Chapter

22

GRASP: MORE PATTERNS FOR
ASSIGNING RESPONSIBILITIES

Luck is the residue of design.

— Branch Rickey

Objectives

• Learn to apply the remaining GRASP patterns.

Introduction

Previously, we explored the application of the first five GRASP patterns:

• Information Expert, Creator, High Cohesion, Low Coupling, and Controller

The final four GRASP patterns are:

• Polymorphism

• Indirection

• Pure Fabrication

• Protected Variations

Once these have been explained, we will have a rich and shared vocabulary with
which to discuss designs. And as some of the "gang-of-four" (GoF) design pat-
terns (such as Strategy and Factory) are also introduced (in subsequent chapters),
that vocabulary will grow. A short sentence such as, "I suggest a Strategy
generated from a Factory to support Protected Variations and low coupling with
respect to <X>" communicates lots of information about the design, since pattern
names tersely convey a complex design concept.

325

22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES

This chapter introduces the remaining GRASP patterns, a learning aid of funda-
mental principles by which responsibilities are assigned to objects and objects
are designed.

Subsequent chapters introduce other useful patterns and apply them to the
development of the second iteration of the NextGen POS application.

1 Polymorphism

Solution When related alternatives or behaviors vary by type (class), assign responsibility
for the behavior—using polymorphic operations—to the types for which the
behavior varies.1

Corollary: Do not test for the type of an object and use conditional logic to per-
form varying alternatives based on type.

Problem How to handle alternatives based on type? How to create pluggable software
components?

Alternatives based on type—Conditional variation is a fundamental theme in
programs. If a program is designed using if-then-else or case statement condi-
tional logic, then if a new variation arises, it requires modification of the case
logic. This approach makes it difficult to easily extend a program with new vari-
ations because changes tend to be required in several places—wherever the con-
ditional logic exists,

Pluggable software components—Viewing components in client-server relation-
ships, how can you replace one server component with another, without affecting
the client?

Example In the NextGen POS application, there are multiple external third-party tax cal-
culators that must be supported (such as Tax-Master and Good-As-Gold
Tax-Pro); the system needs to be able to integrate with different ones. Each tax
calculator has a different interface, and so there is similar but varying behavior
to adapt to each of these external fixed interfaces or APIs. One product may sup-
port a raw TCP socket protocol, another may offer a SOAP interface, and a third
may offer a Java RMI interface.

What objects should be responsible for handling these varying external tax cal-
culator interfaces?

1. Polymorphism has several related meanings. In this context, it means "giving the
same name to services in different objects" [Coad95] when the services are similar or
related. The different object types usually implement a common interface or are related
in an implementation hierarchy with a common superclass, but this is lan-
guage-dependent; for example, dynamic binding languages such as Smalltalk do not
require this.

326

POLYMORPHISM

Since the behavior of calculator adaptation varies by the type of calculator, by
Polymorphism we should assign the responsibility for adaptation to different
calculator (or calculator adapter) objects themselves, implemented with a poly-
morphic getTaxes operation (see Figure 22.1).

These calculator adapter objects are not the external calculators, but rather,
local software objects that represent the external calculators, or the adapter for
the calculator. By sending a message to the local object, a call will ultimately be
made on the external calculator in its native API.

Each getTaxes method takes the Sale object as a parameter, so that the calculator
can analyze the sale. The implementation of each getTaxes method will be
different: TaxMasterAdapter will adapt the request to the API of Tax-Master,
and so on.

TaxMasterAdapter

getTaxes(Sale) : List of TaxLineItems

GoodAsGoldTaxPro
Adapter

getTaxes(Sale) : List of TaxLineItems

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineItems

By Polymorphism, multiple tax calculator adapters have
their own similar, but varying behavior for adapting to
different external tax calculators.

<???>Adapter

...

...

Figure 22.1 Polymorphism in adapting to different external tax calculators.

UML notation—Figure 22.1 introduces some new UML notation for specifying
interfaces (a descriptor of operations without implementation), interface
implementation, and for "collection" return types; Figure 22.2 elaborates. A
UML stereotype is used to indicate an interface; a stereotype is a mechanism to
categorize an element in some way. A stereotype name is surrounded by
guillemets symbols, as in «interface». Guillemets are special single-character
brackets most widely known by their use in French typography to indicate a

327

22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES

quote; but to quote Rumbaugh, "the typographically challenged could substitute
two angle brackets (« ») if necessary" [RJB99].

GoodAsGoldTaxPro
Adapter

getTaxes(Sale) : List of TaxLineItems

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineItems

INTERFACE NOTATION

INTERFACE NOTATION

Interface implementation is
illustrated with a dashed line
and a large unfilled arrow
pointing to the interface from
the implementing class.

the «interface» element in guillemets is
called a UML stereotype

Return or parameter types
that represent a collection
can be specified in any
syntax, but this is the
generally accepted common
UML style.

Figure 22.2 UML notation for interfaces and return types.

Polymorphism is a fundamental principle in designing how a system is orga-
nized to handle similar variations. A design based on assigning responsibilities
by Polymorphism can be easily extended to handle new variations. For example,
adding a new calculator adapter class with its own polymorphic getTaxet
method will have minor impact on the existing design.

Sometimes, developers design systems with interfaces and polymorphism for
speculative "future-proofing" against an unknown possible variation. If the vari-
ation point is definitely motivated by an immediate or very probable variability
then the effort of adding the flexibility through polymorphism is of course
rational. But critical evaluation is required, because it is not uncommon to see
unnecessary effort being applied to future-proofing a design with polymorphism
at variation points that in fact are improbable and will never actually arise. Be
realistic about the true likelihood of variability before investing in increased
flexibility.

• Extensions required for new variations are easy to add.

• New implementations can be introduced without affecting clients.

PURE FABRICATION

• Protected Variations

• A number of popular GoF design patterns [GHJV95], which will be dis
cussed in this book rely on polymorphism, including Adapter, Command,
Composite, Proxy, State, and Strategy.

Choosing Message, Don't Ask "What Kind?"

Fabrication

Assign a highly cohesive set of responsibilities to an artificial or convenience
class that does not represent a problem domain concept—something made up, to
support high cohesion, low coupling, and reuse.

Such a class is a fabrication of the imagination. Ideally, the responsibilities
assigned to this fabrication support high cohesion and low coupling, so that the
design of the fabrication is very clean, or pure—hence a pure fabrication.

Finally, a pure fabrication implies making something up, which we do when
we're desperate!

What object should have the responsibility, when you do not want to violate
High Cohesion and Low Coupling, or other goals, but solutions offered by Expert
(for example) are not appropriate?

Object-oriented designs are sometimes characterized by implementing as soft-
ware classes representations of concepts in the real-world problem domain to
lower the representational gap; for example a Sale and Customer class. However,
there are many situations in which assigning responsibilities only to domain
layer software classes leads to problems in terms of poor cohesion or coupling, or
low reuse potential.

For example, suppose that support is needed to save Sale instances in a relational
database. By Information Expert, there is some justification to assign this
responsibility to the Sale class itself, because the sale has the data that needs to be
saved. But consider the following implications:

• The task requires a relatively large number of supporting database-oriented
operations, none related to the concept of sale-ness, so the Sale class
becomes incohesive.

• The Sale class has to be coupled to the relational database interface (such as
JDBC in Java technologies), so its coupling goes up. And the coupling is not
even to another domain object, but to a particular kind of database
interface.

329

330

22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES

• Saving objects in a relational database is a very general task for which
many classes need support. Placing these responsibilities in the Sale class
suggests there is going to be poor reuse or lots of duplication in other classes
that do the same thing.

Thus, even though Sale is a logical candidate by virtue of Information Expert to
save itself in a database, it leads to a design with low cohesion, high coupling,
and low reuse potential—exactly the kind of desperate situation that calls for
making something up.

A reasonable solution is to create a new class that is solely responsible for saving
objects in some kind of persistent storage medium, such as a relational database;
call it the PersistentStorage.2' This class is a Pure Fabrication—a figment of the
imagination.

Notice the name: PersistentStorage. This is an understandable concept, yet the
name or concept "persistent storage" is not something one would find in the
Domain Model. And if a designer asked a business-person in a store, "Do you
work with persistent storage objects?" they would not understand. They under-
stand concepts such as "sale" and "payment." PersistentStorage is not a domain
concept, but something made up or fabricated for the convenience of the software
developer.

This Pure Fabrication solves the following design problems:

• The Sale remains well-designed, with high cohesion and low coupling.

• The PersistentStorage class is itself relatively cohesive, having the sole pur
pose of storing or inserting objects in a persistent storage medium.

• The PersistentStorage class is a very generic and reusable object.

Creating a pure fabrication in this example is exactly the situation in which
their use is called for—eliminating a bad design based on Expert, with poor
cohesion and coupling, with a good design in which there is greater potential for
reuse.

Note that, as with all the GRASP patterns, the emphasis is on where responsi-
bilities should be placed. In this example the responsibilities are shifted from
the Sale class (motivated by Expert) to a Pure Fabrication.

2. In a real persistence framework, more than a single pure fabrication class is ultimately
necessary to create a reasonable design. This object will be a front-end facade on to a
large number of back-end helper objects.

PersistentStorage

insert(Object)
update(Object)
...

By Pure Fabrication

PURE FABRICATION

The design of objects can be broadly divided into two groups:

1. Those chosen by representational decomposition.
2. Those chosen by behavioral decomposition.
For example, the creation of a software class such as Sale is by representational
decomposition; the software class is related to or represents a thing in a domain.
Representational decomposition is a common strategy in object design and sup-
ports the goal of reduced representational gap. But sometimes, we desire to
assign responsibilities by grouping behaviors or by algorithm, without any con-
cern for creating a class with a name or purpose that is related to a real-world
domain concept.

A good example is an "algorithm" object such as a TableOfContentsGenerator,
whose purpose is (surprise) to generate a table of contents and was created as a
helper or convenience class by a developer, without any concern for choosing a
name from the domain vocabulary of books and documents. It exists as a conve-
nience class conceived by the developer to group together some related behavior or
methods, and is thus motivated by behavioral decomposition.

To contrast, a software class named TableOfContents is inspired by representa-
tional decomposition, and should contain information consistent with our con-
cept of the real domain (such as chapter names).

Identifying a class as a Pure Fabrication is not critical. It is an educational concept
to communicate the general idea that some software classes are inspired by
representations of the domain, and some are simply "made up" as a convenience
for the object designer. These convenience classes are usually designed to group
together some common behavior, and are thus inspired by behavioral rather
than representational decomposition.

Said another way, a Pure Fabrication is usually partitioned based on related
functionality, and so is a kind of function-centric or behavioral object.

Many existing object-oriented design patterns are examples of Pure Fabrications:
Adapter, Strategy, Command, and so on [GHJV95].

As a final comment worth reiterating: Sometimes a solution offered by Informa-
tion Expert is not desirable. Even though the object is a candidate for the
responsibility by virtue of having much of the information related to the respon-
sibility, in other ways, its choice leads to a poor design, usually due to problems in
cohesion or coupling.

• High Cohesion is supported because responsibilities are factored into a fine
grained class that only focuses on a very specific set of related tasks.

• Reuse potential may increase because of the presence of fine-grained Pure
Fabrication classes whose responsibilities have applicability in other
applications.

Behavioral decomposition into Pure Fabrication objects is sometimes overused
by those new to object design and more familiar with decomposing or organizing

331

22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES

software in terms of functions. To exaggerate, functions just become objects.
There is nothing inherently wrong with creating "function" or "algorithm"
objects, but it needs to be balanced with the ability to design with representa-
tional decomposition, such as the ability to apply Information Expert so that a
representational class such as Sale also has responsibilities. Information Expert
supports the goal of co-locating responsibilities with the objects that know the
information needed for those responsibilities, which tends to support lower
coupling. If overused, Pure Fabrication could lead to too many behavior objects
that have responsibilities not co-located with the information required for their
fulfillment, which can adversely affect coupling. The usual symptom is that
most of the data inside the objects is being passed to other objects to reason with it.

Related Patterns • Low Coupling.
and Principles TT. , „ , .

• High Cohesion.

• A Pure Fabrication usually takes on responsibilities from the domain class
that would be assigned those responsibilities based on the Expert pattern.

• All GoF design patterns [GHJV95], such as Adapter, Command, Strategy,
and so on, are Pure Fabrications.

• Virtually all other design patterns are Pure Fabrications.

22.3 Indirection

Solution Assign the responsibility to an intermediate object to mediate between other
components or services so that they are not directly coupled.

The intermediary creates an indirection between the other components.

Problem Where to assign a responsibility, to avoid direct coupling between two (or more)
things? How to de-couple objects so that low coupling is supported and reuse
potential remains higher?

Examples TaxCalculatorAdapter

These objects act as intermediaries to the external tax calculators. Via polymor-
phism, they provide a consistent interface to the inner objects and hide the vari-
ations in the external APIs. By adding a level of indirection and adding
polymorphism, the adapter objects protect the inner design against variations in
the external interfaces (see Figure 22.3).

332

s : Sale :TaxMasterAdapter

taxes := getTaxes(s)

t := getTotal()

the adapter acts as a level
of indirection to external
systems

«system»
: TaxMaste

TCP socket
communication

xxx
...

Figure 22.3 Indirection via the adapter.

PersistentStorage

The Pure Fabrication example of decoupling the Sale from the relational data-
base services through the introduction of a PersistentStorage class is also an
example of assigning responsibilities to support Indirection. The PersistentStor-
age acts as a intermediary between the Sale and the database.

"Most problems in computer science can be solved by another level of indirec-
tion" is an old adage with particular relevance to object-oriented designs. 3

Just as many existing design patterns are specializations of Pure Fabrication,
many are also specializations of Indirection. Adapter, Facade, and Observer are
examples [GHJV95]. In addition, many Pure Fabrications are generated
because of Indirection. The motivation for Indirection is usually Low Coupling;
an intermediary is added to decouple other components or services.

• Lower coupling between components.

• Protected Variations

• Low Coupling

• Many GoF patterns, such as Adapter, Bridge, Facade, Observer, and
Mediator [GHJV95].

• Many Indirection intermediaries are Pure Fabrications.

3. If any adage is old in computer science! I have forgotten the source (Parnas?). Note
there is also the counter-adage: "Most problems in performance can be solved by
removing another layer of indirection!"

333

INDIRECTION

22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES

1 Protected Variations

Solution Identify points of predicted variation or instability; assign responsibilities to
create a stable interface around them.

Note: The term "interface" is used in the broadest sense of an access view; it
does not literally only mean something like a Java or COM interface.

Problem How to design objects, subsystems, and systems so that the variations or insta-
bility in these elements does not have an undesirable impact on other elements?

Example For example, the prior external tax calculator problem and its solution with
Polymorphism illustrate Protected Variations (Figure 22.1). The point of insta-
bility or variation is the different interfaces or APIs of external tax calculators.
The POS system needs to be able to integrate with many existing tax calculator
systems, and also with future third-party calculators not yet in existence.

By adding a level of indirection, an interface, and using polymorphism with var-
ious ITaxCalculatorAdapter implementations, protection within the system
from variations in external APIs is achieved. Internal objects collaborate with a
stable interface; the various adapter implementations hide the variations to the
external systems.

Discussion Protected Variations (PV) was first published as a pattern by Cockburn in
[VCK96], although this very fundamental design principle has been around for
decades under various terms.

Mechanisms Motivated by PV

PV is a root principle motivating most of the mechanisms and patterns in pro-
gramming and design to provide flexibility and protection from variations.

At one level, the maturation of a developer or architect can be seen in their
growing knowledge of ever-wider mechanisms to achieve PV, to pick the appro-
priate PV battles worth fighting, and their ability to choose a suitable PV solution.
In the early stages, one learns about data encapsulation, interfaces, and
polymorphism—all core mechanisms to achieve PV. Later, one learns techniques
such as rule-based languages, rule interpreters, reflective and metadata
designs, virtual machines, and so forth—all of which can be applied to protect
against some variation.

For example:

Core Protected Variations Mechanisms

Data encapsulation, interfaces, polymorphism, indirection, and standards are
motivated by PV. Note that components such as brokers and virtual machines
are complex examples of indirection to achieve PV.

334

PROTECTED VARIATIONS

Data-Driven Designs

Data-driven designs cover a broad family of techniques include reading codes,
values, class file paths, class names, and so forth, from an external source in
order to change the behavior of, or "parameterize" a system in some way at run-
time. Other variants include style sheets, metadata for object-relational map-
ping, property files, reading in window layouts, and much more. The system is
protected from the impact of data, metadata, or declarative variations by exter-
nalizing the variant, reading it in, and reasoning with it.

Service Lookup

Service lookup includes techniques such as using naming services (for example,
Java's JNDI) or traders to obtain a service (for example, Java's Jini, or UDDI for
Web services). Clients are protected from variations in the location of services,
using the stable interface of the lookup service. It is a special case of data-driven
design.

Interpreter-Driven Designs

Interpreter-driven designs include rule interpreters that execute rules read
from an external source, script or language interpreters that read and run pro-
grams, virtual machines, neural network engines that execute nets, constraint
logic engines that read and reason with constraint sets, and so forth. This
approach allows changing or parameterizing the behavior of a system via exter-
nal logic expressions. The system is protected from the impact of logic variations
by externalizing the logic, reading it in, and using an interpreter.

Reflective or Meta-Level Designs

An example of this approach is using the java.beansJntrospector to obtain a
Beanlnfo object, asking for the getter Method object for bean property X, and
calling Method, invoke. The system is protected from the impact of logic or external
code variations by reflective algorithms that use introspection and meta-lan-guage
services. It may be considered a special case of data-driven designs.

Uniform Access

Some languages, such as Ada, Eiffel, and C#, support a syntactic construct so
that both a method and field access are expressed the same way. For example,
adrcle.radius may invoke a radiusQ:float method or directly refer to a public
field, depending on the definition of the class. We can change from public fields to
access methods, without changing the client code.

The Liskov Substitution Principle (LSP)
LSP [LiskovSS] formalizes the principle of protection against variations in dif-
ferent implementations of an interface, or subclass extensions of a superclass.

To quote:

335

22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES

What is wanted here is something like the following substitution
property: If for each object ol of type S there is an object o2 of
type T such that for all programs P defined in terms of T, the
behavior of P is unchanged when ol is substituted for o2 then S is
a subtype of T [LiskovSS].

Informally, software (methods, classes, ...) that refers to a type T (some interface
or abstract superclass) should work properly or as expected with any substituted
implementation or subclass of T—call it S. For example:
public void addTaxes(ITaxCalculatorAdapter calculator. Sale sale) {

List taxLineltems = calculator.getTaxes(sale);
// ... }

For this method addTaxes, no matter what implementation of ITaxCalculator-
Adapter is passed in as an actual parameter, the method should continue to
work "as expected." LSP is a simple idea, intuitive to most object developers,
that formalizes this intuition.

Structure-Hiding Designs

In the first edition of this book, an important object design principle called
Don't Talk to Strangers or the Law of Demeter [LieberherrSS] was
expressed as one of the nine GRASP patterns. Briefly, it means to avoid creating
designs that traverse long object structure paths and send messages (or talk) to
distant, indirect (stranger) objects. Such designs are fragile with respect to
changes in the object structures—a common point of instability. But in the second
edition the more general PV replaced Don't Talk to Strangers, because the latter
is a special case of the former. That is, a mechanism to achieve protection from
structure changes is to apply the Don't Talk to Strangers rules.

Don't Talk to Strangers places constraints on what objects you should send mes-
sages to within a method. It states that within a method, messages should only be
sent to the following objects:

1. The this object (or self).
2. A parameter of the method.

3. An attribute of this.
4. An element of a collection which is an attribute of this.
5. An object created within the method.
The intent is to avoid coupling a client to knowledge of indirect objects and the
object connections between objects.

Direct objects are a client's "familiars," indirect objects are "strangers." A client
should talk to familiars, and avoid talking to strangers.

Here is an example that (mildly) violates Don't Talk to Strangers. The com-
ments explain the violation.

PROTECTED VARIATIONS

class Register
{
private Sale sale;

public void slightlyFragileMethod() {
// sale.getPayment() sends a message to a "familiar" (passes #3)

// but in sale.getPayment().getTenderedAmount()
// the getTenderedAmount() message is to a "stranger" Payment

Money amount = sale.getPayment().getTenderedAmount();

// . . .
 }

// . . .
 }

This code traverses structural connections from a familiar object (the Sale) to a
stranger object (the Payment), and then sends it a message. It is very slightly
fragile, as it depends on the fact that Sale objects are connected to Payment
objects. Realistically, this is unlikely to be a problem.

But, consider this next fragment, which traverses farther along the structural
path:
public void moreFragileMethod() {

AccountHolder holder =
sale. getPayment () . get Ac count () . getAccountHolder () ;

// ...
 }

The example is contrived, but you see the pattern: Traversing farther along a
path of object connections in order to send a message to a distant, indirect
object—talking to a distant stranger. The design is coupled to a particular struc-
ture of how objects are connected. The farther along a path the program
traverses, the more fragile it is.

Karl Lieberherr and his colleagues have done research into good object design
principles, under the umbrella of the Demeter project. This Law of Demeter
(Don't Talk to Strangers) was identified because of the frequency with which
they saw change and instability in object structure, and thus frequent breakage
in code that was coupled to knowledge of object connections.

Yet, as will be examined in the following "Speculative PV and Picking your Bat-
tles" section, it is not always necessary to protect against this; it depends on the
instability of the object structure. In standard libraries (such as the Java libraries)
the structural connections between classes of objects are relatively stable. In
mature systems, the structure is more stable. In new systems in early iteration, it
isn't stable.

In general, the farther along a path one traverses, the more fragile it is, and
thus it is more useful to conform to Don't Talk to Strangers.

337

22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES

Strictly obeying this law—protection against structural variations—requires
adding new public operations to the "familiars" of an object; these operations
provide the ultimately desired information, and hide how it was obtained. For
example, to support Don't Talk to Strangers for the previous two cases:

// case 1
Money amount = sale.getTenderedAmountOfPayment() ;

// case 2
AccountHolder holder = sale.getAccountHolderOfPayment() ;

Caution: Speculative PV and Picking Your Battles

First, two points of change are worth defining:

• variation point—Variations in the existing, current system or require
ments, such as the multiple tax calculator interfaces that must be sup
ported.

• evolution point—Speculative points of variation that may arise in the
future, but which are not present in the existing requirements.4

PV is applied to both variation and evolution points.

A caution: Sometimes the cost of speculative "future-proofing" at evolution
points outweighs the cost incurred by a simple, more "brittle" design that is
reworked as necessary in response to the true change pressures. That is, the
cost of engineering protection at evolution points can be higher than reworking a
simple design.

For example, I recall a pager message handling system where the architect
added a scripting language and interpreter to support flexibility and protected
variation at an evolution point. However, during rework in an incremental
release, the complex (and inefficient) scripting was removed— it simply wasn't
needed. And when I started OO programming (in the early 1980s) I suffered the
disease of "generalize-itis" in which I tended to spend many hours creating
superclasses of the classes I really needed to write. I would make everything
very general and flexible (and protected against variations), for that future situ-
ation when it would really pay off—which never came. I was a poor judge of
when it was worth the effort.

The point is not to advocate rework and brittle designs. If the need for flexibility
and protection from change is realistic, then applying PV is motivated. But if it is
for speculative future-proofing or speculative "reuse" with very uncertain
probabilities, then restraint and critical thinking is called for.

4. In the UP, evolution points can be formally documented in Change Cases; each
describes relevant aspects of an evolution point for the benefit of a future architect.

PROTECTED VARIATIONS

Novice developers tend toward brittle designs, intermediate developers tend
toward overly fancy and flexible, generalized ones (in ways that never get used).
Expert designers choose with insight; perhaps a simple and brittle design whose
cost of change is balanced against its likelihood.

• Extensions required for new variations are easy to add.

• New implementations can be introduced without affecting clients.

• Coupling is lowered.

• The impact or cost of changes can be lowered.

• Most design principles and patterns are mechanisms for protected variation,
including polymorphism, interfaces, indirection, data encapsulation, most of
the GoF design patterns, and so on.

• In [Pree95] variation and evolution points are called "hot spots."

PV is essentially the same as the information hiding and open-closed principles,
which are older terms. As an "official" pattern in the pattern community, it was
named "Protected Variations" in 1996 by Cockburn in [VCK96].

Information Hiding

David Parnas's famous paper On the Criteria To Be Used in Decomposing Sys-
tems Into Modules [Parnas72] is an example of classics often cited but seldom
read. In it, Parnas introduces the concept of information hiding. Perhaps
because the term sounds like the idea of data encapsulation, it has been misin-
terpreted as that, and some books erroneously define the concepts as synonyms.
Rather, Parnas intended information hiding to mean hide information about the
design from other modules, at the points of difficultly or likely change. To quote
his discussion of information hiding as a guiding design principle:

We propose instead that one begins with a list of difficult design
decisions or design decisions which are likely to change. Each
module is then designed to hide such a decision from the others.

That is, Parnas's information hiding is the same principle expressed in PV, and
not simply data encapsulation—which is but one of many techniques to hide
information about the design. However, the term has been so widely reinter-
preted as a synonym for data encapsulation that it is no longer possible to use it in
its original sense without misunderstanding.

Open-Closed Principle

The Open-Closed Principle (OCP), described by Bertrand Meyer in [MeyerSS]
is essentially equivalent to the PV pattern and to information hiding. A definition
of OCP is:

339

22 - GRASP: MORE PATTERNS FOR ASSIGNING RESPONSIBILITIES

Modules should be both open (for extension; adaptable) and
closed (the module is closed to modification in ways that affect
clients).

OCP and PV are essentially two expressions of the same principle, with different
emphasis: protection at variation and evolution points. In OCP, "module"
includes all discrete software elements, including methods, classes, subsystems,
applications, and so forth.

In the context of OCP, the phrase "closed with respect to X" means that clients
are not affected if X changes. For example, "the class is closed with respect to
instance field definitions" through the mechanism of data encapsulation with
private fields and public accessing methods. At the same time, they are open to
modifying the definitions of the private data, because outside clients are not
directly coupled to the private data.

As another example, "the tax calculator adapters are closed with respect to their
public interface" through implementing the stable ITaxCalculatorAdapter inter-
face. However, the adapters are open to extension by being privately modified in
response to changes in the APIs of the external tax calculators, in ways that do
not break their clients.

Chapter 23

DESIGNING USE-CASE
REALIZATIONS WITH GoF
DESIGN PATTERNS

Anything you can do, I can do meta.

— Daniel Dennett

Objectives

• Apply GRASP and GoF design patterns to the design of the NextGen
case study.

Introduction

This chapter explores object design for use-case realizations for the next iteration
of the NextGen case study, which tackles support for external third-party
services whose interfaces may vary, more complex product pricing rules, and
pluggable business rules.

In the context of the design problems that will be discussed, new high-use UML
notation will also be introduced.

The emphasis is to show how to apply the GoF and more basic GRASP patterns. It
attempts to illustrate that object design and the assignment of responsibilities
can be explained and learned based on the application of patterns—a vocabulary
of principles and idioms that can be combined to design objects.

341

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

The Gang-of-Four Patterns

The additional patterns presented in this chapter are drawn from Design Pat-
terns [GHJV95], a seminal and extremely popular work that presents 23 patterns
useful during object design. Since the book was written by four authors, these
patterns have become known as the "Gang-of-Four"—or "GoF"—patterns. 1

This chapter provides an introduction to some of the high-use GoF patterns;
subsequent chapters present more.2 A thorough study of the Design Patterns
book is recommended to grow as an object designer, although that book assumes
the reader is already a designer with some experience; this book offers an intro-
duction.

A Shared Vocabulary

In addition to the visual vocabulary of UML notation, by the end of this chapter
we will have a richer shared vocabulary of design, in terms of pattern names.
Thus, it will be possible to increasingly communicate software design ideas pri-
marily in UML diagrams, with some attached notes that indicate the patterns
(Indirection, Strategy, ...) being applied.

1 Adapter (GoF)

The problem explored in the previous chapter to motivate the Polymorphism
pattern, and its solution, is more specifically an example of the GoF Adapter
pattern.

Adapter
Context / Problem

How to resolve incompatible interfaces, or provide a stable interface to similar
components with different interfaces?

Solution

Convert the original interface of a component into another interface, through an
intermediate adapter object.

To review: The NextGen POS system needs to support several kinds of external
third-party services, including tax calculators, credit authorization services,

1. With a tangential reference to Chinese politics.
2. In practice, perhaps approximately 15 of these 23 patterns are frequently used.

342

ADAPTER (GoF)

inventory systems, and accounting systems, among others. Each has a different
API, which can't be changed.

A solution is to add a level of indirection with objects that adapt the varying
external interfaces to a consistent interface used within the application. The
solution is illustrated in Figure 23.1.

TaxMasterAdapter

getTaxes(Sale) : List of TaxLineItems

GoodAsGoldTaxPro
Adapter

getTaxes(Sale) : List of TaxLineItems

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineItems

Adapters use interfaces and
polymorphism to add a level of
indirection to varying APIs in other
components.

SAPAccountingAdapter

postReceivable(CreditPayment)
postSale(Sale)
...

GreatNorthernAccountingAdapter

postReceivable(CreditPayment)
postSale(Sale)
...

«interface»
IAccountingAdapter

postReceivable(CreditPayment)
postSale(Sale)
...

«interface»
IInventoryAdapter

...

«interface»
ICreditAuthorizationService

Adapter

requestApproval(CreditPayment,TerminalID, MerchantID)
...

Figure 23.1 The Adapter pattern.

As illustrated in Figure 23.2, a particular adapter instance will be instantiated
for the chosen external service3, such as SAP for accounting, and will adapt the
postSale request to the external interface, such as a SOAP XML interface over
HTTPS for an intranet Web service offered by SAP.

3. In the J2EE Connector Architecture, these adapters to external services are more
specifically called resource adapters.

343

344

Figure 23.2 Using an Adapter.

UML notation—Note in Figure 23.2 the use of an interface "lollipop" to indicate
that the SAP Accounting Adapter instance implements a noteworthy interface.

Polymorphism, Indirection, and Protected Variations (GRASP)

The previous application of the Adapter pattern is a specialization of the
GRASP building blocks. It offers Protected Variations from changing external
interfaces or third-party packages through the use of an Indirection object that
applies interfaces and Polymorphism.

Note that most more complex or specialized patterns can be analyzed in terms of
the basic GRASP family. There are hundreds of published design patterns, and
although it is helpful to study these to accelerate learning, understanding their
underlying basic themes (Protected Variations, Low Coupling, Polymorphism,
Indirection, ...) helps us to cut through the myriad details and see the essential
"alphabet" of design techniques being applied.

Naming Convention: Embed Pattern Name in Type Name?

Notice that the type names include the pattern name "Adapter." This is a rela-
tively common style and has the advantage of easily communicating to others
reading the code or diagrams what design patterns are being used.

:Register : SAPAccountingAdapter

postSale(sale)

makePayment()

the Adapter adapts to
interfaces in other
components

«system»
: SAP

SOAP over
HTTP

xxx

...

IAccountingAdapter

UML notation to indicate something
implements a particular interface

23 -

"ANALYSIS" DISCOVERIES DURING DESIGN: DOMAIN MODEL

"Analysis" Discoveries During Design: Domain Model

Observe that in the Adapter design in Figure 23.1, the getTaxes operation
returns a list of TaxLineltems. That is, on deeper reflection and investigation of
how taxes are handled and tax calculators work, the designer (me) realized that a
list of tax line items are associated with a sale, such as state tax, federal tax, and
so forth (there is always the chance governments will invent new taxes!).

In addition to being a newly created software class in the Design Model, this is a
domain concept. It is normal and common to discover noteworthy domain concepts
and refined understanding of the requirements during design or program-
ming—iterative development supports this kind of incremental discovery.

Should this discovery be reflected in the Domain Model (or Glossary)? If the
Domain Model will be used in the future as a source of inspiration for later
design work, or as a visual learning aid to communicate the key domain concepts,
then adding it could have value. Figure 23.3 illustrates an updated Domain
Model.

Sale

date

time

Sales
LineItem

quantity

Contains

1..*

1

Tax
LineItem

description
percentage
amount

Contains

1..*

1
...

...

...

...

Figure 23.3 Updated partial Domain Model.

Maintain the Domain Model?

To put a finer point on the above comment about updating the Domain Model:
Note that the architecture of the Design Model will usually be organized into
layers (which is discussed in greater detail in a subsequent chapter). One of
these layers of design classes will be called the domain layer; it will contain
software classes whose names and structure take inspiration from the domain
vocabulary and concepts (Sale, TaxLineltem, and so forth).

345

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

Suggestion

After some number of iterations, the Domain Model—as an early source of
inspiration for the design classes in the domain layer of the Design Model—
may outlive its usefulness. If updating the Domain Model to reflect changes in
the Design Model does not continue to have practical value, consider elim-
inating it.

Rather, just reverse-engineer (with a UML CASE tool) a class diagram of the
domain layer of design classes of the Design Model. Although these are soft-
ware classes rather than pure domain conceptual classes, they reflect the
noteworthy domain vocabulary that has emerged in the software design, and
thus a UML class diagram of the design classes in the domain layer of the
Design Model can be a useful "proxy" for a true Domain Model.

Please do not misunderstand: This is not a suggestion to definitely discard a
Domain Model, but rather to consider if it is worth maintaining, or is just
make-work documentation, and to know what alternatives can be helpful.

ted Patterns A resource adapter that hides an external system may also be considered a
Facade object (another GoF pattern discussed in this chapter), as it wraps access to
the subsystem or system with a single object (which is the essence of Facade).
However, the motivation to call it a resource adapter especially exists when the
wrapping object provides adaptation to varying external interfaces.

Factory (GoF)

The adapter raises a new problem in the design: In the prior Adapter pattern
solution for external services with varying interfaces, who creates the adapters?
And how to determine which class of adapter to create, such as
TaxMaster-Adapter or GoodAsGoldTaxProAdapterl

If some domain object creates them, the responsibilities of the domain object are
going beyond pure application logic (such as sales total calculations) and into
other concerns related to connectivity with external software components.

This point underscores another fundamental design principle (usually considered
an architectural design principle): Design to maintain a separation of concerns.
That is, modularize or separate distinct concerns into different areas, so that each
has a cohesive purpose. For example, the domain layer of software objects
emphasizes relatively pure application logic responsibilities, whereas a different
group of objects is responsible for the concern of connectivity to external systems.

346

FACTORY (GoF)

Therefore, choosing a domain object (such as a Register) to create the adapters
does not support the goal of a separation of concerns, and lowers its cohesion.

ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : IInventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getAccountingAdapter() : IAccountingAdapter
getInventoryAdapter() : IInventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter
...

note that the factory methods
return objects typed to an
interface rather than a class, so
that the factory can return any
implementation of the interface

{
 if (taxCalculatorAdapter == null)
 {
 // a reflective or data-driven approach to finding the right class: read it from an
 // external property

 String className = System.getProperty("taxcalculator.class.name");
 taxCalculatorAdapter = (ITaxCalculatorAdapter) Class.forName(className).newInstance();

 }
 return taxCalculatorAdapter;
}

Figure 23.4 The Factory pattern.

UML notation—Observe the style in the UML diagram of Figure 23.4 that
includes a note showing detailed pseudocode for the getTaxCalculator-Adapter.
This style allows one to include dynamic algorithm details on a static class dia-
gram such that it may lessen the need for interaction diagrams.

A common alternative in this case is to apply the Factory (or Concrete Factory)
pattern, in which a Pure Fabrication "factory" object is defined to create objects.

Factory objects have several advantages:

• Separate the responsibility of complex creation into cohesive helper objects.

• Hide potentially complex creation logic.

• Allow introduction of performance-enhancing memory management strate
gies, such as object caching or recycling.

347

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

(Concrete) Factory

Context I Problem

Who should be responsible for creating objects when there are special consid-
erations, such as complex creation logic, a desire to separate the creation
responsibilities for better cohesion, and so forth?

Solution

Create a Pure Fabrication object called a Factory that handles the creation.

A Factory solution is illustrated in Figure 23.4.

Note that in the ServicesFactory, the logic to decide which class to create is
resolved by reading in the class name from an external source (for example, via a
system property if Java is used) and then dynamically loading the class. This is
an example of a partial data-driven design. This design achieves Protected
Variations with respect to changes in the implementation class of the adapter.
Without changing the source code in this factory class, we can create instances of
new adapter classes by changing the property value and ensuring the new class
is visible in the Java class path for loading.

Related Patterns Factories are often accessed with the Singleton pattern.

23.4 Singleton (GoF)

The ServicesFactory raises another new problem in the design: who creates the
factory itself, and how is it accessed?

First, observe that only one instance of the factory is needed within the process.
Second, quick reflection suggests that the methods of this factory may need to be
called from various places in the code, as different places need access to the
adapters for calling on the external services. Thus, there is a visibility problem:
how to get visibility to this single ServicesFactory instance?

One solution is pass the ServicesFactory instance around as a parameter to
wherever a visibility need is discovered for it, or to initialize the objects that
need visibility to it, with a permanent reference. This is possible but inconve-
nient; an alternative is the Singleton pattern.

Occasionally, it is desirable to support global visibility or a single access point to a
single instance of a class rather than some other form of visibility. This is true for
the ServicesFactory instance.

348

SINGLETON (GoF)

Singleton
Con text I Problem

Exactly one instance of a class is allowed—it is a "singleton." Objects need a
global and single point of access.

Solution

Define a static method of the class that returns the singleton.

For example, Figure 23.5 shows an implementation of the Singleton pattern.

 1
ServicesFactory

instance : ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : IInventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getInstance() : ServicesFactory

getAccountingAdapter() : IAccountingAdapter
getInventoryAdapter() : IInventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter
...

singleton static
attribute

singleton
static
method

{
// static method
public static synchronized ServicesFactory getInstance()
{
if (instance == null)
 instance := new ServicesFactory()
return instance
}
}

UML notation: in a
class box, an
underlined attribute or
method indicates a
static (class level)
member, rather than
an instance member

UML notation: this '1' can optionally be used to
indicate that only one instance will be created (a
singleton)

Figure 23.5 The Singleton pattern in the ServicesFactory class.

Thus, the key idea is that class X defines a static method getlnstance that itself
provides a single instance of X.

349

350

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

With this approach, a developer has global visibility to this single instance, via
the static getlnstance method of the class, as in this example:

public class Register {

public void initialize()
{

... do some work ...

// accessing the singleton Factory via the getlnstance call
accountingAdapter =

ServicesFactory.getlnstance().getAccountingAdapter();

... do some work ... }
// other methods... }

Since visibility to public classes is global in scope (in most languages), at any
point in the code, in any method of any class, one can write
SingletonClass.get-InstanceO in order to obtain visibility to the singleton
instance, and then send it a message, such as
SingletonClass.getInstance().doFoo(). It's hard to beat the feeling of being able to
globally doFoo.

UML Shorthand for Singleton Access in Interaction Diagrams

A UML notation that implies—but does not explicitly show—the getlnstance
message in an interaction diagram is to add a «singleton» stereotype to the
instance, as in Figure 23.6. This approach avoids having to explicitly show the
(uninteresting) getlnstance message to the class before sending a message to the
singleton instance.

Implementation and Design Issues

A Singleton getlnstance method is often frequently called. In multi-threaded
applications, the creation step of the lazy initialization logic is a critical section
requiring thread concurrency control. Thus, assuming the instance is lazy
initialized, it is common to wrap the method with concurrency control. In Java,
for example:
public static synchronized ServicesFactory getlnstance()
{

if (instance == null) {
// critical section if multithreaded application
instance = new ServicesFactory(); }
return instance; }

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

(Concrete) Factory

Context / Problem,

Who should be responsible for creating objects when there are special consid-
erations, such as complex creation logic, a desire to separate the creation
responsibilities for better cohesion, and so forth?

Solution

Create a Pure Fabrication object called a Factory that handles the creation.

A Factory solution is illustrated in Figure 23.4.

Note that in the ServicesFactory, the logic to decide which class to create is
resolved by reading in the class name from an external source (for example, via a
system property if Java is used) and then dynamically loading the class. This is
an example of a partial data-driven design. This design achieves Protected
Variations with respect to changes in the implementation class of the adapter.
Without changing the source code in this factory class, we can create instances of
new adapter classes by changing the property value and ensuring the new class is
visible in the Java class path for loading.

ated Patterns Factories are often accessed with the Singleton pattern.

I Singleton (GoF)

The ServicesFactory raises another new problem in the design: who creates the
factory itself, and how is it accessed?

First, observe that only one instance of the factory is needed within the process.
Second, quick reflection suggests that the methods of this factory may need to be
called from various places in the code, as different places need access to the
adapters for calling on the external services. Thus, there is a visibility problem:
how to get visibility to this single ServicesFactory instance?

One solution is pass the ServicesFactory instance around as a parameter to
wherever a visibility need is discovered for it, or to initialize the objects that
need visibility to it, with a permanent reference. This is possible but inconvenient;
an alternative is the Singleton pattern.

Occasionally, it is desirable to support global visibility or a single access point to a
single instance of a class rather than some other form of visibility. This is true for
the ServicesFactory instance.

34R

SINGLETON (GoF)

Singleton
Context I Problem

Exactly one instance of a class is allowed—it is a "singleton." Objects need a
global and single point of access.

Solution

Define a static method of the class that returns the singleton.

For example, Figure 23.5 shows an implementation of the Singleton pattern.

 1
ServicesFactory

instance : ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : IInventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getInstance() : ServicesFactory

getAccountingAdapter() : IAccountingAdapter
getInventoryAdapter() : IInventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter
...

singleton static
attribute

singleton
static
method

{
// static method
public static synchronized ServicesFactory getInstance()
{
if (instance == null)
 instance := new ServicesFactory()
return instance
}
}

UML notation: in a
class box, an
underlined attribute or
method indicates a
static (class level)
member, rather than
an instance member

UML notation: this '1' can optionally be used to
indicate that only one instance will be created (a
singleton)

Figure 23.5 The Singleton pattern in the ServicesFactory class.

Thus, the key idea is that class X defines a static method getlnstance that itself
provides a single instance of X.

349

350

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

With this approach, a developer has global visibility to this single instance, via
the static getlnstance method of the class, as in this example:
public class Register {

public void initialize() {
... do some work ...

// accessing the singleton Factory via the getlnstance call
accountingAdapter =

ServicesFactory.getlnstance().getAccountingAdapter();

... do some work ... }

// other methods... }

Since visibility to public classes is global in scope (in most languages), at any
point in the code, in any method of any class, one can write
SingletonClass.get-InstanceO in order to obtain visibility to the singleton
instance, and then send it a message, such as
SingletonClass.getlnstanceO.doFooO. It's hard to beat the feeling of being able to
globally doFoo.

UML Shorthand for Singleton Access in Interaction Diagrams

A UML notation that implies—but does not explicitly show—the getlnstance
message in an interaction diagram is to add a «singleton» stereotype to the
instance, as in Figure 23.6. This approach avoids having to explicitly show the
(uninteresting) getlnstance message to the class before sending a message to the
singleton instance.

Implementation and Design Issues

A Singleton getlnstance method is often frequently called. In multi-threaded
applications, the creation step of the lazy initialization logic is a critical sec-
tion requiring thread concurrency control. Thus, assuming the instance is lazy
initialized, it is common to wrap the method with concurrency control. In Java,
for example:
public static synchronized ServicesFactory getlnstance() {

if (instance == null)
{
// critical section if multithreaded application
instance = new ServicesFactory(); }
return instance; }

SINGLETON (GoF)

On the subject of lazy initialization, why not prefer eager initialization, as in this
example?
public class ServicesFactory
{
// eager initialization
private static ServicesFactory instance =

new ServicesFactory() ;

public static ServicesFactory getlnstance() {
return instance; }

// other methods... }

The first approach of lazy initialization is usually preferred for at least these
reasons:

• Creation work (and perhaps holding on to "expensive" resources) is avoided,
if the instance is never actually accessed.

• The getlnstance lazy initialization sometimes contains complex and condi
tional creation logic.

:Register «singleton»
:ServicesFactory

aa := getAccountingAdapter()
initialize()

...

a UML stereotype can indicate that
visibility to this instance was
achieved via the Singleton pattern

Figure 23.6 Implicit getlnstance Singleton pattern message indicated in the
UML with a stereotype.

Another common Singleton implementation question is: Why not make all the
service methods static methods of the class itself, instead of using an instance
object with instance-side methods? For example, what if we add a static method

351

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

called getAccountingAdapter to ServicesFactory. But, an instance and
instance-side methods are usually preferred for these reasons:

• Instance-side methods permit subclassing and refinement of the singleton
class into subclasses; static methods are not polymorphic (virtual) and don't
permit overriding in subclasses in most languages (Smalltalk excluded).

• Most object-oriented remote communication mechanisms (for example,
Java's RMI) only support remote-enabling of instance methods, not static
methods. A singleton instance could be remote-enabled, although that is
admittedly rarely done.

• A class is not always a singleton in all application contexts. In application X,
it may be a singleton, but it may be a "multi-ton" in application Y. It is also
not uncommon to start off a design thinking the object will be a singleton,
and then discovering a need for multiple instances in the same process.
Thus, the instance-side solution offers flexibility.

Related Patterns The Singleton pattern is often used for Factory objects and Facade objects—
another GoF pattern that will be discussed.

23.5 Conclusion of the External Services with Varying
Interfaces Problem

A combination of Adapter, Factory, and Singleton patterns have been used to
provide Protected Variations from the varying interfaces of external tax calcula-
tors, accounting systems, and so forth. Figure 23.7 illustrates a larger context of
using these in the use-case realization.

This design may not be ideal, and there is always room for improvement. But
one of the goals strived for in this case study is to illustrate that at least a
design can be constructed from a set of principles or pattern "building blocks,"
and that there is a methodical approach to doing and explaining a design. It is my
sincere hope that it is possible to see how the design in Figure 23.7 arose from
reasoning based on Controller, Creator, Protected Variations, Low Coupling,
High Cohesion, Indirection, Polymorphism, Adapter, Factory, and Singleton.

Note how succinct a designer can be in conversation or documentation when
there is a shared understanding of patterns. I can say, "To handle the problem of
varying interfaces for external services, let's use Adapters generated from a
Singleton Factory." Object designers really do have conversations that sound
like this; using patterns and pattern names supports raising the level of
abstraction in design communication.

352

Strategy (GoF)

:Register accountingAdapter:
SAPAccountingAdapter

postSale(sale)

makePayment()

«system»
: SAP

SOAP over
HTTP

xxx

IAccountingAdapter

:Register

«singleton»
:ServicesFactory

accountingAdapter :=
 getAccountingAdapter()

:Store

create()
create()

[instance == null]
create() : SAPAccounting

Adapter

IAccountingAdapter

: Paymentcreate(cashTendered)

Figure 23.7 Adapter, Factory, and Singleton patterns applied to the design.

23.6 Strategy (GoF)

The next design problem to be resolved is to provide more complex pricing logic,
such as a store-wide discount for the day, senior citizen discounts, and so forth.

The pricing strategy (which may also be called a rule, policy, or algorithm) for a
sale can vary. During one period it may be 10% off all sales, later it may be $10 off
if the sale total is greater than $200, and myriad other variations. How do we
design for these varying pricing algorithms?

353

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

Strategy

Context / Problem

How to design for varying, but related, algorithms or policies? How to design for
the ability to change these algorithms or policies?

Solution

Define each algorithm/policy/strategy in a separate class, with a common
interface.

Since the behavior of pricing varies by the strategy (or algorithm), we create
multiple SalePricingStrategy classes, each with a polymorphic getTotal method
(see Figure 23.8). Each getTotal method takes the Sale object as a parameter, so
that the pricing strategy object can find the pre-discount price from the Sale,
and then apply the discounting rule. The implementation of each getTotal
method will be different: PercentDiscountPricingStrategy will discount by a per-
centage, and so on.

PercentDiscount
PricingStrategy

percentage : float

getTotal(s:Sale) :
Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(s:Sale) :
Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

{
 return s.getPreDiscountTotal() * percentage
}

???
PricingStrategy

...

...

{
pdt := s.getPreDiscountTotal()
if (pdt < threshold)
 return pdt
else
 return pdt - discount
}

Figure 23.8 Pricing Strategy classes.

STRATEGY (GoF)

A strategy object is attached to a context object—the object to which it applies
the algorithm. In this example, the context object is a Sale. When a getTotal
message is sent to a Sale, it delegates some of the work to its strategy object, as
illustrated in Figure 23.9. It is not required that the message to the context
object and the strategy object have the same name, as in this example (for example,
getTotal and getTotal), but it is common. However, it is common—indeed, usually
required—that the context object pass a reference to itself (this) on to the
strategy object, so that the strategy has parameter visibility to the context object,
for further collaboration.

:PercentDiscount
PricingStrategy

ISalePricingStrategy

s : Sale

* : st := getSubtotal()
t := getTotal()

:SalesLineItem
:SalesLineItem

t := getTotal(s)

pdt := getPreDiscountTotal()

{ t = pdt * percentage }

note that the Sale s is
passed to the Strategy so
that it has parameter
visibility to it for further
collaboration

Figure 23.9 Strategy in collaboration.

Observe that the context object (Sale) needs attribute visibility to its strategy.
This is reflected in the BCD in Figure 23.10.

Creating a Strategy with a Factory

There are different pricing algorithms or strategies, and they change over time.
Who should create the strategy? A straightforward approach is to apply the Fac-
tory pattern again: a PricingStrategyFactory can be responsible for creating all
strategies (all the pluggable or changing algorithms or policies) needed by the
application. As with the SeruicesFactory, it can read the name of the implemen-
tation class of the pricing strategy from a system property (or some external
data source), and then make an instance of it. With this partial data-driven
design (or reflective design) one can dynamically change at any time—while the
NextGen POS application is running—the pricing policy, by specifying a different
class of Strategy to create.

355

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

Observe that a new factory was used for the strategies; that is, different than the
SeruicesFactory. This supports the goal of High Cohesion—each factory is
cohesively focused on creating a related family of objects.

PercentDiscount
PricingStrategy

percentage : float

getTotal(Sale) : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(Sale) : Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

Sale

date
...

getTotal()
...

1*

Sale needs attribute
visibility to its Strategy

pricingStrategy

getTotal()
{
...
return pricingStrategy.getTotal(this)

}

Figure 23.10 Context object needs attribute visibility to its strategy.

UML notation—Observe that in Figure 23.10 the reference via a directed associ-
ation is to the interface ISalePricingStrategy, not to a concrete class. This indi-
cates that the reference attribute in the Sale will be declared in terms of the
interface, not a class, so that any implementation of the interface can be bound to
the attribute.

Note that because of the frequently changing pricing policy (it could be every
hour), it is not desirable to cache the created strategy instance in a field of the
PricingStrategyFactory, but rather to re-create one each time, by reading the
external property for its class name, and then instantiating the strategy.

And as with most factories, the PricingStrategyFactory will be a singleton (one
instance) and accessed via the Singleton pattern (see Figure 23.11).

 1
PricingStrategyFactory

instance : PricingStrategyFactory

getInstance() : PricingStrategyFactory

getSalePricingStrategy() : ISalePricingStrategy
getSeniorPricingStrategy() : ISalePricingStrategy
...

{
 String className = System.getProperty("salepricingstrategy.class.name");
 strategy = (ISalePricingStrategy) Class.forName(className).newInstance()
 return strategy;
}

Figure 23.11 Factory for strategies.

When a Sale instance is created, it can ask the factory for its pricing strategy, as
shown in Figure 23.12.

:Sale

«singleton»
:PricingStrategyFactory

ps :=
getSalePricingStrategy()

:Register

makeNewSale()
create()

create(percent) ps : PercentDiscount
PricingStrategy

ISalePricingStrategy

Figure 23.12 Creating a strategy.

Reading and Initializing the Percentage Value

Finally, a design problem that has been ignored until now is the issue of how to
find the different numbers for the percentage or absolute discounts. For example,
on Monday, the PercentageDiscountPricingStrategy may have a percentage value
of 10%, but 20% on Tuesday.

Note also that a percentage discount may be related to the type of buyer, such as a
senior citizen, rather than to a time period.

357

STRATEGY (GoF)

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

These numbers will be stored in some external data store, such as a relational
database, so they can be easily changed. So, what object will read them and
ensure they are assigned to the strategy? A reasonable choice is the
Strategy-Factory itself, since it is creating the pricing strategy, and can know
which percentage to read from a data store ("current store discount," "senior
discount," and so forth).

Designs to read these numbers from external data stores vary from the simple to
the complex, such as a plain JDBC SQL call (if Java technologies, as an example)
or collaborating with objects that add levels of indirection in order to hide the
particular location, data query language, or type of data store. Analyzing the
variation and evolution points with respect to the data store will reveal if there is
a need for protected variation. For example, we could ask, "Are we all comfortable
with a long-term commitment to using a relational database that understands
SQL?". If so, a simple JDBC call from within the StrategyFactory may suffice.

Summary

Protected Variations with respect to dynamically changing pricing policies has
been achieved with the Strategy and Factory patterns. Strategy builds on Poly-
morphism and interfaces to allow pluggable algorithms in an object design.

ted Patterns Strategy is based on Polymorphism, and provides Protected Variations with
respect to changing algorithms. Strategies are often created by a Factory.

Composite (GoF) and Other Design Principles

To raise yet another interesting requirements and design problem: How do we
handle the case of multiple, conflicting pricing policies? For example, suppose a
store has the following policies in effect today (Monday):

• 20% senior discount policy

• preferred customer discount of 15% off sales over $400

• on Monday, there is $50 off purchases over $500

• buy 1 case of Darjeeling tea, get 15% discount off of everything

Suppose a senior who is also a preferred customer buys 1 case of Darjeeling tea,
and $600 of veggieburgers (clearly an enthusiastic vegetarian who loves chai).
What pricing policy should be applied?

358

COMPOSITE (GoF) AND OTHER DESIGN PRINCIPLES

To clarify: There are now pricing strategies that attach to the sale by virtue of
three factors:

1. time period (Monday)

2. customer type (senior)

3. a particular line item product (Darjeeling tea)

Another point of clarification: Three of the four example policies are really just
"percentage discount" strategies, which simplifies our view of the problem.

Part of the answer to this problem requires defining the store's conflict resolution
strategy. Usually, a store applies the "best for the customer" (lowest price)
conflict resolution strategy, but this is not required, and it could change. For
example, during a difficult financial period, the store may have to use a "highest
price" conflict resolution strategy.

The first point to note is that there can exist multiple co-existing strategies, that is,
one sale may have several pricing strategies. Another point to note is that a
pricing strategy can be related to the type of customer (for example, a senior).
This has creation design implications: The customer type must be known by the
StrategyFactory at the time of creation of a pricing strategy for the customer.

Similarly, a pricing strategy can be related to the type of product being bought
(for example, Darjeeling tea). This likewise has creation design implications:
The ProductSpecification must be known by the StrategyFactory at the time of
creation of a pricing strategy influenced by the product.

Is there a way to change the design so that the Sale object does not know if it is
dealing with one or many pricing strategies, and also offer a design for the conflict
resolution? Yes, with the Composite pattern.

Composite

Context / Problem

How to treat a group or composition structure of objects the same way
(poly-morphically) as a non-composite (atomic) object?

Solution

Define classes for composite and atomic objects so that they implement the
same interface.

For example, a new class called CompositeBestForCustomerPricingStrategy
(well, at least it's descriptive) can implement the ISalesPricingStrategy and
itself contain other ISalesPricingStrategy objects. Figure 23.13 explains the
design idea in detail.

359

360 23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

Figure 23.13 The Composite pattern.

Observe that in this design, the composite classes such as
CompositeBest-ForCustomerPricingStrategy inherit an attribute
pricingStrategies that contains

PercentageDiscount
PricingStrategy

percentage : float

getTotal(Sale) : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(Sale) : Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

{
 return sale.getPreDiscountTotal() *
percentage
}

Composite
PricingStrategy

add(ISalePricingStrategy)
getTotal(Sale) : Money

{
lowestTotal = INTEGER.MAX
for each ISalePricingStrategy strat in pricingStrategies
 {
 total := strat.getTotal(sale)
 lowestTotal = min(total, lowestTotal)
 }
return lowestTotal
}

1..*

CompositeBestForCustomer
PricingStrategy

getTotal(Sale) : Money

CompositeBestForStore
PricingStrategy

getTotal(Sale) : Money

pricingStrategies

All composites maintain a list of
contained strategies. Therefore,
define a common superclass
CompositePricingStrategy that
defines this list (named
pricingStrategies).

Sale

date
...

getTotal()
...

1*
pricingStrategy

{
...
return pricingStrategy.getTotal(this)
}

COMPOSITE (GoF) AND OTHER DESIGN PRINCIPLES

a list of more ISalePricingStrategy objects. This is a signature feature of a com-
posite object: The outer composite object contains a list of inner objects, and both
the outer and inner objects implement the same interface. That is, the composite
class itself implements the ISalePricingStrategy interface.

Thus, we can attach either a composite
CompositeBestForCustomerPricingStrat-egy object (which contains other
strategies inside of it) or an atomic PercentDis-countPricingStrategy object to the
Sale object, and the Sale does not know or care if its pricing strategy is an atomic
or composite strategy—it looks the same to the Sale object. It is just another
object that implements the ISalePricingStrategy interface and understands the
getTotal message (Figure 23.14).

:CompositeBestForCustomer
PricingStrategy

ISalePricingStrategy

s : Sale

* : st := getSubtotal()

t := getTotal()

:SalesLineItem
:SalesLineItem

t := getTotal(s)

the Sale object treats a Composite Strategy that contains
other strategies just like any other ISalePricingStrategy

* : x := getTotal(s)

:SalesLineItem
:Object

ISalePricingStrategy

UML notation: this is a way to indicate objects that
implement some interface, when we don't want to declare
what the specific implementation classes are

{ t = min(set of all x) }

Figure 23.14 Collaboration with a Composite.

UML notation—In Figure 23.14, please note a way to indicate objects that
implement an interface, when we don't care to specify the exact implementation
class. Simply specifying the implementation class as Object communicates "no
comment" on the specific class. This is a common need when diagramming.

To clarify with some sample code in Java, the CompositePricingStrategy and one
of its subclasses are defined as follows:

361

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

// superclass so all subclasses can inherit a List of strategies

public abstract class CompositePricingStrategy
implements ISalePricingStrategy

{
protected List pricingStrategies = new ArrayList();

public add(ISalePricingStrategy s) {
pricingStrategies.add(s); }

public abstract Money getTotal(Sale sale); }

// end of class

// a Composite Strategy that returns the lowest total
//of its inner SalePricingStrategies

public class CompositeBestForCustomerPricingStrategy
extends CompositePricingStrategy {

public Money getTotal(Sale sale) {
Money lowestTotal = new Money(Integer.MAX_VALUE);

// iterate over all the inner strategies

for(Iterator i = pricingStrategies.iterator() ; i.hasNextO;) {
ISalePricingStrategy strategy =

(ISalePricingStrategy)i.next();
Money total = strategy.getTotal{ sale); lowestTotal =
total.min(lowestTotal); }

return lowestTotal; }

} // end of class

Composite
PricingStrategy

add(ISalePricingStrategy)
getTotal(Sale) : Money

CompositeBestForCustomer
PricingStrategy

getTotal(Sale) : Money

CompositeBestForStore
PricingStrategy

getTotal(Sale) : Money

UML notation: An abstract class is
shown with an italicized name

abstract methods are also shown with
italics

UML notation: Subclassing
and inheritance is shown
with a fat-arrow solid line
pointing to the superclass
from the subclass

Figure 23.15 Abstract superclasses, abstract methods, and inheritance in the
UML.

UML notation—Figure 23.13 introduced some new UML notation for class hier-
archies and inheritance, which is explained in Figure 23.15.

Creating Multiple SalePricingStrategies

With the Composite pattern, we have made a group of multiple (and conflicting)
pricing strategies look to the Sale object like a single pricing strategy. The com-
posite object that contains the group also implements the ISalePricingStrategy
interface. The more challenging (and interesting) part of this design problem is:
When do we create these strategies?

A desirable design will start by creating a Composite that contains the present
moment's store discount policy (which could be set to 0% discount if none is
active), such as some PercentageDiscountPricingStrategy. Then, if at a later step in
the scenario, another pricing strategy is discovered to also apply (such as senior
discount), it will be easy to add it to the composite, using the inherited
CompositePricingStrategy.add method.

There are three points in the scenario where pricing strategies may be added to
the composite:

1. Current store-defined discount, added when the sale is created.

2. Customer type discount, added when the customer type is communicated to
the POS.

3. Product type discount (if bought Darjeeling tea, 15% off the overall sale),
added when the product is entered to the sale.

363

COMPOSITE (GoF) AND OTHER DESIGN PRINCIPLES

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

The design of the first case is shown in Figure 23.16. As in the original design
discussed earlier, the strategy class name to instantiate could be read as a system
property, and a percentage value could be read from an external data store.

:Sale

«singleton»
:PricingStrategyFactory

ps :=
getSale

PricingStrategy()

:Register

make
NewSale() create()

create() ps :CompositeBestForCustomer
PricingStrategy

ISalePricingStrategy

create(percent) s : PercentageDiscount
PricingStrategy

ISalePricingStrategy

add(s)

Figure 23.16 Creating a composite strategy.

For the second case of a customer type discount, first recall the use case extension
which previously recognized this requirement:

Use Case UC1: Process Sale

Extensions (or Alternative Flows):
5b. Customer says they are eligible for a discount (e.g., employee, preferred customer)

1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.

This indicates a new system operation on the POS system, in addition to
niake-NewSale, enterltem, endSale, and makePaymerit. We will call this fifth
system operation enterCustomerForDiscount; it may optionally occur after the
endSalc operation. It implies that some form of customer identification will have to
come in through the user interface, the customerlD. Perhaps it can be captured
from a card reader, or via the keyboard.

The design of the second case is shown in Figure 23.17 and Figure 23.18. Not
surprisingly, the factory object is responsible for the creation of the additional
pricing strategy. It may make another PercentageDiscountPricingStrategy that

COMPOSITE (GoF) AND OTHER DESIGN PRINCIPLES

represents, for example, a senior discount. But as with the original creation
design, the choice of class will be read in as a system property, as will the specific
percentage for the customer type, to provide Protected Variations with respect to
changing the class or values. Note that by virtue of the Composite pattern, the Sale
may have two or three conflicting pricing strategies attached to it, but it continues
to look like a single strategy to the Sale object.

s :Sale:Register

enterCustomerForDiscount(custID)

by Controller
by Expert and
IDs to Objects

:Store

c := getCustomer(custID)

enterCustomerForDiscount(c : Customer)

continued in
another
diagram

by Expert

Figure 23.17 Creating the pricing strategy for a customer discount, part 1.

UML notation—Figure 23.17 and Figure 23.18 show an important UML idea in
interaction diagrams: splitting one diagram into two, to keep each more readable.

Considering GRASP and Other Principles in the Design

To review thinking in terms of some basic GRASP patterns: For this second case,
why not have the Register send a message to the PricingStrategyFactory, to create
this new pricing strategy and then pass it to the Sale? One reason is to support
Low Coupling. The Sale is already coupled to the factory; by making the Register
also collaborate with it, the coupling in the design would increase. Furthermore,
the Sale is the Information Expert that knows its current pricing strategy (which
is going to be modified); so by Expert, it is also justified to delegate to the Sale.

365

«interface»
PropertyListener

onPropertyEvent(source, name, value)

SaleFrame1

onPropertyEvent(source, name, value)

initialize(Sale sale)
...

javax.swing.JFrame

...
setTitle()
setVisible()
...

Sale

addPropertyListener(PropertyListener lis)
publishPropertyEvent(name, value)

setTotal(Money newTotal)
...

*
propertyListeners

publishes events to
observers/listeners/
subscribers
registers them when
they ask to subscribe

listens for events
observes events
subscribes to notification of events

Figure 23.25 Who is the observer, listener, subscriber, and publisher?

Observer Is Not Only for Connecting Uls and Model Objects

The previous example illustrated connecting a non-UI object to a UI object with
Observer. However, other uses are common.

The most prevalent use of this pattern is for GUI widget event handling, in both
Java technologies (AWT and Swing) and in Microsoft's .NET. Each widget is a
publisher of GUI-related events, and other objects can subscribe to interest in
these. For example, a Swing JButton publishes an "action event" when it is
pressed. Another object will register with the button so that when it is pressed,
the object is sent a message and can take some action.

As another example, Figure 23.26 illustrates an AlarmClock, which is a pub-
lisher of alarm events and various subscribers. This example is illustrative in
that it emphasizes that many classes can implement the AlarmListener inter-
face, many objects can simultaneously be registered listeners, and all can react
to the "alarm event" in their own unique way.

377

OBSERVER/PUBLISH-SUBSCRIBE/DELEGATION EVENT MODEL (GoF)

It has also been called the Delegation Event Model (in Java) because the pub-
lisher delegates handling of events to "listeners" (subscribers; see Figure 23.25).

One Publisher Can Have Many Subscribers for an Event

As suggested in Figure 23.26, one publisher instance could have from zero to
many registered subscribers. For example, one instance of an AlarmClock could
have three registered AlarmWindows, four Beepers, and one ReliabilityWatchDog.
When an alarm event happens, all eight of these AlarmListeners are notified via
an onAlarmEvent.

378

«interface»
AlarmListener

onAlarmEvent(source, time)

Beeper

onAlarmEvent(source, time)
...

{
 display notification dialog
box
}

AlarmClock

addAlarmnListener(AlarmListener lis)
publishAlarmEvent(time)

setTime(newTime)
...

*
alarmListeners

{
 time = newTime;
 if (time == alarmTime)
 publishAlarmEvent(time);
 }

{
 alarmListeners.add(lis);
}

{
 for each AlarmListener al in alarmListeners
 al.onAlarmEvent(this, time);
 }

AlarmWindow

onAlarmEvent(source, time)
...

javax.swing.JFrame

...
setTitle()
setVisible()
...

ReliabilityWatchDog

onAlarmEvent(source, time)
...

{
 beep
}

{
 check that all required processes
 are executing normally
}

Figure 23.26 Observer applied to alarm events, with different subscribers.

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

OBSERVER/PUBLISH-SUBSCRIBE/DELEGATION EVENT MODEL (GoF)

Implementation

Events

In both the Java and C# .NET implementations of Observer, an "event" is com-
municated via a regular message, such as onPropertyEvent. Moreover, in both
cases, the event is more formally defined as a class, and filled with appropriate
event data. The event is then passed as a parameter in the event message.

For example:
class PropertyEvent extends Event
{

private Object sourceOfEvent;
private String propertyName;
private Object oldValue;
private Object newValue;
//...

 }

//...

class Sale
{

private void publishPropertyEvent(
String name, Object old, Object new)

{
PropertyEvent evt = new PropertyEvent(this,
"sale.total", old, new);
for each AlarmListener al in alarmListeners
al.onPropertyEvent(evt);

 }

//. . .

 }

Java

When the JDK 1.0 was released in January 1996, it contained a weak
publish-subscribe implementation based on a class and interface called
Observable and Observer, respectively. This was essentially copied without
improvement from an early 1980s approach to publish-subscribe implemented
in Smalltalk.

Therefore, in late 1996, as part of the JDK 1.1 effort, the Observable-Observer
design was effectively replaced by the more robust Java Delegation Event Model
(DEM) version of publish-subscribe, although the original design was kept for
backward-compatibility (but in general to be avoided).

The designs that have been described in this chapter are consistent with the
DEM, but slightly simplified to emphasize the core ideas.

379

23 - DESIGNING USE-CASE REALIZATIONS WITH GoF DESIGN PATTERNS

Summary

Observer provides a way to loosely couple objects in terms of communication.
Publishers know about subscribers only through an interface, and subscribers
can register (or de-register) dynamically with the publisher.

Related Patterns Observer is based on Polymorphism, and provides Protected Variations in terms
of protecting the publisher from knowing the specific class of object, and number
of objects, that it communicates with when the publisher generates an event.

23.10 Conclusion

The main lesson to draw from this exposition is that objects can be design and
responsibilities assigned with the support of patterns. These provide an explain-
able set of idioms by which well-designed object-oriented systems can be built.

23.11 Further Readings

Design Patterns by Gamma, Helm, Johnson, and Vlissides is the seminal pat-
terns text, and essential reading for all object designers.
Each year there is a "Pattern Languages of Programs" (PLOP) conference, from
which is published an annual compendium of patterns, in the series Pattern
Languages of Program Design, volumes 1, 2, and so forth. The entire series is
recommended.

Pattern-Oriented Software Architecture, volumes 1 and 2, furthered the discus-
sion of patterns to larger-scale architectural concerns. Volume 1 presented a tax-
onomy of patterns.

There are hundreds of published patterns. The Pattern Almanac by Rising sum-
marizes a respectable percentage of them.

380

PART 5

ELABORATION

ITERATION 3

Chapter 24

ITERATION 3 AND ITS
REQUIREMENTS

24.1 Iteration 3 Requirements

• Provide failover to local services when the remote services cannot be
accessed. For example, if the remote product database can't be accessed, use
a local version with cached data.

• Provide support for POS device handling, such as the cash drawer and coin
dispenser.

• Handle credit payment authorization.

• Support for persistent objects.

24.2 Iteration 3 Emphasis

Inception and iteration 1 explored a variety of fundamental issues in require-
ments analysis and OOA/D. Iteration 2 narrowly emphasized object design. This
third iteration takes a broader view again, exploring a wide variety of analysis
and design topics, including:

• relating use cases

• generalization and specialization

• state modeling

• layered architectures

• the design of packages

• architectural analysis

• more GoF design patterns

• the design of frameworks—in particular, a persistence framework

383

Chapter 25

RELATING USE CASES

Introduction

Use cases can be related to each other. For example, a subfunction use case such
as Handle Credit Payment may be part of several regular use cases, such as Pro-
cess Sale and Process Rental. Organizing use cases into relationships has no
impact on the behavior or requirements of the system. Rather, it is simply an
organization mechanism to (ideally) improve communication and comprehen-
sion of the use cases, reduce duplication of text, and improve management of the
use case documents.

A Caution

In some organizations working with use cases, unproductive time has been
spent debating how to relate use cases in a use case diagram, rather than the
important use case work: writing text. Consequently, although this chapter dis-
cusses relating use cases, the subject and its effort should be put in perspective:
It has some value, but the important work is writing use case text. Specifying
the requirements is done by writing, not by organizing use cases, which is an
optional step to possibly improve their comprehension or reduce duplication. If a
team starts off use-case modeling by spending hours (or worse, days) discussing
a use case diagram and use case relationships ("Should that be an include or an
extend relationship? Should we specialize this use case?"), rather than quickly
focusing on writing the key use case text, relative effort was misplaced.

385

Objectives
• Relate use cases with include and extend associations.

25 - RELATING USE CASES

Furthermore, the organization of use cases into relationships can iteratively
evolve in small steps over the elaboration phase; it is not helpful to attempt a
waterfall-like effort of fully defining and refining a complete use case diagram
and set of relationships in one step near the start of a project.

25.1 The include Relationship

This is the most common and important relationship.

It is common to have some partial behavior that is common across several use
cases. For example, the description of paying by credit occurs in several use
cases, including Process Sale, Process Rental, Contribute to Lay-away Plan, and
so forth. Rather than duplicate this text, it is desirable to separate it into its
own subfunction use case, and indicate its inclusion. This is simply refactoring
and linking text to avoid duplication.1

For example: UC1:

Process Sale

Main Success Scenario:
1 . Customer arrives at a POS checkout with goods and/or services to purchase.
7. Customer pays and System handles payment.
Extensions:
7b. Paying by credit: Include Handle Credit Payment. 7c. Paying by check:
Include Handle Check Pavment.

UC7: Process Rental

Extensions:
6b. Paying by credit: Include Handle Credit Payment.

UC12: Handle Credit Payment

Level: Subfunction Main Success Scenario:
1. Customer enters their credit account information.
2. System sends payment authorization request to an external Payment Authorization
Service System, and requests payment approval.

1. It is helpful if the links are implemented with navigable hyperlinks as well.

386

THE INCLUDE RELATIONSHIP

3. System receives payment approval and signals approval to Cashier.
4. ... Extensions: 2a. System detects failure to collaborate with
external system: 1 . System signals error to Cashier. 2. Cashier asks
Customer for alternate payment.

This is the include relationship.

A slightly shorter (and thus perhaps preferred) notation to indicate an included
use case is simply to underline it or highlight it in some fashion. For example:

UC1: Process Sale

Extensions:
7b. Paying by credit: Handle Credit Payment.
7c. Paying by check: Handle Check Payment.

Notice that the Handle Credit Payment subfunction use case was originally in
the Extensions section of the Process Sale use case, but was factored out to avoid
duplication. Also note that the same Main Success and Extensions structures
are used in the subfunction use case as in the regular elementary business pro-
cess use cases such as Process Sale.

A simple, practical guideline of when to use the include relationship is offered by
Fowler [FS00]:

Use include when you are repeating yourself in two or more separate
use cases and you want to avoid repetition.

Another motivation is simply to decompose an overwhelmingly long use case
into subunits to improve comprehension.

Using include with Asynchronous Event Handling

Yet another use of the include relationship is to describe the handling of an
asynchronous event, such as when a user is able to, at any time, select or branch
to a particular window, function, or web page, or within a range of steps.

In fact, the use case notation to support this asynchronous branching was
already explored in the introduction to use cases in Chapter 6, but at that time
the addition of calling out to an included sub-use case was not discussed.

The basic notation is to use the a*, b*, ... style labels in the Extensions section.
Recall that these imply an extension or event that can happen at any time. A
minor variation is a range label, such as 3-9, to be used when the asynchronous
event can occur within a relatively large range of the use case steps, but not all.

387

25 - RELATING USE CASES

UC1: Process FooBars

Main Success Scenario:
1. ... Extensions:
a*. At any time. Customer selects to edit personal information: Edit Personal Information.
b*. At any time. Customer selects printing help: Present Printing Help. 2-1 1 . Customer
cancels: Cancel Transaction Confirmation.

Summary

The include relationship can be used for most use case relationship problems. To
summarize:

Factor out subfunction use cases and use the Include relationship when:

• They are duplicated in other use cases.
• A use case is very complex and long, and separating it into subunits aids
comprehension.

As will be explained, there are other relationships: extend and generalization.
But Cockburn, an expert use-case modeler, advises to prefer the include rela-
tionship over extend or generalization:

As a first rule of thumb, always use the include relationship
between use cases. People who follow this rule report they and
their readers have less confusion with their writing than people
who mix include with extend and generalizes [Cockburn0l].

25.2 Terminology: Concrete, Abstract, Base, and Addition Use
Cases

A concrete use case is initiated by an actor and performs the entire behavior
desired by the actor [RUP]. These are the elementary business process use
cases. For example, Process Sale is a concrete use case. By contrast, an abstract
use case is never instantiated by itself; it is a subfunction use case that is part
of another use case. Handle Credit Payment is abstract; it doesn't stand on its
own, but is always part of another story, such as Process Sale.

A use case that includes another use case, or that is extended or specialized by
another use case is called a base use case. Process Sale is a base use case with

388

THE EXTEND RELATIONSHIP

respect to the included Handle Credit Payment subfunction use case. On the
other hand, the use case that is an inclusion, extension, or specialization is
called an addition use case. Handle Credit Payment is the addition use case in
the include relationship to Process Sale. Addition use cases are usually abstract.
Base use cases are usually concrete.

25.3 The extend Relationship

Suppose a use case's text should not be modified (at least not significantly) for
some reason. Perhaps continually modifying the use case with myriad new
extensions and conditional steps is a maintenance headache, or the use case has
been baselined as a stable artifact, and can't be touched. How to append to the
use case without modifying its original text?

The extend relationship provides an answer. The idea is to create an extending
or addition use case, and within it, describe where and under what condition it
extends the behavior of some base use case. For example:

UC1: Process Sale (the base use case)

Extension Points: VIP Customer, step 1 . Payment, step 7. Main Success
Scenario:
1 . Customer arrives at a POS checkout with goods and/or services to purchase.
…
7. Customer pays and System handles payment.
…

UC15: Handle Gift Certificate Payment (the extending use case)

…
Trigger: Customer wants to pay with gift certificate.
Extension Points: Payment in Process Sale. Level:
Subfunction Main Success Scenario:
1 . Customer gives gift certificate to Cashier. 2.
Cashier enters gift certificate ID.
…

This is an example of an extend relationship. Note the use of an extension
point, and that the extending use case is triggered by some condition. Exten-
sion points are labels in the base use case which the extending use case refer-
ences as the point of extension, so that the step numbering of the base use case
can change without affecting the extending use case—indirection yet again.

Sometimes, the extension point is simply "At any point in use case X." This is
especially common in systems with many asynchronous events, such as a word
processor ("do a spell check now," "do a thesaurus lookup now"), or reactive con-
trol systems. Note however, as described in the prior include relationship sec-

389

25 - RELATING USE CASES

tion, that include can also be used to describe asynchronous event handling. The
extend alternative is an option when the base use case is closed to modification.
Note that a signature quality of the extend relationship is that the base use case
(Process Sale) has no reference to the extending use case (Handle Gift Certificate
Payment), and therefore, does not define or control the conditions under which
the extensions trigger. Process Sale is complete and whole by itself, without
knowing about the extending use case.

Observe that this Handle Gift Certificate Payment addition use case could alter-
natively have been referenced within Process Sale with an include relationship,
as with Handle Credit Payment. That is often suitable. But this example was
motivated by the constraint that the Process Sale use case was not to be modi-
fied, which is the situation in which to use extend rather than include.

Further, note that this gift certificate scenario could simply have been recorded
by adding it as an extension in the Extensions section of Process Sale. This
approach avoids both the include and extend relationships, and the creation of a
separate subfunction use case.

Indeed, just updating the Extensions section is usually the preferred solu-
tion, rather than creating complex use case relationships.

Some use case guidelines recommend using extending use cases and the extend
relationship to model conditional or optional behavior inserted into the base use
case. This is not inaccurate, but it misses the point that optional and conditional
behavior can simply be recorded as text in the Extensions section of the base use
case. The complication of using the extend relationship and more use cases is
not motivated only by optional behavior.

What most practically motivates using the extend technique is when it is unde-
sirable for some reason to modify the base use case.

25.4 The generalize Relationship

Discussion of the generalize relationship is outside the scope of this introduc-
tion. However, note that use case experts have been successfully doing use case
work without this optional relationship, which adds another level of complexity
to use cases, and there is not yet agreement by practitioners on the best-practice
guidelines of how to get value from this idea. A common observation by use case
consultants is that complications result and unproductive time is spent on the
addition of many use case relationships.

390

USE CASE DIAGRAMS

25.5 Use Case Diagrams

Figure 25.1 illustrates the UML notation for the include relationship, which is
the only one being used in the case study, following the advice of use-case
experts to keep things simple and prefer the include relationship.

NextGen POS

Cashier

Customer

Handle Cash
Payment

Process Rental

Process Sale

Handle Check
Payment

Handle Returns

«include» «include»

«include»

«include» «include»
«include»

«actor»
Accounting

System

«actor»
Credit

Authorization
Service

Manage Users

...

UML notation:
the base use
case points to
the included use
case

Handle Credit
Payment

Figure 25.1 Use case include relationship in the Use-Case Model.

The extend relationship notation is illustrated in Figure 25.2.
Process Sale

Extension Points:
Payment

VIP Customer

«extend»
Payment, if Customer

presents a gift certificate

UML notation:
1. The extending use case
points to the base use case.

2. The condition and
extension point can be
shown on the line.

Handle Gift Certificate
Payment

Figure 25.2 The extend relationship.

391

Chapter 26

MODELING GENERALIZATION

Crude classifications and false generalizations
are the curse of the organized life.

— A generalization by H.G. Wells

Objectives

• Create generalization-specialization hierarchies.

• Identify when showing a subclass is worthwhile.

• Apply the "100%" and "Is-a" tests to validate subclasses.

Introduction

Generalization and specialization are fundamental concepts in domain model-
ing that support an economy of expression; further, conceptual class hierarchies
are often the basis of inspiration for software class hierarchies that exploit
inheritance and reduce duplication of code.

26.1 New Concepts for the Domain Model

As in iteration 1, the UP Domain Model may be incrementally developed by con-
sidering the concepts in the requirements for this iteration. Techniques such as
the Concept Category List and noun phrase identification will help. An effective
approach to developing a robust and rich domain model is to study the work of
other authors on this subject, such as {Fowler96]. The myriad subtle modeling
issues they explore are beyond the scope of this book.

393

394

26 - MODELING GENERALIZATION

Concepts Category List

Table 26.1 shows some noteworthy concepts being considered in this iteration.

Table 26.1 Category Concepts List

Category Examples

physical or tangible objects CreditCard, Check

specifications, designs or descriptions
of things

places

transactions CashPayment, CreditPayrnent,
CheckPayment

transaction line items

roles of people

containers of other things

things in a container

other computer or electro-mechanical
systems external to our system

CreditAuthorizationService,
CheckAuthorizationService

abstract noun concepts

organizations CreditAuthorizationService,
CheckAuthorizationService

events

rules and policies

catalogs

records of finance, work, contracts,
legal matters

AccountsReceivable

financial instruments and services

manuals, books

NEW CONCEPTS FOR THE DOMAIN MODEL

Noun Phrase Identification from the Use Cases

To reiterate, noun phrase identification cannot be mechanically applied to iden-
tify relevant concepts to include in the domain model. Judgement must be
applied and suitable abstractions developed, since natural language is ambigu-
ous and relevant concepts are not always explicit or clear in existing text. How-
ever, it is a practical technique in domain modeling since it is straightforward.

This iteration handles the scenarios of the Process Sale use case for credit and
check payments. The following shows some noun phrase identification from
these extensions:

Use Case UC1: Process Sale

Extensions:
7b. Paying by credit:
 1 . Customer enters their credit account information.
 2. System sends payment authorization request to an external Payment Autho-

rization Service System, and requests payment approval.
2a. System detects failure to collaborate with external system:

 1. System signals error to Cashier.
 2. Cashier asks Customer for alternate payment.

3. System receives payment approval and signals approval to Cashier.
3a. System receives payment denial:

 1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

4. System records the credit payment, which includes the payment approval.
5. System presents credit payment signature input mechanism.
6. Cashier asks Customer for a credit payment signature. Customer enters signature.

7c. Paying by check:
1. The Customer writes a check, and gives it and their driver's license to the

Cashier.
2. Cashier writes the driver's license number on the check, enters it, and requests

check payment authorization.
3. Generates a check payment request and sends it to an external Check Autho-

rization Service.
4. Receives a check payment approval and signals approval to Cashier.
5. System records the check payment, which includes the payment approval.

Authorization Service Transactions

The noun phrase identification reveals concepts such as CreditPaymentRequest
and CreditApprovalReply. These may in fact be viewed as types of transactions
with external services, and in general, it is useful to identify such transactions
because activities and processes tend to revolve around them.

395

26 - MODELING GENERALIZATION

These transactions do not have to represent computer records or bits travelling
over a line. They represent the abstraction of the transaction independent of its
means of execution. For example, a credit payment request may be executed by
people talking on the phone, by two computers sending records or messages to
each other, and so on.

26.2 Generalization

The concepts CashPayment, CreditPayment, and Check Payment are all very sim-
ilar. In this situation, it is possible (and useful1) to organize them (as in F'igure
26.1) into a generalization-specialization class hierarchy (or simply class
hierarchy) in which the superclass Payment represents a more general con-
cept, and the subclasses more specialized ones.

Cash
Payment

Credit
Payment

Check
Payment

Payment
superclass - more general
concept

subclass - more
specialized concept

these are conceptual
classes, not software
classes

Figure 26.1 Generalization-specialization hierarchy.

Note that the discussion of classes in this chapter refers to conceptual classes,
not software classes.

Generalization is the activity of identifying commonality among concepts and
defining superclass (general concept) and subclass (specialized concept) rela-
tionships. It is a way to construct taxonomic classifications among concepts
which are then illustrated in class hierarchies.

Identifying a superclass and subclasses is of value in a domain model because
their presence allows us to understand concepts in more general, refined and
abstract terms. It leads to economy of expression, improved comprehension and
a reduction in repeated information. And although we are focusing now on the
UP Domain Model and not the software Design Model, the later design and
implementation of super- and subclass as software classes that use inheritance
yields better software.

1. Later in the chapter, we will investigate reasons to define class hierarchies.

396

DEFINING CONCEPTUAL SUPERCLASSES AND SUBCLASSES

Thus:

Identify domain superclasses and subclasses relevant to the current investi-
gation, and illustrate them in the Domain Model.

UML notation—To review the generalization notation introduced in a prior
chapter, in the UML the generalization relationship between elements is indi-
cated with a large hollow triangle pointing to the more general element from the
more specialized one (see Figure 26.2). Either a separate target or shared target
arrow style may be used.

Cash
Payment

Credit
Payment

Check
Payment

Payment

Cash
Payment

Credit
Payment

Check
Payment

Payment

Figure 26.2 Class hierarchy with separate and shared arrow notations.

26.3 Defining Conceptual Superclasses and Subclasses

Since it is valuable to identify conceptual super- and subclasses, it is useful to
clearly and precisely understand generalization, superclasses, and subclasses in
terms of class definition and class sets.2 This following sections explore these.

Generalization and Conceptual Class Definition

What is the relationship of a conceptual superclass to a subclass?

A conceptual superclass definition is more general or encompassing than a
subclass definition.

For example, consider the superclass Payment and its subclasses (CashPayment,
and so on). Assume the definition of Payment is that it represents the transac-
tion of transferring money (not necessarily cash) for a purchase from one party

2. That is, a class's intension and extension. This discussion was inspired by |MO95|.

397

398

26 - MODELING GENERALIZATION

to another, and that all payments have an amount of money transferred. The
model corresponding to this is shown in Figure 26.3.

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money

Figure 26.3 Payment class hierarchy.

A CreditPayment is a transfer of money via a credit institution which needs to
be authorized. My definition of Payment encompasses and is more general than
my definition of CreditPayment.

Generalization and Class Sets

Conceptual subclasses and superclasses are related in terms of set membership.

All the members of a conceptual subclass set are
members of their superclass set.

For example, in terms of set membership, all instances of the set CreditPayment
are also members of the set Payment. In a Venn diagram, this is shown as in
Figure 26.4.

Payment

CashPayment CreditPayment CheckPayment

Figure 26.4 Venn diagram of set relationships.

DEFINING CONCEPTUAL SUPERCLASSES AND SUBCLASSES

Conceptual Subclass Definition Conformance

When a class hierarchy is created, statements about superclasses that apply to
subclasses are made. For example, Figure 26.5 states that all Payments have an
amount and are associated with a Sale.

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money
SalePays-for

11

Figure 26.5 Subclass conformance.

All Payment subclasses must conform to having an amount and paying for a
Sale. In general, this rule of conformance to a superclass definition is the 100%
Rule:

100% Rule
100% of the conceptual superclass's definition should be applicable to the sub-
class. The subclass must conform to 100% of the superclass's:
• attributes

• associations

Conceptual Subclass Set Conformance

A conceptual subclass should be a member of the set of the superclass. Thus,
CreditPayment should be a member of the set of Payments.
Informally, this expresses the notion that the conceptual subclass is a kind of
superclass. CreditPayment is a kind of Payment. More tersely, is-a-kind-of is
called is-a.

399

26 - MODELING GENERALIZATION

This kind of conformance is the Is-a Rule:

Is-a Rule
All the members of a subclass set must be members of their superclass set.
In natural language, this can usually be informally tested by forming the
statement: Subclass is a Superclass

For instance, the statement CreditPayment is a Payment makes sense, and con-
veys the notion of set membership conformance.

What Is a Correct Conceptual Subclass?

From the above discussion, apply the following tests3 to define a correct subclass
when constructing a domain model:

A potential subclass should conform to the:

 • 100% Rule (definition conformance)

 • Is-a Rule (set membership conformance)

26.4 When to Define a Conceptual Subclass

Rules to ensure that a subclass is correct have been examined (the Is-a and
100% rules). However, when should we even bother to define a subclass? First, a
definition: A conceptual class partition is a division of a conceptual class into
disjoint subclasses (or types in Odell's terminology) [MO95].

The question may be restated as:

"When is it useful to show a conceptual class partition?"

For example, in the POS domain, Customer may be correctly partitioned (or sub-
classed) into MaleCustomer and FemaleCustomer. But, is it relevant or useful to
show this in our model (see Figure 26.6)?

3. These rule names have been chosen for their mnemonic support rather than precision.

400

WHEN TO DEFINE A CONCEPTUAL SUBCLASS

Male
Customer

Female
Customer

Customer Correct subclasses.

But useful?

Figure 26.6 Legal conceptual class partition, but is it useful in our domain?

This partition is not useful for our domain; the next section explains why.

Motivations to Partition a Conceptual Class into Subclasses

The following are strong motivations to partition a class into subclass:

Create a conceptual subclass of a superclass when:

1. The subclass has additional attributes of interest.

2. The subclass has additional associations of interest.
3. The subclass concept is operated on, handled, reacted to, or manipulated

differently than the superclass or other subclasses, in ways that are
of interest.

4. The subclass concept represents an animate thing (for example, animal,
robot) that behaves differently than the superclass or other subclasses,
in ways that are of interest.

Based on the above criteria, it is not compelling to partition Customer into the
subclasses MaleCustomer and FemaleCustomer because they have no additional
attributes or associations, are not operated on (treated) differently, and do not
behave differently in ways that are of interest4.

Table 26.2 shows some examples of class partitions from the domain of pay-
ments and other areas, using these criteria.

4. Men and women do exhibit different shopping habits. However, these are not
relevant to our current use case requirements—the criterion that bounds our
investigation.

401

402

26 - MODELING GENERALIZATION

Table 26.2 Example subclass partitions.

Conceptual Subclass Motivation Examples

The subclass has additional attributes
of interest.

Payments — not applicable.
Library — Book, subclass of
LoanableResource, has an ISBN
attribute.

The subclass has additional associa-
tions of interest.

Payments — Credit Payment, subclass
of Payment, is associated with a
CreditCard.

Library — Video, subclass of
LoanableResource, is associated with
Director.

The subclass concept is operated upon,
handled, reacted to, or manipulated dif-
ferently than the superclass or other
subclasses, in ways that are of interest.

Payments — CreditPayment, sub-
class of Payment, is handled differ-
ently than other kinds of payments
in how it is authorized.

Library — Software, subclass of
LoanableResource, requires a
deposit before it may be loaned.

The subclass concept represents an ani-
mate thing (for example, animal, robot)
that behaves differently than the
superclass or other subclasses, in ways
that are of interest.

Payments — not applicable.

Library — not applicable.

Market Research — MaleHuman,
subclass of Human, behaves differ-
ently than FemaleHuman with
respect to shopping habits

WHEN TO DEFINE A CONCEPTUAL SUPERCLASS

26.5 When to Define a Conceptual Superclass

Generalization into a common superclass is usually advised when commonality
is identified among potential subclasses. The following are motivations to gener-
alize and define a superclass:

Create a conceptual superclass in a generalization relationship to subclasses
when:
• The potential conceptual subclasses represent variations of a similar
concept.
• The subclasses will conform to the 100% and Is-a rules.
• All subclasses have the same attribute which can be factored out and
expressed in the superclass.
• All subclasses have the same association which can be factored out and
related to the superclass.

The following sections illustrate these points.

26.6 NextGen POS Conceptual Class Hierarchies

Payment Classes

Based on the above criteria for partitioning the Payment class, it is useful to cre-
ate a class hierarchy of various kinds of payments. The justification for the
superclass and subclasses is shown in Figure 26.7.

Authorization Service Classes

Credit and check authorization services are variations on a similar concept, and
have common attributes of interest. This leads to the class hierarchy in Figure
26.8.

403

404 26 - MODELING GENERALIZATION

Figure 26.7 Justifying Payment subclasses.

Figure 26.8 Justifying the AuthorizationService hierarchy.

Credit
Authorization

Service

Check
Authorization

Service

Check
Payment

AuthorizationService

address
name
phoneNumber

additional associations

superclass justified by
common attributes and
associations

StoreAuthorizes-payments-of *

Authorizes

Credit
Payment

Authorizes

**

*

1 1

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money

Check

Identifies-credit-with Paid-with
*

each payment subclass is
handled differently

additional associations

superclass justified by common
attributes and associations

Sale
Pays-for

CreditCard

1

1

1 1

NEXTGEN POS CONCEPTUAL CLASS HIERARCHIES

Authorization Transaction Classes

Modeling the various kinds of authorization service transactions (requests and
replies) presents an interesting case. In general, transactions with external ser-
vices are useful to show in a domain model because activities and processes tend
to revolve around them. They are important concepts.

Should the modeler illustrate every variation of an external service transaction?
It depends. As mentioned, domain models are not necessarily correct or wrong,
but rather more or less useful. They are useful, because each transaction class is
related to different concepts, processes, and business rules.5

A second interesting question is the degree of generalization that is useful to
show in the model. For argument's sake, let us assume that every transaction
has a date and time. These common attributes, plus the desire to create an ulti-
mate generalization for this family of related concepts, justifies the creation of
PaymentAuthorizationTransaction.

But is it useful to generalize a reply into a CreditPaymentAuthorizationReply
and CheckPaymentAuthorizationReply, as shown in Figure 26.9, or is it suffi-
cient to show less generalization, as depicted in Figure 26.10?

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Approval
Request

CheckPayment
Approval
Request

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

CheckPayment
Authorization

Reply

CreditPayment
Authorization

Reply

Payment
Authorization

Reply

Payment
Authorization

Request

Payment
Authorization
Transaction

date
time

Concepts too fine grained?
Useful to show this degree of
partitioning?

Each transaction is
handled differently, so
it is useful to partition
them into discrete
classes.

Figure 26.9 One possible class hierarchy for external service transactions.

5. In telecommunications domain models, it is similarly useful to identify each kind of
exchange or switch message.

405

CreditPayment
Approval
Request

CheckPayment
Approval
Request

Payment
Authorization

Reply

Payment
Authorization

Request

Payment
Authorization
Transaction

date
time

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

Figure 26.10 An alternate transaction class hierarchy.

The class hierarchy shown in Figure 26.10 is sufficiently useful in terms of gen-
eralization, because the additional generalizations do not add obvious value.
The hierarchy of Figure 26.9 expresses a finer granularity of generalization that
does not significantly enhance our understanding of the concepts and business
rules, but it does make the model more complex—and added complexity is unde-
sirable unless it confers other benefits.

26.7 Abstract Conceptual Classes

It is useful to identify abstract classes in the domain model because they con-
strain what classes it is possible to have concrete instances of, thus clarifying
the rules of the problem domain.

If every member of a class C must also be a member of a subclass, then class
C is called an abstract conceptual class.

For example, assume that every Payment instance must more specifically be an
instance of the subclass CreditPayment, CashPayment, or CheckPayment. This is
illustrated in the Venn diagram of Figure 26.11 (b). Since every Payment mem-
ber is also a member of a subclass, Payment is an abstract conceptual class by
definition.

By contrast, if there can be Payment instances that are not members of a sub-
class, it is not an abstract class, as illustrated in Figure 26.11 (a).

406

26 - MODELING GENERALIZATION

Payment

CashPayment CreditPayment CheckPayment

Payment

CashPayment CreditPayment CheckPayment

If a Payment instance may
exist which is not a
CashPayment, CreditPayment
or CheckPayment, then
Payment is not an abstract
conceptual class.

Payment is an abstract
conceptual class. A Payment
instance must conform to one
of the subclasses:
CashPayment, CreditPayment
or CheckPayment.

abstract conceptual class

(a)

(b)

Figure 26.11 Abstract conceptual classes.

In the POS domain, every Payment is really a member of a subclass. Figure
26.11 (b) is the correct depiction of payments; therefore, Payment is an abstract
conceptual class.

Abstract Class Notation in the UML

To review, the UML provides a notation to indicate abstract classes—the class
name is italicized (see Figure 26.12).

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money

abstract class
indicated by italics

407

ABSTRACT CONCEPTUAL CLASSES

Figure 26.12 Abstract class notation.

26 - MODELING GENERALIZATION

Identify abstract classes and illustrate them with an italicized name in the
Domain Model.

26.8 Modeling Changing States

Assume that a payment can either be in an unauthorized or authorized state,
and it is meaningful to show this in the domain model (it may not really be, but
assume so for the discussion). As shown in Figure 26.13, one modeling approach
is to define subclasses of Payment: UnauthorizedPayment and
AuthorizedPay-ment. However, note that a payment does not stay in one of these
states; it typically transitions from unauthorized to authorized. This leads to the
following guideline:

Do not model the states of a concept X as subclasses of X. Rather, either:

• Define a state hierarchy and associate the states with X, or
• Ignore showing the states of a concept in the domain model; show the

states in state diagrams instead.

Paymentnot useful

these subclasses are
changing states of the
superclass Unauthorized

Payment
Authorized
Payment

PaymentState better

Unauthorized
State

Authorized
State

Payment Is-in 1*

408

Figure 26.13 Modeling changing states.

CLASS HlERARCHlES AND INHERITANCE IN SOFTWARE

26.9 Class Hierarchies and Inheritance in Software

This discussion of conceptual class hierarchies has not mentioned inheritance,
because the discussion is focused on a domain model of things in the world, not
software artifacts. In an object-oriented programming language, a software sub-
class inherits the attribute and operation definitions of its superclasses by the
creation of software class hierarchies. Inheritance is a software mechanism
to make superclass things applicable to subclasses. It supports refactoring code
from subclasses and pushing it up class hierarchies. Therefore, inheritance has
no real part to play in the discussion of the domain model, although it most defi-
nitely does when we transition to the design and implementation view.

The conceptual class hierarchies generated here may or may not be reflected in
the Design Model. For example, the hierarchy of authorization service transac-
tion classes may be collapsed or expanded into alternate software class hierar-
chies, depending on language features and other factors. For instance, C++
templatized classes can sometimes reduce the number of classes.

409

Chapter 27

REFINING THE DOMAIN MODEL

PRESENT, n. That part of eternity dividing the domain of
disappointment from the realm of hope.

— Ambrose Bierce

Objectives

• Add association classes to the Domain Model.

• Add aggregation relationships.

• Model the time intervals of applicable information.

• Choose how to model roles.

• Organize the Domain Model into packages.

Introduction

This chapter explores additional useful ideas and notation available for domain
modeling and applies them to refine aspects of the NextGen POS Domain
Model.

27.1 Association Classes

The following domain requirements set the stage for association classes:

• Authorization services assign a merchant ID to each store for identification
during communications.

• A payment authorization request from the store to an authorization service
needs the merchant ID that identifies the store to the service.

411

412

27 - REFINING THE DOMAIN MODEL

• Furthermore, a store has a different merchant ID for each service.

Where in the UP Domain Model should the merchant ID attribute reside?

Placing merchantID in Store is incorrect because a Store can have more than
one value for merchantID. The same is true with placing it in
Authorization-Service (see Figure 27.1).

address
merchantID
name
phoneNumber

AuthorizationService

address
merchantID
name

Store both placements of
merchantID are incorrect
because there may be more
than one merchantID

Figure 27.1 Inappropriate use of an attribute.

This leads to the following modeling principle:

In a domain model, if a class C can simultaneously have many values for the
same kind of attribute A, do not place attribute A in C. Place attribute A in
another class that is associated with C.
For example:
• A Person may have many phone numbers. Place phone number in another
class, such as PhoneNumber or ContactInformation, and associate many of
these to Person.

address
name
phoneNumber

AuthorizationService

address
name

Store

merchantID

ServiceContractPurchases

1..* *

a better model, but not
yet as useful as possible

3Sells

Authorizes-payments-via
1..**

Figure 27.2 First attempt at modeling the merchantID problem.

The above principle suggests that something like the model in Figure 27.2 is
more appropriate. In the business world, what concept formally records the

ASSOCIATION CLASSES

information related to the services that a service provides to a customer?—a
Contract or Account.
The fact that both Store and AuthorizationService are related to ServiceContract
is a clue that it is dependent on the relationship between the two. The
merchantID may be thought of as an attribute related to the association
between Store and AuthorizationService.
This leads to the notion of an association class, in which we can add features
to the association itself. ServiceContract may be modeled as an association class
related to the association between Store and AuthorizationService.
In the UML, this is illustrated with a dashed line from the association to the
association class. Figure 27.3 visually communicates the idea that a
Service-Contract and its attributes are related to the association between a
Store and AuthorizationService, and that the lifetime of the ServiceContract is
dependent on the relationship.

address
name
phoneNumber

AuthorizationService

address
name

Store

merchantID

ServiceContract an association class

its attributes are related to
the association

its lifetime is dependent on
the association

Authorizes-payments-via
1..**

Figure 27.3 An association class.

Guidelines

Guidelines for adding association classes include the following:

Clues that an association class might be useful in a domain model:

• An attribute is related to an association.
• Instances of the association class have a life-time dependency on the

association.
• There is a many-to-many association between two concepts, and informa-

tion associated with the association itself.

413

27 - REFINING THE DOMAIN MODEL

The presence of a many-to-many association is a common clue that a useful
association class is lurking in the background somewhere; when you see one,
consider an association class.

Figure 27.4 illustrates some other examples of association classes.

salary

Employment

EmploysCompany Person**

dateOfIncarceration

JailTerm

IncarceratesJail Person*

Married-to

Person

0..10..1

1

a person may have
employment with several
companies

Figure 27.4 Association classes.

27.2 Aggregation and Composition

Aggregation is a kind of association used to model whole-part relationships
between things. The whole is called the composite.
For instance, physical assemblies are organized in aggregation relationships,
such as a Hand aggregates Fingers.

Aggregation in the UML

Aggregation is shown in the UML with a hollow or filled diamond symbol at the
composite end of a whole-part association (see Figure 27.5).

414

Finger0..7Hand 1

aggregation diamond

Figure 27.5 Aggregation notation.

Aggregation is a property of an association role.1

The association name is often excluded in aggregation relationships since it is
typically thought of as Has-part. However, one may be used to provide more
semantic detail.

Composite Aggregation—Filled Diamond

Composite aggregation, or composition, means that the part is a member of
only one composite object, and that there is an existence and disposition depen-
dency of the part on the composite. For example, a hand is in a composition rela-
tionship to a finger.

In the Design Model, composition and its existence dependency implication indi-
cates that composite software objects create (or caused the creation of) the part
software objects (for example, Sale creates SalesLineItem).

But in the Domain Model, since it does not represent software objects, the
notion of the whole creating the part is seldom relevant (a real sale does not cre-
ate a real sales line item). However, there is still an analogy. For example, in a
"human body" domain model, one thinks of the hand as including the fingers, so
if one says, "A hand has come into existence," we understand this to also mean
that fingers have come into existence as well.

Composition is signified with a filled diamond. It implies that the composite
solely owns the part, and that they are in a tree structure parts hierarchy; it is
the most common form of aggregation shown in models.

For example, a finger is a part of at most one hand (we hope!), thus the aggrega-
tion diamond is filled to indicate composite aggregation (see Figure 27.6).

1. Recall that each end of an association is a role, and that a UML role has various
properties, such as multiplicity, name, navigability and isAggregate.

415

AGGREGATION AND COMPOSITION

Finger0..7Hand

composite aggregation

1

Figure 27.6 Composite aggregation.

If the multiplicity at the composite end is exactly one, the part may not exist
separate from some composite. For example, if the finger is removed from one
hand, it must be immediately attached to another composite object (another
hand, a foot, ...); at least, that is what the model is declaring, regardless of the
medical merits of this idea!

If the multiplicity at the composite end is 0..1, then the part may be removed
from the composite, and still exist apart from membership in any composite. So,
if you want fingers floating around by themselves, use 0..1.

Shared Aggregation—Hollow Diamond

Shared aggregation means that the multiplicity at the composite end may be
more than one, and is signified with a hollow diamond. It implies that the part
may be simultaneously in many composite instances. Shared aggregation sel-
dom (if ever) exists in physical aggregates, but rather in nonphysical concepts.

For instance, a UML package may be considered to aggregate its elements. But
an element may be referenced in more than one package (it is owned by one, and
referenced in others), which is an example of shared aggregation (see Figure
27.7).

UMLElementReferencesUMLPackage

shared aggregation

**

416

27 - REFINING THE DOMAIN MODEL

Figure 27.7 Shared aggregation.

AGGREGATION AND COMPOSITION

How to Identify Aggregation

In some cases, the presence of aggregation is obvious—usually in
physical assemblies. But sometimes, it is not clear.

On aggregation: If in doubt, leave it out.

Here are some guidelines that suggest when to show aggregation:

Consider showing aggregation when:
• The lifetime of the part is bound within the lifetime of the composite —

there is a create-delete dependency of the part on the whole.
• There is an obvious whole-part physical or logical assembly.
• Some properties of the composite propagate to the parts, such as the

location.
• Operations applied to the composite propagate to the parts, such as

destruction, movement, recording.

Other than something being an obvious assembly of parts, the next most useful
clue is the presence of a create-delete dependency of the part on the whole.

A Benefit of Showing Aggregation

Identifying and illustrating aggregation is not profoundly important; it is quite
feasible to exclude it from a domain model. Most—if not all—experienced
domain modelers have seen unproductive time wasted debating the fine points
of these associations.

Discover and show aggregation because it has the following benefits, most of
which relate to the design rather than the analysis, which is why its exclusion
from the domain model is not very significant.

• It clarifies the domain constraints regarding the eligible existence of the
part independent of the whole. In composite aggregation, the part may not
exist outside of the lifetime of the whole.

) During design work, this has an impact on the create-delete
dependencies between the whole and part software classes and
database elements (in terms of referential integrity and cascading
delete paths).

• It assists in the identification of a creator (the composite) using the GRASP
Creator pattern.

417

27 - REFINING THE DOMAIN MODEL

• Operations—such as copy and delete—applied to the whole often
propagate to the parts.

Aggregation in the POS Domain Model

In the POS domain, the SalesLineItems may be considered a part of a composite
Sale; in general, transaction line items are viewed as parts of an aggregate
transaction (see Figure 27.8). In addition to conformance to that pattern, there
is a create-delete dependency of the line items on the Sale—their lifetime is
bound within the lifetime of the Sale.
By similar justification, ProductCatalog is an aggregate of
Product-Specifications.

SalesLineItemSale
1..*

Product
Specification

Product
Catalog 1..*

1

1

Figure 27.8 Aggregation in the point-of-sale application.

No other relationship is a compelling combination that suggests whole-part
semantics, a create-delete dependency, and "If in doubt, leave it out."

27.3 Time Intervals and Product Prices—Fixing an Iteration 1
"Error"

In the first iteration, SalesLineltems were associated with
Product-Specifications, that recorded the price of an item. This was a
reasonable simplification for early iterations, but needs to be amended. It raises
the interesting— and widely applicable—issue of time intervals associated
with information, contracts, and the like.

If a SalesLineItem always retrieved the current price recorded in a
Product-Specification, then when the price was changed in the object, old sales
would refer to new prices, which is incorrect. What is needed is a distinction
between the historical price when the sale was made, and the current price.

Depending on the information requirements, there are at least two ways to
model this. One is to simply copy the product price into the SalesLineltem, and
maintain the current price in the ProductSpecification.

418

Flight CityFlies-to* destination

role name

describes the role of a city in the
Flies-to association

Person

*
parent

Creates 4

2
child

1

Figure 27.10 Role names.

27.5 Roles as Concepts vs. Roles in Associations

In a domain model, a real-world role—especially a human role—may be
modeled in a number of ways, such as a discrete concept, or expressed as a role
in an association.2 For example, the role of cashier and manager may be
expressed in at least the two ways illustrated in Figure 27.11.
The first approach may be called "roles in associations"; the second "roles as con-
cepts." Both approaches have advantages.
Roles in associations are appealing because they are a relatively accurate way to
express the notion that the same instance of a person takes on multiple (and
dynamically changing) roles in various associations. I, a person, simultaneously
or in sequence, may take on the role of writer, object designer, parent, and so on.

On the other hand, roles as concepts provides ease and flexibility in adding
unique attributes, associations, and additional semantics. Furthermore, the
implementation of roles as separate classes is easier because of limitations of
current popular object-oriented programming languages—it is not convenient to
dynamically mutate an instance of one class into another, or dynamically add
behavior and attributes as the role of a person changes.

2. For simplicity, other excellent solutions such as those discussed in |Fowler96| are
ignored.

420

27 - REFINING THE DOMAIN MODEL

Store PersonEmploys-to-handle-sales
cashier

Employs-to-manage
manager

*
*

Manages4

*
workermanager

Store

Cashier

ManagerEmploys *

Employs *

roles as concepts

Manages 6

*

roles in associations

1

1

1

1 1

Figure 27.11 Two ways to model human roles.

27.6 Derived Elements

A derived element can be determined from others. Attributes and associations
are the most common derived elements. When should derived elements be
shown?

Avoid showing derived elements in a diagram, since they add complexity
without new information. However, add a derived element when it is prom-
inent in the terminology, and excluding it impairs comprehension.

For example, a Sale total can be derived from SalesLineItem and
Product-Specification information (see Figure 27.12). In the UML, it is shown
with a "/" preceding the element name.

date
/total
time

Sale
derived attribute

421

DERIVED ELEMENTS

Figure 27.12 Derived attribute.

ASSOCIATION ROLE NAMES

The other approach, more robust, is to associate a collection of ProductPrlces
with a ProductSpecification, each with an associated applicable time interval.
Thus, the organization can record all past prices (to resolve the sale price prob-
lem, and for trend analysis) and also record future planned prices (see Figure
27.9). See [CLD99] for a broader discussion of time intervals, under the category
of Moment-Interval archetypes.

It is common that a collection of time interval related information needs to be
maintained, rather than a simple value. Physical, medical, and scientific mea-
surements, and many accounting and legal artifacts have this requirement.

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
itemID

1..*
Described-by

*

1

Product
Catalog

...

Product
Price

activeInterval : TimeInterval
price : Money

TimeInterval

start : timeStamp
end : timeStamp

1..*1

1

Priced-by4

1..**

Figure 27.9 ProductPrices and time intervals.

27.4 Association Role Names

Each end of an association is a role, which has various properties, such as:

• name

• multiplicity

A role name identifies an end of an association and ideally describes the role
played by objects in the association. Figure 27.10 shows role name examples.

An explicit role name is not required—it is useful when the role of the object is
not clear. It usually starts with a lowercase letter. If not explicitly present,
assume that the default role name is equal to the related class name, though
starting with a lowercase letter.

As covered previously during a discussion of mapping designs to code, roles used
in DCDs may be interpreted as the basis for attribute names during code gener-
ation.

419

27 - REFINING THE DOMAIN MODEL

As another example, a SalesLineItem quantity is actually derivable from the
number of instances of Items associated with the line item (see Figure 27.13).

SalesLineItem
1..*

Sale

/quantity

derivable from the
actual multiplicity

1

Figure 27.13 Derived attribute related to multiplicity.

27.7 Qualified Associations

A qualifier may be used in an association; it distinguishes the set of objects at
the far end of the association based on the qualifier value. An association with a
qualifier is a qualified association.

For example, ProductSpecifications may be distinguished in a ProductCatalog
by their itemID, as illustrated in Figure 27.14 (b). As contrasted in Figure 27.14
(a) vs. (b), qualification reduces the multiplicity at the far end from the qualifier,
usually down from many to one. Depicting a qualifier in a domain model com-
municates how, in the domain, things of one class are distinguished in relation
to another class. They should not, in the domain model, be used to express
design decisions about lookup keys, although that is suitable in other diagrams
illustrating design decisions.

Qualifiers do not usually add compelling useful new information, and we can
fall into the trap of "design-think." However, used judiciously, they can sharpen
understanding about the domain. The qualified associations between
Product-Catalog and ProductSpecification provide a reasonable example of a
value-added qualifier.

422

Product
Catalog

Product
SpecificationitemID Contains

Product
Catalog

Product
Specification

Contains
1..*

multiplicity reduced to 1

(a)

(b)

qualifier

1

11

Figure 27.14 Qualified association.

Figure 27.16 Ordered elements.

27.10 Using Packages to Organize the Domain Model

A domain model can easily grow large enough that it is desirable to factor it into
packages of strongly related concepts, as an aid to comprehension and parallel
analysis work in which different people do domain analysis within different
sub-domains. The following sections illustrate a package structure for the
UP Domain Model.

UML Package Notation

To review, a UML package is shown as a tabbed folder (see Figure 27.17). Subor-
dinate packages may be shown within it. The package name is within the tab if

3. [MO95] constrains the definition of reflexive associations further.

423

Person

*
parent

Creates 4

2

child

SalesLineItem
1..*

{ordered}

Sale

... 1
there is some kind of
ordering, such as by
order added

REFLEXIVE ASSOCIATIONS

27.8 Reflexive Associations

A concept may have an association to itself; this is known as a reflexive associ-
ation3 (see Figure 27.15).

Figure 27.15 Reflexive association.

27.9 Ordered Elements

If associated objects are ordered, this can be shown as in Figure 27.16. For
example, the SalesLineItems must be maintained in the order entered.

27 - REFINING THE DOMAIN MODEL

the package depicts its elements; otherwise, it is centered within the folder
itself.

Figure 27.17 A UML package.

Ownership and References

An element is owned by the package within which it is defined, but may be refer-
enced in other packages. In that case, the element name is qualified by the pack-
age name using the pathname format PackageName::ElementName (see Figure
27.18). A class shown in a foreign package may be modified with new associa-
tions, but must otherwise remain unchanged.

424

Figure 27.18 A referenced class in a package.

Package Dependencies

If a model element is in some way dependent on another, the dependency may be
shown with a dependency relationship, depicted with an arrowed line. A pack-
age dependency indicates that elements of the dependent package in some way
know about or are coupled to elements in the target package.

For example, if a package references an element owned by another, a depen-
dency exists. Thus, the Sales package has a dependency on the Core Elements
package (see Figure 27.19).

Domain

Core Elements Sales

SalesCore Elements

Sale

Core Elements::
Register

Captures

Store RegisterHas
1..*1

1

1

Domain

Core Elements Sales

Figure 27.19 A package dependency.

Package Indication without Package Diagram

At times, it is inconvenient to draw a package diagram, but still desirable to
indicate the package that the elements are a member of.

In this situation, include a note (dog-eared note) on the diagram, as illustrated
in Figure 27.20.

Store RegisterHas
1..*

package: Core Elements

1

Figure 27.20 Illustrating package ownership with a note.

How to Partition the Domain Model

How should the classes in a domain model be organized within packages? Apply
the following general guidelines:

To partition the domain model into packages, place elements together that:

• are in the same subject area — closely related by concept or purpose

• are in a class hierarchy together

• participate in the same use cases

• are strongly associated

425

USING PACKAGES TO ORGANIZE THE DOMAIN MODEL

426

27 - REFINING THE DOMAIN MODEL

It is useful if all elements related to the domain model are rooted in a package
called Domain, and all widely shared, common, core concepts are defined in a
packaged named something like Core Elements or Common Concepts, in the
absence of any other meaningful package within which to place them.

POS Domain Model Packages

Based on the above criteria, the package organization for the POS Domain
Model is shown in Figure 27.21.

Domain

Core/Misc Payments Products Sales

Authorization
Transactions

Figure 27.21 Domain concept packages.

Core/Misc Package

A Core/Misc package (see Figure 27.22) is useful to own widely shared concepts
or those without an obvious home. In later references, the package name will be
abbreviated to Core.
There are no new concepts or associations particular to this iteration in this
package.

Core/Misc

Register Manager
Store

address
name

Houses

1..*

Employs

1..*
1

1

Figure 27.22 Core package.

USING PACKAGES TO ORGANIZE THE DOMAIN MODEL

Payments

As in iteration 1, new associations are primarily motivated by a need-to-know
criterion. For example, there is a need to remember the relationship between
CreditPayment and CreditCard. In contrast, some associations are added more
for comprehension, such as DriversLicense Identifies Customer (see Figure
27.23).

Note that PaymentAuthorizationReply is expressed as an association class. A
reply arises out of association between a payment and its authorization service.

Payments

Check

Accounts
Receivable

Credit
Payment

Check
Payment

Check
Authorization

Service

Credit
Authorization

Service
Authorized-by

Authorized-by

*
**

AuthorizationService

address
name
phoneNumber

Core::StorePayment

amount

Establishes-
credit-for 5

Logs 4

*

CreditCard

expiryDate
number

DriversLicense

number

1..*

Establishes-
identity-for 5

Paid-by

CashPayment

amountTendered *

Sales::CustomerAbused-by4

Identifies

Authorization Transactions::
PaymentAuthorizationReply

- CheckPayments have
 CheckPaymentReplies

- CreditPayments have
 CreditPaymentReplies

1

1

1

111

1

1 1
1

1

3Authorizes-payments-of

merchantID

ServiceContract

1

Figure 27.23 Payments package.

Products

With the exception of composite aggregation, there are no new concepts or asso-
ciations particular to this iteration (see Figure 27.24).

427

428

Sales

27 - REFINING THE DOMAIN MODEL

Products

1..*

Core::
Store

Stocks

*

Describes

*

Sales::
SalesLineItem

Described-by *

Records-sale-of6

0..1

Product
Specification

description
price
itemID

ProductCatalog

Item1

1

1

1

1

Figure 27.24 Products package.

With the exception of composite aggregation and derived attributes, there are no
new concepts or associations particular to this iteration (see Figure 27.25).

Figure 27.25 Sales package.

Sales

Cashier

Customer

1..*

SalesLineItem

/quantity

Sale

date
isComplete
time

Initiates

Core::
Register

Records-sales-on5

Captured-on4

Core::
Store

3Logs-completed
*

1

1

1

1

1

1

1

1

Tax
LineItem

description
percentage
amount

1..* 1

USING PACKAGES TO ORGANIZE THE DOMAIN MODEL

Authorization Transactions

Although providing meaningful names for associations is recommended, in some
circumstances it may not be compelling, especially if the purpose of the associa-
tion is considered obvious to the audience. A case in point is the associations
between payments and their transactions. Their names have been left unspeci-
fied because we can assume the audience reading the class diagram in Figure
27.26 will understand that the transactions are for the payment; adding the
names merely makes the diagram more busy.

Authorization Transactions

CreditPayment
Approval
Request

CheckPayment
Approval
Request

Payment
Authorization

Request

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

Payments::
Authorization

Service
Sends Receives

Payments::
CreditPayment

Payments::
CheckPayment

Payment
Authorization
Transaction

date
time

Core::
Store

Payment
Authorization

Reply

Receives

*

Sends

*
* *

1

1
1

1

1

1

1

1

1

1

1 1

1

1 1

1

Figure 27.26 Authorization transaction package.

Is this diagram too detailed, showing too many specializations? It depends. The
real criteria is usefulness. Although it is not incorrect, does it add any value in
improving understanding of the domain? The answer should influence how
many specializations to illustrate in a domain model.

429

Chapter 28

ADDING NEW SSDs AND
CONTRACTS

Virtue is insufficient temptation.

— George Bernard Shaw

Objectives
• Define SSDs and system operation contracts for the current iteration.

28.1 New System Sequence Diagrams

In the current iteration, the new payment handling requirements involve new
collaborations with external systems. To review, SSDs use sequence diagram
notation to illustrate inter-system collaborations, treating each system as a
black-box. It is useful to illustrate the new system events in SSDs in order to
clarify:

• new system operations that the NextGen POS system will need to support

• calls to other systems, and the responses to expect from these calls

Common Beginning of Process Sale Scenario

The SSD for the beginning portion of a basic scenario includes makeNewSale,
enterItem and endSale system events; it is common regardless of the payment
method (see Figure 28.1).

431

28 - ADDING NEW SSDs AND CONTRACTS

432

Figure 28.1 SSD common beginning.

Credit Payment

This credit payment scenario SSD starts after the common beginning (see Fig-
ure 28.2).

makeCreditPayment
(credNum, expiryDate)

reply := requestApproval(request)

:Customer

postReceivable(receivable)

:NextGenPOS
System

«actor»
:CreditAuthorization

Service
«actor»

:Accounts

postSale(sale)

Figure 28.2 Credit payment SSD.

In both cases of credit and check payments, a simplifying assumption is made
(for this iteration) that the payment is exactly equal to the sale total, and thus a
different "tendered" amount does not have be an input parameter.

enterItem(itemID, quantity)

:NextGenPOS
System: Cashier

endSale()

Process Sale Scenario

description, total

total with taxes

* [more items]

makeNewSale()

«actor»
:TaxCalculator

taxLineItems :=
getTaxes(sale)

Process Sale Scenario

NEW SYSTEM OPERATIONS

Note that the call to the external CreditAuthorizationService is modeled as a
regular synchronous message with a return value. This is an abstraction; it
could be implemented with a SOAP request over secure HTTPS, or any remote
communication mechanism. The resource adapters defined in the prior iteration
will hide the specific protocol.

The makeCreditPayment system operation—and the use case—assume that
the credit information of the customer is coming from a credit card, and thus
a credit account number and expiry date enter the system (probably via a card
reader). Although it is recognized that in the future, alternative mechanisms for
communicating credit information will arise, the assumption that credit cards
will be supported is very stable.

Recall that when a credit authorization service approves a credit payment, it
owes the store for the payment; thus, a receivables entry needs to be added to
the accounts receivable system.

Check Payment

The SSD for the check payment scenario is shown in Figure 28.3.

makeCheckPayment
(driversLicenseNumber)

reply := requestApproval(request)

:Cashier

:NextGenPOS
System

«actor»
:CheckAuthorization

Service

Figure 28.3 Check payment SSD.

According to the use case, the cashier must enter the driver's license number for
validation.

28.2 New System Operations

In this iteration, the new system operations that our system must handle are:

• makeCreditPayment
• makeCheckPayment

433

28 - ADDING NEW SSDs AND CONTRACTS

In the first iteration, the system event and operation for the cash payment was
simply makePayment. Now that the payments are of different types, it is
renamed to makeCashPaymerit.

28.3 New System Operation Contracts

To review, system operation contracts are an optional requirements artifact
(part of the Use-Case Model) that adds fine detail regarding the results of a sys-
tem operation. Sometimes, the use case text is itself sufficient, and these con-
tracts are not necessary. But on occasion, they bring value by their precise and
detailed approach to identifying what happens when a complex operation is
invoked on the system, in terms of state changes to objects defined in the
Domain Model.

Here are contracts for the new system operations:

Contract CO5: makeCreditPayment

Operation: Cross
References:
Preconditions:

Postconditions:

makeCreditPayment(creditAccountNumber, expiryDate)
Use Cases: Process Sale
An underway sale exists and all items have been entered.

- a CreditPayment pmt was created
- pmt was associated with the current Sale sale
- a CreditCard cc was created; cc.number =

creditAccountNumber, cc.expiryDate = expiryDate
- cc was associated with pmt
- a CreditPaymentRequest cpr was created
- pmt was associated with cpr
- a ReceivableEntry re was created
- re was associated with the external AccountsReceivable
- sale was associated with the Store as a completed sale

434

Note the postcondition indicating the association of a new receivable entry in
accounts receivable. Although this responsibility is outside the bounds of the
NextGen system, the accounts receivable system is within the control of the
business, and so the statement has been added as a correctness check.

For example, during testing, it is clear from this post-condition that the accounts
receivable system should be tested for the presence of a new receivable entry.

NEW SYSTEM OPERATION CONTRACTS

Contract CO6: makeCheckPayment

Operation: Cross
References:
Preconditions:

Postconditions:

makeCheckPayment(driversLicenceNumber)
Use Cases: Process Sale
An underway sale exists and all items have been entered.

- a CheckPayment pmt was created
- pmt was associated with the current Sale sale
- a DriversLicense dl was created; dl.number =

driversLicenseNumber
- dl was associated with pmt
- a CheckPaymentRequest cpr was created.
- pmt was associated with cpr
- sale was associated with the Store as a completed sale

435

Chapter 29

MODELING BEHAVIOR IN
STATECHART DIAGRAMS

Usability is like oxygen— you never notice it until it is missing.

— anonymous

Objectives

Create statechart diagrams for classes and use cases.

Introduction

The UML includes statechart diagram notation to illustrate the events and
states of things—transactions, use cases, people, and so forth. The most impor-
tant notational features are shown, but there are others not covered in this
introduction.

The use of statechart diagrams is emphasized for showing system events in use
cases, but they may additionally be applied to any class.

29.1 Events, States, and Transitions

An event is a significant or noteworthy occurrence. For example:

A telephone receiver is taken off the hook.

A state is the condition of an object at a moment in time—the time
between events. For example:

437

29 - MODELING BEHAVIOR IN STATECHART DIAGRAMS

• A telephone is in the state of being "idle" after the receiver is placed on the
hook and until it is taken off the hook.

A transition is a relationship between two states that indicates that when an
event occurs, the object moves from the prior state to the subsequent state. For
example:

• When the event "off hook" occurs, transition the telephone from the "idle" to
"active" state.

29.2 Statechart Diagrams

A UML statechart diagram, as shown in Figure 29.1, illustrates the interesting
events and states of an object, and the behavior of an object in reaction to an
event. Transitions are shown as arrows, labeled with their event. States are
shown in rounded rectangles. It is common to include an initial pseudo-state,
which automatically transitions to another state when the instance is created.

off hook
Idle Active

on hook

Telephone

state

transition event

initial state

Figure 29.1 Statechart diagram for a telephone.

A statechart diagram shows the lifecycle of an object: what events it experi-
ences, its transitions, and the states it is in between these events. It need not
illustrate every possible event; if an event arises that is not represented in the
diagram, the event is ignored as far as the statechart diagram is concerned.
Therefore, we can create a statechart diagram that describes the lifecycle of an
object at arbitrarily simple or complex levels of detail, depending on our needs.

438

STATECHART DIAGRAMS IN THE UP?

Subject of a Statechart Diagram

A statechart diagram may be applied to a variety of UML elements, including:

• classes (conceptual or software)

• use cases

Since an entire "system" may be represented by a class, it too may have its own
statechart diagram.

29.3 Statechart Diagrams in the UP?

There is not one model in the UP called the "state model." Rather, any element
in any model (Design Model, Domain Model, and so forth) may have a statechart
to better understand or communicate its dynamic behavior in response to
events. For example, a statechart associated with the Sale design class of the
Design Model is itself part of the Design Model.

29.4 Use Case Statechart Diagrams

A useful application of statechart diagrams is to describe the legal sequence of
external system events that are recognized and handled by a system in the con-
text of a use case. For example:

> During the Process Sale use case in the NextGen POS application,
it is not legal to perform the makeCreditPayment operation until
the endSale event has happened.

> During the Process Document use case in a word processor, it is
not legal to perform the File-Save operation until the File-New or
File-Open event has happened.

A statechart diagram that depicts the overall system events and their sequence
within a use case is a kind of use case statechart diagram. The use case
statechart diagram in Figure 29.2 shows a simplified version of the system
events for the Process Sale use case in the POS application. It illustrates that it
is not legal to generate a makePayment event if an endSale event has not previ-
ously caused the system to transition to the WaitingForPayment state.

439

29 - MODELING BEHAVIOR IN STATECHART DIAGRAMS

Figure 29.2 Use case statechart diagram for Process Sale.

Utility of Use Case Statechart Diagrams

The number of system events and their legal order for the Process Sale use case
are (so far) relatively trivial, thus the use of a statechart diagram to show legal
sequence may not seem compelling. But for a complex use case with myriad sys-
tem events—such as when using a word processor—a statechart diagram that
illustrates the legal order of external events is helpful.

Here's how: During design and implementation work, it is necessary to create
and implement a design that ensures no out-of-sequence events occur, otherwise
an error condition is possible. For example, the system should not be allowed to
receive a payment unless a sale is complete; code must be written to guarantee
that.

Given a set of use case statechart diagrams, a designer can methodically develop
a design that ensures correct system event order. Possible design solutions
include:

hard-coded conditional tests for out-of-order events

use of the State pattern (discussed in a subsequent chapter)

disabling widgets in active windows to disallow illegal events (a desirable
approach)

a state machine interpreter that runs a state table representing a use case
statechart diagram

In a domain with many system events, the conciseness and thoroughness of use
case statechart diagrams help a designer ensure that nothing is missed.

440

WaitingForSale EnteringItems

enterItem

WaitingForPayment

makeNewSale

makePayment

endSale(external) system
event

Process SaleProcess Sale

USE CASE STATECHART DIAGRAMS FOR THE POS APPLICATION

29.5 Use Case Statechart Diagrams for the POS Application

Process Sale

Figure 29.3 A sample statechart.

29.6 Classes that Benefit from Statechart Diagrams

In addition to statechart diagrams for use cases or the overall system, they may
be created for virtually any type or class.

State-Independent and State-Dependent Objects

If an object always responds the same way to an event, then it is considered
state-independent (or modeless) with respect to that event. For example, if an
object receives a message, and the responding method always does the same
thing—the method will typically have no conditional logic. The object is
state-independent with respect to that message. If, for all events of interest, an
object always reacts the same way, it is a state-independent object. By
contrast, state-dependent objects react differently to events depending on
their state.

Create statecharts for state-dependent objects with complex behavior.

441

WaitingForSale EnteringItems

enterItem

WaitingForPayment

makeNewSale

makeCashPayment

endSale

AuthorizingPayment makeCheckPayment

makeCreditPayment

authorized

Process Sale

Process Sale

29 - MODELING BEHAVIOR IN STATECHART DIAGRAMS

In general, business information systems have a minority of interesting
state-dependent classes. By contrast, process control and telecommunication
domains often have many state-dependent objects.

Common State-dependent Classes

Following is a list of common objects which are usually state-dependent, and for
which it may be useful to create a statechart diagram:
 Use cases

ο Viewed as a class, the Process Sale use case reacts differently to the
endSale event dependent of if a sale is underway or not.

 Stateful sessions—These are server-side software objects representing
ongoing sessions or conversations with a client; for example, EJB stateful
session objects.

ο Another very common example is server-side handling of web client
application and presentation flow logic; for example, a Java
technology servlet helper or "controller" that remembers the state of
the session with a Web client, and controls the transitions to new web
pages, or the modified display of the current web page, based upon the
state of the session or conversation.

ο A stateful session can usually be viewed as a software class repre-
senting a use case. Recall that one of the GRASP Controller pattern
variants is a use case controller, which is a use case stateful session
object.

 Systems—This is a class representing the overall application or system.

ο The "POS system."

 Windows
ο The Edit-Paste action is only valid if there is something in the

"clipboard" to paste.

 Controllers—These are GRASP controller objects.

ο The Register class, which handles the enterltem and endSale system
events.

 Transactions—These are ways a transaction (a sale, order, payment)
reacts to an event is often dependent on its current state within its overall
lifecycle.

ο If a Sale received a makeLineltem message after the endSale event,
it should either raise an error condition or be ignored.

442

ILLUSTRATING EXTERNAL AND INTERVAL EVENTS
 Devices

ο TV, microwave oven: they react differently to a particular
event depending upon their current state.

 Role Mutators—These are classes that change their role.

ο A Person changing roles from being a civilian to a veteran.

29.7 Illustrating External and Interval Events

Event Types

It is useful to categorize events as follows:

 External event—Also known as a system event, is caused by something
(for example, an actor) outside our system boundary. SSDs illustrate exter-
nal events. Noteworthy external events precipitate the invocation of system
operations to respond to them.

ο When a cashier presses the "enter item" button on a POS terminal, an
external event has occurred.

 Internal event—Caused by something inside our system boundary. In
terms of software, an internal event arises when a method is invoked via a
message or signal that was sent from another internal object. Messages in
interaction diagrams suggest internal events.

ο When a Sale receives a makeLineltem message, an internal event has
occurred.

 Temporal event—Caused by the occurrence of a specific date and time or
passage of time. In terms of software, a temporal event is driven by a real-
time or simulated-time clock.

ο Suppose that after an endSale operation occurs, a makePayment
operation must occur within five minutes, otherwise the current sale is
automatically purged.

Statechart Diagrams for Internal Events

A statechart diagram can show internal events that typically represent mes-
sages received from other objects. Since interaction diagrams also show mes-
sages and their reactions (in terms of other messages), why use a statechart
diagram to illustrate internal events and object design? The object design para-
digm is that of objects that collaborate via messages to fulfill tasks; the UML
interaction diagrams directly illustrates that paradigm. It is somewhat incon-
gruous to use a statechart diagram to show a design of object messaging and
interaction.1

443

29 - MODELING BEHAVIOR IN STATECHART DIAGRAMS

Consequently, I have reservations about recommending the use of statechart
diagrams that show internal events for the purpose of creative object design.2

However, they may be useful to summarize the results of a design, after it is
complete.

By contrast, as the previous discussion on use case statechart diagrams
explained, a statechart diagram for external events can be a helpful and succinct
tool.

Prefer using statechart diagrams to illustrate external and temporal events,
and the reaction to them, rather than using them to design object behavior
based on internal events.

29.8 Additional Statechart Diagram Notation

The UML notation for statechart diagrams contains a rich set of features that
are not exploited in this introduction. Three significant features are:

transition actions transition

guard conditions nested states

Transition Actions and Guards

A transition can cause an action to fire. In a software implementation, this may
represent the invocation of a method of the class of the statechart diagram.

A transition may also have a conditional guard—or boolean test. The
transition only occurs if the test passes.

444

1. A reader of OOA/D literature will encounter periodical and textbook examples of com-
plex statechart diagrams that are devoted to internal events and the object's reaction
to them. Essentially, their creators have replaced the paradigm of object interaction
and collaboration via messages with the paradigm of objects as state machines, and
have used statechart diagrams to design the behavior of objects, rather than using col-
laboration diagrams. Abstractly, the two views are equivalent.

2. One reasonable use of statechart diagrams to show object design based on internal
events is when code is to be produced with a code generator that is driven by the state-
chart diagrams, or when a state machine interpreter will be used to run the software
system.

Idle

on hook

Active

transition action

guard condition

[valid subscriber]

off hook / play dial tone

Figure 29.4 Transition action and guard notation.

Nested States

A state allows nesting to contain substates; a substate inherits the transitions of
its superstate (the enclosing state). This is a key contribution of the Harel
state-chart diagram notation that UML is based on, as it leads to succinct
statechart diagrams. Substates may be graphically shown by nesting them in a
superstate box.

Idle

off hook / play dial tone

on hook

Active[valid subscriber]

PlayingDialTone

Dialing Connecting

digitdigit

complete

Talking

connected

Figure 29.5 Nested states.

For example, when a transition to the Active state occurs, creation and transi-
tion into the PlayingDialTone substate occurs. No matter what substate the

445

ADDITIONAL STATECHART DIAGRAM NOTATION

29 - MODELING BEHAVIOR IN STATECHART DIAGRAMS

object is in, if the on hook event related to the Active superstate occurs, a transi-
tion to the Idle state occurs.

29.9 Further Readings

The application of state models to OOA/D is well-covered in Designing Object
Systems by Cook and Daniels. Doing Hard Time by Douglass also provides an
excellent discussion of state modeling; the content emphasizes real-time sys-
tems, but is broadly applicable.

446

Chapter 30

DESIGNING THE LOGICAL
ARCHITECTURE WITH PATTERNS

Objectives

Design a logical architecture in terms of layers and partitions with the
Layers pattern.

Illustrate the logical architecture using UML package diagrams.

Apply the Facade, Observer and Controller patterns.

Introduction

First, to set the expectation level, this is an introduction to the topic of logical
architecture, a fairly large topic.

The prior iterations emphasized a strongly related group of "domain" software
objects' in the Design Model (such as Sale and Payment). No attention was paid
to the user interface or access to resources such as a database. The motivation
was to keep things simple and focus on core object design skills.

However, a typical system is composed of many logical packages, such as a user
interface package, a database access package, and so forth. Each package groups
a set of cohesive responsibilities (e.g., database access). This is the basic practice
of modularization to support a separation of concerns.

This chapter briefly explores logical architectures, and communication and cou-
pling between packages.

447

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

30.1 Software Architecture

One definition of software architecture is:
An architecture is the set of significant decisions about the orga-
nization of a software system, the selection of the structural ele-
ments and their interfaces by which the system is composed,
together with their behavior as specified in the collaborations
among those elements, the composition of these structural and
behavioral elements into progressively larger subsystems, and
the architectural style that guides this organization---these ele-
ments and their interfaces, their collaborations, and their com-
position. [BRJ99]

Regardless of the definition (and there are many) the common theme in all soft-
ware architecture definitions is that it has to do with the large scale—the Big
Ideas in the forces, organization, styles, patterns, responsibilities, collabora-
tions, connections, and motivations of a system (or a system of systems), and
major subsystems.

In software development, architecture is thought of as both a noun and a verb.

As a noun, the architecture includes—as the prior definition indicates—the
organization and structure of the major elements of the system. Beyond this
static definition, it includes the system behavior, especially in terms of large
scale responsibilities of systems and subsystems, and their collaborations. In
terms of a description, the architecture includes the motivations or rationale for
why the system is designed the way it is.

As a verb, architecture is part investigation and part design work; for clarity,
the term is best qualified, as in architectural investigation or architectural
design.

Architectural investigation involves identifying those functional and (espe-
cially) non-functional requirements that have (or should have) a significant
impact on the system design, such as market trends, performance, cost, main-
tainability, and points of evolution. Broadly, it is requirements analysis with a
focus on those requirements that have special influence on the major system
design decisions.

Architectural design is the resolution of these forces and requirements in the
design of the software, the hardware and networking, operations, policies, and
so forth.

In the UP, architectural investigation and design are together called architec-
tural analysis, the process of which is briefly introduced in Chapter 32.

448

SOFTWARE ARCHITECTURE

Architectural Dimensions and Views in the Unified Process

The architecture of a system encompasses several dimensions. For example:

The logical architecture, which describes the system in terms of its conceptual
organization in layers, packages, major frameworks, classes, interfaces, and

subsystems.

The deployment architecture, which describes the system in terms of the
allocation of processes to processing units, and the network configuration.

The Unified Process suggests six views of the architecture (logical, deployment,
and so on), all of which are defined in Chapter 32.

This chapter focuses on a logical view of the architecture.

Architectural Patterns and Pattern Categories

There are well-known best practices in architectural design, especially regard-
ing large-scale logical architecture, and these have been written as patterns,
such as Layers. The first book dedicated to the subject of architectural patterns
was Pattern-Oriented Software Architecture (POSA) [BMRSS96].

The POSA book also offered a simple, useful categorization of patterns at differ-
ent levels:

1. Architectural patterns—related to the large-scale and
coarse-grained
design, and typically applied during the early iterations (the elaboration
phase) when the major structures and connections are established.

ο The Layers patterns, which structures a system into major layers.

2. Design patterns—related to the small and medium-scale design of
objects
and frameworks. Applicable to designing a solution for connecting the large
scale elements defined via architectural patterns, and during
detailed
design work for any local design aspect. Also known as micro-architectural
patterns.

ο The Facade pattern, which can be used to provide the interface
from one layer to the next.

ο The Strategy pattern, to allow pluggable algorithms.

3. Idioms—language or implementation-oriented low-level design solutions.

ο The Singleton pattern, to ensure global access to a single instance
of a class.

449

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

This chapter focuses on architectural patterns and the application of design
patterns to make connections between the large-scale structures.

There are other pattern categories. The POSA categories form a neat triad,
and are useful for many patterns, but do not cover the entire gamut of published
patterns. As the risk of oversimplification, a pattern is the repeating best prac-
tice of what works—in any domain. Other published categories of patterns
include:

 organizational and software development process patterns

 user interface patterns

 testing patterns

30.2 Architectural Pattern: Layers

Solution The essential ideas of the Layers pattern [BMRSS96] are simple:

 Organize the large-scale logical structure of a system into discrete layers of
distinct, related responsibilities, with a clean, cohesive separation of con-
cerns such that the "lower" layers are low-level and general services, and the
higher layers are more application specific.

 Collaboration and coupling is from higher to lower layers; lower-to-higher
layer coupling is avoided.

A layer is a large-scale element, often composed of several packages or sub-
systems.

The Layers pattern relates to the logical architecture; that is, it describes the
conceptual organization of the design elements into groups, independent of their
physical packaging or deployment.

Layers defines a general N-tier model for the logical architecture; it produces a
layered architecture. It has been applied and written about so often as a pat-
tern that the Pattern Almanac 2000 [Rising00] lists over 100 patterns that are
variants of or related to the Layers pattern.

 Source code changes are rippling throughout the system—many parts of the
systems are highly coupled.

 Application logic is intertwined with the user interface, and so can not be
reused with a different interface, nor distributed to another processing node.

 Potentially general technical services or business logic is intertwined with
more application-specific logic, and so can not be reused, distributed to
another node, or easily replaced with a different implementation.

450

Problems

ARCHITECTURAL PATTERN: LAYERS

• There is high coupling across different areas of concern (as suggested in the
previous problems). It is thus difficult to divide the work along clear bound
aries for different developers.

• Due to the high coupling and mixing of concerns, it is laborious and costly to
evolve the application's functionality, scale up the system, or update it to use
new technologies.

Example The purpose and number of layers varies across applications and application
domains (information systems, operating systems, and so forth. Applied to infor-
mation systems, typical layers are illustrated and explained in Figure 30.1.

Presentation
(AKA Interface, UI, View)

Application
(AKA Workflow, Process,
Mediation, App Controller)

Domain(s)
(AKA Business,

Business Services, Model)

Technical Services
(AKA Technical Infrastructure,
High-level Technical Services)

Foundation
(AKA Core Services, Base Services,

Low-level Technical Services/Infrastructure)

width implies range of applicability

GUI windows
reports
speech interface
HTML, XML, XSLT, JSP, Javascript, ...

handles presentation layer requests
workflow
session state
window/page transitions
consolidation/transformation of disparate
data for presentation

handles application layer requests
implementation of domain rules
domain services (POS, Inventory)
- services may be used by just one
application, but there is also the possibility
of multi-application services

(relatively) high-level technical services
and frameworks
Persistence, Security

low-level technical services, utilities,
and frameworks
data structures, threads, math,
file, DB, and network I/O

more
app

specific

de
pe

nd
en

cy

Business Infrastructure
(AKA Low-level Business Services)

very general low-level business services
used in many business domains
CurrencyConverter

451

452 30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Figure 30.1 Common layers in an information system logical architecture.1

Based on these archetypes, Figure 30.2 illustrates a partial logical layered
architecture for the NextGen application.

Figure 30.2 Partial logical view of layers in the NextGen application.

UML notation—Package diagrams are used to illustrate the layers. In the UML,
a layer is simply a package.

1. The width of the package is used to communicate range of applicability in this dia-
gram, but this is not a general UML practice. AKA means also known as.

Log4J

Technical Services

Domain

Presentation

Pricing

PricingStrategy
Factory

Text

ProcessSale
Console

used in quick
experiments

Persistence

DBFacade

«interface»
ISalePricingStrategy

Taxes

«interface»
ITaxCalculatorAdapter

Services
Factory

Sales

Register Sale

Swing

ProcessSale
Frame

Payments

CreditPayment
«interface»

ICreditAuthorization
ServiceAdapter

ServiceAccess

Inventory

«interface»
IInventoryAdapter

Jess

A general
purpose third-
party rules
engine.

POSRuleEngine

POSRuleEngineFacade

SOAP

not the Java
Swing libraries, but
our GUI classes
based on Swing

ARCHITECTURAL PATTERN: LAYERS

Note the absence of an Application layer for this iteration of the design; as dis-
cussed later, it is not always necessary.

Since this is iterative development, it is normal to create a design of layers that
starts simple, and evolves over the iterations of the elaboration phase. One goal
of this phase is to have the core architecture established (designed and imple-
mented) by the end of the iterations in elaboration, but this does not mean doing
a large up-front speculative architectural design before starting to program.
Rather, a tentative logical architecture is designed in the early iterations, and it
evolves incrementally through the elaboration phase.

Observe that just a few sample types are present in this package diagram; this
is not only motivated by limited page space in formatting this book, but is a sig-
nature quality of an architectural view diagram—it only shows a few note-
worthy elements in order to concisely convey the major ideas of the
architecturally significant aspects. The idea in a UP architectural view docu-
ment is to say to the reader, "I've chosen this small set of instructive elements to
convey the big ideas."

Diagram Comments:
 There are other types in these packages; only a few are shown to indicate

noteworthy aspects.
 The Foundation layer was not shown in this view; the architect (me) decided

it did not add interesting information, even though the development team
will certainly be adding some Foundation classes, such as more advanced
String manipulation utilities.

 For now, a separate Application layer is not used. The responsibilities of con-
trol or session objects in the Application layer are handled by the Register
object. The architect will add an Application layer in a later iteration as the
behavior grows in complexity, and alternative client interfaces are intro-
duced (such as a web browser and wireless networked handheld PDA).

Inter-Layer and Inter-Package Coupling

It is also informative to include a diagram in the logical view that illustrates
noteworthy coupling between the layers and packages. A partial example is
illustrated in Figure 30.3.

453

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Figure 30.3 Partial coupling between packages.

UML notation:
Observe that dependency lines can be used to communicate coupling
between packages or types in packages. Plain dependency lines are excellent

when the communicator does not care to be more specific on the exact
dependency (attribute visibility, subclassing, ...), but just wants to highlight
general dependencies.

Note also the use of a dependency line emitting from a package rather than a
particular type, such as from the Sales package to POSRuleEngineFacade

class, and the Domain package to the Log4J package. This is useful when
either the specific dependent type is not interesting, or the communicator

454

Log4J

Technical Services

Domain

Presentation

Pricing

Persistence

DBFacade

Taxes

«interface»
ITaxCalculatorAdapter

Services
Factory

Sales

Register Sale

Swing

ProcessSale
Frame

Payments

CreditPayment
«interface»

ICreditAuthorization
ServiceAdapter

ServiceAccess

Inventory

«interface»
IInventoryAdapter

Jess

POSRuleEngine

POSRuleEngineFacade

SOAP

ARCHITECTURAL PATTERN: LAYERS

wants to suggest that many elements of the package may share that
dependency.

Another common use of a package diagram is to hide the specific types, and
focus on illustrating the package-package coupling, as in the partial diagram of
Figure 30.4.

Log4J

Technical Services

Domain

Presentation

JessPersistence

POSRuleEngine

Inventory

PaymentsServiceAccess

PricingSales

TextSwing

SOAP

Figure 30.4 Partial package coupling.

In fact, Figure 30.4 illustrates probably the most common style of logical archi-
tecture diagram in the UML—a package diagram that shows between perhaps 5
to 20 major packages, and their dependencies.

Inter-Layer and Inter-Package Interaction Scenarios

Package diagrams show static information. To understand the dynamics of how
objects across the layers connect and communicate, an interaction diagram is
informative. In the spirit of an "architectural view" which hides uninteresting
details, and emphasizes what the architect wants to convey, an interaction dia-

455

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

gram in the logical view of the architecture focuses on the collaborations as they
cross layer and package boundaries. A set of interaction diagrams that illustrate
architecturally significant scenarios (in the sense that they illustrate many
aspects of the large-scale or big ideas in the design) is thus useful.

For example, Figure 30.5 illustrates part of a Process Sale scenario that empha-
sizes the connection points across the layers and packages.

: Domain::
Sales::

Register
:Cashier

: Presentation::
Swing::
Process

SaleFrame

enterItem
(id, qty)

«singleton»
: Tech-

Services::
Persistence::
Persistence-

Facade

spec :=
getProduct
Spec(id)

x := isInvalid
(lineItem, sale)

spec := getObject(...,id)

«singleton»
: Domain::
POSRule-
Engine::

POSRule-
Engine
Facade

enterItem
(id, qty)

s :
Domain::

Sales::
Sale

: Domain::
Products::

Product
Catalog

makeLineItem(spec, qty)

«subsystem»
: Tech-

Services
::Jess

someJessCalls(lineItem, sale)

Points of crossing interesting boundaries or layers. These are especially noteworthy for people who need to
understand the system, and thus are highlighted in this diagram. This diagram supports communicating the
logical view of the architecture (a UP term) because it emphasizes architecturally significant information.

UML notation: Note that a subsytem can be modeled as an object in the UML.

This is useful in this case where I don't know or want to describe the details of how the
Jess rule engine works, but just want to show collaboration with it.

UML notation: UML path
name to indicate packaging

onPropertyEvent(s, "sale.total", total)

PropertyListener

Figure 30.5 An architecturally significant interaction diagram that emphasizes
cross-boundary connections.

UML notation:

 The package of a type can optionally be shown by qualifying the type with
the UML path name expression <PackageName>::<TypeName>. For exam-

456

ARCHITECTURAL PATTERN: LAYERS

ple, Domain::Sales::Register. This can be exploited to highlight to the reader
the inter-package and inter-layer connections in the interaction diagram.

 Note also the use of the «subsystem» stereotype. In the UML, a subsystem
is a discrete entity that has behavior and interfaces. A subsystem can be
modeled as a special kind of package, or—as shown here—as an object,
which is useful when one wants to show inter-subsystem (or system)
collaborations. In the UML, the entire system is also a "subsystem" (the
root one), and thus can also be shown as an object in interaction
diagrams (such as an SSD).

Observe that the diagram ignores showing some messages, such as certain Sale
collaborations, in order to highlight architecturally significant interactions.

Collaborations Two design decisions at an architectural level are:

1. What are the big parts?

2. How are they connected?

Whereas the architectural Layers pattern guides defining the big parts,
micro-architectural design patterns such as Facade, Controller, and Observer
are commonly used for the design of the connections between layers and
packages. This section examines patterns in connection and communication
between layers and packages.

Simple Packages vs. Subsystems

Some packages or layers are not just conceptual groups of things, but are true
subsystems with behavior and interfaces. To contrast:

 The Pricing package is not a subsystem; it simply groups the factory and
strategies used in pricing. Likewise with Foundation packages such as
java.util.

 On the other hand, the Persistence, POSRuleEngine, and Jess packages
are subsystems. They are discrete engines with cohesive responsibilities
that do work.

In the UML, a subsystem can be identified with a stereotype, as in Figure 30.6.

Facade

For packages that represent subsystems, the most common pattern of access is
Facade, a GoF design pattern. That is, a public facade object defines the services
for the subsystem, and clients collaborate with the facade, not internal sub-
system components. This is true of the POSRuleEngineFacade and the
PersistcnceFacade for access to the rules engine and persistence subsystem.

The facade should not normally expose many low-level operations. Rather, it is
desirable for the facade to expose a small number of high-level operations—the
coarse-grained services. When a facade does expose many low-level operations,

457

458

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

it tends to become incohesive. Furthermore, if the facade will be, or might
become, a distributed or remote object (such as an EJB session bean, or RMI
server object), fine-grained services lead to remote communication performance
problems—lots of little remote calls are a performance bottleneck in distributed
systems.

«subsystem»
Persistence

DBFacade «subsystem»
Jess

«subsystem»
POSRuleEngine

POSRuleEngineFacade
Pricing

not a subsystem

Figure 30.6 Subsystem stereotypes.

Also, a facade does not normally do its own work. Rather, it is consolidator or
mediator to the underlying subsystem objects, which do the work.

For example, the POSRuleEngineFacade is the wrapper and single point of
access into the rules engine for the POS application. Other packages do not see
the implementation of this subsystem, as it is hidden behind the facade. Sup-
pose (this is just one of many implementations) that the POS rules engine sub-
system is implemented by collaborating with the Jess rules engine. Jess is a
subsystem which exposes many fine-grained operations (this is common for very
general, third-party subsystems). But the POSRuleEngineFacade does not
expose the low level Jess operations in its interface. Rather, it provides only a
few high-level operation such as isInvalid(lineltem, sale).
If the application has only a "small" number of system operations, then it is com-
mon for the Application or Domain layer to expose only one object to an upper
layer. On the other hand, the Technical Services layer, which contains several
subsystems, exposes at least one facade (or several public objects, if facades
aren't used) for each subsystem to upper layers. See Figure 30.7.

Session Facades and the Application Layer

In contrast to Figure 30.7, when an application has many system operations and
supports many use cases, it is common to have more than one object mediating
between the Presentation and Domain layers.

ARCHITECTURAL PATTERN:. LAYERS

In the current version of the NextGen system, there is a simple design of a sin-
gle Register object acting as the facade onto the Domain layer (by virtue of the
GRASP controller pattern).

Log4J

Technical Services

Domain

Presentation

Persistence

DBFacade

Sales

Register Sale

Swing

ProcessSale
Frame

Jess SOAP

for applications with only a few system
operations, perhaps only one object acts as the
facade into the layer

The Technical Services layer
typically exposes many
interfaces--at least one per
subsystem

Figure 30.7 Number of interfaces exposed to upper layers.

However, as the system grows to handle many use cases and system operations,
it is not uncommon to introduce an Application layer of objects that maintain
session state for the operations of a use case, where each session instance repre-
sents a session with one client. These are called Session Facades, and their use
is another recommendation of the GRASP Controller pattern, such as in the
use-case session facade controller variant of the pattern. See Figure 30.8 for an
example of how the NextGen architecture may evolve with an Application layer
and session facades.

Controller

The GRASP Controller pattern describes common choices in client-side handlers
(or controllers, as they've been called) for system operation requests emitting
from the Presentation layer. Figure 30.9 illustrates.

459

460 30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Figure 30.9 The Controller choices.

Application

Domain

Presentation

Sales

Register Sale

Swing

ProcessSale
Frame

Application session
facade objects that
maintain session
state and control
workflow related to
some work--often
by use case.

ProcessSale
SessionFacade

ProcessRental
SessionFacade

HandleReturns
SessionFacade

ProcessRental
Frame...

Rentals

Rental ...

Figure 30.8 Session facades and an Application Layer.

Application

Domain

Presentation

Swing

ProcessSale
Frame

GRASP Controller
pattern suggests
these common
choices of objects
to handle system
operation requests.

...

...

...Register

makeNewSale
enterItem
...

ProcessSale
SessionFacade

makeNewSale
enterItem
...

OR

Figure 30.9 The Controller choices

ARCHITECTURAL PATTERN: LAYERS

System Operations and Layers

The SSDs illustrate the system operations, hiding presentation objects from the
diagram. The system operations being invoked on the system in Figure 30.10
are requests being generated by an actor via the Presentation layer, onto the
Application or Domain layer.

Domain

Presentation

Swing

ProcessSale
Frame...

... Register

makeNewSale()
enterItem()
...

: Cashier

makeNewSale()
enterItem()
endSale()

makeNewSale()
enterItem()
endSale()

enterItem(id, quantity)

:System
: Cashier

endSale()

description, total
* [more items]

makeNewSale()

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the Presentation layer

Figure 30.10 System operations in the SSDs and in terms of layers.

Upward Collaboration with Observer

The Facade pattern is commonly used for "downward" collaboration from a
higher to a lower layer, or for access to services in another subsystem of the
same layer. When the lower Application or Domain layer needs to communicate
upward with the Presentation layer, it is usually via the Observer pattern. That
is, UI objects in the higher Presentation layer implement an interface such as
Property Listener or AlarmListener, and are subscribers or listeners to events
(such as property or alarm events) coming from objects in the lower layers. The
lower layer objects are directly sending messages to the upper layer UI objects,
but the coupling is only to the objects viewed as things that implement an inter-
face such as PropertyListener, not viewed as specific GUI windows.

This was examined when the Observer pattern was introduced. Figure 30.11
summarizes the idea in relation to layers.

461

462

Figure 30.11 Observer for "upward" communication to the Presentation layer.

Relaxed Layered Coupling

The layers in most layered architectures are not coupled in the same limited
sense as a network protocol based on the OSI 7-Layer Model. In the protocol
model, there is strict restriction that elements of layer N only access the services
of the immediate lower layer N-l.

This is rarely followed in information system architectures. Rather, the stan-
dard is a "relaxed layered" or "transparent layered" architecture IBMRSS96], in
which elements of a layer collaborate with or are coupled to several other layers.

Comments on typical coupling between layers:

 All higher layers have dependencies on the Technical Services and Founda
tions layer.

ο For example, in Java all layers depend onjava.util package
elements.

 It is primarily the Domain layer that has dependency on the Business Infra
structure layer.

: Domain::
Sales::

Register
:Cashier

: Presentation::
Swing::
Process

SaleFrame

enterItem
(id, qty)

...

enterItem
(id, qty)

s :
Domain::
Sales::
Sale

makeLineItem(spec, qty)

Collaboration from the lower layers to the Presentation layer is usually via the Observer (Publish-Subscribe
pattern. The Sale object has registered subscribers that are PropertyListeners. One happens to be a Swing
GUI JFrame, but the Sale does not know this object as a GUI JFrame, but only as a PropertyListener.

onPropertyEvent(s, "sale.total", total)

PropertyListener

...

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

ARCHITECTURAL PATTERN: LAYERS

 The Presentation layer makes calls on the Application layer, which makes
service calls on the Domain layer; the Presentation layer does not call on the
Domain, unless there is no Application layer.

 If it is a single-process "desktop" application, software objects in the Domain
layer are directly visible to, or passed between, Presentation, Application, and
to a lesser extent, Technical Services.

ο For example, assuming the NextGen POS system is of this type, a Sale
and a Payment object could be directly visible to the GUI Presentation
Layer, and also passed into the Persistence subsystem in the Technical
Services layer.

 On the other hand, if it is a distributed system, then serializable replicates (also
known as data holder or value objects) of objects in the Domain layer are
usually passed to a Presentation layer. In this case, the Domain layer is
deployed on a server computer, and client nodes get copies of server data.

Isn't Coupling to Technical Service and Foundation Layers Dangerous?

As the GRASP Protected Variations and Low Coupling discussions explored, it
is not coupling per se that is a problem, but unnecessary coupling to variation
and evolution points that are unstable and expensive to fix. There is very little
justification in spending time and money attempting to abstract or hide some-
thing that is unlikely to change, or if it did, the change impact cost would be
negligible. For example, if building a Java technologies application, what value
is there in hiding the application from access to the Java libraries? High cou-
pling into many points of the libraries is an unlikely problem, as they are (rela-
tively) stable and ubiquitous.

Discussion In addition to the structural and collaboration issues discussed above for
this pattern, other issues include the following.

External Resources or External Database Layer at the Bottom?

Most systems rely on external resources or services, such as an Oracle database
and a Novell LDAP naming and directory service. These are physical implemen-
tation components, not a layer in the logical view of the architecture.

Showing external resources such as a particular database in a layer "below" the
Foundation layer (for example) mixes up the logical view and the deployment or
implementation views of the architecture.

Rather, in terms of the logical view of the architecture and its layers, access to a
particular set of persistent data (such as inventory data) can be viewed as a
sub-domain of the Domain Layer—the Inventory subdomain. And the general
services that provide access to databases may be viewed as a Technical Service
partition—the Persistence service. See Figure 30.12.

463

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

30 .12 M ix ing v i ews o f t he a rch i t ec tu re .

Logical vs. Process and Deployment Views of the Architecture

The architectural layers are a logical view of the architecture, not a deployment
view of elements to processes and processing nodes. Depending on the platform,
all layers could be deployed within the same process on the same node, such as
an application within a handheld PDA, or spread across many computers and
processes for a large-scale web application.

The UP Deployment Model that maps this logical architecture to processes and
nodes is strongly influenced by the choice of software and hardware platform
and associated application frameworks. For example, J2EE versus .NET influ-
ence the deployment architecture.

There are many ways to slice and dice these logical layers for deployment, and
in general the subject of deployment architecture will only be lightly introduced,
as it is non-trivial, largely outside the scope of the book, and dependent on
detailed discussion of the chosen software platform, such as J2EE.

Optional Application Layer?

If present, the Application layer contains objects responsible for knowing the
session state of clients, mediating between the Presentation and Domain layers,
and controlling the flow of work.

464

Domain(s)

Technical
Services

Foundation

Inventory

Persistence Naming and
Directory Services

Web
AppFramework

Technical Services

POS Inventory

Domain(s)

Foundation

Worse
mixes logical and implementation
views

Better
a logical view

a logical representation
of the need for data or
services related to these
subdomains, abstracting
implementation
decisions such as a
database.

Novell
LDAP

UML notation: A UML component, or physical part of the system.

UML notation: A physical database in the UML.

ARCHITECTURAL PATTERN: LAYERS

The flow may be organized by controlling the order of windows or web pages, for
example.
In terms of the GRASP patterns, GRASP Controller objects such as a use case
facade controller are part of this layer. In distributed systems, components such
as EJB session beans (and stateful session objects in general) are part of this
layer.

In some applications, this layer is not required. It is useful (this is not an
exhaustive list) when one or more of the following is true:

Multiple user interfaces (for example, web pages and a Swing GUI) will be
used for the system. The Application layer objects can act as Adapters that

collect and consolidate the data as needed for different UIs, and as Facades
that wrap and hide access to the Domain layer.

It is a distributed system and the Domain layer is on a different node than the
Presentation layer, and shared by multiple clients. It is usually necessary to

keep track of session state, and Application layer objects are a useful choice
for this responsibility.

The Domain Layer can not or should not maintain session state.

There is a defined workflow in terms of the controlled order of windows or
web pages that must be presented.

Fuzzy Set Membership in Different Layers

Some elements are strongly a member of one layer; a Math class is part of the
Foundation layer. However, especially between the Technical Services and Foun-
dation layers, and Domain and Business Infrastructure, some elements are
harder to classify, because the differentiation between these layers is, roughly,
"high" versus "low," or "specific" versus "general." which are fuzzy set terms.
This is normal, and it is seldom necessary to decide upon a definitive categoriza-
tion—the development team may consider an element roughly part of the Tech-
nical Services and/or Foundations layer considered as a group, broadly called
the Infrastructure layer.2

For example:

 Suppose this is a Java technologies project, and the open source logging
framework Log4J (part of the Jakarta project) has been chosen. Is
logging part of the Technical Service or Foundation layer? Log4J is a
low-level, small, general framework. It is moderately a member of both
the Technical Services and the Foundations fuzzy sets.

2. Note that there are not well-established naming conventions for layers, and name
overloading and contradiction in the architecture literature is common.

465

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

 Suppose this is a web application, and the Jakarta Struts framework for web
applications has been chosen. Struts is a relatively high-level, large, specific
technical framework. It is arguably strongly a member of the Technical Ser-
vices set, and weakly a member of the Foundation set.

But, one person's High-level Technical Service is another's Foundation...

Finally, it is not the case that the libraries provided by a software platform only
represent low-level Foundation services. For example, in both .NET and
J2SE+J2EE, services include relatively high-level functions such as naming and
directory services.

Terminology: Tiers, Layers, and Partitions

The original notion of a tier in architecture was a logical layer, not a physical
node, but the word has become widely used to mean a physical processing node
(or cluster of nodes), such as the "client tier" (the client computer). This presen-
tation will avoid the term for clarity, but bear this in mind when reading archi-
tecture literature.

The layers of an architecture are said to represent the vertical slices, while
partitions represent a horizontal division of relatively parallel subsystems of a
layer. For example, the Services layer may be divided into partitions such as
Security and Reporting (Figure 30.13).

Contraindications
and Liabilities

Figure 30.13 Layers and partitions.

 In some contexts, adding layers introduces performance problems. For
example, in a high-performance graphics-intensive game adding layers of
abstraction and indirection on top of direct access to graphics card compo-
nents may introduce performance problems.

 The Layers pattern is one of several core architectural patterns; it is not
applicable to every problem. For example, an alternate is Pipes and
Filters [BMRSS96]. This is useful when the main theme of the application
involves processing something through a series transformations, such
as image

466

Persistence Security Web
AppFramework

Technical Services

POS Inventory Tax

Domain

Vertical Layers

Horizontal Partitions

ARCHITECTURAL PATTERN: LAYERS

transformations, and the ordering of the transformations is changeable. Yet
even in the case when the highest level architectural pattern is Pipes and
Filters, individual pipes or filters can be design with Layers.

Benefits

 In general, there is a separation of concerns, a separation of high from
low-level services, and of application-specific from general services. This
reduces coupling and dependencies, improves cohesion, increases reuse
potential, and increases clarity.

 Related complexity is encapsulated and decomposable.

 Some layers can be replaced with new implementations. This is
generally not possible for lower-level Technical Service or
Foundation layers (e.g., java.util), but may be possible for
Presentation, Application, and Domain
layers.

 Lower layers contain reusable functions.

 Some layers (primarily the Domain and Technical Services) can
be distributed.

 Development by teams is aided because of the logical segmentation.

implementation Implementing the Layers: People and Process

It is common and recommended, within an iteration, to have a developer special-
ize within one layer or one service.

Yet, it is not the case that the entire project team focuses on one layer or service
in an iteration. Rather, it is more common to implement vertical slices across
the layers. This is the UP approach in the elaboration phase: Choose scenarios
and requirements that force, in each iteration, a broad coverage across many
architecturally significant packages/layers/subsystems, in order to reveal and
stabilize the major architectural elements in the early iterations.

However, in this book, this approach was not illustrated in the NextGen case
study, because to do so would require early discussion across many and vast top-
ics—from GUI programming to object-relational mapping and optimizing SQL
statements. The book case study has focused on the design of Domain layer
objects, while recognizing that in reality there would be parallel work going on
to develop other layers and subsystems.

The design principles illustrated for the case study are applicable in virtually all
layers of the design.

Implementation View: Mapping Source Code Organization to
Layers and Packages

Part of the UP Implementation Model is the organization of the source code. For
languages such as Java or C#, which provide easy package (namespace) support,
the mapping from the logical packaging to the implementation packaging is sim-

467

468

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

ilar, with notable exceptions when third-party libraries are used.3 In fact, it is
only in the early stages of development, when packages have been speculatively
drawn, but not implemented, that there are meaningful differences.

Over time, as the code base grows, it is common to abandon the early specula-
tive drawings (such as the ones we have just seen), and instead use a
reverse-engineering UML CASE tool that reads the source code and generates a
package diagram. Then, these automatically generated package diagrams, which
accurately reflect the code (the real design) become the basis for the logical view
of the architecture.

To use Java as an example for mapping to implementation packages, the layers
and packages illustrated in Figure 30.4 might map to Java package names as
follows:
//---- PRESENTATION

com.foo.nextgen.ui.swing
com.foo.nextgen.ui.text

//---- DOMAIN

// packages relatively specific to the NextGen project
com.foo.nextgen.domain.sales com.foo.nextgen.domain.pricing
com.foo.nextgen.domain.serviceaccess
com.foo.nextgen.domain.posruleengine

// packages that can easily be designed as
// multi-application common business services

com.foo.domain.inventory
com.foo.domain.creditpayment

// --- TECHNICAL SERVICES

// our team creates
com.foo.service.persistencelite

// third party
org.apache.log4j
org.apache.soap.rpc
jess

// --- FOUNDATION

// our team creates
com.foo.util
com.foo.stringutil

Notice that an effort has been made to avoid using a specific application quali-
fier ("nextgen") in the package names unless necessary. For example, the UI

3. C++ also supports namespaces, but it is awkward to use the language with dozens or
hundreds of fine-grained namespaces; not so for Java or C#.

ARCHITECTURAL PATTERN: LAYERS

packages are related to the NextGen application, and so are qualified with the
application name com.foo.nextgen.ui.*.

To support reuse, one practice is to name elements in an application-indepen-
dent manner, when appropriate. As a straightforward example, general purpose
String utilities created by the NextGen team, are placed in com.foo.stringutils,
not com.foo.nextgen.stringutils. Furthermore, com.foo.stringutils should be
placed in the company's source code repository at a company level, rather than
buried within the NextGen project's source code folders. You can't reuse it if you
can't see it.

As another example, consider the services to access external third-party inven-
tory and credit payment authorization systems. Although they were created by
the NextGen team in the service of the NextGen POS project, they are general
business services—one could imagine accessing inventory systems from within
other applications; so too for credit payment authorization. Hence,
com.foo.domain.inventory rather than com.foo.nextgen.domain.inventory.

On the other hand, the POSRuleEngine package is completely related to the
NextGen POS project. Thus, com.foo.nextgen.domain.posruleengine.

If in doubt, qualify the package with the project name. It can always be
refac-tored at a later date.

Known Uses A vast number of modern object-oriented systems (from desktop applications to
distributed J2EE web systems) are developed with Layers; it might be harder to
find one that is not, than is. Going farther back in history:

Virtual Machines and Operating Systems

Starting in the 1960s, operating system architects advocated the design of oper-
ating systems in terms of clearly defined layers, where the "lower" layers encap-
sulated access to the physical resources and provided process and I/O services,
and higher layers called on these services. These included Multics [CV65] and
the THE system [Dijkstra68].

Earlier still—in the 1950s—researchers su ggested the idea of a virtual machine
(VM) with a bytecode universal machine language (for example, UNCOL
[Conwayl958]), so that applications could be written at higher layers in the
architecture (and executed without recompilation across different platforms), on
top of the virtual machine layer, which in turn would sit on top of the operating
system and machine resources. A VM layered architecture was applied by Alan
Kay in his landmark Flex object-oriented based personal computer system
[Kay68] and later (1972) by Kay and Dan Ingalls in the influential Smalltalk
virtual machine [GK76]—the progenitor of more recent VMs such as the Java
Virtual Machine.

469

470

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Information Systems: The Classic Three-Tier Architecture

An early influential description of a layered architecture for information sys-
tems that included a user interface and persistent storage of data was known as
a three-tier architecture (Figure 30.14), described in the 1970s in [TK78].
The phrase did not achieve popularity until the mid 1990s, in part due to its pro-
motion in [Gartner95] as a solution to problems associated with the widespread
use of two-tier architectures.

The original term is now less common, but its motivation is still relevant. A

classic description of the vertical tiers in a three-tier architecture is:

1. Interface—windows, reports, and so on.

2. Application Logic—tasks and rules that govern the process.

3. Storage—persistent storage mechanism.

Calculate taxes

Interface

Application
Logic

Authorize
payments

Storage
Database

Figure 30.14 Classic view of a three-tier architecture.

The singular quality of a three-tier architecture is the separation of the applica-
tion logic into a distinct logical middle tier of software. The interface tier is rela-
tively free of application processing; windows or web pages forward task
requests to the middle tier. The middle tier communicates with the back-end
storage layer.

There was some misunderstanding that the original description implied or
required a physical deployment on three computers, but the intended descrip-
tion was purely logical; the allocation of the tiers to compute nodes could vary
from one to three. See Figure 30.15.

THE MODEL-VIEW SEPARATION PRINCIPLE

Related Patterns

Figure 30.15 A three-tier logical division deployed in two physical architectures.

The three-tier architecture was contrasted by the Gartner Group with a
two-tier design, in which, for example, application logic is placed within window
definitions, which read and write directly to a database; there is no middle tier
that separates out the application logic. Two-tier client-server architectures
became especially popular with the rise of tools such as Visual Basic and
PowerBuilder.

Two-tier designs have (in some cases) the advantage of initial quick develop-
ment, but can suffer the complaints covered in the Problems section. Neverthe-
less, there are applications that are primarily simple CRUD (create, retrieve,
update, delete) data intensive systems, for which this is a suitable choice.

 Indirection—layers can add a level indirection to lower-level services.

 Protected Variation—layers can protect against the impact of varying
implementations.

 Low Coupling and High Cohesion—layers strongly support these goals.

 Its application specifically to object-oriented information
systems is described in [Fowler96].

Also Known As Layered Architecture [Shaw96, Gemstone00]

30.3 The Model-View Separation Principle

This principle has been discussed several times; this section summarizes it.

What kind of visibility should other packages have to the Presentation layer?

471

calculate
taxes

Application
Logic

Interface

calculate
taxes

Application
Logic

Interface

classic 3-tier architecture deployed
on 2 nodes: "thicker client"

classic 3-tier architecture
deployed on 3 nodes: "thiner client"

UML notation:
a node. This is
a processing
resource such
as a computer.

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

How should non-window classes communicate with windows? It is desirable
that there is no direct coupling from other components to window objects
because the windows are related to a particular application, while (ideally) the
non-windowing components may be reused in new applications or attached to a
new interface. The is the Model-View Separation principle.

In this context, model is a synonym for the Domain layer of objects. View is a
synonym for presentation objects, such as windows, applets and reports.

The Model-View Separation principle4 states that model (domain) objects
should not have direct knowledge of view (presentation) objects, at least as view
objects. So, for example, a Register or Sale object should not directly send a mes-
sage to a GUI window object ProcessSaleFrame, asking it to display something,
change color, close, and so forth.

As previously discussed, a legitimate relaxation of this principle is the Observer
pattern, where the domain objects send messages to UI objects viewed only in
terms of an interface such as PropertyListener or AlarmListener.
A further part of this principle is that the domain classes encapsulate the infor-
mation and behavior related to application logic. The window classes are rela-
tively thin; they are responsible for input and output, and catching GUI events,
but do not maintain data or directly provide application functionality.

The motivation for Model-View Separation includes:

 To support cohesive model definitions that focus on the domain
processes, rather than on user interfaces.

 To allow separate development of the model and user interface
layers.

 To minimize the impact of requirements changes in the interface
upon the domain layer.

 To allow new views to be easily connected to an existing domain
layer, without affecting the domain layer.

 To allow multiple simultaneous views on the same model
object, such as both a tabular and business chart view of sales
information.

 To allow execution of the model layer independent of the user
interface layer, such as in a message-processing or batch-mode
system.

 To allow easy porting of the model layer to another user
interface framework.

472

4. This is a key principle in the pattern Model-View-Controller (MVC). MVC was
originally a small-scale Smalltalk-80 pattern, and related data objects (models), GUI
widgets (views), and mouse and keyboard event handlers (controllers). More recently,
the term "MVC" has been coopted by the distributed design community to also apply
on a large-scale architectural level. The Model is the Domain Layer, the View is the
Presentation Layer, and the Controllers are the workflow objects in the Application
layer.

THE MODEL-VIEW SEPARATION PRINCIPLE

Model-View Separation and "Upward" Communication

How can windows obtain information to display? Usually, it is sufficient for
them to send messages to domain objects, querying for information which they
then display in widgets—a polling or pull-from-above model of display
updates.

Figure 30.16 A Presentation layer UIFacade is occasionally used for
push-from-below designs.

However, a polling model is sometimes insufficient. For example, polling every
second across thousands of objects to discover only one or two changes, which
are then used to refresh a GUI display, is not efficient. In this case it is more effi-
cient for the few changing domain objects to communicate with windows to
cause a display update as the state of domain objects changes. Typical situations
of this case include:

 Monitoring applications, such as telecommunications network management.

 Simulation applications which require visualization, such as aerodynamics
modeling.

In these situations, a push-from-below model of display update is required.
Because of the restriction of the Model-View Separation pattern, this leads to
the need for "indirect" communication from lower objects up to windows—push-
ing up notification to update from below.

There are two common solutions:

1. The Observer pattern, via making the GUI object simply appear as an object
that implements an interface such as PropertyListener.

2. A Presentation facade object. That is, adding a facade within the Presenta
tion layer that receives requests from below. This is an example of adding
Indirection to provide Protected Variation if the GUI changes. For example,
see Figure 30.16.

473

Domain

Presentation

Register Sale

ProcessSale
Frame

UIFacade

UIFacades are
occasionally used when
a push-from-below
communication model
is required.

Not a Swing or GUI class.
Just a plain object which
adds a level of indirection to
the GUI objects

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

30.4 Further Readings

There's a wealth of literature on layered architectures, both in print and on the
Web. A series of patterns in Pattern Languages of Program Design, volume 1,
[CS95] first address the topic in pattern form, although layered architectures
have been used and written about since at least the 1960s; volume 2 continues
with further layers-related patterns. Pattern-Oriented Software Architecture vol-
ume 1 [BMRSS96] provides a good treatment of the Layers pattern.

474

Chapter 31

ORGANIZING THE

DESIGN AND IMPLEMENTATION

MODEL PACKAGES

If you were plowing a field, which would you
rather use? Two strong oxen or 1024 chickens?

— Seymour Cray

Objectives

Organize packages to reduce the impact of changes.

Know alternative UML package structure notation.

Introduction

If some package X is widely depended upon by the development team, it is unde-
sirable for X to be very unstable (going through many new versions), since it
increases the impact on the team in terms of constant version re-synchroniza-
tion and fixing dependent software that breaks in response to changes in X (ver-
sion thrashing).

This sounds and is obvious, but sometimes a team does not pay attention to
identifying and stabilizing the most depended-upon packages, and ends up expe-
riencing more version thrashing than necessary.

This chapter builds on the previous chapter's introduction to layers and pack-
ages, by suggesting more fine-grained heuristics for the organization of pack-
ages, to reduce these kinds of change impact. The goal is to create a robust
physical package design.

475

31 - ORGANIZING THE DESIGN AND IMPLEMENTATION MODEL PACKAGES

One feels the pain of fragile dependency-sensitive package organization much
more quickly in C++ than in Java because of the hyper-sensitive compile and
link dependencies in C++; a change in one class can have a strong transitive
dependency impact leading to recompilation of many classes, and re-linking.1

Therefore, these suggestions are especially helpful for C++ projects, and moder-
ately so for Java, Smalltalk, or C# (as examples) projects.

The useful work of Robert Martin [Martin95], who has grappled with physical
design and packaging of C++ applications, influenced some of the following
guidelines.

Source Code Physical Design in the Implementation Model

This issue is an aspect of physical design-the UP Implementation Model for
source code packaging.

While simply diagramming a package design on a whiteboard or CASE tool, we
can arbitrarily place types in any functionally cohesive package without impact.
But during source code physical design—the organization of types into physical
units of release as Java or C++ "packages"—our choices will influence the degree
of developer impact when changes in those packages occur, if there are many
developers sharing a common code base.

31.1 Package Organization Guidelines

Guideline: Package Functionally Cohesive Vertical and Horizontal
Slices

The basic "intuitive" principle is modularization based on functional cohesion—
types are grouped together that are strongly related in terms of their participa-
tion in a common purpose, service, collaborations, policy, and function. For
example, all the types in the NextGen Pricing package are related to product
pricing. The layers and packages in the NextGen design are organized by func-
tional groups.

In addition to the usually sufficient informal guesswork on grouping by function
("I think class SalesLineltem belongs in Sales") another clue to functional group-
ing is a cluster of types with strong internal coupling and weaker extra-cluster
coupling. For example, Register has a strong coupling to Sale, which has a
strong coupling to SalesLineltem.

1. In C++ the packages may be realized as namespaces, but more likely it means the
organization of the source code into separate physical directories—one for each
"package."

476

PACKAGE ORGANIZATION GUIDELINES

Internal package coupling, or relational cohesion, can be quantified, although
such formal analysis is rarely of practical necessity. For the curious, one mea-
sure is:

Where NumberOflnternalRelations includes attribute and parameter relations,
inheritance, and interface implementations between types in the package.

A package of 6 types with 12 internal relations has RC=2. A package of 6 types
with 3 intra-type relations has RC=0.5. Higher numbers suggest more cohesion
or relatedness for the package.

Note that this measure is less applicable to packages of mostly interfaces; it is
most useful for packages that contain some implementation classes.

A very low RC value suggests either:

 The package contains unrelated things and is not factored well.

 The package contains unrelated things and the designer deliberately does
not care. This is common with utility packages of disparate services (e.g.,
java.util), where high or low RC is not important.

 It contains one or more subset clusters with high RC, but overall does not.

Guideline: Package a Family of Interfaces

Place a family of functionally related interfaces in a separate package—separate
from implementation classes. This is not primarily for the case of one or two
related interfaces, but rather when there is a family of perhaps three or more
interfaces. The Java technologies EJB package javax.ejb is an example: It is a
package of at least twelve interfaces; implementations are in separate packages.

Guideline: Package by Work and by Clusters of Unstable Classes

The context for this discussion is that packages are usually the basic unit of
development work and of release. It is less common to work on and release just
one class.

Suppose 1) there is an existing large package P1 with thirty classes, and 2)
there is a work trend that a particular subset often classes (Cl through C10) is
regularly modified and re-released.

In this case, refactor P1 into Pl-a and Pl-b, where Pl-b contains the ten fre-
quently worked on classes.

Thus, the package has been refactored into more stable and less stable subsets,
or more generally, into groups related to work. That is, if most types in a pack-
age are worked on together, then it is a useful grouping.

477

478 31 - ORGANIZING THE DESIGN AND IMPLEMENTATION MODEL PACKAGES

Ideally, fewer developers have a dependency on Pl-b than on Pl-a, and by fac-
toring out this unstable part to a separate package, not as many developers are
affected by new releases of Pl-b as by re-releasing the larger original package
P1.

Note that this refactoring is in reaction to an emerging work trend. It is difficult
to speculatively identify a good package structure in very early iterations. It
incrementally evolves over the elaboration iterations, and it should be a goal of
the elaboration phase (because it is architecturally significant) to have the
majority of the package structure stabilized by elaboration completion.

This guideline illustrates the basic strategy: Reduce widespread depen-
dency on unstable packages.

Guideline: Most Responsible Are Most Stable

If the most responsible (depended-on) packages are unstable, there is a greater
chance of widespread change dependency impact. As an extreme case, if a
widely used utility package such as com.foo.util changed frequently, many
things could break. Therefore, Figure 31.1 illustrates an appropriate depen-
dency structure.

Figure 31.1 More responsible packages should be more stable.

Visually, the lower packages in this diagram should be the most stable. There
are different ways to increase stability in a package:

Less Stable:
-more dependent
-concrete, detailed

More Stable:
-less dependent
-concrete, detailed code is stabilized
 due to refinement or mandate.
-abstract classes &
 interfaces & facades

com.foo.util

com.foo.nextgen.
domain.posruleengine

com.foo.nextgen.
ui.swing

com.foo.nextgen.
domain.sales

The more depended-on packages should be the most stable,
because when they do change, they could have the largest
impact

com.foo.nextgen.
domain.payments

PACKAGE ORGANIZATION GUIDELINES

 It contains only or mostly interfaces and abstract classes.

o For example, java.sql contains eight interfaces and six classes, and
the classes are mostly simple, stable types such as Time and Date.

 It has no dependencies on other packages (it is independent), or it depends
on other very stable packages, or it encapsulates its dependencies such that
dependents are not affected.

o For example, com.foo.nextgen.domain.posruleengine hides its rule
engine implementation behind a single facade object. Even if the
implementation changes, dependent packages are not affected.

 It contains relatively stable code because it was well-exercised and refined
before release.

o For example, java.util.

 It is mandated to have a slow change schedule

o For example, java.lang, the core package in the Java libraries, is
simply not allowed to change frequently.

Guideline: Factor out Independent Types

Organize types that can be used independently or in different contexts into sep-
arate packages. Without careful consideration, grouping by common functional-
ity may not provide the right level of granularity in the factoring of packages.

For example, suppose that a subsystem for persistence services has been defined
in one package com.foo.seruice.persistence. In this package are two very general
utility/helper classes JDBCUtililities and SQLCommand. If these are general
utilities for working with JDBC (Java's services for relational database access),
then they can be used independently of the persistence subsystem, for any occa-
sion when the developer is using JDBC. Therefore, it is better to migrate these
types into a separate package, such as com.foo.util.jdbc. Figure 31.2 illustrates.

Figure 31.2 Factoring out independent types.

479

worse better

SQLCommandJDBCUtilties

DBFacade

Schema
Mapping ...

com.foo.service.persistence

DBFacade

Schema
Mapping ...

com.foo.service.persistence

SQLCommandJDBCUtilties

com.foo.util.jdbc

480

31 - ORGANIZING THE DESIGN AND IMPLEMENTATION MODEL PACKAGES

Guideline: Use Factories to Reduce Dependency on Concrete
Packages

One way to increase package stability is to reduce its dependency on concrete
classes in other packages. Figure 31.3 illustrates the "before" situation.

 // in some methods of Register and PaymentMapper
CreditPayment pmt = new CreditPayment();

Persistence

Payment
Mapper

Payments

CreditPayment

Sales

Register

Figure 31.3 Direct coupling to concrete package due to creation.

Suppose that both Register and PaymentMapper (a class that maps payment
objects to/from a relational database) create instances of CreditPayment from
package Payments. One mechanism to increase the long-term stability of the
Sales and Persistence packages is to stop explicitly creating concrete classes
defined in other packages (CreditPayment in Payments).
We can reduce the coupling to this concrete package by using a factory object
that creates the instances, but whose create methods return objects declared in
terms of interfaces rather than classes. See Figure 31.4.

Domain Object Factory Pattern

The use of domain object factories with interfaces for the creation of all domain
objects is a common design idiom. I have seen it mentioned informally in design
literature as the Domain Object Factory pattern, but do not know of a reference
to it formally written as a pattern.

Guideline: No Cycles in Packages

If a group of packages have cyclic dependency then they may need to be treated
as one larger package in terms of a release unit. This is undesirable because
releasing larger packages (or package aggregates) increases the likelihood of
affecting something.

 // in some methods of Register and PaymentMapper
ICreditPayment pmt = DomainObjectFactory.getInstance().getNewCreditPayment();

Persistence

Payment
Mapper

Payments

CreditPayment

Sales

Register

DomainObjectCreation

DomainObjectFactory

getNewCreditPayment() : ICreditPayment
getNewProductCatalog() :
IProductCatalog
...

«interface»
ICreditPayment

setCreditAccount(...
)
...

«interface»
IProductCatalog

getProductSpecification(...)
...

Products

Product
Catalog

Figure 31.4 Reduced coupling to a concrete package by using a factory object

worse better

A...

... B

A...

... B

«interface»
IB

Figure 31.5 Breaking a cyclic dependency.

There are two solutions:

1. Factor out the types participating in the cycle into a new smaller package.

2. Break the cycle with an interface.

481

PACKAGE ORGANIZATION GUIDELINES

31 - ORGANIZING THE DESIGN AND IMPLEMENTATION MODEL PACKAGES

The steps to break the cycle with an interface are:

1. Redefine the depended-on classes in one of the packages to implement new
interfaces.

2. Define the new interfaces in a new package.

3. Redefine the dependent types to depend on the interfaces in the new pack
age, rather than the original classes.

Figure 31.5 illustrates this strategy.

31.2 More UML Package Notation

Finally, while on the subject of packages, the UML provides alternate notation
to illustrate outer and inner packages. Sometimes it is awkward to draw an
outer package box around inner packages. Alternatives are shown in Figure
31.6.

Domain::
Sales

Presentation::
Text

Presentation::
Swing

Technical Services::
Jess

Domain::
POSRuleEngine

Sales

TextSwing

Jess

POSRuleEngine

Presentatio
n

Technical
Services

Domain

Log4J

Figure 31.6 Alternate UML approaches to showing packages structure, using
UML path names, or the circle-cross symbol.

482

FURTHER READINGS

31.3 Further Readings

Most of the detailed work—not surprisingly—on improving package design to
reduce dependency impact comes from the C++ community, although the princi-
ples apply to other languages. Martin's Designing Object-Oriented C++ Applica-
tions Using the Booch Method [Martin95] provides good coverage, as does
Large-Scale C++ Software Design [Lakos96]. The subject is also introduced in
Java 2 Performance and Idiom Guide [GL99].

483

Chapter 32

INTRODUCTION

TO ARCHITECTURAL ANALYSIS

AND THE SAD

Error, no keyboard - press F1 to continue,

—early PC BIOS message

Objectives

Create architectural factor tables.

Create technical memos that record architectural decisions.

Know basic principles of architectural design.

Know resources for learning architectural patterns.

Introduction

The essence of architectural analysis is to identify factors which should influ-
ence the architecture, understand their variability and priority, and resolve
them. The difficult part is knowing what questions to ask, weighing the trade-
offs, and knowing the many ways to resolve an architecturally significant factor,
ranging from benign neglect, to fancy designs, to third-party products.

In the UP, the architectural factors are recorded in the Supplementary Specifi-
cation, and the architectural decisions that resolve them are recorded in the
Software Architecture Document (SAD, described in more detail near the
end of this chapter).

Architectural analysis starts early, during the inception phase, and is a focus of
the elaboration phase; it is a high-priority and very influential activity in soft-

485

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

ware development. The topic was deferred until this point of the book so that
fundamentals of OOA/D could be first presented. It is a useful activity to:

reduce the risk of missing something centrally important in the design of
the systems

avoid applying excessive effort to low priority issues help

align the product with business goals

This chapter is an introduction to basic steps and ideas in architectural
analysis from a UP perspective; that is, to the method, rather than to tips and
tricks of master architects. Thus, it is not a cookbook of architectural
solutions—a large and context-dependent subject that is beyond the scope of
this introductory book. Nevertheless, the NextGen POS case study comments in
the chapter do provide concrete examples of architectural solutions.

32.1 Architectural Analysis

Architectural analysis is concerned with the identification and resolution of
the system's non-functional (for example, quality) requirements, in the context
of the functional requirements.

In the UP, the term encompasses both architectural investigation (identifica-
tion) and architectural design (resolution). Here are some examples of the many
issues to be identified and resolved at an architectural level:

 How do reliability and fault-tolerance requirements affect the design?

ο For example, in the NextGen POS, for what remote services (e.g.,
tax calculator) will fail-over to local services be allowed? Why? Do
they provide exactly the same services locally as remotely, or are
there differences?

 How do the licensing costs of purchased subcomponents affect
profitability?

ο For example, the producer of the excellent database server, Clue-
less, wants 2% of each NextGen POS sale, if their product is used as
a subcomponent. Using their product will speed development (and
time to market) because it is robust and provides many services,
and many developers know it, but at a price. Should the team
instead use the less robust, open source YourSQL database server?
At what risk? How does it restrict the ability to charge for the
NextGen product?

 How does distribution of services affect the quality requirements and
functional requirements?

ο For example, using a remote (single, centralized) tax calculator
reduces the footprint of each NextGen client, reduces licensing
fees (only one copy is needed), and minimizes the custom configu-

486

ARCHITECTURAL ANALYSIS

ration effort (each installation requires weekly adjustment due to
changing government and business policies). However, the remote
service reduces response time sufficiently that taxes can only be
calculated once, after all line items have been entered; one cannot
see a running total with taxes after each line item entry; and the
remote call takes too long. It also creates a single point of failure.

 How do the adaptability and configurability requirements affect the design?

ο For example, most retailers have variations in business rules they
want represented in their POS applications. What are the varia-
tions? What is the "best" way to design for them? What is the crite-
ria for best? Can NextGen make more money by requiring
customized programming for each customer (and how much effort
will that be?), or with a solution that allows the customer to add
the customization easily themselves? Should "more money" be the
goal in the short-run?

Common Steps in Architectural Analysis

There are several methods of architectural analysis. Common to most of these is
some variation of the following steps:

1. Identify and analyze the non-functional requirements that have an impact
on the architecture. Functional requirements are also relevant (especially in
terms of variability or change), but the non-functional are given thorough
attention. In general, all these may be called architectural factors (also
known as the architectural drivers).

ο This step could be characterized as regular requirements analysis,
but since it is done in the context of identifying architectural
impact and deciding high-level architectural solutions, it is considered
a part of architectural analysis in the UP.

ο In terms of the UP, some of these requirements will be roughly
identified and recorded in the Supplementary Specification or use
cases during inception. During architectural analysis, which
occurs in early elaboration, the team investigates these requirements
more closely.

2. For those requirements with a significant architectural impact, analyze
alternatives and create solutions that resolve the impact. These are archi
tectural decisions.

ο Decisions range from "remove the requirement," to a custom solution,
to "stop the project," to "hire an expert."

This presentation introduces these basic steps in the context of the NextGen
POS case study. For simplicity, it avoids architectural deployment issues such as
the hardware and operating system configuration, which are very context and
time sensitive.

487

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

32.2 Types and Views of Architecture

Some descriptions of architecture define different types, such as the "application
architecture" (allocation of features to components) or "system architecture"
(hardware and operating system configuration).

In the UP, there is a similar specialization of information, but these are
described in "views" of the architecture, which summarize and emphasize a par-
ticular perspective. For example, the logical view of the architecture, which
was introduced in Chapter 30, summarizes the organization and functionality of
the major software elements (such as the layers)—it is similar to the term appli-
cation architecture. The deployment view summarizes the system topology,
communications, and mapping of executable elements to processing nodes—it is
similar to the term system architecture.

The UP defines six views of the architecture, which are described in detail near
the end of this chapter. Concretely, the views combine text and diagrams, and—
if described at all—are recorded in the SAD.

Architectural analysis is related to the architectural views because the architec-
tural decisions are reflected in, and described in, one or more architectural
views.

32.3 The Science: Identification and Analysis of Architectural
Factors

488

Architectural Factors

Any and all of the FURPS+ requirements may have a significant influence on
the architecture of a system, ranging from reliability, to schedule, to skills, and
to cost constraints. For example, a case of tight schedule with limited skills and
sufficient money probably favors buying or outsourcing to specialists, rather
than building all components in-house.

However, the factors with the strongest architectural influence tend to be within
the high-level FURPS+ categories of functionality, reliability, performance,
sup-portability, implementation, and interface (see Chapter 5 for a detailed
breakdown). Interestingly, it is usually the non-functional quality attributes
(such as reliability or performance) that give a particular architecture its unique
flavor, rather than its functional requirements. For example, the design in the
Next-Gen system to support different third-party components with unique
interfaces, and the design to support easily plugging in different sets of
business rules.

In the UP, these factors with architectural implications are called architectur-
ally significant requirements. "Factors" is used here for brevity.

THE SCIENCE: IDENTIFICATION AND ANALYSIS OF ARCHITECTURAL FACTORS

Many technical and organizational factors can be characterized as constraints
that restrict the solution in some way (such as, must run on Linux, or, the bud-
get for purchasing third-party components is X).

Quality Scenarios

When defining quality requirements during architectural factor analysis, qual-
ity scenarios1 are recommended, as they define measurable (or at least observ-
able) responses, and thus can be verified. It is not much use to vaguely state
"the system will be easy to modify" without some measure of what that means.

Quantifying some things, such as performance goals and mean time between
failure, are well known practices, but quality scenarios extend this idea and
encourages recording all (or at least, most) factors as measurable statements.

Quality scenarios are short statements of the form <stimulus> <measurable
response>; for example:

 When the completed sale is sent to the remote tax calculator to add the
taxes, the result is returned within 2 seconds "most" of the time, measured
in a production environment under "average" load conditions.

 When a bug report arrives from a NextGen beta test volunteer, reply with a
phone call within 1 working day.

Note that "most" and "average" will need further investigation and definition by
the NextGen architect; a quality scenario is not really valid until it is testable,
which implies fully specified. Also, observe the qualification in the first quality
scenario in terms of the environment to which it applies. It does little good to
specify a quality scenario, verify that it passes in a lightly loaded development
environment, but fail to evaluate it in a realistic production environment.

Pick Your Battles

A caution: Writing these quality scenarios can be a mirage of usefulness. It's
easy to write these detailed specifications, but not to realize them. Will anyone
ever really test them? How and by whom? A strong dose of realism is required
when writing these; there's no point in listing many sophisticated goals if no one
will ever really follow through on testing them.

There is a relationship here to the "pick your battles" discussion that was pre-
sented in an earlier chapter on the Protected Variations pattern. What are the
really critical make-or-break quality scenarios? For example, in an airline reser-
vation system, consistently fast transaction completion under very high load
conditions is truly critical to the success of the system—it must definitely
be

1. A term used in various architectural methods promoted by the Software Engineering
Institute (SEI); for example, in the Architecture Based Design method.

489

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

tested. In the NextGen system, the application really must be fault-tolerant and
fail over to local replicated services when the remote ones fail—it must defi-
nitely be properly tested and validated. Therefore, focus on writing quality sce-
narios for the important battles, and follow through with a plan for their
evaluation.

Describing Factors

One important goal of architectural analysis is to understand the influence of
the factors, their priorities, and their variability (immediate need for flexibility
and future evolution). Therefore, most architectural methods (for example, see
[HNS00]) advocate creating a table or tree with variations of the following infor-
mation (the format varies depending on the method). The following style shown
in Table 32.1 is called a factor table, which in the UP is part of the Supplemen-
tary Specification.

Factor Measures and
quality scenarios

Variability (current flexibility and future evolu-
tion)

Impact of factor (and its vari-
ability) on stakeholders,
architecture and other factors

Prior-
ity for
Suc-
cess

Diffi-
culty
or
Risk

Reliability — Recoverability
Recovery from
remote service
failure

When a remote ser-
vice fails, reestablish
connectivity with it
within 1 minute of its
detected re-avail-
ability, under normal
store load in a pro-
duction environment.

current flexibility - our SME says local
client-side simplified services are acceptable
(and desirable) until reconnection is possible.
evolution - within 2 years, some retailers may
be willing to pay for full local replication of
remote services (such as the tax calculator).
Probability? High.

High impact on the
large-scale design.
Retailers really dislike it when
remote services fail, as it pre-
vents or restricts them from
using a POS to make sales.

H M

Table 32.1 Sample factor table. Legend: H-high. M-medium. SME-subject
matter expert.

Notice the categorization scheme: Reliability— Recoverability (from the FURPS+
categories). This isn't presented as the best or only scheme, but it is useful to
group architectural factors into categories. For example, certain categories (such
as reliability and performance) strongly relate to identifying and defining test
plans, and thus it is useful to group them.

The basic priority and risk code values of H/M/L are simply suggestive of using
some codes the team finds useful; there are a variety of coding schemes
(numeric and qualitative) from different architectural methods and standards
(such as ISO 9126). A caution: If the extra effort of using a more complex scheme
does not lead to any practical action, it isn't worthwhile.

490

EXAMPLE: PARTIAL NEXTGEN POS ARCHITECTURAL FACTOR TABLE

Factors and UP Artifacts

The central functional requirements repository in the UP are the use cases, and they,
along with the Vision and Supplementary Specification, are an important source of
inspiration when creating a factor table. In the use cases, the Special Requirements,
Technology Variations, and Open Issues should be reviewed, and their implied or
explicit architectural factors consolidated in the Supplementary Specification.

It is reasonable to at first record use-case related factors with the use case during its
creation, because of the obvious relationship, but it is ultimately more convenient
(in terms of content management, tracking, and readability) to consolidate all the
architectural factors in one location—in the factor table in the Supplementary
Specification.

Use Case UC1: Process Sale

Main Success Scenario:
1. ...
Special Requirements:
- Credit authorization response within 30 seconds 90% of the time.
- Somehow, we want robust recovery when access to remote services such the inven

tory system is failing.

Technology and Data Variations List:
2a. Item identifier entered by bar code laser scanner (if bar code is present) or keyboard.

Open Issues:
- What are the tax law variations?
- Explore the remote service recovery issue.

32.4 Example: Partial NextGen POS Architectural Factor Table

The partial factor table in Table 32.2 shows some factors related to later discussion.

491

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

Factor Measures and
quality scenarios

Variability (current flexibility and future evolu-
tion)

Impact of factor (and its vari-
ability) on stakeholders,
architecture and other factors

Priority
for
Suc-
cess

Diffi-
culty
or
Risk

Reliability —
Rec
Recovery from
remote service
failure

coverability
When a remote ser-
vice fails, reestablish
connectivity with it
within 1 minute of its
detected re-avail-
ability, under normal
store load in a pro-
duction environment.

current flexibility - our SME says local
client-side simplified services are acceptable
(and desirable) until reconnection is possible.
evolution - within 2 years, some retailers may
be willing to pay for full local replication of
remote services (such as the tax calculator).
Probability? High.

High impact on the
large-scale design.
Retailers really dislike it when
remote services fail, as it pre-
vents them from using a POS
to make sales.

H M

Recovery from
remote product
database failure

as above current flexibility - our SME says local
client-side use of cached "most common"
product info is acceptable (and desirable) until
reconnection is possible.
evolution - within 3 years, client-side mass
storage and replication solutions will be cheap
and effective, allowing permanent complete
replication and thus local usage. Probability?
High.

as above H M

Supportability - Adaptability
Support many
third-party ser-
vices (tax cal-
culator,
inventory, HR,
accounting).
They will vary at
each installation.

When a new
third-party system
must be integrated, it
can be, and within
10 person days of
effort.

current flexibility - as described by factor
evolution - none

Required for product accep-
tance. Small impact on
design.

H L

Support wireless
PDA terminals
for the POS
client?

When support is
added, it does not
require a change to
the design of the
non-UI layers of the
architecture.

current flexibility - not required at present
evolution - within 3 years, we think the proba-
bility is very high that wireless "PDA" POS cli-
ents will be desired by the market.

High design impact in terms
of protected variation from
many elements. For example,
the operating systems and
Uls are different on small
devices.

L H

Other - Legal
Current tax
rules must be
applied.

When the auditor
evaluates
conform-ance, 100%
con-formance will be
found.
When tax rules
change, they will be
operational within
the period allowed
by government.

current flexibility - conformance is inflexible,
but tax rules can change almost weekly
because of the many rules and levels of gov-
ernment taxation (national, state, ...)
evolution - none

Failure to comply is a criminal
offense.
Impacts tax calculation ser-
vices.
Difficult to write our own ser-
vice-complex rules, constant
change, need to track all
levels of government.
But, easy/low risk if buy a
package.

H L

Table 32.2 Partial factor table for the NextGen architectural analysis.

492

THE ART: RESOLUTION OF ARCHITECTURAL FACTORS

32.5 The Art: Resolution of Architectural Factors

One could say the science of architecture is the collection and organization of
information about the architectural factors, as in the factor table. The art of
architecture is making skillful choices to resolve these factors, in light of trade-
offs, interdependencies, and priorities.

Adept architects have knowledge in a variety of areas (for example, architec-
tural styles and patterns, technologies, products, pitfalls, and trends) and apply
this to their decisions.

Recording Architectural Alternatives, Decisions, and Motivation

Ignoring for now principles of architectural decision-making, virtually all archi-
tectural methods recommend keeping a record of alternative solutions, deci-
sions, influential factors, and motivations for the noteworthy issues and
decisions.

Such records have been called technical memos [Cunningham96J, issue
cards [HNS00], and architectural approach documents (SEI architectural
proposals), with varying degrees of formality and sophistication. In some meth-
ods, these memos are the basis for yet another step of review and refinement.

In the UP, the memos should be recorded in the SAD.

An important aspect of the technical memo is the motivation or rationale. When
a future developer or architect needs to modify the system,2 it is immensely
helpful to understand the motivations behind the design, such as why a particu-
lar approach to recovery from remote service failure in the NextGen POS was
chosen and others rejected, in order to make informed decisions about changing
the system.

Explaining the rationale of rejecting the alternatives is important, as during
future product evolution, an architect may reconsider these alternatives, or at
least want to know what alternatives were considered, and why one was chosen.

A sample technical memo follows that records an architectural decision for the
NextGen POS. The exact format is, of course, not important. Keep it simple and
just record information that will help the future reader make an informed deci-
sion when changing the system.

2. Or when four weeks have passed and the original architect has forgotten their own
rationale!

493

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

Technical Memo Issue:
Reliability—Recovery from Remote Service Failure

Solution Summary: Location transparency using service lookup, failover from remote
to local, and local service partial replication.

Factors

 Robust recovery from remote service failure (e.g., tax calculator, inventory)

 Robust recovery from remote product (e.g., descriptions and prices) database failure

Solution

Achieve protected variation with respect to location of services using an Adapter created in a
Services-Factory. Where possible, offer local implementations of remote services, usually with simplified
or constrained behavior. For example, the local tax calculator will use constant tax rates. The local
product information database will be a small cache of the most common products. Inventory updates
will be stored and forwarded at reconnection.
See also the Adaptability—Third-Party Services technical memo for the adaptability aspects of this solu-
tions, because remote service implementations will vary at each installation.
To satisfy the quality scenarios of reconnection with the remote services ASAP, use smart Proxy objects
for the services, that on each service call test for remote service reactivation, and redirect to them when
possible.

Motivation

Retailers really don't want to stop making sales! Therefore, if the NextGen POS offers this level of reliabil-
ity and recovery, it will be a very attractive product, as none of our competitors provide this capability. The
small product cache is motivated by very limited client-side resources. The real third-party tax calculator
is not replicated on the client primarily because of the higher licensing costs, and configuration efforts (as
each calculator installation requires almost weekly adjustments). This design also supports the evolution
point of future customers willing and able to permanently replicate services such as the tax calculator to
each client terminal.

Unresolved Issues

none

Alternatives Considered

A "gold level" quality of service agreement with remote credit authorization services to improve reliability.
It was available, but much too expensive.

494

Note as illustrated in this example—and this is a key point—that an architec-
tural decision described in one technical memo may resolve a group of factors,
not only one.

Priorities

There is a hierarchy of goals that guides architectural decisions:

1. Inflexible constraints, including safety and legal compliance,
o The NextGen POS must correctly apply tax policies.

THE ART: RESOLUTION OF ARCHITECTURAL FACTORS

2. Business goals.
ο Demo of noteworthy features ready for the POSWorld trade show in

Hamburg in 18 months.

ο Has qualities and features attractive to department stores in
Europe (for example, multi-currency support and customizable
business rules).

3. All other goals
ο These can often be traced back to directly stated business goals,

but are indirect. For example, "easily extendible: can add <some
unit of functionality> in 10 person weeks" could trace to a business
goal of "new release every six months."

In the UP, many of these goals are recorded in the Vision artifact. Mind that the
Priority for Success scores in the factor table should reflect the priority of these
goals.
There is a distinguishing aspect of decision-making at this level vs. small-scale
object design: one has to simultaneously consider more (and often globally influ-
ential) goals and their trade-offs. Furthermore, the business goals become cen-
tral to the technical decisions (or at least they should). For example:

Technical Memo Issue: Legal—Tax
Rule Compliance

Solution Summary: Purchase a tax calculator component.

Factors

 Current tax rules must be applied, by law.

Solution

Purchase a tax calculator with a licensing agreement to receive ongoing tax rule updates. Note that different
calculators may be used at different installations.

Motivation

Time-to-market, correctness, low maintenance requirements, and happy developers (see alternatives).
These products are costly, which affects our cost-containment and product pricing business goals, but the
alternative is considered unacceptable.

Unresolved Issues

What are the leading products and their qualities?

Alternatives Considered

Build one by the NextGen team? It is estimated to take too long, be error prone, and create an ongoing
costly and uninteresting (to the company's developers) maintenance responsibility, which affects the goal
of "happy developers" (surely, the most important goal of all).

495

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

Priorities and Evolution Points: Under- and Over-engineering

Another distinguishing feature of architectural decision-making is prioritization by
probability of evolution points—points of variability or change that may arise in the
future. For example, in NextGen, there is a chance that wireless handheld client
terminals will become desirable. Designing for this has a significant impact because of
differences in operating systems, user interface, hardware resources, and so forth.

The company could spend a huge amount of money (and increase a variety of risks) to
achieve this "future proofing." If it turns out in the future that this was not relevant,
doing it would be a very expensive exercise in over-engineering. Note also that future
proofing is arguably rarely perfect, since it is speculation; even if the predicted change
occurs, some change in the speculated design is likely.

On the other hand, future proofing against the Y2K date problem would have been
money very well spent; instead, there was under-engineering with a wickedly expensive
result.

The art of the architect is knowing what battles are worth fighting—where it's
worth investing in designs that provide protection against evolutionary change.

To decide if early "future-proofing" should be avoided, realistically consider the scenario
of deferring the change to the future, when it is called for. How much of the design and
code will actually have to change? What will be the effort? Perhaps a close look at the
potential change will reveal that what was at first considered a gigantic issue to protect
against, is estimated to consume only a few person-weeks of effort.

This is just a hard problem; "Prediction is very difficult, especially if it's about the
future" (unverifiably attributed to Niels Bohr).

Basic Architectural Design Principles

The core design principles explored in much of this book that were applicable to
small-scale object design are still dominant principles at the large-scale architectural
level:

• low coupling

• high cohesion

• protected variation (interfaces, indirection, service lookup, and so forth)

However, the granularity of the components is larger—it is low coupling between
applications, subsystems, or process rather than between small objects.

496

THE ART: RESOLUTION OF ARCHITECTURAL FACTORS

Furthermore, at this larger scale, there are more or different mechanisms to achieve qualities
such as low coupling and protected variation. For example, consider this technical memo:

Technical Memo Issue: Adaptability—Third-Party Services

Solution Summary: Protected Variation using interfaces and Adapters Factors
• Support many and changeable third-party services (tax calculators, credit authorization, inventory, ...)

Solution

Achieve protected variation as follows: Analyze several commercial tax calculator products (and so forth for the other product
categories) and construct common interfaces for the lowest common denominators of functionality. Then use Indirection via the
Adapter pattern. That is, create a resource Adapter object that implements the interface and acts as connection and translator
to a particular back-end tax calculator.
See also the Reliability—Recovery from Remote Service Failure technical memo for the location transparency aspects of this
solution.

Motivation
Simple. Cheaper, and faster communication than using a messaging service (see alternatives), and in any event a messaging
service can't be used to directly connect to the external credit authorization service.

Unresolved Issues

Will the lowest common denominator interfaces create an unforeseen problem, such as too limited? Alternatives Considered

Apply indirection by using a messaging or publish subscribe service (e.g., a JMS implementation) between the client and tax
calculator, with adapters. But not directly usable with a credit authorizes costly (for reliable ones), and more reliability in message
delivery than is practically needed.

The point is that at the architectural level, there are usually new mechanisms to achieve protected
variation (and other goals), often in collaboration with third-party components, such as using a
Java Messaging Service (JMS) or EBJ server.

Separation of Concerns and Localization of Impact

Another basic principle applied during architectural analysis is to achieve a separation of
concerns. It is also applicable at the scale of small objects, but achieves prominence during
architectural analysis.

Cross-cutting concerns are those with a wide application or influence in the system, such as
data persistence or security. One could design persistence support in the NextGen application
such that each object (that contained application logic code) itself also communicated with a
database to save its data. This

497

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

would weave the concern of persistence in with the concern of application logic, in the
source code of the classes—so too with security. Cohesion drops and coupling rises.
In contrast, designing for a separation of concerns factors out persistence support and
security support into separate "things" (there are very different mechanisms for this
separation). An object with application logic just has application logic, not persistence
or security logic. Similarly, a persistence subsystem focuses on the concern of
persistence, not security. A security subsystem doesn't do persistence.
Separation of concerns is a large-scale way of thinking about low coupling and high
cohesion at an architectural level. It also applies to small-scale objects, because its
absence results in in-cohesive objects that have multiple areas of responsibility. But it
is especially an architectural issue because the concerns are broad, and the solutions
involve major, fundamental design choices.
There are at least three large-scale techniques to achieve a separation of concerns:
1. Modularize the concern into a separate component (for example, subsystem)

and invoke its services.
o This is the most common approach. For example, in the NextGen system, the

persistence support could be factored into a subsystem called the
persistence service. Via a facade, it can offer a public interface of services to
other components. Layered architectures also illustrate this separation of
concerns.

2. Use decorators.
o This is the second most common approach; first popularized in the Microsoft

Transaction Service, and afterwards with EJB servers. In this approach, the
concern (such as security) is decorated onto other objects with a Decorator
object that wraps the inner object and interposes the service. The Decorator
is called a container in EJB terminology. For example, in the NextGen POS
system, security control to remote services such as the HR system can be
achieved with an EJB container that adds security checks in the outer
Decorator, around the application logic of the inner object.

3. Use post-compilers and aspect-oriented technologies.
o For example, with EJB entity beans one can add persistence support to

classes such as Sale. One specifies in a property descriptor file the
persistence characteristics of the Sale class. Then, a post-compiler (by
which I mean another compiler that executes after the "regular" compiler)
will add the necessary persistence support in a modified Sale class
(modifying just the bytecode) or subclass. The developer continues to see the
original class as a "clean" appli-cation-logic-only class. Another variation is
aspect-oriented technologies such as AspectJ (www.aspectj.org), which
similarly

498

SUMMARY OF THEMES IN ARCHITECTURAL ANALYSIS

support post-compilation weaving in of cross-cutting concerns
into the code, in a manner that is transparent to the developer.
These approaches maintain the illusion of separation during
development work, and weave in the concern before execution.

Promotion of Architectural Patterns

An exploration of architectural patterns and how they could apply (or
misapply) to the NextGen case study is out of scope in this introductory text.
However, a few pointers:

Probably the most common mechanism to achieve low coupling, protected
variation, and a separation of concerns at the architectural level is the
Layers pattern, which has been introduced a previous chapter. This is an
example of the most common separation technique—modularizing concerns
into separate components or layers.

There is a large and growing body of written architectural patterns.
Studying these is the fastest way I know of to learn architectural solutions.
Please see the recommended readings.

32.6 Summary of Themes in Architectural Analysis

One theme to note is that "architectural" concerns are especially related to
nonfunctional requirements, and include an awareness of the business or
market context of the application. At the same time, the functional
requirements (for example, processing sales) cannot be ignored; they
provide the context within which these concerns must be resolved. Further,
identification of their variability is architecturally significant.

A second theme is that architectural concerns involve system-level,
large-scale, and broad problems whose resolution usually involves
large-scale or fundamental design decisions; for example, the choice of—or
even use of—an application server.

A third theme in architectural analysis is interdependencies and trade-offs.
For example, improved security may affect performance or usability, and
most choices affect cost.

A fourth theme in architecture analysis is the generation and evaluation of
alternative solutions. A skilled architect can offer design solutions that
involve building new software, and also suggest solutions (or partial
solutions) using commercial or publicly available software and hardware.
For example, recovery in a remote server of the NextGen POS can be
achieved through designing and programming "watchdog" processes, or
perhaps through clustering, replication, and failover services offered by
some operating system and hardware components. Good architects know
third-party hardware and software products.

499

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

The opening definition of architectural concerns provides the framework for
how to think about the subject of architecture: identifying the issues with
large-scale or system-level implications, and resolving them.

Architectural analysis is concerned with the identification and resolution
of the system's non-functional (e.g., quality) requirements, in the context
of the functional requirements.

32.7 Architectural Analysis within the

UP Caution: Waterfall Architectural

Analysis

Architectural analysis methods and books often implicitly encourage
waterfall-style extensive architectural design decisions before
implementation. In iterative development and UP, apply these ideas in the
context of small steps, feedback, and adaptation, rather than attempting to
fully resolve the architecture before programming. Tackle implementation
of the riskiest or most difficult solutions in early iterations, and adjust the
architectural solutions based on feedback and growing insight.

Architectural Information in the UP Artifacts

• The architectural factors (for example, in a factor table) are recorded in
the Supplementary Specification.

• The architectural decisions are recorded in the SAD. This includes the
technical memos and descriptions of the architectural views.

The SAD and Its Architectural Views

In addition to the UML package, class, and interaction diagrams, another
key artifact in the UP Design Model is the SAD. It describes the big ideas
in the architecture, including the decisions of architectural analysis.
Practically, it is a learning aid for developers who need to understand the
essential ideas of the system.

When someone joins the team, a project coach can say, "Welcome to the
NextGen project! Please go to the project website and read the ten page
SAD in order to get an introduction to the major ideas." During a later
release, when new people work on the system, the SAD is a key learning
aid.

500

ARCHITECTURAL ANALYSIS WITHIN THE UP

Therefore, it should be written with this audience and goal in mind: What do I need to
say (and draw in the UML) that will quickly help someone understand the major ideas in
this system?

The essence of the SAD is a summary of the architectural decisions (such as with
technical memos) and the UP architectural views.

Architectural Views in the SAD

Having an architecture is one thing; describing it is something else.

In [Kruchten95], the influential idea of describing an architecture with multiple views was
promoted. The essential idea of an architectural view is this:

Architectural View

A view of the system architecture from a given perspective; focuses primarily on
structure, modularity, essential components, and the main control flows. [RUP].

An important aspect of the view missing from this RUP definition is the motivation.
That is, an architectural view should explain why the architecture is the way it is.

An architectural view is a window onto the system from a particular perspective that
emphasizes the key noteworthy information or ideas, and ignores the rest.

An architectural view is a tool of communication, education, or thought; it is expressed in
text and UML diagrams.

In the UP, six views of the architecture are suggested (more are allowed, such as a
security view).3 All are optional, but documenting at least the logical, process, use case,
and deployment views is recommended. The six views are:

1. Logical
o Conceptual organization of the software in terms of the most important

layers, subsystems, packages, frameworks, classes, and interfaces. Also
summarizes the functionality of the major software elements, such as each
subsystem.

o Shows outstanding use-case realization scenarios (as interaction diagrams)
that illustrate key aspects of the system.

o A view onto the UP Design Model, visualized with UML package, class, and
interaction diagrams.

3. Early versions of the UP described the "4+1" views as defined in [Kruchten95], which evolved into
the six views.

501

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

2. Process

o Processes and threads. Their responsibilities, collaborations, and the allocation of
logical elements (layers, subsystems, classes, ...) to them.

o A view onto the UP Design Model, visualized with UML class and interaction
diagrams, using the UML process and thread notation.

3. Deployment
o Physical deployment of processes and components to processing nodes, and the

physical network configuration between nodes.

o A view onto the UP Deployment Model, visualized with UML deployment diagrams.
Normally, the "view" is simply the entire model rather than a subset, as all of it is
noteworthy. See Chapter 38 for the UML deployment diagram notation.

4. Data

o Overview of the persistent data schema, the schema mapping from objects to
persistent data (usually in a relational database), the mechanism of mapping from
objects to a database, database stored procedures and triggers.

o A view onto the UP Data Model, visualized with UML class diagrams used to
describe a data model.

5. Use case

o Summary of the most architecturally significant use cases and their
non-functional requirements. That is, those use cases that, by their
implementation, illustrate significant architectural coverage or that exercise many
architectural elements. For example, the Process Sale use case, when fully
implemented, has these qualities.

o A view onto the UP Use-Case Model, expressed in text and visualized with UML use
case diagrams.

6. Implementation

o First, a definition of the Implementation Model: In contrast to the other UP models,
which are text and diagrams, this "model" is the actual source code, executables,
and so forth. It has two parts: 1) deliverables, and 2) things that create deliverables
(such as source code and graphics). The Implementation Model is all of this stuff,
including web pages, DLLs, executables, source code, and so forth, and their
organization—such as source code in Java packages, and bytecode organized into
JAR files.

o The implementation view is a summary description of the noteworthy organization
of deliverables and the things that create deliverables (such as the source code).

502

ARCHITECTURAL ANALYSIS WITHIN THE UP

o A view onto the UP Implementation Model, expressed in text and visualized with
UML package and component diagrams.

For example, the NextGen package and interaction diagrams shown in Chapter 30 on layering
and logical architecture show the big ideas of the logical structure of the software architecture. In
the SAD, the architect will create a section called Logical View, insert those UML diagrams, and
add some written commentary on what each package and layer is for, and the motivation behind
the logical design. Likewise with the process and deployment views.

A key idea of the architectural views—which concre tely are text and diagrams— is that they do
not describe all of the system from some perspective, but only outstanding ideas from that
perspective. A view is, if you will, the "one minute elevator" description: What are the most
important things you would say in one minute in an elevator to a colleague on this perspective?

Architectural views may be created:

• after the system is built, as a summary and learning aid for future
developers

• at the end of certain iteration milestones (such as the end of elaboration) to
serve as a learning aid for the current development team, and new members

• speculatively, during early iterations, as an aid in creative design work, rec
ognizing that the original view will change as design and implementation
proceeds

Sample Structure of a SAD

Software Architecture Document Architectural

Representation

(Summary of how the architecture will be described in this document, such as using by technical memos and the architectural
views. This is useful for someone unfamiliar with the idea of technical memos or views. Note that not all views are necessary.)

Architectural Factors and Decisions

(Reference to the Supplementary Specification to view the Factor Table. Also, the set of technical memos the summarize the
decisions.)

Logical View

(UML package diagrams, and class diagrams of major elements. Commentary on the large scale structure and functionality of
major components.)

Process View

(UML class and interaction diagrams illustrating the processes and threads of the system. Group this by threads and processes
that interact. Comment on how the interprocess communication works (e.g., by Java RMI).

503

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

Use-Case View
(Brief summary of the most architecturally significant use cases. UML interaction diagrams for some architectural
significant use-case realizations, or scenarios, with commentary on the diagrams explaining how they illustrate the
major architectural elements.)

Deployment View

(UML deployment diagrams showing the nodes and allocation of processes and components. Commentary on the
networking.)

Phases

Inception—If it is unclear if it is technically possible to satisfy the architecturally
significant requirements, the team may implement an architectural
proof-of-concept (POC) to determine feasibility. In the UP, its creation and
assessment is called Architectural Synthesis. This is distinct from plain old small
POC programming experiments for isolated technical questions. An architectural POC
lightly covers many of the architecturally significant requirements to assess their
combined feasibility.

Elaboration—A major goal of this phase is to implement the core risky architectural
elements, thus most architectural analysis is completed during elaboration. It is
normally expected that the majority of factor table, technical memo, and SAD content
can be completed by the end of elaboration.

Transition—Although ideally the architecturally significant factors and decisions
were resolved long before transition, the SAD will need a review and possible revision at
the end of this phase to ensure it accurately describes the final deployed system.

Subsequent evolution cycles—Before the design of new versions, it is common to
revisit architectural factors and decisions. For example, the decision in version 1.0 to
create a single remote tax calculator service, rather than one duplicated on each POS
node, could have been motivated by cost (to avoid multiple licenses). But perhaps in the
future the cost of tax calculators is reduced, and thus, for fault tolerance or
performance reasons, the architecture is changed to use multiple local tax calculators.

504

FURTHER READINGS

32.8 Further Readings

There is a growing body of architecture-related patterns, and general
software architecture advice. Suggestions:

• Pattern-Oriented Software Architecture, both volumes.

• Software Architecture in Practice [BCK98].

• Pattern Languages of Program Design, all volumes. Each volume has a
sec
tion on architecture-related patterns.

• Online Web articles on architectural patterns (such as J2EE
architectures),
available at Sun, IBM, and other websites.

• Online Web articles on architecture available at the Carnegie Mellon
Uni
versity Software Engineering Institute (SEI), which has long been a
center
of architecture investigation (www.sei.cmu.edu).

505

Chapter 33

DESIGNING MORE USE-CASE
REALIZATIONS WITH OBJECTS
AND PATTERNS

On two occasions I have been asked (by members of Parliament),
"Pray, Mr. Babbage, if you put into the machine wrong figures, will
the right answers come out?" I am not able rightly to apprehend the

kind of confusion of ideas that could provoke such a question.

— Charles
Babbage

Objectives

Apply GRASP and GoF patterns in the design.

Introduction

This chapter explores some partial designs for the current iteration,
handling requirements such as failover to local services, POS device
handling, and payment authorization.

33.1 Failover to Local Services; Performance with
Local Caching

One of the NextGen requirements is some degree of recovery from remote
service failure, such as a (temporarily) unavailable product database.

507

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Access to product information is the first case used to explore the recovery and failover design
strategy. Afterwards, access to the accounting service is explored, which has a slightly different
solution.

To review part of the technical memo:

Technical Memo Issue: Reliability—Recovery from
Remote Service Failure

Solution Summary: Location transparency using service lookup, failover from remote to local, and local
service partial replication.

Factors

• Robust recovery from remote service failure (e.g., tax calculator, inventory)

• Robust recovery from remote product (e.g., descriptions and prices) database failure

Solution

Achieve protected variation with respect to location of services using the Adapter served up from a ServicesFactory. Where
possible, offer local implementations of remote services, usually with simplified or constrained behavior. For example, the local
tax calculator will use constant tax rates. The local product information database will be a small cache of the most common
products. Inventory updates will be stored and forwarded at reconnection.
See also the Adaptability—Third-Party Services technical memo for the adaptability aspects of this solutions, because remote
service implementations will vary at each installation.
To satisfy the quality scenarios of reconnection with the remote services, use smart Proxy objects for the services, that on each
service call test for remote service reactivation, and redirect to them when possible.
Motivation

Retailers really don't want to stop making sales! Therefore, if the NextGen POS offers this level of reliability and recovery, it will
be a very attractive product, as none of our competitors provide this capability.

Before solving the failover and recovery aspects, note that for both performance reasons and to
improve recoverability when access to the remote database fails, the architect (me) has
recommended a local cache (reliably persisted on the local hard disk in a simple file) of
ProductSpecification objects. Therefore, the local cache should always be searched for a "cache
hit" before attempting a remote access.

This can be neatly achieved with our existing adapter and factory design:

1. The ServicesFactory will always return an adapter to a local product infor
mation service.

2. The local products "adapter" is not really an adapter to another component.
It will itself implement the responsibilities of the local service.

3. The local service is initialized to a reference to a second adapter to the true remote product
service.

508

FAILOVER TO LOCAL SERVICES; PERFORMANCE WITH LOCAL CACHING

4. If the local service finds the data in its cache, it returns it; otherwise, it forwards
the request to the adapter for the external service.
Note that there are two levels of client-side cache:

1. The in-memory ProductCatalog object will maintain an in-memory collec
tion (such as a Java HashMap) of some (for example, 1,000) Product
Specification objects that have been retrieved from the product information
service. The size of this collection can be adjusted depending on local mem
ory availability.

2. The local products service will maintain a larger persistent (hard disk
based) cache that maintains some quantity of product information (such as 1
or 100MB of file space). Again, it can be adjusted depending on the local con
figuration. This persistent cache is important for fault tolerance, so that
even if the POS application crashes and the in-memory cache of the Product
Catalog object is lost, the persistent cache remains.
This design does not break existing code—the new local service object is
inserted without affecting the design of the ProductCatalog object (which
collaborates with the product service).
So far, no new patterns have been introduced; Adapter and Factory are used.
Figure 33.1 illustrates the types in the design, and Figure 33.2 illustrates the
initialization..

«interface»
IProductsAdapter

getSpecification(itemID) : ProductSpecification

DBProductsAdapter

getSpecification(itemID)

LocalProducts

remoteProductsService: IProductAdapter

getSpecification(itemID)

BigWebServiceProductsAdapter

getSpecification(itemID)

1

1Implements the adapter
interface, but is not really
an adapter for a second
component.

Rather, it itself implements
the local service function.

ProductCatalog

productsService : IProductAdapter

getSpecification()

1
1

Figure 33.1 Adapters for product information

509

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Figure 33.3 shows the initial collaboration from the catalog to the products service.

Figure 33.3 Starting the collaboration with the products service.
If the local product service does not have the product in its cache, it collaborates
with the adapter to the external service, as shown in Figure 33.4. Note that the

510

:Store :Register

pc:
ProductCatalog

create()
2: create(pc)

1: create()

«singleton»
:ServicesFactory

psa : LocalProducts externalService :
DBProductsAdapter

1.1: psa := getProductsAdapter()

IProductsAdapter

1.1.2: create(externalService) 1.1.1: create()

the local service gets a
reference to the adapter for
the external service

IProductsAdapter

the local service is
returned

Figure 33.2 Initialization of the product information service.

2: makeLineItem(ps, qty)enterItem(id, qty)

1: ps := getSpecification(id)

1.1: ps := get(id)

1.3 [not in specs & specs not full] : put(id, ps)

:Register :Sale

:Product
Catalog

:Product
Specification

UML notation: note the
conditional message syntax

: LocalProducts

IProductsAdapter

1.2 [not in specs]:
ps := getSpecification(id)

specs

continued in another
diagram

FAILOVER TO LOCAL SERVICES; PERFORMANCE WITH LOCAL CACHING

local product service caches the ProductSpecification objects as true
serialized objects.

: LocalProducts remoteService :
DBProductsAdapter

IProductsAdapter

: KeyIndexedFileOf
SerializedObjects

1: ps := get(id)

3 [not in file]: put(id, ps)

ps := getSpecification(id) 2 [not in file] :
ps := getSpecification(id)

continued in another
diagram

IProductsAdapter

Figure 33.4 Continuing the collaboration for product information.

If the true external service was changed from a database to a new
Web service, only the factory's configuration of the remote service
needs to change. See Figure 33.5.

: LocalProducts

IProductsAdapter

 remoteService :
BigWebServiceProductsAdapter

IProductsAdapter

ps := getSpecification(id) 2 [not in file] :
ps := getSpecification(id)

Figure 33.5 New external services do not affect the design.

To continue with the case of collaborating with the
DBProductsAdapter, it will interact with an object-relational (O-R)
mapping persistence subsystem (see Figure 33.6).

511

: DBProducts
Adapter

IProductsAdapter

:DBFacade
ps := getSpecification(id) 1: ps := getObject(ProductSpecification.class, id)

Collaboration with the O-R mapping persistence subsystem requires indicating the type of
object to retrieve, and its ID. This subsystem is relatively generic--it is not especially
designed just for the NextGen POS application.

"ProductSpecification.class" is Java to specify the object type.

Figure 33.6 Collaboration with the persistence subsystem.

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Caching Strategies

Consider the alternatives for loading the in-memory ProductCatalog
cache and the LocalProducts file-based cache: One approach is lazy
initialization, in which the caches fill slowly as external product
information is retrieved; another approach is eager initialization, in
which the caches are loaded during the StartUp use case. If the
designer is unsure which approach to use and wants to experiment
with alternatives, a family of different CacheStrategy objects based
on the Strategy pattern can neatly solve the problem.

Stale Cache

Since product prices change quickly, and perhaps at the whim of the
store manager, caching the product price creates a problem—the
cache contains stale data; this is always a concern when data is
replicated. One solution is to add a remote service operation that
answers today's current changes; the LocalProducts object
queries it every n minutes and updates its cache.

Threads in the UML

If the LocalProducts object is going to solve the stale cache problem
with a query for updates every n minutes, one approach to the design
is to make it an active object that owns a thread of control. The
thread will sleep for n minutes, wake up, the object will get the data,
and the thread will go back to sleep. The UML provides notation to
illustrate threads and asynchronous calls, as shown in Figure 33.7.

In an interaction diagram, an instance of an active object may be
tagged with the property {active}. In a class diagram, a class of
active objects (an active class) which owns its own thread can be
stereotyped with «thread». See Figure 33.8.

33.2 Handling Failure

The preceding design provides a solution for client-side caching of
ProductSpecification objects in a persistent file, to improve
performance, and also to provide at least a partial fall-back solution if
the external products service can't be accessed. Perhaps 10,000
products are cached in the local file, which may satisfy most requests
for product information even when the external service fails.

What to do in the case where there isn't a local cache hit and access
to the external products service fails? Suppose that the stakeholders
asked us create a solution that signals the cashier to manually
enter the price and description, or cancel the line item entry.

512

HANDLING FAILURE

Figure 33.7 Threads and asynchronous messages in the UML.

Figure 33.8 Active class notation.

513

pc:
ProductCatalog

«singleton»
:ServicesFactory

{ active }
psa : LocalProducts

externalService :
DBProductsAdapter

IProductsAdapter
initialize()

run()

psa := getProductsAdapter()

create()

create(externalService)

IProductsAdapter

A: products :=
getProductUpdates()

* [forever]

// this activation is on
// its own thread
{
loop forever:
 -sleep N minutes
 -ask for product updates
}

Note that an active object that owns a thread has a
very thick line. {active} is optional, but recommended.

As an example, Java active objects will implement Runnable.
Note that there is one interface lollipop per interface.

The low-level details of collaboration with the Thread object
are being ignored in the diagram.

In Java, run to a Thread or
Runnable may be considered an
asynchronous message.

In the UML, these are illustrated
with a stick arrowhead rather
than a solid arrowhead. Note that
this is a change starting in UML
1.4; they used to be a (strange)
half arrowhead.

When methods run on a
different thread, the UML
sequence expression can
start with a name or letter
indicating the thread. This is
optional, but it adds visual
emphasis.

All messages running on the
LocalProducts thread will
start with "A", for example.

Runnable

«thread»
LocalProducts

myThread : Thread

run()
...

«interface»
Runnable

run()

«interface»
IProductsAdapter

...

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

This is an example of an error or failure condition, and it will be used as a con-
text to describe some general patterns in dealing with failures and exception
handling. Exception and error handling is a large topic, and this introduction
will just focus on some patterns specific to the context of the case study. First,
some terminology:
• Fault—the ultimate origin or cause of misbehavior.

 Programmer misspelled the name of a database.
• Error—a manifestation of the fault in the running system. Errors are

detected (or not).
 When calling the naming service to obtain a reference to the data-

base (with the misspelled name), it signals an error.
• Failure—a denial of service caused by an error.

 The Products subsystem (and the NextGen POS) fails to provide a
product information service.

Throwing Exceptions

A straightforward approach to signaling the failure under consideration is to
throw an exception.

Exceptions are especially appropriate when dealing with resource failures
(disk, memory, network or database access, and other external services).

An exception will be thrown from within the persistence subsystem (actually,
probably starting from within something like a Java JDBC implementation),
where a failure to use the external products database is first detected. The
exception will unwind the call stack back up to an appropriate point for its han-
dling.1
Suppose that the original exception (using Java as an example) is a
java.sql.SQLException. Should a SQLException per se be thrown all the way up
to the presentation layer? No. It is at the wrong level of abstraction. This leads
to a common exception handling pattern:

1. Checked vs. unchecked exception handling is not covered, as it is not supported in all

popular OO languages—C++, C#, and Smalltalk, for example.

514

HANDLING FAILURE

For example, the persistence subsystem catches a particular SQLException,
and (assuming it can't handle it2) throws a new DBUnavailableException, which
contains the SQLException. Note that the DBProductAdapter is like a facade
onto a logical subsystem for product information. Thus, the higher level DBPro-
ductAdapter (as the representative for a logical subsystem) catches the lower
level DBUnavailableException and (assuming it can't handle it) throws a new
ProductlnfoUnavailableException, which wraps the DBUnavailableException.

Consider the names of these exceptions: Why DBUnavailableException rather
than, say, PersistenceSubsystemException? There is a pattern for this:

Pattern: Name The Problem Not The Thrower [Grosso00]
What to call an exception? Assign a name that describes why the exception is
being thrown, not the thrower. The benefit is that it makes it easier for the
programmer to understand the problem, and it the highlights the essential
similarity of many classes of exceptions (in a way that naming the thrower
does not).

Exceptions in the UML

This is an appropriate time to introduce the UML notation for throwing3 and
catching exceptions.

2. Resolving an exception near the level at which it was raised is a laudable but difficult
goal, because the requirement for how to handle an error is often application-specific.

3. Officially in the UML, one sends an exception, but throws is a sufficient and more
familiar usage.

515

Pattern: Convert Exceptions [Brown01]
Within a subsystem, avoid emitting lower level exceptions coming from
lower subsystems or services. Rather, convert the lower level exception into
one that is meaningful at the level of the subsystem. The higher level excep-
tion usually wraps the lower-level exception, and adds information, to make
the exception more contextually meaningful to the higher level.

This is a guideline, not an absolute rule.

"Exception" is used here in the vernacular sense of something that can be
thrown; in Java, the equivalent is a Throwable.

Also known as Exception Abstraction [Renzel97].

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Two common notation questions in the UML are:
1. In a class diagram, how to show what exceptions a class catches and throws?
2. In an interaction diagram, how to show throwing an exception?
For a class diagram, Figure 33.9 presents the notation:

Figure 33.9 Exceptions caught and thrown by a class.

In the UML, an Exception is a specialization of a Signal, which is the specification of an
asynchronous communication between objects. This means that in interaction diagrams,
exceptions are illustrated as asynchronous messages.4

4. Note that starting in UML 1.4, the notation for an asynchronous message changed from a
half arrowhead to a stick arrowhead.

exceptions
caught are
modeled as a
kind of operation
handling a signal

PersistenceFacade

usageStatistics : Map

Object get(Key, Class) throws DBUnavailableException, FatalException
put(Key, Object) { throws= (DBUnavailableException, FatalException) }
...
«signal» SQLException()
«signal» IOException()

exceptions
FatalException
DBUnavailableException

exceptions
thrown can be
listed in another
compartment
labeled
"exceptions"

UML notation: The UML has a "default" syntax for operations. But it does not include an official
solution to show exceptions thrown by an operation. There are at least three solutions:

1. The UML allows the operation syntax to be any other language, such as Java. In addition,
some UML CASE tools allow display of operations explicitly in Java syntax.Thus,

 Object get(Key, Class) throws DBUnavailableException, FatalException

2. The default syntax allows the last element to be a "property string." This is a list of arbitrary
property+value pairs, such as { author=Craig, kids=(Hannah, Haley), ...}. Thus,

 put(Object, id) { throws= (DBUnavailableException, FatalException) }

3. Some UML CASE tools allow one to specify (in a special dialog box) the exceptions that an
operation throws.

516

HANDLING FAILURE

Figure 33.10 shows the notation, using the prior description of
SQLException translated to DBUnavailableException as an example.

«exception»
DBUnavailableException()

: DBProducts
Adapter

IProductsAdapter

: Persistence
Facade

UML notation:
All asynchronous messages, including exceptions, are illustrated with a stick
arrowhead.
Exceptions are shown as messages indicated by the exception class name.
An optional «exception» or «signal» stereotype is legal (an exception is a kind
of signal in the UML), if increased visibility is desired.

ps := get(...)

ps := getSpecification(id)

: Object

java.sql.Statement

resultSet := executeQuery(...)

«exception»
SQLException()

note the difference between
synchronous and asynchronous
message arrowheads in the UML

recall that indicating the instance of type "Object" is useful when one wants to
indicate the interface, but not the class of an instance

«exception»
ProductInfoUnavailableException()

stopping the message line
at this point indicates the
PersistenceFacade object
is catching the exception

Figure 33.10 Exceptions in an interaction diagram.

In summary, UML notation exists to show exceptions. However, it is rarely
used.

This is not a recommendation to avoid early consideration of exception
handling. Quite the opposite: At an architectural level, the basic
patterns, policies, and collaborations for exception handling need to be
established early, because it is awkward to insert exception handling
as an afterthought. However, the low-level design of handling
particular exceptions is felt by many developers to be most
appropriately decided during programming or via less detailed design
descriptions, rather than via detailed UML diagrams.

Handling Errors

One side of the design has been considered: throwing exceptions, in
terms of converting, naming, and illustrating them. The other side is
the handling of an exception.

517

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Two patterns to apply in this and most cases are:

Pattern: Centralized Error Logging [Renzel97]

Use a Singleton-accessed central error logging object and report all exceptions to it.
If it is a distributed system, each local singleton will collaborate with a central error
logger. Benefits:

• Consistency in reporting.

• Flexible definition of output streams and format.

Also known as Diagnostic Logger [Harrison98].

It is a simple pattern. The second is:

Pattern: Error Dialog [Renzel97j

Use a standard Singleton-accessed, application-independent, non-UI object to notify
users of errors. It wraps one or more UI "dialog" objects (such as a GUI modal dialog,
text console, sound beeper, or speech generator) and delegates the notification of the
error to the UI objects. Thus, output could go to both a GUI dialog and to a speech
generator. It will also report the exception to the centralized error logger. A Factory
reading from system parameters will create the appropriate UI objects. Benefits:

• Protected Variations with respect to changes in the output mechanism.

• Consistent style of error reporting; for example, all GUI windows can call
on this singleton to display the error dialog.

• Centralized control of the common strategy for error notification.

• Minor performance gain; if an "expensive" resource such as a GUI dialog
is used, it is easy to hide and cache it for recycled use, rather than recre
ate a dialog for each error.

Should a UI object (for example, ProcessSaleFrame) handle an error by catching the
exception and notifying the user? For applications with only a few windows, and simple,
stable navigation paths between windows, this straightforward design is fine. This is
currently true for the NextGen application.

Keep in mind however, that this places some "application logic" related to error handling
in the presentation (GUI) layer. The error handling relates to user notification, so this is
logical, but it is a trend to watch. It is not inherently a problem for simple UIs with a low
chance of UI replacement, but it is a point of fragility. For example, suppose a team
wants to replace a Java Swing UI with the IBM Java Micro View GUI framework for
handheld computers. There is now some application logic in the Swing version that has
to be identified and repli-

518

FAILOVER TO LOCAL SERVICES WITH A PROXY (GoF)

cated in the MicroView version. To some degree, this is inevitable with UI
replacements; but it will be aggravated as more application logic migrates
upwards. In general, as more non-UI application logic responsibilities
migrate to the presentation layer, the probability of design or maintenance
headaches increases.

For systems with many windows and complex (perhaps even changing)
navigation paths, there are other solutions. For example, an application layer
of one or more controllers can be inserted between the presentation and
domain layers.

Furthermore, a "view manager mediator" object [GHJV95, BMRSS96] that
is responsible for having a reference to all open windows, and knowing the
transitions between windows, given some event El (such as an error), can be
inserted.

This mediator is abstractly a state machine that encapsulates the states
(displayed window) and transitions between states, based on events. It
may read the state (window) transition model from an external file, so that
the navigation paths can be data-driven (source code changes are not
necessary). It can also close all the application windows, or tile or minimize
them, since it has a reference to all windows.

In this design, an application layer controller may be designed with a
reference to this view manager mediator (hence, the application controller is
coupled "upwards" to the presentation layer). The application controller
may catch the exception and collaborate with the view manager mediator to
cause notification (based on the Error Dialog pattern). In this way, the
application controller is involved with workflow for the application, and
some error logic handling is kept out of the windows.

Detailed UI control and navigation design is outside the scope of this
introduction, and the simple design of the window catching the exception will
suffice. A design using an Error Dialog is shown in Figure 33.11.

33.3 Failover to Local Services with a Proxy (GoF)

Failover to a local service for the product information was achieved by
inserting the local service in front of the external service; the local service is
always tried first. However, this design is not appropriate for all services;
sometimes the external service should be tried first, and a local version
second. For example, consider the posting of sales to the accounting service.
Business wants them posted as soon as possible, for real-time tracking of
store and register activity.

In this case, another GoF pattern can solve the problem: Proxy. Proxy is a
simple pattern, and widely used in its Remote Proxy variant. For
example, in Java's RMI and in CORBA, a local client-side object (called a
"stub") is called upon to access a remote object's services. The client-side
stub is a local proxy, or a representative for a remote object.

519

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Figure 33.11 Handling the exception.

This NextGen example use of Proxy is not the Remote Proxy variant, but rather the Redirection
Proxy (also known as a Failover Proxy) variant.

Regardless of the variant, the structure of Proxy is always the same; the variations are related to
what the proxy does once called.

A proxy is simply an object that implements the same interface as the subject object, holds a
reference to the real subject, and is used to control access to it. For the general structure, see
Figure 33.12.

520

: DBProducts
Adapter

: Local
Products

IProductsAdapter

:ProductCatalog

ps :=
getSpec(id)

:Register

enterItem(id, qty)

:ProcessSale
Frame

«exception»
ProductInfoUnavailableException()

«singleton»
:ErrorDialog

notify(message, exception)

ps :=
getSpec(id)

ps :=
getSpec(id)

continued

«singleton»
:ErrorDialog

notify
(message, exception)

* : notify(message)

: Object
: Object

INotifier -GUI dialog box
-text console "dialog"
-speech "dialog" «singleton»

:Log

log(exception)

IProductsAdapter

Convert
Exception
patternError Dialog

pattern

Centralized
Error Logging
pattern

FAILOVER TO LOCAL SERVICES WITH A PROXY (GoF)

Proxy
Context / Problem
 Direct access to a real subject object is not desired or possible. What to do?

Solution
Add a level of indirection with a surrogate proxy object that implements the
same interface as the subject object, and is responsibility for controlling or
enhancing access to it.

«interface»
ISubjectInterface

foo()

RealSubject

foo()

{
... pre-processing
realSubject.foo()
... post-processing
}

Client

subject : ISubjectInterface

doBar()

1
1

1

1

Proxy

realSubject : ISubjectInterface

foo()

{
... whatever
subject.foo()
... whatever
}

subject actually
references an
instance of Proxy,
not RealSubject

"realSubject" will actually reference an
instance of RealSubject

Figure 33.12 General structure of the Proxy pattern.

Applied to the NextGen case study for external accounting service access, a
redirection proxy is used as follows:

1. Send a postSale message to the redirection proxy, treating it as though
it
was the actual external accounting service.

2. If the redirection proxy fails to make contact with the external service
(via
its adapter), then it redirects the postSale message to a local service,
which
locally stores the sales for forwarding to the accounting service, when it
is active.

521

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Figure 33.13 illustrates a class diagram of the interesting elements.

Figure 33.13 NextGen use of a redirection proxy.

UML notation:
• To avoid creating an interaction diagram to show the dynamic behavior,

observe how this static diagram uses numbering to convey the sequence of
interaction. An interaction diagram is usually preferred, but this style is
presented to illustrate an alternative style.

• Observe the public and private (+, -) visibility markers beside Register
methods. If absent, they are unspecified, rather than defaulting to public or
private. However, by common convention, unspecified visibility is inter
preted by most readers (and code generating CASE tools) as meaning pri
vate attributes and public methods. However, in this diagram, I especially
want to convey the fact that makePayment is public, and by contrast,
completeSaleHandling is private. Visual noise and information overload are

522

{
... payment work
if (payment completed)
 completeSaleHandling()
}

SAPAccountingAdapter

postReceivable(ReceivableEntry
)
postSale(Sale)
...

«interface»
IAccountingAdapter

postReceivable(ReceivableEntry)
postSale(Sale)
...

AccountingRedirectionProxy

externalAccounting : IAccountingAdapter
localAccounting : IAccountingAdapter

postReceivable(ReceivableEntry)
postSale(Sale)
...

Register

accounting : IAccountingAdapter

+ makePayment()

- completeSaleHandling()

1 1

{
externalAccounting.postSale(sale)

if (externalAccounting fails)
 localAccounting.postSale(sale)
}

1

2

{
save the sale in a local file (to be
forwarded to external accounting
later)
}

LocalAccounting

 postReceivable(ReceivableEntry)
 postSale(Sale)
 ...

{
...
accounting.postSale(currentSale
)
...
}

1

2

3

4

"accounting" actually
references an
instance of
Accounting-
RedirectionProxy

DESIGNING FOR NON-FUNCTIONAL OR QUALITY REQUIREMENTS

always concerns in communication, so it is desirable to exploit conventional
interpretation to keep the diagrams simple.

To summarize, a proxy is an outer object that wraps an inner object, and both
implement the same interface. A client object (such as a Register) does not know
that it references a proxy—it is designed as though it is collaborating with
the real subject (for example, the SAPAccountingAdapter). The Proxy
intercepts calls in order to enhance access to the real subject, in this case by
redirecting the operation to a local service (LocalAccounting) if the external
service is not accessible.

33.4 Designing for Non-Functional or Quality Requirements

Before moving on to the next section, notice that the design work up to
this point in the chapter did not relate to business logic, but to
non-functional or quality requirements related to reliability and recovery.

Interestingly—and this a key point in software architecture—it is common
that the large-scale themes, patterns, and structures of the software
architecture are shaped by the designs to resolve the non-functional or
quality requirements, rather than the basic business logic.

33.5 Accessing External Physical Devices with Adapters; Buy
vs. Build

Another requirement in this iteration is to interact with physical devices
that comprise a POS terminal, such as opening a cash drawer, dispensing
change from the coin dispenser, and capturing a signature from the digital
signature device.

The NextGen POS must work with a variety of POS equipment, including
that sold by IBM, Epson, NCR, Fujitsu, and so forth.

Fortunately, the software architect has done some investigation, and has
discovered that there is now an industry standard, UnifiedPOS
(www.nrf-arts.org), that defines standard object-oriented interfaces (in the
UML sense) for all common POS devices. Furthermore, there is the
JavaPOS (www.javapos.com)—a Java mapping of the Unified POS.

Therefore, in the Software Architecture Document, the architect adds a
technical memo to communicate this significant architectural choice:

523

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Technical Memo Issue: POS Hardware Device Control

Solution Summary: Use Java software from the device manufacturers that conforms to the JavaPOS
standard interfaces.

Factors

• Correctly controls the devices

• Cost to buy vs. build and maintain

Solution

The UnifiedPOS (www.nrf-arts.org) defines an industry standard UML model of interfaces for POS devices. The JavaPOS
(www.javapos.com) is an industry standard mapping of UnifiedPOS to Java. POS device manufactures (e.g., IBM, NCR) sell
Java implementations of these interfaces that control their devices.
Buy these, rather than build them.
Use a Factory that reads from a system property to load IBM or NCR (etc.) set of classes, and return instances based on their
interface.

Motivation

Based on an informal survey, we believe they work well, and the manufacturers have a regular update process for their
improvement. It is difficult to get the expertise and other resources to write these ourselves.

Alternatives Considered
Writing them ourselves-difficult and risky.

Alternatives Considered

Writing them ourselves-difficult and risky.

Figure 33.14 shows some of the interfaces, which have been added as another package of the
domain layer in our Design Model.

524

Domain

Sales

Register Sale

JavaPOS

«interface»
jpos.CashDrawer

isDrawerOpened()
openDrawer()
waitForDrawerClose(timeout
)
...

«interface»
jpos.CoinDispenser

dispenseChange(amount)
getDispenserStatus()
...

...

Figure 33.14 Standard JavaPOS interfaces.

ABSTRACT FACTORY (GoF) FOR FAMILIES OF RELATED OBJECTS

Assume that the major manufacturers of POS equipment now provide
JavaPOS implementations. For example, if we buy an IBM POS terminal
with a cash drawer, coin dispenser, and so forth, we can also get Java
classes from IBM that implement the JavaPOS interfaces, and that control
the physical devices.

Consequently, this part of the architecture is resolved by buying
software components, rather than building them. Encouraging the use of
existing components is one of the UP best practices.

How do they work? At a low level, a physical device has a device driver for
the underlying operating system. A Java class (for example, one that
implements jpos.CashDrawer) uses JNI (Java Native Interface) to make
calls out to these device drivers.

These Java terfaces, and thus can be characterized as Adapter objects in
the GoF pattern sense. They can also be called Proxy objects—local
proxies that control or enhance access to the physical devices.

It is not uncommon to be able to classify a design in terms of multiple
patterns.

33.6 Abstract Factory (GoF) for Families of Related Objects

The JavaPOS implementations will be purchased from manufacturers.
For example5:
// IBM's drivers
com.ibm.pos.jpos.CashDrawer (implements jpos.CashDrawer)
com.ibm.pos.jpos.CoinDispenser (implements jpos.CoinDispenser)

// NCR's drivers
com.ncr.posdrivers.CashDrawer (implements jpos.CashDrawer)
com.ncr.posdrivers.CoinDispenser (implements
jpos.CoinDispenser)

Now, how to design the NextGen POS application to use the IBM Java
drivers if IBM hardware is used, NCR drivers if appropriate, and so forth?

Note that there are families of classes (CashDrawer+CoinDispenser+...)
that need to be created, and each family implements the same interfaces.

5. These are fictitious package names.

525

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

For this situation, a commonly used GoF pattern exists: Abstract Factory.

Abstract Factory

Context I Problem

How to create families of related classes that implement a common interface? Solution

Define a factory interface (the abstract factory). Define a concrete factory class for each
family of things to create. Optionally, define a true abstract class that implements the factory
interface and provides common services to the concrete factories that extend it.

Figure 33.15 illustrates the basic idea; it is improved upon in the next section.

526

«interface»
IJavaPOSDevicesFactory

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

IBMJavaPOSDevicesFactory

...

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

{
return new com.ibm.pos.jpos.CashDrawer()
}

«interface»
jpos.CashDrawer

isDrawerOpened()
...

NCRJavaPOSDevicesFactory

...

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

{
return new com.ncr.posdevices.CashDrawer()
}

this is the Abstract
Factory--an interface for
creating a family of
related objects

com.ibm.pos.jpos.CashDrawer

isDrawerOpened()
...

com.ncr.posdevices.CashDrawer

isDrawerOpened()
...

Figure 33.15 A basic abstract factory.

ABSTRACT FACTORY (GoF) FOR FAMILIES OF RELATED OBJECTS

An Abstract Class Abstract Factory

A common variation on Abstract Factory is to create an abstract class factory that is
accessed using the Singleton pattern, reads from a system property to decide which of
its subclass factories to create, and then returns the appropriate subclass instance. This
is used, for example, in the Java libraries with the java.awt.Toolkit class, which is an
abstract class abstract factory for creating families of GUI widgets for different
operating system and GUI subsystems.

The advantage of this approach is that it solves this problem: How does the application
know which abstract factory to use? IBMJavaPOSDevicesFactory?
NCRJavaPOSDevicesFactory?

The following refinement solves this problem. Figure 33.16 illustrates the solution.

With this abstract class factory and Singleton pattern getlnstance method, objects
can collaborate with the abstract superclass, and obtain a reference to one of its
subclass instances. For example, consider the statement:
CashDrawer = JavaPOSDevicesFactory.getlnstance().getNewCashDrawer ();

The expression JavaPOSDevicesFactory.getlnstance() will return an instance of
IBMJavaPOSDevicesFactory or NCRJavaPOSDevicesFactory, depending on the system
property that is read in. Notice that by changing the external system property
"jposfactory.classname" (which is the class name as a String) in a properties file, the
NextGen system will use a different family of JavaPOS drivers. Protected Variations
with respect to a changing factory has been achieved with a data-driven (reading a
properties file) and reflective programming design, using the c. newInstance()
expression.

Interaction with the factory will occur in a Register. By the goal of low representational
gap, it is reasonable for the software Register (whose name is suggestive of the overall
POS terminal) to hold a reference to devices such as CashDrawer. For example:

class Register
{
private jpos.CashDrawer CashDrawer;
private jpos.CoinDispenser CoinDispenser;
public Register() {

CashDrawer =
JavaPOSDevicesFactory.getlnstance().getNewCashDrawer();

//….
}

//…
}

527

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Figure 33.16 An abstract class abstract factory.

33.7 Handling Payments with Polymorphism and Do It Myself

One of the common ways to apply polymorphism (and Information Expert) is
in the context of what Peter Coad calls the "Do It Myself" strategy or
pattern [Coad95].That is:

528

«interface»
IJavaPOSDevicesFactory

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

 1
IBMJavaPOSDevicesFactory

...

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

{
return new com ibm pos jpos CoinDispenser()

NCRJavaPOSDevicesFactory

...

getNewCashDrawer() ...
getNewCoinDispenser() ...
...

{
return new com ncr posdevices CoinDispenser()

subclassing an abstract
superclass

JavaPOSDevicesFactory

instance : IJavaPOSDevicesFactory

getInstance() : IJavaPOSDevicesFactory

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

1

1

italics indicate abstract
methods & abstract class

{
// THIS METHOD IS THE USEFUL TRICK
public static synchronized
IJavaPOSDevicesFactory getInstance()
{
 if (instance == null)
 {
 String factoryClassName =
 System.getProperty("jposfactory.classname");

 Class c = Class.forName(factoryClassName);

 instance = (IJavaPOSDevicesFactory) c.newInstance();
 }
 return instance;
}

}

HANDLING PAYMENTS WITH POLYMORPHISM AND Do IT MYSELF

Do It Myself
"I (a software object) do those things that are normally done to the actual object that I'm an
abstraction of." [Coad95]

This is the classic object-oriented design style: Circle objects draw themselves, Square objects
draw themselves, Text objects spell-check themselves, and so forth.

Notice that a Text object spell-checking itself is an example of Information Expert: The object
that has the information related to the work does it (a Dictionary is also a candidate, by Expert).

Do It Myself and Information Expert usually lead to the same choice.

Similarly, notice that Circle and Square objects drawing themselves are examples of
Polymorphism: When related alternatives vary by type, assign responsibility using polymorphic
operations to the types for which the behavior varies.
Do It Myself and Polymorphism usually lead to the same choice.

Yet, as was explored in the Pure Fabrication discussion, it is often contraindicated due to
problems in coupling and cohesion, and instead, a designer uses pure fabrications such as
strategies, factories, and the like.

Nevertheless, when appropriate, Do It Myself is attractive in part because of its support for low
representational gap. The design for handling payments will be accomplished with Do It Myself
and Polymorphism.

One of the requirements for this iteration is to handle multiple payment types, which essentially
means to handle the authorization and accounting steps. Different kinds of payments are
authorized in different ways:

• Credit and debit payments are authorized with an external authorization
service. Both require recording a receivable entry in accounts receivable—
money owing from the financial institution that does the authorization.

• Cash payments are authorized in some stores (it is a trend in some coun-
tries) using a special paper bill analyzer attached to the POS terminal that
checks for counterfeit money. Other stores do not do this.

• Check payments are authorized in some stores using a computerized autho-
rization service. Other stores do not do authorize checks.

CreditPayments are authorized in one way; CheckPayments are authorized in another. This is a
classic case for Polymorphism.

Thus, as shown in Figure 33.17, each Payment subclass has its own authorize method.

529

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

Payment

amount

authorize()

CashPayment

authorize()

CreditPayment

authorize()

CheckPayment

authorize()

DebitPayment

authorize()

By Polymorphism, each payment type should authorize itself.

This is also in the spirit of "Do it Myself" (Coad)

Figure 33.17 Classic polymorphism with multiple authorize methods.

For example, as illustrated in Figure 33.18 and Figure 33.19, a Sale instantiates a CreditPayment
or CheckPayment and asks it to authorize itself. .

:Register :Sale

:CreditPayment:CreditCard

1.1: create(ccNum,expiryDate,total)

1.2: authorize()

 1:
makeCreditPayment(cardNum expiryDate)

1.1.1:
create (ccNum,expiryDate)

makeCreditPayment(ccNum,expiryDate) by Creator

by Creator

by Do It Myself and Polymorphism

Figure 33.18 Creating a CreditPayment.

530

:Register :Sale

:CheckPayment:DriversLicense

1.1: create(driversLicenseNum ,total)

1.2: authorize()

 1:
makeCheckPayment(driversLicenseNum)

1.1.1:
create (driversLicenseNum)

makeCheckPayment(driversLicenseNum)

by Do It Myself and Polymorphism

by Creator

:Check
1.1.2:

create(total)
by Creator

Figure 33.19 Creating a CheckPayment.

Fine-Grained Classes?

Consider the creation of the CreditCard, DriversLicense, and Check software
objects. Our first impulse might be to record the data they hold simply in their
related payment classes, and eliminate such fine-grained classes. However, it is
usually a more profitable strategy to use them; they often end up providing use-
ful behavior and being reusable. For example, the CreditCard is a natural
Expert on telling you its credit company type (Visa, MasterCard, and so on).
This behavior will turn out to be necessary for our application.

Credit Payment Authorization

The system must communicate with an external credit authorization service,
and we have already created the basis of the design based on adapters to
support this.

Relevant Credit Payment Domain Information

Some context for the upcoming design:
• POS systems are physically connected with external authorization services

in several ways, including phone lines (which must be dialed) and always-on
broadband Internet connections.

531

HANDLING PAYMENTS WITH POLYMORPHISM AND Do IT MYSELF

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

• Different application-level protocols and associated data formats are used,
such as Secure Electronic Transaction (SET). New ones may become popu
lar, such as XMLPay.

• Payment authorization can be viewed as a regular synchronous operation: a
POS thread blocks, waiting for a reply from the remote service (within the
limits of a time-out period).

• All payment authorization protocols involve sending identifiers uniquely
identifying the store (with a "merchant ID"), and the POS terminal (with a
"terminal ID"). A reply includes an approval or denial code, and a unique
transaction ID.

• A store may use different external authorization services for different credit
card types (one for Visa, one for MasterCard). For each service, the store has
a different merchant ID.

• The credit company type can be deduced from the card number. For exam
ple, numbers starting with 5 are MasterCard; numbers starting with 4 are
Visa.

• The adapter implementations will protect the upper layers of the system
against all these variations in payment authorization. Each adapter is
responsible for ensuring the authorization request transaction is in the
appropriate format, and for collaborating with the external service. As dis
cussed in a prior iteration, the ServicesFactory is responsible for delivering
the appropriate ICreditAuthorizationServiceAdapter implementation.

A Design Scenario

Figure 33.20 starts the presentation of an annotated design that satisfies these details and
requirements. Messages are annotated to illustrate the reasoning.

Once the correct ICreditAuthorizationServiceAdapter is found, it is given the responsibility for
completing the authorization, as shown in Figure 33.21.

Once a reply is obtained by CreditPayment (which has been given the responsibility for handling
its completion by Polymorphism and Do It Myself), assuming it is approved, it completes its tasks,
as shown in Figure 33.22.

532

HANDLING PAYMENTS WITH POLYMORPHISM AND Do IT MYSELF

the Store
knows the
merchant IDs
by low
representationa
l gapby Expert

merchant ID is
indexed by a
credit type code.
e.g., 'Visa',
'MasterCard'

pmt :Credit
Payment

«singleton»
: Register

: Credit
Card

«singleton
»

: Store
:MerchantID

authorize()

tID := getTerminalID()

ct := getType() : CreditType

mID := getMerchantID(ct)
mID := find(ct)

the Register (whose
name suggests being a
termimal) knows the
terminal ID by low
representational gap

«singleton»
: ServicesFactory

cas := getCreditAuthorizationService(ct)

by Protected Variation a
Factory and Adapter are
used

cas : Object

ICreditAuthorization
ServiceAdapter

reply := requestApproval(pmt, tID, mID)

continued

Figure 33.20 Handling a credit payment.

UML notation—Observe in this sequence diagram that some objects were stacked.
This is legal, although few CASE tools support it. It is helpful in publishing, where width
is constrained.

533

33 - DESIGNING MORE USE-CASE REALIZATIONS WITH OBJECTS AND PATTERNS

534

external
actor
service

«actor»
: CAS-System

replyInProtocol := requestApproval(request)

by Adapter

reply := requestApproval(pmt, tID, mID)

cas : Object

ICreditAuthorization
ServiceAdapter

request :=
 getNewRequest
(pmt, tID, mID)

the specific protocol
of interaction with this
remote system is
abstracted

reply :=
getNewTransformedReply

(replyInProtocol)

by Adapter

This particular Adapter
implementation will create the request
and transform the reply for its format
(such as the SET format).

The actual collaboration with the
external service will be in the specific
protocol, such as the SET protocol on
top of SSL.

Figure 33.21 Completing the authorization

by Protected
Variations:
Factory and
Adapter

pmt :Credit
Payment

authorize()
...

«singleton»
: ServicesFactory

as := getAccountingService()

by Do It
Myself and
Polymorphism

cas : Object

ICreditAuthorization
ServiceAdapter

reply :=
requestApproval(pmt, tID, mID)

[reply.isApproved()]
handleApproval(reply)

as : Object

IAccounting
ServiceAdapter

postSale(pmt.getSale())
postReceivable(pmt)

The pmt will
have stored
the reply as an
attribute.

The adapter
will extract the
pmt and reply
information
and format it
as appropriate
for the
particular
accounting
service.

Figure 33.22 Completion of an approved credit payment

CONCLUSION

33.8 Conclusion

The point of this case study was not to show the correct solution—there
isn't a single best solution, and I'm sure readers can improve on what I've
suggested. My sincere hope has been to demonstrate that doing object
design can be reasoned through by core principles such as low coupling and
the application of patterns, rather than being a mysterious process.

Caution: Pattern-itis

This presentation has used GoF design patterns at many points, which is
one point of the case study as a learning aid. But, there have been reports of
designers excessively force-fitting patterns in a creative frenzy of pattern-itis.
I think a conclusion to draw from this is that patterns require study in
multiple examples to be well-digested. A popular learning vehicle is a
lunchtime or after-work study group in which participants shares ways
they have seen or could see the application of patterns, and discuss a
section of a patterns book.

535

Chapter 34

DESIGNING A PERSISTENCE
FRAMEWORK WITH PATTERNS

Le temps est un grand professeur, mais
malheureusement il tue tous ses eleves

(Time is a great teacher, but unfortunately it kills all its pupils).

— Hector Berlioz

Objectives

• Design part of a framework with the Template Method, State, and
Command patterns.

• Introduce issues in object-relational (O-R) mapping.

• Implement lazy materialization with Virtual Proxies.

Introduction

The NextGen application—like most—requires storing and retrieving information in
a persistent storage mechanism, such as a relational database (RDB). This chapter
explores the design of a framework for storing persistent objects.

It is usually better to get or buy than build one of these, either as a standalone
product or as part of container-managed persistence for entity beans if using EJBs
and other Java technologies. Building an industrial-strength O-R persistence service
can consume person-years of effort, and there are subtle issues requiring specialized
expertise. Furthermore, technologies such as those based on the Java Data Objects
(JDO) specification offer partial solutions.

Therefore, the intention is not to show an industrial-strength framework or suggest
ignoring technologies like JDO, but rather to use a persistence framework as a
vehicle for explaining general framework design with patterns, because it

537

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

makes an especially good case study. It is also another demonstration of
using the UML to communicate a software design.

This framework is presented to introduce framework design, not as a
recommended approach to design an industrial persistence service.

34.1 The Problem: Persistent Objects

Assume that in the NextGen application, ProductSpecification data resides
in a relational database. It must be brought into local memory during
application use. Persistent objects are those that require persistent
storage, such as ProductSpecification instances.

Storage Mechanisms and Persistent Objects

Object databases—If an object database is used to store and retrieve
objects, no additional custom or third-party persistence services are
required. This is one of several attractions for its use.

Relational databases—Because of the prevalence of RDBs, their use is
often required, rather than the more convenient object databases. If this is
the case, a number of problems arise due to the mismatch between
record-oriented and object-oriented representations of data; these problems
are explored later. A special O-R mapping service is required.

Other—In addition to RDBs, it is sometimes desirable to store objects in
other storage mechanisms or formats, such as flat files, XML structures,
Palm OS PDB files, hierarchical databases, and so on. As with relational
databases, a representation mismatch exists between objects and these
non-object-oriented formats. And as with RDBs, special services are
required to make them work with objects.

34.2 The Solution: A Persistence Service from a
Persistence Framework

A persistence framework is a general-purpose, reusable, and extendable set of
types that provides functionality to support persistent objects. A persistence
service (or subsystem) actually provides the service, and will be created with a
persistence framework. A persistence service is usually written to work with
RDBs, in which case it is also called an O-R mapping service. Typically, a per-
sistence service must translate objects into records (or some other form of struc-
tured data such as XML) and save them in a database, and translate
records into objects when retrieving from a database.

In terms of the layered architecture of the NextGen application, a
persistence service is a subsystem within the technical services layer.

538

FRAMEWORKS

34.3 Frameworks

At the risk of oversimplification, a framework is an extendable set of objects
for related functions. The quintessential example is a GUI framework,
such as Java's AWT or Swing.

The signature quality of a framework is that it provides an implementation
for the core and unvarying functions, and includes a mechanism to allow a
developer to plug in the varying functions, or to extend the functions.

For example, Java's Swing GUI framework provides many classes and
interfaces for core GUI functions. Developers can add specialized widgets
by subclassing from the Swing classes and overriding certain methods.
Developers can also plug in varying event response behavior to predefined
widget classes (such as JButton) by registering listeners or subscribers
based on the Observer pattern. That's a framework.

In general, a framework:
• Is a cohesive set of interfaces and classes that collaborate to provide

services for the core, unvarying part of a logical subsystem.

• Contains concrete (and especially) abstract classes that define
interfaces to conform to, object interactions to participate in, and
other invariants.

• Usually (but not necessarily) requires the framework user to define
sub classes of existing framework classes to make use of, customize,
and extend the framework services.

• Has abstract classes that may contain both abstract and concrete
methods.

• Relies on the Hollywood Principle— "Don't call us, we'll call you."
Thismeans that the user-defined classes (for example, new
subclasses) willreceive messages from the predefined framework classes.
These are usuallyhandled by implementing superclass abstract methods.

The following persistence framework example will demonstrate these principles.

Frameworks Are Reusable

Frameworks offer a high degree of reuse—much more so than
individual classes. Consequently, if an organization is interested (and
who isn't?) in increasing its degree of software reuse, then it should
emphasize the creation of frameworks.

539

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

34.4 Requirements for the Persistence Service and
Framework

For the NextGen POS application, we need a persistence service to be built
with a persistence framework (which could be used to also create other
persistence services). Let's call the framework PFW (Persistence Framework).
PFW is a simplified framework—a full-blown, industrial-strength
persistence framework is outside the scope of this introduction.

The framework should provide functions such as:

• store and retrieve objects in a persistent storage mechanism

• commit and rollback transactions

The design should be extendable to support different storage mechanisms
and formats, such as RDBs, records in flat files, or XML in files.

34.5 Key Ideas

The following key ideas will be explored in subsequent sections:

• Mapping—There must be some mapping between a class and its
persistentstore (for example, a table in a database), and between object
attributes andthe fields (columns) in a record. That is, there must be a
schema mapping between the two schemas.

• Object identity—To easily relate records to objects, and to ensure
there are no inappropriate duplicates, records and objects have a
unique object identifier.

• Database mapper—A Pure Fabrication database mapper is responsible
for materialization and dematerialization.

• Materialization and dematerialization—Materialization is the
act of transforming a non-object representation of data (for example,
records) from a persistent store into objects. Dematerialization is the
opposite activity (also known as passivation).

• Caches—Persistence services cache materialized objects for performance.

• Transaction state of object—It is useful to know the state of
objects in terms of their relationship to the current transaction. For
example, it is use ful to know which objects have been modified (are dirty)
so that it is possible to determine if they need to be saved back to their
persistent store.

• Transaction operations—Commit and rollback operations.

• Lazy materialization—Not all objects are materialized at once; a
particular instance is only materialized on-demand, when needed.

540

PATTERN: REPRESENTING OBJECTS AS TABLES

Virtual proxies—Lazy materialization can be implemented
using a smart reference known as a virtual proxy.

34.6 Pattern: Representing Objects as Tables

How do you map an object to a record or relational database
schema?

The Representing Objects as Tables pattern [BW96] proposes
defining a table in an RDB for each persistent object class. Object
attributes containing primitive data types (number, string, boolean,
and so on) map to columns.
If an object has only attributes of primitive data types, the mapping
is straightforward. But as we will see, matters are not that simple,
since objects may have attributes that refer to other complex
objects, while the relational model requires that values be atomic
(that is, First Normal Form) (see Figure 34.1).

Manufacturer

name
city
...

...

name city

Now&Zen Mumbai

MANUFACTURER TABLE
: Manufacturer

name = Now&Zen
city = Mumbai

Celestial
Shortening San Ramon

s
Figure 34.1 Mapping objects and tables.

34.7 UML Data Modeling Profile

While on the subject of RDBs, not surprisingly, the UML has
become a popular notation for data models. Note that one of the
official UP artifacts is the Data Model, which is part of the Design
discipline. Figure 34.2 illustrates some notation in the UML for data
modeling.

«Table»
ProductSpecification

«PK» OID : char(16)
Description : varchar(100)
...
«FK» Manu_OID : char(16)

«Table»
Manufacturer

«PK» OID : char(16)
Name : varchar(100)
City : varchar(50)

*1

aggregate signifies a referential constraint: a ProductSpecification
row can't exist without a related Manufacturer row

PK - primary key
FK - foreign key

541

Figure 34.2 UML Data Modeling Profile example.

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

These stereotypes are not part of the core UML—they are an extension. To
generalize, the UML has the concept of a UML profile: a coherent set of
UML stereotypes, tagged values, and constraints for a particular purpose.
Figure 34.2 illustrates part of the proposed (to the OMG) UML Data
Modeling Profile; at the time of this writing it had not been approved. A
profile does not have to be OMG-approved to be a profile, but some
common cases—such as data modeling—are being submitted.

34.8 Pattern: Object Identifier

It is desirable to have a consistent way to relate objects to records, and to be
able to ensure that repeated materialization of a record does not result in
duplicate objects.

The Object Identifier pattern [BW96] proposes assigning an object
identifier (OID) to each record and object (or proxy of an object).

An OID is usually an alphanumeric value; each is unique to a specific
object. There are various approaches to generating unique IDs for OIDs,
ranging from unique to one database, to globally unique: database
sequence generators, the High-Low key generation strategy [Ambler00],
and others.

Within object land, an OID is represented by an OID interface or class that
encapsulates the actual value and its representation. In an RDB, it is
usually stored as a fixed length character value.

Every table will have an OID as primary key, and each object will (directly
or indirectly) also have an OID. If every object is associated with an OID,
and every table has an OID primary key, every object can be uniquely
mapped to some row in some table (see Figure 34.3).

OID

xyz123

abc345

This is a simplified design.
In reality, the OID may be
placed in a Proxy class.

primary key

Manufacturer

city
name
oid : OID
...

...

name city

Now&Zen Mumbai

MANUFACTURER TABLE
: Manufacturer

city = Mumbai
name = Now&Zen
oid = xyz123

Celestial
Shortening San Ramon

Figure 34.3 Object identifiers link objects and records.

This is a simplified view of the design. In reality, the OID may not actually be
placed in the persistent object—although that is possible. Instead, it may be

542

ACCESSING A PERSISTENCE SERVICE WITH A FACADE

placed in a Proxy object wrapping the persistent object. The design is
influenced by the choice of language.

An OID also provides a consistent key type to use in the interface to the
persistence service.

34.9 Accessing a Persistence Service with a Facade

Step one in the design of this subsystem is to define a facade for its
services; recall that Facade is a common pattern to provide a unified
interface to a subsystem. To begin, an operation is needed to retrieve an
object given an OID. But in addition to an OID, the subsystem needs to know
what type of object to materialize; therefore, the class type will also be
provided. Figure 34.4 illustrates some operations of the facade and its use in
collaboration with one of the NextGen service adapters.

 1
PersistenceFacade

...

getInstance() : PersistenceFacade

get(OID, Class) : Object
put(OID, Object)
...

: DBProductsAdapter «singleton»
: PersistenceFacade

obj := get(...)

 // example use of the facade

OID oid = new OID("XYZ123");
ProductSpecification ps = (ProductSpecification) PersistenceFacade.getInstance().get(oid, ProductSpecification.class);

IProductsAdapter

Figure 34.4 The PersistenceFacade.

34.10 Mapping Objects: Database Mapper or Database
Broker Pattern

The PersistenceFacade—as true of all facades—does not do the work itself,
but delegates requests to subsystem objects.

Who should be responsible for materialization and dematerialization of
objects (for example, a ProductSpecification) from a persistent store?

543

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

The Information Expert pattern suggests that the persistent object class itself
(ProductSpecification) is a candidate, because it has some of the data (the data to be saved)
required by the responsibility.

If a persistent object class defines the code to save itself in a database, it is called a direct
mapping design. Direct mapping is workable if the database related code is automatically
generated and injected into the class by a post-processing compiler, and the developer never has
to see or maintain this complex database code cluttering his or her class.

But if direct mapping is manually added and maintained, it has a number of defects and does
not tend to scale well in terms of programming and maintenance. Problems include:

• Strong coupling of the persistent object class to persistent storage knowl
edge—violation of Low Coupling.

• Complex responsibilities in a new and unrelated area to what the object was
previously responsible for—violation of High Cohesion and maintaining a
separation of concerns. Technical service concerns are mixing with applica
tion logic concerns.

We will explore a classic indirect mapping approach, that uses other objects to do the mapping
for persistent objects.

Part of this approach is to use the Database Broker pattern [BW95]. It proposes making a
class that is responsible for materialization, dematerialization, and object caching. This has also
been called the Database Mapper pattern in [Fowler0l], which is a better name than Database
Broker, as it describes its responsibility, and the term "broker" in distributed systems [BMRSS96]
design has a long-standing and different meaning.1

A different mapper class is defined for each persistent object class. Figure 34.5 illustrates that
each persistent object may have its own mapper class, and that there may be different kinds of
mappers for different storage mechanisms. A snippet of code:
class PersistenceFacade
{
/ / . . .
public Object get(OID oid, Class persistenceClass)
{

// an IMapper is keyed by the Class of the persistent object IMapper mapper = (IMapper) mappers.get(persistenceClass);

// delegate
return mapper.get(oid); }

//... }

1. In distributed systems, a broker is a front-end server process that delegates tasks to back-end server
processes.

544

each mapper gets and puts objects in its own unique way,
depending on the kind of data store and format

 1
PersistenceFacade

getInstance() : PersistenceFacade

get(OID, Class) : Object
put(OID, Object)
...

ProductSpecification
RDBMapper

...

get(OID) : Object
put(OID, Object)
...

ProductSpecification
FlatFileMapper

...

get(OID) : Object
put(OID, Object)
...

Manufacturer
RDBMapper

...

get(OID) : Object
put(OID, Object)
...

note that the Class as a
parameter is no longer
needed in this version of
get, as the class is
"hardwired" for a particular
persistent type

1

«interface»
IMapper

get(OID) : Object
put(OID, Object)
...

Class

UML notation: This is a qualified assocation. It means:

1. There is a 1-M association from PersistenceFacade to IMapper objects.
2. With a key of type Class, an IMapper is found (e.g., via a HashMap lookup)

Figure 34.5 Database Mappers.

Although this diagram indicates two ProductSpecification mappers, only one will
be active within a running persistence service.

Metadata-Based Mappers

More flexible, but more involved, is a mapper design based on metadata (data about
data). In contrast to hand-crafting individual mapper classes for different persistent
types, metadata-based mappers dynamically generate the mapping from an object
schema to another schema (such as relational) based on reading in metadata that
describes the mapping, such as "TableX maps to Class Y; column Z maps to object
property P" (it gets much more complex). This approach is feasible for languages with
reflective programming capabilities, such as Java, C#, or Smalltalk, and awkward
for those that don't, such as C++.

With metadata-based mappers, we can change the schema mapping in an external
store and it will be realized in the running system, without changing source
code—Protected Variations with respect to schema variations.

545

MAPPING OBJECTS: DATABASE MAPPER OR DATABASE BROKER PATTERN

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

Nevertheless, a useful quality of the framework presented here is that
hand-coded or metadata mappers can be used without affecting
clients—encapsulation of the implementation.

34.11 Framework Design with the Template Method Pattern

The next section describes some of the essential design features of the
Database Mappers, which are a central part of the PFW. These design
features are based on the Template Method GoF design pattern [GHJV95].2
This pattern is at the heart of framework design,3 and is familiar to most OO
programmers by practice if not by name.

The idea is to define a method (the Template Method) in a superclass
that defines the skeleton of an algorithm, with its varying and unvarying
parts. The Template Method invokes other methods, some of which are
methods that may be overridden in a subclass. Thus, subclasses can
override the varying methods in order to add their own unique behavior at
points of variability (see Figure 34.6).

34.12 Materialization with the Template Method Pattern

If we were to program two or three mapper classes, some commonality in
the code would become apparent. The basic repeating algorithm structure
for materializing an object is:
if (object in cache)

return
it else

create the object from its representation in storage
save object in cache
return it

The point of variation is how the object is created from storage.

We will create the get method to be the template method in an abstract
superclass AbstractPersistenceMapper that defines the template, and use a
hook method in subclasses for the varying part. Figure 34.7 shows the
essential design.

2. This pattern is unrelated to C++ templates. It describes the template of an

algorithm.
3. More specifically, of whitebox frameworks. These are usually class hierarchy

andsubclassing-oriented frameworks that require the user to know something
about theirdesign and structure; hence, whitebox.

546

MATERIALIZATION WITH THE TEMPLATE METHOD PATTERN
Figure 34.6 Template Method pattern in a GUI framework.

Figure 34.7 Template Method for mapper objects.

547

GUIComponent

update()

repaint()

MyExcellentButton

repaint()

// this is the template method
// its algorithm is the unvarying part

public void update()
{
 clearBackground();

 // this is the hook method
 // it is the varying part
 repaint();
}

hook method

- varying part
- overriden in subclass
-may be abstract, or have
 a default implementation

hook method overriden

- fills in the varying part of
the algorithm

HOLLYWOOD PRINCIPLE:
Don't call us, we'll call you

Note that the MyExcellentButton--repaint method is
called from the inherited superclass update
method. This is typical in plugging into a
framework class.

FRAMEWORK class

OUR class

template method

hook method

Abstract
PersistenceMapper

+ get(OID) : Object {leaf}

getObjectFromStorage(OID) : Object {abstract}
...

«interface»
IMapper

get(OID) : Object
put(OID, Object)
...{

// template method
public final Object get(OID oid)
{
obj := cachedObjects.get(oid);
if (obj == null)
 {
 // hook method

obj = getObjectFromStorage(oid);

 cachedObjects.put(oid, obj);
 }
return obj;
}
}

UML notation:

{leaf} is used for final or
leaf operations and
classes.

means "protected"; only
visible to subclasses

HOOK

TEMPLATE

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

As shown in this example, it is common for the template method to be public, and the hook
method to be protected. AbstractPersistenceMapper and IMapper are part of the PFW. Now, an
application programmer can plug into this framework by adding a subclass, and overriding or
implementing the getObject-FromStorage hook method. Figure 34.8 shows an example.

Figure 34.8 Overriding the hook method.4

Assume in the hook method implementation of Figure 34.8 that the beginning part of the
algorithm—doing a SQL SELECT—is the same for all objects, only the database table name
varies.5 If that assumption held, then once again, the

4. In Java as an example, the dbRec that is returned from executing a SQL query will be
a JDBC ResultSet.

5. In many cases, the situation is not so simple. An object may be derived from data from
two or more tables or from multiple databases, in which case, the first version of the
Template Method design offers more flexibility.

548

ProductSpecification
RDBMapper

getObjectFromStorage(OID) : Object

Abstract
PersistenceMapper

+ get(OID) : Object {leaf}

getObjectFromStorage(OID) : Object {abstract}
...

{
// template method
public final Object get(OID oid)
{
obj := cachedObjects.get(oid);
if (obj == null)
 {
 // hook method

obj = getObjectFromStorage(oid);

 cachedObjects.put(oid, obj)
 }
return obj
}
}

{
// hook method override
protected Object getObjectFromStorage(OID oid)
{
String key = oid.toString();
dbRec = SQL execution result of:
 "Select * from PROD_SPEC where key =" + key

ProductSpecification ps = new ProductSpecification();
ps.setOID(oid);
ps.setPrice(dbRec.getColumn("PRICE"));
ps.setItemID(dbRec.getColumn("ITEM_ID"));
ps.setDescrip(dbRec.getColumn("DESC"));

return ps;
}
}

IMapper

MATERIALIZATION WITH THE TEMPLATE METHOD PATTERN

Template Method pattern could be applied to factor out the varying
and unvarying parts of the algorithm. In Figure 34.9, the tricky part
is that AbstractRDB-Mapper--getObjectFromStorage is a hook
method with respect to AbstractPersistenceMapper-get, but a
template method with respect to the new hook method
getObjectFromRecord.

Abstract
RDBMapper

tableName : String

+ «constructor» AbstractRDBMapper(tableName)

getObjectFromStorage(OID) : Object {leaf}

getObjectFromRecord(OID, DBRecord) : Object {abstract}

- getDBRecord(OID) : DBRecord

Abstract
PersistenceMapper

+ get(OID) : Object {leaf}

getObjectFromStorage(OID) : Object {abstract}
...

{
protected final Object
 getObjectFromStorage(OID oid)
{
dbRec = getDBRecord(oid);
 // hook method
return getObjectFromRecord(oid, dbRec);
}
}

IMapper

ProductSpecification
RDBMapper

+ «constructor» ProductSpecificationRDBMapper(tabName)

getObjectFromRecord(OID, DBRecord) : Object

{
// hook method override
protected Object
 getObjectFromRecord(OID oid, DBRecord dbRec)
{
ProductSpecification ps = new ProductSpecification();
ps.setOID(oid);
ps.setPrice(dbRec.getColumn("PRICE"));
ps.setItemID(dbRec.getColumn("ITEM_ID"));
ps.setDescrip(dbRec.getColumn("DESC"));

return ps;
}
}

{
private DBRecord getDBRecord OID oid)
{
String key = oid.toString();
dbRec = SQL execution result of:
 "Select * from "+ tableName + " where key =" + key
return dbRec;
}
}

Figure 34.9 Tightening up the code with the Template Method
again.

UML notation—Observe how constructors can be declared in the
UML. The stereotype is optional, and if the naming convention of
constructor name equal to class name is used, probably
unnecessary.

549

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

Now, IMapper, AbstractPersistenceMapper, and AbstractRDBMapper are part of the framework.
The application programmer needs only to add his or her subclass, such as
ProductSpecificationRDBMapper, and ensure it is created with the table name (to pass via
constructor chaining up to the AbstractRDBMapper).
The Database Mapper class hierarchy is an essential part of the framework; new subclasses
may be added by the application programmer to customize it for new kinds of persistent storage
mechanisms or for new particular tables or files within an existing storage mechanism. Figure
34.10 shows some of the package and class structure. Notice that the NextGen-specific classes
do not belong in the general technical services Persistence package. I think this diagram, com-
bined with Figure 34.9, illustrates the value of a visual language like the UML to describe parts
of software; this succinctly conveys much information.

550

Figure 34.10 The persistence framework.

1

«interface»
IMapper

get(OID) : Object
put(OID, Object)
...

Class

 1
+ PersistenceFacade

getInstance() : PersistenceFacade

get(OID, Class) : Object
put(OID, Object)
...

Abstract
PersistenceMapper

+ get(OID) : Object {leaf}
getObjectFromStorage(OID) : Object
...

Abstract
RDBMapper

+ AbstractRDBMapper(tableName)
getObjectFromStorage(OID) : Object {leaf}
getObjectFromRecord(OID, DBRecord) : Object
- getDBRecord(OID) : DBRecord

Persistence

NextGen Persistence

ProductSpecification
RDBMapper

+ ProductSpecificationRDBMapper(tableName)
getObjectFromRecord(OID, DBRecord) : Object

ProductSpecification
FileWithXMLMapper

getObjectFromStorage(OID) : Object

Sale
RDBMapper

...
getObjectFromRecord(OID, DBRecord) : Object

ProductSpecification
InMemoryTestDataMapper

getObjectFromStorage(OID) : Object

MATERIALIZATION WITH THE TEMPLATE METHOD PATTERN

Notice the class ProductSpecificationlnMemoryTestDataMapper. Such classes
can be used to serve up hard-coded objects for testing, without accessing any
external persistent store.

The UP and the Software Architecture Document

In terms of the UP and documentation, recall that the SAD is a learning aid for
future developers, which contains architectural views of key noteworthy ideas.
Including diagrams such as Figure 34.9 and Figure 34.10 in the SAD for the
NextGen project is very much in the spirit of the kind of information an SAD
should contain.

Synchronized or Guarded Methods in the UML

The AbstractPersistenceMapper—get method contains critical section code that is
not thread safe—the same object could be being materialized concurrently on
different threads. As a technical service subsystem, the persistence service
needs to be designed with thread safety in mind. Indeed, the entire subsystem
may be distributed to a separate process on another computer, with the
PersistenceFacade transformed into a remote server object, and with many
threads simultaneously running in the subsystem, serving multiple clients.

The method should therefore have thread concurrency control—if using Java,
add the synchronized keyword. Figure 34.11 illustrates a synchronized method
in a class diagram.

Abstract
PersistenceMapper

+ get(OID) : Object {leaf, guarded}
...

{
// Java
public final synchronized Object get(OID oid)
{ ... }

}

{guarded} means a "synchronized" method; that is,
only 1 thread may execute at a time within the
family of guarded methods of this object.

IMapper

Figure 34.11 Guarded methods in the UML.

551

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

34.13 Configuring Mappers with a MapperFactory

Similar to previous examples of factories in the case study, the configuration
of the PersistenceFacade with a set of IMapper objects can be achieved with a
factory object, MapperFactory. However, as a slight twist, it is desirable to
not name each mapper with a different operation. For example, this is not
desirable:

class MapperFactory

public IMapper getProductSpecificationMapper()
{...} public IMapper getSaleMapper() {...}

This does not support Protected Variations with respect to a growing list of
mappers—and it will grow. Consequently, the following is preferred:

class MapperFactory

public Map getAllMappers() {...}

}

where the java. util.Map (probably implemented with a HashMap) keys are
the Class objects (the persistent types), and the IMappers are the values.

Then, the facade can initialize its collection of IMappers as

follows: class PersistenceFacade

private java.util.Map mappers =
MapperFactory.getlnstance().getAllMappers();

The factory can assign a set of IMappers using a data-driven design. That is,
the factory can read system properties to discover which IMapper classes to
instantiate. If a language with reflective programming capabilities is used,
such as Java, then the instantiation can be based on reading in the class
names as strings, and using something like a Class.newlnstance operation
for instantiation. Thus, the mapper set can be reconfigured without
changing the source code.

34.14 Pattern: Cache Management

It is desirable to maintain materialized objects in a local cache to improve
performance (materialization is relatively slow) and support transaction
management operations such as a commit.

The Cache Management pattern [BW96] proposes making the Database
Mappers responsible for maintaining its cache. If a different mapper is used
for each class of persistent object, each mapper can maintain its own cache.

552

consolidating and hiding SQL statements in one class

When objects are materialized, they are placed in the cache, with their OID as the key.
Subsequent requests to the mapper for an object will cause the mapper to first search the
cache, thus avoiding unnecessary materialization.

34.15 Consolidating and Hiding SQL Statements in One Class

Hard-coding SQL statements into different RDB mapper classes is not a terrible
sin, but it can be improved upon. Suppose instead:

• There is a single Pure Fabrication class (and it's a singleton) RDBOpera-
tlons where all SQL operations (SELECT, INSERT, ...) are consolidated.

• The RDB mapper classes collaborate with it to obtain a DB record or record
set (for example, ResultSet).
• Its interface looks something like this:
class RDBOperations
{
public ResultSet getProductSpecificationData(OID oid) {...}

public ResultSet getSaleData(OID oid) {...}

}

So that, for example, a mapper has code like this:

class ProductSpecificationRDBMapper extends AbstractPersistenceMapper
{
protected Object getObjectFromStorage(OID oid)
{
ResultSet rs =
RDBOperations.getlnstance().getProductSpecificationData(oid);

ProductSpecification ps = new ProductSpecification O;
ps.setPrice(rs.getDouble("PRICE"));
ps.setOID(oid); return ps;

The following benefits accrue from this Pure Fabrication:
• Ease of maintenance and performance tuning by an expert. SQL optimiza

tion requires a SQL aficionado, rather than an object programmer. With all
the SQL embedded in this one class, it is easy for the SQL expert to find and
work on it.

• Encapsulation of the access method and details. For example, hard-coded
SQL could be replaced by a call to a stored procedure in the RDB in order to
obtain the data. Or a more sophisticated metadata-based approach to gen
erating the SQL could be inserted, in which SQL is dynamically generated
from a metadata schema description read from an external source.

553

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

As an architect, the interesting aspect of this design decision is that it is
influenced by developer skills. A trade-off between high cohesion and
convenience for a specialist was made. Not all design decisions are motivated
by "pure" software engineering concerns such as coupling and cohesion.

34.16 Transactional States and the State Pattern

Transactional support issues can get complex, but to keep things simple for
the present—to focus on the GoF State pattern—assume the following:

• Persistent objects can be inserted, deleted, or modified.

• Operating on a persistent object (for example, modifying it) does not
cause
an immediate database update; rather, an explicit commit operation must
be
performed.

In addition, the response to an operation depends on the transactional state
of the object. As an example, responses may be as shown in the statechart of
Figure 34.12.

OldClean OldDirty

OldDelete

commit / delete

delete

New

[from DB][new (not from DB)]

save

commit / update

delete

rollback / reload

rollback / reloadcommit / insert

State chart: PersistentObject

Legend:
New--newly created; not in DB
Old--retrieved from DB
Clean--unmodified
Dirty--modified

Deleted

Figure 34.12 Statechart for PersistentObject.

For example, an "old dirty" object is one retrieved from the database and
then modified. On a commit operation, it should be updated to the
database—in contrast to one in the "old clean" state, which should do
nothing (because it hasn't changed). Within the object-oriented PFW, when
a delete or save operation is performed, it does not immediately cause a
database delete or save; rather, the persistent object transitions to the
appropriate state, awaiting a commit or rollback to really do something.

As a UML comment, this is a good example of where a statechart is helpful
in succinctly communicating information that is otherwise awkward to
express.

554

TRANSACTIONAL STATES AND THE STATE PATTERN

In this design, assume that we will make all persistent object classes extend a
PersistentObject class,6 that provides common technical services for persistence.7 For
example, see Figure 34.13.

Persistence

Domain

ProductSpecification

... PersistentObject

oid : OID
timeStamp:
DateTime

commit()
delete()
rollback()
save()
...

Figure 34.13 PersistentObjects.

Now—and this is the issue that will be resolved with the State pattern—notice that
commit and rollback methods require similar structures of case logic, based on a
transactional state code, commit and rollback perform different actions in their cases,
but they have similar logic structures.

An alternative to this repeating case logic structure is the GoF State pattern.

6. Ambler00b] is a good reference on a PersistentObject class and persistence layers,
although the idea is older.

7. Some issues with extending a PersistentObject class are discussed later. Whenever a
domain object class extends a technical services class, it should be pause for reflection,
as it mixes architectural concerns (persistence and application logic).

555

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

State

Context / Problem

An object's behavior is dependent on its state, and its methods contain
case logic reflecting conditional state-dependent actions. Is there an
alternative to conditional logic?

Solution

Create state classes for each state, implementing a common interface.
Delegate state-dependent operations from the context object to its
current state object. Ensure the context object always points to a state
object reflecting its current state.

Figure 34.14 illustrates its application in the persistence subsystem.

State-dependent methods in PersistentObject delegate their execution to an
associated state object. If the context object is referencing the
OldDirtyState, then 1) the commit method will cause a database update,
and 2) the context object will be reassigned to reference the OldCleanState.
On the other hand, if the context object is referencing the OldCleanState,
the inherited do-nothing commit method executes and does nothing (as to be
expected, since the object is clean).

Observe in Figure 34.14 that the state classes and their behavior correspond
to the state chart of Figure 34.12. The State pattern is one mechanism to
implement a state transition model in software.8 It causes an object to
transition to different states in response to events.

As a performance comment, these state objects are—ironically—stateless
(no attributes). Thus, there does not need to be multiple instances of a
class—each is a singleton. Thousands of persistent objects can reference
the same OldDirtyState instance, for example.

34.17 Designing a Transaction with the Command Pattern

The last section took a simplified view of transactions. This section extends
the discussion, but does not cover all transaction design issues. Informally,
a transaction is a unit of work—a set of tasks—whose tasks must all
complete successfully, or none must be completed. That is, its completion is
atomic.

8. There are others, including hard-coded conditional logic, state machine
interpreters, and code generators driven by state tables.

556

PersistentObject

oid : OID
state : PObjectState

commit()
delete()
rollback()
save()
setState(PObjectState)
...

PObjectState

commit(obj : PersistentObject)
delete(obj : PersistentObject)
rollback(obj : PersistentObject)
save(obj : PersistentObject)

OldDirty
State

commit(...)
delete(...)
rollback(...)

1

OldClean
State

delete(...)
save(...)

New
State

commit(...)

OldDelete
State

commit(...)
rollback(...)

Product
Specification

...

...

Sale

...

...

*

{ state.delete(this) }

{
 // default no-op
 // bodies for
 // each method
}

{ // delete
obj.setState(OldDeleteState.getInstance()) }

{ // save
obj.setState(OldDirtyState.getInstance()) }

{ // rollback
PersistenceFacade.getInstance().reload(obj)
obj.setState(OldCleanState.getInstance()) }

{ // commit
PersistenceFacade.getInstance().update(obj)
obj.setState(OldCleanState.getInstance()) }

{ state.rollback(this) } { state.commit(this) }
{ state.save(this) }

{ // commit
PersistenceFacade.getInstance().insert(obj)
obj.setState(OldCleanState.getInstance()) }

{ // commit
PersistenceFacade.getInstance().delete(obj)
obj.setState(DeletedState.getInstance()) }

Figure 34.14 Applying the State pattern.9

In terms of the persistence service, the tasks of a transaction include
inserting, updating, and deleting objects. One transaction could contain two
inserts, one update, and three deletes, for example. To represent this, a
Transaction class is added [Ambler00b].10 As pointed out in [Fowler0l], the
order of database tasks within a transaction can influence its success (and
performance).

9. The Deleted class is omitted due to space constraints in the
diagram. l0.This is called a UnitOfWork in [Fowler0l].

557

DESIGNING A TRANSACTION WITH THE COMMAND PATTERN

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

For example:

1. Suppose the database has a referential integrity constraint such that when
a record is updated in TableA that contains a foreign key to a record in
TableB, the database requires that the record in TableB already exists.

2. Suppose a transaction contains an INSERT task to add the TableB record,
and an UPDATE task to update the TableA record. If the UPDATE executes
before the INSERT, a referential integrity error is raised.

Ordering the database tasks can help. Some ordering issues are schema-specific, but a general
strategy is to first do inserts, then updates, and then deletes.

Mind that the order in which tasks are added to a transaction by an application may not reflect
their best execution order. The tasks need to be sorted just before their execution.

This leads to another GoF pattern: Command.

Command

Context / Problem

How to handle requests or tasks that need functions such as sorting (prioritizing), queueing,
delaying, logging, or undoing?

Solution

Make each task a class that implements a common interface.

This is a simple pattern with many useful applications; actions become objects, and thus can be
sorted, logged, queued, and so forth. For example, in the PFW, Figure 34.15 shows Command (or
task) classes for the database operations.

There is much more to completing a transaction solution, but the key idea of this section is to
represent each task or action in the transaction as an object with a polymorphic execute method;
this opens up a world of flexibility by treating the request as an object itself.

The quintessential example of Command is for GUI actions, such as cut and paste. For example,
the CutCommand's execute method does a cut, and its undo method reverses the cut. The
CutCommand will also retain the data necessary to perform the undo. All the GUI commands
can be kept in a history stack, so that they can be popped in turn, and each undone.

Another common use of Command is for server-side request handling. When a server object receives

a (remote) message, it creates a Command object for that request, and hands it off to a

CommandProcesser [BMRSS96], which can queue, log, prioritize, and execute the commands.

558

«interface»
ICommand

execute()
undo()

DBInsertCommand

execute()

DBUpdateCommand

execute()

DBDeleteCommand

execute()

Transaction

commands : List

commit()
addDelete(obj:PersistentObject)
addInsert(obj:PersistentObject)
addUpdate(obj:PersistentObject)
sort()
...

1..*

DBCommand

object : PersistentObject

execute() {abstract}
undo() {leaf}

undo is a no-op for
this example, but a
more complex
solution adds a
polymorphic undo
to each subclass
which uniquely
knows how to undo
an operation

PersistentObject

commit()
...

1

11{
commands.add(new DBUpdateCommand(obj));
}

use SortStrategy objects to allow
different sort algorithms to order the
Commands

perhaps simply
 object.commit()
but each Command can
perform its own unique
actions

{
sort()
for each ICommand cmd
 cmd.execute()
}

Figure 34.15 Commands for database operations.

34.18 Lazy Materialization with a Virtual Proxy

It is sometimes desirable to defer the materialization of an object until
it is absolutely required, usually for performance reasons. For
example, suppose that ProductSpecification objects reference a
Manufacturer object, but only very rarely does it need to be
materialized from the database. Only rare scenarios cause a
request for manufacturer information, such as manufacturer rebate
scenarios in which the company name and address are required.
The deferred materialization of "children" objects is known as lazy
materialization. Lazy materialization can be implemented using the
Virtual Proxy GoF pattern—one of many variations of Proxy.
A Virtual Proxy is a proxy for another object (the real subject) that
materializes the real subject when it is first referenced; therefore, it
implements lazy materialization. It is a lightweight object that stands
for a "real" object that may or may not be materialized.

559

LAZY MATERIALIZATION WITH A VIRTUAL PROXY

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

A concrete example of the Virtual Proxy pattern with ProductSpecification and
Manufacturer is shown in Figure 34.16. This design is based on the assumption
that proxies know the OID of their real subject, and when materialization is
required, the OID is used to help identify and retrieve the real subject.
Note that the ProductSpecification has attribute visibility to an IManufacturer
instance. The Manufacturer for this ProductSpecification may not yet be materi-
alized in memory. When the ProductSpecification sends a getAddress message to
the ManufacturerProxy (as though it were the materialized manufacturer
object), the proxy materializes the real Manufacturer, using the OID of the Man-
ufacturer to retrieve and materialize it.

Figure 34.16 Manufacturer Virtual Proxy.

Manufacturer
Proxy

realSubject : IManufacturer

- getRealSubject() : IManufacturer

+ getAddress()
...

Manufacturer

address

getAddress()
...

nterface�玦
IManufacturer

getAddress()
...

Proxy-for 1*
realSubject

{
return getRealSubject().getAddress()
}

ProductSpecification

manufacturer : IManufacturer
...

getManufacturerAddress() : Address

1

{
if (realSubject == null)
 realSubject = PersistenceFacade.get(oid, Manufacturer.class);
return realSubject;
}

PersistentObject

oid

...

1

{
return manufacturer.getAddress()
}

actually references an
instance of
ManufacturerProxy

1

23

560

LAZY MATERIALIZATION WITH A VIRTUAL PROXY

Implementation of a Virtual Proxy

The implementation of a Virtual Proxy varies by language. The details are out-
side the scope of this chapter, but here is a synopsis:

Language Virtual Proxy Implementation

C++ Define a templatized smart pointer class. No IManufacturer
interface definition is actually needed.

Java The ManufacturerProxy class is implemented. The
IManu-facturer interface is defined.
However, these are not normally manually coded. Rather,
one creates a code generator that analyzes the subject
classes (e.g., Manufacturer) and generates IManufacturer
and ProxyManufacturer.
Another Java alternative is the Dynamic Proxy API.

Smalltalk Define a Virtual Morphing Proxy (or Ghost Proxy), which
uses #doesNotUnderstand: and #become: to morph into the
real subject. No IManufacturer definition is needed.

Who Creates the Virtual Proxy?

Observe in Figure 34.16 that the ManufacturerProxy collaborates with the
PersistenceFacade in order to materialize its real subject. But who creates the
ManufacturerProxy? Answer: The database mapper class for
Product-Specification. The mapper class is responsible for deciding, when it
materializes an object, which of its "child" objects should also be eagerly
materialized, and which should be lazily materialized with a proxy.
Consider these alternative solutions: one uses eager materialization, the other
lazy materialization.
// EAGER MATERIALIZATION OF MANUFACTURER
class ProductSpecificationRDBMapper extends AbstractPersistenceMapper
{
protected Object getObjectFromStorage(OID oid)
{
ResultSet rs =

RDBOperations.getlnstance().getProductSpecificationData(oid);

ProductSpecification ps = new ProductSpecification();
ps.setPrice(rs.getDouble("PRICE"));

561

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

// here's the essence of it

String manufacturerForeignKey = rs.getString("MANU_OID"); OID
manuOID = new OID(manufacturerForeignKey); ps.setManufacturer
((Manufacturer)

PersistenceFacade.getInstance().get(manuOID, Manufacturer.class));

Here is the lazy materialization solution:
// LAZY MATERIALIZATION OF MANUFACTURER
class ProductSpecificationRDBMapper extends AbstractPersistenceMapper

{
protected Object getObjectFromStorage(OID oid)
{
ResultSet rs =

RDBOperations.getlnstance().getProductSpecificationData(oid);
ProductSpecification ps = new ProductSpecification();
ps.setPrice(rs.getDouble("PRICE")) ;

// here's the essence of it

String manufacturerForeignKey = rs.getstring("MANU_OID");
OID manuOID = new OID(manufacturerForeignKey);
ps.setManufacturer(new ManufacturerProxy(manuOID));

34.19 How to Represent Relationships in Tables

The code in the prior section relies on a MANU_OID foreign key in the
PRODUCT_SPEC table to link to a record in the MANUFACTURER table. This
highlights the question: How are object relationships represented in the rela-
tional model?

The answer is given in the Representing Object Relationships as Tables
pattern [BW96], which proposes the following:
one-to-one associations

 Place an OID foreign key in one or both tables representing the
objects in relationship.

 Or, create an associative table that records the OIDs of each object in
relationship.

562

PERSISTENTOBJECT SUPERCLASS AND SEPARATION OF CONCERNS

one-to-many associations, such as a collection

 Create an associative table that records the OIDs of each
object in relationship.

many-to-many associations

 Create an associative table that records the OIDs of each object
in relationship.

34.20 PersistentObject Superclass and Separation of Concerns

A common partial design solution to providing persistence for objects is to create
an abstract technical services superclass PersistentObject that all persistence
objects inherit from (see Figure 34.17). Such a class usually defines attributes
for persistence, such as a unique OID, and methods for saving to a database.
This is not wrong, but it suffers from the weakness of coupling the class to the
PersistentObject class—domain classes end up extending a technical services
class.

PersistentObject

Product
Specification

possible design, but problematic in terms
of coupling and mixing the technical
service concern of persistence with the
application logic of a domain object.

Figure 34.17 Problems with a PersistentObject superclass.

This design does not illustrate a clear separation of concerns. Rather, technical
services concerns are mixed with domain layer business logic concerns by virtue
of this extension.

On the other hand, "separation of concerns" is not an absolute virtue that must
be followed at all costs. As discussed in the Protected Variations introduction,
designers need to pick their battles at the truly likely points of expensive insta-
bility. If in a particular application making the classes extend from
Persistent-Object leads to a neat and easy solution and does not create
longer-term design or maintenance problems, why not? The answer lies in
understanding the evolution of the requirements and design for the application.
It is also influenced by the language: those with single inheritance (such as
Java) have had their single precious superclass consumed.

563

34 - DESIGNING A PERSISTENCE FRAMEWORK WITH PATTERNS

34.21 Unresolved Issues

This has been a very brief introduction to the problems and design solutions in a
persistence framework and service. Many important issues have been glossed
over, including:
• dematerializing objects

o Briefly, the mappers must define putObjectToStorage. methods.
Dematerializing composition hierarchies requires collaboration
between multiple mappers and the maintenance of associative
tables (if an RDB is used).

• materialization and dematerialization of collections
• queries for groups of objects
• thorough transaction handling
• error handling when a database operation fails
• multiuser access and locking strategies
• security—controlling access to the database

564

PART 6 SPECIAL TOPICS

Chapter 35

ON DRAWING AND TOOLS

Bubbles don't crash.

—Bertrand Meyer

Objectives

Learn tips for drawing UML diagrams on a project.
Illustrate some common functions in UML CASE tools.

Introduction

On a real project, doing some analysis or design while drawing UML diagrams
does not happen neatly as in the pages of a book. It happens in the context of a
busy software development team working in offices or rooms, scribbling on
whiteboards and perhaps using a tool, and often with a tendency to want to
start programming rather than work through some details via diagramming. If
the UML tool or process of drawing is bothersome or fussy, or feels less valuable
than programming, it will be avoided.
This chapter offers some suggestions on striking a balance between program-
ming and drawing, and on fostering a supportive environment to make drawing
convenient and useful rather than awkward.

35.1 On Speculative Design and Visual Thinking

The designs illustrated in UML diagrams will be incomplete, and only serve as a
"springboard" to the programming. Too much diagramming before programming
leads to time wasted in speculative design directions, or time wasted fussing
with UML tools. There's nothing like real code to tell you what works. Bertrand
Meyer said it best: "Bubbles don't crash."

567

35 - ON DRAWING AND TOOLS

Nevertheless, I vigorously encourage some forethought through diagramming
before programming, and know it can add value, especially to explore the major
design strategies. The interesting question is "How much diagramming before
programming?" In part, the answer is a function of the experience and cognitive
style of the designers.
Some people are very spatial/visual thinkers, and expressing their software
design thoughts in a visual language complements their nature; others aren't. A
large percentage of the brain is dedicated to visual or iconic thinking and pro-
cessing, rather than textual processing (code). Visual languages such as the
UML play to a natural mental strength of most people. Those educated in the
UML obviously have an easier time at it than those who are not. And in general,
more experienced object designers can effectively design by drawing without
straying into unrealistic speculation, because of their experience and judgment.
Applied by adepts, diagrams can help a group move more quickly toward a skill-
ful design, due to the ability to ignore details and focus on the big picture.
One exception to this "light" diagramming suggestion is systems that are natu-
rally modeled as state machines. There are some CASE tools that can do an
impressive job at full code generation based on detailed UML statecharts for all
the classes. But not all domains naturally fit a strong statemodel-centric
approach; as examples, machine control and telecommunications often fit well,
business information systems often don't.

35.2 Suggestions for UML Drawing Within the Development
Process

Level of Effort

As a guideline, consider diagramming in pairs for the following period, before
serious programming in the iteration.

2-week iteration half-day to one-day near the start of the iteration (e.g.,
Monday or Tuesday)

4-week iteration one or two days near the start

In both cases, drawing does not have to stop after this early focussed effort. Dur-
ing the iteration, developers may head—ideally in pairs—"to the whiteboard"
for short sessions to sketch out ideas before more programming. And they may
do another longer half-day session partway through the iteration, as they hit a
complex problem within the scope of their initial task, or finish their first task
and move on to a second.

568

SUGGESTIONS FOR UML DRAWING WITHIN THE DEVELOPMENT PROCESS

Other Suggestions

• Draw in pairs, not alone. Most importantly, the synergy leads to better
designs. Secondly, the pair quickly learns design skills from each other, and
thus both become better designers. It is hard to grow as a software designer
when one designs in isolation. Regularly rotate with new drawing/design
partners to gain broad exposure to another's knowledge.

• To clarify a point alluded to several times, in iterative processes (such as the
UP), the programmers are also the designers; there is not a separate team
that draws designs and hands them over to programmers. The developers
put on their UML hats, and draw a little. Then they put on their program
mer hats and implement, and continue to design while programming.

• If there are ten developers, suppose that there are five drawing teams work
ing for one day at different whiteboards. If the architect spends time rotat
ing through the five teams, he or she will come to see points of dependency,
conflict, and cross-pollinating ideas. The architect can then act as a liaison
to bring the designs into some harmony, and clarify the dependencies.

• Hire a technical writer for the project and educate the writer in some UML
notation and basic OOA/D concepts (so he or she understand the context).
Have the writer help by doing the "fussy work" with UML CASE tools,
reverse-engineering diagrams from code, printing and displaying large plot
ter prints of diagrams, and so forth. The developers spend their (more
expensive) time doing what they do best: figuring out designs and program
ming. A technical writer supports them by handling diagram management,
in addition to true technical writing responsibilities such as working on the
end-user documents. This is known as the Mercenary Analyst pattern
[Coplien95a].

• Arrange the development area with many large whiteboards in close
proximity.

• To generalize, maximize the work environment for convenient drawing on
walls. Create a "drawing-friendly" and "hanging diagrams"-friendly environ
ment. You can't expect a successful visual modeling culture in an environ
ment where developers are struggling to draw on small two-foot by three-
foot whiteboards, regular size computer monitors, or pieces of paper. Com
fortable drawing takes very large, open drawing spaces—physical or virtual.

• As an adjunct to whiteboards, use thin plastic "static cling" white sheets
(they come in packages of 20 or more) that can be placed on the walls; they
are available at many stationary stores. They remain attached to the wall by
static cling, and can be used like a whiteboard with an erasable marker.
These can be plastered across a wall space to create massive, temporary
"whiteboards." I have coached groups where we wallpapered every wall—top
to bottom—of the project room with these, and found them a great communi
cation aid.

569

570

35 - ON DRAWING AND TOOLS

• If using a whiteboard for UML drawings, use a device (there is at least one
on the market) that captures the hand drawings and transmits them to a
computer as a graphics file. One design involves a receiving part that snaps
on to a corner of the whiteboard and special transmitting sleeves that
marker pens insert into.

• Alternatively, if using a whiteboard for UML drawings, use a digital camera
to capture the images, usually in two or three sections. This is a fairly com
mon and effective diagramming practice.

• Another whiteboard technology is a "printing" whiteboard, which is usually
a two-sided whiteboard with a scanner and attached printer. These are also
useful.

• Print out the hand-drawn UML images (captured by camera or whiteboard
device) and hang them visibly very near to the programming workstation.
The point of the diagrams is to provide some inspiration for the direction of
the programming, so that the programmers can glance at them while pro
gramming. If they are drawn but "buried," there was little point in drawing
them.

• If drawing UML by hand, use simple notation chosen for speed and ease of
drawing.

• Even if doing creative design on a whiteboard, use a UML CASE tool to gen
erate package and class diagrams by reverse-engineering the source code
(from the last iteration) at least at the beginning of each subsequent itera
tion. Then, use these reverse-engineered diagrams as the starting point for
subsequent creative design.

• Periodically print out freshly reverse-engineered interesting/unstable/diffi
cult package and class diagrams in an enlarged size (for viewing ease) on a
plotter that can print on a continuous sheet of three- or four-foot-wide paper.
Hang these on walls very close to the developers as visual aids. The techni
cal writer, if present, can do this work. Encourage developers to draw and
scribble on the plots during creative design work.

• With respect to reverse-engineering, a few UML tools support reverse-engi
neering of sequence diagrams—not just class diagrams—from source code.
If
available, use one to generate sequence diagrams for architecturally signifi
cant scenarios, print them in large size on the plotter, and hang them for
easy viewing.

• If using a UML CASE tool (indeed, do this for all programming work), use a
dual-monitor workstation (two regular-size flat-panel displays are cheaper
than a single large flat-panel display). Modern operating systems support
(at least) dual video cards and thus two displays. Organize your windows
within the UML tool across the two displays. Why? One small monitor is
psychologically or creatively inhibiting in terms of drawing and visual lan
guages because the visual canvas space is too small and cramped. A devel
oper can get into the discouraged attitude of "the design is finished because
the window is full, and it looks too cluttered."

TOOLS AND SAMPLE FEATURES

When using a UML CASE tool and doing creative design in pairs or small
groups, attach two computer projectors to the two video cards of the com-
puter and align the projections on the wall so that the team can see and
work with a large visual canvas space. A small canvas and hard-to-see dia-
grams are a psychological and social impediment to small-group collabora-
tive visual design.

35.3 Tools and Sample Features

This Book Is Tool-Neutral

It would be slightly odd not to mention any UML CASE (computer-aided soft-
ware engineering) tools, because the book is in part about drawing in the UML,
which happens with a CASE tool, or at a whiteboard. At the same time, not all
tools can be equally covered, and proper evaluations are beyond the scope of the
book. To be impartial:

This book does not endorse any UML CASE tool. The following examples are
only to illustrate some typical and key features found in UML CASE tools.

Tools Have Inconsistent UML Conformance

Few tools draw all UML notation correctly, conforming to the current version of
the UML specification—or indeed any version. Although this would be nice, it
should not be a factor in choosing a tool, because much more important is its
functionality and ease of use.

Example One

In Figure 35.1 and Figure 35.2, Together from TogetherSoft is used to illustrate
and define two key functions of a UML CASE tool: forward-engineering and
reverse engineering. These functions are at the heart of what distinguishes a
UML CASE tool from a drawing tool.

571

35 - ON DRAWING AND TOOLS

572

Figure 35.1 Forward-engineering.

Forward-engineering: The ability to generate
code from diagrams.

For example, one can choose a message on a sequence
diagram (e.g., enterItem to a Register object) and the tool
will generate method body source code in Java,
reflecting the design in the sequence diagram.

Reverse-engineering: The ability to
generate diagrams from code.

For example, one can choose an
operation on a class diagram (e.g.,
Register.enterItem) and the tool will
generate a sequence diagram reflecting
the design in the source code.

Figure 35.2 Reverse-engineering.

EXAMPLE Two

35.4 Example Two

In Figure 35.3 and Figure 35.4, Rational Rose is used to illustrate some other
core functions in a UML CASE tool.

Drawing class
diagrams, which
are used to
generate code, is
a key function in
a UML CASE
tool.

Figure 35.3 Creating class diagrams.

Organizing
diagrams in
packages is a key
UML CASE tool
feature. By
clicking on a
package, one
zooms into its
contents.

Figure 35.4 Managing packages.

573

574

35 - ON DRAWING AND TOOLS

UML CASE Tool Vendor Requests

I suggest consumers make four requests of UML CASE tool vendors:
1. Implement correct, current UML notation in the tool.
2. Have the CASE tool development team itself seriously draw, read, and

review UML diagrams (including reverse-engineered diagrams) in the pro
cess of building the UML tool itself.

3. Use version N of the UML tool to create version N+l.
4. Provide support for reverse- and forward-engineering of sequence diagrams;

most tools only support this for class diagrams.
Microsoft advocates that tool creators "eat their own dogfood." Good advice.

Chapter

INTRODUCTION TO ITERATIVE
PLANNING AND PROJECT ISSUES

Prediction is very difficult, especially if it's about the future.

—anonymous

Objectives

• Rank requirements and risks.
• Compare and contrast adaptive and predictive planning.
• Define the UP Phase Plan and Iteration Plan.
• Introduce requirements tracking tools for iterative development.
• Suggest how to organize project artifacts.

Introduction

Project planning and management issues are large topics, but a brief explora-
tion of some key questions related to iterative development and the UP is help-
ful, such as:
• What to do in the next iteration?
• How to track requirements in iterative development?
• How to organize project artifacts?

575

36 - INTRODUCTION TO ITERATIVE PLANNING AND PROJECT ISSUES

36.1 Ranking Requirements

Early Iteration Drivers: Risk, Coverage, Criticality, Skills
Development

What to do in the earliest iterations? Organize requirements and iterations by
risk, coverage, and Criticality [Kruchten00]. Requirement risk includes both
technical complexity and other factors, such as uncertainty of effort, poor speci-
fication, political problems, or usability. Ranking requirement risks is to be con-
trasted with ranking project risks, which is covered in a later section.
Coverage implies that all major parts of the system are at least touched on in
early iterations—perhaps a "wide and shallow" implementation across many
components. Criticality refers to functions of high business value; that is, pri-
mary functions should have at least partial implementations for main success
scenarios in the earlier iterations, even if not technically risky.
On some projects, another driver is skills development—a goal is to help the
team master new skills such as adopting object technologies. On such projects,
skills development is a heavily weighted prioritization factor which tends to
reorganize the iterations into less risky or simpler requirements in early itera-
tions, motivated by learning rather than risk reduction goals.

What to Rank?

The UP is use-case driven, which includes the practice of ranking use cases (and
scenarios of use cases) for implementation. Also, some requirements are
expressed as high-level features unrelated to a particular use case, usually
because they span many use cases or are a general service, such as logging ser-
vices. These non-use case functions will be recorded in the Supplementary Spec-
ification. Therefore, include both use cases and other high-level features in a
ranking list.

Requirement Type …

Process Sale UC …

Logging Feature …

… … …

576

RANKING REQUIREMENTS

Group Qualitative Methods for Ranking

Based on the drivers, requirements are ranked, and high priorities are handled
in early iterations. The ranking may be informal and qualitative, generated in a
group meeting by members mindful of these drivers.

Suggestion
To informally prioritize requirements, tasks, or risks via a group meeting,
use iterative "dot voting." List the items on a whiteboard. Everyone gets, for
example, 20 sticky dots. As a group, and in silence (to reduce influence), all
approach the board and apply dots to the items, reflecting the voter's priori-
ties. A voter can assign many dots to one item. On completion, sort and dis-
cuss. Then do a second round of silent dot voting to reflect updated insight
based on first round voting and discussion. This second round provides the
feedback and adaptation by which decisions improve.

The requirements or risk ranking will be done before iteration 1, but then again
before iteration 2, and so forth.

Quantitative Methods for Ranking

Group discussion and something like dot voting for requirements or risk rank-
ing are probably sufficient—a fuzzy qualitative approach. For the more quanti-
tatively minded, variations on the following have been used. The example
values and weights are only suggestive; the point is that numeric values and
weights can be used to reason about priorities.

Requirement Type AS Risk Criticality W. Sum
Process Sale UC 3 2 3 15
Logging Feat 3 0 1 7
Handle Returns
...

UC
...

1
...

0
...

0
...

2
...

 Weight Range
AS: architecturally significant 2 0-3
Risk: tech, complex, novel,... 3 0-3
Criticality: early high biz value 1 0-3

On any project, the exact values should not be taken too seriously; on comple-
tion, the numeric scoring can be used to help group the requirements into fuzzy
sets of high, medium, and low ranking. Clearly, Process Sale appears important
to work on in early iterations.

577

36 - INTRODUCTION TO ITERATIVE PLANNING AND PROJECT ISSUES

The numbers don't tell the whole story. Even though logging is a low-risk, simple
feature, it is architecturally significant because it needs to be integrated
throughout the code from the start. It would be awkward and diminish architec-
tural integrity to add it as an afterthought.

Ranking the NextGen POS Requirements

Based on some ranking method, a fuzzy grouping of requirements is possible. In
terms of UP artifacts, this ranking is recorded in the UP Software Development
Plan.

Rank Requirement
(use case or feature)

Comment

High Process Sale
Logging

Sore high on all ranking criteria.
Pervasive. Hard to add late.

Medium Maintain Users
Authenticate User

Affects security subdomain.
Important process but not too difficult.

Low Cash Out
Shut Down
…

Easy, minimal effect on architecture.
Ditto.
…

The "Start Up" and "Shut Down" Use Cases

Virtually all systems have a Start Up use case, implicit if not explicit. Although
it may not rank high by other criteria, it is necessary to tackle at least some sim-
plified version of Start Up in the first iteration so that the initialization
assumed by other cases is provided. Within each iteration, the Start Up use case
is incrementally developed to satisfy the start up needs of the other use cases.
Similarly, systems often have a Shut, Down use case. In some systems, it is quite
complex, such as shutting down an active telecommunications switch. In terms
of planning, if simple, these use cases can be informally listed in the Iteration
Plan, such as "implement startup and shutdown as required." Obviously, com-
plex versions need more careful requirements and planning attention.

A Caveat: Project Planning vs. Learning Goals

The book goal is to offer a learning aid for introductory analysis and design,
rather than actually run the NextGen POS project. Therefore, some license has
been taken in the choice of what is tackled in the early iterations of the case
study, motivated by learning rather than project goals.

578

RANKING PROJECT RISKS

36.2 Ranking Project Risks

A useful method to prioritize overall project risks is to estimate their probability
and impact (in cost, time, or effort). The estimates may be quantitative (which
are usually very speculative) or simply qualitative (for example,
high-medium-low, based on discussion and group dot-voting). The worst risks
are naturally those both probable and of high impact. For example:

 Prob-
Risk ability Impact Mitigation Ideas

Insufficient number and H H Read the book.
quality of skilled
object-oriented
developers.

 Hire temporary consultants.
Classroom education & mentoring.

 Design and programming in pairs.

Demo not ready for the
upcoming POS-World con-
vention in Hamburg.

M H Hire temporary consultants who
are specialists in Java POS
systems development.

 Identify "sexy" requirements that
show well in a demo, and prioritize
those, over others.

 Maximize the use of pre-built
 components.

In terms of UP artifacts, this is part of the Software Development Plan.

36.3 Adaptive vs. Predictive Planning

One of the big ideas of iterative development is to adapt based on feedback,
rather than to attempt to predict and plan in detail the entire project. Conse-
quently, in the UP, one creates an Iteration Plan for only the next iteration.
Beyond the next iteration the detailed plan is left open, to adaptively adjust as
the future unfolds (see Figure 36.1). In addition to encouraging flexible, oppor-
tunistic behavior, one simple reason for not planning the entire project in detail
is that in iterative development not all the requirements, design details, and
thus steps are known near the start of the project.1 Another is the preference to
trust the planning judgement of the team as they proceed. Finally, suppose
there was a fine-grained detailed plan laid out at the start of the project, and the
team "deviates" from it to exploit better insight in how to best run the project.

579

580 36 - INTRODUCTION TO ITERATIVE PLANNING AND PROJECT ISSUES

From the outside, this might be viewed as some kind of failure, when it in fact it
is just the opposite.

Figure 36.1 Milestones are important, but avoid detailed predictive planning
into the far future.

However, there are still goals and milestones; adaptive development doesn't
mean the team doesn't know where they are going, or the milestone dates and
objectives. In iterative development, the team still does commit to dates and
objectives, but the detailed path to these is flexible. For example, the NextGen
team may set a milestone that in three months, use cases Process Sale, Handle
Returns, and Authenticate User, and the logging and pluggable rules features
will be completed. But—and this is the key point—the fine-grained plan or path
of two-week timeboxed iterations to that milestone is not defined in detail. The
order of steps, or what to do in each iteration over the following three months, is
not fixed. Rather, just the next two-week iteration is planned, and the team
adapts step by step, working to fulfill the objectives by the milestone date. Of
course, dependencies in components and resources naturally constrain some
ordering of the work, but not all activities need to be planned and scheduled in
fine-grained detail.

1. They aren't really or reliably known on a "waterfall" project either, although detailed
planning for the entire project may occur as though they were.

Adaptive development means to
avoid predictively planning what will
happen in all future iterations in
detail. Rather, plan only one or two
iterations forward, and adapt.

A, B
C, D

E, F
G, H I, J K, M N, O

P . . .

Requirements speculatively
planned for a far future iteration.

. . .

A, B
C, D

E, F,
? ? ? ?

project is at this point (in the middle of an iteration)

Planning the next iteration,
and possibly part of the
following, is reasonable.
Beyond that, it is predictive,
speculative, and anti-
adaptive.

MILESTONE: A date (perhaps two months in future) and set of
objectives is established.

In adaptive iterative development and planning we do commit to
target dates and objectives at the macro-level, but the detailed path
to the milestone is not fully planned iteration by iteration, to
encourage adaptively finding the best path to the milestone.

OK

PHASE AND ITERATION PLANS

External stakeholders see a macro-level plan (such as at the three-month level)
to which the team makes some commitment. But the micro-level organization is
left up to the best—and adaptive—judgment of the team, as it takes
advantage of new insights (see Figure 36.1).
Finally, although adaptive fine-grained planning is preferred in the UP, it is
increasingly possible to successfully plan forward two or three iterations (with
increasingly levels of unreliability) as the requirements and architecture stabi-
lize, the team matures, and data is collected on the speed of development.

36.4 Phase and Iteration Plans

At a macro level, it is possible to establish milestone dates and objectives, but at
the micro level, the plan to the milestone is left flexible except for the near
future (for example, the next four weeks). These two levels are reflected in the
UP Phase Plan and Iteration Plan, both of which are part of the composite
Software Development Plan. The Phase Plan lays out the macro-level milestone
dates and objectives, such as the end of phases and mid-phase pilot test mile-
stones. The Iteration Plan defines the work for the current and next iteration—
not all iterations (see Figure 36.2).

inc. elaboration construction

Short; a few pages.
Estimates phase and
milestone end dates,
and their objectives.

Detailed planning in an
Iteration Plan is like a rolling
wave that is only highly specific
around the present and the
near future (for example, the
next iteration).

transition

Phase Plan

Iteration Plan

milestone

Figure 36.2 Phase and Iteration Plans.

During inception, the milestone estimates in the Phase Plan are vague "guessti-
mates." As elaboration progresses, the estimates improve. One goal of the elabo-

581

36 - INTRODUCTION TO ITERATIVE PLANNING AND PROJECT ISSUES

ration phase is, at its completion, to have enough realistic information for the
team to commit to major milestone dates and objectives for the end of construc-
tion and transition (that is, project delivery).

36.5 Iteration Plan: What to Do in the Next Iteration?

The UP is use-case driven, which in part implies that work is organized around
use-case completion. That is to say, an iteration is assigned to implement one or
more use cases, or scenarios of use cases when the complete use case is too com-
plex to complete in one iteration. And since some requirements are not
expressed as use cases, but rather as features, such as logging or pluggable busi-
ness rules, these too are allocated to one or more iterations (see Figure 36.3).

1
A use case or feature is
often too complex to
complete in one short
iteration.

Therefore, different parts
or scenarios must be
allocated to different
iterations.

Use Case
Process Sale

2 3 . . .

Use Case
Process Sale

Use Case
Process Sale

Use Case
Process Rentals

Feature:
Logging

Figure 36.3 Work allocated to an iteration.

Usually, the first iteration of elaboration is consumed with myriad overhead
tasks such as tool and component installation and tweaking, requirements clar-
ification, and so forth.
The ranking of requirements guides the choice of early work. For example, the
Process Sale use case is clearly important. Therefore, we start to tackle it in the
first iteration. Yet, not all scenarios of Process Sale are implemented in the first
iteration. Rather, some simple, happy path scenario, such as for a cash-only pay-
ment, is chosen. Although the scenario is simple, its implementation starts to
develop some core elements of the design.

582

REQUIREMENTS TRACKING ACROSS ITERATIONS

Different architecturally significant requirements related to this use case will
be tackled during the elaboration iterations, forcing the team to touch on many
aspects of the architecture: the major layers, the database, the user interface,
the interfaces between major subsystems, and so forth. This leads to the early
creation of a "wide and shallow" implementation across many parts of the sys-
tem—a common goal in the elaboration phase.

36.6 Requirements Tracking Across Iterations

The task of creating the first Iteration Plan brings us to a noteworthy issue in
iterative development, illustrated in Figure 36.3.
As indicated in the last section, not all scenarios of Process Sale will be imple-
mented in the first iteration. Indeed, this complex use case may take many
two-week iterations over a six-month period to complete. Each iteration will
tackle new scenarios or parts of scenarios.
When fulfilling all the scenarios of a use case in one iteration is not possible,
there arises a problem in requirements tracking. How does one record what
parts of a use case are complete, are currently being worked on, or are not yet
done? A requirements tool built for the job provides one solution.
Rational's RequisitePro offers an example, and is worth a moment's study to
understand how these tools work to track partially completed use cases across
iterations. This is not an endorsement of the tool, but the presentation is offered
to illustrate one solution to this very important tracking problem.

An Example Requirements Management Tool

RequisitePro integrates with Microsoft Word so that one may enter and edit
requirements in Word, select a phrase, and define the selected phrase as a
tracked requirement in RequisitePro.
Each requirement can have a variety of attributes, such as status, risk, and so
forth (see Figure 36.4 and Figure 36.5). With such a tool, the problem of tracking
partial use case completion across iterations is manageable.
All statements in the main success and extension scenarios can be individually
represented as tracked requirements, and each identified with various status
values such as proposed, approved, and so on.

583

 36 - INTRODUCTION TO ITERATIVE PLANNING AND PROJECT ISSUES
Figure 36.4 Basic tagging of use case phrases as requirements.

Figure 36.5 Each tagged has many attributes.

Attributes of the
requirement can be
assigned, such as
Status=Underway.

Later, a reporting tool can
be used to display
requirements of different
status, such as all
completed or all underway
requirements.

Statements can be
selected and marked in
RequisitePro as a
trackable requirement.
The tool inserts the "UC"
code and changes the
display style.

The codes "UC1" and
"UC2" don't mean
different use cases, but
different fine-grained
requirements within this
Process Sale use case.

A part of a sentence can
also be identified and
tracked as a separate
requirement.

584

THE (IN)VALIDITY OF EARLY ESTIMATES

36.7 The (In)Validity of Early Estimates

Garbage in, garbage out. Estimates done with unreliable and fuzzy information
are unreliable and fuzzy. In the UP it is understood that estimates done during
inception are not dependable (this is true of all methods, but the UP acknowl-
edges it). Early inception estimates merely provide guidance if the project is
worthy of some real investigation in elaboration, to generate a good estimate.
After the first elaboration iteration there is some realistic information to pro-
duce a rough estimate. After the second iteration, the estimate starts to develop
credibility (see Figure 36.6).

Useful estimates require investment in some elaboration iterations.

inc. elaboration construction

Estimates during inception are
not used to commit to project
duration and effort. Rather, they
provide guidance to decide if it is
worth continuing on to
elaboration and doing some
realistic investigation.

At the end of
elaboration iteration
1, a believable
estimate starts to
emerge.

After two elaboration iterations,
and more so by the end, there
has been enough realistic
investigation to generate and
commit to overall project effort
and duration estimates.

Figure 36.6 Estimation and project phases.

This is not to imply that it is impossible or worthless to attempt early, accurate
estimates. If possible, very good. However, most organizations do not find this to
be the case, for reasons that include continuous introduction of new technolo-
gies, novel applications, and many other complications. Thus, the UP advocates
some realistic work in elaboration before generating estimates used for project
planning and budgeting.

36.8 Organizing Project Artifacts

The UP organizes artifacts in terms of workflows. The Use-Case Model and Sup-
plementary Specifications are part of the Requirements discipline. The Software

585

36 - INTRODUCTION TO ITERATIVE PLANNING AND PROJECT ISSUES

Development Plan is part of the Project Management discipline, and so forth.
Therefore, organize folders in your version control and directory system to
reflect the workflows, and place the artifacts of a discipline within the related
discipline folder (see Figure 36.7).

Use cases and other
requirements artifacts go
in the Requirements
folder.

Planning artifacts go in
the Project Management
folder.

Figure 36.7 Organize UP artifacts into folders corresponding to their
workflows.

This organization works for most non-implementation elements. Some imple-
mentation artifacts, such as the actual database or executable files, are com-
monly found in different locations for a variety of implementation reasons.

Suggestion

After each iteration, use the version control tool to create a labeled and fro-
zen checkpoint of all the elements in these folders (including source code).
There will be an "Elaboration-1," "Elaboration-2," and so on, version of each
artifact. For later estimation of team velocity (on this or other projects),
these checkpoints provide raw data of how much work got done per iteration.

36.9 Some Team Iteration Scheduling Issues

Parallel Development Teams

A large project is usually broken into parallel development efforts, where multi-
ple teams work in parallel. One way to organize the teams is along architectural
lines: by layers and subsystems. Another organizational structure is by feature
set, which may very well correspond to architectural organization.

586

SOME TEAM ITERATION SCHEDULING ISSUES

For example:
• Domain layer team (or domain subsystem team)
• User interface team
• Internationalization team
• Technical service team (persistence team, and so on)

Teams on Different Iteration Lengths

Sometimes, developing a subsystem (such as the persistence service) to any
meaningfully usable level requires a relatively long time, especially during its
early stages. Rather than stretch the overall iteration length for all teams, an
alternative is to keep the iterations short (in general, a worthy goal) for most
teams, and of double length for the "slower" team (see Figure 36.8).

User Interface
Team

Domain Layer
Team

Persistence
Services Team

Iteration

Iteration Iteration

Figure 36.8 Varying iteration lengths.

Team Speed and Incremental Process Adoption

In addition to needing longer iterations for massive teams, another reason to
lengthen an iteration (for example, from three weeks to four), is related to the
speed and experience of the team. A team new to many of the practices or tech-
nologies will naturally go slower, and needs more time to complete an iteration.
Less experienced teams benefit from slightly longer and fewer iterations than
more experienced teams.
Note that iterative development provides a mechanism to improve estimating
speed: the actual progress in early iterations informs estimates for later ones.
Related to this is the strategy of incremental process adoption. In early iter-
ations, less experienced teams take on a small set of practices. As the team
members digest and master these, add more—assuming they're useful! For
example, in early iterations the team may do one daily system build and test. In
later iterations, it may adopt continuous integration and system testing (which
happens many times each day) with a continuous integration tool such as the
open-source Cruise Control (cruisecontrol.sourceforge.net).

587

36 - INTRODUCTION TO ITERATIVE PLANNING AND PROJECT ISSUES

36.10 You Know You Didn't Understand Planning in the UP
When...

• All the iterations are speculatively planned in detail, with the work and
objectives for each iteration predicted.

• Early estimates in inception or the first iteration of elaboration are expected
to be reliable, and are used to make long-term project commitments; to gen
eralize, reliable estimates are expected with trivial or light-weight investi
gation.

• Easy problems or low-risk issues are tackled in early iterations.
If an organization's estimation and planning process looks something like the
following, planning in the UP was not understood:
1. At the start of an annual planning phase, new systems or features are iden

tified at a high level; for instance, "Web system for account management."
2. Technical managers are given a short period to speculatively estimate the

effort and duration for large, expensive, or risky projects, often involving
new technologies.

3. The plan and budget of projects are established for the year.
4. Stakeholders are concerned when actual projects do not match original esti

mates. Go to Step 1.
This approach lacks realistic and iteratively refined estimation based upon seri-
ous investigation as promoted by the UP.

36.11 Further Readings

Software Project Management: A Unified Framework by Royce provides an itera-
tive and UP perspective on project planning and management.
Cockburn's Surviving Object-Oriented Projects: A Manager's Guide contains
more useful information on iterative planning, and the transition to iterative
and object technology projects.
Kruchten's The Rational Unified Process: An Introduction contains useful chap-
ters specifically on planning and project management in the UP.
As a caution, there are some books that purport to discuss planning for "itera-
tive development" or the "Unified Process" that actually belie a waterfall or pre-
dictive approach to planning.
Rapid Development [McConnell96] is an excellent overview of many practices
and issues in planning and project management, and project risks.

588

Chapter

COMMENTS ON ITERATIVE
DEVELOPMENT AND THE UP

You should use iterative development only on
projects that you want to succeed.

—Martin Fowler

Objectives
• Introduce and expand on some UP topics.

• Introduce other practices applicable to iterative development.

• Examine how the iterative lifecycle can help reduce some development
problems.

37.1 Additional UP Best Practices and Concepts

The central idea to appreciate and practice in the UP is short timeboxed itera-
tive, adaptive development. Some additional best practices and key concepts in
the UP include:

• Tackle high-risk and high-value issues in early iterations—For exam-
ple, if the new system is a server application that has to handle 2,000 con-
current clients with sub-second transaction response time, do not wait for
many months (or years) to design and implement this high risk require-
ment. Rather, quickly focus on designing, programming, and proving the
essential software components and architecture for this risky issue; leave
the easier work till later iterations. The idea is to drive down the high risks
in the early iterations, so that the project does not "fail late," which is a char-
acteristic of waterfall projects that defer hard, risky concerns till later in the
lifecycle. Better to "fail early" if at all, by doing the hard things first. Thus,
the UP is said to be risk driven. Finally, notice that risk comes in many

589

590

37 - COMMENTS ON ITERATIVE DEVELOPMENT AND THE UP

forms: lack of skills or resources, technical challenges, usability, politics, and
so on. All these forms influence what is addressed in early iterations.

Continuously engage users—Iterative development and the UP is about
quickly taking small steps and getting feedback. It requires continuous
attention and engagement by business stakeholders and subject matter
experts to clarify and steer the project. At first, business may feel this is an
imposition. However, the majority of failed projects are correlated with lack
of user engagement [Standish94], and this approach gives business the abil-
ity to shape the software as they truly need it. On projects where the "user"
is speculative, such as a new website or consumer product, focus groups may
act as proxies.

Early attention to building a cohesive, core architecture—That is,
the UP is architecture-centric. This is related to tackling the high-risk
concerns in early iterations, since getting the core of the architecture estab-
lished is usually a risky or critical element. Early iterations typically focus
on a "wide and shallow" architectural implementation, establishing the
major design themes, and the subsystems with their interfaces and respon-
sibilities. The team will "spike" into vertically deep areas for particular hard
or risky requirements, such as the requirement for sub-second transactions
with 2,000 concurrent clients.

Continuously verify quality, early and often—Quality in this context
includes correctly meeting or exceeding the requirements in a sustainable
and repeatable process, with maintainable and scalable software. One moti-
vation for an early, continuous, and intensive campaign of testing, inspec-
tion, and quality assurance is that the expense of a lingering defect
increases nonlinearly through the phases of a project. Furthermore, itera-
tive development is based on feedback and adaptation; therefore, early real-
istic testing and evaluation are critical activities to obtain meaningful
feedback. This is in contrast to a waterfall project, where the significant
quality assurance step is done near the end of a project, when response is
the most difficult and expensive. In the UP, quality verification is continu-
ously integrated from the start, so that there are not big surprises near the
end of the project. Note that in the UP, quality verification also refers to pro-
cess quality—each iteration, assessing how well the team is doing.

Apply use cases—Informally, use cases are written stories of using a sys-
tem. They are a mechanism to explore and record functional requirements,
in contrast to the older style function lists or "the system shall do. . ." lists.
The UP recommends applying use cases as the primary form for require-
ments capture, and as a driving force in planning, designing, testing, and
writing end-user documentation.

Model software visually—An extraordinary percentage of the human
brain is involved in visual processing, which is a motivation behind the
visual or graphical presentation of information [Tufte92J. It is therefore
skillful to employ not only textual languages (such as prose or code), but also
iconic, diagrammatic, spatially-oriented visual languages such as the UML,

THE CONSTRUCTION AND TRANSITION PHASES

because this exploits the brain's natural strengths.1 In addition, abstraction
is a useful practice in thinking about and communicating software designs,
because this allows us to focus on important aspects, while hiding or ignor-
ing noisy details. A visual language such as the UML allows us to visualize
and reason about abstract models of software, moving quickly with diagram-
matic sketches of the big ideas in the design. But as will be explored later,
there is a "UML sweet spot" between too little and too much diagramming.
Carefully manage requirements—This does not mean employing the
waterfall practice of fully defining and freezing the requirements in the first
phase of a project. Rather, it implies not being sloppy—that is, being skillful
in the elicitation, recording, prioritization, tracing, and lifecycle tracking of
requirements, usually with tool support. This sounds obvious, but seems to
be seldom well-practiced. Poor requirements management is a common fac-
tor on troubled projects [Standish94].
Control changes—This practice encompasses several ideas: First, change
request management. Although an iterative UP project embraces change, it
does not embrace chaos. When new requirement requests emerge during the
iterations, rather than a blithe "Sure, no problem!" there is a rational evalu-
ation of their effort and impact, and if accepted, the schedule modified. It
also includes the idea of tracking the lifecycle of all change requests
(requested, underway, ...). Second, configuration management. Configura-
tion and build management tools are used to support frequent (ideally, at
least daily) system integration and test, parallel development, separate
developer workspaces and configurations, and version control—from the
start of the project. In the UP, all project assets (not just code) should be
under configuration and version control.

37.2 The Construction and Transition Phases

Construction

Elaboration ends when the high risk issues have been resolved, the architec-
tural core or skeleton is complete, and "most" requirements are understood. At
the end of elaboration, it is possible to more realistically estimate the remaining
effort and duration for the project.

It is followed by the construction phase, whose purpose is essentially to finish
building the application, alpha testing, prepare for beta testing (in the transi-
tion phase), and prepare for deployment, through activities such as writing the
user guides and online help. It is sometimes summarized as putting the "flesh
on the skeleton" created in elaboration. Whereas elaboration can be character-

1. It is also a motivation for the use of color in diagramming (unless some team members
have a color blindness). For example, see [CDL99].

591

37 - COMMENTS ON ITERATIVE DEVELOPMENT AND THE UP

ized as building the risky and architecturally significant core of the system, con-
struction can be described as building the remainder. As before, development
proceeds via a series of timeboxed iterations. In terms of staffing, it is recom-
mended to use a small, cohesive team during elaboration, and then expand the
team size during construction; in addition, there will probably be more parallel
team development during this phase.

Transition

Construction ends when the system is deemed ready for operational deploy-
ment, and all supporting materials are complete, such as user guides, training
materials, and so on. It is followed by the transition phase, whose purpose is
to put the system into production use. This may include activities such as beta
testing, reacting to beta test feedback, fine-tuning, data conversion, training,
marketing roll-out, parallel operation of the old and new system, and the like.

37.3 Other Interesting Practices

This is not an exhaustive list, but some interesting practices—not explicitly doc-
umented in the UP—that have been of value on iterative projects include:
• The SCRUM process pattern [BDSSSOO]; see also www.controlchaos.com.

The most concrete is a daily "15-minute" stand-up SCRUM meeting. The
project coach asks from each person: 1) items done since last meeting; 2)
goals for next day; and 3) blocks for the coach to remove. I've also asked each
member for noteworthy insights he or she want to share with the team. The
meeting promotes adaptive, emergent team behavior, fine-grained measure
ment of progress, high density communication, and project socialization.
Other key ideas include: The team is freed of all external distractions, has
no additional work added (from outside the team) during an iteration, and
management's job is to remove all blocks and distractions, so the team can
focus.

• Some Extreme Programming (XP) [BeckOO] practices, such as test-first
programming: Write a unit test before the code to be tested, and write
tests for virtually all classes. If working in Java, JUnit (www.junit.org) is a
popular, free unit testing framework. Write a little test, write a little code,
make it pass, repeat. Writing the test first is essential to experience the
value of this approach.

• Continuous integration, another XP practice; see [BeckOO] for an intro
duction and www.martinfowler.com for details. The UP includes the best-
practice of integrating the entire system at least once every iteration. This is
often shortened to the practice of a daily build. Continuous integration
shortens this still further, integrating all new checked-in code (at least)
every few hours. Although this can be done manually, an alternative is to

592

MOTIVATIONS FOR TIMEBOXING AN ITERATION

use an automated, continuous integration and test environment on a fast
build machine running a daemon process. It periodically wakes up (such as
every two minutes) and looks for new checked-in code, which triggers run-
ning a rebuild and test script. A continuous integration system for Java
projects called Cruise Control is freely available and open-source at
SourceForge (cruisecontrol.sourceforge.net).

37.4 Motivations for Timeboxing an Iteration

There are at least four motivations for timeboxing an iteration.
First, Parkinson's law. Parkinson wryly observed that "Work expands so as to
fill the time available for its completion" [Parkinson58]. Distant or fuzzy comple-
tion dates (for example, six months away), exacerbate this effect. Near the start
of a project, it can feel like there is plenty of time to proceed leisurely. But if the
end date for the next iteration is only two weeks away, and an executable, tested
partial system must be in place on that date, the team has to focus, make deci-
sions, and get moving.
Second, prioritization and decisiveness. Short timeboxed iterations force a
development team to make decisions regarding the priority of work and risks,
identify what is of highest business or technical value, and estimate some work.
For example, if embarking on the first iteration, chosen to be exactly four weeks
in length, there is not much latitude to be vague—concrete decisions about what
will really be done within the first four weeks must be made.
Third, team satisfaction. Short timeboxed iterations lead to a quick and
repeating sense of completion, competency, and closure. On regular two- or
four-week cycles, the team has the experience of finishing something, rather
than work lingering on for months without completion. These psychological
factors are important for individual work satisfaction, and for building team
confidence.
Fourth, stakeholder confidence. When a team makes a public commitment to
producing something executable and stable within a short time period, on a par-
ticular date, such as two weeks in the future, and does so, business and other
stakeholders develop increased confidence in the team and the project.

37.5 The Sequential "Waterfall" Lifecycle

In contrast to the iterative lifecycle of the UP, an old alternative is the sequential,
linear, or "waterfall" lifecycle [Royce70], associated with heavy and predictive
processes. In common usage, a waterfall lifecycle defines steps similar to the
following:

1. Clarify, record, and commit to a set of final requirements.

2. Design a system based on these requirements.

593

594

37 - COMMENTS ON ITERATIVE DEVELOPMENT AND THE UP

3. Implement, based on the design.
4. Integrate disparate modules.
5. Evaluate and test for correctness and quality.
A development process based on the waterfall lifecycle is associated with these
behaviors or attitudes:
• Carefully and fully define an artifact (for example, the requirements or

design) before carrying on to the next step.
• Commit to a frozen set of detailed requirements.
• Deviation from the requirements or design during later steps indicates a

failure in not having been sufficiently skillful or thorough. Next time, try
harder to get it right.

A waterfall process is similar to the engineering approach by which buildings
and bridges are constructed. Its adoption made software development appear
more structured and similar to engineering in some other fields. For some time,
a waterfall process was the approach most software developers, managers,
authors, and teachers were taught when they were students (and then
repeated), without critical research into its suitability for software development.
Some things should be built like buildings—such as, well...buildings—but not
usually software.
A mentioned in the opening chapter on the UP, a two year study reported in the
MIT Sloan Management Review of successful software projects identified four
common factors for success; iterative development, rather than a waterfall
life-cycle, was first on the list [MacCormack0l].

Some Problems with the Waterfall Lifecycle

The building metaphor has outlived its usefulness. It is time to
change again. If, as I believe, the conceptual structures we con-
struct today are too complicated to be accurately specified in
advance, and too complex to be built faultlessly, then we must
take a radically different approach (iterative, incremental
development).

—Frederick Brooks, "No Silver Bullet," The Mythical Man-Month

Within a certain time scale, doing some requirements before design, and some
design before implementation, is inevitable and sensible. For a short two month
project, a sequential lifecycle is workable. And a single iteration in iterative
development is like a short waterfall project.
However, difficulties start to arise as the time scale lengthens. The complexity
becomes high, speculative decisions increase and compound, there is no feed-
back, and in general high risk issues are not being tackled early enough. By def-

THE SEQUENTIAL "WATERFALL" LIFECYCLE

inition, one attempts to do all or most of the requirements for the entire system
before moving on, and most of the design before moving on.
Large steps are taken in which many decisions are made without the benefit of
concrete feedback from realistic implementation and testing. On the scale of a
two-week mini-project (that is, an iteration), a linear
requirements-design-implementation sequence is workable; the degree of
speculative commitment to some requirements and design is not in the danger
zone. However, as the scale expands, so do the speculation and risk.
Problems with a waterfall process at the scale of the entire project include:
• delayed risk mitigation; tackling high risk or difficult problems late
• requirements and design speculation and inflexibility
• high complexity
• low adaptability

Mitigation of Some Problems with the Waterfall Lifecycle

Iterative development is not a magic bullet for the challenges of software devel-
opment. Yet, it offers support to reduce some problems exacerbated by a linear
waterfall lifecycle.

Problem: Delayed Risk Mitigation

Risks come in many forms: the wrong design, the wrong set of requirements, a
strange political environment, lack of skills or resource, usability, and so forth.
In a waterfall lifecycle, there is not an active attempt to identify and mitigate
the riskiest issues first. As an example, the wrong architecture for a high-load
high-availability website can cause costly delays, or worse. In a waterfall pro-
cess, validation of the architecture's suitability happens long after all require-
ments and all design are specified (inevitably imperfectly), during the later
major step of implementation. This could be many months or even years after
inception of the project (see Figure 37.1). And there is no shortage of stories
where separate teams have built subsystems over a long period, and then
attempted to integrate these and start overall system testing near the end of the
project—with predictably painful results.

595

Figure 37.1 Waterfall lifecycle and risks.

Mitigation

In contrast, in iterative development the goal is to identify and mitigate the
riskiest issues early. The high risks might be in the core architectural design,
the usability of the interface, disengaged stakeholders. Whatever, they are tack-
led first. As illustrated in Figure 37.2, early iterations focus on driving down the
risk. Continuing with the prior high-load website example, in an iterative
approach, before much investment in other requirements or design work, the
team first designs, implements, and realistically tests enough of the core archi-
tecture to prove it is on the right track with respect to load and availability. If
the tests prove them wrong, they adapt the core design in the early stages of the
project, rather than near the end.

In a waterfall lifecycle,
high risk issues such as
integration and load test
may be tackled late.

Time

Potential
impact of

risks being
tackled

Requirements
Analysis Design Implement Integrate &

System Test

37 - COMMENTS ON ITERATIVE

Figure 37.2 Iterative lifecycle and risks.

596

In an iterative lifecycle,
high-risk issues are
tackled early, to drive
down the riskiest project
elements.

Time

Potential
impact of

risks being
tackled

Iteration

THE SEQUENTIAL "WATERFALL" LIFECYCLE

Problem: Requirements Speculation and Inflexibility

A fundamental assumption in a waterfall process is that requirements can be
relatively fully specified and then frozen in the first phase of a project. On such
projects, there is an effort to first do thorough requirements analysis, culminat-
ing in a set of requirements artifacts that are reviewed and "signed off."

It turns out this is usually a flawed assumption. The effort to get all the require-
ments defined and signed-off before any design and implementation work is
ironically likely to increase project difficulties rather than ameliorate them. It
also makes it difficult to respond late in a project to a new business opportunity
via a change in the software.
Granted, there are some projects where an effort to first fully and accurately
specify the requirements is necessary. This is especially true when the software
is coupled with the building of physical components. Examples include aircraft
and medical devices. But note that even in this case, iterative development can
still be profitably applied to the design and implementation process.
The most compelling research deconstructing the myth of being able to success-
fully first define all requirements comes from [Jones97]. As illustrated in Figure
37.3, in this large study of 6,700 projects, creeping requirements—those not
anticipated near the start—are a very significant fact of software development
life, ranging from around 25% on average projects, up to 50% on larger ones;
Boehm and Papaccio present similar research-based conclusions in [BP88].
Waterfall attitudes, which struggle against (or simply deny) this fact by assum-
ing requirements and designs can be specified and frozen, are incongruous with
most project realities.

0

10

20

30

40

50

60

10 100 1000 10000 100000

Project Size in Function Points

C
re

ep
in

g
R

eq
ui

re
m

en
ts

 a
s

%
 o

f O
rig

in
al

Figure 37.3 Changing requirements are an inevitable force in development.2

597

598

37 - COMMENTS ON ITERATIVE DEVELOPMENT AND THE UP

Thus, "the only constant is change," usually because:

• the stakeholders change their minds or cannot fully envision what they
want until they see a concrete system3

• the market changes

• correctly validated, detailed, and precise specification is a psychological and
organizational challenge for most stakeholders [Kruchten00]

And so, there are predictable and often-seen problems that arise in waterfall
projects. Since in reality significant change is inevitable, these include:

• as described earlier, delayed discovery and mitigation of high risks

• a negative feeling among team members of "living a fiction" or failure on the
project, as the reality of changes does not correspond to the ideal

• making a large (costly) investment in the wrong design and implementation
(since it is based on incorrect requirements)

• lack of responsiveness to changing user wishes or market opportunities

Mitigation

In iterative development, not all requirements are specified before design and
implementation, and requirements are not stabilized until after at least several
iterations. For example:

First, a subset of core requirements is defined, for example, within a two-day
requirements workshop. Then, the team chooses a subset of those to design and
implement (based usually on highest risk or business value). After a four-week
iteration, stakeholders meet in a second one- or two-day requirements work-
shop, intensively review the partial system, and clarify and modify their
requests. After a second (shorter) two-week iteration of incrementally imple-
menting the system, stakeholders meet in a third requirements workshop, and
refine again. At this point, the requirements start to stabilize and represent the
true scope and clarified intentions of the stakeholders. At this point, a some-
what realistic plan and estimate of the remaining work is possible. These itera-
tions may be characterized as part of the UP elaboration phase.

Later requirements changes are still acceptable. However, the interplay in early
iteration of parallel implementation work and requirements analysis that
obtains feedback from the partial implementation leads to better requirements
definition in the elaboration phase.

2. Function points describe system complexity with a programming language-indepen
dent metric (see www.ifpug.org).

3. Barry Boehm has called this the "I'll know it when I see it" effect.

USABILITY ENGINEERING AND USER INTERFACE DESIGN

Problem: Design Speculation and Inflexibility

Another central idea in the waterfall lifecycle is that the architecture and major-
ity of the design can and should be relatively fully specified in the second major
phase of a project, once the requirements are clarified. On such projects, there is
an effort to thoroughly describe the complete architecture, object designs,
user-interface, database schema, and so forth, before implementation begins.
Some problems associated with this assumption:

1. Since requirements will change, the original design may not be reliable.
2. Immature or misunderstood tools, components, and environments

make
speculative design decisions risky; they may be proven wrong upon imple
mentation because "the application server wasn't supposed to do that, ..."

3. In general, lack of feedback to prove or disprove the design, until long after
the design decisions were made.

Mitigation

These problems are mitigated in iterative development by quickly building part
of the system and validating the design and third-party components through
testing.

37.6 Usability Engineering and User Interface Design

There is probably no skill with a greater disparity between its importance to
successful software and its lack of formal attention and education than usabil-
ity engineering and user interface (UI) design. Although outside the scope of
this introduction to OOA/D and the UP, note that the UP does include recogni-
tion of this activity; usability and UI models are part of the Requirements disci-
pline. In UP terminology, use-case storyboards can be used to abstractly
describe the interface elements, and the navigation between them, as related to
use-case scenarios.
Useful books include Software for Use by Constantine and Lockwood, The
Usability Engineering Lifecycle by Mayhew, and GUI Bloopers by Johnson.

37.7 The UP Analysis Model

The UP contains an artifact called the Analysis Model; it is not necessary, and
few create it. The Analysis Model is perhaps not ideally named, as it is actu-
ally a kind of design model. In conventional usage (for example, see
[Cole-man+94, MO95, Fowler96]), an analysis model suggested essentially a
domain object model—an investigation and description of domain concepts.
But the UP

599

37 - COMMENTS ON ITERATIVE DEVELOPMENT AND THE UP

"Analysis Model" is an early version of the UP Design Model—it describes col-
laborating software objects with responsibilities. To quote, "The analysis model
is an abstraction, or generalization, of the design" [KruchtenOO]. And, "An anal-
ysis model can be viewed as a first cut at a design model" [JBR99].

The RUP product team emphasizes that it is optional and of infrequent value,
and does not encourage its regular creation—as it is yet another set of diagrams
to create before implementation, and is seldom used by most methodologists and
expert architects.

37.8 The RUP Product

The RUP product is a cohesive and well-crafted Web-based documentation set
(HTML pages) sold by Rational Software that describes the Rational Unified
Process, an updated and detailed refinement to the more general UP. It
describes all artifacts, activities, and roles, provides guidelines, and includes
templates for most artifacts (see Figure 37.4).

Figure 37.4 The RUP product.

The UP can be applied or adopted with the aid of process mentors and books; the
basic ideas, such as iterative development, are described in this and other books.

600

THE CHALLENGE AND MYTHS OF REUSE

Consequently, it is not required to own the RUP product. Nevertheless, some
organizations find that placing this Web-based product (and its templates) on
their intranet (licensing respected) at a visible location to be a simple, effective
mechanism to gradually spread its adoption. Moving an organization to a new
development process beyond a superficial level requires several modes of sup-
port. In addition to process mentoring, pilot projects, and classroom education,
the Web-based documentation and templates provided by the RUP product are
definitely useful aids worth evaluating.

37.9 The Challenge and Myths of Reuse

The UP is developed with object technology (OT) projects in mind, and the adop-
tion of OT has often been promoted in order to achieve software reuse. Signifi-
cant reuse is a laudable goal, but difficult. It is a function of much more than
adopting OT and writing classes; OT is but one enabling technology in a suite of
technical, organizational, and social changes that have to occur to see meaning-
ful reuse. Certainly, libraries of classes for technical services, such as the Java
technology libraries, provide a great example of reuse, but I am referring to the
difficulty of reuse of code created within an organization, not core libraries.
In a survey of organizations that had adopted OT, they were asked the actual
value of its adoption. Interesting, reuse was at the bottom of the list |Cutter97|.
Among experienced OT practitioners and organizations, this is not a surprise:
They know that the popular press's description of OT for reuse is to some degree
a myth; most organization see little of it. This is not to imply it isn't a valuable
goal, or that there is no reuse—it is worthy, and there has been some. But not
the high levels of reuse some articles and books suggest. And many an experi-
enced OT developer can tell you a war story about the misguided large-scale
attempt by an organization to create the grand "reusable libraries" or services
for the company, spending a year and million dollars, and ending with a failed
project, or one that misses the mark. Reuse is hard, and arguably more a func-
tion of social and organizational issues than technical ones.
Does this mean OT is without value? Not at all, but its value has been incor-
rectly associated primarily with reuse, rather than how it most prominently
helps in practice: flexibility, ease of change, and complexity management. The
same survey [Cutter97] lists the top values actually experienced by adopting
OT: easier application maintenance and cost savings. Object systems—if
designed well—are relatively easier or faster to modify and extend, than if using
non-OT technologies. This is important; many organizations find that the major-
ity of the overall long-term cost of an application is in revision and maintenance,
not original development, and thus, strategies to reduce revision costs are
important. Although it is rational to want to reduce new system development
costs, there is a certain irony that few stakeholders ask the follow-up question,
"How can we reduce the cost to revise and maintain it?" when that is often the
largest expense. It is here that OT can make a contribution, in addition to its
power and elegance in tackling complex systems.

601

Chapter

MORE UML NOTATION

38.1 General Notation

Stereotypes and Property Specifications with Tags

Stereotypes are used in the UML to classify an element (see Figure 38.1).

Figure 38.1 Stereotypes and properties.

603

Figure 38.2 Interface of a package.

Dependency

Dependencies can exist between any elements, but they are probably most often
used in UML package diagrams to illustrate package dependencies (see Figure
38.3)

Figure 38.3 Dependencies.

38.2 Implementation Diagrams

The UML defines several diagrams that can be used to illustrate implementa-
tion details. The most commonly used is a deployment diagram, to illustrate the
deployment of components and processes to processing nodes.

604

38 - MOKE UML NOTATION

Package Interfaces

A package can he illustrated as implementing an interface (see Figure 38.2).

IMPLEMENTATION DIAGRAMS

Component Diagrams

To quote: A component represents a modular, deployable, and replaceable part
of a system that encapsulates implementation and exposes a set of interfaces
[OMG01]. It may, for example, be source code, binary, or executable. Examples
include executables such as a browser or HTTP server, a database, a DLL, or a
JAR file (such as for an Enterprise Java Bean). UML components are usually
shown within deployment diagrams, rather than on their own. Figure 38.4 illus-
trates some common notation.

Figure 38.4 UML components.

Deployment Diagrams

A deployment diagram shows how instances of components and processes are
configured for run-time execution on instances of processing nodes (something
with memory and processing services; see Figure 38.5).

605

Figure 38.5 A deployment diagram.

38.3 Template (Parameterized, Generic) Class
Template classes and their instantation are shown in Figure 38.6.

38 - MORE UML NOTATION

606

Figure 38.6 Template classes.

ACTIVITY DIAGRAMS

Some languages, such as C++, support templatized, generic, or parameterized
classes. In addition, this feature will be added to the Java language. For exam-
ple, in C++, map<string, Person> declares the instantiation of a template class
with keys of type string, and values of type Person.

38.4 Activity Diagrams

A UML activity diagram offers rich notation to show a sequence of activities.
It may be applied to any purpose (such as visualizing the steps of a computer
algorithm), but is considered especially useful for visualizing business work-
flows and processes, or use cases. One of the UP workflows (disciplines) is Busi-
ness Modeling; its purpose is to understand and communicate "the structure
and the dynamics of the organization in which a system is to be deployed"
[RUP]. A key artifact of the Business Modeling discipline is the Business
Object Model (a superset of the UP Domain Model), which essentially visual-
izes how a business works, using UML class, sequence, and activity diagrams.
Thus, activity diagrams are especially applicable within the Business Modeling
discipline of the UP.

Some of the outstanding notation includes parallel activities, swimlanes, and
action-object flow relationships, as illustrated in Figure 38.7 (adapted from
[OMGOl, FS00]). Formally, an activity diagram is considered a special kind of
UML statechart diagram in which the states are actions, and event transition is
automatically triggered by action completion.

607

38 - MORE UML NOTATION

Order product

Customer Order Processing Fulfillment

Validate order

:Order
[placed]

:Order
[prepaid] Get product

Collect
payment

Pay

Deliver rush Deliver regular

[rush] [else]

:Order
[fulfilled]

Swimlanes. Optional. An
area of responsibility. Often
an organizational unit.activity, and transition

on its completion

Start. Optional; identifying a
single start (or stop) point may
not be important.

Fork. One incoming
transition, and multiple
outgoing parallel transitions
and/or object flows.

Object in state. Input or
output with respect to an
activity.

Object flow.

Branch and merge.

Join. Multiple incoming
transitions and/or object
flows; one outgoing
transition.

End state. Optional;
identifying a single stop
point may not be important.

Send receiptAdd customer
to Satisfied list

Give beer to
shippers

Figure 38.7 Activity diagram.

608

BIBLIOGRAPHY

Abbot83 Abbott, R. 1983. Program Design by Informal English Descriptions. Communications of
the ACM vol. 26(11).

AIS77 Alexander, C., Ishikawa, S., and Silverstein, M. 1977. A Pattern
Language—Towns-Build-ing-Construction. Oxford University Press.

Ambler00 Ambler, S. 2000. The Unified Process—Elaboration Phase. Lawrence, KA.: R&D Books
Ambler00a Ambler, S., Constantine, L. 2000. Enterprise-Ready Object IDs. The Unified Process—

Construction Phase. Lawrence, KA.: R&D Books
Ambler00b Ambler, S. 2000. Whitepaper: The Design of a. Robust Persistence, Layer For Relational

Databases, www.ambysoft.com.
BDSSS00 Beedle, M., Devos, M., Sharon, Y., Schwaber, K., and Sutherland, J. 2000. SCRUM: A Pat-

tern Language for Hyperproductive Software Development. Pattern Languages of Pro-
gram Design vol. 4. Reading, MA.: Addison-Wesley

BC87 Beck, K., and Cunningham, W. 1987. Using Pattern Languages for Object-Oriented Pro-
grams. Tektronix Technical Report No. CR-87-43.

BC89 Beck, K., and Cunningham, W. 1989. A Laboratory for Object-oriented Thinking. Proceed-
ings of OOPSLA 89. SIGPLAN Notices, Vol. 24, No. 10.

BCK98 Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice. Reading, MA.:
Addison-Wesley.

Beck94 Beck, K. 1994. Patterns and Software Development. Dr. Dobbs Journal. Fob 1994.
Beck00 Beck, K. 2000. Extreme Programming Explained,—Embrace Change. Reading, MA.: Addi-

son-Wesley.
BF00 Beck, K., Fowler, M., 2000. Planning Extreme Programming. Reading, MA.:

Addison-Wos-ley.
BJ78 Bj0rner, D., and Jones, C. editors. 1978. The Vienna Development Method: The

Meta-Language, Lecture Notes in Computer Science, vol. 61. Springer-Verlag.
BJR97 Booch, G., Jacobson, L, and Rumbaugh, J. 1997. The UML specification documents.

Santa Clara, CA.: Rational Software Corp. See documents at www.rational.com.
BMRSS96 Buschmann, F, Meunier, R., Rohnert, H., Sommerlad, P.,and Stal, M. 1996. Pattern-Ori-

ented Software Architecture: A System of Patterns. West Sussex, England: Wiley
Boehm88 Boehm. B. 1988. A Spiral Model of Software Development and Enhancement. IEEE Com-

puter. May 1988.

609

BIBLIOGRAPHY

Bochm00+ Boehm, B., et al. 2000. Software Cost Estimation with COCOMO II. Englewood Cliffs,
NJ.: Prentice-Hall.

Booch94 Booch, G., 1994. Object-Oriented Analysis and Design. Redwood City, CA.: Benjamin/
Cummings.

Booch96 Booch, G., 1996. Object Solutions: Managing the Object-Oriented Project. Menlo Park,
CA.: Addison-Wesley.

BP88 Boehm, B., and Papaccio, P. 1988. Understanding and Controlling Software Costs. IEEE
Transactions on Software Engineering. Oct 1988.

BRJ99 Booch, G., Rumbaugh, J, and Jacobson, I., . 1999. The Unified Modeling Language User
Guide. Reading, MA.: Addison-Wesley.

Brooks75 Brooks, F., 1975. The. Mythical Man-Month. Reading, MA.: Addison-Wesley.
Brown0l Brown, K., 2001. The Convert Exception pattern is found online at the Portland Pattern

Reposity, http://c2.com.
BW95 Brown, K., and Whitenack, B. 1995. Crossing Chasms, A Pattern Language for

Object-RDBMS Integration, White Paper, Knowledge Systems Corp.
BW96 Brown, K., and Whitenack, B. 1996. Crossing Chasms. Pattern Languages of Program

Design vol. 2. Reading, MA.: Addison-Wesley.
CD94 Cook, S., and Daniels, J. 1994. Designing Object Sysetms. Englewood Cliffs, NJ.:

Prentice-Hall.
CDL99 Coad, P., De Luca, J., Lefebvre, E. 1999. Java Modeling in Color with UML. Englewood

Cliffs, NJ.: Prentice-Hall.
CL99 Constantine, L, and Lockwood, L. 1999. Software for Use: A Practical Guide to the Models

and Methods of Usage-Centered Design. Reading, MA.: Addison-Wesley.
CMS74 Constantine, L., Myers, G., and Stevens, W. 1974. Structured Design. IBM Systems Jour-

nal, vol. 13 (No. 2, 1974), pp. 115-139.
Coad95 Coad, P. 1995. Object Models: Stategies, Patterns and Applications. Englewood Cliffs, NJ.:

Prentice-Hall.
Cockburn92 Cockburn, A. 1992.. Using Natural Language as a Metaphoric Basis for Object-Oriented

Modeling and Programming. IBM Technical Report TR-36.0002, 1992.
Cockburn97 Cockburn, A. 1997. Structuring Use Cases with Goals. Journal of Object-Oriented Pro-

gramming, Sep-Oct, and Nov-Dec. SIGS Publications.
Cockburn0l Cockburn, A. 2001. Writing Effective Use Cases. Reading, MA.: Addison-Wesley.
Coleman+94 Coleman, D., et al. 1994. Object-Oriented Development: The Fusion Method. Englewood

Cliffs, NJ.: Prentice-Hall.
Constantine68 Constantine. L. 1968. Segmentation and Design Strategies for Modular Programming. In

Barnett and Constantine (eds.), Modular Programming: Proceedings of a National Sym-
posium. Cambridge, MA.: Information & Systems Press.

Constantine94 Constantine, L. 1994. Essentially Speaking. Software Development May. CMP Media.
Conway58 Conway, M. 1958. Proposal for a Universal Computer-Oriented Language. Communica-

tions of the ACM. 5-8 Volume 1, Number 10, October.
Coplien95 Coplien, J. 1995. The History of Patterns. See http://c2.com/cgi/wiki?HistoryOfPatterns.

610

BIBLIOGRAPHY

Coplien95a

CS95

Cunningham96

Cuttcr97

CV65

Dijkstra68

Eck95

Fowler96

Fowler00

Fowler0l

FS00

Gartner95

Gemstone00

GHJV95

Gilb88

GK00

GK76

GL00

Grady92

Groso00

GW89

Harrison98

Hay96
Highsmith00

Coplien, J. 1995. A Generative Development-Process Pattern Language. Pattern Lan-
guages of Program Design vol. 1. Reading, MA.: Addison- Wesley.
Coplien, J., and Schmidt, D. eds. 1995. Pattern Languages of Program Design vol. 1.
Reading, MA.: Addison-Wesley.
Cunningham, W. 1996. EPISODES: A Pattern Language of Competitive Development.
Pattern Languages of Program, Design vol. 2. Reading, MA.: Addison-Wesley.
Cutter Group. 1997. Report: The Corporate Use of Object Technology.
Corbato, F., and Vyssotsky, V. 1965. Introduction and overview of the Multics system.
AFIPS Conference Proceedings 27, 185-196.
Dijkstra, E. 1968. The Structure of the THE-Multiprogramming System. Communica-
tions of the ACM, 11(5).
Eck, D. 1995. The Most Complex Machine. A K Paters Ltd.
Fowler, M. 1996. Analysis Patterns: Reusable Object Models. Reading, MA.: Addison-Wes-
ley.
Fowler, M. 2000. Put Your Process on a Diet. Software Development. December. CMP
Media.
Fowler, M. 2001. Draft patterns on object-relational persistence services,
www.martin-fowler.com.
Fowler, M., and Scott, K. 2000. UML Distilled. Reading, MA.: Addison-Wesley.
Schulte, R., 1995. Three-Tier Computing Architectures and Beyond. Published Report
Note R-401-134. Gartner Group.
Gemstonc Corp., 2000. A set of architectural patterns at www.javasuccess.com.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns. Reading, MA.:
Addison-Wesley.
Gilb, T. 1988. Principles of Software Engineering Management. Reading, MA.:
Addison-Wesley.
Guiney, E., and Kulak, D. 2000. Use Cases: Requirements in Context. Reading, MA.: Add-
ison-Wesley.
Goldberg, A., and Kay, A. 1976. Smalltalk-72 Instruction Manual. Xerox Palo Alto
Research Center.
Guthrie, R., and Larman, C. 2000. Java 2 Performance and Idiom Guide. Englewood
Cliffs, NJ.: Prentice-Hall.
Grady, R. 1992. Practical Software Metrics for Project Management and Process Improve-
ment. Englewood Cliffs, NJ.: Prentice-Hall.
Grosso, W., 2000. The Name The Problem Not The Thrower exceptions pattern is found
online at the Portland Pattern Reposity, http://c2.com.
Cause, D., and Weinberg, G. 1989. Exploring Requirements. NY, NY: Dorset House.
Harrison, N., 1998. Patterns for Logging Diagnostic Messages. Pattern Languages of Pro-
gram Design vol. 3. Reading, MA.: Addison-Wesley.
Hay, D. 1996. Data Model Patterns: Conventions of Thought. NY, NY: Dorset House.
Highsmith, J. 2000. Adaptive Software Development: A Collaborative Approach to Man-
aging Complex Systems. NY, NY: Dorset House.

611

BIBLIOGRAPHY

HNS00 Hofnieister, C., Nord, R., and Soni, D. 2000. Applied Software Architecture. Reading, MA.:
Addison-Wesley.

Jackson95 Jackson, M. 1995. Software Requirements and Specification. NY, NY.: ACM Press.
Jacobson92 Jacohson, 1., et al. 1992. Object-Oriented Software Engineering: A Use Case

Driven Approach. Reading, MA.: Addison-Wesley.
JAH00 Jeffries, R., Anderson, A., Hendriekson, C. 2000. Extreme Programming Installed. Reading,

MA.: Addison-Wesley.
JBK99 Jacohson, I., Booch, G., and Rumbaugh, J. 1999. The Unified Software Development Pro-

cess. Reading, MA.: Addison-Wesley.
Jones97 Jones, C., 1997. Applied Software Measurement. NY, NY.: McGraw-Hill.
Jones98 Jones, C. 1998. Estimating Software Costs. NY, NY.: McGraw-Hill.

Kay68 Kay, A. 1968. FLEX, a flexible extensible language. M.Sc. thesis, Electrical Engineering,
University of Utah. May. (Univ. Microfilms).

Kovit/99 Kovitz, B. 1999. Practical Software Requirements,. Greenwich, CT.: Manning.
Kruchten00 Kruchten, P. 2000. The Rational Unified Process—An Introduction. 2nd edition. Reading,

MA.: Addison-Wesley.
Kruchton95 Kruchten, P. 1995. The 4+1 View Model of Architecture. IEEE Software 12(6).

Lakos96 Lakes, J. 1996. Large-Scale C++ Software Design. Reading, MA.: Addison-Wesley.
Lieberherr88 Lieberherr, K., Holland, 1, and Kiel, A. 1988. Object-Oriented Programming: An Objective

Sense of Style. OOPSLA 88 Conference Proceedings. NY, NY.: AGM SIGPLAN.
Liskov88 Liskov, B. 1988. Data Abstraction and Hierarchy, SIGPLAN Notices, 23,5 (May, 1988).

LW00 Leffingwell, D., and Widrig, D. 2000. Managing Software Requirements: A Unified
Approach. Reading, MA.: Addison-Wesley.

lacCormack0l MacCormack, A. 2001. Product-Development Practices That Work. MIT Sloan Manage-
ment Review. Volume 42, Number 2.

Martin95 Martin, R. 1995. Designing Object-Oriented C++ Applications Using the Booch Method.
Englewood Cliffs, NJ.: Prentice-Hall.

McConnell96 McConnell, S. 1996. Rapid Development. Redmond, WA.: Microsoft Press.
MO95 Martin, J., and Odell, J. 1995. Object-Oriented Methods: A Foundation. Englewood (Miffs,

NJ.: Prentice-Hall.
Moreno97 Moreno, A.M. Object Oriented Analysis from Textual Specifications. Proceedings of the

9th International Conference on Software Engineering and Know/edge Engineering,
Madrid, June 17-20 (1997).

MP84 McMenamin, S., and Palmer, J. 1984. Essential Systems Analysis. Englewood Cliffs, NJ.:
Prentice-Hall.

MW89 1989. The Mernam-Webster Dictionary. Springfield, MA.: Merriam-Webster.
Nixon90 Nixon, R. 1990. Six Crisis. NY, NY.: Touchstone Press.
OMG01 Object Management Group, 2001. OMG Unified Modeling Language

Specification. www. omg. o rg.
Parkinson58 Parkinson, N. 1958. Parkinson's Law: The Pursuit of Progress, London, John Murray.

612

BIBLIOGRAPHY

Parnas72 Parnas, D. 1972. On the Criteria To Be Used in Decomposing Systems Into Modules,
Communications of the ACM, Vol. 5, No. 12, December 1972. ACM.

PM92 Putnam, L., and Myers, W. 1992. Measures for Excellence: Reliable Software on Time,
Within Budget. Yourdon Press.

Pree95 Pree, W. 1995. Design Patterns for Object-Oriented Software Development. Reading, MA.:
Addison-Wesley.

Renzel97 Renzel, K., 1997. Error Handling for Business Information Systems: A Pattern Language.
Online at http://www.objectarchitects.de/arcus/cookbook/exhandling/

Rising00 Rising, L. 2000. Pattern Almanac 2000. Reading, MA.: Addison-Wesley.
RJB99 Rumbaugh, J., Jacobson, L, and Booch, G. 1999. The Unified Modeling Language Refer-

ence Manual. Reading, MA.: Addison-Wesley.
Ross97 Ross, R. 1997. The Business Rule Book: Classifying, Defining and Modeling Rules. Busi-

ness Rule Solutions Inc.
Royce70 Royce, W. 1970. Managing the Development of Large Software Systems. Proceedings of

IEEE WESCON. Aug 1970.
Rumbaugh91 Rumbaugh, J., et al. 1991. Object-Oriented Modelling and Design. Englewood Cliffs, NJ.:

Prentice-Hall.
RUP The Rational Unified Process Product. The browser-based online documentation for the

RUP, sold by Rational Corp.
Rumbaugh97 Rumbaugh, J. 1997. Models Through the Development Process. Journal of Object-Ori-

ented Programming May 1997. NY, NY: SIGS Publications.
Shaw96 Shaw, M. 1996. Some Patterns for Software Architectures. Pattern Languages of Program

Design vol. 2. Reading, MA.: Addison-Wesley.
Standish94 Jim Johnson. 1994. Chaos: Charting the Seas of Information Technology.

Published Report. The Standish Group
SW98 Schneider, G., and Winters, J. 1998. Applying Use Cases: A Practical Guide. Reading,

MA.: Addison-Wesley.
TK78 Tsichiritzis, D., and Klug, A. The ANSI/X3/SPARC DBMS framework: Report of the study

group on database management systems. Information Systems, 3 1978.
Tufte92 Tufte, E. 1992. The Visual Display of Quantitative Information. Graphics Press.
VCK96 Vlissides, J., et al. 1996. Patterns Languages of Program Design vol. 2. Reading, MA.:

Addison-Wesley.
Wirfs-Brock93 Wirfs-Brock, R. 1993. Designing Scenarios: Making the Case for a Use Case Framework.

Smalltalk Report Nov-Dec 1993. NY, NY: SIGS Publications.
WK99 Warmer, J., and Kleppe, A. 1999. The Object Constraint Language: Precise Modeling With

UML. Reading, MA.: Addison-Wesley.
WWW90 Wirfs-Brock, R., Wilkerson, B., and Wiener, L. 1990. Designing Object-Oriented Software.

Englewood Cliffs, NJ.: Prentice-Hall.

613

GLOSSARY

abstract class

abstraction

active object

aggregation

analysis

architecture

association

attribute

class

class attribute

class hierarchy

class method

classification

collaboration

A class that can be used only as a superclass of some other class; no objects of an
abstract class may be created except as instances of a subclass.

The act of concentrating the essential or general qualities of similar things. Also, the
resulting essential characteristics of a thing.

An object with its own thread of control.

A property of an association representing a whole-part relationship and (usually) life-
time containment.

An investigation of a domain that results in models describing its static and dynamic
characteristics. It emphasizes questions of "what," rather than "how."

Informally, a description of the organization, motivation, and structure of a system.
Many different levels of architectures are involved in developing software systems, from
physical hardware architecture to the logical architecture of an application framework.

A description of a related set of links between objects of two classes.

A named characteristic or property of a class.

In the UML, "The descriptor of a set of objects that share the same attributes, operations,
methods, relationships, and behavior" [RJB99]. May be used to represent software or
conceptual elements.

A characteristic or property that is the same for all instances of a class. This
information is usually stored in the class definition.

A description of the inheritance relations between classes.

A method that defines the behavior of the class itself, as opposed to the behavior of its
instances.

Classification defines a relation between a class and its instances. The classification
mapping identifies the extension of a class.

Two or more objects that participate in a client/server relationship in order to provide a
service.

615

GLOSSARY

composition

concept

concrete class

constraint

constructor

container class

contract

coupling

delegation

derivation

design

domain

encapsulation

event

extension

framework

generaliza

tion

The definition of a class in which each instance is comprised of other objects.

A category of ideas or things. In this book, used to designate real-world things rather
than software entities. A concept's intension is a description of its attributes, operations
and semantics. A concept's extension is the set of instances or example objects that are
members of the concept. Often defined as a synonym for domain class.

A class that can have instances.

A restriction or condition on an element.

A special method called whenever an instance of a class is created in C++ or Java. The
constructor often performs initialization actions.

A class designed to hold and manipulate a collection of objects.

Defines the responsibilities and postconditions that apply to the use of an operation or
method. Also used to refer to the set of all conditions related to an interface.

A dependency between elements (such as classes, packages, subsystems), typically result-
ing from collaboration between the elements to provide a service.

The notion that an object can issue a message to another object in response to a message.
The first object therefore delegates the responsibility to the second object.

The process of defining a new class by reference to an existing class and then adding
attributes and methods The existing class is the superclass; the new class is referred to
as the subclass or derived class.

A process that uses the products of analysis to produce a specification for implementing a
system. A logical description of how a system will work.

A formal boundary that defines a particular subject or area of interest.

A mechanism used to hide the data, internal structure, and implementation details of
some element, such as an object or subsystem. All interaction with an object is through a
public interface of operations.

A noteworthy occurrence.

The set of objects to which a concept applies. The objects in the extension are the exam-
ples or instances of the concept.

A set of collaborating abstract and concrete classes that may be used as a template to
solve a related family of problems. It is usually extended via subclassing for
application-specific behavior.

The activity of identifying commonality among concepts and defining a superclass (gen-
eral concept) and subclass (specialized concept) relationships. It is a way to construct
tax-onomic classifications among concepts which are then illustrated in class hierarchies.
Conceptual subclasses conform to conceptual superclasses in terms of intension and
extension.

616

GLOSSARY

inheritance

instance

instance method

instance variable

instantiation

intension

interface

link

message

metamodel

method

model

multiplicity

object

object identity

object-oriented anal-
ysis

object-oriented
design

object-oriented pro-
gramming language

OID

operation

A feature of object-oriented program in ing' languages by which classes may be spcciali/ed
from more general superclasses. Attributes and method definitions from superclasses are
automatically acquired by the subclass.

An individual member of a class. In the UML, called an object.

A method whose scope is an instance. Invoked by sending a message to an instance.

As used in Java and Smalltalk, an attribute of an instance.

The creation of an instance of a class.

The definition of a concept.

A set of signatures of public operations.

A connection between two objects; an instance of an association.

The mechanism by which objects communicate; usually a request to execute a method.

A model that defines other models. The UML metamodel defines the element types of the
UML, such as Classifier.

In the UML, the specific implementation or algorithm of an operation for a class. Infor-
mally, the software procedure that can be executed in response to a message.

A description of static and/or dynamic characteristics of a subject area, portrayed
through a number of views (usually diagrammatic or textual).

The number of objects permitted to participate in an association.

In the UML, a instance of a class that encapsulates state and behavior. More informally,
an example of a thing.

The feature that the existence of an object is independent of any values associated with
the object.

The investigation of a problem domain or system in terms of domain concepts, such as
conceptual classes, associations, and state changes.

The specification of a logical software solution in terms of software objects, such as their
classes, attributes, methods, and collaborations.

A programming language that supports the concepts of encapsulation, inheritance, and
polymorphism.

Object Identifier.

In the UML, "a specification of a transformation or query that an object may be called to
execute" [RJB99]. An operation has a signature, specified by its name and parameters,
and it is invoked via a message. A method is an implementation of an operation with a
specific algorithm.

617

GLOSSARY

pattern

persistence

persistent object

polymorphic opera-
tion

polymorphism

postcondition

precondition

private

public

pure data values

qualified association

receiver

recursive associa-
tion

responsibility

role

state

state transition

subclass

subtype

A pattern is a named description of a problem, solution, when to apply the solution, and
how to apply the solution in new contexts.

The enduring storage of the state of an object.

An object that can survive the process or thread that created it. A persistent object exists
until it is explicitly deleted.

The same operation implemented differently by two or more classes.

The concept that two or more classes of objects can respond to the same message in differ-
ent ways, using polymorphic operations. Also, the ability to define polymorphic opera-
tions.

A constraint that must hold true after the completion of an operation. A

constraint that must hold true before an operation is requested.

A scoping mechanism used to restrict access to class members so that other objects can-
not see them. Normally applied to all attributes, and to some methods.

A scoping mechanism used to make members accessible to other objects. Normally
applied to some methods, but not to attributes, since public attributes violates encapsula-
tion.

Data types for which unique instance identity is not meaningful, such as numbers,
bool-eans, and strings.

An association whose membership is partitioned by the value of a qualifier.

The object to which a message is sent.

An association where the source and the destination are the same object class.

A knowing or doing service or group of services provided by an element (such as a class or
subsystem); a responsibility embodies one or more of the purposes or obligations of an
element.

A named end of an association to indicate its purpose.

The condition of an object between events.

A change of state for an object; something that can be signaled by an event.

A specialization of another class (the superclass). A subclass inherits the attributes and
methods of the superclass.

A conceptual superclass. A specialization of another type (the supertype) that conforms to
the intension and extension of the supertype.

618

GLOSSARY

superclass A class from which another class inherits attributes and methods.

Supertype A conceptual superclass. In a generalization-specialization relation, the more
general type; an object that has subtypes.

Transition A relationship between states that is traversed if the specified event occurs and
the guard condition met.

Visibility The ability to see or have reference to an object.

619

INDEX

abstract class 407 abstract
conceptual class 406 Abstract
Factory 525 abstract use case
388 activation box 208 active
class 5 12 active object 5 12
activity diagram 607 actor 47,
68

offstage 70
primary 70
supporting 70 Adapter 342

adaptive development 16 adaptive
process 24 adaptive vs. predictive
planning 579 addition use case 389
aggregation 228,414

composite 415
shared 416

agile process 24
agile UP 24
analysis 6 analysis
and design

definition 6 Analysis
Model 599 analysis object
models 128 analysis
patterns I 33
architectural

analysis 448,486,487
baseline 109
decisions 487
design 448
design principles 496
factors 487, 488
investigation 448
patterns 449
patterns-promotion of 499
proof-of-concept 504
prototype 109
synthesis 504
view 501

data 502 deployment
502 implementation
502 logical 501
process 502 use case
502

architectural approach documents 493
architecturally significant requirements 488

architecture 448
cross-cutting concerns 497
factor table 490
issue cards 493
layered 450
separation of concerns 497
technical memos 493
type 488
views 488

architecture-centric 590
artifacts 20

organizing 585
aspect-oriented programming 498
association 153

criteria for useful 154
emphasize need-to-know 163
finding with list 155
guidelines 1 57
high-priority ones 157
level of detail 159
link 202
multiple between types 161
multiplicity 158
naming 160
navigability 291
qualified 422
reflexive 423
role names 419
UML notation 154

association class 41 3
asynchronous message 5 16
attribute 167

and quantities 173
data type 168, 170
derived 175,421
no foreign keys 172
non-primitive types 170
simple 168
UML notation 168
valid types 168

B

base use case 388
behavior

class 216
system 1 1 8

behavioral decomposition 33 1
benefits of iterative development
17 black-box use cases 49 boundary
objects 240 brief use case 49

621

INDEX

business actor 75
Business Modeling discipline 20, 607
Business Object Model 607
business rules 90
business use cases 75

CASE tools for UML 571
casual use case 49
Change Cases 338 change
control 591 Change
Request 112 class

abstract 407
active 512
association 413
conceptual 145, 146
conceptual & abstract 406
definitions 146
design 145, 146
diagram 286
hierarchy 396, 409
implementation 146
in UML 146,201
mapping from DCD 304
partition 400
partitioning 401
software 146
UML meaning 145
UML notation 201,286 class

hierarchy 396 classifier 145
cohesion 232 collaboration diagram
198

conditional messages 205
example 199,200
instance creation 203
iteration 206
iteration over a collection 207
links 202
message sequencing 204
message to class object 207
message to self 203
messages 202
mutually exclusive conditionals 205
sequence number 204

collection
iteration over in UML 212

Command 535 component 605
component diagram 605
Composite 358 composite 414
composite aggregation 414, 415
concept

extension 13 1

finding with noun identification I 35
intension 131
mistake while finding 138
similar concepts 139
specification or description concepts
140
symbol 131
versus role 420

conceptual class 145,146
abstract 406 conceptual

model 8, 128 concrete use
case 69, 388 constraints
88,261 construction 19,
591 container (Decorator)
498 context diagram 72
continuous integration 592

Cruise Control 593
daily build 592

contract
example 178
guidelines 184
postcondition 179
section descriptions

179 control objects 240
Controller 237

application 253, 256
bloated 242

Convert Exceptions 515
coupling 229 CRC 245
Creator 226, 254

application 254, 265 cross-cutting
concerns 497 Cruise Control for continuous
integration 593

D

daily build 592
data dictionary 43, 99
data holder objects 463
Data Model 541
data modeling 541
data models 541
data type 168, 170
data view 502
data-driven design 348
DCD 286
Delegation Event Model 372
dependency relationship 295, 604
deployment diagram 605
deployment view 488, 502
derived attribute 175
design 6

speculative 567 Design
by Contract 188, 191
design class 145, 146
design class diagram 10,
286

622

INDEX

adding methods 288
and multiobjects 290
DCD 286
example 286
notation for members 296
showing dependency relationships 295
showing navigability 291
type information 291

Design discipline 20 Design
Model 194

vs. Domain Model 287
design patterns 449
Development Case 23
discipline 20

and phases 21
and workflow 20

Do It Myself 225, 528
domain layer 345
Domain Model 128

domain vocabulary 129
finding concepts 133
map-maker strategy 138
modeling changing states 408
modeling the unreal 140
organizing in packages 425
similar concepts 139
vs. Design Model 287

domain object models 128
drawing diagrams 567

suggestions 568

E

eager initialization 351
EBP 60
elaboration 19, 107 elementary
business process 60 engage users
590 entity objects 240
Environment discipline 21 error
definition 514 essential use case
style 68 estimates 585 estimation
585 event 437

external 443
internal 443
temporal 443 evolution

point 338, 496 exceptions in
UML 515 executable
architecture 109 Expert 221

application 257, 260, 262
extend use case relationship 389
extension I 3 I extension point
389 Extreme Programming 27,
592

Facade 368 factor table 490
Factory 346 failure
definition 514 fault
definition 514 feature of
system 96 focus of control
208 forward-engineering 571
framework 539

persistence 538 fully
dressed use case 49
functional requirements 43

G

Gang of Four patterns 342
generalization 396

abstract class notation 407
and conceptual class sets 398
and conceptual classes 397
conformance 399
overview 396
partitioning 401
subclass validity tests 400
UML notation 397

generic class 606 Glossary
artifact 83, 98, 99 GRASP
patterns

Controller 237
Creator 226
Expert 221
High Cohesion 232
Indirection 332
Low Coupling 229
Polymorphism 326
Protected Variations 334
Pure Fabrication 329

guarded methods 55 1

H

heavy process 24 High
Cohesion 232 Hollywood
Principle 539

idioms 449 implementation
21 implementation class
146 implementation diagram
604 Implementation Model
476 implementation view
502

623

INDEX

inception 19, 35
include use case relationship 386
incremental process adoption 587
Indirection 332
Information Expert 221
information hiding 339
inheritance 363, 409
initial domain object 270
instance

UML notation 201
intension 131
interaction diagram

class 201
instance 201
message syntax 202

interface 327
package 604

issue cards 493
Iteration Plan 25, 1 12, 581, 582
iterations 14
iterative and incremental development
14 iterative development 14

benefits 17
planning 575

iterative lif'ecycle 14
mitigation of waterfall problems 595

N

navigability 291
nodes 605
non-functional requirements 43
Supplementary Specification
notes in UML 261

o

object
active 512
in UML 201
lifelines 210
persistent 538 object-oriented

analysis 7 object-oriented analysis
and design

definition 7
dice game example 7

object-oriented design 7
Observer 372 OCL 187,261
offstage actor 70 Open-Closed
Principle 339 operation
specification 1 87 operations
186 organizing artifacts 585

JUnit 592

layered architecture 450
lazy initialization 350
link 202
Liskov Substitution Principle 335
logical view 488,501
Low Coupling 229
LSP 335

M

message
asynchronous 5 16
UML notation 202.
208

metadata 99, 545
method 187

from collaboration diagram 307
Model-View Separation 256,471
modular designs 235
Moment-Interval 419
multiobject 207
multiplicity 158

package 371
dependencies 424
interface 604
notation 482
organization guidelines 476
ownership 424
reference 424
UML notation 423

parameterized class 606
path name 456 pattern
4 ,218

Abstract Factory 525
Adapter 342
Command 535
Composite 358
Controller 237
Convert Exceptions 5 15
Creator 226
Do It Myself 225, 326, 528
Expert 221
Facade 368
Factory 346
High Cohesion 232
Indirection 332
Layers 450

624

84

INDEX

Low Coupling 229
Model-View Separation 256
names 219
Observer- 372
Polymorphism 326
Protected Variations 334
Proxy 519
Publish-Subscribe 372
Pure Fabrication 329
Redirection Proxy 520
Remote Proxy 519
Singleton 348
State 186
Strategy 353
Template Method 546
Virtual Proxy 559

patterns
analysis 133
architectural 449, 499
design 449
idioms 449 persistence

framework 538
key ideas 540
materialization 546
pattern-Cache Management 552
pattern-Object Identifier 542
pattern-Representing Objects as Tables 541
representing relationships in tables 562
requirements 540

persistent objects 538
Phase Plan 25,581
phases in UP 19
physical design 476
planning

adaptive 579
iterative 575
scheduling issues 586

polymorphism 326
Polymorphism pattern 326

for payments 528
postcondition 179

a metaphor I 8 I
in use case 55

precondition
in use case 55

predictive process 24
primary actor 70
process

adaptive 24
agile 24
heavy 24
iterative 14
predictive 24 process

view 502 property
specification 603 Protected
Variations 334 Proxy 519

Virtual Proxy 559

Publish-Subscribe 372
Pure Fabrication 329

Q
qualified association 422
qualifier 422
quality

continuous verification 590
quality attributes 43, 89 quality
scenario 489

R

ranking requirements 576
ranking risk 579
Rational Unified Process 13
Redirection Proxy 520
reference attribute 305, 356
reflexive association 423
relational cohesion 477
Remote Proxy 519
replicates 463
representational decomposition 331
representational gap 146
requirements 41

functional in Use-Case Model 45
management 591
non-functional in Supplementary Specification
84
overview 41
ranking 576
tracking 583

Requirements discipline 20
responsibilities 216

and interaction diagrams 217
and methods 216
doing 216
importance of 6
knowing 216
patterns 218

Responsibility-Driven Design 246
return in sequence diagram 209
reuse 601
reverse-engineering 303,571
risk 579
risk-driven development 589
role 157

name 306
versus concept 420

RUP 13
product 600

625

INDEX

s

SAD 500
scenario 47
scheduling issues 586
schema mapping 540
SCRUM 592
separation of concerns 346,497
sequence diagram 118, 198

activation box 208
conditional message 21 I
instance creation 210
iteration 21 1
iteration over a message series 212
iteration over collection 212
lifelines 210
message to class 212
message to self 209
messages 208
mutually exclusive conditional 211
object destruction 210
return 209 simple

attribute 168
Singleton 348

UML shorthand notation 350
software architecture 448 Software
Architecture Document 500 software
class 146 Software Development Plan
1 12 software development process
13 specialization 396 state 437

modeling 408 State
pattern 186 statechart
diagram 438

example 441
for use case 439
guard conditions 444
nested states 444, 445
overview 437
transition actions 444

state-independent 441
static methods 207
stereotype 72, 327, 603
Strategy 353 structured
analysis 132 subclass
363

conformance 399
creating 400
partitioning 401
validity tests 400

subfunction goal 62
superclass

creating 403
Supplementary Specification artifact 83, 84, 88
supporting actor 70 SWEBOK 44

symbol 131
synchronized methods 55 1
system behavior 1 18

overview 1 18
system boundary 120
system event 237

naming 121 system
feature 96 system operation
237 system operations 178
system sequence diagram I 18

showing use case text 122
system use cases 75

technical memos 493 template
class 606 Template Method 546
test-first programming 311, 592
threads in the UML 5 12 three-tier
architecture 470 tier 466
time intervals 418
timeboxing 18

motivation 593
transition 19,438,
592

u

UI design 599
UML 10

CASE tools 571
Data Modeling Profile 541
drawing suggestions 568
overview 10
profile 542
profiles 541
visual modeling 590

Unified Process 13 UP
13

agile 24
best practices and concepts 589
phases 19

usability engineering 599
use case 47

abstract 388
addition 389
and development process 75
base 388
black-box 49
brief 49
business 75
casual 49
concrete 388
elementary business process 60

626

INDEX

essential style 68
extend 3X9
fully dressed 49
include 386
instance 47
postcondition 55
precondition 55
statechart diagram 439
statechart diagram for 439
user goal 61
when create abstract use cases 389

use-case driven development 75
Use-Case Model 45 use-case realizations
75 use-case storyboar'ds 599 use-case
view 502 user goal 61 user goal level 61
user task 60

V

value objects
170,463 variation
point 338 Virtual
Proxy 559 visibility
258, 280

attribute 281
global 283
local 282
parameter 282

visibility defaults in UML 296
Vision artifact 83,91,93
visual modeling 590 visual
thinking 567

w

waterfall lifecycle 25, 593
mitigation of problems with iterative 595
problems 594 whitebox

frameworks 546 workflow
20

and discipline 20

X

XP 27, 68, 592

627

	Applying UML and Patterns
	TABLE OF CONTENTS
	FOREWORD
	PREFACE
	PART 1 INTRODUCTION
	Chapter 1 OBJECT-ORIENTED ANALYSIS AND
DESIGN
	Chapter 2 ITERATIVE DEVELOPMENT AND
THE UNIFIED PROCESS
	Chapter 3 CASE STUDY: THE NEXTGEN
POS SYSTEM

	PART 2 INCEPTION
	Chapter 4 INCEPTION
	Chapter 5 UNDERSTANDING
REQUIREMENTS
	Chapter 6 USE-CASE MODEL: WRITING
REQUIREMENTS IN CONTEXT
	Chapter 7
	Chapter 8

	PART 3 ELABORATION ITERATION 1
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20

	PART 4 ELABORATION ITERATION 2
	Chapter 21
	Chapter 22
	Chapter 23

	PART 5 ELABORATION ITERATION 3
	Chapter 24
	Chapter 25
	Chapter 26
	Chapter 27
	Chapter 28
	Chapter 29
	Chapter 30
	Chapter 31
	Chapter 32
	Chapter 33
	Chapter 34

	PART 6 SPECIAL TOPICS
	Chapter 35
	Chapter 36
	Chapter 37
	Chapter 38

	BIBLIOGRAPHY
	GLOSSARY
	INDEX

