In Pursuit of Better EDI

An Introduction to the Use of Non-Functional Requirements in Designing EDI Standards and Architectures

Prepared for X12 Strategic Implementation Task Group

Michael C. Rawlins

Dr. Lawrence Chung

February 18, 1999

Introduction

SITG and TMWG have specific goals related to defining the next generation of EDI standards, but the ultimate desired outcome is to make EDI better. For example, hope that as end results of our efforts it will be easier for small to medium enterprises to implement EDI, less costly for large companies to integrate it with their business applications, and less confusing for all to determine which standards support their business processes. We seek to fix the problems of EDI by improving the standards, and have developed good arguments in support of this strategy. However, there are few developed methodologies that support systematic analysis and graphic demonstration (a la UML diagrams) of how changes in the standards and supporting infrastructure help to achieve these goals. This paper introduces a method called the NFR Framework [CNYM99 and MCY99] that is intended to do just that. Importantly, it also provides a method to assist in choosing between alternative strategies and analyzing tradeoffs.

Relevance of NFRs to EDI Standards

Our primary focus has been on the best way to define or model functional requirements. These deal with the behavior of a system and are expressed in such things as system functions, descriptions of processing and data, data flow diagrams, entity relationship diagrams, and UML object models. However, when we begin to speak of “improvement”, “better”, or “easier”, we introduce the notion of quality. This is the realm of non-functional requirements. Non-functional requirements deal with attributes of the system such as cost, performance, reliability, security, and maintainability. An approach based on NFRs can be a useful complement to functional based approaches. In fact, some authorities [Gilb88] even believe that non-functional requirements should play a more important role in system design than functional requirements.

It seems that an NFR based approach to the design of EDI standards and architectures may be particularly appropriate. This is because most of the documented barriers to EDI adoption, particularly for Small to Medium Enterprises (or SMEs), can be expressed as NFRs. For example, we don’t hear businesses complain that EDI does not give them the ability to exchange purchase orders, invoices, or other business documents. Instead we hear such problems as:

· The software is too expensive to acquire.

· I don’t have the programming staff to implement it.

· The standards are too hard to use.

These can all be expressed as non-functional requirements:

· EDI software must be inexpensive to acquire

· Implementing EDI must not require technical staff

· The standards must be easy to use

As stated earlier, non-functional requirements can be just as critical to the success of a system as functional requirements. For example, an airline reservations system might provide all of the required functionality, but if the response time goals are not met it will fail. In addition, NFRs are used to select among different design alternatives. Again given the example of our reservations system, an NFR of minimal response time for 2,000 users may lead to a quite different system architecture than a system designed only for twenty users.

NFRs may also have positive or negative influence on each other. For example, some technologies that implement data confidentiality can have negative impact on performance and user friendliness.

Finally, different NFRs may have different importance. Some may be deemed critical and will be very influential in guiding system design, while others will be given less significance and may have no role in selecting among design alternatives.

End user functional requirements will determine the content of the new EDI standards and certain aspects of the form of the standards. Non-functional requirements can help in designing the form of the standards and any supporting infrastructure. An analogy can help illustrate this point. Let us consider using non-functional requirements to design a database management system. The DBMS designers aren’t particularly concerned with the types of business applications that might use the DBMS. Instead, they are concerned with functional requirements of the DBMS such as supporting a wide range of data types, supporting ANSI SQL, and providing backup/restore capabilities. These are all fairly common features of such systems. NFRs such as fast performance, low cost of acquisition, and high data integrity are used to guide the design of the DBMS engine and utilities. The designers will use these NFRs to help select among design alternatives, determine tradeoffs, and produce a unique implementation that differentiates their DBMS system from the competition. Their resulting system may have similar functionality to competing products, but they hope people will buy theirs instead because it is faster or more reliable. In the same fashion, the Next Generation EDI standards will not necessarily have any functionality that the current X12 and EDIFACT standards can’t also have, i.e., the same business data may be exchanged using software which implements either set of standards. However, critical NFRs can be used to aid in the design of the new standards and supporting architectures and enable EDI systems to be built that better meet end user needs.

The NFR Framework - Methodology and Notation

Typically, NFRs are gathered and documented during systems analysis and are used to guide decisions during system design and implementation. However, until recently this has been mostly an informal process. There has been little attention to systematically analyzing and documenting NFRs, analyzing how various design alternatives affect satisfying NFRs, and how NFRs may positively of negatively affect each other. The NFR framework was developed to achieve these goals. This tool provides a systematic approach to dealing with NFRs, as well as a means of clearly representing them in much the same way that UML allows graphic representation of object models.

The major steps in using the NFR framework are:

1. Gather non-functional requirements

2. Decompose NFRs (in much the same way that objects are decomposed in OO analysis). Decomposition is performed to:

· Clarify understanding of the requirement

· Make overly general requirements detailed enough to be implemented using specific design techniques. This allows tradeoff analysis to be performed.

3. Assign importance to NFRs – Most often, only a few are critical. The rest are either trivial [Juran79] or may be equally satisfied by different design alternatives.

4. Explore design alternatives, evaluating how different strategies satisfy or fail to satisfy the NFRs.

NFRs are expressed using a notation of:

Type[Topic; Importance]

Where:

· Type is the quality attribute, such as performance, cost, or ease of use.

· Topic is the system or some component of it. Topic is the subject of the requirement, and can relate to a component in an object model.

· Importance is criticality of the requirement

For example, a requirement stated as “It is of critical importance that the system have good performance” can be expressed as:

Performance[System; Critical]

There are many ways to decompose the NFR of performance by type of performance. Using a classical computer science definition, we may decompose it into Space_Performance[System] for minimal storage requirements, and Time_Performance[System] for minimal response time. This decomposition is expressed graphically in the drawing below.

[image: image1.wmf]`

Space_Performance[System]

Time_Performance[System]

Performance[System]

In addition to decomposing NFRs based on the type, we may also decompose them based on topic. NFRs seldom apply globally to all parts of a system, but may be more important for some components than for others. Decomposition by topic also allows linking of NFRs to identifiable functional components. This allows, for example, analysis which components in an object model are affected by specific NFRs, and vice versa.

To illustrate decomposition by topic, if our system above is a simple employee records maintenance system, performance of may be decomposed on topic as:

[image: image2.wmf]`

Performance[View Employee]

Performance[System]

Performance[Add Employee]

Performance[Update Employee]

Performance[Delete Employee]

NFRs don’t stand alone. After we have decomposed them to sufficient detail to evaluate implementation techniques, we can investigate tradeoffs. Techniques that help satisfy one requirement can make it harder to meet another. For example, it is widely recognized that while systems must guard access to data, strong encryption may negatively affect performance.

The drawing below shows system security decomposed into confidentiality and integrity, and strong encryption chosen as a design technique to satisfy the confidentiality requirement. We show that this technique has a positive impact on confidentiality, but negative impact on system time performance (due to the mathematical operations required by encryption).

[image: image3.wmf]`

Space_Performance[System]

Time_Performance[System]

Performance[System]

Security[System]

Confidentiality[System

]

Integrity[System]

Others…

Use Strong Encryption

-

+

Applying the Technique to EDI

The preceding illustrations introduce the technique on fairly well understood, generic problems. The NFR Framework has been successfully applied to the design of software systems for use within a single enterprise. The challenge of my research is to explore whether this technique can be productively extended into a new problem domain (EDI), and in designing information systems standards and large-scale architectures rather than just single systems.

To show the beginnings of how the approach can be used in designing better EDI, we can start with the end user problem statement: “It is too hard to add new trading partners”. We restate this problem as an NFR: It must be easy using the system to add new trading partners. Those familiar with EDI may understand this problem immediately. However, those who aren’t familiar with EDI operations may not understand the context of the statement and how it relates to other system requirements. To clarify understanding, we show ease in adding trading partners as a sub-requirement of ease of system operation. Further, we decompose adding trading partners into configuring trading partner communications and selecting data to be exchanged. This is shown graphically as:

[image: image4.wmf]Ease of Operation[System]

Others…

Ease of Operation[Add Trading Partners]

Ease of Configuring Communications[Add Trading Partners]

Ease of Selecting Data[Add Trading Partners]

This is simple example that shows decomposition on both type and topic, i.e., attribute and system component.

Next Steps

This document is intended to serve as an introduction to the NFR Framework, and its applicability to the work of SITG and TMWG. The next steps in my thesis research are planned as:

· Develop a preliminary hierarchy of NFRs based on N027 and other source documents

· Determine the importance of NFRs, and decompose critical NFRs to a level sufficient to investigate a variety of approaches

· As an illustration to aid in understanding current problems and the use of the NFR Framework, use the resulting framework to examine stand-alone and integrated implementations of current EDI

· Evaluate a few alternative approaches to EDI, including two approaches to implementing OO-edi, and X12-XML

Results of this research will be shared with SITG as the work progresses.

At a minimum, it is hoped that as the work of SITG and TMWG moves forward, the tool might be useful in evaluating design alternatives for FSV architectures for supporting OO-edi. In addition, it may be useful in selecting alternatives for modeling strategies and other aspects of the BOV standards.

References

[CNYM99] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements in Software Engineering, (Kluwer Publishing) forthcoming.

[Gilb88] T. Gilb, Principles of Software Engineering Management, Addison-Wesley, 1988.

[Juran79] J. M. Juran, Frank M. Gryna Jr., and R. S. Bingham Jr. (Eds.), Quality Control Handbook, 3rd Ed., New York: McGraw-Hill Book, 1979.

[MCY99] J. Mylopoulos, L. Chung and E. Yu, “From Object-Oriented to Goal-Oriented Requirements Analysis,” CACM, Jan., 1999.

Authors

Michael C. Rawlins (rawlins@metronet.com) Rawlins EDI Consulting, SITG Member

Dr. K. Lawrence Chung (chung@utdallas.edu), assistant professor in the department of computer science, University of Texas at Dallas

In Pursuit of Better EDI

Page 6

_979539786.doc
`

Time_Performance[System]

Security[System]

Space_Performance[System]

Confidentiality[System]

Performance[System]

Integrity[System]

Others…

Use Strong Encryption

-

+

_980841775.doc
`

Performance[View Employee]

Performance[Delete Employee]

Performance[Update Employee]

Performance[Add Employee]

Performance[System]

_979540281.doc

Ease of Operation[System]

Others…

Ease of Operation[Add Trading Partners]

Ease of Configuring Communications[Add Trading Partners]

Ease of Selecting Data[Add Trading Partners]

_979538889.doc
`

Time_Performance[System]

Space_Performance[System]

Performance[System]

