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ABSTRACT
In this paper, we explore the feasibility of enabling the scheduling
of mixed hard and soft real-time MapReduce applications. We first
present an experimental evaluation of the popular Hadoop MapRe-
duce middleware on the Amazon EC2 cloud. Our evaluation re-
veals tradeoffs between overall system throughput and execution
time predictability, as well as highlights a number of factors affect-
ing real-time scheduling, such as data placement, concurrent users,
and master scheduling overhead. Based on our evaluation study, we
present a formal model for capturing real-time MapReduce appli-
cations and the Hadoop platform. Using this model, we formulate
the offline scheduling of real-time MapReduce jobs on a heteroge-
neous distributed Hadoop architecture as a constraint satisfaction
problem (CSP) and introduce various search strategies for the for-
mulation. We propose an enhancement of MapReduce’s execution
model and a range of heuristic techniques for the online schedul-
ing. We further outline some of our future directions that apply
state-of-the-art techniques in the real-time scheduling literature.

1. INTRODUCTION
MapReduce [7] has emerged as one of the most popular frame-

works for data-intensive distributed cloud computing. The benefits
of this simple yet powerful programming model has been demon-
strated on a wide spectrum of domains, ranging from search and ads
analysis (e.g., [13,11,2]), bioinformatics (e.g. [25,17,16]), to artifi-
cial intelligence, machine learning and data mining (e.g. [30,3,9]).

In this paper, we explore the feasibility of enabling real-time
scheduling in MapReduce job executions, i.e., scheduling MapRe-
duce jobs in a multi-user environment where some of these jobs
have to complete within a given deadline. We argue that current
MapReduce scheduling techniques are not suited for real-time ap-
plications. One of the goals of our work is to identify factors that af-
fect execution predictability at the level of individual worker tasks.
Such predictability enables the MapReduce scheduler to make fine
grained task scheduling decisions that ensures that deadlines can
be met. While our eventual goal is to provide real-time guarantees
for cloud applications in general, this paper focuses primarily on
the MapReduce framework given its wide usage and well-defined
execution model.

As MapReduce continues to evolve from a middleware for data-
intensive distributing computation of batch jobs to one better suited
for continuous stream processing [4], there are emerging classes of
cloud-based applications that can benefit from increasing timing
guarantees. For instance, real-time advertising or other forms of
personalization over the web requires a real-time analysis process
that predicts user intent based on their profile and search histories.
These applications typically require soft real-time requirements,
where meeting deadlines (or minimizing missed deadlines) typi-
cally translates into higher profits or utility for the content providers.

In terms of applications with hard real-time requirements, an in-
triguing prospect is the deployment of mission critical applications
with tight deadlines over the cloud. For instance, control centers
for traffic management are connected to different devices (such as
detectors on roads, cameras, traffic lights, etc.). The operators can
supervise the state of the road by consulting databases with recent
information from detectors and modify the state of control devices.
A real-time decision support tool is needed to help operators in de-
tecting traffic problems and choosing appropriate control actions.

The ability to satisfy timing constraints of such real-time appli-
cations as illustrated above is not only required by the nature of the
applications but also driven by the needs for a more flexible, trans-
parent and trust-worthy service agreement between cloud providers
and users. Most current service level agreements (SLAs) provide
only static information on the machine specifications and no guar-
antees on the actual performance of the system. This gives users
very little knowledge and control over the timing behavior of the
applications that run on the cloud environment.
Problem Formulation. Given a set of MapReduce jobs, each with
several map and reduce tasks and a deadline (which can be either
hard or soft deadline), we aim to provide a scheduling algorithm for
the tasks such that (i) all hard real-time jobs will meet their dead-
lines, and (ii) either the number of soft real-time jobs that meet their
deadlines is maximized, or the maximum tardiness of the soft real-
time jobs is minimized. We consider both online and offline variant
of the problem. In the offline variant, all MapReduce programs
and their respective parameters are known a-priori, and an optimal
scheduling (assignment of tasks to machines at specific times) is
given to the system. In the online variant of the problem, MapRe-
duce programs are continuously being issued by end-users, and the
system does not a priori know the number of tasks per program.
The scheduler hence has to make an online decision on assigning a
task to the next available machine.

This paper makes three distinct contributions towards the above
problem formulation:
MapReduce performance evaluation: We conduct a perfor-
mance evaluation of MapReduce programs written in Hadoop [12]
on the Amazon EC2 cloud. Unlike prior measurements, our mea-
surements focus on identifying factors that affect the predictability
of MapReduce programs, i.e., factors that makes task-level real-
time scheduling challenging in this environment. Our performance
evaluation reveals tradeoffs between overall system throughput and
execution time predictability. Our study further highlights a num-
ber of factors that affect real-time scheduling, such as slots per pro-
cessing core, data placement, concurrent job execution, and master
scheduling overhead.
CSP formulation: Based on the above factors and MapReduce’s
execution model, we present a formal model for capturing the real-
time aspect of MapReduce applications and Hadoop execution plat-
form. Using this model, we formulate the scheduling problem
as a constraint satisfaction problem (CSP). Our formulation pro-
vides a model for understanding the performance characteristics of
MapReduce programs under real-time requirements, and provides
a basis for computing a theoretical optimal bound on performance.
We then present several CSP search strategies to improve its effi-
ciency and a refinement of the formulation.
Practical online heuristics: We outline the challenges in the de-
sign of online schedulers for real-time MapReduce computations,
and present a collection of ideas from the real-time literature that
can be applied towards the design of such a scheduler. Specifically,
we propose some of the changes to the current Hadoop implemen-
tation to allow real-time guarantees. As there exists no optimal on-
line schedulers, we present a range of heuristic techniques that are
adapted from the real-time domain. We further propose the use of
hierarchical scheduling, real-time virtual machines, and probabilis-
tic models to tackle the scheduling challenges associated with the
real-time constraints cum the unpredictability nature of the cloud.
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2. RELATED WORK
There has been a large amount of work focusing on the perfor-

mance optimization of MapReduce applications on Hadoop archi-
tecture. For instance, the performance study presented in [15] iden-
tified several factors effecting the system performance, including
I/O mode, record parsing and scheduling strategy. The authors also
proposed various strategies considering these factors to improve
the completion time of MapReduce jobs. Similarly, [27] devel-
oped a MapReduce simulator called MRPerf, using which one can
simulate the behavior of MapReduce applications. Based on the
simulated results, one can measure the effect of data locality, net-
work topology and node failures on the performance of MapReduce
applications. A number of scheduling strategies have also been
proposed as alternatives to the default Hadoop schedulers. Along
the same lines, [29] introduced the LATE scheduler that sched-
ules tasks with smaller approximate time-to-end first, and showed
that it is able to improve the completion time of MapReduce jobs in
heterogeneous environments. [22] proposed a technique to improve
the total execution time of the jobs by sharing similar work among
multiple jobs in Hadoop. None of these above framework consid-
ers real-time aspect of jobs, however. Instead, their primary focus
is to improve the performance (e.g., completion time reduction) of
regular batch-mode MapReduce jobs.

Another body of related work considers the completion time es-
timation, whose results are often used by online schedulers. For
instance, Parallax [21] and its extension ParaTimer [20], which can
estimate the remaining execution time of MapReduce jobs. The
ParaTimer considers multi-stage MapReduce jobs with concurrent
execution, machine failures, and data skew using a probabilistic
model. These analysis results, however, cannot be used as the in-
put to our real-time setting since they are subjected to the default
Hadoop schedulers. Both Parallax and ParaTimer do not consider
the scheduling problem as in our case: their primarily goal is to
analyze the execution time of a job when being scheduled by the
default Hadoop schedulers.

3. AMAZON EC2 MEASUREMENTS
We conduct experiments to evaluate the performance character-

istics of MapReduce jobs running on the Amazon EC2 platform.
The goals of our evaluation are to understand the extent in which
the completion time of a MapReduce job is predictable, and the
factors that are important to its predictability. We then use these
factors to develop a performance model for MapReduce in Sec-
tion 4. Unlike prior studies, we also examine completion times
at the level of individual tasks executed across different nodes.
The focus on task level completion time is essential, since with-
out which, a schedule cannot make an informed decision on which
task to execute next in order to meet specific timing constraints.

3.1 Review: MapReduce Scheduling
We provide a brief background review of scheduling in MapRe-

duce. Our discussion is primarily based on Hadoop’s implementa-
tion, although our observations and results can generally be applied
to other MapReduce implementation. The terminology we adopt is
as follows. In a MapReduce job, there are multiple map and re-
duce tasks, each of which is a single unit of work that can be per-
formed in parallel at the map and reduce phases. Job scheduling in
Hadoop is performed by a master node, which distributes work to
a number of slave nodes. Each slave corresponds to one physical
machine, and has a number of predefined map/reduce slots for ex-
ecuting Map and Reduce tasks. Typically, these slots can be more
than the number of cores and the specific number of slots per ma-
chine are predefined as a configuration parameter.

Scheduling of MapReduce jobs in Hadoop proceeds as follows.
Periodically, slave nodes inform the master about the availability of

free map/reduce slots. The master in this case will assign a pending
task accordingly to a free slot based on a scheduling policy.

The current Hadoop implementation includes two typical schedul-
ing policies. The first is a FIFO policy, in which the scheduling
maintains a FIFO waiting queue of jobs sorted by arrival time.
Whenever a slot becomes available, the master simply selects a task
from the next job on the waiting queue for execution. While FIFO
is simple to implement, it does not prioritize particular MapReduce
jobs, or ensure that all jobs get equal opportunities for making exe-
cution progress.

As an alternative strategy, fair scheduling policy ensures that all
submitted MapReduce jobs will get an equal opportunity for exe-
cuting their tasks. Due to space constraints, we refer the user to
Hadoop’s online documentation for more details on this policy.

3.2 Experimental Setup
Our experiments are carried out on 20 EC2 instances, each of

which runs a dual-core processor with 1.7GB of memory. Each
instance runs 5 compute units (where each unit equivalents CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor).
Our experiments are based on two MapReduce programs: Word-
Count and TeraSort. Our choice of using these two programs in
our evaluation is due to their popularity as well as well-understood
performance characteristics. We are also in the process of perform-
ing a similar evaluation of other MapReduce programs, particu-
larly those that are more computationally expensive, e.g., statistical
learning algorithms.

In all our experiments, we adopt the use of FIFO scheduling. We
further disable speculative execution and the use of pipelining, i.e.,
the reduce phase is started only after the map phase is completed.
We observe no machine failures during our experiments. We note
that disabling these features allows us to study in isolation a num-
ber of factors impacting real-time predictability, and simplifies our
performance model in the next section.

3.3 Slot-to-Core Ratio
Our first set of evaluation studies the impact of increasing the

number of slots per core at each machine on task completion time.
As the number of slots per core increases, more tasks can be exe-
cuted per physical machine, hence providing increase in throughput
due to the interleaving of I/O and computation at each node, at the
expense of increased variance in task completion times due to OS-
level scheduling and context switching. In the rest of this section,
we examine the average task and overall job performance of Word-
Count and TeraSort program executions, as the slot-to-core ratio
increases. The ratio is defined by the ratio of the number of slots to
cores at each machine. All experiments here involve running one
MapReduce job, i.e., either WordCount or TeraSort, but not both
jobs (or multiple instances of the same job) simultaneously.

Figure 1 shows the impact of slot-to-core ratio on the average
completion time for map tasks executing in the WordCount and
TeraSort programs as the slot-to-core ratio increases. In both pro-
grams, the input size of each map task is 60 MB, and each job con-
tains 100 map tasks each (hence the aggregate data size is 6 GB).
The results are based on averaging the map task completion times
across all nodes.

We observe that as the ratio increases, the average task comple-
tion time increases. This increase is as expected, due to the fact
that the Hadoop scheduler assigns tasks to slots without consider-
ation of each node’s capacity. Hence, in the scenario where there
are more pending tasks than slots, each machine now has to pro-
cess more tasks simultaneously (resulting in contention for CPU,
local disk I/O, and possibly network bandwidth), hence resulting
in degradation in completion time. Moreover, we observe from
Figure 2 that as the slot-to-core ratio increases, there is also an in-
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Figure 1: Slot-to-core ratio vs average task
completion time (s) (error bars indicate stan-
dard deviation).
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Figure 2: Slot-to-core ratio vs task comple-
tion time variability (standard deviation)
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Figure 3: Slot-to-core ratio vs job comple-
tion time (s).
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Figure 4: Slot-to-core ratio vs job comple-
tion time (s) in a multi-job environment
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Figure 5: Job completion time (s) for vary-
ing data locality
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Figure 6: Job completion time (s) for vari-
ous heartbeat interval

crease in the lack of predictability in the average completion times
of tasks, as shown by the increase in standard deviation for com-
pletion times for a given ratio.

Interestingly, we note that the increase in slots per core actu-
ally results in an overall performance improvement for the entire
job. This behavior seems counter-intuitive, given that individual
tasks have increased completion times when the slot-to-core ratio
increases. Figure 3 summarizes this observation, where the com-
pletion time decreases and levels off after the slot-to-core ratio in-
creases from 1 to 5. The improvement in completion time is due
to two factors: first, increasing the number of slots means that less
compute resources are idle, since half of the slots are assigned to
map and reduce tasks, and in the absence of pipelining and concur-
rent jobs, either the map or reduce phase is in progress at any time;
Second (and more importantly), there is a reduction in queueing de-
lay, since the availability of more slots means that more tasks can
execute simultaneously. However, the improvement levels off after
a ratio of 3, since beyond that, there are enough slots to handle all
100 map tasks with minimal queueing delays.

We make similar observations on the average completion time of
reduce tasks, and we omit the results due to space constraints. All
in all, our results demonstrate a tradeoff in performance throughput
and predictability. As the slot-to-core ratio increases, performance
of a job increases, but comes at the expense of increased variability
at the completion time of individual tasks. This predictability (as
we demonstrate in the next section) is essential for scheduling tasks
at a finer-granularity, in order to meet tight timing constraints.

3.4 Multiple Concurrent Jobs
We next examine the impact of executing multiple concurrently

executing MapReduce jobs. The setup of this experiment is the
same as before, except that we fix the slot-to-core ratio to be 1

and 2 respectively, and then run multiple instances of either the
WordCount or TeraSort programs. Figure 4 shows that as the num-
ber of concurrent jobs increases, the job completion time increases.
Moreover we observe that having twice the number of slots actually
results in performance degradation as the number of jobs increases.
This is due to increased contention for resources (both compute and
I/O), particularly when map and reduce phases are now interleaving
due to the presence of several concurrent jobs.

Overall, our results demonstrate that where there are concur-
rently executing jobs, having a larger number of slots may initially
result in improved job completion times at moderate load. How-
ever, as the number of concurrent jobs increases, having a higher
slot-to-core ratio may actually result in degradation in performance,
due to increased contention for resources and time-sharing among
different tasks.

3.5 Data Placement
In the next evaluation, we examine the impact of data place-

ment on the overall job completion time of a MapReduce program.
Data placement has an impact on the completion time of map tasks,
given that if a map task is placed on a machine where its input data
resides (node-local), only local disk I/O is required as opposed to a
more expensive network transmission.

The current Hadoop scheduler follows a simple strategy to ex-
ploit such data locality. Whenever a slot becomes available, the
master scheduler will first try to launch a node-local map task to
the slave that owns the slot, otherwise, it will try to launch a rack-
local map task, and finally, a non-local map task is launched. This
“best effort” approach is not ideal for real-time application, since
timing guarantees become highly dependent on whether a map task
is node-local or not.
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To experimentally evaluate the impact of data placement on job
completion time, we execute a single instance of the WordCount
and TeraSort program on two different configurations: local in
which a majority of map tasks are node-local, and remote, where a
majority of map tasks are non node-local1.

Figure 5 shows the job completion time (averaged over 5 runs) as
the input size increases. We observe that locality does play a signif-
icant role in determining job completion time. For instance, when
the aggregate input size is 15 GB, remote requires 40% and 58%
longer completion times compared to local, for the WordCount and
TeraSort programs respectively. Note that job completion times
are proportional to the sizes of the input data. This shows that our
experiments did not result in the saturation of bandwidth on EC2
(which would have resulted in an exponential increase in comple-
tion time due to queueing delays and congestion). We conjecture
that as the data size increases, the difference between local and re-
mote will be even more larger in the presence of limited network
resources. Understanding the impact of data locality in the pres-
ence of network as the bottleneck is an interesting avenue for our
future exploration.

3.6 Slave-to-Master Heartbeat Interval
In our final evaluation, we examine the impact of the heartbeat

interval in Hadoop on job completion time. This interval is the
period in which slave nodes connect to the master to inform about
free slots. Having a larger interval means that there is a time delay
in which available slots are reported to the master. However, having
too frequent updates from multiple slaves may result in overloading
of the master.

To experimentally quantify the impact of the heartbeat interval,
Figure 6 shows that when the heartbeat interval is small (1ms), the
master incurs high overhead, and hence this negatively impacts job
completion times (averaged across 5 runs) of both WordCount and
TeraSort. However, as the interval increase, the job completion
time decreases, due to reduced load on the master. Beyond 3000ms
(Hadoop’s default setting), we note that the delay in reporting slot
availability quickly results in an increase in job completion times.

All in all, while the current Hadoop implementation is carefully
tuned for its current scheduling algorithms, the heartbeat interval
itself has a significant impact on global job completion times. In
the context of real-time applications with tight timing constraints,
the heartbeat interval needs to be carefully optimized and tuned in
order to meet timing constraints.

4. REAL-TIME SCHEDULING AS A CSP
We formulate the problem of scheduling a set of real-time MapRe-

duce applications on a distributed heterogeneous Hadoop architec-
ture as a CSP, which can be solved using well-known constraint
solvers. We focus first on the offline setting, where the set of MapRe-
duce jobs are known a priori, and the role of the scheduler is then
to determine an optimal execution schedule for all tasks. We revisit
the online scenario in Section 5.

The novelty of our formulation lies in the modeling of various
factors unique to the MapReduce jobs and the underlying Hadoop
architecture that affect the system performance discussed in Sec-
tion 3. Specifically, our formulation considers three factors vali-
dated in the previous section: (i) slot-to-core ratio, (ii) the effect
of input data placement on the data transfer time (from a remote
or a local host), and (iii) the interval based on heart beats between
the master and the slaves. We added a fourth factor: (iv) the het-
erogeneity of the processors, where a task’s execution time varies
based on the slot’s processing capability.

1We emulate this situation by storing all data on one node, hence
requiring most map tasks to require non-local access.

While aiming to be as close to the current Hadoop execution plat-
form as possible, to simplify the formulation, we make the follow-
ing assumptions: (i) each job contains no more than one map stage
and one reduce stage; (ii) the worst-case execution time (WCET)
of a task on each processor type is known a priori; (iii) all proces-
sors work perfectly without failure; and (iv) there is no speculative
execution and no task migration. Our formulation can easily be ex-
tended to allow jobs with multiple map/reduce stages. The WCET
assumption is necessary for real-time guarantees, which can be ob-
tained using well-known WCET estimation technique [28]. We
plan to look into probabilistic models to capture machine failure
and speculative execution (see Section 5).

4.1 CSP Formulation
Real-time MapReduce applications. The system consists of N
MapReduce jobs J1, J2, . . . , JN , with N ∈ N, N ≥ 1. Each job
Ji consists of mi map tasks (J1

i , J
2
i , . . . , J

mi
i ) followed by ri re-

duce tasks (Jmi+1
i , Jmi+2

i , . . . , Jmi+ri
i ), with mi, ri ∈ N and

mi + ri > 0, for all 1 ≤ i ≤ N . Ji is released (i.e., when user
submitted the job for execution) at an offset oi (relative to the be-
ginning of the system execution) and has a relative deadline of di
(with respect to the release time), where oi, di ∈ N, oi ≥ 0 and
di > 0. Each task Jki has the same release time and deadline as
Ji does. We consider a mix of jobs with hard and soft deadlines.
The firstN1 jobs have hard deadlines whereas the lastN−N1 jobs
have soft deadlines, where 0 ≤ N1 ≤ N . As usual, all map (re-
duce) tasks of a job can execute in parallel. A reduce task can only
execute after all the map tasks of the same job have completed.
Underlying Hadoop architecture. The MapReduce applica-
tions are executed on a distributed heterogeneous architecture, which
consists of M processors P1, P2, . . . , PM running as slaves and a
dedicated processor P0 running as the master, where M ∈ N and
M ≥ 1. Each Pi contains nci identical cores, each of which can
only execute at most one task at a time. Further, Pi is configured to
have nsi slots for holding the tasks assigned by the master.

Each task Jki when being executed on a core of Pj has a WCET
of Ei,j time units and a worst-case input data transfer time of Cki,j
time units. The different WCET and data transfer time of a task
corresponding to different processors are to capture the different
speeds of the processors and the input data locality of the task.
Communication between each slave and the master is done at every
heart-beat of the slave, where each heart-beat interval is of length
h time units (h ≥ 1). The master is assumed to start at time 0,
whereas the first heart-beat of the slave Pi occurs at time Hi for
all 1 ≤ i ≤ M . We assume that scheduling-related messages be-
tween the master and the slaves take negligible time. Further, a task
is only executed after having acquired all its input data, and tasks
allocated to the slot queue are executed in First-In-First-Out (FIFO)
order. Note that, unlike in [20], we separate the data transfer time
from the computation time to capture the data replacement (i.e.,
remote vs local) and the interleaving semantics between I/O and
computation. The CSP formulation presented in this section fol-
lows a relatively simple semantics; its refinement will be discussed
in Section 4.3.
Scheduling objective. Given the above MapReduce applications
and their execution platform, we would like to synthesize a sched-
ule for the applications such that all jobs with hard deadlines will
meet their deadlines. In addition, the schedule either (a) minimizes
the number of soft real-time jobs that meet their deadlines, or (b)
minimizes the maximum tardiness of the soft real-time jobs. Here,
the tardiness of a job is the elapse time from its absolute deadline
to its finishing time.
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CSP encoding. Given the constants described above, the schedul-
ing problem is to determine for each task Jki (1 ≤ i ≤ N , 1 ≤ k ≤
mi + ri) the values of the following integer variables:

• πki , the slave on which the task is executed;

• γki , the heart beat at which the task is scheduled to the slave;

• Rki , the time at which the input data of the task is fetched to
the buffer (for the task execution);

• Ski , the time at which the task starts its execution; and

• F ki , the time at which the task finishes its execution

such that

(a)
P

N1<i≤N

˘
1 | Fmi+ri

i > di + oi
¯

is minimized, or

(b) max
N1<i≤N

{Fmi+ri
i − di − oi} is minimized,

subject to the constraints: for all 1 ≤ i ≤ N , 1 ≤ k ≤ mi + ri:

(C0). 1 ≤ πki ≤M ; (C1). F ki = Ski + Ei,πk
i

;

(C2). Ski ≥ Rki + Ck
i,πk

i
; (C3). Rki ≥ Hπk

i
+ hγki ≥ oi;

(C4).
P˘

1 | 1 ≤ i′ ≤ N ∧ 1 ≤ k′ ≤ mi′ + ri′ ∧ πk
′

i′ = πki

∧ Sk
′

i′ ≤ Ski ∧ F k
′

i′ > Ski
¯
≤ ncπk

i
;

(C5).
P˘

1 | 1 ≤ i′ ≤ N ∧ 1 ≤ k′ ≤ mi′ + ri′ ∧ πk
′

i′ = πki

∧ γk
′

i′ ≤ γki ∧ F k
′

i′ > Hπk
i

+ hγki
¯
≤ nsπk

i
;

(C6).
P˘

1 | 1 ≤ i′ ≤ N ∧ 1 ≤ k′ ≤ mi′ + ri′ ∧ πk
′
i′ = πki

∧ Rk
′

i′ ≥ Rki ∧ Rk
′

i′ −Rki < Ck
i,πk

i

¯
= 1;

(C7). F li ≤ Hπj
i

+ hγji , ∀ 1 ≤ l < mi + 1 ≤ j ≤ mi + ri;

(C8). Fmj+rj

j ≤ oj + dj for all 1 ≤ j ≤ N1.

In the above, constraint (C0) specifies the eligible slaves for each
task. (C1) relates the start time and finish time of a task. (C2)
specifies that a task can only start executing after all its input data
has been fetched to the input buffer. (C3) specifies that a task is
only scheduled after it has been released, and its input data is only
fetched after it has been assigned to the processor. Here,Hπk

i
+hγki

is the time at which the γki th heart beat of the slave Pπk
i

occurs.
(C4) limits the number of tasks that can be executing in parallel on a
slave to be no more than the number of cores of the slave. Similarly,
(C5) limits the number of tasks that are waiting/executing on a slave
at any given time to be no more than the number of slots of the
slave. (C6) states that the data transfer durations for the tasks are
disjoint. (C7) states that a reduce task is only scheduled after all the
map tasks of the same job have completed. Finally, (C8) specifies
the deadline constraints of jobs with hard deadlines.

One can easily verify that a feasible solution of the encoded CSP
indeed corresponds to a feasible schedule of the system. If no so-
lutions exists, the system is not schedulable.

4.2 Implementation and Evaluation Status
We have implemented the presented formulation in Gecode [10].

The initial evaluation shows the solver is able to find solution fairly
efficiently for small settings. However, as the number of jobs in-
creases, the system becomes time consuming, given that the for-
mulation is NP-hard. We are currently evaluating different search
strategies to speed up the solver. Since the encoded CSP has a
finite number of variables, with each having a finite domain, its
search space is also finite. Hence, its solution can be found using
standard search techniques such as backtracking, constraint prop-
agation, and local search. The following are heuristic approaches
that we are currently exploring to improve the search efficiency:

Variable ordering: The timing variables Rki , Ski and F ki are
ordered in increasing order of the job’s release time (oi) and subse-
quently in the order of the task IDs (k).
Value ordering: The timing values of the tasks can be ordered
based on their priorities, where tasks with the highest priority are
scheduled first. The task priority can be assigned based on the fol-
lowing strategies (ties broken based on the variable ordering): (i)
Earliest Deadline First, where tasks with smaller absolute deadline
are scheduled first; and (ii) Least Laxity First, where tasks with
smaller slack time are scheduled first. In addition, each task is as-
signed to an available processor that takes the least total data trans-
fer time and computation time to complete the task. Additional
applicable heuristic approaches will be outlined in Section 5.

4.3 CSP Refinement
The above formulation can be refined to capture more precisely

the Hadoop implementation by eliminating the assumptions with
respect to the following factors:
OS scheduler: In the CSP encoding, we assume that tasks as-
signed to a processor are executed in the order of their arrivals if
there is insufficient available CPU resource (which happens when
there are more tasks than cores). Further, all tasks are
non-preemptable. In most common OS sharing queuing models,
however, these tasks will be co-running and switching among each
other in a more complicated fashion depending on the particular
OS scheduling (e.g., shortest job first, round robin, priority-based,
fair-share, multilevel feedback queue). Our formulation can easily
be modified to incorporate preemption and such scheduling mech-
anism if it can be made deterministic. Note that the resulting for-
mulation will also be more computationally expensive.
Interleaving semantics between computation and I/O: Our for-
mulation requires that at any given time on each slave, at most one
task is fetching its input data (from a remote host or from local file
system). We can remove this constraint to allow multiple I/O activ-
ities to happen at the same time. In this case, the given data transfer
time Cki,j for each task should capture the worst scenario such as in
the presence of network and I/O contention, as well as pipelining.

5. DISCUSSION
We briefly outline some of our ongoing work, as well as more

speculative (yet intriguing) avenues of future work that apply state-
of-the-art techniques in the real-time scheduling literature.

5.1 Ongoing Work
Enhancements to MapReduce’s execution model. The actual
execution of MapReduce jobs on Hadoop depends not only on the
master’s scheduling strategy but also on that of the OS scheduling
and the slot configuration. As illustrated in Section 3, the higher
task parallelism degree the OS scheduler is allowed (by setting the
higher slot-to-core ratio) the more unpredictability the task execu-
tion experiences. Further, to allow for a simple implementation
of the MapReduce programing model, Hadoop separates the map
slots and the reduce slots. This separation does not only restrict the
scheduling space of the master but also leads to poor utilization of
the resource. The latter happens when some reduce-slots are un-
used due to insufficient reduce tasks that are ready for execution,
even though there may be map tasks waiting for execution. Sim-
ilarly, all map slots are unused after the map tasks in the system
have completed.

We are currently modifying the existing Hadoop to remove the
separation between the map and reduce slots to maximize the re-
source utilization. We also configure the number of slots to be the
same as the number of cores to add predictability via full control of
the master’s scheduler.
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Heuristics for online scheduling. Although the CSP encoding
in Section 4 allows for optimal schedules, its use is restricted due
to its static nature and well-known combinatorial complexity. Most
real-time cloud computations are often continuous streams of ape-
riodic jobs that can arrive at any time, and whose characteristics
are unknown a priori. In this scenario, we require an online sched-
uler that dynamically schedules jobs as they arrive. This online
scheduling problem in fact a generalization of a simpler problem
– the scheduling of a set of independent real-time aperiodic jobs
with more than one distinct deadline on more than one machine –
which has no optimal solution [14]. The hardness of the problem
is made more complex, due to the possibility of machine failures
(hence use of speculative execution) and effects of virtualization,
both of which complicates WCET analysis.

In the absence of optimal online scheduling algorithms, we are
investigating heuristic functions which synthesize characteristics of
tasks and resources affecting real-time scheduling decisions. To-
wards this direction, we explore the prominent existing techniques
in the real-time multiprocessor scheduling domain (see [6] for a
survey) and adapt them for the cloud setting. Typically, these tech-
niques combine deadlines and resource requirements of the tasks.

In selecting the tasks to be executed next, our initial work looks
into the following strategies, with ties broken arbitrarily: (1) earli-
est deadline first; (2) least laxity first; (3) shortest minimum WCET
first (where the minimum WCET is the minimum among the WCET
of the task when being executed on the available slaves); (4) short-
est total WCET and data transfer time first; (5) randomly chosen
first; (6) tasks with density (ratio between WCET and relative dead-
line) greater than a threshold δ first, and earliest deadline first if no
such task exists; and (7) the k tasks with the highest density.

The processor selection is done based one of the following cri-
teria: (a) the first processor on which the task is estimated to finish
before its deadline; (b) the processor on which the task is estimated
to finish earliest.

We are currently implementing and evaluating these proposed
heuristics for MapReduce jobs on Hadoop. Such extensive experi-
mental studies will serve as a basis for designing new heuristic ap-
proaches specifically for the online scheduling of real-time cloud
computations. Our next objective will be to derive the utilization
bound and schedulability test for these heuristic-based algorithms.

5.2 Future Directions
Hierarchical scheduling and real-time virtual machines. In
real-time literature, a popular scheduling approach is to utilize a
two-level scheduling [19,8] approach to separate critical tasks from
non-critical ones. In this approach, dedicated servers are used to
control the execution of the soft real-time tasks. These servers are
then scheduled alongside the hard real-time tasks by the master.
Often, each server is given a fraction of the CPU time that allows
sufficient remaining CPU time to guarantee schedulability of the
hard real-time tasks. Interesting avenues of research variants of the
well-known CPU allocation schemes such as constant bandwidth
servers [1], total bandwidth servers [26], and resource kernels [24].
At the same time, we have developed compositional analysis tech-
niques [23, 5] that can be adapted to provide real-time guarantees
on virtual machines underlying the cloud computing platform.
Probabilistic models for soft real-time applications. When the
system contains only soft real-time applications, our scheduling ob-
jective will be to minimize the tardiness bound or the number of
jobs missing deadlines. Such soft real-time applications are often
implemented using an average-case provisioning; however, our de-
terministic task model assumes a worst-case system provisioning
(e.g., WCET). This is overly pessimistic because WCET could be
orders of magnitude greater than average-case execution time. Ad-

ditionally, WCET estimation is difficult and especially complex on
virtual machines and multi-core settings, whereas mean execution
time can easily be obtained from observed data.

As such, we would like to explore a less conservative task model
based on probability distribution in the absence of hard constraints.
Such a probabilistic task model can also be better integrated to the
probabilistic nature of machine and software faults. Along this
direction, we plan to extend initial probabilistic real-time frame-
work [18] for the online setting and cloud computations.
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