
Chapter 10

NP-hard Problems and

Approximation Algorithms

10.1 What is the class NP?

The class P consists of all polynomial-time solvable decision problems. What
is the class NP? There are two misunderstandings:

(1) NP is the class of problems which cannot be solved in polynomial-
time.

(2) A decision problem belongs to the class NP if its answer can checked
in polynomial-time.

The misunderstanding (1) comes from misexplanation of the brief name
NP for ”Not Polynomial-time sovable”. Actually, it is polynomial-time solv-
able, but in a wide sense of computation, nodeterministic computation, that
is, NP is th class of all nondeterministic polynomial-time solvable
decision problems. Thus, NP is the brief name of ”Nondeterministic
Polynomial-time”.

In nondeterministic computation, there may contains some guess steps.
Let us look at an example. Consider the Hamiltonian Cycle problem:
Given a graph G = (V, E), does G contain a Hamiltonian cycle? Here,
a Hamiltonian cycle is a cycle passing through each vertex exactly once.
The following is a nonterministic algorithm for the Hamiltonian Cycle
problem.

input a graph G = (V, E).
step 1 guess a permutation of all vertices.
step 2 check if guessed permutation gives a Hamitonian cycle.

1

2 NP-hard Problems

if yes, then accept input.

Note that in step 2, if the outcome of checking is no, then we cannot give any
conclusion and hence nondeterministic computation stucks. However, a non-
deterministic algorithm is considered to solve a decision problem correctly if
there exists a guessed result leading to correct yes-answer. For example, in
above algorithm, if input graph contains a Hamiltonian cycle, then there ex-
ists a guessed permutation which gives a Hamiltonian cycle and hence gives
yes-answer. Therefore, it is a nondeterministic algorithm which solves the
Hamitonian Cycle problem.

Why (2) is wrong? This is because not only checking step is required
to be polynomial-time computable, but also guessing step is required to be
polynomial-time computable. How do we estimate guessing time? Let us
explain this starting from what is a legal guess. A legal guess is a guess
from a pool with size independent from input size. For example, in
above algorithm, guess in step 1 is not legal because the number of permu-
tation of n vertices is n! which depends on input size.

What is the running time of step 1? It is the number of legal guesses
spent in implementation of the guess in step 1. To implement the guess in
step 1, we may encode each vertex into a binary code of length ⌈log2 n⌉.
Then each permutation of n vertices is encoded into a binary code of length
O(n log n). Now, guessing a permutation can be implemented by O(n log n)
legal guesses each of which chooses either 0 or 1. Therefore, the runnig time
of step 1 is O(n log n).

Why the pool size for a legal guess is restricted to be bounded by a
constant independent from input size? To give the answer, we need first to
explain what is the model of computation.

The computation model for the study of computational complexity is
the Turing machine (TM) as shown in Fig. 10.1, which consists of three
parts, a tape, a head, and a finite control. Each TM can be described by the
following parameters, an alphabet Σ of input symbols, an alphabet Γ of tape
symbols, a finite set Q of states in finite control, a transition function δ, and
an initial state. There exist two types of Turing machines, deterministic TM
and nondeterministic TM. They differ with respect to the transition function
of the finite control. In the deterministic TM, the transition function δ is
a mapping from Q × Γ to Q × Γ × {R, L}. A transition δ(q, a) = (p, b, R)
(δ(q, a) = (p, b, L)) means that when the machine in state q reads symbol
a, it would change state to p, the symbol to b and move the head to right
(left) as shown in Fig. 10.2. However, in the nondeterministic TM, the

NP-hard Problems 3

tape

finte control

head

Figure 10.1: A Turing machine.

Figure 10.2: A Turing machine.

transition function δ is a mapping from Q × Γ to 2Q×Γ×{R,L}. That is, for
any (q, a) ∈ Q×Γ, δ(q, a) is a subset of Q×Γ×{R, L}. In this subset, every
member can be used for the rule to guide the transition. When this subset
contain at least two members, the transition corresponds to a legal guess.
The size of the subset is at most |Q| · |Γ| · 2 which is a constant independent
to input size.

In many cases, the guessinf step is easily implemented by a polynomial
number of legal guesses. However, there are some exceptions; one of them is
the following.

Integer Programming: Given an m×n integer matrix A and
an n-dimensional integer vector b, determine whether there exists
a m-dimensional integer vector x such that Ax ≥ b.

In order to prove Integer Programming in NP, we may guess an
n-dimensional integer vector x and check whether x satisfies Ax ≥ b. How-
ever, we need to make sure that guessing can be done in nondeterministic
polynomial-time. That is, we need to show that if the problem has a solu-
tion, then there is a solution of polynomial size. Otherwise, our guess cannot
find it. This is not an easy job. We include the proof into the following three
lemmas.

Let α denote the maximum absolute value of elements in A and b. Denote
q = max(m, n).

Lemma 10.1.1 If B is a square submatrix of A, then |detB| ≤ (αq)q.

4 NP-hard Problems

Proof. Let k be the order of B. Then |detB| ≤ k!αk ≤ kkαk ≤ qqαq = (qα)q.
2

Lemma 10.1.2 If rank(A) = r < n, then there exists a nonzero vector z
such that Az = 0 and every component of z is at most (αq)q.

Proof. Without loss of generality, assume that the left-upper r×r submatrix
B is nonsingular. Set xr+1 = · · · = xn−1 = 0 and xn = −1. Apply Cramer’s
rule to system of equations

B(x1, · · · , xr)
T = (a1n, · · · , arn)T

where aij is the element of A on the ith row and the jth column. Then we
can obtain xi = det Bi/ det B where Bi is a submatrix of A. By Lemma
3.1, |det Bi| ≤ (αq)q. Now, set z1 = detB1, · · · , zr = det Br, zr+1 = · · · =
zn−1 = 0, and zn = det B. Then Az = 0. 2

Lemma 10.1.3 If Ax ≥ b has an integer solution, then it must have an
integer solution whose components of absolute value not exceed 2(αq)2q+1.

Proof. Let ai denote the ith row of A and bi the ith component of b. Suppose
that Ax ≥ b has an integer solution. Then we choose a solution x such that
the following set gets the maximum number of elements.

Ax = {ai | bi ≤ aix ≤ bi + (αq)q+1} ∪ {ei | |xi| ≤ (αq)q},

where ei = (0, · · · , 0, 1
︸ ︷︷ ︸

i

, 0, · · · , 0). We first prove that the rank of Ax is n.

For otherwise, suppose that the rank of Ax is less than n. Then we can
find nonzero integer vector z such that for any d ∈ Ax, dz = 0 and each
component of z does not exceed (αq)q. Note that ek ∈ Ax implies that kth
component zk of z is zero since 0 = ekz = zk. If zk 6= 0, then ek 6∈ Ax,
so, |xk| > (αq)q. Set y = x + z or x − z such that |yk| < |xk|. Then
for every ei ∈ Ax, yi = xi, so, ei ∈ Ay, and for ai ∈ Ax, aiy = aix, so,
ai ∈ Ay. Thus, Ay contains Ax. Moreover, for ai 6∈ Ax, aiy ≥ aix − |aiz| ≥
bi +(αq)q+1−nα(αq)q ≥ bi. Thus, y is an integer solution of Ax ≥ b. By the
maximality of Ax, Ay = Ax. This means that we can decrease the value of
the kth component again. However, it cannot be decreased forever. Finally,
a contradiction would appear. Thus, Ax must have rank n.

Now, choose n linearly independent vectors d1, · · ·, dn from Ax. Denote
ci = dix. Then |ci| ≤ α + (αq)q+1. Applying Cramer’s rule to the system of

NP-hard Problems 5

equations dix = ci, i = 1, 2, · · · , n, we obtain a representation of x through
ci’s: xi = det Di/ detD where D is a square submatrix of (AT , I)T and Di

is a square matrix obtained from D by replacing the ith column by vector
(c1, · · · , cn)T . Note that the determinant of any submatrix of (AT , I)T equals
to the determinant of a submatrix of A. By Laplac expansion, it is easy to
see that |xi| ≤ |det Di| ≤ (αq)q(|c1| + · · · + |cn|) ≤ (αq)qn(α + (αq)q+1) ≤
2(αq)2q+1. 2

By Lemma 10.1.3, it is enough to guess a solution x whose total size is
at most n log2(2(αq)2q+1)) = O(q2(log2 q + log2 α). Note that the input A
and b have total length at least β =

∑m
i=1

∑n
j=1 log2 |aij | +

∑n
j=1 log2 |bj | ≥

mn + log2 α ≥ q+ IP is in NP. 2

Theorem 10.1.4 Integer Programming is in NP.

Proof. It follows immediately from Lemma 10.1.3. 2

The defintion of the class NP involves three concepts, nondeterministic
computation, polynomial-time, and decision problems. The first two con-
cepts have been explained as above. Next, we explain what is the decision
problem.

A problem is called a decision problem if its answer is “Yes” or “No”.
For example, the Hamiltonian Cycle problem is a decision problem and
all combinatorial optimization problems are not decision problems. How-
ever, every combinatorial optimization problem can be transformed into a
decision version. For example, consider the Traveling Salesman prob-
lem as follows: Given n cities and a distance table between n cities, find the
shortest Hamiltonian tour where a Hamitonian tour is a Hamitonian cycle
in the complete graph on the n cities.

Its decision version is as follows: Given n cities, a distance table between n
cities, and an integer K > 0, is there a Hamiltonian tour with total distance
at most K?

Clearly, if the Hamiltonian Cycle problem can be solved in polynomial-
time, so is its decision version. Conversely, if its decision version can be
solved in polynomial-time, then we may solve the Hamiltonian Cycle
problem in polynomial-time in the following way.

Let dmin and dmax be the smallest distance and the maximum distance
between two cities. Let a = ndmin and b = ndmax. Set K = ⌈(a + b)/2⌉.

6 NP-hard Problems

Determine whether there is a tour with total distance at most K by solving
the decision version of the Hamiltonian Cycle problem. If answer is
Yes, then set b ← K; else set a ← K. Repeat this process until |b −
a| ≤ 1. Then, compute the exact optimal objective function value of the
Hamiltonian Cycle problem by solving its decision version twice with
K = a and K = b, respectively. In this way, suppose the decision version of
the Hamiltonian Cycle problem can be solved in polynomial-time p(n).
Then the Hamiltonian Cycle problem can be solved in polynomial-time
O(log(ndmax))p(n).

10.2 What is NP-completeness?

A problem is NP-hard if the existence of polynomial-time solution
for it implies the existence of polynomial-time solution for every
problem in NP. An NP-hard problem is NP-complete if it also belongs
to the class NP. The first NP-complete problem was discovered by S. Cook
in 1971. To introduce this problem, let us introduce some knowledge on
Boolean algebra.

A Boolean function is a function whose variable values and function value
all are in {true, false}. Here, we would like to denote true by 1 and false by
0. In the following table, there are two boolean functions of two variables,
conjunction ∧ and disjunction ∨, and a Boolean function of a variable, nega-
tion ¬.

x y x ∧ y x ∨ y ¬x

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

For simplicity, we also write x ∧ y = xy, x ∨ y = x + y and ¬x =
x̄. The conjunction and disjunction follow the commutative, associative,
and distributive laws. An interesting and important law about negation is
De Morgan’s law, i.e. xy = x̄ + ȳ and x + y = x̄ȳ. The Satisfiability
(SAT) problem is defined as follows: Given a Boolean formula F , is there a
satisfied assigment for F? An assignment to variables of F is satisfied if the
assignment makes F equal to 1. A Boolean formula F is satisfiable if there
exists a satisfied assignment for F .

NP-hard Problems 7

The SAT problem has many applications. For example, the following
puzzle can be formulated into an instance od SAT.

Example 10.2.1 After three men interviewed, the department Chair said:”We
need Brown and if we need John then we need David, if and only if we need
either Brown or John and don’t need David.” If this department actually
need more than one new faculty, which ones were they?

Solution. Let B, J , and D denote respectively Brown, John, and David.
What Chair said can be written as a Boolean formula

[[B(J̄ + D)][(B + J)D̄] + B(J̄ + D) · (B + J)D̄

= BD̄J̄ + (B̄ + JD̄)(B̄J̄ + D)

= BD̄J̄ + B̄J̄ + B̄D

Since this department actually need more than one new faculty, there is only
one way to satisfy this Boolean formula, that is, B = 0, D = J = 1. Thus,
John and David will be hired. 2

Theorem 10.2.2 (Cook Theorem) The SAT problem is NP-complete.

After the first NP-complete problem is descovered, there are a large num-
ber of problems have been found to be NP-hard or NP-complete. Indeed,
there are many tools passing the NP-hardness from one problem to another
problem. We introduce one opf them as follows.

Consider two decision problems A and B. A is said to be polynomial-time
many-one reducible to B, denoted by A ≤p

m B, if there exists a polynomial-
time computable mapping f from all inputs of A to inputs of B such that A
receives Yes-answer on input x if and only if B receives Yes-answer on input
f(x).

For example, we have

Example 10.2.3 The Hamiltonian Cycle problem is polynomial-time
many-one reducible to the decision version of the Traveling Salesman
problem.

Proof. To construct this reduction, for each input graph G = (V, E) of the
Hamiltonian Cycle problem, we consider V as the set of cities and define
a distance table D by setting

d(u, v) =

{

1 if (u, v) ∈ E
|V | + 1 otherwise.

8 NP-hard Problems

Moreover, set K = |V |. If G contains a Hamiltonian cycle, this this Hamil-
tonian cycle would give a tour with total distance |V | = K for the Travel-
ing Salesman problem on defined instance. Conversely, if the Traveling
Salesman problem on defined instance has a Hamiltonian tour with to-
tal distance at most K, then this tour cannot contain an edge (u, v) 6∈ E
and hence it induces a Hamiltonian cycle in G. Since the reduction can
be constructed in polynomial-time, it is a polynomial-time many-one reduc-
tion from the Hamiltonian Cycle problem to the decision version of the
Traveling Salesman problem. 2

There are two important properties of the polynomial-time many-one
reduction.

Proposition 10.2.4 (a) If A ≤p
m B and B ≤p

m C, then A ≤p
m C.

(b) If A ≤p
m B and B ∈ P , then A ∈ P .

Proof. (a) Let A ≤p
m B via f and B ≤p

m C via g. Then A ≤p
m C via h where

h(x) = g(f(x)). Let f and g be computable in polynomial-times p(n) and
q(n), respectively. Then for any x with |x| = n, |f(x)| ≤ p(n). Hence, h can
be computed in time p(n) + q(p(n))

(b) Let A ≤p
m B via f . f is computable in polynomial-time p(n) and B

can be solved in polynomial-time q(n). Then A can be solved in polynomia-
time p(n) + q(p(n)). 2

Property (a) indicates that ≤p
m is a partial ordering. Property (b) gives

us a simple way to establish the NP-hardness of a decision problem. To show
the NP-hardness of a decision problem B, it suffices to find an NP-complete
problem A and prove A ≤p

m B. In fact, if B ∈ P , then A ∈ P . Since A is
NP-complete, every problem in NP is polynomial-time solvable. Therefore,
B is NP-hard.

The SAT problem is the root to establish the NP-hardness of almost all
other peoblems. However, is is hard to use the SAT problem directly to
construct reduction. Often, we use an NP-complete special case of the SAT
problem. To introduce this special case, let us first explain a special Boolean
formula, 3CNF.

A literal is either a Boolean variable or a negation of a Boolean variable.
An elementary sum is a sum of several literals. Consider an elementary sum
c and a Boolean function f . If c = 0 implies f = 0, then c is called a clause
of f . A CNF (conjunctive normal form) is a product of its clauses. A CNF
is called a 3-CNF if each clause of the CNF contains exactly three distinct
literals about three variables.

NP-hard Problems 9

3SAT: Given a 3CNF F , determine whether the F is satisfiable.

Theorem 10.2.5 The 3SAT problem is NP-complete.

Proof. It is easy to see that the 3SAT problem belongs to NP. Next, we show
SAT ≤p

m 3SAT .
First, we show two facts.
(a) w = x + y if and only if p(w, x, y) is satisfiable where

p(w, x, y) = (w̄ + x + y)(w + x̄ + y)(w + x + ȳ)(w + x̄ + ȳ).

(b) w = xy if and only if q(w, x, y) is satisfiable where

q(w, x, y) = p(w̄, x̄, ȳ).

To show (a), we note that w = x + y if and only if w̄x̄ȳ + w(x + y) = 1.
Moreover, we have

w̄x̄ȳ + w(x + y)

= (w̄ + x + y)(x̄ȳ + w)

= (w̄ + x + y)(x̄ + w)(ȳ + w)

= (w̄ + x + y)(w + x̄ + y)(w + x + ȳ)(w + x̄ + ȳ)

= q(w, x, y).

Therefore, (a) holds.
(b) can be derivated from (a) by noting that w = xy if and only if

w̄ = x̄ + ȳ.
Now, for any Boolean formula F , F ′ ← 1. Note that F must contain a

term xy or x + y where x and y are two literals. In the former case, replace
xy by a new variable w in F and set F ′ ← q(w, x, y)F ′. In the latter case,
replace x + y by a new variable w in F and set F ′ ← p(w, x, y)F ′. Repeat
this operation until F becomes a literal z. Let u and v be two new variables.
Finally, set F ′ ← F ′(z + u + v)(z + ū + v)(z + u + v̄)(z + ū + v̄). Then the
original F is satisfiable if and only if F ′ is satisfiable. 2

Many combinatorial optimization problems have their NP-hardness es-
tablished through reduction from the 3SAT problem. This means that it is
unlikely for them to be polynomial-time solvable. Therefore, their approx-
imation solutions have attracted a lot of attentions. In later sections, we
study some classic ones in the literature.

10 NP-hard Problems

10.3 Hamiltonian Cycle

Consider an NP-complete decision problem A and a possible NP-hard deci-
sion problem B. How do we construct a polynomial-time many-one reduc-
tion? Every reader who has no experience would like to know the answer of
this question. Of course, we would not have an efficient algorithm to pro-
duce such a reduction. Indeed, we do not know if such an algorithm exists.
However, we may give some idea to follow.

Let us recall how to show a polynomial-time many-one reduction from
A to B.

(1) Construct a polynomial-time computable mapping f from all inputs
of problem A to inputs of problem B.

(2) Prove that problem A on input x receives Yes-answer if and only if
problem B on input f(x) receives Yes-answer.

Since the mapping f has to satisfy (2), the idea is to find the relation-
ship of output of problem A and output of problem B, that is, find the
mappring from inputs to inputs through the relationship between
outputs of two problems. Let us explain this idea through an example.

Theorem 10.3.1 The Hamiltonian Cycle problem is NP-complete.

Proof. We already proved previously that the Hamiltonian Cycle problem
belongs to NP. Next, we are going to construct a polynomial-time many-one
reduction from the NP-complete 3Sat problem to the Hamiltonian Cycle
problem.

The input of 3Sat is a 3CNF F and the input of Hamiltonian-Cycle
is a graph G. We need to find a mapping f such that for any 3CNF F ,
f(F) is a graph such that F is satisfiable if and only if f(G) contains a
Hamiltonian cycle. What can make F satisfiable? It is a satified assignment.
Therefore, our construction should give a relationship between assignments
and Hamiltonian cycles. Suppose F contains n variables x1, x2, ..., xn and
m clauses C1, C2, ..., Cm. To do so, we first build a ladder Hi corresponding
to a variable xi as shown in Fig. 10.3. In this ladder, there are exactly

Figure 10.3: A ledder Hi.

two Hamiltonian paths corresponding two values 0 and 1 for xi. Connect
n ledders into a cycle as shown in Fig. 10.4. Then we obtained a graph H
with exactly 2n Hamiltonian cycles corresponding to 2n assignments of F .

NP-hard Problems 11

Figure 10.4: Graph H.

Now, we need to find a way to involve clauses. An idea is to represent
each clause Cj by a point and represent the fact ”clause Cj is satisfied under
an assignment” by the fact ”point Cj is included in the Hamiltonian cycle
corresponding to the assignment”. To realize this idea, for each variable xi

in clause Cj , we connected point Cj to two endpoints of an edge on the
path corresponding to xi = 1 (Fig. 10.5), and for each x̄i in clause Cj , we
connected point Cj to two endpoints of an edge on the path corresponding
to xi = 0. This completes our construction for graph f(F) = G.

Figure 10.5: A point Cj is included.

To see this construction meeting our requirement, we first assume F
has a satisfied assignment σ and show that G has a Hamiltonian cycle.
To this end, we find the Hamiltonian cycle C in H corresponding to the
satisfied assignment. Note that each clause Cj contains a literal y = 1 under
assignment σ. Thus, Cj is connected to endpoints of an edge (u, v) on the
path corresponding to y = 1. Replacing this edge (u, v) by two edges (Cj , u)
and (Cj , v) would include point Cj into the cycle, which would becomes a
Hamiltonian cycle of G when all points Cj are included.

Conversely, suppose G has a Hamiltonian cycle C. We claim that in C,
each point Cj must connect to two endpoints of an edge (u, v) in H. If our
claim holds, then replace two edges (Cj , u) and (Cj , v) by edge (u, v). We
would obtain a Hamiltonian cycle of graph H, corresponding an assignment
of F , which makes every clause Cj satisfied.

Now, we show the claim. For contradiction, suppose that cycle C contains
its two edges (Cj , u) and (Cj , v) for some clause Cj such that u and v are
located in different Hi and Hi′ , respectively. To find a contradiction, we look
at closely the local structure of vertex u as shown in Fig. 10.6. We would

Figure 10.6: Local structure near vertex u.

construct each ledder with a Hamiltonian path of length 4m+6 so that every
clause Cj has a special location in ledder Hi and locations for different clauses
with at least distance three away each other (see Fig. 10.3). This makes that
at vertex u, edges possible in C form a structure as shown in Fig. 10.6(a).

12 NP-hard Problems

In this local structure, since C contains vertex w, C must contain edges
(u, w) and (w, z), which imply that (u, u′) and (u, u′′) are not in C. Note
that either (z, z′) or (z, z′′) is not in C. Without loss of generality assume
that (z, z′) is not in C. Then edges possible in C form a structure as shown
in 10.6(b). Since C contains vertices u′′, w′′, and z′′, cycle C must contain
edges (u′′′, u′′), (u′′, w′′), (w′′, z′′), (z′′, z′′′). Since C contains vertex w′′′, C
must contain edges (u′′′, w′′′) and (w′′′, z′′′). This means that C must contain
the small cycle (u′′, w′′, z′′, z′′′, w′′′, u′′′). However, a Hamiltonian cycle is a
simple cycle which cannot properly contain a small cycle, a contradiction.
2

Next, we give another example, the Hamiltonian Path problem as
follows: Given a graph G = (V, E), does G contains a Hamiltonian path?
A Hamiltonian path of a graph G is a simple path on which every vertex
appears exactly once.

Theorem 10.3.2 The Hamiltonian Path problem is NP-complete.

Proof. The Hamiltonian Path problem belongs to NP because we can
guess a permutation of all vertices in O(n log n) time and then check, in
O(n) time, if guessed permutation gives a Hamiltonian path. To show the
NP-hardness of the Hamiltonian Path problem, we may follow the proof
of Theorem 10.3.1 to construct a reduction from the 3Sat problem to the
Hamiltonian Path problem by making a little change on graph H, which
is obtained from connecting all Hi into a path instead of a cycle. How-
ever, in the following we would like to give a simple proof by reducing the
Hamiltonian Cycle problem to the Hamiltonian Path problem.

We are going to find a polynomial-time computable mapping f from
graphs to graphs such that G contains a Hamiltonian cycle if and only if
f(G) contains a Hamiltonian path. Our analysis sarts from how to build
a relationship between a Hamiltonian cycle of G and a Hamiltonian path
of f(G). If f(G) = G, then from a Hamiltonian cycle of G we can find a
Hamiltonian path of f(G); however, from a Hamiltonian path of f(G) we
may not be able to find a Hamiltonian cycle of G. To have ”if and only if”
relation, we first consider a simple case that there is an edge (u, v) such that
if G contains a Hamiltonian cycle C, then C must contains edge (u, v). In
this special case, we may put two new edges (u, u′) and (v, v′) at u and v,
respecyively (Fig. 10.7). For simplicity of speaking, we may call these two
edges as two horns. Now, if G has the Hamiltonian cycle C, then f(G) has
a Hamiltonian path between endpoints of two horns, u′ and v′, Conversely,

NP-hard Problems 13

Figure 10.7: Install two horn in a specal case.

if f(G) has a Hamiltonian path, then this Hamiltonian path must have two
endpoints u′ and v′; hence we can get back C by deleting two horns and
putting back edge (u, v).

Now, we consider the genreral case that such an edge (u, v) may not ex-
ists. Note that for any vertex u of G, suppose u have k neighbors v1, v2, ..., vk.
Then a Hamiltonian cycle of G must contain one of edges (u, v1), (u, v2), ...,
(u, vk). Thus, we may first connect all v1, v2, ..., vk to a vertex w and put
a horn (w, w′) at w (Fig. 10.8). This construction would work similarly as

Figure 10.8: Install two horns in general case.

above. 2

As a corollary of Theorem 10.3.1, we have

Corollary 10.3.3 The Traveling Salesman problem is NP-hard.

Proof. A polynomial-time many-one reduction has been constructed from
the Hamiltonian Cycle problem to the Traveling Salesman problem.
2

The Longest Path problem is a maximization problem as follows:
Given a graph G = (V, E) with positive edge length c : E → R+, and two
vertices s and t, find a longest simple path between s and t.

As another corollary of Theorem 10.3.1, we have

Corollary 10.3.4 The Longest Path problem is NP-hard.

Proof. We will construct a polynomial-time many-one reduction from the
Hamiltonian Cycle problem to the decision version of the Longest Path
problem as follows: Given a graph G = (V, E) with positive edge length
c : E → R+, two vertices s and t, and an integer K > 0, is there a simple
path between s and t with length at least K?.

Let graph G = (V, E) be an input of the Hamiltonian Cycle problem.
Choose a vertex u ∈ V . We make a copy of u by adding a new vertex
u′ and connecting u′ to all neighbors of u. Add two new edges (u, s) and
(u′, t). Obtained graph is denoted by f(G). Let K = |V |+ 2. We show that
G contains a Hamiltonian cycle if and only if f(G) contains a simple path
between s and t with length at most K.

14 NP-hard Problems

First, assume that G contains a Hamiltonian cycle C. Break C at vertex
u by replacing an edge (u, v) with (u′, v). We would obtain a simple path
between u and u′ with length |V |. Extend this path to s and t. We would
obtain a simple path between s and t with length |V | + 2 = K.

Conversely, assume that f(G) contains a simple path between s and t
with length at most K. Then this path contains a simple subpath between
u and u′ with length |V |. Merge u and u′ by replacing edge (u′, v), on the
subpath, with edge (u, v). Then we would obtain a Hamiltonian cycle of G.
2

For NP-hard optimization problems like the Traveling Salesman prob-
lem and the Longest Path problem, it is unlikely to have an efficient al-
gorithm to compute their exact optimal solution. Therefore, one usually
study algorithms which produce approximation solutions for them. Such
algorithms are simply called approximations.

For example, let us study the Traveling Salesman problem. When
the given distance table satisfies the triangular inequality, that is,

d(a, b) + d(b, c) ≥ d(a, c)

for any three vertices a, b and c where d(a, b) is the distance between a and
b, there is an easy way to obtain a tour (i.e, a Hamiltonian cycle) with total
distance within twice from the optimal.

To do so, at the first compute a minimum spanning tree in the input
graph and then travel around the minimum spanning tree (see Fig. 10.9).
During this trip, a vertex which appearing at the second time can be skipped
without increasing the total distance of the trip due to the triangular inequal-
ity. Note that the length of a minimum spanning tree is smaller than the
minimum length of a tour. Moreover, this trip uses each edge of the mini-
mum spanning tree exactly twice. Thus, the length of the Hamiltonian cycle
obtained from this trip is within twice from the optimal.

Christofids in 1976 introduced an idea to improve above approximation.
After computing the minimum spanning tree, he consider all vertices of odd
degree in the tree and compute a minimum perfect matching among these
odd vertices. Because in the union of the minimum spanning tree and the
minimum perfect matching, every vertex has even degree, one can travel
along edges in this union using each edge exactly once. This trip, called
Euler tour, produces an approximation of length bounded by the length of
minimum spanning tree plus the length of the minimum perfect matching
on the set of vertices with odd degree. We claim that each Hamiltonian

NP-hard Problems 15

Figure 10.9: Travel around the minimum spanning tree.

cycle (namely, a traveling salesman tour) can be decomposed into a dis-
joint union of two parts that each is not smaller than the minimum perfect
matchings for vertices with odd degree. To see this, we first note that the
number of vertices with odd degree is even since the sum of degrees over
all vertices in a graph is even. Now, let x1, x2, · · · , x2k denote all vertices
with odd degree in clockwise ordering of the considered Hamiltonian cycle.
Then (x1, x2), (x3, x4), · · · , (x2k−1, x2k) form a perfect matching for vertices
with odd degree and (x2, x3), (x4, x5), · · · , (x2k, x1) form the other perfect
matching. The claim then follows immediately from the triangular inequal-
ity. Thus, the length of the minimum matching is at most half of the length
of the minimum Hamiltonian cycle. Therefore, Christofids gave an approxi-
mation within one and a half from the optimal.

Figure 10.10: Christofids approximation.

16 NP-hard Problems

From the above example, we see that the ratio of objective function
values between approximation solution and optimal solution is a measure
for the performance of an approximation.

For a minimization problem, the performance ratio of an approximation
algorithm A is defined as follows:

r(A) = sup
I

A(I)

OPT (I)

where I is over all possible instances and A(I) and OPT (I) are respectively
the objective function values of the approximation produced by algorithm A
and the optimal solution with respect to instance I.

For a maximization problem, the performance ratio of an approximation
algorithm A is defined by

r(A) = sup
I

OPT (I)

A(I)
.

For example, the performance ratio of Christofids approximation is at
most 3/2 as we showed in the above. Actually, the performance ratio of
Christofids approximation is exactly 3/2. To see this, we consider 2n + 1
points (vertices) with distances as shown in Figure 10.11. The minimum
spanning tree of these 2n+1 points has distance 2n. It has only two odd ver-
tices with distance n(1 + ε). Hence, the length of Christofids approximation
is 2n+n(1+ ε). Moreover, the minimum tour has length (2n−1)(1+ ε)+2.
Thus, in this example, A(I)/OPT (I) = (3n+nε)/(2n+1+(2n−1)ε)) which
is appoarch to 3/2 as ε goes to 0 and n goes to infinity.

1 1 1 1 1 1 1 1

1+ 1+ 1+

1+ 1+ 1+ 1+ε ε ε ε

εε ε

Figure 10.11: Extremal case for Christofids approximation.

Theorem 10.3.5 For the Traveling Salesman problem in metric space,
the Christofids approximation A has the performance ratio r(A) = 3/2.

NP-hard Problems 17

For simplicity, an approximation A is said to be α-approximation if
r(A) ≤ α. For example, Christofids approximation is a 1.5-approximation,
but not α-approximation of the Traveling Salesman problem in metric
space for any constant α < 1.5.

Not every problem has a polynomial-time approximation with constant
performance ratio. TSP without request for triangular inequality is an ex-
ample. In fact, for contradition, performance ratio r(A) < K for a constant
K. Then we show that Hamiltonian Cycle can be solved in polynomial
time. For any graph G = (V, E), define that for any pair of vertice u and v,

d(u, v) =

{

1 if {u, v} ∈ E
K · |V | otherwise

This gives an instance I for TSP. Then, G has a Hamiltonian cycle if and
only if for I, the travel salesman has a tour with length less than K|V |.
Th optimal tour has length |V |. Applying approximation algorithm A to
I, we obtain a tour of length less than K|V |. Thus, G has a Hamiltonian
cycle if and only if approximation algorithm A produces a tour of length less
than K|V |. This means that Hamiltonian Ccycle can be solved in polynomial
time. Because the Hamiltonian Cycle problem is NP-complete, the above
argument proved the following.

Theorem 10.3.6 If P 6= NP , then no polynomial-time approximation algo-
rithm for the Traveling Salesman problem in general case has a constant
performance ratio.

10.4 Partition

Given n positive integers a1, a2, ..., an, is there a partition (N1, N2) of [n] such
that

∑

i∈N1
ai =

∑

i∈N2
ai? This problem is called the Partition problem.

In this section, we show the NP-completeness of this problem and some
consequences.

The Partition problem is a special case of the Subsum problem as
follows: Given n + 1 positive integers a1, a2, ..., an and L where 1 ≤ p ≤ S =
∑n

i=1 ai, is there a subset N1 of [n] such that
∑

i∈N1
ai = L? In fact, the

Partition problem is equivalent to the Subsum problem with L = S/2.
Let us first show the following.

Theorem 10.4.1 The Subsum problem is NP-complete.

18 NP-hard Problems

Proof. The Subsum problem belongs to NP because it can be done in
polynomial-time to guess a subset N1 of [n] in O(n) time and check whether
∑

i∈N1
ai = L.

Next, we show 3SAT ≤p
m Subsum. Let F be a 3CNF with n variables

x1, x2, ..., xn and m clauses C1, C2, ..., Cm. For each variable xi, we construct
two positive decimal integers bxi

and bx̄i
, representing two literals xi and x̄i,

respectively. Each bxi
(bx̄i

) contains m + n digits. Let bxi
[k] (bx̄i

[k]) be the
kth rightmost digit of bxi

(bx̄i
). Set

bxi
[k] = bx̄i

[k] =

{

1 if k = i,
0 otherwise

for recording the ID of variable xi. To record information on relationship
between literals and clauses, set

bxi
[n + j] =

{

1 if xi appears in clause Cj ,
0 otherwise,

and

bx̄i
[n + j] =

{

1 if x̄i appears in clause Cj ,
0 otherwise.

Finally, define 2m + 1 addtional positive integers cj , c
′
j for 1 ≤ j ≤ m and L

as follows:

cj [k] = c′j [k] =

{

1 if k = n + j,
0 otherwise.

L =
︷︸︸︷

3...3m
︷︸︸︷

1...1n.

For example, if F = (x1 + x2 + x̄3)(x̄2 + x̄3 + x4), then we would construct
the following 2(m + n) + 1 = 11 positive integers.

bx1
= 010001, bx̄1

= 000001,

bx2
= 010010, bx̄2

= 100010,

bx3
= 000100, bx̄3

= 110100,

bx4
= 101000, bx̄4

= 001000,

c1 = c′1 = 010000, c2 = c′2 = 100000,

L = 331111.

Now, we show that F has a satisfied assignment if and only if A = {bi,j |
1 ≤ n, j = 0, 1} ∪ {cj , c

′
j | 1 ≤ j ≤ m} has a subset A′ such that the sum of

all integers in A′ is equal to p.

NP-hard Problems 19

First, suppose F has a satified assignment σ. For each variable xi, put
bxi

into A′ if xi = 1 under assignment σ and put bx̄i
into A′ if xi = 0 under

assignment σ. For each clause Cj , put both cj and c′j into A′ if Cj contains
exactly one satisfied literal under assignment σ, put cj into A′ if Cj contains
exactly two satisfied literal under assignment σ, and put neither cj nor c′j
into A′ if all three literals in Cj are satisfied under assignment σ. Clearly,
obtained A′ meets the condition that the sum of all numbers in A isequal to
L.

Conversely, suppose that there exists a subset A′ of A such that the sum
of all numbers in A is equal to L. Since L[i] = 1 for 1 ≤ i ≤ n, A′ contains
exactly one of bxi

and bx̄i
. Define an assignment σ by setting

xi =

{

1 if bxi
∈ A′,

0 if bx̄i
∈ A′.

We claim that σ is a satisfied assignment for F . In fact, for any clause Cj ,
since p[n + j] = 3, there must be a bxi

or bx̄i
in A′ whose the (n + j)th

leftmost digit is 1. This means that there is a liertal with assignment 1,
appearing Cj , i.e., making Cj satisfied. 2

Now, we show the NP-completeness of the Partition problem.

Theorem 10.4.2 The Partition problem is NP-complete.

Proof. The Partition problem belongs to NP because it can be done in
polynomial-time to guess a partition and to check if guessed partition meets
the requirement. Next, we show Subsum ≤p

m Partition.
Consider an instance of the Subsum problem, n + 1 positive integers

a1, a2, ..., an and L where 0 < L ≤ S = a1 + a2 + · · · + an. Since the
Partition problem is equivalent to the Subsum problem with 2L = S, we
may assume without of generality that 2L 6= S. Now, consider an input for
the Partition problem, consisting of n + 1 positive integers a1, a2, ..., an

and |2L − S|. Next, we show that there exists a subset N1 of [n] such that
∑

i∈N1
ai = L if and only if A = {a1, a2, ..., an, |2L − S|} has a partition

(A1, A2) such the sum of all numbers in A1 equals the sume of all numbers
in A2. Consider two cases.

Case 1. 2L > S. First, suppose there exists a subset N1 of [n] such that
∑

i∈N1
ai = L. Let A1 = {ai | i ∈ N1} and A2 = A − A1. Then, the sum of

all numbers in A2 is equal to
∑

i∈[n]−N1

ai + 2L − S = S − L + 2L − S = L =
∑

i∈N1

ai.

20 NP-hard Problems

Conversely, suppose A has a partition (A1, A2) such the sum of all numbers in
A1 equals the sume of all numbers in A2. Without loss of generality, assume
2L−S ∈ A2. Note that the sum of all numbers in A equals S +2L−S = 2L.
Therefore, the sum of all numbers in A1 equals L.

Case 2. 2L < S. Let L′ = S − L and N2 = [n] − N1. Then 2L′ − S > 0
and

∑

i∈N1
ai = L if and only if

∑

i∈N2
ai = L′. Therefore, this case can

be done in a way similar to Case 1 by replacing L and N1 with L′ and N2,
respectively. 2

We next study an optimization problem, the Knapsack problem as fol-
lows: Suppose you get in a cave and find n items. However, you have only
a knapsack to carry them and this knapsack cannot carry all of them. The
knapsack has a space limit S and the ith item takes space ai and has value
ci. Therefore, you would face a problem of choosing a subset of items, which
can be put in the knapsack, to maximize the total value of chosen items.
This problem can be formulated into the following linear 0-1 programming.

max c1x1 + c2x2 + · · · + cnxn

subject to a1x1 + a2x2 + · · · + anxn ≤ S

x1, x2, ..., xn ∈ {0, 1}

In this linear 0-1 programming, variable xi is an indicator that xi = 1 if the
ith item is chosen, and xi = 0 if the ith item is not chosen.

Theorem 10.4.3 The Knapsack problem is NP-hard.

Proof. For each instance of the Subsum problem, which consists of n +
1 positive integers a1, a2, ..., an and L, consider the following Knapsack
problem:

max a1x1 + a2x2 + · · · + anxn

subject to a1x1 + a2x2 + · · · + anxn ≤ L.

Clearly, there exista a subset N1 of [n] such that
∑

i∈N1
ai = L if and only if

above corresponding Knapsack problem has an optimal solution with ob-
jective function value L. Therefore, if the Knapsack problem is polynomial-
time solvable, so is the Subsum problem. 2

NP-hard Problems 21

Let opt(k, S) be the objective function value of an optimal solution of
the following problem:

max c1x1 + c2x2 + · · · + ckxk

subject to a1x1 + a2x2 + · · · + akxk

x1, x2, ..., xk ∈ {0, 1}.

Then

opt(k, S) = max(opt(k − 1, S), ck + opt(k − 1, S − ak)).

This recursive formula gives a dynamic programming to solve the Knapsack
problem within O(nS) time. This is a pseudopolynomial-time algorithm, not
a polynomial-time algorithm because the input size of S is ⌈log2 S⌉, not S.

An optimization problem is said to have PTAS (polynomial-time ap-
proximation scheme) if for any ε > 0, there is a polynomial-time (1 + ε)-
approximation for the problem. The Knapsack problem has a PTAS. To
construct a PTAS, we need to design another pseudopolynomial-time algo-
rithm for the Knapsack problem.

Let c(i, j) denote a subset of index set {1, . . . , i} such that

(a)
∑

k∈c(i,j) ck = j and

(b)
∑

k∈c(i,j) sk = min{
∑

k∈I sk |
∑

k∈I ck = j, I ⊆ {1, ..., i}}.
If no index subset satisfies (a), then we say that c(i, j) is undefined, or

write c(i, j) = nil. Clearly, opt = max{j | c(n, j) 6= nil and
∑

k∈c(i,j) sk ≤
S}. Therefore, it suffices to compute all c(i, j). The following algorithm is
designed with this idea.

The 2nd Exact Algorithm for Knapsack
Initially, compute c(1, j) for j = 0, . . . , csum by setting

c(1, j) :=







∅ if j = 0,
{1} if j = c1,
nil otherwise,

where csum =
∑n

i=1 ci.
Next, compute c(i, j) for i ≥ 2 and j = 0, . . . , csum.

for i = 2 to n do
for j = 0 to csum do

case 1 [c(i − 1, j − ci) = nil]
set c(i, j) = c(i − 1, j)

22 NP-hard Problems

case 2 [c(i − 1, j − ci) 6= nil]
and [c(i − 1, j) = nil]
set c(i, j) = c(i − 1, j − ci) ∪ {i}

case 3 [c(i − 1, j − ci) 6= nil]
and [c(i − 1, j) 6= nil]
if [

∑

k∈c(i−1,j) sk >
∑

k∈c(i−1,j−ci) sk + si]

then c(i, j) := c(i − 1, j − ci) ∪ {i}
else c(i, j) := c(i − 1, j);

Finally, set opt = max{j | c(n, j) 6= nil and
∑

k∈c(i,j) sk ≤ S}.

This algorithm computes the exact optimal solution for Knapsack with
running time O(n3M log(MS)) where M = max1≤k≤n ck, because the algo-
rithm contains two loops, the outside loop runs in O(n) time, the inside loop
runs in O(nM) time, and the central part runs in O(n log(MS)) time. This
is a pseudopolynomial-time algorithm because the input size of M is log2 M ,
the running time is not a polynomial with respect to input size.

Now, we use the second pseudopolynomial-time algorithm to design a
PTAS.

For any ε > 0, choose integer h > 1/ε. Denote c′k = ⌊ckn(h + 1)/M⌋ for
1 ≤ k ≤ n and consider a new Knapsack problem as follows:

max c′1x1 + c′2x2 + · · · + c′nxn

subject to s1x1 + s2x2 + · · · + snxn ≤ S

x1, x2, . . . , xn ∈ {0, 1}.

Apply the second pseudopolynomial-time algorithm to this new problem.
The running time will be O(n4h log(nhS)), a polynomial-time with respect
to n, h, and log S. Suppose xh is an optimal solution of this new problem.
Set ch = c1x

∗h1 + · · · + cnxh
n. We claim that

c∗

ch
≤ 1 +

1

h
,

that is, xh is a (1 + 1/h)-approximation.
To show our claim, let Ih = {k | xh

k = 1} and c∗ =
∑

k∈I∗ ck. Then, we
have

ch =
∑

k∈Ih

ckn(h + 1)

M
·

M

n(h + 1)

NP-hard Problems 23

≥
∑

k∈Ih

⌊
ckn(h + 1)

M
⌋ ·

M

n(h + 1)

=
M

n(h + 1)

∑

k∈Ih

c′k

≥
M

n(h + 1)

∑

k∈I∗

c′k

≥
M

n(h + 1)

∑

k∈I∗

(
ckn(h + 1)

M
− 1)

≥ opt −
M

h + 1

≥ opt(1 −
1

h + 1
).

A PTAS is called a FPAS (fully polynomial-time approximation scheme)
if for any ε > 0, there exists a (1 + ε)-approximation with running time
which is a polynomial with respect to 1/ε and the input size. For example,
above PTAS is actually a FPTAS for the Knapsack problem.

Theorem 10.4.4 The Knapsack problem has FPTAS.

For an application of this result, we study a scheduling problem.
Suppose there are two identical machines and n jobs J1, ..., Jn. Each

job Ji has a processing time ai, which does not allow preemption, i.e., the
processing cannot be cut. All jobs are available at the beginning. The prob-
lem is to find a scheduling to minimize the complete time, called makespan.
This problem is equivalent to find a partition (N1, N2) for [n] to minimize
max(

∑

i∈N1
ai,

∑

i∈N2
ai). This problem is NP-hard since it is easy to reduce

the Partition problem to the decision version of this problem. We claim
that this problem has also a FPTAS.

To this end, we consider the following Knapsack problem:

max a1x1 + a2x2 + · · · + anxn

subject to a1x1 + a2 + · · · + anxn ≤ S/2

x1, x2, ..., xn ∈ {0, 1}

where S = a1 + a2 + · · · + an. It is easy to see that if optk is the objective
function value of an optimal solution for this Knapsack problem, then
opts = S − optk is the objective function value of an optimal solution of
above scheduling problem.

24 NP-hard Problems

Applying the FPTAS to above kapsack problem, we may obtain a (1+ε)-
approximation solution x̂. Let N1 = {i | x̂i = 1} and N2 = {i | x̄i = 0}.
Then (N1, N2) is a partition of [n] and moreover, we have

max(
∑

i∈N1

ai,
∑

i∈N2

ai) =
∑

i∈N2

ai = S −
∑

i∈N1

ai

and
optk

∑

i∈N1
ai

≤ 1 + ε.

Therefore,
S − opts

S −
∑

i∈N2
ai

≤ 1 + varepsilon,

that is,

S −
∑

i∈N2

ai ≥ (S − opts)/(1 + varepsilon).

Thus,

∑

i∈N2

ai ≤
εS + opts

1 + varepsilon
≤

ε · 2opts + opts
1 + varepsilon

≤ opts(1 + ε).

Therefore, (N1, N2) is a (1 + ε)-approximation solution for the scheduling
problem.

10.5 Vertex Cover

Given a graph G = (V, E) and a positive integer K, is there a vertex cover of
size at most K?” This is called the Vertex-Cover problem. A vertex cover
C is a subset of vertices such that every edge has at least one endpoint in C.
The Vertex-Cover problem is the decision version of the Min Vertex-
Cover problem as follows: Given a graph G = (V, E), compute a vertex
cover with minimum cardinality.

Theorem 10.5.1 The Vertex-Cover problem is NP-complete.

Proof. Let F be a 3-CNF of m clauses and n variables. We construct a
graph G(F) of 2n + 3m vertices as follows: For each variable xi, we give an
edge with two endpoints labeled by two literals xi and x̄i. For each clause
Cj = x + y + z, we give a triangle j1j2j3 and connect j1 to literal x, j2 to

NP-hard Problems 25

x 1
_
x 1 x 2

_
x 2 x 3

_
x 3

11 12

1 3

2 2

2 1 2 3

Figure 10.12: G(F)

literal y and j3 to literal z. (Fig.1) Next, we prove that F is satisfiable if
and only if G(F) has a vertex-covering of size at most n + 2m.

First, suppose that F is satisfiable. Consider a truth-assignment. Let us
construct a vertex-covering S as follows: (1) S contains all truth literals;
(2) for each triangle j1j2j3, put two vertices into S such that the remainder
jk is adjacent to a truth literal. Then S is a vertex-covering of size exactly
n + 2m.

Conversely, suppose that G(F) has a vertex-covering S of size at most
n + 2m. Since each triangle j1j2j3 must have at least two vertices in S and
each edge (xi, x̄i) has at least one vertex in S, S is of size exactly n + 2m.
Furthermore, each triangle j1j2j3 must have exactly two vertices in S and
each edge (xi, x̄i) must have exactly one vertex in S. Set xi = 1 if xi ∈ S
and xi = 0 if x̄i ∈ S. Then each clause Cj must have a truth literal which is
the one adjacent to the jk not in S. Thus, F is satisfiable.

The above construction is clearly polynomial-time computable. Hence,
3SAT ≤p

m VC. 2

Corollary 10.5.2 The Min Vertex-Cover problem is NP-hard.

Proof. It is NP-hard since its decision version is NP-complete. 2

There are two problems closely related to the Min Vertex-Cover prob-
lem.

The first one is the Max Independent Set problem: Given a graph
G = (V, E), find an independent set with maximum cardinality. Here, an
independent set is a subset of vertices such that no edge exists between two
vertices in the subset. A subset of vertices is an independent set if and only
if its complement is a vertex cover. In fact, from the definition, every edge

26 NP-hard Problems

has to have at least one endpoint in the complement of an independent set,
which means that the complement of an independent set must be a vertex
cover. Conversely, if the complement of a vertex subset I is a vertex cover,
then every edge has an endpoint not in I and hence I is independent. Fur-
thermore, it is easy to see that A vertex subset I is the maximum independent
set if and only if the complement of I is the minimum vertex cover.

The second one is the Max Clique problem: Given a graph G = (V, E),
find a clique with maximum size. Here, a clique is a complete subgraph and
its size is the number of vertices in the clique. Let Ḡ be the complementary
graph of G, that is, Ḡ = (V, Ē) where Ē is the complement of E. Then
a subgraph on a vertex subset I is a clique in G if and only if I is an
independent set in Ḡ. Thus, a subgraph on a vertex subset I is a maximum
clique if and only if I is a maximum independent set in Ḡ.

From their relationship, we already see that the Min Vertex Cover
problem, the Max Independent Set problem and the Max Clique prob-
lem have the same complexity in term of computing exact optimal solutions.
However, it may be interesting to point out that they have different compu-
tational complexities in term of computing approximation solutions.

Theorem 10.5.3 The Min Vertex Cover problem has a polynomial-time
2-approximation.

Proof. Compute a maximal matching. The set of all endpoints of edges in
this maximal matching form a vertex cover which is a 2-approximation for
the Min Vertex Cover problem since each edge in the matching must have
an endpoint in the minimum vertex cover. 2

Theorem 10.5.4 For any ε > 0, the Max Independent Set problem (the
Max Clique problem) has no polynomial-time n1−ε-approximation unless
NP = P .

The reader may find the proof of Theorem 10.5.4 in [?, ?].
The Vertex Cover problem can be generalized to hypergraphs. This

generalization is called the Hitting Set problem as follows: Given a collec-
tion C of subsets of a finite set X, find a minimum subset S of X such that
every subset in C contains an element in S.

The Hitting Set problem is equivalent to the Set Cover problem as
follows: Given a collection C of subsets of a finite set X, find a minimum set
cover A where a set cover A is a subcollection of C such that every element
of X is contained in a subset in A.

NP-hard Problems 27

To see the equvalence between two problems, for each element x ∈ X,
define Sx = {C ∈ C | x ∈ C}. Then the Set Cover problem is equivalent
to the Hitting Set problem on collection {Sx | x ∈ X} and finite set C.

For any subcollection A ⊆ C, define

f(A) = | ∪A∈A A|.

The Set Cover problem has a greedy approximation as follows:

Greedy Algorithm SC
A ← ∅;
while f(A) < |S| do

choose A ∈ C to maximize f(A ∪ {A})
and set A ← A∪ {A};

Output A.

This approximation can be analysed as follows:

Lemma 10.5.5 For any two subcollections A ⊂ B and any subset A ⊆ X,

∆Af(A) ≥ ∆Af(B), (10.1)

where ∆Af(A) = f(A ∪ {A}) − f(A).

Proof. Since A ⊂ B, we have

∆Af(A) = |A \ ∪S∈AS| ≥ |A \ ∪S∈BS| = ∆Af(B).

2

Theorem 10.5.6 Greedy Algorithm SC is a polynomial-time (1 + ln γ)-
approximation for the Set-Cover problem, where γ is the maximum cardi-
nality of a subset in input collection C.

Proof. Let A1, ..., Ag be subsets selected in turn by Greedy Algorithm SC.
Denote Ai = {A1, ..., Ai}. Let opt be the number of subsets in a minimum
set-cover.

Let {C1, ..., Copt} be a minimum set-cover. Denote Cj = {C1, ..., Cj}.
By the greedy rule,

f(Ai+1) − f(Ai) = ∆Ai+1
f(Ai) ≥ ∆Cj

f(Ai)

28 NP-hard Problems

for 1 ≤ j ≤ opt. Therefore,

f(Ai+1) − f(Ai) ≥

∑opt
j=1 ∆Cj

f(Ai)

opt
.

On the other hand,

|S| − f(Ai)

opt
=

f(Ai ∪ Copt) − f(Ai)

opt

=

∑opt
j=1 ∆Cj

f(Ai ∪ Cj−1)

opt
.

By Lemma 10.5.5,

∆Cj
f(Ai) ≥ ∆Cj

f(Ai ∪ Cj−1).

Therefore,

f(Ai+1) − f(Ai) ≥
|S| − f(Ai)

opt
, (10.2)

that is,

|S| − f(Ai+1) ≤ (|S| − f(Ai))(1 −
1

opt
)

≤ |S|(1 −
1

opt
)i+1

≤ |S|e−(i+1)/opt.

Choose i such that |S| − f(Ai+1) < opt ≤ |S| − f(Ai). Then

g ≤ i + opt

and
opt ≤ |S|e−i/opt.

Therefore,

g ≤ opt(1 + ln
|S|

opt
) ≤ opt(1 + ln γ).

2

The following theorem indicates that above greedy approximation has the
best possible performance for the Set Cover problem.

Theorem 10.5.7 For ρ < 1, there is no polynomial-time (ρ lnn)-approximation
for Set-Cover unless NP ⊆ DTIME(nO(log log n)).

The reader may find the proof of Theorem 10.5.7 in [?].

NP-hard Problems 29

10.6 Three-dimensional Matching

10.7 Planar 3SAT

10.8 Complexity of Approximation

