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ABSTRACT

Frederico Araujo, PhD

Supervising Professor: Kevin W. Hamlen

Committee Members: Latifur Khan, Zhiqiang Lin,
and Bhavani ¿uraisingham

Language-based so ware cyber deception leverages the science
of compiler and programming language theory to equip
so ware products with deceptive capabilities that misdirect
and disinform attackers. ¿is dissertation proposes language-
based so ware cyber deception as a new discipline of study,
and introduces �ve representative technologies in this domain:
(1) honey-patching, (2) process image secret redaction, (3)
deception-enhanced intrusion detection, (4) Deception as a
Service (DaaS) in the cloud, and (5) moving target deception.
Honey-patches �x so ware security vulnerabilities in a

way that makes failed attacks appear successful to attackers,
impeding them from discerning which probed systems are
genuinely vulnerable and which are actually traps. ¿e traps
deceive, waylay, disinform, and monitor adversarial activities,
warning defenders before attackers �nd exploitable victims.
Process image secret redaction erases or replaces security-
relevant data on-demand from running program processes
in response to cyber intrusions. ¿is results in deceptive
programs that appear operational once penetrated, but with
false secrets that misdirect intruders who hijack or reverse-
engineer the victim process. Deception-enhanced intrusion
detection joins honey-patching with the science of datamining-
based intrusion detection to create more e�ective, adaptive
threat monitors that coordinate multiple levels of the so ware
stack to catch adversaries. Deception as a Service leverages the
massive replication and virtualization capabilities of modern

ix



x abstract

cloud computing architectures to create a “hall of mirrors”
that attackers must navigate in order to distinguish valuable
targets from traps. Finally,moving target deception employs
so ware version emulation to more e�ectively lure adversaries
and model evolving threat and vulnerability landscapes.
A language-based approach to the design and implemen-

tation of each of these new technologies is presented and
evaluated. Experiments indicate that so ware cyber deception
can be e�ectively realized for large, production-level so ware
networks and architectures—o en with minimal developmen-
tal e�ort and performance overheads. Language-based cyber
deception is therefore concluded to be a low-cost, high-reward,
yet heretofore largely unexplored methodology for raising
attacker risk and uncertainty, toward leveling the longstanding
asymmetry between attackers and defenders in cyber warfare
battle�elds.
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1

INTRODUCTION

¿is chapter contains
material previously
published as: F. Araujo and
K.W. Hamlen. “Embedded
Honeypotting.” In Cyber
Deception: Building the
Scienti�c Foundation,
S. Jajodia,
V.S. Subrahmanian,
V. Swarup, and C. Wang
(eds.), Springer, 2016.
Reproduced with permission
of Springer International
Publishing in the ¿esis/
Dissertation format via
Copyright Clearance Center.
Lead author Araujo
conducted the majority of the
research and co-wrote the
article.

¿roughout the history of warfare, obfuscation and deception
have been widely recognized as important tools for leveling
the ubiquitous asymmetry between o�ensive and defensive
combatants. In the modern era of cyber warfare, this asymme-
try has perhaps never been more extreme. Despite a meteoric
rise in worldwide spending on conventional cyber defensive
technologies and personnel, the success rate and �nancial
damage resulting from cyber attacks against so ware systems
has escalated even faster, rising dramatically over the past few
decades. ¿e challenges can be traced in part to the inher-
ently uneven terrain of the cyberspace battle�eld—which
typically favors attackers, who can wreak havoc by �nding a
single weakness, whereas defenders face the di�cult task of
protecting all possible vulnerabilities.
¿e attack surface exposed by the convergence of com-

puting and networking poses particularly severe asymmetry
challenges for defenders. Our computing systems are con-
stantly under attack, yet the task of the adversary is greatly
facilitated by information disclosed by the very defenses that
respond to those attacks. ¿is is because so ware and proto-
cols have traditionally been conceived to provide informative
feedback for error detection and correction, not to conceal
the causes of faults. Many traditional security remediations
therefore advertise themselves and their interventions in
response to attempted intrusions, allowing attackers to easily
map victim networks and diagnose system vulnerabilities.
¿is enhances the chances of successful exploits and increases
the attacker’s con�dence in stolen secrets or expected sabotage
resulting from attacks.

1
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Figure 1.1: Gartner’s deception stack, with examples of inhabiting deceptive technologies

Deceptive capabilities of so ware security defenses are
an increasingly important, yet underutilized means to level
such asymmetry. ¿ese capabilities mislead adversaries and
degrade the e�ectiveness of their tactics, making successful
exploits more di�cult, time consuming, and cost prohibitive.
Moreover, deceptive defense mechanisms entice attackers
to make �ctitious progress towards their malicious goals,
gleaning important threat information all the while, without
aborting the interaction as soon as an intrusion attempt is de-
tected. ¿is equips defenders with the ability to lure attackers
into disclosing their actual intent, monitor their actions, and
perform counterreconnaissance for attack attribution and
threat intelligence gathering.11Araujo and Hamlen (2016)

1.1 the deception stack

Deceptive techniques can be introduced at di�erent layers of
the so ware stack. Figure 1.1 illustrates this deception stack,22Pingree (2015)
which itemizes various deceptive capabilities available at the
network, endpoint, application, and data layers. For example,
computer networks known as honeynets3 intentionally purvey3Spitzner (2003a); ¿onnard

and Dacier (2008) vulnerabilities that invite, detect, and monitor attackers;
endpoint protection platforms4 deceive malicious so ware4Pingree (2015)
by emulating diverse execution environments and creating
fake processes at the application level to manipulate malware
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behavior; and falsi�ed data can be strategically planted in
decoy �le systems to disinform and misdirect attackers away
from high-value targets.1 1Yuill et al. (2004); Voris

et al. (2015)¿e deception stack suggests that the di�culty of deceiving
an advanced adversary increases as deceptions move up
the stack. ¿is is accurate if we compare, for instance, the
work associated with emulating a network protocol with the
challenge of cra ing fake data that appear legitimate to the
attacker: Protocols have clear and precise speci�cations and
are therefore relatively easy to emulate, whereas there are
many complex human factors in�uencing whether a speci�c
datum is plausible and believable to a particular adversary.
In general, deceptive so ware defenses must employ one
or more forms of deception, and leverage all layers of the
deception stack to some degree in order to be e�ective against
a persistent and skilled adversary.

thesis statement: ¿is dissertation draws attention
to the disfavorable predictability of today’s so ware, and
responds by proposing and investigating scienti�c method-
ologies for engineering application-level, cyber-deceptive
so ware, toward increasing attacker risk and leveling attacker-
defender asymmetry. Such methodologies are argued to
be low-cost, high-reward (yet heretofore underutilized) ap-
proaches for improving the security of large networks and
so ware systems di�cult to secure by more conventional
means.

Application-level deceptive capabilities, which are the focus
of this dissertation, are particularly under-researched, yet
o�er critical mediation capabilities between the network,
endpoint and data deception layers of the deception stack. For
example, an application-level, deception-enabled web server
can ask the network-level �rewall to allow certain payloads to
reach the application layer, where it can then o�er deceptive
responses that misdirect the adversary into attacking decoy
machines within the endpoint layer. ¿ese decoys can appeal
to the data deception layer to purvey disinformation in the
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Figure 1.2: Timeline of selected academic and industrial research on honeypots

form of false secrets or even malware counter-attacks against
adversaries. Such scenarios demonstrate the ongoing need
for tools and techniques allowing organizations to engineer
applications with proactive and deceptive capabilities that
degrade attackers’ methods and disrupt their reconnaissance
e�orts.

1.2 traditional honeypots

¿e deceptive so ware innovations here introduced di�er
foundationally from traditional honeypot technologies. Hon-
eypots are information systems resources conceived purely
to attract, detect, and gather attack information.1 Figure 1.21Spitzner (2002)
presents an abbreviated timeline of the extensive history
of honeypot research. (See Bringer et al.2 for a more com-2Bringer et al. (2012)
prehensive survey on recent advances and future trends in
honeypot research.) In contrast, the application-level decep-
tions advanced in this dissertation seek to integrate deceptive
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capabilities into information systems with genuine production
value (e.g., servers and so ware that o�er genuine services to
legitimate users).
Traditional honeypots are usually classi�ed according to

the interaction level provided to potential attackers. Low-
interaction honeypots1 present a façade of emulated services 1Provos (2004); Kippo (2009);

Glastopf (2009);
¿reatStream (2014);
Deutsche Telekom AG (2015)

without full server functionality, with the intent of detecting
unauthorized activity via easily deployed pseudo-services.
High-interaction honeypots2 provide a relatively complete

2Bifrozt (2014); Shadowd
(2015)

system with which attackers can interact, and are designed
to capture detailed information on attacks. Despite their
popularity, both low- and high-interaction honeypots are
o en detectable by informed adversaries (e.g., due to the
limited services they purvey, or because they exhibit tra�c
patterns and data substantially di�erent than genuine ser-
vices). Application-level deceptions potentially overcome this
longstanding de�ciency of traditional honeypots by o�ering
much higher interactivity, facilitated by their purveyance of
genuine services and their access to genuine data.

1.3 application-level software decep-
tion

As a �agship example of application-level deceptiveness,
honey-patching (presented in Chapter 2) introduces sub-
terfuge into the ubiquitous regimen of security patching
applied to production so ware systems. Patching continues to
be the most pervasive and widely accepted means for address-
ing newly discovered security vulnerabilities in commodity
so ware products. In 2014 alone, major so ware vendors
reported over 7000 patched (or soon-to-be-patched) separate
security vulnerabilities to the National Vulnerability Database,
almost 25 of which were ranked highest severity.3 However, 3Florian (2015)
despite the increasingly prompt availability of security patches,
a majority of attacks in the wild continue to exploit vulnerabil-
ities that are known and for which a patch exists.4 ¿is is in

4Bilge and Dumitras (2012);
Fritz et al. (2013); Arbaugh
et al. (2000)part because patch adoption is not immediate, and may be



6 introduction

slowed by various considerations, such as patch compatibility
testing, in some sectors.
As a result, determined, resourceful attackers o en probe

and exploit unpatched, patchable vulnerabilities in their vic-
tims. For example, a 2013 security audit of the U.S. Department
of Energy revealed that 60 of DoE desktops lacked critical
patch updates, leading to a compromise and ex�ltration of
private information on over 100,000 individuals.1 ¿e preva-1Friedman (2013)
lence of unpatched systems has driven the proliferation of
tools and technologies via which attackers quickly derive
unique, previously unseen exploits from patches,2 allowing2Brumley et al. (2008)
them to in�ltrate vulnerable systems.
Attackers are too o en successful at �nding and exploiting

patching lapses because conventional so ware security patches
advertise rather than conceal such lapses. For example, a
request that reliably yields garbage output from an unpatched
server, but that reliably yields an error message from a patched
server, readily divulges whether each server is vulnerable.
Cyber-criminals therefore quickly and e�ciently probe large
networks for vulnerable so ware, allowing them to focus
their attacks on susceptible targets.
To combat this, honey-patches take the alternative approach

of patching so ware security vulnerabilities in such a way
that future attempted exploits of the patched vulnerabilities
appear successful to attackers. ¿is masks patching lapses,
impeding attackers from easily discerning which systems are
genuinely vulnerable and which are actually patched systems
masquerading as unpatched systems. Honey-patches o�er
equivalent security to conventional patches, but respond to
attempted exploits by transparently redirecting the attacker’s
connection to a carefully isolated decoy environment, which
monitors and disinforms criminals.
Honey-patches therefore cope with defender risk (e.g.,

the risk of patching lapses) by re�ecting some of that risk
to adversaries. By making so ware security patches invis-
ible to attackers, all assets appear equally vulnerable—but
many of the apparent vulnerabilities are actually traps de-
signed to waylay and mislead. Such deception is useful in
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contexts where immediate, comprehensive, and universal
patch deployment—the conventional defense—is infeasible
or impractical. For computer networks that are large and
complex, such infeasibility is common. For example, the
U.S. Department of Defense has historically struggled to
even track an accurate inventory of its many digital assets,1 1DoD Comptroller (2015)
much less ensure that all its systems remain fully patched. In
such contexts, imbuing the inventoried assets with deceptive
capabilities can implicitly help to protect the non-inventoried
assets.
Honey-patches arm live, commodity server so ware with

deceptive attack-response and disinformation capabilities.
¿ey therefore di�er from traditional honeypots in that the
deceptive capabilities reside within the actual, mission-critical
so ware systems that attackers are seeking to penetrate; they
are not independent decoy systems. ¿is a�ords defenders
advanced deceptive remediations against informed adversaries
who can identify and avoid traditional honeypots. ¿ese
new capabilities mislead advanced adversaries into wasting
time and resources on phantom vulnerabilities and decoy �le
systems, and potentially turn every attack into an information-
gathering opportunity for defenders.
Because they reside within systems o�ering genuine ser-

vices, honey-patching design and implementation raises
signi�cant challenges not faced by traditional honey-systems.
For example, the introduction of deceptive capabilities must
not degrade the performance or intended functionality of the
production systems they augment. A principled approach to
the design of such deceptive capabilities is therefore needed,
drawing upon scienti�c methodologies related to so ware ar-
chitecture, compiler design and implementation, and program
analysis.
¿e approach therefore constitutes a new language-based

security methodology,2 and paves the way for an emerg- 2Schneider et al. (2001)
ing science of deception-facilitating so ware engineering. In
particular, Chapter 3 details a new compiler technology for
dynamic information �ow tracking that aids in deceptive so -
ware engineering, Chapter 4 investigates deception-powered
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enhancements to anomaly-based intrusion detection architec-
tures, Chapter 5 discusses rami�cations for cloud computing
paradigms, and Chapter 6 examines deceptive moving-target
defense.

1.4 deception and obscurity

One reason some researchers have neglected or eschewed
deception as a basis for computer security is its similarity
to obscurity. “Security through obscurity”1 has become a1cf., Merkow and Breithaupt

(2014) byword for security practices that rely upon an adversary’s
ignorance of the system design rather than any fundamental
principle of security. History has demonstrated that such
practices o�er very weak security at best, and are dangerously
misleading at worst, potentially o�ering an illusion of security
that may encourage poor decision-making.22Anderson (2001)
Security defenses based on deception potentially run the

risk of falling into the “security through obscurity” trap. If
the defense’s deceptiveness hinges on attacker ignorance of
the system design—details that defenders should conserva-
tively assume will eventually become known by any suitably
persistent threat actor—then any security o�ered by the de-
fense might be illusory and therefore untrustworthy. It is
therefore important to carefully examine the underlying basis
upon which deceptions can be viewed as security-enhancing
technologies.
Using honey-patching as an example, the e�ectiveness of a

patching-based deception relies upon withholding certain
secrets from adversaries (e.g., exactly which so ware vul-
nerabilities have been honey-patched). But secret-keeping
does not in itself disqualify honey-patching as obscurity-
reliant. For example, modern cryptography is frequently
championed as a hallmark of anti-obscurity defense despite its
foundational assumption that adversaries lack knowledge of
private keys, because disclosing the complete implementation
details of crypto algorithms does not aid attackers in breaking
cyphertexts derived from undisclosed keys.
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Juels1 de�nes indistinguishability and secrecy as two proper- 1Juels (2014)
ties required for successful deployment of honey systems.
¿ese properties are formalized as follows:

Consider a simple system in which S = {s1, . . . , sn}

denotes a set of n objects of which one, s∗ = sj, for
j ∈ {1, . . . , n} is the true object, while the other n− 1
are honey objects. ¿e two properties then are:

Indistinguishability: To deceive an attacker, honey
objects must be hard to distinguish from real objects.
¿ey should, in other words, be drawn from a proba-
bility distribution over possible objects similar to that
of real objects.

Secrecy: In a system with honey objects, j is a secret.
Honey objects can, of course, only deceive an attacker
that doesn’t know j, so j cannot reside alongside S.
Kerckho�s’ principle therefore comes into play: the
security of the system must reside in the secret, i.e.,
the distinction between honey objects and real ones,
not in the mere fact of using honey objects.

Honey-patching as a paradigm satis�es both these properties
by design:
Indistinguishability derives from the inability of an attacker

to determine whether an apparently successful attack is the
result of exploiting an unpatched vulnerability or a honey-
patch masquerading as an unpatched vulnerability. While
absolute, universal indistinguishability is probably impossible
to achieve, many forms of distinguishability can nevertheless
be made arbitrarily di�cult to discern. For example, honey-
servers can exhibit response delay distributions that mimic
those of unpatched servers to arbitrary degrees of precision
(e.g., by arti�cially delaying legitimate, non-forking requests
to match the distribution of malicious, forking requests, as
described in Section 3.4).
Secrecy implies that the set of honey-patched vulnerabilities

should be secret. However, full attacker knowledge of the
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design and implementation details of honey-patching does
not disclosewhich vulnerabilities a defender has identi�ed and
honey-patched. Adapting Kerckho�s’ principle1 for deception,1Kerckho�s (1883)
a honey-patch is not detectable even if everything about the
system, except the honey-patch, is public knowledge.
¿is argues that honey-patching as a paradigm (and lan-

guage-based so ware cyber deception in general) does not
derive its security value from obscurity. Rather, its deceptions
are based on well-de�ned secrets—speci�cally, the set of
honey-patched vulnerabilities in target applications. Main-
taining this con�dentiality distinction between the publicness
of honey-patch design and implementation details, versus
the secrecy of exactly which vulnerabilities instantiate those
details, is important for cra ing robust, e�ective deceptions.
Motivationally, the di�erence between obscurity-based

defenses and cyber deceptions as advanced in this dissertation
can be seen as a di�erence in defender objective: ¿e objective
of an obscurity-based defense is to create uncertainty in the
mind of an adversary; whereas the objective of a deception-
based defense is to inspire false certainty. Each of the deceptive
technologies introduced herein therefore cultivate digital
environments conducive to incorrect conclusions on the part
of attackers, rather than merely to cultivate environments that
are bewildering or foggy.

1.5 dissertation overview

¿e rest of this dissertation is laid out as follows. Chap-
ter 2 details honey-patching and its underlying foundations.
Chapter 3 de�nes the associated problem of sanitizing se-
crets from process images, and outlines a solution based
on compiler-instrumented, dynamic taint analysis. Chap-
ters 4–6 present a suite of security defenses leveraging this
framework: (1) DeepDig leverages attack traces collected
via honey-patches to generate models of attacker behavior
and enhance precision of anomaly detection (Chapter 4).
(2) Deception-as-a-Service is proposed as a new paradigm
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to transparently enable honey-patching in service-oriented
architectures (Chapter 5). (3) Quicksand implements a mov-
ing target architecture to render honey-patched applications
more robust against deception �ngerprinting techniques
(Chapter 6). Chapter 7 documents experiences using honey-
patching in the classroom. Finally, relevant related work
is presented in Chapter 8 and conclusions are presented in
Chapter 9.





2

HONEY-PATCHING

¿is chapter contains
material previously
published as: F. Araujo,
K.W. Hamlen,
S. Biedermann, and
S. Katzenbeisser. “From
patches to honey-patches:
Lightweight attacker
misdirection, deception, and
disinformation.” In Proc. of
the 21st ACM SIGSAC
Conf. on Computer and
Communications Security,
pp. 942–953, Nov. 2014. Lead
author Araujo conducted the
majority of the research,
including the design, most of
the implementation, and the
evaluation of the prototype.

When a so ware security vulnerability is discovered, the
conventional defender reaction is to quickly patch the so -
ware to �x the problem. ¿is standard reaction can back�re,
however, if the patch has the side-e�ect of disclosing and
highlighting other exploitable weaknesses in the defender’s
network. Unfortunately, such back�res are common; patches
o en behave in such a way that adversaries can reliably infer
which systems have been patched, and therefore which are
unpatched and vulnerable. ¿e existence of at least some
unpatched systems is almost inevitable, since patch adoption
is rarely immediate—for example, testing is o en required
to ensure patch compatibility. ¿us, most so ware security
patches �x newly discovered vulnerabilities at the price of
advertising to attackers which systems remain vulnerable.
¿is has led to an adversarial culture for which vulnerability
probing is a staple of the cyber killchain.
Cyber criminals easily probe today’s Internet for vulnerable

so ware, allowing them to focus their attacks on susceptible
targets, in the following way. First, the attacker submits a
malicious input (a probe) cra ed to trigger a particular, known
so ware bug in bulk to many servers across the network.
Patched servers respond to the probe with a well-formed
output, such as an error message; but unpatched servers
behave erratically, such as by responding with a garbage string
or crashing and restarting. Upon observing the latter response,
the attacker next submits a more constructive malicious input
to the unpatched servers, such as one that exploits the bug to
hijack the victim so ware’s control-�ow, causing it to perform

13
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malicious actions on behalf of the attacker rather than merely
crashing.
Honey-patching1 is a game-changing alternative approach1Araujo et al. (2014)

for anticipating and foiling these directed cyber attacks. ¿e
goal is to patch newly discovered so ware security vulnerabili-
ties in such a way that future attempted exploits of the patched
vulnerabilities appear successful to attackers even when they
are not. ¿is masks patching lapses, impeding attackers from
easily discerning which systems are genuinely vulnerable
and which are actually patched systems masquerading as
unpatched systems. Detected attacks are transparently redi-
rected to isolated, unpatched decoy environments that possess
the full interactive power of the targeted victim server, but
that disinform adversaries with honey-data and aggressively
monitor adversarial behavior.
Deceptive honey-patching capabilities thereby constitute an

advanced, language-based, active defense technique that can
impede, confound, and misdirect attacks, and signi�cantly
raise attacker risk and uncertainty. In addition to helping
protect networks where honey-patches are deployed, the
practice also contributes to the public cyber welfare: Once a
honey-patch for a particular so ware vulnerability has been
adopted by some, attacks against all networks become riskier
for attackers. ¿is is because attackers can no longer reliably
identify all the vulnerable systems and determine where to
focus their attacks, or even assert whether they are gathering
genuine data. Any ostensibly vulnerable network could be
a honey-patch in disguise, and any ex�ltrated secret could
potentially be disinformation.

2.1 overview

Listing 2.1 shows an abbreviated patch in di� style for the
Heartbleed OpenSSL bu�er over-read vulnerability (CVE-
2014-0160)2—one of the most signi�cant vulnerability disclo-2Codenomicon (2014)
sures in recent history, a�ecting a majority of then-deployed
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Listing 2.1: Abbreviated patch for Heartbleed

1 + if (1 + 2 + payload + 16 > s→s3→rrec.length)
2 + {
3 + return 0; // silently discard
4 + }

Listing 2.2: Honey-patch for Heartbleed

1 if (1 + 2 + payload + 16 > s→s3→rrec.length)
2 + {
3 + hp_fork();
4 - return 0; // silently discard
5 + hp_skip(return 0); // silently discard
6 + }

web servers, including Apache. ¿e patch introduces a condi-
tional that validates SSL/TLS heartbeat packets, declining
malformed requests. Prior to being patched, attackers could
exploit this bug to acquire sensitive information from many
web servers.
¿is patch exempli�es a common vulnerability mitigation:

dangerous inputs or program states are detected via a boolean
test, with positive detection eliciting a corrective action.
¿e corrective action is typically readily distinguishable by
attackers—in this case, the attacker request is silently declined.
As a result, the patched and unpatched programs di�er only
on attack inputs, making the patched system susceptible to
probing. Our goal in this work is to introduce a strategy
whereby administrators of products such as Apache can
easily transform such patches into honey-patches, whose
corrective actions impede attackers and o�er strategic bene�ts
to defenders.
Toward this end, Listing 2.2 presents an alternative, honey-

patched implementation of the same patch. In response to
a malformed input, the honey-patched application forks
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itself onto a con�ned, ephemeral, decoy environment, and
behaves henceforth as an unpatched, vulnerable version of the
so ware. Speci�cally, line 3 forks the user session to a decoy
container, and macro hp_skip in line 5 elides the rejection
in the decoy container so that the attack appears to have
succeeded. Meanwhile, the attacker session in the original
container is safely terminated (having been forked to the
decoy), and legitimate, concurrent connections continue
una�ected.
Observe that the di�erences between the patch and the

honey-patch are quite minor, except for the �xed cloning
infrastructure that the honey-patch code references, and
that can be maintained separately from the server code. ¿is
allowed us to formulate a Heartbleed honey-patch within
hours of receiving the vulnerability disclosure on April 7,
2014, facilitating a quick, aggressive response to the threat.1 In1¿e Economic Times (2014)
general, only a super�cial understanding of many patches is
required to convert them to honey-patches of this form. (A
more systematic study of honey-patchable patches is presented
in Section 2.5.) However, the cloning infrastructure required
to facilitate e�cient, transparent, and safe redirection to
decoys demands a careful design.

2.1.1 Design Principles

Although the honey-patching concept is fairly straightforward,
many signi�cant security and performance challenges must
be surmounted to realize it in practice. For example, a honey-
patch that naïvely forks the entire server process to create
a decoy clone process in response to attempted intrusions,
inadvertently copies any secrets in the victim process’s address
space, such as encryption keys of concurrent sessions, over to
the child decoy. Such an approach would be disastrous in
practice, since the attack is allowed to succeed in the decoy,
thereby giving the attacker potential access to secrets it may
contain.
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Moreover, practical adoption requires that honey-patches
(1) introduce almost no overhead for legitimate users, (2) per-
form well enough for attackers that attack failures are not
placarded, and (3) o�er high compatibility with so ware that
boasts aggressive multi-processing, multi-threading, and
active connection migration across IPs. Solutions must there-
fore be su�ciently modular and generic that administrators
require only a super�cial, high-level understanding of each
patch’s structure and semantics to reformulate it as an e�ective
honey-patch.
Speci�cally, e�ective honey-patching requires that remote

forking of attacker sessions to decoys must happen live, with
no perceptible disruption in the target application. ¿is means
that established connections—in particular, the attacker’s
connection—must not be broken. In addition, decoy deploy-
ment must be fast, to avoid o�ering overt, reliable timing
channels that advertise the honey-patch. Finally, all sensitive
data must be redacted before the decoy resumes execution to
avoid giving the attacker potential access to user secrets.

approach Together, these requirements motivate three
main design decisions. First, the required time performance
precludes system-level cloning (e.g., VM cloning1) for session 1Clark et al. (2005)
forking; instead, we employ a lighter-weight, �ner-grained
alternative based on process migration through checkpoint-
restart.2 To scale to many concurrent attacks, we use an 2Miloȷ́ičić et al. (2000)
OS-level virtualization technique to deploy forked processes
to decoy containers, which can be created, deployed, and
destroyed orders of magnitude faster than other virtualization
techniques, such as full virtualization or para-virtualization.3 3Whitaker et al. (2004)
Second, our approach to remote session forking bene�ts

from the synergy between mainstream Linux kernel APIs
and user-space tools, allowing for a small freezing time of
the target application. To maintain established connections
when forking, we have conceived and implemented a connec-
tion relocation procedure that allows for transparent session
migration.
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¿ird, to guarantee that successful exploits do not a�ord
attackers access to sensitive data stored in application memory,
we have implemented amemory redaction and light-weight
synchronization mechanism during forking. ¿is censors
sensitive data from process memory before the forked (un-
patched) session resumes. Forked decoys host a deceptive �le
system that omits all secrets, and that can be laced with disin-
formation to further deceive, delay, and misdirect attackers.

2.1.2 ¿reat Model

Honey-patches add a layer of deception to confound exploits
of known (patchable) vulnerabilities, which constitute the
majority of exploited vulnerabilities in the wild. Previously
unknown (i.e., zero-day) exploits remain potential threats,
since such vulnerabilities are typically neither patched nor
honey-patched. However, even zero-days can be potentially
mitigated through cooperation of honey-patches with other
layers of the deception stack. For example, a honey-patch that
collects identifying information about a particular adversary
seeking to exploit a known vulnerability can convey that
collected information to a network-level intrusion detection
system, which can then potentially identify the same adversary
seeking to exploit a previously unknown vulnerability. ¿is
strategy is explored in Chapter 4.
Although honey-patches primarily mitigate exploits of

known vulnerabilities, they can e�ectively mitigate exploits
whose attack payloads might be completely unique and there-
fore unknown to defenders. Such payloads might elude
network-level monitors, and are therefore best detected at the
so ware level at the point of exploit. Attackers might also
use one payload for reconnaissance but reserve another for
the �nal attack. Misleading the attacker into launching the
�nal attack is therefore useful for discovering the �nal attack
payload, which can divulge attacker strategies and goals not
discernible from the reconnaissance payload alone.
Honey-patching is typically used in conjunction with stan-

dard access control protections, such as process isolation and
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least privilege. Attacker requests are therefore typically pro-
cessed by a server possessing strictly user-level privileges, and
must therefore leverage web server bugs and kernel-supplied
services to performmalicious actions, such as corrupting
the �le system or accessing other users’ memory to access
con�dential data. ¿e defender’s ability to thwart these and
future attacks stems from his ability to de�ect attackers to
fully isolated decoys and perform counterreconnaissance (e.g.,
attack attribution and information gathering).

2.1.3 Background

Apache HTTP has been the most popular web server since
April 1996.1 Its market share includes 54.5 of all active 1Apache (2014)
websites (the second, Nginx, has 11.97) and 55.45 of the
top-million websites (against Nginx with 15.91).2 It is a 2Netcra (2014)
robust, commercial-grade, feature-rich open-source so ware
product comprised of 2.27M SLOCmostly in C,3 and has been 3Ohloh (2014)
tested on millions of web servers around the world. ¿ese
characteristics make it a highly challenging, interesting, and
practical �agship case study to test our approach.

Process migration through checkpoint-restart is the act of
transferring a running process between two nodes by dump-
ing its state on the source and resuming its execution on
the destination. ¿is problem is especially relevant for high-
performance computing.4 As a result, several tools have 4Gero� et al. (2010); Wang

et al. (2008)been developed to support performance-critical process
checkpoint-restart (e.g., BLCR,5 DMTCP,6 and CRIU7). Pro- 5Duell (2002)

6Ansel et al. (2009)
7CRIU (2014)

cess checkpoint-restart plays a pivotal role in making the
honey-patch concept viable. It provides a fast and seamless
mechanism to enable transparent forking of attacker sessions,
and scales well even in small environments due to its process-
level granularity, which reduces the overall resources required
to migrate the attacker process.

OS-level virtualization allows multiple guest nodes (con-
tainers) to share the kernel of their controlling host. Linux
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containers (LXC)1 implement OS-level virtualization, with1LXC (2014)
resource management via process control groups and full
resource isolation via Linux namespaces. ¿is ensures that
each container’s processes, �le system, network, and users
remain mutually isolated. Fine-grained control of resource
utilization prevents any container from starving its host.
Furthermore, LXC supports containers backed by overlayfs
snapshots, which is key for e�cient container management
and fast decoy deployment.

2.2 architecture

¿e RedHerring architecture,2 depicted in Figure 2.1, em-2Araujo et al. (2014)
bodies these design decisions by using process-level cloning
and OS-level virtualization to achieve lightweight, resource-
e�cient, and �ne-grained redirection of attacker sessions to
sandboxed decoy environments in which secrets have been
redacted with honey-data. Within this framework, developers
use honey-patches to provide the same level of security as
conventional patches, yet have the additional ability to deceive
attackers.
Central to the system is a reverse proxy that acts as a trans-

parent proxy between users and internal servers deployed
as LXC containers. ¿e target container hosts the honey-
patched web server instance, and the n decoys form the pool
of ephemeral containers managed by the LXC Controller.
¿e decoys serve as temporary environments for attacker
sessions. Each container runs a CR-Service (Checkpoint/Re-
store) daemon, which exposes an interface controlled by the
CR-Controller for remote checkpoint and restore.

honey-patching api To achieve low-coupling between
target application and honey-patching logic, the honey-patch
mechanism can be realized as a tiny library (e.g., implemented
as a dynamically loadable C library). ¿e library exposes
three core API functions:
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Figure 2.1: RedHerring system architecture overview

• hp_init(pgid, pid, tid, sk): initialize honey-patch with
the process group pgid, process pid, thread tid, and
socket descriptor sk of the session.

• hp_fork(): initiate the attacker session remote forking
process, implementing the honey-patching core logic.

• hp_skip(c): skip over block c if in a decoy.

Function hp_init initializes the honey-patch with the neces-
sary information to handle subsequent session termination
and resurrection. It is invoked once per connection, at the
start of the session life cycle. For example, in the Apache
web server, this immediately follows acceptance of an HTTP
request and handing the newly created session o� to a child
process or worker thread; in Lighttpd and Nginx web servers,
it follows the accept event for new connections.
Listing 2.3 details the basic steps of hp_fork. Line 3 deter-

mines the application context, which can be either target
(denoting the target container) or decoy. In a decoy, the
function does nothing, allowing multiple exploits within
a single attacker session to continue within the same de-
coy. In the target, a fork is initiated, consisting of four steps:
(1) Line 5 registers the signal handler for session termination
and resurrection. (2) Line 6 sends a fork request containing
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the attacker session’s pgid, pid, and tid to the proxy’s CR-
Controller. (3) Line 7 synchronizes checkpoint and restore
of the attacker session in the target and decoy, respectively,
and guarantees that sensitive data is redacted from memory
before the clone is allowed to resume. (4) Once forking is
complete and the attacker session has been resurrected, the
honey-patch context is saved and the attacker session resumes
in the decoy.
¿e fork request (step 2) achieves high e�ciency by �rst

issuing a system fork to create a shallow, local clone of the
web server process. ¿is allows event-driven web servers
to continue while attacker sessions are forked onto decoys,
without interrupting the main event-loop. It also li s the
burden of synchronizing concurrent checkpoint operations,
since CRIU injects a Binary, Large OBject (BLOB) into the
target process memory space to extract state data during
checkpoint.
¿e context-sensitivity of this framework allows the honey-

patch code to exhibit context-speci�c behavior: In decoy
contexts, hp_skip elides the execution of the code block
passed as an argument to the macro, elegantly simulating the
unpatched application code. In a target context, it is usually
never reached due to the fork. However, if forking silently fails
(e.g., due to resource exhaustion), it abandons the deception
and conservatively executes the original patch’s corrective
action for safety.

lxc pool ¿e decoys into which attacker sessions are
forked are managed as a pool of Linux containers controlled
by the LXC Controller. ¿e controller exposes two operations
to the proxy: acquire (to acquire a container from the pool),
and release (to release back a container to the pool). Each
container follows the life cycle depicted in Figure 2.2. Upon
receiving a fork request, the proxy acquires the �rst available
container from the pool. ¿e acquired container holds an
attacker session until (1) the session is deliberately closed by
the attacker, (2) the connection’s keep-alive timeout expires,
(3) the ephemeral container crashes, or (4) a session timeout
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Listing 2.3: hp_fork function

1 void hp_fork()
2 {
3 // read context (target/decoy)read_context();
4 // if in decoy, do nothingif (decoy) return;
5 // register signal handlerregister_handler();
6 // fork session to decoyrequest_fork();
7 // wait until fork process has ®nishedwait();
8 // save context and resumesave_context();
9 }

is reached. ¿e last two conditions are common outcomes
of successful exploits. In any of these cases, the container is
released back to the pool and undergoes a recycling process
before becoming available again.
Recycling a container encompasses three sequential opera-

tions: destroy, clone (which creates a new container from a
template in which legitimate �les are replaced with honey�les),
and start. ¿ese steps happen swi ly for two main reasons.
First, the lightweight virtualization implemented by LXC
allows containers to be destroyed and started similarly to how
OS processes are terminated and created. Second, ephemeral
containers are deployed as overlayfs-based clones, making the
cloning step almost instantaneous. ¿e overlay �le system is
backed by a regular directory (the template) to clone new
overlayfs containers (decoys), mounting the template’s root
�le system as a read-only lower mount and a new private delta
directory as a read-write upper mount. ¿e template used to
clone decoys is a copy of the target container in which all
sensitive �les are replaced with honey-�les.

cr-service ¿e Reverse Proxy uses the CR-Controller
module to communicate with CR-Service daemons running
in the background of each container. ¿e CR-Service uses an
extended version of CRIU (Checkpoint/Restore InUserspace)1 1CRIU (2014)
to checkpoint attacker sessions on the target and restore them
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Figure 2.2: Linux containers pool and decoys life cycle

on decoys. Each CR-Service implements a façade that exposes
CR operations to the proxy’s CR-Controller through a simple
RPC protocol based on Protocol Bu�ers.1 To enable fast,1Google (2008)
OS-local RPC communication between proxy and containers,
IPC sockets (a.k.a., Unix domain sockets) are used.
However, because IPC sockets rely on the �le system as an

address namespace and the proxy runs on the host, estab-
lishing cross-container connections becomes di�cult: host
and container �le-systems are opaque to each other (due to
namespace isolation). To overcome this issue, a directory
located in the host is con�gured as bind mount to all contain-
ers to be used as bridge for IPC sockets, thus enabling the
establishment of IPC connections between the CR-Controller
running in the host and the CR-Service instances running
inside containers.

reverse proxy ¿e proxy plays a dual role in the honey-
patching system, acting as (1) a transport layer transparent
proxy, and (2) an orchestrator for attacker session forking.
As a transparent proxy, its main purpose is to hide the

backend web servers and route client requests. To serve each
client’s request, the proxy server accepts a downstream socket
connection from the client and binds an upstream socket
connection to the backend server, allowing application-layer
sessions to be processed transparently between the client
and the backend server. To keep its size small, the proxy
neither manipulates message payloads, nor implements any
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Figure 2.3: Attacker session forking. Numbers indicate the sequential steps taken to fork
an attacker session.

rules for detecting attacks. ¿ere is also no session caching.
¿is makes it extremely innocuous and lightweight. ¿e
proxy is implemented as a transport-layer reverse proxy to
reduce routing overhead and support the variety of protocols
operating above TCP, including SSL/TLS.
As an orchestrator, the proxy listens for fork requests and

coordinates the attacker session forking as shown in Figure 2.3.
Under legitimate load, the proxy simply routes user requests
to the target and routes server responses to users. However,
attack inputs elicit the following alternate work�ow:

step 1: ¿e attacker probes the server with a cra ed re-
quest (denoted by malicious request GET/malicious in
Figure 2.3).

step 2: ¿e reverse proxy transparently routes the request
to the backend target web server.

step 3: ¿e request triggers the honey-patch (i.e., when the
honey-patch detects an attempted exploit of the patched
vulnerability) and issues a fork request to the reverse
proxy.

step 4: ¿e proxy’s CR-Controller processes the request,
acquires a decoy from the LXC Pool, and issues a check-
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point RPC request to the target’s CR-Service. ¿e CR-
Service

4.1: checkpoints the running web server instance to
the /imgs directory; and

4.2: signals the attacker session with a termination
code, gracefully terminating it.

step 5: Upon checkpoint completion, the CR-Controller
commands the decoy’s CR-Service to restore the dumped
web server images on the decoy. ¿e CR-Service then

5.1: restores a clone of the web server from the dump
images located in the /imgs directory; and

5.2: signals the attacker session with a resume code,
and cleans the dump data from /imgs.

step 6: ¿e attacker session resumes on the decoy, and a
response is sent back to the reverse proxy.

step 7: ¿e reverse proxy routes the response to the attacker.

¿roughout this work�ow, the attacker’s session forking is
completely transparent to the attacker. To avoid any substantial
overhead for transferring �les between target and decoys, each
decoy’s /imgs folder is bind-mounted to the target’s /imgs
directory. A er the session has been forked to the decoy, it
behaves like an unpatched server, making it appear that no
redirection has taken place and the original probed server is
vulnerable.

2.3 session remote forking

At the core of our architecture is the capability of remote
forking an attacker session to a decoy through checkpoint and
restore of the target server. To this end, we have extended
CRIU1 with a memory redaction procedure performed during1CRIU (2014)
checkpoint to protect sensitive data of legitimate users, and a
transparent connection relocation mechanism to restore TCP
connections in the destination decoy without stopping the
target server. We name this extended version CRIUm.
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2.3.1 Checkpoint

¿e checkpoint procedure takes place in the target container
and is initiated when the CR-Service receives a checkpoint
request. ¿e request includes the process group leader $pgid,
attacker process $pid, and attacker thread $tid.
¿e CR-Service passes this information to our CRIUm

checkpoint interface, which in turn: (1) uses the /proc �le
system to collect �le descriptors (/proc/$pgid/fd and /proc/
$pgid/fdinfo), pipe parameters, and memory maps (/proc/
$pgid/maps) for the process group; (2) walks through /proc/
$pgid/task/ and gathers child processes recursively to build
the process tree; (3) locks the network by adding net�lter
rules and collecting socket information; (4) uses ptrace (with
PTRACE_SEIZE) to attach to each child (without stopping it)
and collect VMA areas, the task’s �le descriptor numbers,
and core parameters such as registers; (5) injects a BLOB
code into the child address space to collect state information
such as memory pages; (6) performs memory redaction
using $pid and $tid; (7) uses ptrace to remove the injected
code from the child process and continues until all children
have been traced; (8) unlocks network using net�lter, and
�nishes the procedure by writing the process tree image �les
to /imgs/$tid/.
At this point, CRIUm returns to the caller, the web server is

running, and the attacker thread waits to be signaled. ¿e
CR-Service then sends a termination signal to the attacker
thread, which terminates itself gracefully in the target web
server. ¿is successfully completes the checkpoint request,
and the CR-Service sends a success status response to the
CR-Controller.
We next examine the memory redaction step in greater

detail, to explain how sensitive, in-memory data is safely
replaced with decoy data during the fork.

memory redaction Were session cloning performed
in the typical, rote fashion of copying all bytes, attackers who
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successfully hijack decoys could potentially view any con�den-
tial data copied from the memory space of the original process
(e.g., in a multi-threaded setting). Sophisticated attacks could
thus glean sensitive information about other users previously
or concurrently connected to the original server process, if
such information is cloned with the process. In web servers,
such sensitive information includes IP addresses of other
users, request histories, and information about encrypted
connections. It is therefore important to redact these secrets
during cloning.
We therefore introduce a memory redaction procedure

that replaces sensitive data with specially forged, anony-
mous data during cloning. Since every server application
has di�erent forms of sensitive data stored in slightly di�er-
ent ways, our solution is a general-purpose tool that must
be specialized to each server product by an administrator
prior to deployment. In the case of Apache, we focus on
redaction of user request data, session data, and SSL context
data, which Apache records in a few data structures stored
in memory for each user session. For instance, Apache’s
request_rec struct stores request histories. Other servers
store such data in similar ways: Nginx stores request records
into struct ngx_http_request_s, which references structs
ngx_http_headers_in_t and ngx_http_request_body_t for
request headers and body, respectively, and Lighttd stores
request histories into structs request, request_uri, and
response.
Without special compiler-side support for the redaction

process, redaction can be implemented as a memory sweep
that heuristically identi�es secrets and replaces them with
honey-data at session forking time. ¿is chapter reports the
implementation and evaluation of a sweep-style redactor of
this sort. Chapter 3 subsequently introduces a compiler-side
technology based on dynamic taint tracking that is more
precise and more e�cient, but that requires compiler support.
A brute force strategy for sweep-style memory redaction

is to search the entire process memory space to match and
replace sensitive data. Such a strategy does not perform well.



2.3 session remote forking 29

Instead, we leverage the fact that most security-relevant data
are stored in struct variables in heap or stackmemory, allowing
us to narrow the search space signi�cantly. Freed memory is
included in the search. For e�ciency, our redactor replaces
these structures with anonymous data having exactly the
same length and characteristics. For example, IP addresses in
request_rec are replaced with strings having the same length
that are also valid IP addresses, but randomly generated. ¿is
yields a realistic, consistent process image that can continue
running without errors (save possibly for e�ects of the attack).
¿e redaction is implemented as a step of the checkpoint

procedure, so that the image �les temporarily created during
process checkpoint and shared with decoys do not contain
any sensitive information that could be potentially abused
by attackers. Secrets are redacted from all session-speci�c
structures except the attacker’s, allowing the attacker’s session
to continue uninterrupted.
We initially implemented memory redaction as a separate

operation applied to the image �les generated by CRIU. While
this seemed attractive for avoiding modi�cation of CRIU, it
exhibited poor performance due to reading and writing the
image �les multiple times. Our revised implementation there-
fore realizes redaction as a streaming operation within CRIU’s
checkpointing algorithm. In-lining it within checkpointing
avoids reloading the process tree images into memory for
redaction. In addition, redacting secrets before dumping the
process images avoids ever placing secrets on disk.

2.3.2 Restore

Upon successful completion of a checkpoint operation, the
CR-Controller sends a request to the decoy’s CR-Service into
which the attacker session is to be forked. In addition to
$pgid, $pid, and $tid, the body of the restore request contains
a callback port that has been dynamically assigned by the
reverse proxy to hold the new back-end connection associated
with the attacker session. Once the request is parsed, the CR-
Service passes this information as parameters to the CRIUm
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restore interface, which (1) reads the corresponding process
tree from /imgs/$tid/; (2) uses the clone system call to start
each dumped process found in the process tree with its original
process ID; (3) restores �le descriptors and pipes to their
original states, and executes relocation of ESTABLISHED socket
connections; (4) injects a BLOB code into the process address
space to recreate the memory map from the dumped data;
(5) removes the injected binary, and resumes the execution of
the application via the rt_sigreturn system call.
At this point, CRIUm returns to the caller, the forked

instance is running on the decoy, and the attacker thread waits
to be signaled. ¿e CR-Service sends a resume signal to the
attacker thread, which allows it to resume request processing.
¿is completes the restore request, and the CR-Service sends
a success response to the CR-Controller. Subsequent attacker
requests are relayed to the decoy instead of the target, as
discussed in Section 2.2. Next, we discuss details of the TCP
connection relocation procedure.

established tcp connection relocation Target
and decoys are fully isolated containers running on separate
namespaces. As a result, each container is assigned a unique IP
in the internal network, which a�ects how active connections
are moved from the target to a decoy. To realize this use
case, an extension to CRIU is implemented as part of the
honey-patching framework to support relocation of TCP
connections during process restoration. In what follows, we
will discuss important details of the implementation.
¿e reverse proxy always routes legitimate user connections

to the target; hence, there is no need to restore the state of
connections for these users when restoring the web server
on a decoy. Legitimate connections can simply be restored
to drainer sockets, since we have no interest in maintaining
legitimate user interaction with the decoys. ¿is ensures
that the associated user sessions are restored to completion
without interrupting the overall application restoration.
Conversely, the attacker connection must be restored to

its dumped state when switching the attacker session to a
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create new
connection ( )
tsk

close silently (tsk)

transfer state (tsk, sk)

tsk = create_socket(new bounds)
bind(tsk)
connect(tsk)

enter_repair_mode(tsk)
close(tsk)

transfer_seqs(tsk, sk)
bind(sk)
connect(sk)
transfer_opts(tsk, sk)
transfer_queues(tsk, sk)

Figure 2.4: Procedure for TCP connection relocation

decoy. ¿is is important to avoid connection disruption and
to allow transparent session migration (from the perspective
of the attacker). To accomplish this, the proxy dynamically
establishes a new backend TCP connection between proxy
and decoy containers in order to hold the attacker session
communication. Moreover, a mechanism based on TCP
repair options1 is employed to transfer the state of the original 1Corbet (2012)
attacker’s session socket (bound to the target IP address) into
the newly created socket (bound to the decoy IP address).
Figure 2.4 describes the connection relocation mechanism,

implemented as a step of the attacker’s session restore process.
At process checkpoint, the state information of the original
socket sk is dumped together with the process image (not
shown in the �gure). ¿is includes connection bounds,
previously negotiated socket options, sequence numbers,
receiving and sending queues, and connection state. During
process restore, the connection is relocated to the assigned
decoy by (1) connecting a new socket tsk to the proxy $port
given in the restore request, (2) setting tsk to repair mode and
silently closing the socket (i.e., no FIN or RST packages are
sent to the remote end), and (3) transferring the connection
state from sk to tsk in repair mode. Once the new socket tsk
is handed over to the restored attacker session, the relocation
process has completed and communication resumes, o en
with an HTTP response being sent back to the attacker.
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During connection relocation process, remote packets
must not be allowed to enter the target application stack;
otherwise, it would become impossible to reliably restore
connections, since local and remote endpoints would reach
inconsistent states (e.g., due to sequence number mismatch).
Established connections are therefore locked during relocation,
leveraging a simple net�lter rule that is con�gured in the
target to drop all packets from remote endpoints, while re-
transmission of dropped packets is delegated to conventional
TCP handling. ¿is guarantees that the state of remote sockets
remain consistent with their local counterparts while the
attacker session is being forked over a decoy.

2.4 implementation

We have developed an implementation of RedHerring
for the 64-bit version of Linux (kernel 3.11 or above). ¿e
implementation consists of �ve components: the honey-
patch library, the LXC-Controller, the CR-Controller, the
CR-Service, and the reverse proxy. ¿e honey-patch library
provides the tiny API required for triggering the honey-
patching mechanism. Its implementation consists of about
270 lines of C code that uses no external libraries or utilities.
¿e reverse proxy routes HTTP/S requests in accordance with
the behavior described in Section 2.2. Its implementation is
fully asynchronous and consists of about 325 lines of node.js
JavaScript code. ¿e CR-Controller is implemented as an
external C++module to the proxy, and consists of about 450
lines of code that uses Protocol Bu�ers to communicate with
the CR-Service. Similarly, the LXC-Controller is implemented
as an external node.js library consisting of about 190 lines
of code. ¿e CR-Service receives CR requests from the CR-
Controller and uses CRIUm to coordinate process checkpoint
and restore. Its implementation comprises about 525 lines of
C code. Our extensions to CRIUm add about 710 lines of C
code to the original CRIU tool.
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Figure 2.5: Apache honey-patchable vulnerabilities

2.5 evaluation

¿is section discusses the applicability of honey-patching
and investigates performance characteristics of the session
live migration scheme implemented by RedHerring. First,
we survey the past nine years of Apache’s security reports to
assess the proportion of security patches that are amenable to
our honey-patching technique. ¿en, we investigate the e�ect
of session migration on malicious attack HTTP response
times and report measurements of the impact of concurrent
attacks on legitimate HTTP request round-trip times. Finally,
we compare the performances of the honey-patched versions
of Apache, Lighttpd, and Nginx.
All experiments were performed on a quad-core virtual

machine (VM) with 8 GB RAM running 64-bit Ubuntu 14.04
(Trusty Tahr). Each LXC container running inside the VM
was created using the o�cial LXC Ubuntu template. We
limited resource utilization on decoys so that a successful
attack does not starve the host VM.¿e host machine is an
Intel Xeon E5645 desktop running 64-bit Windows 7.
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2.5.1 Honey-patchable Patches

Our strategy sketched in Section 2.1 for transforming patches
into honey-patches is more easily applied to some patches than
others. In general, patches that have a clear, boolean decision
point where patched and unpatched application behavior
diverge are best suited to our approach, whereas patches that
introduce deeper changes to the application’s control-�ow
structure or data structures may require correspondingly
deeper knowledge of the patch’s semantics to reformulate as a
honey-patch.
To assess the practicality of honey-patching, we surveyed

all vulnerabilities o�cially reported by the Apache HTTP
web server project between 2005 and 2013. We systematically
examined each security patch �le and corresponding source
code to determine its amenability to honey-patching. Fig-
ure 2.5 reports the results. Overall, we found that 49 out of
75 patches analyzed (roughly 65) are easily transformable
into honey-patches. ¿is corroborates the intuition that most
security vulnerabilities are patched with some small check,
usually one that performs input validation.11Brumley et al. (2008)
Listing 2.4 shows an example of a patch (simpli�ed for

brevity) for which honey-patching is not elementary. ¿e
patch replaces the insecure method ap_get_server_name
with an alternate one (ap_escape_logitem) that performs
input sanitization. ¿e sanitization step lacks any boolean
decision point where exploits are detected; it instead performs
a string transformation that replaces dangerous inputs with
non-dangerous ones. ¿us, it is not obvious where to position
the forking operation needed for a honey-patch.
However, even in the case of Listing 2.4, we note that honey-

patching is still possible, given a su�ciently comprehensive
understanding of the patch’s semantics. In particular, this
patch could be converted to a honey-patch by retaining
both the sanitizing and non-sanitizing implementations and
comparing the resulting strings. If the strings di�er, the honey-
patch forks the session to a decoy. Note that not every input
sanitization patch can be honey-patched in this way, since
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Listing 2.4: Abbreviated patch for CVE-2013-1862

1 logline = apr_psprintf(r→pool, ...,
2 ...
3 - ap_get_server_name(r),
4 + ap_escape_logitem(r→pool, ...(r)),
5 ...

Table 2.1: Honey-patched security vulnerabilities for di�erent versions of Apache
Version CVE-ID Description

2.2.21 CVE-2011-3368 Improper URL validation
2.2.9 CVE-2010-2791 Improper timeouts of keep-alive connections
2.2.15 CVE-2010-1452 Bad request handling
2.2.11 CVE-2009-1890 Request content length out of bounds
2.0.55 CVE-2005-3357 Bad SSL protocol check

some sanitization procedures modify even non-dangerous
inputs. ¿us, patches of this sort were conservatively classi�ed
as not easily honey-patchable in our study, since they require
greater e�ort to honey-patch.

experimental validation To evaluate honey-patch-
ing’s e�ectiveness in diverting attackers to decoys, we tested
RedHerring with di�erent honey-patched Apache releases.
Table 2.1 summarizes the tested versions of Apache and corre-
sponding vulnerabilities that we successfully exploited. For
each vulnerability, we tested the system on non-malicious in-
puts and veri�ed that RedHerring does not fork any attacker
sessions. ¿en we exploited honey-patched vulnerabilities,
and veri�ed that the system behaves as a vulnerable decoy
server in response to the attack inputs.
Apache 2.2.21 allows the inadvertent exposure of internal

resources to remote users who send specially cra ed requests
(CVE-2011-3368). For example, the malicious request GET
@private.com/topsecret.pdf HTTP 1.1 may result in an
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exposure of unpatched servers. ¿e security patch for this
vulnerability modi�es protocol.c to send an HTTP 400
response if the request URI is not an absolute path. Our
honey-patch forks to a decoy instead.
Similarly, we honey-patched and tested CVE-2010-1452

and CVE-2009-1890, which involve improper HTTP request
sanitization. CVE-2010-1452 exposes a request handling
problem in which requests missing the path �eld may cause
the worker process to segfault, inviting potential DOS attacks.
CVE-2009-1890 exposes another type of DOS vulnerability in
which a su�ciently long HTTP request may lead to memory
exhaustion.
CVE-2010-2791 allows us to test RedHerring against

attacks exploiting vulnerabilities related to keep-alive con-
nections. In this particular case, a bug neglects closing the
back-end connection if a timeout occurs when reading a
response from a persistent connection, which allows remote
attackers to obtain a potentially sensitive response intended
for a di�erent client. Finally, CVE-2005-3357 exposes a bad
SSL protocol check that allows an attacker to cause a DOS if a
non-SSL request is directed to an SSL port.

2.5.2 Performance Benchmarks

¿is section evaluates RedHerring’s performance. Our ob-
jectives are two-fold: to determine the performance overhead
imposed upon sessions forked to decoys (i.e., the impact
on malicious users), and to estimate the impact of honey-
patching on the overall system performance (i.e., its impact on
legitimate users). To obtain baseline measurements that are
independent of networking overhead, the experiments in this
section are executed locally on a single-node virtual machine
using default Apache settings. Performance is measured in
terms of HTTP request round-trip time.

session forking overhead As expected, forking
attacker sessions from target to decoy containers is the main
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Figure 2.6: Performance benchmarks. (a) E�ect of payload size on malicious HTTP request
round-trip time. (b) E�ect of concurrent attacks on legitimate HTTP request
round-trip time on a single-node VM.

source of performance overhead in RedHerring. To estimate
its impact on attacker response times, we cra ed and sent
malicious requests to the server in order to trigger its internal
honey-patching mechanism, and measured the request round-
trip time of each individual request. For accuracy, we waited
for the completion of each request before sending another
one.
Since Apache allocates requests (including their content)

on the heap, payload size directly impacts the amount of data
to be dumped in each checkpoint operation. It is therefore
important to experiment using varying sizes of malicious
HTTP request payload data (from 0 KB to 36 KB, in steps of
1.2 KB). Also, to estimate the response time overhead incurred
from the memory redaction process, we executed our tests
twice, with memory redaction enabled and disabled.
Figure 2.6a shows the encouraging results of this exper-

iment. Malicious HTTP request round-trip times tend to
remain almost constant as payload size increases. ¿is de-
sirable relationship can be explained by two reasons. First,
CRIU’s approach of copying process memory pages into dump
�les during checkpoints is extremely e�cient. It involves a
direct copy of data between �le descriptors in kernel space
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using the splice system call. As a consequence, the target
memory pages are never bu�ered into user space. Second, our
approach to memory redaction leverages the fact that Apache
stores session data in well-de�ned structs (avoiding having
multiple copies in memory) to locate and redact it directly
into the dump images while they are being generated by the
checkpoint process. Our initial e�orts to implement redaction
a er checkpointing exhibited far poorer performance, leading
to this more e�cient solution.
Overall, the round-trip times of malicious HTTP requests

incur a constant overhead of approximately 0.25 seconds due
to memory redaction. (When memory redaction is used,
the average request takes approximately 0.40 seconds; but
when disabled, it takes 0.15 seconds.) While possibly signif-
icant (depending on networking latencies), we emphasize
that this constant overhead only impacts malicious users, as
demonstrated by the next experiment.

overall system overhead To complete our evalua-
tion, we tested RedHerring on a wide variety of workload
pro�les consisting of both legitimate users and attacker ses-
sions on a single node. In this experiment, we wrote a small
Python script modeling every user and attacker as a separate
worker thread triggering legitimate and malicious HTTP
requests, respectively. We chose the request payload size to be
2.4 KB, based on the median of KB per request measured by
Google web metrics.1 To simulate di�erent usage pro�les, we1Google (2014)
tested our system with 25–150 concurrent users, with 0–20
attackers.
Figure 2.6b plots our results. Observe that for the vari-

ous pro�les analyzed, the HTTP request round-trip times
remain approximately constant (ranging between 1.7 and 2.5
milliseconds) when increasing the number of concurrent
malicious requests. ¿is con�rms that adding honey-patching
capabilities has negligible performance impact on legitimate
requests and users relative to traditional patches, even during
concurrent attacks. It also con�rms our previous claims
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Figure 2.7: Stress test illustrating request throughput for a 3-node, load-balanced RedHer-
ring setup (workload≈ 5K requests, 0.3 6 σ 6 1.2, 25 6 σ 6 94)

regarding the small freezing window necessary to checkpoint
the target application.
Finally, this also shows that RedHerring can cope with

large workloads. In this experiment, we have assessed its
baseline performance considering only one instance of the
target server running on a single node virtual machine. In a
real setting, we can deploy several similar instances using a
web farm scheme to scale up to thousands of users, as we
show next.

stress testing To estimate the throughput of our system
and test its scalability properties, we developed a small HTTP
load balancer in node.js to round-robin requests between three-
node VMs, each hosting one instance of Apache deployed on
RedHerring. In this experiment, we used ab (Apache HTTP
server benchmarking tool) to create a massive workload of
legitimate users (more than 5,000 requests in 10 threads) for
di�erent attack pro�les (0 to 20 concurrent attacks). Each VM
is con�gured with a 2 GB RAM and one quad-core processor.
¿e load balancer and the benchmark tool run on a separate
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VM on the same host machine. Apache runs with default
settings (i.e., no �ne tuning has been performed).
As Figure 2.7 illustrates, the system can handle the strenuous

workload imposed by our test suite. ¿e average request time
for legitimate users ranged from 2.5 to 5.9 milliseconds, with
measured throughput ranging from 169 to 312 requests per
second. In typical production settings we would expect this
delay to be amortized by the network latency (usually on the
order of several tens of milliseconds). ¿is result is important
because it demonstrates that honey-patching can be realized
for large-scale, performance critical so ware applications
with minimal overheads for legitimate users.

2.5.3 Web Servers Comparison

We also tested RedHerring on Lighttpd1 and Nginx,2 web1Lighttpd (2014)
2Nginx (2014) servers whose designs are signi�cantly di�erent from Apache.

¿e most notable di�erence lies in the processing model of
these servers, which employs non-blocking systems calls (e.g.,
select, poll, epoll) to perform asynchronous I/O operations for
concurrent processing of multiple HTTP requests. In contrast,
Apache dispatches each request to a child process or thread.33Pai et al. (1999)
Our success with these three types of server evidences the
versatility of our approach.
Figure 2.8 shows our results. In comparison to Apache,

session forking performed considerably better on Lighttpd
and Nginx (ranging between 0.092 seconds without memory
redaction and 0.156 seconds with redaction). ¿is is mainly
because these servers have smaller process images, reducing
the amount of state to be collected and redacted during
checkpointing.

2.6 conclusion

In this chapter we proposed, implemented, and evaluated
honey-patching as a strategy for elegantly reformulating many
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vendor-supplied, source-level patches as equally secure honey-
patches that raise attacker risk and uncertainty. A light-weight,
resource-e�cient, and �ne-grained implementation approach
based on live cloning transparently forks attacker connec-
tions to sandboxed decoy environments in which in-memory
and �le system secrets have been redacted or replaced with
honey-data. Our implementation and evaluation for the
Apache HTTP web server demonstrate that honey-patching
can be realized for large-scale, performance-critical so ware
with minimal overheads for legitimate users. If adopted on a
wide scale, we conjecture that honey-patching could signi�-
cantly impede certain attacker activities, such as vulnerability
probing, and o�ers defenders a new, potent tool for attacker
deception.
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Redaction of sensitive information from documents has
been used since ancient times as a means of concealing and
removing secrets from texts intended for public release. As
early as the 13th century B.C., Pharaoh Horemheb, in an
e�ort to conceal the acts of his predecessors from future
generations, so thoroughly located and erased their names
from all monument inscriptions that their identities weren’t
rediscovered until the 19th century A.D.1 In the modern era

1Epigraphic Survey (1994,
1998)

of digitally manipulated data, dynamic taint analysis2 has

2cf., Schwartz et al. (2010)
become an important tool for automatically tracking the �ow
of secrets (tainted data) through computer programs as they
execute. Taint analysis has myriad applications, including
program vulnerability detection,3 malware analysis,4 test set

3Portokalidis et al. (2006);
Xu et al. (2006);
Nguyen-tuong et al. (2005);
Cheng et al. (2006); Chang
et al. (2008); Suh et al.
(2004); Newsome and Song
(2005); Bosman et al. (2011);
Ho et al. (2006)
4Egele et al. (2012); Yin et al.
(2007); Egele et al. (2007);
Papagiannis et al. (2011)

generation,5 and information leak detection.6

5Attariyan and Flinn (2010);
Sezer et al. (2007)
6Enck et al. (2014); Zhu et al.
(2011); Gibler et al. (2012);
Bauer et al. (2015); Cox et al.
(2014); Gu et al. (2013)

Our research introduces and examines the associated chal-
lenge of secret redaction from program process images. Safe,
e�cient redaction of secrets from program address spaces
has many applications, including the safe release of program
memory dumps to so ware developers for debugging pur-
poses, mitigation of cyber-attacks via runtime self-censoring
in response to intrusions, and attacker deception through
honeypotting.
Chapter 2 instantiates the latter, proposing honey-patching

as a means of cra ing so ware security patches in such a way
that future attempted exploits of the patched vulnerabilities
appear successful to attackers. ¿is frustrates attacker vul-
nerability probing, and a�ords defenders opportunities to

43
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disinform attackers by divulging “fake” secrets in response
to attempted intrusions. In order for such deceptions to
succeed, honey-patched programs must be imbued with the
ability to impersonate unpatched so ware with all secrets
replaced by honey-data. ¿at is, they require a technology for
rapidly and thoroughly redacting all secrets from the victim
program’s address space at runtime, yielding a vulnerable
process that the attacker may further penetrate without risk
of secret disclosure.
Realizing such runtime process secret redaction in practice

elicits at least two signi�cant challenges. First, the redaction
step must yield a runnable program process. Non-secrets
must therefore not be conservatively redacted, lest data critical
for continuing the program’s execution be deleted. Secret
redaction for running processes is hence especially sensitive
to label creep and over-tainting failures. Second, many real-
world programs targeted by cyber-attacks were not originally
designed with information �ow tracking support, and are
o en expressed in low-level, type-unsafe languages, such as
C/C++. A suitable solution must be amenable to retro�tting
such low-level, legacy so ware with annotations su�cient
to distinguish non-secrets from secrets, and with e�cient
�ow-tracking logic that does not impair performance.
Our approach builds upon the LLVM compiler’s1 DataFlow1Lattner and Adve (2004)

Sanatizer (DFSan) infrastructure,2 which adds byte-granulari-2DFSan (2016)
ty taint-tracking support to C/C++ programs at compile-time.
At the source level, DFSan’s taint-tracking capabilities are
purveyed as runtime data-classi�cation, data-declassi�cation,
and taint-checking operations, which programmers add to
their programs to identify secrets and curtail their �ow at
runtime. Unfortunately, straightforward use of this interface
for redaction of large, complex legacy codes can lead to severe
over-tainting, or requires an unreasonably detailed retooling
of the code with copious classi�cation operations. ¿is is
unsafe, since missing even one of these classi�cation points
during retooling risks disclosing secrets to adversaries.
To overcome these de�ciencies, we augment DFSan with a

declarative, type annotation-based secret-labeling mechanism



process image secret redaction 45

for easier secret identi�cation; and we introduce a new label
propagation semantics, called Pointer Conditional-Combine
Semantics (PC2S), that e�ciently distinguishes secret data
within C-style graph data structures from the non-secret
structure that houses the data. ¿is partitioning of the bytes
greatly reduces over-tainting and the programmer’s anno-
tation burden, and proves critical for precisely redacting
secret process data whilst preserving process operation a er
redaction.
Our innovations are showcased through the development

of a taint tracking-based honey-patching framework for
three production web servers, including the popular Apache
HTTP server (∼2.2MSLOC).¿emodi�ed servers respond to
detected intrusions by transparently forking attacker sessions
to unpatched process clones in con�ned decoy environments.
Runtime redaction preserves attacker session data without
preserving data owned by other users, yielding a deceptive
process that continues servicing the attacker without divulging
secrets. ¿edecoy can thenmonitor attacker strategies, harvest
attack data, and disinform the attacker with honey-data in the
form of false �les or process data.
Our contributions can be summarized as follows:

• We introduce a pointer tainting methodology through
which secret sources are derived from statically anno-
tated data structures, li ing the burden of identifying
classi�cation code-points in legacy C code.

• We propose and formalize taint propagation semantics
that accurately track secrets while controlling taint
spread. Our solution is implemented as a small extension
to LLVM, allowing it to be applied to a large class of
COTS applications.

• We implement a memory redactor for secure honey-
patching. Evaluation shows that our implementation
is both more e�cient and more secure than previous
pattern-matching based redaction approaches.
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• Implementations and evaluations for three production
web servers demonstrate that the approach is feasi-
ble for large-scale, performance-critical so ware with
reasonable overheads.

3.1 sourcing and tracking secrets

Taint-tracking conceptually entails labeling each byte of pro-
cess memory with a security label that denotes its classi�cation
level. At compile-time, a taint-tracking compiler instruments
the resulting object code with extra code that propagates
these labels alongside the data they label. Extending such
taint-tracking to low-level, legacy code not designed with
taint-tracking in mind is o en di�cult. For example, the stan-
dard approach of specifying taint introductions as annotated
program inputs o en proves too coarse for inputs comprising
low-level, unstructured data streams, such as network sockets.
Listing 3.1 exempli�es the problem using a code excerpt from
the Apache web server.1 ¿e excerpt partitions a byte stream1Apache (2014)
(stored in bu�er s1) into a non-secret user name and a secret
password, delimited by a colon character. Naïvely labeling
input s1 as secret to secure the password causes the compiler
to over-taint the user name (and the colon delimiter, and
the rest of the stream), leading to excessive over-tainting—
everything associated with the stream becomes secret, with
the result that nothing can be safely divulged.
A correct solution must more precisely identify data �eld

uptr→password (but not uptr→user) as secret a er the un-
structured data has been parsed. ¿is is achieved in DFSan by
manually inserting a runtime classi�cation operation a er
line 6. However, on a larger scale this brute-force labeling
strategy imposes a dangerously heavy annotation burden on
developers, who must manually locate all such classi�cation
points. In C/C++ programs littered with pointer arithmetic,
the correct classi�cation points can o en be obscure. Inad-
vertently omitting even one classi�cation risks information
leaks.
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Listing 3.1: Apache’s URI parser function (excerpt)

1 /* ®rst colon delimits username:password */
2 s1 = memchr(hostinfo, ':', s − hostinfo);
3 if (s1) {
4 uptr→user = apr_pstrmemdup(p, hostinfo, s1−hostinfo);
5 ++s1;
6 uptr→password = apr_pstrmemdup(p, s1, s − s1);
7 }

Listing 3.2: Apache’s session record (excerpt)

1 typedef struct {
2 NONSECRET apr_pool_t *pool;
3 NONSECRET apr_uuid_t *uuid;
4 SECRET_STR const char *remote_user;
5 apr_table_t *entries;
6 ...
7 } SECRET session_rec;

To ease this burden, a better solution is to introduce a
mechanism whereby developers can identify secret-storing
structures and �elds declaratively rather than operationally.
For example, to correctly label the password in Listing 3.1
as secret, users may add type quali�er SECRET_STR to the
password �eld’s declaration in its abstract datatype de�nition.
A modi�ed LLVM compiler responds to this static annota-
tion by instrumenting the program with instructions that
dynamically taint all values assigned to the password �eld.
Since datatypes typically have a single point of de�nition
(in contrast to the many code points that access them), this
greatly reduces the annotation burden imposed upon code
maintainers.
In cases where the appropriate taint is not statically known

(e.g., if each password requires a di�erent, user-speci�c taint
label), parameterized type-quali�er SECRET〈f〉 identi�es a
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user-implemented function f that computes the appropriate
taint label at runtime.
Unlike traditional taint introduction semantics, which label

program input values and sources with taints, recognizing
structure �elds as taint sources requires a new form of taint
semantics that conceptually interprets dynamically identi�ed
memory addresses as taint sources. For example, a program
that assigns address &(uptr→password) to pointer variable p,
and then assigns a freshly allocated memory address to ∗p,
must automatically identify the freshly allocated memory as a
new taint source, and therea er taint any values stored at
∗p[i] (for all indexes i).
To achieve this, DFSan’s pointer-combine semantics (PCS)

feature is extended to optionally combine (i.e., join) the
taints of pointers and pointees during pointer dereferences.
Speci�cally, when PCS on-load is enabled, read-operation
∗p yields a value tainted with the join of pointer p’s taint
and the taint of the value to which p points; and when PCS
on-store is enabled, write-operation ∗p := e taints the value
stored into ∗p with the join of p’s and e’s taints. Using PCS
leads to a natural encoding of SECRET annotations as pointer
taints. Continuing the previous example, PCS propagates
uptr→password’s taint to p, and subsequent dereferencing
assignments propagate the two pointers’ taints to secrets
stored at their destinations.
PCS works well when secrets are always separated from the

structures that house them by a level of pointer indirection,
as in the example above (where uptr→password is a pointer
to the secret rather than the secret itself). However, label
creep di�culties arise when structures mix secret values with
non-secret pointers. To illustrate, consider a singly linked
list ` of secret integers, where each integer has a di�erent
taint. In order for PCS on-store to correctly classify values
stored to `→secret_int, pointer `must have taint γ1, where
γ1 is the desired taint of the �rst integer. But this causes
stores to `→next to incorrectly propagate taint γ1 to the
node’s next-pointer, which propagates γ1 to subsequent nodes
when dereferenced. In the worst case, all nodes become
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labeled with all taints. Such issues have spotlighted e�ective
pointer tainting as a signi�cant challenge in the taint-tracking
literature.1 1Dalton et al. (2010);

Slowinska and Bos (2009);
Kang et al. (2011); Schwartz
et al. (2010)

To address this shortcoming, PC2S semantics generalize
PCS semantics by augmenting them with pointer-combine
exemptions conditional upon the static type of the pointee. In
particular, a PC2S taint-propagation policy may dictate that
taint labels are not combined when the pointee has pointer
type. Hence, `→secret_int receives `’s taint because the
assigned expression has integer type, whereas `’s taint is not
propagated to `→next because the latter’s assigned expression
has pointer type. Empirical evaluation shows that just a few
strategically selected exemption rules expressed using this
re�ned semantics su�ces to vastly reduce label creep while
correctly tracking all secrets in large legacy source codes.
In order to strike an acceptable balance between security

and usability, the solution only automates tainting of C/C++
style structures whose non-pointer �elds share a common
taint. Non-pointer �elds of mixed taintedness within a single
struct are not supported automatically because C programs
routinely use pointer arithmetic to reference multiple �elds in
a struct via a common pointer (imparting the pointer’s taint to
all the struct’s non-pointer �elds)—for example, when copying
structures, or when marshalling and demarshalling them
to/from streams. ¿is approach therefore targets the common
case in which the taint policy is expressible at the granularity
of structures, with exemptions for �elds that point to other
(di�erently tainted) structure instances. ¿is corresponds to
the usual scenario where a non-secret graph structure (e.g., a
tree) stores secret data in its nodes.
With these new language extensions, users label struc-

ture datatypes as SECRET (implicitly introducing a taint to
all �elds within the structure), and additionally annotate
pointer �elds as NONSECRET to exempt their taints from pointer-
combines during dereferences. Pointers to dynamic-length,
null-terminated secrets get annotation SECRET_STR. For ex-
ample, Listing 3.2 illustrates the annotation of session_req,
used by Apache to store remote users’ session data. Finer-
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programs P ::= c
commands c ::= v :=e | store(τ, e1, e2)

| ret(τ, e) | br(e, e1, e0)
| call(τ, e, args)

expressions e ::= v | 〈u, γ〉 | �b(τ, e1, e2)
| load(τ, e)

binary ops �b ::= typical binary operators
variables v
values u ::= values of underlying IR
types τ ::= ptr τ | τ τ | primitive types
taint labels γ ∈ (Γ,v) (label lattice)

locations ` ::= memory addresses
environment ∆ : v ⇀ u
prog counter pc
stores σ : (`⇀ u) ∪ (v ⇀ `)

functions f
function table φ : f ⇀ `

taint contexts λ : (` ∪ v) ⇀ γ

propagation ρ : γ→ γ

prop contexts A : f→ ρ

call stack Ξ ::= nil
| 〈f, pc, ∆, γ〉 :: Ξ

Figure 3.1: Intermediate representation syntax

granularity policies remain enforceable, but require manual
instrumentation via DFSan’s API, to precisely distinguish
which of the code’s pointer dereference operations propa-
gate pointer taints. ¿is solution thus complements existing
approaches.

3.2 formal semantics

For explanatory precision, the new taint-tracking semantics is
formally de�ned in terms of the simple, typed intermediate
language (IL) in Figure 3.1, inspired by prior work.1 ¿e1Schwartz et al. (2010)
simpli�ed IL abstracts irrelevant details of LLVM’s IR language,
capturing only those features needed to formalize the analysis.

language syntax Programs P are lists of commands,
denoted c. Commands consist of variable assignments, pointer-
dereferencing assignments (stores), conditional branches,
function invocations, and function returns. Expressions
evaluate to value-taint pairs 〈u, γ〉, where u ranges over typical
value representations, and γ is the taint label associated with u.
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Labels denote sets of taints; they therefore comprise a lattice
ordered by subset (v), with the empty set⊥ at the bottom
(denoting public data), and the universe > of all taints at
the top (denoting maximally secret data). Join operation t
denotes least upper bound (union) of taint sets.
Variable names range over identi�ers and function names,

and the type system supports pointer types, function types,
and typical primitive types. Since DFSan’s taint-tracking is
dynamic, we here omit a formal static semantics and assume
that programs are well-typed. Execution contexts are com-
prised of a store σ relating locations to values and variables to
locations, an environment ∆mapping variables to values,
and a tainting context λmapping locations and variables to
taint labels. Additionally, to express the semantics of label
propagation for external function calls (e.g., runtime library
API calls), function table φmaps external function names
to their entry points, a propagation contextA that dictates
whether and how each external function propagates its ar-
gument labels to its return value label, and the call stack Ξ.
Taint propagation policies returned byA are expressed as
customizable mappings ρ from argument labels γ to return
labels γ.

operational semantics Figure 3.2 presents an op-
erational semantics de�ning how taint labels propagate in
an instrumented program. Expression judgments are large-
step (⇓), while command judgments are small-step (→1).
At the IL level, expressions are pure and programs are non-
re�ective. Abstract machine con�gurations consist of tuples
〈σ,∆, λ, Ξ, pc, ι〉, where pc is the program pointer and ι is the
current instruction. Notation ∆[v 7→ u] denotes function
∆ with v remapped to u, and notation P[pc] refers to the
program instruction at address pc. For brevity, we omit P
from machine con�gurations, since it is �xed.
Rule Val expresses the typical convention that hardcoded

program constants are initially untainted (⊥). Binary opera-
tions are eager, and label their outputs with the join (t) of
their operand labels. ¿e semantics of load(τ, e) read the
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Val
σ,∆, λ ` u ⇓ 〈u,⊥〉 Var

σ,∆, λ ` v ⇓ 〈∆(v), λ(v)〉
σ,∆, λ ` e1 ⇓ 〈u1, γ1〉 σ,∆, λ ` e2 ⇓ 〈u2, γ2〉

BinOp
σ,∆, λ ` �b(τ, e1, e2) ⇓ 〈u1 �b u2, γ1 t γ2〉

σ,∆, λ ` e ⇓ 〈u, γ〉
Load

σ,∆, λ ` load(τ, e) ⇓ 〈σ(u), ρload(τ, γ, λ(u))〉
σ,∆, λ ` e ⇓ 〈u, γ〉 ∆ ′ = ∆[v 7→ u] λ ′ = λ[v 7→ γ]

Assign〈σ,∆, λ, Ξ, pc, v := e〉 →1 〈σ,∆ ′, λ ′, Ξ, pc+ 1,P[pc+ 1]〉
σ,∆, λ ` e1 ⇓ 〈u1, γ1〉

σ,∆, λ ` e2 ⇓ 〈u2, γ2〉 σ ′ = σ[u1 7→ u2] λ ′ = λ[u1 7→ ρstore(τ, γ1, γ2)]
Store〈σ,∆, λ, Ξ, pc, store(τ, e1, e2)〉 →1 〈σ ′, ∆, λ ′, Ξ, pc+ 1,P[pc+ 1]〉

σ,∆, λ ` e ⇓ 〈u, γ〉 σ,∆, λ ` e(u ?1 :0) ⇓ 〈u ′, γ ′〉
Cond〈σ,∆, λ, Ξ, pc, br(e, e1, e0)〉 →1 〈σ,∆, λ, Ξ, u ′,P[u ′]〉

σ,∆, λ ` e1 ⇓ 〈u1, γ1〉 · · · σ,∆, λ ` en ⇓ 〈un, γn〉 ∆ ′ = ∆[paramsf 7→ u1 · · · un]
λ ′ = λ[paramsf 7→ γ1 · · ·γn] fr = 〈f, pc+ 1, ∆, γ1 · · ·γn〉

Call〈σ,∆, λ, Ξ, pc, call(τ, f, e1 · · · en)〉 →1 〈σ,∆ ′, λ ′, fr :: Ξ,φ(f),P[φ(f)]〉
σ,∆, λ ` e ⇓ 〈u, γ〉 fr = 〈f, pc ′, ∆ ′, γ〉 λ ′ = λ[vret 7→ A f γ]

Ret〈σ,∆, λ, fr :: Ξ, pc, ret(τ, e)〉 →1 〈σ,∆ ′[vret 7→ u], λ ′, Ξ, pc ′,P[pc ′]〉

Figure 3.2: Operational semantics of a generalized label propagation semantics

value stored in location e, where the label associated with
the loaded value is obtained by propagation function ρload.
Dually, store(τ, e1, e2) stores e2 into location e1, updating
λ according to ρstore. In C programs, these model pointer
dereferences and dereferencing assignments, respectively.
Parameterizing these rules in terms of abstract propagation
functions ρload and ρstore allows us to instantiate them with
customized propagation policies at compile-time, as detailed
in Section 3.2.
External function calls call(τ, f, e1 · · · en) evaluate argu-

ments e1 · · · en, create a new stack frame fr, and jump to
the callee’s entry point. Returns then consult propagation
contextA to appropriately label the value returned by the
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NCS ρ{load,store}(τ, γ1, γ2) := γ2

PCS ρ{load,store}(τ, γ1, γ2) := γ1 t γ2
PC2S ρ{load,store}(τ, γ1, γ2) := (τ is ptr) ? γ2 : (γ1 t γ2)

Figure 3.3: Polymorphic functions for no-combine, pointer-combine, and PC2S propagation
policies

function based on the labels of its arguments. ContextA can
be customized by the user to specify how labels propagate
through external libraries compiled without taint-tracking
support.

label propagation semantics ¿e operational
semantics are parameterized by propagation functions ρ
that can be instantiated to a speci�c propagation policy at
compile-time. ¿is provides a base framework through which
we can study di�erent propagation policies and their di�er-
ing characteristics. Figure 3.3 presents three polymorphic1 1¿e functions are

polymorphic in the sense that
some of their arguments are
types τ.

functions that can be used to instantiate propagation policies.
On-load propagation policies instantiate ρload, while on-store
policies instantiate ρstore. ¿e instantiations in Figure 3.3
de�ne no-combine semantics (DFSan’s on-store default), PCS
(DFSan’s on-load default), and our PC2S extensions:

no-combine ¿e no-combine semantics (NCS) model a
traditional, pointer-transparent propagation policy. Pointer
labels are ignored during loads and stores, causing loaded and
stored data retain their labels irrespective of the labels of the
pointers being dereferenced.

pointer-combine semantics In contrast, PCS joins
pointer labels with loaded and stored data labels during
loads and stores. Using this policy, a value is tainted on-load
(resp., on-store) if its source memory location (resp., source
operand) is tainted or the pointer value dereferenced during
the operation is tainted. If both are tainted with di�erent
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Figure 3.4: PC2S propagation policy on store commands

labels, the labels are joined to obtain a new label that denotes
the union of the originals.

pointer conditional-combine semantics PC2S
generalizes PCS by conditioning the label-join on the static
type of the data operand. If the loaded/stored data has pointer
type, it applies the NCS rule; otherwise, it applies the PCS
rule. ¿e resulting label propagation for stores is depicted in
Figure 3.4.
¿is can be leveraged to obtain the best of both worlds.

PC2S pointer taints retain most of the advantages of PCS—
they can identify and track aliases to birthplaces of secrets,
such as data structures where secrets are stored immediately
a er parsing, and they automatically propagate their labels
to data stored there. But PC2S resists PCS’s over-tainting
and label creep problems by avoiding propagation of pointer
labels through levels of pointer indirection, which usually
encode relationships with other data whose labelsmust remain
distinct and separately managed.
Condition (τ is ptr) in Figure 3.3 can be further generalized

to any decidable proposition on static types τ. ¿is feature
is used to distinguish pointers that cross data ownership
boundaries (e.g., pointers to other instances of the parent
structure) from pointers that target value data (e.g., strings).
¿e former receive NCS treatment by default to resist over-
tainting, while the latter receive PCS treatment by default
to capture secrets and keep the annotation burden low. In
addition, PC2S is at least as e�cient as PCS because propaga-
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tion policy ρ is partially evaluated at compile-time. ¿us, the
choice of NCS or PCS semantics for each pointer operation is
decided purely statically, conditional upon the static types
of the operands. ¿e appropriate specialized propagation
implementation is then in-lined into the resulting object code
during compilation.

example To illustrate how each semantics propagates
taint, consider the following IL pseudo-code, which revisits
the linked-list example informally presented in Section 3.1.

1 store(τid, request_id, parse(s, id_size));
2 store(τkey, p[request_id]→key, parse(s, key_size));
3 store(τctx_t∗, p[request_id]→next, queue_head);

Input stream s includes a non-secret request identi�er and
a secret key of primitive type (e.g., unsigned long). If one
labels stream s secret, then the public request_id becomes
over-tainted in all three semantics, which is undesirable
because a redaction of request_id may crash the program
(when request_id is later used as an array index). A better
solution is to label pointer p secret and employ PCS, which
correctly labels the key at the moment it is stored. However,
PCS additionally taints the next-pointer, leading to over-
tainting of all the nodes in the containing linked-list, some of
which may contain keys owned by other users. PC2S avoids
this over-tainting by exempting the next pointer from the
combine-semantics. ¿is preserves the data structure while
correctly labeling the secret data it contains.

3.3 an integrated secret-redacting,
honey-patching architecture

Figure 3.5 presents the architecture of SignaC1 (Secret Infor- 1named a er pointillism
co-founder Paul Signacmation Graph iNstrumentation for Annotated C),2 which
2Araujo and Hamlen (2015)leverages compiler-instrumented secret-redaction to achieve
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struct request_rec {
   NONSECRET ... *pool;
   apr_uri_t parsed_uri;
   ...
} SECRET;

Annotated Types

clang transformation

Rewriting

new = (request_rec *) apr_pcalloc(r->pool,  );

new = (request_rec *) signac_alloc(apr_pcalloc, r->pool,  );

Instrumentation

clang/LLVM 
-dfsan -pc2s

instrumented
binary

libsignaC 

Figure 3.5: Architectural overview of SignaC illustrating its three-step, static instrumenta-
tion process: (1) annotation of security-relevant types, (2) source-code rewriting,
and (3) compilation with the sanitizer’s instrumentation pass

secret-sanitized process migration for secure honey-patching.
At a high level, it consists of three components: (1) a source-
to-source preprocessor, which (a) automatically propagates
user-supplied, source-level type annotations to containing
datatypes, and (b) in-lines taint introduction logic into dy-
namic memory allocation operations; (2) a modi�ed LLVM
compiler that instruments programs with PC2S taint propaga-
tion logic during compilation; and (3) a runtime library that
the instrumented code invokes during program execution to
introduce taints and perform redaction.

3.3.1 Source-code Rewriting

type attributes Server code maintainers �rst annotate
data structures containing secrets with the type quali�er
SECRET. ¿is instructs the taint-tracker to treat all instantia-
tions (e.g., dynamic allocations) of these structures as taint
sources. Additionally, quali�er NONSECRETmay be applied to
pointer �elds within these structures to exempt them from
PCS. ¿e instrumentation pass generates NCS logic instead
for operations involving such members. Finally, quali�er
SECRET_STRmay be applied to pointer �elds whose destina-
tions are dynamic-length byte sequences bounded by a null
terminator (strings).
To avoid augmenting the source language’s grammar, these

type quali�ers are de�ned using source-level attributes (speci-
�edwith attribute ) followed by a speci�er. SECRETuses the
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annotate speci�er, which de�nes a purely syntactic quali�er
visible only at the compiler’s front-end. In contrast, NONSECRET
and SECRET_STR are required during the back-end instrumen-
tation. To this end, we leverage Quala,1 which extends LLVM 1Sampson (2014)
with an overlay type system. Quala’s type_annotate speci�er
propagates the type quali�ers throughout the IL code.

type attribute rewriting In the preprocessing
step, the target application undergoes a source-to-source
transformation pass that rewrites all dynamic allocations
of annotated data types with taint-introducing wrappers.
Implementing this transformation at the source level allows
us to utilize the full type information that is available at the
compiler’s front-end, including purely syntactic attributes such
as SECRET annotations. ¿e implementation leverages Clang’s
tooling API2 to traverse and apply the desired transformations 2Clang (2016)
directly into the program’s AST. At a high-level, the rewriting
algorithm takes the following steps:

1. It �rst amasses a list of all security-relevant datatypes,
which are de�ned as (a) all structs and unions annotated
SECRET, (b) all types de�ned as aliases (e.g., via type-
def) of security-relevant datatypes, and (c) all structs
and unions containing secret-relevant datatypes not
separated from the containing structure by a level of
pointer indirection (e.g., nested struct de�nitions). ¿is
de�nition is recursive, so the list is computed iteratively
from the transitive closure of the graph of datatype
de�nition references.

2. It next �nds all calls to memory allocation functions
(e.g., malloc, calloc) whose return values are explicitly
or implicitly cast to a security-relevant datatype. Such
calls are wrapped in calls to SignaC’s runtime library,
which dynamically introduces an appropriate taint label
to the newly allocated structure.

¿e task of identifying memory allocation functions is fa-
cilitated by a user-supplied list that speci�es the memory
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allocation API. ¿is allows the rewriter to handle programs
that employ custom memory management. For example,
Apache de�nes custom allocators in its Apache Portable
Runtime (APR) memory management interface.

3.3.2 PC2S Instrumentation

¿e instrumentation pass next introduces LLVM IR code dur-
ing compilation that propagates taint labels during program
execution. Our implementation extends DFSan with the PC2S
label propagation policy speci�ed in Section 3.2.

taint representation To support a large number of
taint labels, DFSan adopts a low-overhead representation of
labels as 16-bit integers, with new labels allocated sequentially
from a pool. Rather than reserving 2n labels to represent
the full power set of a set of n primitive taints, DFSan lazily
reserves labels denoting non-singleton sets on-demand. When
a label union operation is requested at a join point (e.g., during
binary operations on tainted operands), the instrumentation
�rst checks whether a new label is required. If a label denoting
the union has already been reserved, or if one operand label
subsumes the other, DFSan returns the already-reserved label;
otherwise, it reserves a fresh union label from the label pool.
¿e fresh label is de�ned by pointers to the two labels that
were joined to form it. Union labels are thus organized as a
dynamically growing binary DAG—the union table.
¿is strategy bene�ts applications whose label-joins are

sparse, visiting only a small subset of the universe of possible
labels. Our PC2S semantics’ curtailment of label creep thus
synergizes with DFSan’s lazy label allocation strategy, allowing
us to realize taint-tracking for legacy code that otherwise
exceeds the maximum label limit. ¿is bene�t is further
evidenced in our evaluation (Section 3.4).
Table 3.1 shows the memory layout of an instrumented

program. DFSan maps (without reserving) the lower 32 TB of
the process address space for shadow memory, which stores
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Table 3.1: Memory layout of an instrumented program
Start End Memory Region

0x700000008000 0x800000000000 application memory
0x200000000000 0x200200000000 union table
0x000000010000 0x200000000000 shadow memory
0x000000000000 0x000000010000 reserved by kernel

the taint labels of the values stored at the corresponding
application memory addresses. ¿is layout allows for e�cient
lookup of shadow addresses by masking and shi ing the
application’s addresses. Labels of values not stored in memory
(e.g., those stored in machine registers or optimized away at
compile-time) are tracked at the IL level in SSA registers, and
compiled to suitable taint-tracking object code.

function calls Propagation context A de�ned in
Section 3.2 models label propagation across external library
function calls, expressed in DFSan as an Application Binary In-
terface (ABI).¿e ABI lists functions whose label-propagation
behavior (if any) should be replaced with a �xed, user-de�ned
propagation policy at call sites. For each such function, the
ABI speci�es how the labels of its arguments relate to the
label of its return value.
DFSan natively supports three such semantics: (1) discard,

which corresponds to propagation function ρdis(γ) := ⊥
(return value is unlabeled); (2) functional, corresponding to
propagation function ρfun(γ) :=

⊔
γ (label of return value

is the union of labels of the function arguments); and (3)
custom, denoting a custom-de�ned label propagation wrapper
function.
DFSan pre-de�nes an ABI list that covers glibc’s interface.

Users may extend this with the API functions of external
libraries for which source code is not available or cannot
be instrumented. For example, to instrument Apache with
mod_ssl, we mapped OpenSSL’s API functions to the ABI
list. In addition, we extended the custom ABI wrappers of
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memory transfer functions (e.g., strcpy, strdup) and input
functions (e.g., read, pread) to implement PC2S. For instance,
we modi�ed the wrapper for strcpy(dest,src) to taint dest
with γsrc t γdest when instrumenting code under PC2S.

static instrumentation ¿e instrumentation pass
is placed at the end of LLVM’s optimization pipeline. ¿is
ensures that only memory accesses surviving all compiler
optimizations are instrumented, and that instrumentation
takes place just before target code is generated. Like other
LLVM transform passes, the program transformation oper-
ates on LLVM IR, traversing the entire program to insert
label propagation code. At the front-end, compilation �ags
parametrize the label propagation policies for the store and
load operations discussed in Section 3.2.

string handling Strings in C are not �rst-class types;
they are implemented as character pointers. C’s type system
does not track their lengths or enforce proper termination.
¿is means that purely static typing information is insu�cient
for the instrumentation to reliably identify strings or propagate
their taints to all constituent bytes on store. To overcome
this problem, users must annotate secret-containing, string
�elds with SECRET_STR. ¿is cues the runtime library to taint
up to and including the pointee’s null terminator when a
string is assigned to such a �eld. For safety, our runtime
library (see Section 3.3.3) zeros the �rst byte of all fresh
memory allocations, so that uninitialized strings are always
null-terminated.

store instructions Listing 3.3 summarizes the in-
strumentation procedure for stores in di� style. By default,
DFSan instruments NCS on store instructions: it reads the
shadow memory of the value operand (line 1) and copies it
onto the shadow of the pointer operand (line 10). If PC2S is
enabled (lines 2 and 11), the instrumentation consults the
static type of the value operand and checks whether it is a non-
pointer or non-exempt pointer �eld (which also subsumes
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Listing 3.3: Store instruction instrumentation

1 Value* Shadow = DFSF.getShadow(SI.getValueOperand());
2 + if (Cl_PC2S_OnStore) {
3 + Type *t = SI.getValueOperand()→getType();
4 + if (!t→isPointerTy() || !isExemptPtr(&SI)) {
5 + Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
6 + Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
7 + }
8 + }
9 ...
10 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
11 + if (Cl_PC2S_OnStore) {
12 + if (isSecretStr(&SI)) {
13 + Value *Str = IRB.CreateBitCast(v, Type::getInt8PtrTy(Ctx));
14 + IRB.CreateCall2(DFSF.DFS.DFSanSetLabelStrFn, Shadow, Str);
15 + }
16 + }

SECRET_STR) in lines 3–4. If so, the shadows of the pointer
and value operands are joined (lines 5–6), and the resulting
label is stored into the shadow of the pointer operand. If the
instruction stores a string annotated with SECRET_STR, the
instrumentation calls a runtime library function that copies
the computed shadow to all bytes of the null-terminated string
(lines 12–15).

load instructions Listing 3.4 summarizes the anal-
ogous instrumentation for load instructions. First, the in-
strumentation loads the shadow of the value pointed by the
pointer operand (line 1). If PC2S is enabled (line 2), then the
instrumentation checks whether the dereferenced pointer
is tainted (line 3). If so, the shadow of the pointer operand
is joined with the shadow of its value (lines 4–5), and the
resulting label is saved to the shadow (line 9).
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Listing 3.4: Load instruction instrumentation

1 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, ...);
2 + if (Cl_PC2S_OnLoad) {
3 + if (!isExemptPtr(&LI)) {
4 + Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
5 + Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
6 + }
7 + }
8 ...
9 DFSF.setShadow(&LI, Shadow);

Listing 3.5: Memory transfer intrinsics instrumentation

1 + if (Cl_PC2S_OnStore && !isExemptPtr(&I)) {
2 + Value *DestShadow = DFSF.getShadow(I.getDest());
3 + Value *SrcShadow = DFSF.getShadow(I.getSource());
4 + DestShadow = DFSF.combineShadows(SrcShadow, DestShadow, &I);
5 + DFSF.storeShadow(I.getDest(), Size, Align, DestShadow, &I);
6 + }

memory transfer intrinsics LLVM de�nes intrin-
sics for standard memory transfer operations, such as memcpy
and memmove. ¿ese functions accept a source pointer src, a
destination pointer dst, and the number of bytes len to be
transferred. DFSan’s default instrumentation destructively
copies the shadow associated with src to the shadow of dst,
which is not the intended propagation policy of PC2S. We
therefore instrument these functions as shown in Listing 3.5.
¿e instrumentation reads the shadows of src and dst (lines 2–
3), computes the union of the two shadows (line 4), and stores
the combined shadows to the shadow of dst (line 5).

3.3.3 Runtime Library

¿e source-to-source rewriter and instrumentation phases
in-line logic that calls a tiny dedicated library at runtime



3.3 an integrated secret-redacting, honey-patching architecture 63

Listing 3.6: Taint-introducing memory allocations

1 #de®ne signac_alloc(alloc, args...) ({ \
2 void * p = alloc ( args ); \
3 signac_taint(& p, sizeof(void*)); \
4 p; })

to introduce taints, handle special taint-propagation cases
(e.g., string support), and check taints at sinks (e.g., during
redaction). ¿e library exposes three API functions:

• signac_init(pl): initialize a tainting context with a
fresh label instantiation pl for the current principal.

• signac_taint(addr,size): taint each address in interval
[addr, addr+size) with pl.

• signac_alloc(alloc,. . . ): wrap allocator alloc and taint
the address of its returned pointer with pl.

Function signac_init instantiates a fresh taint label and
stores it in a thread-global context, which function f of annota-
tion SECRET〈f〉may consult to identify the owning principal at
taint-introduction points. In typical web server architectures,
this function is strategically hooked at the start of a new
connection’s processing cycle. Function signac_taint sets
the labels of each address in interval [addr, addr+size) with
the label pl retrieved from the session’s context.
Listing 3.6 details signac_alloc, which wraps allocations of

SECRET-annotated data structures. ¿is variadic macro takes a
memory allocation function alloc and its arguments, invokes
it (line 2), and taints the address of the pointer returned by
the allocator (line 3).

3.3.4 Example: Apache Instrumentation

To instrument a particular server application, such as Apache,
SignaC requires two small, one-time developer interventions:
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First, add a call to signac_init at the start of a user session
to initialize a new tainting context for the newly identi�ed
principal. Second, annotate the security-relevant data struc-
tures whose instances are to be tracked. For instance, in
Apache, signac_init is called upon the acceptance of a new
server connection, and annotated types include request_rec,
connection_rec, session_rec, and modssl_ctx_t. ¿ese are
the structures where Apache stores URI parameters and
request content information, private connection data such as
remote IPs, key-value entries in user sessions, and encrypted
connection information. ¿e redaction scheme instruments
the server with PC2S. At redaction time, it scans the result-
ing shadow memory for labels denoting secrets owned by
user sessions other than the attacker’s, and redacts such se-
crets. ¿e shadow memory and taint-tracking libraries are
then unloaded, leaving a decoy process that masquerades as
undefended and vulnerable.

3.4 empirical evaluation

¿is section demonstrates the practical advantages and feasi-
bility of our approach for retro�tting large legacy C codes
with taint-tracking, through the development and evaluation
of a honey-patching memory redaction architecture for three
production web servers. All experiments were performed on
a quad-core VM with 8 GB RAM running 64-bit Ubuntu
14.04. ¿e host machine is an Intel Xeon E5645 workstation
running 64-bit Windows 7.

3.4.1 Honey-patching

Figure 3.6 illustrates how honey-patches respond to intru-
sions by cloning attacker sessions to decoys. Upon intrusion
detection, the honey-patch forks a shallow, local clone of
the victim process. ¿e cloning step redacts all secrets from
the clone’s address space, optionally replacing them with
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Figure 3.6: Honey-patch response to an intrusion attempt

honey-data. It then resumes execution in the decoy by emu-
lating an unpatched implementation. ¿is impersonates a
successful intrusion, luring the attacker away from vulnerable
victims, and o�ering defenders opportunities to monitor and
disinform adversaries.
Chapter 2 implements secret redaction as a brute-force

memory sweep that identi�es and replaces plaintext string
secrets. ¿is is both slow and potentially unsafe; the sweep
constitutes a majority of the response delay overhead dur-
ing cloning,1 and it can miss binary data secrets di�cult to 1Araujo et al. (2014)
express reliably as regular expressions. Using SignaC, we
implemented an information �ow-based redaction strategy
for honey-patching that is faster and more reliable than prior
approaches.
Our redaction scheme instruments the server with dynamic

taint-tracking. At redaction time, it scans the resulting shadow
memory for labels denoting secrets owned by user sessions
other than the attacker’s, and redacts such secrets. ¿e shadow
memory and taint-tracking libraries are then unloaded, leav-
ing a decoy process that masquerades as undefended and
vulnerable.

evaluated software We implemented taint tracking-
based honey-patching for three production web servers:
Apache, Nginx, and Lighttpd. Apache and Nginx are the top
two servers of all active websites, with 50.1 and 14.8 market
share, respectively.2 Apache comprises 2.27M SLOC mostly in 2Netcra (2015)

C.3 Nginx and Lighttpd are smaller, having about 146K and 3Ohloh (2014)
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Figure 3.7: Experiment comparing label creeping behavior of PC2S and PCS on Apache,
Nginx, and Lighttpd

138K SLOC, respectively. All three are commercial-grade,
feature-rich, open-source so ware products without any
built-in support for information �ow tracking.
To augment these products with PC2S-style taint-tracking

support, we manually annotated secret-storing structures
and pointer �elds. Altogether, we added approximately 45,
30, and 25 such annotations to Apache, Nginx, and Lighttpd,
respectively. For consistent evaluation comparisons, we
only annotated Apache’s core modules for serving static
and dynamic content, encrypting connections, and storing
session data; we omitted its optional modules. We also
manually added about 20–30 SLOC to each server to initialize
the taint-tracker. Considering the sizes and complexity of
these products, we consider the PC2S annotation burden
exceptionally light relative to prior approaches.

3.4.2 Taint Spread

over-tainting protection To test our approach’s
resistance to taint explosions, we submitted a stream of (non
keep-alive) requests to each instrumented web server, record-
ing a cumulative tally of distinct labels instantiated during
taint-tracking. Figure 3.7 plots the results, comparing tradi-
tional PCS to our PC2S extensions. On Apache, traditional
PCS is impractical, exceeding the maximum label limit in just
68 requests. In contrast, PC2S instantiates vastly fewer labels



3.4 empirical evaluation 67

 1

 10

 100

 1000

 10000

 10  20  30  40  50  60  70  80  90  100

ta
in

te
d 

by
te

s 
(k

B)

requests

  PC2S
 PCS

(a) Apache

 1

 10

 100

 1000

 10  20  30  40  50  60  70  80  90  100

ta
in

te
d 

by
te

s 
(k

B)

requests

  PC2S
 PCS

(b) Nginx

 1

 10

 100

 1000

 10  20  30  40  50  60  70  80  90  100

ta
in

te
d 

by
te

s 
(k

B)

requests

  PC2S
 PCS

(c) Lighttpd

Figure 3.8: Experiment comparing the e�ects of PC2S and PCS on the cumulative tally of
bytes tainted on Apache, Nginx, and Lighttpd

(note that the y-axes are logarithmic scale). A er extrapolation,
we conclude that an average 16,384 requests are required to
exceed the label limit under PC2S—well above the standard
10K-request TTL limit for worker threads.
Taint spread control is equally critical for preserving pro-

gram functionality a er redaction. To demonstrate, we
repeated the experiment with a simulated intrusion a er
n ∈ [1, 100] legitimate requests. Figure 3.8 plots the cu-
mulative tally of how many bytes received a taint during
the history of the run for each tested web server. While we
observed pronounced label creep for the three web servers,
our experiments reveal that Apache is much more prone to
taint spread failures. Apache has a ubiquitous memory pool
structure that is referenced, directly or indirectly, by all of its
structures, leading PCS to exhibit excessive taint spread.
Unlike Apache, Nginx and Lighttpd are event-driven and

single-threaded (one thread per worker process), and their
request handling is based on a state model of the connection
(i.e., a state machine with di�erent processing phases trig-
gered by connection events). ¿ese servers are much smaller,
o�ering fewer features than Apache. ¿eir data structures are
also leaner, and have fewer levels of pointer indirection. In
Lighttp, for example, almost everything is stored in a single
malloc call placed at the beginning of the request handling
cycle. Taint spread therefore tends to stay contained within
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Table 3.2: Honey-patched security vulnerabilities
Software Version CVE-ID Description

Bash* 4.3 CVE-2014-6271 Improper parsing of environment variables
OpenSSL* 1.0.1f CVE-2014-0160 Buªer over-read in heartbeat protocol extension
Apache 2.2.21 CVE-2011-3368 Improper URL validation
Apache 2.2.9 CVE-2010-2791 Improper timeouts of keep-alive connections
Apache 2.2.15 CVE-2010-1452 Bad request handling
Apache 2.2.11 CVE-2009-1890 Request content length out of bounds
Apache 2.0.55 CVE-2005-3357 Bad SSL protocol check
*tested with Apache 2.4.6

the connection pool of these servers, and is almost identical
despite the chosen taint propagation semantics.
In all cases, redaction crashed PCS-instrumented processes

cloned a er just 2–3 legitimate requests (due to erasure of over-
tainted bytes). In contrast, PC2S-instrumented processes never
crashed; their decoy clones continued running a er redaction,
impersonating vulnerable servers. ¿is demonstrates our
approach’s facility to realize e�ective taint-tracking in legacy
codes for which prior approaches fail.

under-tainting protection To double-check that
PC2S redaction was actually erasing all secrets, we created a
workload of legitimate post requests with pre-seeded secrets
to a web-form application. We then automated exploits of the
honey-patched vulnerabilities listed in Table 3.2, including
the famous Shellshock and Heartbleed vulnerabilities. For
each exploit, we ran the brute-force memory sweep redactor
developed in Chapter 2 a er SignaC’s redactor to con�rm
that the former �nds no secrets missed by the latter. We also
manually inspected memory dumps of each clone to con�rm
that none of the pre-seeded secrets survived. In all cases, the
honey-patch responds to the exploits as a vulnerable decoy
server devoid of secrets.
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Figure 3.9: Request round-trip times for attacker session forking on honey-patched Apache

3.4.3 Performance

redaction performance To evaluate the perfor-
mance overhead of redacting secrets, we benchmarked three
honey-patched Apache deployments: (1) a baseline instance
without memory redaction, (2) the brute-force memory sweep
redactor from Chapter 2, and (3) our PC2S redactor. We
used Apache’s server benchmarking tool (ab) to launch 500
malicious HTTP requests against each setup, each con�gured
with a pool of 25 decoys.
Figure 3.9 shows request round-trip times for each deploy-

ment. PC2S redaction is about 1.6× faster than brute-force
memory sweep redaction; the former’s request times average
0.196s, while the latter’s average 0.308s. ¿is signi�cant reduc-
tion in cloning delay considerably improves the technique’s
deceptiveness, making it more transparent to attackers. Ng-
inx and Lighttpd also exhibit improved response times of
16 (0.165s down to 0.138s) and 21 (0.155s down to 0.122s),
respectively.

taint-tracking performance To evaluate the
performance overhead of the static instrumentation, three
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Figure 3.10: Dynamic taint-tracking performance (measured in request round-trip times)
with varying concurrency c for a static web site (a–d), Bash CGI application
(e–h), and PHP application (i–l)

Apache setups were tested: a static-content HTML website
(∼20 KB page size), a CGI-based Bash application that returns
the server’s environment variables, and a dynamic PHP
website displaying the server’s con�guration. For each web
server setup, ab was executed with four concurrency levels c
(i.e., the number of parallel threads). Each run comprises
500 concurrent requests, plotted in ascendant order of their
round-trip times (RTT).
Figure 3.10 shows the results for c = 1, 10, 50, and 100,

and the average overheads observed for each test pro�le are
summarized in Table 3.3. Our measurements show overheads
of 2.4×, 1.1×, and 0.3× for the static-content, CGI, and
PHP websites, respectively, which is consistent with dynamic
taint-tracking overheads reported in the prior literature.11Serebryany et al. (2012)
Since server computation accounts for only about 10 of
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Table 3.3: Average overhead of instrumentation

Benchmark c = 1 c = 10 c = 50 c = 100

Static 2.50 2.34 2.56 2.32
CGI Bash 1.29 0.98 1.00 0.97
PHP 0.41 0.37 0.30 0.31

overall web site response delay in practice,1 this corresponds to 1Souders (2007)
observable overheads of about 24, 11, and 3 (respectively).
While such overhead characterizes feasibility, it is irrelevant

to deception because unpatched, patched, and honey-patched
vulnerabilities are all slowed equally by the taint-tracking
instrumentation. ¿e overhead therefore does not reveal
which apparent vulnerabilities in a given server instance are
genuine patching lapses and which are deceptions, and it
does not distinguish honey-patched servers from servers
that are slowed by any number of other factors (e.g., fewer
computational resources). In addition, it is encouraging that
high relative overheads were observed primarily for static
websites that perform little or no signi�cant computation.
¿is suggests that the more modest 3 overhead for computa-
tionally heavier PHP sites is more representative of servers for
which computational performance is an issue.

3.5 discussion

3.5.1 Approach Limitations

Our research signi�cantly eases the task of tracking secrets
within standard, pointer-linked, graph data-structures as
they are typically implemented in low-level languages, like
C/C++. However, there are many non-standard, low-level
programming paradigms that our approach does not fully
support automatically. Such limitations are discussed below.
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pointer pre-aliases PC2S fully tracks all pointer
aliases via taint propagation starting from the point of taint-
introduction (e.g., the code point where a secret is �rst as-
signed to an annotated structure �eld a er parsing). However,
if the taint-introduction policy misidenti�es secret sources
too late in the program �ow, dynamic tracking cannot track
pointer pre-aliases—aliases that predate the taint-introduction.
For example, if a program �rst initializes string p1, then aliases
p2 := p1, and �nally initializes secret-annotated �eld f via f :=
p1, PC2S automatically labels p1 (and f) but not pre-alias p2.
Inmost cases thismislabeling of pre-aliases can bemitigated

by enabling PC2S both on-load and on-store. ¿is causes
secrets stored via p2 to receive the correct label on-load when
they are later read via p1 or f. Likewise, secrets read via p2
retain the correct label if they were earlier stored via p1 or f.
¿us, only data stored and read purely using independent
pre-alias p2 remain untainted. ¿is is a correct enforcement
of the user’s policy, since the policy identi�es f := p1 as the
taint source, not p2. If this treatment is not desired, the user
must therefore specify a more precise policy that identi�es the
earlier origin of p1 as the true taint source (e.g., by manually
inserting a dynamic classi�cation operation where p1 is born),
rather than identifying f as the taint source.

structure granularity Our automation of taint-
tracking for graph data-structures implemented in low-level
languages leads to taint annotations at the granularity of
whole struct declarations, not individual value �elds. ¿us, all
non-pointer �elds within a secret-annotated C struct receive
a common taint under our semantics. ¿is coarse granularity
is appropriate for C programs since such programs can (and
o en do) refer to multiple data �elds within a given struct
instance using a common pointer. For example,marshalling is
typically implemented as a pointer-walk that reads a byte
stream directly into all data �elds (but not the pointer �elds)
of a struct instance byte-by-byte. All data �elds therefore
receive a common label a er marshalling.
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Reliable support for structs containing secrets ofmixed taint
therefore requires a �ner-grained taint-introduction policy
than is expressible by declarative annotations of C structure
de�nitions. Such policies must be operationally speci�ed in C
through runtime classi�cations at secret-introducing code
points. Our focus in this research is on automating the much
more common case where each node of the graph structure
holds secrets of uniform classi�cation, toward li ing the user’s
annotation burden for this most common case.

dynamic-length secrets Our implementation
provides built-in support for a particularly common form of
dynamic-length secret—null-terminated strings. ¿is can be
extended to support other forms of dynamic-length secrets as
needed. For example, strings with an explicit length count
rather than a terminator, fat and bounded pointers,1 and other 1Jim et al. (2002)
variable-length, dynamically allocated, data structures can be
supported through the addition of an appropriate annotation
type and a dynamic taint-propagating function that extends
pointer taints to the entire pointee during assignments.

implicit flows Our dynamic taint-tracking tracks
explicit information �ows, but not implicit �ows that disclose
information through control-�ows rather than data�ows.
Tracking implicit �ows generally requires static information
�ow analysis to reason about disclosures through inaction
(non-observed control-�ows) rather than merely actions.
Such analysis is o en intractable (and generally undecidable)
for low-level languages like C, whose control-�ows include
unstructured and dynamically computed transitions.
Likewise, dynamic taint-tracking does not monitor side-

channels, such as resource consumption (e.g., memory or
power consumption), runtimes, or program termination,
which can also divulge information. For our problem domain
(program process redaction), such channels are largely irrele-
vant, since attackers may only ex�ltrate information a er
redaction, which leaves no secrets for the attacker to glean,
directly or indirectly.
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3.5.2 Process Memory Redaction

Our research introduces live process memory image san-
itization as a new problem domain for information �ow
analysis. Process memory redaction raises unique challenges
relative to prior information �ow applications. It is excep-
tionally sensitive to over-tainting and label creep, since it
must preserve process execution (e.g., for process debug-
ging, continued service availability, or attacker deception); it
demands exceptionally high performance; and its security
applications prominently involve large, low-level, legacy codes,
which are the most frequent victims of cyber-attacks. Future
work should expand the search for solutions to this di�cult
problem to consider the suitability of other information �ow
technologies, such as static type-based analyses.11cf., Sabelfeld and Myers

(2003)

3.5.3 Language Compatibility

While our implementation targets one particularly ubiquitous
source language (C/C++), our general approach is applicable
to other similarly low-level languages, as well as scripting
languages whose interpreters are implemented in C (e.g., PHP,
Bash). Such languages are common choices for implementing
web services, and targeting them is therefore a natural next
step for the web security thrust of our research.

3.6 conclusion

PC2S signi�cantly improves the feasibility of dynamic taint-
tracking for low-level legacy code that stores secrets in graph
data structures. To ease the programmer’s annotation burden
and avoid taint explosions su�ered by prior approaches, it
introduces a novel pointer-combine semantics that resists
taint over-propagation through graph edges. Our LLVM im-
plementation extends C/C++ with declarative type quali�ers
for secrets, and instruments programs with taint-tracking
capabilities at compile-time.
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¿e new infrastructure is applied to realize e�cient, pre-
cise honey-patching of production web servers for attacker
deception. ¿e deceptive servers self-redact their address
spaces in response to intrusions, a�ording defenders a new
tool for attacker monitoring and disinformation.
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Detecting previously unseen cyber attacks before they reach
unpatched, vulnerable computer systems (or a erward, for
recovery purposes) has become a vital necessity for many
organizations. In 2015 alone, a new zero-day vulnerability was
found every week—more than doubling the previous year’s
rate—and over 75 of all legitimate websites have unpatched
vulnerabilities, 20 of which a�ord attackers full control
over victim systems.1 ¿e cost of data breaches resulting

1Symantec (2016)

from so ware exploits is expected to escalate to a staggering
$2.1 trillion by 2019.2

2Juniper Research (2015)

Intrusion detection3 has long been championed as a means

3Denning (1987)

of mitigating such threats. ¿e approach capitalizes on the
observation that the most damaging and pernicious attacks
discovered in the wild o en share similar traits, such as the
steps intruders take to open back doors, execute �les and
commands, alter system con�gurations, and transmit gathered
information from compromised machines.4 Starting with 4Sager (2014); DiMaggio

(2015); Jeng (2015); Novetta
¿reat Research Group (2016)

the initial infection, such malicious activities o en leave
telltale traces that can be identi�ed even when the underlying
exploited vulnerabilities are unknown to defenders. ¿e chal-
lenge is therefore to capture and �lter these attack trails from
network tra�c, connected devices, and target applications,
and develop defense mechanisms that can e�ectively lever-
age such data to disrupt ongoing attacks and prevent future
attempted exploits. Speci�cally, anomaly-based intrusion
detection systems alert administrators when deviations from
a model of normal behavior is detected in the observed data.

77



78 deception-enhanced anomaly detection

However, despite its great promise, the advancement of
anomaly-based intrusion detection approaches has been
hindered by the scarcity of realistic, current, publicly available
cyber attack data sets, and the di�culty of accurately and
e�ciently labeling such data sets, which are o en prohibitively
large and complex. ¿is data drought problem has frustrated
comprehensive, timely training of intrusion detection systems
(IDSes), thereby raising IDS false alarm generation rates and
elevating their susceptibility to attacker evasion techniques.11Bhuyan et al. (2014);

Chandola et al. (2009);
Garcia-Teodoro et al. (2009);

Patcha and Park (2007);
Sommer and Paxson (2010)

Toward alleviating this data drought, this chapter proposes
and examines a novel, decep-tion-based approach to enhanc-
ing IDS data streams for faster, more accurate, and more
timely evolution of intrusion detection models to emerging
attacks and attacker strategies. Deception has long been
recognized as a key ingredient of e�ective cyber warfare,22cf., Yuill et al. (2006)
but its applications to IDS have heretofore been recognized
exclusively in contexts where the deception is isolated and
separate from the data stream in which intrusions must be
detected. A typical example is the use of dedicated honeypots
to collect attack-only data streams.3 Such approaches unfortu-3Vasilomanolakis et al. (2015)
nately have limited training value in that they o en mistrain
IDSes to recognize only attacks against honeypots, or only
attacks by unsophisticated adversaries unable to identify and
avoid honeypots. For example, attacks that include substantial
interactivity are typically missed, since the honeypot o�ers no
legitimate services.
Our work overcomes this limitation by integrating decep-

tive attack response capabilities directly into live, produc-
tion server so ware. Such honey-patching (see Chapter 2)
opens the door to realizing mutually supportive defensive
mechanisms that enhance IDS data streams by coordinating
capabilities found in multiple layers of the so ware stack.
¿ese deception-enhanced data streams quench data drought
by providing IDSes with remarkably concept-relevant, current,
feature-�lled information with which to detect and prevent
sophisticated, targeted attacks.
We demonstrate the potential e�ectiveness of this new

IDS approach through the design, implementation, and
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analysis of DeepDig (DEcEPtion DIGging), a framework
for deception-enhanced intrusion detection. Evaluation
shows that extra information harvested through potentially
successful deceptions (1) improves the precision of anomaly-
based IDSes by feeding back into the classi�er attack traces,
(2) provides feature-rich, multi-dimensional attack data for
classi�cation (3) can detect exploits previously unseen by
defenders. Our goal in this work is not to evaluate whether
deceptions succeed, but rather to assess whether successful
deceptions are helpful for intrusion detection, and to what
degree. Given the present scarcity of good, current intrusion
data sets and the costs of conducting large-scale empirical
data collection, we believe that the approach’s facility for
generating richer, automatically-labeled attack data streams
o�ers exceptional promise for future IDS research.
Our contributions can be summarized as follows:

• We propose a so ware patchingmethodology that closes
security vulnerabilities in a way that naturally modulates
the attack labeling and feature extraction process for
intrusion detection. Our approach thus exposes existing,
yet unexplored threat information that can be easily
gathered through cooperation with the application layer
through honey-patching.

• We present a feature-rich attack classi�cation approach
that supports better, more accurate characterization
of malicious activities, and is resistant against attacker
evasion strategies.

• To harness training and test data, we present the design
of a framework for synthetic generation of realistic web
tra�c, which statistically mutates and injects attacks
into the generated output streams.

• We implement and evaluate our ideas on large-scale,
realistic network- and system-level events generated by
this test bed.
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4.1 approach overview

We �rst outline practical limitations of traditional machine
learning techniques for anomaly detection, motivating our
research. We then overview our approach for automatic attack
labeling and feature extraction via honey-patching.

4.1.1 Anomaly-based Intrusion Detection

Anomaly-based intrusion detection systems �ag deviations
from expected system behavior, with the foundational as-
sumption that malicious activities exhibit properties that are
abnormal relative to legitimate usage of a system.1 Typically,1Denning (1987)
such systems make use of machine learning techniques (e.g.,
information theory,2 neural networks,3 clustering,4 or genetic2Lee and Xiang (2001)

3Zhang et al. (2001)
4Sequeira and Zaki (2002)

algorithms5) to capture a model of normal activity and to �nd

5Sinclair et al. (1999)

non-conforming patterns in audit data, such as in network
packets, system call traces, and application logs.
Despite the increasing popularity of machine learning in

intrusion detection applications, its success in operational envi-
ronments has been hampered by speci�c challenges that arise
in the cyber security domain. Fundamentally, machine learn-
ing algorithms perform better at identifying similarities than
at discovering previously unseen outliers, yet typical intrusion
decision scenarios require �nding these outliers. A common
problem therefore arises from the conventional approach of
training a classi�er solely with legitimate examples—a setting
certainly not ideal for intrusion detection, as it necessitates a
perfect model of normality for any reliable classi�cation.66Sommer and Paxson (2010)
Feature extraction7 is also unusually di�cult in intrusion7Blum and Langley (1997)

detection contexts because security-relevant features are o en
not known by defenders in advance. ¿e task of selecting
appropriate features to detect an intrusion (e.g., features that
generate the most distinguishing intrusion patterns) o en
creates a bottleneck in building e�ective models, since it
demands empirical evaluation. Identi�cation of attack traces
among collected workload traces for constructing realistic,
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unbiased training sets is particularly challenging. Current
approaches usually require manual analysis aided by expert
knowledge,1 which severely reduces model evolution and 1Chandola et al. (2009);

Bhuyan et al. (2014)update capabilities to cope with attacker evasion strategies.
A third obstacle is analysis of encrypted data. Encryption is

widely employed to prevent unauthorized users from access-
ing sensitive data transmitted through network links or stored
in �le systems. However, since network-level anomaly detec-
tors typically discard cyphered data, their e�cacy is greatly
reduced by the widespread use of encryption technologies.2 2Garcia-Teodoro et al. (2009)
In particular, attackers bene�t from encrypting their mali-
cious payloads, making it harder for standard classi�cation
strategies to distinguish attacks from normal activity.
High false positive rates are another practical challenge

for adoption of anomaly detection systems.3 Raising too 3Patcha and Park (2007)
many alarms renders anomaly detection meaningless in most
cases, as actual attacks are o en lost among the many alarms.
Studies have shown that e�ective intrusion detection therefore
demands very low false alarm rates.4 4Axelsson (1999)
¿ese signi�cant challenges call for the exploration and

development of new, accurate anomaly detection schemes that
li together information frommany di�erent layers of the
so ware stack. Toward this end, our work extends anomaly-
based intrusion detection with the capability to e�ectively and
e�ciently detect malicious activities bound to the application
layer, a�ording anomaly detection approaches an inexpensive
tool for automatically and continuously extracting security-
relevant features for attack detection.

4.1.2 Digging Deception-Enhanced ¿reat Data

DeepDig is a new approach to enhance anomaly-based intru-
sion detection with threat data sourced from honey-patched
applications. Figure 4.1 shows an overview of the approach.
Unlike conventional anomaly-based detection approaches,
DeepDig incrementally builds a model of legitimate and
malicious behavior based on audit streams and attack traces
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Figure 4.1: DeepDig approach overview

collected from honey-patched servers. ¿is augments the
anomaly detector with security-relevant feature extraction ca-
pabilities not available to typical network intrusion detectors.
Such capabilities are transparently built into the framework,

requiring no additional developer e�ort (apart from routine
patching) to convert the target application into a potent feature
extractor for anomaly detection. Since traces extracted from
decoys are true evidence of malicious activity, this results in
an e�ortless labeling of the data and supports the generation
of higher-accuracy detection models.
Honey-patches add a layer of deception to confound ex-

ploits of known (patchable) vulnerabilities. Previously un-
known (i.e., zero-day) exploits can be mitigated through IDS
cooperation with the honey-patches. For example, a honey-
patch that collects identifying information about a particular
adversary seeking to exploit a known vulnerability can convey
that collected information to train an anomaly detector, which
can then potentially identify the same adversary seeking to
exploit a previously unknown vulnerability.
Our central insight is that so ware security patches can be

repurposed in an IDS setting as automated, application-level
feature extractors aggressively maintained by the collective
expertise of the so ware development community. Honey-
patching transduces that collective expertise into a highly
accurate, rapidly co-evolving feature extraction module for an
IDS. ¿e extractor can e�ortlessly detect previously unseen
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payloads that exploit known vulnerabilities at the application
layer. ¿ese can be prohibitively di�cult to detect by a strictly
network-level IDS due to the challenges summarized in §4.1.1.
By living inside servers that o�er legitimate services, our

deception-enhanced IDS can target attackers who use one
payload for reconnaissance but reserve another for their
�nal attacks. ¿e facility of honey-patches to deceive such
attackers into divulging the latter is useful for training the IDS
to identify the �nal attack payload, which can divulge attacker
strategies and goals not discernible from the reconnaissance
payload alone. ¿e defender’s ability to thwart these and
future attacks therefore derives from a synergy between the
application-level feature extractor and the network-level
anomaly detector to derive a more complete model of attacker
behavior.

4.2 architecture

DeepDig’s architecture, depicted in Figure 4.2, embodies
this approach by leveraging application-level threat data
gathered from attacker sessions misdirected to decoys. Within
this framework, developers use honey-patches to misdirect
attackers to decoys that automatically collect and label moni-
tored attack data. ¿e anomaly detector consists of an attack
modeling component that incrementally updates the anomaly
model data generated by honey-patched servers, and an attack
detection component that uses this model to �ag anomalous
activities in the monitored perimeter.

monitoring & threat data collection ¿e
decoys into which attacker sessions are forked are managed as
a pool of continuously monitored Linux containers.1 Each 1LXC (2014)
container follows the life cycle depicted in Figure 4.3. Upon
attack detection, the honey-patching mechanism acquires
the �rst available container from the pool. ¿e acquired
container holds an attacker session until (1) the session is
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deliberately closed by the attacker, (2) the connection’s keep-
alive timeout expires, (3) the ephemeral container crashes,
or (4) a session timeout is reached. ¿e last two conditions
are common outcomes of successful exploits. In any of these
cases, the container is released back to the pool and undergoes
a recycling process before becoming available again.
A er decoy release, the container monitoring component

extracts the session trace (delimited by the acquire and release
timestamps), labels it, and stores the trace outside the decoy
for subsequent feature extraction. Decoys only host attack
sessions, so precisely collecting and labeling their traces (both
at the network and OS level) becomes e�ortless.
DeepDig distinguishes between three separate input data

streams: (1) the audit stream, collected at the target honey-
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patched server, (2) attack traces, collected at decoys, and
(3) themonitoring stream, the actual test stream collected
from regular servers. Each of these streams contains network
packets and operating system events captured at each server
environment. To minimize performance impact, we used
two powerful and highly e�cient so ware monitors: sysdig
(to track system calls and modi�cations made to the �le
system), and tcpdump (to monitor ingress and egress of
network packets). Speci�cally, the decoys into which attacker
sessions are forked store monitored data outside the decoy
environments to avoid possible tampering with the collected
data.

attack modeling & detection Using the con-
tinuous audit stream and incoming attack traces as labeled
input data, DeepDig incrementally builds a machine learning
model that captures legitimate and malicious behavior. ¿e
raw training set (composed of both audit stream and attack
traces) is piped into a feature extraction component that
selects relevant, non-redundant features (see §4.3) and outputs
feature vectors—audit data and attack data—that are grouped
and queued for subsequent model update. Since the initial
data streams are labeled and have been preprocessed, feature
extraction becomes very e�cient and can be performed auto-
matically. ¿is process repeats periodically according to an
administrator-speci�ed policy. Finally, the attack detection
module uses the most recently constructed attack model to
detect malicious activity in the run-timemonitoring data.

4.3 attack detection

To evaluate whether a successful deception is helpful for
intrusion detection, we have designed and implemented two
feature set models to facilitate anomaly detection: (1) Bi-
Di detects anomalies in security-relevant network streams,
and (2) N-Gram �nds anomalies in system call traces. Our
framework does not impose any particular classi�cation
approach.
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Figure 4.4: Example of uni- and bi-directional bursts

4.3.1 Network Packet Analysis

Bi-Di is a packet-level network behavior analysis approach
that extracts features from sequences of packets and bursts—
consecutive packets oriented to the same direction (viz.,
uplinks from client to server, or downlinks from server to
client). It uses distributions from individual burst sequences
(uni-bursts) and sequences of two adjacent bursts (bi-bursts).
Extracted features include statistics about burst size and time.
To be robust against encrypted payloads, we limit feature
extraction to packet headers.
Figure 4.4 illustrates packet �ows between client (Tx)

and server (Rx). Tx packets and Rx packets are uplink and
downlink packets, respectively. Bi-Di constructs histograms
using features extracted from packet lengths and directions,
and uses a support vector machine (SVM)1 for classi�cation.1Cortes and Vapnik (1995)
To overcome dimensionality issues associated with burst sizes,
bucketization is applied to group bursts into correlation sets
(e.g., based on frequency of occurrence). We next detail the
features selected for uni- and bi-bursts.

Uni-burst features include burst size, time, and count—i.e.,
the sum of the sizes of all packets in the burst, the amount of
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Table 4.1: Packet, uni-burst, and bi-burst features
Category Features

Packet (Tx/Rx) Packet length

Uni-Burst (Tx/Rx) Uni-Burst size
Uni-Burst time∗

Uni-Burst count

Bi-Burst (Tx-Rx/Rx-Tx) Bi-Burst size∗

Bi-Burst time∗
∗new features introduced in this work

time for the entire burst to be transmitted, and the number
of packets it contains, respectively. Taking direction into
consideration, one histogram for each are generated.
Bi-burst features include time and size attributes of Tx-Rx-
bursts and Rx-Tx-bursts. Each is comprised of a consecutive
pair of downlink and uplink bursts. ¿e size and time of each
are the sum of the sizes of the constituent bursts, and the sum
of the times of the constituent bursts, respectively.

Table 4.1 summarizes the features used in our approach. It
highlights new features proposed for uni- and bi-bursts as
well as features proposed in prior works.1 1Alnaami et al. (2015); Dyer

et al. (2012); Hintz (2003);
Panchenko et al. (2011);
Wang et al. (2014)

Bi-bursts capture dependencies between consecutive packet
�ows in a TCP connection. Based on connection characteris-
tics, such as network congestion, the TCP protocol applies
�ow control mechanisms (e.g., window size and scaling,
acknowledgement, sequence numbers) to ensure a level of
consistency between Tx and Rx. ¿is in�uences the size and
time of transmitted packets in each direction. Each packet
�ow (uplink and downlink) thereby a�ects the next �ow or
burst until communicating parties �nalize the connection.

4.3.2 System Call Analysis

¿emonitored data also includes system streams comprising
a collection of OS events, where each event contains multiple
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�elds including event type (e.g., open, read, select), process
name, and direction. Our prototype implementation was
developed for Linux x86_64 systems, which exhibit about
314 distinct possible system call events. DeepDig builds
histograms from these system calls using N-Gram—a system-
level approach that extracts features from system call traces.
N-Gram uses SVM for classi�cation.
¿ere are four feature types: Uni-events are system calls,

and can be classi�ed as enter or exit events. Bi-events are
sequences of two consecutive events, where system calls in
each bi-event constitute features. ¿ere are therefore

(
314
2

)
possible features in a worst-case scenario. Similarly, tri- and
quad-events are sequences of three and four consecutive
events (respectively).
To overcome the inherent dimensionality problem of this

approach, N-Gram uses a tree-based feature selection algo-
rithm1 to select the most e�ective features out of a pool of1Genuer et al. (2010)
possible dimensions and discard the irrelevant ones. ¿e
algorithm builds several decision trees, each of which calcu-
lates information gain (using the computed entropy) for each
feature. ¿e features that have the highest average information
gain are selected. ¿e rest are discarded as they introduce
noise to the data set.
Bi-Di and N-Gram di�er in feature granularity; the for-

mer uses coarser-grained bursting while the latter uses only
individual system call co-occurrences.

4.3.3 Learning

classification Bi-Di and N-Gram both use SVM for
classi�cation. Using a convex optimization approach and
mapping non-linearly separated data to a higher dimensional
linearly separated feature space, SVM separates positive (at-
tack) and negative (benign) training instances by a hyperplane
with themaximum gap possible. Prediction labels are assigned
based onwhich side of the hyperplane eachmonitoring/testing
instance belongs.
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ens-svm Bi-Di and N-Gram can be combined to obtain
a better predictive model. A naïve approach concatenates
features extracted by Bi-Di and N-Gram into a single feature
vector and uses it as input to the classi�cation algorithm.
However, this approach has the drawback of introducing nor-
malization issues. Alternatively, ensemble methods combine
multiple classi�ers to obtain a better classi�cation outcome
via majority voting techniques. For our purposes, we use the
ensemble depicted in Figure 4.5. ¿is Ens-SVM ensemble clas-
si�es new input data by weighting the classi�cation outcomes
of Bi-Di and N-Gram based on their individual accuracy
indexes.
Figure 4.6 describes the voting approach for Ens-SVM. For

each instance in the monitoring stream, if both Bi-Di and
N-Gram agree on the predictive label (line 7), Ens-SVM takes
the common classi�cation as output (line 8). Otherwise, if the
classi�cations disagree, Ens-SVM takes the prediction with
the highest SVM con�dence (line 10). Con�dence is rated
using Platt scaling,1 which uses the following sigmoid-like 1Platt (1999)
function to compute the classi�cation con�dence:

P(y = 1|x) =
1

1+ exp (Af(x) + B)
(4.1)

where y is the label, x is the testing vector, f(x) is the SVM
output, andA and B are scalar parameters learned using Max-
imum Likelihood Estimation (MLE). ¿is yields a probability
measure of how much a classi�er is con�dent about assigning
a label to a testing point.
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Data: training data: TrainX, testing data: TestX
Result: a predicted label LI for each testing instance I

1 begin
2 B← updateModel(Bi-Di,TrainX);
3 N← updateModel(N-Gram,TrainX);
4 for each I ∈ TestX do
5 LB← label(B, I);
6 LN← label(N, I);
7 if LB == LN then
8 LI← LB;
9 else

10 LI← label

(
argmax
c∈{B,N}

con�dence(c, I), I

)
;

11 end
12 end
13 end

Figure 4.6: Ens-SVM voting approach

4.4 implementation

Wedeveloped an implementation of DeepDig for 64-bit Linux
(kernel 3.11 or above). It consists of two main components: the
monitoring controller and the attack detection component.
¿e monitoring controller provides the server monitoring

and attack trace extraction capabilities from decoys. It consists
of about 150 lines of JavaScript code, and leverages tcpdump,
editcap, and sysdig for network and system call tracing and
preprocessing.
¿e attack detection component is implemented as two

Python modules: ¿e feature extraction module, comprising
about 1200 lines of code using scikit-learn1 for data prepro-1Pedregosa et al. (2011)
cessing and tree-based feature selection; and the classi�er
component, comprising 230 lines of code that references the
Weka2 wrapper for LIBSVM.3 ¿e source-code modi�cations2Hall et al. (2009)

3Chang and Lin (2011) required to honey-patch vulnerabilities in Apache HTTP,
Bash, PHP, and OpenSSL consist of about 35 lines of C code.
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4.5 evaluation

¿is section demonstrates the practical advantages and feasibil-
ity of the deception-enhanced intrusion detection capabilities
of DeepDig. First, we present our approach for generating
realistic web tra�c to emulate normal and malicious user
behavior, which we harness to automatically generate training
and test datasets for our experiments. ¿en, we discuss our
experimental setup and investigate the e�ects of di�erent
attack classes and varying numbers of attack instances on
the predictive power and accuracy of anomaly detection.
Finally, we assess the performance impact of the deception
monitoring scheme that captures network packets and system
events.
All experiments were performed on a 16-core host with 24

GB RAM running 64-bit Ubuntu 14.04 (Trusty Tahr). Regular
and honey-patched servers were deployed as LXC containers
running atop the host using the o�cial LXC Ubuntu template.

4.5.1 Synthetic Tra�c Generation

Public network packet capture repositories for IDS evaluation
are very scarce, and the few datasets publicly available are
either outdated (e.g., 1998/2000 DARPA IDS datasets) or
they omit packet payloads (e.g., CAIDA1). Furthermore, 1CAIDA (2016)
�nding datasets that satisfy scenario-speci�c requirements
(e.g., containing particular attack classes) is a well-recognized
problem in this domain.2 2Ahmed et al. (2016);

Bhuyan et al. (2014)To overcome these limitations, we built a synthetic tra�c
generator and testing harness to evaluate our approach. Fig-
ure 4.7 shows an overview of our tra�c generation framework,
inspired by prior work.3 It synthetically streams encrypted 3Boggs et al. (2014)
legitimate and malicious workloads onto a honey-patched
server, resulting in labeled audit streams and attack traces
(collected at decoys) for training set generation.
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Figure 4.7: Synthetic tra�c generation and testing harness

legitimate data generation Normal tra�c is
created by automating complex user actions on a typical web
application, leveraging Selenium1 to automate user interaction1Selenium (2016)
with a web browser (e.g., clicking buttons, �lling out forms,
navigating a web page). We generated tra�c for 10 di�erent
user activities (each repeated 200 times), including web page
browsing, e-commerce website navigation, blog posting, and
interacting with a social media web application. ¿e setup
included a CGI web application and a PHP-based Wordpress
application hosted on a monitored Apache web server. To
enrich the set of user activities, the Wordpress application
was extended with Buddypress andWoocommerce plugins for
social media and e-commerce web activities, respectively.
To create realistic interactionswith theweb applications, our

framework feeds from online data sources, such as the BBC
text corpus, online text generators for personally identi�able
information (e.g., usernames, passwords), and product names
to populate web forms. To ensure diversity, we statistically
sampled the data sources to obtain user input values and
dynamically generated web content. For example, blog title
and body is statistically sampled from the BBC text corpus,
while product names are picked from the product names data
source.
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attack data generation Attack tra�c is gener-
ated based on real vulnerabilities. For this evaluation, we
selected 12 exploits for four well-advertised, high-severity
vulnerabilities. ¿ese include CVE-2014-0160 (Heartbleed1), 1Codenomicon (2014)
CVE-2014-6271 (Shellshock2), CVE-2012-1823 (improper 2NIST (2014b)
handling of query strings by PHP in CGI mode), and CVE-
2011-3368 (improper URL validation). In addition, nine attack
variants exploiting CVE-2014-6271 were created to carry out
di�erent malicious activities, such as leaking password �les
and invoking bash shells on the remote web server. ¿ese
vulnerabilities are important as attack vectors because they
range from sensitive data ex�ltration to complete control and
remote code execution. To emulate realistic attack tra�c, we
interleaved attacks and normal tra�c following the strategy
of Wind Tunnel.3 3Boggs et al. (2014)

dataset Table 4.2 summarizes the synthetic data gener-
ated for our experimental evaluation. ¿e synthetic tra�c
generator was deployed on a separate host to avoid inter-
ference with the test bed server. In total, we generated 12
GB of (uncompressed) network packets and system events
over a period of three weeks. A er feature extraction, the
audit data comprised 1200 normal instances and 1200 attack
instances. Monitoring data consisted of 2400 normal and
attack instances gathered at unpatched web servers, where
the distribution of normal and attack instances varies per
experiment.

4.5.2 Experimental Results

Using this dataset, we trained the classi�ers presented in
§4.3 and assessed their individual performance against test
streams containing both normal and attack workloads. In
each experiment, we measured the true positive rate (tpr),
false positive rate (fpr), accuracy (acc), and F2 score of the
classi�er, where the F2 score is interpreted as the weighted
average of the precision and recall, reaching its best value at 1
and worst at 0.
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Table 4.2: Summary of synthetic data generation.
Normal workload summary

Activity Application Description

Post CGI web app Posting blog on a guestbook CGI web app
Post Wordpress Posting blog on wordpress
Post Wordpress buddypress plugin Posting comment on social media web app
Registration Wordpress woocommerce plugin Product registration and product description
Ecommerce Wordpress woocommerce plugin Ordering of a product and checkout
Browse Wordpress Browsing through a blog post
Browse Wordpress buddypress Browsing through a social media page
Browse Wordpress woocommerce plugin Browsing product catalog
Registration Wordpress User registration
Registration Wordpress woocommerce plugin Coupon registration

Attack workload summary

Attack Type Attack action Description

CVE-2014-0160 Information leak Openssl vulnerability
CVE-2012-1823 System remote hijack PHP CGI vulnerability
CVE-2011-3368 Port scanning Apache vulnerabilty
CVE-2014-6271 System hijack (7 variants) Bash vulnerability
CVE-2014-6271 Remote Password ®le read Bash vulnerability
CVE-2014-6271 Remote root directory read Bash vulnerability
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Figure 4.8: Accuracies of Bi-Di, N-Gram, and Ens-SVM for increasing numbers of
attack classes in the training set for (a)–(d) validation on decoy data, and
(e)–(h) validation on unpatched server data. (i)–(l) Baseline evaluation for
OneSVM-Bi-Di and OneSVM-N-Gram.

detection accuracy To evaluate the accuracy of in-
trusion detection, we tested each classi�er a er incrementally
training it with increasing numbers of attack classes. Each
class consists of 100 distinct variants of a single exploit, as
described in §4.5.1, and an n-class model is one trained with
1–n attack classes. For example, a 3-class model is trained with
300 attacks from 3 di�erent classes. In each run, the classi�er
is trained with 1200 normal instances and n ∈ [1, 12] attack
classes.

validation on decoy data ¿e �rst experiment
measures the accuracy of each classi�er against a test set
composed of 1200 normal instances and 1200 uniformly
distributed attack instances gathered at decoys. Figure 4.8(a)–
(d) presents the results, which serve as a preliminary check
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that the classi�ers can accurately detect attack instances
resembling the ones comprised in their initial training set.

testing on unpatched server data ¿e
second experiment also measures each classi�er’s accuracy,
but this time the test set was derived frommonitoring streams
collected at regular, unpatched servers, and having a uniform
distribution of attacks. Figure 4.8(a)–(d) shows the results,
which indicate that the anomaly detection models of each
classi�er generalize beyond data collected in decoys. ¿is is
critical because it demonstrates the classi�er’s ability to detect
previously unseen attack variants. DeepDig thus enables
administrators to add an additional level of protection to
their entire network, including hosts that cannot be promptly
patched, via the adoption of a honey-patching methodology.
¿e results also show that as the number of training attack

classes increases—which are proportional to the number of
vulnerabilities honey-patched—a steep improvement in the
true positive rate of both classi�ers is observed, reaching an
average tpr of above 99 for the compounded Ens-SVM,
while average false positive rate in all experiments remained
below 0.03. ¿is demonstrates the positive impact of the
feature-enhancing capabilities of deceptive application-level
attack responses like honey-patching.

baseline evaluation ¿is experiment compares the
accuracy of our anomaly detection approach to the accuracy
of an unsupervised outlier detection strategy, which is com-
monly employed in typical intrusion detection scenarios,
where labeling attack data is not feasible or prohibitively
expensive. For this purpose, we implemented two One-class
SVM classi�ers, OneSVM-Bi-Di and OneSVM-N-Gram, using
Bi-Di and N-Gram models for feature extraction, respec-
tively. We do not use Ens-SVM here, since One-class SVM
does not provide con�dence or probability estimates with its
predictions.
One-class SVM uses an unsupervised approach, where

the classi�er trains on one class and predicts whether a test
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instance belongs to that class, thereby detecting outliers—
test instances outside the class. To perform this experiment,
we incrementally trained each classi�er with an increasing
number of normal instances, and tested the classi�ers a er
each iteration against the same test set used in the previous
experiment. ¿e results presented in Figure 4.8(i)–(l) clearly
highlight critical limitations of conventional outlier intrusion
detection systems: reduced predictive power, lower tolerance
to noise in the training set, and higher false positive rates.
In contrast, our supervised approach overcomes such dis-

advantages by automatically streaming onto the classi�ers
labeled security-relevant features, without any human in-
tervention. ¿is is possible because honey-patches identify
security-relevant events at the point where such events are
created, and not as a separate, post-mortemmanual analysis
of traces.

false alarms To evaluate the fpr-reducing e�ects of
DeepDig, we trained each classi�er with data sets containing
1200 normal instances and 0–30 attack instances per class
of attack in 30 incremental training iterations. We tested
each classi�er a er every iteration step and plotted the results
in Figure 4.9. Observe that with just a few attack instances
(≈ 5 per attack class), the false positive rates of all classi�ers
dropped to close to zero percent, demonstrating DeepDig’s
continuous feeding back of attack samples onto classi�ers
greatly reduces false alarms.

4.5.3 Base Detection Analysis

In this sectionwemeasure the success of DeepDig in detecting
intrusions in the realistic scenario where attacks are a small
fraction of the interactions. Although risk-level attribution
for cyber attacks is di�cult to quantify in general, we use
the results of a recent study1 to approximate the probability 1Dudorov et al. (2013)
of attack occurrence for the speci�c scenario of targeted
attacks against business and commercial organizations. ¿e
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Figure 4.9: False positive rate for various training sets

study’s model assumes a determined attacker leveraging one
ormore exploits of known vulnerabilities to penetrate a typical
organization’s internal network, and approximates the prior
of a directed attack to PA = 6 (using threat statistics from
2011).
To estimate the success of intrusion detection, we use a

base detection rate (bdr), expressed using the Bayes theorem
as:

P(A|D) =
P(A) P(D|A)

P(A) P(D|A) + P(¬A) P(D|¬A)]
(4.2)

whereA andD are random variables denoting the occurrence
of a targeted attack and the detection of an attack by the
classi�er, respectively. We use tpr and fpr as approximations
of P(D|A) and P(D|¬A), respectively. To obtain tpr and fpr
values for this scenario, we repeated our �rst experiment,
changing the distribution of legitimate and attack instances in
the monitoring stream to match the study’s model.
Table 4.3 presents the accuracy values and bdr for each

classi�er, assuming P(A) = PA. ¿e numbers expose a practi-
cal problem in intrusion detection research: Despite having
high accuracy values, typical intrusion detection systems are
rendered ine�ective when confronted with their staggering
low base detection rates. ¿is is in part due to their intrinsic
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Table 4.3: Base detection rate percentages for an approximate
targeted attack scenario (PA ≈ 6)1 1Dudorov et al. (2013)

Classi®er tpr fpr acc F2 bdr

OneSVM-Bi-Di 58.3 6.37 71.2 63.1 36.9
OneSVM-N-Gram 93.1 8.23 92.6 93.5 41.9

Bi-Di 87.9 0.26 98.5 89.4 95.5
N-Gram 95.1 0.44 99.1 95.1 93.3
Ens-SVM 98.3 0.19 99.7 98.3 96.9

inability to eliminate false positives in operational contexts. In
contrast, the fpr-reducing properties of our framework—i.e.,
the ability to suppress false alarms through automatic labeling
of network- and system-level attack features—a�ords the
construction of anomaly detection systems that can detect
intrusions much more e�ectively in realistic settings.

4.5.4 Monitoring Performance

To assess the performance overhead of DeepDig’s monitoring
capabilities, we used ab (Apache HTTP server benchmarking
tool) to create a massive user workload (more than 5,000
requests in 10 threads) against two web server containers,
one deployed with network and system call monitoring and
another unmonitored.
Figure 4.10 shows the results, where web server response

times are ordered in an ascendingly. Our measurements show
average overheads of 0.2×, 0.4×, and 0.7× for the �rst 100,
250, and 500 requests, respectively, which is expected given
the heavy workload pro�le imposed on the server. Since
server computation accounts for only about 10 of overall web
site response delay in practice,2 this corresponds to observable 2Souders (2007)
overheads of about 2, 4, and 7 (respectively).
While such overhead characterizes feasibility, it is irrelevant

to deception because unpatched, patched, and honey-patched
servers are all slowed equally by the monitoring activity.
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Figure 4.10: DeepDig performance overhead

¿e overhead therefore does not reveal which apparent vul-
nerabilities in a given server instance are genuine patching
lapses and which are deceptions, and it does not distinguish
honey-patched servers from servers that are slowed by any
number of other factors (e.g., fewer computational resources).

4.6 discussion

methodology Our experiments show that just a few
strategically chosen honey-patched vulnerabilities accompa-
nied by a equally small number of honey-patched applications
provide a machine learning-based IDS su�cient data to per-
form substantially more accurate intrusion detection, thereby
enhancing the security the entire network. ¿us, we arrive at
one of the �rst demonstrable measures of value for deception
in the context of cyber security: its utility for enhancing IDS
data streams.

more features One avenue of future work is to leverage
system call arguments in addition to the features we collected.
A common technique is to use pairwise similarity between
arguments (as sequences) of di�erent streams,1 and then1Chandola et al. (2009)
implement a k-NN (k-Nearest Neighbors) algorithm with
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longest common subsequence (LCS) as its distance metric.
Generally, packet- and system-level data are very diverse and
contain many more discriminating features that could be
explored.

online training ¿e �ood of data that is continuously
streamed into a typical IDS demandsmethods that support fast,
online classi�cation. Prior approaches update the classi�cation
model incrementally using training batches consisting of one
or more training instances. However, this strategy necessitates
frequently re-training the classi�er, and requires a signi�cant
number of instances per training. Future research should
investigate the appropriate conditions for re-training the
model. Change point detection (CPD)1 is one promising 1Haque et al. (2016)
approach to determine the optimal re-training predicate,
based on a dynamic sliding window that tracks signi�cant
changes in the incoming data, and therefore resists concept-
dri failures.

supervised learning Our approach facilitates su-
pervised learning, whose widespread use in the domain of
intrusion detection has been impeded by many challenges
involving the manual labeling of attacks and the extraction
of security-relevant features.2 Our results demonstrate that 2Chandola et al. (2009)
the language-based, active response capabilities provided
via application-level honey-patches signi�cantly ameliorates
both of these challenges. ¿e facility of deception for improv-
ing other machine-learning based security systems should
therefore be investigated.

generalization ¿e results presented in §4.5 show
that our approach substantially improves the accuracy of
anomaly detection, reducing false alarms to much more
practical levels. Although we used many variations of well-
known attacks and showed how DeepDig generalizes when
increasing the pool of attacks, future work should explore
larger numbers of attack classes to simulate threats to high-
pro�le targets. Due to to the high-dimentional nature of
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the collected data, we chose SVM in Bi-Di and N-Gram.
Linearly separating such data is complicated by various feature
interactions, such as network burst sequences and system
IO events. SVM is suitable for this task as it maps non-linear
data points to another linearly separable feature space using
the kernel trick.

intrusion detection datasets One of the major
challenges in evaluating intrusion detection systems is the
dearth of publicly available datasets, which is o en aggra-
vated by privacy and intellectual property considerations. To
mitigate this problem, security researchers o en resort to
synthetic dataset generation, which a�ords the opportunity to
design test sets that validate a wide range of requirements.
Nonetheless, a well-recognized challenge in custom dataset
generation is how to capture the multitude of variations and
features manifested in real-world scenarios.11Bhuyan et al. (2014)
Our evaluation approach builds on recent breakthroughs

in synthetic dataset generation for IDS evalaution2 to create2Boggs et al. (2014)
statistically representative workloads that resemble realistic
web tra�c, thereby a�ording the ability to perform a synthetic,
yet meaningful evaluation of IDS frameworks.

evaluation Establishing a straight comparison of our
results to prior work can be very challenging. ¿e majority
of anomaly-based intrusion detection techniques are still
tested on extremely old datasets.3 For instance, recently-3Ahmed et al. (2016);

Sommer and Paxson (2010) proposed SVM-based approaches for network intrusion
detection have reported true positive rates in the order of
92 for the DARPA/KDD datasets, with false positive rates
averaging 8.2.4 Using the model discussed in §4.5.3, this4Manandhar and Aung

(2014); Zhang et al. (2015) corresponds to an approximate base detection rate of only
42, in contrast to 96.9 estimated for our approach. How-
ever, such comparison can lead to erroneous conclusions,
as the assumptions made by DARPA/KDD do not re�ect
the contemporary attack protocols and recent vulnerabilities
targeted by our model.
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4.7 conclusion

¿is chapter introduced, implemented, and evaluated a new
approach for enhancing anomaly-based IDSes with threat
data sourced from deceptive, application-layer, so ware traps.
Unlike conventional anomaly-based detection approaches,
DeepDig incrementally builds models of legitimate and
malicious behavior based on audit streams and traces collected
from these traps. ¿is augments the IDS with inexpensive
and automatic security-relevant feature extraction capabilities.
¿ese capabilities require no additional developer e�ort apart
from routine patching activities. ¿is results in an e�ortless
labeling of the data and supports a new generation of higher-
accuracy detection models.
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DECEPTION AS A SERVICE

Cloud computing has attracted signi�cant attention in recent
years as a model for scalable service consumption and as a
delivery platform for service-oriented computing. Revolution-
ary advances in hardware and virtualization technologies
have elevated cloud computing to a thriving industry that
a�ords enterprises the ability to shrink IT expenditures, adapt
quickly to variable workloads, and reduce administration
overhead. ¿ese successes have been achieved principally by
reinventing a wide variety of traditionally on-site computing
resources as deliverable services according to the mantra
Everything as a Service (XaaS).1 Pillars of the XaaS mantra 1Banerjee et al. (2011)
typically include So ware as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS).
¿e central observation of this chapter is that the technolog-

ical advances at the heart of the cloud computing movement
have now converged to cultivate a remarkably fertile ground
for mass-scale cyber deception as a defense. In particular,
many foundational cloud technologies including massive
replication, high performance process migration and load
balancing, hardware and so ware heterogeneity, aggressive
multitenancy, and multi-layer virtualization, have led to com-
puting environments ideal for assembling a “hall of mirrors”
in which legitimate services are interlaced with deceptive
computations, platforms, data, and so ware, all designed to
misdirect attackers away from valuable targets. We refer to
this vision as Deception as a Service (DaaS).
DaaS comes as a welcome contrast to widespread fears

about the security of cloud computing systems. With over a
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third of our personal data projected to be stored in public
clouds by 2016,1 it is unsurprising that the great majority1Gartner (2012)
of cloud stakeholders have reported fears of cloud-speci�c
attacks by external threat actors.2 To help alleviate these2Burger et al. (2013)
concerns, there has been increasing research on enhancing the
security of cloud platforms. Advancements in this area include
ensuring computation integrity,3 protecting data security and3Khan and Hamlen (2012b);

Santos et al. (2009); Chow
et al. (2009)

privacy,4 and intrusion detection and prevention.5

4Takabi et al. (2010); Bowers
et al. (2009); Nepal et al.

(2011); Khan and Hamlen
(2012a); Pearson (2009)

5Khan and Hamlen (2013);
Khan et al. (2014)

DaaS complements and enhances these advancements by
introducing new, deception-powered defenses that leverage
facilities and opportunities unique to cloud environments, and
that cannot be realized as e�ectively on traditional computing
platforms. Clouds are thus championed as a cyber security
opportunity, rather than a security-resistant environment to
which traditional defenses must be transitioned.
¿roughout the remainder of the chapter, we present a

preliminary investigation of the power of commodity cloud
computing systems for enhancing and strengthening the
deceptive capabilities of honey-patching (see Chapter 2).
Our approach enables the automatic deployment and scal-
ing of RedHerring on multiple cloud architectures and
environments, a�ording cyber-defenders a new form of ac-
tive, o�ensive response to attacks in commodity cloud and
service-oriented infrastructures.

5.1 architectural overview

Modern computing environments typically require the con�g-
uration and orchestration of multiple services for applications
to function. ¿ese can range from a few instances (e.g., a web
server and a database), to very complex setups such as IaaS
deployments requiring many components to be installed,
con�gured, and interconnected (e.g., OpenStack). To ease
the task of creating and maintaining such service-oriented
environments, con�gurationmanagement tools like Chef6 and6Chef (2016)

Puppet,7 or even general-purpose scripting languages such as7Puppet (2016)
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Python or Bash, automate the con�guration of machines to a
particular speci�cation.
More recently, Juju1 has been introduced as a model speci�- 1Canonical (2016)

cation for service oriented architectures and deployments, en-
abling transparent and e�cient management of cloud services
on both public cloud infrastructures (e.g., Amazon EC2, Mi-
croso Azure, Joyent Triton) and private infrastructures (e.g.,
OpenStack, physical servers, containers). Juju abstracts and
simpli�es cloud deployment and scaling, and provides users
with client-side command-line tools to uniformly manage
locally and remotely deployed services. Application-speci�c
knowledge such as dependencies, operational events like
backups and upgrades, and integration options with other
pieces of so ware are encapsulated in Juju’s charms. A charm
de�nes everything required to deploy a particular service, and
is composed of user-implemented hooks which Juju invokes at
di�erent stages of the service’s lifecycle.

a service-oriented architecture for hon-
ey-patching Using Juju as underlying framework, we
implemented a charm that automates the deployment and
scaling of RedHerring on top of IaaS environments, there-
fore augmenting cloud infrastructures with DaaS capabilities
through honey-patching. Figure 5.1 shows an overview of the
DaaS architecture. Users of our platform can easily deploy
RedHerring on a variety of environments including KVM,
Xen, and LXC. Physical deployment is also supported through
bare-metal containers and metal-as-a-service, which lets
physical servers be treated like virtual machines in the cloud.
For example, the command line instruction

juju-deploy redherring -to machine:0/lxc

instructs the juju state service component to deploy a new
unit of RedHerring on environment 2. ¿is triggers the
automatic instantiation of a new container (i.e.,machine 0),
and the juju agent running on the container is tasked with the
execution of the charm speci�cation.
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Figure 5.1: Overview of a DaaS architecture leveraging honey-patching

scalability One of the main bene�ts of this service-
oriented architecture is the simplicity of scaling services up
and down. For example, to scale RedHerring up horizontally,
users �rst instruct juju to add the desired number of units
to the existent deployment (e.g., juju add-unit redherring

-to machine:1/maas), and then setup load balancing to dis-
tribute the work load among units. To achieve this, one option
is to use the infrastructure’s built-in load balancing capabilities.
An alternative option is to deploy a load balancing service
such as HAProxy:

juju-deploy haproxy -to machine:0/maas;

juju add-relation redherring haproxy

Conversely, scaling down follows a similar procedure to
remove deployed units.

5.2 service modeling

Each RedHerring service instance goes through a series of
events during its lifecycle: install, con�gure, start, upgrade,
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Figure 5.2: RedHerring service modeling for a DaaS deployment

and stop. Figure 5.2 depicts these events and the associated
state transitions. Two special events, bootstrap and destroy,
result in pre-de�ned actions executed by Juju, and correspond
to the creation and destruction of the deployment environ-
ment, respectively. For each of the remaining events, Juju
executes speci�c hooks speci�ed in the redherring charm.
Hooks are executable scripts in a charm’s hooks directory,
and are invoked by the unit’s juju agent at particular times in
the service lifecycle. We designed redherring hooks to be
idempotent, meaning that there is no observable di�erence
between running a hook once and running it multiple times
in a row.
Figure 5.3 details hooks associated with RedHerring’s

deployment. Hooks setup target environment and setup decoy
environment pre-installs onto the deployment environment
the target and decoy containers �le systems according to
the charm’s con�guration parameters (e.g., string pre�x for
decoy names, container pool size). Hook install applications
fetches all applications speci�ed in the con�guration (e.g., a
honey-patched Apache HTTP) and installs them into the
target container. Finally, hooks install reverse proxy and setup
internal network install the proxy on the unit and isolate the
target container from the pool of decoys as a separate subnet,
respectively.

5.3 experimental validation

To validate our DaaS architecture, we have implemented a Juju
charm for RedHerring, and used it to deploy honey-patching
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Figure 5.3: Redherring charm deployment hooks

as a service both locally (on LXC containers running on top
of a Linux VM) and remotely (on public clouds, including
Amazon EC2 and Joyent Triton). To test our deployments, we
streamed into each instance synthetic attacks derived from
our regression test suite. Overall, our hooks consist of about
460 lines of Bash code, and expose a rich set of con�guration
parameters to ease deployment customization. Assessing
how the unique set of features and characteristics of each
cloud provider a�ects deception delivery in public clouds is
planned for future work. In particular, we plan to investigate
architectural properties that will facilitate the implementation
of multi-layer deception strategies across the deception stack.

5.4 conclusion

¿is chapter introduced and implemented Deception as a Ser-
vice (DaaS) as new security model for cloud computing. DaaS
transparently enhances existing cloud infrastructures with
deceptive capabilities through honey-patching, o�ering cyber-
defenders a new form of active, o�ensive response to attacks
in commodity cloud and service-oriented infrastructures.
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MOVING TARGET DECEPTION
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K.W. Hamlen, M.P. Stoecklin,
J. Jang, and X. Hu. Author
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research reported herein.

E�ective deception o en demands high dynamicity—defend-
ers must remain adaptable and agile in order to e�ectively
lure and misdirect diverse, evolving adversaries.1 However,

1Heckman et al. (2015,
Chapter 6)

the honey-patching, process image secret redaction, and DaaS
techniques presented in Chapters 2, 3, and 5 (respectively) have
heretofore been presented in relatively static con�gurations.
For example, the decision of which vulnerabilities to honey-
patch, which secrets to redact, and which deceptive services
to deploy on the cloud, have all been presented according to
semi-manual processes dependent upon human intervention.
While helpful for presentational clarity, this static approach
is suboptimal for waging long-term deceptive campaigns,
since it could result in deceptions becoming predictable and
stale, potentially a�ording attackers the opportunity and time
to �ngerprint and circumvent honey-patched applications.
In addition, as time elapses and new vulnerabilities emerge,
attacks and probing activity change,2 potentially rendering 2Arbaugh et al. (2000);

Lippmann et al. (2002);
Rescorla (2005); Browne et al.
(2001)

old deceptions less enticing to cyber criminals.
To overcome this disadvantage, this chapter proposes

so ware deception steering as a new moving target defense
technique for counterreconnaissance and attack intelligence
gathering, which leverages application-level, deceptive attack
responses through honey-patching to constantly adapt the
deception surface of the target application. Toward this end,
we designed and implemented Quicksand, an adaptive,

111
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so ware version emulation architecture, in which the set
of honey-patched vulnerabilities in a target application is
dynamically re-selected to increase the likelihood of deceiving
and entrapping attackers. Based on the history of past attacks
(e.g., gathered at the network level), Quicksand chooses
to emulate a particular so ware version henceforth, with
a particular set of vulnerabilities honey-patched (and all
other known vulnerabilities regular-patched). ¿ismoving
deception surface undermines the attacker’s ability to identify
and detect speci�c con�gurations of honey-patched applica-
tions (e.g., by probing for a particular set of honey-patches),
therefore rendering honey-patching more resilient against
�ngerprinting attacks.
Our work includes the following contributions:

• We propose a deception-based moving target architec-
ture to dynamically honey-patch so ware applications,
rendering them less predictable and more robust against
attackers’ anti-deception e�orts.

• Our work leverages existing enterprise defense infras-
tructures for threat intelligence gathering, and proposes
a new class of cyber maneuvers for moving target de-
fense based on honey-patching; our approach bene�ts
from previously gathered attack data to drive honey-
patch re-selection in order to increase the likelihood of
deceiving and misdirecting attackers.

• We propose, design, and implement an e�ective version-
control strategy to facilitate patch re-selection and
automatically resolve source-level con�icts between
patches.

6.1 system overview

6.1.1 So ware Version Emulation

We de�ne so ware version emulation as a cyber-deception
maneuver for honey-patching. Leveraging intrusion alerts



6.1 system overview 113

collected at the network perimeter, Quicksand dynamically
adapts the target application to emulate a particular so ware
version, with a particular set of vulnerabilities honey-patched
(and all other known vulnerabilities regular-patched), a
particular set of features/modules enabled, and a particular
guest OS version deployed in decoy environments. ¿e
scope of adaptation can go beyond the application and host
boundaries—for instance, perimeter defenses (if any) can
also be recon�gured to intentionally allow previously �ltered
attacks to reach the honey-patch. ¿is recon�guration need
not happen live; it can be re-selected during nightly reboots,
for example. ¿e selections are based on which con�guration
is likely to gather the most useful threat data given the history
of past attacks.

6.1.2 Design Principles

So ware version emulation requires a patch management
framework that facilitates so ware version composition and
minimizes the occurrence of source-level con�icts between
patches. Quicksand de�nes honey-patches as modi�cations
to their corresponding regular, vendor-supplied patches. For
instance, Figure 6.1 exempli�es a vulnerability causing the
GNU Bash shell to improperly parse function de�nitions
in the values of environment variables.1 Prior to the patch, 1NIST (2014a)
the vulnerable shell interpreter allowed remote attackers to
execute arbitrary code or cause a denial of service on the
victim’s machine. ¿e patch, named CVE-2014-6277 in this
example, �xes the vulnerability by extending the check for
what constitutes a legal function identi�er to include some
extra sanity checks (line 2–3 in the patch code, depicted in
di� style). ¿e honey-patch CVE-2014-6277-hp modi�es
the original patch to fork attacks onto decoy environments
while impersonating the unpatched code (lines 8–9 in the
honey-patch code) in order to deceive adversaries. Encoding
honey-patches in this manner naturally models the depen-
dency among honey-patches, their corresponding patches
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1 ...
2 if (legal_identi®er(name))
3 ...
4 else

5 {
6 last_command_exit_value = 1;
7 report_error(...);
8 }

1 ...
2 - if (legal_identi®er(name))
3 + if (absolute_program(tname) && (posixly_correct == 0 || legal_identi®er(tname)))
4 ...
5 else

6 {
7 last_command_exit_value = 1;
8 report_error(...);
9 }

1 ...
2 if (absolute_program(tname) && (posixly_correct == 0 || legal_identi®er(tname)))
3 ...
4 else

5 {
6 last_command_exit_value = 1;
7 - report_error(...);
8 + hp_fork();
9 + hp_skip(report_error(...));
10 }

CVE-2014
-6277

CVE-2014
-6277-hp

“patch for
CVE-2014-6277”

“simpli®ed
honey-patch for
CVE-2014-6277”

Figure 6.1: Patch and honey-patch for CVE-2014-6277 (abbreviated), and dependencies
between them denoted by dashed arrows

and unpatched source code. It also makes patch/honey-patch
pairs con�ict-free by construction, greatly simplifying the
task of composing new versions of the target application.
Patch dependencies (denoted by dashed arrows between

two patches) are calculated based on how patches a�ect source
code rather than by the order in which they are introduced
into the code base. ¿is removes the temporal constraint
among patches and enables the selection of patch sets based
on their true dependencies. ¿is patch dependency model is
implemented in the Darcs version control system,1 which our1Roundy (2005)
so ware version-emulation architecture leverages to select
consistent, con�ict-free application versions for deployment.
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6.1.3 Darcs Patch ¿eory

Darcs is a change-based version control system. In contrast
to conventional history-based version control systems (e.g.,
Subversion, Git, CVS), which represent repository states as
�le trees, the state of a Darcs repository is de�ned by the
set of patches it contains. ¿is facilitates a speci�c kind of
cherry-picking operation—one that is not constrained by
temporal dependencies among patches—which is central
to our patch set selection model. Before explaining how
cherry-picking works, we introduce a few de�nitions and
properties of Darcs’ underlying patch theory.1 1Lynagh (2006); Darcs (2016)

definitions ¿e state of a repository is also called a
context. We write oAa to denote that a repository moves from
context o to context a via a patch A. Patches are normally
stored sequentially, and for any consecutive pair of patches,
the �nal state of the �rst patch must be identical to the initial
state of the second patch. A sequence of patches is written
in le to right order, such as oAaBbCc (or simply ABC if
we omit patch contexts). Parallel patches share a common
initial context and diverge to two di�erent states (A∨ B).
Conversely, anti-parallel patches have di�erent initial states
yielding the same context (A−1 ∧ B−1).

inversion Every Darcs patch is invertible, a�ording
the application of patches in either forwards or backwards
directions to reach a particular context: (AB)−1 = B−1A−1.
In particular,AA−1 has no e�ect, and (A−1)−1 = A.

commutation ¿e commutation of patchesA and B is
represented byAB↔ B ′A ′, whereA ′ and B ′ are intended to
perform the same change as A and B. Intermediate states
may di�er however: oAaBb ↔ oB ′xA′b. Amerge operation
is de�ned as a pairwise commutation, taking two parallel
patches and converts them into a pair of sequential patches:
A∨ B =⇒ AB ′ ↔ BA ′.



116 moving target deception through version emulation

p1 p2 p3 p4 p5

Figure 6.2: A repository state showing patch dependencies

destinationsource

p1 p2 p3 p4 p5 p1 p2 p5
pull p1,p2,p5

Figure 6.3: Patch cherry picking

cherry picking Patch cherry picking refers to the ability
to pull patches from a repository regardless of the order in
which they were originally pushed into the repository. To illus-
trate, consider the repository state depicted in Figure 6.2. ¿e
repository consists of patches p1–p5, and the changes made
by each patch are summarized underneath each patch. ¿e
dependencies between patches (denoted by dashed arrows)
are computed by Darcs. Figure 6.3 illustrates cherry picking
for this particular example. ¿e result of pulling patches p1,
p2, and p5 from the source onto the destination repository is
that the selected patches are adjusted to �t the new context
(without p3 and p4). Darcs automatically performs such
adjustments using its powerful patch manipulation algebra to
provide users of the system the ability to reason about patches
as sets—despite patches being stored as sequences internally.

patch obliteration and consistency Another
advantage of patch commutativity is that patches can be
undone (or obliterated) without rolling back patches that
historically succeed them. In the example above, patch p4
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p1 p2 p3 p4 p5 p1 p2 p3 p5
obliterate p4

p1 p2 p3 p4 p5
obliterate p3 can´ t undo p3 without

undoing p4 first!

Figure 6.4: Patch obliteration and consistency

can be removed from the repository without undoing p5, as
illustrated in Figure 6.4. To accomplish this, Darcs rearranges
the sequence of patches by commuting p4 with p5, and then
removes p4. However, Darcs does not allow p3 to be removed
without �rst undoing p4; allowing this operation would
constitute a patch dependency violation and render the state
of the repository inconsistent.

6.2 architecture

¿e architecture of Quicksand is shown in Figure 6.5. ¿e
analysis and correlation component parses intrusion alerts
and correlates them with intrusion signature metadata. ¿e
patch selectionmodule takes this aggregated data and selects
which version of the so ware should be deployed. ¿e version
deployment module then uses this information to synthesize
and deploy a new version of the application into RedHer-
ring, including the speci�cation of the target modules and
environment. ¿is process executes repeatedly, and the delay
threshold can be �xed, random, or dynamically adjusted (e.g.,
based on evidence and severity of intrusion alerts collected at
the network perimeter).

6.2.1 Patch Management

Figure 6.6 illustrates our patch management strategy. Regular
patches are stored (or pushed) into Darcs repositories base
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Figure 6.5: Quicksand architecture overview

and hp, and honey-patches are stored into repository hp
only. We call B the set of patches making up the base version
of the so ware (e.g., the initial commit, a speci�c tagged
version of the application containing all patches up to the tag).
Candidate versions selected by the path selection module
are stored as tags (e.g., v1–vn) by pulling speci�c patch sets
from hp, which allows them to be easily retrieved for version
deployment.
¿is patch management strategy leverages the underlying

Darcs infrastructure, which automatically computes the tran-
sitive dependency relations for any given patch selection. For
example, when pulling honey-patch p4-hp, Darcs correctly
pulls patch set B and patches p3, p4, and p4-hp. ¿is has the
advantage of enabling a much simpler patch set generation
algorithm (see Section 6.2.3).

6.2.2 Alert Analysis and Correlation

¿e three-step alert analysis and correlation work�ow is
shown in Figure 6.7. First, intrusion alerts are parsed, and
each alert class is annotated with descriptive statistics and
target information. In the second step, the correlation module
parses the intrusion detection system’s signature map to
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base 

hp

p1 ...p2 p3 p4

p1 p1-hp p2 p2-hp p3 p3-hp p4 p4-hp ...honey-
patches

regular 
patches

push push

push

pull  {p1-hp, p2-hp}

{p1-hp, p2-hp, 
p3-hp, p4-hp}

{p1, p2, p3, p4}
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p1 p1-hp p2 p2-hpB

v2

p1 p1-hp p3 p3-hpB

vn

p3 p4 p4-hpB

Figure 6.6: Quicksand patch management. Patch set B denotes the set of patches making
up the base source code of the so ware; patch dependencies pointing to it have
been omitted.

extract the signature information for each alert object and
cross-references it with the corresponding CVE identi�cation
derived from reference �eld speci�ed in the alert metadata.
¿is step additionally �lters intrusion alerts whose signatures
target vulnerabilities that haven’t been identi�ed as CVEs.
¿e last step consults vFeed1 to look up common vulnerability 1Toolswatch (2016)
and exploit databases (e.g., CVSS, CWE, exploit-db) in order
to aggregate threat intelligence metadata (e.g., vulnerability
risk scores, exploit availability) to alert objects, which are
used by subsequent modules of the version selection process.
Listing 6.1 shows an alert object containing threat metadata
for CVE-2014-6277.

6.2.3 Patch Selection

Quicksand’s patch selection process is shown in Figure 6.8.
It comprises two phases: (1) con�ict resolution and (2) patch
set selection, which are described below.
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Figure 6.7: Alert correlation and threat information generation
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Figure 6.8: Patch con�ict resolution and selection

conflict resolution A con�ict in our system is
de�ned by the following syntactic rule: If (honey-)patchA
and (honey-)patch B prescribe di�erent contents for the same
line of code, thenA and B cannot coexist automatically in the
same version.
Figure 6.9 details (in pseudocode) the algorithm for gener-

ating con�ict-free patch sets. Its inputs include the set Π of
available security patches, the base repository B containing
only regular patches, and the repository HP of honey-patches.
Lines 1–2 initialize con�ict set cs to empty, and initialize a
temporary repository ∆ as a copy of B. ¿e algorithm then
populates cs with all con�icting patch pairs in Π by checking
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Listing 6.1: Alert object containing threat metadata for CVE-2014-6277

1 { cveID: CVE−2014−6277, targets: {('192.168.134.150', 80), ('192.168.134.139', 8080), ...}
2 cvssScore: {
3 'impact': '10.0',
4 'access_complexity': 'low',
5 'con®dentiality_impact': 'complete',
6 'availability_impact': 'complete',
7 'authentication': 'none',
8 'access_vector': 'network',
9 'exploit': '10.0',
10 'base': '10.0',
11 'integrity_impact': 'complete' },
12 cwe: { id: 'cwe−78', term: 'OS Command Injection' },
13 cpe: { 'cpe:/a:gnu:bash:2.02.1', 'cpe:/a:gnu:bash:2.01.1', ...},
14 published: 2014−09−24T14:48:04.477−04:00,
15 public_exploit: 'yes',
16 count: 115 }

the result of merging the corresponding honey-patch pair
from HP into ∆, resetting ∆ between each merge operation
(lines 3–10). Line 11 removes the temporary repository. Finally,
in line 12 the set of con�ict-free patch sets is generated by
�ltering from powerset ℘(Π) all patch sets containing any
two con�icting patch pairs.
More complex con�ict resolution rules can also be speci�ed,

at the cost of reducing the space of candidate patch sets for
version selection. For example, a more restrictive rule could
constrain honey-patches to be applicable only to releases
o�cially reported in the Common Platform Enumerations
(CPE) database.

patch set selection Given the set of feasible candidate
patch sets generated in the previous step, the patch selection
step ranks each patch set according to a user-de�ned utility
function computed over features extracted frommetadata
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Data: Π: patch set, B: base repository, HP: honey-patch repository
Result: set of con�ict-free patch sets

1 cs←∅
2 ∆← B

3 for (p1, p2) ∈ Π2 do
4 begin
5 if ¬pull({p1, p2},HP, ∆) then
6 begin
7 cs← cs ∪ {(p1, p2)}
8 end
9 obliterate('[.*]-hp$', ∆)
10 end
11 remove(∆)
12 return {S ∈ ℘(Π) |S2 ∩ cs = ∅}

Figure 6.9: Con�ict-free patch set generation algorithm

created during alert correlation. ¿ese features are grouped
into patch features and version features.
Patch features that might in�uence the e�ectiveness of

candidate patch sets include: (P1) time of patch release, (P2)
severity level of patched vulnerability, extracted from CVSS
scores, (P3) class of honey-patched vulnerability (e.g., remote
code execution, denial of service, con�dentiality breach),
derived from CWE, CERT, and OWASP categories, (P4)
quantity of previously observed, in-the-wild exploits against
each honey-patched vulnerability (constrained to some prede-
�ned time window of historical data), and (P5) whether there
is evidence of publicly available exploits for the particular
vulnerability in exploit databases.
Version features li metrics on individual patches tometrics

on sets of patches for version evaluation, and include: (V1)
median time of patch release over the candidate patch set,
(V2) whether patch-pairs in the candidate set coexisted in
nature (i.e., both patches were “current” at the same time),
(V3) the percentage of patch-pairs in the candidate set that
coexisted, and (V4) the cardinality of the honey-patch subset.
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Figure 6.10: Version deployment work�ow

6.2.4 Version Deployment

Upon completion of patch selection, Quicksand deploys a
new version of the application into the target environment.
Figure 6.10 outlines the steps taken to deploy an application.
¿e �rst step consists of creating a working repository for
the application, by �rst pulling all patches from base into
target, and then pulling only the selected honey-patch subset
into target. ¿is yields a working repository state that is
tagged with the selected application version. ¿e �nal step
consists of building the target application from sources, using
user-supplied con�guration as supplemental input. ¿e
con�guration parameters are speci�ed per application, as
shown in the con�guration �le illustrated in Listing 6.2, and
provide information on how to setup the build environment
and release the new application version.

6.3 implementation

We have developed an implementation of Quicksand for
the 64-bit version of Linux. ¿e implementation consists
of four Python components: the repository handlermodule
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Listing 6.2: Quicksand con�guration �le

1 [Apache−1]
2 app = apache
3 base_repo = ../data/base
4 hp_repo = ../data/hp
5 deploy_repo = ../data/deploy
6 con®gure_command = make
7 install_command = make install
8 patches = CVE−2014−0160:CVE−2014−6271:CVE−2014−6277:CVE−2014−7169: ...
9
10 [Apache−2]
11 app = apache
12 ...
13
14 [OpenSSL]
15 app = openssl
16 ...

consists of about 150 lines of code and wraps Darcs 2.12.0
CLI1 to o�er an API to access the version control system.1Darcs (2016)
¿e analyzer component consists of 90 lines of code, and
leverages py-idstools2 to parse IDS signature maps and events2Py-idstools (2016)
sourced in uni�ed2 format (a serialized binary stream for-
mat speci�cation for IDS events), and vFeed3 to fetch and3Toolswatch (2016)
aggregate threat metadata to alert objects. ¿e patch selector
module consists of an additional 140 lines of code, and the
version deploymentmodule adds about 80 lines of code to
the system. Our implementation depends on a deployment
environment that has been pre-con�gured with RedHerring
(see Chapter 2).

6.4 future work

Quicksand is an ongoing project, and future work is planned
to fully evaluate our so ware version emulation strategy
beyond system prototyping and tests.
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experimental validation We plan to empirically
evaluate our approach through the development of a testing
harness that streams the system synthetically generated, la-
beled attack data derived from real network tra�c logs. ¿e
labeled data will provide a ground truth to assign performance
scores for each so ware-version generated by Quicksand, in
a realistic and repeatable manner. Toward this goal, we plan
to collect a pool of honey-patched vulnerabilities for highly-
targeted server applications and libraries (e.g., Apache, Bash,
OpenSSL, OpenSSH, BIND, glibc). For each vendor-supplied
security patch, we will cra scripts based on PoC exploits to
inject attacks into the regular tra�c for the evaluation. Once
we have gathered labeled data from our tests, we will extract
features from the data set and tune Quicksand’s version
ranking function.

game theoretical analysis To better derive version-
adaptation policies that bene�t the defender, we plan to model
di�erent attack-defense scenarios as adversarial games. ¿e
goal is to reduce them to optimization problems that seek to
maximize the waste of attackers’ resources (e.g., time, di�culty
of detecting deception) andminimize the frequency of version
deployment (which incurs higher IT costs for defenders). To
make the analysis realistic, we envision li ing metrics and
mathematical models for attacker probing behavior from
prior large-scale empirical studies.1 1e.g., Arbaugh et al. (2000);

Rescorla (2005); Browne et al.
(2001)

6.5 conclusion

¿is chapter proposed a new moving target defense technique
for counterreconnaissance and attack intelligence gathering,
which leverages application-level, deceptive attack responses
through honey-patching. Toward this end, we designed and
implemented Quicksand, an adaptive, so ware version-
emulation architecture, in which the set of honey-patched
vulnerabilities in a target application is dynamically re-selected
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to increase the likelihood of deceiving and entrapping at-
tackers. Based on the history of past attacks, Quicksand
chooses to impersonate a particular so ware version using a
combination of con�ict-free patches and honey-patches, and
an endpoint con�guration corresponding to the speci�ed
version.
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EXPERIENCES IN ACTIVE CYBER
SECURITY EDUCATION

¿is chapter contains
material previously
published as: F. Araujo,
M. Shapouri, S. Pandey, and
K.W. Hamlen. “Experiences
with honey-patching in
active cyber security
education.” In Proc. of the
8th Workshop on Cyber
Security Experimentation
and Test, Aug. 2015. Lead
author Araujo conducted the
majority of the research,
leading the lab design, setup,
and so ware creation, and
authoring the paper.

Modern cyber security educational programs that emphasize
technical skills o en omit or struggle to e�ectively teach the
increasingly important science of cyber deception. A strategy
for e�ectively communicating deceptive technical skills by
leveraging honey-patching (see Chapter 2) is discussed and
evaluated. Honey-patches mislead attackers into believing that
failed attacks against so ware systems were successful. ¿is
facilitates a new form of penetration testing and capture-the-
�ag style exercise in which students must uncover and outwit
the deception in order to successfully bypass the defense.
Experiences creating and running the �rst educational lab to
employ this new technique are discussed, and educational
outcomes are examined.

7.1 introduction

Industrial and governmental demand for employees with
superlative, comprehensive cyber security expertise has risen
meteorically over the past several years. Cyber security job
postings have increased 74 from 2007 to 2013—over double
the rate of increase of other IT jobs—and take 24 longer
to �ll on average than other IT job postings.1 One reason 1Burning Glass Technologies

(2014)demand for high expertise is eclipsing supply is the increasing
sophistication of threats faced by cyber professionals. In 2014,
cyber attacks against large companies rose 40, yet malicious

127
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campaigns are becoming smaller and more e�cient, using
14 less email to successfully in�ltrate victim networks.11Lingenheld (2015)
¿is underscores a need for e�ective yet broadly deployable

educational strategies for all aspects of cyber security training.
Some cyber skills, however, are exceptionally di�cult to
convey e�ectively in a classroom setting. A prime example is
cyber deception, which is becoming an increasingly central
ingredient of many o�ensive and defensive scenarios.2 Decep-2cf., Almeshekah and

Spa�ord (2014); Twitchell
(2006); Luo et al. (2011)

tive social engineering attacks in which attackers impersonate
government o�cials account for over $23,200 in losses per
day in 2014, according to the FBI Internet Crime Complaint
Center.3 Advanced malware attacks o en undertake elaborate3Internet Crime Complaint

Center (IC3) (2015) user deceptions, such as Stuxnet’s replaying of pre-recorded,
normal equipment readings to operators at the Natanz nuclear
facility during its attack.4 In light of such practices, the U.S. Air4Langner (2011)
Force has announced cyber deception as a speci�c focus area
for 2015–2016.55U.S. Air Force Materiel

Command (2014) To raise defender vigilance against deceptive threats, a
di�erent way of thinking is required—one that adopts the
thinking process of the adversary.6 Modern defenders must6Vigna (2003); Mink and

Freiling (2006); Patriciu and
Furtuna (2009)

understand the psychology of attackers, and be aware of their
strategies and techniques in order to anticipate their actions.
In active defense contexts, they require skills for both creating
and mitigating deceptive so ware. Awareness of such issues
facilitates development of safer programs, and limits the attack
surface exposed to cyber criminals.
However, e�ectively teaching such awareness in a tradi-

tional classroom setting can be challenging. Typically, the
scholastic experience is contrived, with lectures and assign-
ments following a structured sequence of topics throughwhich
students expect to be guided by instructors, and where reading
materials provide the theoretical backbone of a rehearsed,
time-honored mode of thinking. From a security standpoint,
it can be seen as antithetical to most real-world cyber security
threat encounters involving advanced adversaries: Modern,
targeted cyber threats are o en surreptitious, diverse, and
unpredictable. Advanced threat-actors are aware of standard
educational practices, and therefore adopt strategies that run
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counter to them. To defend against such threats, future cyber
security professionals must be empowered with techniques
that can delay reconnaissance e�orts, degrade exploitation
methods, and confound attackers into moving and acting in a
more observable manner.
Among the most promising approaches towards alleviating

this problem are Capture the Flag exercises (CTFs), which
are commonly organized as competitions where teams score
points by exploiting opponents and defending from attacks
in real time. However, although such exercises are of great
educational value in that they o�er lessons not easily taught
in a classroom and provide a realistic, safe environment for
practicing o�ensive techniques, they o en lack emphasis
on active cyber defense topics.1 We believe that ways must 1cf., Heckman et al. (2013)
be sought to ethically teach students deception and anti-
deception techniques in order tomake networksmore resilient
against the emerging wave of advanced threats.
Toward this end, we examined honey-patching2 as a new 2Araujo et al. (2014); Araujo

and Hamlen (2015)tool for e�ectively teaching active defense and attacker-decep-
tion to students in the Computer Science Department at
¿e University of Texas at Dallas (UTD). In April of 2015
we organized a small-scale computer lab at UTD to raise
awareness about this technique and the broader concepts
surrounding cyber deception and anti-deception.3 ¿e lab 3Araujo et al. (2015)
was organized with the help of UTD’s Computer Security
Group (CSG) student association, constituting the �rst e�ort
to teach honey-patching techniques and strategies outside a
research setting. Although small in its size (seven students
completed the lab session), the response we obtained from
the participants of this early test were extremely positive. Our
goal is to relate our experiences to other educators, and to
recommend methods and so ware tools that we have found
pedagogically e�ective for teaching students these important
skills. We also plan to leverage this initial experience to
contribute larger-scale CTF exercises to major competitions
in the future, such as TexSAW (Texas Security Awareness
Week), which is held annually at UTD every October.
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Listing 7.1: Abbreviated patch for CVE-2014-6271

1 + if ((°ags & SEVAL_FUNCDEF) && command→type != cm_function_def)
2 + {
3 + internal_warning ("%s: ignoring function de®nition attempt", ...);
4 + should_jump_to_top_level = 0;
5 + last_result = last_command_exit_value = EX_BADUSAGE;
6 + break;
7 + }

Listing 7.2: Honey-patch for CVE-2014-6271

1 if ((°ags & SEVAL_FUNCDEF) && command→type != cm_function_def)
2 {
3 + hp_fork();
4 + hp_skip(
5 internal_warning ("%s: ignoring function de®nition attempt", ...);
6 should_jump_to_top_level = 0;
7 last_result = last_command_exit_value = EX_BADUSAGE;
8 break;
9 + );
10 }

¿e research reported herein is covered by UTD IRB
approval MR15-185. ¿e educational lab and subsequent
data analysis were conducted by personnel who are NIH-
certi�ed in protection of human research subjects. ¿e lab
was organized and overseen by student o�cers trained in
risk management, including ethical and nondiscriminatory
treatment of individuals.

7.2 honey-patching shellshock

In September 2014 we honey-patched the Shellshock GNU
Bash remote command execution vulnerability (CVE-2014-
6271)1 within hours of its public disclosure as part of our1NIST (2014b)
AFOSR/NSF active defense and attack-attribution research
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program. Shellshock was one of themost severe vulnerabilities
in recent history, a�ecting millions of then-deployed web
servers and other Internet-connected devices. ¿is high
impact combined with its ease of exploitation makes it a prime
candidate for penetration testing exercises.
Listing 7.1 shows an abbreviated, vendor-released patch in

di� style for Shellshock. ¿e patch introduces a conditional
that validates environment variables passed to Bash, declining
function de�nition attempts. Prior to this patch, attackers
could take advantage of HTTP headers as well as other mecha-
nisms to enable unauthorized access to the underlying system
shell of remote targets. ¿is patch exempli�es a common
vulnerability mitigation: dangerous inputs or program states
are detected via a boolean test, with positive detection eliciting
a corrective action. ¿e corrective action is typically readily
distinguishable by attackers—in this case, a warning message
is generated and the function de�nition is ignored.
Listing 7.2 presents an alternative, honey-patched imple-

mentation of the same patch. In response to a malicious input,
the honey-patched application forks itself onto a con�ned,
ephemeral, decoy environment, and behaves henceforth as an
unpatched, vulnerable version of the so ware. Speci�cally,
line 3 forks the user session to a decoy container, and macro
hp_skip in line 4 elides the rejection in the decoy container
so that the attack appears to have succeeded. Meanwhile, the
attacker session in the original container is safely terminated
(having been forked to the decoy), and legitimate, concurrent
connections continue una�ected.
As a result, adversaries attempting to exploit Shellshock in

a victim server that has been honey-patched receive server
responses that seem to indicate that the exploit has succeeded.
However, the shell commands they inject are actually execut-
ing in a decoy environment stocked with disinformation for
attackers to explore. ¿is provides an ideal environment for
students to penetrate as part of exercises focused on cyber
deception. Some of their attacks may genuinely hijack the vic-
tim server (e.g., those that exploit unpatched vulnerabilities),
others observably fail (e.g., those that exploit patched vulnera-
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1:00 PM 3:00 PM

1:25 PM - 2:00 PM

Exploitation Survey Feedback
1:05 PM - 1:25 PM

Preparation
2:10 PM - 2:50 PM

Active Defense

Figure 7.1: Lab timeline and overview.

bilities), while yet others only appear to succeed (e.g., those
that exploit honey-patched vulnerabilities). ¿e challenge is
to discover that a deceptive outcome exists and counter it.

7.3 lab overview

We organized an open lab with the main goal of educating stu-
dents on o�ensive security and active cyber defense concepts
using honey-patching as the underlying framework. To boost
student expectation and interest, we selected the Shellshock11NIST (2014b)
vulnerability as our unit of study. ¿is choice was motivated
by the scale and impact of Shellshock (severity 10 out of 10),
and the low access complexity of the attack, suitable for the
two hours allotted for the lab. Figure 7.1 shows the lab timeline
with the approximate durations of each of its three parts.

preparation ¿e �rst part provided an overview of the
lab session, followed by a brief introduction to Shellshock. As
part of this description, we covered the historical background
and relevancy of Bash, and detailed the various attack vectors
that can be used to exploit server applications running the
vulnerable shell. In addition, we introduced basic background
on our particular target server deployment (e.g., Apache,
CGI). At the end of this exposition, we ran an interactive
demonstration of Shellshock to test students’ understanding
of the vulnerability and ensure that they were familiarized
with the lab environment.
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exploitation challenge ¿e hands-on part of the
lab consisted of a challenge. Students were asked to attack our
server and attempt to escalate their privileges a er gaining
access to the server. To complete this exercise, students needed
to build their own exploits and apply the knowledge acquired
in the preparation session of the lab. At the end of this exercise,
we asked students to �ll out an online survey. In order to
obtain an unbiased feedback, students were unaware that they
were attacking a honey-patched system. We only revealed this
information in the third and last part of the lab.

deception-based active defense In the last part of
the lab, we �rst provided a brief overview of deception-based
techniques for active defense and o�ensive countermeasure
concepts (e.g., honeypots, decoys, beacons). ¿en we intro-
duced students to honey-patching and disclosed the fact that
our target server was honey-patched, explaining its under-
lying mechanisms, including misdirection and monitoring
capabilities. We also demonstrated the process involved in
honey-patching Shellshock. To conclude the exercise, we gave
students the opportunity to attack the system once again,
for another 30 minutes, and then presented and discussed
the monitoring logs generated by the honey-patched system.
Before we adjourned, we asked students to �ll out a second
survey providing feedback about their learning experience.

7.4 lab design

From the provisioning of the required physical resources and
setup of the lab environment to the preparation of tutorials and
challenges, there is a considerable amount of e�ort involved
in organizing a hands-on cyber security lab. Even though the
number of students was small, we designed this exercise to
scale to a much larger number of participants. In what follows,
we highlight some of the preparation steps for this lab.
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(a) Lab subnet and virtualization infrastructure
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(b) Obtaining a reverse shell with Shellshock

Figure 7.2: Lab preparation illustrating (a) lab subnet and virtualization infrastructure and
(b) attack demonstration leveraging Shellshock to obtain a reverse shell

7.4.1 Infrastructure and Preparation

Figure 7.2a illustrates the infrastructure created for the lab.
We built this infrastructure atop VMWare’s ESXi, allowing us
to quickly and e�ciently deploy many linked VMs as needed
to create individual guest environments for each participant.
¿e target server and attacker VMs were deployed within
the same subnet, and access control rules isolated the lab
from the rest of the university network. ¿is created a safe
environment in which exploits could be attempted without
risk to the surrounding network.

target server ¿e target server was honey-patched
against Shellshock and hosted a CGI shell script deployed
atop Apache for processing user authentication in a web
application speci�cally created for this lab. To entice students
to further exploit the system, decoys were generated with
fake user accounts and honey-�les containing “interesting”
information, such as fake credentials and weakly encrypted
user account passwords. To gain escalated access to the decoy,
students could discover vulnerable paths concealed within
the system. For example, participants might transfer the
encrypted password �le to their own machines, and crack it
with a password cracker (e.g., using a dictionary attack).

monitoring Decoys also hosted so ware monitors that
collected �ne-grained attack information. To minimize the
performance impact on decoys, we used two powerful and
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Listing 7.3: Decoy’s �le-system monitoring

1 25/04/2015−13:24:25 /usr/local/apache/cgi−bin/ I_Shocked_You CREATE
2 25/04/2015−13:24:25 /usr/local/apache/cgi−bin/ I_Shocked_You OPEN
3 25/04/2015−13:24:25 /usr/local/apache/cgi−bin/ I_Shocked_You ATTRIB
4 25/04/2015−13:24:25 /usr/local/apache/cgi−bin/ I_Shocked_You CLOSE...

Listing 7.4: Decoy’s deep inspection of network packets

1 0x0020: 8018 00e5 1aed 0000 0101 080a 0032 9a09 .............2..
2 0x0030: 0032 9a09 3261 0d0a 495f 5368 6f63 6b65 .2..2a..I_Shocke
3 0x0040: 645f 596f 750a 6c6f 6769 6e2e 6367 690a d_You.login.cgi.
4 0x0050: 6d69 6e65 0a6e 6f5f 796f 755f 6469 646e mine.no_you_didn
5 0x0060: 740a 0d0a t...

highly e�cient tools: inotifywait (to track modi�cations made
to the �le system), and tcpdump (to monitor ingress and
egress of network packets). To avoid possible tampering
with the collected data, all logs were stored outside the decoy
environments. In addition, we tuned both monitoring tools to
avoid generating spurious outputs (e.g., by excluding certain
directories and limiting the monitored network tra�c). List-
ings 7.3 and 7.4 show sample monitoring logs produced a er
an attack executed by a student. ¿e logged �le system events
reveal that the student created a �le named I_Shocked_You in
the server’s (actually, a decoy’s) CGI directory and changed
the created �le’s permissions. In the network logs, we see the
response payload returned to the student for an attack that
ran the ls command on the server.

attacker environment Each student was assigned a
guest VM prepared speci�cally for the hands-on exercises.
Each VM ran Ubuntu 14.04, and came with the minimal tools
required to complete the demonstration session (i.e., curl,
nc). Student accounts were con�gured with administrative
privileges, and internet access was not prohibited, allowing
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easy installation of additional tools as needed. For example,
several students downloaded and installed password crackers
to use during the hands-on session.

7.4.2 Interactive Demonstration

¿e demonstration delivered at the end of the preparation
session consisted of a no-one-le -behind exercise, in which the
instructor explains each step of the demo and waits until all
students have successfully completed it. ¿is strategy worked
well given our small group, but would probably need to be
adjusted for a larger number of students (e.g., by having more
tutors walking around and assisting whoever gets stuck). We
used this demo to further clarify concepts introduced in the
initial lab presentation and to ensure that all students started
the free hands-on session with a basic working knowledge
of the techniques used to exploit Shellshock. For instance,
Figure 7.2b illustrates one of the attacks we demonstrated, in
which the attacker leverages Shellshock to obtain a reverse
shell on the vulnerable server.

7.4.3 Participants

¿e lab was open to any student willing to participate, and we
did not impose any restrictions on required background. To
reach interested students, we announced the lab through the
homepages and mailing lists of the security and computer
student organizations at UTD. To catch students’ attention,
we promoted the lab as a hands-on challenge on Shellshock
exploitation and defense.
¿e participants were all CSmajors, with limited experience

in cyber security (ranging from none to some), with a few
who had performed penetration tests before. ¿e lab was
sta�ed by one PhD student and two Masters students who
acted as tutors for the lab and o�ered participants individual
assistance as needed. ¿is organization dynamics worked well
to solve issues quickly and facilitate the �uidity of the lab.
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7.5 survey results

To informally assess the e�ectiveness of the lab, we asked
students to complete two online surveys (see the appendix)
made available through Google Forms. ¿ese surveys were
anonymous. To minimize the in�uence of the survey ques-
tions on student behavior during the hands-on sessions, the
survey questions were not disclosed until a er the students
completed each portion of the exercise that was surveyed—
prior knowledge of the questions would reveal too much
about the exercise. Survey questions were phrased as boolean
inquiries (1=yes, 0=no) followed by open-ended clarifying
questions in which students were given the opportunity to
comment.

deceptiveness of honey-patching ¿e �rst survey
examined the deceptiveness of honey-patching by asking
students whether they had realized that they were interacting
with a decoy. All students answered “no” to this question.
From their responses, it is clear that the honey-patched server
successfully deceived students for the entire duration of the
�rst hands-on session, which lasted about 30 minutes.
In the last part of the lab, a er revealing the deception to

students, we asked, “If you were given enough time, what
would you attempt to do?” Responses included, “[I would]
look at the services that are running (in the decoy) and try to
exploit the honey-patched system.” Another student said, “[I
would] note �les of interest and various properties of them (who
created them, permissions),” and another mentioned, “I would
try to �nd red �ags that could be used to probe a honey-patched
system.” A particularly noteworthy response was that of a
student who said s/he would attempt to relay back to the
honey-patch components, in particular the front-end proxy,
in order to look for security �aws and exploit them.
¿ese results are a preliminary indication of the e�cacy of

honey-patching for raising student awareness of cyber decep-
tion and counterintelligence gathering, and its educational
value for encouraging students to seek deception-exposing
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strategies and examine exploit outcomes critically rather than
accepting them at face value.

learning experience Students also answered general
questions about their educational experience. For example, in
response to the question, “Did you �nd this exercise useful
for expanding your cyber security education?” students
unanimously answered “yes.” In the open-ended comments,
students also said that it was exciting to see how the exploit
worked �rst-hand. Indeed, learning the concepts involved
in attacking and defending computer systems in a safe and
coherent context seems to entice students’ curiosity and
develop their interest in applied cyber security.
We also received copious constructive feedback from stu-

dents on possible ways in which we could improve the lab.
¿ese include proposals for new challenges, di�erent methods
of attack, and alternative ways to defend against them. Overall,
this was a very successful learning experience with a very
positive response from students. When asked, “Did this
exercise increase your interest in the research side of cyber
security?” one student commented, “I also enjoyed seeing the
research being done to take advantage of these kinds of exploits
in terms of defense.”

7.6 discussion and lessons learned

lab organization We organized this lab combining
short, alternating structured (lecturing, demo) and unstruc-
tured (free hands-on) sessions. ¿is choice was made to
keep students focused and motivated, while giving them
freedom to experiment on their own. We believe that this
approach helped us to strike a good balance between guided
and exploratory learning.
In addition, we believe that concealing the honey-patching

deception from students during the �rst hands-on session
raised their interest relative to disclosing it immediately,
and was well received by students. While we were initially
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concerned that students might feel betrayed by instructors
once the deception was revealed, our experiences indicate
that allowing students to experience a real (but benign and
educational) deception during the exercise evokes an element
of surprise that students �nd intriguing and memorable. In
particular, we observed a notable increase in interest a er we
introduced the research on honey-patching and revealed that
they had been interacting with decoys since the beginning
of the lab. ¿is was evidenced by a surge in questions and
discussions.
Second, the delayed reveal opened the way for students to

imagine new application scenarios that we did not even cover
in our short presentation. For example, a very interesting
suggestion was to use honey-patching as a strategy to enhance
incidence response and help defenders gather additional
attack evidence shortly a er a target is compromised.

research & knowledge transfer Transferring
research �ndings and abstract knowledge into practical use is
critical for improving the security posture of cyber space. ¿is
includes creating a body of security guidelines, information
materials, and more comprehensive education programs
focusing on fostering such transition. In our opinion, infor-
mation assurance and security programs should complement
the traditional classroom experience with hands-on exercises
in which students are invited to try new research and become
armed with state-of-the-art tools and techniques to protect
our privacy and the world we live in from emerging cyber
threats.

cyber deception ctf To cultivate additional student
involvement, we also intend to develop a CTF competition at
TexSAW with a focus on cyber deception and honey-patching.
¿is will be an o�ense-defense team challenge, in which
participants will learn and practice a variety of skills spanning
deception and anti-deception techniques. We envision at least
two di�erent ways in which we can organize this competition.
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In the �rst mode, all participants will be taught about
honey-patching to use it to misdirect and deceive attacks.
In this style of competition, each team will not only try to
capture the �ag, but also avoid submitting captured decoy �ags
impersonating genuine �ags. To make it more challenging,
�ag validation and score computation will only occur at the
end of each predetermined phase.
A second approach is to enter teams trained in cyber-

deceptive active defense techniques into pre-existing CTF
competitions, concealing that intended strategy from rival
teams. If successful, this could provide empirical evidence of
the e�cacy of honey-patching and other deceptive defenses
for waging cyber warfare. A challenge for such evaluation
is �nding competitions with rules su�ciently open-ended
that they admit these deceptive techniques. Many CTFs
are structured such that �ag validation is immediate and
automatic, making deception less valuable in that context
than it is in practice.

7.7 conclusion

Cyber deception is an increasingly important component of
e�ective, real-world cyber defenses. It can be leveraged to level
a battle�eld that otherwise inherently favors attackers, who
succeed if they �nd just one vulnerability, over defenders, who
only succeed if they close all vulnerabilities. By concealing
which attacks succeed and which fail, honey-patches give
defenders valuable advance intelligence about attacker gambits,
and o�er opportunities to misdirect attackers away from
critical targets toward non-critical targets.
However, like many cyber security paradigms, deception is

an arms race. E�ective deception depends upon e�ective
skills imparted by e�ective educational methods. Our initial
experiences creating and running active cyber defense lab
exercises for computer science students have indicated that
honey-patching can be deployed in an educational setting to
teach cyber deception in ways that overcome the otherwise
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predictable (and therefore non-deceptive) classroom environ-
ment. We therefore advocate incorporating such exercises
into future CTF competitions and into cyber educational
curricula to bring these skills to a broader array of upcoming
cyber security professionals.
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RELATED WORK

8.1 deception in cyber security

8.1.1 Deception in Warfare

Deception has been used in warfare since ancient times and
has long been recognized as an important tool in intelligence
operations.1 ¿e work traditionally ascribed to the Chinese 1Latimer (2003)
military strategist Sun Tzu exempli�es this by highlighting de-
ception as key to success in warfare.2 In ancient Egypt, symbol 2Sun Tzu (1963)
substitutions were applied to hieroglyphic inscriptions carved
into the chambers and tombs of noblemen and pharaohs to
obscure their meaning and increase mystery, opening the
recorded history of cryptology.3 3Kahn (1974)
In modern times, deception has developed into a fully

�edged doctrine for military operations and strategy.4 One of 4cf., Chairman of the Joint
Chiefs of Sta� (2012)themost successful long-termdeception campaigns of the 20th

century can be traced to the collection of counterespionage
documents known as the Farewell Dossier created during
the Cold War, in which U.S. intelligence teams duped Soviet
spies by purposely providing them with faulty speci�cations
of computer programs and hardware, ultimately leading to
a major disaster in the trans-Siberian pipeline and causing
“inexplicable” problems in Soviet manufacturing and military
operations.5 5Rothstein and Whaley

(2013)Bell andWhaley6 argue that deception comprises a two-
6Bell and Whaley (1991)step process entailing simulation and dissimulation, even

when only one step is apparent. In this model, the simulation
step presents the false through mimicking, inventing, and

143
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decoying. Conversely, the dissimulation step involves hiding
the real, being manifested through masking, repackaging, and
dazzling. Alternatively, Dunnigan and No�1 classify deception1Dunnigan and No� (2001)
into concealment, camou�age, false and planted information,
lies, displays, ruses, demonstrations, feints, and insights. Each
of these groups represents an instance of, or has a direct
mapping into one of Bell and Whaley’s categories.2 Tradition-2Almeshekah (2015)
ally, the Denial & Deception (D&D) literature focuses on
such dichotomies between simulation (to reveal �ctions) and
dissimulation (to conceal facts). Bennett andWaltz3 re�ne3Bennett and Waltz (2007)
this taxonomy to include truth andmisdirection as important
methods of any successful D&D campaign. Using truth as
a foundation to establish the source of target expectations
and beliefs, and employing misdirection to manipulate what
the target registers, the deceiver is able to induce the target
to perceive and accept the revealed facts, while failing to
perceive the deceiver’s concealed �ctions.

8.1.2 Deception Modeling in Cyber Security

While deception in the context of warfare, diplomacy, and pol-
itics has been comprehensively researched and documented
over history,4 until recently e�orts devoted to studying de-4Bodmer et al. (2012);

Whaley (1969) ception in the cyber domain were o en scarce.5 Cohen6 was
5Heckman et al. (2015)

6Cohen (1998)

among the �rst to propose a model for using deception in
computer defenses, outlining a framework describing the basic
properties a�ecting the e�ectiveness of human and computer
deceptions, such as timing and sequence of events, in�uence
of observables, operational security, and resource constraints.
His seminal work on the deception toolkit (DTK) introduces
a so ware instrument designed to deceive attackers.
Alternatively, Grazioli and Jarvenpaa7 propose a classi�ca-7Grazioli and Jarvenpaa

(2000) tion model for online deception based on masking, dazzling,
decoying, mimicking, inventing, relabeling, and double play-
ing, and Rowe8 introduces a probabilistic model of attacker

8Rowe (2004a)

beliefs for choosing appropriate times and methods to deceive
the attacker. Departing from previous works, Rowe and
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Rothstein1 and Rowe2 use linguistic case theory to provide a 1Rowe and Rothstein (2004)
2Rowe (2006)cyber deception taxonomy based on the hypothesis that every

deception action can be categorized by an associated semantic
case or set of cases, including space, time, participant, causality,
quality, essence, and speech-act cases. ¿is model pioneered
the use of quantitative metrics to support deception planning
and to assess the suitability of di�erent deception methods for
both o�ensive and defensive operations in cyberspace.
Fowler and Nesbit3 suggest six general principles for ef- 3Fowler and Nesbit (1995)

fective tactical deception in warfare, which prescribe that
deceptions should (1) reinforce enemy expectations, (2) have
realistic timing and duration, (3) be integrated with operations,
(4) be coordinated with concealment of true intentions, (5) be
tailored to contextual requirements, and (6) be imaginative
and creative. Rowe and Rothstein4 translate such principles to 4Rowe and Rothstein (2004)
the context of cyber warfare involving both o�ensive and
defensive deceptions. ¿ese rules highlight limitations of
current deception-based defenses. For example, conventional
honeypots usually violate the third rule of integration as they
are o en deployed as ad hoc, stand-alone lures isolated from
production servers. ¿is makes them easily detectable by
most advanced adversaries.
While these seminal works in cyber deception modeling

have opened this new �eld of research, many subsequent
works in cyber deception tools and techniques have lacked a
uniform terminology, and have tended to focus on strictly
technological characterization of tactics. Such de�ciencies
have motivated recent research seeking models, taxonomies,
and frameworks that can connect the technical plan to the
social, behavioral, and cognitive phenomena that emerge
from computer deceptions.5 5Heckman et al. (2015);

Almeshekah (2015)Game theoretical models have also been proposed to study
cyber deception in cyber security contexts. For instance,
Al-Shaer and Rahman6 propose a game-theoretic framework 6Al-Shaer and Rahman

(2015)that uses deception to combat �ngerprinting attacks. Pavlovic7
7Pavlovic (2011)argues that security is a game of incomplete information

where players do not have enough information to predict
their opponent’s behavior, thus positing that defenders can
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improve the odds of winning the game by analyzing the
behaviors and algorithms of the adversary while obscuring
their own. As a practical example, Carroll and Grosu1 in-1Carroll and Grosu (2011)
vestigate the e�ects of deploying honeypots on adversarial
network security scenarios, and demonstrate that camou-
�age is an equilibrium strategy for the defender by modeling
defender-attacker interaction as a signaling game—a dynamic
game of incomplete information. Likewise, La et al.2 model2La et al. (2016)
honeypot-enabled Internet of ¿ings (IoT) networks by look-
ing at a game-theoretic model in which both attackers an
defenders try to deceive each other. Garg and Grosu3 pro-3Garg and Grosu (2007)
pose a game theoretic framework for modeling deception
in honeynets, and study equilibrium solutions to determine
the strategies of the attacker and the honeynet system. Al-
ternatively, Crouse4 introduces an urn-modeling technique4Crouse (2012)
for characterizing the probability of success for an attacker in
cyber-deception scenarios involving network address shu�ing
and honeypots.

8.1.3 Deceptive Enhancements to Cyber Security

Deception mechanisms such as decoys and baits have been
used in cyber security for over two decades. In “¿e Cuckoo’s
Egg,” Stoll5 documents one of the �rst public accounts of a

5Stoll (1989)

successful use of cyber deception for information security
and attack attribution. In 1991, AT&T researchers were able
to lure and monitor a cracker who had in�ltrated their de-
ception “Jail”.6 ¿e deception persisted over several months,

6Cheswick (1992)

a�ording the defenders enough time to trace the attacker’s
location and learn his techniques. ¿e success of such cyber-
deceptive operations has drawn the attention of the security
research community to cyber deception, giving birth to the
modern concept of honeypots.7 Since then, there has been

7Spitzner (2002)

an increasing interest in honeypotting technologies,8 and a

8Bringer et al. (2012);
Spitzner (2003a); ¿onnard
and Dacier (2008); Provos

(2004); Kippo (2009);
Glastopf (2009);

¿reatStream (2014);
Deutsche Telekom AG (2015);

Cymmetria (2016)

proliferation of other deceptive mechanisms—o en labeled
with the pre�x honey—such as honeytokens,9 honey�les,10

9Spitzner (2003b)
10Yuill et al. (2004)

honey encryption,11 honeywords,12 and ErsatzPasswords.13

11Juels and Ristenpart (2014)
12Juels and Rivest (2013)

13Almeshekah et al. (2015)
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Mehresh and Upadhyaya1 argue that the goal of deception 1Mehresh and Upadhyaya
(2012)is to in�uence an adversary’s observables by concealing or

altering the perceived information. In this sense, some so -
ware obfuscation can be seen as deceptive. For example, some
obfuscation techniques can be designed to yield wrong disas-
semblies when analyzed by certain common tools,2 therefore 2Brand et al. (2010)
providing a mechanism to deceive analysts attempting to
reverse engineering so ware. Similarly, Murphy3 and Murphy 3Murphy (2009)
et al.4 discuss the utilization of �ngerprint scrubbing and OS 4Murphy et al. (2010)
obfuscation to conceal from attackers important information
and degrade the impact of attacks.
In digital forensics, machine learning techniques are

typically used to determine document authorship, such as
the author’s identity, demographics, and relational links
to other documents.5 However, such conventional stylo- 5Juola (2006); Koppel et al.

(2009)metric techniques become ine�ective when faced with
authors who take measures to hide their identities by ob-
fuscating their writing styles or impersonating other au-
thors.6 ¿is has motivated a large body of work on detecting 6Afroz (2013); Afroz et al.

(2012)stylistic deceptions.7 ¿e problem of authorship attribu-
7Burgoon and Jr. (2004);
Zhou et al. (2004);
Warkentin et al. (2010); Pearl
and Steyvers (2012); Juola
(2012); Feng et al. (2012)

tion in adversarial settings also has security applications
that transcend �nding the authorship of rogue documents.
For example, malware authorship attribution can be in-
strumental in helping forensic analysts trace the origins
of criminal activities, such as in �nding the authors of
malware samples8 and attributing authorship of malicious 8Alrabaee et al. (2014);

Rosenblum et al. (2011)messages cra ed to spam and deceive legitimate users via
email.9 9Alazab et al. (2013)
In mission-critical operational contexts, when integrated

in the prevention and detection layers, deception can help
trace attacker motives and strategies, thereby aiding in the
development of targeted recovery and adaptation procedures
to help critical systems continue delivering essential ser-
vices despite attacks.10 Likewise, security mechanisms for 10Mehresh and Upadhyaya

(2012, 2016)cyber-physical systems can employ deception in human com-
puter interactions to make them more resilient against cyber
criminals.11 11McQueen and Boyer (2009)
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8.1.4 O�ensive Cyber Deception

O�ensively, malware attacks o en employ D&D techniques to
circumvent detection mechanisms.1 For example, malvertis-1Marpaung et al. (2012)
ing campaigns inject malicious advertisements in genuine,
vulnerable domains to redirect users to malicious sites that
serve malware. Such malvertisements infect their victims by
using a multitude of deceptive strategies, such as hiding in
plain sight via obfuscated scripts that resemble part of the
site’s visual architecture, embedding invisible iframes into
the webpage, tampering with sponsored links, and infecting
content delivery networks.2 Likewise, clickjacking attacks use2Sood and Enbody (2011);

Cova et al. (2010);
Mans�eld-Devine (2014)

multiple transparent UI layers to conceal hyperlinks beneath
legitimate clickable content, thereby causing unsuspecting
victims to perform unintended actions.33Huang et al. (2012)
Social engineering4 is another prominent threat class that4Mitnick and Simon (2011)

extensively relies on user deceptions, and includes well-known,
yet extremely successful attacks, such as baiting,5 phishing,65Tischer et al. (2016)

6Dhamija et al. (2006) and scareware scams.7

7Stone-Gross et al. (2013)
8.1.5 Deception-based Active Defense

¿e same D&D strategies that undermine defenses also fa-
cilitate laying traps for adversaries. Gartzke and Lindsay88Gartzke and Lindsay (2015)
argue that o�ensive and defensive advantages in cyberspace
result from relative organizational capabilities for strategically
employing deception. ¿e Stuxnet attack on Iran’s nuclear
facilities showcases an unprecedented and elaborate use of de-
ceptive techniques at the technological, tactical, and strategic
levels in a cyber-sabotage operation that speci�cally targeted
the physical destruction of centrifuges performing uranium
enrichment at Natanz.9 ¿e attack combined a number of9Langner (2011)
ruses, including endpoint protection evasion, self-hiding
propagation and replication controls, and the ability to replay
pre-recorded, normal control signals to deceive operators.
Most remarkable, however, was Stuxnet’s ability to tacti-

cally and strategically coordinate such deceptive, technical
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capabilities in an operation directed at intelligence gathering
and disruption of Iran’s nuclear program.1 In this regard, such 1Heckman et al. (2015)
o�ensive deception can be considered actively defensive—the
perpetrators in the Stuxnet operation are believed to have
been trying to proactively defend themselves against a per-
ceived Iranian nuclear threat.2 Similarly, during the 2007 2Sanger (2012)
surge of U.S. combat forces, the NSA has e�ectively used
cyber tools to muddle insurgents’ communication devices and
deceive enemy forces with fake information, leading them
into ambushes prepared by U.S. troops.3 Alternatively, to 3Nakashima (2012)
protect enterprise networks against cyber attacks, Jones and
Laskey4 present an active defense method based on Bayesian 4Jones and Laskey (2014)
networks that plans and executes cyber deception operations
aimed at deterring attackers by making them believe that they
are under a cyber attack when in fact they are not.
Naturally, there are also advantages in being able to detect

and counter deceptive e�orts. ¿e Line X sabotage5 is a prime 5Rothstein and Whaley
(2013)example of successful use of counter-deception for active

defense. Although Soviet agents were able to use o�ensive
deception to penetrate Western industry, their actions also
made them vulnerable to deception responses and counter-
intelligence conducted by the CIA. Rowe6 describes cyber 6Rowe (2004b)
counter-deception as the use of planned deceptions to defend
information systems against attacker deceptions. However,
while such second-order deceptions7 remain largely under- 7Rowe (2006)
utilized in cyber-defensive scenarios,8 they are frequently 8Virvilis et al. (2014);

Heckman et al. (2015)used by attackers to search for evidence of honeypots,9 avoid
9McCarty (2003); Krawetz
(2004); Rowe et al. (2006);
Wang et al. (2010)

malware analysis,10 and conceal their presence and identity

10Brand et al. (2010); You
and Yim (2010); Sharif et al.
(2008)

on systems into which they trespass.11 In the virtualization

11Jiang et al. (2007); Bahram
et al. (2010)

domain, malware attacks o en employ stealthy techniques
to detect VM environments, within which they behave in-
nocuously and opaquely while being analyzed by antivirus
tools.12

12Chen et al. (2008)

¿is underscores an increasing need for counter-deception
mechanisms that are capable of tricking and manipulating
advanced attacker deceptions. Heckman et al.13 discuss a

13Heckman et al. (2013)
real-time, red team/blue team cyber-wargame experiment
that utilized a cyber-deceptive operation in which defenders
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redirected attackers to a high-interaction honeypot, e�ectively
denying malicious use of the real system while misinforming
the adversary with falsi�ed information. Its success should
motivate security researchers to examine applications of
counter-deception techniques to security defenses. Such
techniques should be transparent to users and concealed
from adversaries, concurrently limiting attacker gains and
increasing the costs of their actions. Promising avenues of
research include shielding cyberspace sensors from attackers11Rice et al. (2011);

Endicott-Popovsky et al.
(2009)

and exploring inherent asymmetric advantages of using
deception in information warfare.2

2Sullins (2014); Robertson
et al. (2015); Lawson et al.

(2011); Whitham (2013, 2014) 8.2 cyber agility and moving target
defense

Moving target defenses (MTDs)3 seek to thwart attacks by mu-3Jajodia et al. (2011)
tating or evolving digital environments faster than adversaries
can adapt. MTD can be viewed as a subclass of the broader
�eld of cyber agility,4 which includes any reasoned modi�ca-4McDaniel et al. (2014)
tion to a system or environment in response to a functional,
performance, or security need. Such approaches sometimes
bene�t from deceptive ploys that can impede adversarial
adaptation to the defense, but deception is not a requirement
for agility or MTD to be e�ective—if the cyber-maneuver is
faster than the enemy can react, the defense can be e�ective
without any deceptive element.
MTD techniques can be broadly classi�ed into host-based

approaches, such as address space layout randomization,55Kil et al. (2006); Berger and
Zorn (2006); Iyer et al. (2010) instruction set randomization,6 multi-variant execution envi-

6Onarlioglu et al. (2010) ronments,7 and network-based approaches, including address
7Salamat et al. (2009) hopping,8 dynamic routes,9 and dynamic topology.10 Using a

8Al-Shaer (2011); Carroll
et al. (2014); Jafarian et al.

(2012)
9Trassare et al. (2013)

10Kampanakis et al. (2014)

typical attack kill chain (reconnaissance, access, development,
launch, and persistence) as a taxonomy, the primary focus of
host-based approaches is on development and launch, while
network-based techniques focus primarily on the reconnais-
sance phase. ¿is is useful for thinking about possible threat
models and designing evaluation strategies for each technique
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(e.g., overhead to perform reconnaissance, and time to map a
network topology).
Many of these agile defenses can bene�t from deception

(e.g., using network decoys to a�ect the perceived topology of
an enterprise network to impede reconnaissance). Dually,
good deceptions are o en agile (i.e., their performance charac-
teristics are indistinguishable to the target they impersonate),
therefore creating a reverse synergy between such technolo-
gies. Our work bene�ts from research advances on MTD
and extends the class of possible cyber-maneuvers with a
new mechanism based on deception to inform the adaptation
process.

8.3 remote exploitation

Remote, exploitable attacks are one of the biggest threats to
IT-security, leading to exposure of sensitive information and
high �nancial losses. While (zero-day) attacks exploiting
undisclosed vulnerabilities are the most dangerous, attacks
exploiting known vulnerabilities are most prevalent—public
disclosure of a vulnerability usually heralds an increase of
attacks against it by up to 5 orders of magnitude.1 Most attacks 1Bilge and Dumitras (2012)
are remote code injections against vulnerable network appli-
cations, and are automatically exploitable by malware without
user interaction. Fritz et al.2 survey the threat landscape of 2Fritz et al. (2013)
remote code injections and their evolution over the past �ve
years.
Unfortunately, �nding vulnerabilities that lead to remote

exploits is becoming easier. ReDeBug3 �nds buggy code 3Jang et al. (2012)
that has been copied from project to project. ¿is occurs
since programmers o en reuse code, and patches are not
applied to every version. ¿e Automatic Exploit Generation
(AEG) research challenge4 involves automatically �nding 4Avgerinos et al. (2011)
vulnerabilities and generating exploits by formalizing the
notion of an exploit and analyzing source code. Security
patches can also be used to automatically generate exploits,
since they reveal details about the underlying vulnerabilities.5 5Brumley et al. (2008)
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To help overcome this, patch execution consistency models,
which guarantee that a patch is safe to apply if the tandem
execution of patched and unpatched versions does not diverge,
have been recommended as a basis for constructing honeypots
that detect and redirect attacks.1 Our work pursues this goal1Maurer and Brumley (2012)
at the so ware level, where so ware exploit detection is
easier and more reliable than at the network level. So ware
diversi�cation has also been proposed as an e�cient protection
against patch-based attacks.22Coppens et al. (2013)

8.4 honeypots for attack analysis

Honeypots are information systems resources conceived
to attract, detect, and gather attack information. ¿ey are
designed such that any interaction with a honeypot is likely
to be malicious. Although the concept is not new,3 there3Spitzner (2002)
has been growing interest in protection and countermea-
sure mechanisms using honeypots.4 Honeypots traditionally4Lengyel et al. (2012); Beham

et al. (2013); Kulkarni et al.
(2012)

employ virtualization to trap and investigate attacks.5 By

5Provos and Holz (2007);
Yegneswaran et al. (2004)

leveraging VMmonitors, honeypots adapt and seamlessly
integrate into the network infrastructure,6monitoring attacker

6Kuwatly et al. (2004)
activities within a compromised system.7 Nowadays, large

7Lengyel et al. (2012); Dagon
et al. (2004); Gar�nkel and
Rosenblum (2003); Beham

et al. (2013)

honeyfarms, supporting on-demand loading of resources,
enable large-scale defense scenarios.8

8Vrable et al. (2005); Jiang
et al. (2006)

Shadow honeypots9 are a hybrid approach in which a front-

9Anagnostakis et al. (2010,
2005)

end anomaly detection system forwards suspicious requests
to a back-end instrumented copy of the target application,
which validates the anomaly prediction and improves the
anomaly detector’s heuristics through feedback. Although the
target and instrumented programs may share similar states
for detection purposes, shadow honeypots make no e�ort to
deceive attackers into thinking the attack was successful.
In contrast, OpenFire10 uses a �rewall-based approach to10Borders et al. (2007)

forward unwanted messages to decoy machines, making it
appear that all ports are open and inducing attackers to target
false services. Our work adopts an analogous strategy for
so ware vulnerabilities, making it appear that vulnerabilities
are unpatched and inducing attackers to target them.
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8.5 cloning for security purposes

Our work bene�ts from research advances on live cloning,1 1Sun et al. (2009)
which VM architectures are increasingly using for load balanc-
ing and fault-tolerance.2 In security contexts, VM live cloning 2Lagar-Cavilla et al. (2009);

Zheng et al. (2009)can also be used to automate the creation of on-demand
honeypots.3 For instance, dynamic honeypot extraction archi- 3Biedermann et al. (2012);

Vrable et al. (2005)tectures4 use a modi�ed version of the Xen hypervisor to
4Biedermann et al. (2012)detect potential attacks based on analysis of request payload

data, and delay their execution until a modi�ed clone of the
original system has been created. To fool and distract attack-
ers, sensitive data is removed from the clone’s �le-system.
However, no steps are taken to evade leaking con�dential
information contained within the cloned process memory
image, and the detection strategy is purely system-level, which
cannot reliably detect the language-level exploits redirected
by honey-patches.

8.6 dynamic tracking of in-memory
secrets

Dynamic taint-tracking lends itself as a natural technique for
tracking secrets in so ware. It has been applied to study sensi-
tive data lifetime (i.e., propagation and duration in memory)
in commodity applications,5 analyze spyware behavior,6 and 5Chow et al. (2004, 2005)

6Yin et al. (2007); Egele et al.
(2007)

impede the propagation of secrets to unauthorized sinks.7

7Zhu et al. (2011); Enck et al.
(2014); Gibler et al. (2012)

TaintBochs8 uses whole-system simulation to understand

8Chow et al. (2004)

secret propagation patterns in several large, widely deployed
applications, including Apache, and implements secure deallo-
cation9 to reduce the risk of exposure of in-memory secrets.

9Chow et al. (2005)
Panorama10 builds a system-level information-�ow graph

10Yin et al. (2007)
using process emulation to identify malicious so ware tamper-
ing with information that was not intended for their consump-
tion. Egele et al.11 also utilize whole-system dynamic tainting 11Egele et al. (2007)
to analyze spyware behavior in web browser components.
While valuable, the performance impact of whole-system
analyses—o en on the order of 200012—remains a signi�cant

12Yin et al. (2007); Egele et al.
(2007); Chow et al. (2004)
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obstacle, rendering such approaches impractical for most live,
high-performance, production server applications.
More recently, there has been growing interest in runtime

detection of information leaks.1 For instance, TaintDroid21Zhu et al. (2011); Enck et al.
(2014)

2Enck et al. (2014)
extends Android’s virtualized architecture with taint-tracking
support to detect misuses of users’ private information across
mobile apps. TaintEraser3 uses dynamic instrumentation to3Zhu et al. (2011)
apply taint analysis on binaries for the purpose of identifying
and blocking information leaking to restricted output chan-
nels. To achieve this, it monitors and rewrites sensitive bytes
escaping to the network and the local �le system. Our work
adopts a di�erent strategy to instrument secret-redaction
support into programs, resulting in applications that can
proactively respond to attacks by self-censoring their address
spaces with minimal overhead.

pointer taintedness In security contexts, many cate-
gories of widely exploited, memory-overwrite vulnerabilities
(e.g., format string, memory corruption, bu�er over�ow) have
been recognized as detectable by dynamic taint-checking on
pointer dereferences.4 Hook�nder5 employs data and pointer4Chen et al. (2004, 2005);

Dalton et al. (2007);
Katsunuma et al. (2006);

Dalton et al. (2008)
5Yin et al. (2008)

tainting semantics in a full-system emulation approach to
identify malware hooking behaviors in victim systems. Other
systems follow a similar technique to capture system-wide
information-�ow and detect privacy-breaching malware.6

6Yin et al. (2007); Egele et al.
(2007)

With this high practical utility come numerous theoretical
and practical challenges for e�ective pointer tainting.7 On the

7Dalton et al. (2010);
Slowinska and Bos (2009);

Kang et al. (2011)

theoretical side, there are varied views of how to interpret a
pointer’s label. (Does it express a property of the pointer value,
the values it points to, values read or stored by dereferencing
the pointer, or all three?) Di�erent taint tracking application
contexts solicit di�ering interpretations, and the di�ering
interpretations lead to di�ering taint-tracking methodologies.
Our contributions in Chapter 3 include a pointer tainting
methodology that is conducive to tracking in-memory secrets.
On the practical side, imprudent pointer tainting o en

leads to taint explosion in the form of over-tainting or label-
creep.8 ¿is can impair the feasibility of the analysis and

8Schwartz et al. (2010);
Slowinska and Bos (2009)
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increase the likelihood of crashes in programs that implement
data-rewriting policies.1 To help overcome this, sophisticated 1Zhu et al. (2011)
strategies involving pointer injection (PI) analysis have been
proposed.2 PI uses a taint bit to track the �ow of legitimate 2Katsunuma et al. (2006);

Dalton et al. (2008)pointers and another bit to track the �ow of untrusted data,
disallowing dereferences of tainted values that do not have
a corresponding pointer tainted. Our approach uses static
typing information in lieu of PI bits to achieve lower runtime
overheads and broader compatibility with low-level legacy
code.

application-level instrumentation Much of
the prior work on dynamic taint analysis has employed dy-
namic binary instrumentation (DBI) frameworks3 to enforce 3Newsome and Song (2005);

Cheng et al. (2006); Qin et al.
(2006); Clause et al. (2007);
Zhu et al. (2011); Kemerlis
et al. (2012)

taint-tracking policies on so ware. ¿ese approaches do
not require application recompilation, nor do they depend
on source code information. However, despite many opti-
mization advances over the years, dynamic instrumentation
still su�ers from signi�cant performance overheads (e.g.,
the≈ 2000 overheads of the whole-system dynamic taint
analyses mentioned above), and therefore cannot support
high-performance applications, such as the redaction speeds
required for attacker-deceiving honey-patching of production
server codes. In contrast, our work bene�ts from research
advances on static-instrumented, dynamic data �ow analysis4 4DFSan (2016); Xu et al.

(2006); Lam and Chiueh
(2006); Chang et al. (2008)

to achieve both high performance and high accuracy by
leveraging LLVM’s compilation infrastructure to instrument
taint-propagating code into server code binaries.

8.7 anomaly-based intrusion detection

Anomaly-based IDSes5 �nd patterns that do not conform to 5cf., Garcia-Teodoro et al.
(2009); Modi et al. (2013);
Lazarevic et al. (2005); Liao
et al. (2013); Chandola et al.
(2009); Patcha and Park
(2007); Tsai et al. (2009)

expected system behavior, and are typically classi�ed into
host-based and network-based approaches.
Host-based anomaly detection recognizes intrusions in

the form of anomalous subsequences of system call traces,
in which co-occurrence of events is key to characterizing
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anomalous behavior. For example, malware activity and
privilege escalation o en manifest anomalous system call
patterns.1 Seminal work in this area has established analogies1Chandola et al. (2009)
between the human immune system and intrusion detection
through statistical pro�ling of system events.2 ¿is has been2Esponda et al. (2004);

Haeseleer et al. (1996);
Forrest et al. (1996); Hofmeyr

et al. (1998)

followed by a number of related approaches using histograms
to construct pro�les of normal behavior.3 Another frequently-

3Cabrera et al. (2001);
Marceau (2001)

used approach employs a sliding window classi�er to map
sequences of events into individual output values,4 converting

4Warrender et al. (1999);
Eskin et al. (2001); Cohen

(1995)

sequential learning into a classic machine learning problem.
Network-based approaches detect intrusions using network

data. Since such systems are typically deployed at the network
perimeter, they are designed to �nd anomalous patterns
resulting from attacks launched by outside criminals, such
as attempts to disrupt or gain unauthorized access to the
network.5 Network anomaly detection is a very broad research5Bhuyan et al. (2014)
area, and it has been extensively studied in the literature.6 Ma-6cf., Hodge and Austin

(2004); Bhuyan et al. (2014);
Nguyen and Armitage

(2008); Ahmed et al. (2016)

jor approaches can be grouped into classi�cation-based (e.g.,
SVM,7 Bayesian network,8 neural networks9), statistical,10

7Eskin et al. (2002)
8Kruegel et al. (2003)
9Poojitha et al. (2010)
10Krügel et al. (2002)

and information-theoretic11 techniques.

11Lee and Xiang (2001)

Network-based anomaly detection systems can monitor a
large number of hosts at relatively low cost, but they are usually
opaque to local or encrypted attacks. On the other hand,
anomaly detection systems operating at the host level have
complete visibility of malicious events, despite encrypted net-
work payloads and obfuscation mechanisms.12 Our approach

12Kim et al. (2007)
therefore complements existing techniques and incorporates
host- and network-based features to o�er protective capa-
bilities that can resist attacker evasion strategies and detect
malicious activity bound to di�erent layers of the so ware
stack.

feature extraction for intrusion detection
Various feature extraction and classi�cation techniques have
been proposed to perform host- and network-based anomaly
detection.13 Extracting features from encrypted network pack-13Masud et al. (2011)
ets has been intensively studied in the domain of website
�ngerprinting, where attackers attempt to detect the web-
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sites visited by their victims. Users typically use anonymous
networks, such as Tor, to hide their destination websites.1 1Wang et al. (2014)
However, by just listening to encrypted packets (i.e., packet
headers only), attackers can extract meaningful features and
train a classi�er to predict destinations. ¿e information
present from network packets in each trace is typically summa-
rized to form a histogram feature vector, where the features2 2Liberatore and Levine

(2006)include packet length and direction. HTML markers, percent-
age of incoming and outgoing packets, bursts, bandwidth,
and website upload time have also been used in addition to
pack-length histograms.3 Packet-word vector approaches 3Panchenko et al. (2011);

Dyer et al. (2012)additionally leverage natural language processing and vector
space models to convert packets to word features for improved
classi�cation.4 4Alnaami et al. (2015)
¿e Bi-Di system presented in Chapter 4 leverages packet

and uni-burst data and introduces bi-directional bursting
features for better classi�cation of network streams. On
unencrypted data, host-based systems have additionally
extracted features by building histograms from co-occurrences
and sequences of system events, such as system calls.5 Our 5Chandola et al. (2009);

Cabrera et al. (2001);
Marceau (2001)

intrusion detection approach uses a hybrid scheme that
combines both host- and network-based approaches via a
modi�ed ensemble technique.
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CONCLUSION

9.1 dissertation summary

¿is dissertation advanced language-based so ware cyber
deception as a new discipline of study that integrates deceptive
defense capabilities into production so ware systems. In
contrast to most prior approaches, such as honeypotting, the
focus here has been on augmenting and re-engineering so -
ware systems that o�er legitimate services and have genuine
production value, rather than merely systems whose primary
purpose is to attract attacks. ¿is helps to address threats
posed by informed adversaries, such as advanced persistent
threat actors and insider threats, who o en surgically target
only valuable assets and ignore honeypots.
As a �agship example of this new approach, we introduced

and formulated honey-patching as a language-level strategy
for arming production so ware with deceptive capabilities
that mislead adversaries into wasting time and resources on
phantom vulnerabilities and embedded decoy �le systems.
Honey-patches conceal from attackers the information of
which so ware security vulnerabilities are patched, thereby
degrading attackers’ methods and disrupting their reconnais-
sance e�orts. ¿ey di�er from traditional honeypots in that
they transparently embed misdirection countermeasures that
reside within the actual, mission-critical so ware systems that
attackers are seeking to penetrate, rather than merely imple-
menting independent decoy systems. ¿us, honey-patching
o�ers advanced deceptive remediations against informed
adversaries who can identify and avoid traditional honeypots.

159
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In order to be adoptable, honey-patches imbue production
server so ware with deceptive capabilities without impairing
its performance or intended functionality. ¿ese new capabili-
ties make cyber attacks signi�cantly more costly and risky for
their perpetrators, and give defenders more time and opportu-
nity to detect and thwart incoming attacks. Our investigations
have shown that these advantages have signi�cant applications
for intrusion detection, cloud computing security, andmoving
target defense, and also o�er educational value in the form of
a new, hands-on approach to teach penetration testing and
active cyber defense concepts through honey-patching.
Compiler-assisted secret redaction of program process

images is a second, related, example of so ware cyber decep-
tion contributed by the dissertation. Its development intro-
duced a new statically-instrumented semantics of dynamic
taint tracking for this purpose, to realize e�cient, precise
honey-patching of production web servers. ¿is new pointer-
combine semantics resists taint over-propagation through
graph edges, a�ording e�ective dynamic taint-tracking in
legacy C codes. Chapter 3 highlights an implementation of
the new semantics atop the LLVM compiler infrastructure.
¿e implementation signi�cantly improves the feasibility of
dynamic taint-tracking for low-level legacy code that stores
secrets in graph data structures. To ease the programmer’s
annotation burden and avoid taint explosions su�ered by prior
approaches, it introduces declarative type annotations to C via
which so ware developers can identify con�dential process
data. Deceptive servers self-redact their address spaces in
response to intrusions, a�ording defenders a new tool for
attacker monitoring and disinformation.
Our examination of honey-patching applications for intru-

sion detection revealed that language-based so ware cyber
deception can ameliorate several longstanding and pernicious
challenges for machine learning-based intrusion detection,
including scarcity of training data, the high labeling burden
for (semi-)supervised learning, and concept di�erences be-
tween honeypot attacks versus those against real victims.
Integrating deception-powered application-level feedback
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into a traditional network-level IDS yields exceptional accu-
racy, improved agility, and substantially improved data set
quality that o�ers high promise for future IDS research.
Based on these �ndings, we conclude that cyber-deceptive

so ware engineering approaches to security constitute a po-
tentially high-impact new direction of cyber security research,
which o�ers to substantially increase attacker risk at low cost
to defenders.

9.2 discussion and future work

9.2.1 Selective honey-patching

Our work evaluates the feasibility of honey-patching as realis-
tic application, but raises interesting questions about how to
evaluate the strategic advantages or disadvantages of honey-
patching various speci�c vulnerabilities. For example, some
patches close vulnerabilities by adding new, legitimate so ware
functionalities. Converting such patches to honey-patches
might be inadvisable, since it might treat uses of those new
functionalities as attacks. In general, honey-patching should
be applied judiciously based on an assessment of attacker and
defender risk. Future work should consider how to reliably
conduct such assessments. Similarly, honey-patching can be
applied selectively to simulate di�erent so ware versions and
achieve versioning consistency.

9.2.2 Automation

Our implementation approach o�ers a semi-manual process
for transforming patches into honey-patches. An obvious next
step is to automate this by incorporating it into a rewriting
tool or compiler. One interesting challenge concerns the
question of how to audit or validate the secret redaction
step for arbitrary so ware. Future research should consider
facilitating this by applying language-based information �ow
analyses.1

1cf., Sabelfeld and Myers
(2003)
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9.2.3 Active Defense

Honey-patching enhances the current realm of weaponized
so ware by placing defenders in a favorable position to deploy
o�ensive techniques for reacting to attacks. For example,
decoys provide the ideal environment for implementing
stealthy traps to disinform attackers and report precisely what
attacks are doing in real-time,1 and further insight into the1Crane et al. (2013)
attackers’modus operandi can be gained by forging and acting
upon decoy data. ¿ere is existing work in this direction in
DARPA’s Mission-oriented Resilient Clouds (MRC) program.22Voris et al. (2012b)

9.2.4 Deceptiveness

¿e e�ectiveness of a honey-patch is contingent upon the
deceptiveness of decoy environments. Prior work has investi-
gated the problem of how to generate andmaintain convincing
honey-data for e�ective attacker deception,3 but there are3e.g., Yuill et al. (2006);

Bowen et al. (2009); Salem
and Stolfo (2011); Voris et al.

(2012a)

other potential avenues of deception discovery that must be
considered.
Response times are one obvious channel of possible dis-

covery that must be considered. Cloning is e�cient but still
introduces non-zero response delay for attackers. By collecting
enough timing statistics, attackers might try to detect response
delays to discern honey-patches. Sections 2.5 and 3.4.3 show
that this threat can be mitigated by reducing the performance
overhead of cloning to the point where it becomes feasible to
arti�cially delay non-forking requests to obtain a response
delay distribution indistinguishable from that of the forking
requests. Future work should therefore explore even more
techniques for improving cloning performance, particularly
in cloud computing contexts (see Chapter 5).
In addition, RedHerring’s deceptiveness against discovery

through response delays is aided by the plethora of noisy
latency sources that most web servers naturally experience,
which tend to eclipse the relatively small delays introduced
by honey-patching.4 Unpatched, vulnerable servers o en

4Souders (2012)
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respond slower to malicious inputs than to normal tra�c,1 1Gadot et al. (2014); Wang
et al. (2005)just like honey-patched servers. ¿is suggests that detecting

honey-patches by probing for delayed responses to attacks
may yield many false positives for attackers. If criminals react
to the rise of honey-patching by cautiously avoiding attacks
against servers that respond slightly slower when attacked,
many otherwise successful attacks will have been thwarted.
Alternatively, attackers who take full control of decoys can

potentially read and reverse-engineer the process image’s
binary code to discover the honey-patch (e.g., by injecting
malicious code that reads the process binary and �nds the
honey-patching implementation). While possible with enough
e�ort, we believe this is nevertheless a signi�cant burden rela-
tive to the much easier task of detecting failed exploits against
traditionally patched systems. ¿e emergence of arti�cial
so ware diversity2 and �ne-grained binary randomization 2e.g., Jackson et al. (2011)
tools3 has made it increasingly di�cult to quickly and reliably 3e.g., Wartell et al. (2012)
reverse-engineer arbitrary binary process images. Future
work should consider raising the bar further by unloading
prominent libraries, such as the honey-patch library, during
cloning.
Additionally, RedHerring’s decoy environments are con-

structed to look identical to real distributed web servers from
inside the container; for example, many real web servers
use LXC containers that look like the decoy LXC containers.
¿erefore, distinguishing decoys from real web servers on the
basis of environmental details (e.g., through init process
control groups) is di�cult for attackers. Although resource
exhaustion attacks (e.g., �ooding) can cause RedHerring to
run out of decoy resources (e.g., containers), this outcome is
di�cult for attackers to distinguish from running the same
attacks against a non-honey-patched server; both result in
observationally similar resource exhaustions.
Likewise, real-time behavior of the decoy inevitably di�ers

from the target due to the lack of other, concurrent connec-
tions. With a long enough observation period, attackers
can reliably detect this di�erence.4 Wemitigate this by con- 4cf., Fu et al. (2006)
straining decoy lifetimes with a timeout. ¿is resembles
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unpatched servers that automatically reset when a crash or
freeze is detected, and therefore limits the attacker’s observa-
tions of real-time connection activity without revealing the
honey-patch or limiting the attacker’s access to decoy data or
honey�les.

9.2.5 Detection granularity

One foundational assumption of our work is that some attacks
are not identi�able at the network or system level before
they do damage. ¿us, detection approaches that monitor
network or system logs for malicious activity are not a panacea.
For example, encrypted, obfuscated payloads buried in a
sea of encrypted connection data, or those that undertake
previously unseen malicious behaviors a er exploiting known
vulnerabilities, might be prohibitively di�cult to detect by
network or log mining. ¿e goal of our work is to detect
such exploits at the so ware level, and then (1) impede the
attack by misdirecting the attacker, (2) lure the attacker to
give defenders more time and information to trace and/or
prosecute, (3) feed attackers disinformation to lower the
e�ectiveness of current and future attacks, and (4) gather
information about attacker gambits to identify and better
protect con�dential data against future attacks. We believe
these goals form a promising template for future work in the
discipline.



A
CYBER-DECEPTION LAB SURVEY
QUESTIONS

a.1 first survey

q1. Did you succeed in attacking the server? (yes/no) If yes,
what actions did you take a er you were able to exploit
the vulnerability?
Yes: 7/7, No: 0/7

q2. Did the vulnerable server raise any red �ags? (yes/no)
Yes: 0/7, No: 7/7

q3. If Yes to Q2: Did you think you were interacting with
a real server (i.e., not a trap)? (yes/no) If not, please
explain.

q4. If Yes to Q2: Did you observe anything anomalous in any
of the following: �le-system, server responses? (yes/no)
If yes, how long until you observed them?

a.2 second survey

q1. A er your were told that the system was honey-patched,
what actions did you take? Did you try to hack the
system? (yes/no)
Yes: 1/7, No: 6/7

q2. If you were given enough time, what would you attempt
to do?

165



166 cyber-deception lab survey questions

q3. Did you �nd this exercise useful for expanding your
cyber security education? (yes/no)
Yes: 7/7, No: 0/7

q4. Were the tutorial instructions clear? (yes/no) If not,
please suggest improvements.
Yes: 7/7, No: 0/7

q5. Were the student instructors helpful and responsive?
(yes/no)
Yes: 7/7, No: 0/7

q6. Did this exercise increase your interest in the research
side of cyber security? (yes/no) Please elaborate.
Yes: 7/7, No: 0/7
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