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Abstract Enhancing standard web services with deceptive responses to cyber
attacks can be a powerful and practical strategy for improved intrusion detection.
Such deceptions are particularly helpful for addressing and overcoming barriers
to effective machine learning-based intrusion detection encountered in many
practical deployments. For example, they can provide a rich source of training
data when training data is scarce, they avoid imposing a labeling burden on
operators in the context of (semi-)supervised learning, they can be deployed
post-decryption on encrypted data streams, and they learn concept differences
between honeypot attacks and attacks against genuine assets.

The approach presented in this chapter examines how deceptive web service
responses can be realized as software security patches that double as feature
extraction engines for a network-level intrusion detection system. The resulting
system coordinates multiple levels of the software stack to achieve fast, au-
tomatic, and accurate labeling of live web data streams, and thereby detects
attacks with higher accuracy and adaptability than comparable non-deceptive
defenses.

1 Introduction

Detecting previously unseen cyber attacks before they reach unpatched, vul-
nerable web servers (or afterward, for recovery purposes) is an increasingly
central component to multi-layered defense of modern computer networks.
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High-impact zero-day vulnerabilities now appear at a weekly or daily rate, and
studies indicate that over 75% of web sites have unpatched vulnerabilities [19].
The cost of data breaches resulting from software exploits was estimated at
$2.1 trillion for 2019 [14].

Intrusion detection [10] is an important means of mitigating such threats.
Rather than implement vulnerability-specific mitigations (which is difficult
when the vulnerability is unknown to defenders), intrusion detection systems
more generally alert administrators when they detect deviations from a model
of normal behavior in the observed data [20]. This capitalizes on the observation
that the most damaging and pernicious attacks discovered in the wild often
share similar traits, such as the steps intruders take to open back doors,
execute files and commands, alter system configurations, and transmit gathered
information from compromised machines. Starting with the initial infection,
such malicious activities often leave telltale traces that can be identified even
when the underlying exploited vulnerabilities are unknown to defenders. The
challenge is therefore to capture and filter these attack trails from network traffic,
connected devices, and target applications, and develop defense mechanisms
that can effectively leverage such data to disrupt ongoing attacks and prevent
future attempted exploits.

However, despite its great power, the deployment of machine learning
approaches for web intrusion detection is often hindered by a scarcity of
realistic, current cyber attack data with which to train the system, and by
the difficulty of accurately and efficiently labeling such data sets, which are
often prohibitively large and complex. This can frustrate comprehensive, timely
training of intrusion detection systems (IDSes), casuing the IDS to raise
numerous false alarms and elevating its susceptibility to attacker evasion
techniques [6, 9, 13,16,18].

To mitigate these dilemmas, this chapter presents a deception-based ap-
proach to enhancing IDS web data streams for faster, more accurate, and more
timely evolution of intrusion detection models to emerging attacks and attacker
strategies.

2 Deceptive Collection of Attack Data

Deception has long been recognized as a key ingredient of effective cyber war-
fare (cf., [23]), but many realizations limit the potential power of deception
by isolating and separating deceptive assets from the data stream in which
intrusions must actually be detected. A typical example is the use of ded-
icated honeypots to collect attack-only data streams [21]. Such approaches
unfortunately have limited training value in that they often mistrain IDSes to
recognize only attacks against honeypots, or only attacks by unsophisticated
adversaries unable to identify and avoid honeypots. For example, attacks that
include substantial interactivity are typically missed, since the honeypot offers
no legitimate services, and therefore collects no data characterizing attacks
against legitimate services.
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1 read a[i]

1 if (i ≥ length(a))
2 abort();
3 read a[i]

1 if (i ≥ length(a))
2 fork to decoy();
3 read a[i]

Fig. 1 Pseudo-code for a buffer overflow vulnerability (left), a patch (middle), and a
honey-patch (right)

One way to overcome this limitation is to integrate deceptive attack re-
sponse capabilities directly into live, production web server software via honey-
patching [2,3,4]. Honey-patches are software security patches that are modified
to avoid alerting adversaries when their exploit attempts fail. Instead of merely
blocking the attempted intrusion, the honey-patch transparently redirects
the attacker’s connection to a carefully isolated decoy environment running
an unpatched version of the software. Adversaries attempting to exploit a
honey-patched vulnerability therefore observe software responses that resemble
unpatched software, even though the vulnerability is actually patched. This
deception allows the system to observe subsequent actions by the attacker until
the deception is eventually uncovered. Thus, honey-patches offer equivalent
security to conventional patches, but can also enhance IDS web data streams
by feeding them a semantically rich stream of pre-labeled (attack-only) data
for training purposes. These deception-enhanced data streams thus provide
IDSes with concept-relevant, current, feature-filled information with which to
detect and prevent sophisticated, targeted attacks.

Honey-patches are often easy to implement via only a minor change to a
vendor-released software patch. For example, buffer overflow vulnerabilities are
typically patched by adding a bounds check that tests whether a dereferenced
pointer or array index falls within the bounds of the buffer. Such patches can
easily be reformulated into honey-patches by retaining the check, but changing
what happens when the check fails. Instead of aborting the connection or
reporting an error, the honey-patch redirects the connection to an unpatched
decoy, where the buffer overflow is permitted to succeed.

Figure 1 demonstrates the approach using pseudo-code for a buffer-overflow
vulnerability, a conventional patch, and a honey-patch. The honey-patch retains
the logic of the conventional patch’s security check, but replaces its remediation
with a deceptive fork to a decoy environment. The decoy contains no valuable
data and offers no legitimate services; its sole purpose is to monitor attacker
actions, such as shellcode or malware introduced by the attacker after abusing
the buffer overflow to hijack the software. The infrastructure for redirecting
attacker connections to decoys can remain relatively static, so that honey-
patching each newly discovered vulnerability only entails replacing the few
lines of code in each patch that respond to detected exploits.

Honey-patches constitute an integrated deception mechanism that offers
some important advantages over conventional honeypots. Most significantly,
they observe attacks against the defender’s genuine assets, not merely those
directed at fake assets that offer no legitimate services. They can therefore
capture data from sophisticated attackers who monitor network traffic to
identify service-providing assets before launching attacks, who customize their
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attacks to the particular activities of targeted victims (differentiating genuine
servers from dedicated honeypots), and who may have already successfully
infiltrated the victim’s network before their attacks become detected. The
remainder of this chapter examines how the deception-enhanced data harvested
by honey-patches can be of particular value to network-level defenses, such as
firewalls equipped with machine learning-based intrusion detection.

3 Intrusion Detection Challenges

Despite the potential power of machine learning in intrusion detection appli-
cations, its success in operational environments can be hampered by specific
challenges that arise in the cyber security domain. In this section we argue that
cyber deception can be a highly effective strategy for avoiding or overcoming
many of these challenges.

Fundamentally, machine learning algorithms perform better at identifying
similarities than at discovering previously unseen outliers. Since normal, non-
attack data is usually far more plentiful than realistic, current attack data,
many classifiers must be trained almost solely from the former, necessitating an
almost perfect model of normality for any reliable classification [18]. Deceptive
defenses help to offset this imbalance by providing a continuous source of
realistic attack data specialized to the defender’s network and assets.

Feature extraction [7] is also unusually difficult in intrusion detection con-
texts because security-relevant features are often not known by defenders in
advance. The task of selecting appropriate features to detect an intrusion (e.g.,
features that generate the most distinguishing intrusion patterns) can create a
bottleneck in building effective models, since it demands empirical evaluation.
Identification of attack traces among collected workload traces for constructing
realistic, unbiased training sets is particularly challenging. Current approaches
usually require manual analysis aided by expert knowledge [6,9], which reduces
the model’s evolutionary and update capabilities, making it susceptible to
attacker evasions. The approach presented in this chapter shows how including
deceptions within software security patches can overcome this difficulty.

A third obstacle is analysis of encrypted data. Encryption is widely employed
to prevent unauthorized users from accessing sensitive web data transmitted
through network links or stored in file systems. However, since network-level
detectors typically discard cyphered data, their efficacy is greatly reduced by
the widespread use of encryption technologies [13]. In particular, attackers
benefit from encrypting their malicious payloads, making it harder for standard
classification strategies to distinguish attacks from normal activity. Deceptive
defenses can often be placed after decryption within the software stack, evading
this problem.

High false positive rates are another practical challenge for adoption of
machine learning approaches [16]. Raising too many alarms renders intrusion
detection meaningless in most cases, as actual attacks are often lost among the
many alarms. Studies have shown that effective intrusion detection therefore
demands very low false alarm rates [5]. Deception-enhanced data streams can
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Fig. 2 System architecture overview

ameliorate this by improving the concept-relevance of the collected training
data, improving attack detection accuracy.

4 Mining Deception-Enhanced Threat Data

To mitigate these challenges, this chapter introduces an approach to enhance
intrusion detection with threat data sourced from honey-patched [4] applications.
Figure 2 shows an overview of the approach. Unlike conventional approaches, our
framework incrementally builds a model of legitimate and malicious behavior
based on audit streams and attack traces collected from honey-patched web
servers. This augments the classifier with security-relevant feature extraction
capabilities not available to typical network intrusion detectors, effectively
reducing the anomaly detection task to a semi-supervised learning process.

Such capabilities are transparently built into the framework, requiring
no additional developer effort (apart from routine patching) to convert the
target application into a potent feature extractor for anomaly detection. Since
traces extracted from decoys are always contexts of true malicious activity,
this results in an effortless labeling of the data and supports the generation of
higher-accuracy detection models.

Honey-patches add a layer of deception to confound exploits of known
(patchable) vulnerabilities. Previously unknown (i.e., zero-day) exploits can
also be mitigated through IDS cooperation with the honey-patches. For example,
a honey-patch that collects identifying information about a particular adversary
seeking to exploit a known vulnerability can convey that collected information
to train a classifier, which can then potentially identify the same adversary
seeking to exploit a previously unknown vulnerability. This enables training
intrusion detection models that capture features of the attack payload, and not
just features of the actual exploitation of the vulnerability, thus more closely
approximating the true invariant of an attack.

To facilitate such learning, our approach classifies sessions as malicious,
not merely the individual packets, commands, or bytes within sessions that
comprise each attack. For example, observing a two-phase attack consisting
of (1) exploitation of a honey-patched vulnerability, followed by (2) injection
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of previously unseen shellcode might train a model to recognize the shellcode.
Subsequent attacks that exploit an unpatched zero-day to inject the same (or
similar) shellcode can then be recognized by the classifier even if the zero-day
exploit is not immediately recognized as malicious. Conventional, non-deceptive
patches often miss such learning opportunities by terminating the initial attack
at the point of exploit, before the shellcode can be observed.

Our approach therefore essentially repurposes security patches in an IDS
setting as automated, application-level feature extractors. The maintenance
burden for these extractors is relatively low: most of the patch code is maintained
by the collective expertise of the entire software development community, as they
discover new vulnerabilities and release patches for them. Via honey-patching,
defenders can reimagine those patches as highly accurate, rapidly co-evolving
feature extraction modules for an IDS. The extractor detects previously unseen
payloads that exploit known vulnerabilities at the application layer, which can
be prohibitively difficult to detect by a strictly network-level IDS.

By living inside web servers that offer legitimate services, a deception-
enhanced IDS can target attackers who use one payload for reconnaissance but
reserve another for their final attacks. The facility of honey-patches to deceive
such attackers into divulging the latter is useful for training the IDS to identify
the final attack payload, which can reveal attacker strategies and goals not
discernible from the reconnaissance payload alone. The defender’s ability to
thwart these and future attacks therefore derives from a synergy between the
application-level feature extractor and the network-level intrusion detector to
derive a more complete model of attacker behavior.

5 Use Case: Booby-trapping Software for Intrusion Detection

5.1 Architectural Overview

The architecture depicted in Figure 2 embodies this approach by leveraging
application-level threat data gathered from attacker sessions misdirected to
decoys. Within this framework, developers use honey-patches to misdirect
attackers to decoys that automatically collect and label monitored attack data.
The intrusion detector consists of an attack modeling component that incre-
mentally updates the anomaly model data generated by honey-patched servers,
and an attack detection component that uses this model to flag anomalous
activities in the monitored perimeter.

The decoys into which attacker sessions are forked can be managed as a pool
of continuously monitored containers (e.g., LXC on Linux). Each container
follows the following life cycle: Upon attack detection, the honey-patching
mechanism acquires the first available container from the pool. The acquired
container holds an attacker session until (1) the session is deliberately closed by
the attacker, (2) the connection’s keep-alive timeout expires, (3) the ephemeral
container crashes, or (4) a session timeout is reached. The last two conditions
are common outcomes of successful exploits. In any of these cases, the container
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is released back to the pool and undergoes a recycling process before becoming
available again.

After decoy release, the container monitoring component extracts the session
trace (delimited by the acquire and release timestamps), labels it, and stores
the trace outside the decoy for subsequent feature extraction. Decoys only host
attack sessions, so precisely collecting and labeling their traces (at both the
network and OS level) is effortless.

Evaluating the framework requires distinguishing three separate input data
streams: (1) the audit stream, collected at the target honey-patched server, (2)
attack traces, collected at decoys, and (3) a monitoring stream, which consists
of a actual test stream collected from regular servers. Each of these streams
contains network packets and operating system events captured at each server
environment. To minimize performance impact, a powerful and highly efficient
software monitor is recommended. Recommended candidates include sysdig
(to track system calls and modifications made to the file system), and tcpdump
(to monitor ingress and egress of network packets). Specifically, monitored data
is stored outside the decoy environments to avoid possible tampering with the
collected data.

Using the continuous audit stream and incoming attack traces as labeled
input data, the intrusion detector incrementally builds a machine learning
model that captures legitimate and malicious behavior. The raw training set
(composed of both audit stream and attack traces) is piped into a feature
extraction component that selects relevant, non-redundant features (see §5.2)
and outputs feature vectors—audit data and attack data—that are grouped and
queued for subsequent model update. Since the initial data streams are labeled
and have been preprocessed, feature extraction becomes very efficient and can
be performed automatically. This process repeats periodically according to
an administrator-specified policy. Finally, the attack detection module uses
the most recently constructed attack model to detect malicious activity in the
run-time monitoring data.

5.2 Detection Models

To assess our framework’s ability to enhance intrusion detection data streams,
we have designed and implemented two feature set models: (1) Bi-Di detects
anomalies in security-relevant network streams, and (2) N-Gram finds anoma-
lies in system call traces. The feature set models and classifier presented in
this section serve as illustrative use case. Applications of the IDS framework
should consider other machine learning models and contrast tradeoffs and their
effectiveness for attack detection.

5.2.1 Network Packet Analysis

Bi-Di (Bi-Directional) is a packet-level network behavior analysis approach that
extracts features from sequences of packets and bursts—consecutive packets
oriented to the same direction (viz., uplinks from client to server, or downlinks
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Table 1 Packet, uni-burst, and bi-burst features

Category Features

Packet (Tx/Rx) Packet length

Uni-Burst (Tx/Rx) Uni-Burst size
Uni-Burst time
Uni-Burst count

Bi-Burst (Tx-Rx/Rx-Tx) Bi-Burst size
Bi-Burst time

from server to client). It uses distributions from individual burst sequences
(uni-bursts) and sequences of two adjacent bursts (bi-bursts). To be robust
against encrypted payloads, we limit feature extraction to packet headers.

Network packets flow between client (Tx ) and server (Rx ). Bi-Di constructs
histograms using features extracted from packet lengths and directions. To
overcome dimensionality issues associated with burst sizes, bucketization is
applied to group bursts into correlation sets (e.g., based on frequency of
occurrence). Table 1 summarizes the features used in our approach. It highlights
new features proposed for uni- and bi-bursts as well as features proposed in
prior works [1, 12,15,22].

Uni-burst features include burst size, time, and count—i.e., the sum of the
sizes of all packets in the burst, the amount of time for the entire burst to
be transmitted, and the number of packets it contains, respectively. Taking
direction into consideration, one histogram for each is generated.

Bi-burst features include time and size attributes of Tx-Rx-bursts and Rx-Tx-
bursts. Each is comprised of a consecutive pair of downlink and uplink bursts.
The size and time of each are the sum of the sizes of the constituent bursts,
and the sum of the times of the constituent bursts, respectively.

Bi-bursts capture dependencies between consecutive packet flows in a TCP
connection. Based on connection characteristics, such as network congestion,
the TCP protocol applies flow control mechanisms (e.g., window size and
scaling, acknowledgement, sequence numbers) to ensure a level of consistency
between Tx and Rx. This influences the size and time of transmitted packets
in each direction. Each packet flow (uplink and downlink) thereby affects the
next flow or burst until communicating parties finalize the connection.

5.2.2 System Call Analysis

The monitored data also includes system streams comprising a collection of OS
events, where each event contains multiple fields including event type (e.g., open,
read, select), process name, and direction. Our prototype implementation was
developed for Linux x86 64 systems, which exhibit about 314 distinct possible
system call events. Our framework builds histograms from these system calls
using N-Gram—a system-level approach that extracts features from contiguous
sequences of system calls.
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Algorithm 1: Ens-SVM
Data: training data: TrainX, testing data: TestX
Result: a predicted label LI for each testing instance I

1 begin
2 B← updateModel(Bi-Di,TrainX );
3 N← updateModel(N-Gram,TrainX );
4 for each I ∈ TestX do
5 LB ← label(B, I);
6 LN ← label(N, I);
7 if LB == LN then
8 LI ← LB;

9 else

10 LI ← label

(
arg max
c∈{B,N}

confidence(c, I), I
)

;

11 end

12 end

13 end

There are four feature types: Uni-events are system calls, and can be
classified as enter or exit events. Bi-events are sequences of two consecutive
events, where system calls in each bi-event constitute features. Similarly, tri- and
quad-events are sequences of three and four consecutive events (respectively).

Bi-Di and N-Gram differ in feature granularity; the former uses coarser-
grained bursting while the latter uses only individual system call co-occurrences.

5.3 Attack Classification

Bi-Di and N-Gram both use SVM for classification. Using a convex optimization
approach and mapping non-linearly separated data to a higher dimensional
linearly separated feature space, SVM separates positive (attack) and negative
(benign) training instances by a hyperplane with the maximum gap possible.
Prediction labels are assigned based on which side of the hyperplane each
monitoring/testing instance belongs.

Ens-SVM: Bi-Di and N-Gram can be combined to obtain a better predictive
model. A näıve approach concatenates features extracted by Bi-Di and N-Gram
into a single feature vector and uses it as input to the classification algorithm.
However, this approach has the drawback of introducing normalization issues.
Alternatively, ensemble methods combine multiple classifiers to obtain a better
classification outcome via majority voting techniques. For our purposes, we
use an ensemble, Ens-SVM, which classifies new input data by weighing the
classification outcomes of Bi-Di and N-Gram based on their individual accuracy
indexes.

Algorithm 1 describes the voting approach for Ens-SVM. For each instance
in the monitoring stream, if both Bi-Di and N-Gram agree on the predictive
label (line 7), Ens-SVM takes the common classification as output (line 8).
Otherwise, if the classifiers disagree, Ens-SVM takes the prediction with the
highest SVM confidence (line 10). Confidence is rated using Platt scaling [17],
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Fig. 3 Web traffic generation and testing harness

which uses the following sigmoid-like function to compute the classification
confidence:

P (y = 1|x) =
1

1 + exp (Af(x) +B)
(1)

where y is the label, x is the testing vector, f(x) is the SVM output, and A
and B are scalar parameters learned using Maximum Likelihood Estimation
(MLE). This yields a probability measure of how much a classifier is confident
about assigning a label to a testing point.

6 Evaluation Testbed

Objective, scientific evaluation of cyber-deceptions is often very difficult, be-
cause evaluations on live attackers tend to be subjective (there is usually no
way to know whether an anonymous attacker was genuinely deceived or just
“playing along”), anecdotal (samples of hundreds or thousands of provably
distinct attackers are required to draw quantifiable conclusions), and impossi-
ble to replicate. Much of the prior work in this space has been criticized on
those grounds. Our work therefore offers a more rigorous evaluation method-
ology, which demonstrates that objectively quantifiable success metrics for
IDSes significantly improve when exposed to deception-enhanced data, and the
experimental results are reliably reproducible at large sample sizes.

6.1 Realistic Web Traffic Generation

To demonstrate the practical advantages and feasibility of deception-enhanced
intrusion detection, we built a web traffic generator and test harness. Figure 3
shows an overview of our evaluation testbed, inspired by prior work [8]. It
streams realistic encrypted legitimate and malicious workloads onto a honey-
patched web server, resulting in labeled audit streams and attack traces (col-
lected at decoys) for training set generation.

Legitimate data. Normal traffic is created by automating complex user actions
on a typical web application as shown in table 3, leveraging Selenium to
automate user interaction with a web browser (e.g., clicking buttons, filling out
forms, navigating a web page). We generated web traffic for 12 different user
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Table 2 Summary of synthetic data generation.

Normal workload summary

Activity Application Description

Post CGI web app Posting blog on a guestbook CGI web application
Post Wordpress Posting blog on wordpress
Post Wordpress buddypress plugin Posting comment on social media web application
Registration Wordpress woocommerce plugin Product registration and product description
Ecommerce Wordpress woocommerce plugin Ordering of a product and checkout
Browse Wordpress Browsing through a blog post
Browse Wordpress buddypress Browsing through a social media page
Browse Wordpress woocommerce plugin Browsing product catalog
Registration Wordpress User registration
Registration Wordpress woocommerce plugin Coupon registration

activities (each repeated 200 times), including web page browsing, e-commerce
website navigation, blog posting, and interacting with a social media web
application. The setup included a CGI web application and a PHP-based
Wordpress application hosted on a monitored Apache web server. To enrich the
set of user activities, the Wordpress application was extended with Buddypress
and Woocommerce plugins for social media and e-commerce web activities,
respectively.

To create realistic interactions with the web applications, our framework
feeds from online data sources, such as the BBC text corpus, online text
generators for personally identifiable information (e.g., usernames, passwords),
and product names to populate web forms. To ensure diversity, we statistically
sampled the data sources to obtain user input values and dynamically generated
web content. For example, blog title and body is statistically sampled from
the BBC text corpus, while product names are picked from the product names
data source.

Attack data. Attack traffic is generated based on real vulnerabilities as shown
in Table 3. For this evaluation, we selected 16 exploits for eight well-advertised,
high-severity vulnerabilities. These include CVE-2014-0160 (Heartbleed), CVE-
2014-6271 (Shellshock), CVE-2012-1823 (improper handling of query strings by
PHP in CGI mode), CVE-2011-3368 (improper URL validation), CVE-2014-
0224 (Change Cipher specification attack), CVE-2010-0740 (Malformed TLS
record), CVE-2010-1452 (Apache mod cache vulnerabilty), and CVE-2016-7054
(Buffer overflow in openssl with support for ChaCha20-Poly1305 cipher suite).
In addition, nine attack variants exploiting CVE-2014-6271 (Shellshock) were
created to carry out different malicious activities (i.e., different attack payloads),
such as leaking password files and invoking bash shells on the remote web
server. These vulnerabilities are important as attack vectors because they range
from sensitive data exfiltration to complete control and remote code execution.
To emulate realistic attack traffic, we interleaved attacks and normal traffic
following the strategy of Wind Tunnel [8].

Dataset. The traffic generator is deployed on a separate host to avoid interfer-
ence with the testbed server. To account for operational and environmental
differences, our framework simulates different workload profiles (according to
time of day), against various target configurations (including different back-
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Table 3 Summary of attack workload

# Attack Type Description Software

1 CVE-2014-0160 Information leak Openssl
2 CVE-2012-1823 System remote hijack PHP
3 CVE-2011-3368 Port scanning Apache

4–10 CVE-2014-6271 System hijack (7 variants) Bash
11 CVE-2014-6271 Remote Password file read Bash
12 CVE-2014-6271 Remote root directory read Bash
13 CVE-2014-0224 Session hijack and information leak Openssl
14 CVE-2010-0740 DoS via NULL pointer dereference Openssl
15 CVE-2010-1452 DoS via request that lacks a path Apache
16 CVE-2016-7054 DoS via heap buffer overflow Openssl

ground processes and server workloads), and network settings, such as TCP
congestion controls. In total, we generated 12 GB of (uncompressed) network
packets and system events over a period of three weeks. After feature extraction,
the training data comprised 1200 normal instances and 1600 attack instances.
Monitoring or testing data consisted of 2800 normal and attack instances
gathered at unpatched web servers, where the distribution of normal and attack
instances varies per experiment.

6.2 Experimental Results

Using this dataset, we trained the classifiers presented in §5.2 and assessed
their individual performance against test streams containing both normal and
attack workloads. In the experiments, we measured the true positive rate (tpr)
where true positive represents the number of actual attack instances that are
classified as attacks, false positive rate (fpr) where false positive represents the
number of actual benign instances classified as attacks, accuracy (acc), and F2

score of the classifier, where the F2 score is interpreted as the weighted average
of the precision and recall, reaching its best value at 1 and worst at 0. An RBF
kernel with Cost = 1.3× 105 and γ = 1.9× 10−6 was used for SVM [15].

Detection accuracy. To evaluate the accuracy of intrusion detection, we tested
each classifier after incrementally training it with increasing numbers of attack
classes. Each class consists of 100 distinct variants of a single exploit, as
described in §6.1, and an n-class model is one trained with up to n attack
classes. For example, a 3-class model is trained with 300 instances from 3
different attack classes. In each run, the classifier is trained with 1200 normal
instances and 100 ∗ n attack instances where n ∈ [1, 16] attack classes. In
addition, in each run, we execute ten experiments where the attacks are
shuffled in a cross-validation-like fashion and the average is reported. This
ensures training is not biased toward any specific attacks.

Testing on decoy data. The first experiment measures the accuracy of each
classifier against a test set composed of 1200 normal instances and 1600
uniformly distributed attack instances gathered at decoys. Figure 4(a)–(b)
presents the results, which serve as a preliminary check that the classifiers
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Fig. 4 Classification accuracy of Bi-Di, N-Gram, and Ens-SVM for 0–16 attack classes for
(a)–(b) training and testing on decoy data, (c)–(d) training on decoy data and testing on
unpatched server data, and (e)–(f) training on regular-patched server data and testing on
unpatched server data.

can accurately detect attack instances resembling the ones comprised in their
initial training set.

Testing on unpatched server data. The second experiment also measures each
classifier’s accuracy, but this time the test set was derived from monitoring
streams collected at regular, unpatched servers, and having a uniform distri-
bution of attacks. Figure 4(c)–(d) shows the results, which indicate that the
detection models of each classifier generalize beyond data collected in decoys.
This is critical because it demonstrates the classifier’s ability to detect pre-
viously unseen attack variants. Our framework thus enables administrators
to add an additional level of protection to their entire network, including
hosts that cannot be promptly patched, via the adoption of a honey-patching
methodology.

The results also show that as the number of training attack classes increases—
which are proportional to the number of vulnerabilities honey-patched—a steep
improvement in the true positive rate of both classifiers is observed, reaching
an average tpr of above 92% for the compounded Ens-SVM, while average false
positive rate in all experiments remained below 0.01%. This demonstrates the
positive impact of the feature-enhancing capabilities of deceptive application-
level attack responses like honey-patching.

Training on regular-patched server data. To compare our approach against
analogous, standard IDSes that do not employ deception, we trained each
classifier on data collected from non-deceptive, regular-patched servers, and
tested them on the unpatched server data, using the same set of attacks.
Figure 4(e)–(f) shows the results, which outline the inherent challenges of
traditional intrusion detection models on obfuscated, unlabeled attack traces.
Unlike honey-patches, which capture and label traces containing patterns of
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Table 4 Base detection rates for approximate targeted attack scenario (PA ≈ 1%) [11]

Classifier tpr fpr acc F2 bdr

OneSVM-Bi-Di 55.56 13.17 68.96 59.69 4.09
OneSVM-N-Gram 84.77 0.52 91.07 87.09 62.22

Bi-Di 86.69 0.25 92.29 89.02 77.79
N-Gram 86.52 0.01 92.30 88.89 98.98
Ens-SVM 92.76 0.01 95.86 94.12 99.05

successful attacks, conventional security patches yield traces of failed attack
attempts, making them unfit to reveal patterns of attacks against unpatched
systems.

Baseline evaluation. This experiment compares the accuracy of our detection
approach to the accuracy of an unsupervised outlier detection strategy, which is
commonly employed in typical intrusion detection scenarios [9], where labeling
attack data is not feasible or prohibitively expensive. For this purpose, we
implemented two One-class SVM classifiers, OneSVM-Bi-Di with a polynomial
kernel and ν = 0.1 and OneSVM-N-Gram with a linear kernel and ν = 0.001,
using Bi-Di and N-Gram models for feature extraction, respectively. We fine
tuned the One-class SVM parameters and performed a systematic grid search
for the kernel and ν to get the best results.

One-class SVM uses an unsupervised approach, where the classifier trains
on one class and predicts whether a test instance belongs to that class, thereby
detecting outliers—test instances outside the class. To perform this experi-
ment, we incrementally trained each classifier with an increasing number of
normal instances, and tested the classifiers after each iteration against the
same unpatched server test set used in the previous experiments. The results
presented in Table 4 highlight critical limitations of conventional outlier intru-
sion detection systems: reduced predictive power, lower tolerance to noise in
the training set, and higher false positive rates.

In contrast, our supervised approach overcomes such disadvantages by
automatically streaming onto the classifiers labeled security-relevant features,
without any human intervention. This is possible because honey-patches identify
security-relevant events at the point where such events are created, and not as
a separate, post-mortem manual analysis of traces.

6.3 Discussion

Methodology. Our experiments show that just a few strategically chosen honey-
patched vulnerabilities accompanied by an equally small number of honey-
patched applications provide a machine learning-based IDS sufficient data to
perform substantially more accurate intrusion detection, thereby enhancing the
security of the entire network. Thus, we arrive at one of the first demonstrable
measures of value for deception in the context of cyber security: its utility for
enhancing IDS data streams.
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Supervised learning. Our approach facilitates supervised learning, whose wide-
spread use in the domain of intrusion detection has been impeded by many
challenges involving the manual labeling of attacks and the extraction of
security-relevant features [9]. Our results demonstrate that the language-based,
active response capabilities provided via application-level honey-patches sig-
nificantly ameliorates both of these challenges. The facility of deception for
improving other machine learning-based security systems should therefore be
investigated.

Intrusion detection datasets. One of the major challenges in evaluating intrusion
detection systems is the dearth of publicly available datasets, which is often
aggravated by privacy and intellectual property considerations. To mitigate
this problem, security researchers often resort to synthetic dataset generation,
which affords the opportunity to design test sets that validate a wide range
of requirements. Nonetheless, a well-recognized challenge in custom dataset
generation is how to capture the multitude of variations and features mani-
fested in real-world scenarios [6]. Our evaluation approach builds on recent
breakthroughs in dataset generation for IDS evaluation [8] to create statistically
representative workloads that resemble realistic web traffic, thereby affording
the ability to perform a meaningful evaluation of IDS frameworks.

7 Conclusion

This chapter outlined the implementation and evaluation of a new approach for
enhancing web intrusion detection systems with threat data sourced from de-
ceptive, application-layer, software traps. Unlike conventional machine learning-
based detection approaches, our framework incrementally builds models of
legitimate and malicious behavior based on audit streams and traces collected
from these traps. This augments the IDS with inexpensive and automatic
security-relevant feature extraction capabilities. These capabilities require no
additional developer effort apart from routine patching activities. This re-
sults in an effortless labeling of the data and supports a new generation of
higher-accuracy detection models.

8 Exercises

8.1 Software Engineering Exercises

1.∗ Give an example of a high-profile software exploit cyberattack whose impact
has been reported recently in the news, and for which the cyber-deceptive
software techniques described in this chapter might have proved beneficial, if
deployed. Based on any technical details available, advise how such a defense
might have helped in that scenario, and discuss potential implementation
issues or risks involved.
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Table 5 Confusion Matrix

Total No of Instances: 160
Actual Classes

Attack Benign

Predicted Classes
Attack 20 30
Benign 10 100

2.∗∗ For each of the following vulnerability types, find an example patch for
one such vulnerability (e.g., from MITRE CWE), and then write code that
reformulates the patch into a honey-patch. In your honey-patch, use the
function call fork to decoy() to indicate where your code would fork the
attacker’s connection to a decoy environment. Remember, a good honey-
patch implementation should not impact legitimate users!

(a) buffer underflow/overflow (overwrite, overread, underwrite, or under-
read)

(b) C format string vulnerability
(c) TOCTOU (time-of-check / time-of-use) vulnerability
(d) SQL injection
(e) XSS (cross-site scripting)

3.∗∗∗ Install older (non-fully patched) versions of OpenSSL and Apache, and
identify from a CVE list some of the unpatched vulnerabilities. Implement
a honey-patch for any of the CVEs. Invite classmates to operate as a red
team to penetrate your server. Were they able to distinguish the decoy
environment from any successful compromise? Would any data collected
from detected attacks potentially help your server resist subsequent exploit
attempts?

8.2 Machine Learning Exercises

1.∗ Given a set of data traces with packet data, what type of features can be
extracted from packets?

2.∗ Similarly, given a set of data traces with system calls, what type of features
can be extracted to train a machine learning classifier?

3.∗ Given the confusion matrix in Table 5, and defining positives to be alarms
raised by the defense, calculate the following metrics: Accuracy, FPR, and
TPR.

4.∗∗ Why is false positive rate (FPR) important in evaluating machine learning
based intrusion detection systems?

5.∗∗ Implement an IDS using support vector machine that leverages packet data
traces to classify and detect attack in collected data traces. For this exercise,
you can follow the following steps:
– Extract packet Information: Use the dpkt python toolkit to extract

packet information, such as length, count, packet direction, and packet
time.

– Build a histogram of the packet length for each trace. Each trace will
generate an instance to train your classifier.
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– After generating your data set, use the Scklearn python machine
learning module to build an SVM classifier.

6.∗∗∗ Implement an ensemble classifier using support vector machine to leverage
both packet data and system call data to classify attack traces. You can
follow the steps described in previous question to complete this exercise.

7.∗∗ Calculate the following metrics with the classifier you implemented in
exercises 5 and 6: Accuracy and FPR. How do you explain the significance
of the FPR compared to the accuracy?

8.∗∗∗ Run your algorithm on data collected from a honey-patched system (see
software engineering exercises 2–3) and compare the performance to the
data collected on a system with no honey-patch.

9.∗∗∗ Based on software engineering exercise 3, implement your own data collection
mechanism that captures packet and system call level data. Apply your
machine learning implementation from exercise 5 on the data traces collected.
Compare your performance with the supplied data. To complete this exercise,
you can use tcpdump (already installed on Linux systems) to collect packet
trace data and sysdig1 to collect system call data. To reduce noise in your
data collection, run each attack independently and collect the associated
traces. Remember to run each attack and trace collection multiple times to
account for variations in system operation.
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survey of collaborative intrusion detection. ACM Computing Surveys, 47(4), 2015.
22. T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Effective attacks and

provable defenses for website fingerprinting. In Proceedings of the USENIX Security
Symposium, 2014.

23. J. Yuill, D. Denning, and F. Feer. Using deception to hide things from hackers: Processes,
principles, and techniques. Journal of Information Warfare, 5(3):26–40, 2006.


	Introduction
	Deceptive Collection of Attack Data
	Intrusion Detection Challenges
	Mining Deception-Enhanced Threat Data
	Use Case: Booby-trapping Software for Intrusion Detection
	Evaluation Testbed
	Conclusion
	Exercises

