
Between Worlds: Securing Mixed 
JS/AS Multi-Party Web Content

Phu H. Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin W. Hamlen, 
and V.N. Venkatakrishnan



Loading a Web Advertisement

Client
(web browser)

Page
Publisher



Loading a Web Advertisement

Client
(web browser)

Page
Publisher



Loading a Web Advertisement

Client
(web browser)

Ad 
Network

Page
Publisher



Loading a Web Advertisement

Client
(web browser)

Ad 
Network

Page
Publisher

tag



Loading a Web Advertisement

Client
(web browser)

Ad 
Network

Ad 
Server

Page
Publisher

tag



Loading a Web Advertisement

Client
(web browser)

Ad 
Network

Ad 
Server

Page
Publisher

tag
ad



Ads Behaving Badly

• Many well-known language-specific (e.g., JS/Flash) attacks
• invisible iframe expansion (JS)
• DOM API hijacking (JS)
• malformed binary that exploits VM parser error (Flash)

• A newly emerging class of attacks:  cross-domain attacks
• Many ads are part JS and part Flash – opens new attack vectors
• SOP Circumvention:  JS and Flash have different Same-Origin Policies!

• not easily reconcilable, since computation models differ between languages
• Cross-domain heap-spraying attacks

• separate payload injector from payload execution across different languages
• Cross-principal resource abuse

• Flash ads use allowDomain(“*”)  (!!!)



Non-LBS Approaches

• Turn off JS/Flash/both
• kills the revenue model of the internet

• Change JS/Flash VMs and/or browser to fix loopholes and weaknesses
• requires cooperation and standardization of all client browsers and VMs
• requires all end-users to update their browsers

• Adopt best coding practices when creating ads
• assumes ad-creators know anything about coding

• Validate ads at the ad network level
• Ad networks often never see the ad that the end-user sees!

• What if I’m a page-publisher and I want to protect my visitors, irrespective 
of which client browsers they may be using?  How do I secure my page?



LBS Approach:  In-lined Reference Monitors

• Idea:  Page-publisher puts a script on her page that rewrites and 
secures ad code dynamically, as it arrives on the end-user’s browser!

• no change to browsers or VMs required
• no separate, special software installations for end-users (e.g., no plug-ins)
• browser-agnostic (use purely standards-compliant JS/Flash code)
• can enforce publisher-specific policies

• Example: no pop-ups allowed on pages where the page’s menu is a pop-up

• Challenges:
• JS is incredibly dynamic (code constantly generated from strings)
• JS-Flash interaction is very insecure—hard to completely mediate
• JS is absurdly mutable (can destructively assign to DOM API functions!!)
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FlashJaX Security Foundations

(3) Event 
Attribution

(2) Complete 
Mediation

(1) IRM Integrity



JavaScript IRM Integrity: Anonymous Closures
(function(){
 var principal = “bottom”;
 getPrincipal = function() { return principal; }
}) ();

y = getPrincipal();  // assigns y:=“bottom”;
principal = “root”;  // error: no such variable “principal”!



Complete Mediation: Preemptively Hijack the DOM!
(function(){
 var principal = “bottom”;
 getPrincipal = function() { return principal; }
 var wrap_window = function(w) {
  var o_open = w.open;
  w.open = function() {
   if (isAllowed(principal, “open”, arguments))
    return wrap_window(o_open.apply(this, arguments));
   else return null;
  }
  return w;
 }
 wrap_window(window);
}) ();



Event Attribution: Shadow Stack of Principals
(function(){
 var shadowStack = [];
 …
 var runAs = function(principal, f) {
  shadowStack.push(principal);
  f.apply = js.Function.apply;  // un-hijack f.apply…!
  var r = f.apply(this, js.Aray,prototype.slice.call(arguments, 2));
  shadowStack.pop();
  flush_write(principal);  // handles runtime code gen
  if (typeof r !== “undefined”) return r;
 }
 …
}) ();



Attribution Challenge:
Dynamic Code Generation
• Which principal to pass to runAs(principal,f) for each f?
• Static Scripts

• Publisher labels html subtrees that she “owns” as trusted
• Publisher labels ad network code blocks as untrusted
• Multiple ad networks can have mutually distrusting labels (to stop wars)

• Problem: What about runtime generated code?
• JS scripts regularly generate code from strings at runtime (ugh!)
• Most common (and most general) method:  document.write(s);



<html><script>alert(‘hello ‘);s=“s

HTML Document Load Process (simplified)

<html>                                                                     
<script>                                                            

  alert(‘hello ’);                                                            
  s = “script>”;             
  document.write(“<“+s+”alert(‘cruel’);</”+s); 

</script>

Input Stream (from web server):

Output:
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HTML Document Load Process (simplified)

<html>                                                                     
<script>                                                            
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Dynamic Codegen Challenges

• First step:  Replace document.write with a wrapper
• use DOM API hijacking again (same as mediation approach)

• But what should the wrapper do?
• must parse a string into JavaScript code

• (build our own HTML+JS parser in JS? ugh!)
• What if the dynamically generated code generates more code dynamically 

when executed?
• Turns out almost every ad network actually does this!

• Can’t ignore it – almost all ad networks depend on it and use it



Dynamic Code Generation Solution
old_write = document.write;
document.write = function(s) { write_buffer[principal] += s; } // buffer the writes!

var flush_write = function(principal) {
 var i = document.createElement(“ins”);
 i.innerHTML = write_buffer[principal]; // invoke the browser’s parser!
 write_buffer[principal] = “”;
 foreach script element e within i do {
  var newScript = makeFunction(e.textContent);
  e.textContent = “”;
  runAs(principal, newScript);
 }
 i.owner = principal;
 document.lastChild.appendChild(i); // append i to page (without running scripts)
}



Attack Scenarios Tested

Attack Scenario Policy Enforced by FlashJaX
Flash Circumvention of SOP Principal-specific whitelisting policy
Cross-language Heap-spray Attack Resource bound policy on heap writes
Cross-Principal Resource Abuse Principal-specific access control
Wrapper Vulnerabilities DOM API Aliasing Detection
Confidentiality and Integrity Violations Principal-specific, fine-grained access 

control of page real-estate and data
Ad-specific Attacks Various (see paper)
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