
Between Worlds: Securing Mixed
JS/AS Multi-Party Web Content

Phu H. Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin W. Hamlen,
and V.N. Venkatakrishnan

Loading a Web Advertisement

Client
(web browser)

Page
Publisher

Loading a Web Advertisement

Client
(web browser)

Page
Publisher

Loading a Web Advertisement

Client
(web browser)

Ad
Network

Page
Publisher

Loading a Web Advertisement

Client
(web browser)

Ad
Network

Page
Publisher

tag

Loading a Web Advertisement

Client
(web browser)

Ad
Network

Ad
Server

Page
Publisher

tag

Loading a Web Advertisement

Client
(web browser)

Ad
Network

Ad
Server

Page
Publisher

tag
ad

Ads Behaving Badly

• Many well-known language-specific (e.g., JS/Flash) attacks
• invisible iframe expansion (JS)
• DOM API hijacking (JS)
• malformed binary that exploits VM parser error (Flash)

• A newly emerging class of attacks: cross-domain attacks
• Many ads are part JS and part Flash – opens new attack vectors
• SOP Circumvention: JS and Flash have different Same-Origin Policies!

• not easily reconcilable, since computation models differ between languages
• Cross-domain heap-spraying attacks

• separate payload injector from payload execution across different languages
• Cross-principal resource abuse

• Flash ads use allowDomain(“*”) (!!!)

Non-LBS Approaches

• Turn off JS/Flash/both
• kills the revenue model of the internet

• Change JS/Flash VMs and/or browser to fix loopholes and weaknesses
• requires cooperation and standardization of all client browsers and VMs
• requires all end-users to update their browsers

• Adopt best coding practices when creating ads
• assumes ad-creators know anything about coding

• Validate ads at the ad network level
• Ad networks often never see the ad that the end-user sees!

• What if I’m a page-publisher and I want to protect my visitors, irrespective
of which client browsers they may be using? How do I secure my page?

LBS Approach: In-lined Reference Monitors

• Idea: Page-publisher puts a script on her page that rewrites and
secures ad code dynamically, as it arrives on the end-user’s browser!

• no change to browsers or VMs required
• no separate, special software installations for end-users (e.g., no plug-ins)
• browser-agnostic (use purely standards-compliant JS/Flash code)
• can enforce publisher-specific policies

• Example: no pop-ups allowed on pages where the page’s menu is a pop-up

• Challenges:
• JS is incredibly dynamic (code constantly generated from strings)
• JS-Flash interaction is very insecure—hard to completely mediate
• JS is absurdly mutable (can destructively assign to DOM API functions!!)

Advertisement

FlashJaX Architecture and Workflow

ActionScript
IRM

JavaScript
IRM

Policy Engine
(JS)

ActionScript

JavaScript

security-relevant
operations

security-relevant
operations

delegate JS operations

security check verdict

FlashJaX Security Foundations

(3) Event
Attribution

(2) Complete
Mediation

(1) IRM Integrity

JavaScript IRM Integrity: Anonymous Closures
(function(){
 var principal = “bottom”;
 getPrincipal = function() { return principal; }
}) ();

y = getPrincipal(); // assigns y:=“bottom”;
principal = “root”; // error: no such variable “principal”!

Complete Mediation: Preemptively Hijack the DOM!
(function(){
 var principal = “bottom”;
 getPrincipal = function() { return principal; }
 var wrap_window = function(w) {
 var o_open = w.open;
 w.open = function() {
 if (isAllowed(principal, “open”, arguments))
 return wrap_window(o_open.apply(this, arguments));
 else return null;
 }
 return w;
 }
 wrap_window(window);
}) ();

Event Attribution: Shadow Stack of Principals
(function(){
 var shadowStack = [];
 …
 var runAs = function(principal, f) {
 shadowStack.push(principal);
 f.apply = js.Function.apply; // un-hijack f.apply…!
 var r = f.apply(this, js.Aray,prototype.slice.call(arguments, 2));
 shadowStack.pop();
 flush_write(principal); // handles runtime code gen
 if (typeof r !== “undefined”) return r;
 }
 …
}) ();

Attribution Challenge:
Dynamic Code Generation
• Which principal to pass to runAs(principal,f) for each f?
• Static Scripts

• Publisher labels html subtrees that she “owns” as trusted
• Publisher labels ad network code blocks as untrusted
• Multiple ad networks can have mutually distrusting labels (to stop wars)

• Problem: What about runtime generated code?
• JS scripts regularly generate code from strings at runtime (ugh!)
• Most common (and most general) method: document.write(s);

<html><script>alert(‘hello ‘);s=“s

HTML Document Load Process (simplified)

<html>
<script>

 alert(‘hello ’);
 s = “script>”;
 document.write(“<“+s+”alert(‘cruel’);</”+s);

</script>

Input Stream (from web server):

Output:

<script>alert(‘cruel’);</script><script>alert(‘ world’);</script>…

HTML Document Load Process (simplified)

<html>
<script>

 alert(‘hello ’);
 s = “script>”;
 document.write(“<“+s+”alert(‘cruel’);</”+s);

</script>

Input Stream (from web server):

Output:

hello

<script>alert(‘cruel’);</script><sc

HTML Document Load Process (simplified)

<html>
<script>

 alert(‘hello ’);
 s = “script>”;
 document.write(“<“+s+”alert(‘cruel’);</”+s);

</script>
 <script> alert(‘cruel’); </script>

Input Stream (from web server):

Output:

hello

<script>alert(‘ world’);</script>…

HTML Document Load Process (simplified)

<html>
<script>

 alert(‘hello ’);
 s = “script>”;
 document.write(“<“+s+”alert(‘cruel’);</”+s);

</script>
 <script> alert(‘cruel’); </script>
 <script> alert(‘ world’); </script>

Input Stream (from web server):

Output:

hello cruel

…

HTML Document Load Process (simplified)

<html>
<script>

 alert(‘hello ’);
 s = “script>”;
 document.write(“<“+s+”alert(‘cruel’);</”+s);

</script>
 <script> alert(‘cruel’); </script>
 <script> alert(‘ world’); </script>

Input Stream (from web server):

Output:

hello cruel world

Dynamic Codegen Challenges

• First step: Replace document.write with a wrapper
• use DOM API hijacking again (same as mediation approach)

• But what should the wrapper do?
• must parse a string into JavaScript code

• (build our own HTML+JS parser in JS? ugh!)
• What if the dynamically generated code generates more code dynamically

when executed?
• Turns out almost every ad network actually does this!

• Can’t ignore it – almost all ad networks depend on it and use it

Dynamic Code Generation Solution
old_write = document.write;
document.write = function(s) { write_buffer[principal] += s; } // buffer the writes!

var flush_write = function(principal) {
 var i = document.createElement(“ins”);
 i.innerHTML = write_buffer[principal]; // invoke the browser’s parser!
 write_buffer[principal] = “”;
 foreach script element e within i do {
 var newScript = makeFunction(e.textContent);
 e.textContent = “”;
 runAs(principal, newScript);
 }
 i.owner = principal;
 document.lastChild.appendChild(i); // append i to page (without running scripts)
}

Attack Scenarios Tested

Attack Scenario Policy Enforced by FlashJaX
Flash Circumvention of SOP Principal-specific whitelisting policy
Cross-language Heap-spray Attack Resource bound policy on heap writes
Cross-Principal Resource Abuse Principal-specific access control
Wrapper Vulnerabilities DOM API Aliasing Detection
Confidentiality and Integrity Violations Principal-specific, fine-grained access

control of page real-estate and data
Ad-specific Attacks Various (see paper)

	Between Worlds: Securing Mixed JS/AS Multi-Party Web Content
	Loading a Web Advertisement
	Loading a Web Advertisement
	Loading a Web Advertisement
	Loading a Web Advertisement
	Loading a Web Advertisement
	Loading a Web Advertisement
	Ads Behaving Badly
	Non-LBS Approaches
	LBS Approach: In-lined Reference Monitors
	FlashJaX Architecture and Workflow
	FlashJaX Security Foundations
	JavaScript IRM Integrity: Anonymous Closures
	Complete Mediation: Preemptively Hijack the DOM!
	Event Attribution: Shadow Stack of Principals
	Attribution Challenge:�Dynamic Code Generation
	HTML Document Load Process (simplified)
	HTML Document Load Process (simplified)
	HTML Document Load Process (simplified)
	HTML Document Load Process (simplified)
	HTML Document Load Process (simplified)
	Dynamic Codegen Challenges
	Dynamic Code Generation Solution
	Attack Scenarios Tested

