
CS 6335:
Language-based Security

Dr. Kevin Hamlen
Fall 2023

Prerequisites: none*

*But if you’ve ever programmed in a functional language (ML, Haskell, Lisp, OCaml, etc.) then
that will be a helpful skill. Also, if you know assembly language, that will be quite useful too.

Outline

 Course logistics

 course objectives

 homework grading, etc.

 about me

 What is “Language-based Security”?

 Tentative course schedule (list of topics)

 Demo: Program-proof co-development

Course Information

 Course webpage:

 http://www.utdallas.edu/~hamlen/cs6335fa23.html

 google “kevin hamlen”, click “Teaching” link

 Instructor:

 Dr. Kevin Hamlen

 ECSS 3.704

 Office hours: After class (MW 2:15-3:15)

Course Objectives

 Cutting-edge research

 Learn how to extract (the important) info from security-related research articles

 Learn about modern efforts toward a science of computer security

 Learn basics of programming language theory, functional programming, automated
theorem-proving, etc.

 Get your hands dirty: Implement and formally verify something

 Warning: This is a research-level class!

 Many problems/questions are open-ended. We will be exploring the known issues
together.

 Not only is the software extremely beta, the whole concept behind the software is
extremely beta!

Grading
 Homework (30%)

 programming exercises – learn to program in Coq

 first one (“Basics”) due next Wednesday 8/30

 see online schedule for the other six due dates

 Recommendation: Complete them far in advance! Then you’ll be done!

 If you have trouble, do some exercises in the online text (Pierce et al.)

 Quizzes (30%)

 start of most class sessions (see schedule) (~15 min.)

 covers assigned reading for the day

 first one next Monday (8/29)

 Class participation (10%)

 discuss article, ask questions

 Projects (30%)

 formally verify and/or security-harden some software

 project proposals due around mid-semester (tentatively 11/1)

 implement during last 6 weeks of course

 No exams

Quizzes
 Approximately 8 questions each

 multiple-choice / short answer

 Difficulty level
 multiple-choice != obvious-choice

 main concepts (e.g., “What is this paper (really) about?”)

 feasibility critique: main limitations, pros/cons

 a few harder in-depth questions to test whether you caught subtle but
essential details

 Warning: These articles are hard to understand!
 contain many tiny technical details

 I don’t test on minutiae. Don’t memorize everything. (But know major
results/parameters within an order of magnitude.)

 “Hard” questions might focus on a seemingly minor item that you didn’t
realize is very significant.

Comprehending Papers
 Ability to read and digest research articles (at a reasonable pace) is a

learned and very valuable skill.

 articles are extremely dense!

 most assume background knowledge that you lack

 I expect you to look up terms you don’t understand on your own initiative.

 I don’t expect you to understand everything, even after doing your best to look
things up.

 After reading, be sure you can answer the following:

 What’s the MAIN discovery?

 Why is this better/worse than alternatives?

 What are the system’s weaknesses? How can I break it?

 Do you understand the main definitions / notations?

About Me
 originally from the northeastern US (Buffalo, NY)
 Undergrad

 Carnegie Mellon (computer science and math)

 Senior thesis: Proof-Carrying Code

 Masters (’02) & Ph.D. (’06)
 Cornell (computer science)

 Dissertation: certifying in-lined reference monitors

 Government experience
 Principal Investigator for over 20 US Federal cyber-security contracts with Navy, Air

Force, Army, NSF, NSA, and DARPA

 Industry experience
 Microsoft Research (Redmond & Cambridge)

 language-based security for .NET and F#

 Personal
 married with 10-year-old + twin 8-year-old sons

 Christian

COVID Policy

 In-person attendance is the assumed (default) participation mode

 Please DON’T come to class if…

 you have symptoms or test positive for COVID (or any communicable disease)

 Otherwise please DO come to class

 Accommodations will be made for students who cannot attend

 quizzes can be made up or dropped

 lectures can be recorded for you

 Socially distance within classroom (e.g., non-adjacent seating when possible)

 Masks not required (Texas governor’s executive order) but use your best
judgment and be respectful of others’ health concerns

What is LBS?

 Leveraging theory of programming language design and compiler construction
to enforce software security

 Two domains of research:

 new languages/tools for creating secure software from scratch

 securing legacy code (e.g., written in C)

 Three stages of enforcement

 static (find & fix vulnerabilities before runtime)

 dynamic (detect and block attacks at runtime)

 audit (recover and assign blame after an attack)

Grand Challenge:
Secure Program Development

 Is it possible to develop secure software that is guaranteed to be
vulnerability-free?

 Scenario: You are hired to write the control software for a nuclear
reactor.

 it must NEVER fail (millions of lives at stake)

 it must cope with adversarial conditions (prime target)

 it must be efficient (too slow = meltdown)

 Traditional approaches

 test a lot (“It didn’t crash today…”)

 write a proof (consisting of about 10K pages of math)

 How do we know there isn’t a bug in the proof??

Grand Challenge:
Securing Legacy Code

 Scenario: NSA wants secure software on their office workstations.

 need web browsers, document readers, etc.

 need internet connectivity

 stores and/or reads top secret documents

 not feasible to rebuild the entire universe of software from the ground up

 software is proprietary (and usually closed-source)

 How to stop secrets from leaking?

Grand Challenge:
A Science of Security

 Can we develop a science of security like we have for math or physics?

 Are there iron-clad “proofs” of security?

 What does it even mean for a system to be “secure”?

 Are there metrics for security? Can we determine that one software system is
“more secure” than other? Can we prove that it’s “80% secure”?

 Are there some security policies that are provably unenforceable? Can we prove
that certain enforcement mechanisms can enforce certain classes of policies and
not others?

Tentative List of Topics
 First 4 weeks:

 Developing machine-verified software with Coq

 basis for homework and projects

 Next 2 weeks: LBS foundations

 After that, move into cutting-edge research:

 Software Model-checking

 Software Fault Isolation

 Code-injection and code-reuse attacks & defenses

 Artificial Software Diversity and Obfuscation

 Cyber offense (“active defense”)

 Information flow controls (confidentiality enforcement)

 Web scripting security

 In-lined Reference Monitoring

 Cyber-deceptive Software Engineering

Four vulnerability stories
A Tale of Security Woes:

Tale #1: Linux GHOST
 Bug in the Linux glibc library
 Discovered by Qualys researchers during a routine code audit in 2015
 Affects all code that uses glibc for host-lookups (i.e., nearly all Linux

networking software) between 2000-2013
 Can you spot the bug?

1 int __nss_hostname_digits_dots(…) {
 …

3 size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
4 *buffer = (char*) malloc(size_needed);

 … 35 lines of code …

5 host_addr = (host_addr_t*) *buffer;
6 h_addr_ptrs = (host_addr_list_t*) ((char*) host_addr + sizeof(*host_addr));
7 h_alias_ptr = (char**) ((char*) h_addr_ptrs + sizeof(*h_addr_ptrs));
8 hostname = (char*) h_alias_ptr + sizeof(*h_alias_ptr);

 …

Tale #1: Linux GHOST
 Bug in the Linux glibc library
 Discovered by Qualys researchers during a routine code audit in 2015
 Affects all code that uses glibc for host-lookups (i.e., nearly all Linux

networking software) between 2000-2013
 Can you spot the bug?

1 int __nss_hostname_digits_dots(…) {
 …

3 size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
4 *buffer = (char*) malloc(size_needed);

 … 35 lines of code …

5 host_addr = (host_addr_t*) *buffer;
6 h_addr_ptrs = (host_addr_list_t*) ((char*) host_addr + sizeof(*host_addr));
7 h_alias_ptr = (char**) ((char*) h_addr_ptrs + sizeof(*h_addr_ptrs));
8 hostname = (char*) h_alias_ptr + sizeof(*h_alias_ptr);

 …

Is it really that big a deal?

 Qualys was able to take complete remote control of affected Linux
machines merely by sending them a maliciously crafted email (unread!).

 Can you figure out how they did it?

…
 1 if (isdigit(name[0])) {
 2 for (cp=name;; ++cp) {
 3 if (*cp == ‘\0’) {
 4 if (*--cp == ‘.’) break;
 5 if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 6 result_buf->h_name = strcpy(hostname, name);
 7 goto done;
 8 }
 9 if (!isdigit(*cp) && *cp != ‘.’) break;
10 }
11 }
…

Is it really that big a deal?

 Qualys was able to take complete remote control of affected Linux
machines merely by sending them a maliciously crafted email (unread!).

 Can you figure out how they did it?

…
 1 if (isdigit(name[0])) {
 2 for (cp=name;; ++cp) {
 3 if (*cp == ‘\0’) {
 4 if (*--cp == ‘.’) break;
 5 if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 6 result_buf->h_name = strcpy(hostname, name);
 7 goto done;
 8 }
 9 if (!isdigit(*cp) && *cp != ‘.’) break;
10 }
11 }
…

Tale #2: Heartbleed
 Bug in OpenSSL (secure web communications!) found by Codenomicon in 2014

 Buffer over-read error in implementation of Heartbeat TLS protocol

 Exposed ~66% of the internet to theft of encryption keys between 2011-2014

 Still highly exploitable because OpenSSL is so pervasive, cannot always be
patched in the wild.

 Heartbeat packets deemed so innocuous, they were not even logged during
the zero-day window.

int dtls1_process_heartbeat(SSL *s) {
 unsigned char *p = &s->s3->rrec.data[0];
 unsigned int len;
 n2s(p, len);
 …
 buffer = OPENSSL_malloc(1 + 2 + len + padding);
 bp = buffer;
 *bp++ = TLS1_HB_RESPONSE;
 s2n(len, bp);
 memcpy(bp, p, len);
 bp += len;
 …

Tale #2: Heartbleed
 Bug in OpenSSL (secure web communications!) found by Codenomicon in 2014

 Buffer over-read error in implementation of Heartbeat TLS protocol

 Exposed ~66% of the internet to theft of encryption keys between 2011-2014

 Still highly exploitable because OpenSSL is so pervasive, cannot always be
patched in the wild.

 Heartbeat packets deemed so innocuous, they were not even logged during
the zero-day window.

int dtls1_process_heartbeat(SSL *s) {
 unsigned char *p = &s->s3->rrec.data[0];
 unsigned int len;
 n2s(p, len);
 …
 buffer = OPENSSL_malloc(1 + 2 + len + padding);
 bp = buffer;
 *bp++ = TLS1_HB_RESPONSE;
 s2n(len, bp);
 memcpy(bp, p, len);
 bp += len;
 …

Tale #3: Shellshock
 Undocumented feature (not a bug!) discovered in Linux bash shell (by IT

manager Stephane Chazelas in his spare time!) in 2014

 Bash command-parser interprets certain text in environment variables as
code and executes it during parsing(?!)

 Impact: All Linux software storing user-provided data in environment
variables susceptible to complete remote compromise.

 Zero-day window: 25 years(!!) (198?-2014)

void initialize_shell_variables(char **env, int privmode) {
 …
 for (string_index = 0; string = env[string_index++];) {
 …
 if (privmode==0 && read_but_dont_execute == 0 && STREQN(“() {”, string, 4)) {
 …
 parse_and_execute(temp_string, name, SEVAL_NONINT|SEVAL_NOHIST);
 …

Tale #4: StageFright
 Series of 8 critical vulnerabilities discovered in Android OS 2014-2015

 Allows complete remote hijacking of 95% of Android devices

 No user interaction required! (merely receiving a malformed MMS message
triggers bug)

status_t SampleTable::setTimeToSampleParams(…) {
 uint32_t mTimeToSampleCount = U32_AT(&header[4]);
 uint64_t allocSize = mTimeToSampleCount * 2 * sizeof(uint32_t);
 if (allocSize > SIZE_MAX) return ERROR_OUT_OF_RANGE;
 mTimeToSample = new uint32_t[mTimeToSampleCount * 2];
 …

Tale #4: StageFright
 Series of 8 critical vulnerabilities discovered in Android OS 2014-2015

 Allows complete remote hijacking of 95% of Android devices

 No user interaction required! (merely receiving a malformed MMS message
triggers bug)

status_t SampleTable::setTimeToSampleParams(…) {
 uint32_t mTimeToSampleCount = U32_AT(&header[4]);
 uint64_t allocSize = mTimeToSampleCount * 2 * sizeof(uint32_t);
 if (allocSize > SIZE_MAX) return ERROR_OUT_OF_RANGE;
 mTimeToSample = new uint32_t[mTimeToSampleCount * 2];
 …

Is secure code development even
possible?

 Open-source failed in all these instances.

 questionable whether open-source model actually provides greater security

 Unit testing didn’t work in these cases either.

 input space is just too large to cover with tests

 What about better programming languages?

 But Shellshock was a misguided design choice.

 Many zero-days discovered in Java every year (often in its runtime libs, which
aren’t written in Java!)

 What’s the answer?

Coq: Programming with Proofs
 Coq

 stands for “Calculus of Constructions” (the underlying type theory of the system)

 named after mathematician Thierry Coquand

 developed by INRIA, France over last decade

 most powerful secure software development system to date (in my opinion)

 Specification language based on ML/OCaml

 all loops are recursive (no while/for loops)

 immutable variables (variables are assign-once!)

 first-class functions

 parametrically polymorphic

 higher-order, dependent type system (!)

 Demo

Homework

 Download and install Coq

 see links to Coq page from course web page

 use version 8.16 or above

 Read for next time:

 “Preface” of the Software Foundations online text (see course web page).

 Read the “Basics” chapter up to first exercise

 Solve first two exercises (nandb, andb3)

	CS 6335:�Language-based Security
	Outline
	Course Information
	Course Objectives
	Grading
	Quizzes
	Comprehending Papers
	About Me
	COVID Policy
	What is LBS?
	Grand Challenge:�Secure Program Development
	Grand Challenge:�Securing Legacy Code
	Grand Challenge:�A Science of Security
	Tentative List of Topics
	Four vulnerability stories
	Tale #1: Linux GHOST
	Tale #1: Linux GHOST
	Is it really that big a deal?
	Is it really that big a deal?
	Tale #2: Heartbleed
	Tale #2: Heartbleed
	Tale #3: Shellshock
	Tale #4: StageFright
	Tale #4: StageFright
	Is secure code development even possible?
	Coq: Programming with Proofs
	Homework

