
Software Security
Foundations

CS 6335: Language Based Security

Dr. Kevin W. Hamlen

Fall 2023

Tales of Woe:

Seven Deadly Vulnerabilities
GHOST ● Heartbleed ● Conficker ● Stagefright ● Shellshock
● Java Deserialization ● VENOM

Tale #1: GHOST (Gnu HOST bug)
 Bug in the Linux glibc library

 Discovered by Qualys researchers during a routine code audit in 2015

 Affects all code that uses glibc for host-lookups (i.e., nearly all Linux
networking software) between 2000-2013

 Can you spot the bug?

1 int __nss_hostname_digits_dots(…) {
 …

3 size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
4 *buffer = (char*) malloc(size_needed);

 … 35 lines of code …

5 host_addr = (host_addr_t*) *buffer;
6 h_addr_ptrs = (host_addr_list_t*) ((char*) host_addr + sizeof(*host_addr));
7 h_alias_ptr = (char**) ((char*) h_addr_ptrs + sizeof(*h_addr_ptrs));
8 hostname = (char*) h_alias_ptr + sizeof(*h_alias_ptr);

 …

Tale #1: GHOST (Gnu HOST bug)
 Bug in the Linux glibc library

 Discovered by Qualys researchers during a routine code audit in 2015

 Affects all code that uses glibc for host-lookups (i.e., nearly all Linux
networking software) between 2000-2013

 Can you spot the bug?

1 int __nss_hostname_digits_dots(…) {
 …

3 size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
4 *buffer = (char*) malloc(size_needed);

 … 35 lines of code …

5 host_addr = (host_addr_t*) *buffer;
6 h_addr_ptrs = (host_addr_list_t*) ((char*) host_addr + sizeof(*host_addr));
7 h_alias_ptr = (char**) ((char*) h_addr_ptrs + sizeof(*h_addr_ptrs));
8 hostname = (char*) h_alias_ptr + sizeof(*h_alias_ptr);

 …

Is it really that big a deal?

 Qualys was able to take complete remote control of affected Linux machines
merely by sending them a maliciously crafted email (unread!).

 Can you figure out how they did it?

…
 1 if (isdigit(name[0])) {
 2 for (cp=name;; ++cp) {
 3 if (*cp == ‘\0’) {
 4 if (*--cp == ‘.’) break;
 5 if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 6 result_buf->h_name = strcpy(hostname, name);
 7 goto done;
 8 }
 9 if (!isdigit(*cp) && *cp != ‘.’) break;
10 }
11 }
…

Is it really that big a deal?

 Qualys was able to take complete remote control of affected Linux machines
merely by sending them a maliciously crafted email (unread!).

 Can you figure out how they did it?

…
 1 if (isdigit(name[0])) {
 2 for (cp=name;; ++cp) {
 3 if (*cp == ‘\0’) {
 4 if (*--cp == ‘.’) break;
 5 if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 6 result_buf->h_name = strcpy(hostname, name);
 7 goto done;
 8 }
 9 if (!isdigit(*cp) && *cp != ‘.’) break;
10 }
11 }
…

Tale #2: Heartbleed
 Bug in the OpenSSL (secure web communications!) library discovered by Codenomicon in 2014

 Buffer over-read error in implementation of Heartbeat TLS protocol:

 read-loop trusts length bound provided by user

 over-read data sent directly back to attacker

 Vulnerability exposed ~66% of the internet to theft of encryption keys between 2011-2014.

 Still highly exploitable because OpenSSL is so pervasive, cannot always be patched in the wild.

 Heartbeat packets deemed so innocuous, they were not even logged during the zero-day window.

int dtls1_process_heartbeat(SSL *s) {
 unsigned char *p = &s->s3->rrec.data[0];
 unsigned int payload;
 n2s(p, payload);
 …
 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
 bp = buffer;
 *bp++ = TLS1_HB_RESPONSE;
 s2n(payload, bp);
 memcpy(bp, p, payload);
 bp += payload;
 …

Tale #2: Heartbleed
 Bug in the OpenSSL (secure web communications!) library discovered by Codenomicon in 2014

 Buffer over-read error in implementation of Heartbeat TLS protocol:

 read-loop trusts length bound provided by user

 over-read data sent directly back to attacker

 Vulnerability exposed ~66% of the internet to theft of encryption keys between 2011-2014.

 Still highly exploitable because OpenSSL is so pervasive, cannot always be patched in the wild.

 Heartbeat packets deemed so innocuous, they were not even logged during the zero-day window.

int dtls1_process_heartbeat(SSL *s) {
 unsigned char *p = &s->s3->rrec.data[0];
 unsigned int payload;
 n2s(p, payload);
 …
 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
 bp = buffer;
 *bp++ = TLS1_HB_RESPONSE;
 s2n(payload, bp);
 memcpy(bp, p, payload);
 bp += payload;
 …

Tale #3: MS08-067 (Conficker Exploit)
 Bug in Windows netapi32.dll lib first discovered in 2008

 Allows complete remote compromise of all (then) Windows Servers

 Exploited by Confiker worm to infect ~1.7 million machines in ~190
countries, including national defense networks across Europe

void _NetpwPathCanonicalize(wchar_t* Path) {
 if (!_function_check_length(Path)) return;
 …
 _CanonicalizePathName(Path);
 …
}

void _CanonicalizePathName(wchar_t* Path) {
 wchar _wcsBuffer[0x420];
 …
 wcscat(wcsBuffer, Path);
 …
 _ConvertPathMacros(wcsBuffer);
…

Tale #3: MS08-067 (Conficker Exploit)
 Bug in Windows netapi32.dll lib first discovered in 2008

 Allows complete remote compromise of all (then) Windows Servers

 Exploited by Confiker worm to infect ~1.7 million machines in ~190
countries, including national defense networks across Europe

void _NetpwPathCanonicalize(wchar_t* Path) {
 if (!_function_check_length(Path)) return;
 …
 _CanonicalizePathName(Path);
 …
}

void _CanonicalizePathName(wchar_t* Path) {
 wchar _wcsBuffer[0x420];
 …
 wcscat(wcsBuffer, Path);
 …
 _ConvertPathMacros(wcsBuffer);
…

Tale #4: Stagefright
 Series of 8 critical vulnerabilities discovered in Android OS 2014-2015

 Allows complete remote hijacking of 95% of Android devices

 No user interaction required! (merely receiving a malformed MMS message
triggers bug)

status_t SampleTable::setTimeToSampleParams(…) {
 uint32_t mTimeToSampleCount = U32_AT(&header[4]);
 uint64_t allocSize = mTimeToSampleCount * 2 * sizeof(uint32_t);
 if (allocSize > SIZE_MAX) return ERROR_OUT_OF_RANGE;
 mTimeToSample = new uint32_t[mTimeToSampleCount * 2];
 …

Tale #4: Stagefright
 Series of 8 critical vulnerabilities discovered in Android OS 2014-2015

 Allows complete remote hijacking of 95% of Android devices

 No user interaction required! (merely receiving a malformed MMS message
triggers bug)

status_t SampleTable::setTimeToSampleParams(…) {
 uint32_t mTimeToSampleCount = U32_AT(&header[4]);
 uint64_t allocSize = mTimeToSampleCount * 2 * sizeof(uint32_t);
 if (allocSize > SIZE_MAX) return ERROR_OUT_OF_RANGE;
 mTimeToSample = new uint32_t[mTimeToSampleCount * 2];
 …

Tale #5: Shellshock (Linux Bash Bug)
 Bug (undocumented feature?) discovered in Linux bash shell (by IT

manager Stephane Chazelas in his spare time!) in 2014

 Bash command-parser interprets certain text in environment variables as
code and executes it during parsing(?!)

 Impact: All Linux software storing user-provided data in environment
variables susceptible to complete remote compromise.

 Zero-day window: 25 years(!!) (198?-2014)

void initialize_shell_variables(char **env, int privmode) {
 …
 for (string_index = 0; string = env[string_index++];) {
 …
 if (privmode==0 && read_but_dont_execute == 0 && STREQN(“() {”, string, 4)) {
 …
 parse_and_execute(temp_string, name, SEVAL_NONINT|SEVAL_NOHIST);
 …

Tale #6: Java Deserialization

 Logical flaw in how many Java applications receive objects as input

 Examples dating back to 2010 and before, but popularized in 2015-2018 by
successful attacks against WebSphere, WebLogic, JBoss, etc. [FoxGlove’15]

 millions of Java apps estimated to be currently vulnerable to complete
remote compromise

 The Problem:

 Java apps must deserialize input stream to object before they know what kind of
object they received.

 JVM deserializes stream to whatever object it says it is.

 Some built-in JVM objects execute code at object initialization.

 Executed code is supplied by attacker!

Tale #7: VENOM (Virtualized Environment
Neglected Operations Manipulation)

 floppy disk controller bug discovered in 2015

 affects many VMs and hypervisors: QEMU, Xen, KVM, VirtualBox, …

 allows guest OS to escape the VM sandbox and run code on the host

 millions of data centers at risk

 existed for 10 years(!) before patched

 buffer overwrite error

void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) {
 …
 fdctrl->fifo[fdctrl->data_pos++] = value;
 …

The Software Security Crisis

 MITRE CVE Top “Unforgivable Vulnerabilities”

 buffer overflow

 XSS

 SQL injection

 directory traversal

 world-writable files

 direct admin script requests

 Why do these still occur? Why do standard approaches fail?

 homegrown crypto

 authentication bypass

 large check-use windows (TOCTOU)

 privilege escalation

 undocumented account

 integer overflow

Misguided Solutions

 People who haven’t studied the field think the solution is “obvious”:

 Naïve idea #1: “If everyone just used [Linux | Java | Mac | …]”

 Naïve idea #2: “Stop hiring stupid programmers.”

 Naïve idea #3: “Prioritize security testing more. Don’t release too soon.”

 Naïve idea #4: “Just configure your permissions properly.”

 IT approaches today:

 Patch early, patch often…

 Monitor network packets, monitor syscalls, monitor phone calls (NSA)…

 Penetration testing (red-teaming)

 Source code review

Science of Software Security
 Goals

 Find long-term, universal solutions to software security crisis

 Obtain mathematical, quantifiable guarantees for security of software products

 machine-checked proofs, reliable metrics

 Automate rigorous checking processes

 no human in the loop!

 Two main domains of research

 new languages/tools for creating secure software from scratch

 securing legacy code

 Three stages of enforcement

 static (find & fix vulnerabilities before runtime)

 dynamic (detect and block attacks at runtime)

 audit (recover and assign blame after an attack)

Important LBS Technologies

 Automated theorem-provers

 machine-assisted, machine-checked proofs of security

 In-lined Reference Monitors

 insert dynamic security checks into untrusted code

 Type-checkers

 advanced type systems can encode security properties

 Model-checkers

 statically verify that code model obeys a security property

 Certifying Compilers

 transform source code into object code and an independently verifiable proof that
the object code is safe to execute

At Least Three Hard Issues Involved

 Minimal Trusted Computing Base (TCB)

 Principle of Least Privilege

 The Model Problem:

 Trust Model

 Attacker Model

 System Model

TCB Minimization
 Let’s play a game: I’m thinking of a piece of software.

 Most of you have it and have used it.

 If it fails, it could delete or divulge all your personal files.

 Microsoft makes it.

 Can you guess which software I’m thinking of?

TCB Minimization
 Let’s play a game: I’m thinking of a piece of software.

 Most of you have it and have used it.

 If it fails, it could delete or divulge all your personal files.

 Microsoft makes it.

 Can you guess which software I’m thinking of?

Least Privilege

 Principle of Least Privilege: “Every program and every user of the system
should operate using the least set of privileges necessary to complete the
job.” [Saltzer & Schroeder, 1975]

 Hard problem: What is the least set of privileges necessary to complete the
job? How do we compute it?

 No finite set of roles or permission options suffices to meet PoLP in all cases!

 Richer classes of enforceable policies get us closer, though.

Trust Modeling

Client
(web

browser)

Web
Server

Trust Modeling

Client
(web

browser)

Web
Server

Trust Modeling

Client
(web

browser)

Web
Server

Ad
Network

Trust Modeling

Client
(web

browser)

Web
Server

Ad
Network

Trust Modeling

Client
(web

browser)

Web
Server

Ad
Network

Ad
Server

Trust Modeling

Client
(web

browser)

Web
Server

Ad
Network

Ad
Server

Trust Modeling

Client
(web

browser)

Web
Server

Ad
Network

Ad
Server

 Four principals: client, page publisher, ad network, ad publisher

 What are some security requirements each principal is likely to have?

 Which existing technologies can be used to meet those requirements?

 How can we assess/measure the “security” of the resulting system?

Trust Modeling

 Trust model: Who trusts whom to do what?

 Trusted Computing Base (TCB): The set of all system components that must
be trusted in order to maintain system security

 Security meta-goal: minimize the TCB

 What is the trust model in our web scenario?

 What is the TCB? How can we make it smaller?

Attack Modeling

 Threat model: set of assumed attacker capabilities

 attacks outside the model may succeed!

 threat model assumptions = security system limitations

 What is a reasonable threat model for our web scenario?

Major Classes of Security Policies

 Integrity – preventing improper or unauthorized change to data or resources

 Example: ad may not delete your files

 Availability – continued access to data or resources

 Example: ad may not expand to occlude the rest of the page

 Confidentiality – concealment of data or resources

 Example: ad may not send your browsing history to your employer

Defining Security Policies Formally

 Security Policy – specification of allowed (or, equivalently, disallowed)
behaviors

 Safety Policies – some “bad” thing shouldn’t happen (integrity)

 Liveness Policies – some “good” thing should eventually happen (availability)

 Safety + Liveness = all policies [Alpern & Schneider, 1985]

Software Lifecycle

Design & Development

Deployment
(Download, Install,

Load)

Execution

Recovery

 Security vulnerabilities in non-malicious code
 type-safe programming languages
 formal verification
 code synthesis

 Malicious code (viruses, worms, etc.)

 Antivirus scanning
 Code-signing
 Type-safe target codes (e.g., Java bytecode)
 Independently verifiable certificates

 Runtime monitoring
 Automatically generated self-monitoring code

 Auditing (logging)
 Rollback (reversible computation, restore points)
 Legal action

Example: Memory Safety

 Memory Safety = ?

 Traditional security model:

 program is a black box

 OS/hardware intercepts every memory access

 Language-based security model:

 program is a sequence of instructions in an architecture with known semantics

 analyze the sequence to identify all potential violations

 insert dynamic memory checks into the program

Example: Memory Safety

 Memory Safety = Programs may not access unallocated memory addresses

 Traditional security model:

 program is a black box

 OS/hardware intercepts every memory access

 Language-based security model:

 program is a sequence of instructions in an architecture with known semantics

 analyze the sequence to identify all potential violations

 insert dynamic memory checks into the program

Example: Data Confidentiality

 Policy: Don’t divulge my credit card number

 Traditional approach:

 monitor all outgoing network traffic

 block any transmission containing the relevant bit sequence

 Language-based approach:

 analyze the dataflow graph of the software

 identify potential flows from high-security sources to low-security sinks

 interpose robust declassification guards along identified flows

 quantify the potential information disclosure as Shannon entropy

Reasons for a Language-based Approach

 Rigor
 We have a science of programming languages!

 Lets us prove things about how software behaves and what it can do

 Efficiency
 enforce security “from inside” the software

 richer context, smarter security checks, fewer context switches

 Flexibility
 no need for custom OS/hardware

 ship the enforcement mechanism with the product, or add it client-side

 Power/expressiveness
 can enforce exceptionally powerful policies (e.g., history-based)

 enforce notoriously hard policies like confidentiality and availability

Decidability

 Is this really possible with arbitrary software? What about these guys?

 The Halting Problem

 Exercise: Reduce memory safety to the halting problem

 Escape Hatches

 conservative rejection

 limit the domain (e.g., constrained input language)

 require dynamic checks on uncertainty

 push the proof burden to the code-provider

Next Time: Software Model Checking

 Software Model Checking vs. Automated Theorem Proving

 Lists assignment also due Monday

 Be sure you have at least a tentative solution to matches_nil and rem from
Assignment 1 (even if they might have bugs).

 probably easier than last two assignments if you have a mostly-correct Assignment 1
(but don’t wait until the last second!)

	Software Security Foundations
	Tales of Woe:�Seven Deadly Vulnerabilities
	Tale #1: GHOST (Gnu HOST bug)
	Tale #1: GHOST (Gnu HOST bug)
	Is it really that big a deal?
	Is it really that big a deal?
	Tale #2: Heartbleed
	Tale #2: Heartbleed
	Tale #3: MS08-067 (Conficker Exploit)
	Tale #3: MS08-067 (Conficker Exploit)
	Tale #4: Stagefright
	Tale #4: Stagefright
	Tale #5: Shellshock (Linux Bash Bug)
	Tale #6: Java Deserialization
	Tale #7: VENOM (Virtualized Environment Neglected Operations Manipulation)
	The Software Security Crisis
	Misguided Solutions
	Science of Software Security
	Important LBS Technologies
	At Least Three Hard Issues Involved
	TCB Minimization
	TCB Minimization
	Least Privilege
	Trust Modeling
	Trust Modeling
	Trust Modeling
	Trust Modeling
	Trust Modeling
	Trust Modeling
	Trust Modeling
	Trust Modeling
	Attack Modeling
	Major Classes of Security Policies
	Defining Security Policies Formally
	Software Lifecycle
	Example: Memory Safety
	Example: Memory Safety
	Example: Data Confidentiality
	Reasons for a Language-based Approach
	Decidability
	Next Time: Software Model Checking

