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Tales of Woe:

Seven Deadly Vulnerabilities
GHOST ● Heartbleed ● Conficker ● Stagefright ● Shellshock 
● Java Deserialization ● VENOM



Tale #1: GHOST (Gnu HOST bug)
 Bug in the Linux glibc library

 Discovered by Qualys researchers during a routine code audit in 2015

 Affects all code that uses glibc for host-lookups (i.e., nearly all Linux 
networking software) between 2000-2013

 Can you spot the bug?

1 int __nss_hostname_digits_dots( … ) {
   …

3  size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
4  *buffer = (char*) malloc(size_needed);

  … 35 lines of code …

5  host_addr = (host_addr_t*) *buffer;
6  h_addr_ptrs = (host_addr_list_t*) ((char*) host_addr + sizeof(*host_addr));
7  h_alias_ptr = (char**) ((char*) h_addr_ptrs + sizeof(*h_addr_ptrs));
8  hostname = (char*) h_alias_ptr + sizeof(*h_alias_ptr);

  …
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Is it really that big a deal?

 Qualys was able to take complete remote control of affected Linux machines 
merely by sending them a maliciously crafted email (unread!).

 Can you figure out how they did it?

…
 1  if (isdigit(name[0])) {
 2    for (cp=name;; ++cp) {
 3       if (*cp == ‘\0’) {
 4          if (*--cp == ‘.’) break;
 5          if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 6             result_buf->h_name = strcpy(hostname, name);
 7          goto done; 
 8       }
 9       if (!isdigit(*cp) && *cp != ‘.’) break;
10   }
11 }
…
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Tale #2: Heartbleed
 Bug in the OpenSSL (secure web communications!) library discovered by Codenomicon in 2014

 Buffer over-read error in implementation of Heartbeat TLS protocol:

 read-loop trusts length bound provided by user

 over-read data sent directly back to attacker

 Vulnerability exposed ~66% of the internet to theft of encryption keys between 2011-2014.

 Still highly exploitable because OpenSSL is so pervasive, cannot always be patched in the wild.

 Heartbeat packets deemed so innocuous, they were not even logged during the zero-day window.

int dtls1_process_heartbeat(SSL *s) {
  unsigned char *p = &s->s3->rrec.data[0];
  unsigned int payload;
  n2s(p, payload);
  …
  buffer = OPENSSL_malloc(1 + 2 + payload + padding);
  bp = buffer;
  *bp++ = TLS1_HB_RESPONSE;
  s2n(payload, bp);
  memcpy(bp, p, payload);
  bp += payload;
  …
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Tale #3: MS08-067 (Conficker Exploit)
 Bug in Windows netapi32.dll lib first discovered in 2008

 Allows complete remote compromise of all (then) Windows Servers

 Exploited by Confiker worm to infect ~1.7 million machines in ~190 
countries, including national defense networks across Europe

void _NetpwPathCanonicalize(wchar_t* Path) {
  if (!_function_check_length(Path)) return;
  …
  _CanonicalizePathName(Path);
  …
}

void _CanonicalizePathName(wchar_t* Path) {
  wchar _wcsBuffer[0x420];
  …
  wcscat(wcsBuffer, Path);
  …
  _ConvertPathMacros(wcsBuffer);
…
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Tale #4: Stagefright
 Series of 8 critical vulnerabilities discovered in Android OS 2014-2015

 Allows complete remote hijacking of 95% of Android devices

 No user interaction required! (merely receiving a malformed MMS message 
triggers bug)

status_t SampleTable::setTimeToSampleParams(…) {
  uint32_t mTimeToSampleCount = U32_AT(&header[4]);
  uint64_t allocSize = mTimeToSampleCount * 2 * sizeof(uint32_t);
  if (allocSize > SIZE_MAX) return ERROR_OUT_OF_RANGE;
  mTimeToSample = new uint32_t[mTimeToSampleCount * 2];
  …
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Tale #5: Shellshock (Linux Bash Bug)
 Bug (undocumented feature?) discovered in Linux bash shell (by IT 

manager Stephane Chazelas in his spare time!) in 2014

 Bash command-parser interprets certain text in environment variables as 
code and executes it during parsing(?!)

 Impact:  All Linux software storing user-provided data in environment 
variables susceptible to complete remote compromise.

 Zero-day window:  25 years(!!) (198?-2014)

void initialize_shell_variables(char **env, int privmode) {
  …
  for (string_index = 0; string = env[string_index++]; ) {
    …
    if (privmode==0 && read_but_dont_execute == 0 && STREQN(“() {”, string, 4)) {
      …
      parse_and_execute(temp_string, name, SEVAL_NONINT|SEVAL_NOHIST);
      …



Tale #6: Java Deserialization

 Logical flaw in how many Java applications receive objects as input

 Examples dating back to 2010 and before, but popularized in 2015-2018 by 
successful attacks against WebSphere, WebLogic, JBoss, etc. [FoxGlove’15]

 millions of Java apps estimated to be currently vulnerable to complete 
remote compromise

 The Problem:

 Java apps must deserialize input stream to object before they know what kind of 
object they received.

 JVM deserializes stream to whatever object it says it is.

 Some built-in JVM objects execute code at object initialization.

 Executed code is supplied by attacker!



Tale #7: VENOM (Virtualized Environment 
Neglected Operations Manipulation)

 floppy disk controller bug discovered in 2015

 affects many VMs and hypervisors: QEMU, Xen, KVM, VirtualBox, …

 allows guest OS to escape the VM sandbox and run code on the host

 millions of data centers at risk

 existed for 10 years(!) before patched

 buffer overwrite error

void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) {
  …
  fdctrl->fifo[fdctrl->data_pos++] = value;
  …



The Software Security Crisis

 MITRE CVE Top “Unforgivable Vulnerabilities”

 buffer overflow

 XSS

 SQL injection

 directory traversal

 world-writable files

 direct admin script requests

 Why do these still occur?  Why do standard approaches fail?

 homegrown crypto

 authentication bypass

 large check-use windows (TOCTOU)

 privilege escalation

 undocumented account

 integer overflow

 



Misguided Solutions

 People who haven’t studied the field think the solution is “obvious”:

 Naïve idea #1:  “If everyone just used [ Linux | Java | Mac | … ]”

 Naïve idea #2:  “Stop hiring stupid programmers.”

 Naïve idea #3:  “Prioritize security testing more.  Don’t release too soon.”

 Naïve idea #4:  “Just configure your permissions properly.”

 IT approaches today:

 Patch early, patch often…

 Monitor network packets, monitor syscalls, monitor phone calls (NSA)…

 Penetration testing (red-teaming)

 Source code review



Science of Software Security
 Goals

 Find long-term, universal solutions to software security crisis

 Obtain mathematical, quantifiable guarantees for security of software products

 machine-checked proofs, reliable metrics

 Automate rigorous checking processes

 no human in the loop!

 Two main domains of research

 new languages/tools for creating secure software from scratch

 securing legacy code

 Three stages of enforcement

 static (find & fix vulnerabilities before runtime)

 dynamic (detect and block attacks at runtime)

 audit (recover and assign blame after an attack)



Important LBS Technologies

 Automated theorem-provers

 machine-assisted, machine-checked proofs of security

 In-lined Reference Monitors

 insert dynamic security checks into untrusted code

 Type-checkers

 advanced type systems can encode security properties

 Model-checkers

 statically verify that code model obeys a security property

 Certifying Compilers

 transform source code into object code and an independently verifiable proof that 
the object code is safe to execute



At Least Three Hard Issues Involved

 Minimal Trusted Computing Base (TCB)

 Principle of Least Privilege

 The Model Problem:

 Trust Model

 Attacker Model

 System Model



TCB Minimization
 Let’s play a game:  I’m thinking of a piece of software.

 Most of you have it and have used it.

 If it fails, it could delete or divulge all your personal files.

 Microsoft makes it.

 Can you guess which software I’m thinking of?
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Least Privilege

 Principle of Least Privilege:  “Every program and every user of the system 
should operate using the least set of privileges necessary to complete the 
job.” [Saltzer & Schroeder, 1975]

 Hard problem: What is the least set of privileges necessary to complete the 
job?  How do we compute it?

 No finite set of roles or permission options suffices to meet PoLP in all cases!

 Richer classes of enforceable policies get us closer, though.
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 Four principals: client, page publisher, ad network, ad publisher

 What are some security requirements each principal is likely to have?

 Which existing technologies can be used to meet those requirements?

 How can we assess/measure the “security” of the resulting system?



Trust Modeling

 Trust model:  Who trusts whom to do what?

 Trusted Computing Base (TCB):  The set of all system components that must 
be trusted in order to maintain system security

 Security meta-goal: minimize the TCB

 What is the trust model in our web scenario?

 What is the TCB?  How can we make it smaller?



Attack Modeling

 Threat model: set of assumed attacker capabilities

 attacks outside the model may succeed!

 threat model assumptions = security system limitations

 What is a reasonable threat model for our web scenario?



Major Classes of Security Policies

 Integrity – preventing improper or unauthorized change to data or resources

 Example: ad may not delete your files

 Availability – continued access to data or resources

 Example: ad may not expand to occlude the rest of the page

 Confidentiality – concealment of data or resources

 Example: ad may not send your browsing history to your employer



Defining Security Policies Formally

 Security Policy – specification of allowed (or, equivalently, disallowed) 
behaviors

 Safety Policies – some “bad” thing shouldn’t happen (integrity)

 Liveness Policies – some “good” thing should eventually happen (availability)

 Safety + Liveness = all policies [Alpern & Schneider, 1985]



Software Lifecycle

Design & Development

Deployment
(Download, Install, 

Load)

Execution

Recovery

 Security vulnerabilities in non-malicious code
 type-safe programming languages
 formal verification
 code synthesis

 Malicious code (viruses, worms, etc.)

 Antivirus scanning
 Code-signing
 Type-safe target codes (e.g., Java bytecode)
 Independently verifiable certificates

 Runtime monitoring
 Automatically generated self-monitoring code

 Auditing (logging)
 Rollback (reversible computation, restore points)
 Legal action



Example: Memory Safety

 Memory Safety = ?

 Traditional security model:

 program is a black box

 OS/hardware intercepts every memory access

 Language-based security model:

 program is a sequence of instructions in an architecture with known semantics

 analyze the sequence to identify all potential violations

 insert dynamic memory checks into the program
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Example: Data Confidentiality

 Policy:  Don’t divulge my credit card number

 Traditional approach:

 monitor all outgoing network traffic

 block any transmission containing the relevant bit sequence

 Language-based approach:

 analyze the dataflow graph of the software

 identify potential flows from high-security sources to low-security sinks

 interpose robust declassification guards along identified flows

 quantify the potential information disclosure as Shannon entropy



Reasons for a Language-based Approach

 Rigor
 We have a science of programming languages!

 Lets us prove things about how software behaves and what it can do

 Efficiency
 enforce security “from inside” the software

 richer context, smarter security checks, fewer context switches

 Flexibility
 no need for custom OS/hardware

 ship the enforcement mechanism with the product, or add it client-side

 Power/expressiveness
 can enforce exceptionally powerful policies (e.g., history-based)

 enforce notoriously hard policies like confidentiality and availability



Decidability

 Is this really possible with arbitrary software?  What about these guys?

 The Halting Problem

 Exercise: Reduce memory safety to the halting problem

 Escape Hatches

 conservative rejection

 limit the domain (e.g., constrained input language)

 require dynamic checks on uncertainty

 push the proof burden to the code-provider



Next Time: Software Model Checking

 Software Model Checking vs. Automated Theorem Proving

 Lists assignment also due Monday

 Be sure you have at least a tentative solution to matches_nil and rem from 
Assignment 1 (even if they might have bugs).

 probably easier than last two assignments if you have a mostly-correct Assignment 1 
(but don’t wait until the last second!)
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