Multiple Factor Analysis
(MFA)

Hervé Abdi’ & Dominique Valentin

1 Overview

1.1 Origin and goal of the method

Multiple factor analysis (MFA, see Escofier and Pages, 1990, 1994)
analyzes observations described by several “blocks" or sets of vari-
ables. MFA seeks the common structures present in all or some of
these sets. MFA is performed in two steps. First a principal com-
ponent analysis (PCA) is performed on each data set which is then
“normalized” by dividing all its elements by the square root of the
first eigenvalue obtained from of its PCA. Second, the normalized
data sets are merged to form a unique matrix and a global PCA is
performed on this matrix. The individual data sets are then pro-
jected onto the global analysis to analyze communalities and dis-
crepancies. MFA is used in very different domains such as sensory
evaluation, economy, ecology, and chemistry.
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1.2 When to use it

MEFA is used to analyze a set of observations described by several
groups of variables. The number of variables in each group may
differ and the nature of the variables (nominal or quantitative) can
vary from one group to the other but the variables should be of the
same nature in a given group. The analysis derives an integrated
picture of the observations and of the relationships between the
groups of variables.

1.3 The main idea

The goal of MFA is to integrate different groups of variables de-
scribing the same observations. In order to do so, the first step is to
make these groups of variables comparable. Such a step is needed
because the straightforward analysis obtained by concatenating
all variables would be dominated by the group with the strongest
structure. A similar problem can occur in a non-normalized PCA:
without normalization, the structure is dominated by the variables
with the largest variance. For PCA, the solution is to normalize
(i.e., to use Z-scores) each variable by dividing it by its standard
deviation. The solution proposed by MFA is similar: To compare
groups of variables, each group is normalized by dividing all its
elements by a quantity called its first singular value which is the
matrix equivalent of the standard deviation. Practically, This step
is implemented by performing a PCA on each group of variables.
The first singular value is the square root of the first eigenvalue of
the PCA. After normalization, the data tables are concatenated into
a data table which is submitted to PCA.

2 Anexample

To illustrate MFA, we selected six wines, coming from the same har-
vest of Pinot Noir, aged in six different barrels made with one of
two different types of oak. Wines 1, 5, and 6 were aged with the first
type of oak, and wines 2, 3, and 4 with the second. Next, we asked
each of three wine experts to choose from two to five variables to
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describe the six wines. For each wine, the expert rated the inten-
sity of the variables on a 9-point scale. The results are presented
in Table 1 (the same example is used in the entry for STATIS). The
goal of the analysis is twofold. First we want to obtain a typology
of the wines and second we want to know if there is an agreement
between the experts.

3 Notations

The raw data consist in T data sets. Each data set is called a study.
Each studyis an I x J|; rectangular data matrix denoted Y, where
I is the number of observations and J; the number of variables of
the ¢-th study. Each data matrix is, in general, preprocessed (e.g.,
centered, normalized) and the preprocessed data matrices actu-
ally used in the analysis are denoted X[;.

For our example, the data consist in T = 3 studies. The data
(from Table 1) were centered by column (i.e., the mean of each col-
umn is zero) and normalized (i.e., for each column, the sum of the
squared elements is equal to 1). So, the starting point of the analy-
sis consists in three matrices:

[ —0.57 0.58 0.76 |
0.19 -0.07 -0.28
X 0.38 —-0.50 —0.48
W=1 057 -050 -0.28 |’
-0.38 036 0.14
| -0.19 014 0.14
[ —0.50 035 057 0.54 ]
0.00 0.05 0.03 -0.32
x. | 025 056 -051 -0.54
21~ 1 075 -056 -051 -0.32 |’
-0.25 035 0.39 0.32
| -0.25 035 003 0.32 |
and
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[ —0.03 0.31 0.57 |
0.17 -0.06 -0.19
0.80 -0.61 -0.57

Xe1=| _024 -043 -038 |- ()

-0.24 031 0.38

| 045 049 019 |

Each observation is assigned a mass which reflects its impor-
tance. When all observations have the same importance, their ma-
sses are all equal to m; = % The set of the masses is stored in an
I x I diagonal matrix denoted M.

4 Finding the global space

4.1 Computing the separate PCA’s

To normalize the studies, we first compute a PCA for each study.
The first singular value (i.e., the square root of the first eigenvalue)
is the normalizing factor used to divide the elements of the data ta-
ble. For example, the PCA of the first group gives a first eigenvalue
101 = 2.86 and a first singular value of 1 ¢ = /101 = 1.69. This gives
the first normalized data matrix denoted Z;;:

[ —0.33  0.34 045 |
0.11 —-0.04 -0.16
0.22 -0.30 -0.28
0.33 —-0.30 -0.16
-0.22 021 0.08

| —0.11  0.08 0.08 |

Zn =197 xXp) = )

Matrices Zjp) and Z3) are normalized with their first respective
singular values of ,¢; = 1.91 and 3¢; = 1.58. Normalized matrices
have a first singular value equal to 1.
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4.2 Building the global matrix

The normalized studies are concatenated into an I x T matrix called
the global data matrix denoted Z. Here we obtain:

Z=[1Zy Zy Zy ]

-0.33 0.34 0.45 | -0.26 0.18 0.30 0.28 | —0.02 0.19
0.11 -0.04 -0.16 0.00 0.03 0.02 -0.17 0.11 -0.04
0.22 -0.30 -0.28 0.13 -0.29 -0.27 -0.28 0.51 -0.39
0.33 -0.30 -0.16 039 -0.29 -0.27 -0.17 | -0.15 -0.27

-0.22 0.21 0.08 | -0.13 0.18 0.20 0.17 | -0.15 0.19

| —0.11 0.08 0.08 | -0.13 0.18 0.02 0.17 | —-0.29 0.31

3)

4.3 Computing the global pca

To analyze the global matrix, we use standard PCA. This amounts
to computing the singular value decomposition of the global data
matrix:

Z=UAV' withU'U=V'v=1I, (4)

(where U and V are the left and right singular vectors of Z and A is
the diagonal matrix of the singular values).
For our example we obtain:

0.53 —-0.35 -0.58 —-0.04 0.31 |
-0.13 -0.13 049 051 0.54
U= -0.56 —0.57 0.01 —-0.36 —0.25
~ | -044 062 -048 0.15 0.03 )
0.34 0.04 0.16 0.39 -0.73

0.27 040 0.40 -0.65 0.11 |

and

diag{A}=[ 1.68 0.60 0.34 0.18 0.11 |
and diag {A} = diag {A®} = [ 2.83 0.36 0.11 0.03 0.01 | (6)

0.36 |
-0.12
-0.36
-0.24

0.24

0.12 |
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(A gives the eigenvalues of the PCA) and

[ —0.34 022 0.03 014 055 ]
035 -0.14 —-0.03 030 0.02
032 -0.06 —0.65 —0.24 0.60
~028 034 -032 031 -0.18
y—| 030 -000 043 011 019 .
~| 030 -0.18 -0.00 0.67 0.11 ™
030 0.09 —-022 —-0.36 —0.38
-022 -0.86 0.01 —0.12 —0.00
036 020 045 —0.30 0.19

037 001 -021 0.18 -0.28 |

The global factor scores for the wines are obtained as:

F=MZUA 8)

[ 218 —-051 -048 —0.02 0.08 ]

~056 -0.20 041 023 0.15

_| 232 -083 001 -016 -0.07 o
~1.83 090 -040 007 001 |-

140 005 013 017 —0.20

.13 058 034 -0.29 0.03

In F, each row represents an observation (i.e., a wine) and each
column a component. Figure 1 displays the wines in the space
of the first two principal components. The first component has
an eigenvalue equal to A, = 2.83, which corresponds to 84% of
the inertia (g5 53576 1170037001 = 335 ~ -84)- The second compo-
nent, with an eigenvalue of .36, explains 11% of the inertia. The
first component is interpreted as the opposition between the first

(wines 1, 5, and 6) and the second oak type (wines 2, 3, and 4).

5 Partial analyses

The global analysis reveals the common structure of the wine space.
In addition, we want to see how each expert “interprets" this space.
This is achieved by projecting the data set of each expert onto the
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Figure 1: Global analysis: Plot of the wines on the first two princi-
pal components. First component: A; = 2.83, explains 84% of the
inertia, Second component: A, =2.83, explains 11% of the inertia.

global analysis. This is implemented by multiplication of a cross
product matrix by a projection matrix. The projection matrix is
obtained by rewriting Equation 8, to show that the global factor
scores could be computed as

F=M 2UA = (ZZT) x (M—%UA‘l) . (10)

1
This shows that P = M~ 2UA™! is a projection matrix which trans-
forms the matrix ZZ" into factor scores. Here, we obtain:

-

0.77 -1.43 -4.20 -0.55 6.68 |
-0.20 -0.55 3.56 6.90 11.71
-0.82 -233 005 -4.85 -5.53
-0.65 254 -346 2.01 0.66 |’

0.50 0.15 1.13 5.27 -15.93

0.40 161 291 -8.78 2.43

P=M:UA"!=

L

(1
The projection matrix is then used to project the studies onto
the global space. For example, for the first expert we obtain

Fyy = Tx (Zn 2 )P (12)
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276 -1.10 -2.29 -039 0.67 |
-077 030 081 031 -0.27
_ -199 081 148 0.08 -0.39 (13)
-198 093 092 -0.02 059 |’
1.29 -0.62 -049 0.10 -0.51

0.69 -0.30 -0.43 -0.07 -0.08 |

(multiplying by T is needed in order to scale one expert with all
T = 3 experts of the global solution). The same procedure gives for
Experts 2 and 3:

221 -0.86 0.74 0.27 0.06 |
-0.28 —0.13 0.35 0.55 0.52
—2.11 0.50 —0.77 —0.49 -0.01
For=1 939 123 -157 -020 -068 |’ (14)
1.49 —-049 0.62 040 0.13
1.08 -0.24 0.63 -0.53 —0.03 |
and )
1.54 044 0.09 0.07 -0.47
—-0.61 -0.76 0.06 —0.17 0.19
-2.85 -3.80 —-0.69 —0.07 0.19
Foi=| 112 056 -055 042 0.11 (15)
1.43 127 026 0.03 —0.22
162 228 0.82 —0.28 0.20

Figure 2 shows the first two principal components of the global
analysis along with the wine projections for the experts. Note that,
the position of each wine in the global analysis is the barycenter
(i.e., centroid) of its positions for the experts. To facilitate the inter-
pretation, we have drawn lines linking the expert wine projection
to the global wine position. This picture shows that Expert 3 is at
variance with the other experts in particular for Wines 3 and 6.

5.1 The original variables and the global analysis

As in standard Pca, the variable loadings are the correlation be-
tween the original variables and the global factor scores (cf. Ta-
ble 2). These loadings are plotted in Figure 3 along with the “cir-
cles of correlation.” This figure shows that Expert 3 differs from the

9
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Table 3: Partial inertias for the first three dimensions.

Axis 1 Axis2 Axis3 Axis4 Axis5
Expertl 0.96 0.03 0.05 0.01 0.01
Expert2 0.98 0.06 0.04 0.02 0.00
Expert3 0.90 0.28 0.03 0.00 0.00

) 2.83 .36 12 .03 .01
/11 /12 ﬂz A4 /15

other experts, and is mostly responsible for the second component
of the compromise.

5.2 The original PcA’s and the global analysis

MEFA starts with a series of PCA’s. Their relationship with the global
analysis is explored by computing loadings (i.e., correlations) be-
tween the components of each studies and the components of the
global analysis. These loadings, given in Table 2, are displayed in
Figure 3. They relate the original PCA and the global analysis.

6 Analyzing the between study structure

The relationships between the studies and between the studies
and the global solution are analyzed by computing the partial in-
ertia of each study for each dimension of the global analysis. This
is computed, for each study, as the sum of the squared projections
of the variables on the right singular vectors of Z (cf. Equation 7)
multiplied by the corresponding eigenvalue. Because the singu-
lar vectors are normalized, the sum of the partial inertias for all
the studies for a given dimension is equal to its eigenvalue. For
example, for study one, and component one, the partial inertia is

13
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Figure 4: Partial Inertia: Plot of the experts on the first two com-
ponents.

obtained as

Jk
Mx Y q;, =283 x[(~34)%+(35)° +(.32)°] =2.83x .34 =.96.
J

(16)
Similar computations gives the values reported in Table 3. These
values are used to plot the studies as shown in Figure 4. The plot

confirms the originality of Expert 3, and its importance for Dimen-
sion 2.
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