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Jackknife

Hervé Abdi - Lynne J. Williams

1 Introduction

The jackknife or “leave one out” procedure is a cross-validation technique first
developed by Quenouille to estimate the bias of an estimator. John Tukey then
expanded the use of the jackknife to include variance estimation and tailored the
name of jackknife because like a jackknife—a pocket knife akin to a Swiss army
knife and typically used by boy scouts—this technique can be used as a “quick and
dirty” replacement tool for a lot of more sophisticated and specific tools. Curiously,
despite its remarkable influence on the statistical community, the seminal work of
Tukey is available only from an abstract (which does not even mention the name
of jackknife) and from an almost impossible to find unpublished note (although
some of this note found its way into Tukey’s complete work).

The jackknife estimation of a parameter is an iterative process. First the param-
eter is estimated from the whole sample. Then each element is, in turn, dropped
from the sample and the parameter of interest is estimated from this smaller sam-
ple. This estimation is called a partial estimate (or also a jackknife replication).
A pseudo-value is then computed as the difference between the whole sample es-

Hervé Abdi
The University of Texas at Dallas

Lynne J. Williams
The University of Toronto Scarborough

Address correspondence to:

Hervé Abdi

Program in Cognition and Neurosciences, MS: Gr.4.1,

The University of Texas at Dallas,

Richardson, TX 75083-0688, USA

E-mail: herve@utdallas.edu http://www.utd.edu/~herve



2 Jackknife

timate and the partial estimate. These pseudo-values reduce the (linear) bias of
the partial estimate (because the bias is eliminated by the subtraction between
the two estimates). The pseudo-values are then used in lieu of the original values
to estimate the parameter of interest and their standard deviation is used to es-
timate the parameter standard error which can then be used for null hypothesis
testing and for computing confidence intervals. The jackknife is strongly related to
the bootstrap (i.e., the jackknife is often a linear approximation of the bootstrap)
which is currently the main technique for computational estimation of population
parameters.

As a potential source of confusion, a somewhat different (but related) method,
also called jackknife is used to evaluate the quality of the prediction of compu-
tational models built to predict the value of dependent variable(s) from a set of
independent variable(s). Such models can originate, for example, from neural net-
works, machine learning, genetic algorithms, statistical learning models, or any
other multivariate analysis technique. These models typically use a very large
number of parameters (frequently more parameters than observations) and are
therefore highly prone to over-fitting (i.e., to be able to perfectly predict the data
within the sample because of the large number of parameters, but being poorly
able to predict new observations). In general, these models are too complex to be
analyzed by current analytical techniques and therefore the effect of over-fitting is
difficult to evaluate directly. The jackknife can be used to estimate the actual pre-
dictive power of such models by predicting the dependent variable values of each
observation as if this observation were a new observation. In order to do so, the
predicted value(s) of each observation is (are) obtained from the model built on
the sample of observations minus the observation to be predicted. The jackknife,
in this context, is a procedure which is used to obtain an unbiased prediction (i.e.,
a random effect) and to minimize the risk of over-fitting.

2 Definitions and Notations

The goal of the jackknife is to estimate a parameter of a population of interest
from a random sample of data from this population. The parameter is denoted 6,
its estimate from a sample is denoted 7', and its jackknife estimate is denoted T™*.
The sample of N observations (which can be univariate or multivariate) is a set
denoted {X1,..., X, ..., Xn}. The sample estimate of the parameter is a function
of the observations in the sample. Formally:

T=f(X1, o, Xns oo Xn) (1)
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An estimation of the population parameter obtained without the nth observation,
is called the n-th partial prediction, and is denoted T',,. Formally:

Tow=f (X1, Xn1, X1+, Xy) (2)

A pseudo-value estimation of the nth observation is denoted 7%, it is computed
as the difference between the parameter estimation obtained from the whole sample
and the parameter estimation obtained without the nth observation. Formally:

T =NT-(N-1)T., . (3)

The jackknife estimate of 6, denoted T, is obtained as the mean of the pseudo-
values. Formally:

. 1 X
T =T =_—_N"T* 4
L=y 2T ()

where T,* is the mean of the pseudo-values. The variance of the pseudo-values is
denoted 2, and is obtained with the usual formula:

2
,_X(n-T)
Ogs = ———— . 5
o= (5)
Tukey conjectured that the 7T*s could be considered as independent random vari-
ables. Therefore the standard error of the parameter estimates, denoted 7%, could
be obtained from the variance of the pseudo-values from the usual formula for the
standard error of the mean as:

7 | 2(m-T)
TENN TN TN -1 ®)

This standard error can then be used to compute confidence intervals for the esti-
mation of the parameter. Under the independence assumption, this estimation is
distributed as a Student’s ¢ distribution with (N —1) degrees of freedom. Specifi-
cally a (1 — «) confidence interval can be computed as

T + ta’l,?fT* (7>

with ¢, being the a-level critical value of a Student’s ¢ distribution with v = N -1
degrees of freedom.
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2.1 Jackknife without pseudo-values

Pseudo-values are important to understand the inner working of the jackknife, but
they are not computationally efficient. Alternative formulas using only the partial
estimates can be used in lieu of the pseudo-values. Specifically, if 7, denotes the
mean of the partial estimates and @7, their standard deviation, then 7™ (cf.
Equation 4) can be computed as

T*=NT-(N-1)T, (8)

and &7+ (¢f. Equation 6) can be computed as

s N-1 TV (N 1)
gT*_\/ ¥ ST, -T) =(N I)W (9)

2.2 Assumptions of the Jackknife

Although the jackknife makes no assumptions about the shape of the underlying
probability distribution, it requires that the observations are independent of each
other. Technically, the observations are assumed to be independent and identically
distributed (i.e., in statistical jargon: “i.i.d.”). This means that the jackknife is
not, in general, an appropriate tool for time series data. When the independence
assumption is violated, the jackknife underestimates the variance in the data-set
which makes the data look more reliable than they actually are.

Because the jackknife eliminates the bias by subtraction (which is a linear op-
eration), it works correctly only for statistics which are linear functions of the
parameters or the data, and whose distribution is continuous or at least “smooth
enough” to be considered as such. In some cases, linearity can be achieved by trans-
forming the statistics (e.g., using a Fisher Z-transform for correlations, or a loga-
rithm transform for standard deviations), but some non-linear or non-continuous
statistics, such as the median, will give very poor results with the jackknife no
matter what transformation is used.

2.3 Bias estimation

The jackknife was originally developed by Quenouille as a nonparametric way to
estimate and reduce the bias of an estimator of a population parameter. The bias
of an estimator is defined as the difference between the expected value of this
estimator and the true value of the population parameter. So formally, the bias,
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denoted B, of an estimation 7" of the parameter 6 is defined as
B=E{T}-0, (10)
with E{T"} being the expected value of T.

The jackknife estimate of the bias is computed by replacing the expected value
of the estimator (i.e., E{T'}) by the biased estimator (i.e., T') and by replacing the
parameter (i.e., §) by the “unbiased” jackknife estimator (i.e., T*). Specifically,
the jackknife estimator of the bias, denoted Bj,ck is computed as:

B =T -T" . (11)

2.4 Generalizing the performance of predictive models

Recall that the name “jackknife” refers to two related, but different techniques
(and this is sometimes a source of confusion). The first technique, presented above,
estimates population parameters and their standard error. The second technique
evaluates the generalization performance of predictive models. In these models,
predictor variables are used to predict the values of dependent variable(s). In this
context, the problem is to estimate the quality of the prediction for new observa-
tions. Technically speaking, the goal is to estimate the performance of the predic-
tive model as a random effect model. The problem of estimating the random effect
performance for predictive models is becoming a crucial problem in domains such
as, for example, bio-informatics and neuroimaging (see, e.g., Kriegeskorte et al.,
2009; Vul et al., 2009) because the data sets used in these domains are typically
comprised of a very large number of variables (often a much larger number of
variables than observations—A configuration called the “small N, large P” prob-
lem). This large number of variables makes statistical models notoriously prone to
over-fitting.

In this context, the goal of the jackknife is to estimate how a model would
perform when applied to new observations. This is done by dropping in turn each
observation and fitting the model for the remaining set of observations. The model
is then used to predict the left-out observation. With this procedure, each obser-
vation has been predicted as a new observation.

In some cases a jackknife can perform both functions, thereby generalizing the
predictive model as well as finding the unbiased estimate of the parameters of the
model.
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3 Example: Linear regression

Suppose that we performed a study examining children’s speech rate as a function
of their age. The children’s age (denoted X') was used as a predictor of their speech
rate (denoted Y'). Dividing the number of words said by the time needed to say
them gave the speech rate (expressed in words per minute) of each child. The
results of this (fictitious) experiment are shown in Table 1.

We will use these data to illustrate how the jackknife can be used to 1) estimate
the regression parameters and their bias and 2) evaluate the generalization per-
formance of the regression model. As a preliminary step, the data are analyzed by
a standard regression analysis and we found that the regression equation is equal
to:

Y=a+bX=90+1.25X . (12)

The predicted values are given in Table 1. This regression model corresponds to a
coefficient of correlation of r = .8333 (i.e., the correlation between the Y-s and the

Y-s is equal to .8333).

3.1 Estimation of regression parameters and bias

In this section, we will use the jackknife to estimate the intercept, the slope, and
the value of the coefficient of correlation for the regression.

We drop each observation in turn and compute, for the slope and the intercept,
the partial estimates (denoted b_, and a_,) and pseudo-values (denoted b and
a?). So, for example, when we drop the first observation, we use the observations

Table 1: Data from a study examining children’s speech rate as a function of age. The independent variable
is the age of the child (X). The dependent variable is the speech rate of the child in words per minutes (V).
The values of ¥ are obtained as ¥ = 90+ 1.25X. X, is the value of the independent variable, Y;, is the value
of the dependent variable, Y}, is the predicted value of the dependent variable predicted from the regression,
?Tf is the predicted value of the dependent variable predicted from the jackknife derived unbiased estimates,
S7jack is the predicted values of the dependent variable when each value is predicted from the corresponding
jackknife partial estimates.

—

Obs Xn Yn Yn ?T; Eack, n

4 91 95.0000 949986  97.3158
5 96 96.2500  96.1223  96.3468
6 103 97.5000 97.2460  95.9787
9 99 101.2500 100.6172 101.7411
9 103 101.2500 100.6172 100.8680
15 108 108.7500 107.3596 111.3962

DO W+~
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2 through 6 to compute the regression equation with the partial estimates of the
slope and intercept as (c¢f. Equation 2):

—

Y.i=a1+b1X =93.5789 +0.9342X . (13)

From these partial estimates, we compute a pseudo-value by adapting Equation 3
to the regression context. This gives the following jackknife pseudo values for the
nth observation:

ay=Na-(N-1)a, and b=Nb-(N-1)b,, (14)
and for the first observation, this equation becomes:
ai =6x1.25-5%x0.9342=2.8289 and b} =6x90-5x93.5789 =72.1053 . (15)

Table 2 gives the partial estimates and pseudo values for the intercept and slope
of the regression. From this table we can find that the jackknife estimates of the
regression will give the following equation for the prediction of the dependent
variable (the prediction using the jackknife estimates is denoted Y,*):

Vr=a*+b*X =90.5037 + 1.1237X . (16)

The predicted values using the jackknife estimates are given in Table 1. It is worth
noting that, for regression, the jackknife parameters are linear functions of the
standard estimates. This implies that the values of ?n* can be perfectly predicted
from the values of Y,,. Specifically,

—~ b* b* ~
Y*=|a*"-a—|+-=-Y, . 17
i (a ab)+b (17)

Therefore the correlation between the ?n* and the Y, is equal to one, this, in turn,
implies that the correlation between the original data and the predicted values is
the same for both Y and Y,*.

The estimation for the coefficient of correlation is slightly more complex be-
cause, as mentioned earlier, the jackknife does not perform well with non-linear
statistics such as correlation. So, the values of r are transformed using Fisher Z-
transform (see Abdi et al., 2009) prior to jackknifing. The jackknife estimate is
computed on these Z-transformed values, and the final value of the estimate of r
is obtained by using the inverse of the Fisher Z-transform (using r rather than
the transformed Z values would lead to a gross over-estimation of the correlation).
Table 2 gives the partial estimates for the correlation, the Z-transformed values,
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Table 2: Partial estimates and pseudo-values for the regression example of Table 1

Obs Partial Estimates Pseudo-Values
a_p b_p, r_p Z_, a; by z*
1 093.5789 0.9342 .8005 1.1001 72.1053 2.8289 1.6932
2 90.1618 1.2370 .8115 1.1313 89.1908 1.3150 1.5370
3 87.4255 1.4255 9504 1.8354 102.8723 0.3723  -1.9835
4 90.1827 1.2843 .8526 1.2655 89.0863 1.0787 0.8661
5 9.8579 1.2234 .8349 1.2040 90.7107 1.3832 1.1739
6 8.1887 1.5472 7012 0.8697 99.0566 —-0.2358 2.8450
Mean e b. — Z. a* b* z*
89.8993 1.2753 — 1.2343 90.5037 1.1237 1.0219
Jackknife Estimates
SD T, Op_, — Gz, Car Oy Gz
21324 0.2084 — 0.3240 10.6622 1.0418 1.6198

Jackknife Standard Deviations

Q)
3

Eb* T %

SE — — — — a\a*:\/aﬁ ?fb*:\/% EZ*:\/%
— 4.3528 0.4253 .6613

Jackknife Standard Error

and the Z-transformed pseudo-values. From Table 2, we find that the jackknife es-
timate of the Z-transformed coefficient of correlation is equal to Z* = 1.019 which,
when transformed back to a correlation, gives a value of the jackknife estimate
for the correlation of r* = .7707. Incidently, this value is very close to the value
obtained with another classic alternative population unbiased estimate called the
shrunken r, which is denoted 7, and computed as

7= \l 1- [(1 —7’2)2%:;;] = \/1 = [(1 - .83332)3] = 7862 . (18)

Confidence intervals are computed using Equation 7. For example, taking into
account that the a = .05 critical value for a Student’s t distribution for v = 5
degrees of freedom is equal to t,, = 2.57, the confidence interval for the intercept
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is equal to:

10.6622

V6

a* +14,04+ = 90.0037 +£2.57 x =90.5037+£2.57x4.3528 = 90.5037 + 11.1868 .

(19)

The bias of the estimate is computed from Equation 11. For example, the bias
of the estimation of the coefficient of correlation is equal to:

Biack(r) =7 — r* = 8333 = 7707 = .0627 . (20)

The bias is positive and this shows (as expected) that the coefficient of correlation
over-estimates the magnitude of the population correlation.

3.2 Estimate of the generalization performance of the regression

In order to estimate the generalization performance of the regression, we need to
evaluate the performance of the model on new data. These data are supposed to be
randomly selected from the same population as the data used to build the model.
The jackknife strategy here is to predict each observation as a new observation,
this implies that each observation is predicted from its partial estimates of the
prediction parameter. Specifically, if we denote by ﬁack,n the jackknife predicted
value of the nth observation, the jackknife regression equation becomes:

—

Vinckon = n + b X - (21)

So, for example, the first observation is predicted from the regression model built
with observations 2 to 6, this gives the following predicting equation for Yjae 1 (cf.
Tables 1 and 2):

—

Yiack,1 = a-1 +b_1. X1 =93.5789 + 0.9342 x 4 = 97.3158 . (22)

The jackknife predicted values are listed in Table 1. The quality of the prediction
of these jackknife values can be evaluated, once again, by computing a coefficient
of correlation between the predicted values (i.e., the ?jack,n) and the actual values
(i.e., the Y},). This correlation, denoted 7j,ck, for this example is equal to rjae =
.6825. It is worth noting that, in general, the coefficient rj,q is not equal to the
jackknife estimate of the correlation r* (which, recall, is in our example equal to
r* =.7707).
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4 see also

Bias; Bootstrapping; Coefficients of correlation, alienation and determination; Pear-
son product-moment correlation; R? (R-squared); Regression; Reliability; Stan-
dard error of estimate
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