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Partial Least Squares (PLS) methods are particularly suited to the analysis of relationships between measures
of brain activity and of behavior or experimental design. In neuroimaging, PLS refers to two related methods:
(1) symmetric PLS or Partial Least Squares Correlation (PLSC), and (2) asymmetric PLS or Partial Least
Squares Regression (PLSR). The most popular (by far) version of PLS for neuroimaging is PLSC. It exists in
several varieties based on the type of data that are related to brain activity: behavior PLSC analyzes the
relationship between brain activity and behavioral data, task PLSC analyzes how brain activity relates to pre-
defined categories or experimental design, seed PLSC analyzes the pattern of connectivity between brain
regions, and multi-block or multi-table PLSC integrates one or more of these varieties in a common analysis.
PLSR, in contrast to PLSC, is a predictive technique which, typically, predicts behavior (or design) from brain
activity. For both PLS methods, statistical inferences are implemented using cross-validation techniques to
identify significant patterns of voxel activation. This paper presents both PLS methods and illustrates them
with small numerical examples and typical applications in neuroimaging.
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1. Introduction

Originally developed for econometrics and chemometrics (Wold,
1982), Partial Least Squares (PLS) is a multivariate statistical
technique first introduced to functional neuroimaging by McIntosh
et al. (1996) with the goal of extracting commonalities between brain
activity and behavior or experimental design. In neuroimaging there
are two basic types of PLS methods, which we call Partial Least
Squares Correlation (PLSC; McIntosh et al., 1996), and Partial Least
Squares Regression (PLSR; Wold, 1982; de Jong, 1993; Wold et al.,
2001). PLSC (Tucker, 1958; Bookstein, 1982; Streissguth et al., 1993;
Bookstein, 1994; McIntosh et al., 1996) is a correlational technique
that analyzes associations between two sets of data (e.g., behavior and
brain activity), while PLSR (Wold, 1982; Martens and Naes, 1989; de
Jong and Phatak, 1997; Tenenhaus, 1998; Martens andMartens, 2001;
Wold et al., 2001; Abdi, 2010) is a regression technique that predicts
one set of data from another (e.g., predicts behavior from brain
activity). A third, closely related, technique called partial least squares
path modeling (see, e.g., Esposito-Vinzi et al., 2010 for a recent
comprehensive review) can be seen as a least squares equivalent of
structural equation modeling (which is a maximum likelihood
technique). Despite PLS path modeling's obvious relevance, this
method has not yet been applied to neuroimaging, and therefore we
will not include it in this review. For both PLSC and PLSR, statistical
inferences are implemented using computational cross-validation
methods (e.g., jackknife, bootstrap). As a distinct advantage, PLS
techniques are tailored to handle the very large data sets which are
typical of current neuroimaging research.

In this paper we will present PLSC, PLSR and their main variants
used in neuroimaging. We introduce each technique with a small
artificial example in order to describe the main computational steps.
For each technique we also present and review major applications
neuroimaging: A tutorial and review, NeuroImage
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Fig. 1. The PLS family.
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from the neuroimaging literature. A diagram outlining the various PLS
methods is shown in Fig. 1.
2. Notations

In this section, we review the main notations used in this paper. For
convenience, Appendix A also lists our main notations and acronyms
(see also Abdi and Williams, 2010c, for more details on matrices).

Data are stored in matrices which are denoted by upper case bold
letters (e.g., X). The identity matrix is denoted I. Column vectors are
denotedby lower casebold letters (e.g.,x).Matrix or vector transposition
is denoted by an uppercase superscript T (e.g., XT). Two bold letters
placed next to each other imply matrix or vector multiplication unless
Fig. 2.Data representation formatrices (a)X and (b) Y. Note that the I observations of X and Y
or trial types.

Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
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otherwise mentioned. The number of rows, columns, or sub-matrices is
denoted by an uppercase italic letter (e.g., I) and a given row, column, or
sub-matrix is denoted by a lowercase italic letter (e.g., i).

Brain activity is stored in an I by Jmatrix denoted Xwhose generic
element is denoted xi, j and where the rows are observations and the
columns are variables. Matrix X is made up of N a priori sub-matrices,
with In being the number of observations in sub-matrix n. The sum of
the number of observations in all of the sub-matrices is the number of
rows of X (i.e., I=∑ In; see Fig. 2a). When dealing with spatio-
temporal neuroimaging methods (e.g., EEG, fMRI, NIRS), there are T
scanswhere the set of scans for all I observations at time t corresponds
to an I by Jt matrix denoted Xt . The Xt matrices are concatenated by
row to form the larger matrix X (whose total number of columns J is
the sum of all the Jt; see Fig. 3).
are composed ofN sub-matrices,X1…Xn…XN and Y1…Yn…YN representing the groups
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Fig. 3. Data Matrix for EEG, MEG, fMRI, and NIRS experiments: The data (scans) X for each time point t has I rows and J columns. Each scan from X1 to XT is concatenated by rows so
that each row contains all the voxel activity at all time points.
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Behavioral or design data are stored in an I by K matrix, Y, whose
generic element is denoted yi,k. EachYmatrix ismade up of the sameN a
priori sub-matrices asX (Fig. 2b),withKbehavioralmeasuresor contrasts
that code for different aspects of the experimental design (e.g., category
membership). In general, matricesX and Y are statistically preprocessed
inorder tomake thevariables comparable. For example, themeanof each
column can be subtracted from all its elements or each column can be
transformed into Z-scores. In some cases a normalization is performedon
a sub-matrix basis (e.g., the mean of each column of each sub-matrix is
zero and its standard deviation is one).

2.1. The main tool: the singular value decomposition

The main analytical tool for PLS is the singular value decomposi-
tion (SVD) of a matrix (see Abdi, 2007; de Leeuw, 2007; Greenacre,
1984; Takane, 2002 for details and tutorials). Recall that the SVD of a
given J×K matrix Z decomposes it into three matrices as:

Z = UΔVT = ∑
L

ℓ
δℓuℓv

T
ℓ ð1Þ

where U is the J by L matrix of the normalized left singular vectors
(with L being the rank of Z), V the K by L matrix of the normalized
right singular vectors, Δ the L by L diagonal matrix of the L singular
values, also δℓ, uℓ, and vℓ are respectively the ℓth singular value, left,
and right singular vectors. Matrices U and V are orthonormal matrices
(i.e., UTU = VTV = I). The SVD is closely related to and generalizes
the well-known eigen-decomposition as U is also the matrix of the
normalized eigenvectors of ZZT , V is the matrix of the normalized
eigenvectors of ZTZ, and the singular values are the square root of the
eigenvalues of ZZT and ZTZ (these two matrices have the same
eigenvalues). Key property: the SVD provides the best reconstitution
(in a least squares sense) of the original matrix by a matrix with a
lower rank.

3. Partial Least Squares Correlation

Partial Least Squares Correlation (PLSC) analyzes the relationship
between the matrices X and Y. These matrices store measurements
collected on the same observations (e.g., scans or participants). The I by J
matrix X corresponds to brain activity and the I by K matrix Y cor-
responds to behavioral or design variables. The relationship between
the jth column ofX and the kth column of Y is measured by the dot (i.e.,
scalar) product between these two columns. When these two columns
are centered, the dot product gives the covariance between these two
columns.When, in addition, these two columns are normalized (e.g., are
Z-scores, orwhen the sumof the squared values of each column is equal
to one), the dot product expresses the correlation between these two
columns. Because covariance and correlation are not directional (i.e.,
correlation and covariance do not depend upon the order of the
variables), the roles of X and Y are symmetric and the analysis focuses
on shared information.
Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
(2010), doi:10.1016/j.neuroimage.2010.07.034
3.1. Overview of PLSC

PLSC canbe subdivided into four variants: (1) behavior PLSC, (2) task
PLSC, (3) seed PLSC, and (4) multi-table or multi-block PLSC (McIntosh
and Lobaugh, 2004; McIntosh et al., 1998). The difference between the
techniques rests in the Y matrix. Y is a matrix of behavioral variables in
behavior PLSC, a matrix of contrasts or design variables in task PLSC, a
matrix of voxel activity from the regions of interest (ROIs) in seed PLSC,
and there are multiple Y matrices in multi-table PLSC, each consisting
of behavioral, design, or ROI variables. Note that for all versions of PLSC,
all scans are co-registered onto a common brain space to remove dif-
ferences in brain volume (e.g., Talairach coordinates; see Talairach and
Tournoux, 1988).

3.2. Formal expression of PLSC

Formally, the relationship between the columns of X and Y are
stored in a cross-product matrix, denoted R, which is computed as:

R = YTX: ð2Þ

In general, R is a matrix of correlations because X and Y are
centered and normalized (e.g., expressed as Z-scores).

The SVD [see Eq. (1)] of R decomposes it into three matrices:

R = UΔVT
: ð3Þ

In the PLSC vocabulary the singular vectors U and V are also called
saliences (Bookstein, 1994) and in this paper these two terms are
synonymous. The L left singular vectors of R (i.e., U) represent the
design or behavioral profiles that best characterize R, whereas the L
right singular vectors of R (i.e.,V) represent the voxels or brain images
that best characterize R.

To express the saliences relative to brain activity and behavior (or
design), the original matrices X and Y are projected onto their
respective saliences. This creates latent variables—which are linear
combinations of the original variables—that are computed as:

LX = XV; ð4Þ

where the matrix of latent variables of X (i.e., the I by L matrix LX) is
called “brain scores,” and

LY = YU; ð5Þ

where the matrix of latent variables of Y (i.e., the I by L matrix LY) is
called “behavior” or “design scores.” A pair of vectors ℓ X;ℓ (which is
the ℓth column of LX) and ℓ Y;ℓ (which is the ℓth column of LY)
reflects a relationship between brain activity and behavior (Nestor
et al., 2002). PLSC searches for latent variables that express the largest
amount of information common to both X and Y. Specifically, PLSC
computes latent variables with maximal covariance.
S) methods for neuroimaging: A tutorial and review, NeuroImage
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3.2.1. What does PLSC optimize?
The goal of PLSC is to find pairs of latent vectors ℓ X;ℓ and ℓ Y;ℓ with

maximal covariance and with the additional constraints that (1) the
pairs of latent vectors made from two different indices are uncor-
related and (2) the coefficients used to compute the latent variables
are normalized (see Tucker, 1958; Tenenhaus, 1998, for proofs).
Formally, we want to find

ℓ X;ℓ = Xvℓ and ℓ Y;ℓ = Yuℓ

such that cov ℓ X;ℓ; ℓ Y;ℓ

� �
∝ ℓ T

X;ℓℓ Y;ℓ = max

ð6Þ

[where cov ℓ X;ℓ; ℓ Y;ℓÞ
�

denotes the covariance between ℓ X;ℓ and ℓ Y;ℓ]
under the constraints that

ℓ T
X;ℓℓ Y;ℓ′ = 0 when ℓ ≠ ℓ′ ð7Þ

(note that ℓ T
X;ℓℓ X;ℓ′ and ℓ T

Y;ℓℓ Y;ℓ′ are not required to be null) and

uT
ℓuℓ = vTℓvℓ = 1: ð8Þ

It follows from the properties of the SVD (see, e.g., Abdi and
Williams, 2010d; de Leeuw, 2007; Greenacre, 1984; Takane, 2002)
that uℓ and vℓ are singular vectors of R. In addition, from Eqs. (3–5),
the covariance of a pair of latent variables ℓ X;ℓ and ℓ Y;ℓ is equal to the
corresponding singular value:

ℓ T
X;ℓℓ Y;ℓ = δℓ: ð9Þ

So, when ℓ=1, we have the largest possible covariance between
the pair of latent variables. When ℓ=2 we have the largest possible
covariance for the latent variables under the constraints that the latent
variables are uncorrelated with the first pair of latent variables [as
stated in Eq. (7), e.g., ℓ X;1 and ℓ Y;2 are uncorrelated], and so on for
larger values of ℓ.

3.3. Deciding which latent variables to keep

The SVD of R corresponds to a fixed effect model; therefore, the
results can only be interpreted with respect to the original data sets.
Yet, in the framework of PLSC, the goal is to extract information
common to the two sets of data (e.g., brain activity and behavioral
measures) which can generalize to the population (i.e., a random effect
model; Abdi, 2010).

To generalize the results (i.e., to create a random effect model), we
could use an inferential analytical approach such as the one defined
by Tucker (1958), but this approach makes too many parametric
assumptions to be used routinely. Instead, we use computational
approaches, such as permutation tests, to obtain p-values, which can
then be used to identify the generalizable latent variables (McIntosh
and Lobaugh, 2004; McIntosh et al., 2004). In a permutation test, a
new data set, called a permutation sample, is obtained by randomly
reordering the rows (i.e., observations) of X and leaving Y unchanged.
The PLSC model used to compute the fixed effect model is then
recomputed for the permutation sample to obtain a new matrix of
singular values. This procedure is repeated for a large number of
permutation samples, say 1000 or 10,000. The set of all the singular
values provides a sampling distribution of the singular values under
the null hypothesis and, therefore can be used as a null hypothesis
test.

When a vector of saliences is considered generalizable and is
kept for further analysis, we need to identify its elements that are
stable through resampling. In practice, the stability of an element is
evaluated by dividing it by its standard error. Specifically, if σ̂ðuiÞ
Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
(2010), doi:10.1016/j.neuroimage.2010.07.034
and σ̂ðviÞ denote the standard errors of ui and vi, the stability of the
ith element of u and v are obtained (respectively) as:

ui

σ̂ðuiÞ
and

vi
σ̂ðviÞ : ð10Þ

To estimate the standard errors, we create bootstrap samples
which are obtained by sampling with replacement the observations in
X and Y (Efron and Tibshirani, 1986). A salience standard error is then
estimated as the standard error of the saliences from a large number
of these bootstrap samples (say 1,000 or 10,000). The ratios from
Eq. (10) are akin to a Z-score, therefore when they are larger than 2
the corresponding saliences are considered significantly stable. Stable
saliences determine which voxels show reliable responses to the
experimental conditions (McIntosh et al., 2004; Efron and Tibshirani,
1986) and indicate the important saliences in the brain activity net-
work (Mentis et al., 2003).

As a technical aside, one problem when using permutation or
bootstrap methods is that resampling may cause axis rotation or
reflection. Axis rotation refers to a change in the order of the latent
variables that are extracted with each permutation. Reflection refers
to a change in the sign of the saliences for each bootstrap sample. A
Procrustes rotation or a variation of multidimensional scaling, such as
DISTATIS (Abdi et al., 2005; Abdi et al., 2009a), can be used to correct
for these rotations and reflections (see McIntosh and Lobaugh, 2004,
for more details).

Although it may seem that using both permutation tests and the
bootstrap is somewhat redundant, these twomethods provide, in fact,
different information. Permutation tests indicate whether a signal can
be differentiated from noise, but do not index signal reliability which
is, by contrast, provided by the bootstrap (see McIntosh and Lobaugh,
2004, for a discussion of detection and reliability).

3.4. PLS: mini-example

In order to illustrate the various versions of PLS we have chosen a
hypothetical neuroimaging experiment that analyzes data from
participants grouped into three experimental conditions comprising
two clinical populations, Alzheimer's disease (AD) and Parkinson's
disease (PD), and an age-matched normal control group (NC). Each
participant is scanned once using PET imaging. Voxel activity values
from the PET scans are collected separately for each participant and
stored in X. The scans are coregistered to Talairach coordinates so that
voxels are in the same location for eachparticipant. In this example,we
have three participants per clinical category (hence a total of 3×3=9
participants). The PET results are:

X =
X1
X2
X3

2
4

3
5 =

2 5 6 1 9 1 7 6 2 1 7 3
4 1 5 8 8 7 2 8 6 4 8 2
5 8 7 3 7 1 7 4 5 1 4 3

3 3 7 6 1 1 10 2 2 1 7 4
2 3 8 7 1 6 9 1 8 8 1 6
1 7 3 1 1 3 1 8 1 3 9 5

9 0 7 1 8 7 4 2 3 6 2 7
8 0 6 5 9 7 4 4 2 10 3 8
7 7 4 5 7 6 7 6 5 4 8 8

2
66666666666666664

3
77777777777777775

; ð11Þ

where the columns give voxel activity and the rows are participants
AD1, AD2, AD3 (which correspond to X1) PD1, PD2, PD3 (which
correspond toX2), NC1, NC2 and NC3 (which correspond toX3). Matrix
Y (and sometimes the preprocessing of X) will differ based on the
version of PLSC (i.e., behavior, task, seed, or multi-table).
S) methods for neuroimaging: A tutorial and review, NeuroImage
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3.5. Behavior PLSC

Behavior PLSC analyzes the relationship between the behavioral
characteristics of groups and their functional brain activity. Matrix X
contains voxel activity [Eq. (11)] and Matrix Y, in this case, contains
various demographic (e.g., age) and/or behavioral data (e.g., neuro-
psychological tests, reaction times).

For our example, (fictitious) participants underwent behavioral
testing using a memory test for word recall. The behavioral measures
were the number of words correctly recalled and the average reaction
time (in ms). The behavioral data are:

Ybehavior =
Ybehavior;1
Ybehavior;2
Ybehavior;3

2
4

3
5 =

15 600
19 520
18 545

22 426
21 404
23 411

29 326
30 309
30 303

2
66666666666666664

3
77777777777777775

; ð12Þ

where the rows are the same participants as in matrix X and the
columns are the participants’ number of words recalled and reac-
tion time scores, respectively. Note that both X and Y contain infor-
mation from the same participants and hence have the same number
of rows but are likely to have a different number of columns.

Both X and Y are centered and normalized within each condition
n (i.e., each Xn and Yn is centered and normalized independently,
and the sum of squares of a column in one condition is equal to 1,
note also then when all values are equal to their mean, they are
Fig. 4.MatrixX andmatrix Y for Behavior PLSC: The observations are arranged according toN c
(Rn) between each condition-wise sub-matrix (Xn and Yn) are stacked one below the other to

Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
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all normalized to zero). This normalization gives the following
matrices:

X =

−0:77 0:07 0:00 −0:59 0:71 −0:41 0:41 0:00 −0:79 −0:41 0:23 0:41
0:15 −0:74 −0:71 0:78 0:00 0:82 −0:82 0:71 0:57 0:82 0:57 −0:82
0:62 0:67 0:71 −0:20 −0:71 −0:41 0:41 −0:71 0:23 −0:41 −0:79 0:41

0:71 −0:41 0:27 0:29 0:00 −0:66 0:48 −0:31 −0:31 −0:59 0:23 −0:71
0:00 −0:41 0:53 0:51 0:00 0:75 0:33 −0:50 0:81 0:78 −0:79 0:71

−0:71 0:82 −0:80 −0:81 0:00 −0:09 −0:81 0:81 −0:50 −0:20 0:57 0:00

0:71 −0:41 0:62 −0:82 0:00 0:41 −0:41 −0:71 −0:15 −0:15 −0:51 −0:82
0:00 −0:41 0:15 0:41 0:71 0:41 −0:41 0:00 −0:62 0:77 −0:29 0:41

−0:71 0:82 −0:77 0:41 −0:71 −0:82 0:82 0:71 0:77 −0:62 0:81 0:41

2
66666666666666664

3
77777777777777775

ð13Þ

and

Ybehavior =

−0:79 0:78
0:57 −0:60
0:23 −0:17

0:00 0:78
−0:71 −0:61
0:71 −0:17

−0:82 0:79
0:41 −0:22
0:41 −0:57

2
66666666666666664

3
77777777777777775

: ð14Þ

Thematrix of correlations for each condition n is then computed as
(Fig. 4):

Rbehavior;n = YT
behavior;nXn: ð15Þ

All the condition-wise matrices of correlations are stacked one on
top of the other to form the combined matrix of correlations Rbehavior,
which is the input for the SVD. The Rbehavior matrix contains the
onditions in bothmatrices and are normalizedwithin condition. Thematrix of correlations
form a combined matrix of correlations R which is then decomposed by SVD.

S) methods for neuroimaging: A tutorial and review, NeuroImage
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correlation of each of the J voxels in X with each of the K behavioral
measures in Y within each of the N conditions. Therefore R will have
N×K rows and J columns. For our example, the matrix of correlations
is:

Rbehavior =
Rbehavior;1
Rbehavior;2
Rbehavior;3

2
4

3
5

=

0:84 −0:32 −0:24 0:87 −0:72 0:69 −0:69 0:24 1:00 0:69 −0:04 −0:69
−0:80 0:38 0:31 −0:90 0:67 −0:74 0:74 −0:31 −1:00 −0:74 −0:03 0:74

−0:50 0:87 −0:94 −0:93 0:00 −0:60 −0:81 0:92 −0:92 −0:69 0:96 −0:50
0:67 −0:21 0:02 0:05 0:00 −0:95 0:30 −0:07 −0:65 −0:90 0:56 −0:98

−0:87 0:50 −0:76 1:00 0:00 −0:50 0:50 0:87 0:19 0:19 0:63 1:00
0:96 −0:70 0:90 −0:97 0:25 0:70 −0:70 −0:96 −0:43 0:06 −0:80 −0:97

2
66666666664

3
77777777775

ð16Þ

where each of the N×K rows gives the kth behavioral measure for the
nth condition and where the J columns represent the voxel activity.

The SVD [cf., Eq. (1)] of Rbehavior is computed as:

Rbehavior = UΔVT
; ð17Þ

which gives:

U =

0:41 −0:42 0:37 −0:02 −0:14 −0:71
−0:41 0:44 −0:40 0:00 −0:14 −0:68

−0:43 0:25 0:74 0:46 0:01 −0:02
−0:07 0:31 0:40 −0:86 0:08 −0:01

−0:44 −0:47 −0:06 −0:09 0:74 −0:15
0:53 0:51 0:00 0:20 0:64 −0:13

2
66666666664

3
77777777775
; ð18Þ

where U is the N×K row and L column matrix of the saliences for the
behavioral measures, where L is the rank of Rbehavior,

Δ =

3:80 0 0 0 0 0
0 3:25 0 0 0 0
0 0 2:46 0 0 0
0 0 0 1:64 0 0
0 0 0 0 0:33 0
0 0 0 0 0 0:08

2
6666664

3
7777775
; ð19Þ
Fig. 5. Mini-example—Behavior PLSC: Behavior saliences 1 and 2. (a) The first behavior salie
difference between AD and NC for reaction time; (b) The second behavior salience reveals t
reaction times for all groups.

Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
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where Δ is the diagonal matrix of singular values, and

V =

0:46 0:09 0:23 −0:34 0:07 −0:42
−0:32 −0:04 0:10 0:24 −0:28 −0:54
0:26 0:25 −0:35 −0:12 −0:03 −0:14
0:04 −0:59 −0:02 −0:47 0:37 −0:18

−0:12 0:22 −0:22 0:04 0:49 0:30
0:39 −0:14 −0:09 0:43 0:03 0:26

−0:22 −0:03 −0:43 −0:49 −0:24 0:24
−0:28 −0:28 0:33 0:13 0:13 0:05
0:25 −0:49 −0:07 0:01 −0:57 0:26
0:24 −0:34 −0:13 0:27 0:35 −0:04

−0:30 −0:09 0:36 −0:15 0:05 0:32
−0:33 −0:24 −0:56 0:21 0:08 −0:31

2
6666666666666666664

3
7777777777777777775

; ð20Þ

where V is the J×L matrix of the saliences for brain activity.
Behavior saliences (i.e., U) indicate task-dependent differences in

the brain-behavior correlation (i.e., the interaction of the experimen-
tal conditions with the behavioral measures). Brain saliences (i.e., V)
indicate voxel-dependent differences in the brain behavior
correlation.

The correlation between the brain scores and each of the
behavioral measures gives a pattern of scores similar to the behavior
saliences (U), depicting experimental differences in behavior. Confi-
dence intervals on these correlations can be used to assess the
reliability of the brain-behavior relationship (McIntosh and Lobaugh,
2004).

A separate bar plot of each column of U against each behavioral
measure shows how the experimental conditions (i.e., groups)
interact with the behavioral measures. Fig. 5 shows that the first
behavior salience differentiates between the word recall performance
of the AD group from the PD and NC group and differentiates between
the reaction times of the AD and NC groups. The second behavior
salience differentiates the word recall performance of the PD group
from the other two groups, but does not differentiate between the
reaction times for all three groups.

From the saliences, we compute the latent variables [see Eqs. (4)
and (5)]. Recall that the X latent variables, LX, are called brain scores
and the Y latent variables, LY , are called behavior scores. Both LX and LY
have I rows and L columns.
nce reveals the difference between AD and the other groups for words recalled and the
he difference between PD and the other groups for words recalled but no difference in
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The latent variables for brain activity (brain scores) are computed
as (cf., Eq. (4)):

LX = XV =

−1:23 0:90 −0:49 0:13 0:30 0:35
0:90 −1:31 1:21 0:31 0:78 0:90
0:33 0:41 −0:72 −0:44 −1:08 −1:25

0:21 0:64 0:35 −1:41 0:02 0:00
1:05 −0:89 −1:46 0:17 −0:01 0:00

−1:25 0:25 1:10 1:24 −0:01 0:00

1:38 1:24 0:12 0:12 −0:20 0:01
0:34 −0:11 −0:51 0:42 1:36 −0:06

−1:73 −1:13 0:39 −0:55 −1:16 0:05

2
66666666666666664

3
77777777777777775

: ð21Þ

The computation of the behavior scores is slightlymore complicated
due to the block structure of the data. Recall thatRbehavior hasN×K rows
where each row depicts the kth behavioral measure for the nth
condition. In our example, the first two rows of Rbehavior represent the
behavioralmeasures (i.e., words recalled and reaction time) for AD, the
next two rows ofRbehavior represent the behavioralmeasures for PD and
the last two rows of Rbehavior represent the behavioral measures for NC.
The product the rows of Y and U corresponding to each experimental
condition separately gives the latent variables for behavior (behavior
scores) per condition. These condition-wise behavior scores are stacked
one of top of the other to form the combined behavior scores. So, with
the latent variable for the n-th condition computed as:

LY ;n = YnUn; ð22Þ

we obtain

LY =
LY;1
LY;2
LY;3

2
4

3
5 =

−0:64 0:67 −0:61 0:01 0:00 0:03
0:48 −0:50 0:45 −0:01 0:01 0:01
0:16 −0:17 0:15 0:00 −0:01 −0:04

−0:05 0:24 0:31 −0:67 0:06 0:00
0:34 −0:36 −0:76 0:19 −0:06 0:02

−0:29 0:12 0:45 0:47 0:00 −0:02

0:78 0:79 0:05 0:23 −0:10 0:03
−0:30 −0:30 −0:02 −0:08 0:16 −0:04
−0:48 −0:48 −0:02 −0:15 −0:06 0:01

2
66666666666666664

3
77777777777777775

; ð23Þ
Fig. 6.Mini-example—Behavior PLSC: Brain and Behavior scores. (a) Plot of LX; latent variab
scores). The dimensions represent the latent variables, the horizontal (resp. vertical) coord

Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
(2010), doi:10.1016/j.neuroimage.2010.07.034
The latent variables for brain activity (brain scores or LX) and
behavior (behavior scores or LY) are not typically illustrated. How-
ever PCA style plots show the effect of two latent variables at once. In
our example, the PCA style plot of LX (Fig. 6a) shows that the first
brain score separates AD1, PD3 and NC3 from the other participants,
while the second brain score separates AD2, PD2, NC2 and NC3 from
the other participants. The PCA style plot of LY (Fig. 6b) shows that
the first behavior score separates NC1 from NC2 and NC3, while the
second behavior score separates AD1, PD2 and PD3 from AD2, AD3

and PD2.
Because of the small sample size, the bootstrap and permutation

tests were not performed in this analysis and, hence, these results
represent a fixed effect model (i.e., the interpretation is limited to the
given data sets and cannot be generalized to the population).
3.5.1. Applications
Behavior PLSC has been used in several neuroimaging domains to

examine the relationship between brain activity and behavior. For
example, Price et al. (2004) used behavior PLSC to examine the
relationship between voxel activity from PET scans of individuals with
Alzheimer's disease and normal controls and descriptive and cogni-
tive measures of age, white matter volume, and mental status on the
Mini-Mental State Examination (MMSE; Folstein et al., 1975). The
saliences for Ybehavior showed that tracer retention differences
between patients with Alzheimer's disease and normal controls (i.e.,
brain activity differences between groups coded by contrasts)
contributed most to the correlation. The MMSE scores had the second
highest contribution.

Behavior PLSC has also been used (1) to identify grey matter
systems correlated with response inhibition in obsessive compulsive
disorder (Menzies et al., 2007), (2) to examine relationships between
brain structures and neuropsychological tests in schizophrenia
(Nestor et al., 2002), (3) to analyze the relationship between cerebral
blood flow (as measured by SPECT) and visuo-spatial tasks in
Alzheimer's patients (Tippett and Black, 2008), and, (4) to relate
brain shape, neuropsychological behavior, and cortical functioning in
traumatic brain injury patients (Bookstein et al., 2002; Fujiwara et al.,
2008).
les 1 and 2 of X (Brain scores) and (b) Plot of LY ; latent variables 1 and 2 of Y (Behavior
inate of each point is given by its value for the first (resp. second) latent variable.
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3.6. Task PLSC

In contrast with behavior PLSC, task PLSC analyzes the relationship
between brain activity and experimental design. There are two closely
related types of task PLSC: (1) contrast, and (2)mean-centered.When
differences in scaling are considered, the contrast and mean-centered
approaches give almost the same results (McIntosh and Lobaugh,
2004). The mean-centered approach is currently the version of task
PLSC used, and we present contrast task PLSC essentially for historical
reasons and to be exhaustive.

3.6.1. Contrast task PLSC
Contrast task PLSC analyzes the relationship between brain

measurements and a set of contrasts which represent specific
experimental questions. As with behavior PLSC, when using contrast
task PLSC, matrix X [Eq. (11)] contains voxel activity. However,
instead of demographic or behavioral measures, matrix Y contains a
set of orthonormal contrasts (i.e., these contrasts are pairwise
orthogonal and the sum of squares of the coefficients of a given
contrast is equal to one), which reflects the experimental question at
hand. The method for contrast task PLSC is illustrated in Fig. 7.

The matrix X is obtained from the data described in Eq. (11). These
data are then centered and normalized such that the mean of each
column is zero and the sum of the squared elements of each column is
equal to one. This gives:

X =

0:31 0:14 0:02 −0:41 0:33 −0:42 0:15 0:20 −0:27 −0:35 0:19 −0:33
−0:07 −0:32 −0:19 0:51 0:23 0:34 −0:42 0:47 0:34 −0:02 0:30 −0:49
0:05 0:48 0:24 −0:14 0:13 −0:42 0:15 −0:08 0:19 −0:35 −0:17 −0:33

−0:19 −0:09 0:24 0:25 −0:46 −0:42 0:50 −0:35 −0:27 −0:35 0:19 −0:17
−0:31 −0:09 0:46 0:38 −0:46 0:21 0:38 −0:48 0:64 0:41 −0:53 0:14
−0:44 0:37 −0:63 −0:41 −0:46 −0:17 −0:54 0:47 −0:42 −0:13 0:42 −0:02
0:55 −0:43 0:24 −0:41 0:23 0:34 −0:19 −0:35 −0:12 0:19 −0:41 0:30
0:42 −0:43 0:02 0:12 0:33 0:34 −0:19 −0:08 −0:27 0:63 −0:29 0:45
0:30 0:37 −0:41 0:12 0:13 0:21 0:15 0:20 0:19 −0:02 0:30 0:45

2
6666666666664

3
7777777777775

:

ð24Þ

Because there are three experimental groups in our example, the
maximum number of orthonormal contrasts is two (see e.g., Abdi et
al., 2009b), and this matrix of contrasts, denoted Ycontrast, is:

Ycontrast =

−0:24 −0:41
−0:24 −0:41
−0:24 −0:41

−0:24 0:41
−0:24 0:41
−0:24 0:41

0:47 0:00
0:47 0:00
0:47 0:00

2
66666666666666664

3
77777777777777775

; ð25Þ

where the rows represent participants AD1, AD2, AD3, PD1, PD2, PD3,
NC1, NC2 and NC3, and the columns represent contrasts ψ1 and ψ2.
Contrast ψ1 predicts that the AD and PD participants will differ from
the NC participants and contrast ψ2 predicts that the AD participants
will differ from the PD participants.
Fig. 7. Matrix X and matrix Ycontrast for Contrast approach to task PLSC: The m

Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
(2010), doi:10.1016/j.neuroimage.2010.07.034
The matrix of correlations between X and Ycontrast (i.e., Rcontrast) is
computed as:

Rcontrast = YT
contrastX: ð26Þ

For our example, the cross-product matrix is:

Rcontrast =
0:90 −0:35 −0:10 −0:12 0:49 0:63 −0:16 −0:16 −0:14 0:57 −0:28 0:85

−0:25 −0:05 0:00 0:11 −0:85 0:05 0:19 −0:39 −0:12 0:27 −0:10 0:45

� �
;

ð27Þ

which is decomposed by the SVD as [cf., Eq. (1)]:

Rcontrast = UΔVT
: ð28Þ

with the left singular vectors

U = −1:0000 0:0014
−0:0014 −1:0000

� �
; ð29Þ

the singular values

Δ = 1:67 0
0 1:13

� �
; ð30Þ

and the right singular vectors

V =

−0:54 0:22
0:21 0:04
0:06 0:00
0:07 −0:09

−0:29 0:75
−0:38 −0:05
0:10 −0:17
0:10 0:34
0:09 0:11

−0:34 −0:24
0:17 0:09

−0:51 −0:39

2
6666666666666666664

3
7777777777777777775

: ð31Þ

The brain scores (latent variables for brain activity) are computed
as [cf., Eq. (4)]:

LX = XV =

0:56 0:48
0:14 0:57
0:48 0:33
0:64 −0:46
0:01 −0:82
0:52 −0:11

−0:94 0:00
−1:08 −0:08
−0:34 0:08

2
6666666666664

3
7777777777775

; ð32Þ
atrix of correlations (R) between X and Ycontrast is decomposed by SVD.
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and the design scores (latent variables for the design) are computed
as [cf., Eq. (5)]:

LY = YU =

0:24 0:41
0:24 0:41
0:24 0:41
0:24 −0:41
0:24 −0:41
0:24 −0:41

−0:47 0:00
−0:47 0:00
−0:47 0:00

2
6666666666664

3
7777777777775

: ð33Þ

For spatio-temporal data, thematrixX ismade up of Tmatrices, each
denoted Xt . The product of each of these Xt matrices with the brain
saliences gives a matrix of brain scores for a given time point, called the
temporal scores, which depict differences in the time-course of brain
activation.

Incidentally, contrast task PLSC is related to Principal Component
Analysis (PCA) because, like PCA, contrast task PLSC boils down to
computing the SVD of a correlation (or covariance) matrix. Therefore,
the plots for contrast task PLSC are similar to PCA plots, except that for
the contrast approach there are separate plots for the brain scores
(LX) and for the design scores (LY). Also, as in PCA, the number of
latent variables is limited to the rank of Rcontrast. For our example, the
rank of Rcontrast is two and, hence, there are only two brain or design
latent variables.

Even though, in general, PLSC results are not illustrated with PCA
style graphs, such a representation can be informative because it can
help integrate the effects of two latent variables at once. As an
illustration, PCA style plots of the latent variables, LX and LY , for our
example are shown in Fig. 8a and b, respectively and indicate that the
three groups are separated in the space of the first two latent
variables. Note that LX is mean-centered and the first brain score is
plotted against the second brain score. The first brain score separates
NC from AD and PD. The second brain score separates AD from the PD
group (Fig. 8a). Note that because LY is a product of a set of contrasts
and brain activity, each observation in an experimental condition is
weighted equally. Therefore a plot of each latent variable for the
design (design score) shows a condition effect (i.e., the scores within a
Fig. 8.Mini-example—Task PLSC: (a) Plot of LX; latent variables 1 and 2 of X (Brain scores) an
the latent variables, the horizontal (resp. vertical) coordinate of each point is given by its v

Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
(2010), doi:10.1016/j.neuroimage.2010.07.034
condition fall on the same point in the space). For our example, the
first design score separates NC from AD and PD, and the second design
score separates AD from PD (Fig. 8b).

3.6.2. Mean-centered task PLSC
Mean-centered task PLSC is used when the I observations are

structured into N groups or conditions. When using mean-centered
task PLSC, the observations in X are arranged according to these N
experimental conditions and Y is a matrix of dummy coding that
codes for the experimental groups or conditions. For our example, the
matrix X is the data matrix described in Eq. (11) and Ydummy coding is:

Ydummycoding =

1 0 0
1 0 0
1 0 0

0 1 0
0 1 0
0 1 0

0 0 1
0 0 1
0 0 1

2
66666666666666664

3
77777777777777775

; ð34Þ

where the first column represents participants in the AD group, the
second column represents participants in the PD group, and the third
column represents participants in the NC group.

The average for each condition is then computed and stored in an
N× J matrix, denoted M, which is computed as:

M = diag 1TYdummy coding

n o−1
YT
dummy codingX ð35Þ

where 1 is a column vector of ones with the same number of rows as
matrix Ydummy coding and diag 1TYdummy coding

n o
is the diagonal matrix

of the sum of the columns of Ydummy coding. For our example, M is:

M =
3:67 4:67 6:00 4:00 8:00 3:00 5:33 6:00 4:33 2:00 6:33 2:67
2:00 4:33 6:00 4:67 1:00 3:33 6:67 3:67 3:67 4:00 5:67 5:00
8:00 2:33 5:67 3:67 8:00 6:67 5:00 4:00 3:33 6:67 4:33 7:67

2
4

3
5:

ð36Þ
d (b) Plot of LY; latent variables 1 and 2 of Y (Design scores). The dimensions represent
alue for the first (resp. second) latent variable.
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Each column of matrix M is then mean-centered by subtracting
the mean of the column from each value of that column. This column-
wise mean-centered matrix is denoted Rmean�centered (note that
Rmean�centered is not a matrix of correlations). Formally, Rmean�centered

is computed as:

Rmean�centered = M−1
1
N
1TM

� �
ð37Þ

where 1 is an N by 1 vector of ones. For our example, Rmean�centered

is:

Rmean�centered

=
−0:89 0:89 0:11 −0:11 2:33 −1:33 −0:33 1:44 0:56 −2:22 0:89 −2:44
−2:56 0:56 0:11 0:56 −4:67 −1:00 1:00 −0:89 −0:11 −0:22 0:22 −0:11
3:44 −1:44 −0:22 −0:44 2:33 2:33 −0:67 −0:56 −0:44 2:44 −1:11 2:56

2
4

3
5:

ð38Þ

The SVD [cf., Eq. (1)] on Rmean�centered gives:

Rmean�centered = UΔVT ð39Þ

with left singular vectors

U =
0:20 0:79
0:59 −0:57

−0:79 −0:22

2
4

3
5; ð40Þ

singular values

Δ = 7:86 0
0 5:73

� �
; ð41Þ

and right singular vectors

V =

−0:56 0:00
0:21 0:12
0:03 0:01
0:08 −0:05

−0:52 0:69
−0:34 −0:18
0:13 −0:12
0:03 0:31
0:05 0:11

−0:32 −0:38
0:15 0:14

−0:33 −0:43

2
6666666666666666664

3
7777777777777777775

: ð42Þ

Because mean-centered task PLSC differentiates between experi-
mental groups or conditions, the saliences for the groups/conditionsU
have a pattern similar to the design latent variables (LY) in the
contrast approach of task PLSC. The first salience differentiates the PD
group from the NC group and the second salience differentiates the AD
group from the NC and PD groups (Fig. 9). Note that in mean-centered
task PLSC the group saliences optimally separate the groups. This
makes mean-centered task PLSC akin to discriminant analysis.
Specifically mean-centered task PLSC is equivalent to “barycentric
discriminant analysis,” because these two techniques compute the
SVD of the matrix Rmean�centered (see, e.g., Abdi and Williams, 2010a;
Williams et al., in press, for details).

3.6.3. Applications

3.6.3.1. Contrast task PLSC. Contrast task PLSC has been used to extract
both the spatial and temporal features characteristic of fMRI data
(Addis et al., 2004). For example, Keightley et al. (2003b) used
contrast task PLSC to study the relationship between attention-
demanding cognitive tasks and brain activity associated with
emotional processing.
Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
(2010), doi:10.1016/j.neuroimage.2010.07.034
In addition, many PET studies have used contrast task PLSC to
study the relationship between memory and different experimental
conditions (e.g., Iidaka et al., 2000; Nyberg et al., 1996; Nyberg et al.,
2002; Rajah and McIntosh, 2005; Köhler et al., 1998). For example,
(Nyberg et al., 2002) used contrast task PLSC to study the similari-
ties and differences in brain activity for working memory, semantic
memory, and episodic memory. Their design matrix contained
dummy coding for different tasks. Contrast task PLSC revealed spatial
patterns of brain activity that showed optimal association with the
experimental conditions.

3.6.3.2. Mean-centered task PLSC.Mean-centered task PLSC is now used
instead of contrast task PLSC. McIntosh and Lobaugh (2004)
demonstrated that the two approaches produce identical results
save for differences in the singular values. The mean-centered
approach has been used in several ERP studies (Bergström et al.,
2007; West and Krompinger, 2005; West and Wymbs, 2004) and
recent fMRI work (McIntosh et al., 2004; Martinez-Montes et al.,
2004).

3.6.3.3. “Non-rotated” PLSC. A recent version of PLSC serves as a
variation of the contrast task PLSC andmean-centered task PLSC. This
version uses a priori (preferably orthogonal) contrasts, but, instead
of using matrix X, it uses the matrix Rmean�centered [see Eq. (37)], and
does not perform the SVD of Rmean�centered (hence the term “non-
rotated” because the SVD can be interpreted as a rotation of an
orthogonal basis). Instead the matrix obtained by the product of the
contrast matrix with the Rmean�centered matrix is used directly for
inferential analyses. This version acts as a complement to mean-
centered task PLSC because it can test specific contrasts and therefore
can be used to decompose interaction terms into interpretable
dimensions (see e.g., Protzner and McIntosh, 2007; McIntosh et al.,
2004).

3.7. Seed PLSC

Seed PLSC is used to analyze functional connectivity (McIntosh
et al., 1997; McIntosh and Gonzalez-Lima, 1991). Although seed PLSC
can analyze connectivity over the whole brain, this method has been
commonly used to determine the connectivity between one (or a few)
region(s) of interest (ROI) and the rest of the brain.

The first step is to determine a seed, which is a representative
voxel or set of voxels for a particular ROI. Ideally, a seed is chosen for
theoretical reasons, but voxel seeds are also selected using behavior
or task PLSC, by univariate multiple regression, or based on experi-
mental hypotheses. One seed is selected for every ROI for each experi-
mental condition. The activity of these seed voxels are stored in Yseed

(McIntosh et al., 1997). Because Yseed already accounts for seed
activity, the seed voxels are removed from X.

In our example (for simplicity), we have chosen the first column
and last column of X to be the seeds [cf., Eq. (11)]. Therefore, Yseed is
represented as:

Yseed =

2 3
4 2
5 3
3 4
2 6
1 5
9 7
8 8
7 8

2
6666666666664

3
7777777777775

; ð43Þ

where the rows represent the participants from matrix X and the
columns represent the seed voxels. Because we have used 2 vectors of
S) methods for neuroimaging: A tutorial and review, NeuroImage
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X as seeds, Xseed now has I rows and J−2 columns [compare with X in
Eq. (11)]:

Xseed =

5 6 1 9 1 7 6 2 1 7
1 5 8 8 7 2 8 6 4 8
8 7 3 7 1 7 4 5 1 4
3 7 6 1 1 10 2 2 1 7
3 8 7 1 6 9 1 8 8 1
7 3 1 1 3 1 8 1 3 9
0 7 1 8 7 4 2 3 6 2
0 6 5 9 7 4 4 2 10 3
7 4 5 7 6 7 6 5 4 8

2
6666666666664

3
7777777777775

: ð44Þ

As with behavior PLSC, both Xseed and Yseed are centered and
normalized within each condition n. This gives the following values
for X:

Xseed =

0:07 0:00 −0:59 0:71 −0:41 0:41 0:00 −0:79 −0:41 0:23
−0:74 −0:71 0:78 0:00 0:82 −0:82 0:71 0:57 0:82 0:57
0:67 0:71 −0:20 −0:71 −0:41 0:41 −0:71 0:23 −0:41 −0:79

−0:41 0:27 0:29 0:00 −0:66 0:48 −0:31 −0:31 −0:59 0:23
−0:41 0:53 0:51 0:00 0:75 0:33 −0:50 0:81 0:78 −0:79
0:82 −0:80 −0:81 0:00 −0:09 −0:81 0:81 −0:50 −0:20 0:57

−0:41 0:62 −0:82 0:00 0:41 −0:41 −0:71 −0:15 −0:15 −0:51
−0:41 0:15 0:41 0:71 0:41 −0:41 0:00 −0:62 0:77 −0:29
0:82 −0:77 0:41 −0:71 −0:82 0:82 0:71 0:77 −0:62 0:81

2
66666666666666664

3
77777777777777775

ð45Þ

and Y:

Yseed =

−0:77 0:41
0:15 −0:82
0:62 0:41

0:71 −0:71
0:00 0:71

−0:71 0:00

0:71 −0:82
0:00 0:41

−0:71 0:41

2
66666666666666664

3
77777777777777775

: ð46Þ

Thematrix of correlations for each condition n is then computed as
[cf., Eq. (15)]:

Rseed;n = YT
seed;nXseed;n: ð47Þ
Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
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All the condition-wise matrices of correlations are stacked one on
top of the other to form the combined matrix of correlations Rseed,
which is the input for the SVD. The matrix Rseed contains the
correlation of each of the J−2 voxels in Xseed with each of the K seed
voxels in Yseed within each of the N conditions. Therefore Rseed will
haveN×K rows and J−2 columns (Fig. 10). For our example, the Rseed

matrix of correlations is:

Rseed =
Rseed;1
Rseed;2
Rseed;3

2
4

3
5

=

0:25 0:33 0:45 −0:98 0:19 −0:19 −0:33 0:84 0:19 −0:58
0:90 0:87 −0:96 0:00 −1:00 1:00 −0:87 −0:69 −1:00 −0:69

−0:87 0:76 0:78 0:00 −0:40 0:91 −0:79 0:13 −0:28 −0:24
0:00 0:19 0:16 0:00 0:99 −0:10 −0:13 0:79 0:97 −0:72

−0:87 0:98 −0:87 0:50 0:87 −0:87 −1:00 −0:65 0:33 −0:93
0:50 −0:76 1:00 0:00 −0:50 0:50 0:87 0:19 0:19 0:63

2
66666666664

3
77777777775
;

ð48Þ

where the rows are the seed voxels per condition n and the columns
represent the voxel activity.

The remaining steps to compute seed PLSC are identical to those of
behavior PLSC. However, there is an important difference in
interpretation. The relationship between the seed voxels (i.e., Yseed)
and the voxels in Xseed represents their functional connectivity.

Specifically, for our example the SVD [cf., Eq. (1)] of Rseed is
computed as:

Rseed = UΔVT
; ð49Þ

which gives:

U =

−0:03 −0:17 0:60 0:47 0:55 −0:29
−0:42 0:76 0:08 0:40 −0:26 −0:08

−0:17 0:18 0:67 −0:69 −0:05 0:08
−0:10 −0:48 0:35 0:32 −0:70 0:21

−0:70 −0:34 −0:21 −0:19 −0:04 −0:56
0:54 0:12 0:09 −0:07 −0:37 −0:74

2
66666666664

3
77777777775
; ð50Þ
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where U are the saliences for the seed voxels,

Δ =

3:29 0 0 0 0 0
0 2:88 0 0 0 0
0 0 2:03 0 0 0
0 0 0 1:60 0 0
0 0 0 0 0:9 0
0 0 0 0 0 0:4

2
6666664

3
7777775
; ð51Þ

where Δ is the diagonal matrix of singular values, and

V =

0:20 0:29 −0:06 0:75 −0:23 −0:26
−0:49 0:08 0:28 −0:05 0:02 −0:14
0:42 −0:12 0:52 −0:35 0:02 −0:53

−0:10 0:00 −0:34 −0:35 −0:61 0:01
−0:15 −0:59 −0:06 0:09 −0:18 0:24
0:10 0:47 0:38 −0:14 −0:55 0:35
0:51 −0:09 −0:27 0:08 −0:11 −0:02
0:22 −0:27 0:48 0:24 0:04 0:56
0:07 −0:49 0:06 0:07 −0:42 −0:27
0:43 0:09 −0:28 −0:30 0:21 0:27

2
666666666666664

3
777777777777775

; ð52Þ

where V are the saliences for the brain activity. The relationship
between the seed voxels (i.e., Yseed) and the voxels in Xseed represents
their functional connectivity. This pattern of connectivity can be
illustrated by plotting the saliences for the brain (V) into a glass brain
to show how strongly the seed voxels correlate with the rest of the
brain.

The N×K rows and L columns (with L being the rank of matrix
Rseed) matrix of the seed saliences, (i.e., U), indicate differences in the
seed voxels across experimental conditions. A separate bar plot of
each column of U against each seed voxel shows how the experi-
Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
(2010), doi:10.1016/j.neuroimage.2010.07.034
mental conditions interact with the seed voxels. Fig. 11a shows the
first seed salience where the first seed voxel is important for the NC
group and the second seed voxel differentiates the AD group from the
NC group. Fig. 11b shows the second seed saliencewhere the first seed
voxel differentiates the PD group from the other groups and the
second seed voxel differentiates the AD group from the PD group.

3.7.1. Applications
Several PET studies have used seed PLSC to explore functional

connectivity (e.g., see Della-Maggiore et al., 2000; Grady et al., 2003;
Keightley et al., 2003a; Nyberg et al., 2000). For example, Keightley
et al. (2003a) used seed PLSC to determine networks of brain regions
active during neutral and sad internally generated mood states in
individuals with positive and negative affect styles. They first used
contrast task PLSC to identify the subgenual cingulate as an ROI, a
voxel of which was selected as the seed. The Y matrix consisted of
activity in this voxel across all time points. Via seed PLSC, Keightley
et al. (2003a) found a divergent subgenual cingulate-mediated net-
work that differentiated participants based on affect style.

3.8. Multi-Table PLSC

Multi-table PLSC, also known as multi-block PLSC, extends
behavior, contrast, and seed PLSC to analyze three or more matrices
simultaneously. This means that for every matrix X of brain activity,
there are two or more Y matrices (Fig. 12). The Xmatrix is designated
as causal and the Y matrices are designated as related data sets. Multi-
table PLSC analyses the pattern(s) of correlation between causal and
related data sets (Streissguth et al., 1993). That is, multi-table PLSC
identifies the distributed patterns of brain activity and measures
S) methods for neuroimaging: A tutorial and review, NeuroImage
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related changes in the behavioral measures, contrasts, and/or seed
voxel activity across experimental conditions (Caplan et al., 2007).

In our example, X contains brain activity [as given in Eq. (24)], Y1

contains the contrasts from Eq. (25) and Y2 contains the seed voxel
activity from Eq. (43). The matrix of correlations R1 is computed
between brain activity and the contrasts as YT

1X as described in Eq.
(27). This gives

R1 = 0:90 −0:35 −0:10 −0:12 0:49 0:63 −0:16 −0:16 −0:14 0:57 −0:28 0:85
−0:25 −0:05 0:00 0:11 −0:85 0:05 0:19 −0:39 −0:12 0:27 −0:10 0:45

� �
:

ð53Þ

A second matrix of correlations, R2, is computed between brain
activity and seed voxel activity as YT

2X as described in Eq. (48). The
resulting R2 matrix has N×K rows and J columns. Recall that in seed
PLSC the seed voxels are removed from X. However in multi-table
PLSC, the seed voxels are not removed so that R1 and R2 have the same
number of columns (i.e., J1= J2). For the example, R2 is:

R2 =

1:00 0:25 0:33 0:45 −0:98 0:19 −0:19 −0:33 0:84 0:19 −0:58 −0:19
−0:19 0:90 0:87 −0:96 0:00 −1:00 1:00 −0:87 −0:69 −1:00 −0:69 1:00
1:00 −0:87 0:76 0:78 0:00 −0:40 0:91 −0:79 0:13 −0:28 −0:24 −0:50

−0:50 0:00 0:19 0:16 0:00 0:99 −0:10 −0:13 0:79 0:97 −0:72 1:00
1:00 −0:87 0:98 −0:87 0:50 0:87 −0:87 −1:00 −0:65 0:33 −0:93 −0:87

−0:87 0:50 −0:76 1:00 0:00 −0:50 0:50 0:87 0:19 0:19 0:63 1:00

2
6666664

3
7777775
;

ð54Þ
Fig. 12.Matrix X, Y1 to YM for multi-table PLSC: The condition wise matrix of correlations bet
matrix of correlations R which is then decomposed by SVD.
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R1 and R2 are concatenated by column to form matrix Rmulti:

Rmulti =
R1
R2

� �
ð55Þ

=

0:90 −0:35 −0:10 −0:12 0:49 0:63 −0:16 −0:16 −0:14 0:57 −0:28 0:85
−0:25 −0:05 0:00 0:11 −0:85 0:05 0:19 −0:39 −0:12 0:27 −0:10 0:45

1:00 0:25 0:33 0:45 −0:98 0:19 −0:19 −0:33 0:84 0:19 −0:58 −0:19
−0:19 0:90 0:87 −0:96 0:00 −1:00 1:00 −0:87 −0:69 −1:00 −0:69 1:00
1:00 −0:87 0:76 0:78 0:00 −0:40 0:91 −0:79 0:13 −0:28 −0:24 −0:50

−0:50 0:00 0:19 0:16 0:00 0:99 −0:10 −0:13 0:79 0:97 −0:72 1:00
1:00 −0:87 0:98 −0:87 0:50 0:87 −0:87 −1:00 −0:65 0:33 −0:93 −0:87

−0:87 0:50 −0:76 1:00 0:00 −0:50 0:50 0:87 0:19 0:19 0:63 1:00

2
6666666666664

3
7777777777775

:

ð56Þ

The SVD of Rmulti gives:

Rmulti = UΔVT
; ð57Þ

where U is the set of saliences for both the contrasts and the seed
voxel activity and V is the set of saliences for the voxels. Consequently
U has both a task or design portion and a seed portion. The task or
design portion of U indicates how the pattern of brain activity varies
across conditions. The seed portion of U indicates how the pattern of
brain activity varies with the seed voxel activity across experimental
conditions (Caplan et al., 2007).
weenX and each of the Ym matrices are stacked one below the other to form a combined
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In our example, the first two rows of U are denoted U1 and they
correspond to the contrast matrix. The last six rows of U are denoted
U2 and they correspond to the 2 seed voxels for each of the 3
experimental groups:

U = U1
U2

� �

=

−0:17 0:18 0:37 0:01 0:57 0:63 0:20 −0:20
0:04 −0:04 0:22 −0:22 −0:18 −0:25 0:90 −0:07

−0:19 0:13 0:08 −0:63 −0:53 0:45 −0:12 0:22
−0:01 −0:90 0:41 0:01 −0:03 0:09 −0:11 0:07
−0:29 −0:19 −0:31 −0:65 0:52 −0:30 −0:06 −0:07
0:01 0:32 0:73 −0:17 0:02 −0:46 −0:34 −0:11

−0:73 0:07 0:08 0:29 0:04 −0:15 0:09 0:59
0:57 0:07 0:07 −0:15 0:32 0:03 0:05 0:73

2
6666666666664

3
7777777777775

:

ð58Þ

The latent variable for the contrasts are computed by:

LY1
= Y1U1: ð59Þ

For our example, this gives

LY1
=

0:02 −0:03 −0:18 0:09 −0:06 −0:05 −0:41 0:07
0:02 −0:03 −0:18 0:09 −0:06 −0:05 −0:41 0:07
0:02 −0:03 −0:18 0:09 −0:06 −0:05 −0:41 0:07
0:06 −0:06 0:00 −0:09 −0:21 −0:25 0:32 0:02
0:06 −0:06 0:00 −0:09 −0:21 −0:25 0:32 0:02
0:06 −0:06 0:00 −0:09 −0:21 −0:25 0:32 0:02

−0:08 0:08 0:17 0:00 0:27 0:30 0:09 −0:09
−0:08 0:08 0:17 0:00 0:27 0:30 0:09 −0:09
−0:08 0:08 0:17 0:00 0:27 0:30 0:09 −0:09

2
6666666666664

3
7777777777775

:

ð60Þ

Note that, as a consequence of contrast coding (which treats all
observations of a group similarly), the rows of a given group have the
same value. Therefore the plot of the latent variables for the contrasts
will show only the three group values (Fig. 13a) and shows that — as
indicated by the first contrast — the first latent variable separates the
controls group from the two clinical groups but that, among the clinical
groups, the PD group shows the largest difference with the NC group.

Latent variables could be similarly computed for the seed portion of
matrix U (i.e., U2). However, instead when dealing with connectivity
Fig. 13. Mini-example—Multi-table PLSC: (a) First design score of the task portion of multi-t
table PLSC for the AD, PD, and NC groups.

Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
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data, saliences are, in general, plotted directly as shown in Fig. 13b. In
this figure, the plot of the saliences for the first seed [with values of
−0.19,−0.29 and−0.73, see Eq. (58)] shows that seed 1 is important
for all experimental conditions, although to a varying degree. The plot of
the saliences for the second seed (with values of−0.01, 0.01 and 0.57)
shows that, in contrast, seed 2 is only relevant for the NC group and
could be an indicator of differences between NC and the clinical
populations.

Matrix V contains the saliences for brain activity across experi-
mental conditions and seed voxels. For our example, V is:

V =

−0:48 0:04 −0:16 −0:32 0:19 0:76 0:02 −0:05
0:30 −0:23 0:20 0:04 −0:43 0:36 −0:29 0:28

−0:37 −0:27 0:12 −0:15 −0:04 −0:29 −0:25 0:28
0:24 0:27 −0:21 −0:55 0:26 −0:13 −0:01 0:53

−0:08 0:01 −0:02 0:42 0:62 0:01 −0:58 0:10
−0:24 0:48 0:31 0:12 −0:02 −0:10 0:00 −0:25
0:18 −0:40 −0:01 −0:36 0:35 −0:21 −0:03 −0:37
0:40 0:27 −0:17 0:18 0:00 0:22 −0:24 0:10
0:11 0:30 0:08 −0:42 −0:23 −0:04 −0:58 −0:44

−0:04 0:47 0:30 −0:04 0:10 −0:11 0:20 0:22
0:33 0:10 −0:39 0:13 0:14 0:07 0:24 −0:28
0:32 −0:12 0:71 −0:09 0:34 0:26 0:17 −0:04

2
6666666666666666664

3
7777777777777777775

:

ð61Þ

Each salience in V shows a distributed pattern of brain activity
across conditions (this pattern can be visualized on a “glass brain”).
This gives an indication of the interplay of the experimental condition
and the functional connectivity between the ROIs represented by the
seed voxels.

3.8.1. Applications
In neuroimaging, multi-table PLSC is often used when one of the

data sets consists of seed voxel activity. For example, Vallesi et al.
(2009) used multi-table PLSC in an fMRI experiment to find a
functionally connected network of brain regions related to withhold-
ing a response. With fMRI activity as the causal data set (i.e., X), the
authors used experimental design and seed voxel activity as the two
related data sets. A multi-table PLSC on the combined matrix of
correlations showed a distributed network related to the experimen-
tal groups and their functional connectivity with the regions
represented by the seed voxels (Vallesi et al., 2009).
able PLSC for AD, PD, and NC groups; and (b) First salience of the seed portion of multi-
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In another study, Caplan et al. (2007) used multi-table PLSC to
identify the functional networks involved in resolving proactive
interference. The causal matrix was brain activity measured by fMRI.
The first related matrix was the experimental design variables and
the second related matrix consisted of a combination of behavioral
measures (reaction times) and seed voxel activity. The multi-table
PLSC generated voxel saliences (i.e., V-s) that indicated the degree to
which each voxel was related to the experimental design, behavior
variables, and seed regions. Multi-table PLSC also generated (1)
design latent variables showing changes in brain activity across
conditions, and (2) seed saliences characterizing functional connec-
tivity of the brain with the seed voxels (Caplan et al., 2007).

4. Partial Least Squares Regression (PLSR)

So far, we have seen that PLSC correlates brain and behavior (or
design) variables by determining brain activity that co-occurs with
different experimental conditions. Because PLSC is correlational, it
cannot explicitly predict a set of variables from another set. By
contrast, if we want to predict behavior (or some features of the
experimental design) from brain activity, we use Partial Least Squares
Regression (PLSR; Wold, 1982; Wold et al., 2001, see also Sidtis et al.,
2003 for a discussion). The predictors (i.e., the independent variables)
are stored in X and the predicted variables (i.e., the dependent
variables) are stored in Y.

PLSR finds latent variables stored in a matrix T that model X and
simultaneously predict Y (i.e., T plays a role similar to LX). Formally
this is expressed as a double decomposition of X and the predicted ˆY:

X = TPT and ˆY = TBCT
; ð62Þ

where P and C are loadings (or weights) and B is a diagonal matrix.
These latent variables are ordered according to the amount of variance
of ˆY that they explain. Rewriting Eq. (62) shows that ˆY can also be
expressed as a regression model as:

ˆY = TBCT = XBPLS ð63Þ

with

BPLS = PT+ BCT
; ð64Þ

(where PT+ is the Moore-Penrose pseudo-inverse of PT, see, e.g., Abdi
and Williams, 2010c, for definitions). The matrix BPLS has J rows and
K columns and is equivalent to the regression weights of multiple
Fig. 14. PLSR: The latent variables of X and Y are computed iteratively and stored in T andU r
predict Y from X (modified from Wold et al., 2001).

Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
(2010), doi:10.1016/j.neuroimage.2010.07.034
regression (Note that matrix B is diagonal, but that matrix BPLS is in
general not diagonal).

In neuroimaging, each latent variable of X describes a unique
aspect of the overall variance of brain activity that best predicts
behavior or experimental design. Similarly, each latent variable of Y
describes a unique aspect of the variance of behavior or experimental
design that is best predicted by X (Fig. 14). In our example, X contains
brain activity from Eq. (11) and Y contains behavioral measures from
Eq. (12).

4.1. Iterative computation of the latent variables in PLSR

In PLSR, the latent variables are computed by iterative applications
of the SVD. Each run of the SVD produces orthogonal latent variables
for X and Y and corresponding regression weights (see, e.g., Abdi,
2010, for more details and alternative algorithms).

4.1.1. Step one
X and Y are mean-centered and normalized (or transformed into

Z-scores) and stored in matrices X0 and Y0. The matrix of correlations
(or covariance) between X0 and Y0 is computed as:

R1 = XT
0Y0: ð65Þ

The SVD is then performed on R1 and produces two sets of orthog-
onal singular vectors W1 and C1, and the corresponding singular
values Δ1 [compare with Eq. (1)]:

R1 = W1Δ1C
T
1: ð66Þ

The first pair of singular vectors (i.e., the first columns of W1 and
C1) are denoted w1 and c1 and the first singular value (i.e., the first
diagonal entry of Δ1) is denoted δ1. The singular value represents the
maximum covariance between the singular vectors. The first latent
variable of X is given by [compare with Eq. (4) defining LX]:

t1 = X0w1 ð67Þ

where, t1 is normalized such that tT1t1 = 1. For our example, matrices
X and Y [from Eqs. (11) and (12)] were transformed into Z-scores and
the first set of weights w1 [obtained from the SVD of R1, see Eq. (66)]
gives:

w1 = −0:43 0:20 0:10 −0:03 −0:00 −0:41 0:09 0:16 0:07 −0:41 0:16 −0:59½ �T ;

ð68Þ
espectively. The regression weights from each iteration are stored in Bpls and are used to
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which then gives t1 equal to:

t1 = 0:41 0:11 0:33 0:28 −0:15 0:22 −0:45 −0:57 −0:19½ �T :
ð69Þ

The loadings of X0 on t1 (i.e., the projection of X0 onto the space
of t1) are given by:

p1 = XT
0t1: ð70Þ

The least square estimate of X from the first latent variable is
given by:

ˆX1 = tT1p1: ð71Þ

The first latent variable of Y is obtained as

u1 = Y0c1: ð72Þ

For our example u1 is:

u1 = 2:16 1:12 1:41 0:12 0:11 −0:10 −1:43 −1:67 −1:71½ �T :
ð73Þ

So far, PLSR works like PLSC with t1 and u1 playing the roles of ℓ X;1

and ℓ Y;1, respectively. The step specific to PLSR consists in the
prediction of Y from the “X-latent variable” t1. This is obtained by
first reconstituting Y from its latent variable as:

ˆY1 = u1c
T
1; ð74Þ

and then rewriting Eq. (74) as:

ˆY1 = t1b1c
T
1 ð75Þ

with

b1 = tT1u1: ð76Þ

The scalar b1 is the slope of the regression of ˆY1 on t1 (recall
that because Y and X are centered the regression equation requires
only the slope and so there is no intercept in the equation). Eq. (75)
shows that ˆY1 is obtained as a linear regression from the latent
variable extracted from X0. The regression weight for the example is
b1=3.39.

Matrices ˆX1 and ˆY1 are then subtracted from the original X0 and
original Y0 respectively to give deflated X1 and Y1:

X1 = X0−ˆX1; ð77Þ

and

Y1 = Y0−ˆY1: ð78Þ

4.1.2. Next step
The first set of latent variables has now been extracted. Matrices

X1 and Y1 now become the input matrices for the next iteration and
play the roles of X0 and Y0, respectively [cf., Eq. (65)]. From the SVD of
matrix R2 = XT

1Y1, we get w2, c2, t2 and b2 and the new deflated
matrices X2 and Y2.

4.1.3. Last step
The iterative process continues until X is completely decomposed

into L components (where L is the rank of X). When this is done, the
Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
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weights (i.e., all the wℓ's) for X are stored in the J by L matrix W
(whose ℓth column is wℓ). For our example W is:

W =

−0:43 −0:04 −0:01 −0:71 −0:04 0:25 −0:23 −0:18
0:20 −0:36 −0:04 0:09 −0:28 −0:05 −0:67 −0:27
0:10 0:45 −0:28 −0:03 −0:17 0:22 0:09 −0:05

−0:03 0:12 −0:34 −0:25 0:37 −0:53 0:06 −0:53
0:00 0:40 0:50 −0:30 −0:50 −0:32 0:00 0:02

−0:41 0:14 0:09 0:01 0:32 −0:13 −0:09 0:45
0:09 −0:04 −0:50 −0:07 −0:49 −0:39 0:19 0:25
0:16 −0:09 0:47 0:05 0:10 −0:33 −0:09 −0:08
0:07 0:35 −0:20 0:03 0:19 −0:24 −0:62 0:37

−0:41 0:20 0:10 0:48 −0:06 −0:22 0:05 −0:36
0:16 −0:41 0:09 −0:27 0:19 −0:31 0:23 0:24

−0:59 −0:36 −0:12 0:15 −0:27 −0:15 −0:03 0:12

2
6666666666666666664

3
7777777777777777775

:

ð79Þ

The latent variables of X are stored in matrix T. Because T shows
how the brain activity relates to each of the observations, T has I rows
and L columns. For our example T is:

T =

0:41 0:10 0:29 0:06 −0:51 −0:29 0:39 0:35
0:11 0:33 0:50 −0:11 0:71 −0:07 0:00 0:04
0:33 0:24 0:00 −0:21 −0:31 0:09 −0:57 −0:50
0:28 −0:03 −0:55 −0:35 0:19 0:33 0:48 −0:08

−0:15 0:41 −0:52 0:57 0:09 −0:24 −0:14 0:16
0:22 −0:65 0:13 0:54 0:13 0:25 −0:10 −0:09

−0:45 0:09 0:14 −0:12 −0:22 0:61 −0:16 0:45
−0:57 −0:03 0:17 0:05 −0:15 −0:16 0:40 −0:58
−0:19 −0:47 −0:17 −0:43 0:07 −0:53 −0:29 0:24

2
6666666666664

3
7777777777775

:

ð80Þ

The weights for Y are stored in C. Because C weights the variables
of Y, C has K rows and L columns. For our example C is:

C = −0:71 −0:73 −0:37 −0:97 0:34 0:71 −0:81 −0:93
0:70 0:69 0:93 0:24 −0:94 −0:71 0:59 −0:36

� �
:

ð81Þ

The latent variables of Y are stored in matrix U. Because U shows
how the behavioral variables relate to each of the observations,U has I
rows and L columns. For our example U is:

U =

2:16 0:76 0:60 0:28 −0:30 −0:15 0:07 0:03
1:12 0:76 0:22 −0:18 0:22 −0:02 0:00 0:00
1:41 0:28 −0:06 −0:19 −0:02 0:12 −0:10 −0:04
0:12 −0:81 −0:75 −0:28 0:10 0:04 0:06 −0:01
0:11 0:61 −0:27 0:38 −0:02 −0:06 −0:01 0:01

−0:10 −0:86 0:19 0:22 0:12 0:09 −0:02 −0:01
−1:43 0:10 −0:02 −0:18 0:11 0:19 0:00 0:03
−1:67 0:25 0:31 0:11 −0:14 −0:08 0:03 −0:04
−1:71 −1:08 −0:23 −0:16 −0:08 −0:12 −0:03 0:02

2
6666666666664

3
7777777777775

:

ð82Þ

The loadings for X are stored in matrix P. Because P is the
projection of X onto the space of the latent variables T and describes
the J voxels as explained by the latent variables, P has J rows and L
columns. For our example P is:

P =

−2:17 0:06 0:51 −1:56 −0:53 0:31 −0:45 −0:18
1:76 −1:26 −0:47 0:00 −0:67 −0:78 −1:40 −0:27

−0:34 2:28 −1:24 −0:13 −0:87 0:56 0:22 −0:05
−0:40 1:15 −0:86 −0:39 2:04 −1:04 0:30 −0:54
−0:78 0:62 2:01 −1:28 −0:93 −0:68 0:00 0:02
−2:40 0:29 0:61 0:23 1:12 −0:37 −0:34 0:46
0:56 0:90 −2:24 −0:79 −0:80 −0:65 0:34 0:26
0:98 −1:30 1:98 0:10 0:87 −0:79 −0:17 −0:08

−0:29 1:66 −0:68 0:17 0:98 −1:15 −1:50 0:38
−2:53 0:44 −0:05 1:00 0:24 −0:42 0:22 −0:37
1:61 −1:69 0:79 −0:60 1:06 −0:44 0:43 0:25

−2:39 −1:11 −0:79 0:05 −0:55 −0:35 −0:11 0:12

2
6666666666666666664

3
7777777777777777775

:

ð83Þ
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The regression weights are stored in a diagonal matrix B. The
regressionweights are used to predict Y fromX, therefore, there is one
bℓ for every pair of tℓ and uℓ, and so B is an L×L diagonal matrix. For
our example, B is:

B =

3:39 0 0 0 0 0 0 0
0 1:74 0 0 0 0 0 0
0 0 0:95 0 0 0 0 0
0 0 0 0:61 0 0 0 0
0 0 0 0 0:34 0 0 0
0 0 0 0 0 0:30 0 0
0 0 0 0 0 0 0:14 0
0 0 0 0 0 0 0 0:08

2
66666666664

3
77777777775
: ð84Þ

The predicted Y scores (in the form of Z-scores) are now given by:

ˆY = TBCT = XBPLS ð85Þ

where, BPLS = PT+ BCT , (where PT+ is the Moore–Penrose pseudo-
inverse of PT). BPLS has J rows and K columns. For our example, BPLS

is:

BPLS =

0:58 −0:43
0:03 0:00

−0:21 0:21
0:11 −0:08

−0:26 0:40
0:17 −0:23

−0:06 0:02
−0:18 0:22
−0:17 0:12
−0:01 −0:02
0:11 −0:11
0:45 −0:49

2
6666666666666666664

3
7777777777777777775

: ð86Þ

The latent variables of T andU provide an estimate of Y given by ˆY .
In general, ˆY is not equal to Y (Abdi, 2010). However, in our example,
the behavioral variables were perfectly predicted in the fixed effect
model.
4.2. What does PLSR optimize?

Because PLSR is a predictive method, its goal is slightly different
from PLSC. Specifically, PLSR finds a series of L latent variables tℓ such
that the covariance between t1 and Y is maximal and such that t1 is
uncorrelated with t2 which has maximal covariance with Y and so on
for all L latent variables (see, e.g., de Jong, 1993; Burnham et al., 1996;
Tenenhaus, 1998; Tenenhaus and Tenenhaus, in press; Abdi, 2010;
Esposito-Vinzi et al., 2010, for proofs and developments). Formally,
we seek a set of L linear transformations of X that satisfies [compare
with Eq. (6)]:

tℓ = Xwℓ such that covðtℓ;YÞ = max ð87Þ

(where wℓ is the vector of the coefficients of the ℓth linear
transformation and cov is the covariance computed between t and
all columns of Y) under the constraints that

tTℓtℓ′ = 0 when ℓ≠ℓ′ ð88Þ

and

tTℓtℓ = 1: ð89Þ
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4.3. How good is the prediction?
4.3.1. Fixed effect model
A common measure of the quality of prediction is the Residual

Estimated Sum of Squares (RESS), which is given by (Abdi, 2010):

RESS = ∥Y−ˆY∥2 ð90Þ

where || ||2 is the square of the norm of a matrix (i.e., the sum of
squares of all the elements of this matrix). The smaller the value of
RESS, the better the quality of prediction (Abdi, 2010; Abdi and
Williams, 2010d).

4.3.2. Random effect model
The performance of PLSR (with respect to inference to the

population) is done through cross-validation techniques such as the
’‘leave-one-out” procedure (Wold et al., 2001, also called the jackknife;
see also Abdi and Williams, 2010b). In this procedure, each obser-
vation is removed in turn from both X and Y, and a PLSR model is re-
computed for each of the remaining observations. Then BPLS is used to
predict the left-out observation of Y from its X values. The predicted
observations are stored in Ỹ . The quality of prediction is measured in
a way similar to RESS, and is called the Predicted Residual Estimated
Sum of Squares (PRESS). Formally PRESS is obtained as (Abdi, 2010):

PRESS = ∥Y−Ỹ∥2: ð91Þ

The smaller PRESS is, the better the prediction.
An obvious problem with PLSR is to find the optimum number of

latent variables for best predicting Y. Because neuroimaging data
typically have more variables than observations (a problem known
as the N≪P problem), PLSR will over-fit the data (i.e., a very good
fixed effect model will do very poorly with new observations). If
there is over-fitting, the quality of prediction will first decrease and
then increase as more latent variables are used for the prediction of
new observations. The number of latent variables at which PRESS
increases gives an indication of the optimum number of latent
variables to be retained (Abdi, 2010; Abdi and Williams, 2010d).

The next step in the random effect model is to determine the
stability of the voxels, (i.e., to decide which voxels reliably depict
brain-behavior relationships). For this step, standard errors and
confidence intervals of the corresponding PLSR parameters are
derived directly from the data through resampling techniques such
as the bootstrap (Abdi, 2010; Abdi et al., 2009a).

4.4. Plotting the latent variables

The latent variables of X (i.e., T) can be plotted against each other
to show how they are related to the observations. Sometimes, the
weights of Y (i.e., C) are also plotted along with T in order to see how
the latent variables of X relate to the Y variables. In our example, the
first latent variable of X separates the NC group from the clinical
groups, while the second latent variable separates participants NC3

and PD3 from the other participants. The second latent variable also
differentiates between the words recalled and the reaction times. This
may explain why NC3 and PD3 are different from the other
participants (Fig. 15a). This plot shows the difference between
observations based on the part of brain activity that predicts the
behavioral measures.

The weights of X (i.e., W) can be plotted against each other in
order to show howX variables combine to form the latent variables. In
neuroimaging, this plot is not very informative because of the large
number of voxels. Instead, the loadings of X (i.e., P) can be projected
on a glass brain to show which regions of the brain best predict the
behavior or experimental design.
S) methods for neuroimaging: A tutorial and review, NeuroImage
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The latent variables of Y (i.e., U) can be plotted against each other
alongwith theweights of Y (i.e., C) to see how the latent variables of Y
relate to the original Y variables. In our example, the first latent
variable of Y separates the NC from the clinical groups, while the
second latent variable separates participants NC3, PD1 and PD2 from
the other participants. As seenwith the plot of the latent variables ofX
(i.e., T), the second latent variable also separates the words recalled
and reaction time (Fig. 15b).

4.5. Applications

Because it is an iterative procedure, computing latent variables with
PLSR takes longer than with PLSC. Nevertheless, PLSR has been used
successfully in domains such as chemometrics because it can analyze
data with strongly correlated, noisy, and numerous independent vari-
ables andalso simultaneouslymodel several dependent variables (Wold
et al., 2001). The predictive aspect of PLSR makes it a very useful tool to
model relationships between large data matrices of brain activity and
behavior and to subsequently predict behavior from brain activity.

4.5.1. Shape modeling

One application of PLSR in neuroimaging is the model-based seg-
mentation of sub-cortical brain structures by Rao et al. (2008). Here
the goal is to use brain structures that are easy to segment in order to
facilitate the segmentation of brain structures that are hard to segment.
Statistical shapemodeling, as this procedure is called, uses PLSR to analyze
the shapes of structures in the brain and to describe variations between
groups of participants, such as normal controls and clinical populations.

4.5.2. Prediction
PLSR has also been used to predict behavior from neuroimaging

data. For example, Giessing et al. (2007) used PLSR to predict
behavioral effects of nicotine from neural activity. The predictors
were the contrast fMRI images between scans under nicotine and
scans under placebo for each participant. The dependent variable
was the residual term from a linear regression model that pre-
dicted the difference in reaction time to validly and invalidly cued
targets in a visual discrimination task under the influence of nico-
tine, from the same difference in reaction time under placebo. PLSR
showed that brain activity predicted reaction times of participants
during the placebo condition.
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PLSR has also been used to predict long term functional outcome of
traumatic diffuse axonal injury using Diffusion Tensor Tractography
(Wang et al., 2008). The authors used diffusion tensor imaging
measurements to predict the outcome of brain injury assessed after
six months with the Glasgow Outcome Scale–Extended. PLSR proved
to be a reliable quantitative method to predict long term outcomes of
diffuse axonal injury.

4.5.3. Classification
PLSR has also been applied as a Discriminant Analysis (PLS-DA)

tool for classification experiments. To do this, PLS-DA uses a dummy
code as Y [see, e.g., Eq. (34)] because the main idea is to classify
observations into different groups. PLS-DA has been used to classify
different types of dementia (Gottfries et al., 1995). However, the
predictors in this case were not brain images but descriptor variables
obtained at the time of examination (e.g., Albumin ratio, confusional
symptoms, gender, vascular disease). In another study, Lehmann et al.
(2007) used PLS-DA to classify various stages of Alzheimer's disease
using EEG. The authors compared different types of classification
algorithms and found that PLS-DA and machine learning techniques
showed analogous performance.

5. Software

PLSmethods necessitate sophisticated computations and therefore
their application depends on the availability of software.

For neuroimaging, a special toolbox written in MATLAB (by
McIntosh, Chau, Lobaugh, & Chen) dedicated to PLSC and a tutorial
are freely available from www.rotman-baycrest.on.ca:8080. These
programs constitute the standard for PLSC for neuroimaging.

For PLSR there are several available choices. Interested readers
can download a set of MATLAB programs (with tutorial) from the
senior author's home page (www.utdallas.edu/~herve). In addition,
a set of MATLAB scripts implementing the examples used in this
paper will also be made available from this home page. Also, a public
domain set of MATLAB programs is available from the home page of
the N-Way project (www.models.kvl.dk/source/nwaytoolbox/) along
with tutorials and examples. The statistic toolbox from MATLAB
includes a function to perform PLSR. The public domain program R
implements PLSR through the package PLS (Mevik and Wehrens,
2007). For neuroimaging, SPM, has recently (2002) integrated a PLS
module (as part of the MM toolbox written by Ferath Kherif). The
S) methods for neuroimaging: A tutorial and review, NeuroImage
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general purpose statistical packages SAS, SPSS, and XLSTAT (which
has, by far themost extensive implementation of PLS methods) can be
also used to perform PLSR. In chemistry and sensory-evaluation, two
main programs are used: the first one called SIMCA-P was developed
originally by Wold (who also pioneered PLSR), the second one called
the UNSCRAMBLER was first developed by Martens who was another
pioneer in the field. And finally, a commercial MATLAB toolbox has
also been developed by EIGENRESEARCH.

6. Related methods

A complete review of the connections between PLS and the other
statistical methods is, clearly, out of the scope of an introductory
paper (see, however, Burnham et al., 1996; Tenenhaus, 1998;
Tenenhaus and Tenenhaus, in press; Esposito-Vinzi et al., 2010, for
an overview), but some directions are worth mentioning. PLSC uses
the SVD in order to analyze the information common to two or more
tables, and this makes it closely related to several other SVD (or eigen-
decomposition) techniques with similar goals. The closest technique
is obviously inter-battery analysis (Tucker, 1958)which uses the same
SVD as PLSC but on non-structured matrices. Canonical correlation
analysis (also called simply canonical analysis, or canonical variate
analysis, see Gittins, 1985; Mardia et al., 1979) is also a related tech-
nique that seeks latent variables with largest correlation instead of
PLSC's criterion of largest covariance. Under the assumptions of nor-
mality, analytical statistical tests are available for canonical correlation
analysis but cross-validation procedures analogous to PLSC could also
be used.

In addition, several multi-way techniques encompass as a particular
case data sets with two tables. The oldest and most well known
technique is multiple factor analysis which integrates different tables
into a common PCA by normalizing each table with its first singular
value (Abdi and Valentin, 2007a; Escofier and Pagès, 1990). A more
recent set of techniques is the STATIS family which uses a more sophis-
ticated normalizing scheme whose goal is to extract the common part
of the data (see Abdi and Valentin, 2007b, for an introduction). This
approachhas beenused to identify patterns in fMRIdata (e.g., Abdi et al.,
2009a; Kherif et al., 2003; Shinkareva et al., 2006; Shinkareva et al.,
2008). Closely related techniques (which have not been used so far
for neuroimaging) comprise common component analysis (Mazerolles
et al., 2006) which seeks a set of factors common to a set of data tables,
and co-inertia analysis which could be seen as a generalization of
Tucker's (1958) inter-battery analysis (see e.g., Thioulouse et al., 2003;
Dray et al., 2003; Chessel and Hanafi, 1996; Thioulouse et al., 2003, for
recent developments). Also, mean-centered task PLSC is obviously
related to PLS-DA because their goals are very similar. Mean-centered
task PLSC is also closely related to barycentric discriminant analysis
(Abdi andWiliams, 2010a) because, as previouslymentioned, these two
techniques compute the SVD of the same matrix.

PLSR is strongly related to regression-like techniques which have
been developed to cope with the multi-colinearity problem. These
include principal component regression, ridge regression, redundancy
analysis (also know as PCA on instrumental variables Rao, 1964; van
denWollenberg, 1977; Tyler, 1982), and continuum regression (Stone
and Brooks, 1990) which provides a general framework for these
techniques.

7. Conclusion

Partial Least Squares (PLS) methods analyze data from multiple
modalities collected on the same observations.We have reviewed two
particular PLS methods: Partial Least Squares Correlation or PLSC
and Partial Least Squares Regression or PLSR. Both PLSC and PLSR can
be used to study brain activity, behavior, and experimental design.
PLSC is relational and analyzes the shared information between two
or more sets of variables. In contrast, PLSR is directional and predicts
Please cite this article as: Krishnan, A., et al., Partial Least Squares (PL
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a set of dependent variables from a set of independent variables or
predictors. PLSC is more commonly used in neuroimaging as com-
pared to PLSR.

The two methods differ also in the type of data matrices that are
analyzed. Typically data matrices analyzed by PLSC have a complex
and specific structure whereas the data matrices analyzed by PLSR
tend to be simple matrices. PLSC is also very versatile and has been
adapted to several different situations such as multi-block analysis.
PLSR, being an iterative process, requires long computation time
which can be prohibitive for some applications with very large data
sets.

The relationship between PLSC and PLSR are also explored in
Burnham et al. (1996) and, recently Gidskehaug et al. (2004) pro-
posed to integrate these two approaches into a new predictive
approach called BRIDGE-PLS. In practice, the two techniques are likely
to give similar conclusions because the criterion they optimize are
quite similar.
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Appendix A. List of notations

Acronyms
S

PCA
) methods for
Principal components analysis
neuroimaging: A tutorial and review, Neu
PLSC
 Partial least squares correlation

PLSR
 Partial least squares regression

PLS-DA
 Partial least squares discriminant analysis

PLS-PM
 Partial least squares path modeling

SVD
 Singular value decomposition
General Notations

∥ ∥
 norm of a matrix

1
 I×1 vector of ones

I
 identity matrix

I
 the number of observations or rows of X and Y

In
 the number of observations Xn
J
 the number of columns of X

Jt
 the number of columns of Xt
K
 the number of columns of Y

N
 the number of a priori sub-matrices of X (or Y)

T
 the number of scans in spatio-temporal

neuroimaging methods, such as EEG, fMRI,
and NIRS
T
 transpose

X
 the matrix of brain activity

(or independent variables)

Xn
 submatrix of X
 (Eq. (11))

Xt
 an I× Jt matrix representing a single scan

in spatio-temporal neuroimaging

Y
 the matrix of behavioral or design variables

(or dependent variables)

Yn
 submatrix of Y
 (Eq. (12))
Singular Value Decomposition (SVD)

Δ
 diagonal matrix of the singular values

(singular values are akin to standard deviations)

(Eq. (1))
δℓ
 ℓth singular value

U
 left singular vectors (or saliences) of Z. They

represent the design or behavioral profiles
that best characterize R.
(Eq. (1))
uℓ
 ℓth left singular vector

V
 right singular vectors (or saliences) of Z. They

represent the images that best characterize R.

vℓ
 ℓth right singular vector

Z = UΔVT

= ∑L
ℓ δℓuℓvTℓ
singular value decomposition of Z
 (Eq. (1))
(continued on next page)
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Partial Least Squares Correlation (PLSC)

LX
Please cite thi
(2010), doi:10
brain scores/latent variables in PLSC for brain
activity; LX = XV
s article as: Krishnan, A., et al., Partial Lea
.1016/j.neuroimage.2010.07.034
(Eq. (4))
ℓ X;ℓ
 The ℓth column of LX

ℓ T
X;ℓ ℓ Y;ℓ
 scalar product of the latent variables ℓX;ℓ and

ℓY;ℓ (equal to the corresponding singular
value δℓ); Expresses the covariance between
these latent variables
(Eqs. (6)
and (9))
LY
 behavior or design scores/latent variables in
PLSC for behavior or design variables; LY = YU
(Eq. (5))
ℓ Y;ℓ
 The ℓth column of LY

M
 matrix of means of each condition in mean-

centered PLSC

(Eq. (35))
R
 matrix of correlations between the columns of X
and Y; R = YTX = UΔVT
(Eqs. (2)
and (3))
Rbehavior
 matrix of correlations between X and Ybehavior
 (Eq. (15))

Rcontrast
 matrix of correlations between X and Ycontrast
 (Eq. (26))

Rmean�centered
 matrix of the deviations of the groups to their

grand mean; Rmean�centered = M−1 1
N
1TM

h i
 (Eq. (37))
Rmulti
 matrix of correlations between X and multiple Y
matrices in multi-table PLSC
(Eq. (56))
Rseed
 matrix of correlations between Xseed and Yseed
Xseed
 Xmatrix with the vectors of Yseed removed for seed
PLSC
(Eq. (44))
Ybehavior
 Y matrix of demographic and/or behavioral
data
(Eq. (12))
Ycontrast
 Y matrix of orthonormal contrasts reflecting the
experimental hypotheses
(Eq. (25))
Ydummy coding
 Y matrix of dummy coding that codes for
experimental groups or conditions
(Eq. (34))
Yseed
 Seed matrix taken from X for seed PLSC
 (Eq. (43))
Partial Least Squares Regression (PLSR)

B
 a diagonal matrix of slopes of the predictions of Y

from T

(Eqs. (62)
and (63))
BPLS
 matrix of coefficients to predict Y from X;
equivalent to the regression weights of multiple
regression: BPLS = PT+ BCT
(Eq. (64))
C
 factor loadings of Y
 (Eqs. (62)
and (63))
Cℓ
 matrix of right singular vectors of Rℓ
 (Eq. (66))

cℓ
 ℓth weight vector of Y
 (Eq. (67))

Δℓ
 diagonal matrix of singular values
 (Eq. (66))

P
 factor loadings of X
 (Eq. (62))

Pþ
 Moore-Penrose pseudo inverse of P
 (Eq. (64))

pℓ
 ℓth factor loading of X on t; pℓ = XT

ℓ−1tℓ
 (Eq. (70))

R1
 matrix of correlations of X0 and Y0; the SVD is

performed on the R1 matrix;
R1 = XT

0Y0 = W1Δ1C
T
1

(Eqs. (65)
and (66))
T
 matrix of latent variables that model X and
simultaneously predict Y; TTT = I
(Eqs. (62)
and (63))
tℓ
 ℓth latent variable of Xℓ−1; tℓ = Xℓ−1wℓ
 (Eq. (67))

uℓ
 ℓth latent variable of Yℓ−1; uℓ = Yℓ−1cℓ
 (Eq. (72))

Wℓ
 matrix of left singular vectors of Rℓ
 (Eq. (66))

wℓ
 ℓth weight vector of X

X
 matrix of brain activity; X = TPT
 (Eq. (62))

X0
 matrix of mean-centered and normalized X values

used in the first iteration

(Eq. (65))
Xℓ
 matrix of deflated X values for the ℓth iteration

ˆXℓ
 matrix of predicted X values for the ℓth iteration

Y
 matrix of behavior or design variables
 (Eq. (62))

ˆYℓ
 the matrix of predicted Y values for the ℓth

iteration

(Eq. (63))
Y0
 centered and normalized Y values used in the first
iteration
(Eq. (65))
Yℓ
 matrix of deflated Y values for the ℓth iteration
 (Eq. (65))
Quality of the PLSR model

RESS
 residual estimated sum of squares; a measure of

the quality of the prediction in a fixed effect model;
the smaller the value of RESS the better the quality
of prediction
(Eq. (90))
PRESS
 residual estimated sum of squares; a measure of
the quality of the prediction in a random effect
model; the smaller the value of PRESS the better
the quality of prediction
(Eq. (91))
Ỹ
 matrix of predicted observations using the
jackknife or “leave-one-out” procedure
st Squares (PL
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