
IEEE/ACM Trasactions on Networking, February 1998 1

Time-Shift Scheduling: Fair Scheduling of Flows in
High Speed Networks

Jorge A. Cobb, Mohamed G. Gouda, Amal El Nahas

Abstract— We present a scheduling protocol, called Time-
Shift Scheduling, to forward packets from multiple input
flows to a single output channel. Each input flow is guar-
anteed a predetermined packet rate and an upper bound
on packet delay. The protocol is an improvement over ex-
isting protocols because it satisfies the properties of rate-
proportional delay, fairness, and efficiency, while existing
protocols fail to satisfy at least one of these properties.
In Time-Shift Scheduling, each flow is assigned an increas-
ing timestamp, and the packet chosen for transmission is
taken from the flow with the least timestamp. The protocol
features the novel technique of time shifting, in which the
scheduler’s real-time clock is adjusted to prevent flow times-
tamps from increasing faster than the real-time clock. This
bounds the difference between any pair of flow timestamps,
thus ensuring the fair scheduling of flows.

Keywords—real-time network protocols, real-time schedul-
ing, quality of service

1 Introduction

Consider a computer network with point-to-point commu-
nication channels. Assume a source computer wishes to
transfer a sequence of packets to a destination computer.
We call such a sequence a flow, that is, a flow is a sequence
of packets generated by the same source and addressed
to the same destination. Assume also that the source
computer requires a lower bound on the rate at which its
packets are forwarded through the network, and an upper
bound on the packet delay from source to destination.

To solve this problem, a particular type of scheduling
protocols, which we call rate-reservation protocols, were
developed to forward packets from each flow at a desig-
nated rate. Examples of these protocols can be found in
[26] [27]. In these protocols, the source of a flow finds a net-
work path that leads to its desired destination. Then, it
notifies each computer in the path about its desired packet
rate. Each computer determines if it has enough available
bandwidth in its output channel to forward the packets
from the new flow. The new flow is accepted if and only if
all computers in the path accept the new flow.

Due to the reservation of bandwidth, the network can
provide service guarantees to each flow, such as end-to-end
packet delays, provided the rate of the flow does not exceed
the reserved rate. These service guarantees are of particu-
lar importance to real-time applications, such as interactive

J. Cobb is with the Department of Computer Science, University of
Houston, Houston, Texas, 77204-3475. E-mail: cobb@cs.uh.edu. M.
Gouda is with the Department of Computer Sciences, The University of
Texas at Austin, Austin, Texas 78712-1188. Email: gouda@cs.utexas.edu.
Amal El-Nahas is with the Department of Computer Science, Alexandria
University, Alexandria, Egypt.

audio and video [11].
The desirable properties of rate-reservation protocols are

the following.

1. Rate-proportional delay: Let f be an input flow of a
computer, with a reserved rate of R.f bits/sec. As-
sume f is also the sole input to a constant rate server
that forwards the bits of each packet of f at a precise
rate of R.f bits/sec. The delay of each packet of f
through the computer should be at most the delay of
the same packet through the constant rate server (plus
a small constant).

2. Efficiency: The time to enqueue a received packet or to
dequeue a packet for transmission is O(log(N)), where
N is the number of flows sharing the output channel.

3. Fairness: A flow should not be “punished” if it tem-
porarily exceeds its reserved rate to take advantage
of unused bandwidth in the channel. In addition, un-
used bandwidth should be shared among the flows in
proportion to their reserved rates.

The rate-proportional delay property guarantees to each
flow that the upper bound on its packet delay depends
solely on its reserved rate, and not on other factors, such
as the number of flows sharing the output channel or the
reserved rate of other flows. The efficiency property is de-
sirable due to the high bandwidth requirements expected
from future applications of rate-reservation protocols.

The fairness property is desirable, because it may be nor-
mal for some flows to violate their reserved packet rate. Ex-
amples of such flows are file transfers and multi-resolution
video [19]. The sources of these flows may reserve from
the network the smallest packet rate necessary to receive a
minimum quality of service. If the source of a flow detects
that additional bandwidth is available, then it generates
packets at a rate higher than its reserved rate, in order to
take advantage of the unused bandwidth. If the source de-
tects that no additional bandwidth is available, it reduces
its sending rate. (There are several techniques by which a
source can detect if additional bandwidth is available, see
for example [17] and [23]). Thus, because some flows may
be of adjustable rate, the unused bandwidth of a channel
should be shared in a fair manner among all flows travers-
ing the channel.

Some rate-reservation protocols are inadequate for ad-
justable rate flows because they are not work-conserving
[10] [13] [18] [22]. That is, they serve each flow at exactly
the rate it reserved, and will not forward additional pack-
ets of the flow even if the outgoing channel is idle. These

IEEE/ACM Trasactions on Networking, February 1998 2

protocols do not allow adjustable rate flows to take advan-
tage of any additional bandwidth, and thus do not satisfy
the fairness property.

Other rate-reservation protocols assign a timestamp to
each packet, and packets are forwarded in increasing times-
tamp order. These protocols are work conserving, that is,
the output channel is never idle as long as its packet queue
is non-empty. However, some of these protocols are unfair
[25], in the sense that they “punish” a flow if it sends pack-
ets at a rate higher than its reserved rate. Other protocols
are fair [14] [21], but they are either inefficient or do not
have rate-proportional delay.

In this paper, we introduce a new rate-reservation proto-
col, called Time-Shift Scheduling [4]. The protocol is based
on flow timestamps (i.e., assigning a timestamp per flow
rather than per packet), is work-conserving, and satisfies
all the desirable properties mentioned above. Time-Shift
Scheduling is based on the novel technique of time shift-
ing, in which the real-time clock is periodically adjusted
to prevent flow timestamps from increasing faster than the
real-time clock. This ensures fairness by placing an upper
bound on the difference between the timestamps of any
pair of flows.

The paper is organized as follows. In Section 2, we dis-
cuss the use of flow timestamps in rate-reservation proto-
cols. In Section 3, we present the Time-Shift Scheduler,
and its formal definition is given in Section 4. We show
that the Time-Shift Scheduler has rate-proportional delay
in Section 5, and its fairness is shown in Section 6. In Sec-
tion 7, we derive the end-to-end delay bounds for a path of
Time-Shift Schedulers. Future work is given in Section 8.

Notation: Throughout the paper we use quantifications
of the form:

(⊗ x : R(x) : B(x))

Above, ⊗ is a commutative and associative operator, such
as max, min,

∑
(summation), ∀ (conjunction), or ∃ (dis-

junction). R(x) is a boolean function defining the range of
values for the dummy variable x, and B(x) is a function
defining the value given as an operand to ⊗. For example,

(min x : 1 ≤ x ≤ 3 : x2)

denotes the minimum of 12, 22, and 32 . If R(x) is omitted,
all values in the type of x are included.

2 Flow Timestamps

In this section, we discuss the strengths and weaknesses of
the scheduling protocols of Virtual Clock [25], Weighted
Fair Queuing [17] [20] [21], and Self-Clocking Fair Queuing
[14]. Before doing so, we present some background on the
scheduling technique used by these protocols.

A computer network consists of a set of computers in-
terconnected via point-to-point bi-directional channels. A
flow in a computer network is a potentially infinite sequence
of packets generated by the same source and having the

®

©
ªscheduler

®

©
ªscheduler

................
..........*

..........................j
................

..........Y

..........................¼¾ -

output
channel

output
channel

channel
input

input
channel

Figure 1: A computer with two input channels and two
output channels.

same destination in the network. When a new flow wishes
to join the network, the network finds a path from the
source of the flow to the destination of the flow. Then,
the network reserves a fraction of the packet rate of each
channel along the path, and assigns this rate to the new
flow. Finally, the source of the flow is given permission to
generate packets at the rate reserved for it by the network.
The chosen path and reserved rate of the flow remain fixed
throughout the lifetime of the flow.

Each output channel of a computer is equipped with a
scheduler, as shown in Figure 1. From the input channels,
the scheduler receives packets from flows whose next hop
to the destination is the output channel of the scheduler.
Whenever its output channel becomes idle, the scheduler
chooses a received packet and forwards the packet to the
output channel. The rate at which the scheduler forwards
the packets of a flow must be bounded from below by the re-
served rate of the flow. To guarantee this minimum packet
rate, the scheduler assigns a timestamp to each received
packet. The timestamp is a function (among other things)
of the flow’s reserved rate. The scheduler then forwards
the packets in order of increasing timestamp.

The scheduler maintains a separate FIFO queue for the
received packets from each flow. We say that a flow is
active if its queue in the scheduler is non-empty.

We have shown in [3] that assigning a timestamp to a
packet when it becomes the head of the queue of its flow
is cleaner and more efficient than the original method of
assigning a timestamp to the packet when it is received.
We refer to the former technique as flow timestamps, since
only one timestamp is maintained per flow. Thus, we base
Time-Shift Scheduling on flow timestamps. To maintain
a single timestamp paradigm throughout the paper, the
flow timestamp versions of the Virtual Clock, Self-Clocking
Fair Queuing, and Weighted Fair Queuing protocols will be
discussed.

We adopt the following notation for a scheduler.

• N – number of flows in the scheduler.

IEEE/ACM Trasactions on Networking, February 1998 3

• queue.f – queue of received packets from flow f .
• R.f – forwarding rate (in bits/sec.) reserved for flow

f .
• L.f – packet length (in bits) of the head of queue.f .
• T.f – timestamp of flow f .
• L.p – packet length (in bits) of packet p.
• T.p – value of T.f when packet p is at the head of

queue.f , where f is the flow of packet p.
• Lmax – upper bound on packet length for all flows.
• C – capacity in bits/sec. of the output channel.

We say that a packet is forwarded to the output channel
by the scheduler when the first bit of the packet is being
transmitted by the output channel. We say that a packet
exits the output channel when the last bit of the packet is
transmitted by the output channel. We say that a packet
is in the output channel if it has been forwarded to the
output channel but has not yet exited the output channel.

The goal of the scheduler is to forward the packets of
each flow f at an average rate of at least R.f . Since all N
flows share the output channel, the following constraint is
necessary.

N−1∑

f=0

R.f ≤ C (1)

Assume packet p from flow f is received. Before the
packet is appended to queue.f , the scheduler checks if f is
active. If f is not active, T.f is updated as follows.

T.f := max(v.p, T.f) + L.p/R.f

In this assignment, v.p is some quantity related to packet
p. The value chosen for v.p varies from one scheduling
protocol to another. On the other hand, if f is active, T.f
is not updated.

When the output channel becomes idle, the scheduler
finds the active flow with the smallest timestamp. Let f
be this flow. Then, the next packet from f is removed
from its queue and forwarded to the output channel. If f
remains active, its flow timestamp is updated as follows.

T.f := T.f + L.f/R.f

We next consider the case of Virtual Clock scheduling,
which is defined by choosing v.p as the time at which p is re-
ceived by the scheduler. Virtual Clock has the property of
rate-proportional delay, as proven in [3] [24]. In particular,
the exit time of p is at most T.p + Lmax/C. The sched-
uler is also efficient, requiring only O(log(N)) operations
to enqueue or dequeue a packet. However, the scheduler is
unfair, as illustrated by the following well-known example.

Let packet sizes be constant, and the output channel
have a rate of 1 packet/sec. The scheduler has two flows, f
and g, each with a reserved rate of 1/2 packet/sec.. Con-
sider the following sequence of events.

From time 0 up to time 100 sec., packets from flow f
arrive at a rate higher than 1 packet/sec., and no packet is
received from flow g. Thus, at time 100 sec., 100 packets

from f have been forwarded to the output channel, the
queue of f is not yet empty, T.f = 202 sec., and T.g = 0.

At time 100 sec., packets from g arrive at a rate of at least
1 packet/sec., and packets from f continue to arrive. Note
that when the next packet from flow g is received, T.g =
102 sec.. Since T.f , which equals 202 sec., is much larger
than T.g, no packet from f is forwarded to the output
channel until 50 packets from g are forwarded, i.e., until
time 150 sec.. In effect, f is denied service for 50 seconds
because it earlier took advantage of bandwidth unused by
g.

This unfairness does not occur in the Weighted Fair
Queuing protocol. Furthermore, the bound on packet delay
is similar to that of Virtual Clock, and thus it also satis-
fies the rate-proportional delay property. In Weighted Fair
Queuing, the timestamp of a packet is the time at which
the packet would exit a virtual server. The input to the
virtual server are the same input flows of the scheduler, and
the virtual server shares its unused bandwidth among all
active flows in proportion to their reserved rates. The value
of v.p is complicated and takes O(N) time to compute.

The higher complexity of Weighted Fair Queuing led to
the introduction of Self-Clocking Fair Queuing. In this
scheduler, v.p = T.q, where q is the packet in the output
channel at the time p is received. The time to enqueue or
dequeue a packet is O(log(N)), as it is in Virtual Clock.

This protocol is fair in the following sense. For any pair
of active flows f and g,

|T.f − T.g| ≤ max(L.f/R.f, L.g/R.g)

In this way, no flow can have a timestamp that is signif-
icantly greater than the timestamp of other flows. Thus,
a flow that takes advantage of free bandwidth cannot be
punished. On the other hand, in Virtual Clock scheduling,
|T.f − T.g| is unbounded.

Unfortunately, the packet delay increases as follows. Con-
sider the same scheduler as above, with a fixed packet
size and an output channel with rate 1 packet/sec.. Let
the scheduler have 91 flows. Flows 1 through 90 have a
rate of 1/100 packets/sec., and flow 0 has a rate of 1/10
packets/sec. Assume that one packet from each of flows 1
through 90 arrive at time 0. The timestamp of each of these
packets is 100 sec.. Next, when the first of these packets is
in the output channel, a packet from flow 0 arrives. The
timestamp of this packet is 110 sec.. This packet must wait
until all 90 packets with timestamp 100 sec. exit the out-
put channel before itself may exit. Hence, the delay of this
packet is 91 seconds, as opposed to a delay of at most 11
seconds that it would incur in Virtual Clock or Weighted
Fair Queuing.

Note that the delay of flow 0 is related to the rate of the
other flows. If the 90 flows with a rate of 1/100 packet/sec.
are replaced by 900 flows with a rate of 1/1000 packet/sec.,
the delay of flow 0 increases by a factor of 10.

We conclude that each of the scheduling protocols dis-
cussed above satisfy only two out of the three desired prop-
erties. We next present a scheduling protocol that satisfies
all three properties.

IEEE/ACM Trasactions on Networking, February 1998 4

I.1 T.1

¾ -

..

..
Time

I.0

I.2

clock

T.0

T.2
shift

No.
Flow

Figure 2: Drift of flow timestamps from the real-time clock.

3 Time-Shift Scheduling

We next present the intuition behind Time-Shift Schedul-
ing. Its formal definition, its delay, and its fairness prop-
erties are given in later sections.

From its definition, T.f can be viewed, intuitively, as the
time at which the packet at the head of the queue of flow
f should exit the output channel. That is, it should exit
L.f/R.f seconds later than the exit time of the previous
packet from the same flow. Thus, we may define the “ideal
arrival time” of the packet at the head of the queue of flow
f as follows.

I.f = T.f − L.f/R.f

I.e., if the packet should exit at time T.f , and the flow is
abiding by its reserved rate R.f , then, ideally, the packet
should be received at time I.f .

Consider Figure 2, in which flows 0 through 2 are active,
and the dashed line on the left indicates the current value of
the real-time clock. Flow timestamp T.f is an indicator of
how much service has been given to flow f . If T.f À clock,
then packets from f have been forwarded at a rate greater
than R.f . This could occur if the flow is trying to take
advantage of unused bandwidth. In the figure, all three
flows have a flow timestamp significantly greater than the
current value of the clock.

Assume that an additional flow, flow 3, has been inactive
for some time, but becomes active once again. Assume we
choose v.p to be the arrival time of packet p. Then, when
flow 3 becomes active, its flow timestamp is updated as
follows.

T.3 := max(clock, T.3) + L.3/R.3

Thus, T.3 = clock + L.3/R.3, which is significantly
smaller than the flow timestamps of the other active flows.
This implies that only packets from flow 3 are forwarded
until T.3 reaches a value greater than the flow timestamps
of the other flows.

To remedy this, T.3 should be given a value as close as
possible to T.0, T.1, and T.2. Since T.3 is derived from the
real-time clock, the clock should be close to T.0, T.1 and
T.2. To do this, either we increase the value of the real-time

clock, or we reduce the value of each flow timestamp by an
equal amount. We take the former approach, because the
latter requires O(N) time.

The remaining question is how much to advance the
clock. If the clock is advanced beyond the minimum of
the ideal arrival times, then the flow that becomes active
has a timestamp larger than the timestamps of the active
flows, and may be delayed excessively by these flows. If the
clock is advanced to a value smaller than the minimum of
the ideal arrival times, then the flow that becomes active
has a timestamp smaller than the timestamps of the active
flows, and it may unfairly delay the active flows. Thus, we
choose to advance the clock to the minimum of the ideal
arrival times of the active flows.

Because the scheduler advances the clock, i.e., it “shifts”
the clock to the right, it is called a Time-Shift Scheduler.
We refer to the adjustable real-time clock by the name
ShiftClock1

Whenever a flow becomes active, the scheduler performs
a time shift by updating ShiftClock as follows:

ShiftClock := max(ShiftClock, Imin)

where Imin is the minimum ideal arrival time of all active
flows, that is,

Imin = (min f : queue.f 6= empty : I.f)

The restriction on the reserved rates given by (1) above is
sufficient, provided the rate assigned to each flow remains
fixed. However, this is not always the case, because the
application generating packets for the flow may terminate,
and the flow may be reassigned to a new application that
reserves a different rate. Thus, a restriction is needed to
indicate when can the reserved rate of a flow be reassigned
to another flow.

The restriction we choose is the following. We say that a
flow f is live if either ShiftClock ≤ T.f or f is active. The
rate of a flow f can be reassigned to another flow if flow f
is no longer live. Thus, the following is required to be an
invariant of the reserved rates.

(
∑

f : ShiftClock ≤ T.f ∧ queue.f 6= empty : R.f) ≤ C
(2)

Next, we revisit the scenarios for Virtual Clock and Self-
Clocking Fair Queuing discussed in Section 2, and see how
unfairness and long delays are avoided in the case of Time-
Shift Scheduling. Recall that in both scenarios the packet
size is constant, and the output channel has a capacity of
1 packet/sec..

In the first scenario, we have two flows f and g, each
with a reserved rate of 1/2 packet/sec.. From time 0 up to
time 100 sec., packets from flow f arrive at a rate higher
than 1 packet/sec., and no packet is received from g. Thus,
at time 100 sec., 100 packets from f have been forwarded

1If the clock of the scheduler cannot be advanced, the scheduler may
increment a variable, say shift, instead of incrementing the clock. Any
reference to the clock is then substituted by the expression clock + shift.

IEEE/ACM Trasactions on Networking, February 1998 5

to the output channel, the queue of f is not empty, T.f =
202 sec., and T.g = 0.

At time 100 sec., packets from g arrive at a rate of 1/2
packet/sec. (or any rate higher than this), and packets
from f continue to arrive. When the first packet of g ar-
rives at time 100 sec., a time shift is performed, because
g becomes active. Thus, ShiftClock = Imin = I.f = 200
sec., and T.g is assigned 202 sec., which equals T.f . There-
fore, from this point onward, one packet of g is forwarded
for every packet of f , and the unfairness experienced with
Virtual Clock is avoided.

In the second scenario, we have 100 flows. Flow 0 has
a rate of 1/10 packets/sec., and flows 1 through 99 have a
rate of 1/100 packets/sec.. At time 0, a packet from each
of flows 1 through 99 is received, and the timestamp of
each of these is 100 sec.. After the first of these packets
is forwarded to the output channel, a packet from flow
0 arrives. Since flow 0 is becoming active, a time shift is
performed, and ShiftClock := max(ShiftClock, Imin) . Since
Imin = 0, and the first packet is still in the channel, 0 ≤
ShiftClock ≤ 1. Hence, the timestamp of flow 0 is at most
11 sec.. Since the other flows have a timestamp of 100 sec.,
the next packet to be forwarded is from flow 0. Thus, this
packet experiences a delay of at most two seconds, rather
than the delay of 91 seconds that it would experience in
Self-Clocking Fair Queuing.

4 Protocol Specification

We next provide a more formal description of a Time-Shift
Scheduler. We define the behavior of a scheduler process
by a set of global constants, a set local inputs, a set of local
variables, and a set of actions. Actions are separated from
each other with the symbol [], using the following syntax:

begin action [] action [] . . . [] action end

Each action is of the form guard → command. A guard
is either a boolean expression involving the local variables
of its process, or a receive statement of the form receive
p from any f , that receives a packet from any input flow.
A command is constructed from sequencing (;) and condi-
tional (if fi) constructs that group together skip, assign-
ment, and statements of the form forward p, where p is
a packet. Similar notations for defining network protocols
are discussed in [15] [16].

An action in a scheduler process is said to be enabled if
its guard is either a boolean expression that evaluates to
true, or a receive statement of the form receive p from
any f , and there is a packet that may be received from
some input flow.

An execution step of a protocol consists of choosing any
enabled action from the process, and executing the action’s
command. If the guard of the chosen action is a receive
statement receive p from any f , then, before the action’s
command is executed, the packet is stored in variable p,
and its flow number is stored in variable f . If the statement
to execute in the command is of the form forward p, then
packet p is forwarded to the output channel.

Protocol execution is fair, that is, each action that re-
mains continuously enabled is eventually executed.

The specification of the Time-Shift Scheduler is presented
in Figure 3. The process has two inputs from its environ-
ment. The first is a boolean bit which indicates if the
output channel is currently idle. It becomes false when the
scheduler forwards a packet p to the output channel, and
becomes true L.p/C seconds later. The second input is
the rate reserved for each flow.

We assume the following. Variable ShiftClock is an ad-
justable real-time clock. It increases automatically with
the progression of time. Also, executing an action takes
zero time, i.e., ShiftClock remains constant while an ac-
tion is executed unless an assignment statement in the ac-
tion changes its value. Finally, ShiftClock does not ad-
vance while the packet queue is non-empty and the output
channel is idle, i.e., the next packet to forward is chosen
immediately after the output channel becomes idle.

The Time-Shift Scheduler process may be specified as
follows.

The process contains three actions. In the first action, a
packet is received from a flow. If the flow becomes active,
then the flow timestamp is updated.

In the second action, when the output channel is idle and
there are still packets to forward, the active flow with the
smallest timestamp is obtained from function least(T), and
a packet from this flow is forwarded. The flow’s timestamp
is updated if the flow remains active. If no active flows
remain, ShiftClock is updated so that it is greater than the
flow’s timestamp. This is necessary to prove fairness in
Section 6.

In the third action, a time shift is performed, provided
there is at least one active flow. Note that the scheduler
has a lot of freedom in choosing when to perform a time
shift, i.e., it could be done often or seldom. Regardless
of when a time shift is performed, the property of rate-
proportional delay is satisfied. However, if fairness is de-
sired, the scheduler must execute a time shift whenever a
flow becomes active. That is, immediately before execut-
ing the first action for an inactive flow f , the third action
must be executed. We will show the correctness of these
statements in the sections that follow.

Implementing this protocol requires two ordered queues:
one for the flow timestamps, and one for the ideal service
times. Inserting or removing an element from either of
these takes O(log(N)) time. Thus, the desired efficiency is
achieved.

5 Local Delay Bound

In this section, we show that the Time-Shift Scheduler has
a bound on packet delay no greater than the bound on
packet delay of a Virtual Clock Scheduler or a Weighted
Fair Queuing Scheduler.

Henceforth, any reference to time refers to the value of
ShiftClock and not to the true value of real-time. E.g.,
the expression “at time t” refers to the state of the system

IEEE/ACM Trasactions on Networking, February 1998 6

process Time-Shift Scheduler

inputs
idle : is the output channel idle?
R.f : rate of flow f
variables
p : packet
L.p : length of packet p
f, g : 0 . . N-1
queue.f : packet queue of flow f
T.f : timestamp of flow f
ShiftClock : adjustable real-time clock

begin

receive p from any f →
if queue.f = empty →

T.f := max(ShiftClock, T.f) + L.p/R.f
[] queue.f 6= empty →

skip
fi;
queue.f := append(queue.f, p)

[]
idle ∧ (∃ g :: queue.g 6= empty) →

f := least(T);
p := head(queue.f);
forward p;
queue.f := tail(queue.f);
if queue.f 6= empty →

T.f := T.f + L.p/R.f
[] (∀ g :: queue.g = empty) →

ShiftClock := max(ShiftClock, T.f)
[] (∃ g :: queue.g 6= empty) ∧

queue.f = empty →
skip

fi
[]

(∃ g :: queue.g 6= empty) ∧ ShiftClock < Imin →
ShiftClock := Imin

end

Figure 3: Specification of the Time-Shift Scheduler.

when ShiftClock = t.
The bound on packet delay is based on the following

theorem.

Theorem 1 In a Time-Shift Scheduler, for every active
flow f ,

ShiftClock ≤ T.f + Lmax/C − L.f/C

Proof
Consider an active flow f , and let p be the packet cur-

rently at the head of the queue of flow f . Let t be the time
when p became the head of the queue of flow f , and let s
be the latest time, no later than t (s ≤ t), such that one of
the following action executions occurred.

1. A time shift occurred, i.e., ShiftClock was increased,
and s = ShiftClock after the increase.

2. A packet q from a flow g, f 6= g, was forwarded, where
T.q > T.p.

3. A packet was received when all the queues were empty.

In all three cases, at time s, for all active flows g,

s ≤ I.g ∨ T.p < T.g (3)

In case 1, this holds because after the time shift, s =
Imin ≤ I.g. In case 2, since the packet chosen to be
forwarded had T.q > T.p, then all active flows g have
T.g ≥ T.q > T.p. In case 3, the only active flow is the
one whose packet is received at time s, and thus its ideal
arrival time must be at least s.

Assume T.p < s. From (3), and I.g < T.g, for all active
flows g at time s,

T.p < T.g

Furthermore, when any flow g becomes active after s,

T.p < s < T.g

Hence, T.p < s is impossible, because flow f is active at
time t, s ≤ t, with T.f = T.p. We must have instead that
s ≤ T.p.

Let us first assume that no time shift occurs after s and
before p is forwarded.

From the definition of s, only packets from flows g with
T.g ≤ T.p are forwarded after s and until p is forwarded.
Thus, from Lemma 1 below (replacing u by T.p) and from
Relation (3), these packets, which include p, can be at most
(T.p − s) · C bits. Since no time shift occurs after s, the
last bit of packet p exits the output channel no later than
time

s + (T.p− s) + Lmax/C,

that is, no later than time T.p+Lmax/C. The term Lmax/C
is needed because for cases 1 and 2 we did not count the
packet currently being in the output channel at time s.

If a time shift occurs after s and before p is forwarded, let
s′ be the time of the last time shift before p is forwarded.
From the definition of a time shift, s′ ≤ I.g for all active
flows g at time s′. Also, since s < s′, only packets whose
timestamps are at most T.p are forwarded to the output
channel until p is forwarded. Thus, from Lemma 1 (replac-
ing u by T.p), these packets, which include p, can be at
most (T.p− s′) ·C bits. Since no time shift occurs after s′,
the packet p exits the output channel no later than time

s′ + (T.p− s′) + Lmax/C,

That is, no later than time T.p+Lmax/C. Again, the term
Lmax/C is needed because we did not count the packet
currently in the channel at time s′.

Recall that p is currently the head of the queue of flow
f . Thus, T.p = T.f until p is forwarded. Packet p will be
forwarded to the output channel no later than time T.f +
(Lmax−L.f)/C, and at this time either f becomes inactive,
or T.f increases, which implies the theorem.
2

IEEE/ACM Trasactions on Networking, February 1998 7

Lemma 1 If s ≤ u, and at time s, for all active flows f ,

s ≤ I.f ∨ u < T.f

then, starting from time s, the size of the packets forwarded
to the output channel with a timestamp at most u have a
total of at most (u− s) · C bits.
2

The proof of Lemma 1 is found in the appendix.
Theorem 1 implies that each packet p will exit the out-

put channel before ShiftClock reaches the value of its times-
tamp, T.p, plus Lmax/C. It has been shown that the exit
time of a packet in Virtual Clock scheduling is at most
the packet’s timestamp plus Lmax/C [3] [24]. This is not
directly comparable with the above bound for Time-Shift
Scheduling, because the exit time in the Time-Shift Sched-
uler is measured with respect to ShiftClock, and not with
respect to the real-time clock.

To show that the delay bound of the Time-Shift Sched-
uler is no greater than the delay bound of Virtual Clock,
we consider an alternative protocol as follows. Instead of
shifting the clock forward δ seconds during a time shift, the
timestamps of all flows (active or inactive) are reduced by δ
seconds. Because the relative values of the flow timestamps
with respect to each other and with respect to the clock
is the same as in the Time-Shift Scheduler, the order in
which packets are forwarded, and hence the delay, remains
the same. Furthermore, it is easy to show that Theorem
1 holds for this alternative protocol. Finally, note that in
this alternative protocol, the timestamp of each packet is
at most the timestamp of the same packet in a Virtual
Clock scheduler, because the flow timestamps are being re-
duced. Thus, the delay bound for a Time-Shift Scheduler
is at most the delay bound for a Virtual Clock scheduler.

The delay bound of Weighted Fair Queuing is similar
to that of Virtual Clock [20]. Hence, the delay bound of
Time-Shift Scheduling is also similar to that of Weighted
Fair Queuing.

6 Fairness

We next examine the fairness of a Time-Shift Scheduler. To
ensure fairness, the protocol given above must be changed
slightly. To keep the difference between the timestamps of
any pair of flows as small as possible, the scheduler should
perform a time shift often, in particular, before a flow be-
comes active. This can be accomplished by having the
scheduler execute its third action (if enabled) immediately
before receiving a packet from an inactive flow.

We refer to the above scheduler as a Fair Time-Shift
Scheduler.

Definition 1 An active flow f is a minimum serviced flow
(MSF) if I.f = Imin.

For a Fair Time-Shift Scheduler, since a time shift is
executed always before receiving a packet from an inactive
flow, it is easy to show that Imin increases monotonically.

Thus, if flow f is a MSF, it remains an MSF until the next
packet from f is forwarded.

The fairness of a Fair Time-Shift Scheduler is based on
the following theorem.

Theorem 2 In a Fair Time-Shift Scheduler, for any pair
f and g of active flows, there exist an MSF m, such that

|T.f − T.g| ≤ L.m/R.m + |L.f/R.f − L.g/R.g|+ Lmax/C

Proof
We prove the theorem by showing that the Fair Time-

Shift Scheduler preserves the following invariant. For every
flow f , one of the following conditions hold.

1. f is active, and I.m ≤ I.f ≤ T.m + Lmax/C, for some
MSF m.

2. f is inactive, and

T.f ≤ ShiftClock ∨ T.f ≤ Imin

3. f is inactive, and I.m ≤ T.f ≤ T.m for some MSF m.

The proof that the scheduler satisfies this invariant is
found in the appendix. We next show that the invariant
implies the theorem. For the theorem, we only need case
1 of the invariant. However, cases 2 and 3 are needed to
show that 1 holds when an inactive flow becomes active.

Consider two active flows f and g. From case 1 above,
there exists two MSF flows, m and m′, such that

I.m ≤ I.f ≤ T.m + Lmax/C

I.m′ ≤ I.g ≤ T.m′ + Lmax/C

Without loss of generality, assume that T.m′ ≤ T.m.
Since m and m′ are MSF, I.m = I.m′. Thus, from the def-
inition of ideal arrival time, we obtain the following upper
bounds for T.f and T.g.

I.m+L.f/R.f ≤ T.f ≤ I.m+L.m/R.m+L.f/R.f+Lmax/C

I.m+L.g/R.g ≤ T.g ≤ I.m+L.m/R.m+L.g/R.g+Lmax/C

The upper and lower bounds on T.f and T.g imply the
theorem.
2

The bound on the relative value of two flow timestamps
given by Theorem 2 prevents flows that become active from
“hogging” the output channel and denying service to flows
that have exceeded their reserved rates. The Virtual Clock
protocol has no similar bound.

The above bound is close to, but not as tight as, the
bound provided by the Self-Clocking Fair Queuing pro-
tocol. However, the fairness bound above is achieved in
conjunction with a delay bound that is significantly better
than the delay bound of Self-Clocking Fair Queuing.

The fairness of the scheduler implies that when a packet
p arrives at the head of the queue of its flow, it will exit the
output channel within a time bound that is independent of
the value of its timestamp or the timestamps of other flows,
as shown next.

IEEE/ACM Trasactions on Networking, February 1998 8

Theorem 3 In a Fair Time-Shift Scheduler, the packet at
the head of the queue of flow f will exit the output channel
in at most

L.f/R.f + L.m/R.m + Lmax/C

seconds, for some MSF m.

Proof
Let p be the packet at the head of the queue of f , and

it became the head of the queue at time t. Let T.f ′ be
the timestamp of flow f before p becomes the head of the
queue. We have two choices regarding how p became the
head of the queue.

First, assume p was received when the queue of f was
empty. If I.p is assigned ShiftClock, then from Theorem
1, p will exit the output channel in L.p/R.f + Lmax/C
seconds. If I.p is assigned T.f ′, then from part 3 in the
proof of Theorem 2 (parts 1 and 2 do not apply), we have

I.m ≤ T.f ′ = I.p ≤ T.m (4)

for some MSF m. Since Imin is nondecreasing, only packets
whose timestamps are in the range [I.m, T.p] are forwarded
after t, which from the proof of Lemma 1, are at most
(T.p− I.m) · C bits. Furthermore,

(T.p− I.m) · C
= (I.p + L.p/R.f − I.m) · C
≤ (T.m + L.p/R.f − I.m) · C
= (L.m/R.m + L.p/R.f) · C

Thus, p will exit the output channel in L.m/R.m +
L.p/R.f + Lmax/C seconds, where Lmax/C seconds comes
from the time required for the packet forwarded before p
to exit the output channel.

Assume now that p became the head of its queue when
another packet from f was forwarded. Thus, T.f ′ = I.p.
Let m be an MSF when p becomes the head of its queue.
Thus, I.m ≤ I.p. If m = f , then Relation (4) holds. If
m 6= f , then m was not chosen to be forwarded, and hence
I.p = T.f ′ ≤ T.m, and Relation (4) holds.

Thus, the same relation of the previous case holds, and p
will exit the output channel within L.m/R.m + L.p/R.f +
Lmax/C seconds.
2

7 End-to-End Delay Bounds

In this section, we present the end-to-end delay bound for
a flow traversing multiple Time-Shift Schedulers. To do so,
we borrow some results from Flow Theory [1, 2], which we
overview next. The theorems are presented without proofs.
The proofs may be found in [5].

A flow f is an infinite sequence f.0, f.1, f.2, . . . , of non-
negative real numbers.

Informally, we divide time into very small and fixed sized
intervals which we call instants. Each f.i represents the

number of bits that travel in flow f at instant i. We denote
the sequence f.0, f.1, . . . , f.i by f.(0, i).

As the flow traverses the network, it experiences queuing
delays, which we represent with flow operators. A flow
operator has an input flow f and an output flow g. At
the ith instant, the operator inputs f.i on its input flow,
outputs g.i on its output flow, and stores the remainder
in an internal buffer. The content of the internal buffer
at the ith instant is denoted b.i. The infinite sequence
b.0, b.1, b.2, . . . , is called the buffer flow of the flow operator.

- -b
gf

Formally, a flow operator with an input flow f , an output
flow g, and a buffer flow b is defined, for every i = 0, 1, 2, . . .,
as follows.

g.i is a value in the interval F.(f.(0, i), b.(i− 1), i) (5)

b.i = b.(i− 1) + f.i− g.i (6)

where b.(−1) = 0, and F is a function, called the opera-
tion of the flow operator, that returns an interval of real
numbers.

Flow operators cannot output more than which they
have received, and thus the operation of a flow operator
is required to ensure the following flow conservation prop-
erty:

(For every input flow f , output flow g, and buffer
flow b, satisfying (5) and (6),

(For every i, g.i ≤ f.i + b.(i− 1))
).

The buffer capacity B of a flow operator with input flow
f is the smallest non-negative real number that satisfies
the following condition:

(For every output flow g and buffer flow b,
satisfying (5) and (6),

(For every i, b.i ≤ B)
).

The delay D of a flow operator with input flow f is the
smallest non-negative integer that satisfies the following
condition:

(For every output flow g and buffer flow b,
satisfying (5) and (6),

(For every i, bi ≤ g.(i + 1) + · · ·+ g.(i + D))
).

To represent the changes that occur to a flow as it tra-
verses its path in the computer network, we introduce lin-
ear networks of flow operators.

A finite sequence of flow operators 〈Op0, Op1, . . . , Opn−1〉
is a linear network iff for each i, 0 ≤ i < n− 1, the output
flow of operator Opi is the input flow of operator Opi+1.
The input flow of operator Op0 is the input flow of the net-
work and the output flow of operator Opn−1 is the output
flow of the network.

The buffer flow c of a linear network 〈Op0, Op1, . . . , Opn−1〉
is an infinite sequence c.(−1), c.0, c.1, . . . , such that c.(−1) =

IEEE/ACM Trasactions on Networking, February 1998 9

0 and for every i = 0, 1, 2, . . . ,

c.i = c.(i− 1) + f.i− g.i

where f is the input flow of the linear network and g is the
output flow of the linear network.

This definition of the buffer flow of a network coincides
with the definition of the buffer flow of a flow operator
where the input flow is f and the output flow is g. Hence,
we define the buffer capacity and delay of a linear network
in the same manner as was done previously for flow oper-
ators. It can be shown that the buffer capacity of a linear
network is at most the sum of the buffer capacities of each
of the flow operators in the linear network. A similar rela-
tion holds for the delay of the linear network [5].

The first flow operator we introduce is the R-limiter,
where R is a positive real number. The operation of an
R-limiter is defined as follows,

gi =
{

R if bi−1 + fi > R
bi−1 + fi if bi−1 + fi ≤ R

where f is the input flow, g is the output flow, and b is the
buffer flow of the R-limiter. The R-limiter ensures that
each element of its output flow is at most R. Basically,
the R-limiter may be viewed as a constant-rate server that
forwards its input flow to its output flow at exactly the
rate R.

In Virtual Clock scheduling, the timestamp of a packet
of a flow with reserved rate R is the time at which the
packet would exit a constant-rate server that serves the
flow at a rate R. A packet in Virtual Clock exits the output
channel no later than the time indicated in its timestamp
plus Lmax/C, that is, no later than the time at which it
would exit an R-limiter plus Lmax/C.

Since the delay in a Time-Shift Scheduler is at most that
of Virtual Clock, a packet in a Time-Shift Scheduler also
exits no later than the time at which it would exit an R-
limiter plus Lmax/C. Note that a packet may exit at a time
much earlier than that at which it would exit an R-limiter.

This behavior can be represented by a flow operator
called R-filter, where R is a positive real number. An R-
filter is a flow operator that outputs an arbitrary value at
each instant, with the following restriction. If an R-limiter
and an R-filter have the same input flow, then the sum of
any prefix of the output flow of the R-filter is at least the
sum of the same length prefix of the output flow of the
R-limiter. I.e., the R-filter may forward data faster than
the R-limiter, and it is never allowed to lag behind the R-
limiter. The formal definition of an R-filter may be found
in [1, 5]

From the definition of an R-filter, each packet in its input
flow exits no later than the time it would exit an R-limiter.
Thus, an R-filter can be used to represent the behavior of
a single Time-Shift Scheduler. However, in a Time-Shift
Scheduler, a packet may exit up to Lmax/C seconds after
it would exit an R-limiter. Furthermore, in an R-filter,
the first bit of a packet of size L may exit up to L/R
instants earlier than the last bit of the packet. These bits

should exit together, since packets are indivisible units of
data and must be transmitted as a whole. Therefore, we
represent a single Time Shift Scheduler with the following
linear network, where L is the maximum packet size of the
flow, and R is the reserved rate of the flow.

- - -(L/R + Lmax/C)-delayerR-filter

A d-delayer, where d is positive integer, is a flow operator
that delays its input flow in an arbitrary manner by at most
d instants. Its formal definition may be found in [1, 5]. The
R-filter and d-delayer operators have the following useful
properties.

Theorem 4

1. The linear network 〈R-filter, R-filter〉 is equivalent to
a single R-filter.

2. The linear network 〈d-delayer, d′-delayer〉 is equivalent
to a single (d + d′)-delayer.

2

Note that, by induction on part 1, any linear network of
R-filters is identical to a single R-filter.

Theorem 5

1. When their input flow is the same, any output flow
of the linear network 〈d-delayer, R-filter〉 is also an
output flow of the linear network 〈R-filter, d-delayer〉.

2. The buffer capacity of 〈R-filter, d-delayer〉 is at most
the buffer capacity of a single R-filter plus d ·R.

2

Assume a flow with reserved rate R and maximum packet
size L traverses a path of n Time-Shift Schedulers. Let
L.imax and C.i be, respectively, the upper bound on packet
size and the capacity of the output channel of the ith sched-
uler along the path. The ith scheduler in this path is rep-
resented by the pair of flow operators 〈R-filter, (L/R +
L.imax/C.i)-delayer〉. The whole path consists of a linear
network with n of these pairs.

Using Theorem 4, and part 1 of Theorem 5, it is easy
to show that any output flow of the above linear network
is also an output flow of the linear network 〈R-filter, D-
delayer〉, where

D =
n−1∑

i=0

(L/R + L.imax/C.i).

Thus, the delay of a path of Time-Shift Schedulers is at
most the delay of an 〈R-filter, D-delayer〉 network. Since
the delay of an R-filter is at most the delay of an R-limiter
[5], the delay of the 〈R-filter, D-delayer〉 network is at most
the delay of an R-limiter plus D.

The delay of a flow through an R-limiter depends on the
“burstiness” of the flow. That is, how much does the flow
temporarily exceed its reserved rate R. There are several
ways to characterize the burstiness of a flow [2, 6, 13]. One

IEEE/ACM Trasactions on Networking, February 1998 10

way to characterize burstiness is with the (m,R)-uniform
property [2], which is defined as follows.

Let m be a positive integer and R be a positive real num-
ber. A flow f is (m,R)-uniform iff, for every j = 0, 1, 2, . . . ,

j+m−1∑

i=j

f.i ≤ m ·R.

In this definition, R can be regarded as an upper bound
on the rate of the flow, and m can be regarded as the
interval over which the rate is averaged. The burstiness
of the flow is measured by m: the larger m becomes, the
burstier the flow may become.

The delay of an (m,R)-uniform flow through an R-limiter
is at most m [5]. Thus, the total end-to-end delay along
the path of n Time-Shift Schedulers is at most m + D.

From Theorem 4 and part 1 of Theorem 5, the linear net-
work consisting of the first j 〈R-filter, (L/R+L.imax/C.i)-
delayer〉 pairs, i.e., the first j Time-Shift Schedulers, has a
buffer capacity of at most the buffer capacity of the pair
〈R-filter, D′-delayer〉, where

D′ =
j−1∑

i=0

(L/R + L.imax/C.i)

Since the buffer capacity of the jth Time-Shift Sched-
uler is at most the buffer capacity of the first j Time-Shift
Schedulers, then the buffer capacity of the jth scheduler
is at most the buffer capacity of the pair 〈R-filter, D′-
delayer〉.

The buffer capacity of an R-filter is at most the buffer
capacity of an R-limiter [5], and thus, from part 1 of Theo-
rem 5, the buffer capacity of the jth Time-Shift Scheduler
is at most the buffer capacity of an R-limiter plus D′ · R.
For an (m, R)-uniform flow, the buffer capacity of an R-
limiter is m · R, and thus, the buffer capacity of the jth
Time-Shift Scheduler is at most m ·R + D′ ·R.

The upper bounds on the end-to-end delay and buffer ca-
pacities of a series of Time-Shift Schedulers derived in this
section are the same upper bounds on the end-to-end delay
and buffer capacities reported for a series of Virtual Clock
or Weighted Fair Queuing schedulers [8, 12, 20]. Thus, the
Time-Shift Scheduler achieves the same end-to-end delay
and buffer capacities, while at the same time being fair and
efficient.

8 Related and Future Work

In Time-Shift Scheduling, the end-to-end delay increases
by L/R + Lmax/C with each hop in the path to the desti-
nation. It is possible to decrease this delay for some flows
at the expense of either increasing the delay of other flows
or leaving some bandwidth unreserved. This has already
been done in other protocols that do not ensure fairness
[9] [10] [7]. In a future paper, we will describe a schedula-
bility test, similar to the one presented in [28], that allows
Time-Shift Scheduling to provide a delay bound indepen-

dent of the reserved rate of the flow, while at the same time
ensuring the fairness property presented in this paper.

Note that in the proof of the upper bound on packet
delay (Theorem 1), we made no assumption about how
often does the scheduler perform a time shift. Furthermore,
the theorem’s proof can be relaxed to show that, during a
time shift, if the scheduler assigns a value smaller than Imin

to the clock, then the theorem remains valid. Thus, the
scheduler has a lot of freedom in manipulating the clock’s
value.

In a future paper, we will describe a whole family of
protocols that assign timestamps to packets and shift the
clock periodically. The distinguishing factor of each mem-
ber of the family is the extent to which the clock is shifted.
All members of the protocol family will satisfy the rate-
proportional delay property. We will argue that, contrary
to popular belief, the clock does not always need to in-
crease at least as fast as real-time in order to maintain
rate-proportional delay.

Acknowledgment

The authors would like to thank the referees for their con-
structive criticism which improved the quality of this pa-
per.

References

[1] Cobb J., Gouda M., “Flow Theory”, IEEE/ACM
Transactions on Communications, Vol. 5., No. 5, 1997.

[2] Cobb J., Gouda M., “Flow Theory: Verification of
Rate-Reservation Protocols”, IEEE Internation Con-
ference on Network Protocols, 1993.

[3] Cobb J., Gouda M., El-Nahas A., “Flow Times-
tamps”, Annual Joint Conference on Information Sci-
ences, 1995.

[4] Cobb J., Gouda M., El-Nahas A., “Time-Shift
Scheduling: Fair Scheduling of Flows in High-Speed
Networks”, IEEE International Conference on Net-
work Protocols, 1996.

[5] Cobb, J., “Flow Theory and The Analysis of Timed-
Flow Protocols”, Ph.D. Thesis, The University of
Texas at Austin, May 1996.

[6] Cruz R.L., “A Calculus for Network Delay, Part I:
Network Elements in Isolation”, IEEE Transactions
on Information Theory, Vol. 37, No. 1, January 1991,
p. 114-131.

[7] Figueira N., Pasquale J., “Leave-in-Time: A New Ser-
vice Discipline for Real-Time Communications in a
Packet-Switching Data Network”, SIGCOMM Confer-
ence, 1995 p. 207.

[8] Figueira N. R., Pasquale J., “An Upper Bound
on Delay for the Virtual Clock Service Discipline”,
IEEE/ACM Transactions on Networking, Vol. 3, No.
4, Aug. 1995.

[9] Ferrari D., Verma D., “A Scheme for Real-Time Chan-
nel Establishment in Wide-Area Networks”, IEEE

IEEE/ACM Trasactions on Networking, February 1998 11

Journal of Selected Areas in Communication, Vol. 8,
No. 4, pp. 368-379, April 1990.

[10] Ferrari D., Zhang H., “Rate Controlled Static Priority
Queueing”, IEEE INFOCOM, 1993.

[11] Gall D., “A Video Compression Standard for Multi-
media Applications”, Communications of the ACM,
Vol. 34, No. 4, April 1991.

[12] Goyal P, Lam S., Vin H., “Determining End-to-End
Delay Bounds in Heterogeneous Networks”, NOSS-
DAV Workshop, 1995.

[13] Golestani S. J., “A Stop-and-Go Queueing Framework
for Congestion Management”, ACM SIGCOMM con-
ference, 1990.

[14] Golestani S. J., “A Self-Clocking Fair-Queueing
Scheme for Broadband Applications”, IEEE INFO-
COM, 1994.

[15] Gouda M., “Protocol Verification Made Simple”,
Computer Networks and ISDN Systems, Vol. 25, 1993,
pp. 969-980.

[16] Gouda M., The Elements of Network Protocols, text-
book in preparation.

[17] Keshav S., “A Control Theoretic Approach to Flow
Control”, ACM SIGCOMM Conference, 1991.

[18] Kalmanek C. R., Kanakia H., and Keshav S., “Rate
Controlled Servers for Very High-Speed Networks”,
IEEE GLOBCOMM, 1990.

[19] Kanakia H., Mishra P., “A Hop-by-Hop rate Based
Congestion Control Scheme”, ACM SIGCOMM Con-
ference, 1992.

[20] Parekh A. K. J., “A generalized Processor Sharing
Approach to Flow Control in Integrated Services Net-
works”, Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Techni-
cal Report Number LIDS- TH-2089.

[21] Parekh A. K. J., Gallager R., “A generalized Processor
Sharing Approach to Flow Control in Integrated Ser-
vices Networks: The Single Node Case”, IEEE/ACM
Transactions on Networking, Vol. 1, No. 3, pp. 344-
357, June 1993.

[22] Philp I.R., Liu J.W.S., “End-to-End Scheduling in
Real-Time Packet Switched Networks”, IEEE Inter-
national Conference on Network Protocols, 1996.

[23] Ramakrishnan K. K., Raj J., “A Binary Feedback
Scheme for Congestion Avoidance in Computer Net-
works”, ACM Transactions on Computer Systems,
Vol. 8, No. 2, pp. 158-181.

[24] Xie G., Lam S., “Delay Guarantee of Virtual Clock
Server”, IEEE/ACM Transactions on Networking,
Vol. 3, No. 6, December 1995.

[25] Zhang L., “Virtual Clock: A New Traffic Control Al-
gorithm for Packet-Switched Networks”, ACM Trans-
actions on Computer Systems, Vol. 9, No. 2, May
1991.

[26] Zhang H., Keshav S., “Comparison of Rate-Based Ser-
vice Disciplines”, ACM SIGCOMM Conference, 1991.

[27] Zhang H., “Service Disciplines for Guaranteed
Performance Service in Packet Switching Net-
works”,Proceedings of the IEEE, Vol. 83, No. 10, Oct.

1

0

2

0 1 2 3 5 6 7 8 9 10
Timestamps

4

p q r
Flow No.

Figure 4: Timestamps contained by each packet.

1995.
[28] Zheng Q., Shin K. G., “On the Ability of Estab-

lishing Real-Time Channels in Point-to-Point Packet
Switched Networks”, IEEE Transactions on Commu-
nicstions, March 1994.

Lemma 1
If s ≤ t, and at time s, for all active flows f ,

s ≤ I.f ∨ t < T.f

then, starting from time s, the size of the packets forwarded
to the output channel with a timestamp at most t have a
total of at most (t− s) · C bits.

Proof
We associate a timestamp with each bit b of a packet

p from flow f . We allow b to be a real number in the
interval [0, L.p]. For bit b in packet p, its timestamp equals
I.p + b/R.f . Thus, the first bit has a timestamp equal to
I.p, and the last bit has a timestamp equal to the packet
timestamp, T.p. A timestamp u is contained by a packet p
if a bit in the packet has timestamp u, i.e., I.p ≤ u ≤ T.p.
A flow f contains timestamp u if some packet of f contains
u.

For example, consider Figure 4. The ideal arrival time
and timestamp of each packet are denoted by a small ver-
tical line. In flow 1, for its first packet, p, we have I.p = 1
and T.p = 3. Similarly, we have: I.q = 3, T.q = 4, I.r = 5
and T.r = 8. Thus, all timestamp values in the intervals
[1, 4] and [5,8] are contained by flow 1.

We begin by showing that if timestamp u is contained
by a packet p of some flow f , then f is live at time u, and
furthermore, the value of R.f used to compute T.p is the
same value that R.f has at time u. We have the following
two cases.

• If p arrived at a time at most u, we have two cases. If
p is in the queue at time u, then f is live at u. Since
R.f cannot change while f is live, the value of R.f
at time u is used to timestamp p. If p was forwarded
before time u, then, since T.p ≥ u, f is live at time u,
and R.f cannot change until ShiftClock > u.

• If p arrives after time u, then queue.f cannot become
empty at any time starting at time u and until p ar-
rives, since this would imply I.p > u, contradicting
our choice of p. Hence, f is live at time u, and R.f

IEEE/ACM Trasactions on Networking, February 1998 12

cannot change until p is received and forwarded.

From the above observation, for packets p and q in Figure
4, we have I.p < T.p = I.q < T.q, then both packets were
assigned a timestamp using the same value for R.1. This
is because flow 1 never ceases to be live from time I.p up
to T.q. Thus, for any interval [u, v] contained by a flow f ,
the number of bits whose timestamps are in this interval
are R.f · (v − u), where R.f is the rate used to timestamp
the packets containing the interval.

We next examine how many bits have a timestamp in
the interval [s, t]. Starting from time s, find the latest time
s.0, s ≤ s.0 ≤ t, such that no timestamp between s and
s.0 is contained by a packet. In the figure, s.0 = 1 if we
assume s = 0 and t = 10.

Next, find the largest timestamp s.1, s.0 < s.1 ≤ t, such
that if a flow does not contain a timestamp x in the interval
(s.0, s.1), then the flow does not contain any timestamps
in the interval (x, s.1). In Figure 4, s.1 equals 5, because
flow 1 does not contain any value in the interval (4, 5).

From the observations above, for any flow f that contains
timestamps in [s.0, s.1], at most (s.1−s.0)·R.f bits contain
timestamps in the interval [s.0, s.1], where R.f is the rate
of flow f at time s.0, and furthermore, f is live at time s.0.
From Relation (2), the sum of the rates of the live flows at
time s.0 is at most C, and hence at most (s.1−s.0) ·C bits
contain timestamps in the interval [s.0, s.1].

We next find a timestamp s.2, whose relationship to s.1
is similar to the relationship between s.1 and s.0. The
same argument shows that at most (s.2− s.1) ·C bits con-
tain timestamps in the interval [s.1, s.2]. By repeating the
above steps until we reach a timestamp s.n where s.n = t,
we have that the total number of bits whose timestamp is
in the interval [s, t] are at most (t− s) · C.

Since we are given that for all active flows f at time s,
s ≤ I.f ∨ t < T.f , then each packet p forwarded starting
from time s with timestamp at most t has I.p ≥ s, and
hence the lemma holds.
2

Lemma 2
The following is an invariant of the Fair Time-Shift Sched-
uler. For every flow f , one of the following holds.

1. f is active, and I.m ≤ I.f ≤ T.m + Lmax/C, for some
MSF m.

2. f is inactive, and

T.f ≤ ShiftClock ∨ T.f ≤ Imin

3. f is inactive, and I.m ≤ T.f ≤ T.m for some MSF m.

Proof
We show that if the protocol is in a state satisfying any

of the three cases above, then it will continue to satisfy the
same case or satisfy one of the remaining two cases.

We begin with case 1.
Notice that once a flow m has I.m = Imin, this continues

to hold until flow m forwards a packet. That is, when a
flow k becomes active, a time shift is performed, and Imin ≤
ShiftClock ≤ I.k. Hence, I.m = Imin ≤ I.k. Because Imin

does not decrease, case 1 continues to hold until a packet

from either m or f is forwarded.
Assume that a packet from flow f is forwarded, and flow

f is the only active flow. Note that m = f in this case. If
queue.f becomes empty, ShiftClock is increased, if neces-
sary, so that 2 holds. If queue.f does not become empty,
then 1 continues to hold with m = f .

Assume f is not the only active flow, and a packet from
f is forwarded. Consider first that f 6= m in 1. Because the
packet from m was not chosen to be forwarded, T.f ≤ T.m
before updating T.f . Also, we are given that I.m ≤ I.f ,
and thus I.m ≤ I.f < T.f ≤ T.m. After T.f is updated
from the next packet in the queue of f (I.f is now the
previous value of T.f), we have I.m ≤ I.f ≤ T.m. Thus, 1
continues to hold. If no more packets from f remain, then
T.f is not updated, and thus 3 holds.

Assume next that f = m in 1. Let k be an MSF after
the packet from f is forwarded and T.f is updated. If f is
an MSF in this case, then 1 continues to hold with f = m.
Otherwise, k 6= f , and because k was not chosen to be
forwarded, T.f ≤ T.k before forwarding the packet from
f , and thus T.k ≥ I.f after T.f is updated. Furthermore,
because k is an MSF, I.k ≤ I.f . Thus, 1 continues to hold,
with k replacing m.

The above assumes that packets from f remain and T.f
is updated. If this is not the case, then, because k was not
chosen to be forwarded, T.f ≤ T.k. If I.k ≤ T.f , then case
3 holds with k replacing m. Otherwise, T.f < I.k = Imin,
and case 2 holds.

Assume now that a packet from m is forwarded, and
m 6= f . Let k be an MSF after the packet is forwarded.
Let T.m′ be the timestamp of m just before the packet is
forwarded. Because k is an MSF, then I.k ≤ I.f after the
packet is forwarded. If k 6= m, then, because k was not
chosen to be forwarded, T.m′ ≤ T.k. If k = m, then, after
the packet is forwarded, T.m′ = I.k < T.k. Thus, from
1, from T.m′ ≤ T.k, and from k being an MSF, we have
I.k ≤ I.f ≤ T.k + Lmax/C after the packet is forwarded.
Hence, 1 holds with k replacing m.

Consider now case 2.
Recall that Imin and ShiftClock increase monotonically.

Hence, case 2 can only be falsified if f becomes active,
which we consider next.

If no flow is active and f becomes active, then case 1
holds with m = f . If other flows were active when the
packet from f is received, then a time shift is performed
immediately before receiving the packet from f . Let m be
an MSF after the time shift. From Theorem 1 and from
the time shift,

I.m ≤ ShiftClock ≤ T.m + Lmax/C − L.m/C (7)

Let T.f ′ be the value of the timestamp of f be-
fore the packet is received. Recall that I.f is assigned
max(ShiftClock, T.f ′). If I.f is assigned ShiftClock, then
case 1 holds by relation (7). If I.f is assigned T.f ′ (i.e.,
ShiftClock < T.f ′), then from case 2 we have ShiftClock <
T.f ′ ≤ Imin = I.m, which contradicts Relation (7), and
hence will not occur.

Consider now case 3.

IEEE/ACM Trasactions on Networking, February 1998 13

This case is affected if flow f becomes active or if a packet
from flow m is forwarded. If flow f becomes active, then
a time shift is performed immediately before receiving the
packet from f , and Relation (7) holds. If I.f is assigned
ShiftClock, then case 1 holds from Relation (7). If I.f is
assigned the previous value of T.f , then from case 3,

I.m ≤ I.f ≤ T.m

which implies that case 1 holds.
If a packet from flow m is forwarded, then let k be an

MSF after the packet is forwarded, and let T.m′ be the
timestamp of m before the packet is forwarded. If k 6= m,
then, since k was not chosen to be forwarded, T.m′ ≤ T.k.
If k = m, then, after the packet is forwarded, T.m′ =
I.k < T.k. Thus, from case 3, T.f ≤ T.k. If after the
packet of m is forwarded, I.k < T.f , then case 3 holds.
Otherwise, T.f ≤ I.k = Imin, and case 2 will hold. If no
active flow remains after forwarding the packet from m,
then ShiftClock is advanced such that ShiftClock ≥ T.m′ ≥
T.f , and hence case 2 holds.

All cases of the invariant are either preserved or another
case holds. Thus, the invariant is true.
2

