Developing Geometric Imagination With the Aid of 3D Printed Models

John Zweck

The University of Texas at Dallas

http://www.utdallas.edu/~zweck/
zweck@utdallas.edu

SIAM ED16
Enhancing Mathematical Learning Experiences with 3D Printing
Our UTD Calculus III Team

- **Faculty:** Sue Minkoff, Farid Khafizov, Changsong Li
- **GTA’s:** Sonny Skaaning, Yanping Chen, Fatih Gelir, Jing Guo, Abdullah Helal, Elvira Kadaub, Arafat Khan
- **UTeach TA’s:** Henry Curtis, Carl Finley, Dalia Franco Cortes, Andrew Marder, Mikaela McMurtry, Nikunj Patel, Matthew Portman, Erik Ringqvist, Jonathan Sok, Josilyn Valencia
- **Model Design:** Stephanie Taylor, Ximone Willis, SME Interns

Funding:

NSF: Supplement to the UTeach Dallas Robert Noyce Scholarship Program (DUE 1544159)

P.I.: Mary Urquhart (SME)
Motivation for Project

Freshman:

“Math = Formulaic Algebraic Calculation”
Motivation for Project

Researchers:

“Math = Geometry + Algebra + Logic”
My Journey to Land of 3D Printing

Early Explorations [1980’s]

Astroid as Envelope Polyhedron Models

Polyhedron Models
My Journey to Land of 3D Printing

Early Explorations [1980’s]

Geodesic Domes
My Journey to Land of 3D Printing

Groping for visualization tools [2011]

Virtual Reality is massive overkill!
My Journey to Land of 3D Printing

Groping for models [2012]

Pipe Cleaners are a bust
My Journey to Land of 3D Printing

Groping for models [2013]

$z \neq x^2 - y^2$!
My Journey to Land of 3D Printing

My Aha! Moment [2014]

- Marty Ross, Blog Post in Melbourne Age:

 “Print your own flip-flops.”

“If you can print your own flip-flops you can print anything!”
In the Land of 3D Printing

Realizing the Dream [2015]

... with some help from Mathematica and the NSF.

1... with some help from Mathematica and the NSF.
What are 3D-Printed Models Good For?

3D-printed models enrich student learning of geometric mathematics

- In the classroom: Low-tech is good!
- Students interact with models at their own pace
- Precise rendering of geometric structure

Former students:

“Wow! I wish we had these models when I took the course.”
What are 3D-Printed Models Good For?

Mathematical Art

Henry Segerman, Oklahoma State University
What are 3D-Printed Models Good For?

Mathematical Art

David Bachman, Pitzer College

What is 3D-Printing Good For?

Having students design and 3D-print models

- Connects algebraic and geometric thinking
- Motivates learning
- Fosters creativity
- Provides experience in computational mathematics

Segerman Course:

Geometry and Algorithms in 3D Modeling

2Denne, MS 3, Knill, MS 3, Aboufadel, MS 6
What are 3D-Printed Models Good For?

3D models as learning aids in Calculus

- **What to teach?**
 1. **Geometric Imagination:**

 The ability to form and manipulate images of geometric objects “in the mind’s eye”.
 2. **Geometry↔Algebra:**
 - Geometric structure guides algebraic calculation
 - Algebraic calculation reveals geometric structure
What are 3D-Printed Models Good For?

3D models as learning aids in Calculus

How to learn?

1. Fill-in-the-blank worksheets [akin to Physics Labs]
2. Drawing and measuring on surfaces
3. Open-ended Inquiry-based learning:
 “Can be intellectually paralyzing”
4. Small-group, guided active learning projects

3. Wangberg, Samuels, MS 6
4. Hitchman, MS 3
What are 3D-Printed Models Good For?

3D models as learning aids in Calculus

How to assess?

1. Assessment shouldn’t hinder interaction with models
2. Student comment:
 “Spending time working with models doesn’t help me do my homework.”
3. To fully integrate 3D models must modify homework!

5 Fukawa-Connelly, MS 6
Calculus III at UT Dallas

- Two Calculus sequences:
 1. Fast pace: 2417, 2419
 2. Regular pace: 2413, 2414, 2415

- MATH 2415, Fall 2016 [230 students]:
 1. 3 Lecture Sections [2x75mins, 75 students]
 2. 7 Problem Sections [1 hr 50 mins, 33 students]
 3. Peer-Led Team Learning [80 mins, 70 students total]
 4. 3 Graduate TA’s
 5. 6 Undergraduate TA’s [Math majors in UTeach]

From vectors to Divergence Theorem

6 The course coordinator is a manager
7 NSF funded
Active Learning (AL) Problem Sections

- TA starts with 10 minute summary of lectures
- Then students actively solve assigned problems
- Students
 - Work in small groups of 3-4 at white boards
 - Explain solutions to each other and to TA’s
 - Photograph their solutions
- Teaching Assistants
 - Can’t hold white-board markers
 - Only ask questions

The room is buzzing with conversation.

8 Undergraduates are pre-verbal mathematicians
9 Lectures use a traditional format
AL Projects with 3D Printed Models

Students do a few active learning projects in the problem sections

1. Circular Paraboloids
2. Saddle Surfaces
3. Helices
4. Limits
5. Parametrized Surfaces
6. Ruled Surfaces
7. Hills and Valleys

Project web site: http://www.utdallas.edu/~zweck/
Surfaces represented using families of curves

\[z = x^2 - y^2 \]
Identify axes

Cast shadow on table using flashlight app

Sketch 2D grids

Explain how model is constructed from slices

Sketch surface from model

Reorient surface to be graph of

\[x = g(y, z) = y^2 - z^2 \]

\[z = h(x, y) = 2xy \]

Visualize \[z = 4x^2 - y^2 \]
\(\mathbf{r}(t) = (\cos t, \sin t, t) \)

- Explain why helix lies on cylinder
- Distinguish left- and right-handed helices
- Left-handed helix as reflection of right-handed helix
- Parametrize left-handed helix
- Parametrize DNA double helices
$f(x, y) = \frac{2xy}{x^2 + y^2}$

f is constant along lines $y = kx$
$f(x, y) = \frac{2x^2y}{x^4 + y^2}$

$f \to 0 \text{ along } y = kx$

$f \text{ is constant along parabolas } y = kx^2$
Sweep out a saddle by sliding one broomstick along another, rotating as you go

\[\mathbf{x}(t, s) = (t, 0, 0) + s(0, \cos \theta(t), \sin \theta(t)) \]

Use \(z = xy \) **to solve for** \(\theta(t) \)
Two critical points: both are local maxima
One critical point: a local maxima but not global
Multi-Use Models
Multi-Use Models

1. Quadric surfaces
2. Cylindrical coordinates and symmetry
3. Level curves
4. Parametrized surfaces
5. Intersections of surfaces
6. Partial derivatives
7. Gradient and directional derivative
8. Local max/min
9. Lagrange multipliers
10. Surface area and integrals

Suggestion:
Base pedagogy on a few fundamental models.
Concluding Thoughts

Surface Parametrizations

- We do calculus on surfaces using curves
- Surface meshes highlight this geometric structure

Geometric Imagination

- Geometric arguments often involve
 1. Manipulation of geometry “in the minds eye”
 2. Corresponding algebraic calculations
- Need exercises to strengthen geometric imagination
- Suggestion: Active learning projects with 3D models