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Energy management plays a critical role in electric vehicle (EV) operations. To improve EV
energy efficiency, this paper proposes an effective model predictive control (MPC)-based
energy management strategy to simultaneously control the battery thermal management
system (BTMS) and the cabin air conditioning (AC) system. We aim to improve the
overall energy efficiency and battery cycle-life, while retaining soft constraints from both
BTMS and AC systems. The MPC-based strategy is implemented by optimizing the
battery operations and discharging schedules to avoid a peak load and by directly utilizing
the regenerative power instead of recharging the battery. Compared with the benchmark
system without any control coordination between BTMS and AC, the proposed MPC-
based energy management has shown a 4.3% reduction in the recharging energy and a
6.5% improvement for the overall energy consumption. Overall, the MPC-based energy
management is a promising solution to enhance the battery efficiency for EVs.
[DOI: 10.1115/1.4048816]
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1 Introduction
There is a growing demand in vehicle electrification due to the

widespread environmental consciousness and stringent emission
regulations [1]. Lithium-ion battery (LIB) has been widely accepted
as one of the most promising energy storage and electrification solu-
tions due to its excellent properties such as high energy density and
long cycle life. However, extensive investigations have pointed out
that the performance and safety of lithium battery are highly
affected by the temperature variations and extreme temperatures
in particular. In addition, there also exist several drawbacks consid-
ering the maximum-rate discharging and cycle-life for battery
system under intense-driving or peak-load conditions simulta-
neously [2]. Therefore, an effective energy management strategy
that integrates battery thermal control is crucial to address safety
concerns and to enhance energy efficiency.

1.1 Review of Air-Based Battery Thermal Management
System and Control Strategy. Battery thermal management
system (BTMS) plays a critical role in maintaining a reasonable
temperature range (20 °C to 45 °C) for LIB due to its intrinsic
chemistry properties. State-of-the-art technologies employ air,
fluid, phase-changing material, and heat pipe as the transfer
mediums to dissipate the over-burden waste heat [3]. There has
been an increasing popularity towards integrating the phase-
changing material and heat pipe in lab tests, however, due to the
complexity, only the air-based and liquid-based technologies have
been successfully applied to industry. For pure air-based cooling
technologies, a large number of novel ventilation structures and
optimal configuration settings have been proposed and verified,
such as conventional Z- and U-type parallel/tapered cooling struc-
tures with optimal cooling channel settings [4–6], the modified

J-type structure with two control valves for control mode switching
[7], the reciprocating straight-forward structure with two inlet flip
door valves that are used to shift the flow inlet [8], the flat-plate
and cylindrical stack structure with counterflow arrangement that
can change the flow direction periodically [9], the parallel stagger-
arranged configuration for cylindrical battery [10], and the cubic
configurations for cylindrical battery cells with varying inlet and
outlet locations [11].
It is noticed that the research foci tend to be shifted from con-

ventional steady-state structure design and modification to
dynamic integrated control and optimization. Based on existing
configurations, extensive control strategies have been developed
to constrain the maximum operation temperature. For instance, a
fuzzy logic control method was develop for a straight-forward air-
based cooling system [12]; an observer-based control was
employed to control the air flow direction for a reciprocating struc-
ture [13]; a hysteresis control method was utilized for a similar
reciprocating flow modification [14]; and a dynamic programming
together with a proportional integral-derivative control strategy
was investigated comparatively to determine the best control
strategy [15].
Moreover, model predictive control (MPC) and its family algo-

rithms (e.g., constrained linear MPC, and nonlinear MPC) have
been employed in several studies because of the unique characteris-
tics, i.e., MPC forecasts steps ahead to determine optimal control
solutions. It is worth noting that the MPC for thermal management
usually involves with the power output and energy consumption of
the battery system. For instance, Tao et al. [16] employed MPC to
regulate the refrigerant compressor and cooling air flowrate to keep
an ideal cooling temperature for battery pack. Masoudi et al. [17]
used nonlinear MPC to extend the parallel air cooling study for
Toyota Prius. Amini et al. [18] presented a hierarchical two-layer
MPC scheme to schedule optimal thermal trajectories for the
cabin and battery cooling in hybrid electric vehicles. The aforemen-
tioned studies have revealed the effectiveness of MPC and high-
lighted further potential applications in battery systems. However,
the majority of these studies implemented the thermal control
directly on pre-designed air-cooling structures without further
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optimization, and there has not been any control co-design approach
reported in the literature to design a battery cooling system. Addi-
tionally, lumped battery electric-thermal-fluid models were
usually adopted for simplification, in which the battery temperature
was investigated only at the cell level. The temperature distribution
at the battery pack level has not yet been evaluated and validated
with simulations or experiments.

1.2 Battery Energy Management Strategy. It is also noticed
that the battery charging/discharging with a high power output may
potentially shorten the cycle-life and affect the discharge power
density [1]. From the perspective of thermal control, a high power
density tends to generate a large amount of heat and bring about
inevitable thermal impacts to BTMS. In consequence, it is reason-
able to optimize the discharging sequence of EVs by scheduling
the operations of different devices based on real-time driving con-
ditions. Apart from the driving motor and its assisted subsystems
that mainly depend on actual traffic conditions, other primary
systems including the cabin climate control system/air conditioning
system (AC), as well as BTMS, can be operated with a flexible
energy-efficient schedule that incorporates with the driving motor
jointly through load shifting.
Considering regeneration effects, the discharge scheduling and

optimization refer to two approaches: (i) optimize the operation
sequences of different devices and subsystems to avoid a peak
demand; (ii) utilize the regenerated power directly instead of
recharging the battery system. There exist similar studies in the
literature regarding discharging scheduling optimization for EVs
[19]. However, the majority of previous studies were performed
and evaluated merely in terms of energy-saving using the aforemen-
tioned schedule optimization approach [20]. Moreover, the previous
studies did not consider the side effects of the recharged energy, as
well as its corresponding thermal impact on the whole battery pack
under dynamic driving conditions [21].
Building on state-of-the-art thermal management and operation

scheduling strategies, this paper seeks to investigate the discharging
scheduling and load shifting from the thermal perspective, in which
the process starts with a thermal control of the optimized battery
pack and AC system, and ends up with evaluations of systematic
energy efficiency. The research motivation is to develop an
MPC-based strategy to improve the overall energy efficiency and
battery cycle-life while well retaining thermal constraints of the
battery pack. The established neural network-based J-type air-based
thermal control system by the same authors is inherited in this
study, in which both the plant model and controller are established
with data-driven models [22]. By controlling the operation mode
and the mass flowrate simultaneously, the developed BTMS has
been proved to be able to maintain both the maximum temperature
and the uniformity within expected ranges simultaneously. More-
over, an air precooling module is added to the existing J-type
BTMS with extra cooling capability to mitigate thermal impacts
from severe working conditions [23].

The contributions of this paper are threefold: (i) advanced mod-
eling: the developed vehicle energy model simulates all heavy-duty
electric devices and the BTMS at the cell level; (ii) battery recharge
optimization: this paper aims to minimize the battery recharged
energy by utilizing the regenerated power directly via optimization;
(iii) sequential control co-design: a sequential control co-design
approach [24–26] is applied to BTMS design, in which the
control system is established to improve the energy efficiency
after optimizing plant parameters of the J-type BTMS structure in
our previous study [2].
The remainder of the paper is organized as follows. An EV sys-

tematic model is established in Sec. 2, including a battery model, a
fluid dynamics model, an AC model, and a driving model. The
thermal control system and overall energy management strategy
are presented in Sec. 3. MPC-based management results are ana-
lyzed in Sec. 4. Concluding remarks and future work are discussed
in the last section.

2 Electric Vehicle System Modeling
2.1 Battery System Modeling. Building on comparative

studies of EVs network topology [27], a semi-active configuration
for the battery system is adopted in this paper. The battery pack
is directly connected to the DC-bus, while devices like the driving
motor, the air conditioning system, the cooling fan of BTMS,
and other auxiliary subsystems, are connected to the DC-bus via
DC/AC converters, as illustrated in Fig. 1. The battery pack is
assumed to have a capacity of 36KWh, in which 100 cells are
arranged in series (375 V) and 20 series in parallel. Note that low-
voltage buses, such as 12 V bus and 48 V bus, are not considered
here for simplification purposes, and all their loads are equivalently
transferred to the main DC-bus. The battery electric model and
thermal model are established based on Refs. [28] and [7],
respectively.
The thermal characteristics of the battery are represented using a

lumped model, in which there are two equivalent resistances that
can be estimated using the hybrid pulse power characterization
method (HPPC). It is also claimed that all sensible heat is generated
by the power loss due to varying resistances [29], which highly
depends on the temperature, stage of charge (SoC), and operation
current I, R =R(T , SoC, I), as given by

Ġ(T , SoC, I) = I
∑2
i=1

R2
i /V (1)

where Ġ and V denote the volumetric heat generation rate and the
volume of the battery, respectively. As a status indicator, SoC is
usually defined using the Coulomb counting in a dynamic charging
and discharging process, as given by

SoCt+1 = SoCt ±
1
Qc

∫t+1
t

I dt (2)

Fig. 1 The battery topology and main loads
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where Qc refers to the battery capacity. The characteristic relation-
ship between the open-circuit voltage (OCV) and SoC is estimated
using a polynomial regression, defined as

Vocv = P · Ssoc

Ssoc = [SoC6 · · · SoC2, SoC, 1]T
(3)

The regression matrix P equals to [−40.2, 138.6, −186.2, 123.5,
−42.4, 7.5, 3.3], as shown in Fig. 2. In consequence, the effective
power output from the battery to devices is estimated using a
lumped electric model, as given by

Pb2dev = (Vocv − I
∑N
i=0

Ri)I (4)

On the contrary, when the discharging power is estimated by fore-
casting, the discharging current can be obtained via a numerical trial
and error approach.

2.2 Battery Thermal-Fluid Model. Our previous study [7]
has found that the J-type configuration with mode switching
shows significant improvements for air-based BTMS in terms of
maximum temperature and temperature uniformity, as shown in
Fig. 1. By adjusting the opening degrees of two control valves,
the battery pack is able to balance the temperature distribution
between the left and the right part via switching the operation
mode among the Z-, U-, and J-mode. Note that operation modes
are predefined by the sizes of outlet manifolds, i.e., the left and
right manifold sizes of Z-, U-, and J-mode are 4–8, 8–4, and 6–6
in millimeters, respectively, as shown in Fig. 3. Detailed investiga-
tions of the J-type BTMS and its corresponding control system can
be found in Ref. [30].
Owing to the complexity of analytical solutions, a computational

fluid dynamic (CFD) approach is adopted here, in which the
channel sizes of the configuration are optimized using a surrogate-
based optimization algorithm [31]. The transient flow CFD simula-
tions are performed using ANSYS FLUENT with a k-ϵ turbulence model
and a time-step of 5 s. Simulation outputs are the updated tempera-
tures T[.]k+1 of battery cells that are labeled as 2, 4, 7, and 9 (i.e., the
middle cells of the left part and the right part of the battery pack).
The inputs include the initial battery temperature T[.]k, the

cooling air temperature Tair, the mass flowrate of the approaching
air ṁ, and the equivalent heat generation rate Ġ, as expressed by

[T2, T4, T7, T9](k+1) = S([T2, T4, T7, T9](k), Tair, ṁ, Ġ) (5)

2.3 Dynamic Driving Model. The driving motor and its
accessory system consume the largest amount of energy in EVs
[32]. According to the mechanical and power analyses of a
running vehicle, the equivalent traction power is estimated based
on the road surface friction, gravitational potential, air friction,
and acceleration, as expressed by

Pdrv =
v

η
mgμ cos α + mg sinα +

1
2
ρAf Cdv

2 + m
dv
dT

( )
(6)

The EV specification and driving conditions are summarized in
Table 1. For the regenerative braking system, it is regarded as a
backward of the driving mode, in which various control techniques
have been developed in terms of energy harvesting efficiency and
driving comfortability [33]. For simplification, it is assumed in
this paper that an average of 85% (ηr) of the kinetic energy is har-
vested back into the power system, while the rest is dissipated irre-
versibly by the mechanical braking for safety concerns. The driving
power is negative when regeneration occurs, as given by

Pr2bus =
1

ηmηtηr
(Pdrv(t+1) − Pdrvt ) (7)

2.4 Air Conditioning System Model. According to an auxil-
iary system impact report from the Idaho National Laboratory [35],
the air conditioning system may consume up to 30% of the traction
battery energy for cooling, depending on the air flow volume, and
the temperature difference between the ambient environment and
the cabin. The heat balance model of the electrical air conditioning
system is established separately with the air conditioner model and
the thermal load model, and only the temperature feature is consid-
ered in this study.
There are three major energy consuming components in the AC

system, i.e., the compressor, the evaporator blower, and the con-
denser fan, as presented in Fig. 1. Regarding the air conditioner
modeling, while a full range component level AC simulation
model provides more detailed evaluations of various components
with a higher accuracy, it is very challenging to manage the math-
ematical and computational complexity in terms of phase-changing
flow, thermodynamics, and heat transfer [36]. Since this work
emphasizes more on the energy perspective, the AC energy
model developed in Ref. [37] is adopted. The overall power con-
sumption of the AC system can be simplified and estimated using
a ratio coefficient between the cooling capacity provided and its cor-
responding power consumed by the AC system, which is also
referred to as the coefficient of performance (ηcop), given by

ηcop =
Qac

Pac
= F (Tin, Tex, Plr) (8)

where ηcop is a function of the uniform internal and ambient tem-
peratures, and the partial load ratio Plr. The model is implemented

Fig. 2 The OCV-SoC correlation curve

Fig. 3 The geometry configurations of the J-, Z-, U-mode
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using Gaussian process regression based on the essential data from
the study conducted by Pino et al. [38].
For the thermal load model, several external and internal heat

sources are generally identified and considered in the cabinet
thermal model, as illustrated in Fig. 4 and tabulated in Table 2
after reasonable assumptions and simplifications. The cabin is
assumed to be a trapezoidal box that has a roof panel and an interior
base, surrounded by windows. Solar radiation as well as ambient air
have significant impacts on internal climate via the roof panel and
windows, or through window glasses. As regards the heat conduc-
tion via the roof panel or windows, it is observed that the surface
temperature may probably be higher than the ambient or cabin inter-
nal temperature because of solar radiation. The heat conduction
from body shell to the cabin is estimated using a heat balance
method, as given by

Qcr = αIA − hexA αI + Texhex +
Tin∑ δ

λ
+

1
hin

⎛
⎜⎜⎝

⎞
⎟⎟⎠
/⎛

⎜⎜⎝

hex +
1∑ δ

λ
+

1
hin

⎛
⎜⎜⎝

⎞
⎟⎟⎠ − Tex

⎞
⎟⎟⎠

(9)

where hex denotes the convective heat transfer coefficients between
the roof panel and external ambient. hin denotes the convective coef-
ficient between the roof panel and internal cabin, I is the solar radi-
ation, and α denotes the absorptivity. Tin and Tex are the cabin
internal air temperature and the ambient temperature, respectively.
The heat conduction via windows Qcw has a similar expression
except the value differences of the radiation absorptivity, thickness,
and thermal conductivity of glasses [39].
A previous study [40] have found that the equivalent heat transfer

coefficient between the roof panel and the external ambient is highly
related to the vehicle velocity, while the solar radiative thermal load
through windows highly depends on both the operation time in a
day and its relative whether condition. The radiation I is selected
as 1,200W/m2 in this study. Part of the parameter settings in this
model come directly from the AC simulation toolbox coolsim
developed by the National Renewable Energy Laboratory [41]
and Ref. [39]. It is worth mentioning that the pre-cooling load
serves as an accessibility option for BTMS. When it encounters
with extreme ambient temperatures or severe operation conditions
such as super fast charging and high-speed cruising, this feature
is activated to provide a stronger cooling capability towards
thermal control via cooling down the approaching air. In general,
the control-oriented dynamic temperature response of the vehicle
cabinet can be formulated as follows:

Tin(k+1) = Tin(k) +
(Qcr + Qcw + Qr + Qh + Qf + Qs + Qb) − Qac

ρairVinCair
δt

(10)

where the cabinet volume Vin equals to 3 m3, and δt denotes the
time-step in seconds. Note that the hysteresis effects from both
the power train and the liquid-loop are not considered here. The
adjustment of cabin air temperature is controlled by adjusting the
total power input for the AC system with basic control logistics.
Detailed modeling and controlling of the air conditioning system,
including the compressor, the fan, and the condenser, are beyond
the research scope of this paper.

2.5 BTMS Energy Consumption Model. In the concept
design of the J-type BTMS, the cooling air is actuated by an air
fan under normal conditions. When the ambient temperature is
higher than the predefined threshold or encountering severe operat-
ing conditions, a heat exchanger will be activated to pre-cool the air,
in which the coolant comes directly from the AC system, as shownFig. 4 The transient thermal model of a vehicle’s cabin

Table 1 Parameter specifications (data from Tesla Model 3 [34])

m Mass 1,875 kg α Road gradient 0
Af Windward area 2.22m2 Cd Air friction coeff. 0.24
g Standard gravity 9.8m/s2 η Motion efficiency 0.98
ρ Air density 1.16 kg/m3 μ Rolling resistance 0.01
v Velocity −m/s ηb Battery coeff. 0.91
ηm Motor coeff. 0.94 ηt Transmission coeff. 0.97

Table 2 Vehicle cabin thermal modeling

Physical term Symbol Heat source Temperature Estimation (W) Descriptions and highlights

Conduction/
convection load via
roof panel

Qcr External air
solar radiation

Dependent Eq. 9 or without radiation
Qcr= kcrA(Tex− Tin)

kcr = (
∑

δ
λ +

1
hin

+ 1
hex

)−1

δ: thickness; λ:conductivity; A= 3.6m2; hin=
25 W/(m2K); hex = 4.65 + 13.96

��
v

√

Conduction/
convection load via
windows

Qcw External air
solar radiation

Dependent Eq. 9 or without radiation
Qcw =

∑
kcwA(Tex−Tin)

kcw = ( δλ +
1
hin

+ 1
hex

)−1

A= 1.5m2; hin= 25 W/(m2K);
hex = 4.65 + 13.96

��
v

√

Solar radiation
through windows

Qr Solar flux Independent Qr =
∑n=4

i=1 ηIAisinθiβ Four windows: windshield, rear, left, right; β:
shading factor; θ: installation angle; η: penetration
rate; I: incident radiation

Human body thermal
load

Qh Driver&
Passenger(s)

Independent Qh= 145+ 116n [40] n: passengers number; n=3

Fresh air thermal load Qf Fresh air Dependent Qf = ξṁairCair(Tex − Tin) Ventilation fresh air portion ξ= 12%; ṁair = 0.186
kg/s

Sensible heat load Qs Cabin interior Dependent Qs= hc Ac (Tc− Tin) Tc(k+ 1)=
Tc(k)−Qs/(Ccmc)

hc= 20W/(m2K); Ac= 8m2; mc= 200 kg;
Cc= 1500 J/(kgK)

BTMS pre-cooling
load

Qb Pre-cool BTMS Dependent Qb = ṁCair(Tex − Tair) ṁ: BTMS cooling air flowrate Tair: pre-cooled
temperature
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in Fig. 1. The fan power is estimated by

Pbtms =
ṁPc

ρηc
(11)

where Pc is the pressure augment of the compressor, ρ is the air
density, and ηc is the flow efficiency. All the properties and param-
eters are obtained via CFD simulations, and the relationship is
approximated using a support vector regression model, as shown
in Fig. 5.
Besides the aforementioned systems, other major subsystems and

devices include the power steering, the braking system, the lights,
and the entertainments. Due to the complexities under dynamic con-
ditions, it is challenging to establish a comprehensive dynamic
model that consists of all these subsystems. In this paper, as a trade-
off, only the driving motor with regenerative function, the air con-
ditioner, and the thermal control system are considered and modeled
in detail, while other auxiliary devices are assigned with an esti-
mated fluctuated power that follows a normal distribution as
follows.

Paux ∼ N (μ, α2) =N (1000, 250) (12)

3 The Thermal Control Framework and Energy
Management Strategy
3.1 The Control System of BTMS. A neural network

(NN)-based battery thermal control system has been developed in
our previous study [22], which consists of a temperature prediction
model, an NN-aided controller that is integrated with MPC, and a
mode switching module, as shown in Fig. 6. The feasibility and
effectiveness of the control system as well as the control strategy
have been validated in Ref. [7]. Note that the conceptual framework
neglects the bias in measurement as well as the bias between the
simulated plant and its corresponding real battery system.
Based on the results from transient CFD simulations, a multi-

input multi-output (MIMO) battery temperature prediction model

is implemented with a neural network algorithm, under conditions
with two different approaching air temperatures for J-, U-, and
Z-mode, given as

[T2, T4, T7, T9]k+1 = F (Tave, Tair , ṁ,Ġ) + [T2, T4, T7, T9]k (13)

where the operation temperature Tave is defined as the average
of the four monitoring temperatures. The cooling air temperature
Tair is set as 300K under normal conditions, whereas the air tem-
perature is pre-cooled to 293K with the cabin AC system.
The NN-aided controller aims to generate a reasonable mass

flowrate considering the temperature bias between the battery
pack and the reference trajectory, the operation temperature, the
air temperature, the heat generation rate, and the systematic opera-
tion mode, expressed as

ṁ = C(Tbias, Tave, Tair , Ġ)
Tbias = Tr e f −max(T2, T4, T7, T9)

(14)

As regards the mode switching module, the switching tempera-
ture criterion is defined as the temperature difference between the
left side and right side.

Tsw =max(T2, T4) −max(T7, T9) (15)

The critical criteria of switching to U-, Z-, and J-mode are
defined as Su:Tsw ≥ 0.5K, Sz:Tsw ≤ −0.5K, and Sj:|Tsw| ≤ 0.2K,
respectively. Note that the mode switching is requested to follow
switching sequences like [J-U-Z-1/2U-J ] and [J-Z-U-1/2Z-J ] to
complete an entire switching cycle, in which the system traverses
a complete J-, U-, Z-mode, and a half stroke of either U- or
Z-mode in sequence before it cycles back to J-mode. Due to the
actuator’s operation limitations, the first constraint limits the oper-
ation range, while the second constraint confines the changing
rate, as expressed by

0 ≤ ṁ ≤ 0.012

|Δṁ| ≤ 0.003
(16)

3.2 The Control System of Air Conditioning System. Based
on the cabin thermal load model developed in Sec. 2.4, a
control-oriented AC thermal system can be established. The cabin
temperature is selected as the system output and the AC cooling
capability is chosen as the control variable, as formulated by

ẋ =
(Qcr + Qcw + Qr + Qh + Qf + Qs + Qb) − u

ρairVinCair
y = x

⎧⎪⎨
⎪⎩ (17)

where both x and y denote the cabin temperature Tin, and u repre-
sents the cooling capacity Qac. A basic proportional-integral (PI)
controller is developed to control the temperature of the cabin tem-
perature with a targeted value of 294K. Parameters of the PI con-
troller are tuned based on the situation without the pre-cooling
function. For the sake of energy efficiency, limitations other than
the targeted value are not imposed on the thermal control.
It is worth mentioning that the pre-cooling thermal load for

BTMS, Qb, only activates at a certain time, and the cabin climate
control may probably be affected, since the cooling capacity
of the AC system is limited and the BTMS has a higher
priority over the cabin thermal management. When the maximum
temperature of the battery pack exceeds 311.8K, the pre-cooling
function is activated, whereas it is deactivated after the temperature
declines back to 310K. The constraints are formulated based on the
limitations proposed in Ref. [40], including an operation boundary
and a changing rate limitation as follows:

0 ≤ Qac ≤ 4500ηcop

|ΔQac| ≤ 1000
(18)

Fig. 5 The relationship between the pressure augment and the
mass flowrate for U-, J-, and Z-type structures

Fig. 6 The control framework of the air-based J-type BTMS
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3.3 Energy Management Strategy. The energy management
strategy aims to enhance the energy efficiency as well as the battery
health performance via an MPC algorithm, while retaining the con-
straints from the perspectives of thermal limitations and electrical
requirements. The considerations and approaches are predefined
in a twofold manner: (i) to avoid potential overlapping peaks by
rescheduling the operation of different devices; (ii) to mitigate the
negative effects regarding the battery cycle-life in recharging the
battery by distributing the regenerative energy to auxiliary
systems. By adopting an MPC algorithm, the thermal control and
centralized optimization framework is formulated as follows:

argmin
Qac ,ṁ

J =
∑n+N
k=n

(αk(Pdrvk + Pauxk + Pack + Pbsk )
2

+ βk(Tre fk − Tbk )
2 + ξk(Ttark − Tink )

2)

subject to 0 ≤ ṁ ≤ 0.012

|Δṁ| ≤ 0.003

0 ≤ Qac ≤ 4500ηcop

|ΔQac| ≤ 1000

(19)

where n is the current step and N is the control horizon. Based on
specific control purposes, penalty coefficients αk, βk, and ξk are
preset to attribute weights of the overall power consumption, the
control target temperatures of the cabin and the battery, respec-
tively. The soft constraints of the two subsystems are implemented
via a real-time adjustment of the corresponding coefficient, i.e., the
temperature biases should be constrained within 0.5K and 1K for
BTMS and AC, respectively. Since the second term about the
thermal control of the battery system involves safety concerns, a
larger weighting, βk, is assigned to BTMS compared with the AC
system.
A particle swarm optimization (PSO) algorithm is employed to

solve the problem, in which PSO starts with the original direct
control solutions of the two subsystem. It is worth mentioning
that the stochastic PSO approach is promising to obtain a reasonable
solution instead of a global optimum within limited calculation time
by tuning different convergence criteria.

4 Results and Discussion
An integrated driving cycle that consists of the EPA urban

dynamometer driving schedule (UDDS), the world-harmonized

light-duty vehicles test cycle (WLTC), and the highway fuel
economy driving schedule (HWFET) is directly utilized to test
and validate the energy management strategy [42]. Combined
with the power consumption from auxiliary devices, the uncontrol-
lable power consumptions, i.e., as the management system inputs,
are presented in Fig. 7. The sample time is set to be 5 s.

4.1 No Energy Management Strategy. The BTMS and AC
systems are operated separately based on their own conditions
without a global energy management strategy. For BTMS, the
power consumption of the last step is taken into consideration to
calculate the heat generation rate for the current step, and thus deter-
mine the mass flowrate, as shown in Fig. 8. The temperature distri-
bution of the battery pack along the dynamic process is presented in
Fig. 9. It is seen that the temperatures follow close behind the tar-
geted reference trajectory via switching among the J-, U-, and
Z-mode. Due to the flow characteristic of Z-mode, the battery
cells near the right outlets have a stronger heat dissipation capability
under large flowrate conditions. The temperature uniformity deteri-
orates after 2,100 s, while the maximum temperature in the ninth
battery cell also decreases. At around 2,950 s, the pre-cooling
module activates to provide extra cooling capacity to cope with
the large amount of heat generation. Overall, the BTMS is
capable to retain the temperature within an expected range.
For the AC, though the temperature of the internal air goes down

in a fast manner, the base temperature decreases very slowly
because of limited convection heat transfer, as shown in Fig. 10.
The velocity variations may inevitably bring about fluctuations to
the cabin temperature as well as the power usage. Only a base
load is required to balance the sensible heat from solar radiation
and the human body under normal operations.

4.2 Model Predictive Control-Based Energy Management
Strategy. Based on the MPC algorithm developed in Sec. 3.3,
the forecast horizon is set to be five steps or 25 s. Aiming to
reduce the overall power usages, the power consumptions of
BTMS and AC are scheduled flexibly according to the real-time
driving and auxiliary power usage. Both the BTMS and AC have
similar and accepted performances compared with that of no
energy management, as presented in Figs. 11 and 12. However, it
is observed that the power consumption of BTMS is reduced for
the reason that the overall heat generation is reduced by lowering
the peak load, which is implemented by shifting the operation
with AC, as shown in Fig. 13. For instance, the operation of AC

Fig. 7 The power consumptions of tested driving cycles and
auxiliary devices Fig. 8 The BTMS properties without energy management
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almost completely terminates at around 200–300 s and 2600–2650 s
to avoid overlapping with existing load peaks.
It is also seen that the regeneration power that recharges back to

the battery system is reduced by 4.3% from 8809 J to 8430 J per
battery cell, at the cost of bringing about extra fluctuations in the
temperature controls of BTMS and AC system. The total energy
consumption also has a 6.5% improvement from MPC with a
value of 23,800 J compared with 25,500 J without any management
strategy per battery. Moreover, the final stage SoC with MPC is
0.5864 compared to 0.5653 for the system without control, which
has a 3.8% improvement. Note that the developed algorithm and
control framework are also applicable to liquid-based battery
cooling system, since they share similarities in terms of fluidity
and controllability.

5 Conclusion
This paper developed an MPC-based energy management

strategy to control the electric vehicle cabin climate system and
battery thermal management system simultaneously. A battery
thermal control model was developed using neural network, while
the cabin air conditioning system was established with a propor-
tional-integral control method. The energy management strategy
aims to reduce the values of load peaks, while retaining the con-
straints of the BTMS and AC systems.
The MPC-based energy management strategy was tested using an

integrated driving cycle. Compared to the system with no energy
management, no significant differences were observed in terms of
thermal properties and dynamic balance. However, from the per-
spective of energy efficiency, simulation results revealed that
there were a 4.3% reduction for the recharging energy, and a
6.5% improvement for the overall energy consumption. It is
shown that the MPC-based energy management is a promising solu-
tion to enhance the overall efficiency of EVs.
Potential future work will seek to reduce the computational

complexity by linearizing the system or employing decentralized
MPC approaches. Moreover, we also attempt to adopt a hierarchical
multi-system vertical model predictive control algorithm to
strengthen the control for the battery thermal management system
and cabin AC system.
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