
MITIGATING CYBERATTACK WITH MACHINE LEARNING-BASED

FEATURE SPACE TRANSFORMS

by

Gbadebo Gbadero Ayoade

APPROVED BY SUPERVISORY COMMITTEE:

Latifur Khan, Co-Chair

Kevin W. Hamlen, Co-Chair

Murat Kantarcioglu

Bhavani Thuraisingham

Copyright © 2019

Gbadebo Gbadero Ayoade

All rights reserved

To my parents, Dr and Mrs. Adedapo Ayoade.

MITIGATING CYBERATTACK WITH MACHINE LEARNING-BASED

FEATURE SPACE TRANSFORMS

by

GBADEBO GBADERO AYOADE, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2019

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Latifur Khan and Dr. Kevin Hamlen for the patience,

support and guidance in completing this dissertation.

I would also like to thank my dissertation committee, Dr. Murat Kantarcioglu and Dr.

Bhavani Thuraisingham, for their support and encouragement.

I extend my gratitude to my parents, Dr. and Mrs Adedapo Ayoade and my siblings,

Adewole Ayoade and Adejonwo Ayoade. This dissertation would not be possible without

their patience and sacrifice.

I would like to thank all my friends, Dr. Fred Araujo, Dr. Khaled Al-Naami, Dr. Vishal

Karande and Dr. Swarup Chandra for making this a memorable journey.

The research reported herein was supported in part by ONR award N00014-17-1-2995;

NSF award No. 1513704; NSA award H98230-15-1-0271; AFOSR award FA9550-14-1-0173;

DARPA award FA8750-19-C-0006; NSF under award No. 1054629; AFOSR under award

No. FA9550-12-1-0077; ONR awards N00014-14-1-0030; ARO award W911-NF-18-1-0249;

an endowment from the Eugene McDermott family; NSF FAIN awards DGE-1931800, OAC-

1828467, and DGE-1723602; NSF awards DMS-1737978 and MRI-1828467; an IBM faculty

award (Research); and an HP grant. Any opinions, recommendations, or conclusions ex-

pressed are those of the authors and not necessarily of the aforementioned supporters.

October 2019

v

MITIGATING CYBERATTACK WITH MACHINE LEARNING-BASED

FEATURE SPACE TRANSFORMS

Gbadebo Gbadero Ayoade, PhD
The University of Texas at Dallas, 2019

Supervising Professors: Latifur Khan, Co-Chair

Kevin W. Hamlen, Co-Chair

With the increase in attacks on software systems, there is a need for a new approach in

software defense. In this work, we explore machine learning-based approaches for the de-

tection and mitigation of attacks. A machine learning-based approach can help to learn

patterns that can be used to detect future attacks. However, due to limited labeled training

data in cyber security domain, machine learning-based approaches perform poorly in attack

detection. This work overcomes these challenges by leveraging two main methods. First, we

leverage deception-based honey-patching to label the attack data that can then used to train

machine learning models to detect future attacks. The second method uses transfer learning

method to adapt data from domains with sufficient labels to train our models and test on

data from a different domain. By leveraging these methods, we can show an increase in the

detection performance of machine learning-based models in cyber attack defense systems.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xii

LIST OF TABLES . xiv

CHAPTER 1 INTRODUCTION . 1

1.1 Cyberthreat Detection with Domain Adaptation 3

1.2 Automated Threat Report Classification Over Multi-Source Data 4

1.3 Contribution of this dissertation . 5

1.3.1 Cyber deception based defenses . 5

1.3.2 Cyber attack detection using domain adaptation 6

1.3.3 For threat report classification . 6

1.4 Outline of the dissertation . 6

CHAPTER 2 BACKGROUND . 8

2.0.1 Challenges in IDS Evaluation . 8

2.0.2 Intrusion detection datasets . 9

2.0.3 Deception-enhanced Intrusion Detection 10

2.1 Online Adaptive Metric Learning . 11

2.2 Intrusion Detection . 11

2.2.1 ML-based Intrusion Detection . 11

2.2.2 Feature Extraction for Intrusion Detection 13

2.3 Domain Adaption . 14

CHAPTER 3 DEEPDIG: AUTOMATING CYBERDECEPTION EVALUATION WITH
DEEP LEARNING . 15

3.1 Approach Overview . 15

3.1.1 Traffic Analysis . 16

3.1.2 Data Analysis . 20

3.1.3 Classification . 21

3.2 Case Study . 27

vii

3.2.1 Implementation . 27

3.2.2 Experimental Results . 28

3.2.3 Base Detection Analysis . 30

3.2.4 Monitoring Performance . 32

3.2.5 Resistance to Attack Evasion Techniques 33

3.2.6 Novel Class Detection Accuracy . 33

3.3 Related Work . 35

CHAPTER 4 MITIGATING CYBERATTACKS USING DOMAIN
ADAPTATION TECHNIQUE . 36

4.1 Introduction . 36

4.2 Background . 38

4.2.1 APT attacks . 38

4.2.2 MITRE ATT&CK/Mandiant Kill Chain Phase, Tactics and Techniques 38

4.2.3 DarkNet . 39

4.3 Proposed Approach . 39

4.3.1 Domain Adaptation Approach . 39

4.4 Feature Extraction . 40

4.4.1 Packet Features Analysis . 40

4.4.2 System Call Analysis . 42

4.4.3 Feature Extraction for Darknet dataset 42

4.5 Domain Adaptation . 43

4.5.1 Training and Domain Adaptation . 43

4.6 Domain Adaptation Evaluation . 45

4.6.1 Dataset . 45

4.6.2 Results . 47

4.7 Related Work . 47

CHAPTER 5 AUTOMATED THREAT REPORT CLASSIFICATION OVER MULTI-
SOURCE DATA . 49

5.1 Introduction . 49

5.2 Overview . 53

viii

5.3 Related Work . 53

5.4 Background . 55

5.4.1 MITRE ATT&CK/Mandiant Kill Chain Phase, Tactics and Techniques 55

5.4.2 Sample Threat Report with Tactic and Technique Categorization . . 58

5.4.3 Bias Correction . 59

5.5 Approach . 61

5.5.1 Kill-Chain Phase Detection . 65

5.6 Evaluation . 66

5.6.1 DataSet . 66

5.6.2 Tactics Classification Results . 68

5.6.3 Kill Chain Phases Classification Results 69

5.6.4 Techniques Classification Results . 70

CHAPTER 6 DECENTRALIZED IOT DATA MANAGEMENT 72

6.1 Introduction . 72

6.2 Background . 75

6.2.1 Overview of Architecture . 75

6.2.2 Internet of Things . 76

6.2.3 BlockChain . 77

6.2.4 Trusted Execution Environment . 78

6.3 Overview . 79

6.3.1 Scope and Assumptions . 79

6.3.2 Threat Model . 79

6.3.3 The Case of Using Blockchain for IoT data management 80

6.4 Architecture . 82

6.4.1 Smart Contract Component . 82

6.4.2 IoTSmartContract Detailed DataFlow 83

6.5 Implementation . 85

6.5.1 Ethereum Smart Contract . 85

6.6 Evaluation . 86

ix

6.6.1 Sealing and Unsealing Overhead . 87

6.7 Limitations and Future Work . 88

6.8 Related Work . 88

6.9 Conclusion . 89

CHAPTER 7 DISSERTATION SUMMARY . 90

7.1 Cyberdeception based defenses . 90

7.2 Domain Adaptation . 90

7.3 Threat Report Classification . 90

7.4 Future Work . 91

7.4.1 Cyberdeception based defenses . 91

7.4.2 Domain adaptation . 91

7.4.3 Threat report classification . 91

APPENDIX SMART CONTRACT DEFENSE THROUGH BYTECODE REWRIT-
ING . 92

A.1 Introduction . 92

A.2 Background . 94

A.2.1 Ethereum Virtual Machine . 94

A.2.2 Common Ethereum Smart Contract Vulnerabilities 95

A.3 Challenges . 95

A.3.1 EVM Control-flows and Jump Retargeting 95

A.3.2 Minimizing Overhead in Modified Bytecode 96

A.3.3 Verifying Bytecode Correctness and Transparency 96

A.4 Architecture . 97

A.4.1 In-lined Bytecode Rewriter . 98

A.4.2 Addressing the Policy Rule Generation Challenge 99

A.4.3 Optimized Guard Code Rewrite . 99

A.4.4 EVM Code Verification . 101

A.4.5 Proving Transparency . 102

A.5 Implementation . 103

x

A.6 Evaluation . 103

A.7 Related Work . 105

A.8 Discussion and Future Work . 106

A.9 Conclusion . 106

REFERENCES . 107

BIOGRAPHICAL SKETCH . 120

CURRICULUM VITAE

xi

LIST OF FIGURES

2.1 Deceptive IDS training overview . 10

3.1 Overview of (a) automated workload generation for cyberdeception evaluation,
and (b) deceptive IDS training and testing. 16

3.2 OAML network structure. Each layer Li is a linear transformation output to a
rectified linear unit (ReLU) activation. Embedding layers Ei connect input or
hidden layers. Linear model E0 maps the input feature space to the embedding
space. 22

3.3 Overview of feature transformation . 25

3.4 Ens-SVM classification tpr for 0–16 attack classes for training on decoy data and
testing on unpatched server data. 30

3.5 False positive rates for various training set sizes 31

3.6 DeepDig performance overhead measured in average round-trip times (workload
≈ 500 req/s) . 33

4.1 Sample Trace File showing syscall traces for a attacker scanning session with
nmap network scanning tool . 37

4.2 MITRE ATT&CK Kill Chain Phase . 38

4.3 Dark net selling and buying post . 40

4.4 Feature Space Projection . 41

5.1 Adversarial Emulation and Enterprise System Defense Evaluation using MITRE
Att&ck Collaborative Framework . 50

5.2 Threat Report Data Generation Distribution between Year 2000 and 2018 . . . 51

5.3 Tactics and Techniques classification of Threat Reports 53

5.4 Sample extract from data description for MITRE ATT&CK discovery tactic. . . 55

5.5 MITRE ATT&CK Matrix Snapshot . 57

5.6 Threat Report Classification System . 62

5.7 Technique Classification Accuracy With Confidence Score Propagation using AP-
TReport dataset . 71

6.1 A Simplified Architecture of IoTSmartContract 76

6.2 A BlockChain Data Structure . 77

6.3 A IoTSmartContract Architecture . 81

6.4 Illustration of the Data Flow in IoTSmartContract 84

xii

6.5 Gas utilization for Write Operation on SmartContract. 86

6.6 Throughput based on Increasing Write Workload 86

6.7 Avg Seal and Unseal time . 86

A.1 System architecture . 98

A.2 EVM semantics (abbreviated and simplified) . 101

A.3 MIN, AVG and Max instruction count overhead for integer overflow protection
rewrite . 104

A.4 MIN, AVG and Max instruction count overhead for integer underflow protection
rewrite . 104

xiii

LIST OF TABLES

3.1 Summary of attack workload . 18

3.2 Summary of normal and attack workloads . 18

3.3 Detection rates (%) for scripted attack scenarios (PA ≈ 1%) compared with
results from non-deceptive training (parenthesized) 29

3.4 Detection performance in adversarial settings 34

3.5 Novel attack class detection performance . 35

4.1 Windows vs Linux system call mismatch . 37

4.2 Packet, uni-burst, and bi-burst features . 42

4.3 Datasets Summary . 45

4.4 Comparison of performance (Error %) . 47

5.1 Russian Hammertoss Attack report generated by FireEye Security Company with
corresponding Tactics and Techniques categories. 58

5.2 Automated and Manual Rules Generated From Data 66

5.3 Statistics of Dataset . 67

5.4 Tactic Classification Accuracy Result for APTReport dataset and Symantec
dataset . 67

5.5 Kill Chain Classification Accuracy Result for APTReport dataset and Syman-
tec dataset . 70

6.1 Efficiency of Smart Contract Application based on Gas usage 86

A.1 Average instruction count overheads . 104

xiv

CHAPTER 1

INTRODUCTION 1 2 3 4 5

Cyberdeceptive defenses are increasingly vital for protecting organizational and national

critical infrastructures from asymmetric cyber threats. Market forecasts predict an over $2

billion industry for cyberdeceptive products by 2022 (Mordor Intelligence, 2018), including

major product releases by Rapid7, TrapX, LogRhythm, Attivo, Illusive Networks, Cymme-

tria, and many others in recent years (Sadowski and Kau, 2019).

These new defense layers are rising in importance because they enhance conventional

defenses by shifting asymmetries that traditionally burden defenders back on attackers. For

example, while conventional defenses invite adversaries to find just one critical vulnerability

to successfully penetrate the network, deceptive defenses challenge adversaries to discern

which vulnerabilities among a sea of apparent vulnerabilities (many of them traps) are real.

1 This chapter contains material previously published as: Gbadebo Ayoade, Frederico Araujo, Khaled Al-
Naami, Ahmad M. Mustafa, Yang Gao, Kevin W. Hamlen, and Latifur Khan. ”Automating Cyberdeception
Evaluation with Deep Learning.” In Proceedings of the 53rd Hawaii International Conference on System
Sciences (HICSS), January 2020. Ayoade led the data generation, applied deep learning techniques aspect
of this research

2This chapter contains material previously published as: Frederico Araujo, Gbadebo Ayoade, Khaled Al-
Naami, Yang Gao, Kevin W. Hamlen, and Latifur Khan. ”Improving Intrusion Detectors by Crook-sourcing.”
In Proceedings of the 35th Annual Computer Security Applications Conference (ACSAC), December 2019.
Ayoade led the data generation, applied deep learning techniques aspects of this research

3This chapter contains material previously published as: Ehab Al-Shaer, Jinpeng Wei, Kevin W. Hamlen,
Cliff Wang. ”Chapter 8 Deception-Enhanced Threat Sensing for Resilient Intrusion Detection”, Springer
Science and Business Media LLC, 2019 Ayoade led the data generation aspects of this research

4This chapter contains material previously published as: Li, Yifan., Yang. Gao, Gbadebo Ayoade,
Hemeng Tao, Latifur Khan, and Bhavani Thuraisingham. ”Multistream classification for cyber threat data
with heterogeneous feature space.” In The World Wide Web Conference, WWW ’19, New York, NY, USA,
pp. 2992–2998. ACM. Ayoade led the cyberthreat detection aspect of this research

5This chapter contains material previously published as: Gbadebo Ayoade, Swarup Chandra, Latifur
Khan, Kevin Hamlen, and Bhavani Thuraisingham. ”Automated Threat Report Classification over Multi-
source Data.” In Proceedings of the 4th IEEE International Conference on Collaboration and Internet Com-
puting (CIC), pp. 236–245, October 2018. Ayoade led the machine learning aspect including the design,
implementation and evaluation of the approaches used in this research.

1

As attacker-defender asymmetries increase with the increasing complexity of networks and

software, deceptive strategies for leveling those asymmetries will become increasingly essen-

tial for scalable defense.

Robust evaluation methodologies are a critical step in the development of effective cy-

berdeceptions; however, cyberdeception evaluation is frequently impeded by the difficulty of

conducting experiments with appropriate human subjects. Capturing the diversity, ingenu-

ity, and resourcefulness of real APTs tends to require enormous sample sizes of rare humans

having exceptional skills and expertise. Human deception research raises many ethical dilem-

mas that can lead to long, difficult approval processes (Baumrind, 1979). Even when these

obstacles are surmounted, such studies are extremely difficult to replicate (and therefore

to confirm), and results are often difficult to interpret given the relatively unconstrained,

variable environments that are the contexts of real-world attacks.

Progress in cyberdeceptive defense hence demands efficient methods of conducting pre-

liminary yet meaningful evaluations without humans in the loop. Human subject evaluation

can then be reserved as a final, high-effort validation of the most promising, mature solutions.

Toward this goal, this thesis proposes and critiques a machine learning-based approach

for evaluating cyberdeceptive software defenses without human subjects. Although it is

extremely difficult to emulate human decision-making automatically for synthesizing attacks,

our approach capitalizes on the observation that in practice cyber attackers rely heavily upon

mechanized tools for offense. For example, human bot masters rely primarily upon reports

delivered by automated bots to assess attack status and reconnoiter targets, and they submit

relatively simple commands to the botnet to carry out complex killchains that are largely

mechanized as malicious software. In such scenarios, deceiving the mechanized agents goes

a long way toward deceiving their human masters. Automating the machine-versus-machine

part of the deception evaluation is therefore both feasible and useful.

A major approach to implementing cyber-deception is through honey-patching. For ex-

ample, honey-patches (Araujo et al., 2014, 2015, 2019; Araujo and Hamlen, 2015) introduce

2

application layer deceptions by selectively replacing software security patches with decoy

vulnerabilities. Attempted exploits transparently redirect the attacker’s session to a decoy

environment where the exploit is allowed to succeed. This allows the system to observe

subsequent phases of the attacker’s killchain without risk to genuine assets.

We therefore propose an evaluation methodology that leverages machine learning to (1)

generate realistic streams of synthetic traffic comprised of benign interactions and attacks

based on real threat data and vulnerabilities, and (2) automatically adapt the synthetic

traffic in an effort to evade observed (possibly deceptive) responses to the attacks. The goal

is to obtain the maximum evaluative power of adaptive deceptive defenses without explicit

human adversarial engagement.6 As a case study, we apply our technique to evaluate a

network-level intrusion detection system (IDS) equipped with embedded honeypots at the

application layer.

1.1 Cyberthreat Detection with Domain Adaptation

Due to the scarcity of labeled data, we develop a domain adaptation framework to address

the challenge of using data from multiple domains to train a classifier in detecting cyber-

attacks. For example, many organizations are prone to cyber-attacks. These organizations

deploy threat monitoring tools that collect network packet and system call events as data

streams. To detect these attacks, we have to overcome the challenge of linking these low-level

traces to attacker tactics and intent.

The scarcity of labeled data introduces more limitations in deploying machine learning

techniques in detecting cyber-attacks. Data from some domains are well labeled and data

from these domains can be used to train classifiers from other domains. However, there

is a limitation of adapting data from different domains to train a machine learning model.

6The implementation and datasets used in this dissertation are available in https://github.com/
cyberdeception/deepdig.

3

https://github.com/cyberdeception/deepdig
https://github.com/cyberdeception/deepdig

For example, data streams obtained from Linux machines cannot be used to predict attack

events on a host with a Windows operating system. This is due to the difference in the way

events are recorded on both systems.

Another challenge is in detecting malicious products being sold on the dark web. Due

to the various platforms available for malicious actors to sell illegal goods, such as stolen

credit card numbers, social security numbers, malicious software, root-kits, etc, we need a

system that can obtain labeled train data from different dark web domains and use them to

extract products sold on other dark web domains. By leveraging domain adaptation, we can

increase the performance of the product extraction technique.

Our proposed framework incorporates transfer learning techniques (Wei et al., 2016),

and improve the overall classification accuracy by constructing an objective function to find

an optimal latent feature space for both source and target data, which also preserve the

structure of both data sets.

Our goal is to determine high level concepts of attacker tactics from low level network

and system call traces. Our approach begins with the collection of network and system level

call traces from attack executions. Second, we extract features such as packet length, packet

size, packet direction and packet timestamps from packet data and n-gram features from the

system call traces. Third, we apply domain adaptation if the training and the testing data

originate from different domains.

1.2 Automated Threat Report Classification Over Multi-Source Data

With an increase in targeted attacks such as advanced persistent threats (APTs), enterprise

system defenders require comprehensive frameworks that allow them to collaborate and

evaluate their defense systems against such attacks. MITRE has developed a framework

which includes a database of different kill-chains, tactics, techniques, and procedures that

attackers employ to perform these attacks.

4

In this work, we leverage natural language processing techniques to extract attacker ac-

tions from threat report documents generated by different organizations and automatically

classify them into standardized tactics and techniques, while providing relevant mitigation

advisories for each attack. A näıve method to achieve this is by training a machine learn-

ing model to predict labels that associate the reports with relevant categories. In practice,

however, sufficient labeled data for model training is not always readily available, so that

training and test data come from different sources, resulting in a bias. A näıve model would

typically underperform in such a situation. We address this major challenge by incorporat-

ing an importance weighting scheme called bias correction that efficiently utilizes available

labeled data, given threat reports, whose categories are to be automatically predicted. We

empirically evaluated our approach on 18,257 real-world threat reports generated between

the years 2000 and 2018 from various computer security organizations to demonstrate its

superiority by comparing its performance with an existing approach.

1.3 Contribution of this dissertation

In summary, the contribution of this work is as follows.

1.3.1 Cyber deception based defenses

• We present the design of a framework for replay and generation of web traffic that sta-

tistically mutates and injects scripted attacks into the output streams to more effectively

train, test, and evaluate deceptive, concept-learning IDSes.

• We evaluate our approach on large-scale network and system events gathered via simula-

tion over a test bed built atop production web software, including the Apache web server,

OpenSSL, and PHP.

• We propose an adaptive deception detector to cope with adaptive defenses to detect

outliers in the presence of concept-evolving data streams.

5

1.3.2 Cyber attack detection using domain adaptation

• We build a framework that provides an end-to-end system consisting of data collection,

prepossessing, and feature extraction.

• We develop a novel domain adaptation technique with a novel objective function that

leverages data from different domain environments. For example, we train a classifier

on trace data collected from Windows operating system environment and test on trace

data collected from Linux operating system environment to predict attacker tactics.

1.3.3 For threat report classification

• We build a framework that provides an end-to-end system consisting of data collection,

prepossessing, and feature extraction steps applied to 18,257 threat reports generated

in the last 18 years from reputable security organizations.

• Using machine learning techniques, we address the challenges of non-standard report

formats, threat categories, and limited labeled data availability, for categorizing reports

and generating an appropriate actionable response to threat descriptions.

• We empirically evaluate our framework on a large number of real-world threat reports,

and show the effectiveness of our approach, i.e., we observe an improvement of up to

78% in classification accuracy compared to the existing approach.

1.4 Outline of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 gives a background on the

approaches used in this dissertation.

Chapter 3 discusses our approach and evaluaton of leveraging cyber deception based

techniques in mitigating cyber attacks. Chapter 4 discusses our approach on using domain

6

adaption for cyber attack detection. Chapter 5 outline our approach of classifying attack

reports for faster discovery for use by cyber security defense teams.

Chapter 6 discusses our approach of leveraging blockchain for managing IoT data privacy

for everyday users Chapter 7 gives a summary of this dissertation and future work and

Appendix A presents other works in the protection of vulnerable smart contracts from attack

exploitation.

7

CHAPTER 2

BACKGROUND 1 2 3 4 5

In this chapter we present the challenges encountered in building machine learning based

intrusion detection systems. We also discuss relevant background information on existing

and previous studies.

2.0.1 Challenges in IDS Evaluation

One of the major challenges for evaluation of deceptive IDSes is the general inadequacy of

static attack datasets, which cannot react to deceptive interactions. Testing deceptive de-

fenses with these datasets renders the deceptions useless, missing their value against reactive

threats.

1 This chapter contains material previously published as: Gbadebo Ayoade, Frederico Araujo, Khaled Al-
Naami, Ahmad M. Mustafa, Yang Gao, Kevin W. Hamlen, and Latifur Khan. ”Automating Cyberdeception
Evaluation with Deep Learning.” In Proceedings of the 53rd Hawaii International Conference on System
Sciences (HICSS), January 2020. Ayoade led the data generation, applied deep learning techniques aspects
of this research

2This chapter contains material previously published as: Frederico Araujo, Gbadebo Ayoade, Khaled Al-
Naami, Yang Gao, Kevin W. Hamlen, and Latifur Khan. ”Improving Intrusion Detectors by Crook-sourcing.”
In Proceedings of the 35th Annual Computer Security Applications Conference (ACSAC), December 2019.
Ayoade led the data generation, applied deep learning techniques aspects of this research

3This chapter contains material previously published as: Ehab Al-Shaer, Jinpeng Wei, Kevin W. Hamlen,
Cliff Wang. ”Chapter 8 Deception-Enhanced Threat Sensing for Resilient Intrusion Detection”, Springer
Science and Business Media LLC, 2019 Ayoade led the data generation aspects of this research

4This chapter contains material previously published as: Li, Yifan., Yang. Gao, Gbadebo Ayoade,
Hemeng Tao, Latifur Khan, and Bhavani Thuraisingham. ”Multistream classification for cyber threat data
with heterogeneous feature space.” In The World Wide Web Conference, WWW ’19, New York, NY, USA,
pp. 2992–2998. ACM. Ayoade led the cyberthreat detection aspect of this research

5This chapter contains material previously published as: Gbadebo Ayoade, Swarup Chandra, Latifur
Khan, Kevin Hamlen, and Bhavani Thuraisingham. ”Automated Threat Report Classification over Multi-
source Data.” In Proceedings of the 4th IEEE International Conference on Collaboration and Internet Com-
puting (CIC), pp. 236–245, October 2018. Ayoade led the machine learning aspect including the design,
implementation and evaluation of the approaches used in this research.

8

To mitigate this problem, a method of dynamic attack synthesis is required. A suitable

solution must learn a model of how adversarial agents are likely to react based on their

reactions to similar feedback during real-world interactions mined from real attack data.

The accuracy of such predictions depends upon the complexity of deceptive responses and

the decision logic of the adversaries. For example, when defensive responses are binary

(viz. accept or reject) or a finite list of error messages, accurate prediction is more feasible

than when the output space is large (e.g., arbitrary textual messages). Likewise, automated

agents tend to have high predictability (e.g., learnable by emulating their software logic on

desired inputs), whereas human agents are far more difficult to predict.

2.0.2 Intrusion detection datasets

Another challenge in evaluating intrusion detection systems is the availability of data sets

that represent real life patterns. Due to privacy concerns, Internet service providers do

not provide access to traffic data through their network. This has given rise to researchers

generating their own datasets which could be either biased.

According to the survey paper by (Bhuyan et al., 2014), they classified the available

datasets under 3 categories which include synthetic, benchmark and real life dataset. One

of the recognized challenges in generating dataset is how to capture as many variations

and properties in different system set up, for example dataset from a Linux and Windows

environment will be different even across the same Operating system versions or distributions.

Some of the available dataset are very old (Ahmed et al., 2016), e.g DARPA2000 which do

not represent today’s traffic or attack scenarios.

In order to avoid this pitfalls, we developed a synthetic dataset generator that is inspired

by Windtunnel system (Boggs et al., 2014). Using similar approach, we statistically generate

benign and attack traffic and we collected both network and system level trace for our

evaluation. The technique allows us to introduce randomness therefore, creating a dataset

9

User
Attacker

User
Attacker

monitoring stream

embedded
deception

intrusion
detector audit stream

attack traces

User
Attacker

monitoring stream

embedded
deception

intrusion
detector audit stream

attack traces

Figure 2.1: Deceptive IDS training overview

that is both synthetic and also close to real life dataset traffic. Our dataset also contains

both the network and trace and the corresponding host level system traces, which allows us

to use both external and internal system events for intrusion detection.

Our data generation framework differs from Windtunnel, because we can generate both

encrypted and un-encrypted network traffic. Our monitors is also enhanced since we can

gather more attack information using the deception based framework - honeypatched servers

as demonstrated in this dissertation.

2.0.3 Deception-enhanced Intrusion Detection

Our evaluation approach targets IDS defenses enhanced with deceptive attack-responses

(e.g., (Araujo et al., 2014; Avery and Spafford, 2017; Crane et al., 2013)). Figure 2.1 depicts

the general approach. Unlike conventional intrusion detection, deception-enhanced IDSes

incrementally build a model of legitimate and malicious behavior based on audit streams

and attack traces collected from successful deceptions. The deceptions leverage user inter-

actions at the network, endpoint, or application layers to solicit extra communication with

adversaries and waste their resources, misdirect them, or gather intelligence. This augments

the classifier with security-relevant feature extraction capabilities not available to typical

network intrusion detectors.

10

2.1 Online Adaptive Metric Learning

OAML (Gao et al., 2019) is a recently advanced deep learning approach that improves

instance separation by transforming input features to a new latent space. This generates a

new latent feature space where similar instances are closer together and dissimilar instances

are separated farther. It extends online similarity metric learning (OML) (Li et al., 2018;

Chechik et al., 2010; Jain et al., 2008; Jin et al., 2009; Breen et al., 2002), which employs

pairwise and triplet constraints: A pairwise constraint takes two dissimilar/similar instances,

while a triplet constraint (A,B,C) combines similar instances A and B with a dissimilar

instance C.

We choose OAML since non-adaptive OML usually learns a pre-selected linear metric

(e.g., Mahalanobis distance (Xiang et al., 2008)) that lacks the complexity to learn non-

linear semantic similarities among class instances, which are prevalent in intrusion detection

scenarios. In addition, using a non-adaptive method results in a fixed metric which suffers

from bias to a specific dataset. OAML overcomes these disadvantages by adapting its metric

learning model to accommodate more constraints in the observed data. Its metric function

learns a dynamic latent space from the Bi-Di and N-Gram feature spaces, which can include

both linear and highly non-linear functions.

2.2 Intrusion Detection

2.2.1 ML-based Intrusion Detection

Machine learning-based IDSes (cf., (Garcia-Teodoro et al., 2009; Chandola et al., 2009;

Patcha and Park, 2007; Masud et al., 2008, 2010)) find patterns that do not conform to

expected system behavior, and are typically classified into host-based and network-based

approaches.

11

Host-based detectors recognize intrusions in the form of anomalous system call trace

sequences, in which co-occurrence of events is key to characterizing malicious behavior.

For example, malware activity and privilege escalation often manifest specific system call

patterns (Chandola et al., 2009). Seminal work in this area has analogized intrusion detection

via statistical profiling of system events to the human immune system (Forrest et al., 1996;

Hofmeyr et al., 1998). This has been followed by a number of related approaches using

histograms to construct profiles of normal behavior (Marceau, 2001). Another frequently-

used approach employs a sliding window classifier to map sequences of events into individual

output values (Warrender et al., 1999; Cohen, 1995a), converting sequential learning into a

classic machine learning problem. More recently, long call sequences have been studied to

detect attacks buried in long execution paths (Shu et al., 2015).

Network-based approaches detect intrusions using network data. Since such systems are

typically deployed at the network perimeter, they are designed to find patterns resulting

from attacks launched by external threats, such as attempted disruption or unauthorized

access (Bhuyan et al., 2014). Network intrusion detection has been extensively studied

in the literature (cf., (Bhuyan et al., 2014; Ahmed et al., 2016)). Major approaches can

be grouped into classification-based (e.g., SVM (Eskin et al., 2002), (Awad et al., 2004),

Bayesian network (Kruegel et al., 2003)), information-theoretic (Lee and Xiang, 2001), and

statistical (Krügel et al., 2002; Kruegel and Vigna, 2003; Kruegel et al., 2005) techniques.

Network-based intrusion detection systems can monitor a large number of hosts at rel-

atively low cost, but they are usually opaque to local or encrypted attacks. On the other

hand, intrusion detection systems operating at the host level have complete visibility of ma-

licious events, despite encrypted network payloads and obfuscation mechanisms (Kim et al.,

2007). Our approach therefore complements existing techniques and incorporates host- and

network-based features to offer protective capabilities that can resist attacker evasion strate-

gies and detect malicious activity bound to different layers of the software stack.

12

Another related area of research is web-based malware detection that identifies drive-by-

download attacks using static analysis, dynamic analysis, and machine learning (Kapravelos

et al., 2013; Canali et al., 2011). In addition, other studies focus on flow-based malware

detection by extracting features from proxy-logs and using machine learning (Bartos et al.,

2016).

2.2.2 Feature Extraction for Intrusion Detection

A variety of feature extraction and classification techniques have been proposed to perform

host- and network-based anomaly detection (Masud et al., 2011) (Masud et al., 2011). Ex-

tracting features from encrypted network packets has been intensively studied in the domain

of website fingerprinting, where attackers attempt to discern which websites are visited by

victims. Users typically use anonymous networks, such as Tor, to hide their destination

websites (Wang et al., 2014). However, attackers can often predict destinations by train-

ing classifiers directly on encrypted packets (e.g., packet headers only). Relevant features

typically include packet length and direction, summarized as a histogram feature vector.

HTML markers, percentage of incoming and outgoing packets, bursts, bandwidth, and web-

site upload time have also been used (Panchenko et al., 2011; Dyer et al., 2012). Packet-word

vector approaches additionally leverage natural language processing and vector space models

to convert packets to word features for improved classification (Alnaami et al., 2015).

Bi-Di leverages packet and uni-burst data and introduces bi-directional bursting features

for better classification of network streams. On unencrypted data, host-based systems have

additionally extracted features from co-occurrences and sequences of system events, such as

system calls (Cabrera et al., 2001; Marceau, 2001). DeepDig uses a hybrid scheme that

combines both host- and network-based approaches via a modified ensemble technique.

13

2.3 Domain Adaption

In machine learning, training data and test data are usually assumed to be generated

from the same domain and belong to the same data distribution, which may not be the

case. (Zadrozny, 2004). For example, data traces collected from machines running Linux

exhibit different system call events than machines running Windows. Feature extraction

from these traces will yield different feature dimensions and distributions. This challenge

limits the use of data from across different domains and compounds the problem of data

availability for training a classifier. The differences in domain can be based on two aspects

which includes distinct number of features and distinct feature distribution.

14

CHAPTER 3

DEEPDIG: AUTOMATING CYBERDECEPTION EVALUATION WITH

DEEP LEARNING 1 2 3 4

3.1 Approach Overview

In this chapter, we present our approach to quantitatively assess the resiliency of adaptive,

deceptive, concept-learning defenses for web services against adaptive adversaries (Araujo

et al., 2019) (Ayoade et al., 2020). Our approach therefore differs from works that measure

only absolute IDS accuracy. We first present our approach for generating web traffic to replay

normal and malicious user behavior, which we harness to automatically generate training

and test datasets for attack classification (§3.1.1). We then discuss the testing harness and

analysis used to investigate the effects of different attack classes and varying numbers of

attack instances on the predictive power and accuracy of intrusion detection (§3.1.2).

1 This chapter contains material previously published as: Gbadebo Ayoade, Frederico Araujo, Khaled Al-
Naami, Ahmad M. Mustafa, Yang Gao, Kevin W. Hamlen, and Latifur Khan. ”Automating Cyberdeception
Evaluation with Deep Learning.” In Proceedings of the 53rd Hawaii International Conference on System
Sciences (HICSS), January 2020. Ayoade led the data generation, applied deep learning techniques aspects
of this research

2This chapter contains material previously published as: Frederico Araujo, Gbadebo Ayoade, Khaled Al-
Naami, Yang Gao, Kevin W. Hamlen, and Latifur Khan. ”Improving Intrusion Detectors by Crook-sourcing.”
In Proceedings of the 35th Annual Computer Security Applications Conference (ACSAC), December 2019.
Ayoade led the data generation, applied deep learning techniques aspects of this research

3This chapter contains material previously published as: Ehab Al-Shaer, Jinpeng Wei, Kevin W. Hamlen,
Cliff Wang. ”Chapter 8 Deception-Enhanced Threat Sensing for Resilient Intrusion Detection”, Springer
Science and Business Media LLC, 2019 Ayoade led cyberthreat data generation aspects of this research

4This chapter contains material previously published as: Ahmad M. Mustafa, Gbadebo Ayoade, Khaled
Al-Naami, Latifur Khan, Kevin W. Hamlen, Bhavani Thuraisingham, Frederico Araujo. ”Unsupervised
deep embedding for novel class detection over data stream”, In Proceedings of the 2017 IEEE International
Conference on Big Data (Big Data), 2017 Ayoade led cyberthreat data generation aspects of this research

15

honey-patched server

attack traffic

attack automation

normal traffic

data sources
activities

Selenium client

network monitoring
(pcap)

system monitoring
(scap)

exploits

attack labeling

normal
workload

attack
workload

BBC NewsBBC News

PIIPII

Electronic
Records

Electronic
Records

traffic replayaudit
pcap

attack traces

scap

pcap

scap

pcap

attack traces

scap

pcap

audit stream

scap

pcap

scap

pcap

audit stream

scap

pcap

attack traces

scap

pcap

audit stream

scap

pcap

normal
workload

recorded
web traffic

honey-patched server

attack traffic

attack automation

normal traffic

data sources
activities

Selenium client

network monitoring
(pcap)

system monitoring
(scap)

exploits

attack labeling

normal
workload

attack
workload

BBC News

PII

Electronic
Records

traffic replayaudit
pcap

attack traces

scap

pcap

audit stream

scap

pcap

normal
workload

recorded
web traffic

red teaming

honey-patched server

attack traffic

attack automation

normal traffic

data sources
activities

Selenium client

network monitoring
(pcap)

system monitoring
(scap)

exploits

attack labeling

normal
workload

attack
workload

BBC News

PII

Electronic
Records

traffic replayaudit
pcap

attack traces

scap

pcap

audit stream

scap

pcap

normal
workload

recorded
web traffic

red teaming

(a) traffic analysis

attack detectionattack modeling

feature extraction

classifiermodel update

monitoring stream
(unknown/test)

monitoring
data

alerts

audit stream
labeled attack traces

audit data
attack data

(b) data analysis

Figure 3.1: Overview of (a) automated workload generation for cyberdeception evaluation, and (b)
deceptive IDS training and testing.

3.1.1 Traffic Analysis

Our evaluation methodology seeks to create realistic, end-to-end workloads and attack

killchains to functionally test cyberdeceptive defenses embedded in commodity server ap-

plications and process decoy telemetry for feature extraction and IDS model evolution.

Figure 3.1a shows an overview of our traffic generation framework. It streams encrypted

legitimate and malicious workloads onto endpoints enhanced with embedded deceptions,

resulting in labeled audit streams and attack traces (collected at decoys) for training set

generation.

Workload Generation. Rather than evaluating deception-enhanced IDSes with exist-

ing, publicly available intrusion datasets (which are inadequate for the reasons outlined in

§2.0.1), our evaluation interleaves attack and normal traffic following prior work on defense-

in-depth (Boggs et al., 2014; Araujo et al., 2019), and injects benign payloads as data into

attack packets to mimic evasive attack behavior. The generated traffic contains attack pay-

loads against realistic exploits (e.g., weaponizing recent CVEs for reconnaissance and initial

infection), and our framework automatically extracts labeled features from the monitoring

network and system traces to (re-)train the classifiers.

16

Legitimate workload. The framework uses both real user sessions and automated simulation

of various user actions to compose legitimate traffic. Real interactions comprise web traffic

that is monitored and recorded as audit pcap data in the targeted operational environment

(e.g., regular users in a local area network). The recorded sessions are replayed by our

framework and streamed as normal workload onto endpoints embedding deceptions.

These regular data streams are enriched with simulated interactions, which are created by

automating complex user actions on typical web application, leveraging Selenium (Selenium,

2019) to automate user interaction with web applications (e.g., clicking buttons, filling out

forms, navigating a web page). To create realistic workloads, our framework feeds from

online data sources, such as the BBC text corpus (Greene and Cunningham, 2006), online

text generators (Mockaroo, 2018) for personally identifiable information (e.g., usernames,

passwords), and product names to populate web forms. To ensure diversity, we statistically

sample the data sources to obtain user input values and dynamically generate web content.

For example, blog title and body are statistically sampled from the BBC text corpus, while

product names are picked from the product names data source.

Our implementation defines different customizable user activities that can be repeated

with varying data feeds and scheduled to simulate different workload profiles and temporal

patterns. These include web page browsing, e-commerce website navigation, blog posting,

and interacting with a social media web application. The setup includes common web soft-

ware stacks, such as CGI web applications and PHP-based Wordpress applications hosted

on a monitored Apache web server as shown in Table 3.2.

Attack workload. Attack traffic is generated based on real vulnerabilities. The procedure

harnesses a collection of scripted attacks (crafted using Bash, Python, Perl, or Metasploit

scripts) to inject malicious client traffic against endpoints in the tested environment. At-

tacks can be easily extended and tailored to specific test scenarios during evaluation design,

without modifications to the framework, which automates and schedules attacks according

17

Table 3.1: Summary of attack workload

Attack Type Description Software

1 CVE-2014-0160 Information leak Openssl
2 CVE-2012-1823 System remote hijack PHP
3 CVE-2011-3368 Port scanning Apache

4–10 CVE-2014-6271 System hijack (7 variants) Bash
11 CVE-2014-6271 Remote Password file read Bash
12 CVE-2014-6271 Remote root directory read Bash
13 CVE-2014-0224 Session hijack and information leak Openssl
14 CVE-2010-0740 DoS via NULL pointer dereference Openssl
15 CVE-2010-1452 DoS via request that lacks a path Apache
16 CVE-2016-7054 DoS via heap buffer overflow Openssl

17–22 CVE-2017-5941∗ System hijack (6 variants) Node.js

∗used for testing only, as n-day vulnerability.

Table 3.2: Summary of normal and attack workloads

Normal workload summary

Activity Application Description

Post CGI web app Posting blog on a guestbook CGI web application
Post Wordpress Posting blog on wordpress
Post Wordpress buddypress plugin Posting comment on social media web application
Registration Wordpress woocommerce plugin Product registration and product description
Ecommerce Wordpress woocommerce plugin Ordering of a product and checkout
Browse Wordpress Browsing through a blog post
Browse Wordpress buddypress Browsing through a social media page
Browse Wordpress woocommerce plugin Browsing product catalog
Registration Wordpress User registration
Registration Wordpress woocommerce plugin Coupon registration

to parametric statistical models defined by the targeted evaluation (e.g., prior probability of

an attack, attack rates, reconnaissance pattern).

In the case study reported in §3.2, multiple exploits for recent CVEs were scripted to carry

out different malicious activities (i.e., different attack payloads), such as leaking password

files and invoking shells on the remote web server. These vulnerabilities are important as

attack vectors because they range from sensitive data exfiltration to complete control and

remote code execution. The post-infection payloads execute tasks such as tool acquisition,

basic environment reconnaissance (e.g., active scanning with Nmap, passive inspection of

system logs), password file access, root certificate exfiltration, and attempts at gaining access

to other machines in the network.

18

Monitoring & Threat Data Collection. Our framework tracks two lifecycle events

associated with monitored decoys: upon a decoy hit, the framework records the timestamp

that denotes the beginning of an attack session (i.e., when a security condition is met). After

the corresponding abort event arrives (i.e., session disconnection), the monitoring component

extracts the session trace (delimited by the two events), labels it, and stores the trace outside

the decoy for subsequent feature extraction. Since the embedded deceptions should only host

attack sessions, precisely collecting and labeling their traces (at both the network and OS

level) is effortless using this strategy.

Our approach distinguishes between three separate input data streams: (1) the audit

stream, collected at the target honey-patched server, (2) attack traces, collected at decoys,

and (3) the monitoring stream, the actual test stream collected from regular servers. Each of

these streams contains network packets and OS events captured at each server environment.

To minimize performance impact, we use two powerful and efficient software monitors: sysdig

(to track system calls and modifications made to the file system), and tcpdump (to monitor

ingress and egress of network packets). Specifically, monitored data is stored outside decoy

environments to avoid possible tampering with collected data.

Our monitoring and data collection solution is designed to scale for large, distributed

on-premise and cloud deployments. The host-level telemetry leverages a mainstream kernel

module (Sysdig, 2019) that implements non-blocking event collection and memory-mapped

event buffer handling for minimal computational overhead. This architecture allows sys-

tem events to be safely collected (without system call interposition) and compressed by a

containerized user space agent that is oblivious to other objects and resources in the host

environment. The event data streams originated from the monitored hosts are exported to a

high-performance, distributed S3-compatible object storage server (MinIO, 2019), designed

for large-scale data infrastructures.

19

3.1.2 Data Analysis

Using the continuous audit stream and incoming attack traces as labeled input data, our ap-

proach enables concept-learning IDSes to incrementally build supervised models that are able

to capture legitimate and malicious behavior. As illustrated in Figure 3.1b, the raw training

set (composed of both audit stream and attack traces) is piped into a feature extraction

component that selects relevant, non-redundant features and outputs feature vectors—audit

data and attack data—that are grouped and queued for subsequent model update. Since the

initial data streams are labeled and have been preprocessed, feature extraction becomes very

efficient and can be performed automatically. This process repeats periodically according to

an administrator-specified policy.

Network Packet Analysis. Each packet transmitted and received forms the basic unit

of information flow for our packet-level analysis. Bidirectional (Bi-Di) (Al-Naami et al.,

2016) (Al-Naami et al., 2019) (Al-Shaer et al., 2019) features are extracted from the pat-

terns observed on this network data. Due to encrypted network traffic opacity, features are

extracted from TCP packet headers. Packet data length and transmission time are extracted

from network sessions. We extract histograms of packet lengths, time intervals, and direc-

tions. To reduce the dimension of the generated features, we apply bucketization to group

TCP packets into correlation sets based on frequency of occurrence.

Uni-burst features include burst size, time, and count of groups of packets transmitted

consecutively in one TCP window. Bi-burst features include time and size attributes of

consecutive groups of packets transmitted in two consecutive TCP windows.

System Call Analysis. In order to capture events from within the host, we extract fea-

tures from system-level OS events. Event types include open, read, select, etc., with the

corresponding process name. Leveraging N-Gram feature extraction, we build a histogram

of the N-Gram occurrences. N-Gram is a contiguous sequences of system call events. We

20

consider four types of such N-Gram: uni-events, bi-events, tri-events, and quad-events are

sequences of 1–4 consecutive system call events (respectively).

3.1.3 Classification

Ensemble SVM. After feature extraction, we leverage SVM to classify both Bi-DI and N-

Gram features. SVM uses a convex optimization approach by mapping non-linearly separated

data to a higher dimensional linearly distinguishing space. With the new linearly separable

space, SVM can separate positive (attack) and negative (benign) training instances by a

hyperplane with the maximum gap possible. Prediction is assigned based on which side of

the hyperplane an instance resides.

The models built from Bi-Di and N-Gram are combined into an ensemble to obtain a bet-

ter predictive model. Rather than concatenating the features from both Bi-Di and N-Gram,

which has the drawback of introducing normalization issues, the ensemble combines multiple

classifiers to obtain a better outcome by majority voting. In our case, for each classification

output by the classifier models, we obtain the predicted label and the confidence probabil-

ity of each of the individual classifiers. The outcome of the classifier with the maximum

confidence is picked for the predicted instance.

Confidence is rated using Platt scaling (Platt, 1999), which uses the following sigmoid-like

function to compute the classification confidence:

P (y = 1|x) =
1

1 + exp (Af(x) +B)
(3.1)

where y is the label, x is the testing vector, f(x) is the SVM output, and A and B are scalar

parameters learned using Maximum Likelihood Estimation (MLE). This yields a probability

measure of how much a classifier is confident about assigning a label to a testing point.

Online Adaptive Metric Learning.

OAML leverages artificial neural networks (ANNs) which consist of a set of hidden layers

where the output is fed as input to an independent metric-embedding layer (MEL). The

21

E0

E1

L1

L
(0

)

L0

L0 E2

L
(1

)
L

(2
)

Constraint Stream Adaptive Metric Network

Hedge

Hedge

Hedge

Total Loss

Loss

𝞪0

𝞪1

𝞪2

Figure 3.2: OAML network structure. Each layer Li is a linear transformation output to a rectified
linear unit (ReLU) activation. Embedding layers Ei connect input or hidden layers. Linear model
E0 maps the input feature space to the embedding space.

MELs output an n-dimensional vector in an embedded space that clusters similar instances.

The importance of model generated by each MEL layer is determined by a metric weight

assigned to each MEL. The output of this embedding is used as input to a k-NN classifier,

as detailed below.

Problem Setting. Let S = {(xt,x
+
t ,x

−
t)}Tt=1 be a sequence of triplet constraints sampled

from the data, where {xt,x
+
t ,x

−
t } ∈ Rd, and xt (anchor) is similar to x+

t (positive) but

dissimilar to x−
t (negative). The goal of OAML is to learn a model F : Rd 7→ Rd′ such that

||F (xt)− F (x+
t)||2 � ||F (xt)− F (x−

t)||2. Given these parameters, the objective is to learn

a metric model with adaptive complexity while satisfying the constraints. The complexity

of F must be adaptive so that its hypothesis space is automatically modified.

Overview. Consider a neural network with L hidden layers, where the input layer and the

hidden layer are connected to an independent MEL. Each embedding layer learns a latent

space where similar instances are clustered and dissimilar instances are separated.

Figure 3.2 illustrates our ANN. Let E` ∈ {E0, . . . , EL} denote the `th metric model

in OAML (i.e., the network branch from the input layer to the `th MEL). The simplest

OAML model E0 represents a linear transformation from the input feature space to the

22

metric embedding space. A weight α(`) ∈ [0, 1] is assigned to E`, measuring its importance

in OAML.

For a triplet constraint (xt,x
+
t ,x

−
t) that arrives at time t, its metric embedding f (`)(x∗

t)

generated by E` is

f (`)(x∗
t) = h(`)Θ(`) (3.2)

where h(`) = σ(W (`)h(`−1)), with ` ≥ 1, ` ∈ N, and h(0) = x∗
t . Here x∗

t denotes any anchor

xt (positive x+
t or negative x−

t instance), and h(`) is the activation of the `th hidden layer.

Learned metric embedding f (`)(x∗
t) is limited to a unit sphere (i.e., ||f (`)(x∗

t)||2 = 1) to

reduce the search space and accelerate training.

During the training phase, for every arriving triplet (xt,x
+
t ,x

−
t), we first retrieve the

metric embedding f (`)(x∗
t) from the `th metric model using Eq. 3.2. A local loss L(`) for E`

is evaluated by calculating the similarity and dissimilarity errors based on f (`)(x∗
t). Thus,

the overall loss introduced by this triplet is given by

Loverall(xt,x
+
t ,x

−
t) =

L∑
`=0

α(`)L(`)(xt,x
+
t ,x

−
t) (3.3)

Parameters Θ(`), α(`), and W (`) are learned during the online learning phase. The final

optimization problem to solve in OAML at time t is therefore:

minimize
Θ(`),W (`),α(`)

Loverall

subject to ||f (`)(x∗
t)||2 = 1,∀` = 0, . . . , L.

(3.4)

We evaluate the similarity and dissimilarity errors using an adaptive-bound triplet loss (ABTL)

constraint (Gao et al., 2019) to estimate L(`) and update Θ(`), W (`) and α(`).

Novel Class Detection. Novel classes may appear at any time in real-world monitor-

ing streams (e.g., new attacks and new deceptions). To cope with such concept-evolving

data streams, we include a deception-enhanced novel class detector that extends traditional

classifiers with automatic detection of novel classes before the true labels of the novel class

instances arrive.

23

Data stream classification. Novel class detection observes that data points belonging to a

common class are closer to each other (cohesion), yet far from data points belonging to

other classes (separation). Building upon ECSMiner (Masud et al., 2011; Al-Khateeb et al.,

2016), our approach segments data streams into equal, fixed-sized chunks, each containing

a set of monitoring traces, efficiently buffering chunks for online processing. When a buffer

is examined for novel classes, the classification algorithm looks for strong cohesion among

outliers in the buffer and large separation between outliers and training data. When strong

cohesion and separation are found, the classifier declares a novel class.

Training & model update. A new classifier is trained on each chunk and added to a fixed-sized

ensemble of M classifiers, leveraging audit and attack instances (traces). After each iteration,

the set of M + 1 classifiers are ranked based on their prediction accuracies on the latest data

chunk, and only the first M classifiers remain in the ensemble. The ensemble is continuously

updated following this strategy and thus modulates the most recent concept in the incoming

data stream, alleviating adaptability issues associated with concept drift (Masud et al., 2011).

Unlabeled instances are classified by majority vote of the ensemble’s classifiers.

Classification model. Each classifier in the ensemble uses a k-NN classification, deriving its

input features from Bi-Di and N-Gram feature set models. Rather than storing all data

points of the training chunk in memory, which is prohibitively inefficient, we optimize space

utilization and time performance by using a semi-supervised clustering technique based on

Expectation Maximization (E-M) (Masud et al., 2008). This minimizes both intra-cluster

dispersion and cluster impurity, and caches a summary of each cluster (centroid and frequen-

cies of data points belonging to each class), discarding the raw data points.

Feature transformation. To make the learned representations robust to partial corruption of

the input patterns and improve classification accuracy, abstract features are generated from

the original feature space during training via a stacked denoising autoencoder (DAE) (Vincent

24

Classification (W, b)

in
p

ut

novel class
detection

encode... ...
encode ...

x

z

�

Denoising Autoencoder Training

inp
ut

noise encode... ...

decode

encode decode...

...
x x~

z

x

Figure 3.3: Overview of feature transformation

et al., 2008, 2010) using the instances of the first few chunks in the data stream. Stacked

DAE builds a deep neural network that aims to capture the statistical dependencies between

the inputs by reconstructing a clean input from a corrupted version of it, thus forcing the

hidden layers to discover more robust features (yielding better generalization) and prevent

the classifier from learning the identity (while preserving the information about the input).

Figure 3.3 illustrates our approach (Mustafa et al., 2017). The first step creates a cor-

rupted version x̃ of input x ∈ Rd using additive Gaussian noise (Chen et al., 2014). In other

words, a random value vk is added to each feature in x: x̃k = xk + vk where k = [1 . . . d] and

vk ∼ N (0, σ2) (cf., (Bengio, 2009)). The output of the training phase is a set of weights W

and bias vectors b. We keep the learned weights and baises to transform the feature values of

25

the subsequent instances of the stream. After transforming the features of stream instances,

these are fed back into our novel class detector for training.

One-class SVM Ensemble. Our approach builds an ensemble of one-class SVM classifiers.

One-class SVM is an unsupervised learning method that learns the decision boundary of

training instances and predicts whether an instance is inside it. We train one classifier for

each class. For instance, if our training data consists of instances of k classes, our ensemble

must contain k one-class SVM classifiers, each trained with one of the k class’s instances.

During classification, once a new unlabeled instance x emerges, we classify it using all

the one-class SVM classifiers in the ensemble.

We build our ensemble using the first few chunks of instances. During the classification

of the stream, once novel class’s instances emerge, we train a new one-class SVM classifier

with the new novel class instances. Then we add the new classifier to the ensemble.

Attacker Evasion. To properly challenge deceptive defenses, it is essential to simulate

adversaries who adapt and obfuscate their behaviors in response to observed responses to

their attacks. Attackers employ various evasion techniques to bypass protections, including

packet size padding, packet timing sequence morphing, and modifying data distributions to

resemble legitimate traffic.

In our study, we considered three encrypted traffic evasion techniques published in the

literature: Pad-to-MTU (Dyer et al., 2012), Direct Target Sampling (Wright et al., 2009),

and Traffic Morphing (Wright et al., 2009). Pad-to-MTU (pMTU) adds extra bytes to

each packet length until it reaches the Maximum Transmission Unit (1500 bytes in the

TCP protocol). Direct Target Sampling (DTS) is a distribution-based technique that uses

statistical random sampling from benign traffic followed by attack packet length padding.

Traffic Morphing (TM) is similar to DTS but it uses a convex optimization methodology to

minimize the overhead of padding. Each of these are represented using the traffic modeling

26

approach detailed in §3.1.1 and analyzed using the machine learning approaches detailed

above.

3.2 Case Study

As a case study of our evaluation approach, we applied it to test DeepDig (Araujo et al.,

2019), an IDS platform protecting deceptively honey-patched (Araujo et al., 2014) web

servers. DeepDig is an anomaly-based IDS that improves its detection model over time

by feeding attack traces that trigger honey-patch traps back into a classifier. This core fea-

ture makes it an advanced, intelligent defense that cannot be properly evaluated using static

datasets.

3.2.1 Implementation

We implemented our evaluation framework atop 64-bit Linux. The data generation compo-

nent is implemented using Python and Selenium (Selenium, 2019). The monitoring controller

is 350 lines of node.js code, and leverages tcpdump (tcpdump, 2019), editcap (Linux Manual,

2019), and sysdig (Sysdig, 2019) for network and system call tracing and preprocessing. The

machine learning modules are implemented in Python using 1200 lines of scikit-learn (Pe-

dregosa et al., 2011) code for data preprocessing and feature generation. The novel class

detection component comprises of about 250 lines of code to reference the Theano deep

learning library (Theano Development Team, 2016) and ECSMiner (Masud et al., 2011).

Finally, the OAML module was implemented with 500 lines of PyTorch (PyTorch, 2019)

deep learning development framework code.

Model Parameters. In our experiments, SVM uses RBF kernel with Cost 1.3 × 105, and

gamma is 1.9× 10−6. OAML employs a ReLU network with n = 200, L = 1, k = 5, learning

rate of 0.3, lr decay of 1 × 10−4, and ADAM optimizer. One-class SVM uses RBF kernel

and Nu = 0.5. Novel class detection uses the DAE denoising autoencoder with L = 2, input

27

feature size = 6000, first layer = 2
3

of input size, second layer = 1
3

of input size, and additive

Gaussian noise where σ = 1.1.

Noise injection. Rather than testing with existing, publicly available intrusion datasets

(which are inappropriate evaluations of DeepDig, since they lack concept-relevance for

deception and are generally stripped of raw packet data), our evaluation interleaves attack

and normal traffic following prior work on defense-in-depth (Boggs et al., 2014), and injects

benign payloads as data into attack packets to mimic evasive attack behavior. The generated

traffic contains attack payloads against recent CVEs for which we created and tested realistic

exploits, and our framework automatically extracts labeled features from the monitoring

network and system traces to (re-)train the classifiers.

Dataset. Web traffic was generated from a separate host to avoid interference with the

test bed server. To account for operational and environmental differences, our framework

simulated different workload profiles (according to time of day), against various target con-

figurations (including different background processes and server workloads), and network

settings, such as TCP congestion controls. In total, we generated 42 GB of (uncompressed)

network packets and system events over a period of three weeks. After feature extraction,

the training data comprised 1800 normal instances and 1600 attack instances. Monitoring

or testing data consisted of 3400 normal and attack instances gathered at unpatched web

servers, where the distribution of normal and attack instances varies per experiment.

3.2.2 Experimental Results

Table 3.3 measures the accuracy of classifiers that were trained using deceptive servers, and

then tested on attacks against unpatched servers. Attacks are uniformly distributed across

all synthetic attack classes and variants described in §3.1.1. Each result is compared (in

parentheses) against the same experiment performed without any deception. The results

show that leveraging deception yields an 8–22% increase in classification accuracy, with an

28

Table 3.3: Detection rates (%) for scripted attack scenarios (PA ≈ 1%) compared with results from
non-deceptive training (parenthesized)

Classifier tpr fpr acc F2 bdr

Bi-Di KNN 74.00 (-3.0) 0.01 (-41.2) 88.58 (+20.0) 78.00 (+19.4) 98.68 (+96.1)
N-Gram KNN 87.00 (+3.2) 0.01 (-5.1) 93.14 (+5.2) 89.00 (+1.3) 98.87 (+84.1)

Bi-Di DT 93.00(+16.2) 0.01 (-41.2) 96 (+28) 94.00 (+35.0) 98.97 (+97.1)
N-Gram DT 12.00 (-62) 0.01 (-5.1) 58.58 (-30.0) 15.00 (-73.4) 92.68 (+78.0)

Bi-Di RF 92.00(+15.0) 0.05(-40.95) 93.58(+24.04) 92.00(+32.31) 94.68(+92.13)
N-Gram RF 24.00 (-60.0) 0.01 (-5.1) 64.14 (-24.0) 28.00 (-60.0) 96.87 (+82.1)

Bi-Di OML 91.00(+13.2) 0.01 (-41.2) 91.14 (+22.2) 90.00 (+30.3) 98.92 (+97.1)
N-Gram OML 65.00 (-19.9) 0.01 (-5.1) 88.58 (+0.0) 80.00 (-8.4) 98.50 (+83.8)

Bi-Di SVM 79.00 (+1.2) 0.78 (-40.5) 89.88 (+20.9) 78.69 (+19.0) 50.57 (+36.1)
N-Gram SVM 92.42 (+7.5) 0.01 (-5.1) 96.89 (+8.3) 93.84 (+5.5) 99.05 (+84.6)
Ens-SVM 93.63 (+8.8) 0.01 (-5.1) 97.00 (+8.4) 94.89 (+6.5) 99.06 (+84.6)

8–20% increase in true positives and a 5–41% reduction in false positives. Env-SVM achieves

97% accuracy with almost no false positives (0.01%).

These significant gains demonstrate that the detection models of each classifier learned

from deception-enhanced data generalize beyond data collected in decoys. This showcases

the classifier’s ability to detect previously unseen attack variants. DeepDig thus enables

administrators to add an additional level of protection to their entire network, including

hosts that cannot be promptly patched, via the adoption of a honey-patching methodology.

Figure 3.4 shows that as the number of training attack classes (which are proportional

to the number of vulnerabilities honey-patched) increases, a steep improvement in the true

positive rate is observed, reaching an average above 93% for Ens-SVM, while average false

positive rate in all experiments remains low (< 1%). This demonstrates that deception has

a feature-enhancing effect—the IDS learns from the prolonged adversarial interactions to

detect more attacks.

Testing on an “unknown” vulnerability. We also measured our approach’s ability

to detect a previously unseen, unpatched remote code execution exploit (CVE-2017-5941)

carrying attack payloads (classes 17–22) resembling the payloads that have been used to

29

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%

number of attack classes

ens-SVM

Figure 3.4: Ens-SVM classification tpr for 0–16 attack classes for training on decoy data and testing
on unpatched server data.

exploit honey-patched vulnerabilities (CVE-2014-6271). In this experiment, CVE-2017-5941

is used as an n-day vulnerability for which no patch has been applied. The resulting 98.6–

99.8% tpr and 0.01–0.67% fpr show that crook-sourcing helps the classifier learn attack

patterns unavailable at initial deployment, but revealed by deceived adversaries during decoy

interactions, to learn exploits for which the classifier was not pre-trained.

False alarms. Figure 3.5 plots the false positive rates for classifiers that have undergone 30

incremental training iterations, each with 1–30 normal/attack instances per class. With just

a few attack instances (≈ 5 per attack class), the false positive rates drop to almost zero,

demonstrating that DeepDig’s continuous feeding back of attack samples into classifiers

greatly reduces false alarms.

3.2.3 Base Detection Analysis

In this section we measure the success of DeepDig in detecting intrusions in the realistic sce-

nario where attacks are a small fraction of the interactions. Although risk-level attribution for

30

 0

 20

 40

 60

 0 5 10 15 20 25 30

%

number of instances per attack class

Bi-Di
N-Gram

ens-SVM
Bi-Di-OML

Ngram-OML

Figure 3.5: False positive rates for various training set sizes

cyber attacks is difficult to quantify in general, we use the results of a prior study (Dudorov

et al., 2013) to approximate the probability of attack occurrence for the specific scenario of

targeted attacks against business and commercial organizations. The study’s model assumes

a determined attacker leveraging one or more exploits of known vulnerabilities to penetrate

a typical organization’s internal network, and approximates the prior of a directed attack to

PA = 1% (based on real-world threat statistics).

To estimate the success of intrusion detection, we use a base detection rate (bdr) (Juarez

et al., 2014), expressed using the Bayes theorem:

P (A|D) =
P (A) P (D|A)

P (A) P (D|A) + P (¬A) P (D|¬A)]
, (3.5)

where A and D are random variables denoting the occurrence of a targeted attack and the

detection of an attack by the classifier, respectively. We use tpr and fpr as approximations

of P (D|A) and P (D|¬A), respectively.

The final columns of Tables 3.3–?? present the bdr for each classifier, assuming P (A) =

PA. The parenthesized comparisons show how our approach overcomes a significant practical

31

problem in intrusion detection research: Despite exhibiting high accuracy, typical IDSes are

rendered ineffective when confronted with their extremely low base detection rates. This is

in part due to their inability to eliminate false positives in operational contexts. In contrast,

the fpr -reducing properties of deception-enhanced defense facilitate much more effective

detection of intrusions in realistic settings, with bdr increases of up to 97%.

3.2.4 Monitoring Performance

To assess the performance overhead of DeepDig’s monitoring capabilities, we used ab

(Apache HTTP server benchmarking tool) to create a massive user workload (more than

5,000 requests in 10 threads) against two web server containers, one deployed with network

and system call monitoring and another unmonitored.

Figure 3.6 shows the results, where web server response times are ordered ascendingly.

Our measurements show average overheads of 0.2×, 0.4×, and 0.7× for the first 100, 250, and

500 requests, respectively, which is expected given the heavy workload profile imposed on the

server. Since server computation accounts for only about 10% of overall web site response

delay in practice (Souders, 2007), this corresponds to observable overheads of about 2%, 4%,

and 7% (respectively).

While such overhead characterizes feasibility, it is irrelevant to deception because un-

patched, patched, and honey-patched servers are all slowed equally by the monitoring activ-

ity. The overhead therefore does not reveal which apparent vulnerabilities in a given server

instance are genuine patching lapses and which are deceptions, and it does not distinguish

honey-patched servers from servers that are slowed by any number of other factors (e.g.,

fewer computational resources).

32

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400 450 500

m
s

requests

monitoring
no monitoring

Figure 3.6: DeepDig performance overhead measured in average round-trip times (workload ≈
500 req/s)

3.2.5 Resistance to Attack Evasion Techniques

Table 3.4 shows the results of the deceptive defense against our evasive attack techniques

compared with results when no evasion is attempted. In each experiment, the classifier is

trained and tested with 1800 normal instances and 1600 morphed attack instances.

Our evaluation shows that the tpr drops slightly and the fpr increases with the intro-

duction of attacker evasion techniques. This shows that the system could resist some of the

evasions but not all. However, we can conclude that an increase in the frequency of classifier

retraining may be needed to accommodate the drop in performance. This may be a challenge

as shorter time interval results in fewer data points to retrain the classifier to maintain their

detection performance.

3.2.6 Novel Class Detection Accuracy

To test the ability of our novel class classifier to detect novel classes emerging in the moni-

toring stream, we split the input stream into equal-sized chunks. A chunk of 100 instances is

33

Table 3.4: Detection performance in adversarial settings

Evasion technique tpr fpr acc F2

No evasion 93.63 0.01 97.00 99.06
pMTU 75.84 0.96 85.78 79.57
DTS 82.78 6.02 87.58 84.91
TM 79.29 6.17 85.52 81.91

classified at a time where one or more novel classes may appear along with existing classes.

We measured the tpr (total incremental number of actual novel class instances classified as

novel classes) and the fpr (total number of existing class instances misclassified as belonging

to a novel class).

Table 3.5 shows the results for OneSVM and ECSMiner. Here ECSMiner outperforms

OneSVM in all measures. For example, for Bi-Di features, ECSMiner observes an fpr of

26.66% while OneSVM reports an fpr of 31.88%, showing that the binary-class nature of

ECSMiner is capable of modeling the decision boundary better than OneSVM. To achieve

better accuracy, we augmented ECSMiner with extracted deep abstract features using our

stacked denoising autoencoder approach (DAE & ECSMiner). For DAE, we used two hidden

layers (where the number of units in the first hidden layer is 2/3 of the original features,

and the number of units in the second hidden layer is 1/3 of the first hidden layer units).

For the additive Gaussian noise, which is used for data corruption, we assigned σ = 1.1.

As a result, fpr reduced to a minimum (0.01%), showing a substantial improvement over

ECSMiner. Notice that using the abstract features with OneSVM does not help as shown

in the table.

While effective in detecting concept drifts, our novel class detection technique requires a

(semi-)manual labeling of novel class instances. In our future work, we plan to investigate

how to automatically assign labels (e.g., deceptive vs. non-deceptive defense response) to

previously unseen classes.

34

Table 3.5: Novel attack class detection performance

Features Classifier tpr fpr

Bi-Di OneSVM 44.06 31.88
DAE & OneSVM 76.54 85.61
ECSMiner 74.91 26.66
DAE & ECSMiner 84.73 0.01

N-Gram OneSVM 54.25 45.13
DAE & OneSVM 80.09 71.49
ECSMiner 76.36 34.89
DAE & ECSMiner 89.67 2.95

3.3 Related Work

Deception-enhanced IDS. Our evaluation methodology is designed to assess adaptive,

deception-enhanced IDS systems protecting web services. Examples from the literature

include shadow honeypots (Anagnostakis et al., 2005, 2010), Argos (Portokalidis et al., 2006),

Honeycomb (Kreibichi and Crowcroft, 2004), and DAW (Tang and Chen, 2005).

Synthetic Attack Generation. Our approach was inspired by WindTunnel (Boggs et al.,

2014), which is a synthetic data generation framework for evaluating (non-deceptive) security

controls. WindTunnel acquires data from network, system call, file access, and database

queries and evaluates which of the data sources provides better signal for detection remote

attacks. The DETER (Benzel et al., 2006) testbed provides a framework for designing

repeatable experiments for evaluating security of computer systems.

35

CHAPTER 4

MITIGATING CYBERATTACKS USING DOMAIN

ADAPTATION TECHNIQUE 1

4.1 Introduction

In recent years, a large number of organizations have encountered sophisticated network

attacks, including advanced persistent threats (APT) (Fireeye, a). For example, Figure 4.1

displays a snapshot of a trace file showing scanning session of an attacker using the nmap

tool to scan a victim’s network. Our goal in this work is to link the low level event traces

to the higher concept of actions called tactics deployed by an attacker. Bridging this gap

is challenging for multiple reasons. First, extracting useful features to train the classifier is

challenging. For example, a typical event trace consists of noisy operating system events

that do not correspond to attacker actions.

Additionally, the scarcity of labeled data has limited the use of machine learning tech-

niques in detecting APT attacks. However, some domains tend to suffer more attacks and

the data collected can be used to train classifiers in another domain. For example, some

operating systems encounter more attacks and therefore attract more attacker actions. The

data collected from these attacks can be used to detect attacks in platforms with less avail-

able labeled data. However, there is the challenge of adapting data from different domains

to train a machine learning model. For example, data collected from Linux machines cannot

be directly used to predict attack events on a host deploying the Windows operating system.

That is, the open system call in Linux is named OpenFile system call in Windows operating

1This chapter contains material previously published as: Li, Yifan., Yang. Gao, Gbadebo Ayoade,
Hemeng Tao, Latifur Khan, and Bhavani Thuraisingham. ”Multistream classification for cyber threat data
with heterogeneous feature space.” In The World Wide Web Conference, WWW ’19, New York, NY, USA,
pp. 2992–2998. ACM. Ayoade led the cyberthreat detection aspect of this research

36

WIndows Syscall TracesLinux Syscall Traces

??? Detect Unknown
Attacker Tactics

Figure 4.1: Sample Trace File showing syscall traces for a attacker scanning session with nmap
network scanning tool

Table 4.1: Windows vs Linux system call mismatch

Operation Syscall in Linux Sysdig Syscall Windows by sysmon

Read file read ReadFile

Write to file Write WriteFile

Open file Open OpenFile

Close file Close CloseFile

Socket accept Accept TCP Accept

Socket connect Connect TPC Connect

Flush registry - RegFlushKey

system resulting in a string mismatch between these two similar events as shown in Table

4.1.

To overcome this limitation, a näıve approach would be to manually map the feature

space of the domains to each other. However, this process is cumbersome and slow. We

overcome this challenge by proposing a novel domain adaptation method (Li et al., 2019)

that automatically learns a new feature space that projects the individual feature spaces

across multiple domains to a latent space.

37

Reconnaissance Weaponize Delivery Exploit Control Execute Maintain

Tactics: persistence, privilege escalation, defense evasion,
credential access discovery, lateral movement, execution,
collection, ex filtration, command and Control

Figure 4.2: MITRE ATT&CK Kill Chain Phase

4.2 Background

4.2.1 APT attacks

In this section, first, we present relevant background information on the MITRE ATT&CK

framework. Second, we discuss the domain adaptation technique.

4.2.2 MITRE ATT&CK/Mandiant Kill Chain Phase, Tactics and Techniques

ATT&CK is a threat categorization framework developed by MITRE to identify unique at-

tacker behaviors and actions. They categorize the attacks into tactics and techniques. (MITRE,

MITRE). Attackers usually perform their attacks in phases as shown in Figure 4.2. Attack-

ers can methodically complete their attack mission without being detected by defenders.

Knowledge of these attack tactics and techniques can help defenders in detecting and miti-

gating these attacks. These phases include reconnaissance, weaponization, delivery,

exploitation, command and control, and execution and maintenance . The early

phase of the attack life cycle consists of reconnaissance, weaponization, delivery, exploitation

while the late phase consists of command and control, execute and maintain.

38

4.2.3 DarkNet

In recent years, there has been an increase in data theft which is usually listed on illegal

websites that are often hidden from the open internet. This hidden websites are usually

anonymous and are usually hosted on the Tor network. As a result, these websites are called

darknet. Because of the nature of these websites, illegal activities such as the sale of stolen

credit-card numbers, passwords, social security numbers, email addresses. Other dangerous

items include malicious executable, viruses, ransomware, cryptoware are usually listed on

these websites. For example, Figure 4.3 shows a real-world listing of a posting for a request

to buy a ”crypter” for a ransomware attack. Likewise, the second post shows a request for

the sale of stolen UK email addresses.

We aim to create a framework that enables us to extract what words in the listings

are products. With such extraction, we can create an automated way to scan darknet for

illegal goods sold which can then be utilized by law enforcement agencies or even credit card

companies to track stolen data.

To achieve this goal, we will require a lot of labeled data especially, across multiple

darknet domains. By leveraging domain adaptation, we can use data labeled from one

darknet domain on another data collected from a different target domain.

4.3 Proposed Approach

4.3.1 Domain Adaptation Approach

The goal of Multisource Domain Adaptation (MSDA) is to learn a feature space that is

common among two distinct data set. Figure 4.4 illustrates this idea where the source data

is a two-dimensional and the target data is a one-dimensional data. With MSDA, we can

learn a latent feature space where the original and the latent space features are from the same

distribution. MSDA also preserves the structure of the data after transformation, that is, the

39

Figure 4.3: Dark net selling and buying post

decision boundaries of the different classes is preserved. The aim is to learn a feature space

where the measure of similarity between the original and latent space feature is maximized.

4.4 Feature Extraction

4.4.1 Packet Features Analysis

For feature extraction, we extract both Uni-burst and Bi-Burst features as shown in Table 4.2.

A Burst is a sequence of consecutive packets that are transmitted in the same direction. We

use only the header information of the packets. In our case, we use all packets transmitted

which include both TCP and UDP packets.

40

Figure 4.4: Feature Space Projection

Require: Labeled source data S, Unlabeled target data T ,
Similarity parameter β.

Ensure: Labels predicted on T .
1: /* Initialization */
2: Bs, Bt ← readData(S, T)
3: /* DA for initial buffer */
4: Ws,Wt ← genProjectionFunction(Bs, Bt, β)
5: Ls, Lt ← genProjectionMatrix(Bs, Bt,Ws,Wt)
6: M ← buildModel(Ls, Ys)
7: /* Generate predictions */
8: ŷt ← getPrediction(M,Lt)

Uni-burst features A Uni-burst consists of the burst size, time and count. The burst size

is the summation of all the individual packet payload lengths in the burst. The time is the

41

Table 4.2: Packet, uni-burst, and bi-burst features

Category Features
Packets Packet Length
Uni-Burst Uni-Burst Size,Uni-Burst Count, Uni-Burst Time
Bi-Burst Bi-Burst Size, Bi-Burst Time

total transmission time of the the burst and the count is the total number of packets in the

burst.

Bi-burst features For Bi-burst, we use the Bi-burst size and time. For each consecutive

burst, we take the burst size, time for the downlink and uplink burst and get the Tx-Rx-

bursts and Rx-Tx-bursts. The Bi-burst feature helps to capture dependencies within the

packet flow on the network.

4.4.2 System Call Analysis

We collected host machine traces which includes a collection of operating system events,

where each event consist of event types like (e.g., open, read, select), process name and

process arguments . Our prototype implementation was developed for Linux x86 64 systems

and Windows systems. We build histograms from these system calls using N-Gram. With

N-Gram, we extract features from contiguous sequences of system calls.

There are four feature types: Uni-events are system calls with single sequence. Bi-events

are consist of a sequence of two consecutive events as a single feature.

Likewise, tri- and quad-events consist of sequence of three and four consecutive events.

4.4.3 Feature Extraction for Darknet dataset

In order to extract features for classifying which words are product or not, we leverage the

Penn Part of Speech Tags (POS) and Stanford postagger system. With the POS tagger, we

extract features such as if a word is a noun, pronoun, verb or adjective. We also look at the

42

position of the word in the post. We use one-hot encoding to encode which part of speech

tag a word belongs to by setting the corresponding vector position as one or zero.

4.5 Domain Adaptation

By leveraging domain adaptation, we propose a module that maps both source and target

data to an optimized latent subspace. First, we learn a projection function for the source

and target data instances. The learned function is then used to transform target or testing

instances to a latent feature space representation. Second, we train a classifier based on the

latent features and the classifier is used to classify target data instances. subsection 4.5.1

provides more details on these steps.

4.5.1 Training and Domain Adaptation

For our framework, the source and target data is stored in Bs and Bt respectively. Based

on our problem definition, we know that data contained in Bs have true labels, and data

in Bt do not have labels. We formulate the domain adaption method as an optimization

problem (Wei et al., 2016). For our approach, we ensure that our method preserves the

structure of the data across the latent feature space. The preservation is achieved by using

a proper co-regularizer in the third term of Equation 4.1.

We now describe how it works.

First, we load the source and target data into the memory, it results in the following data:

source data matrix Bs ∈ RNm×m; source labels vector Ys ∈ RNm×1, and; target data matrix

Bt ∈ RNm×n. Where Nm is the number of data in the dataset. Therefore, we minimize the

following objective function to learn the best projection strategy of Ls and Lt in the latent

feature space:

O = min
Ls,Lt

` (Bs, Ls) + ` (Bt, Lt) + βD (Ls, Lt) (4.1)

43

where Bs, Bt are source and target data in memory; the projected data is represented

by Ls, Lt; ` (·, ·) represent the distance metric between the projected and the original data

instances. We represent the co-regularizer with D (·, ·) which preserves the projected domain

similarities between Ls and Lt. β is a used to define how similar the projected data should be.

The initial two terms are used to preserve the structural form of the original data. Therefore,

the matrix trace norm is a Frobenius norm of the loss function ` (·, ·) which is defined as

` (Bs, Ls) which is equal to ‖Bs − LsWs‖2
F , and ` (Bt, Lt) equals ‖Bt − LtWt‖2

F , where Ws

and Wt are projection functions. Note that here we are not applying the alternative definition

such as ` (Bs, Ls) as ‖BsWs − Ls‖2
F , since this definition will always lead to a trivial solution

Ws = 0 and Ls = 0, thus BsWs = Ls = 0 will always minimize the objective function. From

Equation 4.1 the projected data should preserve original structure of the data.

In addition, D (Ls, Lt) is defined as follows:

D (Ls, Lt) =
1

2
` (Bs, Lt) +

1

2
` (Bt, Ls) (4.2)

Equation 4.2 defines the cross-similarity mean value between the projected and the orig-

inal instances. Finally, we minimize the the differences between D(Ls, Lt) by using the

parameter β to control similarity co-regularization.

We obtain the following objective function as follows:

O = ‖Bs − LsWs‖2
F + ‖Bt − LtWt‖2

F

+
1

2
β ‖Bs − LtWs‖2

F +
1

2
β ‖Bt − LsWt‖2

F

(4.3)

We therefore adopt an alternative formula to solve this problem by iteratively fixing

one of the projection matrices until the remaining one converges. That is, we can take the

derivative of O with regard to Ws and Wt. Under this conditions, our formula is defined as

follows accordingly.

44

Table 4.3: Datasets Summary

Data type Datasets # features # instances

APT detection
Win 28 10587
Linux 105 10801

Dark web

BlackHat 38 32414
Nulled 38 9930
Darkode 67 100,000
Hack 67 100,000

∂O
∂Ws

= (2 + β)Ws − 2L>s Bs − βL>t Bt

∂O
∂Wt

= (2 + β)Wt − 2L>t Bt − βL>s Bt

(4.4)

Combining Equation 4.1 and 4.2 together, then we can take the derivative of O with

regard to Ws and Wt re respectively. According to Long et al. (Long et al., 2008), setting both

partial derivatives to zero would generate the optimal solution based on KTT conditions.

Consequently, the projection function for both source and target data can be formulated as:

Ws =
β

2 + β
L>t Bs +

2

2 + β
L>s Bs

Wt =
β

2 + β
L>s Bt +

2

2 + β
L>t Bt

(4.5)

After performing the steps derived above, we can obtain the optimal projection of the

data instances to the latent space.

4.6 Domain Adaptation Evaluation

4.6.1 Dataset

Win and Linux Table 4.3 gives a summary of our dataset. We collect both system-call

events from windows host machines and Linux host machines. Each event consists of event

45

types like (e.g., open, read, select), process name and process arguments. Our generated

dataset consists of various attack scenarios which include malicious exlfiltration of data,

password theft, setting up a malicious port listening service for command and control, and

using nmap to scan the victim’s enterprise system. The benign instances were generated

from web browsing activities and ssh login sessions.

Using sysdig system trace tool, we collected traces of system call events for Linux and

for windows, we utilized procmon tool. In total, we collected 10,587 instances for Windows

and 10,801 instances for Linux. In total, we collected 10,587 and 10,801 trace instances. We

build histograms from these system calls using N-Gram. We extracted 28 unique features for

Windows system and 105 features for Linux systems. To evaluate our approach, we generated

the APT dataset using the APT simulator tool (NextronSystems, NextronSystems). This

tool allows us to generate attacks based on the MITRE attack tactics framework. This

tool uses real-world attack toolkits found in the wild from different APT attack campaigns,

therefore allowing us to evaluate our system with realistic attack payloads.

For each tactic, we executed the script and collected the network and system call traces

over different system execution windows using tcpdump and procmon respectively.

BlackHat, Nulled, Darkode and Hack (Portnoff et al., 2017) Figure 4.3 are datasets

collected from dark website forums where illegal goods such as stolen passwords, credit card

numbers are listed and sold. We only evaluated our approach on forums listed in English.

The Hack forum contains a mixture of cyber-security and computer gaming blackhat and

noncybercrime products; Nulled forum contains data stealing tools and services; Darkode

focused on cybercriminal wares, including exploit kits, spam services, ransomware programs,

and stealthy botnets; BlackHat focuses on blackhat search engine optimization (SEO) tech-

niques. The forum started in October 2005 and is still active, although it has changed in

character over the past decade. For this dataset, we want to obtain which products are listed

on the dark web forums. Since the forums contain sentences like, ”I want to sell ransomware

46

Table 4.4: Comparison of performance (Error %)

Data type Dataset OTL HeMap-S HeMap-L MSDA-S MSDA-L

Cyber security
Win → Linux 28.53 ± 0.88 30.55 ± 0.86 29.08 ± 0.58 23.73 ± 0.62 21.33 ± 1.62
BlackHat → Darkode 22.42 ± 0.85 24.70 ± 1.00 25.36 ± 1.00 22.12 ± 1.29 20.82 ± 0.64
Nulled → Hack 28.86 ± 1.54 26.78 ± 0.95 29.26 ± 0.50 25.47 ± 1.06 24.75 ± 1.36

tool for $50 ”. We want to extract which of the words in this sentence are products. To ac-

complish this, we extracted features for each word and labeled it as a product or not. We use

Penn Part of Speech Tags (Santorini, 1990) to extract features Nulled and BlackHat dataset

and the Stanford pos- tagger system (De Marneffe and Manning, 2008) for the remaining

dataset.

4.6.2 Results

Table 4.4 shows a summary of the average prediction error on the target data stream given

as T : Awrong
m

, where Awrong, where Awrong represents the number of incorrectly classified

instances, and m represents the total number of target data instances. For our experiment,

we trained on Windows data and tested on Linux data. For this, we obtained an error rate

of 21.33% for MSDA-L compared to 28.53% for OTL, 30.55 for HeMap-S. Similarly, our

method performed better than other methods for the darknet dataset. For this, we obtained

an error rate of 20.82% for MSDA-L compared to 25% for HeMap-L.

4.7 Related Work

In this section, we discuss the related work. First, we discuss previous approaches in intrusion

detection systems based on machine learning. Second, we discuss related work in domain

adaptation methods. Lastly, we discuss previous work on threat attack simulation to help

defenders evaluate their defense strategy.

Domain Adaptation Several methods have been proposed to learn a common feature

representation for domain adaptation (Ben-David et al., 2010; Pan and Yang, 2010). In

47

addition, Pan et al. (Pan et al., 2008) uses a dimension reduction method, Maximum

Mean Discrepancy Embedding (MMDE) by minimizing the projection of the difference in

distributions of data to a subspace. (Shi et al., 2010) projects a latent feature space for both

source and target domains by learning a linear objective function. In our work, we developed

a novel domain adaptation technique that leverages a new objective function to learn the

feature projection across heterogeneous domains.

Our work improves existing frameworks by constructing and introducing a co-regularizer

in the objective function, so that structure of data from both source and target data sets

can be preserved.

Advanced Persistent Attack Threat Emulation (NextronSystems, NextronSystems)

built a shell-based system that simulates advanced persistent attacks based on the MITRE

ATT&CK framework. (Applebaum et al., 2016, 2017) developed a similar system with

a web-based front end for more complex simulation of various combinations of attacker

actions. These systems allow defenders to simulate real attacker scenarios and evaluate their

detection systems against such attackers.

48

CHAPTER 5

AUTOMATED THREAT REPORT CLASSIFICATION OVER

MULTI-SOURCE DATA 1

5.1 Introduction

In recent years, a large number of organizations have encountered sophisticated network

attacks, including advanced persistent threats (APT) (Fireeye, a). Most APT attacks use

techniques that easily evade generalized off-the-shelf defense mechanisms. A typical APT

attacker may use normal non-malicious software programs to complete an attack. For ex-

ample, programs deployed may include Power-shell, which is popular for performing remote

command execution on Windows, or remote desktop protocol program or FTP to propagate

themselves within the victims network without detection.

With the goal of increasing security by creating awareness among concerned individu-

als regarding such attacks, these organizations periodically share threat information in the

form of reports. To create a centralized repository of attack information about adversar-

ial behavior, MITRE (MITRE, MITRE; Hutchins et al., 2011) has proposed a framework

called ATT&CK (Adversarial Tactics, Techniques and Common Knowledge) for categoriz-

ing attacker actions into kill-chain phase, tactics and techniques. Here, the kill-chain phase

describes the current phase in the attack strategy deployed by an attacker. Tactics provide

course-grained information representing the high level intent of why an attacker exhibits a

particular behavior on the victim’s network or system infrastructure, and techniques provide

fine-grained information representing how an attacker completes an attack activity.

1This chapter contains material previously published as: Gbadebo Ayoade, Swarup Chandra, Latifur
Khan, Kevin Hamlen, and Bhavani Thuraisingham. ”Automated Threat Report Classification over Multi-
source Data.” In Proceedings of the 4th IEEE International Conference on Collaboration and Internet Com-
puting (CIC), pp. 236–245, October 2018. Ayoade led the machine learning aspect including the design,
implementation and evaluation of the approaches used in this research.

49

Threat
Reports

Mitre Att&ck Database
Tactics
Techniques
Procedures
Attack Indicators
Mitigation

Enterprise Network

Red Team
Black box pentesting
Adversarial Emulation
Social Engineering

Blue Team
Chief Security Officer
Security Operations
Network Defenders

Enterprise Network
Security Defence
Evaluation

Figure 5.1: Adversarial Emulation and Enterprise System Defense Evaluation using MITRE Att&ck
Collaborative Framework

As shown in Figure 5.1, MITRE collects different APT reports from different organiza-

tions which are then manually examined to populate the MITRE ATT&CK repository for

tactics and techniques deployed by APT attackers. By leveraging the MITRE ATT&CK

centralized repository, red teams which may include penetration testing teams and external

system security auditors can emulate attacker behaviors and provide a more comprehensive

attack coverage which can then be used to determine the strength of the defense teams usually

called the blue teams. Blue teams can leverage the mitigation available in this repository to

evaluate their defense strategy. For example, a red team can consult the MITRE ATT&CK

framework to determine the tactics and techniques that may be used to complete a lateral

movement attack on a victim’s network and emulate it. The blue team is expected to detect

this attack by deploying its security defense infrastructure. Our work extends the MITRE

ATT&CK with a collaborative framework that provides a system to automatically extract

50

2000200120022003200420052006200720082009201020112012201320142015201620172018

500

1000

1500

2000

Year

N
u

m
b

er
of

R
ep

or
ts

Credential access Initial Recon Persistence Privilege Escalation

command and control defense evasion execution lateral movement

Figure 5.2: Threat Report Data Generation Distribution between Year 2000 and 2018

and categorize different threat reports from different organizations that can be leveraged to

update the central repository.

With an increasing trend in the number of threat reports generated from various organi-

zations as shown in Figure 5.2 (Fireeye, b), automated parsing of threat reports is necessary

to facilitate effective usage. From the figure, the average number of reports generated per

year is around 1,000 documents per year. Processing these reports manually to extract infor-

mation is inefficient and cumbersome since the reports are not usually generated with evenly

distributed frequency throughout the year as some days may have more reports than others.

Furthermore, these reports are generated by different organizations and employ different

reporting formats. In addition, most threat reports are generated in an unstructured text

format as shown in Figure 5.4 and do not follow a commonly standardized categorization of

the attack behavior patterns. This results in the manual categorization of attacks, yielding to

an erroneous and cumbersome process. (Ghaith et al., 2017). To facilitate these automated

threat intelligence sharing, different report exchange formats such as STIX (STIX, STIX),

TAXII (TAXII, TAXII), CVEs, and CWE have been proposed. Unfortunately, these for-

51

mats are not followed by different organizations resulting in difficulty to update the MITRE

ATT&CK’s central repository.

In this chapter (Ayoade et al., 2018), our aim is to help reduce search time for an analyst

who wishes to reproduce the attack type for performing defense evaluation. We address

the above challenges by building a machine learning classifier for automated threat report

categorization that can generalize across reports from various organizations. We evaluate

our approach as a multi-level classification problem. For this approach, we classify the

threat reports first into tactics and then into techniques. In particular, we aim to leverage

the comprehensive description of tactics and techniques provided in the MITRE ATT&CK

framework for relevant information extraction to train a classifier. Unfortunately, due to the

limited adoption of this framework in threat reports generated from various organizations,

the availability of sufficient labeled data is limited. Reports with ATT&CK tactics and

techniques are fewer than the overall reports, with only a few organizations following such

a format. This creates bias in training data, which affects the performance of a classifier

trained näıvely on the data. We address this limitation by applying a bias correction mech-

anism (Jiang and Zhai, 2007) which evaluates importance weights during classifier training,

along with a confidence propagation strategy, for superior course-grained and fine-grained

categorization. We empirically demonstrate the effectiveness of our approach on a large set

of threat reports and show performance improvements over existing method.

The rest of the chapter is organized as follows. §5.2 provides the overview of our ap-

proach. §5.3 discusses the related work. §5.4 provides background on the MITRE ATT&CK

framework and Bias correction methods. §5.5 provides the architecture of our system. §5.6

provides the evaluation of our approaches. . Finally, §7.3 concludes and discusses future

work.

52

Tactics

Techniques

Collection of Threat Reports

Threat
Report

Threat
Report

Lateral
Movement

Collection

Remote File
 Copy

Remote
Desktop
Protocol

Email
Collection

Approach
1. Classify

Tactics
2. Classify

Techniques.

Figure 5.3: Tactics and Techniques classification of Threat Reports

5.2 Overview

Figure 5.3 shows the overview of our problem statement. Given a set of threat report

documents, we want to determine which tactics and techniques are present in the report.

For our approach, first we classify the tactics and secondly, we classify to the techniques

used. Tactics give a high-level intent on why an attacker is performing an attack and the

technique describes how an attacker completed the attack. In section 5.4, we will provide

detailed explanation of tactics and techniques as given by the MITRE ATT&CK framework.

5.3 Related Work

Various industry efforts have been carried out to provide threat sharing formats that can

be applied by security professionals to share threat data. They include the Open Indicator

of Compromise format (openIOC) (OpenIOC, OpenIOC), Structured Threat Information

eXpression (STIX) (STIX, STIX), Trusted Automated Exchange of Intelligence Information

53

(TAXII) (TAXII, TAXII), CVEs, and CWE. These formats leverage a machine-readable

formats to exchange threat indicators like the skill level of attackers involved in an attack,

the tools used, the attack phases, and the attack tactics used. MITRE ATT&CK covers

why and how attackers perform advanced persistent attacks. Attackers use a variety of

approaches to achieve their end goal including deploying CVE vulnerabilities.

In recent times, researchers have focused on techniques that automatically extract useful

threat information from data available online from blogs and threat report websites. Hutchins

et al. (Hutchins et al., 2011) provided a technique to categorize advanced persistent threat

attacks to kill chain phases as described in the introduction. By classifying the attacker’s

actions into phases, defenders can comprehend attacker steps and seek to understand the

attacker’s motives.

A similar work, TTPDrill to this chapter by Ghaith et al. (Ghaith et al., 2017) ap-

plied NLP technique to extract threat actors, threat indicators and generate STIX standard

formatted reports from unstructured data. First, our work differs from their work because

TTPDrill used a simple lazy classification technique based on calculating similarity scores

between two documents. Second, we applied a bias correction technique to address the

challenge of sampling bias due to limited labeled training data, therefore, TTPDrill per-

forms very poorly when the data sources for training and testing are very different. Third,

we performed experiments on 2 datasets as compared to only one dataset by TTPDrill.

In particular, TTPDrill focuses on extracting threat indicators from documents with short

sentences of less than 900 words, while we focus on retrieving large and contextual docu-

ments containing more than 10,000 words for a set of tactics as shown in Table 5.3, where

TTPDrill typically under-performs. In addition, our dataset comprises of more complicated

documents with larger file size and more complex sentence structures. The individual file

size for the TTPDrill is 4KB while the average files size for the second dataset we used

is 15KB. Furthermore, our approach outperforms TTPDrill significantly as shown in the

evaluation section §5.6.

54

In the Internal Reconnaissance stage, the intruder
collects information about the victim environment.
Like most APT (and non-APT) intruders, APT1
primarily uses built-in operating system commands
to explore a compromised system and its networked
environment.

Figure 5.4: Sample extract from data description for MITRE ATT&CK discovery tactic.

Xiaojing et al. (Liao et al., 2016) applied NLP techniques to automatically extract in-

dicators of compromise such as botnet IPs, malware names from unstructured text to more

standardized format. Our work differs from this work because we consider classifying threat

reports into tactics and techniques an attacker employed to complete an attack. Our work

focuses on the overall attacker behavior rather than just extracting tools used by the at-

tacker. Burger et al. (Burger et al., 2014) classified various threat sharing technologies on

how they inter-operate. By considering the different uses of cases of the various threat shar-

ing technologies, they propose a way to unify these techniques for wider usage and adoption

by security professionals.

5.4 Background

In this section, first, we will introduce the MITRE ATT&CK framework since our work

leverages this framework. Next, we discuss existing bias correction methods to overcome

bias sampling that may arise due to our dataset.

5.4.1 MITRE ATT&CK/Mandiant Kill Chain Phase, Tactics and Techniques

ATT&CK is a threat categorization framework developed by MITRE to identify unique at-

tacker behaviors and actions. They categorize the attacks into tactics and techniques. (MITRE,

MITRE). In MITRE ATT&CK, each tactic consists of different techniques an attacker may

deploy. Techniques are more fine-grained steps attackers take to complete a tactic. In total,

55

MITRE ATT&CK consist of 10 tactics and 144 techniques (MITRE, MITRE) as provided

on the MITRE attack website. First, we discuss the different attack kill chain phase and

tactics present in the ATT&CK framework, and then discuss associated techniques.

MITRE Kill Chain Phase

Recent studies have shown that most attackers use repeated attack pattern behaviors in exe-

cuting their attacks (Hutchins et al., 2011). By carrying out attacks in phases, attackers can

methodically complete their attack mission without being detected by defenders. Knowledge

of these attack tactics and techniques can help defenders emulate known attack strategies and

evaluate their defense strength and weakness in detecting and stopping these attacks. These

phases include reconnaissance, weaponization, delivery, exploitation, command

and control, execution and maintenance . The early phase of the attack lifecycle con-

sists of the reconnaissance, weaponization, delivery, and exploitation, while the late phase

consists of command and control, execution, and maintenance.

Tactics

These describe why an attacker exhibits a particular behavior on the victim’s network or sys-

tem infrastructure. MITRE ATT&CK tactics include persistence, privilege escalation,

defense evasion, credential access, discovery, lateral movement, execution, col-

lection, ex filtration, command and control . Figure 5.5 shows an example snapshot of

MITRE ATT&CK tactics and their corresponding techniques (MITRE, MITRE). For exam-

ple, the attacker may deploy the Discovery tactic to discover network or system resources

of interest on a victim’s infrastructure, and deploy techniques such as account discovery,

network service scanning, process discovery, or query registry to complete the attack

action.

56

Discovery Lateral Movement Collection

Account
Discovery

Windows Remote Management Clipboard Data

File and
Directory
Discovery

Remote File Copy Data from
Network Shared

Drive

Local Network Protocol
Configuration

Discovery

Remote Desktop
Protocol

Email Collection

Network Service
Scanning

Remote Services Data from Protocol
Removable

Media

Process
Discovery

Replication
Through

Removable
DLL Injection Media

Input Capture

Query Registry Windows Admin
Shares

Screen Capture

Figure 5.5: MITRE ATT&CK Matrix Snapshot

Figure 5.4 shows the description of the discovery/internal reconnaissance tactic from the

APT1 report (Fireeye, a). The APT1 report details the attack steps used by Chinese cy-

ber attackers on US government agencies and military contractor companies. This tactic

description shows how the attackers leveraged network discovery tools to list victim’s net-

work configurations, running processes, user accounts, administrator accounts, and network

connections.

Techniques

Techniques describe how an attacker intends to complete an attack tactic. For example,

to complete a persistence attack, an attacker may use ”installing bootkit technique”. By

installing a bootkit, the attacker installs malware in the Master Boot Record (MBR) of

the operating system such that the malware always executes before the operating system or

antivirus software, resulting in the attacker evading the detection mechanism while persisting

on the victim’s system. In addition, the MITRE ATT&CK framework provides mitigation for

57

Table 5.1: Russian Hammertoss Attack report generated by FireEye Security Company with cor-
responding Tactics and Techniques categories.

Attack Steps Description Tactics and Techniques

1.Hammertoss looks for
twitter handle

The HAMMERTOSS
backdoor generates and looks
for a different Twitter handle
each day. It uses an algorithm
to generate the daily handle,
such as “234Bob234”, before
attempting to visit the
corresponding Twitter page

Tactic: Defense evasion
Technique: Redundant access,
valid accounts

2.Hammertoss retrieves a url
with location of image data

. HAMMERTOSS visits the
associated Twitter account
and looks for a tweet with
a URL and a hashtag that
indicates the location and
minimum size of an image file.

Tactic: Defense evasion
Technique: Redundant access,
valid accounts

3.Hammertoss retrieves the image
with malicious content

HAMMERTOSS visits
the URL and obtains an
image.

Tactic: Command & Control
Technique: Web Service,
Data Obfuscation

4.Hammertoss retrieve data from image
and decrypts to obtain commands

The image looks normal,
but actually contains hidden
and encrypted data using
steganography.
HAMMERTOSS decrypts the
hidden data to obtain commands

Tactic: Command & Control,
Defense evasion
Technique: Data encoding,
Obfuscated Files or Information

each technique which recommends how to defend against the attack technique. For example,

to defeat the ”installing bootkit technique”, the framework offers that trusted computing

can be leveraged to ensure secure and trusted boot process. Figure 5.5 shows the techniques

that may be employed depending on the tactics and intent of the attacker.

5.4.2 Sample Threat Report with Tactic and Technique Categorization

An example threat report generated by a security organization with ATT&CK categories is

illustrated in Table 5.1 for clarity. It describes the Hammertoss advanced persistent attack

used by Russian hackers. Hammertoss leveraged different attack tactics and techniques to

deliver attack payload by using a combination of known attack steps in an ingenious way,

making their attacks very potent.

In step 1 and 2 of the attack, Hammertoss attackers used Twitter handles to pass in-

formation to already compromised hosts on the victim’s network. By leveraging defense

58

evasion tactics to evade detection and using the Redundant access, valid accounts technique,

the attackers used a legitimate service (Twitter), which are allowed on most enterprise net-

works, to deliver attack packets. In step 3 the attacker retrieved the payload image using the

Command and Control tactic leveraging the Web Service and Data Obfuscation technique

to conceal command data in images. The command retrieved from the obfuscated image

is then used to steal user information over the network. In step 4, the attack command

was extracted from the image and decrypted using Command and Control, Defense evasion

tactic using Data encoding, Obfuscated Files or Information technique before ex-filtrating

the stolen data.

5.4.3 Bias Correction

Sampling bias is a known problem in natural language processing (Jiang and Zhai, 2007) (Dong

et al., 2018), where the training data distribution is often biased compared to the test data

distribution. With regard to threat report classification, a bias in training data may occur if

we can only obtain reports with appropriate labels from a small number of security organi-

zations whose formatting styles are not a good representation of the population. Here, the

labeled data can be used to train a machine learning classifier. Given a set of reports from

various organizations for category prediction, the challenge is to address bias in labeled data

distribution so that the classifier generalizes well on reports from all organizations. In this

work, we utilize a bias correction technique to address a type of bias called covariate shift.

Covariate Shift

This is a form of transfer learning that relates the training and test distribution which

are unequal, but obtained from the same domain. Particularly, the relation between train-

ing and test distribution occurs with an equality in class conditional distribution while the

59

covariate distribution is unequal. This is called sampling bias (Huang et al., 2007). Con-

cretely, let ptr(x, y) and pte(x, y) be the joint probability distribution of training and test

data respectively where x is a d-dimensional data instance whose class label is denoted by

y. The covariate shift assumption is that pte(y|x) = ptr(y|x) while pte(x) 6= ptr(x). Using

this assumption, one can correct bias in training data by evaluating an instance weight β(x)

such that β(x) = pte(x)
ptr(x)

for each training instance x. Unfortunately, estimating pte(x) and

ptr(x) separately is NP-Hard. So, recent studies have focused on developing techniques for

computing the density ratio directly. These include Kernel Mean Matching (KMM) (Huang

et al., 2007), Kullback-Leibler Importance Estimation Procedure (KLIEP) (Sugiyama et al.,

2008), and unconstrained Least Square Importance Fitting (uLSIF) (Kanamori et al., 2009).

In this study, we utilize all three of these bias correction methods.

Kernel Mean Matching

In kernel mean matching, the mean Euclidean distance in a Reproducing Kernel Hilbert

Space (RKHS) between the data distribution of the weighted training data and the corre-

sponding distribution of the test data is minimized. The mean distance is calculated by

evaluating the Maximum Mean Discrepancy (MMD), which is represented as∥∥Ex∼ptr(x)[β(x)φ(x)]− Ex∼pte(x)[φ(x)]
∥∥, where ‖·‖ represents the l2 norm, and x is a data

instance in any given dataset X. (Yu and Szepesvári, 2012).

The empirical approximation of the MMD to obtain the desired β̂(x) is given by the

quadratic program,

β̂ ≈ minimize
β

1

2
βTKβ − κTβ (5.1)

KLIEP

By leveraging a density ratio estimation scheme called Kullback-Liebler Importance Esti-

mation Procedure (KLIEP) (Sugiyama et al., 2008), KLIEP performs online updates to

60

importance weights by minimizing the KL-divergence between the weighted source and tar-

get distribution. For each new instance, the importance weights are updated online.

Relative Density Ratio Estimation

By leveraging relative densities between the training and test data distributions, Yamada

et at. (Yamada et al., 2011) presented an importance weighting scheme for covariate shift

correction. Instead of computing the density ratio β(x) in KMM and KLIEP, they leverage

the use of relative density ratio. If P (x) and P ′(x) are the densities of test and training

distributions respectively, then β(x) = P (x)
P ′(x)

. In some cases where P ′(x) is small, the density

ratio β results in large values, resulting in unreliable divergence estimate. To overcome this

limitation, the relative density ratio is defined as follows. For 0 < α < 1, the α-mixture

density of P (x) and P ′(x) is defined by,

Pα(x) = αP (x) + (1− α)P ′(x) (5.2)

Therefore, the α-relative density ratio is given by rα(x) = P (x)
Pα(x)

. Similar to KLIEP, the

α-relative density ratio can be directly computed using a parametric model given by

r̂α (x) =
N∑
i=1

θ̂iKσ

(
x, x(i)

)
(5.3)

where θ̂i is the ith parameter to be learned from data, and Kσ is the Gaussian kernel function

with width σ. By leveraging this parametric form of α-relative density ratio, the PE diver-

gence between weighted training and unweighted test data distribution can be minimized.

5.5 Approach

Figure 5.6 shows the overview of our approach. First, we gather threat reports from different

security organizations around the world. Our data sources include threat reports scraped

from websites in both HTML and Adobe PDF formats. Second, the data is parsed and

61

MITRE/Mandaint
Threat report data
source Annotated

Threat Report
(Training
Data)

Threat
Report
(Test Data)

Worldwide Threat
report data
sources

Web
Scraper Bias Correction

KMM
KLIEP

aruLSIF

SVM
Classifier

1. Classify
Tactics

2. Classify
Techniques

3. Classify
KillChain

Weighted
Model
Parameter

Feature
Extraction
TFIDF

Classification With Bias Correction
(Algorithm 1,2,3)

Figure 5.6: Threat Report Classification System

Algorithm 1: Algorithm Illustrating Our Approach

Input: Document Urls: urls
Result: Tactics and Techniques Classifier Accuracy

1 begin
2 docs = Download Documents(list of urls)
3 features = Extract features(docs) /*using alg 2*/
4 Apply BiasCorrection(features) /*using alg 2 for bias correction*/
5 classifyTactics() /*using algorithm 2*/
6 classifyTechniques() /*using algorithm 3*/
7 return TacticsandTechniquesAccuracy

extracted to plain text format. Third, using NLP techniques, we extract TF-IDF features

from each document. After feature extraction in both training and test data, we train a

bias-corrected classifier by first estimating importance weight of training data using KMM,

KLIEP, aruLSIF and then training a classifier with weighted training data.

The listing for algorithm 1 shows the full implementation steps. Algorithm 2 shows the

pseudo code for the tactics classification task. For this alogrithm, we take the data input

as a set of training data and test data. In line 2 and 3, we randomly sample and split the

test data to validation and test set. We then extract useful words using TF-IDF to extract

features for each document as shown in line 4,5 and 6. After generating the features, we

obtain training, validation and testing data matrix.

In line 7, we generate the estimating density ratio β(x) by initializing it to zero. For

estimating density ratio β(x), we apply the radial basis function on training and test data to

62

Algorithm 2: Threat Report Classification with Bias Correction

Data: Doctr, Docte, Covariates Xtr and Xte

Input: Sample Size: m, Tolerance: η, Parameters: θ
Result: Accuracy

1 begin
2 Xval ← GetV alidationData(Docte)
3 Xte1 ← GetTestData(Docte)
4 Xtr ← extractTFIDF (Doctr)
5 Xval ← extractTFIDF (Docval)
6 Xte1 ← extractTFIDF (Docte1)

7 β̂ ← zeros

8 X
∗(i)
tr ← generateSample(Xtr,m)

9 β̂
∗(i)
← BiasCorrection(X

∗(i)
tr ,Xval, θ) /*Equation 5.1*/

10 β̂ ← aggregate(β̂
∗(i)

)

11 ResultAcc ← SVM(Xtr,Xte1, β̂)
12 return Accuracy

obtain the kernel matrices. To learn the importance weight, the training and the validation

data is passed to theBiasCorrection method in line 9. In line 11, the learned weighting

parameter is passed to the SVM classifier to correct distribution bias in training data to

learn a bias-corrected model and evaluate classifier accuracy using the remaining part of the

test data.

Classification of Techniques with Confidence Propagation

The goal of this chapter is to predict both tactics and techniques for a given attack descrip-

tion. For example, a typical threat report can be labeled as defense evasion at a macro-

level, i.e., at the tactics-level, and as bootkit installation at a more fine-grained micro-level

label for techniques. After predicting the tactics, we need to predict the techniques used by

the attacker pertaining to the predicted tactic. Therefore, we apply a confidence propaga-

tion algorithm (Wu et al., 2004) that utilizes the confidence of the tactic classifier as a prior

towards computing the technique class.

63

Algorithm 3: Confidence Score Propagation for Technique Classification

Input: Input level2 data: s, Level 2 class: Ci

Tactic Confidence scores: {Cj...Ck}
pte(s|Ci)/* The confidence score of s belonging to technique Ci*/
pta(s|Cj)/* The confidence score of s belonging to tactic Cj*/
Result: pte(s|Ci)/* Updated confidence score of s belonging to technique Ci*/

1 begin
2 for Cm ∈ {Cj...Ck} do
3 /*Check if Cm is an parent of Ci, if it is modify the confidence score of Ci*/
4 λim = 1/(exp(abs(pte(s|Ci)− pta(s|Cm))))

5 pte(s|Ci) = pte(s|Ci) + λij ∗ pta(s|Cj) + ..+ λik ∗ pta(s|Ck)

Due to the nature of available labeled data, we observe that the number of training data

instances per class for macro-level tactic classification is significantly higher than the number

of training instances per class available for micro-level technique classification. This long

tail class distribution for micro level classes typically result in poor classifier performance,

in terms of accuracy and confidence, compared to the macro-level label prediction. By

propagating the classifier confidence score from the macro-level classifier to the classifier

confidence of micro-level classes, we can improve the overall classification accuracy. We

achieve this by first computing a scaling factor using classifier confidence between each class

label pair of micro-level and macro-level classes, and then applying this to obtain a boosted

classifier confidence on the micro-level class predictions.

We first train a micro-level classifier to classify a given text into different techniques.

Then, we utilize the confidence propagation method to boost confidence score for techniques

associated with the predicted tactic. Algorithm 3 details the confidence propagation method.

We provide the classifier confidence score for the tactics classes as input. Then, for each

technique, we obtain the output of micro-level classifier’s initial confidence score. This is

used to compute the scaling factor as shown in line 2 where for each of the tactics classifier

confidence score {Cj...Ck}, the scaling factor λim is calculated to determine the influence of

the tactics class on the technique class. The scaling factor λim increases with tactics with

64

larger influence as shown in line 4 where λim is inversely proportional to the exponential of

the difference of pta from pte. We then use the corresponding scaling factor to modify the

confidence of the classifier for the fine-grained micro-level classes as shown in line 5.

The confidence propagation approach improves the accuracy at the technique-level be-

cause it allows us to leverage the known tactics class to boost the classifier confidence score

at the technique-level. For example, if there are two techniques that have similar confidence

scores at the technique-level, but one of the techniques belong to a tactics class with a higher

confidence score, then by propagating the confidence score of that tactics class to the cor-

responding child technique class, the confidence score of the corresponding child technique

increases, therefore improving the accuracy of the classifier.

5.5.1 Kill-Chain Phase Detection

After classifying to tactics, we map the corresponding tactics to the kill chain phases. In

order to generate the kill-chain phase mapping to tactics, we leverage automated rule ex-

traction techniques which include the decision tree method (Quinlan, 1986) and the ripper

algorithm (Cohen, 1995b). To generate these rules, we labeled the documents with the cor-

responding tactics and killchain phases present in the documents. Using this as training

data, we ran the decision tree and ripper algorithm to learn the rules and generate the rules.

We evaluated the rules by comparing the automatically generated rules with the manually

mapped rules.

Table 5.2 shows some of the rules extracted using decision tree and ripper algorithm. For

example, rule 1 extracted by the decision tree can be interpreted as follows, if Exfiltration

or command and control tactics is not present, then the kill-chain phase is maintain. Rule 2

specifies if command and control tactic is present, then the kill-chain phase is control. The

ripper algorithm extracts similar rules as the decision tree rule extraction method. For ripper

rule extraction, rule 1 states that if command and control tactic is present then the kill-chain

65

Table 5.2: Automated and Manual Rules Generated From Data

Rule Generator Rules

Decision Tree

Rule 1: If ¬Present(Exfiltration)∧
¬Present(CommandandControl)
⇒ Killchain(maintain)
Rule 2: If Present(CommandandControl)
⇒ killchain(control)
Rule 3: If Present(exfiltration)
⇒ killchain(execute)

Ripper

Rule 1: If Present(CommandandControl)
⇒ killchain(control)
Rule 2: If ¬Present(CommandandControl)
⇒ killchain(maintain)

Manual

Rule 1: If Present(CommandandControl)
⇒ killchain(control)
Rule 2: If ¬Present(CommandandControl)
⇒ killchain(maintain) ∨ killchain(execute)

phase is control which is similar to rule 2 for decision tree rule extraction method. Rule 2

states that if command and control tactic is not present, then the corresponding kill-chain

phase is maintain. To compare if the automated rules are correct, we manually extracted

some of the rules. We can observe that rule 1 extracted using manual extraction is similar

to rule 2 and rule 1 extracted by decision tree and ripper algorithm respectively.

After classifying to kill-chain phase, tactics and techniques, we can extract the corre-

sponding mitigation that can be leveraged to defeat the attacker’s strategy.

5.6 Evaluation

5.6.1 DataSet

Table 5.3 shows the summary of the statistics of the two datasets we considered to evalu-

ate our framework. We downloaded 169 labeled documents from Mitre ATT&CK website

which is denoted as Att&ck dataset. In addition, we downloaded 17,600 documents from

the Symantec threat report website, which is denoted by Symantec dataset. To fur-

66

Table 5.3: Statistics of Dataset

Dataset
Average
File Size(KB)

Number of
Documens

Average
Words/Document

Total
Size(MB)

Att&ck 2 169 1000 0.3

APTReport 50 488 10,000 1000

Symantec 5 17,600 900 147

Table 5.4: Tactic Classification Accuracy Result for APTReport dataset and Symantec
dataset

Training Test Validation TTPDrill SVM KMM KLIEP ARULSIF

APT SYM SYM 14.60 59.6 58.20 60.20 59.40
APT SYM - 15.90 61.1 61.20 61.20 60.20

APT +ATT SYM SYM 13.80 62 61.00 60.20 64.00
APT + ATT SYM - 16.80 61 48.30 60.80 61.20

SYM APT APT 39.50 93.6 67.00 90.10 90.10
SYM APT - 50.00 91.1 90.93 96.30 96.00

SYM + ATT APT APT 14.80 90 92.20 92.50 93.00
SYM + ATT APT - 63.90 91 96.30 96.30 96.30

∗APT: APTReport dataset only
∗SYM: Symantec dataset only
∗APT+ATT:Union of APTReport dataset and att&ck data
∗SYM+ATT: Union of Symantec dataset and att&ck data

ther evaluate our approach on threat reports with more complicated sentence structures,

we downloaded 488 documents containing reports of highly sophisticated advanced persis-

tent threat attacks from security companies including FireEye, Mandiant, Mcaffe and other

various Anti-Virus Companies. We denote this by APTReport dataset. The total size

of the dataset considered is 300KB for Att&ck dataset, 147MB for Symantec dataset

and 1GB for APTReport dataset. We obtained threat reports on data breaches, includ-

ing the stuxnet breach, Target credit card data breach report, Home Depot data breach,

Chinese APT campaign on US government and companies, Russian APT attacks, lazarus

ransomeware reports, and shamoon attack on oil refineries to mention a few.

67

Feature Extraction : To evaluate our approach, For the Symantec dataset, we manually

labeled all the 17,600 documents and used the 169 documents from the Att&ck dataset to

validate our model. we extracted 200 TFIDF features from 17,769 documents, resulting in

a total of 17,769 instances. Similarly, for the APTReport dataset, we manually labeled

all the 488 documents and added the 169 documents from Att&ck dataset. This resulted

in a total of 657 instances with 200 features.

Classification : For our evaluation, we used data from different sources as training and

testing data. We considered various experimental setups to evaluate our approach. First, we

used Symantec dataset as training data and APTReport dataset as test data. Second,

we used APTReport dataset as training data and Symantec dataset as test data. Third,

we combined the Att&ck dataset with the training data portion. Fourth, one may argue

that using the whole test data for learning the weight may not be realistic since all the test

data is not available at training time. To overcome this challenge, instead of using all the test

data as the target data to learn the importance weight for bias correction, we split the test

data to validation and test data. The validation data is used the learn the weight for bias

correction and the second portion of the test data is used to evaluate the classifier accuracy.

Each of the pairs of training and test data is then used for estimating importance weight

for bias correction, and then is provided to an SVM classifier for training. Our implemen-

tation consists of 600 lines of python code. We leverage python data processing pipeline

and sci-kit learn module to perform data preprocessing and feature extraction. Finally, we

implement the QP of KMM using cvxopt python module.

5.6.2 Tactics Classification Results

Table 5.4 shows the result for tactics classification result for all combinations of the different

experimental setup. we can observe that in all cases TTPDrill performs very poorly compared

68

to when we applied our bias correction method. We obtained better accuracy with all the

bias correction method compared to the TTPDrill method. Using APTReport dataset

as training data, the classifier accuracy for TTPDrill does not perform better than 17%

while the classifier accuracy exceeds 58% for all bias correction methods. Likewise, by using

Symantec dataset as training data and APTReport dataset as test data, we obtained

a maximum of 63% and a worst performance of 14.8% for TTPDrill while we obtained more

than 90% classifier accuracy with all bias correction methods except for 67% for the KMM

method.

From our results, we can observe that using the whole test data to perform a bias correc-

tion performs better than using a portion of it as validation set to learn the weight. This is

because, using all the test data provide better representation of the distribution of the target

data distribution for bias correction. In addition, our approach performs better when we

used Symantec dataset as training data and APTReport dataset as test data because

Symantec dataset has more instances therefore allowing the classifier to learn a better

classification model. Our approach works, since we take into consideration the bias in the

data from different sources which TTPDrill does not consider.

5.6.3 Kill Chain Phases Classification Results

After classifying tactics, we used the ripper rules discussed in subsection 5.5.1 to map tac-

tics to the corresponding kill-chain phase. As shown in Table 5.5, similar to the tactics

classification results, our bias correction method outperforms TTPDrill for all experimental

setup. Using APTReport dataset as training data and Symantec dataset as test data,

we obtained 60.20 % classifier accuracy with the KLIEP bias correction method when we

obtained 40.40% for TTPDrill method. Likewise, Using Symantec dataset as training

data and APTReport dataset as test data, we obtained 96.3% classifier accuracy with the

KLIEP bias correction method while we obtained 52.70% for TTPDrill method. From our

results, our bias correction method outperforms TTPDrill significantly.

69

Table 5.5: Kill Chain Classification Accuracy Result for APTReport dataset and Symantec
dataset

Training Test Validation TTPDrill SVM KMM KLIEP ARULSIF

APT SYM SYM 40.40 59.6 58.20 60.20 59.40
APT SYM - 39.60 61 61.20 61.20 60.20

APT + ATT SYM SYM 35.40 62 64.60 60.20 64.00
APT + ATT SYM - 40.50 61 54.20 60.80 61.40

SYM APT APT 45.20 90 68.70 90.10 90.10
SYM APT - 52.70 93.8 91.20 96.30 96.00

SYM + ATT APT APT 45.56 91 92.20 92.50 93.00
SYM + ATT APT - 66.60 91.1 96.30 96.30 96.30

∗APT: APTReport dataset only
∗SYM: Symantec dataset only
∗APT+ATT:Union of APTReport dataset and att&ck data
∗SYM+ATT: Union of Symantec dataset and att&ck data

5.6.4 Techniques Classification Results

Figure 5.7 compares classifier accuracy for technique prediction with and without confidence

score propagation. We use the K-nearest neighbor classifier due to the limitation of having

few instances per technique class since the technique class consist of 144 classes. By apply-

ing confidence propagation using 20% of the tactics class, we obtained 8% classifier accuracy

while we obtained 2% classifier accuracy without confidence score propagation. We obtained

23.9 % accuracy by propagating 40% of the tactics class and 18% without confidence score

propagation. By propagating only 60% of the tactic classes, we obtain 45% classifier ac-

curacy while we obtain 30% classifier accuracy without confidence score propagation. In

addition, propagating 80% of tactics classes, we obtain 72% classifier accuracy while we ob-

tain 49% classifier accuracy without confidence score propagation. Lastly, by propagating

all the tactics level classes, we obtain 86% classifier accuracy with confidence propagation

and 71% classifier accuracy without confidence score propagation. By applying confidence

score propagation, the average classifier accuracy for technique prediction increased by 13%.

70

20 40 60 80 100

20

40

60

80

100

Increasing Tactics Confidence Score Propagation(%)

A
cc

u
ra

cy
(%

)

Without Confidence Score Propagation
With Confidence Score Propagation

Figure 5.7: Technique Classification Accuracy With Confidence Score Propagation using AP-
TReport dataset

71

CHAPTER 6

DECENTRALIZED IOT DATA MANAGEMENT 1 2

6.1 Introduction

With the advancement in embedded processors, actuators, sensors and communication sys-

tems, everyday devices are retrofitted with capabilities to communicate, compute and com-

plete automated tasks (Fernandes et al., 2016; Jia et al., 2017). For instance, many of our

everyday appliances have been retrofitted with capabilities to connect to the Internet (Gubbi

et al., 2013). Such IoT devices include smart pacemakers, heart rate monitors, smart refriger-

ators, smart coffee makers, smart television, smart home assistants, and smart door locks. By

equipping these devices with computational and communication capabilities, these devices

collect and transmit large amounts of privacy-related data (Bertino, 2016). For example, IoT

devices such as smart cameras, smart health monitoring devices (Williams and McCauley,

2016) such as heart rate monitors, glucose level monitors can reveal private information

about the users.

Due to the limited processing capabilities of IoT devices (Gonzalez et al., 2016; Masud

et al., 2008), IoT devices usually leverage externally controlled third-party service providers

to perform additional data processing. By transmitting sensitive user data to third-party

services providers (Fernandes et al., 2016), users are forced to trust service providers to en-

force data protection and provide data privacy guarantee. Unfortunately, service providers

1This chapter contains material previously published as: Gbadebo Ayoade, Vishal Karande, Kevin
Hamlen, and Latifur Khan. ”Decentralized IoT Data Management Using BlockChain and Trusted Exe-
cution Environment.” In Proceedings of the 19th IEEE International Conference on Information Reuse and
Integration for Data Science (IRI), pp. 15–22, July 2018. Ayoade led the design, implementation and
evaluation of the approaches used in this research.

2This chapter contains material previously published as: Gbadebo Ayoade, Amir El-Ghamry, Vishal
Karande, Latifur Khan, Mohammed Alrahmawy, Magdi Zakria Rashad. ”Secure data processing for IoT
middleware systems”, The Journal of Supercomputing, 2018. Ayoade led the design, implementation and
evaluation of the approaches used in this research.

72

often violate data privacy policies by using data collected from users for unauthorized pur-

poses (Hu et al., 2011). This undue advantage by service providers is based on centralized

architecture where trust in a third party system as a central authority is required to manage

user data. To eliminate this imbalance in data access policy enforcement between service

providers and users, we propose a system of decentralized data management using a decen-

tralized asset management system based on Blockchain (Nakamoto, 2009) and smart contract

technology (Foundation, 2014).

With the advent of decentralized asset management systems as seen in the finance sector

which leverages blockchain technology such as seen in Bitcoin (Nakamoto, 2009), electronic

fund transfer can occur without the need for a centralized electronic fund management sys-

tem. With this technology, money transfer can occur across international boundaries without

the bureaucracy of centralized authorities. Due to the decentralized nature of blockchain

technology, proposed applications (Foundation, 2014) in various fields include automated

insurance management, supply chain management, decentralized commercial data storage

as seen in Filecoin (Filecoin, 2017). For instance, Slock It (slock, 2017) uses blockchain to

provide automated device sharing platform for IoT devices such as smart locks.

By leveraging this decentralized architecture, we propose a system that limits the author-

ity of centralized data management systems. Blockchain technology (Nakamoto, 2009) and

smart contracts (Foundation, 2014) allow decentralized management of data among untrusted

parties called miners. Blockchain (Nakamoto, 2009) is a distributed ledger where transaction

state integrity is enforced by distributed consensus among decentralized untrusted parties.

To enforce the integrity of the blockchain, each current block generated by the miners must

contain a hash of the previous block in the blockchain as shown in Figure 6.2, making it

difficult to modify the transactions recorded in the blockchain.

Smart contracts (Zyskind et al., 2015) are autonomous applications that run within the

blockchain. With smart contracts, we provide a system where rules that govern interactions

73

among interested parties is enforced autonomously in the blockchain network without a

centralized trust. By leveraging this capability, we can equip the users with the capacity

to control how their data is accessed and used since a smart contract provides them with

equal data management privilege. Furthermore, smart contracts execute in isolated virtual

machines on the miners’ infrastructure. By using isolated virtual machines to run these smart

contracts, miners cannot modify application outcomes. With smart contracts and blockchain,

we can provide a data access audit system to track data usage among the interested parties

leading to proper data access accountability.

All data stored in the blockchain has to be public for the miners to be able to verify

transactions (Kosba et al., 2016). Our proposed system overcomes these challenges by storing

the hash of the encrypted data in the blockchain, while the main data is encrypted and stored

using trusted computing. By leveraging trusted computing, we can verify the integrity of

the system used in our data storage. In our case, we use trusted computing as implemented

by Intel SGX architecture.

By leveraging a trusted execution environment based on Intel SGX, we provide data

protection from unauthorized access from powerful adversaries. SGX offers hardware-level

protection of user data by enforcing process isolation by executing the programs in secure

enclaves and protecting the enclave’s memory pages by the CPU hardware. These secure

containers called enclaves are protected from the operating system, other processes and

hypervisor processes (Costan and Devadas, 2016).

In this chapter (Ayoade et al., 2018) (Ayoade et al., 2019), we make the following con-

tribution.

• We leverage the blockchain platform to provide decentralized IoT data access manage-

ment.

• We leverage smart contracts to provide equal data access management privilege among

IoT users and IoT service providers.

74

• We provide data storage using a trusted execution environment(Intel SGX) for secure

data storage.

• We provide a full system implementation on a real blockchain platform using Ethereum

smart contracts.

The rest of this chapter is organized as follows. §6.2 provides background on Blockchain,

SGX and IoT system. §6.3 discusses the scope, case for blockchain and SGX and challenges

and solutions encountered in deploying SGX based system. §6.4 provides the architecture

of our system. In §6.5, we describe our implementation approach and §6.6 provides the

evaluation of our approach. §6.7 and §6.8 provide discussion and related work respectively.

Finally, §6.9 concludes.

6.2 Background

6.2.1 Overview of Architecture

In this section, we discuss a brief overview of our system components as shown in Figure 6.1.

To provide decentralized management of data generated by IoT devices, we store the hash

of the encrypted data generated in the blockchain and then store the data itself in an SGX

enabled storage system. As a result, the blockchain manages the data access policy through

the smart contract.

To access data, third party users will request permission to access data from the blockchain

by utilizing the smart contract API. If request is granted, the hash of the data is returned

and used to retrieve data from the SGX platform. Before the SGX platform retrieves that

data from secure storage, it will independently recheck the blockchain for access permission

before returning the data needed to the third party user. The intuition for these two step

check is to ensure all access permission policy and authority is managed by the smart con-

tract executing in the blockchain. The access check does not incur much overhead since

75

Sealed
IoT Data

Third Party
Application

Untrusted
Module

Trusted
Module

IoT Gateway

IoT Devices SGX Enabled Storage Platform

Smart
Contract

Distributed Hash Platform

BC: Block Chain BC1

BC2

Figure 6.1: A Simplified Architecture of IoTSmartContract

access check is a read operation which has a fast execution time on the blockchain as we will

later show in our evaluation section. In this section, we provide more background on the

components of our IoTSmartContract system.

6.2.2 Internet of Things

With the increase in computational and communication capabilities and technological ad-

vancement in device miniaturization, every day devices are granted capabilities to sense and

react to the environment through the use of sensors and actuators. A typical IoT architec-

ture comprises of devices, sensors, actuators, IoT Hubs, IoT Gateway and a cloud service

provider.IoT devices are devices with capability to sense and collect data which can be trans-

mitted on a connected network for storage or further processing. IoT devices includes light

bulbs, heart rate monitors, smart cameras and many more. With the IoT hub, different

devices with disparate communication protocol such zigbee or bluetooth can connect to the

IoT network. IoT networks includes IoT gateway which helps to provide data aggregation

76

Block 1 Transactions

Tx root

Hash of Previous
Block header

Block 1 header

Block 2 Transactions

Tx root

Hash of Previous
Block header

Block 2 header

Block 3 Transactions

Tx root

Hash of Previous
Block header

Block 3 header

Figure 6.2: A BlockChain Data Structure

on the client network. To process the huge amount of data transmitted by the IoT devices,

cloud services are used to store and further process the data.

6.2.3 BlockChain

Blockchain is a distributed ledger where the state of its transactions is maintained by a

distributed consensus among untrusted entities without the need for a centralized trusted

third party authority. These decentralized entities are called miners (Crosby et al., 2016;

Nakamoto, 2009). By providing a proof of work, the miners bundle confirmed transaction in

blocks by generating a hash of the current block which includes the hash previous block as

seen Figure 6.2. These proof of work generation requires high computational CPU power,

therefore protecting the blockchain from adversarial attacks.

The blockchain can store data and perform computations that can be executed by these

decentralized entities to determine the state of the blockchain in an autonomous manner.

These autonomous computations are called smart contracts. By leveraging smart contracts,

we provide a system where decentralized data access policy control is enforced without relying

on third party service providers, therefore ensuring continuous service delivery for IoT system

users. We implemented the smart contract using Ethereum blockchain platform.

The Ethereum (Foundation, 2014) smart contract is an implementation of the smart

contract with Turing complete computation. The Ethereum smart contract is deployed in

77

the blockchain and can be executed by the miners to determine the state of the program.

By generating blocks, the miners can autonomously ensure that the state of integrity of the

contract program.

In order to allow miners to run a deployed smart contract, the contract owner will pay

the miners some fee called Ethereum gas. The higher the gas paid, the faster the speed of

getting the contract to execute and generate confirmations on the blockchain. Because the

smart contracts also store data, contract owners will need to provide gas for storage on the

blockchain. In our case, we limited the data stored on the blockchain by storing only the

the hash of the data and then encrypting the data and storing on another system.

To interact with a smart contract, each smart contract has a unique address in the

blockchain. The address can be used to retrieve the contract and then get the ABI (Abstract

Binary interface) which provides the API of the contract. By getting the smart contract

API, a user can execute the smart contract API to perform some computation.

6.2.4 Trusted Execution Environment

Recent advancements in embedded hardware technology to support trusted execution envi-

ronment (TEE) (e.g., TPM , ARM Trust Zone (Santos et al., 2014), AMD SVM (Van Doorn,

2006)), Intel SGX (Karande et al., 2017)) allow service providers to ensure confidentiality

and integrity of data and computations by protecting code and data within a secure region

of computation.

Intel SGX is a trusted computing architecture introduced in the new Intel Skylake proces-

sors. By providing a new set of instructions which extends the X86 and X86 64 architectures,

user level applications can provide confidentiality and integrity without the trust of the un-

derlying Operating System. With these instructions, application developers can create a

secure and isolated containers called enclave to protect security sensitive computations. In

particular, the memory content of an enclave is stored inside a hardware protected memory

78

region called as Enclave Page Cache (EPC). By leveraging the Memory Encryption Engine

(MEE), all EPC pages are encrypted and any access to them is restricted by the hardware.

Therefore, with SGX, applications can protect sensitive and secret data and computations

from attacks from high privilege applications like the Operating system, hyper-visors and

System Management Mode.

6.3 Overview

6.3.1 Scope and Assumptions

The scope of this chapter considers decentralization of data access management using blockchain

and data privacy protection using Intel SGX. The main challenge is how to establish trust

between IoT service providers and the users of IoT services. By leveraging smart contracts,

we provide a data access management system where users have equal privilege in controlling

how their data is shared or used. With smart contracts, we can specify data access rules

that are autonomously enforced by untrusted third party entities on the blockchain network.

For our platform, we assume all data is encrypted before transmission and all key exchange

is performed using asymmetric cryptographic protocols (Rivest et al., 1978). In this chapter

we do not consider replay attacks and denial of service attacks.

6.3.2 Threat Model

For our threat model, we consider the IoT data management service providers as untrusted

entities since they have full control over user data, which give them undue advantage in how

they use data or share user data with other third party entities.

Furthermore, we consider all third party users who request access to data to be untrusted.

We assume all non data owner may leak data or use it for unauthorized purposes such as

user’s email for direct marketing.

79

We consider adversaries that seek to compromise the data storage cloud services by

obtaining root privilege access to low level system resources such as memory, hard drives

and Input/Output systems. These attackers employ techniques that compromise highly

privilege applications such as Operating System and hyper-visors.

6.3.3 The Case of Using Blockchain for IoT data management

Decentralized Trust As users become more knowledgeable of data privacy leakage and

its consequences, users may demand more control over how there data is being used. By

leveraging blockchain, IoT vendors and service providers can provide services that users

can trust since the data management system is done in publicly verifiable smart contracts

program that run in the blockchain.

SmartContract Enforced Accountability With smart contracts, we can provide au-

tonomous applications that enforce interaction rules among the system users without the

need of centralized authority. Smart contracts allow individual entities with varied interest

to generate rules that satisfy each participants interest. The rules are then programmed into

smart contracts which is then enforced by the miners by independently verifying the state of

the contract. For example, in centralized access policy management such Smartthings (Fer-

nandes et al., 2016; Hue, 2017), if a user grants access or revoke access to their data, the

user has to trust the third party service provider to comply and enforce his data restriction.

With smart contracts, the users have equal privilege on how the policy is enforced since the

policy enforcement is done by the miners on the blockchain network.

Audit Trail Enforcement By leveraging immutability of blockchain ledger (Nakamoto,

2009), we can provide immutable data access history of users’ data. Since all entries in the

blockchain is cryptographically linked to previous blocks generated on the blockchain, it is

difficult for malicious attackers to modify the blockchain entries.

80

IoT
Devices

IoT
Devices

Io
T

G
at

ew
ay

SGX Enabled Storage Platform

Remote
Attestation

server

Sealed IoT
Data

Third Party
Application

Data
Communicator

Ecall/Ocall
Wrapper

Remote
attestation

Untrusted
Module

Trusted Module

Data sealing and
Unsealing

Key Manager

Integrity Checker

Contract Address

IoT Smart Contract

Blockchain

Write Hash of Data
to blockchain

Write (Encrypted
Data,Hash(Data))

Figure 6.3: A IoTSmartContract Architecture

Algorithm 4: Smart Contract Pseudo-code
1: HashMap deviceRegistry(key:ownerAddress,value:List[DeviceIds])

2: HashMap deviceData(key:(ownerAddress,deviceId), value:List[DataHash])

3: HashMap DataAccessRegistry(key:(ownerAddresss,thirdpartyAddress,deviceId),value: bool isAllowed)

4: function RegisterDevice(ownerAddress,deviceID)

5: InsertToHashMap(deviceRegistry)

6: end function
7: function WriteData(ownerAddress,deviceID,Data)

8: if owner == ownerAddress
9: deviceData[owner,deviceID].List.InsertData(hash(Data))

10: end function
11: function ReadData(ownerAddress,thirdPartyAddress,deviceID)

12: if DataAccessRegistry(thirdPartyAddress) == true

13: return deviceData[hash(ownerAddress,deviceID])

14: end function
15: function GrantAccess(ownerAddress,thirdPartyAddress,deviceID)

16: if owner == ownerAddress
17: DataAccessRegistry[hash(ownerAddress,thirdPartyAddress,deviceID)] = true

18: end function
19: function RevokeAccess(ownerAddress,thirdPartyAddress,deviceID)

20: if owner == ownerAddress
21: DataAccessRegistry[hash(ownerAddress,thirdPartyAddress,deviceID)] =false

22: end function

81

6.4 Architecture

As shown in Figure 6.3, IoTSmartContract consists of three main components which includes

the IoT client network, the smart contract and the secure SGX module. The Client IoT

network consist of all the IoT devices, the IoT gateway which connects the devices to the

external network.

6.4.1 Smart Contract Component

As shown in algorithm 4, The Smart contract provides the decentralized access control policy

to user data in form of Ethereum smart contract that executes in the blockchain. As a result

of the limited data storage and fees required to store data in the smart contract, the smart

contract only stores the hash of the data in the blockchain. The main data is encrypted

and stored on the SGX module. The smart contract includes the user registration module,

device registration, read and policy access module for hash data storage.

User Registration This module leverages the user registration system on Ethereum net-

work. Each user joins the Ethereum network by generating a public private key pair which

uniquely identifies the user. The private key can then be used to interact with the smart

contract to perform functions such as device registration and data access.

Device Registration Each authenticated user can register their IoT devices by providing

the identifier for the device. In the smart contract, we provide a hash map that maps the

devices owned by a user to the owners address on the blockchain as denoted mapping (address

= list of owners deviceids)

Data Write Access Policy For a device to write data to the blockchain, the device

will provide the owners address and the device id with the data to be written. By using the

82

combination of the owner address and the device id as the key in a hash map, we can uniquely

store all data that corresponds to all devices separately as denoted ((owner address,device

id) = list of device data). The value of the hash map is a list of hashes of the data written by

the device. Before the smart contract allows data to be written to the contract, the smart

contract will check if the owner address correspond to the device ID, so as to ensure only a

device owner can execute write operation.

Device Data Read Access Policy For data access, a third party user who needs access to

a device data from another user will request for permission to read the data. The requesting

user will provide the address of the owner of the device and the device ID of the device. A

hash map that contains the device owner and address and the device id as key with the list

of the third party users as values is maintained within the smart contract. This is denoted

as ((owner,device id,third party user address) = bool access). Before access is granted to the

data, this hash map is checked to see if a requesting user can access the data by ensuring

only registered third party users can access the device data.

6.4.2 IoTSmartContract Detailed DataFlow

In Figure 6.4, we show a detailed data flow diagram of IoTSmartContract. For a device to

write or read data, first, the device communicates with the IoT gateway in Step Â to register

itself with the blockchain. For the IoT gateway to trust the SGX platform, it performs remote

attestation as shown in Step À. To perform data write, the device communicates with the

IoT gateway in Step Á. The gateway then retrieves the smart contract address in Step

Â. The gateway will then encrypt and hash the data. The hashed data will be written to

the blockchain using the writedata function in the smart contract. The raw encrypted

data is then written to the SGX platform in Step Ã. By using the Ecall/Ocall wrapper, the

untrusted module in the SGX application communicates with the trusted module as shown

83

Third Party
Applications

IoT
device

Data
Sealing

Secure Data
Storage

Data
Communicator

Data
Unsealing

Information
Extraction

2

4 5 6

8

10

89

5
1

Data
Communicator

IoT Gateway
Remote

Attestation server

1

Encrypted connection

Ecall/Ocall
Wrapper

7

Integrity
Checker

6

Ecall/Ocall
Wrapper

3 7

Integrity
Checker

Blockchain

Smart Contract
Interfaces

Register Device()
AllowAccess()
RevokeAccess()
ReadData()
WriteData()

3

2 <Data>

<ID>

W
R

IT
E

R
EA

D

4

Figure 6.4: Illustration of the Data Flow in IoTSmartContract

in Step Ä. In Step Å, the Integrity Checker module calculates the hash-based message

authentication code(HMAC) of the data and appends the HMAC of the data before the

data is sealed and written to disk in Step Æ and Step Ç.

For the read operation, the user must register third party users with the smart contract

by using the allowAccess method. To revoke access, the user calls the revokeAccess

function. The third party user communicates with the smart contract as shown in Step Ê

to obtain the hash of the data generated by the device by supplying the device Id. The smart

contract checks if the third party user can access the data from the device using the device

Id and the address of the third party user, if permission is granted, the hash of the data is

returned and can be used to access the data from the SGX storage platform. In Step Í, the

SGX application rechecks with the smart-contract using READDATA API to determine if the

third party user can access the data hash identifier supplied by the third party request. If

access is allowed, the SGX application retrieves the data from secure storage Step Î . Note

84

that the overhead for read operation from the blockchain is insignificant as we will show in

the evaluation section in Table 6.1. The data is then unsealed in Step Ï and the Integrity

Check Step Ð recalculates the HMAC of the data which is then compared with the stored

HMAC. If the HMAC is unmodified the data is read and returned the the user as shown in

Step Ò and Step Ó.

6.5 Implementation

We used five real IoT devices and a mobile phone to evaluate IoTSmartContract. The

devices includes Philip Hue Hub with Zigbee light bulb, Samsung Smartthings Hub with

Motion/Proximity sensor, Belkin Wemo Switch, Wemo Wall socket and a heart rate monitor

mobile application on android.

6.5.1 Ethereum Smart Contract

We implemented the IoTSmartContract smart contract component using the Ethereum

blockchain. Our implementation consists of 50 lines of code in solidity programming lan-

guage. The code footprint needs to be concise so as to limit the amount of Ethereum gas

needed to run a smart contract transaction. To limit storage space needed to store data

in the blockchain, we only store the hash of the data. We ran the smart contract on the

Rinkeby Ethereum test network for evaluation.

We implemented the following interfaces registerDevice, allowAccess, writeData,

readData and revokeAccess that enable the IoT devices to interact with the smart con-

tract . By using the geth Ethereum client, we can retrieve the smart contract address in the

blockchain and performed operations such register devices, write data, read data, write and

read access policy update and revoke access policy.

85

Table 6.1: Efficiency of Smart Contract Application based on Gas usage

Smart Contract Interface Parameters Gas Used
registerDevice Device ID 47543
allowAccess Device ID, ThirdParty Address 29517
writeData Device ID, DataHash 51049
readData Device ID, ThirdParty Address –
revokeAccess Device ID, ThirdParty Address 14792

dev1 dev2 dev3 dev4 dev5

80

120

160

200
·105

Device Type

G
as

u
se
d
(t
h
ou
sa
n
d
s) With Hashing

No Hashing

Figure 6.5: Gas utilization
for Write Operation on Smart-
Contract.

500 1000 1500 2000
0

2

4

8

10

12

Number of Write Workload

T
h
ro
u
gh
p
u
t(

w
ri
te

tx
/s
)

With Hashing
No Hashing

Figure 6.6: Throughput based
on Increasing Write Workload

256 512 768102412801536
0

500

1000

1500

2000

2500

Block Size (KB)

C
P
U
ti
m
e
(m

ill
is
ec
on
d
s)

Sealing
Unsealing

Figure 6.7: Avg Seal and Un-
seal time

6.6 Evaluation

Table 6.1 shows our evaluation result for each smart contract operation in gas used by the

miners to complete an operation call. To confirm a transaction, the transaction must be

included in a generated block. The data payload size for device 1 is 27 bytes, device 2, 47

bytes, device 3, 132 bytes, device 4 and 5, 127 bytes respectively while the hash length is 256

bits. As seen in Table 6.1, registerDevice uses 47,543 gas to complete its operation,

allowAccess required 29,517 gas, writeData required 51,049 gas and revokeAccess

required 14,792 gas. readData did not use any gas since reading from a smart contract is

done on the local blockchain which does not require any mining.

In Figure 6.5, we compared the efficiency in gas usage required by miners to complete

write operation in the blockchain. We compared two scenarios where the whole data which

is encrypted from the devices is written to the blockchain versus writing only the hash of

data. By considering 5 device types, we show that device 1 used 59,846 gas for hashed data

compared to 159,234 gas required for raw data write which is a reduction of 169%. Device

86

2 used 53,454 gas for hashed data and 92,926 gas for raw write which gives a reduction of

73%. Device 3 and 4 used 58,974 gas for hashed data while 159,000 gas is required to write

raw data which gives a reduction of 138%.

In Figure 6.6, we show the impact of increasing write workload on the blockchain. By

increasing the write workload between 500 write requests to 2000 write requests, we measure

the transaction throughput per second on the blockchain. Without hashing, For 500 write

workload, the write transaction throughput is 10.56 writes per second. For 1500, it is 9.26 and

for 2000 writes, the write throughput is 8.6 writes per second. With hashing, for 500 write

workload, the write transaction throughput is 8.8 writes per second. For 1500, it is 7.9 and for

2000 writes, the write throughput is 7.2 writes per second. The write throughput decreases

with increasing write workload. The write throughput also decreases with hashing enabled.

Even though from Figure 6.5, the gas used with hashing enabled is constant because the

hashing function produces 256 bit data for storage on the blockchain, the write throughput

is lower because of the hashing process before writing the data to the blockchain.

6.6.1 Sealing and Unsealing Overhead

In Figure 6.7, we show overhead for sealing and the unsealing operation on the SGX platform.

The x-axis represents the block size and the y-axis represents the CPU cost in milliseconds.

By using a block size of 1,024 bytes, the average time it takes to seal a single batch record of

2.8 MB is 400 milliseconds compared to 2,000 milliseconds when using 32 bytes block size.

With increasing block size, the time to seal and and unseal data reduces. This is as a result

of reduction in frequency of number of blocks of data between the enclave and the untrusted

module of the application.

87

6.7 Limitations and Future Work

In this work, we leveraged the immutability of the blockchain network to store audit infor-

mation on how IoT data is stored and read by users. One of the main limitation of using

blockchain is the scalability problem. This limitation is not pertinent to our solution, since

the data is not always needed immediately and all pending writes and read can be processed

and committed to the blockchain at a later time. In addition, this limitation does not apply

to read operation as shown in the evaluation. One way to overcome this limitation is to use

private blockchains. By using private blockchains, we can eliminate the time used to mine

block since all participants in the network is permissioned or known.

6.8 Related Work

In this section, first, we provide discussion on related work on blockchain, and IoT system.

Blockchain With the increase in adoption of blockchain technology, various researchers

have proposed different use cases for the new technology. Zyskind et al. (Zyskind et al.,

2015) proposed using blockchain to decentralize storage of data. Our work differs from

theirs, since we provide a full implementation that leveraged SGX secure computing to store

raw data in order to defeat malicious attackers. Dorri et al. (Dorri et al., 2017) proposed

using blockchain to manage IoT network. By providing a light weight blockchain consensus

system, devices with low processing power can run blockchain independently. Various works

exist on how to improve the performance of blockchain technology as seen in (Eyal et al.,

2016).

IoT System and Applications In previous work by Earlence et al. (Fernandes et al.,

2016), they show how a smart lock can be compromised by attacking the Samsung Smart

Application. They demonstrated an attack that requested limited access permission to only

88

perform lock action on a smart lock, but instead gained full control privilege to also perform

unlock action. Vijay et al. (Sivaraman et al., 2016) show how they capture non encrypted

network traffic from Wemo device to perform a replay attack on the device.

6.9 Conclusion

As the adoption of IoT device usage increases, proper data access audit, data usage trans-

parency, and data privacy are very critical due to the vast amount of data generated by

these devices. This chapter introduces IoTSmartContract that offers a decentralized data

access control policy system, data security, and data integrity by leveraging recent advances

in blockchain technology and trusted computing using Intel SGX. Our approach utilizes the

blockchain to manage data access to IoT data in a decentralized way and stores the raw

encrypted data in SGX enabled platform by ensuring all data processing and storage is done

in the secure enclaves. Our platform utilizes a real blockchain platform called Ethereum to

evaluate our approach. We used a real Intel SGX platform to evaluate our secure storage

platform.

89

CHAPTER 7

DISSERTATION SUMMARY

7.1 Cyberdeception based defenses

Effective evaluation of cyberdeceptive defenses is notoriously challenging. By leveraging both

synthetic data generation and human subjects for running attacks, we show that evaluating

deceptive defenses powered by deep learning is a promising approach. In particular, a com-

bination of ensemble learning leveraging multiple classifier models, online adaptive metric

learning, and novel class detection suffices to model aggressively adaptive adversaries who

respond to deceptions in a variety of ways. Our case study evaluating an advanced, deceptive

IDS shows that the resulting synthetic attacks can expose both strengths and weaknesses in

modern embedded-deception defenses.

7.2 Domain Adaptation

In this work, we developed a framework that learns a mapping from low level data traces to

high level concepts in terms of tactics deployed by the attacker. Due to the scarcity of labeled

training data, we developed a novel domain adaptation technique that eliminates manual

feature mapping methods on datasets generated from different domains and facilitates the

use of these data across different domains.

7.3 Threat Report Classification

In this work, we explore the problem of classifying threat reports into tactics and technique

categories that originate from various organizations due to the need to collaborate in defeat-

ing evolving attacks. To complete this work, we first leverage natural language processing

techniques to perform threat report classification. Second, we apply bias correction meth-

90

ods to overcome bias in data from different sources. Lastly, we show that our approach

outperforms TTPDrill with an increase in classifier accuracy by up to 78%.

7.4 Future Work

7.4.1 Cyberdeception based defenses

In this work, we focused mainly on the classification of attacks. Possible future direction

is in the area of detection of attacks as multi-step activities. Future work could include

representing the attack traces as a set of stream data where concept-drift could occur.

7.4.2 Domain adaptation

In future work, we will explore the prediction of kill-chain phase and techniques deployed by

the attacker. We will also explore the segmentation of attack traces to determine how the

attacker completed a sequence of actions using change detection techniques. In addition, we

will build a hybrid system that can leverage data from more than two domains to train a

classifier.

7.4.3 Threat report classification

Our current work focuses on classifying threat reports to different attack tactics and tech-

niques. Future work in this direction could include extracting portions of the text that may

be of interest to a security analyst. Another extension of this work could include the extrac-

tion of indicators of compromise that can be used to configure intrusion detection systems

in an automated way.

91

APPENDIX

SMART CONTRACT DEFENSE THROUGH BYTECODE REWRITING 1

A.1 Introduction

Recent increases in the adoption rate of smart contract applications have spurred initial coin

offerings (ICOs)2 and decentralized autonomous organizations (DAOs) to leverage multiple

applications to raise money for disparate start-ups. This surge in investment has motivated

a corresponding surge in smart contract attacks and vulnerability discoveries. For example,

cybercriminals have leveraged re-entrancy attacks (Atzei et al., 2017; Konstantopoulos, 2018)

and parity multisig wallet attacks (Breidenbach et al., 2017) to steal more than 60 million

dollars in cryptocurrency.

As a result, various languages have been developed or modified to compile smart contracts

as Ethereum bytecode. These include Solidity3 (which resembles JavaScript), Haskell,4 and

Vyper.5 Solidity is presently the most popular of these languages. However, developers are

often reluctant to learn new languages, and gaining the proficiency to develop correct and

secure code in a new language can be demanding.

These obstacles are exacerbated by the increasing complexity and subtlety of vulnerabil-

ities leveraged by attackers to exploit and steal cryptocurrencies from blockchain networks.

Various researchers have proposed automated tools for finding bugs in smart contracts before

1This chapter contains material previously published as: Gbadebo Ayoade, Erick Bauman, Latifur Khan,
and Kevin W. Hamlen. ”Smart Contract Defense Through Bytecode Rewriting.” In Proceedings of the
Symposium on Recent Advances on Blockchain and its Applications, July 2019. Ayoade led the design,
implementation and evaluation of the approaches used in this research.

2https://www.icohotlist.com

3https://github.com/ethereum/solidity

4https://github.com/takenobu-hs/haskell-ethereum-assembly

5https://github.com/ethereum/vyper

92

https://www.icohotlist.com
https://github.com/ethereum/solidity
https://github.com/takenobu-hs/haskell-ethereum-assembly
https://github.com/ethereum/vyper

deployment to the blockchain network. Most of these tools rely on the source code to carry

out their analysis (Luu et al., 2016; Kalra et al., 2018), though a few (e.g., teEther (Krupp

and Rossow, 2018)) perform bug-search at the bytecode level.

Rather than searching for bugs, our work leverages automated bytecode rewriting to

allow developers to create smart contracts in any language, yet automatically enforce security

policies at the bytecode level without relying on developer expertise to secure the application.

Our framework ensures that vulnerable bytecode is properly protected without access to

source code. By providing a framework that uses a source-agnostic approach, we can enforce

security policy rules across different development tool chains.

Source-free, binary transformations are widely recognized as more difficult to imple-

ment than source-level analyses and transformations. Lack of contextual variable mean-

ings (Wang et al., 2017), irregular instruction alignment of certain architectures (e.g., CISC

native codes) (Bauman et al., 2018), and recovery of code control-flow graphs and function

entry points (Wartell et al., 2014), are all perennial challenges documented in the litera-

ture. However, Ethereum bytecode has many syntactic properties that aid feasibility of

binary rewriting of smart contracts relative to other binary languages, including strict in-

struction alignment and whitelisting of all indirect control-flow targets with JUMPDEST

opcodes (Wood, 2019).

Bytecode rewriting of Ethereum contracts can therefore be achieved in four major steps:

(1) Disassemble the bytecode to semantically equivalent assembly code. (2) Instrument the

disassembled bytecode with new security guard code that enforces the desired policy. (3)

Identify all jump locations and rewrite their destinations to match the code motions induced

by the instrumentation step. (4) Verify that the modified code is transparent (Sridhar et al.,

2014) with respect to the original code (i.e., it implements the same input-output relation

whenever the security policy is not violated).

In this work, we build a framework that can rewrite Ethereum bytecode and update all

jump instructions to reflect the new offset of their targets based on the modified code. Our

93

work differs from previous systems by creating a framework that can modify the Ethereum

bytecode without the need of high level language source code (cf., (Lind et al., 2016; Luu

et al., 2016)). In short, our contributions include the following (Ayoade et al., 2019).

• We propose and implement a framework to rewrite Ethereum bytecode without access

to source code.

• Our framework detects vulnerable bytecode instructions and inserts guard code to

mitigate attacker exploits.

• We implement Ethereum virtual machine code verification in the Coq theorem prover

to machine-prove semantic transparency.

• We evaluate the system on real world smart contracts and measure the system over-

head.

The rest of the chapter is organized as follows. Section A.2 provides background on

smart contract and Ethereum bytecode vulnerabilities. Section A.3 discusses challenges and

solutions encountered in designing a bytecode rewriter framework. Section A.4 provides

the architecture of our system and Section A.5 describes our implementation. Section A.6

contains our evaluation, followed by discussion of related work in Section A.7. Finally,

Section A.8 examines limitations and proposes future directions, and Section A.9 concludes.

A.2 Background

A.2.1 Ethereum Virtual Machine

Smart contracts are autonomous computations executed by decentralized entities on a blockchain.

A popular smart contract framework implementation is the Ethereum virtual machine (EVM).

The EVM is a stack based computer that executes a sequence of bytecode instructions. Its

94

state consists of a stack of 32-byte values, a memory, and a key-value store for persistent

storage. EVM bytecode consists of more than 100 opcodes, such as ADD, SUB, PUSH, and

JUMP. Each opcode has an associated fee called gas that must be paid to execute the instruc-

tion. Two token standards called ERC20 and ERC721 implement custom cryptocurrencies

and custom non-fungible assets.

A.2.2 Common Ethereum Smart Contract Vulnerabilities

The increased use of smart contracts has resulted in the discovery of numerous contract

vulnerabilities, including arithmetic over/underflow, smart contract owner hijacking, and

re-entrancy attack vulnerabilities. We here focus on arithmetic vulnerability detection and

mitigation. Integer overflows and underflows can occur during EVM code execution, leading

to loss of tokens or money. The stack consists of up to 1024 32-byte words, each of which

can hold a maximum value of 2256. By adding a number to the max value, the new value

rolls over to zero. Subtracting from a zero value dually rolls the result over to the maximum

value6 (ConsenSys, 2019) because EVM uses unsigned int256 types (Konstantopoulos, 2018).

Integer underflow vulnerabilities can allow an attacker to roll over his initial balance to the

maximum value, thereby gaining access to a large token balance that he does not own. This

work focuses on mitigating these vulnerabilities by rewriting the smart contract bytecode.

A.3 Challenges

A.3.1 EVM Control-flows and Jump Retargeting

Since the EVM is a stack-based machine, EVM bytecode consists of a sequence of one-byte

instructions (except for PUSH instructions, which contain immediate values). To control the

flow of the program, the address of a jump destination is first pushed to the stack as an

6https://github.com/CoinCulture/evm-tools/blob/master/analysis/guide.md

95

https://github.com/CoinCulture/evm-tools/blob/master/analysis/guide.md

input to the jump instruction, which is then executed. All jump destination addresses are

marked with the JUMPDEST instruction. This is to ensure that programs can only jump

to specific unique addresses marked in the bytecode. This mechanism is enforced by the

EVM. To enforce this policy, the EVM parses the program bytecode and memorizes all the

JUMPDEST targets. Every jump target is checked for validity before executing each JUMP

instruction.

Unlike most native code architectures, where the machine code contains direct jump

instructions, all jumps in EVM bytecode use the address at the top of the stack to identify

the jump target. Code transformations that move instructions must therefore modify all

jumps whose targets might have moved. We address this challenge in Section A.4.1.

A.3.2 Minimizing Overhead in Modified Bytecode

Protecting vulnerable code segments in the bytecode requires adding more instructions to

the original bytecode. Inserting full guard code where vulnerable code exists results in a

larger bytecode size, which affects the deployment cost on the Ethereum blockchain. For

example, a smart contract with 100 bytes of code costs 2000 gas to deploy, while a smart

contract with 50 bytes of code costs 1000 gas, resulting in a savings of 50%. According to

the Ethereum yellow paper (Wood, 2019), every byte deployed on the blockchain costs 200

gas. As a result of this, we need an efficient technique to optimize the rewriting. We address

this challenge in Section A.4.3.

A.3.3 Verifying Bytecode Correctness and Transparency

Bytecode rewriting is a potentially complex operation. To obtain high assurance, a machine-

checked verification system allows us to verify that the modified bytecode program maintains

the policy-compliant behaviors and correctness properties of the original code. To address

this need, we build a verification tool that simulates the Ethereum stack VM and prove

96

Algorithm 5: EVM bytecode hardening
Data: EVMbytecode, EVMGuardCode, VulnerableOpcode
Result: HardenedEVMBytecode

1 while Inst ∈ Instructions do
2 Opcode := GetOpcode(Inst);
3 Operand := GetOperand(Inst);
4 if VulnerableOpcode = Opcode then
5 InsertCode(EVMGuardCode);

6 while Inst ∈ Instructions do
7 Opcode := GetOpcode(Inst);
8 Operand := GetOperand(Inst);
9 if Opcode = JUMP then

10 pushInst := GetPreviousPushInst();
11 oldTarget := getOperand(pushInst);
12 while Inst2 ∈ Instructions do
13 if oldTarget = oldlabel(Inst2) ∧ GetOpcode(Inst2) = JUMPDEST then
14 rewritePushInstruction(Inst, getnewlabel(Inst2))

the transparency of the original and the modified bytecode. We address this challenge in

Section A.4.4.

A.4 Architecture

As shown in Figure A.1, our system accepts policy rules and EVM bytecode as input. The

framework consists of the Bytecode rewriter and the EVM code verifier. The bytecode

rewriter consists of a disassembler, the rewriter, and an assembler. The bytecode rewriter

output is fed to the EVM code verifier together with the original bytecode to ensure the

rewritten program is equivalent. If the verifier succeeds, we output the hardened bytecode.

If the verifier fails, we retry the rewriting step with a bounded time. In our system, we

propose an in-lined bytecode insertion algorithm shown in Algorithm 5 and a function call

technique shown in Algorithm 6.

97

Yes

Disassembler
+

ByteCode Rewriter
(Algorithm 1)

EVM Code
Verifier

Verified

Hardened
Bytecode

Policy Rule
+

EVM Bytecode

No

Figure A.1: System architecture

A.4.1 In-lined Bytecode Rewriter

In order to rewrite the EVM bytecode as shown in Algorithm 5, we first disassemble the

bytecode to opcode instructions and extract the opcode and the operand of each instruction

(lines 2–3). If the opcode is vulnerable, we insert the guard code before the vulnerable

opcodes (line 5).

The resulting assembly code is misaligned due to the inserted code and JUMP instructions.

To realign the code, we scan the code again for JUMP or JUMPI instructions (line 9). In most

cases the instruction that precedes the JUMP opcode is a PUSH instruction, whereupon we

extract the argument that specifies the jump target (line 11). We next scan the instructions

98

1 DUP1 // duplicate second subtraction argument
2 DUP3 // duplicate first subtraction argument
3 GT // test for underflow
4 NOT
5 PUSH [tag] n
6 JUMPI
7 REVERT // underflow detected
8 tag n
9 JUMPDEST

10 SUB // safely perform subtraction

Listing A.1: Underflow protection bytecode

to find a match between the extracted old jump target and the new jump target location label

(line 12). After a match is found, we extract the offset of the new JUMPDEST instruction

and rewrite the PUSH instruction’s argument to the new jump target location (line 14).

A.4.2 Addressing the Policy Rule Generation Challenge

We must generate and convert a protection policy rule to bytecode, which can then be used

as guard code to protect the vulnerable code. Since we perform our rewriting at the bytecode

level, we can generate the guard bytecode once and apply it to any other bytecode compiled

from any other language. In our case, we write our protection policy in Solidity and extract

the compiled bytecode for the application.

For example, Listing A.1 shows the code generated for underflow code protection. The

code checks whether the subtrahend exceeds the minuend before performing the subtrac-

tion to avoid a negative result, which is not supported by the EVM as discussed in Sec-

tion A.2.2 (ConsenSys, 2019; Konstantopoulos, 2018). Program execution is aborted if an

impending underflow is detected.

A.4.3 Optimized Guard Code Rewrite

Algorithm 6 addresses the challenge of optimizing the bytecode rewriting algorithm to mini-

mize bytecode size and instruction count, as mentioned in Section A.3.2. In order to minimize

99

1 000000 PUSH 〈current address〉
2 000002 PUSH 〈address of appended guard code〉
3 000004 JUMP

Listing A.2: Function call code in EVM bytecode

the size of the binary file generated by inline guard code insertion, we utilized a function

call-like system in the EVM bytecode. EVM does not support first-class function calls at

the bytecode level.

To achieve our optimization, we inserted code that allows the program to remember how

to return to the calling function after executing the guard code. In order to achieve this,

function call code is first inserted before all vulnerable instruction code (line 5). Guard code

is next appended to the current bytecode (line 6).

The function call code’s PUSH argument is initialized with a placeholder location value

that is later updated, the instruction is labeled as the current location, and the consecutive

instruction is labeled as the function call instruction. To update the place holder location

in the function call, we first scan the new code for the location of the appended guard code.

Second, we scan the code for the labels; if the instruction label is the current location (line 9),

we update the PUSH argument to the current location value to save the return address on the

stack. Third, we scan the instructions for the function call PUSH instruction and we update

the argument to the location of the appended guard code (lines 12). Finally, we rewrite the

jump target locations using the steps from Algorithm 5.

Listing A.2 shows the code flow of the function call code routine. To call the appended

guard code, the current address of the program instruction is first pushed to the stack. Sec-

ond, the address of the guard code function is pushed to the stack and the jump instruction

is executed to the jump to the guard code. After execution, the guard uses the saved location

to return to the calling code position.

100

Algorithm 6: EVM bytecode optimized rewriter
Data: EVMbytecode, EVMGuardCode, Vulnerable Opcode
Result: HardenedEVMBytecode

1 while Inst ∈ Instructions do
2 Opcode := GetOpcode(Inst);
3 Operand := GetOperand(Inst);
4 if VulnerableOpcode = Opcode then
5 InsertFunctionCallCode();

6 AppendCode(EVMGuardCode);
7 while Inst ∈ Instructions do
8 instructionLabel := getInstructionLabel();
9 if instructionLabel = saveCurrentInstAddress then

10 UpdatePushInstrArg(Inst, currentLocation);

11 if currInstructionLabel = functioncall then
12 UpdatePushInstrArg(Inst, appendedCodeLocation);

13 Reuse steps 6–14 of Algorithm 5 to rewrite jump targets

ρ : N⇀ ι (program)

ι ::= PUSH n | POP | SUB | JUMP | STOP | · · · (instruction)

µ ::= 〈σ,m〉 | 〈pc, σ,m〉 (machine state)

σ ::= · | n :: σ (stack)

m : N⇀ N (memory)

ρ(pc) = PUSH n

ρ ` 〈pc, σ,m〉 →1 〈pc + 1, n :: σ,m〉
(PUSH)

ρ(pc) = POP

ρ ` 〈pc, n :: σ,m〉 →1 〈pc + 1, σ,m〉
(POP)

ρ(pc) = SUB n1 ≥ n2
ρ ` 〈pc, n1 :: n2 :: σ,m〉 →1 〈pc + 1, (n1 − n2) :: σ,m〉

(SUB)

ρ(pc) = JUMP ρ(n) = JUMPDEST

ρ ` 〈pc, n :: σ,m〉 →1 〈n, σ,m〉
(JUMP)

ρ(pc) = STOP

ρ ` 〈pc, σ,m〉 →1 〈σ,m〉
(STOP)

Figure A.2: EVM semantics (abbreviated and simplified)

A.4.4 EVM Code Verification

Here we address the challenge of bytecode verification as introduced in Section A.3.3. In

order to verify the properties of the modified bytecode are still correct, we need a system

101

that allows us to specify theorems about program behaviors and prove their correctness. By

leveraging the Coq interactive proof assistant, we implemented an EVM stack in Coq.

Figure A.2 shows a simplified and abbreviated definition of our EVM semantics for Coq.

The semantics are formalized as a small-step machine in which bad states (e.g., stack un-

derflows, invalid jumps, etc.) are intentionally left undefined. This makes unprovable any

theorems that depend upon the EVM’s behavior upon encountering such states. As a result,

proved theorems guarantee that bad states are avoided.

A program ρ is formalized as a partial mapping from offsets to instructions ι. The

program’s current state includes the current instruction offset (program counter pc), the

stack contents σ, and the memory contents m. Each semantic rule executes one instruction

by reading the opcode located at the current program counter offset and manipulating the

stack and/or memory accordingly. Fall-through instructions increment the program counter,

whereas jumps assign it a target offset. Programs that halt normally enter final state 〈σ,m〉.

A.4.5 Proving Transparency

Proving transparency of our bytecode rewriter entails proving that all policy-adherent be-

haviors of the program are preserved after rewriting. For a given rewriter R : ρ → ρ, the

transparency theorem can be formalized as follows.

Theorem 1. For all programs ρ, if ρ ` 〈0, ·,m〉 →∗ 〈σ′,m′〉 is derivable, then R(ρ) `

〈0, ·,m〉 →∗ 〈σ′,m′〉 is derivable, where →∗ is the reflexive, transitive closure of small-step

relation →1.

Proof. The theorem is proved by first generalizing the theorem statement’s initial program

counter for the original program (0) to an arbitrary offset pc, and rewriting the rewritten

program’s initial program counter 0 to r(pc), where r : N → N is the mapping from old

offsets to new (relocated) offsets implemented by R. Initial stack · is likewise generalized

102

to an arbitrary stack σ. This generalization of the theorem facilitates a natural number

induction over the number of steps n in transitive relation →∗. By case distinction, each

small-step semantic rule in Figure A.2 yields a modified state that satisfies the theorem by

inductive hypothesis. The rule for instruction STOP satisfies the base case of the induction,

completing the proof.

A.5 Implementation

We implemented our bytecode rewriter in Python. We utilized the Ethereum dataset of all

smart contract bytecode stored on the Google big-query platform. We extracted a total of

155,175 unique smart contracts from a total of 2,195,890 smart contracts deployed on the

Ethereum network. Of the 155,175 smart contracts, we extracted 64,033 ECR20 Ethereum

smart contracts and 1,515 ECR721 Ethereum smart contracts. For each of the smart contract

types, we instrumented 1,000 smart contracts with code protection for integer overflow and

underflow for both addition and subtraction instructions. We executed our bytecode rewriter

on an Intel Core i5 with 8GB of memory.

We implemented our EVM verification by extending a stack computer developed in

Coq (Nardelli, 2011). As discussed in Section A.4.4, we implemented the following instruc-

tions in Coq: PUSH, ADD, SUB, MULT, POP, DIV, LT, GT, DUP1, DUP2, SWAP1, SWAP2,

EXP, ISZERO, and STOP. This subset encompasses all instructions needed for our guard

code implementations. Since all other EVM opcodes are preserved by our rewriter, their

semantics are not needed in the proof of Theorem 1.

A.6 Evaluation

In this section, we discuss the overhead in terms of instruction counts, as shown in Figures A.3

and A.4. The x-axis lists the different types of Ethereum smart contract interfaces as ECR20,

ECR720, and normal smart contracts. The y-axis records the overhead as the increase in

103

EC
R
20

EC
R
72

1

N
or

m
al

EC
R
20

op
t

EC
R
72

1o
pt

N
or

m
al
op

t
0

200

400

600

800

%
O

v
er

h
ea

d

Figure A.3: MIN, AVG and Max instruction count overhead for integer overflow protection rewrite

EC
R
20

EC
R
72

1

N
or

m
al

EC
R
20

op
t

EC
R
72

1o
pt

N
or

m
al
op

t
0

200

400

600

800
%

O
v
er

h
ea

d

Figure A.4: MIN, AVG and Max instruction count overhead for integer underflow protection rewrite

Table A.1: Average instruction count overheads

Protection ECR20 ECR721 Norm

Overflow 350% 360% 300%
Underflow 180% 150% 180%

Protection ECR20opt ECR721opt Normopt

Overflow 16% 13% 31%
Underflow 9% 7% 3%

the instruction count of the modified code relative to the original code, giving the minimum,

average, and maximum overhead for each. The non-optimized result represents the in-lined

rewriting algorithm, and the optimized result represents the function call method.

For Figure A.3, the minimum instruction count percentage overhead for normal smart

contracts is 30% for the non-optimized rewriter and 2% for the optimized rewriter. The

average percentage overhead is 300% for non-optimized versus 31% for the optimized rewriter

for normal smart contracts. Figure A.4 shows similar results. Table A.1 contains the average

overheads for each type of contract.

104

To evaluate the overhead based on gas usage, we used the EVM simulator program

developed by the Ethereum foundation to run a normal smart contract that is vulnerable

to integer overflow and integer underflow, and we compared the gas usage to the smart

contract protected by our rewriting framework. The execution overhead for the protected

program from integer overflow and underflow is 300% for both. This result is due to similar

instructions used to check if the parameters for addition or subtraction will not roll over to

a zero or a maximum number as discussed in Section A.2.2.

A.7 Related Work

Smart Contract Code Defense Various researchers have explored finding vulnerabilities

in smart contracts. Oyente (Luu et al., 2016) uses symbolic execution to run smart contracts

and find predefined bugs such as re-entrancy attacks and insufficient balance. Osiris (Torres

et al., 2018) extends Oyente to discover arithmetic vulnerabilities by using taint propagation

techniques. Machine learning (Masud et al., 2008) based methods to classify code to detect

vulnerable code have been explored. TeEther (Krupp and Rossow, 2018) allows automatic

generation of exploits for smart contracts. Zeus (Kalra et al., 2018) leverages LLVM to

generate LLVM IR code from an abstract syntax tree generated from solidity source code.

The system needs access to the original source code to mitigate attacks.

Formal Verification Machine-verifying the correctness of security-sensitive programs for

high assurance is becoming more important with the increase in security breaches. One

main work in the area of program verification is compiler certification. Coq has been

used to develop the first C compiler with an end-to-end, machine-checked proof of seman-

tic transparency (Leroy, 2009). In order to verify the safety properties of smart contracts

in Ethereum, an Ethereum smart contract verification system has been implemented in Is-

abelle/HOL (Hirai, 2017). Our work differs from these works by developing a framework

105

that provably mitigates smart contract vulnerabilities by inserting guard code in the raw

bytecode.

A.8 Discussion and Future Work

In this work, we identified arithmetic vulnerabilities by searching for the occurrence of ADD

and SUB instructions. Other instructions, such as the SIGNEXTEND opcode, can also be used

to determine the bitwidth (Torres et al., 2018) and type inference of the result address. This

instruction can help to determine whether an arithmetic overflow will occur. In addition, we

identified jump target locations where the address of the JUMP instruction is pushed to the

stack before the jump is executed.

For our formal verification, we focused mainly on verifying the operations of the Ethereum

stack where most of the arithmetic operations occur. In future work, we will focus on adding

the verification of memory access operations that can be useful in protecting against other

Ethereum smart contract vulnerabilities.

For future work, we will identify other common jump operation patterns that involve

function call patterns. In addition, we will use machine learning methods to detect vulner-

abilities in smart contract bytecode.

A.9 Conclusion

This work explored bytecode rewriting as a mechanism for defending against smart contract

vulnerabilities. Hardened EVM bytecode exhibited an average overhead of between 3% and

31% for both integer overflow and integer underflow guard code rewriting using our optimized

bytecode rewriter. In addition, we implemented a code verification system within the Coq

interactive theorem prover to machine-verify the transparency of the modified bytecode.

106

REFERENCES

Ahmed, M., A. N. Mahmood, and J. Hu (2016). A survey of network anomaly detection
techniques. Journal of Network and Computer Applications 60, 19–31.

Al-Khateeb, T., M. M. Masud, K. M. Al-Naami, S. E. Seker, A. M. Mustafa, L. Khan,
Z. Trabelsi, C. Aggarwal, and J. Han (2016). Recurring and novel class detection using
class-based ensemble for evolving data stream. IEEE Transactions on Knowledge and
Data Engineering 28 (10), 2752–2764.

Al-Naami, K., S. Chandra, A. Mustafa, L. Khan, Z. Lin, K. Hamlen, and B. Thuraisingham
(2016). Adaptive encrypted traffic fingerprinting with bi-directional dependence. In Pro-
ceedings of the 32Nd Annual Conference on Computer Security Applications, ACSAC ’16,
New York, NY, USA, pp. 177–188. ACM.

Al-Naami, K., A. El Ghamry, M. S. Islam, L. Khan, B. M. Thuraisingham, K. W. Hamlen,
M. Alrahmawy, and M. Rashad (2019). Bimorphing: A bi-directional bursting defense
against website fingerprinting attacks. IEEE Transactions on Dependable and Secure
Computing , 1–1.

Al-Shaer, E., J. Wei, K. W. Hamlen, and C. Wang (2019). Autonomous Cyber Deception
Reasoning, Adaptive Planning, and Evaluation of HoneyThings. Springer.

Alnaami, K., G. Ayoade, A. Siddiqui, N. Ruozzi, L. Khan, and B. Thuraisingham (2015).
P2V: Effective website fingerprinting using vector space representations. In Proceedings of
the IEEE Symposium on Computational Intelligence, pp. 59–66.

Anagnostakis, K. G., S. Sidiroglou, P. Akritidis, M. Polychronakis, A. D. Keromytis, and
E. P. Markatos (2010). Shadow honeypots. International Journal of Computer and Net-
work Security 2 (9), 1–15.

Anagnostakis, K. G., S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis (2005). Detecting targeted attacks using shadow honeypots. In Proceedings
of the USENIX Security Symposium.

Applebaum, A., D. Miller, B. Strom, H. Foster, and C. Thomas (2017). Analysis of auto-
mated adversary emulation techniques. In Proceedings of the Summer Simulation Multi-
Conference, SummerSim ’17, San Diego, CA, USA, pp. 16:1–16:12. Society for Computer
Simulation International.

Applebaum, A., D. Miller, B. Strom, C. Korban, and R. Wolf (2016). Intelligent, automated
red team emulation. In Proceedings of the 32Nd Annual Conference on Computer Security
Applications, ACSAC ’16, New York, NY, USA, pp. 363–373. ACM.

107

Araujo, F., G. Ayoade, K. Al-Naami, Y. Gao, K. W. Hamlen, and L. Khan (2019, December).
Improving intrusion detectors by crook-sourcing. In Proc. Annual Computer Security
Applications Conf..

Araujo, F. and K. W. Hamlen (2015). Compiler-instrumented, dynamic secret-redaction of
legacy processes for attacker deception. In Proceedings of the USENIX Security Sympo-
sium.

Araujo, F., K. W. Hamlen, S. Biedermann, and S. Katzenbeisser (2014). From patches
to honey-patches: Lightweight attacker misdirection, deception, and disinformation. In
Proceedings of the ACM Conference on Computer and Communications Security, pp. 942–
953.

Araujo, F., M. Shapouri, S. Pandey, and K. Hamlen (2015). Experiences with honey-patching
in active cyber security education. In 8th Workshop on Cyber Security Experimentation
and Test.

Atzei, N., M. Bartoletti, and T. Cimoli (2017). A survey of attacks on Ethereum smart
contracts SoK. In Proc. Int. Conf. Principles of Security and Trust – Volume 10204, pp.
164–186.

Avery, J. and E. H. Spafford (2017). Ghost patches: Fake patches for fake vulnerabilities.
In Proc. IFIP Int. Conf. ICT Systems Security and Privacy Protection, pp. 399–412.

Awad, M., L. Khan, F. Bastani, and I.-L. Yen (2004). An effective support vector machines
(SVMs) performance using hierarchical clustering. In Proc. IEEE Int. Conf. Tools with
Artificial Intelligence, pp. 663–667.

Ayoade, G., F. Araujo, K. Al-Naami, A. M. Mustafa, Y. Gao, K. W. Hamlen, and L. Khan
(2020, January). Automating cyberdeception evaluation with deep learning. In Proceedings
of the 53rd Hawaii International Conference on System Sciences (HICSS), Grand Wailea,
Maui.

Ayoade, G., E. Bauman, L. Khan, and K. W. Hamlen (2019, July). Smart contract defense
through bytecode rewriting. In Proceedings of the Symposium on Recent Advances on
Blockchain and its Applications, Atlanta, Georgia.

Ayoade, G., S. Chandra, L. Khan, K. Hamlen, and B. Thuraisingham (2018, Oct). Auto-
mated threat report classification over multi-source data. In 2018 IEEE 4th International
Conference on Collaboration and Internet Computing (CIC), pp. 236–245.

Ayoade, G., A. El-Ghamry, V. Karande, L. Khan, M. Alrahmawy, and M. Z. Rashad (2019,
Aug). Secure data processing for iot middleware systems. The Journal of Supercomput-
ing 75 (8), 4684–4709.

108

Ayoade, G., V. Karande, L. Khan, and K. Hamlen (2018, July). Decentralized iot data man-
agement using blockchain and trusted execution environment. In 2018 IEEE International
Conference on Information Reuse and Integration (IRI), pp. 15–22.

Bartos, K., M. Sofka, and V. Franc (2016). Optimized invariant representation of network
traffic for detecting unseen malware variants. In Proceedings of the USENIX Security
Symposium, Austin, TX, pp. 807–822.

Bauman, E., Z. Lin, and K. W. Hamlen (2018). Superset disassembly: Statically rewriting
x86 binaries without heuristics. In Proc. Annual Network & Distributed System Security
Sym..

Baumrind, D. (1979). IRBs and social science research: The costs of deception. IRB: Ethics
& Human Research 1 (6), 1–4.

Ben-David, S., J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan (2010).
A theory of learning from different domains. Machine Learning 79 (1-2), 151–175.

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and Trends® in Machine
Learning 2 (1), 1–127.

Benzel, T., R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and
S. Schwab (2006). Experience with DETER: A testbed for security research. In Proc.
Int. Conf. Testbeds and Research Infrastructures for the Development of Networks and
Communities.

Bertino, E. (2016). Data privacy for iot systems: Concepts, approaches, and research direc-
tions. In Big Data (Big Data), 2016 IEEE International Conference on, pp. 3645–3647.
IEEE.

Bhuyan, M. H., D. K. Bhattacharyya, and J. K. Kalita (2014). Network anomaly detection:
Methods, systems and tools. IEEE Communications Surveys & Tutorials 16 (1), 303–336.

Boggs, N., H. Zhao, S. Du, and S. J. Stolfo (2014). Synthetic data generation and defense in
depth measurement of web applications. In Proceedings of the International Symposium
on Recent Advances in Intrusion Detection, pp. 234–254.

Breen, C., L. Khan, and A. Ponnusamy (2002). Image classification using neural networks
and ontologies. In Proceedings. 13th International Workshop on Database and Expert
Systems Applications, pp. 98–102. IEEE.

Breidenbach, L., P. Daian, A. Juels, and E. G. Sirer (2017, July). An in-depth look at the
Parity Multisig bug. Hacking, Distributed. http://hackingdistributed.com/2017/07/22/
deep-dive-parity-bug.

109

http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug

Burger, E. W., M. D. Goodman, P. Kampanakis, and K. A. Zhu (2014). Taxonomy model
for cyber threat intelligence information exchange technologies. In Proceedings of the 2014
ACM Workshop on Information Sharing & Collaborative Security, WISCS ’14, New
York, NY, USA, pp. 51–60. ACM.

Cabrera, J. B., L. Lewis, and R. K. Mehra (2001). Detection and classification of intrusions
and faults using sequences of system calls. ACM SIGMOD Record 30 (4), 25–34.

Canali, D., M. Cova, G. Vigna, and C. Kruegel (2011). Prophiler: a fast filter for the large-
scale detection of malicious web pages. In Proceedings of the International Conference on
World Wide Web, pp. 197–206.

Chandola, V., A. Banerjee, and V. Kumar (2009). Anomaly detection: A survey. ACM
Computing Surveys 41 (3), 15.

Chechik, G., V. Sharma, U. Shalit, and S. Bengio (2010). Large scale online learning of
image similarity through ranking. Journal of Machine Learning Research 11, 1109–1135.

Chen, M., K. Q. Weinberger, F. Sha, and Y. Bengio (2014). Marginalized denoising auto-
encoders for nonlinear representations. In ICML, pp. 1476–1484.

Cohen, W. W. (1995a). Fast effective rule induction. In Proceedings of the International
Conference on Machine Learning, pp. 115–123.

Cohen, W. W. (1995b). Fast effective rule induction. In Proceedings of the Twelfth In-
ternational Conference on International Conference on Machine Learning, ICML’95, San
Francisco, CA, USA, pp. 115–123. Morgan Kaufmann Publishers Inc.

ConsenSys (2019). Ethereum smart contract best practices: Known attacks. https:
//consensys.github.io/smart-contract-best-practices/known attacks.

Costan, V. and S. Devadas (2016). Intel SGX explained. IACR Cryptology ePrint
Archive 2016, 86.

Crane, S., P. Larsen, S. Brunthaler, and M. Franz (2013). Booby trapping software. In Proc.
New Security Paradigms Work., pp. 95–106.

Crosby, M., P. Pattanayak, and S. Verma (2016). Blockchain technology: Beyond bitcoin.

De Marneffe, M.-C. and C. D. Manning (2008). The stanford typed dependencies represen-
tation. In Coling 2008: proceedings of the workshop on cross-framework and cross-domain
parser evaluation, pp. 1–8. Association for Computational Linguistics.

Dong, B., M. S. Islam, S. Chandra, L. Khan, and B. Thuraisingham (2018, Dec). Gci: A
transfer learning approach for detecting cheats of computer game. In 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 1188–1197.

110

https://consensys.github.io/smart-contract-best-practices/known_attacks
https://consensys.github.io/smart-contract-best-practices/known_attacks

Dorri, A., S. S. Kanhere, and R. Jurdak (2017). Towards an optimized blockchain for iot.

In Proceedings of the Second International Conference on Internet-of-Things Design and

Implementation, IoTDI ’17, New York, NY, USA, pp. 173–178. ACM.

Dudorov, D., D. Stupples, and M. Newby (2013). Probability analysis of cyber attack paths

against business and commercial enterprise systems. In Proceedings of the IEEE European

Intelligence and Security Informatics Conference, pp. 38–44.

Dyer, K. P., S. E. Coull, T. Ristenpart, and T. Shrimpton (2012). Peek-a-boo, I still see you:

Why efficient traffic analysis countermeasures fail. In Proceedings of the IEEE Symposium

on Security & Privacy, pp. 332–346.

Eskin, E., A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo (2002). A geometric framework for

unsupervised anomaly detection. In Applications of Data Mining in Computer Security,

pp. 77–101. Springer.

Eyal, I., A. E. Gencer, E. G. Sirer, and R. Van Renesse (2016). Bitcoin-ng: A scalable

blockchain protocol. In NSDI, pp. 45–59.

Fernandes, E., J. Jung, and A. Prakash (2016, May). Security Analysis of Emerging Smart

Home Applications. In Proceedings of the 37th IEEE Symposium on Security and Privacy.

Filecoin (2017). Filecoin: A decentralized storage network. https://filecoin.io/filecoin.pdf.

(Accessed on 08/09/2017).

Fireeye. Apt1 report. https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/

mandiant-apt1-report.pdf. (Accessed on 12/12/2017).

Fireeye. Apt1 report. https://www.symantec.com/security-center/threats. (Accessed on

8/13/2018).

Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff (1996). A sense of self for Unix

processes. In Proceedings of the IEEE Symposium on Security & Privacy, pp. 120–128.

Foundation, E. (2014). Ethereum’s white paper. https://github.com/ethereum/wiki/wiki/

White-Paper. (Accessed on 08/09/2017).

Gao, Y., Y.-F. Li, S. Chandra, L. Khan, and B. Thuraisingham (2019). Towards self-adaptive

metric learning on the fly. In The World Wide Web Conference, pp. 503–513. ACM.

Garcia-Teodoro, P., J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez (2009). Anomaly-

based network intrusion detection: Techniques, systems and challenges. Computers &

Security 28 (1), 18–28.

111

https://filecoin.io/filecoin.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.symantec.com/security-center/threats
 https://github.com/ethereum/wiki/wiki/White-Paper
 https://github.com/ethereum/wiki/wiki/White-Paper

Ghaith, H., A.-S. Ehab, A. Mohiuddin, C. Bei-Tseng, and N. Xi (2017). Ttpdrill: Automatic
and accurate extraction of threat actions from unstructured text of cti sources. In Annual
Computer Security Applications Conference (ACSAC).

Gonzalez, N. M., W. A. Goya, R. de Fatima Pereira, K. Langona, E. A. Silva, T. C. M.
de Brito Carvalho, C. C. Miers, J. E. Mångs, and A. Sefidcon (2016, Oct). Fog computing:
Data analytics and cloud distributed processing on the network edges. In 2016 35th
International Conference of the Chilean Computer Science Society (SCCC), pp. 1–9.

Greene, D. and P. Cunningham (2006). Practical solutions to the problem of diagonal
dominance in kernel document clustering. In Proceedings of the International Conference
on Machine learning, pp. 377–384. ACM.

Gubbi, J., R. Buyya, S. Marusic, and M. Palaniswami (2013). Internet of things (iot):
A vision, architectural elements, and future directions. Future generation computer sys-
tems 29 (7), 1645–1660.

Hirai, Y. (2017). Defining the Ethereum virtual machine for interactive theorem provers. In
Proc. Int. Conf. Financial Cryptography and Data Security, pp. 520–535.

Hofmeyr, S. A., S. Forrest, and A. Somayaji (1998). Intrusion detection using sequences of
system calls. Journal of Computer Security 6 (3), 151–180.

Hu, H., G.-J. Ahn, and J. Jorgensen (2011). Detecting and resolving privacy conflicts for
collaborative data sharing in online social networks. In Proceedings of the 27th Annual
Computer Security Applications Conference, ACSAC ’11, New York, NY, USA, pp. 103–
112. ACM.

Huang, J., A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola (2007). Correcting
sample selection bias by unlabeled data. In Advances in neural information processing
systems, pp. 601–608.

Hue, P. (2017). Philip hue iot portal. http://www2.meethue.com/en-us/. (Accessed on
08/09/2017).

Hutchins, E. M., M. J. Cloppert, and R. M. Amin (2011). Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill chains.
Leading Issues in Information Warfare & Security Research 1, 80.

Jain, P., B. Kulis, I. S. Dhillon, and K. Grauman (2008). Online metric learning and fast
similarity search. In Advances in Neural Information Processing Systems 21, Proceed-
ings of the Twenty-Second Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 8-11, 2008, pp. 761–768.

112

http://www2.meethue.com/en-us/

Jia, Y. J., Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, and A. Prakash
(2017, February). ContexIoT: Towards Providing Contextual Integrity to Appified IoT
Platforms. In Proceedings of the 21st Network and Distributed System Security Symposium
(NDSS’17), San Diego, CA.

Jiang, J. and C. Zhai (2007). Instance weighting for domain adaptation in nlp. In ACL,
Volume 7, pp. 264–271.

Jin, R., S. Wang, and Y. Zhou (2009). Regularized distance metric learning: Theory and
algorithm. In Advances in Neural Information Processing Systems 22: 23rd Annual Con-
ference on Neural Information Processing Systems 2009. Proceedings of a meeting held
7-10 December 2009, Vancouver, British Columbia, Canada., pp. 862–870.

Juarez, M., S. Afroz, G. Acar, C. Diaz, and R. Greenstadt (2014). A critical evaluation of
website fingerprinting attacks. In Proceedings of the ACM Conference on Computer and
Communications Security, pp. 263–274.

Kalra, S., S. Goel, M. Dhawan, and S. Sharma (2018). Zeus: Analyzing safety of smart
contracts. In Proc. Annual Network & Distributed System Security Sym..

Kanamori, T., S. Hido, and M. Sugiyama (2009). A least-squares approach to direct impor-
tance estimation. The Journal of Machine Learning Research 10, 1391–1445.

Kapravelos, A., Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna (2013). Revolver: An
automated approach to the detection of evasive web-based malware. In Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 13), Washington, D.C., pp.
637–652. USENIX.

Karande, V., E. Bauman, Z. Lin, and L. Khan (2017). Sgx-log: Securing system logs with sgx.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, ASIA CCS ’17, New York, NY, USA, pp. 19–30. ACM.

Kim, J., P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and J. Twycross (2007).
Immune system approaches to intrusion detection—a review. Natural Computing 6 (4),
413–466.

Konstantopoulos, G. (2018, January). How to secure your smart contracts: 6 solidity vul-
nerabilities and how to avoid them (part 1). Loom Network J.. https://bit.ly/2nNLuOr.

Kosba, A., A. Miller, E. Shi, Z. Wen, and C. Papamanthou (2016). Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In Security and Privacy
(SP), 2016 IEEE Symposium on, pp. 839–858. IEEE.

Kreibichi, C. and J. Crowcroft (2004). Honeycomb – creating intrusion detection signatures
using honeypots. ACM SIGCOMM Computer Communication Review 34 (1), 51–56.

113

https://bit.ly/2nNLuOr

Kruegel, C., D. Mutz, W. Robertson, and F. Valeur (2003). Bayesian event classification
for intrusion detection. In Proceedings of the Annual Computer Security Applications
Conference, pp. 14–23.

Kruegel, C. and G. Vigna (2003). Anomaly detection of web-based attacks. In Proceedings
of the ACM Conference on Computer and Communications Security, pp. 251–261. ACM.

Kruegel, C., G. Vigna, and W. Robertson (2005). A multi-model approach to the detection
of web-based attacks. Computer Networks 48 (5), 717–738.

Krügel, C., T. Toth, and E. Kirda (2002). Service specific anomaly detection for network
intrusion detection. In Proceedings of the ACM Symposium on Applied Computing, pp.
201–208.

Krupp, J. and C. Rossow (2018). teEther: Gnawing at Ethereum to automatically exploit
smart contracts. In Proc. USENIX Security Sym., pp. 1317–1333.

Lee, W. and D. Xiang (2001). Information-theoretic measures for anomaly detection. In
Proceedings of the IEEE Symposium on Security & Privacy, pp. 130–143.

Leroy, X. (2009). Formal verification of a realistic compiler. Communications ACM 52 (7),
107–115.

Li, W., Y. Gao, L. Wang, L. Zhou, J. Huo, and Y. Shi (2018). OPML: A one-pass closed-form
solution for online metric learning. Pattern Recognition 75, 302–314.

Li, Y.-F., Y. Gao, G. Ayoade, H. Tao, L. Khan, and B. Thuraisingham (2019). Multistream
classification for cyber threat data with heterogeneous feature space. In The World Wide
Web Conference, WWW ’19, New York, NY, USA, pp. 2992–2998. ACM.

Liao, X., K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah (2016). Acing the ioc game:
Toward automatic discovery and analysis of open-source cyber threat intelligence. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, New York, NY, USA, pp. 755–766. ACM.

Lind, J., I. Eyal, P. Pietzuch, and E. G. Sirer (2016). Teechan: Payment channels using
trusted execution environments. arXiv preprint arXiv:1612.07766 .

Linux Manual (2019). editcap: Edit and/or Translate the Format of Capture Files. https:
//linux.die.net/man/1/editcap.

Long, B., P. S. Yu, and Z. Zhang (2008). A general model for multiple view unsupervised
learning. In Proceedings of the 2008 SIAM international conference on data mining, pp.
822–833. SIAM.

114

https://linux.die.net/man/1/editcap
https://linux.die.net/man/1/editcap

Luu, L., D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor (2016). Making smart contracts
smarter. In Proc. ACM Conf. Computer and Communications Security, pp. 254–269.

Marceau, C. (2001). Characterizing the behavior of a program using multiple-length n-grams.
In Proceedings of the New Security Paradigms Workshop, pp. 101–110.

Masud, M., J. Gao, L. Khan, J. Han, and B. M. Thuraisingham (2011, June). Classification
and novel class detection in concept-drifting data streams under time constraints. IEEE
Transactions on Knowledge and Data Engineering 23 (6), 859–874.

Masud, M., L. Khan, and B. Thuraisingham (2011). Data Mining Tools for Malware Detec-
tion. CRC Press.

Masud, M. M., T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan, J. Han, and B. Thurais-
ingham (2008). Cloud-based malware detection for evolving data streams. ACM Trans.
Management Information Systems 2 (3).

Masud, M. M., T. M. Al-Khateeb, L. Khan, C. Aggarwal, J. Gao, J. Han, and B. Thurais-
ingham (2011). Detecting recurring and novel classes in concept-drifting data streams. In
Proceedings of the International IEEE Conference on Data Mining, pp. 1176–1181.

Masud, M. M., J. Gao, L. Khan, J. Han, and B. Thuraisingham (2008). A practical ap-
proach to classify evolving data streams: Training with limited amount of labeled data.
In Proceedings of the International Conference on Data Mining, pp. 929–934.

Masud, M. M., J. Gao, L. Khan, J. Han, and B. Thuraisingham (2010). Classification and
novel class detection in data streams with active mining. In Proc. Pacific-Asia Conf.
Knowledge Discovery and Data Mining, pp. 311–324.

Masud, M. M., L. Khan, and B. Thuraisingham (2008, March). A scalable multi-level
feature extraction technique to detect malicious executables. Information Systems Fron-
tiers 10 (1), 33–45.

MinIO (2019). Minio object storage. https://min.io/.

MITRE. Adversarial tactics, techniques and common knowledge. https://attack.mitre.org/
wiki/Main Page. (Accessed on 12/12/2017).

Mockaroo (2018). Product data set.

Mordor Intelligence (2018). Global cyber deception market. Technical report, Mordor Intel-
ligence.

Mustafa, A. M., G. Ayoade, K. Al-Naami, L. Khan, K. W. Hamlen, B. Thuraisingham, and
F. Araujo (2017, Dec). Unsupervised deep embedding for novel class detection over data
stream. In 2017 IEEE International Conference on Big Data (Big Data), pp. 1830–1839.

115

https://min.io/
https://attack.mitre.org/wiki/Main_Page
https://attack.mitre.org/wiki/Main_Page

Nakamoto, S. (2009). A peer-to-peer electronic cash system. bitcoin.org. (Accessed on
08/09/2017).

Nardelli, F. Z. (2011). Modelling and verifying algorithms in Coq: An introduction. https://
www.di.ens.fr/∼zappa/teaching/coq/ecole11/summer/exercices/solutions/compiler-sol.v.

NextronSystems. Apt simulator. https://github.com/NextronSystems/APTSimulator. (Ac-
cessed on 06/06/2018).

OpenIOC. Open indicator of compromise. hhttps://www.fireeye.com/blog/threat-research/
2013/10/openioc-basics.html. (Accessed on 12/12/2017).

Pan, S. J., J. T. Kwok, and Q. Yang (2008). Transfer learning via dimensionality reduction.
In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, Chicago, Illinois, USA, July 13-17, pp. 677–682.

Pan, S. J. and Q. Yang (2010). A survey on transfer learning. Knowledge and Data Engi-
neering, IEEE Transactions on 22 (10), 1345–1359.

Panchenko, A., L. Niessen, A. Zinnen, and T. Engel (2011). Website fingerprinting in onion
routing based anonymization networks. In Proceedings of the Annual ACM Workshop on
Privacy in the Electronic Society, pp. 103–114.

Patcha, A. and J.-M. Park (2007). An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Computer Networks 51 (12), 3448–3470.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and É. Duchesnay (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12, 2825–2830.

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In Advances in Large Margin Classifiers, pp. 61–74. MIT
Press.

Portnoff, R. S., S. Afroz, G. Durrett, J. K. Kummerfeld, T. Berg-Kirkpatrick, D. McCoy,
K. Levchenko, and V. Paxson (2017). Tools for automated analysis of cybercriminal
markets. In Proceedings of the 26th International Conference on World Wide Web, pp.
657–666. International World Wide Web Conferences Steering Committee.

Portokalidis, G., A. Slowinska, and H. Bos (2006). Argos: An emulator for fingerprinting
zero-day attacks for advertised honeypots with automatic signature generation. ACM
SIGOPS Operating Systems Review 40 (4), 15–27.

PyTorch (2019). Open source deep learning platform. https://pytorch.org/.

116

bitcoin.org
https://www.di.ens.fr/~zappa/teaching/coq/ecole11/summer/exercices/solutions/compiler-sol.v
https://www.di.ens.fr/~zappa/teaching/coq/ecole11/summer/exercices/solutions/compiler-sol.v
https://github.com/NextronSystems/APTSimulator
hhttps://www.fireeye.com/blog/threat-research/2013/10/openioc-basics.html
hhttps://www.fireeye.com/blog/threat-research/2013/10/openioc-basics.html
https://pytorch.org/

Quinlan, J. R. (1986, March). Induction of decision trees. Mach. Learn. 1 (1), 81–106.

Rivest, R. L., A. Shamir, and L. Adleman (1978, February). A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21 (2), 120–126.

Sadowski, G. and R. Kau (2019, March). Improve your threat detection function with
deception technologies. Technical Report G00382578, Gartner.

Santorini, B. (1990). Part-of-speech tagging guidelines for the penn treebank project (3rd
revision). Technical Reports (CIS), 570.

Santos, N., H. Raj, S. Saroiu, and A. Wolman (2014). Using arm trustzone to build a trusted
language runtime for mobile applications. In ACM SIGARCH Computer Architecture
News, Volume 42, pp. 67–80. ACM.

Selenium (2019). Selenium browser automation. http://www.seleniumhq.org.

Shi, X., Q. Liu, W. Fan, S. Y. Philip, and R. Zhu (2010). Transfer learning on heterogenous
feature spaces via spectral transformation. In Data Mining (ICDM), 2010 IEEE 10th
International Conference on, pp. 1049–1054. IEEE.

Shu, X., D. Yao, and N. Ramakrishnan (2015). Unearthing stealthy program attacks buried
in extremely long execution paths. In Proceedings of the ACM Conference on Computer
and Communications Security, pp. 401–413.

Sivaraman, V., D. Chan, D. Earl, and R. Boreli (2016). Smart-phones attacking smart-
homes. In Proceedings of the 9th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, WiSec ’16, New York, NY, USA, pp. 195–200. ACM.

slock (2017). Initial coin offering market. https://slock.it/. (Accessed on 08/09/2017).

Souders, S. (2007). High Performance Web Sites: Essential Knowledge for Front-End Engi-
neers. O’Reilly.

Sridhar, M., R. Wartell, and K. W. Hamlen (2014, November). Hippocratic binary in-
strumentation: First do no harm. Science of Computer Programming, Special Issue on
Invariant Generation 93 (B), 110–124.

STIX. Structured threat information expression. https://oasis-open.github.io/
cti-documentation. (Accessed on 12/12/2017).

Sugiyama, M., T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe (2008).
Direct importance estimation for covariate shift adaptation. Annals of the Institute of
Statistical Mathematics 60 (4), 699–746.

117

http://www.seleniumhq.org
https://slock.it/
https://oasis-open.github.io/cti-documentation
https://oasis-open.github.io/cti-documentation

Sysdig (2019). Universal system visibility tool. https://github.com/draios/sysdig.

Tang, Y. and S. Chen (2005). Defending against internet worms: A signature-based ap-
proach. In Proc. Annual Joint Conf. IEEE Computer and Communications Societies, pp.
1384–1394.

TAXII. Trusted automated exchange of intelligence information. https://oasis-open.github.
io/cti-documentation. (Accessed on 12/12/2017).

tcpdump (2019). Tcpdump and libpcap. https://www.tcpdump.org/.

Theano Development Team (2016). Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints abs/1605.02688.

Torres, C. F., J. Schütte, and R. State (2018). Osiris: Hunting for integer bugs in Ethereum
smart contracts. In Proc. Annual Computer Security Applications Conf., pp. 664–676.

Van Doorn, L. (2006). Hardware virtualization trends. In ACM/Usenix International Confer-
ence On Virtual Execution Environments: Proceedings of the 2 nd international conference
on Virtual execution environments, Volume 14, pp. 45–45.

Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol (2008). Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103. ACM.

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol (2010). Stacked denois-
ing autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research 11 (Dec), 3371–3408.

Wang, R., Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen, C. Krügel, and
G. Vigna (2017). Ramblr: Making reassembly great again. In Proc. Annual Network &
Distributed System Security Sym..

Wang, T., X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg (2014). Effective attacks
and provable defenses for website fingerprinting. In Proceedings of the USENIX Security
Symposium.

Warrender, C., S. Forrest, and B. Pearlmutter (1999). Detecting intrusions using system
calls: Alternative data models. In Proceedings of the IEEE Symposium on Security &
Privacy, pp. 133–145.

Wartell, R., Y. Zhou, K. W. Hamlen, and M. Kantarcioglu (2014). Shingled graph disas-
sembly: Finding the undecidable path. In Proc. Pacific-Asia Conf. Knowledge Discovery
and Data Mining, pp. 273–285.

118

https://github.com/draios/sysdig
https://oasis-open.github.io/cti-documentation
https://oasis-open.github.io/cti-documentation
https://www.tcpdump.org/

Wei, Y., Y. Zhu, C. W.-k. Leung, Y. Song, and Q. Yang (2016). Instilling social to physical:
Co-regularized heterogeneous transfer learning. In AAAI, pp. 1338–1344.

Williams, P. A. H. and V. McCauley (2016, Dec). Always connected: The security challenges
of the healthcare internet of things. In 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), pp. 30–35.

Wood, G. (2019). Ethereum: A secure decentralised generalised transaction ledger. Technical
Report 3e36772, Ethereum & Parity.

Wright, C. V., S. E. Coull, and F. Monrose (2009). Traffic morphing: An efficient defense
against statistical traffic analysis. In Proceedings of the IEEE Network and Distributed
Security Symposium, pp. 237–250.

Wu, Y., B. L. Tseng, and J. R. Smith (2004). Ontology-based multi-classification learn-
ing for video concept detection. In Multimedia and Expo, 2004. ICME’04. 2004 IEEE
International Conference on, Volume 2, pp. 1003–1006. IEEE.

Xiang, S., F. Nie, and C. Zhang (2008). Learning a mahalanobis distance metric for data
clustering and classification. Pattern recognition 41 (12), 3600–3612.

Yamada, M., T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama (2011, June). Relative
Density-Ratio Estimation for Robust Distribution Comparison. ArXiv e-prints .

Yu, Y.-l. and C. Szepesvári (2012). Analysis of kernel mean matching under covariate shift.
In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp.
607–614.

Zadrozny, B. (2004). Learning and evaluating classifiers under sample selection bias. In
Proceedings of the twenty-first international conference on Machine learning, pp. 114.
ACM.

Zyskind, G., O. Nathan, et al. (2015). Decentralizing privacy: Using blockchain to protect
personal data. In Security and Privacy Workshops (SPW), 2015 IEEE, pp. 180–184. IEEE.

119

BIOGRAPHICAL SKETCH

Gbadebo Ayoade began his career as a software engineer in 2009 at one of the top electronic

financial transaction companies serving the largest banks in Africa. In 2013, he decided to

pursue further studies to further his knowledge in the area of reliable and secure computing.

In 2014, he graduated from The University of Texas at Dallas with an MS in Computer

Science. In 2015, he got a full scholarship to pursue his PhD program in Computer Science

at The University of Texas at Dallas under the supervision of Dr. Latifur Khan and Dr.

Kevin W. Hamlen. During his PhD studies, he was a member of the Big Data Analytics

and Management Lab as a Research Assistant. His research interest ranges from big data

systems, cyber security and applied machine learning. He also enjoys developing software

for production systems.

120

CURRICULUM VITAE

Gbadebo Gbadero Ayoade
December 15, 2019

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: gbadebo.ayoade@utdallas.edu

Educational History:

BS, Computer Science and Engineering, Obafemi Awolowo University, 2008
MS, Computer Science, University of Texas At Dallas, 2014
PhD, Computer Science, University of Texas At Dallas, 2019

Mitigating Cyberattacks with Machine Learning-based Feature Space Transforms
PhD Dissertation
Computer Science Department, The University of Texas At Dallas
Advisors: Dr. Latifur Khan and Dr. Kevin W. Hamlen

Employment History:

Research Assistant, The University of Texas at Dallas, September 2014 – present
Data Science Intern, Procter and Gamble, May 2019 – August 2019
Big Data Intern, Verizon Labs, May 2016 – August 2016
Software Engineering Intern, Fedex, May 2014 – August 2014
Software Engineer, Interswitch, Sept 2009 – January 2013

Professional Recognitions and Honors:

Erik Jonsson School of Engineering and Computer Science Endowed Scholarship Fund, UTD,
2014

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Cyberthreat Detection with Domain Adaptation
	Automated Threat Report Classification Over Multi-Source Data
	Contribution of this dissertation
	Cyber deception based defenses
	Cyber attack detection using domain adaptation
	For threat report classification

	Outline of the dissertation

	Background
	Challenges in IDS Evaluation
	Intrusion detection datasets
	Deception-enhanced Intrusion Detection

	Online Adaptive Metric Learning
	Intrusion Detection
	ML-based Intrusion Detection
	Feature Extraction for Intrusion Detection

	Domain Adaption

	DeepDig: Automating Cyberdeception Evaluation with Deep Learning
	Approach Overview
	Traffic Analysis
	Data Analysis
	Classification

	Case Study
	Implementation
	Experimental Results
	Base Detection Analysis
	Monitoring Performance
	Resistance to Attack Evasion Techniques
	Novel Class Detection Accuracy

	Related Work

	Mitigating Cyberattacks using Domain Adaptation Technique
	Introduction
	Background
	APT attacks
	MITRE ATT&CK/Mandiant Kill Chain Phase, Tactics and Techniques
	DarkNet

	Proposed Approach
	Domain Adaptation Approach

	Feature Extraction
	Packet Features Analysis
	System Call Analysis
	Feature Extraction for Darknet dataset

	Domain Adaptation
	Training and Domain Adaptation

	Domain Adaptation Evaluation
	Dataset
	Results

	Related Work

	Automated Threat Report Classification over Multi-source Data
	Introduction
	Overview
	Related Work
	Background
	MITRE ATT&CK/Mandiant Kill Chain Phase, Tactics and Techniques
	Sample Threat Report with Tactic and Technique Categorization
	Bias Correction

	Approach
	Kill-Chain Phase Detection

	Evaluation
	DataSet
	Tactics Classification Results
	Kill Chain Phases Classification Results
	Techniques Classification Results

	Decentralized IoT Data Management
	Introduction
	Background
	Overview of Architecture
	Internet of Things
	BlockChain
	Trusted Execution Environment

	Overview
	Scope and Assumptions
	Threat Model
	The Case of Using Blockchain for IoT data management

	Architecture
	Smart Contract Component
	IoTSmartContract Detailed DataFlow

	Implementation
	Ethereum Smart Contract

	Evaluation
	Sealing and Unsealing Overhead

	Limitations and Future Work
	Related Work
	Conclusion

	Dissertation Summary
	Cyberdeception based defenses
	Domain Adaptation
	Threat Report Classification
	Future Work
	Cyberdeception based defenses
	Domain adaptation
	Threat report classification

	Appendix: Smart Contract Defense Through Bytecode Rewriting
	Introduction
	Background
	Ethereum Virtual Machine
	Common Ethereum Smart Contract Vulnerabilities

	Challenges
	EVM Control-flows and Jump Retargeting
	Minimizing Overhead in Modified Bytecode
	Verifying Bytecode Correctness and Transparency

	Architecture
	In-lined Bytecode Rewriter
	Addressing the Policy Rule Generation Challenge
	Optimized Guard Code Rewrite
	EVM Code Verification
	Proving Transparency

	Implementation
	Evaluation
	Related Work
	Discussion and Future Work
	Conclusion

	References
	Biographical Sketch
	Curriculum Vitae

