
Source-free, Machine-checked Validation of Native Code in Coq
Kevin W. Hamlen

The University of Texas at Dallas
hamlen@utdallas.edu

Dakota Fisher
The University of Texas at Dallas

djf180000@utdallas.edu

Gilmore R. Lundquist
The University of Texas at Dallas

grl082000@utdallas.edu

ABSTRACT

Picinæ is an infrastructure for machine-proving properties of raw
native code programs without sources within the Coq program-
proof co-development system. This facilitates formal reasoning
about binary code that is inexpressible in source languages or for
which no source code exists, such as hand-written assembly code
or code resulting from binary transformations (e.g., binary harden-
ing or debloating algorithms). Preliminary results validating some
highly optimized, low-level subroutines for Intel and ARM archi-
tectures using this new framework are presented and discussed.

CCS CONCEPTS

• Software and its engineering → Formal software verifica-

tion; Software reverse engineering; • Security and privacy→ Logic
and verification.

KEYWORDS

formal methods, binary validation, automated theorem proving
ACM Reference Format:

Kevin W. Hamlen, Dakota Fisher, and Gilmore R. Lundquist. 2019. Source-
free, Machine-checked Validation of Native Code in Coq. In 3rd Work-
shop on Forming an Ecosystem Around Software Transformation (FEAST
’19), November 15, 2019, London, UK. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3338502.3359759

1 INTRODUCTION

Humans are notoriously error-prone when it comes to reasoning
about code. For example, despite aggressive vetting by the open-
source community, bugs in the Linux kernel persist for an average
of almost 2 years before they are finally discovered [10]. An un-
precedented 16,555 CVEs were tabulated by MITRE in 2018 alone.1

Reasoning about raw native code is even more difficult than an-
alyzing code at the source level. While source code is designed
to be human-readable, native code is designed to be machine-
readable and is hence often unintuitive to humans. In particular,
disassembled machine code typically lacks any structured control-
flow idioms, and each assembly operation potentially implements
a host of obscure side-effects on the state of the machine. For
example, despite having no explicit parameters at the assembly
1www.cvedetails.com/vulnerability-list/year-2018/vulnerabilities.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FEAST ’19, November 15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6834-6/19/11. . . $15.00
https://doi.org/10.1145/3338502.3359759

level, the Intel x86 AAD instruction sets the AL register to AL′ :=
(AL+ 10 ∗ AH) mod 28, zeros the AH register, replaces the low 16 bits
of overlapping registers AX and EAX, assigns SF the 8th bit of AL′,
sets or clears the ZF flag depending on whether AL′ = 0, and sets
or clears the PF flag depending on whether the number of 1’s in
the binary representation of AL′ is even or odd. Any or all of these
effects can impact the behavior of subsequent instructions.

To obtain high confidence about the correctness and safety of
complex code, machine-checked formal methods have long been
championed as providing the highest attainable level of assurance
for code validation. Rather than relying upon error-prone manual
inspection of code, or upon semi-automated spot-checking regi-
mens (e.g., fuzzing) that do not exhaustively cover the program’s
state space (which is often infinite), formal methods approaches con-
struct machine-checked proofs that are universally quantified over
the state space, and that explicitly formalize all assumptions. For
example, the Coq program-proof co-development environment has
been used to construct the only C-compiler [7] in which compiler
bug-checkers (e.g., Csmith [14]) could find no errors.

Formal methods approaches typically entail developing proofs
of source-level code properties, which are then reflected down to
the object and native code levels by a certifying compiler—a com-
piler for which there exists a machine-checkable proof of semantic
transparency assuring that semantic source-level properties are
preserved by compilation (e.g., [7]). However, these top-down ap-
proaches cannot prove properties of codes for which sources do not
exist or are unavailable. Mission-critical, source-free codes abound,
including
• low-level binary runtime libraries (which often derive in part
from hand-written assembly code) to which most source
codes link at compile- or load-time;
• binary code resulting from low-level code transformations,
such as VM instrumentation, source-free control-flow in-
tegrity [13, 16], program shepherding [6], or binary debloat-
ing [5, 11]; and
• closed-source libraries and components, which are building
blocks for a majority of commodity software.

This paper introduces Picinæ (Platform In Coq for INstruction-
level Analysis of Executables): a new infrastructure for developing
machine-checkable proofs of native code behavioral properties
without source code. Picinæ implements the syntax and semantics
of an ISA-general intermediate language (IL) in Coq, to which a
variety of native code languages can be lifted. To facilitate lifting, a
small plug-in for the Binary Analysis Platform (BAP) [1] automati-
cally translates BAP IL code into Picinæ IL, allowing the system to
support all architectures currently supported by BAP. Once lifted,
theorems and machine-checkable proofs can be developed in Coq
to formally validate behavioral properties of the code, such as call-
ing convention adherence, termination, safety (avoidance of “bad”
states), and even full correctness.

https://doi.org/10.1145/3338502.3359759
www.cvedetails.com/vulnerability-list/year-2018/vulnerabilities.html
https://doi.org/10.1145/3338502.3359759

Coq

Intel x86 Intel x64 · · · ARM32

Lifter Core Semantics

Symbolic Interpreter

IL Theory Libraries

ISA Tactic Libraries P
IC

IN
Æ

Machine-checked
theorems & proofs

Figure 1: Picinæ workflow

q ::= 0 | v := e | J e | X i | q1;q2 | e ? q1 : q2 | q × e

e ::= v
�� n w

�� e1[e2]w �� e1[e2] w
←−− e3

�� e1 op e2 �� ∗w
op ::= ⊕ | ⊖ | ⊗ | ≪ | ≫ | · · ·

Figure 2: IL syntax (abbreviated)

As a preliminary case-study, we used Picinæ to machine-validate
three heavily optimized subroutines from the GNU C standard li-
braries for Intel x86 and ARM. Our experiences show that although
native code formal validation remains difficult, Picinæ’s infrastruc-
ture affords sufficient expressive power to build machine-checkable
proofs about code that is beyond the scope of traditional top-down
formal methods.

2 OVERVIEW

Figure 1 illustrates Picinæ’s high-level workflow. Raw native code
is first lifted to an IL data structure expressed as a .v file that is
directly readable into Coq. The lifter is not a full disassembler; it
exhaustively decodes all valid opcode byte sequences in executable
segments of the target program (or, optionally, within a specified
address range) without attempting to decide whether the decoded
instructions are reachable or aligned. This avoids problems asso-
ciated with disassembly undecidability. Coq theorems can later
declare (and prove) reachability properties of particular instruction
sequences under particular conditions.

Lifted code is formalized in Coq as a partial function from ad-
dresses a to pairs (sz,q), where sz is the size of each instruction’s
encoding and q is an IL code block that details the instruction’s
effect upon the abstract machine state. Figure 2 summarizes this IL
syntax, which closely resembles the syntaxes of ILs employed by
related works [1, 2] to formalize ISA operational semantics. Specifi-
cally, IL statements q are no-operations 0, assignments :=, jumps J,
numbered exceptions X, sequences q1;q2, conditionals e ? q1 : q2,
or repetitions ×. Using repetitions in lieu of general while-loops
guarantees that individual statements (and therefore individual
instructions) always terminate. This avoids many spurious proof
obligations related to termination. If an ISA includes an infinitely
looping instruction, it can be encoded as a self-jump J.

Expressions are effect-free and consist of state element reads
v , constants n, memory-reads e1[e2], memory-writes e1[e2] ← e3,

32 7→ (2, AL := AL ⊕ AH ⊗ 10 8 ; AH := 0 8 ;
AX := AL; EAX := EAX ≫ 16 32 ≪ 16 32 ⊕ AX;
SF := AL ≫ 7 8 ;
ZF := AL ? 1 1 : 0 1 ;
PF := · · · ; OF := ∗ 1 ; AF := ∗ 1 ; CF := ∗ 1)

33 7→ (2, . . .)

34 7→ (1, ESP := ESP ⊕ 4 32 ;
J M[ESP ⊖ 4 32] 32)

Figure 3: Intel x86 program AAD;RET starting at address 32

lifted to Picinæ IL

modular binary operations op, and unpredictable outputs ∗. Memo-
ries are encoded as immutable array values; a memory-write returns
a new array that is identical to array e1 except with index e2 as-
signed value e3. Unpredictable expressions ∗ model instructions
that have unspecified effects. For example, on Intel architectures
the xor instruction has an unpredictable effect upon the adjust flag
AF. Its IL encoding therefore contains assignment AF := ∗. Most
expression forms are also parameterized by a bit width w , e.g. to
distinguish a 32-bit zero from a 64-bit zero, and to facilitate modular
arithmetic operations.

As an example, Figure 3 lifts a two-instruction Intel x86 program
consisting of an AAD instruction located at address 32 followed by a
RET instruction at address 34. The lifted IL contains an additional in-
struction at address 33 because instruction encodings are unaligned
in this ISA, and the final byte of the AAD encoding paired with the
1-byte RET opcode encodes a valid 8-bit OR instruction. Proving a
property about this program can entail proving that this aliased
instruction is unreachable, or proving that the property holds ir-
respective of whether it is reachable. The AAD instruction assigns
to the AL and AH registers, modifying AX and EAX as a result, and
changes a variety of status flags as side-effects, including unpre-
dictable effects upon the OF, AF, and CF flags. The RET instruction
increments stack pointer ESP by 4 and jumps to the value of the
return address loaded from memory M.

Once the target program has been lifted to IL, it is loaded into
Coq as a .v file in conjunction with a series of Picinæ libraries to
build a suitable theorem-proving environment. In general, Picinæ’s
implementation can be stratified into four levels:

(1) Picinæ’s core defines the IL syntax and its basic operational
semantics.

(2) The symbolic interpreter elaborates these core definitions to
build a more efficient transition system for the IL, which can
be used within proofs to infer each successive machine state
within a program being analyzed.

(3) A collection of theory libraries proves foundational proper-
ties of the IL that serve as building blocks for constructing
proofs of program properties.

(4) At the highest level, a suite of ISA-specific tactic libraries
automate and streamline common-case proof steps and no-
tations particular to each architecture.

Together, these form a foundation for defining and proving
machine-checkable theorems about source-free native code subrou-
tines. In general, any property expressible in Coq’s logic [3] can
be reasoned about. This includes temporal properties of program

traces (e.g., LTL [4]), properties that quantify over sets of possible
traces (e.g., CTL [12]), and even theorems that abstract all or part
of the lifted code as an unknown with arbitrary content.

At its current stage of development, Picinæ does not model mul-
ticore concurrency; it is intended to validate properties of individual
threads of synchronously executed instructions. However, it sup-
ports self-modifying code, dynamically changing memory access
permissions, and input non-determinism, such as clock-reads or
random number generation, which are expressed using ∗.

3 TECHNICAL APPROACH

3.1 Core Definitions

Picinæ’s core definitions specify the IL’s basic syntax and opera-
tional semantics in about 200 lines of Coq code. This part of the
implementation is designed to be small, since it is the trusted foun-
dation on which all other layers depend.

The operational semantics are defined in terms of three inductive
propositions: one for expressions, one for IL statements, and one
for whole-program execution. Expressions judgments ⟨e,σ ⟩ ⇓ u
are large-step, and evaluate an expression e to a value u in the
context of a machine state σ . Statement judgments ⟨q,σ ⟩ y ⟨σ ′, χ⟩
are also large-step, computing the machine state σ ′ that results
from executing statement q in state σ , along with an exit status χ
(viz., fall-through ↓ , jump-to-address ↓a , or exception ↑i). Program
judgments ⟨a,σ ⟩ {n ⟨σ

′, χ⟩ are small-step; they implement the
reflexive transitive closure of statement judgments by executing n
machine instructions starting at address a in state σ to reach state
σ ′ with exit status χ ∈ {↓a ,↑i }.

Since expressions include unpredictable values ∗, all three op-
erational semantics are non-deterministic. For example, judgment
⟨e,σ ⟩ ⇓ u asserts that expression e might evaluate to value u. Judg-
ment ⟨∗w ,σ ⟩ ⇓ n w is therefore derivable for all n ∈ [0, 2w). Deter-
minism theorems of the form ⟨e,σ ⟩ ⇓ n1 → ⟨e,σ ⟩ ⇓ n2 → n1 = n2
can establish that certain expressions e have only one possible
value.

Machine states σ : v ⇀ u are mappings from state variables v to
values u (viz., binary numbers or arrays of binary numbers). Each
ISA defines its own universe of state variables v and their types.
This affords reasoning aboutmany different ISAs or combinations of
ISAs for cross-platform software analysis within a common logical
framework.

3.2 Symbolic Interpreter

The inductive propositions that comprise Picinæ’s core are succinct
(in order to minimize the trusted computing base), but are expressed
at a level too low for easy state manipulation in large proofs. To
allow users to work at a higher level, a symbolic interpreter is
implemented that steps an abstract machine state (possibly contain-
ing Coq proof meta-variables) by executing a specified number of
machine instructions within a Coq proof context.

Interpreting code that branches introduces multiple proof goals
to the context—one for each possible branch destination. Interpret-
ing a computed jump leads to an abstract state that must be refined
by the prover (e.g., by case distinction on the program counter ad-
dress) in order to soundly reduce the destination set to a finite set of
possible targets before interpretation can continue. Interpretation

of programs containing non-deterministic expressions ∗ introduces
proof meta-variables to represent the (unknown) values of those
expressions, along with hypotheses that constrain the unknowns.
For example, after symbolically interpreting the statement at ad-
dress 32 in Fig. 3, the proof context contains new hypotheses of
the form x : N, σ (OF) = x , and x < 2, where x is a fresh Coq proof
variable.

In total, the symbolic interpreter and its proof of correctness com-
prise about 1000 lines of Coq code. For efficiency, it is implemented
as functional Gallina code launched using Coq’s vm_compute tactic.

3.3 Theory Libraries

The power and ease of machine-assisted validation depends largely
on the power and scope of the framework’s library of proved theo-
rems. Although Picinæ is still in a stage of early development, its
proof library already consists of about 3,500 lines of Coq theorems,
definitions, and proofs, divided into the following major sections:
• Inductive schemas provide proof principles for Floyd-Hoare
style inductive reasoning about pre-conditions, invariants,
and post-conditions.
• A static semantics proves type soundness of lifted IL and
establishes appropriate bounds on numeric machine state
element values.
• A library of two’s complement arithmetic facilitates reasoning
about signed and unsigned modular arithmetic operations
and their effects upon the binary representations of numbers.
• A collection of determinism lemmas automatically identifies
deterministic expressions and instructions and facilitates
deterministic proof development in common cases.
• Monotonicity theorems allow proofs to soundly reason about
architectures in which only a subset of state components are
known, programs in which only a subset of instructions have
been lifted, and machine states in which only a subset of
state component values are known. This facilitates modular,
incremental reasoning about ISAs, programs, and states.

In order to explain the case-studies that follow, we here limit our
focus to describing the first of these sections.

In Picinæ, correctness theorems about subroutines are typically
expressed as an invariant set I : a ⇀ (σ → Prop), which is a par-
tial function from addresses to machine state propositions, paired
with a post-condition Q : σ → Prop (a machine state proposition).
Invariant set I includes the subroutine pre-condition I (a0), where
a0 is the subroutine’s entry point address. The post-condition is a
proposition that is asserted to be true whenever execution reaches
the subroutine’s return address, as defined by the architectural con-
ventions of the ISA. For example, on 64-bit Intel architectures, a
subroutine’s return address is the address a satisfied by proposition
Ret(a) := ⟨M[ESP] 64 ,σ0⟩ ⇓ a, where σ0 is the machine state on entry
to the subroutine.

With this formalization, partial correctness theorems have the
form:

I (a0)σ0 →
(
⟨a0,σ0⟩ {n ⟨σ

′,↓a⟩
)
→(

I (a) = P → P σ ′
)
∧
(
Ret(a) → Q σ ′

)
(1)

which asserts that if the pre-condition is satisfied on entry, then
whenever execution reaches any address a in any state σ ′ after any

n steps of computation, state σ ′ satisfies invariant I (a) if a is an
invariant point, and it satisfies post-condition Q if a is the return
address. Total correctness theorems conjoin Equation 1 with

I (a0)σ0 → ∃n a, (⟨a0,σ0⟩ {n ⟨σ
′,↓a⟩

)
∧ Ret(a) (2)

which asserts that satisfying the pre-condition guarantees termina-
tion after some number of steps n.

Picinæ’s prove_invs theorem reduces such proof goals to a
set of |I (N)| proof cases—one case for each invariant in I . Each
case starts symbolic execution at an invariant point in an abstract
state satisfying the invariant, and challenges the user to prove
that execution inevitably reaches another invariant point in a state
satisfying the reached invariant, or exits the subroutine in a state
that satisfies the post-condition. Thus, applying prove_invs to a
partial or total correctness assertion launches an inductive proof
that verifies thatQ and all invariants in I are satisfiedwhenever they
are reached. This is the core inductive schema for most correctness
and safety proofs.

3.4 ISA Tactic Libraries

While the core IL semantics, symbolic interpretation engine, and
IL theory libraries are powerful enough to prove facts about pro-
grams from arbitrary ISAs, each ISA has specialized definitions (e.g.,
calling conventions), common cases (e.g., IL expressions deserving
auto-simplification), and notations (e.g., assembly syntaxes) that
deserve specialized treatment. Each supported ISA therefore has
an ISA-specific supporting module that defines the universe v of
machine state components and their types, specializes the general
IL machinery to ISA-specific tasks, introduces proof notations for
improved readability, and adds auto-simplification heuristics for
easier program analysis.

The ISA-specific tactic libraries for Intel x86 and ARM32 v7 ISAs
consist of about 550 and 500 (respectively) lines of Coq definitions,
theorems, proofs, and tactics. These two ISAs are the basis for the
case-studies presented in the next section.

4 CASE STUDIES

As a preliminary evaluation of our approach, we machine-verified
three heavily optimized native code subroutines extracted from the
GNU standard C libraries for Intel x86 and ARM32 using Picinæ.
Each was lifted to Picinæ IL using BAP with our BIL-to-Picinæ
plug-in, and proof development was conducted interactively using
Coq v8.8 for Windows with CoqIDE.

4.1 ARM String-length

Figure 4 lists the assembly code for the binary implementation of
strlen. Like most aggressively optimized codes, it has an unintu-
itive structure. Instead of reading one byte at a time from memory,
it reads four bytes at a time and tests each constituent byte of the
loaded 32-bit word for nullity before proceeding to the next word.

To improve cache alignment, lines 1–4 first round input pointer
r0 down to the nearest word boundary and read four bytes from
there into r2. Lines 5–10 then set all bits within r2 that precede the
start of the string, so that the main loop will disregard them. This
works because memory access permission granularity is per-page,

1 bic r1, r0, #3
2 ldr r2, [r1], #4
3 ands r3, r0, #3
4 rsb r0, r3, #0
5 beq 11
6 orr r2, r2, #FF
7 subs r3, r3, #1
8 orrgt r2, r2, #FF00
9 subs r3, r3, #1
10 orrgt r2, r2, #FF0000
11 tst r2, #FF
12 tstne r2, #FF00

13 tstne r2, #FF0000
14 tstne r2, #FF000000
15 addne r0, r0, #4
16 ldrne r2, [r1], #4
17 bne 11
18 tst r2, #FF
19 addne r0, r0, #1
20 tstne r2, #FF00
21 addne r0, r0, #1
22 tstne r2, #FF0000
23 addne r0, r0, #1
24 bx lr

Figure 4: ARM32 strlen disassembly

and pages are multiples of the word size, ensuring that reading
these extra bytes never raises a spurious access exception.

The main loop (lines 11–17) uses a chain of conditionally exe-
cuted instructions to test each byte of the loaded word for nullity
without explicit conditional branches. In particular, null detection
sets the Z flag as a side-effect, preventing the remaining conditional
instructions in the loop body from executing, and thereby exiting
the loop. Concluding lines 18–24 use a similar strategy to determine
which null byte caused the loop to exit, assign the computed length
to r0, and return to the caller.

We proved total correctness of this subroutine in about 230 lines
of Coq definitions, theorems, and proofs. More than half of the
proof is devoted to proving abstract facts about bit arithmetic; only
about 80 lines regard the computational aspects of the code. This
highlights a recurring theme that we have experienced in many of
our experiments: Correctness of optimized native codes frequently
depends upon a host of obscure facts about binary arithmetic and
logical operations that are not easily provable from any existing Coq
library. Building a more comprehensive library of proved theorems
relevant to assembly-level binary arithmetic is therefore important
for scaling our approach to larger programs.

Our proof assumes as a pre-condition that initial state σ0 satis-
fies the architectural calling conventions, and we assign a single
invariant to line 11:
∃k,σ (r0) = p ⊕ 4k − p mod 4 ∧

σ (r1) = p ⊕ 4(k + 1) − p mod 4 ∧

σ (r2) =m(p ⊕ 4k − p mod 4) | (k ? 0 : 28(p mod 4) − 1) ∧
∀i, i < 4k − p mod 4→m(p ⊕ i) , 0

(3)

where p = σ0(r0),m = σ0(M), and | denotes bitwise-or. This asserts
that r0 points to the most recently read memory-word, r1 points
to the next word, r2 contains the most recently read word (possibly
with low-order bits set if k = 0), and all bytes between p and r1 are
non-null. Post-condition Q is defined by

m(p ⊕ σ (r0)) = 0 ∧ ∀i, i < σ (r0) →m(p ⊕ i) , 0 (4)

which asserts that r0 holds the length of string p on exit.
The use of 32-bit modular addition ⊕ in these predicates insulates

them against a peculiar corner case: The subroutine’s search for
nulls could wrap around the end of the address space, leading to
unusual conditions such as σ (r1) < p. However, if one considers
byte sequences that wrap around the end of the address space to be

legal strings, then the subroutine is nevertheless correct (but only
because its memory-reads are all word-aligned, and therefore no
individual load ever spans the address-space limit). We discovered
this complication late in the validation effort, forcing us to change
our proof strategy.

The main proof applies Picinæ’s prove_invs tactic (see §3.3)
to reduce the correctness theorem to two subgoals—one for the
pre-condition and one for the invariant. Applying the symbolic
interpreter to the latter yields five sub-goals: four for the possi-
ble exit paths from the loop and a fifth that cycles back to the
invariant. All but the last of these subgoals is solved by proving
a null_terminate lemma that reasons that finding a null in byte
j of the loaded word equates to finding a null at index 4k + j of
the string. (Verifying this property of bit arithmetic constitutes the
majority of the proof logic.) The final subgoal is solved by proving
that the state reached by the symbolic interpreter satisfies the loop
invariant.

4.2 ARMMemset

We next verified a subroutine with even more complex optimiza-
tions: memset. The control flow for memset consists of three loops
and an additional branch (which skips the first two loops if the
buffer has fewer than 8 bytes), composing 31 instructions total. The
first loop stores individual bytes to reach the first word bound-
ary. This prepares the second loop, which stores two words per
store instruction, aligned at word boundaries. The second loop is
unrolled four times, with each iteration storing up to 8 words (32
bytes) total. The third loop performs the remainder of stores, and
is also unrolled four times. Like strlen, memset uses conditional
execution extensively to avoid branching in the unrolled loops; 20
of the 31 instructions are conditional.

All three loops use register r2 to track of the number of remain-
ing bytes. Register r1 holds the character value to be stored in each
byte. The setup for the second loop duplicates the least 8 bits of r1
to fill the 32-bit register. Register r1 is then copied to r12 to store
two words with one instruction, and r3 holds the address for the
next store in memory. Given starting address p, the character c to
be stored, and the length n of the buffer, all three loop invariants
share a common predicate:

σ (r3) ⊕ σ (r2) = p ⊕ n ∧

σ (r1) mod 28 = c ∧
∀i, i < σ (r3) ⊖ p →m(p ⊕ i) = c

(5)

The second loop’s invariant conjoins this with:

σ (r1) = σ (r12) = c | c ≪ 8 | c ≪ 16 | c ≪ 24 ∧
σ (r3) mod 4 = 0

(6)

The postcondition of the program is:

∀i, i < n →m(p ⊕ i) = c (7)

Proving that the implementation is correct is straightforward
except for two optimizations that raise significant complications:
the duplication of c to obtain a word filled with c , and the second
loop’s unusual use of arithmetic underflow to conditionally exit.
Both entail proving tricky properties of bit arithmetic.

The word containing copies of c is formed using bitwise-and to
cast r1 to a byte, and then using bitwise-or and shift-left to duplicate
it. Validation must therefore prove that extracting any byte of the
resultingword yields the original c . To conditionally exit, the second
loop subtracts 8 from r2 to modify an underflow status flag that
conditions the execution of the remaining loop instructions. To
restore r2 after the subtraction without corrupting the underflow
flag, a bitwise-and clears the least significant 3 bits. Proving that this
actually restores r2 contributes significant complexity to the proof.

In total, the memset correctness proof is composed of about 700
lines, of which about 500 are devoted to bit arithmetic properties.
Thus, as with the strlen experiment, the bulk of the proof’s com-
plexity is dominated by proofs of obscure numerical properties of
bit arithmetic, after which the computational aspects (e.g., control-
flows) are relatively easy to validate.

4.3 Intel x86 String-compare

As a contrast to the previous two experiments, we validated a sim-
pler subroutine on a more complex ISA: Intel x86. Most Intel instruc-
tions have many side-effects upon the machine state, potentially
complicating proofs about them. However, the implementation of
strcmp in the x86 GNU standard libraries is straightforward: Its
15 instructions implement a single loop that reads one byte at a
time from both strings, comparing each and returning the differ-
ence between the first unequal pair. It therefore constitutes a good
investigation of how proof complexity scales without the intrusion
of problematic bit arithmetic.

Proving correctness of this subroutine was relatively easy. The
proof consists of about 15 lines of definitions that formally specify
lexicogrphical ordering of strings, followed by about 50 lines of
proof. About 20 of those lines are boilerplate proof-initialization
tactics that are mostly reused between proofs, leaving only 30 lines
of genuine proof effort. These were completed by an expert user in
about 1 hour of time.

This indicates that the scalability challenges of machine-checked
native code validationmainly revolve around the presence of aggres-
sive optimizations in the code being validated. Picinæ’s automation
features allow complexities of the ISA to be mostly ignored until
they are leveraged by optimized code to implement unusual, extra
efficient solutions to programming tasks.

5 RELATEDWORK

Few prior works have attempted to machine-validate source-free
native codes. RockSalt [8] models a reduced subset of x86 to prove
safety of the Google Native Client [15] sandbox. XCAP [9] models
a different x86 subset to verify OS-level context management sub-
routines. Bedrock [2] implements an IL similar to Picinæ’s for val-
idating compiler back-ends. Picinæ differs from these prior efforts
in that it establishes a foundation for machine-validating arbitrary
codes, including instruction sequences not emitted by any compiler.

6 CONCLUSION

Validating raw native code without sources is extremely difficult.
There are presently few tools for doing so, and most rely on unvali-
dated software components (e.g., back-ends of compilers for which
no machine-checked proof of correctness has ever been developed).

Picinæ fills this gap by providing a fully machine-validated
framework for reasoning about binary code lifted to an ISA-agnostic
IL. Preliminary experiments validating three low-level subroutines
from the GNU C standard libraries show that although formal
validation remains challenging, Picinæ’s automation facilities nev-
ertheless make it feasible to specify and prove correctness of highly
optimized code for both RISC and CISC architectures.

Our experiences indicate that the primary roadblock for scala-
bility of the approach is the inadequacy of existing proof libraries
about binary arithmetic for reasoning about many bit-arithmetic
properties leveraged by native code to realize optimized computa-
tions. Future work should therefore seek to identify and prove more
comprehensive, automatable theory libraries for binary arithmetic
in order to ease low-level code verification tasks.

ACKNOWLEDGMENTS

The research reported herein was supported in part by ONR Award
N0014-17-1-2995, AFRL Award FA8750-15-C-0066 (PA #2019-4224),
DARPA Award FA8750-19-C-0006, NSF Award #1513704, and an
endowment from the Eugene McDermott family. Any opinions,
recommendations, or conclusions presented are those of the authors
and not necessarily of the aforementioned supporters.

REFERENCES

[1] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011.
BAP: A Binary Analysis Platform. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification (CAV). 463–469.

[2] Adam Chlipala. 2013. The Bedrock Structured Programming System: Combining
Generative Metaprogramming and Hoare Logic in an Extensible Program Verifier.
In Proceedings of the 18th ACM SIGPLAN International Conference on Functional
Programming (ICFP). 391–402.

[3] Thierry Coquand and Gérard Huet. 1988. The Calculus of Constructions. Infor-
mation and Computation 76, 2–3 (1988), 95–120.

[4] Solange Coupet-Grimal. 2003. An Axiomization of Linear Temporal Logic in
the Calculus of Inductive Constructions. Journal of Logic and Computation 13, 6

(2003), 801–813.
[5] Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-flow Trimming.

In Proceedings of the 26th ACM Conference on Computer and Communications
Security (CCS). forthcoming.

[6] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. 2011. Secure
Execution via Program Shepherding. In Proceedings of the 11th USENIX Security
Symposium. 191–206.

[7] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. 2016. CompCert – A Formally Verified Optimizing
Compiler. In Proceedings of the 8th European Congress on Embedded Real Time
software and Systems (ERTS2).

[8] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward
Gan. 2012. RockSalt: Better, Faster, Stronger SFI for the x86. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 395–404.

[9] Zhaozhong Ni, Dachuan Yu, and Zhong Shao. 2007. Using XCAP to Certify
Realistic Systems Code: Machine Context Management. In Proceedings of the 20th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs).
189–206.

[10] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and
Gilles Muller. 2011. Faults in Linux: Ten Years Later. In Proceedings of the 16th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 305–318.

[11] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Software
Debloating. In Proceedings of the 28th USENIX Security Symposium. 1733–1750.

[12] Ming-Hsien Tsai and Bow-Yaw Wang. 2006. Formalization of CTL in Calculus
of Inductive Constructions. In Proceedings of the 11th Asian Computing Science
Conference on Advances in Computer Science: Secure Software and Related Issues.
316–330.

[13] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.
Securing Untrusted Code via Compiler-agnostic Binary Rewriting. In Proceedings
of the 28th Annual Computer Security Applications Conference (ACSAC). 299–308.

[14] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 283–
294.

[15] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fulagar. 2009. Native Client:
A Sandbox for Portable, Untrusted x86 Native Code. In Proceedings of the 30th
IEEE Symposium on Security & Privacy (S&P). 79–93.

[16] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In
Proceedings of the 22nd USENIX Security Symposium. 337–352.

	Abstract
	1 Introduction
	2 Overview
	3 Technical Approach
	3.1 Core Definitions
	3.2 Symbolic Interpreter
	3.3 Theory Libraries
	3.4 ISA Tactic Libraries

	4 Case Studies
	4.1 ARM String-length
	4.2 ARM Memset
	4.3 Intel x86 String-compare

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

