Shingled Graph Disassembly:
Finding the Undecidable Path

Richard Wartell, Yan Zhou, Kevin W. Hamlen, and Murat Kantarcioglu

Computer Science Department
The University of Texas at Dallas
{rhw072000,yan.zhou2,hamlen,muratk}@utdallas.edu

Technical Report UTDCS-12-13

June 10, 2013

Abstract

A probabilistic finite state machine approach to statically disassembling x86
machine language programs is presented and evaluated. Static disassembly is a
crucial prerequisite for software reverse engineering, and has many applications
in computer security and binary analysis. The general problem is provably
undecidable because of the heavy use of unaligned instruction encodings and
dynamically computed control flows in the x86 architecture. Limited work in
machine learning and data mining has been undertaken on this subject. This
paper shows that semantic meanings of opcode sequences can be leveraged
to infer similarities between groups of opcode and operand sequences. This
empowers a probabilistic finite state machine to learn statistically significant
opcode and operand sequences in a training corpus of disassemblies. The
similarities demonstrate the statistical significance of opcodes and operands in
a surrounding context, facilitating more accurate disassembly of new binaries.
Empirical results demonstrate that the algorithm is more efficient and effective
than comparable approaches used by state-of-the-art disassembly tools.

1 Introduction

Statistical data mining techniques have found wide application in domains where
statistical information is valuable for solving problems. Examples include computer
vision, web search, natural language processing, and more. A recent addition to
this list is static disassembly [8,/13]. Disassembly is the process of translating byte

sequences to human-readable assembly code. Such translation is often deemed a
crucial first step in software reverse engineering and analysis.

Although all binary-level debuggers perform dynamic disassembly to display
assembly code for individual runs of target programs, the much more challenging task
of static disassembly attempts to provide assembly code for all possible runs (i.e., all
reachable instructions). Static disassembly is therefore critical for analyzing code with
non-trivial control-flows, such as branches and loops. Example applications include
binary code optimization, reverse engineering legacy code, semantics-based security
analysis, malware analysis, intrusion detection, and digital forensics. Incorrectly
disassembled binaries often lead to incorrect analyses, and therefore bugs or security
vulnerabilities in mission-critical systems.

Static disassembly of binaries that target Intel-based architectures is particularly
challenging because of the architecture’s heavy use of variable-length, unaligned
instruction encodings, dynamically computed control-flows, and interleaved code
and data. Unalignment refers to the fact that Intel chipsets consider all memory
addresses to be legal instruction starting points. When some programs compute
the destinations of jumps dynamically using runtime pointer arithmetic, statically
deciding which bytes are part of reachable instructions and which are (non-executed)
static data reduces from the halting problem. As a result, the static disassembly
problem for Intel architectures is provably Turing-undecidable in general.

Production-level disassemblers and reverse engineering tools have therefore ap-
plied a long history of evolving heuristics to generate best-guess disassemblies. Such
heuristics include fall-through disassembly, various control-flow and dataflow analyses,
and compiler-specific pattern matching. Unfortunately, even after decades of tuning,
these heuristics often fail even for non-obfuscated, non-malicious, compiler-generated
software. As a result, human analysts are often forced to laboriously guide the
disassembly process by hand using an interactive disassembler [1]. When binaries
are tens or hundreds of megabytes in size, the task quickly becomes intractable.

Our recent past work is the first to apply machine learning and data mining to
address this problem [13]. The approach uses statistical data compression techniques
to reveal the semantics of a binary in its assembly form, yielding a segmentation
of code bytes into assembly instructions and a differentiation of data bytes from
code bytes. Although the technique is effective and exhibits improved accuracy over
the best commercial disassembler currently available [2], the compression algorithm
suffers high memory usage. Thus, training on large corpora can be very slow
compared to other disassemblers.

In this paper, we present an improved disassembly technique that is both more
effective and more efficient. Rather than relying on high-order context semantic
information (which leads to long training times), we leverage a finite state machine
with transitional probabilities to infer likely execution paths through a sea of bytes.

Our main contributions include a graph-based static disassembly technique; a simple,
efficient, but effective disassembler implementation; and an empirical demonstration
of the effectiveness of the approach.

Our high-level strategy involves two linear passes: a preprocessing step which
recovers a conservative superset of potential disassemblies, followed by a filtering step
in which a state machine selects the best disassembly from the possible candidates.
While the resulting disassembly is not guaranteed to be fully correct (due to the
undecidability of the general problem), it is guaranteed to avoid certain common
errors that plague mainstream disassemblers. Our empirical analysis shows our
simple, linear approach is faster and more accurate than the observably quadratic-
time approaches adopted by other disassemblers.

The rest of the paper proceeds as follows. Section [2| discusses related work in
static disassembly. Section [3| presents our graph-based static disassembly technique.
Section [4] presents experimental results, and Section [5| concludes and suggests future
work.

2 Related Work

Existing disassemblers mainly fall into three categories: linear sweep disassemblers,
recursive traversal disassemblers, and the hybrid approach. The GNU utility obj-
dump [9] is a popular example of the linear sweep approach. It starts at the beginning
of the text segment of the binary to be disassembled, decoding one instruction at a
time until everything in executable sections is decoded. This type of disassembler
is prone to errors when code and data bytes are interleaved within some segments.
Such interleaving is typical of almost all production-level Windows binaries generated
by non-GNU compilers.

IDA Pro [1,2] follows the recursive traversal approach. Unlike linear sweep
disassemblers, it decodes instructions by traversing the static control flow of the
program, thereby skipping data bytes that may punctuate the code bytes. However,
not all control flows can be predicted statically. When the control flow is constructed
incorrectly, some reachable code bytes are missed, resulting in disassemblies that
omit significant blocks of code.

The hybrid approach [10] combines linear sweep and recursive traversal to detect
and locate disassembly errors. The basic idea is to disassemble using the linear
sweep algorithm and verify the output using the recursive traversal algorithm. While
this helps to eliminate some disassembly errors, in general it remains prone to the
shortcomings of both techniques. That is, when the sweep and traversal phases
disagree, there is no clear indication of which is correct; the ambiguous bytes therefore
receive an error-prone classification.

The Jakstab fully configurable binary analysis platform [5,/7] is a recent effort
to overcome these historic shortcomings by statically resolving computed jump
destinations to construct accurate control-flow graphs. The platform implements
multiple rounds of disassembly interleaved with dataflow analysis. In each round, the
output assembly instructions are translated to an intermediate representation, from
which the platform builds a more accurate control-flow graph for dataflow analysis.
The results from the dataflow analysis are then used to resolve computed jump
targets. This iterative approach exhibits superior accuracy over commercial tools
like IDA Pro [2]. However, Jakstab depends on a fixed-point iteration algorithm
that is worst-case exponential in the size of the binary being analyzed. It therefore
has only been successfully applied to relatively small binaries (e.g., drivers) and does
not scale well to full-sized COTS binaries, which are often ten or one hundred times
larger. For example, Jakstab requires almost 40 minutes to disassemble a 100K
Windows floppy driver [6].

Our recent machine learning- and data mining-based approach to the disassembly
problem [13] avoids error-prone control-flow analysis heuristics in favor of a three-
phase approach: First, executables are segmented into subsequences of bytes that
constitute valid instruction encodings as defined by the architecture [3]. Next, a
language model is built from the training corpus with a statistical data model used
in modern data compression. The language model is used to classify the segmented
subsequence as code or data. Finally, a set of pre-defined heuristics refines the
classification results. The experimental results demonstrate substantial improvements
over IDA Pro’s traversal-based approach. However, it has the disadvantage of high
memory usage due to the large statistical compression model. This significantly
slows the disassembly process relative to simple sweep and traversal disassemblers.

Machine-learning has also been applied to statically identify errors in disassembly
listings [8]. Incorrect disassemblies are typically statistically different from correct
disassemblies. Based on this observation, a decision tree classifier can be trained
using a set of correct and incorrect disassemblies. The classifier is then used to detect
errors such as extraneous opcodes and operands, as well as nonexistent branch target
addresses. The experimental results demonstrate that the decision tree classifiers can
correctly identify the majority of the disassembly errors in test files while returning
relatively few false positives.

Our disassembly algorithm presented in this paper instead adopts a probabilistic
finite state machine (FSM) [111|12] approach. FSMs are widely used in areas such
as computational linguistics, speech processing, and gene sequencing. Although
the transitions of probabilistic FSMs are non-deterministic, they are labeled with
probabilities given training data. For any given string, there is more than one
trace through the FSM. By querying the FSM, the likelihood of each trace can be
computed. Our approach builds FSMs from training corpora. For each new binary

source shingled (o, .., Tn—1)

binary disassembler |
opcode Pr(z; — ;) graph optimal

state machine disassembler execution path

Figure 1: Disassembler architecture

executable, FSM traces reveal probable paths of reachable opcode and operand
sequences in an unlabeled byte stream.

3 Disassembler Design

Our machine learning approach to disassembly frames the disassembly problem as
follows:

Problem Definition Given an arbitrary string of bytes, which subset of the bytes
is the most probable set of potentially reachable instruction starting points, where
“probable” is defined in terms of a given corpus of correct binary disassemblies?

Figure [1] shows the architecture of our disassembly technique. It consists of a
shingled disassembler that recovers the (overlapping) building blocks (shingles) of all
possible valid execution paths, a finite state machine trained on binary executables,
and a graph disassembler that traces and prunes the shingles to output the maximum-
likelihood classification of bytes as instruction starting points, instruction non-
starting points, and data.

3.1 Shingled Disassembler

Since computed branch instructions in x86 have their targets established at runtime,
every byte within the code section can be a target and thus must be considered as
executable code. This aspect of the x86 architecture allows for instruction aliasing,
the ability for two instructions to overlap each other. Therefore, we refer to a
disassembler that retains all possible execution paths through a binary as a shingled
disassembler.

Definition 1. Shingle
A shingle is a consecutive sequence of bytes that decodes to a single machine instruc-
tion. Shingles may overlap.

The core functionality of the shingled disassembler is to eliminate bytes that are
clearly data (because all flows that contain them lead to execution of bytes that
do not encode any valid instruction), and to compose a byte sequence that retains
information for generating every possible valid shingle of the source binary. This is
a major benefit of this approach since the shingled disassembly encodes a superset
of all the possible valid disassemblies of the binary. In later sections, we discuss
how we apply our graph disassembler to prune this superset until we find the most
probable byte classifications. In order to define what consists of a valid execution
path, we must first discuss a few key concepts.

Definition 2. Fall througiﬂ

Shingle x (conditionally) falls through to shingle y, denoted x — vy, if shingle y is
located adjacent to and after instruction x, and the semantics of instruction x do
not (always) modify the program counter. In this case, execution of instruction x is
(sometimes) followed by execution of instruction y at runtime.

Definition 3. Unconditional Branch

A shingle is an unconditional branch if it only falls through when its operand explicitly
targets the immediately following byte. Unconditional branch instructions for r86
include jmp and ret instructions.

Unconditional branch instructions are important in defining valid disassemblies
because the last instruction in any disassembly must be an unconditional branch. If
this is not the case, the program could execute past the end of its virtual address
space.

Definition 4. Static Successor

A control-flow edge (x,y) is static if © — y holds or if x is a conditional or
unconditional branch with fized (i.e., non-computed) destination y. An instruction’s
static successors are defined by S(x) = {y | (z,y) is static}.

Definition 5. Postdominating Set

The (static) postdominating set P(z) of shingle x is the transitive closure of S on
{z}. If there exists a static control-flow from x to an illegal address (e.g., an address
outside the address space or whose bytes do not encode a legal instruction), then
P(x) is not well defined and we write P(x) = L.

LAt first glance, it would seem that we could strengthen our defintion of fall-throughs to any two
instructions that do not have an unconditional branch instruction between them. However, there
are cases where a compiler will place a call and jcc instruction followed by data bytes. A common
example of this is call [IAT:ExceptionHandler] since the exception handler function will never
return.

Definition 6. Valid Ezxecution Path
All paths in P(x) are considered valid execution paths from x.

The x86 instruction set does not make use of every possible opcode sequence;
therefore certain bytes cannot be the beginning of a code instruction. For example,
the OxFF byte is used to distinguish the beginning of one 7 different instructions, using
the byte that follows to distinguish which instruction is intended. However, OXxFFFF
is an invalid opcode that is unused in the instruction set. This sequence of bytes is
common because any negative offset in two’s complement that branches less than
OxFFFF bytes away starts with OxFFFF. The shingled disassembler can immediately
mark any shingle whose opcode is not supported under the x86 instruction set as
data. A shingle that is marked as data is either used as the operand of another
instruction, or it is part of a data block within the code section. Execution of the
instruction would cause the program to crash.

Lemma 1. Invalid Fall-through
(Ve,y iz —yANy:=0— x:=0), in which O stands for data bytes.

Any time that we encounter an address that is marked data, all fall-throughs
to that instruction can be marked as data as well. Direct branches also fall into
this definition. All direct call and jmp instructions imply a direct executional
relationship between the instruction and its target. Therefore, any shingle that
targets a shingle previously marked as data is also marked as data.

Definition 7. Sheering
A shingle x is sheered from the shingled disassembly when Vy :: x — y, © and all y
are marked as data in the shingled disassembly.

Figure [2] illustrates how our shingled disassembler works. Given a binary of
byte sequence 6A 01 51 56 8B C7 E8 B6 E6 FF FF ..., the shingled disassembler
performs a single-pass, ordered scan over the byte sequence. Data bytes and invalid
shingles are marked along the way. Figure demonstrates the first series of valid
shingles, beginning at the first byte of the binary. Figure starts at the second
byte, which falls through to a previously disassembled shingle. The shingle with
byte C7 is then marked as data (shaded in Figure since it is an invalid opcode.
Figure shows an invalid shingle since it falls through to an invalid opcode FF
FF. Our shingled disassembler marks the two shingles B6 and FF as invalid in the
sequence. Figure shows another valid shingle that begins at the ninth byte of the
binary. After completing the scan, our shingled disassembler has stored information
necessary to produce all valid paths in P(z).

The secondary function of the shingled disassembler is to collect local statistics
called code/data modifiers that are specific to the executable. These modifiers keep

/i} pusn 1 ¥[OA] v[ea]

01 V| o1 v]o1

/| 51 [} push ecx |51 |} add [ecx+56h],edx v| 51 |

/|56 [} push esi [56| V|56 |

V| 8B . V| 8B . V| 8B
7} mov eax,edi 7} mov eax,edi >< invalid

V| E8 v|E8 V| E8 | E8 |
5 | 5e e | 5
| E6 | call 41D510 [E6 |p call 41D510 | E6 | } out FFh,al
FF FF FF
i = = oI

- v v L]

(a)

()

Figure 2: Shingled disassembly of a sample byte sequence: (a) a shingle sequence
beginning at the first byte; (b) a shingle sequence beginning at the second byte;

(c) a

to an

track

non-shingle that starts with an invalid opcode; (d) a shingle that falls through
invalid opcode; and (e) a shingle sequence beginning at the ninth byte.

of the likelihood that a shingle is code or data in this particular executable.

The following heuristics are used to update modifiers:

1.

T

If the shingle at address a is a long direct branch instruction with o’ as its
target, the address a’ is more likely to be a code instruction. We apply this
heuristic with short direct branches as well, but with less weight since two
byte instructions are more likely to be seen within other instruction operands.

If three shingles sequentially fall-through to each other and match one the most
common instruction opcode sequences, each of these three addresses is more
likely to be code. Common sequences include function prologues, epilogues,
etc.

If bytes at address a and a + 4 both encode addresses that reference shingles
within the code section of the binary, the likelihood that addresses a through
a + 7 are data is very high. Shingles a through a + 7 are marked as data, as
well as any following four byte sequences that match this criteria. This is most
likely a series of addresses referenced by a conditional branch elsewhere in the
code section.

he pseudocode for generating a shingled disassembly for a binary is shown in

Figure 3] For simplicity, the heuristics used to update modifiers are not described
in the pseudocode. Lines construct a static control-flow graph G in which all
edges are reversed. A distinguished node bad is introduced with outgoing edges
to all shingles that do not encode any valid instruction, or that branch to static,

Input: zg,...,7,-1 € [0,2%)
Output: y,...,yn—1 € {data,maybe_code}

G:=10
fora:=0ton—1do
Y, = maybe_code
i := decode(xqTqq1)
if ¢ is undefined then
G.insert(bad, a)
else
if ¢ falls through then
if a + |i] < n then G.insert(a + |i|,a)
else G.insert(bad, a)
endif
if ¢ is a static jump/branch then
if is_exec_ok(dest(¢)) then G.insert(dest(7), a)
else G.insert(bad, a)
endif
endif
endfor
foreach a € depth_first_search(G,bad) do
Yo = data
endfor

© 0w 9 O o s W N =

I e e =
o W W 9 O U A W N = O

Figure 3: Shingled disassembly algorithm

non-executable addresses. Lines [[8H20] then mark all addresses reachable from bad
as data. The rest are possible instruction starting points.

3.2 Opcode State Machine

The state machine is constructed from a large corpus of pre-tagged binaries, disas-
sembled with IDA Pro v6.3. The byte sequences of the training executables are used
to build an opcode graph, consisting of opcode states and transitions from one state
to another. For each opcode state, we label its transition with the probability of
seeing the next opcode in the training instruction streams. The opcode graph is a
probabilistic finite state machine (FSM) that encodes all the correct disassemblies of
the training byte sequences annotated with transition probabilities. The accepting
state of the FSM is the last unconditional branch seen in the binary.

Figure [4] shows what this transition graph might look like if the x86 instruction
set only contained four opcodes: 0x01 through 0x04. Each directed edge in the graph
between opcode x; and z; implies that a transition between x; and x; has been
observed in the corpus, and the edge weight of x; — x; is the probability that given

Figure 4: Instruction transition graph: 4 opcodes

x;, the next instruction is x;. It is also important to note the node db in the graph
which represents data bytes. Any transition from an instruction to data observed in
the corpus will be represented by a directed edge to the db node. The graph for the
full x86 instruction set includes more than 500 nodes, as each observed opcode must
be included.

3.3 Maximum-Likelihood Execution Path

We name the output of the shingled disassembler a shingled binary. The shingled
binary of the source executable encodes within it up to 2" possible valid disassemblies.
Our graph disassembler is designed to scan the shingled binary and prune shingles
with lower probabilities. By using our graph disassembler, we can find the maximum-
likelihood set of byte classifications by tracing the shingled binary through the
opcode finite state machine. At every receiving state, we check which preceding path
(predecessor) has the highest transition probability. For example in Figure [2 the 5th
byte (8B) is the receiving state of two preceding addresses: byte 1 (see Figure
and byte 2 (see Figure . We compute the transition probability from each of
the two addresses and sheer the one with a lower probability.

Theorem 1. The graph disassembler always returns the mazimum-likelihood byte
classifications among the set S of all valid shingles.

Proof. Each byte in the shingled binary is a potential receiving state of multiple
predecessors. At each receiving state, we keep the best predecessor with the highest
transition probability. Therefore, when we reach the last receiving state—the
accepting state, which represents the last unconditional brach instruction—we find
the shingle with the highest probability as the best execution path. O

10

The transition probability of a predecessor consists of two parts: the global
transition probability taken from the opcode state machine and the local modifiers,
and local statistics of each byte being code or data based on several heuristics.
This is important because runtime reference patterns specific to the binary being
disassembled are included in distinguishing the most probable disassembly path.

Let r be a receiving state of a transition triggered at x; in the shingled binary,
let Pr(pred(z;)) be the transition probability of the best predecessor of z;, and let
c¢cm and dm be the code and data modifiers computed during shingled disassembly.
The transition probability to r is as follows:

Pr(r) = Pr(pred(z;)) * cm/dm
if x; is a fall-through instruction, or
Pr(r) = Pr(pred(x;)) * cm/dm x Pr(db;) x Pr(db,)

if x; is a branch instruction, where Pr(db;) is the probability that z; is followed
by data and Pr(db,) is the probability that r is proceeded by data. Every branch
instruction can possibly be followed by data. To account for this, when determining
the best predecessor for each instruction, branch instructions are treated as fall-
throughs to their following instruction and to data. Each branch instruction can be
a predecessor to the following instruction or to any instruction that is on a 4-byte
boundary and is reachable via data bytes.

Therefore, the transition probability of any valid shingle-path s resulting in a
trace of rg, ..., 71, ..., 1 iS:

Pr(s) = Pr(ro)Pr(ry)--- Pr(r;)--- Pr(rg)
and the optimal execution path s* is:

s* = arg max Pr(s).
s€S

3.4 Algorithm Analysis

Our disassembly algorithm is much quicker than other approaches of comparable
accuracy due to the small amount of information that needs to be analyzed. The
time complexity of each of the three steps is as follows:

e Shingled disassembly: Lines of Figure |3| complete in O(n) time (where n
is the number of bytes in executable sections) and construct a CFG G with at
most 2n edges. The depth-first search in Lines is linear in the size of G.
We conclude that the algorithm in Figure [3|is O(n).

11

100% -
99.95% -

99.90% -
99.85% -
99.80% -

Figure 5: Percent of instructions identified by IDA Pro that were also identified by
our disassembler

e Sheering: Pruning invalid shingles also requires O(n) time.

e Graph disassembly: The graph-based disassembler performs a single-pass scan
over the shingled binary, and is therefore also O(n).

Therefore, our disassembly algorithm runs in time O(n), that is, linear in the size of
the source binary executable.

4 Evaluation

A prototype of our shingled disassembler was developed in Windows using Microsoft
.NET C#. Testing of our disassembly algorithm was performed on an Intel Xeon
processor with six 2.4GHz cores and 24GB of physical RAM. We tested 24 difficult
binaries with very positive results.

4.1 Broad Results

Table [I] shows the different programs on which we tested our disassembler, as well as
file sizes and code section sizes. It also displays the number of instructions that the
graph disassembler identified that IDA Pro didn’t identify as code. Figure [5| shows
the percentage of instructions that IDA Pro identified as code that our disassembler
also identified as code.

After the shingled disassembly has been composed, each binary has already had
a large number of instructions eliminated as invalid opcodes or invalid fall-throughs.
Figure [6] shows the percentage of bytes that have been sheered after the shingled
disassembly.

12

Table 1: File Statistics

File Size Code Size # Instr.
File Name (KB) (KB) Missed by IDA
calc 114 75 1700
7z 163 126 680
cmd 389 129 5449
synergyc 609 218 12607
diff 1161 228 3002
gce 1378 254 2760
c++ 1380 256 2769
Synergys 738 319 8061
size 1703 581 5540
ar 1726 593 8626
objcopy 1868 701 6293
as 2188 772 7463
objdump 2247 780 7159
steam 1353 860 16928
git 1159 947 9776
xetex 14424 1277 18579
gvim 1997 1666 19145
Dooble 2579 1884 57598
luatex 3514 2118 18381
celestia 2844 2136 24950
DosBox 3727 3013 24217
emule 5758 3264 52434
filezilla 7994 7085 79367
IdentityFinder 23874 12781 180176

13

30%

25%
20%
15%
10%
5%
0% -
CAV DL LI KO o5 XD RO A IR I
ﬁl\f@\b\"%%@\tgmoqw@Qq'pséoéz’gso*?gé%os;\?\g
N c& S ¥ VoL IELSE
0)% 0;A @) *OQ\ Q o Q \.y\\%
&
3

Figure 6: Percent of addresses sheered during shingled disassembly

Our disassembler runs in linear time in the size of the input binary. Figure [7]
shows how many times longer IDA Pro took to disassemble each binary relative to
our disassembler. Our disassembler is increasingly faster than IDA Pro as the size
of the input grows.

Finally, for each binary we used Ollydbg to create and save the traces of executions.
Tracing executions in this way does not reveal the ground truth of non-executed
bytes (which may be data or code), but the bytes that do execute are definitely code.
We compared these results to the static disassembly yielded by our disassembler,
by IDA Pro, and by the dynamic disassembly tool VDB /Vivisect . Figure
shows the results. Both our disassembler and IDA Pro were 100% accurate against
the execution paths that actually executed during the tests, but VDB/Vivisect
exhibited much lower accuracies of around 15-35%. We also used VDB/Vivisect to
dynamically trace command line tools, such as the Spec2000 benchmark suite and
Cygwin, and obtained similar code coverages. This provides significant evidence that
purely dynamic disassembly is not a viable solution to many disassembly problems
where high code coverage is essential.

4.2 eMule Case Study

The eMule file sharing software is very popular, with almost five hundred million
downloads on SourceForge. It also works extremely well as a case study to compare
our disassembler versus IDA Pro to examine some of the mistakes that IDA Pro
makes.

14

15x

12x

9x

6x

3x

0x -

Figure 7: Ratio of IDA Pro’s disassembly time to our disassembly time

m Graph Accuracy (%)

m IDA Accuracy (%)

m Code Coverage (%)

Figure 8: Coverage of observed execution traces by IDA Pro, VDB/Vivisect, and

our disassembler

15

We tested IDA Pro v6.3 against our disassembler when working with eMule v.50a.
IDA Pro makes a large number of mistakes when attempting to disassemble eMule
and ignores vast blocks of code. Our disassembler does not make these mistakes.

The most pervasive mistake made by IDA Pro is demonstrated in Cases 1-2,
where a large block of instructions follows a call that IDA’s heuristics infer to be
non-returning. IDA therefore misclassifies the bytes as data and fails to include the
instructions they encode in its disassembly. We observed this error at at least nine
other addresses (0x524CF0, 0x5250A0, 0x525C00, 0x5262D3, 0x533090, 0x62ABBB,
0x6B2821, 0x6CF68A, and 0x711DC9). More examples of this may exist in eMule;
these are merely the instances that were manually verified by the authors. Our
disassembler accurately classifies each of these blocks as code.

IDA Pro sometimes drops a single common first byte from an instruction. In
Case 3, 0x8B is dropped, and 0xFF is dropped in Case 4. This is an obvious mistake
since IDA’s disassembly implies that code falls through to data. Our disassembler is
incapable of making this mistake due to its shingling disassembly algorithm.

Cases 5, 6 and 7 are all very similar, each demonstrating IDA Pro’s susceptibility
to dropping direct branch instructions. Each of these instructions should be classified
as code; for example, in Case 7 the jmp instruction implements a switch statement.
Our disassembler correctly identifies and classifies all of these instructions.

Finally, Case 8 exhibits an entire function epilogue that IDA misclassifies as
data. Function epilogues are among the most common opcode sequences seen in
binaries, so IDA’s misclassification is surprising. We speculate that it may arise from
an undesirable interaction between two or more of its many heuristics, one of which
made a misclassification that overrode the rest. Our disassembler correctly classifies
the bytes since our state machine recognizes the high likelihood of this sequence
appearing as code.

5 Conclusion

We presented an extremely simple yet highly effective static disassembly technique
using probabilistic finite state machines. It finds the most probable set of byte
classifications from all possible valid disassemblies. Compared to the current state-
of-the-art IDA Pro, our disassembler runs in time linear in the size of the input
binary. We achieve greater efficiency, and experiments indicate that our resulting
disassemblies are more accurate than those yielded by IDA Pro.

We are currently working on extending our disassembler to instrument and record
the actual execution traces of executables, for better estimation of ground truth
and therefore more comprehensive evaluation of accuracy. One major challenge
is to get high code coverage—the percentage of the code sections covered during

16

Table 2: Disassembly Comparison for emule.eze

IDA Pro Ours
Case 1: Missed code after a possibly non-returning call (158-1104 bytes)
41CF9D: call CxxThrowException@8 41CF9D: call CxxThrowException@8
41CFA2: dw OCC5Bh 41CFA2: pop ebx
41CFA3: db align (OCCh x13)
41D030: dd 0CC5B0028h, (OCCh x12) 41CFBO: push OFFFFFFFFh
41D040: push OFFFFFFFFh .
41D032: pop ebx
41D033: db align (OCCh x13)
41D040: push OFFFFFFFFh
Case 2: Missed code after a possibly non-returning call (26 bytes)
41CD3D: call CxxThrowException@8 41CD3D: call CxxThrowException@8
41CD42: db ’ [??777777777777d’°,0 41CD42: db 5B
41CD53: align 4 41CD43: db align (OCCh x13)
41CD54: dd 548B0000h, OFF6A0824h 41CD50: mov eax, large fs:0
41CD5C: push offset SEH_41CC30 41CD56: mov edx, [esp+8]
41CD5A: push OFFFFFFFFh
41CD5C: push offset SEH_41CC30
Case 3: 0z8B byte dropped (1 byte)
525D82: mov edx, [eax+1Ch] 525D82: mov edx, [eax+1Ch]
525D85: db 8Bh 525D85: mov edi, off_7DFAB4
525D86: cmp eax, offset off_7DFAB4
Case 4: 0zFF byte dropped (1 byte)
58DC4E: push ecx 58DC4E: push ecx
58DC4F: db OFFh 58DC4F: call off _7DFAB4
58DC50: adc eax, offset off_7DFAB4
Case 5: Short direct jmp dropped (2 bytes)
67882D: call sub_6C978E 67882D: call sub_6C978E
678832: db OEBh 678832: jmp short loc_678839
678833: db 5 678834: cmp ebp, OFFFFFFFEh
678834: cmp ebp, OFFFFFFFEh
Case 6: Long direct jump dropped (5 bytes)
71951C: mov ecx, [ebp-10h] 71951C: mov ecx, [ebp-10h]
71951F: db OESh 71951F: jmp CWndQ@QUAEQXZ
719520: dd OFFFBAO52h
Case 7: Dropped jump switch statement (14 bytes)
6C3137: db 83h 6C3137: sub esp, 2Ch
6C3138: dd OE0832CECh, 8524FF3Fh 6C313A: and eax, 3Fh
6C3140: dd offset off_7DF12E 6C313D: jmp off_7DF12E[eax*4]
6C3144: fdiv st, st 6C3144: fdiv st, st
Case 8: Dropped _epilogue (6 bytes)
6CF231: db 59h 6CF231: pop ecx
6CF232: db 5Fh 6CF232: pop edi
6CF233: db 5Eh 6CF233: pop esi
6CF234: db 0C2h 6CF234: retn 8
6CF235: db 8
6CF236: db O

17

each execution—especially for large applications. The instrumented execution traces
would give us the advantage to verify all identified code sections in a controlled and
automatic fashion.

Acknowledgments

The research reported herein was supported in part by NSF award #1054629,
AFOSR award FA9550-10-1-0088, and ARO award W911NF-12-1-0558. Any opinions,
recommendations, or conclusions expressed are those of the authors and do not
necessarily reflect those of the NSF, AFOSR, or ARO.

References

[1] C. Eagle. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular
Disassembler. No Starch Press, Inc., San Francisco, California, 2008.

[2] Hex-Rays. The IDA Pro disassembler and debugger. www.hex-rays.com/
idapro.

[3] Intel. Intel® architecture software developer’s manual. http://www.intel!
com/design/intarch/manuals/243191.htm, 2011.

[4] Invisigoth of KenShoto. Visipedia. http://visi.kenshoto.com.

[5] J. Kinder and H. Veith. Jakstab: A static analysis platform for binaries. In
Proceedings of the 20th International Conference on Computer Aided Verification
(CAV), pages 423-427, 2008.

[6] J. Kinder and H. Veith. Precise static analysis of untrusted driver binaries.
In Proceedings of the 10th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pages 43-50, 2010.

[7] J. Kinder, F. Zuleger, and H. Veith. An abstract interpretation-based framework
for control flow reconstruction from binaries. In Proceedings of the 10th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), pages 214-228, 2009.

[8] N. Krishnamoorthy, S. Debray, and K. Fligg. Static detection of disassembly
errors. In Proceedings of the 16th Working Conference on Reverse Engineering

(WCRE), pages 259268, 2009.

18

www.hex-rays.com/idapro
www.hex-rays.com/idapro
http://www.intel.com/design/intarch/manuals/243191.htm
http://www.intel.com/design/intarch/manuals/243191.htm
http://visi.kenshoto.com

[9]

[10]

[11]

[12]

[13]

G. Project. Gnu binary utilities. http://sourceware.org/binutils/docs-2.
22/binutils/index.html, 2012.

B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code
revisited. In Proceedings of the 9th Working Conference on Reverse Engineering
(WCRE), pages 45-54, 2002.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. Carrasco.
Probabilistic finite-state machines — part I. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(7):1013-1025, 2005.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. Carrasco.
Probabilistic finite-state machines — part II. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(7):1026-1039, 2005.

R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thuraisingham.
Differentiating code from data in x86 binaries. In Proceedings of the FEuropean
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), volume 3, pages 522-536, 2011.

19

http://sourceware.org/binutils/docs-2.22/binutils/index.html
http://sourceware.org/binutils/docs-2.22/binutils/index.html

	Introduction
	Related Work
	Disassembler Design
	Shingled Disassembler
	Opcode State Machine
	Maximum-Likelihood Execution Path
	Algorithm Analysis

	Evaluation
	Broad Results
	eMule Case Study

	Conclusion

