
NATIVE SOFTWARE SECURITY HARDENING IN THE REAL WORLD:

COMPATIBILITY, MODULARITY, EXPRESSIVENESS, AND PERFORMANCE

by

Xiaoyang Xu

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Kevin W. Hamlen, Chair

Dr. Bhavani M. Thuraisingham

Dr. Latifur Khan

Dr. Shuang Hao



Copyright © 2020

Xiaoyang Xu

All rights reserved



In memory of my dad.



NATIVE SOFTWARE SECURITY HARDENING IN THE REAL WORLD:

COMPATIBILITY, MODULARITY, EXPRESSIVENESS, AND PERFORMANCE

by

XIAOYANG XU, BE

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2020



ACKNOWLEDGMENTS

Firstly, I would like to express the deepest appreciation to my advisor, Dr. Kevin Hamlen,

for his unyielding guidance and thoughtful support. I would not have started my PhD if he

had never shown me the world of cybersecurity six years ago in his classes. This dissertation

could not have been completed without Dr. Hamlen serving as the best mentor to me.

Special thanks should be given to my friend and research partner, Wenhao Wang, who ac-

companied me for countless days and nights, staring at computer screens that were full of

assembly code and breakpoints. I would also like to thank my colleagues, Masoud Ghaf-

farinia, Jun Duan, Benjamin Ferrell, and all who have inspired and worked with me.

I would like to extend my sincere thanks to my doctoral committee members, Dr. Bhavani

Thuraisingham, Dr. Latifur Khan, and Dr. Shuang Hao, for their valuable advice, time, and

efforts throughout the writing of this dissertation, and Rhonda Walls, who is always available

whenever I need help.

Finally, I’m extremely grateful to my mom and my fiancée, whose unconditional support

and love encouraged me to explore new directions in life and seek my own destiny.

The research reported in this dissertation was supported in part by the Office of Naval Re-

search (ONR) under awards N00014-14-1-0030 and N00014-17-1-2995, the Defense Advanced

Research Projects Agency (DARPA) under award FA8750-19-C-0006, the Air Force Office of

Scientific Research (AFOSR) under Young Investigator Program (YIP) awards FA9550-14-1-

0119 and FA9550-14-1-0173, the National Science Foundation (NSF) under CAREER awards

#1513704, #1834215 and #1054629, and NSF Industry-University Collaborative Research

Center (I/UCRC) awards from Raytheon Company and Lockheed Martin. All opinions,

recommendations, and conclusions expressed are those of the author and not necessarily of

the ONR, DARPA, AFOSR, NSF, Raytheon, or Lockheed-Martin.

March 2020

v



NATIVE SOFTWARE SECURITY HARDENING IN THE REAL WORLD:

COMPATIBILITY, MODULARITY, EXPRESSIVENESS, AND PERFORMANCE

Xiaoyang Xu, PhD
The University of Texas at Dallas, 2020

Supervising Professor: Dr. Kevin W. Hamlen, Chair

This dissertation presents a series of new technologies that significantly bridge the gap be-

tween theory and practice of software hijacking defenses based on control-flow integrity (CFI)

and in-lined reference monitors (IRMs). CFI has emerged over the past 15 years as one of

the strongest known defenses against code-reuse attacks, which are among the top threats to

modern software ecosystems. Such attacks wrest control of critical software systems away

from lawful users into the hands of adversaries by reusing or repurposing legitimate code

blocks for malicious purposes. CFI offers provably strong protections against code-reuse

attacks by confining vulnerable software to a strict security policy that constrains its flow of

control to paths chosen in advance by developers and legitimate users.

Research over the past decade has increased the power and performance of CFI defenses;

however, effectively applying many of the strongest CFI algorithms to large, production-level

software products have remained difficult and challenging. To expose the root causes of these

difficulties, this dissertation presents a new evaluation methodology and microbenchmarking

suite, ConFIRM, that is designed to measure applicability, compatibility, and performance

characteristics relevant to CFI algorithm evaluation. It provides a set of 20 tests of various

CFI-relevant code features and coding idioms (e.g., event-driven callbacks and exceptions),

vi



which are widely found in commodity COTS software products and constitute the greatest

barriers to more widespread CFI adoption.

To overcome a significant class of fundamental challenges identified by ConFIRM, the

dissertation then presents object flow integrity (OFI), which is the first source-agnostic CFI

system that augments CFI protections with secure, first-class support for binary object

exchange across inter-module trust boundaries. A prototype implementation for Microsoft

Component Object Model (COM) demonstrates that OFI scales to component-based, event-

driven consumer software with low overheads of under 1%. The approach is demonstrated

in practice through an interface-driven approach that is the first to secure full COTS, GUI-

driven Windows products with CFI without needing the application source code.

Finally, the IRM technology underlying CFI is shown to be effective in web domains for

enforcing safety policies by injecting runtime security guards into binary web scripts. In

particular, a method of detecting and interrupting unauthorized, browser-based cryptomin-

ing is proposed, based on semantic signature-matching. The approach addresses a new wave

of cryptojacking attacks, including XSS-assisted, web gadget-exploiting, counterfeit mining.

Evaluation shows that the approach is more robust than current static code analysis defenses,

which are susceptible to code obfuscation attacks.

vii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF LISTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 EVALUATING COMPATIBILITY AND RELEVANCE OF CONTROL-
FLOW INTEGRITY PROTECTIONS FOR MODERN SOFTWARE . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Compatibility Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Indirect Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Other Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Evaluation of CFI Solutions . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Evaluation Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Performance Evaluation Correlation . . . . . . . . . . . . . . . . . . . 40

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 3 OBJECT FLOW INTEGRITY . . . . . . . . . . . . . . . . . . . . . 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Inter-module Object Flows . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 CODE-COOP Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Object Proxying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Type-based Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Dispatcher Implementation . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.3 Automated Mediator Synthesis . . . . . . . . . . . . . . . . . . . . . 72

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.2 Performance Overheads . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.3 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

CHAPTER 4 TOWARDS INTERFACE-DRIVEN COTS BINARY HARDENING . 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Attack Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Object-oriented Design . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 API Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.3 Object Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.4 Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

CHAPTER 5 SEISMIC: SECURE IN-LINED SCRIPT MONITORS FOR INTER-
RUPTING CRYPTOJACKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Monero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 WebAssembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Ecosystem of Browser-based Cryptocurrency Mining . . . . . . . . . . . . . . 108

5.4 Counterfeit Mining Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



5.5 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.1 Current Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.2 Semantic Signature-matching . . . . . . . . . . . . . . . . . . . . . . 114

5.5.3 SEISMIC In-lined Reference Monitoring . . . . . . . . . . . . . . . . 118

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6.1 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

CHAPTER 6 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Prior CFI Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 CFI Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 SFI and CFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 VTable Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 COOP Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.6 Immutable Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7 Component-based Software Engineering . . . . . . . . . . . . . . . . . . . . . 134

6.8 Cryptocurrencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.8.1 Cross-Site Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.9 Related Web Script Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.10 Semantic Malware Detection and Obfuscation . . . . . . . . . . . . . . . . . 137

CHAPTER 7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

CURRICULUM VITAE

x



LIST OF FIGURES

2.1 Source code compiled to indirect call . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Cross-module OFI control-flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Proxy object binary representation . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 A type system for expressing CFI obligations as OFI contracts . . . . . . . . . . 58

3.4 Mediator enforcement of OFI contracts . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Reins system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Automated mediator synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 OFI runtime overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Object binary representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Proxy object binary representation . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Browser-based mining workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Reflected (left) and stored (right) counterfeit mining attacks . . . . . . . . . . . 112

5.3 Antivirus detection of CryptoNight before and after function renaming . . . . . 115

5.4 Semantic profiles for mining vs. non-mining Wasm apps . . . . . . . . . . . . . . 118

5.5 SEISMIC transformation of Wasm binaries . . . . . . . . . . . . . . . . . . . . . 119

xi



LIST OF TABLES

2.1 ConFIRM compatibility metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Tested results for CFI solutions on ConFIRM . . . . . . . . . . . . . . . . . . 33

2.3 Overall compatibility of CFI solutions . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Correlation between SPEC CPU and ConFIRM performance . . . . . . . . . . 42

3.1 Interactive COM applications used in experimental evaluation . . . . . . . . . . 78

3.2 Micro-benchmark overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Attack simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Browser experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Interoperating COM modules used in case study . . . . . . . . . . . . . . . . . . 95

4.2 APIs with object exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 COM interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Methods with object exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 APIs with callback pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Security-related features of popular miners . . . . . . . . . . . . . . . . . . . . . 109

5.2 Top 30 Opcodes Used as Features to Distinguish Mining and Non-mining . . . . 116

5.3 Execution trace average profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Mining overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 SVM stratified 10-fold cross validation . . . . . . . . . . . . . . . . . . . . . . . 125

xii



LIST OF LISTINGS

3.1 Code that opens a file-save dialog box . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 CODE-COOP attack vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Vault Dispatch implementation (abbreviated) . . . . . . . . . . . . . . . . . . . 66

3.4 Virtual Vault Dispatch implementation (abbreviated) . . . . . . . . . . . . . . . 67

3.5 Bouncer implementation (abbreviated) . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 BouncerDown implementation (abbreviated) . . . . . . . . . . . . . . . . . . . . 69

3.7 Virtual Bouncer-down implementation (abbreviated) . . . . . . . . . . . . . . . 70

3.8 Synthesized vaulter implementation . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Reflective template (abbreviated) . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10 Mediator synthesis via template recursion . . . . . . . . . . . . . . . . . . . . . 76

4.1 Code that registers a running application Windows Image Acquisition (WIA)
event notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Function call in assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Embedded miner HTML code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 JavaScript gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 C++ source code for compilation to Wasm . . . . . . . . . . . . . . . . . . . . . 120

5.4 Original Wasm compiled from C++ . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Instrumented Wasm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 SEISMIC JavaScript code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiii



CHAPTER 1

INTRODUCTION

Software is increasingly complex. Google Chrome runs on 6.7 million lines of code; Microsoft

Windows operating system has roughly 50 million lines of code; and a typical new-model

vehicle comes with 100 million lines of code.1 This is due to the fact that modern software

is designed to support more platforms and various features to meet users’ needs. Unfortu-

nately, security of software is widely believed to be inversely related to its complexity (cf.,

Walden et al., 2014; Zimmermann et al., 2010). With more features, larger implementations,

and more behavioral variety come higher possibility for programmer error, malicious code

introduction, and unforeseen component interactions.

Cyberattacks continue to dominate headlines. Multiple companies revealed data breach

in 2019, including Capital One (Capital One, 2019), Marriott Hotels (Fruhlinger, 2020) and

Facebook (Moore, 2019). A bug in iOS Facetime discovered in 2019 allowed malicious iPhone

users to eavesdrop merely by calling the victim’s iPhone, even if the victim does not accept

the call (Mayo, 2019). In May 2019, the city of Baltimore, Maryland was attacked by hackers

who froze thousands of city computers and demanded bitcoins as ransom, and this attack

cost the city $18 million (Duncan, 2019). In Summer 2019, the entire nation of Bulgaria

got hit and over 5 million Bulgarians had their personal data stolen by hackers from the

country’s tax revenue office (Santora, 2019).

Moreover, the most ubiquitous and prevalent form of software is native code, which

remains one of the primary targets for malicious software attacks. It is harder to secure

commercial off-the-shelf (COTS) and legacy binaries in use today, which do not have source

or debug information available, or for which consumers will not accept a significant perfor-

mance degradation purely for the sake of improved security. Therefore, it is very common

1https://informationisbeautiful.net/visualizations/million-lines-of-code/

1

https://informationisbeautiful.net/visualizations/million-lines-of-code/


for software users to possess known but not fully trusted native code, or unknown binaries

that they are lured to run. Even security-sensitive software organizations, such as military

agencies, face a difficult challenge when it comes to selecting secure software, since the most

up-to-date, feature-filled, and well-tested software tends to be commercial products whose

developers prioritize sales over security.

Recently, technologies for secure binary analysis and transformation have emerged that

aim to safely filter untrustworthy code or statically transform it into safe code. Among such

technologies, binary instrumentation via in-lined reference monitors (IRMs) has been firmly

established as a powerful and versatile technique for enforcing fine-grained security policies,

without requiring access to source code. IRM implementations operate by inserting code for

security checks into the untrusted software, thereby constraining its behavior to a security

policy. Unlike executing untrusted software within a sandboxing virtual machine (VM),

IRMs are light-weight and do not require kernel modifications or administrative privileges to

safely run the new self-monitoring code. This allows IRMs to be deployed in environments

where such controls are unavailable. Another advantage of IRMs is that they can enforce

specialized, application-specific policies or perform platform-specific optimizations, making

them more flexible and offering lower overhead than traditional OS- or VM-level execution

monitoring.

IRM frameworks must consider that a monitored application may attempt to bypass the

inserted checks by jumping over them. Therefore, they must impose restrictions on control-

flow. However, modern control-flow hijacking attacks can subvert control-flows of vulnerable

programs by exploiting memory corruptions and redirecting control arbitrarily. Over the

past two decades, operating system and hardware developers have proposed two primary

defenses against traditional memory corruption exploits, namely data execution prevention

(DEP) (Andersen, 2004) and address space layout randomization (ASLR) (PaX Team, 2003).

DEP successfully stops a program from executing injected code. However, it has limitations:

2



Firstly, just-in-time (JIT) compilation intentionally violates DEP’s strategy, since JIT code

requires memory pages that are both writable and executable. Moreover, even with DEP

enabled, follow-on code-reuse attacks (Bletsch et al., 2011) (e.g., “return-to-libc” attacks)

can circumvent it without any code injection. In response, defenders proposed ASLR, which

breaks code reuse attacks by randomizing code layout to thwart its abuse. Unfortunately,

DEP and ASLR are imperfect antidotes. They motivated attackers to tailor even more

elaborate attacks, including return-oriented programming (ROP) (Roemer et al., 2012) and

jump-oriented programming (JOP) (Bletsch et al., 2011), which locate, stitch, and execute

short instruction sequences (gadgets) of benign code to implement malicious payloads and

achieve arbitrary code execution.

More recently, control-flow integrity (CFI) (Abadi et al., 2005) has emerged as a more

comprehensive and principled defense against this malicious code-reuse. To protect untrusted

code from software hijacking, CFI imposes security policies that constrain the targets of

control-flow transfers. The policy that a CFI implementation enforces is a control-flow

graph (CFG), which whitelists the set of legitimate transfer destinations. A CFI framework

typically consists of two components: the first component analyzes the untrusted software

statically or dynamically and constructs a CFG; the other component then instruments the

untrusted software with in-lined runtime guards to enforce this CFG.

A software CFI methodology can be either a source-aware, source-to-source approach

or a source-agnostic, binary-to-binary transformation. Source-aware CFI solutions typically

leverage source-level information and generate CFI-enforcing object code via a compiler.

This allows CFI algorithms to produce more precise policies, and can often perform more

optimization to achieve better performance. Such CFI frameworks include WIT (Akritidis

et al., 2008), NaCl (Yee et al., 2009), CFL (Bletsch et al., 2011), MIP (Niu and Tan, 2013),

MCFI (Niu and Tan, 2014a), RockJIT (Niu and Tan, 2014b), Forward CFI (Tice et al.,

2014), CCFI (Mashtizadeh et al., 2015), πCFI (Niu and Tan, 2015), MCFG (Tang, 2015)

3



CFIXX (Burow et al., 2018) and µCFI (Hu et al., 2018). Reliance on available source code

has the potential compatibility problem of reducing deployment flexibility, since the vast

majority of COTS software (or library) is closed-source to consumers, due to intellectual

property concerns and constraints imposed by developer business models. On the other

hand, source-agnostic CFI solutions instrument and harden already-compiled binary code

without the aid of source code to achieve this flexibility. Examples include XFI (Erlingsson

et al., 2006), Reins (Wartell et al., 2012b), STIR (Wartell et al., 2012a), CCFIR (Zhang

et al., 2013), bin-CFI (Zhang and Sekar, 2013), BinCC (Wang et al., 2015), Lockdown (Payer

et al., 2015), TypeArmor (van der Veen et al., 2016), OCFI (Mohan et al., 2015), OFI (Wang

et al., 2017) and τCFI (Muntean et al., 2018). However, such CFI implementations are still

facing some challenging problems. For example, since perfect disassembly is known to be

undecidable in general (Wartell et al., 2014), lacking source-level control-flow information

can result in less strict CFG, and thus more permissive control-flow policies.

Inspired by the original CFI published in 2005, there has been productive new research

devoted to protecting software from more elaborate attacks, deriving richer policies, and

providing better performance. These new frameworks are generally evaluated and com-

pared in terms of security and performance. Security is usually assessed using the RIPE

test suite (Wilander et al., 2011) or with manually crafted proof-of-concept attacks such as

COOP (Schuster et al., 2015). Performance overhead is commonly evaluated in terms of

the CPU benchmark suites (e.g., SPEC). Particularly, among 54 surveyed CFI algorithms

and implementations published in tier-1 scientific venues between 2005–2019, 66% evaluate

performance overheads by applying SPEC CPU benchmarking programs.

While this attention to performance and security has stimulated rapid gains in the ability

of CFI solutions to efficiently enforce powerful, precise security policies, fewer works have

aimed at systematically examining which general classes of software can receive CFI protec-

tion without suffering compatibility problems. Historically, CFI research has struggled to

4



bridge the gap between theory and practice (cf., Zhang et al., 2013) because code harden-

ing transformations inevitably run at least some risk of corrupting desired, policy-permitted

program functionalities. In particular, 88% of the surveyed CFI solutions report evalua-

tions on 3 or fewer large, independent applications. Moreover, such compatibility issues

can have dangerous security ramifications if they prevent protection of software needed in

mission-critical contexts, or if the protection policies must be weakened in order to achieve

compatibility. For example, to avoid incompatibilities related to C/C++ pointer arithmetic,

the three most widely deployed compiler-based CFI solutions (LLVM-CFI (Tice et al., 2014),

GCC-VTV (Tice et al., 2014), and Microsoft Visual Studio MCFG (Tang, 2015)) all presently

leave return addresses unprotected, potentially leaving code vulnerable to ROP attacks.

Understanding these compatibility limitations, including their impacts on real-world soft-

ware performance and security, requires a new suite of CFI benchmarks with substantially

different characteristics than CPU benchmarks typically used to assess compiler or hard-

ware performance. In particular, CFI compatibility and effectiveness is typically constrained

by the nature and complexity of the target program’s control-flow paths and control-data

dependencies. Such complexities are not well represented by CPU benchmarks (e.g., SPEC

CPU), which are designed to exercise CPU computational units using only simple control-flow

graphs, or by utility suites (e.g., GNU Corelibs) that were all written in a fairly homogeneous

programming style for a limited set of compilers, and that use a very limited set of standard

libraries chosen for exceptionally high cross-compatibility.

To better understand these compatibility and applicability limitations of modern CFI so-

lutions, and to identify the coding idioms and features that constitute the greatest barriers

to more widespread CFI adoption, Chapter 2 presents ConFIRM (CONtrol-Flow Integrity

Relevance Metrics), a new methodology and microbenchmarking suite for assessing compat-

ibility, applicability, and relevance of CFI protections for preserving the intended semantics

of software while protecting it from abuse.

5



ConFIRM consists of 24 tests designed specifically to examine compatibility character-

istics relevant to control-flow security hardening evaluation. Each test is designed to exhibit

one or more code features or coding idioms with high compatibility impact found in a large

number of commodity software products. Reevaluation of 12 CFI algorithms using Con-

FIRM shows that state-of-the-art CFI solutions are compatible with only about half of the

CFI-relevant code features and coding idioms needed to protect large, production software

systems that are frequently targeted by cybercriminals. In addition, using ConFIRM for

microbenchmarking reveals performance characteristics not captured by SPEC benchmarks.

Among the coding idioms and features present in Chapter 2, CFI historically suffered

difficulty of hardening COTS software that contains immutable system modules with large,

object-oriented APIs—which are particularly common in component-based, event-driven

consumer software. Modifying and transforming such native software is challenging in con-

tests where surrounding software environment includes closed-source, unmodifiable, and pos-

sibly obfuscated binary components, such as system libraries and OS kernels.

In response to this difficulty, Chapter 3 of this dissertation presents object flow integrity

(OFI), which extends CFI with secure, first-class support for immutable, trusted modules

with object-oriented APIs. OFI augments untrusted software with safely exchanging bi-

nary objects across inter-module trust boundaries without varying trusted module code, by

ensuring that trusted callee modules never receive writable code pointers from untrusted,

CFI-protected callers. To achieve this without breaking intricate object exchange protocols,

OFI implementation centers around the idea of proxy objects that are actually IRMs that

wrap and mediate access to the methods of the objects they proxy. Prior to the introduc-

tion of OFI enhancements, no CFI algorithm successfully preserved and secured the full

functionality of Windows Notepad—one of the most ubiquitous consumer software prod-

ucts available. A prototype implementation for Microsoft Component Object Model (COM)

showcases that OFI is scalable to complex COTS software (e.g. Mozilla Firefox) that has

6



large interfaces on the order of tens of thousands of methods, and exhibits low overheads of

under 1%.

Next, Chapter 4 reports experience results of using OFI to secure application-level soft-

ware modules without the need to harden all other trusted modules in the environment with

exactly the same protection strategy or policies. The experimental results show that, cou-

pled with OFI and CFI, the approach can effectively thwart elaborated code-reuse attacks

by completely mediating the interfaces between trusted and untrusted modules.

In addition, IRMs can enforce safety policies by injecting runtime security guards not

only into native code but also in web scripts. Chapter 5 introduces SEcure In-lined Script

Monitors for Interrupting Cryptojacks (SEISMIC). SEISMIC is a novel semantic-based

signature-matching approach that automatically modifies incoming WebAssembly (Wasm)

binary programs so that they self-profile themselves as they execute, to detect unauthorized

cryptomining activity. When cryptomining is detected, the instrumented script warns and

prompts the user to explicitly opt-out or opt-in. Opting out halts the script, whereas opting

in continues the script without further profiling (allowing it to execute henceforth at full

speed). An implementation of SEISMIC offers a browser-agnostic deployment strategy that

is applicable to average end-user systems without specialized hardware or operating systems.

The rest of this dissertation is laid out as follows. Chapter 2 explores the compat-

ibility and applicability limitations of modern CFI solutions, and then presents the first

CFI-relevant evaluation methodology and microbenchmarking suite: ConFIRM (Xu et al.,

2019). Chapter 3 demonstrates the OFI (Wang et al., 2017) framework and implementation,

and a detailed case study (Xu et al., 2018) of OFI is reported in Chapter 4. Chapter 5

presents a semantic-based in-line script monitoring system, SEISMIC (Wang et al., 2018),

which instruments Wasm binaries with mining detectors. Finally, Chapter 6 discusses related

works and Chapter 7 concludes.

7



CHAPTER 2

EVALUATING COMPATIBILITY AND RELEVANCE OF CONTROL-FLOW

INTEGRITY PROTECTIONS FOR MODERN SOFTWARE1

Control-flow integrity (CFI) (Abadi et al., 2005) (supported by vtable protection (Gawlik

and Holz, 2014) and/or software fault isolation (Wahbe et al., 1993)), has emerged as one

of the strongest known defenses against modern control-flow hijacking attacks, including

return-oriented programming (ROP) (Roemer et al., 2012) and other code-reuse attacks.

CFI protects native software from hijacking by inserting guard code that restricts program

execution to a set of legitimate control-flow targets at runtime.

Although CFI has become a mainstay of protecting certain classes of software from code-

reuse attacks, and continues to be improved by ongoing research, its ability to preserve

intended program functionalities (semantic transparency) of diverse, mainstream software

products have been under-studied in the literature. This is in part because although CFI

solutions are evaluated in terms of performance and security, there remains no standard

regimen for assessing compatibility. Researchers must often therefore resort to anecdotal

assessments, consisting of tests on homogeneous software collections with limited variety

(e.g., GNU Coreutils), or on CPU benchmarks (e.g., SPEC) whose limited code features are

not representative of large, mainstream software products.

In this chapter, we propose ConFIRM (CONtrol-Flow Integrity Relevance Metrics),

which is a new evaluation methodology and microbenchmarking suite for assessing compat-

ibility, applicability, and relevance of CFI protections for preserving the intended semantics

of software while protecting it from abuse.

1This chapter contains material previously published as: Xiaoyang Xu, Masoud Ghaffarinia, Wenhao
Wang, Kevin W. Hamlen, and Zhiqiang Lin. “ConFIRM: Evaluating Compatibility and Relevance of
Control-flow Integrity Protections for Modern Software” In Proceedings of the 28th USENIX Security Sym-
posium, pp. 1805–1821, August 2019.

8



The rest of this chapter is laid out as follows. Section 2.1 begins with an introductory

overview of the CFI compatibility problem and ConFIRM’s evaluation metrics. Then,

Section 2.2 reports a summary of technical CFI attack and defense details important for

understanding the evaluation approach. Section 2.3 next presents ConFIRM’s evaluation

metrics in detail, including a rationale behind why each metric was chosen, and how it

impacts potential defense solutions, and Section 2.4 describes an implementation of the

resulting benchmarks. Section 2.5 reports our evaluation of CFI solutions using ConFIRM

and discusses significant findings. Finally, Section 2.6 concludes.

2.1 Introduction

Inspired by the initial CFI work (Abadi et al., 2005), there has been prolific new research

on CFI in recent years, mainly aimed at improving performance, enforcing richer policies,

obtaining higher assurance of policy-compliance, and protecting against more subtle and so-

phisticated attacks. For example, between 2015–2018 over 25 new CFI algorithms appeared

in the top four applied security conferences alone. These new frameworks are generally

evaluated and compared in terms of performance and security. Performance overhead is

commonly evaluated in terms of the CPU benchmark suites (e.g., SPEC), and security is

often assessed using the RIPE test suite (Wilander et al., 2011) or with manually crafted

proof-of-concept attacks (e.g., Schuster et al., 2015) For example, a recent survey systemat-

ically compared various CFI mechanisms against these metrics for precision, security, and

performance (Burow et al., 2017).

While this attention to performance and security has stimulated rapid gains in the ability

of CFI solutions to efficiently enforce powerful, precise security policies, less attention has

been devoted to systematically examining which general classes of software can receive CFI

protection without suffering compatibility problems. Historically, CFI research has struggled

to bridge the gap between theory and practice (cf., Zhang et al., 2013) because code hardening

9



transformations inevitably run at least some risk of corrupting desired, policy-permitted

program functionalities. For example, introspective programs that read their own code bytes

at runtime (e.g., many VMs, JIT compilers, hot-patchers, and dynamic linkers) can break

after their code bytes have been modified or relocated by CFI.

Compatibility issues of this sort have dangerous security ramifications if they prevent

protection of software needed in mission-critical contexts, or if the protections must be

weakened in order to achieve compatibility. For example, to avoid incompatibilities related

to C/C++ pointer arithmetic, the three most widely deployed compiler-based CFI solutions

(LLVM-CFI (Tice et al., 2014), GCC-VTV (Tice et al., 2014), and Microsoft Visual Studio

MCFG (Tang, 2015)) all presently leave return addresses unprotected, potentially leaving

code vulnerable to ROP attacks—the most prevalent form of code-reuse.

Understanding these compatibility limitations, including their impacts on real-world soft-

ware performance and security, requires a new suite of CFI benchmarks with substantially

different characteristics than benchmarks typically used to assess compiler or hardware per-

formance. In particular, CFI relevance and effectiveness is typically constrained by the

nature and complexity of the target program’s control-flow paths and control data dependen-

cies. Such complexities are not well represented by SPEC benchmarks, which are designed

to exercise CPU computational units using only simple control-flow graphs, or by utility

suites (e.g., Gnu corelibs) that were all written in a fairly homogeneous programming style

for a limited set of compilers, and that use a very limited set of standard libraries chosen for

exceptionally high cross-compatibility.

To better understand the compatibility and applicability limitations of modern CFI so-

lutions on diverse, modern software products, and to identify the coding idioms and features

that constitute the greatest barriers to more widespread CFI adoption, we present Con-

FIRM (CONtrol-Flow Integrity Relevance Metrics), a new suite of CFI benchmarks designed

to exhibit code features most relevant to CFI evaluation. Our design of ConFIRM is based

10



on over 25 years of collective experience building and evaluating CFI systems for a variety

of architectures, including Linux, Windows, Intel x86/x64, and ARM32 in both academia

and industry. Each benchmark is designed to exhibit one or more control-flow features that

CFI solutions must guard in order to enforce integrity, that are found in a large number of

commodity software products, but that pose potential problems for CFI implementations.

It is infeasible to capture in a single test set the full diversity of modern software, which

embodies myriad coding styles, build processes (e.g., languages, compilers, optimizers, ob-

fuscators, etc.), and quality levels. We therefore submit ConFIRM as an extensible baseline

for testing CFI compatibility, consisting of code features drawn from experiences building

and evaluating CFI and randomization systems for several architectures, including Linux,

Windows, Intel x86/x64, and ARM32 in academia and industry (Wartell et al., 2012a,b,

2014; Mohan et al., 2015; Wang et al., 2017; Bauman et al., 2018).

Our work is envisioned as having the following qualitative impacts: (1) CFI designers

(e.g., compiler developers) can use ConFIRM to detect compatibility flaws in their designs

that are currently hard to anticipate prior to full scale productization. This can lower the cur-

rently steep barrier between prototype and distributable product. (2) Defenders (e.g., devel-

opers of secure software) can use ConFIRM to better evaluate code-reuse defenses, in order

to avoid false senses of security. (3) The research community can use ConFIRM to identify

and prioritize missing protections as important open problems worthy of future investigation.

We used ConFIRM to reevaluate 9 publicly available CFI implementations published

in the open literature. The results show substantial performance differences and trade-offs

not revealed by prior CPU-based benchmarking. For example, tested CFI implementations

exhibit a median overhead of over 70% to secure returns, in contrast with average overheads

of about 3% reported in the prior literature for CPU benchmarks; and a new cross-thread

stack-smashing attack defeats all tested CFI defenses.

In summary, our contributions include the following:

11



• We present ConFIRM, the first testing suite designed specifically to test compatibility

characteristics relevant to control-flow security hardening evaluation.

• A set of 20 important code features and coding idioms are identified, that are widely

found in deployed, commodity software products, and that pose compatibility, perfor-

mance, or security challenges for modern CFI solutions.

• Evaluation of 12 CFI implementations using ConFIRM reveals that existing CFI

implementations are compatible with only about half of code features and coding idioms

needed for broad compatibility, and that microbenchmarking using ConFIRM reveals

performance trade-offs not exhibited by SPEC benchmarks.

• Discussion and analysis of these results highlights significant unsolved obstacles to

realizing CFI protections for widely deployed, mainstream, commodity products.

2.2 Background

CFI defenses first emerged from an arms race against early code-injection attacks, which

exploit memory corruptions to inject and execute malicious code. To thwart these malicious

code-injections, hardware and OS developers introduced Data Execution Prevention (DEP),

which blocks execution of injected code. Adversaries proceeded to bypass DEP with “return-

to-libc” attacks, which redirect control to existing, abusable code fragments (often in the

C standard libraries) without introducing attacker-supplied code. In response, defenders

introduced Address Space Layout Randomization (ASLR), which randomizes code layout

to frustrate its abuse. DEP and ASLR motivated adversaries to craft even more elaborate

attacks, including ROP and Jump-Oriented Programming (JOP) (Bletsch et al., 2011), which

locate, chain, and execute short instruction sequences (gadgets) of benign code to implement

malicious payloads.

12



CFI emerged as a more comprehensive and principled defense against this malicious code-

reuse. Most realizations consist of two main phases: (1) A program-specific control-flow

policy is first formalized as a (possibly dynamic) control-flow graph (CFG) that whitelists

the code’s permissible control-flow transfers. (2) To constrain all control flows to the CFG,

the program code is instrumented with guard code at all computed (e.g., indirect) control-

flow transfer sites. The guard code decides at runtime whether each impending transfer

satisfies the policy, and blocks it if not. The guards are designed to be uncircumventable

by confronting attackers with a chicken-and-egg problem: To circumvent a guard, an attack

must first hijack a control transfer; but since all control transfers are guarded, hijacking a

control transfer requires first circumventing a guard.

Both CFI phases can be source-aware (implemented as a source-to-source transforma-

tion, or introduced during compilation), or source-free (implemented as a binary-to-binary

native code transformation). Source-aware solutions typically benefit from source-level infor-

mation to derive more precise policies, and can often perform more aggressive optimization

to achieve better performance. Examples include WIT (Akritidis et al., 2008), NaCl (Yee

et al., 2009), CFL (Bletsch et al., 2011), MIP (Niu and Tan, 2013), MCFI (Niu and Tan,

2014a), RockJIT (Niu and Tan, 2014b), Forward CFI (Tice et al., 2014), CCFI (Mashtizadeh

et al., 2015), πCFI (Niu and Tan, 2015), MCFG (Tang, 2015) CFIXX (Burow et al., 2018)

and µCFI (Hu et al., 2018). In contrast, source-free solutions are potentially applicable to

a wider domain of software products (e.g., closed-source), and have a more flexible deploy-

ment model (e.g., consumer-side enforcement without developer assistance). These include

XFI (Erlingsson et al., 2006), Reins (Wartell et al., 2012b), STIR (Wartell et al., 2012a),

CCFIR (Zhang et al., 2013), bin-CFI (Zhang and Sekar, 2013), BinCC (Wang et al., 2015),

Lockdown (Payer et al., 2015), TypeArmor (van der Veen et al., 2016), OCFI (Mohan et al.,

2015), OFI (Wang et al., 2017) and τCFI (Muntean et al., 2018).

The advent of CFI was a significant step forward for defenders, but was not the end of

the arms race. In particular, each CFI phase introduces potential loopholes for attackers to

13



exploit. First, it is not always clear which policy should be enforced to fully protect the code.

Production software often includes complex control-flow structures, such as those introduced

by object-oriented programming (OOP) idioms, from which it is difficult (even undecidable)

to derive a CFG that precisely captures the policy desired by human developers and users.

Second, the instrumentation phase must take care not to introduce guard code whose decision

procedures constitute unacceptably slow runtime computations. This often results in an

enforcement that imprecisely approximates the policy. Attackers have taken advantage of

these loopholes with ever more sophisticated attacks, including Counterfeit Object Oriented

Programming (COOP) (Schuster et al., 2015), Control Jujutsu (Evans et al., 2015), and

Control-Flow Bending (Carlini et al., 2015).

These weaknesses and threats have inspired an array of new and improved CFI algorithms

and supporting technologies in recent years. For example, to address loopholes associated

with OOP, vtable protections prevent or detect virtual method table corruption at or before

control-flow transfers that depend on method pointers. Source-aware vtable protections

include GNU VTV (Tice, 2012), CPI (Kuznetsov et al., 2014), SafeDispatch (Jang et al.,

2014), Readactor++ (Crane et al., 2015), and VTrust (Zhang et al., 2016); whereas source-

free instantiations include T-VIP (Gawlik and Holz, 2014), VTint (Zhang et al., 2015), and

VfGuard (Prakash et al., 2015).

However, while the security and performance trade-offs of various CFI solutions have

remained actively tracked and studied by defenders throughout the arms race, attackers

are increasingly taking advantage of CFI compatibility limitations to exploit unprotected

software, thereby avoiding CFI defenses entirely. For example, 88% of CFI defenses cited

herein have only been realized for Linux software, but over 95% of desktops worldwide are

non-Linux.2 These include many mission-critical systems, including over 75% of control

systems in the U.S. (Konkel, 2017), and storage repositories for top secret military data

2http://gs.statcounter.com/os-market-share/desktop/worldwide

14

http://gs.statcounter.com/os-market-share/desktop/worldwide


(Office of Inspector General, 2018). None of the top 10 vulnerabilities exploited by cyber-

criminals in 2017 target Linux software (Donnelly, 2018).

While there is a hope that small-scale prototyping will result in principles and approaches

that eventually scale to more architectures and larger software products, follow-on works that

attempt to bridge this gap routinely face significant unforeseen roadblocks. We believe many

of these obstacles remain unforeseen because of the difficulty of isolating and studying many

of the problematic software features lurking within large, commodity products, which are not

well represented in open-source codes commonly available for study by researchers during

prototyping.

The goal of this research is therefore to describe and analyze a significant collection of

code features that are routinely found in large software products, but that pose challenges to

effective CFI enforcement; and to make available a suite of CFI benchmarking test programs

that exhibit each of these features on a small scale amenable to prototype development. The

next section discusses this feature set in detail.

2.3 Compatibility Metrics

To measure compatibility of CFI mechanisms, we propose a set of metrics that each includes

one or more code features from either C/C++ source code or compiled assembly code. We de-

rived this feature set by attempting to apply many CFI solutions to large software products,

then manually testing the functionalities of the resulting hardened software for correctness,

and finally debugging each broken functionality step-wise at the assembly level to determine

what caused the hardened code to fail. Since many failures manifest as subtle forms of reg-

ister or memory corruption that only cause the program to crash or malfunction long after

the failed operation completes, this debugging constitutes many hundreds of person-hours

amassed over several years of development experience involving CFI-protected software.

15



Table 2.1 presents the resulting list of code features organized into one row for each root

cause of failure. Column two additionally lists some widely available, commodity software

products where each of these features can be observed in non-malicious software in the wild.

This demonstrates that each feature is representative of real-world software functionalities

that must be preserved by CFI implementations in order for their protections to be usable

and relevant in contexts that deploy these and similar products.

2.3.1 Indirect Branches

We first discuss compatibility metrics related to the code feature of greatest relevance to most

CFI works: indirect branches. Indirect branches are control-flow transfers whose destination

addresses are computed at runtime—via pointer arithmetic, memory-reads, or both. Such

transfers tend to be of high interest to attackers, since computed destinations have more

potential to be manipulated. CFI solutions therefore guard indirect branches to ensure that

they target permissible destinations at runtime. Indirect branches are commonly categorized

into three classes: indirect calls, indirect jumps, and returns.

Figure 2.3.1 shows a simple example of source code being compiled to an indirect call.

The function called at source line 5 depends on user input. This prevents the compiler from

generating a direct branch that targets a fixed memory address at compile time. Instead,

the compiler generates a register-indirect call (assembly line 7) whose target is computed at

runtime. While this is one common example of how indirect branches arise, in practice they

are a result of many different programming idioms, discussed below.

2.3.1.1 Function Pointers

Calls through function pointers typically compile to indirect calls. For example, using gcc

with the -O2 option generates register-indirect calls for function pointers, and MSVC does

so by default.

16



Table 2.1. ConFIRM compatibility metrics
Compatibility metric Real-world software examples

Function Pointers 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox,
JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, PuTTY,
Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP

Callbacks 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox,
JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, PuTTY,
TeXstudio, Visual Studio, Windows Defender, WinSCP

Dynamic Linking 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox,
JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, PuTTY,
Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP

Delay-Loading Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS Power-
Point, PotPlayer, Visual Studio, WinSCP

Exporting/Importing Data 7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS Pow-
erPoint, PowerShell, TeXstudio, UPX, Visual Studio

Virtual Functions 7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM,
Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, PuTTY,
TeXstudio, Visual Studio, Windows Defender, WinSCP

CODE-COOP Attack Programs built on GTK+ or Microsoft COM can pass objects to trusted
modules as arguments.

Tail Calls Mainstream compilers provide options for tail call optimization. e.g. /O2
in MSVC, -O2 in GCC, and -O2 in LLVM.

Switch-Case Statements 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox,
JVM, MS Paint, MS PowerPoint, PotPlayer, PuTTY, TeXstudio, Visual
Studio, WinSCP

Returns Every benign program has returns.
Unmatched Call/Return Pairs Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual

Studio
Exceptions 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox,

JVM, MS Paint, MS PowerPoint, PotPlayer, PowerShell, PuTTY, Skype,
TeXstudio, Visual Studio, Windows Defender, WinSCP

Calling Conventions Every program adopts one or more calling convention.
Multithreading 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox,

JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, PuTTY,
Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP

TLS Callbacks Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX
Position-Independent Code 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox,

JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, PuTTY,
Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP

Memory Protection 7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint,
PotPlayer, TeXstudio, Visual Studio, Windows Defender, WinSCP

JIT Compiler Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer,
PowerShell, Skype, Visual Studio, WinSCP

Self-Unpacking Programs decompressed by self-extractors (e.g., UPX, NSIS).
Windows API Hooking Microsoft Office family software, including MS Excel, MS PowerPoint, MS

PowerPoint, etc.

17



Source code Assembly code

1 void foo { return; } 1 ...
2 void bar { return; } 2 call _input
3 void main { 3 test eax, eax
4 void (* fptr) (); 4 jnz offset_7
5 int n = input(); 5 mov ecx, offset_bar
6 if (n) 6 cmovnz ecx, edx
7 fptr = foo; 7 call ecx
8 else 8 ...
9 fptr = bar;

10 fptr();
11 }

Figure 2.1. Source code compiled to indirect call

2.3.1.2 Callbacks

Event-driven programs frequently pass function pointers to external modules or the OS,

which the receiving code later dereferences and calls in response to an event. These callback

pointers are generally implemented by using function pointers in C, or as method references

in C++. Callbacks can pose special problems for CFI, since the call site is not within the

module that generated the pointer. If the call site is within a module that cannot easily be

modified (e.g., the OS kernel), it must be protected in some other way, such as by sanitizing

and securing the pointer before it is passed.

2.3.1.3 Dynamic Linking

Dynamically linked shared libraries reduce program size and improve locality. But dynamic

linking has been a challenge for CFI compatibility because CFG edges that span modules

may be unavailable statically.

In Windows, dynamically linked libraries (DLLs) can be loaded into memory at load

time or runtime. In load-time dynamic linking, a function call from a module to an exported

DLL function is usually compiled to a memory-indirect call targeting an address stored in

18



the module’s import address table (IAT). But if this function is called more than once, the

compiler first moves the target address to a register, and then generates register-indirect

calls to improve execution performance. In run-time dynamic linking, a module calls APIs,

such as LoadLibrary(), to load the DLL at runtime. When loaded into memory, the module

calls the GetProcAddress() API to retrieve the address of the exported function, and then

calls the exported function using the function pointer returned by GetProcAddress().

Additionally, MSVC (since version 6.0) provides linker support for delay-loaded DLLs

using the /DELAYLOAD linker option. These DLLs are not loaded into memory until one of

their exported functions is invoked.

In Linux, a module calls functions exported by a shared library by calling a stub in

its procedure linkage table (PLT). Each stub contains a memory-indirect jump whose target

depends on the writable, lazy-bound global offset table (GOT). As in Windows, an application

can also load a module at runtime using function dlopen(), and retrieve an exported symbol

using function dlsym().

Supporting dynamic and delay-load linkage is further complicated by the fact that shared

libraries can also export data pointers within their export tables in both Linux and Windows.

CFI solutions that modify export tables must usually treat code and data pointers differently,

and must therefore somehow distinguish the two types to avoid data corruptions.

2.3.1.4 Virtual Functions

Polymorphism is a key feature of OOP languages, such as C++. Virtual functions are used

to support runtime polymorphism, and are implemented by C++ compilers using a form of

late binding embodied as virtual tables (vtables). The tables are populated by code pointers

to virtual function bodies. When an object calls a virtual function, it indexes its vtable by a

function-specific constant, and flows control to the memory address read from the table. At

19



the assembly level, this manifests as a memory-indirect call. The ubiquity and complexity

of this process has made vtable hijacking a favorite exploit strategy of attackers.

Some CFI and vtable protections address vtable hijacking threats by guarding call sites

that read vtables, thereby detecting potential vtable corruption at time-of-use. Others seek

to protect vtable integrity directly by guarding writes to them. However, both strategies

are potentially susceptible to COOP (Schuster et al., 2015) and CODE-COOP (Wang et al.,

2017) attacks, which replace one vtable with another that is legal but is not the one the

original code intended to call. The defense problem is further complicated by the fact that

many large classes of software (e.g., GTK+ and Microsoft COM) rely upon dynamically

generated vtables. CFI solutions that write-protect vtables or whose guards check against a

static list of permitted vtables are incompatible with such software.

2.3.1.5 Tail Calls

Modern C/C++ compilers can optimize tail-calls by replacing them with jumps. Table 2.1

lists relevant options for mainstream compilers. With these options, callees can return

directly to ancestors of their callers in the call graph, rather than to their callers. These

mismatched call/return pairs affect precision of some CFG recovery algorithms.

2.3.1.6 Switch-case Statements

Many C/C++ compilers optimize switch-case statements via a static dispatch table popu-

lated with pointers to case-blocks. When the switch is executed, it calculates a dispatch

table index, fetches the indexed code pointer, and jumps to the correct case-block. This

introduces memory-indirect jumps that refer to code pointers not contained in any vtable,

and that do not point to function boundaries. CFI solutions that compare code pointers to

a whitelist of function boundaries can therefore cause the switch-case code to malfunction.

20



Solutions that permit unrestricted indirect jumps within each local function risk unsafety,

since large functions can contain abusable gadgets.

2.3.1.7 Returns

Nearly every benign program has returns. Unlike indirect branches whose target addresses

are stored in registers or non-writable data sections, return instructions read their destination

addresses from the stack. Since stacks are typically writable, this makes return addresses

prime targets for malicious corruption.

On Intel-based CISC architectures, return instructions have one of the shortest encodings

(1 byte), complicating the efforts of source-free solutions to replace them in-line with secured

equivalent instruction sequences. Additionally, many hardware architectures heavily opti-

mize the behavior of returns (e.g., via speculative execution powered by shadow stacks for

call/return matching). Source-aware CFI solutions that replace returns with some other in-

struction sequence can therefore face stiff performance penalties by losing these optimization

advantages.

2.3.1.8 Unmatched call/return Pairs

Control-flow transfer mechanisms, including exceptions and setjmp/longjmp, can yield flows

in which the relation between executed call instructions and executed return instructions is

not one-to-one. For example, exception-handling implementations often pop stack frames

from multiple calls, followed by a single return to the parent of the popped call chain.

Shadow stack defenses that are implemented based on traditional call/return matching may

be incompatible with such mechanisms.

21



2.3.2 Other Metrics

While indirect branches tend to be the primary code feature of interest to CFI attacks and de-

fenses, there are many other code features that can also pose control-flow security problems,

or that can become inadvertently corrupted by CFI code transformation algorithms, and that

therefore pose compatibility limitations. Some important examples are discussed below.

2.3.2.1 Multithreading

With the rise of multicore hardware, multithreading has become a centerpiece of software

efficiency. Unfortunately, concurrent code execution poses some serious safety problems for

many CFI algorithms.

For example, in order to take advantage of hardware call-return optimization (see §2.3.1),

most CFI algorithms produce code containing guarded return instructions. The guards check

the return address before executing the return. However, on parallelized architectures with

flat memory spaces, this is unsafe because any thread can potentially write to any other

(concurrently executing) thread’s return address at any time. This introduces a TOCTOU

vulnerability in which an attacker-manipulated thread corrupts a victim thread’s return ad-

dress after the victim thread’s guard code has checked it but before the guarded return

executes. We term this a cross-thread stack-smashing attack. Since nearly all modern archi-

tectures combine concurrency, flat memory spaces, and returns, this leaves almost all CFI

solutions either inapplicable, unsafe, or unacceptably inefficient for a large percentage of

modern production software.

2.3.2.2 Position-Independent Code

Position-independent code (PIC) is designed to be relocatable after it is statically generated,

and is a standard practice in the creation of shared libraries. Unfortunately, the mechanisms

22



that implement PIC often prove brittle to code transformations commonly employed for

source-free CFI enforcement. For example, PIC often achieves its position independence

by dynamically computing its own virtual memory address (e.g., by performing a call to

itself and reading the pushed return address from the stack), and then performing pointer

arithmetic to locate other code or data at fixed offsets relative to itself. This procedure

assumes that the relative positions of PIC code and data are invariant even if the base

address of the PIC block changes.

However, CFI transforms typically violate this assumption by introducing guard code that

changes the sizes of code blocks, and therefore their relative positions. To solve this, PIC-

compatible CFI solutions must detect the introspection and pointer arithmetic operations

that implement PIC and adjust them to compute corrected pointer values. Since there are

typically an unlimited number of ways to perform these computations at both the source

and native code levels, CFI detection of these computations is inevitably heuristic, allowing

some PIC instantiations to malfunction.

2.3.2.3 Exceptions

Exception raising and handling is a mainstay of modern software design, but introduces

control-flow patterns that can be problematic for CFI policy inference and enforcement.

Object-oriented languages, such as C++, boast first-class exception machinery, whereas

standard C programs typically realize exceptional control-flows with gotos, longjumps, and

signals. In Linux, compilers (e.g., gcc) implement C++ exception handling in a table-driven

approach. The compiler statically generates read-only tables that hold exception-handling

information. For instance, gcc produces a gcc_except_table comprised of language-specific

data areas (LSDAs). Each LSDA contains various exception-related information, including

pointers to exception handlers.

23



In Windows, structured exception handling (SEH) extends the standard C language with

first-class support for both hardware and software exceptions. SEH uses stack-based excep-

tion nodes, wherein exception handlers form a linked list on the stack, and the list head is

stored in the thread information block (TIB). Whenever an exception occurs, the OS fetches

the list head and walks through the SEH list to find a suitable handler for the thrown excep-

tion. Without proper protection, these exception handlers on the stack can potentially be

overwritten by an attacker. By triggering an exception, the attacker can then redirect the

control-flow to arbitrary code. CFI protection against these SEH attacks is complicated by

the fact that code outside the vulnerable module (e.g., in the OS and/or system libraries)

uses pointer arithmetic to fetch, decode, and call these pointers during exception handling.

Thus, suitable protections must typically span multiple modules, and perhaps the OS kernel.

From Windows XP onward, applications have additionally leveraged vectored exception

handling (VEH). Unlike SEH, VEH is not stack-based; applications register a global handler

chain for VEH exceptions with the OS, and these handlers are invoked by the OS by interrupt-

ing the application’s current execution, no matter where the exception occurs within a frame.

There are at least two features of VEH that are potentially exploitable by attackers.

First, to register a vectored exception handler, the application calls an API AddVecored-

ExceptionHandler() that accepts a callback function pointer parameter that points to the

handler code. Securing this pointer requires some form of inter-module callback protection.

Second, the VEH handler-chain data structure is stored in the application’s writable heap

memory, making the handler chain data directly susceptible to data corruption attacks. Win-

dows protects the handlers somewhat by obfuscating them using the EncodePointer() API.

However, EncodePointer() does not implement a cryptographically secure function (since

doing so would impose high overhead); it typically returns the XOR of the input pointer

with a process-specific secret. This secret is not protected against memory disclosure attacks;

it is potentially derivable from disclosure of any encoded pointer with value known to the

24



attacker (since XOR is invertible), and it is stored in the process environment block (PEB),

which is readable by the process and therefore by an attacker armed with an information

disclosure exploit. With this secret, the attacker can overwrite the heap with a properly

obfuscated malicious pointer, and thereby take control of the application.

From a compatibility perspective, CFI protections that do not include first-class sup-

port for these various exception-handling mechanisms often conservatively block unusual

control-flows associated with exceptions. This can break important application functionali-

ties, making the protections unusable for large classes of software that use exceptions.

2.3.2.4 Calling Conventions

CFI guard code typically instruments call and return sites in the target program. In order

to preserve the original program’s functionality, this guard code must therefore respect the

various calling conventions that might be implemented by calls and returns. Unfortunately,

many solutions to this problem make simplifying assumptions about the potential diversity of

calling conventions in order to achieve acceptable performance. For example, a CFI solution

whose guard code uses EDX as a scratch register might suddenly fail when applied to code

whose calling convention passes arguments in EDX. Adapting the solution to save and restore

EDX to support the new calling convention can lead to tens of additional instructions per

call, including additional memory accesses, and therefore much higher overhead.

The C standard calling convention (cdecl) is caller-pop, pushes arguments right-to-

left onto the stack, and returns primitive values in an architecture-specific register (EAX on

Intel). Each architecture also specifies a set of caller-save and callee-save registers. Caller-

popped calling conventions are important for implementing variadic functions, since callees

can remain unaware of argument list lengths.

Callee-popped conventions include stdcall, which is the standard convention of the

Win32 API, and fastcall, which passes the first two arguments via registers rather than the

25



stack to improve execution speed. In OOP languages, every nonstatic member function has

a hidden this pointer argument that points to the current object. The thiscall convention

passes the this pointer in a register (ECX on Intel).

Calling conventions on 64-bit architectures implement several refinements of the 32-bit

conventions. Linux and Windows pass up to 14 and 4 parameters, respectively, in regis-

ters rather than on the stack. To allow callees to optionally spill these parameters, the

caller additionally reserves a red zone (Linux) or 32-byte shadow space (Windows) for callee

temporary storage.

Highly optimized programs also occasionally adopt non-standard, undocumented calling

conventions, or even blur function boundaries entirely (e.g., by performing various forms

of function in-lining). For example, some C compilers support language extensions (e.g.,

MSVC’s naked declaration) that yield binary functions with no prologue or epilogue code,

and therefore no standard calling convention. Such code can have subtle dependencies on

non-register processor elements, such as requiring that certain Intel status flags be preserved

across calls. Many CFI solutions break such code by in-lining call site guards that violate

these undocumented conventions.

2.3.2.5 TLS Callbacks

Multithreaded programs require efficient means to manipulate thread-local data without

expensive locking. Using thread local storage (TLS), applications export one or more TLS

callback functions that are invoked by the OS for thread initialization or termination. These

functions form a null-terminated table whose base is stored in the PE header. For compiler-

based CFI solutions, the TLS callback functions do not usually need extra protection, since

both the PE header and the TLS callback table are in unwritable memory. But source-free so-

lutions must ensure that TLS callbacks constitute policy-permitted control-flows at runtime.

26



2.3.2.6 Memory Protection

Modern OSes provide APIs for memory page allocation (e.g., VirtualAlloc and mmap)

and permission changes (e.g., VirtualProtect and mprotect). However, memory pages

changed from writable to executable, or to simultaneously writable and executable, can

potentially be abused by attackers to bypass DEP defenses and execute attacker-injected

code. Many software applications nevertheless rely upon these APIs for legitimate purposes

(see Table 2.1), so conservatively disallowing access to them introduces many compatibility

problems. Relevant CFI mechanisms must therefore carefully enforce memory access policies

that permit virtual memory management but block code-injection attacks.

2.3.2.7 Runtime Code Generation

Most CFI algorithms achieve acceptable overheads by performing code generation strictly

statically. The statically generated code includes fixed runtime guards that perform small,

optimized computations to validate dynamic control-flows. However, this strategy breaks

down when target programs generate new code dynamically and attempt to execute it, since

the generated code might not include CFI guards. Runtime code generation (RCG) is there-

fore conservatively disallowed by most CFI solutions, with the expectation that RCG is only

common in a few, specialized application domains, which can receive specialized protections.

Unfortunately, our analysis of commodity software products indicates that RCG is be-

coming more prevalent than is commonly recognized. In general, we encountered RCG

compatibility limitations in at least three main forms across a variety of COTS products:

1. Although typically associated with web browsers, just-in-time (JIT) compilation has

become increasingly relevant as an optimization strategy for many languages, including

Python, Java, the Microsoft .NET family of languages (e.g., C#), and Ruby. Software

containing any component or module written in any JIT-compiled language frequently

cannot be protected with CFI.

27



2. Mobile code is increasingly space-optimized for quick transport across networks. Self-

unpacking executables are therefore a widespread source of RCG. At runtime, self-

unpacking executables first decompress archived data sections to code, and then map

the code into writable and executable memory. This entails a dynamic creation of fresh

code bytes. Large, component-driven programs sometimes store rarely used compo-

nents as self-unpacking code that decompresses into memory whenever needed, and is

deallocated after use. For example, NSIS installers pack separate modules supporting

different install configurations, and unpack them at runtime as-needed for reduced size.

Antivirus defenses hence struggle to distinguish benign NSIS installers from malicious

ones (Crofford and McKee, 2017).

3. Component-driven software also often performs a variety of obscure API hooking initial-

izations during component loading and clean-up, which are implemented using RCG.

As an example, Microsoft Office software dynamically redirects all calls to certain

system API functions within its address space to dynamically generated wrapper func-

tions. This allows it to modify the behaviors of late-loaded components without having

to recompile them all each time the main application is updated.

To hook a function f within an imported system DLL (e.g., ntdll.dll), it first allocates

a fresh memory page f ′ and sets it both writable and executable. It next copies the

first five code bytes from f to f ′, and writes an instruction at f ′ + 5 that jumps to

f + 5. Finally, it changes f to be writable and executable, and overwrites the first

five code bytes of f with an instruction that jumps to f ′. All subsequent calls to f

are thereby redirected to f ′, where new functionality can later be added dynamically

before f ′ jumps to the preserved portion of f .

Such hooking introduces many dangers that are difficult for CFI protections to secure

without breaking the application or its components. Memory pages that are simulta-

neously writable and executable are susceptible to code-injection attacks, as described

28



previously. The RCG that implements the hooks includes unprotected jumps, which

must be secured by CFI guard code. However, the guard code itself must be designed to

be rewritable by more hooking, including placing instruction boundaries at addresses

expected by the hooking code (f + 5 in the above example). No known CFI algorithm

can presently handle these complexities.

2.4 Implementation

To facilitate easier evaluation of the compatibility considerations outlined in Section 2.3

along with their impact on security and performance, we developed the ConFIRM suite

of CFI tests. ConFIRM consists of 24 programs written in C++ totalling about 2, 300

lines of code. Each test isolates one of the compatibility metrics of Section 2.3 (or in some

cases a few closely related metrics) by emulating behaviors of COTS software products.

Source-aware solutions can be evaluated by applying CFI code transforms to the source

codes, whereas source-free solutions can be applied to native code after compilation with a

compatible compiler (e.g., gcc, LLVM, or MSVC). Loop iteration counts are configurable,

allowing some tests to be used as microbenchmarks. The tests are described as follows:

fptr. This tests whether function calls through function pointers are suitably guarded or

can be hijacked. Overhead is measured by calling a function through a function pointer in

an intensive loop.

callback. As discussed in Section 2.3, call sites of callback functions can be either guarded

by a CFI mechanism directly, or located in immutable kernel modules that require some

form of indirect control-flow protections. We therefore test whether a CFI mechanism can

secure callback function calls in both cases. Overhead is measured by calling a function that

takes a callback pointer parameter in an intensive loop.

load_time_dynlnk. Load-time dynamic linking is exercised, and tests determine whether

function calls to symbols that are exported by the dynamically linked library are suitably

29



protected. Overhead is measured by calling a function that is exported by a dynamically

linked library in an intensive loop.

run_time_dynlnk. This tests whether a CFI mechanism supports runtime dynamic link-

ing, whether it supports retrieving symbols from the dynamically linked library at runtime,

and whether it guards function calls to the retrieved symbol. Overhead is measured by load-

ing a dynamically linked library at runtime, calling a function exported by the library, and

unloading the library in an intensive loop.

delay_load (Windows only). CFI compatibility with delay-loaded DLLs is tested, in-

cluding whether function calls to symbols that are exported by the delay-loaded DLLs are

protected. Overhead is measured by calling a function that is exported by a delay-loaded

DLL in an intensive loop.

data_symbl. Data and function symbol imports and exports are tested, to determine

whether any controls preserve their accessibility and operation.

vtbl_call. Virtual function calls are exercised, whose call sites can be directly instru-

mented. Overhead is measured by calling virtual functions in an intensive loop.

code_coop. This tests whether a CFI mechanism is robust against CODE-COOP attacks.

For the object-oriented interfaces required to launch a CODE-COOP attack, we choose

Microsoft COM API functions in Windows, and gtkmm API calls that are part of the C++

interface for GTK+ in Linux.

tail_call. Tail call optimizations of indirect jumps are tested. Overhead is measured by

tail-calling a function in an intensive loop.

switch. Indirect jumps associated with switch-case control-flow structures are tested, in-

cluding their supporting data structures. Overhead is measured by executing a switch-case

statement in an intensive loop.

30



ret. Validation of return addresses (e.g., dynamically via shadow stack implementation, or

statically by labeling call sites and callees with equivalence classes) is tested. Overhead is

measured by calling a function that does nothing but return in an intensive loop.

unmatched_pair. Unmatched call/return pairs resulting from exceptions and setjmp/-

longjmp are tested.

signal. This test uses signal-handling in C to implement error-handling and exceptional

control-flows..

cppeh. C++ exception handling structures and control-flows are exercised.

seh (Windows only). SEH-style exception handling is tested for both hardware and software

exceptions. This test also checks whether the CFI mechanism protects the exception handlers

stored on the stack.

veh (Windows only). VEH-style exception handling is tested for both hardware and soft-

ware exceptions. This test also checks whether the CFI mechanism protects callback function

pointers passed to the AddVectoredExceptionHandler() API.

convention. Several different calling conventions are tested, including conventions widely

used in C/C++ languages on 32-bit and 64-bit x86 processors.

multithreading. Safety of concurrent thread executions is tested. Specifically, one thread

simulates a memory corruption exploit that attempts to smash another thread’s stack and

break out of the CFI-enforced sandbox.

tls_callback (Windows source-free only). This tests whether static TLS callback table

corruption is detected and blocked by the protection mechanism.

pic. Semantic preservation of position-independent code is tested.

mem. This test performs memory management API calls for legitimate and malicious

purposes, and tests whether security controls permit the former but block the latter.

31



jit. This test generates JIT code by first allocating writable memory pages, writing JIT code

into those pages, making the pages executable, and then running the JIT code. To emulate

behaviors of real-world JIT compilers, the JIT code performs different types of control-flow

transfers, including calling back to the code of JIT compiler and calling functions located in

other modules.

api_hook (Windows only). Dynamic API hooking is performed in the style described in

Section 2.3.

unpacking (source-free only). Self-unpacking executable code is implemented using RCG.

2.5 Evaluation

2.5.1 Evaluation of CFI Solutions

To examine ConFIRM’s effect on real CFI solutions, we used it to reevaluate 12 major CFI

implementations for Linux and Windows that are either publicly available or were obtainable

in a self-contained, operational form from their authors at the time of writing. Our purpose

in performing this evaluation is not to judge which compatibility features solutions should

be expected to support, but merely to accurately document which features are currently

supported and to what degree, and to demonstrate that ConFIRM can be used to conduct

such evaluations.

Table 2.2 reports the evaluation results. Columns 2–6 report results for Windows CFI

approaches, and columns 7–14 report those for Linux CFI. All Windows experiments were

performed on an Intel Xeon E5645 workstation with 24 GB of RAM running 64-bit Win-

dows 10. Linux experiments were conducted on different versions of Ubuntu VM machines

corresponding to the version tested by each CFI framework’s original developers. All the

VM machines had 16GB of RAM with 6 Intel Xeon CPU cores. The overheads for source-

free approaches were evaluated using test binaries compiled with most recent version of gcc

32



Ta
bl
e
2.
2.

Te
st
ed

re
su
lts

fo
r
C
FI

so
lu
tio

ns
on

C
on

F
IR

M
L

LV
M

(W
in

do
w

s)
L

LV
M

(L
in

ux
)

T
es

t
C

F
I

Sh
ad

ow
St

ac
k

M
C

F
G

O
F

I
R

ei
ns

G
C

C
-V

T
V

C
F

I
Sh

ad
ow

St
ac

k
M

C
F

I
π

C
F

I
π

C
F

I
(n

to
)

P
at

hA
rm

or
L

oc
kd

ow
n

fp
tr

6.
35

%
"

20
.1

3%
4.

35
%

4.
08

%
"

6.
97

%
"

7
−

14
.0

0%
−

13
.7

9%
"

17
4.

92
%

ca
llb

ac
k

"
"

"
12

8.
39

%
11

4.
84

%
"

"
"

7
7

7
"

7

lo
ad

_
tim

e_
dy

nl
nk

2.
74

%
"

8.
83

%
3.

36
%

2.
66

%
"

1.
33

%
"

30
.8

3%
31
.5

2%
34
.0

5%
74
.5

4%
1.

45
%

ru
n_

tim
e_

dy
nl
nk

"
"

17
.6

3%
12
.5

7%
11
.4

8%
"

4.
44

%
"

7
7

7
1,

22
1.

48
%

7

de
la
y_

lo
ad
�

N
/A

N
/A

8.
16

%
3.

61
%

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
da

ta
_
sy
m
bl

3
"

3
3

7
3

3
"

3
3

3
3

3

vt
bl
_
ca
ll

5.
62

%
"

27
.7

1%
35
.9

4%
31
.1

7%
33
.5

6%
5.

94
%

"
7

−
8.

19
%

−
9.

31
%

"
22

7.
82

%
co
de

_
co
op

"
"

"
3

7
"

"
"

"
"

"
"

"
ta
il_

ca
ll

6.
17

%
"

9.
51

%
0.

05
%

0.
05

%
"

6.
82

%
"

7
−

17
.6

9%
−

17
.3

7%
"

17
8.

06
%

sw
itc

h
−

5.
80

%
"

3.
51

%
22
.8

2%
17
.6

9%
"

−
6.

93
%

"
−

29
.0

1%
−

27
.1

9%
−

28
.4

6%
"

85
.8

5%
re
t

"
18
.0

4%
"

49
.3

4%
48
.4

9%
"

"
20

.8
8%

70
.7

2%
72
.4

0%
71
.5

2%
"

10
6.

71
%

un
m
at
ch
ed

_
pa

ir
"

"
"

3
3

"
"

"
3

3
3

"
"

sig
na

l
3

"
3

7
7

3
3

"
3

3
3

7
3

cp
pe

h
3

"
3

3
7

3
3

"
3

3
3

7
3

se
h�

3
"

3
3

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
ve
h�

"
"

"
3

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
co
nv

en
tio

n
3

3
3

3
7

3
3

3
3

3
3

3
3

m
ul
tit

hr
ea
di
ng

"
"

"
"

"
"

"
"

"
"

"
"

"
tls

_
ca
llb

ac
k�

,$
N

/A
N

/A
N

/A
3

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
pi
c

3
3

3
"

"
3

3
3

3
3

3
3

3

m
em

"
"

"
"

"
"

"
"

7
7

7
3

7

jit
"

"
"

7
7

"
"

"
7

7
7

"
7

un
pa

ck
in
g$

N
/A

N
/A

N
/A

7
7

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

7
7

ap
i_

ho
ok
�

"
"

"
7

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
(n
to
)
st
an

ds
fo
r

no
ta

il-
ca

ll
op

tim
iz

at
io

n
%
:
C
FI

de
fe
ns
e
pa

ss
es

co
m
pa

tib
ili
ty

an
d
se
cu

rit
y
te
st
,a

nd
m
ic
ro
be

nc
hm

ar
k
yi
el
ds

in
di
ca
te
d
pe

rf
or
m
an

ce
ov
er
he

ad
3
:
sa
m
e
as

%
,b

ut
th
is

te
st

pr
ov
id
es

no
pe

rf
or
m
an

ce
nu

m
be

r
"

:C
FI

de
fe
ns
e
pa

ss
es

co
m
pa

tib
ili
ty

bu
t
no

t
se
cu

rit
y
ch
ec
k

7
:
te
st

do
es

no
t
co
m
pi
le

(c
om

pi
la
tio

n
er
ro
r)
,o

r
cr
as
he

s
at

ru
nt
im

e
N

/A
:t
es
t
is

no
t
ap

pl
ic
ab

le
to

th
e
C
FI

m
ec
ha

ni
sm

be
in
g
te
st
ed

�
:
te
st

is
W

in
do

w
s-
on

ly
$:

te
st

is
on

ly
fo
r
so
ur
ce
-fr

ee
de

fe
ns
es

33



available for each test platform. All source-aware approaches were applied before or dur-

ing compilation with the most recent version of LLVM for each test platform (since LLVM

provides greatest compatibility between the tested source-aware solutions).

Two forms of compatibility are assessed in the evaluation: A CFI solution is categorized as

permissively compatible with a test if it produces an output program that does not crash and

exhibits the original test program’s non-malicious functionality when executed. The solution

is effectively compatible if it is permissively compatible and any malicious functionalities are

blocked. Effective compatibility therefore indicates secure and transparent support for the

code features exhibited by the test.

In Table 2.2, Columns 2–3 begin with an evaluation of LLVM CFI and LLVM Shadow-

CallStack on Windows. With both CFI and ShadowCallStack enabled, LLVM on Windows

enforces policies that constrain impending control-flow transfers at every call site, except calls

to functions that are exported by runtime-loaded DLLs. Additionally, LLVM on Windows

does not secure callback pointers passed to external modules not compiled with LLVM, leav-

ing it vulnerable CODE-COOP attacks. Although ShadowCallStack protects against return

address overwrites, its shadow stack is incompatible with unmatched call/return pairs.

Column 4 of Table 2.2 reports evaluation of Microsoft’s MCFG solution, which is in-

tegrated into the MSVC compiler. MCFG provides security checks for calls via function

pointers, vtable calls, tail calls, and switch-case statements. It also passes all tests re-

lated to dynamic linking, including load_time_dynlnk, run_time_dynlnk, delay_load, and

data_symbl. As a part of MSVC, MCFG provides transparency for generating position-

independent code and handling various calling conventions. With respect to exception han-

dling, MCFG is permissively compatible with all the related features, but does not protect

vectored exception handlers. MCFG’s most significant shortcoming is its weak protection

of return addresses. In addition, MCFG generates guard code at call sites at compile time

only. Therefore, code that links to immutable modules or modules compiled with a differ-

34



ent protection scheme remains potentially insecure. This results in failures against callback

corruption attacks and CODE-COOP attacks.

Columns 5–6 of Table 2.2 report compatibility testing results for Reins and OFI, which are

both source-free binary rewriting solutions for Windows. Reins validates control-flow transfer

targets for function pointer calls, vtable calls, tail calls, switch-case statements, and returns.

It supports dynamic linking at both load time and runtime, and is one of the only solutions

we tested that secures callback functions whose call sites cannot be directly instrumented

(with a high overhead of 114.84%). Like MCFG, Reins fails against CODE-COOP attacks.

However, OFI extends Reins with additional protections that succeed against CODE-COOP.

OFI also exhibits improved compatibility with delay-loaded DLLs, data exports, all three

styles of exception handling, all tested calling conventions, and TLS callbacks. Both Reins

and OFI nevertheless proved vulnerable against attacks that abuse position-independent

code and memory management API functions, however.

The GNU C-compiler does not yet have built-in CFI support, but includes virtual table

verification (VTV). VTV is first introduced in gcc 4.9.0. It checks at virtual call sites whether

the vtable pointer is valid based on the object type. This blocks many important OOP vtable

corruption attacks, although type-aware COOP attacks can still succeed by calling a differ-

ent virtual function of the same type (e.g., supertype). As shown in column 7 of Table 2.2,

VTV does not protect other types of control-flow transfers, including function pointers, call-

backs, dynamic linking for both load-time and run-time, tail calls, switch-case jumps, return

addresses, error handling control-flows, or JIT code. However, it is permissively compatible

with all the applicable tests, and can compile any feature functionality we considered.

As reported in Columns 8–9, LLVM on Linux shows similar evaluation results as LLVM

on Windows. It has better effective compatibility by providing proper security checks for

calls to functions that are exported by runtime loaded DLLs. LLVM on Linux overheads

range from -6.93% (for switch control structures) to 20.88% (for protecting returns).

35



MCFI and πCFI are source-aware control-flow techniques. We tested them on x64 Ubuntu

14.04.5 with LLVM 3.5. The results are shown in columns 10–12 of Table 2.2. ΠCFI comes

with an option to turn off tail call optimization, which increases the precision at the price of a

small overhead increase. We therefore tested both configurations, observing no compatibility

differences between πCFI with and without tail call optimizations. Incompatibilities were

observed in both MCFI and πCFI related to callbacks and runtime dynamic linking. MCFI

additionally suffered incompatibilities with the function pointer and virtual table call tests.

For callbacks, both solutions incorrectly terminate the process reporting a CFI violation.

In terms of effective compatibility, MCFI and πCFI both securely support dynamic linking,

switch jumps, return addresses, and unmatched call/return pairs, but are susceptible to

CODE-COOP attacks. In our performance analysis, we did not measure any considerable

overheads for πCFI’s tail call option (only 0.3%). This option decreases the performance for

dynamic linking but increases the performance of vtable calls, switch-case, and return tests.

Overall, πCFI scores more compatible and more secure relative to MCFI, but with slightly

higher performance overhead.

PathArmor offers improved power and precision over the other tested solutions in the

form of contextual CFI policy support. Contextual CFI protects dangerous system API calls

by tracking and consulting the control-flow history that precedes each call. Efficient context-

checking is implemented as an OS kernel module that consults the last branch record (LBR)

CPU registers (which are only readable at ring 0) to check the last 16 branches before the

impending protected branch. As reported in column 13, our evaluation demonstrated high

permissive compatibility, only observing crashes on tests for C++ exception handling and

signal handlers. However, our tests were able to violate CFI policies using function pointers,

callbacks, virtual table pointers, tail-calls, switch-cases, return addresses, and unmatched

call/return pairs, resulting in a lower effective compatibility score. Its careful guarding of

system calls also comes with high overhead for those calls (1221.48%). This affects feasibility

36



of dynamic loading, whose associated system calls all receive a high performance penalty per

call. Similarly, load-time dynamic linking exhibits a relatively high 74.54% overhead.

Lockdown enforces a dynamic control-flow integrity policy for binaries with the help of

symbol tables of shared libraries and executables. Although Lockdown is a binary approach,

it requires symbol tables not available for stripped binaries without sources, so we evalu-

ated it using test programs specially compiled with symbol information added. Its loader

leverages the additional symbol information to more precisely sandbox interactions between

interoperating binary modules. Lockdown is permissively compatible with most tests except

callbacks and runtime dynamic linking, for which it crashes. In terms of security, it robustly

secures function pointers, virtual calls, switch tables, and return addresses. These secu-

rity advantages incur somewhat higher performance overheads of 85.85–227.82% (but with

only 1.45% load-time dynamic loading overhead). Like most of the other tested solutions,

Lockdown remains vulnerable to CODE-COOP and multithreading attacks. Additionally,

Lockdown implements a shadow stack to protect return addresses, and thus is incompatible

with unmatched call/return pairs.

2.5.2 Evaluation Trends

ConFIRM evaluation of these CFI solutions reveals some notable gaps in the current state-

of-the-art. For example, all tested solutions fail to protect software from our cross-thread

stack-smashing attack, in which one thread corrupts another thread’s return address. We

hypothesize that no CFI solution yet evaluated in the literature can block this attack except

by eliminating all return instructions from hardened programs, which probably incurs pro-

hibitive overheads. By repeatedly exploiting a data corruption vulnerability in a loop, our

test program can reliably break all tested CFI defenses within seconds using this approach.

Since concurrency, flat memory spaces, returns, and writable stacks are all ubiquitous in

almost all mainstream architectures, such attacks should be considered a significant open

37



problem. Intel Control-flow Enforcement Technology (CET) (Intel, 2017) has been proposed

as a potential hardware-based solution to this; but since it is not yet available for testing, it

is unclear whether its hardware shadow stack will be compatible with software idioms that

exhibit unmatched call-return pairs (see §2.3).

Memory management abuse is another major root of CFI incompatibilities and insecuri-

ties uncovered by our experiments. Real-world programs need access to the system memory

management API in order to function properly, making CFI approaches that prohibit it

impractical. However, memory API arguments are high value targets for attackers, since

they potentially unlock a plethora of follow-on attack stages, including code injections. CFI

solutions that fail to guard these APIs are therefore insecure. Of the tested solutions, only

PathArmor manages to strike an acceptable balance between these two extremes, but only

at the cost of high overheads.

A third outstanding open challenge concerns RCG in the form of JIT-compiled code, dy-

namic code unpacking, and runtime API hooking. RockJIT (Niu and Tan, 2014b) is the only

language-based CFI algorithm proposed in the literature that yet supports any form of RCG,

and its approach entails compiler-specific modifications to source code, making it difficult to

apply on large scales to the many diverse forms of RCG that appear in the wild. New, more

general approaches are needed to lend CFI support to the increasing array of software prod-

ucts built atop JIT-compiled languages or linked using RCG-based mechanisms—including

many of the top applications targeted by cybercriminals (e.g., Microsoft Office).

Table 2.3 measures the overall compatibility of all the tested CFI solutions. Permissive

and effective compatibility are measured as the ratio of applicable tests to permissively and

effectively compatible ones, respectively. All CFI techniques embedded in compilers (viz.

LLVM on Linux and Windows, MCFG, and GCC-VTV), are 100% permissively compatible,

avoiding all crashes. LLVM on Linux, LLVM on Windows, and MCFG secure at least 57%

of applicable tests, while GCC-VTV only secures 33%.

38



Ta
bl
e
2.
3.

O
ve
ra
ll
co
m
pa

tib
ili
ty

of
C
FI

so
lu
tio

ns
LL

V
M

G
C
C
-

LL
V
M

π
C
F
I

P
at
h-

Lo
ck
-

T
es
ts

(W
in
do

w
s)

*
M
C
FG

O
F
I

R
ei
ns

V
T
V

(L
in
ux

)*
M
C
F
I

π
C
F
I

(n
to
)

A
rm

or
do

w
n

ap
pl
ic
ab

le
21

22
24

24
18

18
18

18
18

19
19

pe
rm

iss
iv
el
y
co
m
pa

tib
le

21
22

20
12

18
18

11
14

14
16

14
eff

ec
tiv

el
y
co
m
pa

tib
le

12
13

17
9

6
12

9
12

12
6

11

P
er
m
is
si
ve

co
m
pa
ti
bi
lit
y

10
0.

00
%

10
0.

00
%

83
.3

3%
50
.0

0%
10

0.
00
%

10
0.

00
%

61
.1

1%
77
.7

8%
77
.7

8%
84
.2

1%
73
.6

8%
E
ff
ec
ti
ve

co
m
pa
ti
bi
lit
y

57
.1

4%
59
.0

9%
70
.8

3%
37
.5

0%
33
.3

3%
66
.6

7%
50
.0

0%
66
.6

7%
66
.6

7%
31
.5

8%
57
.8

9%
* C

om
pa

tib
ili
ty

of
LL

V
M

is
m
ea
su
re
d
w
ith

bo
th

C
FI

an
d
Sh

ad
ow

C
al
lS
ta
ck

en
ab

le
d.

39



OFI scores high overall compatibility, achieving 83% permissive compatibility and 71%

effective compatibility on 24 applicable tests. Reins has the lowest permissive compatibility

score of only 50%. PathArmor and Lockdown are permissively compatible with 84% and

74% of 19 applicable tests. However PathArmor can only secure 32% of the tests, giving it

the lowest effective compatibility score.

2.5.3 Performance Evaluation Correlation

Prior performance evaluations of CFI solutions primarily rely upon SPEC CPU benchmarks

as a standard of comparison. This is based on a widely held expectation that CFI overheads

on SPEC benchmarks are indicative of their overheads on real-world, security-sensitive soft-

ware to which they might be applied in practical deployments. However no prior work has

attempted to quantify a correlation between SPEC benchmark scores and overheads observed

for the addition of CFI controls to large, production software products. If, for example, CFI

introduces high overheads for code features not well represented in SPEC benchmarks (e.g.,

because they are not performance bottlenecks for CFI-free software and were therefore not

prioritized by SPEC), but that become real-world bottlenecks once their overheads are in-

flated by CFI controls, then SPEC benchmarks might not be good predictors of real-world

CFI overheads. Recent work has argued that prior CFI research has unjustifiably drawn

conclusions about real-world software overheads from microbenchmarking results (van der

Kouwe et al., 2019), making this an important open question.

To better understand the relationship between CFI-specific operation overheads and

SPEC benchmark scores, we therefore computed the correlation between median perfor-

mance of CFI solutions on ConFIRM benchmarks with their performances reported on

SPEC benchmarks (as reported in the prior literature). Although ConFIRM benchmarks

are not real-world software, they can serve as microbenchmarks of features particularly rele-

40



vant to CFI. High correlations therefore indicate to what degree SPEC benchmarks exercise

code features whose performance are affected by CFI controls.

Table 2.4 reports the results, in which correlations between each SPEC CPU benchmark

and ConFIRM median values are computed as Pearson correlation coefficients:

rxy = (∑n
i=1 xi × yi)− (n× x̄× ȳ)

(n− 1)× sx × sy
(2.1)

where xi and yi are the CPU SPEC overhead and ConFIRM median overhead scores for

solution i, x̄ and ȳ are the means, and σx and σy are the sample standard deviations of x

and y, respectively. High linear correlations are indicated by |ρ| values near to 1, and direct

and inverse relationships are indicated by positive and negative ρ, respectively.

The results show that although a few SPEC benchmarks have strong correlations (namd,

xalancbmk, astar, soplex, and povray being the highest), in general SPEC CPU benchmarks

exhibit a poor correlation of only 0.36 on average with tests that exercise CFI-relevant code

features. Almost half the SPEC benchmarks even have negative correlations. This indicates

that SPEC benchmarks consist largely of code features unrelated to CFI overheads. While

this does not resolve the question of whether SPEC overheads are predictive of real-world

overheads for CFI, it reinforces the need for additional research connecting CFI overheads

on SPEC benchmarks to those on large, production software.

2.6 Conclusion

ConFIRM is the first evaluation methodology and microbenchmarking suite that is de-

signed to measure applicability, compatibility, and performance characteristics relevant to

control-flow security hardening evaluation. The ConFIRM suite provides 24 tests of various

CFI-relevant code features and coding idioms, which are widely found in deployed COTS

software products.

41



Ta
bl
e
2.
4.

C
or
re
la
tio

n
be

tw
ee
n
SP

EC
C
PU

an
d

C
on

F
IR

M
pe

rfo
rm

an
ce

C
F

I
S

ol
u

ti
on

S
P

E
C

C
P

U
B

en
ch

m
ar

k
M

C
F

G
R

ei
n

s
G

C
C

-V
T

V
L

LV
M

-C
F

I
M

C
F

I
π

C
F

I
π

C
F

I
(n

to
)

P
at

h
A

rm
or

L
oc

kd
ow

n
B

en
ch

m
ar

k
C

or
re

la
ti

on

pe
rl

be
nc

h
2.

4
5.

0
5.

0
5.

3
15
.0

15
0.

0
0.

09
bz

ip
2

−
0.

3
9.

2
−

0.
7

1.
0

1.
0

0.
8

0.
0

8.
0

−
0.

12
gc

c
4.

5
4.

5
10
.5

9.
0

50
.0

0.
02

m
cf

0.
5

9.
1

3.
6

4.
5

4.
5

1.
8

1.
0

2.
0

−
0.

39
go

bm
k

−
0.

2
0.

2
7.

0
7.

5
11
.8

0.
0

43
.0

−
0.

09
hm

m
er

0.
7

0.
1

0.
0

0.
0

−
0.

1
1.

0
3.

0
0.

33
sj

en
g

3.
4

1.
6

5.
0

5.
0

11
.9

0.
0

80
.0

−
0.

03
h2

64
re

f
5.

4
5.

3
6.

0
6.

0
8.

3
1.

0
43
.0

−
0.

09
lib

qu
an

tu
m

−
6.

9
0.

0
−

0.
3

−
1.

0
3.

0
5.

0
0.

51
om

ne
tp

p
3.

8
5.

8
5.

0
5.

0
18
.8

−
0.

52
as

ta
r

0.
1

3.
6

0.
9

3.
5

4.
0

2.
9

17
.0

0.
92

xa
la

nc
bm

k
5.

5
24
.0

7.
2

7.
0

7.
0

17
.6

11
8.

0
0.

94

m
ilc

2.
0

0.
2

2.
0

2.
0

1.
4

4.
0

8.
0

0.
40

na
m

d
0.

1
−

0.
1

0.
1

−
0.

5
−

0.
5

−
0.

5
3.

0
0.

98
de

al
II

−
0.

1
0.

7
7.

9
4.

5
4.

5
4.

4
−

0.
36

so
pl

ex
2.

3
0.

5
−

0.
3

−
4.

0
−

4.
0

0.
9

12
.0

0.
89

po
vr

ay
10
.8

−
0.

6
8.

9
10
.0

10
.5

17
.4

90
.0

0.
88

lb
m

4.
2

−
0.

2
1.

0
1.

0
−

0.
5

0.
0

2.
0

−
0.

22
sp

hi
nx

3
−

0.
1

−
0.

8
1.

5
1.

5
2.

4
3.

0
8.

0
0.

31

C
on

F
IR

M
m

ed
ia

n
9.

51
4.

59
33
.5

6
5.

19
30
.8

3
−

11
.1

0
−

11
.6

0
64

8.
01

14
0.

82
0.

36

42



Twelve publicly available CFI mechanisms are reevaluated using ConFIRM. The evalu-

ation results reveal that state-of-the-art CFI solutions are compatible with only about 53%

of the CFI-relevant code features and coding idioms needed to protect large, production

software systems that are frequently targeted by cybercriminals. Compatibility and secu-

rity limitations related to multithreading, custom memory management, and various forms of

runtime code generation are identified as presenting some of the greatest barriers to adoption.

In addition, performance analysis indicates that using ConFIRM for microbenchmarking

reveals performance characteristics not captured by metrics widely used to evaluate CFI over-

heads. In particular, SPEC CPU benchmarks designed to assess CPU computational over-

head exhibit an only 0.36 correlation with benchmarks that exercise code features relevant to

CFI. This suggests a need for more CFI-specific benchmarking to identify important sources

of performance bottlenecks, and their ramifications for CFI security and practicality.

43



CHAPTER 3

OBJECT FLOW INTEGRITY1

Chapter 2 demonstrates some notable gaps between CFI theory and practice in the current

state-of-the-art. Several of the code features and coding idioms in this gap are identified as

presenting significant barriers to adoption, and can defeat all the tested CFI defenses (e.g.

the cross-thread stack-smashing attack). One particularly large class of barriers involves the

difficulty of protecting software that contains immutable system modules with large, object-

oriented APIs—which are particularly common in component-based, event-driven consumer

software.

To extend both source-aware and source-free CFI and SFI technologies to this large

class of previously unsupported software, this chapter presents Object Flow Integrity (OFI),

which augments CFI and SFI protections with secure, first-class support for binary object

exchange across inter-module trust boundaries. It also helps to protect these inter-module

object exchanges against confused deputy-assisted vtable corruption and counterfeit object-

oriented programming attacks.

In addition, a prototype implementation for Microsoft Component Object Model (COM)

demonstrates that OFI is scalable to large interfaces on the order of tens of thousands of

methods, and exhibits low overheads of under 1% for some common-case applications. Sig-

nificant elements of the implementation are synthesized automatically through a principled

design inspired by type-based contracts.

The rest of Chapter 3 is structured as follows. Section 3.1 begins with a high-level

overview of the existing CFI algorithms and a new form of confused deputy attack. Sec-

tion 3.2 then presents a detailed examination of such attack and how it manages to evade

1This chapter contains material previously published as: Wenhao Wang, Xiaoyang Xu, and Kevin W.
Hamlen. “Object Flow Integrity.” In Proceedings of the 19th ACM Conference on Computer and Communi-
cations Security (CCS), pp. 1909–1924, November 2017.

44



incomplete CFI protections applied to source-free, component-based software. Section 3.3

demonstrates OFI’s approach to addressing these dangers. Our prototype implementation

and its evaluation are presented in Sections 3.4 and 3.5, respectively. Section 3.6 concludes

the chapter.

3.1 Introduction

Control-flow integrity (CFI) (Abadi et al., 2009) and software fault isolation (SFI) (Wahbe

et al., 1993) secure software against control-flow hijacking attacks by confining its flows to a

whitelist of permissible control-flow edges. The approach has proven successful against some

of the most dangerous, cutting-edge attack classes, including return-oriented programming

(ROP) (Roemer et al., 2012) and other code-reuse attacks (CRAs) (Bletsch et al., 2011).

Attacks in these families typically exploit dataflow vulnerabilities (e.g., buffer overflows) to

corrupt code pointers and thereby redirect control to attacker-chosen program subroutines.

By validating each impending control-flow target at runtime before it is reached, CFI guards

can often thwart these hijackings.

CFI and SFI frameworks work by statically instrumenting control-flow transfer instruc-

tions in vulnerable software with extra guard code that validates each computed jump des-

tination at runtime. The instrumentation can be performed at compile-time (e.g., Akritidis

et al. (2008); Abadi et al. (2009); Bletsch et al. (2011); Niu and Tan (2013, 2014b,a); Tice

et al. (2014); Jang et al. (2014); Mashtizadeh et al. (2015); Niu and Tan (2015); Zhang et al.

(2016); Bounov et al. (2016); Tang (2015)) or on sourceless binaries (e.g., Wartell et al.

(2012b); Zhang et al. (2013); Zhang and Sekar (2013); Wang et al. (2015); Zhang et al.

(2015); Payer et al. (2015); Mohan et al. (2015); van der Veen et al. (2016)). This facility

to harden source-free binary software is important for securing software in-flight—allowing

third parties to secure dynamically procured binary software on-demand in a way that is

45



transparent to code producers and consumers—and for securing the large quantity of soft-

ware that is closed-source, or that incorporates software components (e.g., binary libraries)

whose source code is unavailable to code consumers.

While the past decade has witnessed rapid progress toward more powerful, higher per-

formance, and more flexible CFI enforcement strategies, there still remain large classes of

consumer software to which these technologies are extremely difficult to apply using existing

methods. Such limitations often stem from many source-aware CFI algorithms’ need for full

source code for the entire software ecosystem (e.g., even for the OS kernel, device drivers,

and complete runtime system) in order to properly analyze application control-flows, or the

difficulty of analyzing complex flows common to certain well-entrenched consumer software

paradigms, such as GUI-interactive, event-driven, and component-based software applica-

tions. For example, although CFI has been applied successfully to some large applications,

in our experience no CFI/SFI algorithm published in the literature to date (see §6) suc-

cessfully preserves and secures the full functionality of Windows Notepad—one of the most

ubiquitous consumer software products available.

The central problem is a lack of first-class support for architectures in which immutable,

trusted software components have huge object-oriented interfaces. Programs like Notepad

interact with users by displaying windows, monitoring mouse events, and sending printer

commands. At the binary level, this is achieved by calling runtime system API methods

that expect binary objects as input. The app-provided binary object contains a virtual

method table (vtable), whose members are subsequently called by the runtime system to

notify the app of window, mouse, and printer events. The call sites that target untrusted

code, and that CFI algorithms must instrument, are therefore not exclusively located within

the untrusted app code—many are within trusted system libraries that cannot be modified

(or sometimes even examined) by the instrumentation process, since they are part of the

protected runtime system.

46



Most CFI algorithms demand write-access to all system software components that may

contain unguarded, computed jumps—including the OS, all dynamically loaded libraries,

and all future updates to them—in order to ensure safety. In component-driven settings,

where modules are dynamically procured on-demand via a distributed network or cloud, this

is often impractical. Unfortunately, such settings comprise >98% of the world’s software

market,2 including many mission-critical infrastructures that incorporate consumer software

components.

One approach for coping with this pervasive problem has been to secure objects passed

to uninstrumented modules at call sites within the instrumented modules, before the trusted

module receives them (e.g., Tice et al., 2014). But this approach fails when trusted modules

retain persistent references to the object, or when their code executes concurrently with

untrusted module code. In these cases, verifying the object at the point of exchange does

not prevent the untrusted module from subsequently modifying the vtable pointer to which

the trusted module’s reference points (e.g., as part of a data corruption attack). We re-

fer to such attacks as COnfused DEputy-assisted Counterfeit Object-Oriented Programming

(CODE-COOP) attacks, since they turn recipients of counterfeit objects (Schuster et al.,

2015) into confused deputies (Hardy, 1988) who unwittingly invoke policy-prohibited code

on behalf of callers.

Faced with such difficulties, many CFI systems conservatively resort to disallowing un-

trusted module accesses to trusted, object-oriented APIs to ensure safety. This confines such

approaches to architectures with few trusted object-oriented system APIs (e.g., Linux), ap-

plications that make little or no use of such APIs (e.g., benchmark or command-line utilities),

or platforms where the majority of the OS can be rewritten (e.g., ChromeOS (Tice et al.,

2014)). The majority of present-day software architectures that fall outside these restrictive

parameters have remained unsupported or receive only incomplete CFI security.

2https://www.netmarketshare.com

47

https://www.netmarketshare.com


To bridge this longstanding gap, we introduce object flow integrity (OFI)—a systematic

methodology for imbuing CFI and SFI systems with first-class support for immutable, trusted

modules with object-oriented APIs. OFI facilitates safe, transparent flow of binary objects

across trust boundaries in multi-module processes, without any modification to trusted mod-

ule code. To maintain the deployment flexibility of prior CFI/SFI approaches, OFI assumes

no access to untrusted application or trusted system source code; we assume only that trusted

interfaces are documented (e.g., via public C++ header files or IDL specifications).

Our prototype implementation showcases OFI’s versatility and scalability by targeting

the largest, most widely deployed object-oriented system API on the consumer software

market—Microsoft Component Object Model (COM) (Gray et al., 1998). Most Windows

applications rely upon COM to display dialog boxes (e.g., save- and load-file dialogs), create

interactive widgets (e.g., ActiveX controls), or dynamically discover needed system services.

To handle these requests in a generalized, architecture-independent manner, COM imple-

ments an elaborate system of dynamic, shared module loading; distributed, inter-process

communication; and service querying facilities—all fronted by a vast, language-independent,

object-oriented programming interface. Consequently, COM-reliant applications (which con-

stitute a majority of consumer software today) have remained significantly beyond the reach

of CFI/SFI defenses prior to OFI.

To keep our scope tractable, this chapter does not attempt to address all research chal-

lenges faced by the significant body of CFI literature. In particular, we do not explicitly

address the challenges of optimizing the performance of the underlying CFI enforcement

mechanism, deriving suitable control-flow policies for CFI mechanisms to enforce (cf., Schus-

ter et al., 2015), or obtaining accurate native code disassemblies without source code (cf.,

Wartell et al., 2014). Our goal is to enhance existing CFI/SFI systems with support for a

much larger class of target application programs and architectures without exacerbating any

of these challenges, which are the focuses of related works.

48



In summary, our contributions are as follows:

• We introduce a general methodology for safely exchanging binary objects across inter-

module trust boundaries in CFI/SFI-protected programs without varying trusted module

code.

• A prototype implementation for Microsoft COM demonstrates that the approach is feasi-

ble for large, complex, object-oriented APIs on the order of tens of thousands of methods.

• A significant portion of the implementation is shown to be synthesizable automatically

through a novel approach to reflective C++ programming.

• Experimental evaluation indicates that OFI imposes negligible performance overhead for

some common-case, real-world applications.

3.2 Background

3.2.1 Inter-module Object Flows

To motivate OFI’s design, Listing 3.1 presents typical C++ code for creating a standard

file-open dialog box on a COM-based OS, such as Windows. The untrusted application

code first creates a shared object o1 (line 1), where 〈clsid〉 and 〈iid1〉 are global numeric

identifiers for the system’s FileOpenDialog class and IFileOpenDialog interface of that

class, respectively. Method Show is then invoked to display the dialog (line 2).

While executing Show, the trusted system module separately manipulates object o1, in-

cluding calling its QueryInterface method to obtain a new interface o2 for the object, and

invoking its methods (lines 3–5). Once the user has finished interacting with the dialog and

it closes, the untrusted module calls o1’s GetResult method to obtain an IShellItem inter-

face o3 whose GetDisplayName method discloses the user’s file selection (lines 6–7). Finally,

the untrusted module releases the shared objects (lines 8–9).

49



1
Untrusted Module
CoCreateInstance(〈clsid〉, . . . , 〈iid1〉, &o1);

2 o1→Show(. . .);
3

Trusted Module
o1→QueryInterface(〈iid2〉, &o2);

4 o2→GetOptions(. . .);
5 o2→Release();
6 o1→GetResult(&o3);
7 o3→GetDisplayName(. . .);
8 o3→Release();
9 o1→Release();

Listing 3.1. Code that opens a file-save dialog box

Safely supporting this interaction is highly problematic for CFI frameworks. All method

calls in Listing 3.1 target non-exported functions located in trusted system libraries. The

function entry points are only divulged to untrusted modules at runtime within vtables of

shared object data structures produced by trusted modules. By default, most CFI policies

block such control-flows as indistinguishable from control-flow hijacking attacks.

If one whitelists these edges in the control-flow policy graph to permit them, a signifi-

cant new problem emerges: Each method call implicitly passes an object reference (the this

pointer) as its first argument. A compromised, untrusted module can therefore pass a coun-

terfeit object to the trusted callee, thereby deputizing it to commit control-flow violations

when it invokes the object’s counterfeit method pointers.

One apparent solution is to validate these object references on the untrusted applica-

tion side at the time they are passed, but this introduces a TOCTOU vulnerability: Since

shared COM objects are often dynamically allocated in writable memory, a compromised or

malicious application can potentially modify the object’s vtable pointer or its contents after

passing a reference to it to a trusted module. Trusted modules must therefore re-validate

50



1 LPCTSTR lpFileName = TEXT("dnscmmc.dll");
2 HMODULE hModule;
3 IUnknown ∗o1;
4 HRESULT(WINAPI ∗lpGCO)(REFCLSID, REFIID, LPVOID∗);

6 hModule = LoadLibrary(lpFileName);
7 (FARPROC&) lpGCO = GetProcAddress(hModule, "DllGetClassObject");
8 lpGCO(〈clsid〉, 〈iid1〉, (LPVOID∗) &o1);

10 // ... code containing a data corruption vulnerability ...

12 IUnknown ∗o2;
13 o1→QueryInterface(〈iid2 〉, (LPVOID∗) &o2);

Listing 3.2. CODE-COOP attack vulnerability

all code pointers at time-of-use to ensure safety, but this breaks CFI’s deployment model

because it necessitates rewriting all the system libraries.

3.2.2 CODE-COOP Attacks

Listing 3.2 demonstrates the danger with a common Windows COM programming idiom that

is vulnerable to CODE-COOP attack even with CFI protections enabled for all application-

provided modules. Lines 6–8 dynamically load a COM library (e.g., dnscmmc.dll) and invoke

its DllGetClassObject function to obtain an object reference o1. Line 13 later obtains a

new interface o2 to the object.

A data corruption vulnerability (e.g., buffer overwrite) in line 10 can potentially allow an

attacker to replace o1’s vtable with a counterfeit one. CFI protections guarantee that line 13

nevertheless targets a valid QueryInterface implementation, but if the process address

51



space contains any system COM library that has not undergone CFI instrumentation, the

attacker can redirect line 13 to an unguarded QueryInterface. Since all QueryInterface

implementations internally call other methods on o1 (e.g., AddRef), the attacker can corrupt

those to redirect control arbitrarily.

To demonstrate this, we compiled and executed Listing 3.2 on Windows 10 (Enterprise

1511, build 10586.545) with Microsoft Control Flow Guard (MCFG) (Tang, 2015) enabled,

and nevertheless achieved arbitrary code execution. MCFG is a Visual Studio addition that

compiles CFI guard code into indirect call sites, including line 13. The guards constrain

the sites to a whitelist of destinations. Most Windows 10 system libraries are compiled

with MCFG enabled so that their call sites are likewise protected, but many are not. We

counted 329 unprotected system libraries on a clean install of Windows 10—many of them

in the form of legacy libraries required for backward compatibility. (For example, some have

binary formats that predate COFF, and are therefore incompatible with MCFG.) These

include dnscmmc.dll (the DNS Client Management Console), which Listing 3.2 exploits. If

an attacker can contrive to load any of them (e.g., through dll injection or by corrupting

variable lpFileName in line 6), CODE-COOP attacks become threats. Since COM services

obtain libraries dynamically and remotely on-demand, replacement of all 329 of the libraries

we found with CFI-protected versions is not an antidote—universal adoption of MCFG across

all software vendors and all module versions would be required.

Moreover, even universal adoption of MCFG is insufficient because MCFG cannot protect

returns in component-based applications, which are the basis of many code-reuse attacks

(e.g., ROP). Stronger CFI systems that do protect returns must likewise universally modify

all binary components or suffer the same vulnerability. We consider the existence of at least

some uninstrumented modules to be a practical inevitability in most deployment contexts;

hence, we propose an alternative approach that augments arbitrary existing CFI approaches

to safely tolerate such modules without demanding write-access to system code.

52



3.3 Design

3.3.1 Object Proxying

OFI solves this problem by ensuring that trusted callee modules (i.e., potential deputies)

never receive writable code pointers from untrusted, CFI-protected callers. Achieving this

without breaking intricate object exchange protocols and without demanding full source code

requires careful design. Our solution centers around the idea of proxy objects. Each time an

object flows across an inter-module trust boundary, OFI delivers a substitute proxy object

to the callee. There are two kinds of proxies in OFI:

• Floor proxy objects boc are delivered to trusted callees when an untrusted caller attempts

to pass them an object o. (Floor objects are so-named because higher-trust tenants see

them when “looking down” toward low-trust objects).

• Ceiling proxy objects doe are delivered to untrusted callees when a trusted caller attempts

to pass them an object o. (Low-trust tenants see them when “looking up” toward high-

trust objects.)

Functions b·c and d·e are inverses, so bdoec = dboce = o. Thus, if one tenant passes an object

to another, who then passes it back, the original tenant receives back the original object,

making the proxying transparent to both parties.

At a high level, proxy objects are in-lined reference monitors (IRMs) (Schneider, 2000)

that wrap and mediate access to the methods of the objects they proxy. When called,

their methods must (1) enforce control-flow and dataflow guards that detect and prevent

impending CFI violations, and (2) seamlessly purvey the same services as the object they

proxy (whenever this does not constitute an integrity violation). These requirements are

known as IRM soundness and transparency (Hamlen et al., 2006; Ligatti et al., 2009) in the

53



literature. The soundness property enforced by a proxy object can be formalized as a type-

based contract derivable from the method’s type signature, as detailed in §3.3.2; transparency

is achieved by the proxy’s reversion to the original object’s programming whenever the

contract is satisfied.

When applying OFI to binary code without source code, it is not clear where to inject

guard code that introduces these proxy objects. All of the calls in Listing 3.1 take the form of

computed jump instructions at the binary level, whose destinations cannot generally be stat-

ically predicted. Injecting guard code that accommodates every possible proxy scenario at

every computed jump instruction in the program would introduce unacceptable performance

overhead.

To avoid this, OFI adopts a lazy, recursive approach to object proxying: At object cre-

ation points, OFI substitutes the created objects with proxy objects whose methods are

mediators that enforce CFI guards before falling through to the proxied object’s original

programming. The mediators recursively introduce a new layer of proxying for any po-

tentially insecure objects being passed as arguments. Thus, proxying occurs dynamically,

on-demand, as each method is called by the various principals and with various object ar-

guments. For example, OFI transforms line 6 so that do1e→GetResult points to mediator

method GetResult_vaulter, whose implementation calls o1→GetResult with this pointer

equal to bdo1ec = o1. When control returns to the mediator, it replaces out-argument o3

with do3e and then returns to the untrusted caller. We refer to proxy methods that me-

diate low-to-high calls followed by high-to-low returns as vaulters, and those that mediate

high-to-low calls followed by low-to-high returns as bouncers.

CODE-COOP attacks that attempt to deputize object recipients by corrupting proxy vta-

bles are thwarted by storing proxy objects entirely within read-only memory. This is possible

because proxy objects need no writable data; modern object exchange protocols like COM

and CORBA require object recipients to access any data via accessor methods (e.g., to ac-

commodate distributed storage), while the object’s creator may access in-memory data fields

54



Mediators

low memory high memory

Vault
Dispatch

indirect vaulter(s)call vault_dispatch
call return_trampoline

call vault_dispatch

Trampoline Pool
direct vaulter(s)

V-Trampoline Pool
call v-vault_dispatch

call v-vault_dispatch

V-Vault
Dispatch

virtual vaulter(s)

indirect
bouncer(s)

down
up

Bounce
Dispatch

call bounce_dispatch

call bounce_dispatch

Chute Pool

V-Chute Pool
call v-bounce_dispatch

call v-bounce_dispatch

V-Bounce
Dispatch

virtual
bouncer(s)

down
up

return
trampolineU

nt
ru

st
ed

M
od

ul
e

(lo
w

)

Tr
us

te
d

M
od

ul
e

(h
ig

h)

Figure 3.1. Cross-module OFI control-flows

directly. Thus, OFI proxies consist only of a fixed vtable and no data. Moreover, to avoid

overhead associated with dynamically allocating them, our design assigns all proxy objects

the same vtable. This allows the entire proxy object pool to be efficiently implemented as a

single, read-only physical page of memory (possibly allocated to multiple virtual pages) filled

with the shared vtable’s address. Each such vtable pointer constitutes a complete proxy ob-

ject, ready to be used as a fresh proxy during mediation. The vtable methods all call a central

dispatcher method that consults the call stack to determine which proxy object and virtual

method is the desired destination, and invokes the appropriate mediator implementation.

Figure 3.1 illustrates the resulting control-flows. When an untrusted module attempts to

call a method of a shared object, the code pointer it dereferences points into a v-trampoline

pool consisting of direct call instructions that all target OFI’s v-vault dispatch subroutine.

The dispatcher pops the return address pushed by the v-trampoline pool to determine the

index of the method being called, and consults the stack’s this pointer to determine the

object. Based on this information, it selects and tail-calls the appropriate virtual vaulter

mediator. The vaulter proxies any in-arguments, calls the trusted module’s implementation

of the method, then proxies any out-arguments, and returns to the caller.

55



In the reverse direction, trusted modules call into a chute pool that targets OFI’s bounce

dispatch subroutine, which dispatches control to a virtual bouncer. To safely accommodate

the return of the untrusted callee to the trusted caller (which constitutes a control-flow edge

from untrusted code to a non-exported trusted address, which many CFI policies prohibit),

the bouncer replaces the return address with the address of a special return trampoline that

safely returns control to the “up” half of the bouncer implementation.

This approach generalizes to direct untrusted-to-trusted calls and indirect (non-virtual)

untrusted-to-trusted calls, which are both represented atop Figure 3.1. Direct calls are

statically identifiable by (both source-aware and source-free) CFI, and are therefore stati-

cally replaced with a direct call to a corresponding direct vaulter implementation. Indirect,

inter-module calls dereference code pointers returned by the system’s dynamic linking API

(e.g., dlsym() or GetProcAddress() on Posix-based or Windows-based OSes, respectively).

OFI redirects these to trampoline pool entries that dispatch appropriate indirect vaulters.

(Dynamic linking can also return pointers to statically linked functions, in which case the

dispatcher targets a direct vaulter.)

Another benefit of this proxy object representation strategy is its natural accommoda-

tion of subclassing relationships. Callees with formal parameters of type C0 may receive

actual arguments of any subtype C1 <: C0; likewise, callers expecting return values or out-

arguments of type C0 may receive objects of any subtype C1 <: C0. It is therefore essential

that proxy objects obey a corresponding subtyping relation that satisfies

C1 <: C0 =⇒
(
bC1c <: bC0c

)
∧
(
dC1e <: dC0e

)
(3.1)

in order to preserve computations that depend on subtyping.

At the binary level, object vtables support inheritance as illustrated in Figure 3.2—

ordering method pointers from most to least abstract class allows code expecting a more

abstract class to transparently access the prefix of the vtable that is shared among all its

56



...

class C0
methods

class C1 <: C0
methods
...

object
reference

vtable pointer

method pointer 1

method pointer 2

method pointer 3

method pointer 4

Figure 3.2. Proxy object binary representation

subclasses. Instantiating all proxy objects with a shared, fixed vtable therefore allows all

proxy objects to transparently subtype all other proxy objects (since their vtables are identi-

cal). This avoids introducing and consulting potentially complex runtime typing information

for each object, which would lead to additional overhead related to protecting that informa-

tion from malicious tampering.

3.3.2 Type-based Contracts

In order to reliably synthesize and interpose its mediation logic into all trust boundary-

crossing method calls, OFI must base its mediation on a description of each interface that

links the communicating modules. Since interfaces are collections of method type signatures,

OFI therefore enforces a type-based contract (Findler and Felleisen, 2002) between caller and

callee. That is, each trusted interface method’s type signature encodes a set of contrac-

tual obligations on code pointers that must be enforced by OFI to ensure CFI-compliant

operation. This type-theoretic foundation is essential for scalably automating OFI for large

interfaces.

Figure 3.3 defines OFI contracts as a core subset of the type system used by major

interface description languages, such as MIDL and CORBA IDL (Exton et al., 1997), for

component communication. Interface methods have types τ →cc τ
′, which denote functions

57



τ : U ::= ⊥ (security-irrelevant byte)
| τ1 × τ2 (structures)
| τ s (arrays)
| τ1 + τ2 (unions)
| C (shared object classes)
| τ →cc τ

′ (functions)
| [dir]τ∗ (pointers)
| Σ(v:τ)f (dependent pairs)
| µt.τ | t (recursive datatypes)

(singleton types)
s ::= n | ZT (zero-terminated) (array sizes)
n ∈ N (numeric constants)
f : N→ U (type dependencies)

dir ::= in | out | inout (argument directions)
cc ::= callee_pop | caller_pop (calling conventions)

Figure 3.3. A type system for expressing CFI obligations as OFI contracts

from an argument list of type τ to a return value of type τ ′. Calling convention annotation

cc is used by OFI to preserve and secure the call stack during calls. Classes, structures, and

function argument lists are encoded as tuples τ1 × τ2 × · · · × τn, which denote structures

having n fields of types τ1, . . . , τn, respectively. For convenience, named classes are here

written as named types C (in lieu of writing out their usually large, recursive type signa-

tures). Static-length arrays and zero-terminated strings have repetition types τn and τ ZT,

respectively. Pointer arguments whose referents are provided by callers (resp. callees) have

type [in]τ∗ (resp. [out]τ∗). Those with a caller-supplied referent that is replaced by the

callee before returning use bidirectional annotation [inout]. Self- or mutually-referential

types are denoted by µt.τ , where τ is a type that uses type variable t for recursive reference.

For example, Listing 3.1’s GetResult method has type

GetResult : ([in]CIFD∗ × [out]CISI∗)→callee_pop ⊥4 (3.2)

58



where CIFD and CISI are the types of the IFileDialog and IShellItem interfaces. This

type reveals that a correct vaulter for GetResult must replace the first stack argument (i.e.,

the this pointer) with a floor proxy of type bCIFDc before invoking the trusted callee, and

then replace the second stack argument with a ceiling proxy of type dCISIe before returning

to the untrusted caller.

In addition to the usual types found in C, we found that we needed dependent pair types

Σ(v:τ)f in order to express many API method contracts. Values with such types consist of a

field v of some numeric type τ , followed by a second field of type f(v). Function f derives

the type of the second field from value v. For example, the contract of QueryInterface is

expressible as:

QueryInterface : [in]CIFD∗ ×

Σ(iid:⊥16)(iid = 〈iid1〉 ⇒ [out]C1∗

| iid = 〈iid2〉 ⇒ [out]C2∗ | · · · )→callee_pop ⊥4

(3.3)

This type indicates that the second stack argument is a 16-byte (128-bit) integer that iden-

tifies the type of the third stack argument. If the former equals 〈iid1〉, then the latter has

type [out]C1∗, etc.

There is a fairly natural translation from interface specifications expressed in C/C++

IDLs, such as SAL, to this type system. Products (×), repetition (τ s), sums (+), classes

(C), functions (→), pointers (∗), and datatype recursion (µ) are expressed in C++ datatype

definitions as structures, arrays, unions, shared classes, function pointers/references, and

type self-reference (or mutual self-reference), respectively. SAL annotations additionally

specify argument directions and array bounds dependencies. Special dependencies involving

class and interface identifiers, such as those in QueryInterface’s contract, can be gleaned

from the system-maintained list of registered classes and interfaces.

OFI contract types are then automatically translated into effective procedures for en-

forcing the contracts they denote (i.e., mediator implementations). Figure 3.4 details the

59



Ex[[⊥]] d p = {}
Ex[[τ1 × τ2]] d p = Ex[[τ1]] d p; Ex[[τ2]] d (p+ |τ1|)
Ex[[τn]] d p =

(
n > 0⇒ (Ex[[τ ]] d p; Ex[[τn−1]] d (p+ |τ |))

)
Ex[[τ ZT]] d p =

(
∗p 6= 0⇒ (Ex[[τ ]] d p; Ex[[τ ZT]] d (p+ |τ |))

)
Ex[[τ1 + τ2]] d p = Ex[[τ1]] d p; Ex[[τ2]] d p
Ex[[τ →cc τ

′]] d p = 1 copy τ from caller to callee;
2 Ex[[τ ]] (in) (&callee_frame);
3 r := call p;
4 Ex-1 [[τ ′]] (out) (&r);
5 Ex-1 [[τ ]] (out) (&caller_frame);
6 pop τ from opposite(cc) stack;
7 return r

Ex[[[dir]τ∗]] d p =
(
(dir ∈ {d, inout} ∧ ∗p 6= 0)⇒

match τ with (_→ _)⇒ ∗p := &(Ex-1 [[τ ]] (in) (∗p))
| C ⇒ ∗p := x(∗p)
| _⇒ Ex[[τ ]] d (∗p)

)
Ex[[Σ(v:τ)f ]] d p = Ex[[τ ]] d p; Ex[[f(∗p)]] d (p+ |τ |)
Ex[[µt.τ ]] d p = Ex[[τ [µt.τ/t]]] d p

Figure 3.4. Mediator enforcement of OFI contracts

translation algorithm in the style of a denotational semantics3 where Ex[[τ ]] d p yields a pro-

cedure for enforcing the contract denoted by type τ with proxying function x ∈ {b·c, d·e} in

call-direction d ∈ {in, out} on the bytes at address p.

For example, valuation function Eb·c[[τGetResult]](in)(&GetResult) yields the implementa-

tion of GetResult_vaulter, where τGetResult is the type in equation 3.2. The implementation

first copies caller stack frame τ to a secure callee-owned stack (line 1). It then enforces the

in-contract for τ (line 2), which replaces the argument of type CIFD with a proxy of type

bCIFDc, before invoking GetResult (line 3). Upon return, the out-contracts for return type τ ′

and frame τ are enforced (lines 4–5). In this case, return type τ ′ = ⊥4 is security-irrelevant,

3Here, notation |τ | denotes the size of data having type τ .

60



but the out-contract for τ demands replacing stack object CISI with proxy dCISIe. Finally,

the frame of the participant (viz., caller or callee) that did not already clean its stack is

popped (line 6), and control returns to the caller (line 7). (The first and last steps are

required because OFI separates untrusted and trusted stacks for memory safety, temporarily

duplicating the shared frame.)

Each contract enforcement (lines 2, 4, and 5) entails recursively parsing the binary

datatypes of Figure 3.3 and substituting code pointers with pointers to mediators that en-

force the proper contracts. Structure, array, and union contracts are enforced by recursively

enforcing the contracts of their member types. Function pointer contracts are enforced by

lazily replacing them with mediator pointers, shared class contracts are enforced by proxying,

and other pointer contracts are enforced by eagerly dereferencing the pointer and enforcing

the pointee’s contract. Dependent pairs are enforced by resolving the dependency to obtain

the appropriate contract for the next datum. Finally, recursive types are enforced as a loop

that lazily unrolls the type equi-recursively (Crary et al., 1999).

An OFI implementation can enforce the contract implied by a trusted interface by im-

plementing mediator algorithm Eb·c[[τ →cc τ
′]](in) for each method signature τ →cc τ

′ in

the interface. Such mediators are vaulter implementations. Some rules in Figure 3.4 invert

proxy function x, prompting the enforcement to also implement bouncer mediators of the

form Ed·e[[τ →cc τ
′]]. These mediate callbacks, such as those commonly used in event-driven

programming. Bouncers also mediate methods by which trusted modules initiate unsolicited

contact with untrusted modules, such as those that load untrusted libraries and invoke their

initializers.

3.3.3 Trust Model

OFI’s attacker model assumes that original, untrusted modules may be completely malicious,

containing arbitrary native code, but that they have been transformed by CFI/SFI into code

61



compliant with the control-flow policy. The transformed code monitors and constrains all

security-relevant API calls and their arguments as long as control-flow stays within the

sandbox (cf., Abadi et al. (2009); Wartell et al. (2012b)). Malicious apps must therefore first

escape the control-flow sandbox before they can abuse system APIs to do damage. OFI blocks

escape attempts that abuse call sites in immutable modules that depend on objects or code

pointers supplied by instrumented modules. It thereby extends whatever policy is enforced

by the underlying CFI/SFI mechanism to those call sites. In order to defeat CODE-COOP

attacks, the underlying CFI/SFI must therefore enforce a COOP-aware policy (Schuster

et al., 2015) for OFI to extend (see §6.5).

Control-flow policies consist of a (possibly dynamic) graph of whitelisted control-flow

edges that is consulted and enforced by CFI/SFI guard code before each control-flow transfer

from untrusted modules (but not before those from trusted modules). OFI requires that this

graph omit edges directly from low- to high-trust modules; such edges must be replaced with

edges into OFI’s trampoline pools, to afford OFI complete mediation of such transfers.

A facility for read-only, static data is required for OFI to maintain tamper-proof proxy

objects. This can be achieved by leveraging CFI/SFI to restrict untrusted access to the

system’s virtual memory API—untrusted modules must not be permitted to enable write-

access to OFI-owned data or code pages.

To prevent untrusted modules from directly tampering with trusted modules’ data, some

form of memory isolation is required. SFI achieves this by sandboxing all memory-writes by

untrusted modules (e.g., Wahbe et al. (1993); McCamant and Morrisett (2006)). CFI lever-

ages control-flow guards to enforce atomic blocks that guard memory-writes (e.g., Kuznetsov

et al. (2014); Erlingsson et al. (2006); Nagarakatte et al. (2010)).

Data fields of shared objects are conservatively treated as private; non-owners must ac-

cess shared object data via accessor methods. This is standard for interfaces that support

computing contexts where object locations cannot be predicted statically (e.g., in a dis-

tributed computations), including all COM interfaces. This affords the accessor methods

62



an opportunity to dynamically fetch or synchronize requested data fields when they are not

available locally.

Our design of OFI is carefully arranged to require almost no persistent, writable data

of its own, eliminating the need to protect such data within address spaces shared by OFI

with malicious modules. In multithreaded processes, OFI therefore conservatively stores its

temporary data in CPU registers or other secured, thread-local storage spaces. There are

three exceptions:

Dynamic CFGs. If the control-flow policy is dynamic (e.g., new edges become whitelisted

during dynamic linking), then OFI requires a safe place to store the evolving policy graph.

This is typically covered by the underlying SFI/CFI’s self-integrity enforcement mechanisms.

Object Inverses. A small hash table associating objects with their proxies is required, in

order to compute inverses bd·ec and db·ce. This can be confined to dedicated memory pages,

admitting the use of efficient, OS-level memory protections. For example, on Windows

desktop OSes we allocate a shared memory mapping to which a separate memory-manager

process has write access, but to which the untrusted process has read-only access. OFI

modules residing in untrusted processes can then use lightweight RPC to write to the hash

table. CFI protections prevent untrusted modules from accessing the RPC API to perform

counterfeit writes.

Reference Counts. To prevent double-free attacks, in which an untrusted module im-

properly frees objects held by trusted modules, object proxies maintain reference counts

independent from the objects they proxy. When the proxy is first created, OFI increments

the proxied object’s reference count by one. Thereafter, acquires and releases of the proxy

are not reflected to the proxied object; they affect only the proxy object’s reference count.

When the proxy’s reference count reaches zero, it decreases the proxied object’s reference

count by one and frees itself. Proxy object reference counters are stored within the secure

hash table entries (see above) to prevent tampering.

63



pass

static rewriting

untrusted trusted
untrusted

binary
conservative
disassembler

intra-module
CFG policy

binary
rewriter

rewri�en
binary verifier

safe
binary

linker

policy-
enforcement

library

inter-module
CFG policy

Figure 3.5. Reins system architecture

3.4 Implementation

3.4.1 Architecture

Our prototype implementation of OFI extends the Reins system (Wartell et al., 2012b).

We chose Reins because it realizes fully source-free SFI+CFI (including no reliance on

symbol files), and it supports Windows platforms. This affords an aggressive evaluation of

OFI’s design in austere contexts that lack the benefits of source code and that must support

extensive, complex object-oriented APIs, such as COM. Prior to the introduction of OFI

enhancements, Reins could not support COM-dependent features of any target application;

triggering such features induced its CFI protections to prematurely abort the application

with a security violation.

Figure 3.5 depicts the system architecture. Untrusted native code binaries are first disas-

sembled to obtain a conservative control-flow graph (CFG) policy. The policy dictates that

only the control-flow paths statically uncovered and analyzed by the disassembly process are

permissible. A binary rewriting module then injects guard code at all control-flow transfer

sites to constrain all flows to the CFG.

OFI is agnostic to the particular guard code used to realize SFI/CFI, so we here assume

merely that the underlying SFI/CFI implementation protects each control-flow transfer in-

64



struction with arbitrary (sound) code pointer validation or sanitization logic (see §6). (Reins

employs SFI-style chunking and masking (McCamant and Morrisett, 2006) for efficient sand-

boxing of intra-module flows, followed by CFI-style whitelisting of inter-module flows. This

could be replaced with more precise but less efficient CFI-only logic without affecting OFI.)

A separate verifier module independently validates control-flow safety of the secured binary

code. This shifts the large, unvalidated rewriting implementation out of the trusted com-

puting base.

Aside from adjusting the control-flow policy to incorporate OFI mediation, OFI exten-

sions inhabit only the policy enforcement library portion of the architecture; no change to the

disassembly, rewriting, verification, or linking stages was required. This indicates that OFI

can be implemented in a modular fashion that does not significantly affect the underlying

SFI/CFI system’s internals.

The enhancements to the policy enforcement library introduce the inter-module control-

flow paths depicted in Figure 3.1. Their implementations are detailed below.

3.4.2 Dispatcher Implementation

3.4.2.1 Vault Dispatch

OFI’s Vault Dispatch subroutine directs control from a non-virtual trampoline to a corre-

sponding vaulter. Listing 3.3 sketches its implementation. The index of the calling tram-

poline is first computed from the return address passed by the trampoline to the dispatcher

(lines 2–5). Reins allocates exactly one trampoline in the pool for each non-virtual, trusted

callee permitted as a jump destination by the policy. The index therefore unambiguously de-

termines the correct vaulter for the desired callee (line 6). No CFI guards are needed here be-

cause CFI guard code in-lined into the untrusted call site has already constrained the flow to

a permissible trampoline entry. Finally, the dispatcher tail-calls the selected vaulter (line 9).

65



1 void VaultDispatch() {
2 __asm pop eax
3 PROLOGUE // create secure stack frame
4 __asm mov ret_addr, eax
5 index = (trampoline_pool_base − ret_addr) / TRAMPOLINE_SIZE;
6 vaulter_addr = get_vaulter(index);
7 __asm mov eax, vaulter_addr
8 EPILOGUE // pop secure stack frame
9 __asm jmp eax
10 }

Listing 3.3. Vault Dispatch implementation (abbreviated)

The implementation therefore enforces the control-flow policy in four steps: (1) CFI

guard code at the call site ensures that the call may only target trampolines assigned to

permissible trusted callees. (2) The dispatcher implementation exclusively calls the vaulter

that mediates the CFI-validated callee. (3) The vaulter implementation enforces the callee’s

OFI contract and exclusively calls the callee it guards. (4) The trusted callee never receives

caller-writable object vtables; it only receives immutable proxy objects whose methods re-

validate call destinations at time-of-callback. This secures the trusted callee against attacks

that try to corrupt or replace the underlying object’s vtable.

3.4.2.2 V-Vault Dispatch

Dispatching virtual calls is similar but requires more steps. Listing 3.4 sketches its imple-

mentation. In this case the caller-provided this pointer is retrieved along with the trampoline

index (lines 3 and 6). Since the destination is a vaulter, valid this pointers are always ceiling

66



1 void VVaultDispatch() {
2 __asm pop ecx
3 __asm mov eax, [esp+4]
4 PROLOGUE // create secure stack frame
5 __asm mov ret_addr, ecx
6 __asm mov ceiling_proxy_object, eax
7 index = (vtrampoline_pool_base − ret_addr) / TRAMPOLINE_SIZE;
8 trusted_object = floor(ceiling_proxy_object);
9 if (!trusted_object) security_violation();
10 v_vaulter = get_v_vaulter(ceiling_proxy_object, index);
11 __asm mov eax, trusted_object
12 __asm mov [ebp+8], eax
13 __asm mov eax, v_vaulter
14 EPILOGUE // pop secure stack frame
15 __asm jmp eax
16 }

Listing 3.4. Virtual Vault Dispatch implementation (abbreviated)

proxy objects. OFI applies the floor mapping (b·c) to recover a reference to the trusted

function it proxies (line 8). If this fails, a counterfeit object is detected, so OFI aborts with

a security violation (line 9). Otherwise the correct vaulter is computed from the ceiling

proxy and the index (line 10), the callee’s this pointer is replaced with the proxied object

(lines 11–12), and the vaulter is tail-called (line 15).

3.4.2.3 Bounce Dispatch

Dispatching non-virtual flows from trusted to untrusted modules is analogous to the vault

dispatching procedure (Listing 3.3), except that the indexing is into the chute pool rather

67



1 void Bouncer() {
2 PROLOGUE // create untrusted callee stack frame

4 // switch to new fiber for down part of bouncer
5 childinfo[0] = &parent_stack;
6 childinfo[1] = argsize;
7 childinfo[2] = untrusted_callee_addr;
8 childfiber = CreateFiber(0, BouncerDown, childinfo);
9 SwitchToFiber(childfiber);

11 // up part of the bouncer: return from untrusted callee
12 DeleteFiber(childfiber);
13 r = TlsGetValue(tlsindex);
14 enforce_ret_contract(r); // run Eb·c[[τ ′]]out (see Fig. 3.4)
15 enforce_out_contract(); // run Eb·c[[τ ]]out (see Fig. 3.4)

17 // clean stack and return to trusted caller
18 __asm mov eax, r
19 __asm mov ecx, argsize
20 EPILOGUE // pop secure stack frame
21 __asm pop edx
22 __asm add esp, ecx
23 __asm push edx
24 __asm ret
25 }

Listing 3.5. Bouncer implementation (abbreviated)

68



1 void BouncerDown() {
2 // initialize callee stack
3 __asm sub esp, childinfo[1]
4 __asm mov esi, childinfo[0]
5 __asm mov edi, esp
6 __asm rep movs byte ptr [edi], byte ptr [esi]
7 __asm push offset return_trampoline

9 enforce_in_contract(); // run Ed·e[[τ ]](in) (see Fig. 3.4)

11 __asm mov eax, childinfo[2]
12 CFI_VALIDATE(eax)
13 __asm jmp eax
14 }

Listing 3.6. BouncerDown implementation (abbreviated)

than the trampoline pool, and the dispatcher targets bouncers rather than vaulters. The

callee-provided return address is also replaced with the address of OFI’s return trampoline,

so that it can mediate the return.

The bouncer implementation(s) invoked by the dispatcher (see Listing 3.5) first switch

to a fresh, callee-writable stack (lines 2–9), to prevent the untrusted callee from corrupting

trusted caller-owned stack frames before it returns. SFI memory guards prevent the callee

from writing into the protected, caller-owned stack. OFI contracts carry sufficient informa-

tion to implement this stack-switching transparently. For example, the contracts reveal the

size of the topmost (shared) activation frame and the calling convention, allowing that frame

to be temporarily replicated on both stacks.

69



1 void VBouncerDown() {
2 // initialize callee stack
3 __asm sub esp, childinfo[1]
4 __asm mov esi, childinfo[0]
5 __asm mov edi, esp
6 __asm rep movs byte ptr [edi], byte ptr [esi]
7 __asm push offset return_trampoline

9 enforce_in_contract(); // run Ed·e[[τ ]]in (see Fig. 3.4)

11 // get virtual function address through ’’this’’ argument
12 __asm mov eax, [esp+4]
13 __asm mov eax, [eax]
14 __asm mov eax, [eax+childinfo[2]]
15 CFI_VALIDATE(eax)
16 __asm jmp eax
17 }

Listing 3.7. Virtual Bouncer-down implementation (abbreviated)

To facilitate efficient stack-switching, we leverage the Windows Fibers API (Duffy, 2008).

In the trusted-to-untrusted direction, we first create a child fiber. The fiber’s stack is ar-

ranged so that its return address targets the return trampoline, and the “down” part (see

Listing 3.6) of the bouncer implementation (lines 1–14) is the child fiber’s start address.

The “down” implementation copies the arguments to the new stack (lines 3–6) and then

enforces the relevant typing contract on in-arguments (line 9) as described in §3.3.2, before

70



falling through to the untrusted callee (lines 11–13). Crucially, the underlying object’s

method pointer is re-validated at time-of-call (line 12), to thwart CODE-COOP attacks.

On return, the return trampoline switches back to the parent fiber, which invokes the

“up” half of the bouncer (lines 12–24). This enforces the typing contracts for return values

and out-arguments (lines 14–15) as described in §3.3.2 before returning to the trusted caller.

3.4.2.4 V-Bounce Dispatch

Dispatching virtual calls from trusted to untrusted modules is analogous to the bouncer dis-

patching procedure (Listing 3.7), except that the child is passed a vtable index rather than a

callee entry point address. An extra step is therefore required within the “down” implemen-

tation to recover the correct callee method address from the “this” pointer’s vtable (lines 12–

14). Again, the result is re-validated at time-of-call (line 15) to block CODE-COOP attacks.

3.4.2.5 Return Trampoline

Whenever the trusted caller goes through a bouncer to an untrusted callee, the bouncer

creates a new stack in which the return address targets OFI’s return trampoline. CFI guards

for inter-module return instructions must therefore permit flows to the return trampoline in

place of the validated return address. For example, if the underlying CFI system enforces

return-flows via a shadow stack, it must validate the return address on the shadow stack

as usual, but then allow returning to the return trampoline instead. The return trampoline

flows to the “up” half of the bouncer mediator, which returns to the CFI-validated return

address stored on the shadow stack. This is the only piece of OFI’s implementation that

requires explicit cooperation from the underlying CFI implementation.

71



3.4.3 Automated Mediator Synthesis

When trusted interfaces are specified in a machine-readable format, mediator implementa-

tions for them can be automatically synthesized from callee type signatures (see §3.3.2). Such

automation becomes a practical necessity when interfaces comprise thousands of methods or

more.

Unfortunately, the only machine-readable specifications of many real-world APIs are as

C++ header files, which can be quite complex due to the power of C’s preprocessor language,

compiler-specific pragmas, and compiler-predefined macros. For example, the Windows.h

header, which documents the Windows API, defines millions of symbols and macros spanning

hundreds of files, and is not fully interpretable by any tool other than Microsoft Visual C++

in our experience. The best tools for parsing them are the C++ compilers intended to

consume them.

We therefore innovated a strategy of conscripting C++ compilers to interpret interface-

documenting header files for us, using the resulting information to automatically synthesize

mediation library code. Our strategy achieves static reflective programming for C++ without

modifying the compiler, language, or header files. Specifically, our synthesis tool is a C++

program that #includes interface headers, and then reflects over itself to inspect function

prototypes, structures, and their types. To achieve reflection on structures (which is not

supported by C++17 (Chochlík and Naumann, 2016)) the program reads its own symbol file

in a multi-pass compilation.

Figure 3.6 illustrates the synthesis process. The interface header, list of exported func-

tions (dumped from the trusted library’s export table), and synthesizer source code are first

compiled to produce a debug symbol file (e.g., PDB file). Our Reflector tool parses the

symbol file to produce C++ templates that facilitate first-class access to the static types

of all constituent structure and class members. By including the resulting templates into a

second compilation pass, the program reflects upon itself and synthesizes the source code for

72



trusted binary

PE parser

export list

.h file

synthesizer
source code

C++
compiler
(pass 1)

symbol file

Reflector

templates
C++

compiler
(pass 2)

mediator source

C++
compiler
(pass 3)

mediator
library

Figure 3.6. Automated mediator synthesis

appropriate mediation code (viz., vaulters and bouncers). A third compilation pass applied

to this synthesized mediation code yields the final mediation library.

As an example, Listing 3.8 shows an automatically synthesized vaulter implementation

for the TrySubmitThreadpoolCallback Windows API function. In this case, the synthesizer

has discovered that the trusted callee treats the top stack argument as a code pointer to an

untrusted callee expecting 8 bytes of stack arguments (line 2). In addition, stack offset 8

holds a pointer to a structure which, if non-null (line 5), contains two more code pointers

to untrusted callees expecting 8 bytes of stack arguments each (lines 6–7). Finally, since

73



1 void TrySubmitThreadpoolCallback_vaulter(char x) {
2 fix_pointer(&x, 8);
3 { _TP_CALLBCK_ENVIRON_V3∗ x =
4 ∗((_TP_CALLBACK_ENVIRON_V3∗∗) (&x + 8));
5 if (x) {
6 fix_pointer(&x→CleanupGroupCancelCallback, 8);
7 fix_pointer(&x→FinalizationCallback, 8);
8 }
9 }
10 EPILOGUE // pop stack frame
11 __asm jmp TrySubmitThreadpoolCallback
12 }

Listing 3.8. Synthesized vaulter implementation

no out-arguments or return values need sanitization, the vaulter safely tail-calls the trusted

callee for more efficient dispatch (line 11).

The typing information necessary to synthesize this implementation is exposed by our

Reflect tool as a template of the form shown in Listing 3.9. The template introduces

Reflect<τ>::specialize as a general mechanism for specializing polymorphic template

functions to the particular field types of any desired structure type τ . Specifically, lines 7–10

declare a function parameter f whose arguments are specialized to the field types of τ . When

called, Reflect<τ>::specialize(o, f) therefore calls f with a series of pointer arguments

specialized to the types and locations of object o’s fields. (Reference o is used only for pointer

arithmetic, so need not be an actual object instance.)

The specialized polymorphic function can then iterate over its type parameters using SFI-

NAE programming idioms (Vandevoorde and Josuttis, 2002). For example, Listing 3.10 uses

the template to generate OFI mediator code to secure a security-relevant structure argument

74



1 typedef _TP_CALLBACK_ENVIRON_V3 typ1162;

3 template<> struct Reflect<typ1162> {
4 template <typename RetTyp>
5 static inline auto specialize(
6 typ11623 ∗obj,
7 auto(f)(decltype(typ1162::Version)∗, . . . ,
8 decltype(typ1162::CleanupGroupCancelCallback)∗,
9 decltype(typ1162::FinalizationCallback)∗, . . .
10 )→RetTyp
11 )→RetTyp
12 {
13 return f(
14 &(obj→Version), . . . ,
15 &(obj→CleanupGroupCancelCallback),
16 &(obj→FinalizationCallback), . . .
17 );
18 }
19 }

Listing 3.9. Reflective template (abbreviated)

to an API function. Lines 1–2 first prototype a generic recursive template function that will

recurse over all fields of an arbitrary structure. Lines 4–5 define the base case of zero fields.

Lines 7–11 implement the particular case of enforcing the contract for a field of type FARPROC

(i.e., generic function pointer field). (This is just one representative case; the full implemen-

75



1 template <typename... FieldTypes>
2 void enforce_contract(FieldTypes...);

4 template <>
5 void enforce_contract() {}

7 template <typename... FieldTypes>
8 void enforce_contract(FARPROC ∗field1, FieldTypes... rest) {
9 // Generate C code to enforce FARPROC contract here...
10 enforce_contract(rest);
11 }

13 Reflect<typ1162>::specialize<void>((typ1162∗)0, enforce_contract);

Listing 3.10. Mediator synthesis via template recursion

tation has cases for all the types in Figure 3.3.) Code in line 9 treats argument field1 as

an index into the object layout where the field resides at runtime on the stack or heap.

Line 13 demonstrates specializing the generic template to a particular class type. The

Reflect template in Listing 3.9 is applied to specialize the generic enforce_contract tem-

plate. This allows mediation code for tens of thousands of API methods to be automatically

synthesized from just a few hundred lines of hand-written template code, keeping OFI’s

trusted computing base relatively small and manageable.

3.5 Evaluation

Performance evaluation of OFI on CPU benchmarks (e.g., SPEC CPU2006) exhibits no mea-

surable overhead because CPU benchmarks do not typically access object-oriented system

76



APIs within loops, which is where OFI introduces overhead. To evaluate the effectiveness

of OFI, we therefore tested our prototype with the set of binaries listed in Table 3.1. The

test binaries were chosen to be small and simple enough to be amenable to fully automated

binary reverse engineering and instrumentation (whose efficacy is orthogonal to OFI), yet

reliant upon large, complex system APIs representative of typical consumer software (and

therefore an appropriate test of our approach’s practical feasibility). All experiments de-

tailed below were performed on an Intel Xeon E5645 workstation with 24 GB RAM running

64-bit Windows 7. We have no source code for any of the test binaries.

Column 2 reports a count of the total number of libraries loaded (statically and dy-

namically) by each test program, and column 3 reports a count of all methods exported

by those libraries. On average, each program loads 12 libraries that export about 7,500

trusted methods. Taking these statistics into consideration, although the test binaries are

small-to-moderate in size, the trusted interfaces that must be supported to accommodate

them are large. In total, we need to mediate the interfaces of 54 trusted system libraries

that collectively expose 18,059 trusted methods, many of which have challenging method

signatures involving code pointers, recursive types, class subtyping, dependent types, and

object (or object-like) data structures.

3.5.1 Transparency

Without OFI extensions, none of the test programs ran correctly after CFI instrumentation.

All COM-dependent operations—including dialog boxes, certain menus, and in some cases

even application start-up—failed with a control-flow violation.

After adding OFI to the instrumentation, we manually tested all program features sys-

tematically. All features we tested exhibited full functionality. While we cannot ensure that

such testing is exhaustive, we consider it similar to the level of quality assurance to which

such applications are typically subjected prior to release.

77



Ta
bl
e
3.
1.

In
te
ra
ct
iv
e
C
O
M

ap
pl
ic
at
io
ns

us
ed

in
ex
pe

rim
en
ta
le

va
lu
at
io
n

F
ile

Si
ze

C
od

e
Se

gm
en
t
Si
ze

B
in
ar
y

P
ro
gr
am

#
D
LL

s
#

In
te
rf
ac
e
Fu

nc
s

O
ld

(K
B)

N
ew

(K
B)

In
cr
ea
se

(%
)

O
ld

(K
B)

N
ew

(K
B)

In
cr
ea
se

(%
)

R
ew

ri
ti
ng

T
im

es
(s
)

ca
lc

17
11
,7

55
75

8
1,

26
3

67
33

0
51

4
56

19
.0

0
cm

d
8

7,
32

1
29

6
52

1
76

13
9

22
5

62
5.

85
ex
pl
or
er

27
15
,3

24
2,

55
5

3,
61

1
41

70
1

1,
05

6
51

29
.6

0
m
ag
ni
fy

16
14
,0

73
61

5
75

1
22

91
13

6
50

4.
74

M
C
FG

_
Ex

pl
oi
t

7
2,

07
4

11
34

20
9

4
23

47
5

0.
89

m
in
es
we

ep
er

8
6,

56
0

11
7

15
3

31
16

35
11

9
1.

08
no

te
pa

d
14

10
,4

41
17

6
24

8
41

43
72

67
2.

21
os
k

19
13
,6

62
63

1
84

9
35

14
7

21
8

48
7.

10
po

we
rs
he
ll

9
6,

31
8

44
2

48
9

11
36

47
31

2.
32

so
lit
ai
re

8
6,

37
9

56
10

9
95

24
54

12
5

1.
44

W
in
R
A
R

17
7,

53
6

1,
37

4
2,

92
8

11
3

1,
00

8
1,

55
4

54
70
.9

2
w
m
pl
ay
er

9
6,

99
7

16
1

18
6

16
12

25
10

8
0.

84

m
ed
ia
n

12
7,

42
9

36
9

50
5

41
%

67
10

4
59

%
3.

53
s

78



3.5.2 Performance Overheads

Rewriting Time and Space Overheads. Table 3.1 reports the percentage increase of

the file size and code segment, as well as the time taken by OFI to rewrite each binary. Our

prototype rewrites about 60KB of code per second on average. A rewritten binary increases

in size by about 41%. Code segment sizes increase by about 59%. The large percentage

increases exhibited by the MCFG_Exploit experiment (209% and 475%, respectively) are

artifacts of the exceptionally small size of that program. (It is the synthetic MCFG exploit

test reported in Section 3.2.2.)

Runtime Performance. Figure 3.7 reports OFI runtime overheads of the programs in

Table 3.1. Since almost all object exchanges occur during application startup and in response

to user events (e.g., mouse clicks), we created macros that open, manipulate, and close each

test program as rapidly as possible. By running such a simulation in a loop for 1000 iterations,

we obtain an average running time. We measure the runtime overhead imposed by OFI as

the ratio of time spent within the OFI modules to the total runtime.

The median overhead is 0.34%; and no program has overhead larger than 2.00%, except

for MCFG_Exploit—our proof-of-concept CODE-COOP exploit implementation. Its size is

small, and its only runtime operation initializes a COM object, which involves OFI media-

tion, resulting in abnormally high percentage overheads. The remaining tests are common

consumer apps. Of these, the calculator program returns the worst overhead of 1.82%. This

is due to the fact that switching the calculator’s mode between standard, scientific, pro-

grammer, and statistics requires frequent OFI mediation. Each such switch reconstructs the

GUI via 3,500 method calls that involve shared code and/or object pointers, and thus OFI

mediation. Nevertheless, we consider the 1.82% overhead to be modest and unnoticeable by

users. All other test programs have runtime overheads below 1%, and the calculator’s <2%

worst-case overhead only occurs on mode changes.

79



0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24%

calc

cmd

explorer

magnify

MCFG_Exploit

minesweeper

notepad

osk

powershell

solitaire

WinRAR

wmplayer

MEDIAN 0.34%

1.82%
0.3%
0.23%
0.02%

14.02%
0.53%

0.23%
0.05%
0.37%
0.43%

1%
0.14%

Figure 3.7. OFI runtime overhead

The performance overheads reported in Figure 3.7 attempt to measure semi-realistic us-

age scenarios for user-interactive applications, which tend to be the ones that use COM the

most. However, to derive a worst-case performance bound for OFI, we also created a set of

micro-benchmarks. Each implements a non-interactive program that creates, manipulates,

and destroys COM objects in a tight loop. Technical details for each benchmark are pro-

vided in Table 3.2. Although not realistic, these tests can measure the extreme worst-case

scenario that a program constantly crosses the trust boundary without performing any other

computation, triggering OFI mediation continuously.

Micro-benchmarking yielded a median overhead of 32.44%, with a maximum of just over

50%. We know of no realistic application that would exhibit these overheads in practice, but

80



Table 3.2. Micro-benchmark overheads

No. Description Interfaces Functions Overhead

#1 (1) creates object,
(2) destroys object

IUnknown ::Release() 50.67%

#2 (1) creates object,
(2) raises and lowers ref count,
(3) destroys object

IUnknown ::AddRef(), Release() 41.30%

#3 (1) creates open dialog obj,
(2) adds controls,
(3) destroys object

IFileOpenDialog ::QueryInterface(),
Release()

41.69%

IFileDialogCustomize ::AddPushButton(),
AddMenu(), AddText(),
AddControlItem(),
Release(),

#4 (1) creates open dialog obj,
(2) binds file to shell object,
(3) retrieves file path,
(4) destroys all objects

IFileOpenDialog ::SetFileName(),
Show(), GetResult(),
Release()

32.22%

IShellItem ::GetDisplayName(),
Release()

#5 (1) creates open dialog obj,
(2) binds files to array,
(3) binds elements to shell
objects,
(4) retrieves the file paths,
(5) destroys all objects

IFileOpenDialog ::GetOptions(),
SetOptions(),
SetFileName(), Show(),
GetResults(), Release()

32.44%

IShellItemArray ::GetCount(),
GetItemAt(), Release()

IShellItem ::GetDisplayName(),
Release()

#6 (1) creates open dialog obj,
(2) binds file to shell object,
(3) creates save dialog object,
(4) sets save-as default,
(5) binds saved file to new
shell object,
(6) retrives path of new shell
object,
(7) destroys all objects

IFileOpenDialog ::SetFileName(),
Show(), GetResult(),
Release()

31.76%

IShellItem ::GetDisplayName(),
Release()

IFileSaveDialog ::SetSaveAsItem(),
SetFileName(), Show(),
GetResult(), Release()

#7 (1) creates save dialog object,
(2) binds saved file to shell
object,
(3) retrieves the file path,
(4) creates shell link object,
(5) sets path as link target,
(6) saves link in persist
storage,
(7) destroys all objects

IFileSaveDialog ::SetFileName(),
Show(), GetResult(),
Release()

31. 69%

IShellLink ::SetPath(),
SetDescription(),
QueryInterface(),
Release()

IPersistFile ::Save(), Release()

81



Table 3.3. Attack simulation results

Security Aborts
Binary
Program # Attacks

Within
Callee

After
Return

Within
OFI

calc 5 1 4 0
MCFG_Exploit 1 0 0 1
notepad 5 0 5 0
powershell 5 1 4 0
WinRAR 5 3 2 0

they reveal the overhead of instrumentation relative to the non-instrumented inter-module

control-flow paths.

3.5.3 Security Evaluation

To assess OFI’s response to attacks, we launched synthetic vtable corruption and COOP

attacks against some programs rewritten by our prototype. We simulate COOP attacks by

temporarily modifying the v-vault dispatcher to occasionally choose the wrong vaulter. This

simulates a malicious caller who crafts a counterfeit object whose vtable pointer identifies a

structurally similar (e.g., similarly typed) vtable but not the correct one.

Table 3.3 reports the attack simulation results. Each program in column 1 is exposed

to 5 attacks. In each case, the attack quickly results in a security abort and premature

termination; no control-flow policy violations were observed. Among the 20 attacks, the

callee aborted in 5 cases (column 3), and the caller aborted after return in 15 cases (column 4).

Most of the security aborts take the form of SFI memory access rejections (e.g., when an

untrusted caller attempts to write to an SFI-protected, callee-owned object). This is because

OFI ensures that even if an incorrect vaulter is chosen, control still flows to a vaulter that

enforces the contract demanded by its callee, and therefore the callee does not receive any

policy-violating objects or code pointers. The callee might nevertheless receive incorrect

82



Ta
bl
e
3.
4.

Br
ow

se
r
ex
pe

rim
en
ta
lr
es
ul
ts

F
ile

Si
ze

C
od

e
Se

gm
en
t
Si
ze

B
in
ar
y

P
ro
gr
am

#
D
LL

s
#

In
te
rf
ac
e
Fu

nc
s

O
ld

(K
B)

N
ew

(K
B)

In
cr
ea
se

(%
)

O
ld

(K
B)

N
ew

(K
B)

In
cr
ea
se

(%
)

R
ew

ri
ti
ng

T
im

es
(s
)

fir
ef
ox

.e
xe

1
1,

39
3

37
6

52
2

39
80

14
6

82
15
.3

6
br
ow

se
rc
om

ps
.d
ll

8
7,

61
1

43
10

0
13

3
28

57
10

3
5.

15
fre

eb
l3
.d
ll

3
4,

16
6

32
9

68
8

10
9

23
6

35
9

52
41
.7

7
lg
pl
lib

s.d
ll

2
3,

35
9

50
11

0
12

0
36

59
64

6.
14

m
oz
gl
ue
.d
ll

3
3,

37
4

10
4

23
8

12
9

84
13

4
59

15
.3

3
m
sv
cp
12
0.
dl
l

2
3,

35
9

42
9

84
8

98
39

2
41

8
7

12
6.

21
ns
s3
.d
ll

5
4,

42
2

1,
66

2
3,

97
2

13
9

1,
36

0
2,

31
0

70
24

2.
72

ns
sd
bm

3.
dl
l

2
3,

35
9

84
21

6
15

7
72

13
1

83
14
.2

7
ns
sc
kb

i.d
ll

2
3,

35
9

38
6

46
9

22
40

82
10

5
9.

29
sa
nd

bo
xb

ro
ke
r.d

ll
5

5,
19

3
19

8
38

1
92

10
0

18
2

82
20
.0

6
so
fto

kn
3.
dl
l

2
3,

35
9

13
7

33
9

14
7

11
2

20
2

81
20
.6

7
xu

l.d
ll

36
12
,6

57
51
,2

51
10

4,
11

6
10

3
31
,1

84
52
,8

65
70

5,
66

2.
68

m
ed
ia
n

3
3,

36
7

26
4

42
5

11
5%

92
16

4
75

%
17
.7

1s

83



(but not policy-violating) arguments, such as data pointers into inaccessible memory. In

such cases, the callee safely aborts with a memory access violation. Other times the callee

runs correctly but returns data or code pointers not expected by the caller, whereupon CFI

or SFI protections on the caller side intervene.

The MCFG_Exploit attack (see Section 3.2.2) is detected within the OFI vaulter code

when OFI identifies the counterfeit vtable.

3.5.4 Scalability

To exhibit OFI’s scalability, we applied our prototype to Mozilla Firefox (version 48.0.1) for

Windows, which is larger and more complex than our other test applications in Table 3.1.

Like many large software products, Firefox is heavily multi-module—most of its functionali-

ties are implemented in whole or part within application-level DLLs that ship along with the

main executable. Applying OFI merely to firefox.exe hence does not provide much security.

We therefore treated all modules in Table 3.4 as untrusted for this experiment. Similar to Ta-

ble 3.1, column 2 in Table 3.4 counts the number of trusted libraries imported by each module,

and column 3 counts the methods exported by each library. The other columns in Table 3.4

report file size increase, code segment size increase, and the time that OFI took to rewrite

each module. On average, file sizes increase by about 115%, and code segments by about 75%.

One problem that we encountered was that Firefox’s Just-In-Time (JIT) JavaScript com-

piler performs runtime code generation, which our Reins prototype does not yet support. (It

conservatively denies execution access to writable memory.) Future work should overcome

this by incorporating a CFI-supporting JIT compiler, such as RockJIT (Niu and Tan, 2014b).

As a temporary workaround, for this experiment we installed a vectored exception handler

that catches and redirects control-flows to/from runtime-generated code through OFI. This

is potentially unsafe (because the runtime-generated code remains uninstrumented by CFI)

and slow (because exception handling introduces high overhead), but allowed us to test

84



preservation of Firefox’s functionalities in the presence of OFI. All browser functionalities

we tested exhibited full operation after OFI instrumentation.

To estimate the performance impact of OFI on the application, we conducted the same

evaluation methodology as reported in Section 3.5.2, but subtracted out the overhead of

the extra context-switches introduced by the exception handler. This yields an estimated

overhead of about 0.84%.

3.6 Conclusion

OFI is the first work to extend CFI security protections to the significant realm of mainstream

software in which one or more object-exchanging modules are immune to instrumentation. It

does so by mediating object exchanges across inter-module trust boundaries with the intro-

duction of tamper-proof proxy objects. The mediation strategy is source-agnostic, making it

applicable to both source-aware and source-free CFI approaches. A type-theoretic basis for

the mediation algorithm allows for automatic synthesis of OFI mediation code from interface

description languages.

A prototype implementation of OFI for Microsoft COM indicates that the approach is

feasible without access to source code, and scales to large interfaces that employ callbacks,

event-driven programming, interface inheritance, datatype recursion, and dependent typing.

Experimental evaluation shows that OFI exhibits low overheads of under 1% for some real-

world consumer software applications.

85



CHAPTER 4

TOWARDS INTERFACE-DRIVEN COTS BINARY HARDENING1

Chapter 3 introduces OFI, which extends CFI to scale to consumer software with large,

widely deployed object-oriented interfaces. Based on the general binary hardening algorithm

presented in Chapter 3, this chapter presents a detailed case study that applies the algorithm

to a production-level, event-driven, Windows COTS application.

The remainder of the chapter proceeds as follows: Section 4.1 reviews why CFI suffers

difficulty of hardening interface-driven cots software. Next, Section 4.2 demonstrates how

applying previously published CFI hardening to application code without applying the same

hardening to interoperating system modules results in exploitable critical vulnerabilities.

Section 4.3 summarizes our interface-driven approach for closing such vulnerabilities without

modifying system modules, followed by a detailed case-study in Section 4.4. Section 4.5

discusses future work directions, and Section 4.6 concludes.

4.1 Introduction

Hardening binary software applications against low-level exploits (e.g., control-flow hijacking

and code reuse attacks (Sadeghi et al., 2015; Crane et al., 2015)) is widely recognized as an

important step in defending software ecosystems. Software Fault Isolation (SFI) (Wahbe

et al., 1993) and Control-Flow Integrity (CFI) (Abadi et al., 2005) are two important exam-

ples of such hardening. Implementation approaches include XFI (Erlingsson et al., 2006),

PittSFIeld (McCamant and Morrisett, 2006), Reins (Wartell et al., 2012b), STIR (Wartell

et al., 2012a), CCFIR (Zhang et al., 2013), bin-CFI (Zhang and Sekar, 2013), BinCC (Wang

et al., 2015), Lockdown (Payer et al., 2015) TypeArmor (van der Veen et al., 2016) and

1This chapter contains material previously published as: Xiaoyang Xu, Wenhao Wang, Kevin W. Hamlen,
and Zhiqiang Lin. “Towards Interface-Driven COTS Binary Hardening.” In Proceedings of the 3rd Workshop
on Forming an Ecosystem Around Software Transformation (FEAST), pp. 1909–1924, November 2017.

86



OCFI (Mohan et al., 2015). However, most hardening techniques in the literature assume

that interoperating software components are all hardened in the same way, using the same

code transformation algorithm. For example, XFI’s binary transformation entails instru-

menting all reachable control-flow transfer instructions in all modules with guard code that

checks for XFI-added security labels at jump destinations. This uniformity of enforcement

is a prerequisite assumption of XFI’s proof of safety (Abadi et al., 2009).

VTable protections, which include source-aware (Tice, 2012; Jang et al., 2014; Zhang

et al., 2016; Bounov et al., 2016; Kuznetsov et al., 2014; Crane et al., 2015, 2013; Haller

et al., 2015) and source-free (Gawlik and Holz, 2014; Zhang et al., 2015; Prakash et al.,

2015) approaches for preventing or detecting vtable corruption at control-flow operations

involving vtable method pointers, likewise typically require that all call sites where such

pointers might be dereferenced must be uniformly instrumented with common guard code in

order to be effective. If some pointers flow to call sites located within other modules compiled

with a different pointer protection mechanism, control-flow security cannot be guaranteed.

Unfortunately, a large number of mission-critical software environments include diverse,

interoperating components that are not all secured in exactly the same way. For example, the

user interfaces of many critical infrastructure applications are implemented atop Microsoft

Windows OSes, which purvey essential services to binary applications via closed-source, bi-

nary system libraries. These libraries are difficult to modify for a variety of reasons: some are

digitally signed, others are aggressively optimized in ways that frustrate accurate disassem-

bly even by the best reverse-engineering tools, and some are loaded dynamically (e.g., from

cloud services) as applications execute and discover they need particular services. Similarly,

many event-driven Linux applications are implemented atop toolkits such as GTK+2, which

dynamically serve user interface widgets and supporting library code on-demand, and which

2https://www.gtk.org

87

https://www.gtk.org


therefore may have been separately compiled with a diverse variety of different protection

strategies.

Although recompiling the universe of all software components with some uniform protec-

tion scheme is obviously one option for coping with this problem, doing so is unrealistic for

many operating contexts. This motivates the development of a more modular methodology

for hardening application code that relies on services implemented with diverse protections,

but without the need to modify or even disassemble interoperating binary modules on which

the application relies.

4.2 Attack Example

CFI and SFI binary hardening algorithms typically work by instrumenting all indirect jump

sites in the software with guard code that blocks jumps to illegal destinations at runtime.

This prevents many forms of control-flow hijacking, including many code-reuse attacks. How-

ever, when the enforcement cannot retrofit all modules, jumps in unmodified modules may

remain unguarded, or guarded by a different and possibly inconsistent safety mechanism.

This becomes problematic when interoperating modules exchange code pointers— a com-

mon practice of object-oriented software that shares objects. In such cases, the disparate

guard code can fail to enforce the protection scheme expected by cross-module callees.

One approach to this problem is to secure the objects passed to uninstrumented modules

at call sites within the instrumented modules (e.g., Tice et al., 2014). But this approach

fails when trusted modules retain persistent references to the object, or when their code

executes concurrently with untrusted module code. In these cases, verifying the object at

the point of exchange does not prevent the untrusted module from subsequently modifying

the vtable pointer to which the trusted module’s reference points (e.g., as part of a data cor-

ruption attack). These COnfused DEputy-assisted Counterfeit Object-Oriented Programming

88



1
Untrusted Module
CoCreateInstance(〈clsid〉, . . . , 〈iid1〉, &o1);

2 o1→RegisterEventCallbackInterface(. . ., o2, . . .);

3
Trusted Module
o2→AddRef();

Listing 4.1. Code that registers a running application Windows Image Acquisition (WIA)
event notification

(CODE-COOP) attacks (Wang et al., 2017) deputize the receiving module (Hardy, 1988) into

violating the control-flow policy by passing them counterfeit objects (Schuster et al., 2015).

Before a detailed walkthrough of a CODE-COOP attack, we first show how objects are

typically exchanged between modules with object-oriented interfaces. Listing 4.1 provides

a code snippet dissassembled from a Microsoft Paint binary. For this example, we assume

that the Paint application code is untrusted, whereas the system DLLs it loads are trusted.

The application code first creates a shared object o1 (line 1), where 〈clsid〉 and 〈iid1〉 are

numeric identifiers for the desired system class and its IWiaDevMgr interface, respectively.

Method RegisterEventCallbackInterface is then invoked to register a running application

Windows Image Acquisition (WIA) event notification (line 2). This method takes argument

o2, which is a pointer to the IWiaEventCallback interface that the WIA system uses to send

the event notification.

While executing RegisterEventCallbackInterface, the trusted system module calls

object o2’s Addref method (line 3), which increments the reference count for the object.

Listing 4.2 exhibits the code at the assembly level. The object is first moved to register

EAX (line 1), and its method table is moved to register ECX (line 2). Then all arguments are

pushed onto the stack (line 4), including the object (line 6). In the end, the corresponding

method is called by indexing the method table (line 7).

89



1 MOV EAX, 〈object〉
2 MOV ECX, DWORD PTR DS:[EAX]
3 . . .

4 PUSH 〈arguments〉
5 . . .

6 PUSH EAX
7 CALL DWORD PTR DS:[ECX + 〈index〉]

Listing 4.2. Function call in assembly

Our attacker model assumes that untrusted modules might be completely malicious, con-

taining arbitrary native code, but that they have been transformed by a CFI algorithm into

code compliant with the control-flow policy. Unfortunately, the code snippet in Listing 4.1

is vulnerable to CODE-COOP attack even with CFI protections enabled for the untrusted

module. Such protections prevent the function call on line 2 from violating the control-flow

policy, but line 3 is not protected in the same way because it resides in an unmodifiable

system library. Argument o2 passed into the trusted module can therefore potentially be

corrupted to escape the CFI sandbox.

An object reference o2 cannot be simply treated as a function pointer (e.g., for a signature

check) because the reference points to an object containing a vtable pointer, as illustrated

in Figure 4.1. The vtable stores many method pointers. Some of these methods create and

return more objects containing new vtables and method pointers when called, creating a

complex web of interconnected code pointer exchanges. Since dynamically generated vta-

bles frequently reside in untrusted, writable memory, a data corruption vulnerability (e.g.,

buffer overwrite) can potentially replace the vtable of o2 with a counterfeit one. This mali-

cious replacement can happen after the function signature check (e.g., if the application is

multithreaded or the callee retains a persistent reference to the object).

90



untrusted trusted

o1, object reference
created by calling
CoCreateInstance

IWiaDevMgr vtable pointer

QueryInterface

AddRef

Release

EnumDeviceInfo

CreateDevice

SelectDeviceDlg

SelectDeviceDlgID

GetImageDlg

RegisterEventCallbackProgram

RegisterEventCallbackInterface

RegisterEventCallbackCLSID

AddDeviceDlg

o2, object reference
passed by calling
IWiaDevMgr::

RegisterEventCallbackInterface

IWiaEventCallback vtable pointer

QueryInterface

AddRef

Release

ImageEventCallback

Figure 4.1. Object binary representation

Thus, the counterfeit vtable can reroute object o2’s method Addref call to any location

specified by the attacker (line 3). The policy mismatch occurs because the destination of

the Addref call is computed from an untrusted code pointer, but the call site is located in a

trusted, unmodifiable system library and cannot be instrumented directly with guard code.

Cross-module control-flow hijacks are recognized as a significant class of code-reuse at-

tacks in practice. For example, they have been leveraged to hijack Chrome from within

Google Native Client by exploiting differences between the CFI policies enforced by different

interoperating browser modules (Obes and Schuh, 2012). Prior work has advanced compiler-

side solutions that require recompiling all modules to the same protection strategy (Niu and

Tan, 2014a), while OFI (Wang et al., 2017) is currently the only proposed binary solution.

91



Our work is the first to admit and harmonize differing protection strategies through

automated binary interface synthesis. The next section proposes a modular, source-free

approach to this that avoids directly modifying any trusted modules.

4.3 Technical Approach

Our proposed solution instruments untrusted application binary code in such a way that

trusted callee modules (i.e., potential victim deputies) never receive writable code point-

ers from untrusted, CFI-protected callers. Placing the entire object in read-only memory

is infeasible because objects typically contain writable data adjacent to the vtable pointer,

which cannot easily be moved without breaking the application. We therefore instead auto-

matically substitute shared objects with read-only proxy objects when they flow across an

inter-module trust boundary. All proxy objects and their vtables inhabit read-only memory

so CODE-COOP attacks cannot corrupt proxy vtables.

Instrumented modules retain direct references to the original object, allowing them to

write to data fields, but uninstrumented object recipients receive a read-only proxy. This

works because modern binary-level object exchange protocols, such as Component Object

Model (COM), enforce an abstraction layer that requires object recipients to access data

indirectly via accessor methods. (This allows shared objects to be located on remote ma-

chines during RPC.) As illustrated in Figure 4.2, our proxy objects’ methods therefore wrap

the methods of the underlying object to enforce control-flow guards that intervene whenever

object recipients attempt to call one of the object’s methods.

For each object-oriented API imported by an untrusted module, we write a wrapper in

which every shared object argument is replaced by a proxy object. Thus, when a trusted

module attempts to call a method of an object, it actually calls a wrapper method of the

proxy object. Control then flows to a dispatch subroutine. The dispatcher pops the return

address to determine the index of the method being called, and consults the stack’s this

92



...

object
reference

vtable pointer

wrapper pointer 1

wrapper pointer 2

wrapper pointer 3

wrapper pointer 4

Figure 4.2. Proxy object binary representation

pointer to identify the object. Based on this information, it selects and tail-calls a mediator

that wraps and secures the original method according to its type signature. If original

method involves object arguments, the mediator replaces them with corresponding proxies.

Finally, the mediator passes the control to the original method.

The wrappers must also sometimes introduce new proxy objects in the reverse direction

(i.e., during trusted-to-untrusted cross-module calls and returns) in order to secure methods

that return new objects or interfaces. For example, if a trusted callee returns an object whose

methods accept objects as arguments, the untrusted caller instead receives a proxy object

whose wrappers substitute objects arguments with proxies before passing control back to the

trusted module.

To assure complete mediation of these interfaces (which are often large and complex),

our approach is conservative: The CFI policy is defined to block all cross-module control-

flow edges except the ones implemented by the mediators. Inadvertent omission of an API

from the mediator library therefore provokes a security abort at runtime. In practice, the

mediator code is synthesized automatically from the interface descriptions (e.g., C header or

IDL files), so that all documented interface members are automatically included.

Our approach defends against the attack shown in Section 4.2. After hardening the code

in Listing 4.1, the shared object o1 is replaced by its proxy. Original method Register-

93



EventCallbackInterface instead invokes a wrapper method of the proxy object of o1. This

wrapper method reroutes the control to the mediator of RegisterEventCallbackInter-

face. The mediator finds that object o2 is passed from the untrusted module to the trusted

module. Then the proxy object of object o2 is generated and handed to the trusted module.

Hardware write-protections prevent the proxy object’s vtable from being corrupted. There-

fore, even without modifying the trusted module, the AddRef call is guaranteed to target a

permitted destination.

4.4 Case Study

To demonstrate how our approach can harden closed-source, binary software against CODE-

COOP attacks, and to exhibit some of the challenges, we next discuss our experience hard-

ening a simple but representative Windows application: Microsoft Paint.

4.4.1 Object-oriented Design

Paint is a simple desktop application that has been included with all versions of Windows.

Like most commercial software, it does not access system kernel services directly; rather,

its design extends system-provided classes to construct objects that inherit kernel-accessing

functionalities from their base methods. On Windows, such applications typically draw their

base classes from the Microsoft Foundation Class (MFC) Library—a shared C++ library

designed for event-driven software development. A large percentage of all Windows software

is built atop MFC, but this design presents great challenges for traditional CFI because

of the complex object exchanges it engenders at the binary level. Surveys of the prior CFI

literature (cf., Wang et al., 2017) exhibit no examples prior to OFI where CFI was successfully

evaluated against an MFC-based product without opening CODE-COOP vulnerabilities.

Since MFC is extremely tightly coupled to the applications with which it links, our

approach treats both Paint and MFC as untrusted, application-level modules and leaves the

94



Ta
bl
e
4.
1.

In
te
ro
pe

ra
tin

g
C
O
M

m
od

ul
es

us
ed

in
ca
se

st
ud

y

F
ile

Si
ze

C
od

e
Se

gm
en

t
Si

ze

M
od

ul
e

O
ld

(K
B
)

N
ew

(K
B
)

In
cr

ea
se

(%
)

O
ld

(K
B
)

N
ew

(K
B
)

In
cr

ea
se

(%
)

R
ew

ri
ti

ng
T

im
es

(s
)

m
sp
ai
nt
.e
xe

62
28

70
94

14
55

7
88

6
59

10
4.

78
m
fc
42
u.
dl
l

11
37

25
83

12
7

10
25

14
80

44
20

3.
91

95



others as trusted. To do so, we applied our automated binary retrofitting (built atop the OFI

framework) to the Paint (mspaint.exe) and MFC (mfc42u.dll) binary libraries, and placed

the retrofitted MFC in the retrofitted Paint application’s load path, thereby overriding the

system-level MFC.

Table 4.1 reports the percentage increase of the file size and code segments, as well as

the time taken to rewrite each module. After instrumenting, we manually tested all program

features of Paint systematically. All features we tested exhibited full functionality. We

measure the runtime overhead imposed by our approach as the ratio of time spent within

the wrapper modules to the total runtime. Paint has an overhead of 0.38%.

4.4.2 API Surface

Table 4.2 lists all the system APIs with object arguments that Paint and MFC called during

our experiments. There are 22 APIs from 4 different trusted modules. Column 3 reports the

type of object argument in each API. An OUT-object argument (e.g., in CoCreateInstance)

is usually an interface pointer returned from a trusted module. An IN-object argument (e.g.,

in CoLockObjectExternal) is usually an interface pointer that an untrusted module passes

to a trusted module. More complex APIs can have IN-object and OUT-object arguments

together. For example, API SHCreateShellItem passes an IShellFolder interface pointer

to shell32.dll and receives an address of a pointer to a IShellItem interface after the API

returns.

4.4.3 Object Exchanges

Table 4.3 reports the interfaces mediated by our guard code when running Paint and MFC.

Column 2 reports the number of virtual methods (including inherited methods if any) in

the vtable of each interface, and column 3 reports the trusted module to which the interface

belongs. Overall, we mediate 34 interfaces and 510 methods from 8 trusted modules. Among

96



Table 4.2. APIs with object exchanges

API DLL Object Type
CoCreateInstance ole32 OUT
CoDisconnectObject ole32 IN
CoGetClassObject ole32 OUT
CoLockObjectExternal ole32 IN
CoRegisterMessageFilter ole32 IN & OUT
CreateFileMoniker ole32 OUT
CreateStreamOnHGlobal ole32 OUT
DoDragDrop ole32 IN
GdipLoadImageFromStream gdiplus IN
GdipSaveImageToStream gdiplus IN
GetRunningObjectTable ole32 OUT
OleCreateLinkFromData ole32 IN & OUT
OleGetClipboard ole32 OUT
OleSetClipboard ole32 IN
OleIsCurrentClipboard ole32 IN
OleIsRunning ole32 IN
OleRun ole32 IN
RegisterDragDrop ole32 IN
SafeArrayPutElement olaeut32 IN
SHBindToParent shell32 OUT
SHCreateShellItem shell32 IN & OUT
SHGetDesktopFolder shell32 OUT

the interfaces and methods in Table 4.3, Table 4.4 reports the methods that have object

arguments. An object argument can also be an OUT-object or an IN-object, similar to the

APIs reported in Table 4.2.

As discussed in Section 4.3, for each API and virtual method, we synthesized a mediator

in which OFI recursively substitutes both types of object arguments with appropriate proxy

objects immediately before the cross-module call and immediately after the cross-module

return.

97



Table 4.3. COM interfaces

Interface # Methods DLL
IAccPropServices 12 oleacc
IDataObject 12 ole32
IEnumWIA_DEV_INFO 8 ole32
IMessageFilter 6 ole32
IMarshal 9 ole32
IMoniker 23 ole32
IOleClientSite 9 ole32
IPropertyStore 8 propsys
IRunningObjectTable 10 ole32
IShellFolder 13 shell32
IShellItem 8 shell32
IShellItem2 21 shell32
IStream 14 ole32
IUIApplication 6 uiribbon
IUICollection 10 uiribbon
IUICommandHandler 5 uiribbon
IUIFramework 12 uiribbon
IUIImage 4 uiribbon
IUIImageFromBitmap 4 uiribbon
IUIRibbon 6 uiribbon
IUISimplePropertySet 4 uiribbon
IUnknown 3 uiribbon
IWiaDevMgr 12 wiaservc
IWiaEventCallback 4 ole32
IWICBitmapDecoder 14 windowscodecs
IWICBitmapEncoder 13 windowscodecs
IWICBitmapFrameDecode 11 windowscodecs
IWICBitmapFrameEncode 14 windowscodecs
IWICImagingFactory 28 windowscodecs
IWICMetadataBlockReader 7 windowscodecs
IWICMetadataBlockWriter 12 windowscodecs
IWICStream 18 windowscodecs
IXMLDOMDocument 82 msxml6
IXMLDOMDocument2 88 msxml6

98



Table 4.4. Methods with object exchanges

Interface Method(s) Object Type

IRunningObjectTable IRunningObjectTable::Register IN
IRunningObjectTable::GetObject IN & OUT

IShellFolder IShellFolder::EnumObjects OUT
IShellItem2 IShellItem2::QueryInterface OUT

IShellItem2::GetPropertyStore OUT
IStream IStream::QueryInterface OUT
IUIApplication IUIApplication::OnViewChanged IN

IUIApplication::OnCreateUICommand OUT
IUIApplication::OnDestroyUICommand IN

IUICollection IUICollection::Add IN
IUICollection::GetItem OUT
IUICollection::Insert IN
IUICollection::Replace IN

IUICommandHandler IUICommandHandler::Execute IN
IUICommandHandler::UpdateProperty IN

IUIFramework IUIFramework::QueryInterface OUT
IUIFramework::Initialize IN

IUIImageFromBitmap IUIImageFromBitmap::QueryInterface OUT
IUIImageFromBitmap::CreateImage OUT

IUIRibbon IUIRibbon::LoadSettingsFromStream IN
IUIRibbon::SaveSettingsToStream IN

IUISimplePropertySet IUISimplePropertySet::QueryInterface OUT
IUnknown IUnknown::QueryInterface OUT
IWiaDevMgr IWiaDevMgr::RegisterEventCallbackInterface IN & OUT
IWiaEventCallback IWiaEventCallback::QueryInterface OUT
IWICBitmapDecoder IWICBitmapDecoder::QueryInterface OUT

IWICBitmapDecoder::GetFrame OUT
IWICBitmapEncoder IWICBitmapEncoder::Initialize IN

IWICBitmapEncoder::CreateNewFrame IN & OUT
IWICBitmapFrameEncode IWICBitmapFrameEncode::QueryInterface OUT

IWICBitmapFrameEncode::Initialize IN
IWICBitmapFrameEncode::WriteSource IN

IWICImagingFactory IWICImagingFactory::CreateDecoderFromFilename OUT
IWICImagingFactory::CreateEncoder OUT
IWICImagingFactory::CreateStream OUT

IWICMetadataBlockReader IWICMetadataBlockReader::GetReaderByIndex OUT
IWICMetadataBlockWriter IWICMetadataBlockWriter::InitializeFromBlockReader IN
IWICStream IWICStream::InitializeFromIStream IN

IWICStream::InitializeFromIStreamRegion OUT
IXMLDOMDocument IXMLDOMDocument::QueryInterface OUT

IXMLDOMDocument::save IN

99



4.4.4 Callbacks

Table 4.5 reports the APIs that have code pointers (callbacks) as arguments. Such an

argument can be a direct code pointer (e.g., in CallWindowProc), a pointer to an array

of callbacks (e.g., in initterm), or a pointer to a structure that has a callback in one or

more of its fields (e.g., in RegisterClass). Paint and MFC import 14 such APIs from 5

trusted modules. We implemented a mediator for each of these APIs in which code pointer

validation or sanitization secures the code pointer exchange against hijacking attacks.

4.5 Future work

Although our approach successfully secures inter-module object exchanges in the presence

of unmodifiable (e.g., system) modules, unmodified modules can still potentially contain

other security weaknesses that might leave retrofitted applications vulnerable to attack. For

example, if a trusted module retains a persistent reference to an object, but stores that

reference in an unsafe location (e.g., memory that the retrofitting mechanism considers

untrusted and application-writable), then a malicious module could replace the reference

with a counterfeit object to implement a CODE-COOP attack despite our defense.

Our current prototype mitigates such vulnerabilities by leveraging software fault isolation

(SFI) to isolate module data and stack segments from cross-module writes. However, this

approach cannot support modules that need direct access to each other’s memory (e.g., when

trusted modules store object references into writable buffers provided by untrusted modules).

An important line of future research therefore entails the development of binary-level

code analyses and tools that can discover the memory safety policies implicitly expected

and enforced by interoperating modules with differing protection schemes. Future work

should use such analyses to derive appropriate memory and control-flow safety policies for

application-level retrofitting algorithms to enforce in order to ensure safety in the presence

of unmodifiable libraries that have differing security expectations and requirements.

100



Table 4.5. APIs with callback pointers

API DLL
_beginthread msvcrt
_beginthreadex msvcrt
_initterm msvcrt
_onexit msvcrt
CallWindowProc user32
ChooseColor comdlg32
ChooseFont comdlg32
DialogBoxIndirectParam user32
DialogBoxParam user32
CreateDialogIndirectParam user32
CreateDialogParam user32
EnumFonts user32
EnumFontFamilies gdi32
EnumFontFamiliesEx gdi32
EnumObjects gdi32
EventRegister advapi32
GetOpenFileName comdlg32
GetSaveFileName comdlg32
PrintDlg comdlg32
RegisterClass user32
RegisterClassEx user32
SendMessageCallback user32
SetAbortProc gdi32
SetProp user32
SetWindowLong user32
SetWindowsHookEx user32

101



4.6 Conclusion

We have presented a modular approach that hardens application-level software without the

need to modify interoperating modules on which the application replies. Our interface-

driven approach presented in this paper mediates object exchanges across inter-module trust

boundaries with proxy objects, and therefore modules that obeys their interface specifications

get protected when they call proxy object methods. We showed that coupled with OFI and

CFI, the approach can effectively thwart CODE-COOP attacks by completely mediating the

interfaces between trusted and untrusted modules.

102



CHAPTER 5

SEISMIC: SECURE IN-LINED SCRIPT MONITORS

FOR INTERRUPTING CRYPTOJACKS1

As discussed in Chapters 3–4, OFI centers around the idea of proxy objects that are in-lined

reference monitors (IRMs) that wrap and mediate access to the methods of the objects they

proxy to enforce costumer-specific security policies. IRMs protect software by automatically

instrumenting untrusted programs with guard code that monitors security-relevant program

operations.

This chapter presents a novel IRM, SEcure In-lined Script Monitors for Interrupting Cryp-

tojacks (SEISMIC), that detects and interrupts unauthorized, browser-based cryptomining,

based on semantic signature-matching. The approach addresses a new wave of cryptojacking

attacks, including XSS-assisted, web gadget-exploiting counterfeit mining. Evaluation shows

that the approach is more robust than current static code analysis defenses, which are suscep-

tible to code obfuscation attacks. SEISMIC offers a browser-agnostic deployment strategy

that is applicable to average end-user systems without specialized hardware or operating

systems.

The remainder of this chapter is arranged as follows: Section 5.1 begins with an introduc-

tory overview of cryptojacking attacks and cryptomining in WebAssembly. Next, Sections 5.2

and 5.3 summarize technologies of rising importance in web cryptomining, and survey the

cryptomining ecosystem, respectively. Section 5.4 presents a new cryptojacking attack that

details how adversaries can bypass current security protections in this ecosystem to abuse

end-user computing resources and illicitly mine cryptocurrencies. Section 5.5 introduces our

1This chapter contains material previously published as: Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu,
Kevin W. Hamlen, and Shuang Hao. “SEISMIC: SEcure In-lined Script Monitors for Interrupting Crypto-
jacks.” In Proceedings of the 23rd European Symposium on Research in Computer Security (ESORICS), pp.
122–142, September 2018.

103



defense strategy based on semantic signature-detection and in-lined reference monitoring,

and Section 5.6 evaluates its effectiveness. Finally, Section 5.7 concludes the chapter.

5.1 Introduction

Cryptojacking—the unauthorized use of victim computing resources to mine and exfiltrate

cryptocurrencies—has recently emerged as one of the fastest growing new web cybersecu-

rity threats. Network-based cryptojacking attacks increased 600% in 2017, with manu-

facturing and financial services as the top two targeted industries, according to IBM X-

Force (McMillen, 2017). Adguard reported a 31% surge in cryptojacking attacks in Novem-

ber 2017 alone (Meshkov, 2017). The Smominru botnet is estimated to be earning its owners

about $8,500 each week via unauthorized Monero2 mining, or an estimated $2.8–3.6 million

total as of January 2018 (Kafeine, 2018).

The relatively recent escalation of cryptojacking threats can be traced to several con-

verging trends, including the emergence of new mining-facilitating technologies that make

cryptojacking easier to realize, next-generation cryptocurrencies that are easier to mine and

offer greater anonymity to criminals, and the rising value of cryptocurrencies (Lau, 2017).

Among the chiefs of these new technologies is WebAssembly (Wasm),3 a new bytecode lan-

guage for web browsers that affords faster and more efficient computation than previous web

scripting languages, such as JavaScript (JS). By implementing cryptomining algorithms in

Wasm, legitimate miners can make more efficient use of client computing resources to gener-

ate greater revenue, and attackers can covertly establish illicit mining operations on browsers

around the world with only average hardware and computing resources, thereby achieving

the mass deployment scales needed to make cryptojacking profitable. For this reason, a

majority of in-browser coin miners currently use Wasm (Neumann and Toro, 2018).

2https://cointelegraph.com/news/monero

3http://webassembly.org

104

https://cointelegraph.com/news/monero
http://webassembly.org


Unfortunately, this availability of transparent cryptomining deployment models is blur-

ring distinctions between legitimate, legal cryptomining and illegitimate, illegal cryptojack-

ing. For example, in 2015, New Jersey settled a lengthy lawsuit against cryptomining com-

pany Tidbit, in which they alleged that Tidbit’s browser-based Bitcoin mining software

(which was marketed to websites as a revenue-generation alternative to ads) constituted

“access to computers ... without the computer owners’ knowledge or consent” (OAG, New

Jersey, 2015). The definition and mechanism of such consent has therefore become a cen-

tral issue in protecting users against cryptojacking attacks. For example, numerous top-

visited web sites, including Showtime (Liao, 2017), YouTube (Goodin, 2018), and The Pirate

Bay (Hruska, 2017), have come under fire within 2017–2018 for alleged cryptojacking attacks

against their visitors. In each case, cryptocurrency-generation activities deemed consensual

by site owners were not deemed consensual by users.

In order to provide end-users an enhanced capability to detect and consent to (or opt-out

of) browser-based cryptomining activities, this chapter investigates the feasibility of seman-

tic signature-matching for robustly detecting the execution of browser-based cryptomining

scripts implemented in Wasm. We find that top Wasm cryptominers exhibit recognizable

computation signatures that differ substantially from other Wasm scripts, such as games.

To leverage this distinction for consent purposes, we propose and implement SEcure In-lined

Script Monitors for Interrupting Cryptojacks (SEISMIC). SEISMIC automatically modifies

incoming Wasm binary programs so that they self-profile as they execute, detecting the echos

of cryptomining activity. When cryptomining is detected, the instrumented script warns the

user and prompts her to explicitly opt-out or opt-in. Opting out halts the script, whereas

opting in continues the script without further profiling (allowing it to execute henceforth at

full speed).

This semantic signature-matching approach is argued to be more robust than syntactic

signature-matchers, such as n-gram detectors, which merely inspect untrusted scripts syn-

tactically in an effort to identify those that might cryptomine when executed. Semantic

105



approaches ignore program syntax in favor of monitoring program behavior, thereby evading

many code obfuscation attacks that defeat static binary program analyses.

Instrumenting untrusted web scripts at the Wasm level also has the advantage of of-

fering a browser-agnostic solution that generalizes across different Wasm virtual machine

implementations. SEISMIC can therefore potentially be deployed as an in-browser plug-in,

a proxy service, or a firewall-level script rewriter. Additional experiments on CPU-level in-

struction traces show that semantic signature-matching can also be effective for detection of

non-Wasm cryptomining implementations, but only if suitable low-level instruction tracing

facilities become more widely available on commercial processors.

To summarize, this chapter makes the following contributions:

• We conduct an empirical analysis of the ecosystem of in-browser cryptocurrency mining

and identify key security-relevant components, including Wasm.

• We introduce a new proof-of-concept attack that can hijack mining scripts and abuse

client computing resources to gain cryptocurrency illicitly.

• We develop a novel Wasm in-line script monitoring system, SEISMIC, which instru-

ments Wasm binaries with mining sensors. SEISMIC allows users to monitor and

consent to cryptomining activities with acceptable overhead.

• We apply SEISMIC on five real-world mining Wasm scripts (four families) and seven

non-mining scripts. Our results show that mining and non-mining computations ex-

hibit significantly different behavioral patterns. We also develop a classification ap-

proach and achieve ≥ 98% accuracy to detect cryptomining activities.

106



5.2 Background

5.2.1 Monero

Monero (XMR) is a privacy-focused cryptocurrency launched in April 2014. The confiden-

tiality and untraceability of its transactions make Monero particularly popular on darknet

markets. Monero’s mining process is egalitarian, affording both benign webmasters and

malicious hackers new funding avenues.

The core of Monero involves the CryptoNight proof-of-work hash algorithm based on the

CryptoNote protocol (van Saberhagen, 2013). CryptoNight makes mining equally efficient

on CPU and GPU, and restricts mining on ASIC. This property makes Monero mining

particularly feasible on browsers. A majority of current browser-based cryptocurrency miners

target CryptoNight, and miner web script development has become an emerging business

model. Page publishers embed these miners into their content as an alternative or supplement

to ad revenue.

5.2.2 WebAssembly

Wasm (Haas et al., 2017) is a new bytecode scripting language that is now supported by all

major browsers (DeMocker, 2017). It runs in a sandbox after bytecode verification, where it

aims to execute nearly as fast as native machine code.

Wasm complements and runs alongside JS. JS loads Wasm scripts, whereupon the two

languages share memory and call each other’s functions. Wasm is typically compiled from

high-level languages (e.g., C, C++, or Rust). The most popular toolchain is Emscripten,4

which compiles C/C++ to a combination of Wasm, JS glue code, and HTML. The JS glue

code loads and runs the Wasm module.

4http://kripken.github.io/emscripten-site

107

http://kripken.github.io/emscripten-site


Browsers can achieve near-native speeds for Wasm because it is designed to facilitate

fast fetching, decoding, JIT-compilation, and optimization of Wasm bytecode instructions

relative to JS. Wasm does not require reoptimization or garbage collection. These perfor-

mance advantages make Wasm attractive for computationally intensive tasks, leading most

browser-based cryptocurrency miners to use Wasm.

5.3 Ecosystem of Browser-based Cryptocurrency Mining

Although cryptomining is technically possible on nearly any browser with scripting support,

efficient and profitable mining with today’s browsers requires large-scale deployment across

many CPUs. Webmasters offering services that attract sufficient numbers of visitors are

therefore beginning to adopt cryptomining as an alternative or supplement to online ads as

a source of revenue. This has spawned a secondary business model of cryptomining web

software development, which markets mining implementations and services to webmasters.

Thus, although mining occurs on visitors’ browsers, miner developers and page publishers

play driving roles in the business model. As more miner developers release mining libraries

and more page publishers adopt them, a browser-based cryptocurrency mining ecosystem

forms. To better understand the ecosystem, we here illustrate technical details of browser-

based mining.

Page publishers first register accounts with miner developers. Registration grants the

publisher an asymmetric key pair. Publishers then download miner code from the miner

developer and customize it to fit their published pages, including adding their public keys.

The miner developer uses the public key to attribute mining contributions and deliver payouts

to page publishers.

Figure 5.1 illustrates the resulting workflow. After publishers embed the customized

miner into their pages, it is served to client visitors and executes in their browsers. The

HTML file first loads into the client browser, causing the mining bar to trigger supporting

108



HTML

Mining
Bar

...

JavaScript

UI functions

Websocket functions

WASM

cryptonight create

cryptonight destroy

cryptonight hash

...

Figure 5.1. Browser-based mining workflow

Table 5.1. Security-related features of popular miners

Wasm Domain Whitelisting Opt-In CPU Throttle
Adless X 7 7 X
Coinhive X 7 X X
CoinImp X 7 7 X
Crypto-Loot X 7 7 X
JSECoin X X 7 X
WebMinePool X 7 7 X

JS modules, which share functionalities with Wasm modules. The Wasm code conducts

computationally intensive tasks (e.g., cryptonight_hash), whereas UI and I/O interactions

(e.g., Websocket communications) are implemented in JS. The code framework is typically

created and maintained by miner developers.

Table 5.1 summarizes security-related features of top web miner products:

• Wasm: Most miners use Wasm for performance. For example, Coinhive mines Monera

via Wasm, and has about 65% of the speed of a native miner.5

• Domain Whitelisting: To help deter malicious mining, some miner developers offer

domain name whitelisting to webmasters. If miner developers receive mining contri-

butions from unlisted domains, they can withhold payouts.

5https://coinhive.com

109

https://coinhive.com


• Opt-In Tokens: To support ad blockers and antivirus vendors, some miner products

generate opt-in tokens for browsers. Mining can only start after an explicit opt-in from

the browser user. The opt-in token is only valid for the current browser session and

domain.

• CPU Throttling: Using all the client’s computing power tends to draw complaints from

visitors. Miner developers therefore advise page publishers to use only a fraction of

each visitor’s available computing power for mining. Webmasters can configure this

fraction.

5.4 Counterfeit Mining Attacks

To underscore the dangers posed by many browser-based mining architectures, and to moti-

vate our defense, we next demonstrate how the ecosystem described in §5.3 can be compro-

mised through counterfeit mining—a new cryptojacking attack wherein third-party adver-

saries hijack mining scripts to work on their behalf rather than for page publishers or page

recipients.

Our threat model for this attack assumes that miner developers, page publishers, and

page recipients are all non-malicious and comply with all rules of the cryptomining ecosystem

in §5.3, and that mining scripts can have an unlimited variety of syntactic implementations.

Specifically, we assume that miner developers and webmasters agree on a fair payout rate,

publishers notify visitors that pages contain miners, and mining only proceeds with visitor

consent. Despite this compliance, we demonstrate that malicious third-parties can compro-

mise the ecosystem by abusing the miner software, insecure web page elements, and client

computing resources to mine coins for themselves illegitimately.

To understand the attack procedure, we first illustrate how publishers embed miners into

their web pages. Listing 5.1 shows the HTML code publishers must typically add. Line 1

110



1 <script src="https://authedmine.com/lib/simple-ui.min.js" async>

2 </script>

3 <div class="coinhive-miner"

4 style="width:256px;height:310px"

5 data_key="YOUR_SITE_KEY">

6 <em>Loading...</em>

7 </div>

Listing 5.1. Embedded miner HTML code

imports the JS library maintained by miner developer. Line 4 specifies the dimensions of

the miner rendered on the page. Line 5 identifies the publisher to the miner developer. To

receive revenue, publishers must register accounts with miner developers, whereupon each

publisher receives a unique data key. This allows miner developers to dispatch payroll to the

correct publishers.

Our attack is predicated on two main observations about modern web pages: First,

cross-site scripting (XSS) vulnerabilities are widely recognized as a significant and perva-

sive problem across a large percentage of all web sites (WhiteHat Security, 2017; Gupta and

Gupta, 2017). Thus, we realistically assume that some mining pages contain XSS vulnerabil-

ities. Second, although some XSS mitigations can block injection of executable scripts, they

are frequently unsuccessful at preventing all injections of non-scripts (e.g., pure HTML).

Our attack therefore performs purely HTML XSS injection to hijack miners via web gad-

gets (Lekies et al., 2017)—a relatively new technique whereby existing, non-injected script

code is misused to implement web attacks.

Examining the JS library called in line 1 reveals several potentially abusable gadgets,

including the one shown in Listing 5.2. This code fragment selects all div elements of class

.coinhive-miner on the page, and renders a miner within each. Unfortunately, line 1 is

111



1 var elements = document.querySelectorAll('.coinhive-miner');

2 for (var i = 0; i < elements.length; i++) {

3 new Miner(elements[i])

4 }

Listing 5.2. JavaScript gadget

Figure 5.2. Reflected (left) and stored (right) counterfeit mining attacks

exploitable because it cannot distinguish publisher-provided div elements from maliciously

injected ones. This allows an adversary to maliciously inject a div element of that class

but with a different data key, causing the recipient to mine coins for the attacker instead of

the publisher. We emphasize that in this attack, the exploited gadget is within the miner

software, not within the publisher’s page. Therefore all web pages that load the miner are

potentially vulnerable, creating a relatively broad surface for criminals to attack.

To verify our counterfeit miner attack, we deploy two proof-of-concept attacks. Since

the attacks begin with XSS exploits, we give two demonstrations: one using a reflected XSS

vulnerability and one with a stored XSS vulnerability. The reflected XSS attack crafts a

URL link containing the injected HTML code, where the injected code is a div element

112



similar to Listing 5.1. After enticing visitors to click the URL link (e.g., via phishing), the

visitor’s browser loads and executes the counterfeit miner. The left of Figure 5.2 shows a

snapshot of the infected page, in which the counterfeit miner is visible at the bottom.

The stored XSS attack involves a page that reads its content from a database, to which

visitors can add insufficiently sanitized HTML elements. In this scenario, injecting the

malicious miner HTML code into the database causes the counterfeit miner to permanently

inhabit the victim page. The right of Figure 5.2 illustrates the attack procedure. The three

screenshots show sequential phases of the attack.

Counterfeit mining attacks illustrate some of the complexities of the cryptomining consent

problem. In this case, asking users to consent to mining in general on affected web pages

does not distinguish between the multiple miners on the compromised pages, some of which

are working for the page publisher and others for a malicious adversary. The next section

therefore proposes an automated, client-side consent mechanism based on in-lined reference

monitoring that is per-script and is page- and miner-agnostic. This allows users to detect

and potentially block cryptomining activities of individual scripts on a page, rather than

merely the page as a whole.

5.5 Detection

In light of the dangers posed by counterfeit and other cryptomining attacks, this section pro-

poses a robust defense strategy that empowers page recipients with a more powerful detection

and consent mechanism. Since cryptojacking attacks ultimately target client computing re-

sources, we adopt a strictly client-side defense architecture; supplementary publisher- and

miner developer-side mitigations are outside our scope.

Section 5.5.1 begins with a survey of current static approaches and their limitations.

Section 5.5.2 then proposes a more dynamic strategy that employs semantic signature detec-

113



tion, and presents experimental evidence of its potential effectiveness. Finally, Section 5.5.3

presents technical details of our defense implementation.

5.5.1 Current Methods

Antivirus engines detect browser mining primarily via script file signature databases. The

most popular Wasm implementation of the CryptoNight hashing algorithm (van Saberhagen,

2013) is flagged by at least 21 engines. A few of these (e.g., McAfee) go a step further and

detect cryptomining implementations based on function names or other recognized keywords

and code file structures.

Unfortunately, these static approaches are easily defeated by code obfuscations. For

example, merely changing the function names in the CryptoNight Wasm binary bypasses

all antivirus engines used on VirusTotal. Figure 5.3 shows detection results for the original

vs. obfuscated CryptoNight binary.

Web browsers also have some detection mechanisms in the form of plugins or extensions,

but these have similar limitations. The No Coin (Keramidas, 2017) Chrome extension en-

forces a URL blacklist, which prevents miners from contacting their proxies. However, crim-

inals can bypass this by setting up new proxies not on the blacklist. MinerBlock6 statically

inspects scripts for code features indicative of mining. For instance, it detects CoinHive min-

ers by searching for functions named isRunning and stop, and variables named _siteKey,

_newSiteKey, and _address. These static analyses are likewise defeated by simple code

obfuscations.

5.5.2 Semantic Signature-matching

A common limitation of the aforementioned detection approaches is their reliance on syn-

tactic features (viz., file bytes and URL names) that are easily obfuscated by attackers. We

6https://github.com/xd4rker/MinerBlock

114

https://github.com/xd4rker/MinerBlock


Figure 5.3. Antivirus detection of CryptoNight before and after function renaming

therefore focus on detection via semantic code features that are less easy to obfuscate be-

cause they are fundamental to the miner’s computational purpose. Our proposed solution

monitors Wasm scripts as they execute to derive a statistical model of known mining and

non-mining behavior. Profiling reveals a distribution of Wasm instructions executed, which

we use at runtime to distinguish mining from non-mining activity.

Using Intel Processor Tracing (PT), we first generated native code instruction counts for

Wasm web apps. We recorded native instruction counts for 1-second computation slices on

Firefox, for web apps drawn from: 500 pages randomly selected from Alexa top 50K, 500

video pages from YouTube, 100 Wasm embedded game or graphic pages, and 102 browser

mining pages. Detailed results are presented in Table 5.2. The traces reveal that crypto-

115



Table 5.2. Top 30 Opcodes Used as Features to Distinguish Mining and Non-mining

Rank Opcode Description

1st SUB subtract.
2nd CMOVS conditional move if sign (negative).
3rd UNPCKHPS† unpacks and interleaves the two high-order values from two single-

precision floating-point operands.
4th DIVSD‡ divide scalar double-precision floating-point values.
5th SETB set byte if below.
6th MOVQ? move quadword.
7th MAXPS† return maximum packed single-precision floating-point values.
8th CMOVNLE conditional move if not above or equal.
9th COMVLE conditional move if less or equal.
10th PSUBUSW? subtract packed unsigned word integers with unsigned saturation.
11th CMOVNL conditional move if not less.
12th UNPCKLPS† unpacks and interleaves the two low-order values from two single-

precision floating-point operands.
13th ROUNDSD† round scalar double precision floating-point values.
14th CMPPS† compare packed single-precision floating-point values.
15th MOVLHPS† move two packed single-precision floating-point values from the low

quadword of an XMM register to the high quadword of another XMM
register.

16th LOCK lock bus.
17th CMOVB conditional move if below.
18th SETBE set byte if below or equal.
19th SETNZ set byte if not zero.
20th ROL rotate left.
21st MUL multiply (unsigned).
22nd SETNLE set byte if not less or equal.
23rd CVTTSD2SI‡ convert with truncation scalar double-precision floating-point values

to scalar doubleword integers.
24th MOVMSKPS† extract sign mask from four packed single-precision floating-point val-

ues.
25th CMOVZ conditional move if zero.
26th TEST logical compare.
27th CMOVNZ conditional move if not zero.
28th ROUNDSS† round scalar single precision floating-point values.
29th STMXCSR† save mxcsr register state.
30th CMOVNB conditional move if not below or equal.

? MMX Instruction. † SSE Instruction. ‡ SSE2 Instruction.

116



Table 5.3. Execution trace average profiles

i32.add i32.and i32.shl i32.shr_u i32.xor
A-Star 86.78 4.71 5.52 0.44 2.54
Asteroids 89.67 4.33 5.10 0.44 0.42
Basic4GL 75.78 8.43 13.75 1.78 0.27
Bullet(1000) 84.42 3.55 11.30 0.20 0.51
CoinHive 19.90 17.90 22.60 17.00 22.60
CoinHive_v0 20.20 17.50 22.70 17.00 22.70
CreaturePack 54.70 0.52 44.27 0.21 0.40
FunkyKarts 77.89 8.68 12.28 0.44 0.71
HushMiner 62.53 6.45 17.87 6.23 6.93
NFWebMiner 28.00 15.80 20.40 15.30 20.40
Tanks 61.90 12.29 22.27 2.02 1.51
YAZECMiner 57.99 4.37 30.75 3.26 3.63

mining Wasm scripts rely much more upon packed arithmetic instructions from the MMX,

SSE, and SSE2 instruction sets of CISC processors than do other Wasm scripts, like games.

Although PT is useful for identifying semantic features of possible interest, it is not a good

basis for implementing detection on average client browsers since PT facilities are not yet

widely available on average consumer hardware and OSes. We therefore manually identified

the top five Wasm bytecode instructions that JIT-compile to the packed arithmetic native

code instructions identified by the PT experiments. These five instructions are the column

labels of Table 5.3.

We next profiled these top-five Wasm instructions at the Wasm bytecode level by instru-

menting Wasm binary scripts with self-profiling code. We profiled four mining apps plus one

variant, and seven non-mining apps. The non-mining apps are mostly games (which is the

other most popular use of Wasm), and the rest are graphical benchmarks. For each app, we

executed and interacted with them for approximately 500 real-time seconds to create each

profile instance. For each app with configurable parameters, we varied them over their entire

range of values to cover all possible cases.

117



Figure 5.4. Semantic profiles for mining vs. non-mining Wasm apps

Figure 5.4 displays the resulting distributions. There is a clear and distinct stratification

for the two CoinHive variants and NFWebMiner, which are based on CryptoNight. YAZEC

(Yet Another ZEC) Miner uses a different algorithm, and therefore exhibits slightly different

but still distinctive profile. Table 5.3 displays an average across the 100 distributions for all

of the profiled applications.

5.5.3 SEISMIC In-lined Reference Monitoring

Our profiling experiments indicate that Wasm cryptomining can potentially be detected by

semantic signature-matching of Wasm bytecode instruction counts. To implement such a de-

tection mechanism that is deployable on end-user browsers, our solution adopts an in-lined

reference monitor (IRM) (Schneider, 2000; Erlingsson and Schneider, 1999) approach. IRMs

118



WASM

(original)

WAT
import:
...
functions:
...
globals:
...
exports:
...

1© WAT

(profiled)

5©

3©
2©
4©

WASM

(profiled)

6© JS

module[asm][f1]
module[asm][f2]
...

7©

8©
9©

Figure 5.5. SEISMIC transformation of Wasm binaries

automatically instrument untrusted programs (e.g., web scripts) with guard code that mon-

itors security-relevant program operations. The code transformation yields a new program

that self-enforces a desired policy, yet preserves policy-compliant behaviors of the original

code. In browsing contexts, IRM formalisms have been leveraged to secure other scripting

languages, such as JS and Flash (cf., Phung et al., 2015), but not yet Wasm. In this scenario,

our goal is to design and implement an IRM system that automatically transforms incoming

Wasm binaries to dynamically compute their own semantic features and match them to a

given semantic signature.

Wasm scripts are expressed in binary or human-readable textual form. Each can be trans-

lated to the other using the Wasm Binary Toolkit (WABT). Typically scripts are distributed

in binary form for size purposes, but either form is accepted by Wasm VMs. The programs

are composed of sections, which are each lists of section-specific content. Our automated

transformation modifies the following three Wasm section types:

• Functions: a list of all functions and their code bodies

• Globals: a list of variables visible to all functions sharing a thread

• Exports: a list of functions callable from JS

Figure 5.5 shows a high-level view of our Wasm instrumentation workflow. We here

explain a workflow for a single Wasm binary file, but our procedure generalizes to pages

119



1 int pythag(int a, int b) { return a * a + b * b; }

Listing 5.3. C++ source code for compilation to Wasm

1 (module (table 0 anyfunc) (memory $0 1)

2 (export "memory" (memory $0))

3 (export "pythag" (func $pythag))

4 (func $pythag (; 0 ;) (param $0 i32) (param $1 i32) (result i32)

5 (i32.add (i32.mul (get_local $1) (get_local $1))

6 (i32.mul (get_local $0) (get_local $0)))))

Listing 5.4. Original Wasm compiled from C++

with multiple binaries. As a running example, Listing 5.3 contains a small C++ function

that computes the sum of the squares of its two inputs. Compiling it yields the Wasm

bytecode in Listing 5.4.

Our prototype implementation of SEISMIC first parses the untrusted binary to a simpli-

fied abstract syntax tree (AST) similar to the one in Listing 5.4 using wasm2wat from WABT

with the –fold-exprs flag ( 1 ). It next injects a fresh global variable of type i64 (64-bit

integer) into the globals section for each Wasm instruction opcode to be profiled ( 2 ). The

JS-Wasm interface currently does not support the transfer of 64-bit integers, so to allow JS

code to read these counters, 32-bit accessor functions getInstLo and getInstHi are added

( 3 ). An additional reset function that resets all the profile counters to zero is also added,

to allow the security monitor to separately profile different time slices of execution. All three

functions are added to the binary’s exports ( 4 ).

The transformation algorithm next scans the bodies of all Wasm functions in the script

and in-lines counter-increment instructions immediately after each instruction to be pro-

filed ( 5 ). Our prototype currently takes the brute-force approach of in-lining the counter-

120



increment guard code for each profiled instruction, but optimizations that improve efficiency

by speculatively increasing counters by large quantities in anticipation of an uninterruptable

series of signature-relevant operations are obviously possible.

The modified Wasm text file is now ready to be translated to binary form, which we

perform by passing it to wat2wasm from WABT ( 6 ). At this point, we redirect the JS code

that loads the Wasm binary to load the new one ( 7 ). This can be done either by simply

using the same name as the old file (i.e., overwriting it) or by modifying the load path for

the Wasm file in JS to point to the new one.

Listing 5.5 shows the results of this process when profiling Wasm instructions i32.add

and i32.mul. Lines 4–6 export the IRM helper functions defined in lines 15–20. Lines 21

and 22 define global counter variables to profile i32.add and i32.mul instructions, respec-

tively. The two i32.mul instructions are instrumented on lines 10 and 12, and the single

i32.add instruction is instrumented on line 9.

SEISMIC’s instrumentation procedure anticipates an attack model in which script au-

thors and their scripts might be completely malicious, and adversaries might know all de-

tails of SEISMIC’s implementation. For example, adversaries might craft Wasm binaries

that anticipate the instrumentation procedure and attempt to defeat it. We therefore de-

signed our instrumentation in accordance with secure IRM design principles established in

the literature (Schneider, 2000; Hamlen et al., 2006; Ligatti et al., 2009). In particular, the

Wasm bytecode language does not include unrestricted computed jump instructions, allow-

ing our transformation to implement uncircumventable basic blocks that pair profiling code

with the instructions they profile. Moreover, Wasm is type-safe (Haas et al., 2017), afford-

ing the implementation of incorruptible state variables that track the profiling information.

Type-safety ensures that malicious Wasm authors cannot use pointer arithmetic or untyped

references to corrupt the IRM’s profiling variables (cf., Sridhar and Hamlen (2010b,a)).

These language properties are the basis for justifying other Wasm security features, such as

control-flow integrity (WebAssembly Community Group, 2018).

121



1 (module (table 0 anyfunc) (memory $0 1)

2 (export "memory" (memory $0))

3 (export "pythag" (func $pythag))

4 (export "_getAddsLo" (func $_getAddsLo))

5 ...

6 (export "_reset" (func $_reset))

8 (func $pythag (; 0 ;) (param $0 i32) (param $1 i32) (result i32)

9 (i32.add (set_global 0 (i64.add (get_global 0) (i64.const 1)))

10 (i32.mul (set_global 1 (i64.add (get_global 1) (i64.const 1)))

11 (get_local $1) (get_local $1))

12 (i32.mul (set_global 1 (i64.add (get_global 1) (i64.const 1)))

13 (get_local $0) (get_local $0))))

15 (func $_getAddsLo (; 1 ;) (result i32)

16 (return (i32.wrap/i64 (get_global 0))))

17 ...

18 (func $_reset (; 5 ;)

19 (set_global 0 (i64.const 0))

20 (set_global 1 (i64.const 0)))

21 (global (;0;) (mut i64) (i64.const 0))

22 (global (;1;) (mut i64) (i64.const 0)))

Listing 5.5. Instrumented Wasm

122



1 function wasmProfiler() {

2 if (Module["asm"] != null && typeof _reset === "function") {

3 console.log(_getAddsHi() * 232 + _getAddsLo() + "␣adds");

4 console.log(_getMulsHi() * 232 + _getMulsLo() + "␣multiplies");

5 _reset();

6 } else { console.log("Wasm␣not␣loaded␣yet"); }

7 setTimeout(wasmProfiler, 5000);

8 }

9 wasmProfiler();

10 ...

11 Module["asm"] = asm;

12 var _getAddsLo = Module["_getAddsLo"] = function() {

13 return Module["asm"]["_getAddsLo"].apply(null, arguments) };

14 ...

Listing 5.6. SEISMIC JavaScript code

To start the enforcement, Listing 5.6 instantiates a JS timer that first executes at page-

load and checks whether Wasm code has been loaded and compiled ( 8 ). If so, all Wasm

instruction counters are queried, reset, and logged to the console. The timer profiles another

slice of computation time every 5000 milliseconds. This affords detection of scripts that mine

periodically but not continuously.

5.6 Evaluation

To evaluate our approach, we instrumented and profiled the web apps listed in Table 5.3. The

majority of Wasm code we profiled was identifiable as having been compiled with Emscripten,

an LLVM-based JS compiler that yields a JS-Wasm pair of files for inclusion on web pages.

The JS file contains an aliased list of exported functions, where we insert our new entries

123



Table 5.4. Mining overhead

Vanilla Profiled
CoinHive v1 36 hash/s 18 hash/s
CoinHive v0 40 hash/s 19 hash/s
NFWebMiner 38 hash/s 16 hash/s
HushMiner 1.6 sol/s 0.8 sol/s
YAZECMiner 1.8 sol/s 0.9 sol/s

for the counters ( 9 ). The remaining Wasm programs we profiled have a similar structure to

the output of Emscripten, so they can be modified in a similar manner.

We profiled every instruction used in the CoinHive worker Wasm, which is a variant of

the CryptoNight hashing algorithm, and determined the top five bytecode instructions used:

i32.add, i32.and, i32.shl, i32.shr_u, and i32.xor. Normalized counts of how many

times these instructions execute constitute feature vectors for our approach.

5.6.1 Runtime Overhead

Table 5.4 reports runtime overheads for instrumented binaries. The data was obtained by

running each miner in original and instrumented form over 100 trials, and averaging the

results. CoinHive and NFWebMiner were set to execute with 4 threads and their units

are in hashes per second. HushMiner and Yet Another ZEC Miner are single-threaded and

display units in solutions per second. In general, the miners we tested incurred a runtime

overhead of roughly 100%. We deem this acceptable because once mining is explicitly allowed

by the user, execution can switch back to the faster original code.

Non-mining code overhead must be calculated in a different way, since most are interactive

and non-terminating (e.g., games). We therefore measured overhead for these programs by

monitoring their frames-per-second. In all cases they remained at a constant 60 frames-per-

second once all assets had loaded. Overall, no behavioral differences in instrumented scripts

124



Table 5.5. SVM stratified 10-fold cross validation

Miner Fold Precision Recall F1 Fold Precision Recall F1

N 1 1.00 0.99 0.99 2 1.00 1.00 1.00
Y 0.96 1.00 0.98 1.00 1.00 1.00
N 3 1.00 1.00 1.00 4 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00
N 5 1.00 1.00 1.00 6 1.00 0.99 0.99
Y 1.00 1.00 1.00 0.96 1.00 0.98
N 7 1.00 1.00 1.00 8 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00
N 9 1.00 1.00 1.00 10 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00

were observable during the experiments (except when mining scripts were interrupted to

obtain user consent). This is expected since guard code in-lined by SEISMIC is implemented

to be transparent to the rest of the script’s computation.

5.6.2 Robustness

Our approach conceptualizes mining detection as a binary classification problem, where

mining and non-mining are the two classes. Features are normalized vectors of the counts

of the top five used Wasm instructions. For model selection, we choose Support Vector

Machine (SVM) with linear kernel function. We set penalty parameter C to 10, since it is

an unbalanced problem (there are far fewer mining instances than non-mining instances).

To evaluate this approach, we use stratified 10-fold cross validation on 1900 instances, which

consist of 500 miners and 1400 non-miners.

The results shown in Table 5.5 are promising. All mining activities are identified correctly,

and the overall accuracy (F1 score) is 98% or above in all cases. SEISMIC monitoring

exhibits negligible false positive rate due to our strict threhhold for detection. Visitors can

also manually exclude non-mining pages if our system exhibits a false positive, though the

cross-validation results indicate such misclassifications are rare.

125



5.7 Conclusion

SEISMIC offers a semantic-based cryptojacking detection mechanism for Wasm scripts that

is more robust than current static detection defenses employed by antivirus products and

browser plugins. By automatically instrumenting untrusted Wasm binaries in-flight with

self-profiling code, SEISMIC-modified scripts dynamically detect mining computations and

offer users explicit opportunities to consent. Page-publishers can respond to lack of consent

through a JS interface, affording them opportunities to introduce ads or withdraw page con-

tent from unconsenting users. Experimental evaluation indicates that self-profiling overhead

is unobservable for non-mining scripts, such as games (and is eliminated for miners once

consent is granted). Robustness evaluation via cross-validation shows that the approach is

highly accurate, exhibiting very few misclassifications.

126



CHAPTER 6

RELATED WORK

6.1 Prior CFI Evaluations

We surveyed 54 CFI algorithms and implementations published between 2005–2019 to pre-

pare ConFIRM, over half of which were published in 2015–2019. Of these, 66% eval-

uate performance overhead based on SPEC CPU benchmarks. Examples include PittS-

FIeld (McCamant and Morrisett, 2006), NaCl (Yee et al., 2009), CPI (Kuznetsov et al., 2014),

Reins (Wartell et al., 2012b), bin-CFI (Zhang and Sekar, 2013), control flow locking (Bletsch

et al., 2011), MIP (Niu and Tan, 2013), CCFIR (Zhang et al., 2013), ROPecker (Cheng

et al., 2014), T-VIP (Gawlik and Holz, 2014), GCC-VTV (Tice et al., 2014), MCFI (Niu

and Tan, 2014a), VTint (Zhang et al., 2015), Lockdown (Payer et al., 2015), O-CFI (Mo-

han et al., 2015), CCFI (Mashtizadeh et al., 2015), PathArmor (van der Veen et al., 2015),

BinCC (Wang et al., 2015), πCFI (Niu and Tan, 2015), VTI (Bounov et al., 2016), VT-

Pin (Sarbinowski et al., 2016), VTrust (Zhang et al., 2016), TypeArmor (van der Veen

et al., 2016), PittyPat (Ding et al., 2017), RAGuard (Zhang et al., 2017), GRIFFIN (Ge

et al., 2017), OFI (Wang et al., 2017), PT-CFI (Gu et al., 2017), HCIC (Zhang et al., 2018)

µCFI (Hu et al., 2018), CFIXX (Burow et al., 2018), and τCFI (Muntean et al., 2018).

The remaining 34% of CFI technologies that are not evaluated on SPEC benchmarks pri-

marily concern specialized application scenarios, including JIT compiler hardening (Niu and

Tan, 2014b), hypervisor security (Wang and Jiang, 2010; Kwon et al., 2018), iOS mobile code

security (Davi et al., 2012; Pewny and Holz, 2013), embedded systems security (Abera et al.,

2016; Abbasi et al., 2017; Adepu et al., 2018), and operating system kernel security (Ke-

merlis et al., 2012; Criswell et al., 2014; Ge et al., 2016). These therefore adopt analogous

test suites and tools specific to those domains (Coker, 2016; The Wine Committee, 2019;

Postmark, 2013; Pozo and Miller, 2016; de Melo, 2009).

127



Several of the more recent works additionally evaluate their solutions on one or more

large, real-world applications, including browsers, web servers, FTP servers, and email

servers. For example, VTable protections primarily choose browsers as their enforcement

targets, and therefore leverage browser benchmarks to evaluate performance. The main

browser benchmarks are Microsoft’s Lite-Brite (Microsoft, 2013) Google’s Octane (Google,

2013), Mozilla’s Kraken (Mozilla, 2013), Apple’s Sunspider (Apple, 2013), and RightWare’s

BrowserMark (RightWare, 2019).

Since compatibility problems frequently raise difficult challenges for evaluations of larger

software products, these larger-scale evaluations tend to have smaller sample sizes. Overall,

88% of surveyed works report evaluations on 3 or fewer large, independent applications, with

TypeArmor (van der Veen et al., 2016) having the most comprehensive evaluation we studied,

consisting of three FTP servers, two web servers, an SSH server, an email server, two SQL

servers, a JavaScript runtime, and a general-purpose distributed memory caching system.

To demonstrate security, prior CFI mechanisms are tested against proof-of-concept at-

tacks or CVE exploits. The most widely tested attack class in recent years is COOP. Ex-

amples of security evaluations against COOP attacks include those reported for µCFI (Hu

et al., 2018), τCFI (Muntean et al., 2018), CFIXX (Burow et al., 2018), OFI (Wang et al.,

2017), PittyPat (Ding et al., 2017), VTrust (Zhang et al., 2016), PathArmor (van der Veen

et al., 2015), and πCFI (Niu and Tan, 2015).

The RIPE test suite (Wilander et al., 2011) is also widely used by many researchers to

measure CFI security and precision. RIPE consists of 850 buffer overflow attack forms. It

aims to provide a standard way to quantify the security coverage of general defense mecha-

nisms. In contrast, ConFIRM focuses on a larger variety of code features that are needed

by many applications to implement non-malicious functionalities, but that pose particular

problems for CFI defenses. These include a combination of benign behaviors and attacks.

128



6.2 CFI Surveys

There has been one prior survey of CFI performance, precision, and security, published

in 2016 (Burow et al., 2017). It surveys 30 previously published CFI frameworks, with

qualitative and quantitative comparisons of their technical approaches and overheads as

reported in each original publication. Five of the approaches are additionally reevaluated on

SPEC CPU benchmarks.

In contrast, ConFIRM establishes a foundation for evaluating compatibility and rel-

evance of various CFI algorithms to modern software products, and highlights important

security and performance impacts that arise from incompatibility limitations facing the state-

of-the-art solutions.

6.3 SFI and CFI

SFI was originally conceived as a means of sandboxing untrusted software modules via soft-

ware guards to a subset of a shared address space (Wahbe et al., 1993). CFI refined this idea

to enforce more specific control-flow graphs (CFGs) (Abadi et al., 2005, 2009). Later work

merged the two approaches for more efficient enforcement (Erlingsson et al., 2006; McCa-

mant and Morrisett, 2006; Akritidis et al., 2008; Yee et al., 2009; Niu and Tan, 2013; Wartell

et al., 2012b,a), so that today distinctions between SFI and CFI are blurred. We therefore

here refer to CFI in a broad sense that includes both lines of research.

With the rise of return-oriented programming and code-reuse attacks (cf., Sadeghi et al.

(2015); Crane et al. (2015)), the impact of CFI research has increased in recent years. In

addition to securing user-level application software against such threats, it has also been

applied to harden smartphones (Davi et al., 2012; Pewny and Holz, 2013; Miguel et al.,

2009), embedded systems (Abera et al., 2016), hypervisors (Wang and Jiang, 2010), and

operating system kernels (Kemerlis et al., 2012; Criswell et al., 2014; Ge et al., 2016). CFI-

129



enforcing hardware is also being investigated (Ge et al., 2017; Gu et al., 2017; de Clercq

et al., 2016; Nick et al., 2016; Xia et al., 2012; Yuan et al., 2015; Davi et al., 2015, 2014).

Software CFI methodologies can be broadly partitioned into compiler-side source-aware

approaches and binary-only source-free approaches. Source-aware CFI leverages information

from source code to generate CFI-enforcing object code via a compiler. Examples include

WIT (Akritidis et al., 2008), NaCl (Yee et al., 2009), CFL (Bletsch et al., 2011), MIP (Niu

and Tan, 2013), MCFI (Niu and Tan, 2014a), RockJIT (Niu and Tan, 2014b), Forward

CFI (Tice et al., 2014), CCFI (Mashtizadeh et al., 2015), πCFI (Niu and Tan, 2015), and

MCFG (Tang, 2015). The availability of source code affords these approaches much greater

efficiency and precision than source-free alternatives. For example, source code analysis typi-

cally reveals a much more precise CFG for CFI to enforce, and compilers enjoy opportunities

to arrange data structure and code layouts to optimize CFI guard code.

MCFI highlights the need for better multi-module CFI enforcement algorithms and

tools. To address this problem in source-aware settings, it introduces a modular, separate-

compilation approach integrated into the LLVM compiler. However, this requires all modules

to be recompiled with an MCFI-equipped compiler; environments where some modules are

immutable, are dynamically procured in binary form, or are closed-source, are not supported.

In general, reliance on source code has the potential disadvantage of reducing deploy-

ment flexibility. Much of the world’s software is closed-source, with source-level information

unlikely to be disclosed to consumers due to intellectual property concerns and constraints

imposed by developer business models. Software whose sources are available frequently

link to or otherwise rely upon binary modules (e.g., libraries) whose sources are not avail-

able, requiring approaches for dealing with those source-free components. Finally, software

distribution models that deliver binary code on-demand (e.g., as plugins, mobile apps, or

hotpatches) usually lack readily available source code with which to implement additional

third-party or consumer-side CFI protections.

130



Concerns over this inflexibility have therefore motivated source-free CFI approaches that

transform and harden already-compiled binary code without the aid of source code. Exam-

ples include XFI (Erlingsson et al., 2006), Reins (Wartell et al., 2012b), STIR (Wartell et al.,

2012a), CCFIR (Zhang et al., 2013), bin-CFI (Zhang and Sekar, 2013), BinCC (Wang et al.,

2015), Lockdown (Payer et al., 2015) TypeArmor (van der Veen et al., 2016) and OCFI (Mo-

han et al., 2015). Source-free approaches face some difficult challenges, including the problem

of effectively disassembling arbitrary native code binaries (Wartell et al., 2014), and severe

restrictions on which code and data structures they can safely transform without breaking

the target program’s functionality. Poorer performance than source-aware solutions typically

results (Burow et al., 2017). They also tend to enforce more permissive control-flow policies,

since they lack source-level control-flow semantics with which to craft a tighter policy (Schus-

ter et al., 2015). This has led to successful attacks against these coarse-grained policies (e.g.,

Wollgast et al. (2016); Göktas et al. (2014); Davi et al. (2014); Conti et al. (2015)).

In contrast to this usual dichotomy, OFI is source-agnostic—it can extend any of the

source-aware or source-free approaches listed above to enhance the security and compati-

bility of objects that flow between CFI-protected software modules and those lacking CFI

protections. It does, however, require documentation of the API that links the interacting

modules, as described in §3.3.2.

6.4 VTable Protection

VTable protections prevent or detect vtable corruption at or before control-flow operations

that depend on vtable method pointers. Like CFI, there are both source-aware and source-

free approaches:

On the source-aware side, GNU VTV (Tice, 2012), SafeDispatch (Jang et al., 2014),

and VTrust (Zhang et al., 2016) statically analyze source code class hierarchies to generate

CFI-style guards that restrict all virtual method call sites to destinations that implement

131



matching callees (according to C++ dynamic dispatch semantics). OVT-IVT (Bounov et al.,

2016) improves performance by reorganizing vtables to permit quick validation as a simple

bounds check. CPI (Kuznetsov et al., 2014) heuristically derives a set of sensitive point-

ers, and guards their integrity to prevent control-flow hijacking. CPS (Kuznetsov et al.,

2014) optimizes CPI to improve overheads for programs with many virtual functions by

instrumenting only code pointers, but at the expense of less security for vtable pointers ex-

ploited by confused deputy attacks. Readactor++ (Crane et al., 2015) extends vtables into

execute-only memory, where their layouts are randomized and laced with booby trap entries

(Crane et al., 2013) to counter brute-force attacks. Shrinkwrap (Haller et al., 2015) refines

VTV for tighter object inheritance precision.

On the source-free side, T-VIP (Gawlik and Holz, 2014) instruments virtual call sites

with guard code that verifies that the vtable is in read-only memory and that the indexed

virtual method is a valid virtual method pointer. VTint (Zhang et al., 2015) additionally

assigns them IDs that are dynamically checked at call sites. This ensures that instrumented

virtual calls always index a valid vtable (though it cannot ensure that the indexed vtable is

the precise one demanded by the original source code semantics). VfGuard (Prakash et al.,

2015) goes further and infers C++ class hierarchies and call graphs from native code through

a suite of decompilation techniques. This yields a more precise, source-approximating CFI

policy that can be enforced through static or dynamic binary instrumentation.

OFI differs from these approaches by focusing on protecting software modules that can-

not be instrumented (e.g., because they cannot be modified, they have defenses that reject

modification, or dynamic loading prevents them from being statically identified). Such im-

mutability renders the vtable protections above inapplicable, since they must instrument all

call sites where corrupted vtables might be dereferenced in order to be effective.

132



6.5 COOP Attacks

COOP (Schuster et al., 2015) is a dangerous new attack paradigm that substitutes vtable

pointers or vtable method pointers with structurally similar but counterfeit ones to hijack

control-flows of victim programs. In the context of CFI-protected software, such attacks ef-

fectively hijack software without violating the CFI-enforced control-flow policy. They achieve

this by traversing control-flow edges that are permitted by the policy but that were never

intended to be traversed by the original program semantics. They therefore exploit limita-

tions in the defender’s ability to derive suitable policies for CFI to enforce—especially in

source-free contexts.

OFI does not directly defend against COOP attacks because it does not suggest better

policies for CFI to enforce. Rather, it extends defenses that do work against COOP to be

effective in contexts where not all call sites can be instrumented with guard code. For exam-

ple, WIT (Akritidis et al., 2008) can block COOP attacks in WIT-instrumented code, but

not if the code links to uninstrumented modules to which it passes objects. In that context,

a COOP attacker can flow counterfeit objects to unguarded call sites in the uninstrumented

modules. Lacking guards, these sites traverse the prohibited edge prescribed by the object,

resulting in policy violations.

When coupled with a CFI defense enforcing a suitably semantics-aware policy, OFI ad-

dresses this CODE-COOP attack. By completely mediating the interface between guarded

and unguarded modules that share objects, it shields uninstrumented modules from coun-

terfeit objects. OFI is the first defensive work to focus on this attack class.

6.6 Immutable Modules

We are not the first to identify immutable modules as a challenge for CFI. For example,

source-aware CFI instrumentation of Chrome on ChromeOS identified two third-party li-

braries for which source code was not available, and that interact with instrumented modules

133



through object-oriented interfaces (Tice et al., 2014). Forward CFI’s solution to this mixed

code problem validates object references at call sites within instrumented modules. But this

is insecure if the uninstrumented recipients retain persistent references to the shared objects,

or if they execute concurrently with untrusted (instrumented) code. In both cases, the un-

trusted code may later corrupt the shared vtable pointers without calling them, leaving the

uninstrumented module in possession of a corrupt, never-validated vtable.

In general, all prior source-aware and source-free CFI and vtable protection research must

instrument all interoperating modules in order to thwart control-flow hijacking attacks. OFI

is the first solution that accommodates immutable modules. In deployment contexts where

the OS cannot be included in the instrumentation process, such modules can be extremely

prevalent—potentially including most or all of the system libraries, plus an ongoing stream of

incoming upgrades, patches, and extensions to them. OFI seeks to open such environments

to CFI assistance.

6.7 Component-based Software Engineering

Microsoft COM (Gray et al., 1998) is presently the dominant industry standard for compo-

nent-based software engineering (McIlroy, 1968) of native code modules in consumer software

markets. Its many facets include Object Linking and Embedding (OLE), ActiveX, COM+,

Distributed COM (DCOM), DirectX, User-Mode Driver Framework (UMDF), and the Win-

dows Runtime (WinRT). Microsoft .NET applications typically access Windows OS services

via the .NET COM Interop, which wraps COM. This prevalence makes COM an appropriate

(but challenging) test of OFI’s real-world applicability.

Another primary competing standard is OMG’s Common Object Request Broker Archi-

tecture (CORBA) (Vinoski, 1997). CORBA resembles COM but enforces additional layers

of abstraction, including an Object Request Broker (ORB) that has the option of supply-

ing different representations of shared objects to communicating modules. OFI is therefore

134



potentially easier to realize for CORBA than for COM, since it can take the role of a CFI-

enforcing ORB. Interfaces that communicate between CORBA and COM have also been

developed (Pawar et al., 2013).

6.8 Cryptocurrencies

Researchers have conducted a variety of systematic analyses of cryptocurrencies and dis-

cussed open research challenges (Bonneau et al., 2015). A comprehensive study of Bitcoin

mining malware has shown that botnets generate additional revenue through mining (Huang

et al., 2014). MineGuard (Tahir et al., 2017) utilizes hardware performance counters to gen-

erate signatures of cryptocurrency mining, which are then used to detect mining activities.

Other research has focused on the payment part of cryptocurrencies. For example, EZC (An-

droulaki et al., 2014) was proposed to hide the transaction amounts and address balances.

Double-spending attacks threaten fast payments in Bitcoin (Karame et al., 2012). Bitcoin

timestamp reliability has been improved to counter various attacks (Szalachowski, 2018).

Through analysis of Bitcoin transactions of CryptoLocker, prior studies revealed the finan-

cial infrastructure of ransomware (Liao et al., 2016) and reported its economic impact (Conti

et al., 2018). In contrast, in-browser cryptomining, such as Monero, is less studied in the

scholarly literature. In this work, we conducted the first analysis to study Wasm-based

cryptomining, and developed new approaches to detect mining activities.

6.8.1 Cross-Site Scripting

Our counterfeit mining attack (§5.4) leverages cross-site scripting (XSS). The attacks and

defenses of XSS have been an ongoing cat-and-mouse game for years. One straightforward

defense is to validate and sanitize input on the server side, but this places a heavy burden

on web developers for code correctness. XSS-GUARD (Bisht and Venkatakrishnan, 2008)

135



utilizes taint-tracking technology to centralize validation and sanitization on the server-

side. Blueprint (Louw and Venkatakrishnan, 2009), Noncespaces (Gundy and Chen, 2012),

DSI (Nadji et al., 2014), and CSP (Stamm et al., 2010) adopt the notion of client-side HTML

security policies (Weinberger et al., 2011) to defend XSS. Large-scale studies have also been

undertaken to examine the prevalence of DOM-based XSS vulnerabilities (Lekies et al., 2013)

and the security history of the Web’s client side (Stock et al., 2017), concluding that client-

side XSS stagnates at a high level. To remedy the shortcomings of string-based comparison

methods, taint-aware XSS filtering has been proposed to thwart DOM-based XSS (Stock

et al., 2014). DOMPurify (Heiderich and Späth, 2017) is an open-source library designed

to sanitize HTML strings and document objects from DOM-based XSS attacks. Recently,

attacks leveraging script gadgets have been discovered that circumvent all currently existing

XSS mitigations (Lekies et al., 2017). We showed that in-browser crypomining is susceptible

to such gadget-powered XSS attacks to hijack Wasm mining scripts.

Although our SEISMIC defense detects and warns users about cryptomining activities

introduced through XSS, XSS can still potentially confuse users into responding inappro-

priately to the warnings. For example, attackers can potentially leverage XSS to obfuscate

the provenance of cryptomining scripts, causing users to misattribute them to legitimate

page publishers. This longstanding attribution problem is a continuing subject of ongoing

study (cf., Rowe, 2015).

6.9 Related Web Script Defenses

A cluster of research on defense mechanisms is also related to our work. ObliviAd (Backes

et al., 2012) is an online behavioral advertising system that aims to protect visitors’ privacy.

MadTracer (Li et al., 2012) leverages decision tree models to detect malicious web adver-

tisements. JStill (Xu et al., 2013) compares the information from both static analysis and

runtime inspection to detect and prevent obfuscated malicious JS code. Analysis of access

136



control mechanisms in the browser has observed that although CSP is a clean solution in

terms of access control, XS-search attacks can use timing side-channels to exfiltrate data from

even prestigious services, such as Gmail and Bing (Gelernter and Herzberg, 2015). Blacklist

services provided by browsers to thwart malicious URLs have been shown to be similarly

limited (Virvilis et al., 2015). BridgeScope (Yang et al., 2017) was proposed to precisely and

scalably find JS bridge vulnerabilities. Commix (Stasinopoulos et al., 2018) automates the

detection and exploitation of command injection vulnerabilities in web applications. Our

system is orthogonal to these prior defense mechanisms, in that it profiles Wasm execution

and helps users detect unauthorized in-browser mining of cryptocurrencies.

6.10 Semantic Malware Detection and Obfuscation

Our semantic signature-matching approach to cryptomining detection is motivated by the

widespread belief that it is more difficult for adversaries to obfuscate semantic features than

syntactic ones (cf., Christodorescu et al. (2005); Kinder et al. (2005)). Prior work has

demonstrated that semantic features can nevertheless be obfuscated with sufficient effort, at

the cost of reduced performance (e.g., Moser et al. (2007); Wu et al. (2010)). While such

semantic obfuscations could potentially evade our SEISMIC monitors, we conjecture that

the performance penalty of doing so could make obfuscated cryptojacking significantly less

profitable for attackers. Future work should investigate this conjecture once semantically

obfuscated cryptojacking attacks appear and can be studied.

137



CHAPTER 7

CONCLUSION

7.1 Dissertation Summary

Hardening native software applications against various kinds of software hijacking attacks

has been recognized as one of the most important steps in defending software ecosys-

tems. However, compatibility and applicability limitations constitute the greatest barriers to

more widespread state-of-the-art software protection frameworks adoption. This dissertation

presents a detailed analysis of compatibility, modularity, expressiveness and performance for

hardening native software security in the real world.

Chapter 2 presents ConFIRM, which is a novel evaluation methodology and benchmark-

ing suite designed specifically for measuring compatibility and applicability characteristics

relevant to control-flow hardening evaluation. The ConFIRM suite provides 24 tests of vari-

ous CFI-relevant code features and coding idioms, which are widely found in deployed COTS

software products. Reevaluation of twelve major CFI frameworks using ConFIRM reveals

that state-of-the-art CFI solutions are compatible with only about half of the CFI-relevant

code features and coding idioms needed to protect large production software systems that

are frequently targeted by cybercriminals.

With understanding the compatibility limitations discussed in Chapter 2, in order to aug-

ment CFI protections to scale to more architectures and larger software products, Chapter 3

presents OFI, which is the first work to extend CFI security protections to the significant

realm of mainstream software that contains immutable system modules with large, object-

oriented APIs. A prototype implementation of OFI for Microsoft COM indicates that the

approach is feasible for large, complex, object-oriented APIs on the order of tens of thou-

sands of methods. A case study detailed in Chapter 4 indicates that OFI imposes negligible

performance overhead for some common-case, real-world applications and effectively protects

native software from control-flow hijacking attacks.

138



Chapter 5 then presents SEISMIC, a novel semantic-based method of detecting and

interrupting unauthorized, browser-based cryptomining. SEISMIC is a Wasm in-line script

monitoring system that allows users to monitor and consent to cryptomining activities with

acceptable overhead.

Finally, in Chapter 6 we discuss associated work in the area.

To summarize, we consider these works to be a significant contribution to the field,

because prior CFI evaluations primarily prioritize expressiveness and performance over com-

patibility and modularity of a CFI solution. In contrast to the prior approaches, the focus

of this dissertation has been on discovering CFI compatibility issues and extending CFI to

a large class of software products that are event-driven and component-based.

7.2 Future Work

At the time of publication, ConFIRM consists of 20 compatibility metrics that are identified

by spending many hundreds of man-hours on applying CFI algorithms to large software

products. Although ConFIRM is already a rigorous baseline for CFI solution evaluation, it

might be incomplete. Future research should consider extending this list to cover more code

features and coding idioms that must be preserved, in order to augment a wider domain of

applications with CFI enforcement.

As discussed in Chapter 2, the reevaluation of CFI solutions using ConFIRM reveals

a substantial gap between CFI theory and practice. For instance, our cross-thread stack-

smashing attack is able to break every CFI sandbox that we tested, and all the publicly

available CFI frameworks fail to completely protect COTS software products that rely on

runtime code generation (e.g., Google Chrome, Microsoft Office, and others). Operating

system and hardware developers should consider exploring novel techniques to bridge this

gap.

139



Since we have shown that software-only CFI frameworks (e.g., MCFG, LLVM-CFI, etc.)

suffer from compatibility problems, the proposal for Intel CET (Intel, 2017) has drawn at-

tention of both industry and academia to hardware-assisted solutions. But it is unclear

whether CET is able to surmount the challenging compatibility issues before its official re-

lease. Future work should therefore consider testing the functionalities of the CET-hardened

applications for transparency and correctness.

140



REFERENCES

Abadi, M., M. Budiu, Ú. Erlingsson, and J. Ligatti (2005). Control-flow integrity. In Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security (CCS),
pp. 340–353.

Abadi, M., M. Budiu, Ú. Erlingsson, and J. Ligatti (2009). Control-flow integrity princi-
ples, implementations, and applications. ACM Transactions on Information and System
Security (TISSEC) 13 (1).

Abbasi, A., T. Holz, E. Zambon, and S. Etalle (2017). ECFI: Asynchronous control flow
integrity for programmable logic controllers. In Proceedings of the 33rd Annual Computer
Security Applications Conference (ACSAC), pp. 437–448.

Abera, T., N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi, and
G. Tsudik (2016). C-FLAT: Control-flow attestation for embedded systems software. In
Proceedings of the 23rd ACM Conference on Computer and Communications and Security
(CCS).

Adepu, S., F. Brasser, L. Garcia, M. Rodler, L. Davi, A.-R. Sadeghi, and S. Zonouz (2018).
Control behavior integrity for distributed cyber-physical systems. CoRR abs/1812.08310.

Akritidis, P., C. Cadar, C. Raiciu, M. Costa, and M. Castro (2008). Preventing memory
error exploits with WIT. In Proceedings of the 29th IEEE Symposium on Security and
Privacy (S&P), pp. 263–277.

Andersen, S. (2004). Part 3: Memory protection technologies. In V. Abella (Ed.), Changes in
Functionality in Windows XP Service Pack 2. Microsoft TechNet. http://technet.microsoft.
com/en-us/library/bb457155.aspx.

Androulaki, E., G. Karame, and S. Capkun (2014). Hiding transaction amounts and bal-
ances in Bitcoin. In Proceedings of the 7th ACM International Conference on Trust and
Trustworthy Computing (TRUST), pp. 161–178.

Apple (2013). Sunspider 1.0 JavaScript benchmark suite. https://webkit.org/perf/sunspider/
sunspider.html.

Backes, M., A. Kate, and M. Maffei (2012). ObliviAd: Provably secure and practical online
behavioral advertising. In Proceedings of the 33th IEEE Symposium on Security and
Privacy (S&P), pp. 257–271.

Bauman, E., Z. Lin, and K. W. Hamlen (2018). Superset disassembly: Statically rewriting
x86 binaries without heuristics. In Proceedings of the 25th Network and Distributed Systems
Security Symposium (NDSS).

141

http://technet.microsoft.com/en-us/library/bb457155.aspx.
http://technet.microsoft.com/en-us/library/bb457155.aspx.
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html


Bisht, P. and V. Venkatakrishnan (2008). XSS-GUARD: Precise dynamic prevention of cross-
site scripting attacks. In Proceedings of the 5th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), pp. 23–43.

Bletsch, T., X. Jiang, and V. Freeh (2011). Mitigating code-reuse attacks with control-flow
locking. In Proceedings of the 27th Annual Computer Security Applications Conference
(ACSAC), pp. 353–362.

Bletsch, T., X. Jiang, V. W. Freeh, and Z. Liang (2011). Jump-oriented programming: A new
class of code-reuse attacks. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), pp. 30–40.

Bonneau, J., A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten (2015). SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In Proceedings of
the 36th IEEE Symposium on Security and Privacy (S&P), pp. 104–121.

Bounov, D., R. G. Kici, and S. Lerner (2016). Protecting C++ dynamic dispatch through
vtable interleaving. In Proceedings of the 23rd Network and Distributed System Security
Symposium (NDSS).

Burow, N., S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer (2017).
Control-flow integrity: Precision, security, and performance. Journal of ACM Computing
Surveys (CSUR) 50 (1).

Burow, N., D. McKee, S. A. Carr, and M. Payer (2018). CFIXX: Object type integrity for
C++. In Proceedings of the 25th Network and Distributed System Security Symposium
(NDSS).

Capital One (2019, September). Information on the Capital One cyber incident. https:
//www.capitalone.com/facts2019/.

Carlini, N., A. Barresi, M. Payer, D. Wagner, and T. R. Gross (2015). Control-Flow Bend-
ing: On the effectiveness of control-flow integrity. In Proceedings of the 24th USENIX
Conference on Security (USENIX), pp. 161–176.

Cheng, Y., Z. Zhou, Y. Miao, X. Ding, and H. R. Deng (2014). ROPecker: A generic and
practical approach for defending against ROP attacks. In Proceedings of the 21st Network
and Distributed System Security Symposium (NDSS).

Chochlík, M. and A. Naumann (2016). Static reflection (revision 4). C++ Standards Com-
mittee Paper P0194R0.

Christodorescu, M., S. Jha, S. A. Seshia, D. Song, and R. E. Bryant (2005). Semantics-aware
malware detection. In Proceedings of the 26th IEEE Symposium on Security & Privacy
(S&P), pp. 32–46.

142

https://www.capitalone.com/facts2019/
https://www.capitalone.com/facts2019/


Coker, R. (2016). Disk Performance Benchmark Tool - Bonnie. https://www.coker.com.au/
bonnie++.

Conti, M., S. J. Crane, M. Franz, P. Larsen, M. Negro, C. Liebchen, M. Qunaibit, and A.-R.
Sadeghi (2015). Losing control: On the effectiveness of control-flow integrity under stack
attacks. In Proceedings of the 22nd ACM Conference on Computer and Communications
and Security (CCS), pp. 952–963.

Conti, M., A. Gangwal, and S. Ruj (2018). On the economic significance of ransomware
campaigns: A Bitcoin transactions perspective. arXiv:1804.01341.

Crane, S. J., P. Larsen, S. Brunthaler, and M. Franz (2013). Booby trapping software. In
Proceedings of the 2013 on New Security Paradigms Workshop (NSPW), pp. 95–106.

Crane, S. J., S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi,
T. Holz, B. D. Sutter, and M. Franz (2015). It’s a TRaP: Table randomization and
protection against function-reuse attacks. In Proceedings of the 22nd ACM Conference on
Computer and Communications and Security (CCS), pp. 243–255.

Crary, K., R. Harper, and S. Puri (1999). What is a recursive module? In Proceedings of the
20th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pp. 50–63.

Criswell, J., N. Dautenhahn, and V. Adve (2014). KCoFI: Complete control-flow integrity
for commodity operating system kernels. In Proceedings of the 35th IEEE Symposium on
Security and Privacy (S&P), pp. 292–307.

Crofford, C. and D. McKee (2017, March). Ransomeware families use NSIS installers to
avoid detection, analysis. McAfee Labs.

Davi, L., R. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürnberger, and A.-R.
Sadeghi (2012). MoCFI: A framework to mitigate control-flow attacks on smartphones.
In Proceedings of the 19th Network and Distributed System Security Symposium (NDSS).

Davi, L., M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sullivan, O. Arias, and Y. Jin
(2015). HAFIX: Hardware-assisted flow integrity extension. In Proceedings of the 52th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6.

Davi, L., P. Koeberl, and A.-R. Sadeghi (2014). Hardware-assisted fine-grained control-flow
integrity: Towards efficient protection of embedded systems against software exploitation.
In Proceedings of the 51th ACM/EDAC/IEEE Design Automation Conference (DAC), pp.
1–6.

Davi, L., A.-R. Sadeghi, D. Lehmann, and F. Monrose (2014). Stitching the gadgets: On
the ineffectiveness of coarse-grained control-flow integrity protection. In Proceedings of the
23rd USENIX Security Symposium, pp. 401–416.

143

https://www.coker.com.au/bonnie++
https://www.coker.com.au/bonnie++


de Clercq, R., R. D. Keulenaer, B. Coppens, B. Yang, P. Maene, K. D. Bosschere, B. Preneel,
B. D. Sutter, and I. Verbauwhede (2016). SOFIA: Software and control flow integrity
architecture. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1172–1177.

de Melo, A. C. (2009). Performance counters on Linux. In Linux Plumbers Conference.

DeMocker, J. (2017, November). WebAssembly support now shipping in all major browsers.
Mozilla Blog.

Ding, R., C. Qian, C. Song, B. Harris, T. Kim, and W. Lee (2017). Efficient protection of
path-sensitive control security. In Proceedings of the 26th USENIX Security Symposium,
pp. 131–148.

Donnelly, S. (2018). Soft target: The top 10 vulnerabilities used by cybercriminals. Technical
Report CTA-2018-0327, Recorded Future.

Duffy, J. (2008). Concurrent Programming on Windows. Addison-Wesley.

Duncan, I. (2019, May). Baltimore estimates cost of ransomware attack at $18.2 million
as government begins to restore email accounts. https://www.baltimoresun.com/maryland/
baltimore-city/bs-md-ci-ransomware-email-20190529-story.html.

Erlingsson, Ú., M. Abadi, M. Vrable, M. Budiu, and G. C. Necula (2006). XFI: Software
guards for system address spaces. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pp. 75–88.

Erlingsson, Ú. and F. B. Schneider (1999). SASI enforcement of security policies: A retro-
spective. In Proceedings of the New Security Paradigms Workshop (NSPW), pp. 87–95.

Evans, I., F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-
Douskos (2015). Control Jujutsu: On the weaknesses of fine-grained control flow integrity.
In Proceedings of the 22nd ACM Conference on Computer and Communications Security
(CCS), pp. 901–913.

Exton, C., D. Watkins, and D. Thompson (1997). Comparisons between CORBA IDL &
COM/DCOM MIDL: Interfaces for distributed computing. In Proceedings of the 25th
Technology of Object-Oriented Languages and Systems Conference (TOOLS), pp. 15–32.

Findler, R. B. and M. Felleisen (2002). Contracts for higher-order functions. In Proceedings
of the 7th ACM SIGPLAN International Conference on Functional Programming (ICFP),
pp. 48–59.

Fruhlinger, J. (2020, February). Marriott data breach faq: How did it hap-
pen and what was the impact? https://www.csoonline.com/article/3441220/
marriott-data-breach-faq-how-did-it-happen-and-what-was-the-impact.html.

144

https://www.baltimoresun.com/maryland/baltimore-city/bs-md-ci-ransomware-email-20190529-story.html
https://www.baltimoresun.com/maryland/baltimore-city/bs-md-ci-ransomware-email-20190529-story.html
https://www.csoonline.com/article/3441220/marriott-data-breach-faq-how-did-it-happen-and-what-was-the-impact.html
https://www.csoonline.com/article/3441220/marriott-data-breach-faq-how-did-it-happen-and-what-was-the-impact.html


Gawlik, R. and T. Holz (2014). Towards automated integrity protection of C++ virtual
function tables in binary programs. In Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC), pp. 396–405.

Ge, X., W. Cui, and T. Jaeger (2017). GRIFFIN: Guarding control flows using Intel processor
trace. In Proceedings of the 22nd ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pp. 585–598.

Ge, X., N. Talele, M. Payer, and T. Jaeger (2016). Fine-grained control-flow integrity for
kernel software. In Proceedings of the 1st IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 179–194.

Gelernter, N. and A. Herzberg (2015). Cross-site search attacks. In Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS), pp. 1394–1405.

Göktas, E., E. Athanasopoulos, H. Bos, and G. Portokalidis (2014). Out of control: Over-
coming control-flow integrity. In Proceedings of the 35th IEEE Symposium on Security
and Privacy (S&P), pp. 575–589.

Goodin, D. (2018, January). Now even YouTube serves ads with CPU-draining cryptocur-
rency miners. Ars Technica.

Google (2013). Octane JavaScript benchmark suite. https://developers.google.com/octane.

Gray, D. N., J. Hotchkiss, S. LaForge, A. Shalit, and T. Weinberg (1998). Modern languages
and Microsoft’s component object model. Communications of the ACM (CACM) 41 (5),
55–65.

Gu, Y., Q. Zhao, Y. Zhang, and Z. Lin (2017). PT-CFI: Transparent backward-edge con-
trol flow violation detection using Intel processor trace. In Proceedings of the 7th ACM
Conference on Data and Application Security and Privacy (CODASPY), pp. 173–184.

Gundy, M. V. and H. Chen (2012). Noncespaces: Using randomization to defeat cross-site
scripting attacks. Computers & Security 31 (4), 612–628.

Gupta, S. and B. Gupta (2017). Cross-site scripting (XSS) attacks and defense mechanisms:
Classification and state-of-the-art. International Journal of System Assurance Engineering
Management 8 (1), 512–530.

Haas, A., A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. Bastien (2017). Bringing the Web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pp. 185–200.

145

https://developers.google.com/octane


Haller, I., E. Göktas, E. Athanasopoulos, G. Portokalidis, and H. Bos (2015). ShrinkWrap:
VTable protection without loose ends. In Proceedings of the 31th Annual Computer Secu-
rity Applications Conference (ACSAC), pp. 341–350.

Hamlen, K. W., G. Morrisett, and F. B. Schneider (2006). Computability classes for
enforcement mechanisms. ACM Transactions on Programming Languages and Systems
(TOPLAS) 28 (1), 175–205.

Hardy, N. (1988). The confused deputy: (or why capabilities might have been invented).
ACM SIGOPS Operating Systems Review 22 (4), 36–38.

Heiderich, M. and C. Späth (2017). DOMPurify: Client-side protection against XSS and
markup injection. In Proceedings of the 22nd European Symposium on Research in Com-
puter Security (ESORICS), pp. 116–134.

Hruska, J. (2017, September). Browser-based mining malware found on Pirate Bay, other
sites. ExtremeTech.

Hu, H., C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and W. Lee (2018).
Enforcing unique code target property for control-flow integrity. In Proceedings of the 25th
ACM Conference on Computer and Communications Security (CCS), pp. 1470–1486.

Huang, D. Y., H. Dharmdasani, S. Meiklejohn, V. Dave, C. Grier, D. Mccoy, S. Savage,
N. Weaver, A. C. Snoeren, and K. Levchenko (2014). Botcoin: Monetizing stolen cycles.
In Proceedings of the 21st Network and Distributed System Security Symposium (NDSS).

Intel (2017, June). Control-flow enforcement technology preview, revision 2.0. Technical
Report 334525-002, Intel Corporation.

Jang, D., Z. Tatlock, and S. Lerner (2014). SafeDispatch: Securing C++ virtual calls from
memory corruption attacks. In Proceedings of the 21st Network and Distributed System
Security Symposium (NDSS).

Kafeine (2018, January). Smominru Monero mining botnet making millions for operators.
ProofPoint Threat Insight.

Karame, G., E. Androulaki, and S. Capkun (2012). Double-spending fast payments in
Bitcoin. In Proceedings of the 19th ACM Conference on Computer and Communications
Security (CCS), pp. 906–917.

Kemerlis, V. P., G. Portokalidis, and A. D. Keromytis (2012). kGuard: Lightweight kernel
protection against return-to-user attacks. In Proceedings of the 21st USENIX Security
Symposium, pp. 459–474.

Keramidas, R. (2017, September). Stop coin mining in the browser with No Coin. https:
//ker.af/stop-coin-mining-in-the-browser-with-no-coin.

146

https://ker.af/stop-coin-mining-in-the-browser-with-no-coin
https://ker.af/stop-coin-mining-in-the-browser-with-no-coin


Kinder, J., S. Katzenbeisser, C. Schallhart, and H. Veith (2005). Detecting malicious code
by model checking. In Proceedings of the 2nd International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), pp. 174–187.

Konkel, F. (2017). The Pentagon’s bug bounty program should be expanded to bases, DOD
official says. Defense One.

Kuznetsov, V., L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song (2014). Code-
pointer integrity. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pp. 147–163.

Kwon, D., J. Seo, S. Baek, G. Kim, S. Ahn, and Y. Paek (2018). VM-CFI: Control-flow
integrity for virtual machine kernel using Intel PT. In Proceedings of the 18th International
Conference on Computational Science and Its Applications (ICCSA), pp. 127–137.

Lau, H. (2017, December). Browser-based cryptocurrency mining makes unexpected return
from the dead. Sympantec Threat Intelligence.

Lekies, S., K. Kotowicz, S. Groß, E. V. Nava, and M. Johns (2017). Code-reuse attacks for
the web: Breaking cross-site scripting mitigations via script gadgets. In Proceedings of the
24th ACM Conference on Computer and Communications Security (CCS), pp. 1709–1723.

Lekies, S., B. Stock, and M. Johns (2013). 25 million flows later: Large-scale detection of
DOM-based XSS. In Proceedings of the 20th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 1193–1204.

Li, Z., K. Zhang, Y. Xie, F. Yu, and X. Wang (2012). Knowing your enemy: Understanding
and detecting malicious web advertising. In Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS), pp. 906–917.

Liao, K., Z. Zhao, A. Doupé, and G.-J. Ahn (2016). Behind closed doors: Measurement and
analysis of CryptoLocker ransoms in Bitcoin. In Proceedings of the 11th APWG Symposium
on Electronic Crime Research (eCrime), pp. 1–13.

Liao, S. (2017, September). Showtime websites secretly mined user CPU for cryptocurrency.
The Verge.

Ligatti, J., L. Bauer, and D. Walker (2009). Run-time enforcement of nonsafety policies.
ACM Transactions on Information and Systems Security (TISSEC) 12 (3).

Louw, M. T. and V. N. Venkatakrishnan (2009). Blueprint: Robust prevention of cross-site
scripting attacks for existing browsers. In Proceedings of the 30th IEEE Symposium on
Security and Privacy (S&P), pp. 331–346.

147



Mashtizadeh, A. J., A. Bittau, D. Boneh, and D. Mazières (2015). CCFI: Cryptographically
enforced control flow integrity. In Proceedings of the 22nd ACM Conference on Computer
and Communications Security (CCS), pp. 941–951.

Mayo, B. (2019, January). Major iPhone FaceTime bug lets you hear the audio of the
person you are calling ... before they pick up. 9to5Mac. https://9to5mac.com/2019/01/28/
facetime-bug-hear-audio.

McCamant, S. and G. Morrisett (2006). Evaluating SFI for a CISC architecture. In Pro-
ceedings of the 15st USENIX Security Symposium.

McIlroy, M. (1968). Mass produced software components. In P. Naur and B. Randell (Eds.),
Proceedings of the NATO Software Engineering Conference, pp. 138–156.

McMillen, D. (2017, September). Network attacks containing cryptocurrency CPU mining
tools grow sixfold. IBM X-Force SecurityIntelligence.

Meshkov, A. (2017, November). Cryptojacking surges in popularity growing by 31% over
the past month. AdGuard Research.

Microsoft (2013). Lite-Brite Benchmark. https://testdrive-archive.azurewebsites.net/
Performance/LiteBrite.

Miguel, C., C. Manuel, M. Jean-Philippe, P. Marcus, A. Periklis, D. Austin, B. Paul, and
B. Richard (2009). Fast byte-granularity software fault isolation. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP), pp. 45–58.

Mohan, V., P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz (2015). Opaque control-
flow integrity. In Proceedings of the 22nd Network and Distributed System Security Sym-
posium (NDSS).

Moore, M. (2019, December). Facebook data breach sees millions of
user personal details leaked online. https://www.techradar.com/news/
millions-of-facebook-user-phone-numbers-leaked-online.

Moser, A., C. Kruegel, and E. Kirda (2007). Limits of static analysis for malware detection.
In Proceedings of the 23rd Annual Computer Security Applications Conference (ACSAC),
pp. 421–430.

Mozilla (2013). Kraken 1.1 JavaScript benchmark suite. http://krakenbenchmark.mozilla.org.

Muntean, P., M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert (2018). τCFI: Type-
assisted control flow integrity for x86-64 binaries. In Proceedings of the 21st International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID), pp. 423–444.

148

https://9to5mac.com/2019/01/28/facetime-bug-hear-audio
https://9to5mac.com/2019/01/28/facetime-bug-hear-audio
https://testdrive-archive.azurewebsites.net/Performance/LiteBrite
https://testdrive-archive.azurewebsites.net/Performance/LiteBrite
https://www.techradar.com/news/millions-of-facebook-user-phone-numbers-leaked-online
https://www.techradar.com/news/millions-of-facebook-user-phone-numbers-leaked-online
http://krakenbenchmark.mozilla.org


Nadji, Y., P. Saxena, , and D. Song (2014). Document structure integrity: A robust basis
for cross-site scripting defense. In Proceedings of the 21st Network and Distributed System
Security Symposium (NDSS).

Nagarakatte, S., J. Zhao, M. M. K. Martin, and S. Zdancewic (2010). CETS: Compiler-
enforced temporal safety for C. In Proceedings of the 9th International Symposium on
Memory Management (ISMM), pp. 31–40.

Neumann, R. and A. Toro (2018, April). In-browser mining: Coinhive and
WebAssembly. Forcepoint Security Labs. https://blogs.forcepoint.com/security-labs/
browser-mining-coinhive-and-webassembly.

Nick, C., C. George, A. Elias, and I. Sotiris (2016). HCFI: Hardware-enforced control-flow
integrity. In Proceedings of the 6th ACM Conference on Data and Application Security
and Privacy (CODASPY), pp. 38–49.

Niu, B. and G. Tan (2013). Monitor integrity protection with space efficiency and separate
compilation. In Proceedings of the 21st ACM Conference on Computer and Communica-
tions Security (CCS), pp. 199–210.

Niu, B. and G. Tan (2014a). Modular control-flow integrity. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
pp. 577–587.

Niu, B. and G. Tan (2014b). RockJIT: Securing just-in-time compilation using modular
control-flow integrity. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), pp. 1317–1328.

Niu, B. and G. Tan (2015). Per-input control-flow integrity. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), pp. 914–926.

OAG, New Jersey (2015, May). New Jersey Division of Consumer Affairs obtains settlement
with developer of Bitcoin-mining software found to have accessed New Jersey computers
without users’ knowledge or consent. Office of the Attorney General, Department of Law
& Public Safety, State of New Jersey.

Obes, J. L. and J. Schuh (2012, May). A tale of two pwnies (part 1). Chromium Blog.
https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html.

Office of Inspector General (2018). Evaluation of DHS’ information security program for FY
2017. Technical Report OIG-18-56, Department of Homeland Security (DHS).

Pawar, M., R. Patel, and N. Chaudhari (2013). Interoperability between .Net frame-
work and Python in component way. International Journal of Computer Science Issues
(IJCSI) 10 (1), 165–170.

149

https://blogs.forcepoint.com/security-labs/browser-mining-coinhive-and-webassembly
https://blogs.forcepoint.com/security-labs/browser-mining-coinhive-and-webassembly
https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html


PaX Team (2003). Pax address space layout randomization (aslr). https://pax.grsecurity.net/
docs/aslr.txt.

Payer, M., A. Barresi, and T. R. Gross (2015). Fine-grained control-flow integrity through
binary hardening. In Proceedings of the 12th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), pp. 144–164.

Pewny, J. and T. Holz (2013). Control-flow restrictor: Compiler-based CFI for iOS. In
Proceedings of the 29th Annual Computer Security Applications Conference (ACSAC), pp.
309–318.

Phung, P. H., M. Monshizadeh, M. Sridhar, K. W. Hamlen, and V. Venkatakrishnan (2015).
Between worlds: Securing mixed JavaScript/ActionScript multi-party web content. IEEE
Transactions on Dependable and Secure Computing (TDSC) 12 (4), 443–457.

Postmark (2013). Email delivery for web apps. https://postmarkapp.com.

Pozo, R. and B. Miller (2016). SciMark 2. http://math.nist.gov/scimark2/.

Prakash, A., X. Hu, and H. Yin (2015). vfGuard: Strict protection for virtual function
calls in COTS C++ binaries. In Proceedings of the 22nd Network and Distributed System
Security Symposium (NDSS).

RightWare (2019). Basemark Web 3.0. https://web.basemark.com.

Roemer, R., E. Buchanan, H. Shacham, and S. Savage (2012). Return-oriented programming:
Systems, languages, and applications. ACM Transactions on Information and System
Security (TISSEC) 15 (1).

Rowe, N. C. (2015). The attribution of cyber warfare. In J. A. Green (Ed.), Cyber War-
fare: A multidisciplinary Analysis, Routledge Studies in Conflict, Security and Technology.
Routledge.

Sadeghi, A.-R., L. Davi, and P. Larsen (2015). Securing legacy software against real-world
code-reuse exploits: Utopia, alchemy, or possible future? In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security (ASIACCS), pp.
55–61.

Santora, M. (2019, July). 5 million bulgarians have their personal data stolen in hack.
https://www.nytimes.com/2019/07/17/world/europe/bulgaria-hack-cyberattack.html.

Sarbinowski, P., V. P. Kemerlis, C. Giuffrida, and E. Athanasopoulos (2016). VTPin: Prac-
tical VTable hijacking protection for binaries. In Proceedings of the 32th Annual Computer
Security Applications Conference (ACSAC), pp. 448–459.

150

https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://postmarkapp.com
http://math.nist.gov/scimark2/
https://web.basemark.com
https://www.nytimes.com/2019/07/17/world/europe/bulgaria-hack-cyberattack.html


Schneider, F. B. (2000). Enforceable security policies. ACM Transactions on Information
and Systems Security (TISSEC) 3 (1), 30–50.

Schuster, F., T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz (2015). Counter-
feit object-oriented programming. In Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P), pp. 745–762.

Sridhar, M. and K. W. Hamlen (2010a). ActionScript in-lined reference monitoring in Prolog.
In Proceedings of the 12th International Symposium on Practical Aspects of Declarative
Languages (PADL), pp. 149–151.

Sridhar, M. and K. W. Hamlen (2010b). Model-checking in-lined reference monitors. In
Proceedings of the 11th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), pp. 312–327.

Stamm, S., B. Sterne, and G. Markham (2010). Reining in the Web with content security
policy. In Proceedings of the 19th International Conference on World Wide Web (WWW),
pp. 921–930.

Stasinopoulos, A., C. Ntantogian, and C. Xenakis (2018). Commix: Automating evaluation
and exploitation of command injection vulnerabilities in web applications. International
Journal of Information Security, 1–24.

Stock, B., M. Johns, M. Steffens, and M. Backes (2017). How the Web tangled itself:
Uncovering the history of client-side Web (in)security. In Proceedings of the 26th USENIX
Security Symposium, pp. 971–987.

Stock, B., S. Lekies, T. Mueller, P. Spiegel, and M. Johns (2014). Precise client-side protec-
tion against DOM-based cross-site scripting. In Proceedings of the 23rd USENIX Security
Symposium, pp. 655–670.

Szalachowski, P. (2018). Towards more reliable Bitcoin timestamps. arXiv:1803.09028.

Tahir, R., M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Caesar, and N. Borisov
(2017). Mining on someone else’s dime: Mitigating covert mining operations in clouds and
enterprises. In Proceedings of the 20th International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID), pp. 287–310.

Tang, J. (2015). Exploring Control Flow Guard in Windows 10. Technical report, Trend
Micro Threat Solution Team.

The Wine Committee (2019). Wine 4.0. http://www.winehq.org.

Tice, C. (2012). Improving function pointer security for virtual method dispatches. In GNU
Cauldron Workshop.

151

http://www.winehq.org


Tice, C., T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and G. Pike
(2014). Enforcing forward-edge control-flow integrity in GCC & LLVM. In Proceedings of
the 23rd USENIX Security Symposium, pp. 941–955.

van der Kouwe, E., G. Heiser, D. Andriesse, H. Bos, and C. Giuffrida (2019). SoK: Bench-
marking flaws in systems security. In Proceedings of the 4th IEEE Eurpean Symposium on
Security and Privacy (EuroS&P).

van der Veen, V., D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and
C. Giuffrida (2015). Practical context-sensitive CFI. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), pp. 927–940.

van der Veen, V., E. Göktas, M. Contag, A. Pawlowski, X. Chen, S. Rawat, H. Bos, T. Holz,
E. Athanasopoulos, and C. Giuffrida (2016). A tough call: Mitigating advanced code-reuse
attacks at the binary level. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P), pp. 934–953.

van Saberhagen, N. (2013, October). CryptoNote v 2.0. Technical report, CryptoNote
Technology.

Vandevoorde, D. and N. M. Josuttis (2002). C++ Templates: The Complete Guide. Addison-
Wesley.

Vinoski, S. (1997). CORBA: Integrating diverse applications within distributed heteroge-
neous environments. IEEE Communications Magazine 35 (2), 46–55.

Virvilis, N., A. Mylonas, N. Tsalis, and D. Gritzalis (2015). Security busters: Web browser
security vs. suspicious sites. Computers & Security 52, 90–105.

Wahbe, R., S. Lucco, T. E. Anderson, and S. L. Graham (1993). Efficient software-based fault
isolation. In Proceedings of the 14th ACM Symposium on Operating Systems Principles
(SOSP), pp. 203–216.

Walden, J., J. Stuckman, and R. Scandariato (2014). Predicting vulnerable components:
Software metrics vs text mining. In Proceedings of the 25th International Symposium on
Software Reliability Engineering (ISSRE), pp. 23–33.

Wang, M., H. Yin, A. V. Bhaskar, P. Su, and D. Feng (2015). Binary code continent: Finer-
grained control flow integrity for stripped binaries. In Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC), pp. 331–340.

Wang, W., B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao (2018). SEISMIC: Secure in-
lined script monitors for interrupting cryptojacks. In Proceedings of the 23rd European
Symposium on Research in Computer Security (ESORICS), pp. 122–142.

152



Wang, W., X. Xu, and K. W. Hamlen (2017). Object flow integrity. In Proceedings of the
24th ACM Conference on Computer and Communications Security (CCS), pp. 1909–1924.

Wang, Z. and X. Jiang (2010). HyperSafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity. In Proceedings of the 31st IEEE Symposium on Security
and Privacy (S&P), pp. 380–395.

Wartell, R., V. Mohan, K. W. Hamlen, and Z. Lin (2012a). Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In Proceedings of the 19th ACM Conference
on Computer and Communications Security (CCS), pp. 157–168.

Wartell, R., V. Mohan, K. W. Hamlen, and Z. Lin (2012b). Securing untrusted code via
compiler-agnostic binary rewriting. In Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC), pp. 299–308.

Wartell, R., Y. Zhou, K. W. Hamlen, and M. Kantarcioglu (2014). Shingled graph disassem-
bly: Finding the undecidable path. In Proceedings of the 18th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), pp. 273–285.

WebAssembly Community Group (2018). Security. http://webassembly.org/docs/security.

Weinberger, J., A. Barth, and D. Song (2011). Towards client-side HTML security policies.
In Proceedings of the 6th USENIX Conference on Hot Topics in Security (HotSec), pp.
8–8.

WhiteHat Security (2017). Application security statistics report, vol. 12.

Wilander, J., N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen (2011). RIPE: Runtime
intrusion prevention evaluator. In Proceedings of the 27th Annual Computer Security
Applications Conference (ACSAC), pp. 41–50.

Wollgast, P., R. Gawlik, B. Garmany, B. Kollenda, and T. Holz (2016). Automated multi-
architectural discovery of cfi-resistant code gadgets. In Proceedings of the 21st European
Symposium on Research in Computer Security (ESORICS), pp. 602–620.

Wu, Z., S. Gianvecchio, M. Xie, and H. Wang (2010). Mimimorphism: A new approach to
binary code obfuscation. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS), pp. 536–546.

Xia, Y., Y. Liu, H. Chen, and B. Zang (2012). CFIMon: Detecting violation of control
flow integrity using performance counters. In Proceedings of the 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks(DSN), pp. 1–12.

Xu, W., F. Zhang, and S. Zhu (2013). JStill: Mostly static detection of obfuscated malicious
JavaScript code. In Proceedings of the 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 117–128.

153

http://webassembly.org/docs/security


Xu, X., M. Ghaffarinia, W. Wang, K. W. Hamlen, and Z. Lin (2019, August). ConFIRM:
Evaluating compatibility and relevance of control-flow integrity protections for modern
software. In Proceedings of the 28th USENIX Security, Santa Clara, California, pp. 1805–
1821.

Xu, X., W. Wang, K. W. Hamlen, and Z. Lin (2018). Towards interface-driven COTS binary
hardening. In Proceedings of the 3rd Workshop on Forming an Ecosystem Around Software
Transformation (FEAST), pp. 20–26.

Yang, G., A. Mendoza, J. Zhang, and G. Gu (2017). Precisely and scalably vetting JavaScript
bridge in Android hybrid apps. In Proceedings of the 20th International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID), pp. 143–166.

Yee, B., D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and
N. Fullagar (2009). Native client: A sandbox for portable, untrusted x86 native code. In
Proceedings of the 30th IEEE Symposium on Security and Privacy (S&P), pp. 79–93.

Yuan, P., Q. Zeng, and X. Ding (2015). Hardware-assisted finegrained code-reuse attack
detection. In Proceedings of the 18th International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID), pp. 66–85.

Zhang, C., S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song (2016). VTrust:
Regaining trust on virtual calls. In Proceedings of the 23rd Network and Distributed System
Security Symposium (NDSS).

Zhang, C., C. Song, K. Z. Chen, Z. Chen, and D. Song (2015). VTint: Protecting virtual
function tables’ integrity. In Proceedings of the 22nd Network and Distributed System
Security Symposium (NDSS).

Zhang, C., T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zo (2013).
Practical control flow integrity and randomization for binary executables. In Proceedings
of the 34th IEEE Symposium on Security and Privacy (S&P), pp. 559–573.

Zhang, J., R. Hou, J. Fan, K. Liu, L. Zhang, and S. A. McKee (2017). RAGuard: A
hardware based mechanism for backward-edge control-flow integrity. In Proceedings of the
ACM International Conference on Computing Frontiers (CF), pp. 27–34.

Zhang, J., B. Qi, Z. Qin, and G. Qu (2018). HCIC: Hardware-assisted control-flow integrity
checking. IEEE Internet of Things Journal, 1–1.

Zhang, M. and R. Sekar (2013). Control flow integrity for COTS binaries. In Proceedings of
the 22nd USENIX Conference on Security (USENIX), pp. 337–352.

Zimmermann, T., N. Nagappan, and L. Williams (2010). Searching for a needle in a haystack:
Predicting security vulnerabilities for Windows Vista. In Proceedings of the 3rd Interna-
tional Conference on Software Testing, Verification and Validation (ICST), pp. 421–428.

154



BIOGRAPHICAL SKETCH

Xiaoyang Xu was born in October 1988, in Jinan, China, where he spent his childhood

playing Nintendo Game Boy games with his friends, piano with his mother, and toys when

he was alone. As a huge fan of LEGO, Xiaoyang loved to take things apart and reassemble

them, from toys to electronics. This introduced him to the world of programming later in

his life and led him to pursue a Bachelor of Computer Science from Shandong University.

After interning at IBM Research in Beijing for six months, in 2012, Xiaoyang decided to

pursue a master’s degree in Computer Science at The University of Texas at Dallas. During

his master’s program, Xiaoyang took Advanced Programming Language and Language-Based

Security from Dr. Kevin W. Hamlen. This showed him an even more fascinating world and

proved to be a turning-point for him – he moved to the doctoral program in 2014. Under Dr.

Hamlen’s supervision, Xiaoyang’s research was mainly focusing on native software hardening.

After completing his PhD, Xiaoyang will start his career at Google.

155



CURRICULUM VITAE

Xiaoyang Xu
February 24, 2020

Contact Information:
Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: xiaoyang.xu@utdallas.edu

Educational History:
B.E., Computer Science and Technologh, Shandong University, 2011
Ph.D., Computer Science, The University of Texas at Dallas, 2020

Employment History:
Research Intern, IBM Research in Beijing, June 2011 – December 2011
Research Assistant, The University of Texas at Dallas, September 2014 – May 2020

Publications:
Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W. Hamlen, and Zhiqiang Lin.
ConFIRM: Evaluating Compatibility and Relevance of Control-flow Integrity
Protections for Modern Software. In Proceedings of the 28th USENIX Security Sympo-
sium. Santa Clara, CA. August 2019. [acceptance rate: 16%]

Xiaoyang Xu, Wenhao Wang, Kevin W. Hamlen, and Zhiqiang Lin. Towards Interface-
Driven COTS Binary Hardening, In Proceedings of the 3rd Workshop on Forming an
Ecosystem Around Software Transformation (FEAST). pp. 20-26, October 2018.

Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W. Hamlen, and Shuang Hao.
SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks. In Pro-
ceedings of the 23rd European Symposium on Research in Computer Security (ESORICS),
pp. 122-142, September 2018. [acceptance rate: 20%]

Wenhao Wang, Xiaoyang Xu, and Kevin W Hamlen. Object Flow Integrity. In Pro-
ceedings of the 24th ACM Conference on Computer and Communications Security (CCS),
pp. 1909-1924, November 2017. [acceptance rate: 18%]


	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Evaluating Compatibility and Relevance of Control-flow Integrity Protections for Modern Software
	Introduction
	Background
	Compatibility Metrics
	Indirect Branches
	Other Metrics

	Implementation
	Evaluation
	Evaluation of CFI Solutions
	Evaluation Trends
	Performance Evaluation Correlation

	Conclusion

	Object Flow Integrity
	Introduction
	Background
	Inter-module Object Flows
	CODE-COOP Attacks

	Design
	Object Proxying
	Type-based Contracts
	Trust Model

	Implementation
	Architecture
	Dispatcher Implementation
	Automated Mediator Synthesis

	Evaluation
	Transparency
	Performance Overheads
	Security Evaluation
	Scalability

	Conclusion

	Towards Interface-Driven COTS Binary Hardening
	Introduction
	Attack Example
	Technical Approach
	Case Study
	Object-oriented Design
	API Surface
	Object Exchanges
	Callbacks

	Future work
	Conclusion

	SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks
	Introduction
	Background
	Monero
	WebAssembly

	Ecosystem of Browser-based Cryptocurrency Mining
	Counterfeit Mining Attacks
	Detection
	Current Methods
	Semantic Signature-matching
	SEISMIC In-lined Reference Monitoring

	Evaluation
	Runtime Overhead
	Robustness

	Conclusion

	Related Work
	Prior CFI Evaluations
	CFI Surveys
	SFI and CFI
	VTable Protection
	COOP Attacks
	Immutable Modules
	Component-based Software Engineering
	Cryptocurrencies
	Cross-Site Scripting

	Related Web Script Defenses
	Semantic Malware Detection and Obfuscation

	Conclusion
	Dissertation Summary
	Future Work

	References
	Biographical Sketch
	Curriculum Vitae

