DATA INTENSIVE QUERY PROCESSING FOR SEMANTIC WEB DATA
USING HADOOP AND MAPREDUCE

by

Mohammad Farhan Husain

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Bhavani Thuraisingham, Co-Chair

Dr. Latifur Khan, Co-Chair

Dr. Murat Kantarcioglu

Dr. Kevin Hamlen
To the Almighty
DATA INTENSIVE QUERY PROCESSING FOR SEMANTIC WEB DATA
USING HADOOP AND MAPREDUCE

by

MOHAMMAD FARHAN HUSAIN, B.S.

DISSERTATION
Presented to the Faculty of
The University of Texas at Dallas
in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS
May, 2011
PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as part of the dissertation the text of an original paper or papers submitted for publication. The dissertation must still conform to all other requirements explained in the "Guide for the Preparation of Master’s Theses and Doctoral Dissertations at The University of Texas at Dallas." It must include a comprehensive abstract, a full introduction and literature review and a final overall conclusion. Additional material (procedural and design data as well as descriptions of equipment) must be provided in sufficient detail to allow a clear and precise judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already published, provided these meet type size, margin and legibility requirements. In such cases, connecting texts which provide logical bridges between different manuscripts are mandatory. Where the student is not the sole author of a manuscript, the student is required to make an explicit statement in the introductory material to that manuscript describing the student’s contribution to the work and acknowledging the contribution of the other author(s). The signatures of the Supervising Committee which precede all other material in the dissertation to the accuracy of this statement.
ACKNOWLEDGEMENTS

Firstly, I would like to dedicate my appreciation to my research advisors, Dr. Bhavani Thuraisingham and Dr. Latifur Khan, for devoting their precious time and efforts to guide and support me. Without their invaluable advice and patient assistance, it would not be possible for me to pursue my Ph.D. degree and complete this dissertation.

I would like to than my committee members, Dr. Murat Kantarcioglu and Dr. Kevin Hamlen, for the helpful suggestions and discussions, and contributing their time generously in serving on my proposal and dissertation defense.

I would like to sincerely thank Pankil Doshi, James McGlothlin and Dr. Mohammad M. Masud for working with me in solving problems and implementing and running experiments during the course of my Ph.D. Their inspirations and encouragement kept me going during my work for Ph.D.

I would like to thank my wife and my parents for their deepest love and unconditional support over all these years. I would not have been where I am today without their love, understanding and efforts to hold me up during my research. My wife, Marzia Murshed, deserves special mention here as she was the one who most constantly was at my side, providing the support, care and encouragement that I was in dire need of.

Finally, I thank the Almighty who gave me the knowledge, patience and perseverance that allowed me to complete this doctoral degree. I would like to dedicate this work to Him.

April, 2011
Semantic Web is an emerging area to augment human reasoning. Various technologies are being developed in this arena which have been standardized by the World Wide Web Consortium (W3C). One such standard is the Resource Description Framework (RDF). Semantic Web technologies can be utilized to build efficient and scalable systems for Cloud Computing. With the explosion of semantic web technologies, large RDF graphs are common place. This poses significant challenges for the storage and retrieval of RDF graphs. Current frameworks do not scale for large RDF graphs and as a result do not address these challenges.

In this dissertation, we describe a framework that we built using Hadoop, an open source distributed file system supporting MapReduce programming paradigm, to store and retrieve large numbers of RDF triples by exploiting the cloud computing paradigm. We describe a scheme to store RDF data in Hadoop Distributed File System. SPARQL (SPARQL Protocol and RDF Query Language) is a language to query RDF data. We present an algorithm which can rewrite some SPARQL queries to equivalent simpler ones leveraging the storage scheme. More than one Hadoop job (the smallest unit of execution in Hadoop) may be needed to
answer a query because a single triple pattern in a query cannot simultaneously take part in more than one join in a single Hadoop job. To determine the jobs, we present multiple algorithms, based on greedy and exhaustive search approach, to generate query plan to answer a SPARQL query. We extend those algorithms to generate query plans for complex SPARQL queries with OPTIONAL blocks. We use Hadoop’s MapReduce framework to answer the queries. Our results show that we can store large RDF graphs in Hadoop clusters built with cheap commodity class hardware. Furthermore, we show that our framework is scalable and efficient and can handle large amounts of RDF data, unlike traditional approaches.
TABLE OF CONTENTS

PREFACE ... v

ACKNOWLEDGEMENTS .. vi

ABSTRACT ... vii

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. RESEARCH BACKGROUND 7
 2.1 MapReduce Programming Paradigm 7
 2.1.1 MapReduce in Data Mining 8
 2.1.2 MapReduce in Semantic Web 9
 2.2 Semantic Web Frameworks .. 9

CHAPTER 3. SYSTEM ARCHITECTURE 13
 3.0.1 Data Generation and Storage 13
 3.0.2 File Organization ... 14
 3.0.3 Predicate Split (PS) .. 15
 3.0.4 Predicate Object Split (POS) 15
 3.0.5 Example Data .. 17
 3.0.6 Binary Format .. 18
6.4.2 Experiment with Number of Reducers .. 82
6.4.3 Experiment with PigLatin ... 83
6.5 Validation ... 86

CHAPTER 7. ACCESS CONTROL ... 87
7.1 Access Control Level Descriptions ... 88
 7.1.1 Access Token Assignment .. 91
 7.1.2 Final output of an Agent’s ATs ... 93
 7.1.3 Assumptions ... 93
 7.1.4 Conflicts .. 94
7.2 Proposed Architecture with Access Control ... 95
7.3 Policy Enforcement .. 98
 7.3.1 Query Rewriting .. 98
 7.3.2 Embedded Enforcement ... 99
 7.3.3 Post-processing Enforcement .. 100
7.4 Experimental Setup and Results ... 101
 7.4.1 Validation .. 102

CHAPTER 8. CONCLUSION AND FUTURE WORK 104
8.1 Conclusion .. 104
8.2 Limitations ... 105
8.3 Future Work ... 106
 8.3.1 Sophisticated Query Model ... 106
 8.3.2 Experiment with Number of Reducers .. 106
 8.3.3 Indexing .. 107
 8.3.4 Different Types of SPARQL Queries .. 107
 8.3.5 Using Hive and HBase ... 109
 8.3.6 Inferencing .. 110
LIST OF TABLES

3.1 Data size at various steps for 1000 universities 16
3.2 Sample data for LUBM Query 9 ... 17

4.1 Plans for SP^2Bench Query 5(b) ... 39
4.2 2 Job Plan vs. 3 Job plan ... 42
4.3 Iteration 1 Calculations ... 46
4.4 Iteration 1 - After choosing X ... 46
4.5 Iteration 2 Calculations ... 46
4.6 Example Data ... 58
4.7 Example Query Result ... 58

5.1 Example Data ... 73
5.2 Summary Statistics Creation Example ... 73

6.1 Comparison with RDF-3X ... 77
6.2 Query Runtimes for LUBM and SP^2B Dataset 77
6.3 Query Runtimes Comparison ... 85

7.1 EEMap Output and EEReduce Input ... 100
LIST OF FIGURES

3.1 The System Architecture .. 14
3.2 Partial LUBM Ontology (are denotes subClassOf relationship) 17

4.1 NCMRJ and CMRJ Example .. 26
4.2 Join and Inverted Graph for Query 12 31
4.3 Graph Coloring for Query 12 .. 36
4.4 Join and Inverted Graph for SP^2Bench Query 5(b) 39
4.5 Graph for Query 12 in Iteration 1 ... 45
4.6 Graph for Query 12 in Iteration 2 ... 45
4.7 The (partial) graph for the running example query with the initial state and all states adjacent to it. ... 51
4.8 Operator Graph for (a) Example Query, (b) Modified Example Query 59
4.9 Operator Graph for (a) SP^2B Query 6, (b) SP^2B Query 7 62

6.1 Response time of LUBM Query 2 ... 81
6.2 Response time of LUBM Query 9 ... 82
6.3 Response time of LUBM Query 12 .. 83
6.4 Query Runtimes for SP^2B Queries .. 84
6.5 Query Time vs. Number of Reducers 84
6.6 Query Runtimes .. 85

7.1 The shaded gray area can be viewed by an agent having 1 access level. 90
7.2 A sample RDF ontology and ontology instance. 92
7.3 The System Architecture ... 97
7.4 Performance measurement of *takesCourse* scenario. The Y-axis represents runtimes in milliseconds and X-axis shows set of data-set size. 101

7.5 Performance measurement of *displayTeachers* scenario. The Y-axis represents runtimes in milliseconds and X-axis shows set of data-set size. 103
CHAPTER 1

INTRODUCTION

Cloud computing is an emerging paradigm in the IT and data processing communities. Enterprizes utilize cloud computing service to outsource data maintenance, which can result in significant financial benefits. Businesses store and access data at remote locations in the "cloud". As the popularity of cloud computing grows, the service providers face ever increasing challenges. They have to maintain huge quantities of heterogenous data while providing efficient information retrieval. Thus the key emphasis for cloud computing solutions is scalability and query efficiency.

Semantic Web technologies are being developed to present data in standardized way such that such data can be retrieved and understood by both human and machine. Historically, web pages are published in plain html files which are not suitable for reasoning. Instead, the machine treats these html files as a bag of keywords. Researchers are developing Semantic Web technologies that have been standardized to address such inadequacies. The most prominent standards are Resource Description Framework† (RDF) and SPARQL Protocol and RDF Query Language‡ (SPARQL). RDF is the standard for storing and representing data and SPARQL is a query language to retrieve data from an RDF store. Cloud Computing systems can utilize the power of these Semantic Web technologies to provide the user with capability to efficiently store and retrieve data for data intensive applications.

†http://www.w3.org/TR/rdf-primer
‡http://www.w3.org/TR/rdf-sparql-query
Semantic web technologies could be especially useful for maintaining data in the cloud. Semantic web technologies provide the ability to specify and query heterogenous data in a standardized manner. Moreover, via OWL (Web Ontology Language) ontologies, different schemas, classes, data types and relationships can be specified without sacrificing the standard RDF/SPARQL interface. Conversely, cloud computing solutions could be of great benefit to the semantic web community. Semantic web datasets are growing exponentially. More than any other arena, in the web domain, scalability is paramount. Yet, high speed response time is also vital in the web community. We believe that the cloud computing paradigm offers a solution that can achieve both of these goals.

Existing commercial tools and technologies do not scale well in Cloud Computing settings. Researchers have started to focus on these problems recently. They are proposing systems built from the scratch. In (Wang, Wu, Gao, Li, and Ooi 2010), researchers propose an indexing scheme for a new distributed database† which can be used as a Cloud system. When it comes to semantic web data such as RDF, we are faced with similar challenges. With storage becoming cheaper and the need to store and retrieve large amounts of data, developing systems to handle billions of RDF triples requiring tera bytes of disk space is no longer a distant prospect. Researchers are already working on billions of triples (Rohloff, Dean, Emmons, Ryder, and Sumner 2007; Newman, Hunter, Li, Bouton, and Davis 2008). Competitions are being organized to encourage researchers to build efficient repositories†. At present, there are just a few frameworks (e.g. RDF-3X (Neumann and Weikum 2008), Jena (Carroll, Dickinson, Dollin, Reynolds, Seaborne, and Wilkinson 2004; McBride 2002), Sesame† (Broekstra, Kampman, and van Harmelen 2002), BigOWLIM (Kiryakov, Ognyanov, and Manov 2005)) for Semantic Web technologies, and these frameworks have limitations for

†http://www.comp.nus.edu.sg/~epic/
†http://challenge.semanticweb.org
†http://www.openrdf.org
large RDF graphs. Therefore, storing a large number of RDF triples and efficiently querying them is a challenging and important problem.

A distributed system can be built to overcome the scalability and performance problems of current Semantic Web frameworks. Databases are being distributed in order to provide such scalable solutions. However, to date, there is no distributed repository for storing and managing RDF data. Researchers have only recently begun to explore the problems and technical solutions which must be addressed in order to build such a distributed system. One promising line of investigation involves making use of readily available distributed database systems or relational databases. Such database systems can use relational schema for the storage of RDF data. SPARQL queries can be answered by converting them to SQL first (Chebotko, Lu, and Fotouhi 2009; Chong, Das, Eadon, and Srinivasan 2005; Cyganiak 2005). Optimal relational schemas are being probed for this purpose (Abadi, Marcus, Madden, and Hollenbach 2007). The main disadvantage with such systems is that they are optimized for relational data. They may not perform well for RDF data, especially because RDF data are sets of triples† (an ordered tuple of three components called subject, predicate and object respectively) which form large directed graphs. In a SPARQL query, any number of triple patterns‡ can join on a single variable§ which makes a relational database query plan complex. Performance and scalability will remain a challenging issue due to the fact that these systems are optimized for relational data schemata and transactional database usage.

Yet another approach is to build a distributed system for RDF from scratch. Here, there will be an opportunity to design and optimize a system with specific application to RDF data. In this approach, the researchers would be reinventing the wheel.

†http://www.w3.org/TR/rdf-concepts/#dfn-rdf-triple
‡http://www.w3.org/TR/rdf-sparql-query/#defn_TriplePattern
§http://www.w3.org/TR/rdf-sparql-query/#defn_QueryVariable
Instead of starting with a blank slate, we propose to build a solution with a generic distributed storage system which utilizes a Cloud Computing platform. We then propose to tailor the system and schema specifically to meet the needs of semantic web data. Finally, we propose to build a semantic web repository using such a storage facility.

Hadoop is a distributed file system where files can be saved with replication. It is an ideal candidate for building a storage system. Hadoop features high fault tolerance and great reliability. In addition, it also contains an implementation of the MapReduce (Dean and Ghemawat 2008) programming model, a functional programming model which is suitable for the parallel processing of large amounts of data. Through partitioning data into a number of independent chunks, MapReduce processes run against these chunks, making parallelization simpler. Moreover, the MapReduce programming model facilitates and simplifies the task of joining multiple triple patterns.

In this dissertation, we will describe a schema to store RDF data in Hadoop, and we will detail a solution to process queries against this data. In the preprocessing stage, we process RDF data and populate files in the distributed file system. This process includes partitioning and organizing the data files and executing dictionary encoding. Our schema facilitates rewriting some queries to their equivalent simpler. We will present an algorithm for the rewriting.

We will then detail a query engine for information retrieval. We will specify exactly how SPARQL queries will be satisfied using MapReduce programming. Specifically, we must determine the Hadoop ”jobs” that will be executed to solve the query. We will present three algorithms that produce a query plan for a SPARQL query. Two of them are greedy algorithms and one is an exhaustive search algorithm. One of the greedy algorithms is an approximation algorithm using heuristics, but the worst case has a reasonable upper bound.

†http://hadoop.apache.org
The exhaustive algorithm can use any cost model and choose the best plan for a query using that cost model with the minimal number of Hadoop jobs. We also have another algorithm which can handle complex SPARQL queries with OPTIONAL blocks. In this algorithm, we can use any of the three algorithms previously mentioned as a sub-routine.

Finally, we will utilize two standard benchmark datasets to run experiments. We will present results for dataset ranging from 0.1 to over 6.6 billion triples. We will show that our solution is exceptionally scalable. We will show that our solution outperforms leading state-of-the-art semantic web repositories, using standard benchmark queries on very large datasets.

Our contributions are as follows:

1. We design a storage scheme to store RDF data in Hadoop distributed file system (HDFS†).

2. We propose an algorithm for query rewriting leveraging our schema.

3. We propose a greedy algorithm which generates query plans by choosing most number of possible joins at each step.

4. We propose an exhaustive search algorithm based on a two coloring scheme. The algorithm can use any cost function to choose the best plan.

5. We propose an algorithm that is guaranteed to provide a query plan whose cost is bounded by the log of the total number of variables in the given SPARQL query. It uses summary statistics for estimating join selectivity to break ties.

†http://hadoop.apache.org/core/docs/r0.18.3/hdfs_design.html
6. We propose an algorithm which can generate query plans for complex SPARQL queries with OPTIONAL blocks by using any of the three previously mentioned algorithms as a sub-routine.

7. We build a framework which is highly scalable and fault tolerant and supports data intensive query processing.

8. We demonstrate that our approach performs better than state-of-the-art semantic web repositories, using standard benchmark queries on very large datasets.

The remainder of this dissertation is organized as follows: in Chapter 2, we investigate related work. In Chapter 3, we discuss our system architecture. In Chapter 4, we discuss how we answer a SPARQL query. In Chapter 5, we present the summary statistics we gather to break ties while generating a query plan. In Chapter 6, we present the results of our experiments. Finally, in Chapter 8, we draw some conclusions and discuss areas we have identified for improvement in the future.
CHAPTER 2

RESEARCH BACKGROUND

In this chapter, we will first investigate research related to MapReduce. Next, we will discuss works related to the semantic web.

2.1 MapReduce Programming Paradigm

MapReduce, though a programming paradigm, is rapidly being adopted by researchers. This technology is becoming increasingly popular in the community which handles large amounts of data. It is the most promising technology to solve the performance issues researchers are facing in Cloud Computing. In (Abadi 2009), Abadi discusses how MapReduce can satisfy most of the requirements to build an ideal Cloud DBMS. Researchers and enterprises are using MapReduce technology for web indexing, searches and data mining.

Google uses MapReduce for web indexing, data storage and social networking (Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, and Gruber 2006). Yahoo! uses MapReduce extensively in their data analysis tasks (Olston, Reed, Srivastava, Kumar, and Tomkins 2008). IBM has successfully experimented with a scale-up scale-out search framework using MapReduce technology (Moreira, Michael, Da Silva, Shiloach, Dube, and Zhang 2007). In a recent work (Das, Sismanis, Beyer, Gemulla, Haas, and McPherson 2010), they have reported how they integrated Hadoop and System R. Teradata did a similar work by integrating Hadoop with a parallel DBMS (Xu, Kostamaa, and Gao 2010). Another area where this technology is successfully being used is simulation (McNabb, Monson, and Seppi 2007). In (Abouzeid, Bajda-Pawlikowski, Abadi, Rasin, and Silberschatz 2009), Abouzeid et
al. reported an interesting idea of combining MapReduce with existing relational database techniques. These works differ from our research in that we use MapReduce for semantic web technologies. Our focus is on developing a scalable solution for storing RDF data and retrieving them by SPARQL queries.

2.1.1 MapReduce in Data Mining

Moretti et al. have used MapReduce to scale up classifiers for mining petabytes of data (Moretti, Steinhaeuser, Thain, and Chawla 2008). They have worked on data distribution and partitioning for data mining, and have applied three data mining algorithms to test the performance. Data mining algorithms are being rewritten in different forms to take advantage of MapReduce technology. In (Chu, Kim, Lin, Yu, Bradski, Ng, and Olikotun 2006), Chu et al. rewrite well-known machine learning algorithms to take advantage of multi-core machines by leveraging MapReduce programming paradigm. In (Papadimitriou and Sun 2008), Papadimitriou et al. have worked with mining petabytes of data using Hadoop. They have described an end-to-end model where they talked about starting from pre-processing the data to estimating the final models. MapReduce like programming paradigm was also used by researchers for data mining using high performance cloud (Grossman and Gu 2008; Zhao, Ma, and He 2009; Yan, Fleury, Merler, Natsev, and Smith 2009; Chang, Bai, and Zhu 2009). Böse et al. are also working on online stream mining techniques (Böse, Andrzejak, and Högqvist 2010). Bayir et al. are converting existing research projects to have the capability to run MapReduce jobs for data mining (Bayir, Toroslu, Cosar, and Fidan 2009). Bu et a. are developing HaLoop (Bu, Howe, Balazinska, and Ernst 2010), a modified version of Hadoop, to cater the needs of scientists doing data-intensive iterative computing which includes data mining.
2.1.2 MapReduce in Semantic Web

In the semantic web arena, there has not been much work done with MapReduce technology. We have found two related projects: BioMANTA† project and SHARD †. BioMANTA proposes extensions to RDF Molecules (Ding, Finin, Peng, da Silva, and Mcguinness 2005) and implements a MapReduce based Molecule store (Newman, Hunter, Li, Bouton, and Davis 2008). They use MapReduce to answer the queries. They have queried a maximum of 4 million triples. Our work differs in the following ways: first, we have queried billions of triples. Second, we have devised a storage schema which is tailored to improve query execution performance for RDF data. We store RDF triples in files based on the predicate of the triple and the type of the object. Third, we have query rewriting algorithm which leverages our schema. Finally, we have multiple algorithms to determine a query processing plan to answer a SPARQL query. By using this, we can determine the input files of a job and the order in which they should be run. To the best of our knowledge, we are the first ones to come up with a storage schema for RDF data using flat files in HDFS, and multiple MapReduce job determination algorithms to answer a SPARQL query.

2.2 Semantic Web Frameworks

In this section, we discuss various semantic web frameworks. There has been significant research into semantic web repositories, with particular emphasis on query efficiency and scalability. In fact, there are too many such repositories to fairly evaluate and discuss each. Therefore, we will pay attention to semantic web repositories which are open source or available for download, and which have received favorable recognition in the semantic web and database communities.

†http://www.itee.uq.edu.au/erresearch/projects/biomanta
†http://www.cloudera.com/blog/2010/03/how-raytheon-researchers-are-using-hadoop-to-build-a-scalable-distributed-triple-store
SHARD (Scalable, High-Performance, Robust and Distributed) is a RDF triple store using the Hadoop Cloudera distribution†. This project shows initial results demonstrating Hadoop’s ability to improve scalability for RDF data sets. However, SHARD stores its data only in a triple store schema. It currently does no query planning or reordering, and its query processor will not minimize the number of Hadoop jobs.

In (Abadi, Marcus, Madden, and Hollenbach 2009) and (Abadi, Marcus, Madden, and Hollenbach 2007), Abadi et al. reported a vertically partitioned DBMS for storage and retrieval of RDF data. Their solution is a schema with a two column table for each predicate. Their schema is then implemented on top of a column-store relational database such as CStore (Stonebraker, Abadi, Batkin, Chen, Cherniack, Ferreira, Lau, Lin, Madden, O’Neil, O’Neil, Rasin, Tran, and Zdonik 2005) or MonetDB (Boncz, Grust, van Keulen, Manegold, Ritteringer, and Teubner 2006). They observed performance improvement with their scheme over traditional relational database schemes. We have leveraged this technology in our predicate-based partitioning within the MapReduce framework. However, in the vertical partitioning research, only small databases (< 100 million) were used. Several papers (Weiss, Karras, and Bernstein 2008; McGlothlin and Khan 2009; Sidirourgos, Goncalves, Kersten, Nes, and Manegold 2008) have shown that vertical partitioning’s performance is drastically reduced as the data set size is increased.

Jena (Carroll, Dickinson, Dollin, Reynolds, Seaborne, and Wilkinson 2004) is a semantic web framework for Jena. True to its framework design, it allows integration of multiple solutions for persistence. It also supports inference through the development of *reasoners*. However, Jena is limited to a triple store schema. In other words, all data is stored in a single three column table. Jena has very poor query performance for large data

†http://www.cloudera.com/hadoop/
sets. Furthermore, any change to the data set requires complete recalculation of the inferred triples.

BigOWLIM (Kiryakov, Ognyanov, and Manov 2005) is among the fastest and most scalable semantic web frameworks available. However, it is not as scalable as our framework and requires very high end and costly machines. It requires expensive hardware (a lot of main memory) to load large data sets and it has a long loading time. As our experiments show (Chapter 6), it does not perform well when there is no bound object in a query. However, the performance of our framework is not affected in such a case.

RDF-3X (Neumann and Weikum 2008) is considered the fastest existing semantic web repository. In other words, it has the fastest query times. RDF-3X uses histograms, summary statistics, and query optimization to enable high performance semantic web queries. As a result, RDF-3X is generally able to outperform any other solution for queries with bound objects and aggregate queries. However, RDF-3X’s performance degrades exponentially for unbound queries, and queries with even simple joins if the selectivity factor is low. This becomes increasingly relevant for inference queries, which generally require unions of subqueries with unbound objects. Our experiments show that RDF-3X is not only slower for such queries, it often aborts and cannot complete the query. For example, consider the simple query "select all students." This query in LUBM requires us to select all graduate students, select all undergraduate students, and union the results together. However, there are a very large number of results in this union. While both sub-queries complete easily, the union will abort in RDF-3X for LUBM (30,000) with 3.3 billion triples.

We would like to point out one other aspect of our solution that differentiates us from RDF-3X and other proprietary repositories. Ours is a framework in that we attempt to utilize existing technology as much as possible. We use the Hadoop framework which
is a robust industry standard for cloud computing. We also use Pellet†, a popular tool for inference entailment. Other solutions such as Jena and vertical partitioning also use existing relational database systems for persistence. However, RDF-3X also uses its own persistence. Since RDF-3X relies entirely on its own open source code, we have observed volatility. For example, unions where one set is empty, or joins with unbound variables can result in query plan errors, segmentation faults and memory allocation errors. The same queries often work after adjustment, but they are valid SPARQL queries that RDF-3X aborts on. We prefer to utilize established industry software such as Hadoop to increase robustness and reduce volatility.

RDFKB (McGlothlin and Khan 2010c; McGlothlin and Khan 2010b; McGlothlin and Khan 2010a; McGlothlin 2010) is a semantic web repository using a relational database schema built upon bit vectors. RDFKB achieves better query performance than RDF-3X or vertical partitioning. However, RDFKB aims to provide knowledge base functions such as inference forward chaining, uncertainty reasoning and ontology alignment. RDFKB prioritizes these goals ahead of scalability. RDFKB is not able to load LUBM(30,000) with 3 billion triples, so it cannot compete with our solution for scalability.

Hexastore (Weiss, Karras, and Bernstein 2008) and **BitMat** (Atre, Srinivasan, and Hendler 2008) are main memory data structures optimized for RDF indexing. These solutions may achieve exceptional performance on hot runs, but they are not optimized for cold runs from persistent storage. Furthermore, their scalability is directly associated to the quantity of main memory RAM available. These products are not available for testing and evaluation.

†[http://clarkparsia.com/pellet/]
CHAPTER 3

SYSTEM ARCHITECTURE

This chapter describes the architecture of our framework. Our framework consists of two components. The upper part of Figure 3.1 depicts the data preprocessing component and the lower part shows the query answering one.

We have three subcomponents for data generation and preprocessing. We convert RDF/XML\(^\dagger\) to N-Triples\(^\dagger\) serialization format using our N-Triples Converter component. The PS component takes the N-Triples data and splits it into predicate files. The predicate files are then fed into the POS component which splits the predicate files into smaller files based on the type of objects. These steps are described in Section 3.0.2, 3.0.3 and 3.0.4.

Our MapReduce framework has three sub-components in it. It takes the SPARQL query from the user and passes it to the Input Selector (see Section 4.2) and Plan Generator. This component selects the input files, by using our algorithm described in Section 4.3.5, decides how many MapReduce jobs are needed and passes the information to the Join Executer component which runs the jobs using MapReduce framework. It then relays the query answer from Hadoop to the user.

3.0.1 Data Generation and Storage

For our experiments, we use the LUBM (Guo, Pan, and Heflin 2005) data set. It is a benchmark data set designed to enable researchers to evaluate a semantic web repository’s

\(\dagger\)http://www.w3.org/TR/rdf-syntax-grammar
\(\dagger\)http://www.w3.org/2001/sw/RDFCore/ntriples
performance (Guo, Pan, and Heflin 2004). The LUBM data generator generates data in RDF/XML serialization format. This format is not suitable for our purpose because we store data in HDFS as flat files and so to retrieve even a single triple we would need to parse the entire file. Therefore we convert the data to N-Triples to store the data, because with that format we have a complete RDF triple (Subject, Predicate and Object) in one line of a file, which is very convenient to use with MapReduce jobs. The processing steps to go through to get the data into our intended format are described in following sections.

3.0.2 File Organization

We do not store the data in a single file because, in Hadoop and MapReduce Framework, a file is the smallest unit of input to a MapReduce job and, in the absence of caching, a file is always read from the disk. If we have all the data in one file, the whole file will be input to jobs for each query. Instead, we divide the data into multiple smaller files. The splitting is done in two steps which we discuss in the following sections.
3.0.3 Predicate Split (PS)

In the first step, we divide the data according to the predicates. This division immediately enables us to cut down the search space for any SPARQL query which does not have a variable\(^\dagger\) predicate. For such a query, we can just pick a file for each predicate and run the query on those files only. For simplicity, we name the files with predicates, e.g. all the triples containing a predicate \(p1:\text{pred}\) go into a file named \(p1_{-}\text{pred}\). However, in case we have a variable predicate in a triple pattern\(^\dagger\) and if we cannot determine the type of the object, we have to consider all files. If we can determine the type of the object then we consider all files having that type of object. We discuss more on this in Section 4.2. In real world RDF data sets, the number of distinct predicates is in general not a large number (Stocker, Seaborne, Bernstein, Kiefer, and Reynolds 2008). However, there are data sets having many predicates. Our system performance does not vary in such a case because we select files related to the predicates specified in a SPARQL query.

3.0.4 Predicate Object Split (POS)

3.0.4.1 Split Using Explicit Type Information of Object

In the next step, we work with the explicit type information in the \(\text{rdf_type}\) file. The predicate \(\text{rdf_type}\) is used in RDF to denote that a resource is an instance of a class. The \(\text{rdf_type}\) file is first divided into as many files as the number of distinct objects the \(\text{rdf_type}\) predicate has. For example, if in the ontology the leaves of the class hierarchy are \(c_1, c_2, ..., c_n\) then we will create files for each of these leaves and the file names will be like \(\text{type_c_1}, \text{type_c_2}, ..., \text{type_c_n}\). Please note that the object values \(c_1, c_2, ..., c_n\) are no longer needed to be stored within the file as they can be easily retrieved from the file name. This further reduces the

\(^\dagger\)http://www.w3.org/TR/rdf-sparql-query/#sparqlQueryVariables
\(^\dagger\)http://www.w3.org/TR/rdf-sparql-query/#sparqlTriplePatterns
amount of space needed to store the data. We generate such a file for each distinct object value of the predicate `rdf:type`.

3.0.4.2 Split Using Implicit Type Information of Object

We divide the remaining predicate files according to the type of the objects. Not all the objects are URIs, some are literals. The literals remain in the file named by the predicate, no further processing is required for them. The type information of a URI object is not mentioned in these files but they can be retrieved from the `type_*` files. The URI objects move into their respective file named as `predicate_type`. For example, if a triple has the predicate `p` and the type of the URI object is `c_i`, then the subject and object appears in one line in the file `p_{c_i}`. To do this split we need to join a predicate file with the `type_*` files to retrieve the type information.

In Table 3.1, we show the number of files we get after `PS` and `POS` steps. We can see that eventually we organize the data into 41 files.

Table 3.1 shows the number of files and size gain we get at each step for data of 1000 universities. LUBM generator generates 20,020 small files, with a total size of 24 GB. After splitting the data according to predicates the size drastically reduces to only 7.1 GB (a 70.42% gain). This happens because of the absence of predicate columns and also the prefix substitution. At this step, we have only 17 files as there are 17 unique predicates in the LUBM data set. In the final step, space is reduced another 7.04%, as the split `rdf_type`
files no longer has the object column. The number of files increases to 41 as predicate files are split using the type of the objects.

3.0.5 Example Data

In Table 3.2, we have shown sample data for three predicates. The left most column shows the type file for student objects after the splitting by using explicit type information in POS step. It lists only the subjects of the triples having rdf:type predicate and student object. The rest of the columns show the the advisor, takesCourse and teacherOf predicate files.
after the splitting by using implicit type information in POS step. The prefix \textit{ub}: stands for \url{http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#}. Each row has a pair of subject and object. In all cases, the predicate can be retrieved from the filename.

3.0.6 Binary Format

Up to this point, we have shown our files in text format. Text format is the natively supported format by Hadoop. However, for increased efficiency, storing data in binary format is an option. We do dictionary encoding to encode the strings with a long value (64-bit). In this way, we are able to store up to 2^{64} unique strings. We dictionary encode the data using Hadoop jobs. There are a number of data structures discussed in (Heinz, Zobel, and Williams 2002; Zobel, Heinz, and Williams 2001) to be used to do dictionary encoding. However, these are not usable in a distributed MapReduce environment. Therefore, we build a prefix tree in each reducer and generate a unique id for a string by using the reducer id, which is unique across the job. We generate the dictionary in one job and then run three jobs to replace the subject, predicate and object of a triple with their corresponding id as text. In the final job, we convert the triples consisting of ids in text to binary data. Hadoop framework provides reference implementation for InputFormatter and OutputFormatter classes for text data. These are the classes used by a Hadoop job to read input for the Map phase and write output of the Reduce phase. However, because the binary format is a custom one, we have implemented custom InputFormatter and OutputFormatter classes.
CHAPTER 4

MAP-REDUCE FRAMEWORK

We discuss how we answer SPARQL queries in our MapReduce framework component in this chapter. In Hadoop, more than one job may be needed to answer a SPARQL query. Hadoop runs its map and reduce processes in isolation i.e. no two map or reduce process communicate to each other even though they may be running at the same time. This may prevent one job to do all the joins necessary to answer a query as sometimes processing depends on the outcome of some other processing on the same or different piece of data. With absence of any interprocess communication for map and reduce processes, this is not possible in Hadoop. Hence, depending on the query, we may need multiple jobs.

The chapter is organized as follows: Section 4.1 presents our query rewriting algorithm which leverages our schema discussed in Chapter 3 to rewrite queries to their equivalent simpler forms. Section 4.2 discusses our algorithm to select input files for answering the query. Section 4.3 talks about cost estimation needed to generate a plan to answer a SPARQL query. It introduces few terms which we use in the following discussions. Section 4.3.1 discusses the ideal model we should follow to estimate the cost of a plan. Section 4.3.3 introduces the heuristics based model we use in practice. Section 4.3.5 presents our heuristics based greedy algorithm to generate a query plan which uses the cost model introduced in Section 4.3.3. We face tie situations in order to generate a plan in some cases and Section 4.3.6 talks about how we handle these special cases. Section 4.4 shows how we use the algorithms as a sub-routine to generate plans for complex queries having OPTIONAL blocks. Section 4.5
shows how we implement a join in a Hadoop MapReduce job by working through an example query.

4.1 Query Rewriting

When a query is submitted by the user, we sometimes can take advantage of our schema and rewrite the query in equivalent simpler form. If a variable has its type information in a triple pattern having that variable as the subject, the predicate `rdf:type` and a bound object, which is the type of the variable, we can eliminate this triple pattern if the variable is used as an object in some other triple pattern. We can do this because, as described earlier, we divide the predicate files according to the type of the objects. So if, for the triple pattern which has the variable as object, we choose the predicate file having that specific type of objects as input, we do not need the triple pattern having the type information.

An example illustrates it better. Listing 4.1 shows LUBM query 2 and Listing 4.2 shows its rewritten form. Both the variables Y and Z have type information in the second and third triple patterns. They are also used as objects in the last three triple patterns. If we include the files `ub:memberOf_Department`, `ub:subOrganizationOf_University` and `ub:undergraduateDegreeFrom_University` in the input file set for the last triple patterns respectively, we can guarantee that the values bound to the variables Y and Z in the query result would be of type `ub:University` and `ub:Department` respectively. This is possible because of the way we divide our data (see Section 3.0.4). The rewritten query has two less triple patterns. As a result, it got rid of two joins on the variable Y and two on the variable Z. This rewritten query runs significantly faster than the original query because of having four less joins. Here the rewritten query has predicates which serve as a filename for our input selection phase described in Section 4.2. Note that this type of rewriting is possible even if there is no ontology associated with the dataset. This type of rewriting is very useful because we observed that most of the SPARQL queries have triple patterns with `rdf:type`
predicates describing the type of a variable. For example, all the queries of LUBM dataset and all but two queries of SP²B dataset have at least one such triple pattern.

Algorithm 1 \(\texttt{RewriteQuery}(\text{Query } q)\)

```
1: \(q_{\text{ret}} \leftarrow \text{newQuery()}\)
2: \(n \leftarrow q.\text{getTriplePatterns().size()} - 1\)
3: \(\text{for } i \leftarrow 0 \text{ to } n \text{ do}\)
4: \(tp1 \leftarrow q.\text{getTriplePattern}(i)\)
5: \(\text{if } tp1.\text{getPredicate()} == \text{rdf:type} \land tp1.\text{isObject().isConcrete()} \text{ then}\)
6: \(\text{subv }\leftarrow tp1.\text{getSubject()}; \text{obj }\leftarrow tp1.\text{getObject()}\)
7: \(\text{add_triple_flag }\leftarrow \text{true}\)
8: \(\text{for } j \leftarrow 0 \text{ to } n \text{ do}\)
9: \(tp2 \leftarrow q.\text{getTriplePattern}(j)\)
10: \(\text{if } i != j \land tp2.\text{getSubject()} == \text{subv} \land tp2.\text{getPredicate().isConcrete()} \text{ then}\)
11: \(\text{pred }\leftarrow tp2.\text{getPredicate()}\)
12: \(\text{if } \text{getDomain(pred)} == \text{obj} \text{ then}\)
13: \(\text{add_triple_flag }\leftarrow \text{false}\)
14: \(\text{end if}\)
15: \(\text{else if } i != j \land tp2.\text{getObject()} == \text{subv} \text{ then}\)
16: \(tp2.\text{setPredicate}(tp2.\text{getPredicate()} + \text{”\_”} + \text{obj}); \text{add_triple_flag }\leftarrow \text{false}\)
17: \(\text{end if}\)
18: \(\text{end for}\)
19: \(\text{if } \text{add_triple_flag }== \text{true} \text{ then}\)
20: \(q_{\text{ret}}.\text{add}(tp1)\)
21: \(\text{end if}\)
22: \(\text{else}\)
23: \(q_{\text{ret}}.\text{add}(tp1)\)
24: \(\text{end if}\)
25: \(\text{end for}\)
26: \(\text{return } q_{\text{ret}}\)
```

Listing 4.1. Original LUBM Query 2

```
?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:undergraduateDegreeFrom ?Y
}
```
However, if we have an ontology available we can do similar rewriting by exploiting the range information of a predicate which might result in further simplification. For example, Listing 4.3 shows a slightly modified version of LUBM query 2. It does not have the triple pattern having the type information of the variable Y. However, the LUBM ontology says that the range of the predicate `undergraduateDegreeFrom` is `University`. Hence, we can rewrite the query as Listing 4.4. Here we reduce the input size because we can include `subOrganizationOf UNIVERSITY` file in the input set instead of all the files having the prefix `subOrganizationOf`.

Listing 4.3. Original Example Query

```sparql
  ?X rdf:type ub:GraduateStudent .
  ?Z rdf:type ub:Department .
  ?X ub:undergraduateDegreeFrom University ?Y
}
```

Listing 4.4. Rewritten Example Query

```sparql
  ?X rdf:type ub:GraduateStudent .
  ?X ub:undergraduateDegreeFrom University ?Y
}
```

Hence, for queries, having type information of a variable used as an object in any triple pattern and predicates having range information, we can have rewritten queries which
reduces input size and may eliminate few joins. Both of these have significant impact on query runtime.

We also do a trivial optimization by substituting a variable with a bound value found in a \textit{FILTER}† clause for that variable. For example, Listing 4.5 shows SP²B query 3a. We can rewrite it as Listing 4.6. In this case, we can get rid of the \textit{FILTER} because once the \texttt{?property} variable is substituted, the \textit{FILTER} becomes useless.

Listing 4.5. SP²B Query 3a

\begin{verbatim}
SELECT ?article WHERE {
?article rdf:type bench:Article .
?article ?property ?value
FILTER (?property=swrc:pages)
}
\end{verbatim}

Listing 4.6. Rewritten SP²B Query 3a

\begin{verbatim}
SELECT ?article WHERE {
?article swrc:pages_Article ?value
}
\end{verbatim}

4.2 Input Files Selection

Listing 4.7. LUBM Query 9

\begin{verbatim}
SELECT ?X ?Y ?Z WHERE {
?X rdf:type ub:Student .
?Y rdf:type ub:Faculty .
?Z rdf:type ub:Course .
?X ub:takesCourse ?Z
}
\end{verbatim}

Before determining the jobs, we select the files that need to be inputted to the jobs. We have some query rewriting capability which we apply at this step of query processing.

†http://www.w3.org/TR/rdf-sparql-query/#scopeFilters
We take the query submitted by the user, rewrite the query using Algorithm 1 and iterate over the triple patterns. We may encounter the following cases:

1. In a triple pattern, if the predicate is variable, we select all the files as input to the jobs and terminate the iteration.

2. If the predicate is \textit{rdf:type} and the object is concrete, we select the \textit{type} file having that particular type. For example, for LUBM query 9 (Listing 4.7), we could select file type_Student as part of the input set. However, this brings up an interesting scenario. In our dataset there is actually no file named type_Student because Student class is not a leaf in the ontology tree. In this case, we consult the LUBM ontology\footnote{http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl}, part of which is shown in Figure 3.2, to determine the correct set of input files. We add the files type_GraduateStudent, type_UndergraduateStudent and type_ResearchAssistant as GraduateStudent, UndergraduateStudent and ResearchAssistant are the leaves of the subtree rooted at node Student.

3. If the predicate is \textit{rdf:type} and the object is variable then if the type of the variable is defined by another triple pattern we select the \textit{type} file having that particular type. Otherwise we select all \textit{type} files.

4. If the predicate is not \textit{rdf:type} and the object is variable then we need to determine if the type of the object is specified by another triple pattern in the query. In this case, we can rewrite the query eliminate some joins. For example, in LUBM Query 9 (Listing 4.7) the type of \(Y\) is specified as \textit{Faculty} and \(Z\) as \textit{Course} and these variables are used as objects in last three triple patterns. If we choose files advisor_Lecturer, advisor_PostDoc, advisor_FullProfessor, advisor_AssociateProfessor, advisor_AssistantProfessor and advisor_VisitingProfessor as part of the input set then the triple pattern in line 2 becomes unnecessary. Similarly, triple pattern in line 3 becomes unnecessary if files...
takesCourse_Course and takesCourse_GraduateCourse are chosen. Hence we get the query shown in Listing 4.8. However, if the type of the object is not specified then we select all files for that predicate.

5. If the predicate is not rdf:type and the object is concrete then we select all files for that predicate.

Listing 4.8. Rewritten LUBM Query 9

```
SELECT ?X ?Y ?Z WHERE {
?X rdf:type ub:Student .
?X ub:takesCourse ?Z
}
```

4.3 Cost Estimation and Plan Generation for Query Processing

We run Hadoop jobs to answer a SPARQL query. In this section, we discuss how we can estimate the cost of a job. However, before doing that we introduce some definitions which we will use later:

Definition 1 (Triple Pattern, TP). A triple pattern is an ordered set of subject, predicate and object which appears in a SPARQL query WHERE clause. The subject, predicate and object can be either a variable (unbounded) or a concrete value (bounded).

Definition 2 (Triple Pattern Join, TPJ). A triple pattern join is a join between two TPs on a variable.

Definition 3 (MapReduceJoin, MRJ). A MapReduceJoin is a join between two or more triple patterns on a variable.

Definition 4 (Job, JB). A job JB is a Hadoop job where one or more MRJs are done. JB has a set of input files and a set of output files.
Definition 5 (Conflicting MapReduceJoins, CMRJ). Conflicting MapReduceJoins is a pair of MRJs on different variables sharing a triple pattern.

Definition 6 (Non-Conflicting MapReduceJoins, NCMRJ). Non-conflicting MapReduceJoins is a pair of MRJs either not sharing any triple pattern or sharing a triple pattern and the MRJs are on same variable.

Listing 4.9. LUBM Query 12

```
SELECT ?X WHERE {
  ?X rdf:type ub:Chair .
  ?Y rdf:type ub:Department .
  ?X ub:worksFor ?Y .
  ?Y ub:subOrganizationOf <http://www.University0.edu> }
```

An example will illustrate these terms better. In Listing 4.9, we show LUBM Query 12. Lines 2, 3, 4 and 5 each have a triple pattern. The join between TPs in lines 2 and 4 on variable ?X is an MRJ. If we do two MRJs, one between TPs in lines 2 and 4 on variable ?X and the other between TPs in lines 4 and 5 on variable ?Y, there will be a CMRJ as TP in line 4 (?X ub:worksFor ?Y) takes part in two MRJs on two different variables ?X and ?Y. This is shown on the right in Figure 4.1. This type of join is called CMRJ because in a Hadoop job more than one variable of a TP cannot be a key at the same time and MRJs are performed on keys. A NCMRJ, shown on the left in Figure 4.1, would be
one MRJ between triple patterns in lines 2 and 4 on variable \(?X \) and another MRJ between triple patterns in lines 3 and 5 on variable \(?Y \). These two MRJs can make up a JB.

4.3.1 Ideal Model

To answer a SPARQL query, we may need more than one job. Therefore, in an ideal scenario, the cost estimation for processing a query requires individual cost estimation of each job that is needed to answer that query. A job contains three main tasks, which are reading, sorting and writing. We estimate the cost of a job based on these three tasks. For each task, a unit cost is assigned to each triple pattern it deals with. In the current model, we assume that costs for reading and writing are the same.

\[
\text{Cost} = \left(\sum_{i=1}^{n-1} MI_i + MO_i + RI_i + RO_i \right) + MI_n + MO_n + RI_n \\
= \left(\sum_{i=1}^{n-1} \text{Job}_i \right) + MI_n + MO_n + RI_n \tag{4.1}
\]

\[
\text{Job}_i = MI_i + MO_i + RI_i + RO_i \quad (i < n) \tag{4.2}
\]

Where,

- \(MI_i \) = Map Input phase for Job \(i \)
- \(MO_i \) = Map Output phase for Job \(i \)
- \(RI_i \) = Reduce Input phase for Job \(i \)
- \(RO_i \) = Reduce Output phase for Job \(i \)

Equation 4.1 is the total cost of processing a query. It is the summation of the individual costs of each job and only the map phase of the final job. We do not consider the cost of the reduce output of the final job because it would be same for any query plan as this output is the final result which is fixed for a query and a given dataset. A job essentially performs a MapReduce task on the file data. Equation 4.2 shows the division of
the MapReduce task into subtasks. Hence, to estimate the cost of each job, we will combine the estimated cost of each subtask.

Map Input (MI) phase: This phase reads the triple patterns from the selected input files stored in the HDFS. Therefore, we can estimate the cost for the MI phase to be equal to the total number of triples in each of the selected files.

Map Output Phase (MO): The estimation of the MO phase depends on the type of query being processed. If the query has no bound variable (e.g. `[?X ub:worksFor ?Y]`), then the output of the Map phase is equal to the input. All of the triple patterns are transformed into key-value pairs and given as output. Therefore, for such a query the MO cost will be the same as MI cost. However, if the query involves a bound variable, (e.g. `[?Y ub:subOrganizationOf <http://www.U0.edu>]`), then, before making the key-value pairs, a bound component selectivity estimation can be applied. The resulting estimate for the triple patterns will account for the cost of Map Output phase. The selected triples are written to a local disk.

Reduce Input Phase (RI): In this phase, the triples from the Map output phase are read via HTTP and then sorted based on their key values. After sorting, the triples with identical keys are grouped together. Therefore, the cost estimation for the RI phase is equal to the MO phase. The number of key-value pairs that are sorted in RI is equal to the number of key-value pairs generated in the MO phase.

Reduce Output Phase (RO): The RO phase deals with performing the joins. Therefore, it is in this phase we can use the join triple pattern selectivity summary statistics to estimate the size of its output. Section 4.3.3 talks in details about the join triple pattern selectivity summary statistics needed for our framework.

However, in practice, the above discussion is applicable for the first job only. For the subsequent jobs, we lack both the precise knowledge and estimate of the number of triple
patterns selected after applying the join in the first job. Therefore, for these jobs, we can take the size of the RO phase of the first job as an upper bound on the different phases of the subsequent jobs.

Equation 4.3 shows a very important postulation. It illustrates the total cost of an intermediate job, when \(i < n \), includes the cost of the RO phase in calculating the total cost of the job.

4.3.2 The GenerateBestPlan Algorithm

In this section, we present our new algorithm GenerateBestPlan (Algorithm 2) which based on the cost model described in section 4.3 provides the best query execution plan for a query. It uses the two coloring scheme to generate all possible plans and calculates cost for each of them as it generates them. It returns the best plan i.e. the plan with the minimum cost when it is finished. As map and reduce processes in Hadoop jobs do not have interprocess communication, joins which depend on each other can not be done all at once. The two coloring scheme nicely represent this scenario where adjacent nodes of a graph cannot have same color. We use a certain color for a node, which represents a join, signifying that the join is chosen. Edges are drawn between dependent joins hence an adjacent node representing a dependent join cannot have the same color and the join is not selected with its depend join. We chose the scheme as it perfectly meets our need in this way.

For a query \(Q \) we build a graph \(G = (V, E) \) where \(V \) is the set of vertices and \(E \) is the set of edges. For each triple pattern in the query \(Q \) we build a vertex \(v \) which makes up the set \(V \). Hence \(|V| \) is equal to the number of triple patterns in \(Q \). We put an edge \(e \) between \(v_i \) and \(v_j \), where \(i \neq j \), if and only if their corresponding triple patterns share at least one variable. We label the edge \(e \) with all the variable names that were shared between \(v_i \) and \(v_j \). These edges make up the set \(E \). Each edge represents as many joins as the number of variables it has in its label. Hence, total number of joins present in the graph is the total
number of variables mentioned in the labels of all edges. An example illustrates it better. We have chosen LUBM (Guo, Pan, and Hefflin 2005) query 12 for that purpose. Listing 4.9 shows the query.

The graph we build at first for the query is shown in figure 4.2. The nodes are numbered in the order they appear in the query.

Algorithm 2 GENERATEBESTPLAN(Query q)

Require: A Query object returned by RewriteQuery algorithm.
Ensure: The number of jobs and their details needed to answer the query.

```plaintext
1: plans ← CreateEmptyPriorityQueue()
2: jg ← CreateJoinGraph(q)
3: ig ← CreateInvertedGraph(jg)
4: jobs ← φ
5: ColorGraph1(jg, ig, 0, jobs)
6: return getHeadFromPriorityQueue(plans)
```

Algorithm 3 CREATEJOINGRAPH(Query q)

Require: A Query object.
Ensure: A join graph based on a query

```plaintext
1: tp ← getTriplePatterns(q)
2: JoinGraph ← φ
3: edges ← φ
4: for i ← 0 to |tp| do
5:   for j ← i + 1 to |tp| do
6:     if (var ← sharesVariable(tp[i], tp[j])) != φ then
7:       edges ← edges ∪ CreateNewEdge(i, j, var)
8:     end if
9:   end for
10: end for
11: JoinGraph.edges ← edges
12: return JoinGraph
```

In the left graph of figure 4.2, each node in the figure has a node number in the first line and variables it has in the following line. Nodes 1 and 3 share the variable X hence
Algorithm 4 CREATENEWEDGE(int i, int j, variable var)

Require: Two triple pattern indexes and the join variable.
Ensure: A new edge.

1: edge ← φ
2: edge.from ← i; edge.to ← j; edge.var ← var
3: edge.secondary.color ← 0; edge.color ← GREY

Figure 4.2. Join and Inverted Graph for Query 12
Algorithm 5 CREATEINVERTEDGRAPH(JoinGraph jg)

Require: A Join Graph returned by CreateJoinGraph algorithm.
Ensure: An inverted graph.

1: edges ← jg.edges
2: diff_var_adjacency_list ← φ
3: same_var_adjacency_list ← φ
4: for i ← 0 to |edges| do
5: for j ← i + 1 to |edges| do
6: if hasSharedTriplePattern(edges[i], edges[j]) &
 intersects(getVariables(edges[i], edges[j])) then
7: same_var_adjacency_list[i] ← same_var_adjacency_list[i] ∪ j
8: end if
9: end for
10: end for
11: color ← 0
12: for i ← 0 to |edges| do
13: if edges[i].secondary_color == 0 then
14: color ← color + 1
15: end if
16: edges[i].secondary_color ← color
17: alist ← same_var_adjacency_list[i]
18: for j ← 0 to |alist| do
19: edge ← alist[j]
20: edge.secondary_color ← color
21: end for
22: end if
23: end for
24: for i ← 0 to |edges| do
25: for j ← i + 1 to |edges| do
26: if hasSharedTriplePattern(edges[i], edges[j]) &
 !intersects(getVariables(edges[i], edges[j])) &
 edges[i].secondary_color! = edges[j].secondary_color then
27: diff_var_adjacency_list[i] ← diff_var_adjacency_list[i] ∪ j
28: end if
29: end for
30: end for
31: InvertedGraph ← φ
32: InvertedGraph.same_var_adjacency_list ← same_var_adjacency_list
33: InvertedGraph.diff_var_adjacency_list ← diff_var_adjacency_list
34: return InvertedGraph
Algorithm 6 `COLORGRAPH1(JoinGraph jg, InvertedGraph ig, int i, Set jobs)`

Require: An inverted Graph returned by CreateInvertedGraph algorithm.

Ensure: All possible plan generation.

1. if `!neighborHasColor(ig.diff_var_adjacency_list[i], WHITE)` then
 2. `COLORGRAPH2(jg, ig, i, WHITE, jobs)`
 3. end if
4. `COLORGRAPH2(jg, ig, i, BLACK, jobs)`

Algorithm 7 `COLORGRAPH2(JoinGraph jg, InvertedGraph ig, int i, Color color, Set jobs)`

Require: An inverted Graph returned by CreateInvertedGraph algorithm.

Ensure: All possible plan generation.

1. `edge ← jg.edges[i]`
2. if `edge.color == BLACK & neighborHasColor(ig.same_var_adjacency_list[i], WHITE)`
 then
 3. return
4. end if
5. `prev_color ← edge.color`
6. `edge.color ← color`
7. `changeNeighborColors(ig.same_var_adjacency_list[i], GREY, color)`
8. if `i < |jg.edges| - 1` then
 9. `COLORGRAPH1(jg, ig, i + 1, jobs)`
10. else
11. `job ← createJob(jg.edges)`
12. `jobs ← jobs ∪ job`
13. if `|job.edges| == |jg.edges|` then
14. `enqueuePlan(plans, createNewPlan(jobs))`
15. else
16. `jg_new ← mergeJoinedTriplePatterns(jg)`
17. `ig_new ← CreateInvertedGraph(jg_new)`
18. `COLORGRAPH1(jg_new, ig_new, 0, jobs)`
19. end if
20. `jobs ← jobs ∪ job`
21. end if
22. `changeNeighborColors(ig.same_var_adjacency_list[i], color, GREY)`
23. `edge.color ← prev_color`
there is an edge between them having the label X. Similarly, nodes 2, 3 and 4 have edges between them because they share the variable Y. The graph has total 4 joins.

Algorithm 2 makes use of another graph built from G. We build graph $G' = (V', E^1, E^2)$ where for each $e \in E$ we have a $v \in V'$ i.e. all the edges of graph G become nodes in graph G'. Hence $|V'|$ is equal to the number of triple pattern joins in Q. Each of the nodes $v \in V'$ is accessible by an integer index. We put an edge $e^1 \in E^1$ between v_i and v_j, where $i \neq j$, if and only if their corresponding edges $e_i \in E$ and $e_j \in E$ share a node $v \in V$ and there is at least one shared join variable. Similarly, We put an edge $e^2 \in E^1$ between v_i and v_j, where $i \neq j$, if and only if their corresponding edges $e_i \in E$ and $e_j \in E$ share a node $v \in V$ and there is no shared join variable. We call the graph G' the inverted graph of G. We call the edges of E^1 dashed edges and E^2 solid edges. In figure 4.2, we see the inverted graph of query 12 on the right. The nodes A, B, C and D in the graph are the edges of the join graph on the right. A has two solid edges with B and D as it shares node in join graph with those joins but does not share any variable. B, C and D have dashed edges between them as they share both nodes and variables.

In short, our `GenerateBestPlan` algorithm maintains a priority queue which holds query processing plans. Priority is determined by the cost of a plan. It then creates a join graph G for a query Q and an inverted graph G' from G. It then calls `ColorGraph1` algorithm to color the inverted graph and generate plans.

Algorithm 2 shows the pseudocode of the `GenerateBestPlan` algorithm. In line 1, it creates an empty priority queue which holds all the plans eventually. The priority is determined by the cost of a plan. The lower the cost the higher the priority. In line 2, it calls the routine `CreateJoinGraph`, described in algorithm 3, which returns graph G. In line 3, it calls the routine `CreateInvertedGraph`, described in algorithm 5, which returns graph G'. In line 4, it initializes an empty set of Hadoop jobs $jobs$. In line 5, a recursive routine
ColorGraph1, described in algorithm 6, is called with \(G, G', \text{jobs} \) and the number 0 which is the index of the node of \(V' \).

Algorithm 3 shows how graph \(G \) is built. In line 4 - 10, it checks each pair of triple patterns for shared variables. If such a variable is found it adds an edge \(e \) between two nodes in line 7. It calls the routine \(\text{CreateNewEdge} \) to create an edge. In line 12 it returns the constructed graph. Algorithm 4 shows the \(\text{CreateNewEdge} \) routine. It creates a new edge and initializes it with node indexes and initial colors. An edge has a color which can be either grey, white or black. Initially, the color is grey. There is also a secondary color which can have any value. This color is used to construct the inverted graph. The initial secondary color is an integer 0.

Algorithm 5 shows how graph \(G' \) is built. First the dashed edges are created. In lines 4 to 10, the algorithm checks if two edges of graph \(G \) share a node and also have shared variable in their labels. If the condition satisfies in line 6, a new dashed edge is added in line 7. It then assigns secondary colors in lines 11 to 22. The color starts from 1. In line 13, it checks if a node has the initial secondary color 0. In such a case it creates a new secondary color and assigns it to the node. In lines 16 to 20 it assigns this secondary color to all its dashed edge neighbors. Then the routine creates the solid edges in lines 23 to 29. In line 25, it checks if two edges of graph \(G \) share a node, do not share any shared variable in their labels and do not have same secondary colors. If the condition satisfies, it adds a new solid edge to the graph. The purpose of the secondary color is to prevent nodes sharing dashed edges from having solid edges. We discuss the algorithms for two coloring in the following section.

4.3.2.1 Two Coloring Scheme

The two-coloring scheme is actually applied to the inverted graph. At first we construct two graphs \(G_0 \) and its inverted graph \(G'_0 \) where 0 means the first join graph. Then we try to color
a node in the inverted graph either white or black. Initially, all the nodes are colored grey. A node can be colored white if none of its solid edge neighbors is already colored white. If a node can be colored white, all its solid edge neighbors are colored black. The white color also propagates through the dashed edges. But this propagation has a restriction. White color can be propagated to a dashed edge neighbor only if it is grey. Black dashed edge neighbors remain black. If we cannot assign white to a grey node, we assign it black. Once all the nodes of the graph G'_0 are colored either white or black, we get a Hadoop job where the joins we handle are the white nodes.

If there is at least one black node, we need more job in the plan. We construct another graph G_1 out of G_0 by merging the nodes v_i and v_j if the node $v \in G'_0$ corresponding to the edge between them is colored white. We also construct the inverted graph G'_1 and apply the coloring scheme again. We repeat this process until we get all the joins done at which point we get a plan. As a plan is generated its cost is calculated according to the cost model.

The algorithm then backtracks and tries to color the white nodes to black one at a time and generates more plans. When all possible combinations are exhausted, the algorithm returns the plan with minimum cost.
The routines *ColorGraph1* and *ColorGraph2* are the ones which do the coloring. The *ColorGraph1* routine is described in algorithm 6. This routine is a short one which first tries to color a node white in lines 1 and 2 if none of its solid edge neighbors is already colored white. It then calls another routine *ColorGraph2* with all the parameters it received along with the color white. After that routine returns it calls it once more with the color black.

In algorithm 7 we show the routine *ColorGraph2*. Lines 2 - 4 ensures that if a dashed edge neighbor is already white, a node cannot be colored black. This condition prevents selecting some joins on a variable and leaving few others out. By having this condition, we are ensuring that we take maximum number of joins possible on a variable whenever we can. In line 5 it stores the current color and in 6 it assigns the new color. In line 7 it propagates the color to its grey dashed edge neighbors. In line 8, it checks if the index is of last node of the graph to see if all nodes are colored. If the condition does not satisfy it calls *ColorGraph1* routine with the next index in line 9. Otherwise, it creates a Hadoop job with white nodes in line 11 and adds it to the current jobs set in line 12. If all the nodes are colored white it then enqueues a new plan to the priority queue in line 14. Otherwise, it creates new graphs G and G' and calls the routine *ColorGraph1* in lines 16 - 18. When that call returns the job which was added in line 12 is removed in line 20. Finally, in lines 22 and 23 old colors are restored.

Figure 4.3 shows one coloring example of the graphs shown in figure 4.2. In the left graph of figure 4.3, nodes B, C and D are colored white and A is colored black. Hence, we get a Hadoop job where joins B, C and D will be done. As not all the joins are taken care of in this job, we proceed to build another join graph which we see at the top right in figure 4.3. The inverted graph at the bottom right has only one node which we color white. We get another job in this way where we do join a. As no more joins are left, we get a query execution plan consisting of these two Hadoop jobs.
The \emph{CreateJoinGraph} and \emph{CreateInvertedGraph} runs in $O(|V|^2)$ and $O(|E|^2)$ respectively. The total number of color combinations are $2^{|E|}$ and the maximum number of jobs a plan can have is $|E|$ if each job contains only one join. Hence, the runtime complexity of the algorithm is $O(2^{|E|} \times (|E| \times (|V|^2 + |E|^2)))$.

4.3.2.2 Example

We show that \emph{GenerateBestPlan} algorithm produces better plan than \emph{DetermineJobs} algorithm (Farhan Husain, Doshi, Khan, and Thuraisingham 2009) by an example. We use both the algorithm to generate plans for a query from \emph{SP^2Bench}† benchmark queries. The query is given in listing 4.10.

Listing 4.10. \emph{SP^2Bench} Query 5(b)

```
SELECT DISTINCT ?person ?name WHERE {
  ?article rdf:type bench:Article .
  ?article dc:creator ?person .
  ?person foaf:name ?name
}
```

Figure 4.4 shows the join graph on the right and inverted graph on the left. Table 4.1 shows the plans generated by the algorithms. As the \emph{DetermineJobs} algorithm chooses joins greedily, it first chooses three joins on the variable \emph{person} and ends up with two more jobs to complete the plan. But the \emph{GenerateBestPlan} algorithm generates a plan with only two jobs with the help of cost model.

4.3.3 Heuristic Model

In this section, we show that the ideal model is not practical or cost effective. There are several issues that make the ideal model less attractive in practice. First, the ideal model

†http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B
Figure 4.4. Join and Inverted Graph for SP^2Bench Query 5(b)

Table 4.1. Plans for SP^2Bench Query 5(b)

<table>
<thead>
<tr>
<th></th>
<th>DetermineJobs</th>
<th>GenerateBestPlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job 1</td>
<td>B, C, D</td>
<td>A, E</td>
</tr>
<tr>
<td>Job 2</td>
<td>A</td>
<td>B, C, D</td>
</tr>
<tr>
<td>Job 3</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
considers simple abstract costs, namely the number of triples read and written by the different phases ignoring the actual cost of copying, sorting, etc. these triples, and the overhead for running jobs in Hadoop. But accurately incorporating those costs in the model is a difficult task. Even making reasonably good estimation may be non-trivial. Second, to estimate intermediate join outputs, we need to maintain comprehensive summary statistics. In a MapReduce job in Hadoop, all the joins on a variable are joined together. For example, in the rewritten LUBM Query 9 (Listing 4.8) there are three joins on variable X. When a job is run to do the join on X, all the joins on X between triple patterns 1, 2 and 4 are done. If there were more than 3 joins on X all will still be handled in one job. This shows that in order to gather summary statistics to estimate join selectivity we face an exponential number of join cases. For example, between triple patterns having predicates p_1, p_2 and p_3, there may be 2^3 types of joins because in each triple pattern, a variable can occur either as a subject or an object. In the case of the rewritten Query 9, it is a subject-subject-subject join between 1, 2 and 4. There can be more types of join between these three e.g. subject-object-subject, object-subject-object etc. That means, between P predicates, there can be 2^P type of joins on a single variable (ignoring the possibility that a variable may appear both as a subject and object in a triple pattern). If there are P predicates in the data set, total number of cases for which we need to collect summary statistics can be calculated by the formula:

$$2^2 \times C_2^P + 2^3 \times C_3^P + ... + 2^P \times C_P^P$$

In LUBM data set, there are 17 predicates. So, in total there are 129,140,128 cases which is a large number. Gathering summary statistics for such a large number of cases would be very much time and space consuming. Hence, we took an alternate approach.

We observe that there is significant overhead for running a job in Hadoop. Therefore, if we minimize the number of jobs to answer a query, we get the fastest plan. The overhead is incurred by several disk I/O and network transfers that are integral part of any Hadoop
job. When a job is submitted to Hadoop cluster at least the following set of actions take place:

1. The Executable file is transferred from client machine to Hadoop JobTracker†,
2. The JobTracker decides which TaskTrackers† will execute the job, 3. The Executable file is distributed to the TaskTrackers over the network, 4. Map processes start by reading data from HDFS, 5. Map outputs are written to discs, 6. Map outputs are read from discs, shuffled (transferred over the network to TaskTrackers which would run Reduce processes), sorted and written to discs, 7. Reduce processes start by reading the input from the discs, 8. Reduce outputs are written to discs.

These disk operations and network transfers are expensive operations even for a small amount of data. For example, in our experiments, we observed that the overhead incurred by one job is almost equivalent to reading a billion triples. The reason is in every job the output of the map process is always sorted before feeding the reduce processes. This sorting is unavoidable even if it is not needed by the user. Therefore, it would be less costly to process several hundred million more triples in \(n \) jobs, rather than processing several hundred million less triples in \(n + 1 \) jobs.

Listing 4.11. Experiment Query

\[
\text{?S1 ub:advisor ?X .} \\
\text{?X ub:headOf ?Z .} \\
\text{?Z ub:subOrganizationOf ?Y .} \\
\text{?S2 ub:mastersDegreeFrom ?Y}
\]

To further investigate, we did an experiment where we used the query shown in Listing 4.11. Here the join selectivity between TP 2 and 3 on ?Z is the highest. Hence, a query plan generation algorithm which uses selectivity factors to pick joins would select this join for the first job. As the other TPs 1 and 4 share variables with either TP 2 or 3, they cannot take

†http://wiki.apache.org/hadoop/JobTracker
†http://wiki.apache.org/hadoop/TaskTracker
Table 4.2. 2 Job Plan vs. 3 Job plan

<table>
<thead>
<tr>
<th>Dataset</th>
<th>2 Job Plan</th>
<th>3 Job Plan</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUBM_10000</td>
<td>4920</td>
<td>9180</td>
<td>4260</td>
</tr>
<tr>
<td>LUBM_20000</td>
<td>31020</td>
<td>36540</td>
<td>5520</td>
</tr>
<tr>
<td>LUBM_30000</td>
<td>80460</td>
<td>93947</td>
<td>13487</td>
</tr>
</tbody>
</table>

part in any other join, moreover, they do not share any variables so the only possible join that can be executed in this job is the join between TP 2 and 3 on ?X. Once this join is done the two joins left are between TP 1 and the join output of first job on variable ?X and between TP 4 and the join output of first job on variable ?Y. We found that the selectivity of the first join is greater than the latter one. Hence, the second job will do this join and TP 4 will again not participate. In the third and last job, the join output of the second job will be joined with TP 4 on ?Y. This is the plan generated using join selectivity estimation. But the minimum job plan is a 2 job plan where the first job joins TP 1 and 2 on ?X and TP 3 and 4 on ?Y. The second and final job joins the two join outputs of the first job on ?Z. The query runtimes we found is shown in Table 4.2 in seconds.

We can see that for each dataset, the 2 job plan is faster than the 3 job plan even though the 3 job plan produced less intermediate data because of the join selectivity order. We can explain this by an observation we made in another small experiment. We generated files of size 5MB and 10MB containing random integers. We put the files in HDFS. For each file, we first read the file by a program and recorded the time needed to do it. While reading, our program reads from one of the three available replica of the file. Then we ran a MapReduce job which rewrites the file with the numbers sorted. We utilized MapReduces sorting to have the sorted output. Please also note than when it writes the file, it writes three replications of it. We found that the MapReduce job, which does reading, sorting and writing, takes \(24.47\) times longer to finish for 5MB. For 10MB it is \(42.79\) times. This
clearly shows how the write and data transfer operations of a MapReduce job are more expensive than a simple read from only one replica. Because of the number of jobs, the 3 job plan is doing much more disk read and write operations as well as network data transfers and as a result is slower than the 2 job plan even if it is reading less input data.

Because of these reasons, we do not pursue the ideal model. We follow the practical model, which is to generate a query plan having minimum possible jobs. However, while generating a minimum job plan, whenever we need to choose a join to be considered in a job among more than one joins, instead of choosing randomly, we use the summary join statistics. This is described in Section 4.3.6. The following two sections describe two algorithms which generate plans following the heuristics model.

4.3.4 The *DetermineJobs* Algorithm

In this section, we present our first heuristics based algorithm *DetermineJobs* (Algorithm 8) which determines the number of jobs needed to answer a SPARQL query. It determines which joins are handled in which job and the sequence of the jobs. For a query Q we build a graph $G = (V,E)$ where V is the set of vertices and E is the set of edges. For each triple pattern in the query Q we build a vertex v which makes up the set V. Hence $|V|$ is equal to the number of triple patterns in Q. We put an edge e between v_i and v_j, where $i \neq j$, if and only if their corresponding triple patterns share at least one variable. We label the edge e with all the variable names that were shared between v_i and v_j. These edges make up the set E. Each edge represents as many joins as the number of variables it has in its label. Hence, total number of joins present in the graph is the total number of variables mentioned in the labels of all edges. An example illustrates it better. We have chosen LUBM (Guo, Pan, and Hefflin 2005) query 12 for that purpose. Listing 4.9 shows the query.

The graph we build at first for the query is shown in figure 4.5. The nodes are numbered in the order they appear in the query.
Algorithm 8 DETERMINEJOBS (Query q)

Require: A Query object returned by RewriteQuery algorithm.
Ensure: The number of jobs and their details needed to answer the query.

1: jobs ← φ
2: graph ← makeGraphFromQuery(q)
3: joins_left ← calculateJoins(graph)
4: while joins_left ≠ 0 do
5: variables ← getVariables(graph)
6: job ← createNewJob()
7: for i ← 1 to |variables| do
8: v ← variables[i]
9: v.nodes ← getMaximumVisitableNodes(v, graph)
10: v.joins ← getJoins(v.nodes, graph)
11: end for
12: sortVariablesByNumberOfJoins(variables)
13: for i ← 0 to |variables| do
14: if |v.joins| ≠ 0 then
15: job.addVariable(v)
16: jobs_left ← jobs_left − |v.joins|
17: for j ← i + 1 to |variables| do
18: adjustNodesAndJoins(variables[j], v.nodes)
19: end for
20: end if
21: end for
22: jobs ← jobs ∪ job
23: end while
24: return jobs
Figure 4.5. Graph for Query 12 in Iteration 1

Figure 4.6. Graph for Query 12 in Iteration 2
Table 4.3. Iteration 1 Calculations

| Variable | Nodes | Joins | ||Joins|| |
|----------|-------|---------|---------|
| Y | 2, 3, 4 | 2-3, 3-4, 4-2 | 3 |
| X | 1, 2 | 1-2 | 1 |

Table 4.4. Iteration 1 - After choosing X

| Variable | Nodes | Joins | ||Joins|| |
|----------|-------|---------|---------|
| √ Y | 2, 3, 4 | 2-3, 3-4, 4-2 | 3 |
| X | 1 | | 0 |

In figure 4.5, each node in the figure has a node number in the first line and variables it has in the following line. Nodes 1 and 3 share the variable X hence there is an edge between them having the label X. Similarly, nodes 2, 3 and 4 have edges between them because they share the variable Y. The graph has total 4 joins.

Algorithm 8 is iterative. It takes a Query object as its input, initializes the jobs set (line 1), builds the graph shown in figure 4.5 before entering first iteration (line 2). It also calculates the number of jobs left (line 3). It enters the loop in line 4 if at least one job is left. At the beginning of the loop it retrieves the set of variables (line 5) and creates a new empty job (line 6). Then it iterates over the variable (line 7 and 8), lists the maximum number of nodes it can visit by edges having the variable in its label (lines 9). It also lists the number of joins that exist among those nodes (line 10). For example, for variable Y we can visit nodes 2, 3 and 4. The joins these nodes have are 2-3, 3-4 and 4-2. The information it collects for each variable is shown in table 4.3.

It then sorts the variables in descending order according to the number of joins they cover (line 12). In this example, the sort output is the same as table 4.3. Then, in greedy

Table 4.5. Iteration 2 Calculations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nodes</th>
<th>Joins</th>
<th>Total Joins</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1, 2</td>
<td>1-2</td>
<td>1</td>
</tr>
</tbody>
</table>
fashion, it iterates over the variables and chooses a variables if the variable covers at least one join (line 13 and 14). In each iteration, after it chooses a variable, it eliminates all the nodes it covers from subsequent variable entries (lines 17 to 19). It then calculates the number of joins still left in the graph (line 16). For example, once the algorithm chooses the variable Y, the nodes and joins for X becomes like table 4.4.

It also merges the nodes visited by the chosen variable in the graph (line 20). Hence, after choosing Y it will not choose X as it does not cover any join any more. Here the inner loop terminates. The joins it picked are the joins that will be done in a job. The algorithm then checks whether any join is not picked (line 4). If such is the case, then more jobs are needed and so the algorithm goes to the next iteration.

At the beginning of the subsequent iteration it again builds a graph from the graph of the previous iteration but this time the nodes which took part in joins by one variable will be collapsed into a single node. For our example, nodes 2, 3 and 4 took part in joins by Y. So they will collapse and form a single node. For clarity, we name this collapsed node as A and the remaining node 1 of the graph in figure 4.5 as B. The new graph we get like this is shown in figure 4.6. The graph has total 1 join. We have listed the nodes which were collapsed in braces.

After building the graph, the algorithm moves on to list the maximum number of nodes, joins and total number of joins each variable covers. This is shown in table 4.5. The algorithm chooses X and that covers all the joins of the graph. The algorithm determines that no more job is needed and returns the job collection.

4.3.5 The Relaxed-Bestplan Algorithm

In this section, first we define the query plan generation problem, and show that generating the best (i.e., least cost) query plan for the ideal model (section 4.3.1) as well as for the
practical model (section 4.3.3) is computationally expensive. Then, we will present a heuristic and a greedy approach to generate an approximate solution to generate the best plan.

Running example: We will use the following query as a running example in this section.

Listing 4.12. Running Example

```
  ?X rdf:type ub:GraduateStudent
  ?Y rdf:type ub:University
  ?Z ?V ub:Department
  ?X ub:memberOf ?Z
  ?X ub:undergraduateDegreeFrom ?Y
}
```

In order to simplify the notations, we will only refer to the TPs by the variable in that pattern. For example, the first TP (\(?X \text{ rdf:type } ub:GraduateStudent \)) will be represented as simply \(X \). Also, in the simplified version, the whole query would be represented as follows: \(\{X,Y,Z,XZ,XY\} \). We shall use the notation \(\text{join}(XY,X) \) to denote a join operation between the two TPs \(XY \) and \(X \) on the common variable \(X \).

Definition 7 (The minimum cost plan generation problem). *(Bestplan problem)* For a given query, the Bestplan problem is to generate a job plan so that the total cost of the jobs is minimized. Note that Bestplan considers the more general case where each job has some cost associated with it (i.e., the ideal model).

Example: Given the query in our running example, two possible job plans are as follows:

Plan 1: \(\text{job1} = \text{join}(X,XZ,XY) \), resultant TPs = \(\{Y,Z,YZ\} \). \(\text{job2} = \text{join}(Y,YZ) \), resultant TPs = \(\{Z,Z\} \). \(\text{job3} = \text{join}(Z,Z) \). Total cost = \(\text{cost(job1)} + \text{cost(job2)} + \text{cost(job3)} \).

Plan 2: \(\text{job1} = \text{join}(XZ,Z) \) and \(\text{join}(XY,Y) \) resultant TPs = \(\{X,X,X\} \). \(\text{job2} = \text{join}(X,X,X) \). Total cost = \(\text{cost(job1)} + \text{cost(job2)} \).
The Bestplan problem is to find the least cost job plan among all possible job plans.

Related terms:

Definition 8 (Joining variable). A variable that is common in two or more triple patterns. For example, in the running example query, X,Y,Z are joining variables, but V is not.

Definition 9 (Complete elimination). A join operation that eliminates a joining variable. For example, in the example query, Y can be completely eliminated if we join (XY,Y).

Definition 10 (Partial elimination). A join operation that partially eliminates a joining variable. For example, in the example query, if we perform join(XY,Y) and join(X,ZX) in the same job, the resultant triple patterns would be $\{X,Z,X\}$. Therefore, Y will be completely eliminated, but X will be partially eliminated. So, the join(X,ZX) performs a partial elimination.

Definition 11 (E-count(v)). E-count(v) is the number of joining variables in the resultant triple pattern after a complete elimination of variable v. In the running example, join(X,XY,XZ) completely eliminates X, and the resultant triple pattern (YZ) has two joining variables Y and Z. So, E-count$(X) = 2$. Similarly, E-count$(Y) = 1$ and E-count$(Z) = 1$.

4.3.5.1 Computational complexity of Bestplan

It can be shown that generating the least cost query plan is computationally expensive, since the search space is exponentially large. At first, we formulate the problem, and then show its complexity.

Problem formulation: We formulate Bestplan as a search problem. Let $G = (V,E)$ be a weighted directed graph, where each vertex $v_i \in V$ represents a state of the triple patterns, and each edge $e_i = (v_{i_1}, v_{i_2}) \in E$ represents a job that makes a transition from
state v_{i_1} to state v_{i_2}. v_0 is the initial state, where no joins have been performed, i.e., the given query. Also, v_{goal} is the goal state, which represents a state of the triple pattern where all joins have been performed. The problem is to find the shortest weighted path from v_0 to v_{goal}.

For example, in our running example query, the initial state $v_0 = \{X,Y,Z,XY,XZ\}$, and the goal state, $v_{goal} = \phi$, i.e., no more triple patterns left. Suppose the first job (job1) performs join(X,XY,XZ). Then the resultant triple patterns (new state) would be $v_1 = \{Y,Z,YZ\}$, and job1 would be represented by the edge (v_0, v_1). The weight of edge (v_0, v_1) is the cost of job1 = cost(job1), where cost is the given cost function. Figure 4.7 shows the partial graph for the example query.

Search space size: Given a graph $G = (V,E)$, Dijkstra’s shortest path algorithm can find the shortest path from a source to all other nodes in $O(|V|log|V| + |E|)$ time (Fredman and Tarjan 1987). However, for Bestplan, it can be shown that in the worst case, $|V| \geq 2^K$, where K is the total number of joining variables in the given query. Therefore, the number of vertices in the graph is exponential, leading to an exponential search problem.

Theorem 1. The worst case complexity of the Bestplan problem is exponential in K, the number of joining variables in the given query.

Proof. Let us consider the number of possible jobs on the initial query (i.e., number of outgoing edges from v_0). Let n be the maximum number of concurrent complete eliminations possible on the initial query (i.e., maximum number of complete eliminations possible in one job). Any of the $2^n - 1$ combinations of complete eliminations can lead to a feasible job. In our running example, $n = 2$, we can completely eliminate both Y and Z concurrently in one job. However, we may choose among these eliminations in $2^2 - 1$ ways, namely, eliminate only Y, eliminate only Z, and eliminate both Y and Z in one job. $2^2 - 1$ different jobs can be generated. For each combination of complete eliminations, there may be zero or
Figure 4.7. The (partial) graph for the running example query with the initial state and all states adjacent to it.
more possible partial eliminations. Again, we may choose any combination of those partial eliminations. For example, if we choose to eliminate Y only, then we can partially eliminate X. We may or may not choose to partially eliminate X, leading to two different job patterns. Therefore, the minimum number of possible jobs (outgoing edges) on the initial query (i.e., v_0) is $2^n - 1$. Note that each of these jobs (i.e., edges) will lead to a unique state (i.e., vertex). Therefore, the number of vertices adjacent to v_0 is at least $2^n - 1$. In the worst case, $n=K$, meaning, the minimum number of vertices adjacent to v_0 is $2^K - 1$. Note that we are not even counting the vertices (i.e., states) that are generated from these $2^K - 1$ vertices. The complexity of computing the least cost path from v_0 to v_{goal} is at least $O(|E|)$ because every edge must be considered at least once lest the algorithm miss a least-cost path that contains that edge. Since in the worst case the minimum number of vertices adjacent to v_0 is $2^K - 1$, $|E|$ is at least $O(2^K)$, which is exponential. Hence, every solution to the Bestplan problem is at least exponential in the number of joining variables in the worst case.

However, we may still solve Bestplan in reasonable amount of time if K is small. This solution would involve generating the graph G and then finding the shortest path from v_0 to v_{goal}.

4.3.5.2 Relaxed Bestplan problem and approximate solution

In the Relaxed Bestplan problem, we assume uniform cost for all jobs. Although this relaxation does not reduce the search space, the problem is reduced to finding a job plan having the minimum number of jobs. Note that this is the problem for the practical version of the model (Section 4.3.3).

Definition 12 (Relaxed Bestplan problem). The Relaxed Bestplan problem is to find the job plan that has the minimum number of jobs.
Next, we show that if joins are reasonably chosen, and no eligible join operation is left undone in a job, then we may set an upper bound on the maximum number of jobs required for any given query. However, it is still computationally expensive to generate all possible job plans. Therefore, we resort to a greedy algorithm (Algorithm 9), that finds an approximate solution to the Relaxed Bestplan problem, but is guaranteed to find a job plan within the upper bound.

Definition 13 (Early elimination heuristic). The early elimination heuristic makes as many complete eliminations as possible in each job.

This heuristic leaves the fewest number of variables for join in the next job. In order to apply the heuristic, we must first choose the variable in each job with the least E-count. This heuristic is applied in Algorithm 9.

Algorithm 9 Relaxed-Bestplan (Query Q)

1: Q ← Remove_non-joining_variables(Q)
2: while Q ≠ Empty do
3: J ← 1 //Total number of jobs
4: U = {u1, ..., uK} ← All variables sorted in non-decreasing order of their E-counts
5: JobJ ← Empty //List of join operations in the //current job
6: tmp ← Empty // Temporarily stores resultant //triple patterns
7: for i=1 to K do
8: if Can-Eliminate(Q,ui)=true then // complete or partial elimination possible
9: tmp ← tmp ∪ Join-result(TP(Q,ui))
10: Q ← Q - TP(Q,ui)
11: JobJ ← JobJ∪ join(TP(Q,ui))
12: end if
13: end for
14: Q ← Q ∪ tmp
15: J ← J + 1
16: end while
17: return {Job1,...,JobJ-1}
Description of Algorithm 9: The algorithm starts by removing all the non-joining variables from the query \(Q \). In our running example, \(Q = \{X,Y,VZ,XY,XZ\} \), and removing the non-joining variable \(V \) makes \(Q = \{X,Y,Z,XY,XZ\} \). In the while loop, the job plan is generated, starting from \(Job_1 \). In line 4, we sort the variables according to their E-count. The sorted variables are: \(U = \{Y,Z,X\} \), since \(Y \) and \(Z \) have E-count = 1, and \(X \) has E-count = 2.

For each job, the list of join operations are stored in the variable \(Job_J \), where \(J \) is the ID of the current job. Also, a temporary variable \(tmp \) is used to store the resultant triples of the joins to be performed in the current job (line 6). In the for loop, each variable is checked to see if the variable can be completely or partially eliminated (line 8). If yes, we store the join result in the temporary variable (line 9), update \(Q \) (line 10) and add this join to the current job (line 11). In our running example, this results in the following operations. Iteration 1 of the for loop: \(u_1 (= Y) \) can be completely eliminated. Here \(TP(Q,Y) = \) the triple patterns in \(Q \) containing \(Y = \{Y,XY\} \). Join-result(\(TP(Q,Y) \)) = Join-result(\(\{Y,XY\} \)) = resultant triple after the join(\(Y,XY \)) = \(X \). So, \(tmp = \{X\} \). \(Q = Q - TP(Q,Y) = \{X,Y,Z,XY,XZ\} - \{Y,XY\} = \{X,Z,XZ\} \). \(Job_1 = \{join(Y,XY)\} \). Iteration 2 of the for loop: \(u_2 (= Z) \) can be completely eliminated. Here \(TP(Q,Z) = \{Z,XZ\} \), and Join-result(\(\{Z,XZ\} \)) = \(X \). So, \(tmp = \{X\} \), \(Q = Q - TP(Q,Z) = \{X,Z,XZ\} - \{Z,ZX\} = \{X\} \), \(Job_1 = \{join(Y,XY),join(Z,XZ)\} \).

Iteration 3 of the for loop: \(u_3 (= X) \) cannot be completely or partially eliminated, since there is no other TP left to join with it. Therefore, when the for loop terminates, we have \(Job_1 = \{join(Y,XY),join(Z,XZ)\} \), and \(Q = \{X,X,X\} \). In the second iteration of the while loop, we will have \(Job_2 = join(X,X,X) \). Since after this join, \(Q \) becomes Empty, the while loop is exited. Finally, \(\{Job_1, Job_2\} \) are returned from the algorithm.

Theorem 2. For any given query \(Q \), containing \(K \) joining variables and \(N \) triple patterns, Algorithm Relaxed-Bestplan(\(Q \)) generates a job plan containing at most \(J \) jobs, where
Proof. The first two cases are trivial. For the third case, we need to show that the number of jobs is i) at most K, and ii) at most $\lceil 1.71 \log_2 N \rceil$. It is easy to show that the number of jobs can be at most K. Since with each job, we completely eliminate at least one variable, we need at most K jobs to eliminate all variables. In order to show that ii) is true, we consider the job construction loop (for loop) of the algorithm for the first job. In the for loop, we try to eliminate as many variables as possible by joining TPs containing that variable. Suppose L TPs could not participate in any join because of conflict between one (or more) of their variables and other triple patterns already taken by another join in the same job. In our running example, TP X could not participate in any join in Job1 since other TPs containing X have already been taken by other joins. Therefore, $L=1$ in this example. Note that each of the L TPs had conflict with one (or more) joins in the job. For example, the left-over TP X had conflict with both Join(Y,XY), and Join(Z,ZX). It can be shown that for each of the L TPs, there is at least one unique Join operation which is in conflict with the TP. Suppose there is a TP tp_i, for which it is not true (i.e., tp_i does not have a unique conflicting Join). Therefore, tp_i must be sharing a conflicting Join with another TP tp_j (that is why the Join is not unique for tp_i). Also, tp_i and tp_j does not have any variable in common, since otherwise we could join them, reducing the value of L. Since both tp_i and tp_j are in conflict with the Join, the Join must involve a variable that does not belong to either tp_i or tp_j. To illustrate this with an example, suppose the conflicting Join is join(UX,UV), and $tp_i=X$, $tp_j=V$. It is clear that E-count of U must be at least 2, whereas E-count of X and V are 1. Therefore, X and Y must have been considered for elimination before U. In this case, we would have chosen the joins: join(X,UX) and join(V,UV), rather than join(UX,UV). So, either tp_i (and tp_j) must have a unique conflicting Join, or tp_i must have participated in a join.

\[
J = \begin{cases}
0 & N=0 \\
1 & N=1 \text{ or } K=1 \\
\min(\lceil 1.71 \log_2 N \rceil, K) & N,K > 1
\end{cases}
\]
To summarize the fact, there have been at least $M \geq L$ joins selected in Job_1. So, the total number of TPs left after executing all the joins of Job_1 is $M + L$. Note that each of the M joins involves at least 2 TPs. Therefore, $2M + L \leq N$, where N is the total number of TPs in the given query. From the above discussion, we come-up with the following relationships:

\[2M + L \leq N \Rightarrow 2(L + \epsilon) + L \leq N \quad \text{(Letting } \epsilon \geq 0) \]
\[\Rightarrow 3L + 2\epsilon \leq N \]
\[\Rightarrow 2L + \frac{4}{3}\epsilon \leq \frac{2}{3}N \quad \text{(Multiplying both sides with } 2/3) \]
\[\Rightarrow 2L + \epsilon \leq \frac{2}{3}N \Rightarrow M + L \leq \frac{2}{3}N \]

So, the first job, as well as each remaining jobs reduce the number of TPs to at least two-third. Therefore, there is an integer J such that:

\[\left(\frac{2}{3}\right)^J N \geq 1 \geq \left(\frac{2}{3}\right)^{J+1} N \Rightarrow \left(\frac{3}{2}\right)^J \leq N \leq \left(\frac{3}{2}\right)^{J+1} \]
\[\Rightarrow J \leq \log_{3/2} N = 1.71 \log_2 N \leq J + 1 \]

So, the total number of jobs, J is also bounded by $\lceil 1.71 \log_2 N \rceil$.

\[\square \]

In most real world scenarios, we can safely assume that more than 100 triples in a query is extremely rare. So, the maximum number of jobs required with the Relaxed-Bestplan algorithm is at most 12.

\textbf{Worst case ratio between number of jobs returned by Relaxed-Bestplan algorithm and the actual least number of jobs:} While in all our experiments the
Relaxed-Bestplan algorithm returned the plans with the least number of jobs possible, there might be cases where the plan might not be the optimal one in terms of the number of jobs. We are working on to determine the worst case ratio between number of jobs returned by Relaxed-Bestplan algorithm and the actual least number of jobs. As of now, the problem to determine this ratio is open.

Complexity of the Relaxed-Bestplan algorithm: The outer loop (while loop) runs at most J times, where J is the upper bound of the number of jobs. The inner (for) loop runs at most K times, where K is the number of joining variables in the given query. The sorting requires $O(K \log K)$ time. Therefore, the overall complexity of the algorithm is $O(K(J + \log K))$.

4.3.6 Breaking Ties by Summary Statistics

We frequently face situations where we need to choose a join for multiple join options. These choices can occur when both query plans (i.e. join orderings) require the minimum number of jobs. For example, the query shown in Listing 4.13 poses such a situation.

Listing 4.13. Query Having Tie Situation

```sparql
?X rdfs:typeof ub:FullProfessor .
?Y rdfs:typeof ub:ResearchAssistant .
```

The second triple pattern in the query makes it impossible to answer solve the query with only one job. There are only two possible plans: we can join the first two triple patterns on X first and then join its output with the last triple pattern on Y or we can join the last two patterns first on Y and then join its output with the first pattern on X. In such a situation, instead of randomly choosing a join variable for the first job, we use join summary statistics for a pair of predicates. We select the join for the first job which is more selective to break the tie. The join summary statistics we use is described in (Stocker, Seaborne, Bernstein, Kiefer, and Reynolds 2008).
Table 4.6. Example Data

<table>
<thead>
<tr>
<th>Subject</th>
<th>Object</th>
<th>Predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://utd.edu/s1 :name</td>
<td>"John Smith"</td>
<td></td>
</tr>
<tr>
<td>http://utd.edu/s1 :age</td>
<td>"24"</td>
<td></td>
</tr>
<tr>
<td>http://utd.edu/s2 :name</td>
<td>"John Doe"</td>
<td></td>
</tr>
<tr>
<td>http://utd.edu/s2 :age</td>
<td>"32"</td>
<td></td>
</tr>
<tr>
<td>http://utd.edu/s3 :name</td>
<td>"Jane Doe"</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.7. Example Query Result

<table>
<thead>
<tr>
<th>?name</th>
<th>?age</th>
</tr>
</thead>
<tbody>
<tr>
<td>"John Smith"</td>
<td>"24"</td>
</tr>
<tr>
<td>"John Doe"</td>
<td>"32"</td>
</tr>
<tr>
<td>"John Doe"</td>
<td>"Jane Doe"</td>
</tr>
</tbody>
</table>

4.4 Queries with Optional Blocks

SPARQL queries with OPTIONAL blocks pose significant challenge while generating a query answering plan. Such queries have more than one triple pattern † blocks, potentially with triple patterns repeated in more than one block. Listing 4.14 shows an example query with an optional block. The query retrieves names of resources and optionally ages of the corresponding resource if available. Table 4.7 shows the result of the query when run on the data shown Table 4.6.

Listing 4.14. Example query with OPTIONAL block

```sparql
SELECT ?name, ?age, WHERE {
  ?x :name ?name .
  OPTIONAL {
  }
}
```

†http://www.w3.org/TR/rdf-sparql-query/#sparqlTriplePatterns
The resources \texttt{http://utd.edu/s1} and \texttt{http://utd.edu/s2} have both name and age whereas the resource \texttt{http://utd.edu/s3} does not have any age. But because the age is optional, the name of \texttt{http://utd.edu/s3} is also part of the result even though its age is not there in the data set.

In this section, we present an algorithm which can generate efficient plans for queries with OPTIONAL blocks. Our approach to handle these queries is to build individual plans for each block and answer the query with the help of an operator graph. The concept of operator graph is not new. (Ullman 1980; Rosenthal and Chakravarthy 1988) discuss a similar operator graph approach and there are many others in the literature. For example, the example query we show in Listing 4.14 would produce the operator graph shown in Figure 4.8 (a). The figure shows a simple operator graph which has a join operator. \textit{Block1} consists of the first triple pattern of the query (Listing 4.14) and \textit{Block2} consists of the triple pattern in the optional block. The join operator in the graph does a right outer join.

However, the example query shows in Listing 4.14 is too simple. Real world queries tend to be more complex than that. One such variation is queries having optional blocks with filters. Listing 4.15 shows a modified version of the example query. It has a filter in the optional block which basically gets rid of the second tuple of the result set shown in Table 4.7. Figure 4.8 (b) shows the operator graph for this query.
The difference between the operator graph shown in Figure 4.8 (a) and the one in Figure 4.8 (b) is the filter below Block2. The join operator does right outer join as before. However, we observed that the OPTIONAL blocks frequently repeats triple patterns found in the BGP of the query and there might be filters in the optional blocks which relate to the BGP by using a variable found there. For example, the SP2B Query 6 shown in Listing 4.16 has such an OPTIONAL block.

Listing 4.15. Example query having OPTIONAL block with FILTER

```sparql
SELECT ?name , ?age , WHERE { 
?x :name ?name .
OPTIONAL {
FILTER (?age < 30)
}
}
```

Listing 4.16. SP2B Query 6

```sparql
SELECT ?yr ?name ?document WHERE {
?class rdfs:subClassOf foaf:Document .
?author foaf:name ?name
OPTIONAL {
?class2 rdfs:subClassOf foaf:Document .
?document2 dc:creator ?author2
FILTER (?author=?author2 && ?yr2<?yr)
}
FILTER (!bound(?author2))
}
```

We can see that the OPTIONAL block repeats 4 of the 5 triple patterns found in the BGP. If we bind values for both the blocks separately, we would be reading the same data twice off the file system. This is certainly not desirable. To handle this type of query efficiently, first we need to identify the common group of triple patterns, which we call common blocks from now on. Identifying the common blocks is actually the well
known problem of subgraph isomorphism. Subgraph isomorphism is proved to be NPC long time ago (Cook 1971). Research has already been done to solve this problem in most efficient manner. Ullmann (1976) describes a recursive backtracking procedure for solving the problem in (Ullmann 1976) which is deemed to be the most efficient solution found so far. In general, the running time of the algorithm is exponential but in some cases, the running time reduces to linear time. We use Ullmann’s algorithm as a subroutine in our algorithm. Algorithm 10 shows the pseudo-code of our algorithm:

Algorithm 10 GENERATEPLAN(query)

1: blocks ← getBlocks(query)
2: commonBlocks ← φ
3: for i = 1 to |blocks| do
4: for j = i + 1 to |blocks| do
5: commonBlock ← ullmannSI(blocks[i], blocks[j])
6: if notEmpty(commonBlock) then
7: commonBlocks ← ∪commonBlock
8: end if
9: end for
10: end for
11: uniqueBlocks ←
12: getUniqueBlocks(query, commonBlocks)
13: operatorGraph ←
14: getOperatorGraph(query, commonBlocks)
15: for i = 1 to |uniqueBlocks| do
16: uniqueBlockPlans ←
17: Relaxed − Bestplan(uniqueBlocks[i])
18: end for
19: plan ←
20: generatePlan(operatorGraph, uniqueBlockPlans)
21: return plan

Algorithm 10 parses and separates the blocks in line 1. Lines 3 to 10 find common blocks between all possible pairs of the blocks and build a collection of common blocks. Line 5 uses Ullmann’s algorithm as a subroutine to find the common block between two blocks. Lines 11 and 12 gets rid of duplicates from the common blocks collection. Once we
find the common blocks, we build an operator graph, in lines 13 and 14, which shows the interactions between the common blocks and how we will get the result using joins and other necessary operators (e.g. Filters). Once the operator graph is built, we find query plans for the common blocks using our Relaxed-Bestplan algorithm in lines 15 to 18. Finally, by combining the query plans for each block with the operator graph in lines 19 and 20, we get the complete plan for the whole query.

An example illustrates the details better. Figure 4.9 (a) shows the operator graph we build for SP2B Query 6 shown in Listing 4.16. Our algorithm determines two common blocks. Block1 contains all the triple patterns of the BGP except the last one and Block2 contains the last triple pattern of that BGP. Block1 is repeated in the OPTIONAL block. In Figure 4.9 (a), we see the operator graph. Block2 and Block1 are to be joined to get the bound values for the BGP. The bound values for Block1 are used to get values for both the BGP and the OPTIONAL block. The join output of Block2 and Block1 are then joined with Block1 again because the filter inside the OPTIONAL block needs to compare values bound for variables which come from both the BGP and the OPTIONAL block. The second filter applied is the one outside the OPTIONAL block. After applying this filter operator, we get the query results.
We can handle any query with OPTIONAL blocks this way. A query might have nested OPTIONAL blocks and our approach can handle those queries too. We use Hadoop jobs to do the joins and apply the operators (e.g. Filter) in the query operator graph. However, the number of Hadoop jobs needed to do these operation is not necessarily equal to the number of operators. For the example operator graph shown in Figure 4.9 (a), we would need two jobs to do the joins and the filters. We can apply the filters in the same job which does the 2nd join. In general only join operators need separate Hadoop jobs. Other operators can be applied in the job doing the join which produces the output to be worked on by the operators.

An optional block might have multiple nested optional blocks inside it. Our approach can handle any number of such nesting in the optional blocks. Listing 4.17 shows SP²B Query 7 which has a nested optional block inside the first optional block. Our algorithm identifies two unique blocks from the query. Block1 contains the third triple pattern of the BGP \texttt{?doc dc : title ?title}. Block2 contains the rest four triple patterns of the BGP. Block2 is repeated twice in the optional blocks. The operator graph we build for this query is shown in Figure 4.9 (b). We can see that Block2 is input three times, hence we can avoid reading from the disk thrice. Instead we only read data from the disk once for the block and reuse it three times. This significantly improves query running time.

Listing 4.17. SP²B Query 7

```
SELECT DISTINCT ?title
WHERE {
  ?class rdfs:subClassOf foaf:Document .
  ?doc2 dcterms:references ?bag2
OPTIONAL {
  ?class3 rdfs:subClassOf foaf:Document .
  ?bag3 ?member3 ?doc
```
Due to space constraint, we do not show the details of the trivial algorithm which builds the operator graph. Such algorithms are commonly found in the relational database literature.

4.5 MapReduce Join Execution

In this section, we discuss how we implement the joins needed to answer SPARQL queries using MapReduce framework of Hadoop. Algorithm 9 determines the number of jobs required to answer a query. It returns an ordered set of jobs. Each job has associated input information. The Job Handler component of our MapReduce framework runs the jobs in the sequence they appear in the ordered set. The output file of one job is the input of the next. The output file of the last job has the answer to the query.

Listing 4.18. LUBM Query 2

```sparql
  ?bag4 ?member4 ?doc3
} FILTER (!bound(?doc4))
} FILTER (!bound(?doc3))
```

Listing 4.18 shows LUBM Query 2, which we will use to illustrate the way we do a join using map and reduce methods. The query has six triple patterns and nine joins between them on the variable X, Y and Z. Our input selection algorithm selects files
type_GraduateStudent, type_University, type_Department, all files having the prefix memberOf, all files having the prefix subOrganizationOf and all files having the prefix underGraduateDegreeFrom as the input to the jobs needed to answer the query.

The query plan has two jobs. In job 1, triple patterns of line 2, 5 and 7 are joined on X and triple patterns of line 3 and 6 are joined on Y. In job 2, triple pattern of line 4 is joined with the outputs of previous two joins on Z and also the join outputs of job 1 are joined on Y.

The input files of job 1 are type_GraduateStudent, type_University, all files having the prefix memberOf, all files having the prefix subOrganizationOf and all files having the prefix underGraduateDegreeFrom. In the map phase, we first tokenize the input value which is actually a line of the input file. Then, we check the input file name and, if input is from type_GraduateStudent, we output a key value pair having the subject URI prefixed with X# the key and a flag string GS# as the value. The value serves as a flag to indicate that the key is of type GraduateStudent. The subject URI is the first token returned by the tokenizer. Similarly, for input from file type_University output a key value pair having the subject URI prefixed with Y# the key and a flag string U# as the value. If the input from any file has the prefix memberOf, we retrieve the subject and object from the input line by the tokenizer and output a key value pair having the subject URI prefixed with X# the key and the object value prefixed with MO# as the value. For input from files having the prefix subOrganizationOf we output key value pairs making the object prefixed with Y# the key and the subject prefixed with SO# the value. For input from files having the prefix underGraduateDegreeFrom, we output key value pairs making the subject URI prefixed with X# the key and the object value prefixed with UDF# the value. Hence, we make either the subject or the object a map output key based on which we are joining. This is the reason why the object is made the key for the triples from files having the prefix subOrganizationOf because the joining variable Y is an object in the triple pattern in line 6. For all other inputs,
the subject is made the key because the joining variables X and Y are subjects in the triple patterns in line 2, 3, 5 and 7.

In the *reduce* phase, Hadoop groups all the values for a single key and for each key provides the key and an iterator to the values collection. Looking at the prefix we can immediately tell if it is a value for X or Y because of the prefixes we used. In either case, we output a key value pair using the same key and concatenating all the values to make a string value. So, after this *reduce* phase, join on X is complete and on Y is partially complete.

The input files of job 2 are *type_Department* file and the output file of job 1, *job1.out*. Like the *map* phase of job 1, in the *map* phase of job 2 we also tokenize the input value which is actually a line of the input file. Then, we check the input file name and, if input is from *type_Department*, we output a key value pair having the subject URI prefixed with $Z\#$ the key and a flag string $D\#$ as the value. If the input is from *job1.out*, we find the value having the prefix $Z\#$. We make this value the output key and concatenate rest of the values to make a string and make it the output value. Basically, we make the $Z\#$ values the keys to join on Z.

In the *reduce* phase, we know that the key is the value for Z. The values collection has two type of strings. One has X values, which are URIs for graduate students and also Y values from which they got their undergraduate degree. The Z value, i.e. the key, may or may not be a subOrganizationOf the Y value. The other type of strings have only Y values which are universities and of which the Z value is a sub-organization. We iterate over the values collection and then join the two types of tuples on Y values. From the join output, we find the result tuples which have values for X, Y and Z.
CHAPTER 5

SUMMARY STATISTICS

Summary statistics is a proven tool which helps to generate the best possible query processing plan. It is widely used in relational databases and can also be effective for our purpose. We can use summary statistics to build an ideal cost model. We can gather summary statistics in the data preprocessing step. The summary statistics can be used to calculate estimated selectivity for both individual triple patterns and joined triple patterns. In case of joined triple patterns, joins are n-ary where $2 \leq n \leq |P|$ and P is the number of predicates.

5.1 Selectivity of Individual Triple Patterns

In this section, we will discuss selectivity with bound components followed by selectivity with unbound components.

5.1.1 Selectivity of Individual Triple Patterns with Bound Components

A triple pattern can have a bound subject, a bound object or a bound predicate. To estimate the selectivity of the bound subject triple pattern we use the formula:

$$\text{sel}(sub) = \frac{1}{R}$$

(5.1)

where R is the total number of resources in the dataset. So, the estimated selectivity of the subject is constant. To estimate the selectivity of the bound predicate triple pattern we use the formula (Stocker, Seaborne, Bernstein, Kiefer, and Reynolds 2008; Navathe and elmasri
where \(S_{\text{prd}} \) is the number of triples having the predicate \(\text{prd} \) and \(T \) is the number of triples in the dataset. To estimate the selectivity of a bound object we use the following formula:

\[
\text{sel}(\text{obj}) = \text{sel}(\text{prd}, \text{obj}_b)
\]

where the pair \((\text{prd}, \text{obj}_b)\) is the bin in the histogram for predicate \(\text{prd} \) having the object \(\text{obj} \). \(\text{sel}(\text{prd}, \text{obj}_b) = \frac{h_b(\text{prd}, \text{obj}_b)}{T_{\text{prd}}} \) where \(h_b(\text{prd}, \text{obj}_b) \) is the frequency of the bin \((\text{prd}, \text{obj}_b)\) and \(T_{\text{prd}} \) is the number of triples having the predicate \(\text{prd} \). Histograms are maintained for each predicate file. This is done by traversing the file and calculating unique hash values for the objects in the triple patterns. Triple patterns having the same bounded objects will have identical hash values. The frequency of occurrence of a particular object in a predicate file is estimated by taking the size of the bin where its hash value falls.

5.1.2 Selectivity of Individual Triple Patterns with Unbound Components

A triple pattern can have unbound subject, object or predicate. The upper bound of the selectivity estimation of an unbound component is 1.0 as a triple pattern with an unbound component can match all the triples of a data set. However, we can leverage our histograms to get better estimation in case of unbound object with bound predicate. We use the following formula in such a case:

\[
\text{sel}(\text{obj}) = \sum_{\text{prd}_i \in P} \text{sel}(\text{prd}_i, \text{obj}_b)
\]

where the pair \((\text{prd}, \text{obj}_b)\) is the bin in the histogram for predicate \(\text{prd} \) having the object \(\text{obj} \) as described in Section 5.1.1.
5.2 Selectivity of Joined Triple Patterns

5.2.1 Selectivity of Joined Triple Patterns with Bound/Unbound Predicate

Current semantic web frameworks, such as Jena, run on a single machine and cannot handle huge amounts of triples. On the other hand, the Map Reduce framework is highly effective in processing large amounts of data in parallel. We observed that SPARQL queries usually have multiple TPs sharing an unbound subject or object i.e. they are joined on that variable. Hence, we come up with a scheme to calculate the selectivity of such joined TPs with bound predicates.

Listing 5.1. BGP of LUBM Query 2

```
?X rdfs:type ub:GraduateStudent
?Y rdfs:type ub:University
?Z rdfs:type ub:Department
?X ub:memberOf ?Z
?Z ub:subOrganizationOf ?Y
?X ub:undergraduateDegreeFrom ?Y
```

We maintain statistics for all the possible ways \(n \) TPs can join together where \(2 \leq n \leq |P| \) and \(|P| \) is the number of unique predicates in the data set. For example, for 3 TPs having the structure such as \([\text{sub pred obj}]\), a join can occur in 8 possible ways. Some of the joins can be \((\text{sub sub sub})\), \((\text{sub sub obj})\), \((\text{sub obj sub})\) and \((\text{obj obj sub})\). For instance, the BGP in Listing 5.1 has a three-way join on the variables \(x, y \) and \(z\). The join on \(x\) is of \((\text{sub sub sub})\) type. Similarly the join on \(y\) is of type \((\text{sub obj obj})\) and \(z\) has a \((\text{sub obj sub})\) type join. We can calculate the number of ways \(n \) TPs can join in a data set by the following formula:

\[
\text{Joinest}_n = C_n^{|P|} \times 2^n
\]

(5.3)

where \(|P|\) is the number of predicates in the data set. The first part of the formula \(|P|C_n\) is the number of possible combinations of \(n \) predicates. The second part is the number of ways \(n \) predicates can join on subject or object variables.
Algorithm 11 SummaryStatisticsCreationMapReduce

1: map(key, value)
2: {
3: if predicateIsType() then
4: subject ← value
5: object ← getType()
6: else
7: splits ← split(value)
8: subject ← splits[0]
9: object ← splits[1]
10: end if
11: if joinIsOnSubject() then
12: output(subject, predicate)
13: else
14: output(object, predicate)
15: end if
16: }
17:
18: reduce(key, values)
19: {
20: PredicateSet ← φ
21: for all val in values do
22: PredicateSet ← PredicateSet ∪ val
23: end for
24: if |PredicateSet| == n then
25: output(join_type_tag, one)
26: end if
27: }

In the summary statistics, we maintain a separate count for all such n-ary joins where \(2 \leq n \leq |P|\). This helps us estimate the selectivity of a joined triple pattern. Gathering the statistics requires vast amount of memory. A program running on a single machine runs out of memory while generating the statistics. So, we run Hadoop MapReduce jobs to collect them. In the map phase, we read a file one line at a time and split it to get the subject and object. From the file name we have the predicate. Based on what type of join we are considering, we output either the subject or the object as the key. The value is always the predicate. Algorithm 11 shows our map method in lines 1 to 16. In line 3, it checks whether the input file is of predicate type. In such a case, subject is the value which is a single string and the object is the type of the subject which is determined from the file name. If the input file is not for predicate type, we split the value string into two strings in line 7. In line 8 and 9, we get the subject and the object. In line 11, we check if the join is on subject. If that is the case, we output subject as the key and predicate as the value in line 12. Otherwise, in line 13, we output object as the key and predicate as the value. In the reduce phase, for each key we count the number of unique predicates. If that equals to \(n\), we output an integer 1. Algorithm 11 shows our reduce method in lines 18 to 27. In line 20, we initialize a set which we use to hold the unique predicates. In line 21, we iterate over each value in a for loop and in line 22 we insert the predicate in the set. Note that, as the set only hold unique values, it will not include any duplicate value in line 22. In line 24, we compare the size of the set with \(n\). If they are equal, we output a string, describing the join type, as the key and an integer 1 as the value in line 25. The string identifying the join contains information about the predicates and join type.

We use another job to sum up these 1’s to get the total count. Algorithm 12 shows the map method for that job from lines 1 to 5. The method simply parses each line and splits it into two in line 3. In line 4, it outputs the first split as the key and the second split as the value. Hence, the key is the id for join type and value is 1. Algorithm 12 show the
reduce method which sums these 1’s from lines 7 to 14. In line 9, we initialize a variable to 0. In line 10, we iterate over all the values and add the value to the sum variable in line 11. In line 13, we output the key and sum as the value. The reason we need this job is in the reducer of first job, we get one key, on which the predicates are joined, at a time. It is not possible to know how many key-values pairs we are going to get until the last pair and which pair is the last one.

Algorithm 12: `SUMMARYSTATISTICS` Summation MapReduce

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>map(key, value)</code></td>
</tr>
<tr>
<td>2</td>
<td>{</td>
</tr>
<tr>
<td>3</td>
<td><code>splits ← split(value)</code></td>
</tr>
<tr>
<td>4</td>
<td><code>output(splits[0], splits[1])</code></td>
</tr>
<tr>
<td>5</td>
<td>}</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>reduce(key, values)</code></td>
</tr>
<tr>
<td>8</td>
<td>{</td>
</tr>
<tr>
<td>9</td>
<td><code>sum ← 0</code></td>
</tr>
<tr>
<td>10</td>
<td><code>for all val in values do</code></td>
</tr>
<tr>
<td>11</td>
<td><code>sum ← sum + val</code></td>
</tr>
<tr>
<td>12</td>
<td><code>end for</code></td>
</tr>
<tr>
<td>13</td>
<td><code>output(key, sum)</code></td>
</tr>
<tr>
<td>14</td>
<td>}</td>
</tr>
</tbody>
</table>

An example illustrates this process better. Table 5.1 shows an example of a dataset. The data set has two predicates \(p_1 \) and \(p_2 \). There may be \(C_2^2 \times 2^2 = 4 \) type of joins in this data set: \((p_1\text{_subject}, p_2\text{_subject}, p_1\text{_subject}, p_2\text{_object}, p_1\text{_object}, p_2\text{_subject} \) and \(p_1\text{_object}, p_2\text{_object} \). Suppose, we are calculating number of subject-subject joins in a 2-ary join between \(p_1 \) and \(p_2 \). Table 5.2 shows the output of map method of first job in first seven rows of left column. The method simply splits each line of the data file shown in Table 5.1 into two and outputs them as key-value pair. Table 5.2 shows how the values are grouped and fed to reduce method as input in the last four rows of left column. For each key, the values are grouped and passed as key-values pairs to the reducer. The reducer method counts the number of unique predicates in the values collection and if the count equals to 2,
Table 5.1. Example Data

<table>
<thead>
<tr>
<th>Subject</th>
<th>Predicate</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>p1</td>
<td>o1</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
<td>o2</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
<td>o3</td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
<td>o4</td>
</tr>
<tr>
<td>s2</td>
<td>p2</td>
<td>o5</td>
</tr>
<tr>
<td>s3</td>
<td>p2</td>
<td>o6</td>
</tr>
</tbody>
</table>

Table 5.2. Summary Statistics Creation Example

<table>
<thead>
<tr>
<th>First Job Map Output</th>
<th>First Job Reduce Output & Second Job Map Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1 p1</td>
<td>p1_subject.p2_subject 1</td>
</tr>
<tr>
<td>s1 p2</td>
<td>p1_subject.p2_subject 1</td>
</tr>
<tr>
<td>s2 p1</td>
<td>p1_subject.p2_subject 1</td>
</tr>
<tr>
<td>s3 p2</td>
<td>p1_subject.p2_subject (1, 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Job Reduce Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1_subject.p2_subject 2</td>
</tr>
</tbody>
</table>

which is the number of unique predicates of the join we are considering, it outputs a string identifying the type of join as the key and an integer 1 as the value. The 1 signifies that one value has been found on which the join we are looking for occurs. In Table 5.2 we see two such output pairs in the first four rows of right column. The first pair resulted from the first input key-values pair and the second one from the second key-values pair. Both of the pairs have two unique predicates p_1 and p_2 in their values collection. The third key-values input pair does not produce any output as the number of unique predicates is not equal to 2.

The mapper of the second job takes each line of the output shown in Table 5.2 as input and outputs exactly the same after splitting and making key-value pairs. The input
the reducer gets is shown in Table 5.2 in 5th and 6th rows of right column. It sums up the
1’s and outputs the key and the sum as the value. The output is shown in Table 5.2 in 7th
and 8th rows of right column. Thus, we get the number of subject-subject joins for 2-way
join between p_1 and p_2.
CHAPTER 6
RESULTS

In this chapter, we will present our experimental results. First, we present the benchmark data sets with which we experimented. Second, we present the alternative repositories we evaluated for comparison. Third, we detail our experimental setup. Finally, we present our evaluation results.

6.1 Data Sets

In our experiments with SPARQL query processing, we use two synthetic data sets: LUBM(Guo, Pan, and Heflin 2005) and SP2B(Schmidt, Hornung, Lausen, and Pinkel 2008). The LUBM data set generates data about universities by using an ontology†. It has 14 standard queries. Some of the queries require inference to answer. The LUBM data set is very good for both inference and scalability testing. For all LUBM data sets, we used the default seed. The SP2B data set is good for scalability testing with complex queries and data access patterns. It has 16 queries most of which have complex structures.

6.2 Baseline Frameworks

We compared our framework with RDF-3X(Weikum and Neumann 2008), Jena† and BigOWLIM†. RDF-3X is considered the fastest semantic web framework with persistent storage. Jena is an open source framework for semantic web data. It has several models

†http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
†http://jena.sourceforge.net
which can be used to store and retrieve RDF data. We chose Jena’s in-memory and SDB models to compare our framework with. As the name suggests, the in-memory model stores the data in main memory and does not persist data. The SDB model is a persistent model and can use many off-the-shelf database management systems. We used MySQL database as SDB’s back-end in our experiments. BigOWLIM is a proprietary framework which is the state-of-the-art significantly fast framework for semantic web data. It can act both as a persistent and non-persistent storage. All of these frameworks run in a single machine setup.

6.3 Experimental Setup

6.3.1 Hardware

We have a 10 node Hadoop cluster which we use for our framework. Each of the nodes have the following configuration: Pentium IV 2.80 GHz processor, 4 GB main memory and 640 GB disk space. We ran Jena, RDF-3X and BigOWLIM frameworks on a powerful single machine having 2.80 GHz quad core processor, 8 GB main memory and 1 TB disk space.

6.3.2 Software

We used hadoop-0.20.1 for our framework. We compared our framework with Jena-2.5.7 which used MySQL 14.12 for its SDB model. We used BigOWLIM version 3.2.6. For RDF-3X, we utilized version 0.3.5 of the source code.

6.4 Evaluation

In this section, we present performance comparison between our framework, RDF-3X, Jena In-Memory and SDB models, and BigOWLIM.
Table 6.1. Comparison with RDF-3X

<table>
<thead>
<tr>
<th></th>
<th>LUBM-10,000</th>
<th>LUBM-20,000</th>
<th>LUBM-30,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RDF-3X</td>
<td>HadoopRDF</td>
<td>RDF-3X</td>
</tr>
<tr>
<td>Query 1</td>
<td>0.373</td>
<td>248.3</td>
<td>0.219</td>
</tr>
<tr>
<td>Query 2</td>
<td>1240.21</td>
<td>801.9</td>
<td>3518.485</td>
</tr>
<tr>
<td>Query 4</td>
<td>0.856</td>
<td>1430.2</td>
<td>0.445</td>
</tr>
<tr>
<td>Query 9</td>
<td>225.54</td>
<td>1663.4</td>
<td>FAILED</td>
</tr>
<tr>
<td>Query 12</td>
<td>0.298</td>
<td>204.4</td>
<td>0.825</td>
</tr>
<tr>
<td>Query 13</td>
<td>380.731</td>
<td>325.4</td>
<td>480.758</td>
</tr>
</tbody>
</table>

Table 6.2. Query Runtimes for LUBM and SP²B Dataset

<table>
<thead>
<tr>
<th>Triples (Billion)</th>
<th>LUBM-DATASET</th>
<th>SP²B-DATASET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q-1</td>
<td>Q-2</td>
</tr>
<tr>
<td>0.11</td>
<td>66.3</td>
<td>143.5</td>
</tr>
<tr>
<td>0.22</td>
<td>87.5</td>
<td>213.4</td>
</tr>
<tr>
<td>0.33</td>
<td>111.6</td>
<td>289.6</td>
</tr>
<tr>
<td>0.44</td>
<td>129.7</td>
<td>360.4</td>
</tr>
<tr>
<td>0.55</td>
<td>153.7</td>
<td>421.2</td>
</tr>
<tr>
<td>0.66</td>
<td>176.9</td>
<td>498</td>
</tr>
<tr>
<td>0.77</td>
<td>195</td>
<td>570.6</td>
</tr>
<tr>
<td>0.88</td>
<td>214.1</td>
<td>643.2</td>
</tr>
<tr>
<td>0.99</td>
<td>229.2</td>
<td>718.3</td>
</tr>
<tr>
<td>1.1</td>
<td>248.3</td>
<td>801.9</td>
</tr>
<tr>
<td>2.2</td>
<td>418.5</td>
<td>924.4</td>
</tr>
<tr>
<td>3.3</td>
<td>591.4</td>
<td>1315.4</td>
</tr>
<tr>
<td>4.4</td>
<td>870.9</td>
<td>1997.3</td>
</tr>
<tr>
<td>5.5</td>
<td>1085.9</td>
<td>2518.6</td>
</tr>
<tr>
<td>6.6</td>
<td>1253.8</td>
<td>3057.8</td>
</tr>
</tbody>
</table>
6.4.1 Comparison with Baseline Frameworks

Table 6.1 summarizes our comparison with RDF-3X. We used three LUBM datasets: 10,000, 20,000 and 30,000 which have more than 1.1, 2.2 and 3.3 billion triples respectively. Initial population time for RDF-3X took 655 minutes, 1756 minutes, and 3353 minutes to load the datasets respectively. This shows that the RDF-3X load time is increasing exponentially. LUBM(30,000) has 3 times as many triples as LUBM(10,000) yet it requires more than 5 times as long to load.

For evaluations purposes, we chose LUBM Queries 1, 2, 4, 9, 12 and 13 to be reported in this paper. These queries provide a good mixture and include simple and complex structures, inference and multiple types of joins. They are representatives of other queries of the benchmark and so reporting only these covers all types of variations found in the queries we left out and also saves space. Query 1 is a simple selective query. RDF-3X is much faster than HadoopRDF for this query. RDF-3X utilizes six indexes (Neumann and Weikum 2008) and those six indexes actually make up the data set. The indexes provide RDF-3X a very fast way to look up triples, similar to a hash table. Hence, a highly selective query is efficiently answered by RDF-3X. Query 2 is a query with complex structures, low selectivity and no bound objects. The result set is quite large. For this query, HadoopRDF outperforms RDF-3X for all 3 dataset sizes. RDF-3X fails to answer the query at all when the dataset size is 3.3 billion triples. RDF-3X returns a memory segmentation fault error messages, and does not produce any query results. Query 4 is also a highly selective query i.e. the result set size is small because of a bound object in the second triple pattern but it needs inferencing to answer it. The first triple pattern uses the class Person which is a superclass of many classes. No resource in LUBM dataset is of type Person, rather there are many resources which are its sub-types. RDF-3X does not support inferencing so we had to convert the query to an equivalent query having some union operations. RDF-3X outperforms HadoopRDF for this query. Query 9 is similar in structure to Query 2 but it
requires significant inferencing. The first three triple patterns of this query uses classes of which are not explicitly instantiated in the dataset. However, the dataset includes many instances of the corresponding subclasses. This is also the query which requires the largest dataset join and returns the largest result set out of the queries we evaluated. RDF-3X is faster than HadoopRDF for 1.1 billion triples dataset but it fails to answer the query at all for the other two datasets. Query 12 is similar to Query 4 because it is both selective and has inferencing in one triple pattern. RDF-3X beats HadoopRDF for this query. Query 13 has only two triple patterns. Both of them involve inferencing. There is a bound subject in the 2nd triple pattern. It returns the second largest result set. HadoopRDF beats RDF-3X for this query for all datasets. RDF-3X’s performance is slow because the first triple pattern has very low selectivity and requires low selectivity joins to perform inference via backwards chaining.

These results lead us to some simple conclusions. RDF-3X achieves the best performance for queries with high selectivity and bound objects. However, HadoopRDF outperforms RDF-3X for queries with unbound objects, low selectivity, or large dataset joins. RDF-3X cannot execute the two queries with unbound objects (Query 2 and 9) for a 3.3 billion triples dataset. This demonstrates that HadoopRDF is more scalable and handles low selectivity queries more efficiently than RDF-3X.

We also compared our implementation with the Jena In-Memory model and the SDB models and BigOWLIM. Due to space and time limitations, we performed these tests only for LUBM Queries 2 and 9 from the LUBM dataset. We chose these queries because they have complex structures and require inference. It is to be noted that BigOWLIM needed 7 GB of Java heap space to successfully load the billion triples dataset. Figures 6.1 and 6.2 show the performance comparison for the queries respectively. In each of these figures, the X axis represents the number of triples (in billions) and the Y axis represents the time (in seconds). We ran BigOWLIM only for the largest three datasets as we are interested in its
performance with large datasets. For each set, on the X axis, there are four columns which show the results of Jena In-Memory model, Jena SDB model, our Hadoop implementation and BigOWLIM respectively. A cross represents either that the query could not complete or that it ran out of memory. In most of the cases, our approach was the fastest. For Query 2, Jena In-Memory Model and Jena SDB model were faster than our approach, giving results in 3.9 and 0.4 seconds respectively. However, as the size of the dataset grew, Jena In-Memory model ran out of memory space. Our implementation was much faster than Jena SDB model for large datasets. For example, in Figure 6.1 for 110 million triples, our approach took 143.5 seconds as compared to about 5000 seconds for Jena-SDB model. In Figure 6.2, we can see that Jena SDB model could not finish answering Query 9. Jena In-Memory Model worked well for small datasets but became slower than our implementation as the dataset size grew and eventually ran out of memory. For Query 2 (Figure 6.1), BigOWLIM was slower than us for the 110 and 550 million datasets. For 550 million dataset it took 22693.4 seconds, which is abruptly high compared to its other timings. For the billion triple dataset, BigOWLIM was faster. It should be noted that our framework does not have any indexing or triple cache whereas BigOWLIM exploits indexing which it loads into main memory when it starts. It may also pre-fetch triples into main memory. For Query 9 (Figure 6.2), our implementation is faster than BigOWLIM in all experiments.

It should be noted that our RDF-3X queries and HadoopRDF queries were tested using cold runs. What we mean by this is that main memory and file system cache were cleared prior to execution. However, for BigOWLIM, we were forced to execute hot runs. This is because it takes a significant amount of time to load a database into BigOWLIM. Therefore, we will always easily outperform BigOWLIM for cold runs. So we actually tested BigOWLIM for hot runs against HadoopRDF for cold runs. This gives a tremendous advantage to BigOWLIM, yet for large datasets HadoopRDF still produced much better results.
This shows that HadoopRDF is much more scalable than BigOWLIM, and provides more efficient queries for large datasets.

Table 6.2 shows query time to execute the plan generated using GenerateBestPlan algorithm on different number of Triples. The first column represents the number of triples in the range between 110 million to 1100 million. Columns 2 to 7 of Table 6.2 represent the six selected queries from the LUBM dataset whereas the last three columns are the queries from SP2B dataset (Schmidt, Hornung, Lausen, and Pinkel 2008). Query answering time is in seconds. The number of triples are rounded down to millions. As expected, as the number of triples increased, the time to answer a query also increased. For example, Query 1 for 100 million triples took 66.3 seconds whereas for 1100 million triples it took 248.3 seconds. Query 1 is simple and requires only one join, thus it took the least amount of time among all the queries. Query 2 is one of the two queries having the greatest number of triple patterns. We can observe that even though it has three times more triple patterns, it does not take thrice the time of Query 1 answering time because of our storage schema. Query 4 has one less triple pattern than Query 2, but it requires inferencing to bind 1 triple pattern. As we determine inferred relations on the fly, queries requiring inference takes longer times in our
As the size of the dataset grows, the increase in time to answer a query does not grow proportionately. The increase in time is always less. For example, there are ten times as many triples in the dataset of 10000 universities than 1000 universities, but for Query 1 the time only increases by **3.76** times and for query 9 by **7.49** times. The latter is the highest increase in time, yet it is still less than the increase in the size of the datasets. Due to space limitations, we do not report query runtimes with PS schema here. We observed that PS schema is much slower than POS schema.

6.4.2 Experiment with Number of Reducers

In a Hadoop job, the user can specify the number of reducers to use. We decided to find the impact of the number of reducers in answering a SPARQL query. For the six LUBM queries discussed in Section 6.4.1, we varied the number of reducers from 1 to 10. We can see the run times in Figure 6.5. The horizontal axis shows the number of reducers and the
vertical one shows time in milliseconds. We can see a clear trend in the run times. As we increase the number of reducers, queries are answered faster. This can be explained by the reducer loads. The less the number of reducers, the more keys are sent to a reducer. As after the map phase the query run time is determined by the slowest running reducer, the more a reducer gets load the slower the query is. That is why queries with only 1 reducer are slowest and with 10 reducers are the fastest ones. In the figure, we see that queries 2, 4 and 9 become much faster as the number of reducers are increased than queries 1, 12 and 13. It is because the size of the output of the map phase of the former queries are significantly large whereas for the latter group the size of the output of that phase is so small that less number of reducers are adequate to handle it efficiently.

6.4.3 Experiment with PigLatin

We also experimented with Yahoo!'s Pig framework and compared ours with their query running times. We tested our framework on cluster of 10 nodes with POS schema. Each node had the same configuration: Pentium IV 2.80 GHz processor, 4 GB main memory and 640 GB disk space. Figure 6.6 shows the times taken by our framework to answer six of
Figure 6.4. Query Runtimes for SP²B Queries

Figure 6.5. Query Time vs. Number of Reducers
the benchmark queries. Due to space constraints, we do not report the rest of the queries. We can see that for queries 1, 2, 12 and 13 the increment in runtime when the data set size increases is very small. Query 4 needs only one PigLatin JOIN statement but because of inference it has a very large input. Query 9 needs two PigLatin JOIN statements and has a large input because of inference.

In Table 6.3 we have shown the comparison of runtimes to answer LUBM queries 1 and 2 on datasets of different sizes between our approach and Yahoo! Research’s Pig module plugged in Sesame framework (Mika and Tummarello 2008). We can see that in all cases our
framework performed much better than theirs. For query 1 on data set of 50 universities, we are 64% faster. For the same query on data set of 100 universities, we are 75% faster, which indicates that as the size of the data set grows, our framework performs even more better. For query 2 on same data set we have the highest gain.

We note that Figure 1 of (Mika and Tummarello 2008), for 10 node cluster query execution time for LUBM query 1 on 1000 universities dataset is not shown as it is much higher than 600 seconds which is the maximum runtime shown in the graph. In our experiments, we took 248.3 seconds to answer the same query which is substantially less than even 600 seconds.

6.5 Validation

We validated our results returned by our framework by comparing with the results returned by other ones. For small data sets, we used Jena in-memory and SDB models. For large data set, we compared with the numbers of BigOWLIM for LUBM 8000 data set reported at http://www.ontotext.com/owlim/benchmark-results/lubm. To automate the process, we used Java programs to validate the results.
CHAPTER 7

ACCESS CONTROL

The presently used RDF stores aren’t too concerned with implementing security in them. Efforts have been put in to incorporate security, especially in Jena (Reddivari, Finin, and Joshi 2005; Jain and Farkas 2006). The drawback with Jena is that it lacks scalability. As to our knowledge, access control hasn’t been implemented on RDF stores in Hadoop and we are the first ones to propose it. In this chapter, we present our proposed system which implements a token based access control system. Access tokens are issued for some portion of data for issuing access. The system administrator grants tokens along with the granting time stamps to agents according to agents’ need and security levels. Conflicts might arise due to an agents’ undue data access. Time stamps are used to resolve conflicts. We are using LUBM (Guo, Pan, and Heflin 2005) test instances for experiments. A few sample scenarios have been generated and implemented in Hadoop. Although tokens have been used by others for access control to manage XML (Bouganim, Ngoc, and Pucheral 2004) documents, Digital Information (Holmquist, Redström, and Ljungstrand 1999), they have not been used for RDF stores. One of the advantages of using tokens is that they can be reused if the needs and security requirements for more than one agents are the same.

We have several contributions. First, we are proposing an architecture that addresses scalability. Second, we are addressing access control not only on user levels but also on subject, object, and predicate levels – making it more granular. Third, a time stamp based conflict detection and resolution algorithm has been proposed. Fourth, the architecture has been implemented and tested on benchmark data set in several alternative stages – Query
Rewriting (pre processing phase), Embedded Enforcement (MapReduce execution phase), and Post-processing Enforcement (data displaying phase). Finally, the whole system is being implemented on Hadoop – a open source cloud computing environment. We believe that this work is going to be beneficial for others considering access control for RDF data in Hadoop.

The remainder of the chapter is organized as follows. In Section 7.1, we introduce Access Tokens, Access Token Tuples, conflicts, and conflict resolution algorithm. We describe the modified architecture of the our system in Section 7.2. The experiments and their run times are included in Section 7.4.

7.1 Access Control Level Descriptions

Definition 1. Access Tokens (AT): An Access Token (AT) can be generated on some particular data. If an agent is in possession of an AT then she can view the data permitted by that AT. We are denoting ATs with numbers. For example, 1, 2, 3, etc. The system stores the tokens itself.

Definition 2. Access Token Tuple(ATT): Access Token Tuples (ATT) are of the form \(\langle \text{AccessToken}, \text{Element}, \text{ElementType}, \text{ElementName} \rangle \). The Element can be Subject, Object, or Predicate. ElementType can be described as URI, DataType, Literal, Model, or BlankNode. Model is only used while accessing Subjects for accessing Subject Models. The usage of it will be explained in detail later on. ElementName is the name of the Element.

For example, David is a subject in figure 7.2 and \(\langle 1, \text{Subject}, \text{URI}, \text{David} \rangle \) is an ATT. Here 1, Subject, and David represents AccessToken, ElementType, and Elementname respectively. Any agent having this security level, 1, can retrieve David’s information over all the files considering that she doesn’t have other security restrictions viewing URIs, literals,
etc. associate with David’s objects. While describing ATs for Predicates we leave the ElementName blank (_).

Based on the record organization six types Access Levels along with a few sub types. An agent can be assigned one of the following access levels or a combination or a more restricted version of them.

1. **Predicate’s Data Access**: In an access level if an object type is defined for one particular predicate then an agent having that access level can read the whole predicate file considering the agent has the tokens to access sensitive subject and object information, if there exists any sensitive information. For example, \(\langle 1, \text{Predicate}, \text{isPaid}, _ \rangle \) is an ATT. If an agent is presented with 1 access token without other restrictions, she can read the whole predicate file isPaid.

2. **Predicate, and Subjects’ Data Access**: This is one of the most restrictive access levels. Here the Subject can be either an URI, or a Data Type. For simplicity, we are not considering subjects to be blank nodes currently.

 (a) **Predicate, and Subject as an URI**: Here, a specific subject’s information retrieved over a predicate file. As an example, agent X has an access ticket of 1. With access ticket 1, X can access one subject with URI MichaelScott of Predicate isPaid. This scenario can be represented by \(\langle 1, \text{predicate}, \text{isPaid}, _ \rangle \) and \(\langle 1, \text{subject}, \text{MichaelScott}, \text{URI} \rangle \) tuples (displayed in Figure 7.2).

 (b) **Predicate, and Subject as a Data Type**: As the title suggests, the information of the subjects of a specific data type over a predicate file will be retrieved. For brevity, we are not going to explain the subject or object sub divisions in detail from this moment on.
3. **Predicate, and Object**: This is an access level that defines an predicate access along with an object that can be used to extract the names of the subjects for that particular object and predicate. Here, an Object can be either an URI, a data type, a literal, or a blank node.

Here is an example for Object as an URI. \(\langle 1, \text{Predicate}, \text{hasVitamins}, _ \rangle\) and \(\langle 1, \text{Object}, \text{URI}, E \rangle\) are two ATTs describing access token 1. An agent possessing this access token will be able to view the names of the Subjects (foods) that have vitamin E in them. In other words, if \(X_1\) and \(X_2\) are the set of triples generated by Predicate and Object triples describing an AT, then this AT will generate a set, say \(X\), of triples for the agent to be viewed, where \(X = X_1 \cap X_2\). An illustration of this example is displayed in figure 7.1.
4. **Subject Access:** With this access level one can read the subjects information over all the files. This is one of the less restrictive access levels. The subject can be either an URI, a Data type, or a blank node.

5. **Object Access:** With this access level one can read the objects subjects over all the files. Like the last one, this is one of the less restrictive access levels. As previously mentioned, an Object can be either of these – an URI, a data type, a literal, or a blank node.

6. **Subject Model Level Access:** In this case, for one subject, an agent will read all the necessary predicate files to obtain its objects. Of these objects, the ones that are URIs, are treated as subjects for the next step to extract their information (predicates and objects). This recursive process of extracting objects of subjects and treating URIs of objects as subjects for the next round continues until all objects finally become literals or blank nodes. In this manner, an agent can generate models on a subject if she has Subject Model level access.

Let’s illustrate this with an example from figure 1. *David* lives in *Long Island* city. Since *Long Island* city has can be a Subject with Ave_Summer_Temp (Average Summer Temperature) Predicate, its Object (75°F) will be retrieved as well. Having Model Level Access of *David* guarantees that one would be able to see the average summer temperature of *Long Island*.

7.1.1 **Access Token Assignment**

Definition 3. Access Token List (AT-list): For each qualified agent an AT-list is maintained. An AT-list is an array composed of one or more ATs along with the granting time stamp of each AT to that agent.
Figure 7.2. A sample RDF ontology and ontology instance.
Once it is decided by the system administrator that an AT will be added to an agent’s AT-list, the administrator stores the AT along with the time stamp in a temporary variable $TempAT$ of type AT. It is checked then whether $TempAT$ could be added to this agent’s AT-list without any conflict.

7.1.2 Final output of an Agent’s ATs

Each AT for an agent will return a set of triples. If the there are more than one ATs assigned to an agent then the final sets of triples is going to be the union of the sets of triples returned by each AT in his AT-list. Formally, if $Y_1, Y_2, ..., Y_n$ are the set of triples returned by $AT_1, AT_2, ..., AT_n$ respectively in an agent’s AT-list and Y_{final} set of output triples then

$$Y_{final} = Y_1 \cup Y_2 \cup ... \cup Y_n$$

(7.1)

7.1.3 Assumptions

1. Each item in the data store has a default security level.

2. A person’s identity and information is kept private by system by default. Any URI of data type person is inaccessible and kept hidden unless explicitly specified in the ATs. It will prevent making inferences about a person that the agent doesn’t have access to.

Here is an example. Consider a predicate file $Likes$ where the elements that a person likes are listed. So, if Jim is a person and he likes $Flying$, $Semantic Web$, and $Jenny$ where as $Flying$, $Semantic Web$, and $Jenny$ are the URIs of types $Hobby$, $Research Interest$, and $Person$ respectively. 1 is an AT with ATTs $\langle 1, Subject, URI, Jim \rangle$ and $\langle 1, Likes, Predicate, _ \rangle$. Anyone, say, Ben just having AT 1 won’t be able to know that $Jenny$ is in Jim’s like-list since $Jenny$’s data type is person. Then again, if Ben has an access token 2 where 2 is described with $\langle 2, Object, URI, Jenny \rangle$ ATT then Ben will be able to see $Jenny$ in Jim’s like-list.
3. If an agent has access to a particular type or property, she will have implicit access to
the subtypes or sub-properties of that type or property.

7.1.4 Conflicts

A conflict arises when the following three conditions occur. An agent possesses two or more
ATs, the result set of one of the ATs is a proper subset of another AT, and the time stamp
of the larger set is smaller than the time stamp of the smaller one.

There could be situations when an agent might end up having more access to a data
store than she is supposed to have. These situations need to be detected and prevented.
The algorithms for conflict detection and resolution are stated later. In case there arises a
conflict time stamps will be used to resolve it. If two ATs are conflicting then their time
stamps (TS) will be used to resolve the conflict.

7.1.4.1 Subset Conflict

If there are two ATs and the result set of one ATs is a proper subset of the other one
then this conflict arises if the time stamp of the smaller set is greater than the time stamp
of the larger set. Examining whether triples generated by a newly added AT is a subset
triples generated of another AT can be performed by looking at their ATTs. For example,
1 and 2 are two ATs. \(\langle 1, \text{Subject}, URI, Sam \rangle \), and \(\langle 2, \text{Subject}, URI, Sam \rangle \), and
\(\langle 2, \text{Predicate}, HasAccounts, _ \rangle \) ATTs describe 1 and 2 respectively. Naturally, triples
returned by 2 will be a subset of triples returned by 1. A conflict will occur when anyone
possessing 1 is assigned 2 with a larger time stamp. So, 1 will be removed from her AT-list
to resolve this conflict.

7.1.4.2 SubType Conflict

This conflict arises because of two reasons.
Due to Subject For any two ATs for an agent, if the data type of subject in one of the ATs is subtype of the data type of the other AT then and the time stamp of the former AT is larger than the later one, then this conflict arises. The AT with the super data type is removed from an agent’s AT-list.

Due to Object Over here, instead of Subject, the conflict arises due to Object URIs and Types.

7.1.4.3 Conflict Resolution

As mentioned earlier, conflicts can arise during the assignment of an AT. For the sake of brevity, we don’t show all of the places where conflicts can arise in the Conflict Detection and Resolution algorithm. We only show the places where the existing ATs are replaced. The formal description of detecting conflicts and resolving them is presented in algorithm 13. For two ATs, AT_1 and AT_2, $\text{Subset}(AT_1, AT_2)$ function, shown in lines 3, 13, and 18, will return true if the set of triples returned by AT_1 are a proper subset of the set of triples returned by AT_2. And $\text{SubjectSubType}(AT_1, AT_2)$, used in lines 3, 22, and 27, will return true if the subject of AT_1 is a subtype of subject of AT_2. For $\text{ObjectSubType}(AT_1, AT_2)$, objects of AT_1 and AT_2 are examined instead of subjects.

7.2 Proposed Architecture with Access Control

Our architecture with access control consists of two components. The upper part of the figure 7.3 depicts the data preprocessing component, which we described in Chapter 3. We modified the lower part which answers a query by building access control into it.

The bottom part of the architecture shows the Access Control Unit and the MapReduce framework. The Access Control Unit takes part in different phases of query execution. It comes into play when the user submits a query. The query is rewritten, if possible,
Algorithm 13 The Conflict Detection and Resolution.

1: \(\text{currentAT}[] \leftarrow \text{The ATs along with their issuing Time Stamps} \)
2: \(\text{length currentAT} \leftarrow \text{The length of currentAT} \)
3: if \(!\text{Subset(newAT, tempATTS)} \) AND \(!\text{Subset(tempATTS, newAT)} \)
 AND \(!\text{SubjectSubType(newAT, tempATTS)} \)
 AND \(!\text{SubjectSubType(tempATTS, newAT)} \)
 AND \(!\text{ObjectSubType(newAT, tempATTS)} \)
 AND \(!\text{ObjectSubType(tempATTS, newAT)} \) then
4: \(\text{currentAT[length currentAT].AT} \leftarrow \text{newAT} \)
5: \(\text{currentAT[length currentAT].TS} \leftarrow \text{TS newAT} \)
6: else
7: \(\text{count} \leftarrow 0 \)
8: while \(\text{count} < \text{length currentAT} \) do
9: \(\text{AT tempATTS} \leftarrow \text{currentAT[count].AT} \)
10: /*The Time Stamp during the AT assignment*/
11: \(\text{Time Stamp tempTS} \leftarrow \text{currentAT[count].TS} \)
12: if \(\text{(Subset(newAT, tempATTS) AND (TS newAT} \geq \text{tempTS))} \) then
13: /* A Conflict Occurs */
14: \(\text{currentAT[count].AT} \leftarrow \text{newAT} \)
15: \(\text{currentAT[count].TS} \leftarrow \text{TS newAT} \)
16: else if \(\text{((Subset(tempATTS, newAT)) AND (tempTS} \leq \text{TS newAT))} \) then
17: \(\text{currentAT[count].AT} \leftarrow \text{newAT} \)
18: \(\text{currentAT[count].TS} \leftarrow \text{TS newAT} \)
19: else if \(\text{((SubjectSubType(newAT, tempATTS) OR ObjectSubType(newAT, tempATTS)) AND(TS newAT} \geq \text{tempTS))} \) then
20: /* A Conflict Occurs */
21: \(\text{currentAT[count].AT} \leftarrow \text{newAT} \)
22: \(\text{currentAT[count].TS} \leftarrow \text{TS newAT} \)
23: else if \(\text{((SubjectSubType(tempATTS, newAT) OR ObjectSubType(tempATTS, newAT)) AND (tempATTS} \leq \text{TimeStamp TS newAT))} \) then
24: \(\text{currentAT[count].AT} \leftarrow \text{newAT} \)
25: \(\text{currentAT[count].TS} \leftarrow \text{TS newAT} \)
26: end if
27: \(\text{count} \leftarrow \text{count} + 1 \)
28: end while
29: end if
to enforce one or more access control policies. The MapReduce framework has three sub-components in it. It takes the rewritten SPARQL query from the query interface engine and passes it to the Input Selector and Plan Generator. This component selects the input files, decides how many jobs are needed and passes the information to the Job Executer component, which submits corresponding jobs to Hadoop. The Job Executer subcomponent communicates with Access Control Unit to get the relevant policies to enforce and runs jobs accordingly. It then relays the query answer from Hadoop to the user. To answer queries that require inferencing, we use Pellet OWL Reasoner. The policies are stored in the HDFS and loaded in the Access Control Unit each time the framework loads.
7.3 Policy Enforcement

In our MapReduce framework we can enforce policies in two phases. We can enforce some policies by simply rewriting a SPARQL query in query parsing phase. Rest of the policies can be enforced in the query answering phase in two ways. First, we can enforce the policies as we run MapReduce jobs to answer a query. Second, we can run the jobs for a query as if there is no policy to enforce and then take the output and run a set of jobs at the end to enforce the policies. These set of later jobs is called filter jobs. In both cases, we enforce predicate level policies while we select the input files by the Input Selector. In the following sections we talk about these approaches in detail.

7.3.1 Query Rewriting

Policies involving predicates can be enforced by rewriting a SPARQL query. We can replace predicate variables by the predicates a user has permission on. An example illustrates this. Suppose a user has a token 1, where 1 is described by ⟨1, Predicate, takesCourses, ⟩ i.e. he can only access the predicate file takesCourse. If the user submits the query listed in Listing 7.1, we can replace the predicate variable ?p with takesCourse. The rewritten query is shown in Listing 7.2.

```
SELECT ?o WHERE
{   A ?p ?o
}
```

Listing 7.1. Example Query

```
SELECT ?o WHERE
{   A takesCourse ?o
}
```

Listing 7.2. Rewritten Query
After query is rewritten we can answer the query in two ways which are detailed in the following two sections.

7.3.2 Embedded Enforcement

In this approach, we enforce the policies as we answer a query by Hadoop jobs. We use join mechanism to do this kind of enforcement. Policies involving values such as URI, literals etc. can be enforced in this way. For example, some courses may be declared sensitive and only agents with higher access level can view them. If a regular user wants to list the courses a student has taken, we can join the file listing the sensitive courses with the file takesCourse and enforce the policy in Reduce phase of a Hadoop job. Suppose course $C3$ and $C4$ are sensitive courses. If a regular user wants to list the courses taken by $GS3$, then we can answer the query by the Map and Reduce code shown in Algorithms 14 and 15.

Algorithm 14 EEMAP($value$) – Sample Pseudo-code for Map

1: $splits \leftarrow value.split()$
2: if $Input_file == sensitiveCourses$ then
3: output($splits[0], "P")$
4: else if $splits[0] == "GS3"$ then
5: output($splits[1], "T")$
6: end if

Algorithm 15 EEREDUCE($key, values$) – Sample Pseudo-code for Reduce

1: $count \leftarrow 0$
2: $iter \leftarrow values.iterator()$
3: while $iter.hasNext()$ do
4: $count++$
5: $t \leftarrow iter.next()$
6: end while
7: if $1 == count \& t == "T"$ then
8: output(key)
9: end if

Algorithm 14 shows the code of the Map phase. It gets one line at a time as input. In line 1, it splits the line. If the input is from the sensitive course file then it outputs the course
Table 7.1. EEMap Output and EEReduce Input

<table>
<thead>
<tr>
<th>EEMap Output</th>
<th>EEReduce Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>Value</td>
</tr>
<tr>
<td>C1</td>
<td>T</td>
</tr>
<tr>
<td>C3</td>
<td>T</td>
</tr>
<tr>
<td>C3</td>
<td>P</td>
</tr>
<tr>
<td>C4</td>
<td>P</td>
</tr>
</tbody>
</table>

and a flag denoting a sensitive course as the output pair in line 3. If it is from takesCourse file then it checks whether the subject is GS3 in line 4. If that is the case, it outputs the course as the key and a flag indicating that the course is of student GS3. The left half of Table 7.1 shows the output of Algorithm 14 running on our example data.

Algorithm 15 shows the code of the Reduce phase. It gets a course as the key and the flag strings as the value. The input it gets while running on our example data is shown in the right half of Table 7.1. The code simply counts the number of flag strings in line 4. It checks if the count is 1 in line 7 and the flag string is the one indicating that the course is of student GS3. If such is the case then it outputs the course in line 8. A sensitive course that is taken by the student GS3 will have another flag which will make the count 2. The check if the count is 1 prevents those courses from being outputted. A sensitive course not taken by the student will also have one flag denoting it is a sensitive course. The check whether the flag is the one for course taken by student GS3 prevents such courses from being outputted. These two checks together ensure that only non-sensitive courses taken by GS3 goes to the output. Hence, we only get the course C1 as the output.

7.3.3 Post-processing Enforcement

The second approach to enforce similar policies is to run the jobs as if there are no policies to enforce and then run one or more jobs just to enforce the policies on the output. The
advantage of this approach is that it is simple to implement. But it may longer to answer the query. We can use the previous example to illustrate this approach. We first run the job as if there is no restriction on courses. Then we run one extra job to enforce the policy. The job will take two input files: the output of the first job answering the query and the sensitiveCourses file containing the URI’s of sensitive courses. In the Map phase we output the course as the key and depending on the input file a flag string. The Map code is largely the same as Algorithm 14. The only difference is we do not need to check the URI identifying the student as the output of the first job will contain the courses taken by only that student. The code for Reduce phase remains the same. Hence, at the end of the second job enforcing the policy, we get the output which does not contain any sensitive course.

7.4 Experimental Setup and Results

We ran our experiments in a Hadoop cluster of 10 nodes. Each node had the same configuration: Pentium IV 2.80 GHz processor, 4 GB main memory and 640 GB disk space. The operating system was Ubuntu Linux. We compared our Embedded Enforcement ap-
proach with our Postprocessing Enforcement approach. We used LUBM100, LUBM500, LUBM1000, LUBM2000, LUBM6000 and LUBM9000 datasets for the experiments.

We experimented these approaches with two scenarios – takeCourse and displayTeachers. In the takesCourse scenario, a list of sensitive courses cannot be viewed by a normal user for any student. A query was submitted to display the courses taken by the student ”D0U0:UndergraduateStudent44”. Figure 7.4 shows the runtime of the two different approaches. The vertical axis shows the time in milliseconds and the horizontal one shows the data-set size. In the scenario displayTeachers, a normal user is allowed to view information about the lecturers only. A query was submitted to display the URI of people who are employed in the department ”http://www.Department0.University0.edu”. Even though Professors, Assistant Professors, Associate Professors etc. are employed in that department, only URIs of Lecturers are returned because of the policy. Figure 7.5 shows the runtimes we got in the two different approaches for this scenario.

We see the trend that Postprocessing Enforcement always takes more time than the Embedded Enforcement approach. We observe that the Postprocessing Enforcement takes 20-80% more time than the Embedded Enforcement approach. This can be easily explained by the extra job needed in Postprocessing. Hadoop takes roughly equal times to set up jobs regardless of the input and output data sizes of the jobs. The Postprocessing Enforcement approach runs more jobs than the Embedded Enforcement approach – contributing to the additional runtime.

7.4.1 Validation

We validated our results returned by our framework for small data sets by manual inspection. We could not compare our results with the ones returned by any other framework for this purpose. To the best of our knowledge, there is no framework out there which supports this type of access control for RDF data.
Figure 7.5. Performance measurement of displayTeachers scenario. The Y-axis represents runtimes in milliseconds and X-axis shows set of data-set size.
8.1 Conclusion

We have presented a framework capable of handling enormous amount of RDF data. Since our framework is based on Hadoop, which is a distributed and highly fault tolerant system, it inherits these two properties automatically. We have successfully executed queries with nodes deliberately turned off to test the framework’s fault tolerance. The framework is highly scalable. To increase capacity of our system all that needs to be done is to add new nodes to the Hadoop cluster. We use commodity class machines in our cluster.

We have proposed a schema to store RDF data. The schema allows us to select small input data set to answer a query. This enables us to answer queries faster. Since, a file is the smallest unit of input to a Hadoop job, the less number of files we select the faster a job runs. Moreover, the files should be as small as possible. Our schema helps us achieve both.

We further leverage our schema by rewriting SPARQL queries. We devised an algorithm which can get rid of triple patterns from a query and simplifies it in most of the cases. A query with less number of triple patterns has requires less input data and has less number of joins that one with more triple patterns. Hence, the query rewriting algorithm gives us significant improvement in query running times.

We have multiple algorithms to determine a query processing plan to answer a SPARQL query and a simplified cost model to be used by the algorithms. Since the search space is exponential in size, we attack the problem with two approaches:
• exhaustively enumerate all the plans using graph coloring scheme and pick the best one

• greedily find the best one using heuristics.

In practice, our exhaustive enumeration algorithm runs very quickly for real world queries. Real world queries typically has less than hundred joins for which the query plan generation time by the exhaustive enumeration algorithm is negligible in comparison to the actual query answering time. However, our greedy algorithms are very fast to generate a plan for any query. We also have extended those algorithms to generate query plan for complex SPARQL queries having OPTIONAL query blocks.

Our experiments demonstrate that our system is highly scalable. If we increase the data volume, the delay introduced to answer a query does not increase proportionally. The results indicate that for very large data sets (over 1 billion triples) HadoopRDF is preferable and more efficient if the query includes low selectivity joins or significant inference.

8.2 Limitations

While our framework has excellent scalability and is very efficient in answering queries over large data sets, we did identify few limitations:

• Our framework splits each data set into a number of files that is proportional to the number of unique predicates in the data set. If the number of unique predicates is extremely large (e.g., in the millions), then this is intractable for standard file systems. This is not a limitation in practical scenarios that we have encountered thus far because useful, real-world data sets have records that mostly reuse a relatively small set of predicates.
In the same scenario, our exhaustive search algorithm for generating query plans would take an impractical amount of time to generate a plan if the number of triple patterns (see Definition 1 in Section 4.3) a query contains is very large resulting in a large number of joins (e.g. in the hundreds or more). The running time of the algorithm is exponential in the number of joins and so the algorithm does not scale well for such queries. In such a scenario, we can use our heuristic based greedy algorithm for plan generation.

8.3 Future Work

In the future, we would like to extend the work in few directions.

8.3.1 Sophisticated Query Model

We will investigate more sophisticated query model. As extensive statistics gathering is expensive, we will mine for frequent queries (Baeza-Yates 2005; Yang, Lee, and Hsu 2003; Yang, Lee, Hsu, and Acharya 2003). We will cache statistics for the most frequent queries and use dynamic programming to exploit the statistics (Gilbert, Kotidis, Muthukrishnan, and Strauss 2001; Gönül and Shi 1998).

8.3.2 Experiment with Number ofReducers

We will evaluate the impact of the number of reducers, the only parameter of a Hadoop job specifiable by user, on the query running times. We have done some experiments with the numbers but extensive experiments need to be done to better understand its impact. Intuitively, the more reducer the quicker the query may run (Jenkin 2009). But very large number of reducers may not be better if the number of reducers exceed the number of avail-
able TaskTracker† nodes in the cluster. In such a case, we observed that, in a TaskTracker, the reducers are ran serially rather than in parallel. This slow downs the query running time instead of making it quicker.

8.3.3 Indexing

We will investigate indexing opportunities and further usage of binary formats. Our dictionary encoding now allows us to do indexing based on the numeric id values. We can exploit indexing structures like B-tree (Bayer and McCreight 1972; Bayer 1997; Comer 1979; Lehman and Yao 1981) and B+-tree (Jensen, Tielisytie, and Tradilsauskas 2006; Srinivasan and Carey 1993; Abel 1984). We can further split the files based on the ranges of the numeric values of the objects and subjects. This would allow us to select even smaller input data for the Hadoop jobs.

8.3.4 Different Types of SPARQL Queries

We will handle more types of SPARQL queries e.g. queries having set operations, CONSTRUCT†, ASK†, DESCRIBE† queries etc.

Set operations like union, intersect and minus can be implemented trivially in the final stage of the query processing. We can answer each of the distinct blocks in a SPARQL query having set operations by treating them as separate queries. As a final step, we can apply the set operations specified in the query on the result sets of those distinct queries. For example, Listing 8.1 shows an example query having union operation. We can treat the BGPs \{ \ ?X rdf:type ub:Department \} and \{ \ ?Y rdf:type ub:University \} as separate queries and answer them first. Then we can combine the result sets to get the final result.

†http://wiki.apache.org/hadoop/TaskTracker
†http://www.w3.org/TR/rdf-sparql-query/#construct
†http://www.w3.org/TR/rdf-sparql-query/#ask
†http://www.w3.org/TR/rdf-sparql-query/#describe
A CONSTRUCT query, as the name suggests, constructs an RDF graph using a graph template. The template can have both bound or unbound i.e. variable subject, predicate and object. The variables in a triple pattern in the template have to bound to values in matching triples in the data set. The example in Listing 8.2 taken from http://www.w3.org/TR/rdf-sparql-query/#construct shows a CONSTRUCT query.

When the query is ran on the data shown in Listing 8.3, it returns the RDF graph shown in Listing 8.4.

An ASK query simply checks if a query has a solution or not. It then returns a boolean result: true if it has a solution, false otherwise. Listing 8.5 shows an example ASK query.
We can trivially answer this query using our framework. We can first answer the query and then check if there is a solution and return a result accordingly. We optimize this by modifying the final job. As soon as a solution, i.e. a tuple of result is found, we can stop processing more results and return true. Otherwise, we let the job finish and return false.

A DESCRIBE query, as the name suggests, describes the resources matched by the variables in the query. For example Listing 8.6 shows a DESCRIBE query the result of which would describe all the universities. An example result set is show in Listing 8.7.

Listing 8.6. Example DESCRIBE Query

```
DESCRIBE ?x where { ?x rdf:type ex:University }
```

Listing 8.7. Example Result Set for DESCRIBE Query

```
ex:University0 rdf:type ex:University
ex:University0 ex:city ex:City0
ex:University0 ex:country ex:County0
ex:University0 ex:hasDepartment ex:ComputerScience0
```

We will investigate new approaches to answer DESCRIBE queries by our framework.

8.3.5 Using Hive and HBase

There are several open source frameworks for data storage and manipulation which work on top of Hadoop. Hive‡ and HBase‡ are the most prominent ones among them.

Hive (Thusoo, Sarma, Jain, Shao, Chakka, 0002, Anthony, Liu, and Murthy 2010; Thusoo, Sarma, Jain, Shao, Chakka, Anthony, Liu, Wyckoff, and Murthy 2009) is a data-warehousing tool based on Hadoop which supports a SQL like language called HiveQL. It runs MapReduce jobs to answer HiveQL‡ queries. It has advanced features like partitioning,

‡<http://hive.apache.org/>
‡<http://hbase.apache.org/>
indexing, compression etc. Hive is developed by a Facebook team and made open source. It is widely being used as a data warehouse tool.

HBase is a column oriented store modeled after BigTable (Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, and Gruber 2006). It has features like indexing, bloom filters etc. It supports querying through APIs and runs MapReduce jobs to answer queries based on the type of query. HBase is also being used by big enterprises. We will investigate various schemas with these tools and experiment with their features to achieve fast query running times.

8.3.6 Inferencing

We will add support for inferencing in our framework. We can use libraries for OWL DL inferencing like Pellet (Sirin, Parsia, Grau, Kalyanpur, and Katz 2007), FaCT++ (Tsarkov and Horrocks 2006) for this purpose. We will add forward chaining to the framework so that we can infer new triples at loading time. There has been some work on forward chaining using MapReduce and other parallel programming approaches (Urbani, Kotoulas, Oren, and van Harmelen 2009; Urbani 2010; Soma and Prasanna 2008; Oren, Kotoulas, Anadiotis, Siebes, ten Teije, and van Harmelen 2009; Schlicht and Stuckenschmidt 2008) which we would like to extend and apply to our framework.
REFERENCES

Mohammad Farhan Husain graduated from *Bangladesh University of Engineering and Technology* with a degree of BSc. Engg. in Computer Science and Engineering in August, 2004. After that he worked as a Software Engineer in Eyeball Networks Inc. and Grameen Software Ltd. In Fall 2006 he joined the Department of Computer Science at the University of Texas at Dallas as a PhD student under Dr. Bhavani Thuraisingham and Dr. Latifur Khan in the Intelligent Systems track. He interned in Sabre Holdings and Cisco Systems during the his studentship at the university. He developed a Police Blotter tool for Raytheon which was demonstrated in GeoInt 2009 conference in San Antonio, TX. He proposed and developed a scalable and efficient repository and retrieval system for very large Semantic Web data. His research has been supported in part by the AFOSR under Award No. FA9550-08-1-0260 and Raytheon. He is going to join Amazon.com as a Software Engineer after finishing his Ph.D.