
An Empirical Study of JUnit Test-Suite Reduction
Lingming Zhang∗, Darko Marinov†, Lu Zhang‡, Sarfraz Khurshid∗
∗Electrical and Computer Engineering, University of Texas at Austin

Email: zhanglm@utexas.edu, khurshid@ece.utexas.edu
†Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Email: marinov@illinois.edu
‡Institute of Software, Peking University, Beijing, 100871, P. R. China

Email: zhanglu@sei.pku.edu.cn

Abstract—As test suites grow larger during software evolution,
regression testing becomes expensive. To reduce the cost of
regression testing, test-suite reduction aims to select a minimal
subset of the original test suite that can still satisfy all the test
requirements. While traditional test-suite reduction techniques
were intensively studied on C programs with specially generated
test suites, there are limited studies for test-suite reduction on
programs with real-world test suites. In this paper, we investigate
test-suite reduction techniques on Java programs with real-world
JUnit test suites. We implemented four representative test-suite
reduction techniques for JUnit test suites. We performed an
empirical study on 19 versions of four real-world Java programs,
ranging from 1.89 KLoC to 80.44 KLoC. Our study investigates
both the benefits and the costs of test-suite reduction. The results
show that the four traditional test-suite reduction techniques can
effectively reduce these JUnit test suites without substantially
reducing their fault-detection capability. Based on the results,
we provide a guideline for achieving cost-effective JUnit test-
suite reduction.

I. INTRODUCTION

Large-scale software usually undergoes evolution to refactor
existing code, fix bugs, or add new features. To validate
software changes during software evolution, developers often
use regression test suites. However, the accumulated regression
test suites can become extremely large and time-consuming to
run. For example, an industrial collaborator of Rothermel et
al. [1] reported that running the entire test suite for one of
their software products takes nearly seven weeks. Therefore,
researchers have developed various techniques to reduce the
cost of regression testing through test-suite reduction [2]–
[4], test-case prioritization [1], [5], [6], and regression test
selection [7]. Yoo and Harman [8] presented a detailed survey
of regression testing techniques.

Test-suite reduction [2], [3], [9], [10] (also known as test-
suite minimization [4]) aims to find a representative subset
of the original test suite which can satisfy the same test
requirements as the original test suite. For example, when
testers use statement coverage as test requirements, test-suite
reduction becomes the problem of finding a subset of the
original test suite which covers the same statements as the
original test suite. Formally, given an original test suite T , and
a set of test requirements R, the problem of test-suite reduction
is defined as finding a set of test cases Treduced ⊆ T such that
∀r ∈ R(∃t ∈ T, t satisfies r ⇒ ∃t′ ∈ Treduced, t

′ satisfies r).

Finding the minimal representative subset for a given test
suite is equivalent to the problem of set covering and has been
shown to be NP-complete [11]. Therefore, many algorithms
were proposed to generate approximately minimal reduced
test suites. Traditional test-suite reduction techniques include
greedy techniques [10], heuristic-based techniques [2], [3], and
techniques based on integer linear programming (ILP) [12],
[13]. The key metrics for evaluating these techniques are
(1) the size of the reduced test suites and (2) the fault-detection
capability of the reduced test suites (because removing some
test cases from the original test suite can lower its fault-
detection capability).

Several empirical studies were conducted with the proposed
test-suite reduction techniques to compare the sizes of reduced
test suites. For example, Chen et al. [10] compared the sizes
of reduced test suites via a simulation study, and Zhong et
al. [9] studied both the sizes of reduced test suites and the
time taken by various test-suite reduction techniques on a set
of C programs. There are also empirical studies on the effect of
test-suite reduction on lowering the fault-detection capability.
However, the findings are non-conclusive: Wong et al. [14],
[15] found that test-suite reduction does not substantially lower
the fault-detection capability of test suites, whereas Rothermel
et al. [16] found that test-suite reduction can severely lower
the fault-detection capability.

In this paper we present a new study on test-suite reduction,
which greatly extends four aspects compared to the existing
studies. (1) The subject programs in our study are larger than
those used in previous studies; our programs are in Java not
in C as in most existing reearch [2], [4], [9], [15], [17], and
coding styles in Java and C can differ. (2) The nature of tests
is substantially different: we focus on tests for small units of
code from a larger system and hence some tests may have
mutually disjoint execution paths, whereas previous studies
looked at small programs where many tests execute the same
main method albeit on different inputs. (3) Test generation
is substantially different: our focus is on real test suites that
are accumulated during a system’s evolution, whereas previous
studies mainly focused on synthetic suites that were generated
in the laboratory. (4) The cost-benefit analysis in our study is
substantially more extensive: some previous studies considered
both benefits (reduction of test suite size) and costs (lowering
of fault-detection capability) of test-suite reduction [4], [14],

[15] but did not consider the influence of reduction techniques
and test granularities; similarly, there are studies considering
the influence of reduction techniques [3], [9], [10], but they
only considered benefits and not costs of test-suite reduction.
In addition, no previous study evaluated the benefits/costs of
different JUnit test granularities, where granulatiry refers to
grouping JUnit test cases based on their test methods or their
test classes.

More specifically, we evaluate both the benefits and costs of
four existing, traditional test-suite reduction techniques on 19
versions of four real-world Java programs, totaling over 700
KLoC, with accumulated JUnit test suites. We implemented
four techniques—one greedy technique [10], two heuristic-
based techniques [2], [3], and one ILP-based technique [13]—
and applied them on reducing test suites written in JUnit.
In addition to the choice of technique, our study involves
two more independent variables: test-case granularity and test-
coverage level.

The results show that these traditional test-suite reduction
techniques can effectively reduce the size of these test suites
without substantially lowering the fault-detection capability,
which partially confirms Wong et al.’s study [14], [15] but
differs from Rothermel et al.’s study [4]. The results also show
that, for the Java programs and JUnit test suites considered, the
choice of test-reduction technique does not impact much the
sizes of reduced test suites or their fault-detection capabilities,
while the choice of test-case granularity and the choice of
test-coverage level significantly impact both costs and benefits
of test-suite reduction. Based on the results, we provide a
practical guideline for cost-effective reduction of real-world
JUnit test suites.

II. PRELIMINARIES

In this section, we introduce the concepts and notations used
throughout this paper. Given a test suite T and a set of test
requirements R for the program under test, we denote the
satisfiability relation between test cases and test requirements
as S : T × R = {〈t, r〉|t ∈ T, r ∈ R, t satisfies r}. Then,
for any test case t ∈ T , we use S[t] = {r|〈t, r〉 ∈ S} to
denote the set of test requirements satisfied by t. Furthermore,
for any subset of test cases T ′ ⊆ T , we denote the set of
test requirements satisfied by any test cases in T ′ as S[T ′] =⋃

t∈T ′(S[t]). Similarly, for any test requirement r ∈ R, we
use S−1[r] = {t|〈t, r〉 ∈ S} to denote the set of test cases
satisfying r. For any subset of test requirements R′ ⊆ R, we
use S−1[R′] =

⋃
r∈R′(S−1[r]) to denote the set of test cases

satisfying any test requirements in R′.
As briefly mentioned in Section I, the definition of test-

suite reduction is finding a subset of the original test suite
that can still satisfy all the test requirements satisfied by the
original suite. Using our notation, we can define test-suite
reduction simply as finding a representative subset T ′ ⊆ T
such that S[T ′] = S[T]. We can further define the minimal
representative subset as a test suite Tm ⊆ T such that
S[Tm] = S[T] ∧ (∀T ′ ⊆ T, S[T ′] = S[T] ⇒ |Tm| ≤ |T ′|),
where |T | denotes the size of test suite T . Although the

problem of finding a minimal representative subset has been
recognized as NP-complete, researchers have utilized the char-
acteristics of different test cases to develop algorithms that
find approximately minimal representative subsets. There are
mainly two kinds of test cases that have been shown to be
useful in guiding test-suite reduction:
Essential Test Cases. A test case t is called essential if and
only if t satisfies some test requirements exclusively, i.e., t
must appear in every minimal representative subset [3]. In
this paper, we use the symbol E(T) to denote the set of all
essential test cases in T . Because essential test cases must
appear in every minimal representative subset, these test cases
should be selected as early as possible. This insight was
adopted by various test-suite reduction techniques [2], [3].
1-to-1 Redundant Test Cases. A test case t is called 1-to-1
redundant if and only if there exists another test case t′ 6= t
that can satisfy all the requirements satisfied by t, i.e., S[t] ⊆
S[t′] [3]. Whenever a 1-to-1 redundant test case t would have
appeared in a representative subset, we can use t′ to replace t,
i.e., any representative subset of T −{t} is also representative
subset of T . Therefore, 1-to-1 redundant test cases need not
appear in any minimal representative subsets and should be
eliminated as early as possible. This insight was also adopted
by traditional test-suite reduction techniques [3], [18].

III. STUDIED TECHNIQUES

In this section, we briefly introduce the four traditional
test-suite reduction techniques investigated in this paper. For
the original test suite T and test requirements R, we use
m and n, respectively, to denote their sizes, i.e., m = |T |
and n = |R|. In addition, we denote the maximum number
of test cases satisfying one test requirements as k, and the
maximum number of test requirements that are satisfied by
one test case as l. Formally, k = maxr∈R(|S−1[r]|) and
l = maxt∈T (|S[t]|).

A. The Greedy Technique

Given the original test suite T and test requirements R, the
greedy technique iteratively selects a test case that satisfies
the maximum number of unsatisfied test requirements until all
the test requirements satisfied by T have been satisfied. More
precisely, the greedy technique initializes the resulting suite
Treduced as ∅. During each iteration, the greedy technique first
selects a test case t such that ∀t′ ∈ (T − Treduced), |S[t′]| ≤
|S[t]|, then the technique puts t into Treduced and removes
S[t] from the requirement set satisfied by each unselected test
cases. Finally, the greedy technique terminates and returns
Treduced when S[Treduced] = S[T]. Because each iteration
selects a test case that satisfies at least one unsatisfied test
requirement, the maximum number of iterations is min(m,n).
During each iteration, the time complexity for selecting the
test case with maximum number of satisfied requirements is at
most O(m), and the time complexity for updating the satisfied
requirements of not selected test cases is at most O(ml).
Therefore, the total time complexity for the greedy technique
is O(mlmin(m,n)).

B. Harrold et al.’s Heuristic

This heuristic was first proposed by Harrold et al. [2], and its
basic idea is to select more essential test cases earlier. More
precisely, this heuristic first groups all the test requirements
into R1, R2, ..., Rk, where Ri represents the set of test
requirements that are satisfied by exactly i test cases, i.e.,
Ri = {r| i = |S−1[r]|}, and k is the maximum number of
test cases that can satisfy one requirement. As R1 represents
all the requirements that can only be satisfied by one test case,
all the test cases satisfying requirements in R1 are essential
test cases, i.e., E(T) = S−1[R1]. Therefore, this heuristic
first selects all the test cases satisfying R1, i.e., E(T), and
marks all requirements in R1 as satisfied. The situation for
Ri (i > 1) is more complicated: the heuristic continuously
selects the test cases that satisfy the maximum number of
not-yet-satisfied requirements in Ri; if two or more test cases
are tied, the heuristic continues to compare the number of
not-yet-satisfied requirements satisfied by them in Ri+1, and
the procedure continues until i = k. If the procedure still
fails to select a winner, the heuristic randomly selects from
the candidates. When all the requirements in Ri have been
satisfied, the heuristic will continue to Ri+1, following the
same procedure as for Ri. This heuristic terminates when all
the requirements in R have been satisfied. The time complexity
of this heuristic is O((m + n)nk) [10].

C. The GRE Heuristic

The GRE heuristic was first proposed by Chen and Lau [3],
[10]. This heuristic utilizes both the characteristics of essential
test cases and 1-to-1 redundant test cases, and brings them
together with the greedy strategy. The selection of essential test
cases removes newly satisfied requirements from the satisfying
requirement set of unselected test cases, thus causing newly 1-
to-1 redundant test cases. On the other side, the removal of 1-
to-1 redundant test cases might in turn generate more essential
test cases. Therefore, the GRE technique alternatively applies
these two strategies when applicable. When the process cannot
continue with any of these two strategies, the GRE heuristic
simply uses the greedy technique to break the deadlock and
then resumes the process. The heuristic terminates when all
the requirements in R have been satisfied. It has been shown
that if the greedy technique is never used during the reduction,
the reduced test suite by this heuristic is exactly the minimal
representative set of the original suite [3]. The time complexity
for this heuristic is O((n + m2l)min(m,n)) [10].

D. The ILP Technique

Black et al. [13] proposed two integer linear programming
(ILP) models for test-suite reduction. The first ILP model is
for single-objective test-suite reduction, while the second ILP
model is for multiple-objective test-suite reduction. As the
second ILP model also takes the different fault detection capa-
bilities of different test cases into account, we only introduce
the first ILP model in this paper to enable fair comparison
with the other traditional test-suite reduction techniques. The
first ILP model aims to minimize the number of selected test

cases that satisfy the same test requirements with the original
test suite, and is defined as:

Objective : Minimize(
∑m

j=1 xj), xj ∈ [0, 1]

Constraint :
∧n

i=1(
∑m

j=1 sijxj ≥ 1), sij ∈ [0, 1]

where xj represents whether the jth test case in T is selected
in the reduced suite (i.e., xj = 1 denotes the jth test case
is selected), and sij represents whether the ith requirement
in R is satisfied by the jth test case in T (i.e., sij = 1
denotes the ith requirement is satisfied by the jth test case).
The model encodes finding the minimized number of test cases
in T that still satisfy all the test requirements in R, which is
exactly the definition of test-suite reduction. Although ILP is
an NP-complete problem [19], recent ILP solvers, e.g., IBM
Symphony library [20], have shown to be effective in practice.

IV. EMPIRICAL STUDY

A. Research Questions

Our empirical study addresses the following research ques-
tions:
• RQ1: How much do the traditional test-suite reduction

techniques reduce the sizes and the fault-detection capa-
bility for real-world JUnit test suites?

• RQ2: How do the different experimental factors (e.g.,
the choices of test-suite reduction technique, test-case
granularity, and test-coverage level) impact the size of
the reduced JUnit test suites?

• RQ3: How do the different experimental factors influence
the fault-detection capability of the reduced JUnit test
suites?

Note that the first research question is mainly concerned
with whether there exists a cost-effective reduction for JUnit
test suites, while the second and the third questions are
concerned with how to achieve cost-effective JUnit test-suite
reduction in practice.

B. Considered Independent Variables

In the design of empirical studies, a set of factors are
usually controlled or changed by experimenters to investigate
the relationships between these factors and final experimental
results. These factors are called independent variables (IV).
Based on our research questions and the style of JUnit test
suites, we consider three independent variables for JUnit test-
suite reduction: the test-suite reduction technique, the test-case
granularity, and the test-coverage level.
IV1: Reduction Techniques. In this study, we used four tra-
ditional test-suite reduction techniques that have been widely
used in previous studies on C programs (e.g., [4], [9], [10]),
and applied them to real-world JUnit test suites:
• The Greedy Technique (denoted as G), which is presented

in detail in Section III-A.
• Harrold et al.’s Heuristic (denoted as H), which is pre-

sented in detail in Section III-B.
• The GRE Heuristic (denoted as GRE), which is presented

in detail in Section III-C.

• The ILP Technique (denoted as ILP), which is presented
in detail in Section III-D.

Note that all the studied techniques use random selection
to break ties when two test cases have the same priorities.
To make a fair comparison, we run each technique for 100
different random seeds and use the arithmetic mean values
as average results for reduction in test-suite size and fault
detection capability for each technique.
IV2: Test-Case Granularity. Previous studies on regression
testing for JUnit test suites (e.g., JUnit test-case prioritiza-
tion [21]) have identified test-case granularity as an important
factor in their experimental design. Therefore, we also consider
test-case granularity as an independent variable in our empir-
ical study. More precisely, following the previous studies, we
consider these two types of test-case granularity:
• Test-Class Granularity (denoted as TC), where we con-

sider each JUnit TestCase class as a test case.
• Test-Method Granularity (denoted as TM), where we

consider each JUnit test method within each TestCase
class as a test case.

Section IV-D describes in further detail the test cases at
different granularity in the studied subjects.
IV3: Test-Coverage Level. Method coverage and statement
coverage are two commonly used criteria for code coverage
in previous regression-testing studies on JUnit test suites [21],
[22]. In this study, we also use these two coverage criteria to
define test requirements for JUnit test suites:
• Method Level (denoted as Meth), which specifies cover-

ing all the Java source methods as the test requirements
for test-suite reduction.

• Statement Level (denoted as Stat), which specifies cover-
ing all the Java source statements as the test requirements
for test-suite reduction.

Note that although statement and method coverage are not
very strong criteria, they are widely used in practice and
provide larger reduction in test-suite size than stronger criteria.

C. Dependent Variables and Metrics
In empirical studies, dependent variables (DV) are used to

indicate and measure the interesting aspects of final results.
In this study, we use two dependent variables commonly used
by traditional test-suite reduction studies [4], [14], [17]:
DV1: Reduction in Test-Suite Size. This variable (abbrevi-
ated as RS) denotes the ratio of test cases reduced from the
original test suite. Following the traditional test-suite reduction
work [4], [14], we use the following metric for measuring this
variable:

RS =
|T | − |Treduced|

|T |
∗ 100

where T denotes the set of test cases in the original test suite,
while Treduced denotes the set of test cases in the reduced test
suite.
DV2: Reduction in Fault-Detection Capability. This vari-
able (abbreviated as RF) denotes the ratio of lowered fault-
detection capability. Following the traditional test-suite reduc-
tion work [4], [14], we use the following metric for measuring

this variable:

RF =
|F | − |Freduced|

|F |
∗ 100

where F denotes the set of faults revealed by the original test
suite, while Freduced denotes the set of faults revealed by the
reduced test suite.

Note that the first dependent variable is an indicator of
the benefit brought by test-suite reduction, while the second
dependent variable is an indicator of the cost of test-suite
reduction.

D. Subject Programs, Test Suites, and Faults

We used 19 versions of four real-world Java programs as
subjects for this study: 3 versions of jtopas, 3 versions of
xml-security (abbreviated as xmlsec), 5 versions of jmeter,
and 8 versions of ant. jtopas1 is code for parsing text data.
xml-security2 implements XML signature and encryption stan-
dards. jmeter3 is used for load testing and performance mea-
surement. ant4 is a Java-based build tool, similar to the Unix
tool make. We obtained the successive versions of these four
programs from the Software-artifact Infrastructure Repository
(SIR)5 [23]. We chose SIR because it is very widely used. The
sizes of the studied subjects range from 1.89 KLoC to 80.44
KLoC, and amount to total of 701.10 KLoC. Table I shows
the detailed statistics of the subjects. For each subject, the first
two columns show the mapping between the labels we used
and the actual subjects, and the next three columns show the
number of statements, the number of classes, and the number
of methods, respectively.

Each version of each program comes with a JUnit test suite
in SIR. We directly used those JUnit test suites as the original
test suites for applying test-suite reduction. Note that due to the
specific style of organizing JUnit tests, there are two natural
types of test-case granularity: the test-class granularity that
treats each TestCase class as a test case and the test-method
granularity that treats each test method within each TestCase
class as a test case. The numbers of test cases at the test-class
granularity and the test-method granularity for each subject
are shown in columns 6 and 7 of Table I.

Each version of each program also comes with a set of
manually seeded faults in SIR, and the number of seeded faults
is shown in Column 8 of Table I. We used these seeded faults
to form faulty versions to simulate software evolution. Then
we evaluate the reduction of test-suite sizes (i.e., RS) and the
lowering of fault-detection capability (i.e., RF) caused by test-
suite reduction to address the research questions. In addition,
previous research has shown that it is often appropriate to use
automatically mutated faults for regression-testing experimen-
tation [22], [24], [25]. In fact, Andrews et al. [24], [25] found
that for software-testing experimentation mutated faults are

1http://jtopas.sourceforge.net/jtopas/, Accessed in August 2011.
2http://santuario.apache.org/, Accessed in August 2011.
3http://jakarta.apache.org/jmeter/, Accessed in August 2011.
4http://ant.apache.org/, Accessed in August 2011.
5http://sir.unl.edu/portal/index.html, Accessed in August 2011.

TABLE I
STATISTICS FOR SUBJECTS

Label Subject Number of Number of Number of Number of Number of Number of Number of
Statements Classes Methods Test Classes Test Methods Seeded Faults Mutated Faults

S1 jtopas-v1 1897 19 285 10 126 10 100
S2 jtopas-v2 2031 21 304 11 128 12 100
S3 jtopas-v3 5361 50 748 18 209 16 100
S4 xmlsec-v1 18323 179 1627 15 92 20 100
S5 xmlsec-v2 18985 180 1629 15 94 19 100
S6 xmlsec-v3 16878 145 1398 13 84 13 100
S7 jmeter-v1 33670 334 2919 26 78 19 35
S8 jmeter-v2 33097 319 2838 29 80 20 100
S9 jmeter-v3 37271 373 3445 33 78 19 100
S10 jmeter-v4 38357 380 3536 33 78 13 100
S11 jmeter-v5 41052 389 3613 37 97 12 100
S12 ant-v1 25846 228 2511 34 137 11 100
S13 ant-v2 39733 342 3836 51 219 21 100
S14 ant-v3 38810 342 3845 51 219 7 100
S15 ant-v4 61877 532 5684 102 521 26 100
S16 ant-v5 63510 536 5802 105 557 15 100
S17 ant-v6 63578 536 5808 105 559 1 100
S18 ant-v7 80381 649 7520 149 877 29 100
S19 ant-v8 80444 650 7524 149 878 4 100

even more similar to real faults than seeded faults, as seeded
faults seem to be harder to detect than real faults. Therefore,
we also used mutated faults produced by mutation testing to
form faulty versions for evaluating RF values. More precisely,
we used all 15 traditional mutation operators of MuJava6 [26]
to produce faulty versions (i.e., mutants) to form a mutant
pool for each subject. For each subject, shown in Column 9
of Table I, we randomly select 100 mutants that can be killed
by the original test suite as mutated faults from its mutant pool
to evaluate RF values. The only exception is on subject jmeter-
v1: we only use 35 mutants as mutated faults to evaluate RF
values, because only 35 mutants can be killed by the original
test suite of jmeter-v1.

E. Implementation and Supporting Tools

We implemented the basic coverage-collection component
for JUnit test-suite reduction based on the Eclipse JDT toolkit7

and the ASM byte-code manipulation framework8. Based on
the Eclipse JDT toolkit, the component automatically distin-
guishes source classes and JUnit TestCase classes for programs
under test to enable different instrumentation. Based on the
ASM framework, the component instruments each JUnit test
method to record the test method identifier and the identifier
of its corresponding test class, and instruments each source
method and statement to record all the statements or methods
executed by each JUnit test method. With the instrumentation,
whenever corresponding JUnit test methods are executed, their
identifiers and statements or methods executed by them will be
automatically traced. With the traced coverage information for
each test-method granularity test case, the component simply
composes the coverage information of test methods from a
common test class to form the coverage information for each
test-class granularity test case.

6http://www.cs.gmu.edu/ offutt/mujava/, Accessed in August 2011.
7http://www.eclipse.org/jdt/, Accessed in August 2011.
8http://asm.ow2.org/, Accessed in August 2011.

Based on the basic coverage-collection component, all the
studied test-suite reduction techniques are implemented by
the first author strictly according to their original algorithmic
details. The G, H, and GRE techniques are simply imple-
mented without external libraries, while the ILP technique is
implemented based on the IBM Symphony library9 [20], which
provides an API for solving mixed integer linear programming
problems and has been widely used in other studies [5], [9].

F. Data and Analysis

As discussed in Section IV-C, our empirical study considers
both the reduction in test-suite size (RS) and the lowering
in fault-detection capability (RF) of reduced suites. The RS
values achieved by each combination of independent variables
(IV) for each subject are shown in Table II. In this table, rows
1 to 3 present all the possible choices for the three IVs, where
“Meth” and “Stat” are the abbreviations for the method-level
and statement-level coverage, respectively. These three rows
together indicate each column as a combination of the IVs.
In this section, we use a tuple 〈IV1×IV2×IV3〉 to denote
each combination of the three IVs. For example, 〈G, TM,
Meth〉 of Column 2 denotes applying the greedy technique on
the test-method granularity of test cases using the method-level
coverage. Similarly, Table III shows the RF values achieved
by each combination of IVs for each subject on the mutated
faults, while Table IV shows the RF values achieved by each
combination of IVs for each subject on the seeded faults.
Recall that each RF or RS value is the average result over
100 random seeds for the corresponding combination on the
corresponding subject.
RQ1: Reduction effectiveness. As shown in Table II, on
average, all the 16 combinations of the three IVs offer benefit
in reducing the size of test suites, ranging from 12.46% to
65.52%. More precisely, tuples of the form 〈*, TM, Meth〉 (i.e.,

9http://www.coin-or.org/SYMPHONY/, Accessed in August 2011.

TABLE II
RS VALUES ACHIEVED BY COMBINING DIFFERENT INDEPENDENT VARIABLES

The Greedy Technique Harrold et al.’s Heuristic The GRE Heuristic The ILP Technique
Sub. Test Method Test Class Test Method Test Class Test Method Test Class Test Method Test Class

Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat
S1 57.69 30.76 12.50 12.50 57.69 30.76 12.50 12.50 57.69 30.76 12.50 12.50 57.69 30.76 12.50 12.50
S2 57.14 28.57 22.22 11.11 57.14 28.57 22.22 11.11 57.14 28.57 22.22 11.11 57.14 28.57 22.22 11.11
S3 56.36 21.81 50.00 16.66 56.36 23.63 50.00 16.66 56.36 23.63 50.00 16.66 56.36 23.63 50.00 16.66
S4 73.91 64.13 33.33 33.33 73.91 64.13 33.33 33.33 73.91 64.13 33.33 33.33 73.91 64.13 33.33 33.33
S5 74.75 65.95 33.33 33.33 75.53 65.95 33.33 33.33 75.53 65.95 33.33 33.33 75.53 65.95 33.33 33.33
S6 78.96 69.04 38.46 38.46 79.76 69.04 38.46 38.46 79.76 69.04 38.46 38.46 79.76 69.04 38.46 38.46
S7 62.02 44.30 20.83 8.33 62.02 45.56 20.83 8.33 62.02 45.56 20.83 8.33 62.02 45.56 20.83 8.33
S8 58.74 41.25 11.99 4.00 58.74 41.25 11.99 4.00 58.74 41.25 11.99 4.00 58.74 41.25 11.99 4.00
S9 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71
S10 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71
S11 56.70 49.48 18.75 15.62 56.70 49.48 18.75 15.62 56.70 49.48 18.75 15.62 56.70 49.48 18.75 15.62
S12 67.48 34.81 17.64 2.94 68.61 35.03 17.64 2.94 68.61 35.03 17.64 2.94 68.61 35.03 17.64 2.94
S13 68.65 38.02 15.68 0.00 69.48 39.43 15.68 0.00 69.48 39.43 15.68 0.00 69.48 39.43 15.68 0.00
S14 68.60 37.84 15.68 0.00 69.48 39.43 15.68 0.00 69.48 39.43 15.68 0.00 69.48 39.43 15.68 0.00
S15 69.80 44.53 16.66 6.86 69.90 45.24 17.64 6.86 70.09 45.24 17.64 6.86 70.09 45.24 17.64 6.86
S16 71.57 46.78 16.19 5.71 72.10 47.28 17.14 5.71 72.28 47.46 17.14 5.71 72.28 47.46 17.14 5.71
S17 71.49 46.39 16.19 5.71 72.33 47.19 17.14 5.71 72.51 47.37 17.14 5.71 72.51 47.37 17.14 5.71
S18 72.84 50.87 20.13 10.73 73.17 51.56 20.80 10.73 73.17 51.56 20.80 10.73 73.17 51.68 20.80 10.73
S19 73.47 51.87 20.80 10.06 74.01 52.55 21.47 10.06 74.01 52.66 21.47 10.06 74.01 52.78 21.47 10.06
Avg. 65.13 44.78 21.52 12.46 65.49 45.29 21.74 12.46 65.52 45.32 21.74 12.46 65.52 45.33 21.74 12.46

TABLE III
RF VALUES ON MUTATED FAULTS BY COMBINING DIFFERENT INDEPENDENT VARIABLES

The Greedy Technique Harrold et al.’s Heuristic The GRE Heuristic The ILP Technique
Sub. Test Method Test Class Test Method Test Class Test Method Test Class Test Method Test Class

Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat
S1 24.67 17.00 16.61 15.00 24.93 17.00 16.56 15.00 28.99 17.00 17.99 15.00 25.59 17.00 16.17 15.00
S2 23.99 13.00 15.00 10.99 23.99 13.00 15.00 10.99 23.99 13.00 15.00 10.99 23.99 13.00 15.00 10.99
S3 2.00 0.53 2.00 0.00 2.00 0.48 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.44 2.00 0.00
S4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S6 4.99 0.00 0.00 0.00 4.99 0.00 0.00 0.00 4.99 0.00 0.00 0.00 4.99 0.00 0.00 0.00
S7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S13 12.71 0.00 6.00 0.00 12.69 0.00 6.00 0.00 11.99 0.00 6.00 0.00 11.03 0.00 6.00 0.00
S14 7.75 1.00 3.00 0.00 7.56 1.00 3.00 0.00 7.00 1.00 3.00 0.00 7.46 1.00 3.00 0.00
S15 6.74 0.00 3.00 0.00 6.59 0.00 3.00 0.00 7.00 0.00 3.00 0.00 6.45 0.00 3.00 0.00
S16 5.87 1.00 1.00 0.00 5.52 1.00 1.00 0.00 4.99 1.00 1.00 0.00 5.51 1.00 1.00 0.00
S17 3.63 2.00 0.00 0.00 3.69 2.00 0.00 0.00 4.00 2.00 0.00 0.00 3.00 2.00 0.00 0.00
S18 3.77 3.79 1.00 1.00 3.74 3.82 1.00 1.00 4.00 4.00 1.00 1.00 3.81 3.73 1.00 1.00
S19 2.41 0.00 0.00 0.00 2.41 0.00 0.00 0.00 1.49 0.00 0.00 0.00 2.40 0.00 0.00 0.00
Avg. 5.23 2.06 2.55 1.47 5.21 2.06 2.55 1.47 5.33 2.05 2.63 1.47 5.11 2.06 2.53 1.47

techniques applied on the test-method granularity test cases
using the method-level coverage) have the highest RS values,
while tuples of the form 〈*, TC, Stat〉 (i.e., techniques applied
on the test-class granularity test cases using the statement-level
coverage) have the lowest RS values. This observation shows
that all combinations of IVs can effectively reduce the sizes
of JUnit test suites.

We further analyze the cost of test-suite reduction, i.e., the
lowering of fault-detection capability (represented by the RF
values) on mutated faults. As shown in Table III, on average,
all the 16 combinations of the 3 IVs have positive RF values,
ranging from 1.47% to 5.33%, which are smaller than the RS
values achieved. For example, tuple 〈ILP, TM, Meth〉 reduces
the test-suite sizes by 65.52% while lowering fault-detection

capability 5.11%, and tuple 〈H, TM, Stat〉 reduces the test-
suite sizes by 45.29% while lowering fault-detection capability
only 2.06%. Moreover, all combinations have zero RF values,
i.e., no lowering of fault-detection capability, for 7 of the 19
subjects. These results show that various combinations can
provide cost-effective JUnit test-suite reduction.

The results on seeded faults in Table IV further confirm
this conclusion. On average, the RV values for all the 16
combinations of three IVs range from 0.00% to 12.96%, which
are also smaller than the RS values achieved. In addition,
the same relative comparisons among combinations of the
same technique on mutated faults often hold for the seeded
faults. For example, for the ILP technique, 〈ILP, TM, Meth〉>
〈ILP, TC, Meth〉>〈ILP, TM, Stat〉>〈ILP, TC, Stat〉 on RF

TABLE IV
RF VALUES ON SEEDED FAULTS BY COMBINING DIFFERENT INDEPENDENT VARIABLES

The Greedy Technique Harrold et al.’s Heuristic The GRE Heuristic The ILP Technique
Sub. Test Method Test Class Test Method Test Class Test Method Test Class Test Method Test Class

Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat
S1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S3 14.28 0.00 14.28 0.00 14.28 14.28 14.28 0.00 14.28 14.28 14.28 0.00 14.28 14.28 14.28 0.00
S4 28.57 0.00 0.00 0.00 28.57 0.00 0.00 0.00 28.57 0.00 0.00 0.00 28.57 0.00 0.00 0.00
S5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S7 25.00 25.00 0.00 0.00 39.50 0.00 0.00 0.00 25.00 11.00 0.00 0.00 38.00 13.00 0.00 0.00
S8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S9 0.00 0.00 0.00 0.00 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.12 0.00 0.00 0.00
S10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S11 33.33 33.33 0.00 0.00 33.33 33.33 0.00 0.00 33.33 33.33 0.00 0.00 33.33 33.33 0.00 0.00
S12 25.99 23.66 33.33 0.00 25.66 22.66 33.33 0.00 33.33 33.33 33.33 0.00 26.99 20.66 33.33 0.00
S13 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00
S14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S15 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00
S16 20.63 3.09 9.09 0.00 23.72 2.81 9.09 0.00 18.18 0.00 9.09 0.00 22.45 3.27 9.09 0.00
S17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S18 23.58 8.33 8.33 0.00 23.50 8.33 8.33 0.00 25.00 8.33 8.33 0.00 23.66 8.33 8.33 0.00
S19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Avg. 11.82 4.91 6.22 0.00 12.96 4.28 6.22 0.00 12.15 5.27 6.22 0.00 12.82 4.88 6.22 0.00

values of both seeded and mutated faults, where > denotes
that one technique achieves higher RF value than the other.
However, there are also differences on RF values for these
two types of faults. The RF values achieved on mutated faults
are on average smaller than the RF values achieved on seeded
faults, indicating less lowering of fault-detection capability
on mutated faults than on seeded faults. This supports the
conclusions from previous studies that mutated faults and real
faults are on average easier to reveal than seeded faults [24],
[25]. The only exceptions are the combinations of the form 〈*,
TC, Stat〉. We think the reason for the exceptions is the small
number of seeded faults which allows test suites reduced by
those combinations to occasionally reveal all seeded faults by
chance.

For this research question, our results on JUnit test suites
are more consistent with the Wong et al.’s study on C pro-
grams [14], [15] while greatly differing with the Rothermel
et al.’s study on C programs [4]. Rothermel et al.’s study
shows that test-suite reduction can compromise the fault-
detection capability substantially in many cases, e.g., having
RF values of over 50% and even up to 100%. A precise
analysis of the causes for this difference would be outside
the scope of this paper, but we suggest several potential
causes. First, the subject programs used for these two studies
differ substantially: the subjects used by Rothermel et al. are
small C programs, ranging from 138 to 516 lines of code,
while the subjects used in our study are large-scale Java
programs, ranging from 1.89 KLoC to 80.44 KLoC. Second,
the test suites used are generated differently: the test suites
used by Rothermel et al. are automatically generated by a
black-box technique and then complemented with manually
created tests to achieve certain coverage criteria, resulting in
hundreds or thousands of test cases for the small programs. In
contrast, the test suites used in our study are mainly JUnit test

TABLE V
STATISTICAL ANALYSIS FOR INDEPENDENT VARIABLES’ INFLUENCE ON

RS

Descriptive Statistics
IV Choice Size Mean SD SE of Mean

IV1 G 76 35.978 23.20 2.66
H 76 36.250 23.31 2.67

GRE 76 36.263 23.33 2.68
ILP 76 36.266 23.33 2.68

IV2 TC 152 17.076 11.30 0.92
TM 152 55.302 14.65 1.19

IV3 Meth 152 43.554 23.88 1.94
Stat 152 28.824 19.96 1.62
ANOVA Analysis (at the significance level 0.05)

Source DF SS MS F Value Prob> F
IV1 3 4.54 1.51 0.003 0.9998
IV2 1 111057.39 111057.39 649.04 0.0000
IV3 1 16488.47 16488.47 34.05 < 0.0001
Total 303 162732.60

suites accumulated during real software evolution. Third, the
different seeded faults used in these two studies could also be
a potential cause.
RQ2: Effects of IVs on RS values. RS values denote the ra-
tios of test cases reduced by test-suite reduction. Investigating
effects of different IVs on the RS values can help to achieve
better reduction on sizes of test suites in practice. For each
IV, we divide all the RS values by all combinations of IVs
on all subjects into groups according to the different choices
of this IV. For example, for IV1 we divide all the RS values
into four groups, while for IV2 and IV3 we divide all the RS
values into two groups. Then, we apply statistical analysis to
find the differences between different groups divided by each
IV. The statistical results are shown in Table V, where the top
part shows the descriptive statistics for each group divided by
each IV while the bottom part shows the ANOVA analysis for
comparing different groups divided by the same IV. In the top

part, Column 1 presents different IVs, Column 2 shows the
choices for each IV, Column 3 shows the sample size for each
group divided by the corresponding IV choices, and columns
4 to 6 show the Mean, Standard Deviation, and Standard
Error of Mean for each group. In the bottom part, Column 1
shows the IV based on which we divide groups, and columns
2 to 6 show Degree of Freedom, Sum of Squares, Mean
Square, F Value, and p value for each group division. From
the descriptive statistics, we find that different choices on IV1
achieve similar mean values, while different choices on IV2
and IV3 achieve clearly different mean values. The ANOVA
analysis further shows that at the 0.05 significance level, there
are no significant differences among groups divided based on
different choices of IV1, while there are significant differences
between groups divided based on different choices of IV2
and IV3. This result shows that the choice of four studied
techniques has no significant influence on the ratios of sizes
reduced. In contrast, test-class granularity for JUnit test cases
is significantly less effective than test-method granularity, and
statement-level coverage is significantly less effective than
method-level coverage in reducing the size of original JUnit
test suites.

For the four compared test-reduction techniques, although
there are no statistically significant differences, there are still
slight differences. On all test-case levels and requirement
levels, ILP always achieves the largest RS values for all
subjects, GRE and H can achieve competitive RS values
compared to ILP, while G is slightly inferior to the other
techniques. Therefore, we can formulate the performance com-
parison among them as ILP∼=GRE∼=H>G, where ∼= denotes
performing approximately the same. This comparison results
between different techniques obtained on JUnit test suites
are mainly consistent with Zhong et al. [9]’s study on C
programs. They also find that ILP always achieves the minimal
representative subset, and there are no significant differences
between ILP, GRE, and H.
RQ3: Effects of IVs on RF values. Similarly with the analysis
for RQ2, we perform statistical analysis on RF values achieved
on groups divided by different IVs. The top part of Table VI
shows the descriptive statistics for the different groups divided
by different IVs on seeded faults and mutated faults, and the
bottom part of the table shows the ANOVA analysis among
groups divided by different choices of the same IV on seeded
faults and mutated faults. Similar as with the results on RS
values, the ANOVA analysis also shows that there are no
significant differences among groups divided by IV1 at the
0.05 significance level, and there are significant differences
among groups divided by IV2 and among groups divided by
IV3. Every group achieving significantly higher RS values
also achieves higher RF values, indicating the fact that higher
reduction rate in sizes consistently incurs higher lowering in
fault-detection capability of reduced test suites.

Although the ANOVA analysis of RF values is mainly the
same with as of RS values in RQ2, there are different trends
for the effects of different IVs on the RF values from their
effects on the RS values. For the groups divided by IV1, the

RF values of different groups have different distributions for
seeded and mutated faults. For seeded faults, techniques G
and H have smaller average RF values than techniques GRE
and ILP, while for mutated faults techniques ILP and H have
smaller average RF values than techniques GRE and G. Also
technique H can achieve approximately the best reduction in
suite size, so we suggest this technique as a reasonable choice
for achieving cost-effective JUnit test-suite reduction.

For IV3, on average, changing from Stat to Meth increases
the mean RS value from 28.825 to 43.547, while increasing
the mean RF value for seeded faults from 2.421 to 9.337
and increasing the mean RF value for mutated faults from
1.768 to 3.899. The rates of increase in RF values on both
mutated and seeded faults are consistently larger than that in
RS values, indicating that changing IV3 from Stat to Meth
might not be so cost-effective. For IV2, changing from TC
to TM increases the mean RS value from 17.076 to 55.302
while increasing the mean RF value for seeded faults from
3.114 to 8.643 and increasing the mean RF value for mutated
faults from 2.022 to 3.645. Although reducing at the test-case
granularity of TM is able to effectively reduce test-suite sizes,
the fault-detection capability also drops to approximately the
same extent. Therefore, we believe the testers should decide
between test-case granularity based on their specific situations:
if they care more about the efficiency, they can choose TM;
otherwise they can choose TC.
Guideline for JUnit test-suite reduction. Our empirical
study shows there exists various combinations of IVs that can
effectively reduce JUnit test suites without severely lowering
the fault-detection capability. The observations in the above
sections also provide the following suggestions for JUnit test-
suite reduction in practice:
• All the four techniques studied are not significantly

different in RS and RF values, and each of them could be
used for reducing JUnit test suites. However, technique H
always achieves nearly the largest reduction in test-suite
sizes while achieving nearly the least reduction in fault-
detection capability on both seeded and mutated faults.
Therefore, choosing technique H could be the most cost-
effective choice in practice.

• Different test-case granularity levels have significant im-
pacts on RS and RF values. However, the one achieving
larger RS values also increases RF values to approxi-
mately the same degree, indicating more reduction in
fault-detection capability of reduced test suites. There-
fore, choosing test-case granularity should be decided
based on other constraints. If the testers care more about
the efficiency, TM should be used; otherwise, TC should
be used.

• Different test-coverage levels also have significant im-
pacts on RS and RF values. As for IV2, the one achieving
larger RS values also has larger RF values. However, the
rate of increase in RF values when changing from Stat
to Meth is faster than the rate of increase in RS values.
Therefore, the testers could prefer Stat to Meth for test
coverage for JUnit test suite reduction.

TABLE VI
STATISTICAL ANALYSIS FOR INDEPENDENT VARIABLES’ INFLUENCE ON RF

Descriptive Statistics
Seeded Faults Mutated Faults

IV Choice Size Mean SD SE of Mean Choice Size Mean SD SE of Mean
IV1 G 76 5.743 10.81 1.24 G 76 2.835 5.57 0.64

H 76 5.870 11.11 1.27 H 76 2.828 5.58 0.64
GRE 76 5.916 11.12 1.28 GRE 76 2.874 5.84 0.67
ILP 76 5.986 11.03 1.27 ILP 76 2.797 5.56 0.64

IV2 TC 152 3.114 8.31 0.67 TC 152 2.022 4.49 0.36
TM 152 8.643 12.52 1.02 TM 152 3.645 6.45 0.52

IV3 Meth 152 9.337 12.81 1.04 Meth 152 3.899 6.49 0.53
Stat 152 2.421 7.28 0.59 Stat 152 1.768 4.33 0.35

ANOVA Analysis (at the significance level 0.05)
Seeded Faults Mutated Faults

Source DF SS MS F Value Prob> F DF SS MS F Value Prob> F
IV1 3 2.39 0.80 0.007 0.9993 3 0.23 0.08 0.0024 0.9998
IV2 1 2323.10 2323.10 20.57 < 0.0001 1 200.38 200.38 6.48 0.0114
IV3 1 3635.28 3635.28 33.48 < 0.0001 1 345.08 345.08 11.34 < 0.0010
Total 303 36429.23 303 9535.85

In summary, to achieve cost-effective reduction in practice,
we suggest using heuristic H (i.e., Harrold et al.’s heuristic [2])
as the reduction technique and Stat (i.e., the statement level)
as the test-coverage level. For the test-case granularity, we
suggest the testers decide based on real situations between TM
(i.e., the test-method granularity) and TC (i.e., the test-class
granularity).

G. Threats to Validity

In this section, we describe the internal, external, and
construct threats to the validity of our experimentation.
Internal Validity. Threats to internal validity are mainly
concerned with the uncontrolled internal factors that might
have influence on the experimental results. There are two key
threats to internal validity for this empirical study. The first
threat involves the potential faults in the implementation of
various techniques. To reduce this threat, we implemented all
the compared techniques strictly following their original algo-
rithmic details, and we used well-known, third-party libraries.
We also carefully analyzed and tested these implementations.
The second threat is concerned with the faults used in the
studied subjects. To control this threat, we use all the seeded
faults that come with the subjects in SIR. In addition, as it
has been shown that mutated faults are suitable for use in
regression-testing experimentation [22], [24], [25], we also use
large number of mutated faults for each subject in the study.
External Validity. Threats to external validity are about
whether the observed experimental results and conclusion are
generalizable to other subjects. To alleviate these threats for
this study, we use as our experimental subjects 19 versions of
four real-world Java programs with sizes ranging from 1.89
KLoC to 80.44 KLoC. We obtained both the subject programs
and their JUnit test suites from the SIR repository.
Construct Validity. Threats to construct validity are about
whether the measurements used in the experimental study
reflect the real-world situation. To reduce these threats, we
use the metrics RS [9], [10] and RF [4], [14], which were
widely used in traditional test-suite reduction works to evaluate

the benefits and costs of test-suite reduction. We apply these
metrics on JUnit test suites.

V. RELATED WORK

Researchers have investigated many topics on effective
and efficient regression testing as summarized in a recent
survey [8]. While there is a large amount of work related to our
study, we mainly discuss the most related work on test-suite
reduction.

Many test-suite reduction techniques have been proposed
for reducing test suites, mostly for C programs. There are a
number of heuristics for finding minimal representative subsets
for original test suites [2], [3], [27], [28]. Harrold et al. [2] are
inspired by the fact that essential test cases should be selected
as early as possible, and propose a heuristic for iteratively
selecting more essential test cases. Chen et al. [3] further
combine the features of both essential test cases and 1-to-
1 redundant test cases, and propose to reduce test cases by
iteratively applying these two strategies. When the procedure
cannot continue with these two strategies, Chen et al.’s heuris-
tic just breaks the deadlock with the greedy strategy. There
are also works using evolutionary algorithms [29] and integer
linear programming (ILP) [12], [13] for test-suite reduction.
Mansour et al. [29] aim to find minimal representative sets
of regression test suites based on simulated annealing and
genetic algorithms. Black et al. [13] consider ILP models
for reducing regression test suites. There is additional work
aiming to improve the fault-detection capability of reduced
test suites. For example, Jeffrey et al. [17], [30] modified the
heuristic algorithm proposed by Harrold et al. [2] by selecting
redundant test cases to maintain the fault-detection capability.

A number of empirical studies have been available for
traditional test-suite reduction. Some empirical studies do not
consider the lowering of fault-detection capability caused by
test-suite reduction. Chen et al. [10] conduct a simulation
study to investigate the ratios of test-suite sizes reduced
by different techniques, and show the effectiveness of each
technique in various simulated situations. Zhong et al. [9]

study both the size reduction and time taken for reduction
by different techniques on C programs, and show that the ILP
technique [13] always achieves the minimum representative
subset sizes among all compared techniques, while the GRE
technique [3] and Harrold et al.’s heuristic [2] perform about
the same.

Some empirical studies do take into account the lowering of
fault-detection capability caused by test-suite reduction. Wong
et al. [14], [15] found that test-suite reduction does not severely
influence the fault-detection capability. However, Rothermel et
al. [4], [16] found that test-suite reduction can severely reduce
the fault detection capability.

Despite the previous works, there are limited studies on test-
suite reduction for larger programs and real-world test suites in
different test paradigms. In addition, there are limited studies
extensively investigating the influence of different factors on
both the benefits and costs of test-suite reduction. Our study
aims to extensively study the benefits and costs of traditional
test-suite reduction techniques on real-world JUnit test suites
for larger Java programs.

VI. CONCLUSIONS

In this study, we investigated the performance of traditional
test-suite reduction techniques on larger programs with more
realistic test suites than in previous studies. We implemented
and applied four representative traditional test-suite reduction
techniques to Java programs with JUnit test suites. We de-
signed and conducted an empirical study which evaluated both
the benefits and costs of these test-suite reduction techniques
on real-world JUnit test suites. Based on the empirical results,
we discussed the similarities and differences between the
findings in this study and those in previous studies. Moreover,
we also provided a guideline for achieving cost-effective
reduction on JUnit test suites in practice.

ACKNOWLEDGEMENTS

This material is based upon work partially supported by
the National Science Foundation under Grant Nos. CNS-
0958231, CNS-0958199, CCF-0845628, CCF-0746856, IIS-
0438967, and AFOSR grant FA9550-09-1-0351.

REFERENCES

[1] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prioritiza-
tion: An empirical study,” in Proceedings of International Conference
on Software Maintenance. IEEE, 1999, pp. 179–188.

[2] M. Harrold, R. Gupta, and M. Soffa, “A methodology for controlling
the size of a test suite,” ACM Transactions on Software Engineering and
Methodology, vol. 2, no. 3, pp. 270–285, 1993.

[3] T. Chen and M. Lau, “A new heuristic for test suite reduction,”
Information and Software Technology, vol. 40, no. 5, pp. 347–354, 1998.

[4] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong, “An empirical study
of the effects of minimization on the fault detection capabilities of
test suites,” in Proceedings of International Conference on Software
Maintenance. Published by the IEEE Computer Society, 1998, p. 34.

[5] L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-
case prioritization using integer linear programming,” in Proceedings
of International Symposium on Software Testing and Analysis, 2009,
pp. 213–224.

[6] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Prioritizing
junit test cases in absence of coverage information,” in Proceedings of
International Conference on Software Maintenance. IEEE, pp. 19–28.

[7] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,
S. Spoon, and A. Gujarathi, “Regression test selection for java software,”
in ACM SIGPLAN Notices, vol. 36, no. 11, 2001, pp. 312–326.

[8] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verification and Reliability,
2010.

[9] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical
test suite reduction techniques,” Information and Software Technology,
vol. 50, no. 6, pp. 534–546, 2008.

[10] T. Chen and M. Lau, “A simulation study on some heuristics for test
suite reduction,” Information and Software Technology, vol. 40, no. 13,
pp. 777–787, 1998.

[11] A. Aho, J. Hopcroft, and J. Ullman, “The design and analysis of
computer algorithms,” Addison-Wesley Series in Computer Science and
Information Processing, Reading, MA: Addison-Wesley, vol. 1, 1974.

[12] J. Hartmann and D. Robson, “Revalidation during the software mainte-
nance phase,” in Proceedings of International Conference on Software
Maintenance. IEEE, 1989, pp. 70–80.

[13] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for all-
uses test suite reduction,” in Proceedings of International Conference
on Software Engineering. IEEE Computer Society, 2004, pp. 106–115.

[14] W. Wong, J. Horgan, S. London, and A. Mathur, “Effect of test
set minimization on fault detection effectiveness,” in Proceedings of
International Conference on Software Engineering, 1995, pp. 41–50.

[15] W. Wong, J. Horgan, A. Mathur, and A. Pasquini, “Test set size
minimization and fault detection effectiveness: A case study in a space
application,” Journal of Systems and Software, vol. 48, no. 2, pp. 79–89,
1999.

[16] G. Rothermel, M. Harrold, J. Von Ronne, and C. Hong, “Empirical stud-
ies of test-suite reduction,” Software Testing, Verification and Reliability,
vol. 12, no. 4, pp. 219–249, 2002.

[17] D. Jeffrey and N. Gupta, “Test suite reduction with selective re-
dundancy,” in Proceedings of International Conference on Software
Maintenance. IEEE, 2005, pp. 549–558.

[18] T. Chen and M. Lau, “Heuristics towards the optimization of the size
of a test suite,” in Proceedings of International Conference on Software
Quality Management, vol. 2, pp. 415–424.

[19] H. Hsu and A. Orso, “Mints: A general framework and tool for
supporting test-suite minimization,” in Proc. of International Conference
on Software Engineering. IEEE Computer Society, 2009, pp. 419–429.

[20] T. Ralphs and M. Guzelsoy, “The symphony callable library for mixed
integer programming,” in Proceedings of the Ninth Conference of the
INFORMS Computing Society. Citeseer, 2005.

[21] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing junit test cases:
An empirical assessment and cost-benefits analysis,” Empirical Software
Engineering, vol. 11, no. 1, pp. 33–70, 2006.

[22] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Transactions
on Software Engineering, pp. 733–752, 2006.

[23] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[24] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool
for testing experiments?” in Proceedings of International Conference on
Software Engineering, 2005, pp. 402–411.

[25] J. Andrews, L. Briand, Y. Labiche, and A. Namin, “Using mutation
analysis for assessing and comparing testing coverage criteria,” IEEE
Transactions on Software Engineering, pp. 608–624, 2006.

[26] Y. Ma, J. Offutt, and Y. Kwon, “Mujava: An automated class mutation
system,” Software Testing, Verification and Reliability, vol. 15, no. 2,
pp. 97–133, 2005.

[27] A. Offutt, J. Pan, and J. Voas, “Procedures for reducing the size of
coverage-based test sets,” in Proceedings of International Conference
on Testing Computer Software. Citeseer, 1995.

[28] J. Horgan and S. London, “Atac: A data flow coverage testing tool for c,”
in Proceedings of Symposium of Quality Software Development Tools,
1992, pp. 2–10.

[29] N. Mansour and K. El-Fakih, “Simulated annealing and genetic algo-
rithms for optimal regression testing,” Journal of Software Maintenance:
Research and Practice, vol. 11, no. 1, pp. 19–34, 1999.

[30] D. Jeffrey and N. Gupta, “Improving fault detection capability by selec-
tively retaining test cases during test suite reduction,” IEEE Transactions
on Software Engineering, pp. 108–123, 2007.

